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iii Modèles de masse neuronale de nouvelle génération : mémoire de travail, modélisation du cerveau entier et phénomènes multi-échelles de temps Résumé Dans cette thèse, nous présentons de nouvelles extensions et applications des modèles de masse neurale de nouvelle génération. Montbrió, Pazó et Roxin (MPR) ont montré que le comportement collectif d'un ensemble de neurones intègre-et-tir quadratiques (QIF) peut être décrit en termes de potentiel de membrane moyen et de taux de décharge de façon exacte, ramenant la dimension du problème d'un réseau microscopique infiniment grand à une description macroscopique de petite dimension. Vu que la masse neurale donne accès aux potentiels de membrane moyens, elle peut être utilisée comme un indicateur pour le potentiel de champ local et les signaux EEG.

Une des contributions de cette thèse est l'implémentation de la plasticité synaptique à court terme (STP) dans le modèle MPR. Sur la base d'une théorie synaptique de la mémoire de travail (WM), nous reproduisons les mécanismes de la WM avec un réseau QIF et de sa limite champ moyen exacte dans une configuration multi-population. Le modèle de masse neurale présente des oscillations dans la bande β-γ durant le chargement et le maintien de la mémoire, comme observé dans les expériences, alors que nous rencontrons des bandes β-γ vides en avec un modèle heuristique. De plus, nous indiquons comment ces bandes de puissance sont formées par des résonances entre les fréquences fondamentales, liées au nombre d'éléments retenus en mémoire. Nous fournissons aussi une estimation analytique de la capacité maximale de la WM d'environ cinq éléments.

La deuxième contribution est l'application d'un modèle multi-population pour tester l'hypothèse clinique de la propagation des crises épileptiques. Nous utilisons des connectomes structurels obtenus à partir de scans de MRI de diffusion de sujets sains et de patients épileptiques. Nous décrivons comment les événements de type crise épileptique peuvent être modélisés comme un recrutement d'un état de faible activité à un état de forte activité. Des entrées externes peuvent déclencher un tel événement et conduire à une cascade de recrutements, imitant ainsi la propagation spatio-temporelle des crises. Les résultats numériques suggèrent que les patients épileptiques sont plus sensibles aux événements de recrutement étendus que les sujets sains. Nous trouvons aussi un bon accord entre les premières aires cérébrales à être recrutées dans notre modèle et l'évaluation pré-chirurgicale des réseaux secondaires recrutés.

Comme troisième contribution, nous étudions le réseau et la masse neurale en présence de STP en utilisant des dynamiques lentes-rapides. En fonction de l'amplitude d'un courant périodique lent appliqué à la population, le comportement collectif peut être soit dans un régime d'oscillations sous-seuil, soit dans un régime de bursting, c'est-à-dire alternant entre une dérive quasi-statique et des oscillations rapides de grande amplitude. Les deux régimes sont séparés par un étroit intervalle de paramètres, ressemblant à une explosion de canards. Dans cette région, nous signalons des jump-on canards, qui s'approchent d'ensembles invariants normalement répulsifs. Pour des séparations d'échelles de temps intermédiaires, le bursting émerge d'une manière continue via des mécanismes d'addition de spike organisés par des mixed-type torus canards, des trajectoires qui évoluent à proximité de familles d'équilibres et de cycles limites répulsifs. Pour une séparation d'échelles de temps plus forte, la transition continue est bloquée par des jump-on canards. Les mécanismes observés dans la masse neurale sont également responsables de l'émergence du bursting dans le réseau.

Pour résumer, cette thèse place les modèles de masse neurale de nouvelle génération dans un contexte plus large de modélisation en neurosciences et fournit de nouvelles perspectives pour des travaux futurs. Cela inclut des approches visant à prendre en compte iv de meilleurs modèles de STP et des idées pour des masses neurales exactes basées sur des modèles de neurones biologiquement plausibles.

Chapter 1 Introduction

One of the fundamental goals of neuroscience is to understand the functioning of cognition and behavior, and how it arises from biophysical processes [START_REF] Squire | Fundamental Neuroscience[END_REF]. A desired way of approaching this problem would be to start with first principles of physics, like the Maxwell equations, and build up an accurate mathematical description of the dynamics, which encapsulates the entirety of the known mechanisms. However, given the sheer complexity of biological and specifically neuronal systems, that approach is virtually impossible to perform [START_REF] Friedhoff | Models of Stochastic Ca2+ Spiking[END_REF]. A more applicable one is given by mathematical modeling, that is, the attempt to capture the dynamics of the system partially, whilst still allowing to gain insight and to make predictions. Naturally, models are only valid within a specific scope, of which the extent typically (but not always) depends on the level of implemented details.

The upsurge of computational power in the past decades allows for more and more sophisticated simulations of models in computational neuroscience. Here the complexity of neuronal systems can be increased across orders of magnitudes of spatial scales: from chemical processes on molecular level in single cells to large-scale neuronal network models of the human brain. In recent years neuron simulators have become more and more elaborate [START_REF] Newton | Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics[END_REF], while at the same time full brain network models, that try to bridge the scale from single neuron dynamics, through microcircuits, towards experimentally accessible macroscopic measures of brain activity [START_REF] Leon | The Virtual Brain: A Simulator of Primate Brain Network Dynamics[END_REF], have come into play.

Despite the increasing feasibility of large-scale and detailed biophysical simulations, the need for simple models remains unalteredly high, for two main reasons. First of all, detailed models might perform better in predicting and describing experimental results, than simplified ones. Yet, one inevitable characteristic remains and is related to the large number of problem-defining equations and parameters. They can render the model a black box, just like the real brain [START_REF] Türker | Black Box Revisited: A Technique for Estimating Postsynaptic Potentials in Neurons[END_REF], and aggravate the goal of drawing fundamental conclusions from properties of the system.

Secondly, many experimental measurements are of macroscopic nature, e.g. given by local field potential (LFP), electroencephalography (EEG), magnetoencephalography (MEG) or magnetic resonance imaging (MRI) signals. A common approach to improve the interpretation of these signals and to understand how they arise from the microscale, is to model the dynamics starting from the smallest units, e.g. neurons and synapses, and fit the model parameters to the experimental data. However, one is challenged with high-dimensional and ill-posed inverse-problems [START_REF] Pesaran | Investigating Large-Scale Brain Dynamics Using Field Potential Recordings: Analysis and Interpretation[END_REF]. As an example, a specific LFP signal distribution across the scalp might arise from a multitude of cellular activity patterns.

An attempt towards simpler macroscopic models is given by neural mass models. They aim to capture the dynamics of neuronal populations on macroscopic scale, for example using a firing rate description. Neural mass models are often related to mean-field models, but the terms have to distinguished: neural mass refers to population models in general, while mean-field models are typically macroscopic descriptions of an underlying microscopic system, obtained by averaging state variables over the ensemble. Neural mass models on the other hand are often based on heuristic arguments, like the well-established Wilson-Cowan (WC) model [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF]. The applications of neural mass model, neural field models and statistical approaches to questions of computational neuroscience range from memory [START_REF] Hopfield | Neurons with Graded Response Have Collective Computational Properties like Those of Two-State Neurons[END_REF], in particular working memory [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], over perception [START_REF] Moreno-Bote | Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistability[END_REF] and motor planning [START_REF] Erlhagen | Dynamic Field Theory of Movement Preparation[END_REF], towards cognition [START_REF] Thelen | The Dynamics of Embodiment: A Field Theory of Infant Perseverative Reaching[END_REF] and behavior [START_REF] Wong | A Recurrent Network Mechanism of Time Integration in Perceptual Decisions[END_REF].

Next generation neural mass models

In recent years a new class of neural mass models has emerged, that is at the interface of population modeling in neuroscience and mean-field theory in statistical physics [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF][START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. The basis of applying methods from mean-field theory to neuronal dynamics is given by the idea that neurons represent oscillators. Their interactions can give rise to complex dynamical behavior, like asynchronous firing patterns, synchronization, chimera states, quasi-periodicity, chaos and bursting [START_REF] Van Vreeswijk | Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity[END_REF][START_REF] Brunel | Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons[END_REF][START_REF] Majhi | Chimera States in Neuronal Networks: A Review[END_REF], many of which are evidenced by experimental studies [START_REF] Canepari | Experimental Analysis of Neuronal Dynamics in Cultured Cortical Networks and Transitions between Different Patterns of Activity[END_REF][START_REF] Farmer | Rhythmicity, Synchronization and Binding in Human and Primate Motor Systems[END_REF][START_REF] Adams | The Generation and Modulation of Endogenous Rhythmicity in the Aplysia Bursting Pacemaker Neurone R15[END_REF][START_REF] Womack | Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons[END_REF]. As a matter of fact, LFP and EEG signals arise due to synchronized activity of single neurons [START_REF] Murthy | Synchronization of Neurons during Local Field Potential Oscillations in Sensorimotor Cortex of Awake Monkeys[END_REF][START_REF] Paus | Synchronization of Neuronal Activity in the Human Primary Motor Cortex by Transcranial Magnetic Stimulation: An EEG Study[END_REF], that results in an aggregated and measurable electric field potential [START_REF] Buzsáki | The Origin of Extracellular Fields and Currents -EEG, ECoG, LFP and Spikes[END_REF].

These next generation neural mass models [START_REF] Coombes | Next Generation Neural Mass Models[END_REF] are not of heuristic nature, but directly derived from the single neuron dynamics and the interactions in the network. Hence, as opposed to heuristic models, the parameters of the microscopic system have direct macroscopic counterparts and one can link the two scales in order to understand the emerging dynamics. One of the remarkable properties of this approach is the exactness of the mean-field limit: in the thermodynamic limit and under some assumptions, the collective dynamics of the microscopic network is exactly described by the resulting meanfield equations, without the necessity of heuristics or approximations. In other words, it is derived from first principles given by the underlying network.

The starting point of the exact model by Montbrió, Pazó, and Roxin (MPR) are quadratic integrate and fire (QIF) neurons [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], a phenomenological model for spiking neuron dynamics. Given a fully coupled network of QIF neurons, including heterogeneities, as well as synaptic interactions via action potentials, an exact mean-field limit can be performed. The approach is based on the pioneering work of Ott and Antonsen (OA), who showed that under certain conditions, the dynamics of infinitely sized networks of phase oscillators will converge to a low dimensional manifold, hence reducing the number of variables and equations, required to describe the macroscopic dynamics [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF][START_REF] Ott | Long Time Evolution of Phase Oscillator Systems[END_REF]. The OA ansatz can serve as a recipe to perform this exact reduction and was firstly applied to the prototypical model for synchronization, namely the Kuramoto model [START_REF] Kuramoto | International Symposium on Mathematical Problems in Theoretical Physics[END_REF]. Remarkably, the OA ansatz is applicable to a broader class of phase oscillator networks and thereby has founds its way into the field of computational neuroscience. Under certain assumptions (see Chapter 2) the QIF neuron is rendered equivalent to the Ermentrout-Kopell model [START_REF] Ermentrout | Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation[END_REF], also referred to as θ-model, which represents a phase oscillator model for neuronal dynamics and indeed fits into the class of problems, which can be treated within the OA framework. The OA ansatz applied to an ensemble of QIF neurons, in the seminal work of MPR, has lead to an upsurge of next generation neural mass models.

These models try to capture the macroscopic dynamics of networks of spiking neurons using just a few variables, namely the population firing rate and mean membrane potential. They hence contribute crucially to studies of collective phenomena in these otherwise high-dimensional dynamical systems and allow for simple analytical and numerical treatment. Various applications of the MPR model has been studied in recent years. They range from the inclusion of delayed synaptic interactions [START_REF] Pazó | From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay[END_REF], giving rise to chaos, to studies of cortical oscillations in multi-population models [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF] and cross-frequency coupling [START_REF] Segneri | Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models[END_REF]. While the original MPR model accounts for chemical synapses, the methodology can straightforwardly been applied to include as well electrical synapses, formed by gap junctions between neurons [START_REF] Pietras | Exact Firing Rate Model Reveals the Differential Effects of Chemical versus Electrical Synapses in Spiking Networks[END_REF][START_REF] Montbrió | Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization[END_REF]. Extensions of the MPR model towards sparse networks [START_REF] Di Volo | Transition from Asynchronous to Oscillatory Dynamics in Balanced Spiking Networks with Instantaneous Synapses[END_REF] and fluctuation driven dynamics have been proposed [START_REF] Goldobin | Reduction Methodology for Fluctuation Driven Population Dynamics[END_REF].

Outline

The content of this work is divided into four main chapters, which aim to find novel applications of these next generation neural mass model, propose extensions to include more biologically relevant phenomena and study the effect of timescale separation. The thesis will exemplify how next generation neural mass models can give meaningful insight into neuronal firing rhythms, cognitive processes and brain pathologies, despite being idealized mathematical descriptions of complex systems.

Model derivation and mathematical framework

First of all, in Chapter 2 the microscopic and macroscopic models are not only introduced and derived, but also put into the general context of modeling in neuroscience. This is particularly important in order to understand the limitations and capabilities, as well as the advantages and novelties of next generation neural mass models. Specifically, we go through the key aspects of the derivation of the MPR model, starting from a population of interacting point neurons [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. The groundwork for this exact reduction methodology was done by OA [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF]. It will be shown that under certain assumptions, the MPR model can be extended to account for short-term synaptic plasticity (STP), i.e, dynamically changing synaptic weights [START_REF] Tsodyks | The Neural Code between Neocortical Pyramidal Neurons Depends on Neurotransmitter Release Probability[END_REF][START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF], without the loss of exactness. This way one can bridge the spatial scale, from single neuron dynamics to collective population dynamics, through first principles, whilst keeping biologically relevant effects like spike synchrony and STP.

Working memory

This forms the foundation for one of the main results, that is, the application of the extended model with STP towards working memory (WM). In Chapter 3 we introduce this cognitive system and explain the candidates that are thought to be its neural correlates, like persistent firing [START_REF] Funahashi | Mnemonic Coding of Visual Space in the Monkey's Dorsolateral Prefrontal Cortex[END_REF][START_REF] Miller | Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque[END_REF][START_REF] Romo | Neuronal Correlates of Parametric Working Memory in the Prefrontal Cortex[END_REF] and so-called population bursts (PBs) [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Trübutschek | A Theory of Working Memory without Consciousness or Sustained Activity[END_REF]. For this chapter two approaches are compared: (1) using a large-scale microscopic network of hundreds of thousands of QIF neurons with STP and (2) a system of neural masses with only 10 equations. Naturally we find perfect agreement, owing to the exactness of the mean-field limit. The contribution of this chapter is first of all a proof-of-concept for the application of the next generation neural mass to WM. Like previous neural mass approaches [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], the model is capable of mimicking mechanisms like working memory loading, maintenance and rehearsal. It is also able to yield an estimate of the maximum working memory capacity of around five items, as well as providing insight into the so-called primacy and recency effect [START_REF] Postman | Short-Term Temporal Changes in Free Recall[END_REF][START_REF] Morrison | Primacy and Recency Effects as Indices of the Focus of Attention[END_REF] . Beyond encompassing the capabilities of previous models, we find a significantly better agreement between theoretical and experimental results regarding the role of cortical oscillations during WM tasks. The widely used WC type models do not account for subthreshold oscillations and spike synchrony, i.e, when many neurons in a population fire nearly simultaneously [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF][START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], hence lack essential characteristic of cortical oscillations, that are observed experimentally. For example, EEG measurements in humans and LFP measurements in monkeys show β and γ band activity during working memory tasks [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF][START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF], which are absent in WC type models, but can be reproduced using the next generation neural mass with STP. In addition we provide a deep analysis, using a multipopulation WM network built of neural masses, on how the frequency bands of cortical oscillations are shaped by resonance lines and how their structure changes, depending on how many items are maintained in WM. The investigation of the various frequency bands relies on the fact that the next generation models account for spike synchrony and give direct access to the mean membrane potential of the neural population, that can be used as a proxy for LFP and EEG signals.

All-brain modeling

Electroencephalography, in particular intracranial EEG (iEEG) and stereotactic EEG (SEEG), plays also an essential role for clinicians who work with patients suffering from drug-resistant epilepsy. For these patients, one possible line of treatment is the surgical resection of brain tissue, that is preceded by qualitative presurgical evaluation by clinicians, based on various imaging techniques. The aim of the assessment is to identify the epileptogenic zone (EZ), referring to a patient-specific brain region, where seizures arise [START_REF] Rosenow | Presurgical Evaluation of Epilepsy[END_REF] and start to recruit secondary networks known as propagation zones (PZs) [START_REF] Talairach | Lesion," Irritative" Zone and Epileptogenic Focus[END_REF][START_REF] Bartolomei | Neural Networks Involving the Medial Temporal Structures in Temporal Lobe Epilepsy[END_REF][START_REF] Spencer | Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment[END_REF][START_REF] Richardson | Large Scale Brain Models of Epilepsy: Dynamics Meets Connectomics[END_REF]. An alternative way of assessing EZs and PZs is given by iEEG and SEEG. Additionally, a non-invasive imaging method called diffusion-weighted MRI (dMRI) has been developed in recent years and is able to gain structural information of the whole brain. Using these patient-specific connectomes, coupled with phenomenological models of seizure generation, one can try to predict surgical outcomes [START_REF] Goodfellow | Computer Models to Inform Epilepsy Surgery Strategies: Prediction of Postoperative Outcome[END_REF][START_REF] Lopes | An Optimal Strategy for Epilepsy Surgery: Disruption of the Rich-Club?[END_REF][START_REF] Lopes | A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone[END_REF]. In these computational models, each brain region is represented by a network node and the network topology is derived from the structural connectomes obtained by dMRI or other imaging modalities. In Chapter 4 we demonstrate how each of the nodes in an all-brain network can be represented by a next generation neural mass model, in order to simulate seizure-like events. The employed data set comprises dMRI connectivities of 20 healthy subjects and 15 epileptic patients. For the latter, data on the presurgical evaluation is available, identifying the nodes that are supposedly either a EZ or PZ. Using the empirical data, we show how the multi-population neural mass model can reproduce seizure-like events. The system can be placed in a multistable regime, characterized by low activity (LA) and high activity (HA) states of single nodes. Exciting a node corresponding to the EZ via a transient external current, can lead to a switch from LA to HA and trigger a cascade of recruitments of other nodes to the HA state, eventually leading to recruitment of the whole network. This cascade of recruitments is what we refer to as seizure-like event. One of the striking results is an agreement between the simulations and the clinical data: the recruitment order predictions of the exact multi-population model are in line with the presurgical assessment of the PZs. Multistability between LA and HA states in the multi-population network are fundamental for complex firing rhythms to emerge and at the basis of seizure-like events.

Slow-fast dynamics in large networks

Complex dynamical behavior can also arise due to interactions across timescales and in particular when dynamical system exhibit multistability. One of the most prominent examples for this is neuronal bursting, describing an alternation between quiescence and fast repetitive firing as observed in many experiments [START_REF] Adams | The Generation and Modulation of Endogenous Rhythmicity in the Aplysia Bursting Pacemaker Neurone R15[END_REF][START_REF] Womack | Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons[END_REF][START_REF] Connors | Intrinsic Firing Patterns of Diverse Neocortical Neurons[END_REF][START_REF] Gray | Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex[END_REF][START_REF] Schwindt | Quantitative Analysis of Firing Properties of Pyramidal Neurons From Layer 5 of Rat Sensorimotor Cortex[END_REF][START_REF] Su | Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons[END_REF][START_REF] Amir | Oscillatory Mechanism in Primary Sensory Neurones[END_REF][START_REF] Wellmer | Long-Lasting Modification of Intrinsic Discharge Properties in Subicular Neurons Following Status Epilepticus[END_REF]. Bursting emerges due to a separation of timescales, into slow and fast dynamics, and it can be understood using singular perturbation techniques. To this end, the basic principles of slow-fast dissection [START_REF] Rinzel | Bursting Oscillations in an Excitable Membrane Model[END_REF][START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF] are introduced in Chapter 2 and used to revise the famous canard solutions [START_REF] Benoît | Chasse Au Canard[END_REF], which are trajectories evolving nearby otherwise repelling locally invariant sets. While slow-fast dissection serves as a powerful tool for low dimensional systems, computational limitations complicate the analysis in higher dimensional systems, like networks of spiking neurons. Here OA approach and exact neural mass models come into play. Only a few recent works exploit the OA framework in order to understand emerging slow-fast dynamics in large networks [START_REF] Ciszak | Emergent Excitability in Populations of Nonexcitable Units[END_REF][START_REF] Avitabile | Cross-Scale Excitability in Networks of Quadratic Integrate-and-Fire Neurons[END_REF]. In Chapter 5 we study the transition from quasi-static low activity firing rhythms to bursting in a population of QIF neuron with STP, subject to a slow external current. The neural mass model linked with slow-fast dissection facilitates the understanding on how bursting emerges in the microscopic QIF network and gives insight into a complicated interplay of slow-fast phenomena. The results comprise surprising mechanisms, namely so-called jump-on canards which are related to the additional timescales coming along with the presence of STP. Moreover, we find that bursting can emerge in a continuous manner through a spike-adding mechanisms, that is mediated by mixed-type-like torus canards [START_REF] Desroches | Canards of Mixed Type in a Neural Burster[END_REF]. Typically canards are observed in highly timescale separated problems. Here however the continuous emergence of bursting via mixed-typelike torus canards is being interfered by the jump-on canards and breaks down for strong timescale separations, ultimately leading to a differentiation of the routes to bursting.

Chapter 2

Neural mass model, synaptic plasticity and slow-fast dynamics

Overall, modeling of brain dynamics is a multiscale problem. Spatially extended neurons can be modeled in a realistic manner, using detailed biophysical multi-compartment approaches that take morphology and the spatiotemporal propagation of electrical currents along the axon and dendritic tree into account [START_REF] Stuart | Dendrites[END_REF]. However, due to the heavy computational and numerical load that comes along with the numerical integration of partial differential equations, modeling large network of spiking neurons with such level of detail is challenging.

An alternative way of capturing the rich dynamics of real neurons are point neuron models, one of the most studied ones being the Hodgkin-Huxley model for the squid giant axon [START_REF] Hodgkin | The Local Electric Changes Associated with Repetitive Action in a Non-Medullated Axon[END_REF]. As illustrated in Fig. 2.1, it has been the gold standard for point neuron model in terms of biophysical plausibility over many decades, but comes at high cost in terms of computational load. On the other end of the scale we can find the integrate and fire (IF) models, in particular the leaky integrate and fire (LIF) neuron, known for its simplicity and widely used in theoretical studies [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Lapique | Recherches Quantitatives Sur l'excitation Electrique Des Nerfs Traitee Comme Une Polarization[END_REF][START_REF] Brunel | Lapicque's 1907 Paper: From Frogs to Integrate-and-Fire[END_REF][START_REF] Moreno | Response of Spiking Neurons to Correlated Inputs[END_REF][START_REF] Cardarilli | Spiking Neural Networks Based on LIF with Latency: Simulation and Synchronization Effects[END_REF]. In general IF model consist of a differential equation describing the temporal evolution of the membrane potential, together with a reset rule. The latter accounts for the spiking behavior of the neuron, i.e, when a certain voltage threshold is reached, an action potential is generated and the membrane potential instantaneously reset to some lower value. For the LIF neuron the membrane potential is the only state variable and its dynamics is characterized by a linear voltage term. Over the years various improvements for the LIF model have been suggested in order to loosen its limitations, for example by implementing a quadratic voltage term and neural adaptation as in the Izhikevich model [START_REF] Izhikevich | Simple Model of Spiking Neurons[END_REF]. Other generalizations and extensions of the LIF model, named GLIF and E-GLIF (extended generalized LIF), were proposed and enrich the variety of possible firing patterns, while keeping biophysically meaningful model parameters [START_REF] Mihalaş | A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors[END_REF][START_REF] Geminiani | Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness[END_REF]. The adaptive exponential integrate and fire (AdEx) model [START_REF] Brette | Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity[END_REF], which tries to combine simplicity, plausibility and meaningfulness, has proven to predict spike times of detailed biophysical models with high accuracy and is also subject of recent studies [START_REF] Cakan | Biophysically Grounded Mean-Field Models of Neural Populations under Electrical Stimulation[END_REF][START_REF] Górski | Conductance-Based Adaptive Exponential Integrate-and-Fire Model[END_REF].

The focus of this work lies on the QIF neuron (see also Fig. 2.1). In terms of plausibility and simplicity it can be placed between the standard LIF model and the Izhikevich model (in absence of adaption). It is outstanding in the family of IF models, since it represents the canonical model for Saddle-Node on Invariant Circle (SNIC) bifurcations (see Section 2.1 below) [START_REF] Ermentrout | Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation[END_REF][START_REF] Ermentrout | Type I Membranes, Phase Resetting Curves, and Synchrony[END_REF].

In the following the various elements of the model underpinning this work will be introduced, starting from the microscopic scale at single neuron level. These neurons are then considered in a network setup, accounting for a single neuronal population with recurrent synapses. Here one can introduce the synaptic dynamics in form of short-term synaptic plasticity. Under certain conditions, in particular imposed on the heterogeneity among neurons, one can achieve an exact mean-field reduction of the system to a low dimensional model, based on the Ott-Antonsen ansatz [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF][START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF].

Excitability types and canonical model

Spiking neuron models can be characterized by their response to the injection of a current, which is often measured in terms of the f -I curve, determining the relation of firing frequency f versus input current I. The dynamics of Hodgkin-Huxley type neurons can either be in the excitable or tonic regime [START_REF] Hodgkin | The Local Electric Changes Associated with Repetitive Action in a Non-Medullated Axon[END_REF]. Excitable neurons in the absence of input approach an equilibrium. However, a sufficient input can excite the membrane potential beyond a threshold leading to the firing of a single action potential, before going back to the rest state. Tonic neurons on the other hand fire periodically with a frequency f . Based on the behavior at the transition from excitable to tonic dynamics, one can distinguish (at least) two classes of membranes. For class I neurons the f -I continuously transitions from quiescence (f = 0) to repetitive firing with arbitrarily slow frequencies (f > 0). Typically it occurs at a SNIC bifurcation. Class II neurons on the other hand exhibit a discontinuous f -I curve, leading to finite firing rates at the onset of tonic firing, and they are usually associated with a Hopf bifurcation. This Hopf bifurcation is often subcritical, for example in the Hodgkin-Huxley, FitzHugh-Nagumo [START_REF] Fitzhugh | Impulses and Physiological States in Theoretical Models of Nerve Membrane[END_REF][START_REF] Nagumo | An Active Pulse Transmission Line Simulating Nerve Axon[END_REF] and Morris-Lecar model [START_REF] Morris | Voltage Oscillations in the Barnacle Giant Muscle Fiber[END_REF]. Here we want to study the dynamics of class I neurons, characterized by SNIC bifurcations, for which the QIF model represents a canonical model. We will start with the AdEx neuron and show how the QIF model can be directly obtained by performing a series expansion.

Adaptive exponential integrate and fire

The dynamics of the AdEx neuron is governed by two differential equations [Eqs. (2.1)] and two reset rules [Eqs. (2.2)], which describe the temporal evolution of the membrane potential and adaptation variable.

C dV dt = -g L (V -E L ) + g L ∆ T e V -V T ∆ T -w + I (2.1a) τ w dw dt = a(V -E L ) -w (2.1b) reset rule 1: if V > V thresh : V ← V reset (2.2a) reset rule 2: if V > V thresh : w ← w + b (2.2b)
The parameters of the AdEx neuron provide biological interpretability and are described in Table 2.1. For simplicity we will neglect the adaptation term in the following (w = const. = 0) and approximate the right hand side of Eq. (2.1a) for V values nearby the spike initiation threshold V T . Specifically, we perform a Taylor series expansion in V , up to the second order term and obtain:

Symbol Description Unit

C dV dt = g L (V -V T ) 2 2∆T + g L (E L + ∆T -V T ) + I . ( 2.3) 
Eq. ( 2.3) can be rewritten by rescaling the membrane potential as V = V /(2∆T ), yielding:

τ m d V dt = V 2 -A V + Î . (2.4)
Here the new quantities are as follows:

τ m = C g L (2.5a) A = V T ∆T (2.5b) Î = 1 2 + 1 2∆T E L -V T + V 2 T 2∆T + I g L (2.5c)
The Izhikevich model displays the same form of the right hand side as Eq. (2.4), but has additionally the adaptation dynamics described in Eq. (2.1b).

If we instead use the transformation V = (V -V T )/(2∆T ) we obtain the quadratic integrate & fire (QIF) model as stated below,

τ m d V dt = V 2 + Î , ( 2.6) 
this time with

Î = 1 2 + 1 2∆T E L -V T + I g L .
(2.7)

Quadratic integrate & fire neuron

As shown above, the QIF model can be seen as an approximation of the AdEx model and is equivalent to the Izhikevich one, both in absence of adaptation. We will write the dynamics of the membrane potential V (t) of a QIF neuron as follows 1 ,

τ m dV (t) dt = τ m V = V 2 + η + I S (t); reset rule: if V > V thresh : V ← V reset , ( 2.8) 
where τ m is the membrane time constant, which can be eliminated via a time rescaling t → t/τ m . In the rescaled QIF model the dynamics reads:

V = V 2 + η + I S (t) , ( 2.9) 
and time is measured in units of τ m . Parameter η represents a constant external current, that determines the neuronal excitability. In absence of the additional time dependent current I S (t), the QIF neuron exhibits two possible dynamics, depending on the sign of η.

The different cases are depicted in Fig. 2.2 and described below. η. The solid and dashed black lines show the stable and unstable fixed points (FP) of Eq. (2.9). The saddle-node bifurcation at (V = 0, η = 0) is marked by a black dot; the SNIC bifurcation at η = 0 by a green line. The orange region marks η ≥ 0, for which stable limit cycles exist.

Parameter values are: τ m = 20 ms.

Excitable dynamics (a 1 ) If η is negative, the neuron is excitable. For any initial condition V (0) < |η|, it approaches the resting potential V = -|η| [dashed line in Fig. 2.2(a)] asymptotically. The value V = -|η| corresponds to the stable fixed point branch in Fig. 2.2(b). The unstable fixed point is a saddle equilibrium. Both branches disappear via a saddle-node (SN) bifurcation.

(a 2 ) For initial values V (0) > |η| the membrane potential grows unbounded, until the reset mechanism in Eq. (2.8) applies. This describes the spiking behavior of the QIF neuron: whenever V (t) reaches the threshold value V thresh , the neuron spikes (or fires) and an action potential is generated. Each spike leads to an instantaneous reset of the membrane potential to the reset value V reset . The time of the k-th spike is denoted t k .

Tonic firing

(a 3 ) If η is positive, the neuron fires tonically and emits a regular train of spikes with frequency ν 0 = √ η/π. Tonic firing is related to the emergence of stable limit cycles via a SNIC bifurcation located at η = 0. The SNIC bifurcation can be understood more easily in the θ-model, introduced below.

From point neuron to phase oscillator

The entire dynamics of a single QIF neuron described above can be transformed to that of a phase oscillator, given the limit V thresh = -V reset → ∞, using the following variable transformation:

V (t) = tan θ(t) 2 (2.10a) θ(t) = 2 arctan V (t) .
(2.10b)

One can now calculate the dynamics of θ via dθ dt and obtain the well-known Ermentrout-Kopell model, also referred to as θ-model [START_REF] Ermentrout | Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation[END_REF]. θ = (1 -cos θ) + (1 + cos θ)(η + I S ) (2.11) The spiking behavior of the QIF neuron is reflected in the θ-neuron by the fact that lim θ→π -tan θ 2 = ∞ and lim θ→π + tan θ 2 = -∞. Hence, in the limit V thresh = -V reset → ∞, the reset rule V > V thresh : V ← V reset applies exactly when θ crosses θ = π from below.

Using the θ description of the QIF neuron, we can see that the firing of a spike is mediated by the saddle, that repels the trajectory, forcing it through θ = π, see the trajectory (a 2 ) in Fig. 2.2. Saddle and node collide at the critical value η = 0 and vanish for η > 0, leaving a stable limit cycle.

Network model and mean-field limit

In order to investigate the emerging dynamics of interacting neurons, one can consider an ensemble of synaptically coupled point neurons, in this case, QIF neurons. In such a network of i = 1, . . . N QIF neurons, the dynamics of the system reads

Vi = V 2 i (t) + η i + 1 N N j=1
Jij (t)S j (t) + I S (t) , (2.12) The blue trajectories (a 1 -a 3 ) correspond to the ones shown in Fig. 2.3(a) and blue crosses mark their initial conditions. The filled black circle represents a node equilibrium, the empty one a saddle. For η = 0 they form a saddle-node. The arrows point in the direction of θ given in Eq. (2.11). Whenever a trajectory crosses the red line at θ = π from below, the neuron emits a spike.

with the strength of the direct synapse Jij (t) from neuron j to i that, in absence of plasticity, we assume to be constant in time and all identical, i.e. Jij (t) = J. The sign of J determines if the neurons are excitatory (J > 0) or inhibitory (J < 0). Moreover the excitability parameters η i can be heterogeneously distributed. Now the total synaptic current due to the recurrent connections with presynaptic neurons reads s(t) = 1 N N j=1 S j (t) and we can rewrite the dynamics as: Vi = V 2 i (t) + η i + Js(t) + I S (t) .

(2.13)

For instantaneous postsynaptic potentials (corresponding to Dirac δ-spikes) the neural activity S j (t) of neuron j is given by S j (t) = t j (k)<t δ(tt j (k)), (2.14) where S j (t) is the spike train produced by the j-th neuron and t j (k) denotes the k-th spike time in such sequence. In such a case the total synaptic current s(t) is identical to the instantaneous mean firing rate of the network, given by the superposition of all spike trains:

r(t) = 1 N N j=1 t j (k)<t δ(t -t j (k)) = 1 N N j=1
S j (t) = s(t) .

(2. [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF] In general, the dynamics of S j might be more complex, for example, given by a first-order differential equation with time scale τ s , driven by the single neuron spike train, as stated below.

τ s Ṡj = -S j + t j (k)<t δ(tt j (k)) (2.16)

We will restrict the derivation to the case of instantaneous synapses for which s(t) = r(t). However, it is worth noting, that the application of the mean-field framework introduced in Section 2.2.1 can also be applied in presence of exponentially decaying synaptic activities obeying Eq. (2.16) [START_REF] Avitabile | Cross-Scale Excitability in Networks of Quadratic Integrate-and-Fire Neurons[END_REF][START_REF] Ceni | Cross Frequency Coupling in next Generation Inhibitory Neural Mass Models[END_REF].

Thermodynamic limit

In order to derive a macroscopic model for the collective dynamics of Eq. (2.13), we will follow the derivation of Montbrió, Pazó, and Roxin [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], which has a QIF network as a starting point. Alternatively, one might start from the θ-neuron Eq. (2.11) within the OA framework. However, it has been shown in Ref. [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] that the two approaches, namely, the Lorentzian ansatz (to be introduced below) and the OA ansatz, are equivalent. The derivation comprises two different steps of dimensionality reduction, in order to go from an infinitely large microscopic network of QIF neurons to a finite-dimensional macroscopic description of the collective dynamics.

We start the derivation of the exact neural mass model by considering Eq. (2.13) in the thermodynamic limit N → ∞, thereby passing from a discrete description of the microscopic network in terms of the V i (t) to a continuous one in terms of a probability density function (PDF) denoted by ρ(V |η, t). The PDF ρ(V |η, t) determines the fraction dV ρ(V |η, t) of neurons which have a membrane potential V ∈ [V, V + dV ], given a fixed value η. Analogously, the η i become distributed according to a PDF g(η) and at any time

t it must hold that ∞ -∞ dV ρ(V |η, t) = g(η) .
(2.17)

Moreover, a natural consequence of the conservation of the number N of particles, i.e, neurons, in the system is the continuity equation (2.18), which describes the dynamics of the distribution, given the drift dV dt = V (V |η, t) for a fixed η.

∂ρ ∂t + ∂ ∂V ρ V = 0 (2.18)
With the right hand side (RHS) of Eq. (2.13) put into Eq. (2.18) we obtain:

∂ρ ∂t + ∂ ∂V ρ(V 2 + I(η, t)) = 0 , ( 2.19) 
where I(η, t) = η + Jr(t) + I S (t) denotes the total current.

Stationary solution

The next step is to realize that the continuity Eq. (2.19), given I S (t) = 0, possesses a trivial stationary solution ρ 0 (V |η), i.e, for ∂ρ ∂t = 0:

∂ ∂V ρ 0 V = 0 (2.20) ⇔ ρ 0 V = const.
(2.21)

⇔ ρ 0 ∝ ( V ) -1 = 1 V 2 + η + Jr . ( 2 

.22)

The form of Eq. (2.22) is known as Lorentzian distribution and reveals already physical properties of the system as follows. First of all the density is inversely proportional to the velocity V , hence neurons will lay dense along V regions with low velocity and sparse along V regions with high velocity. Secondly, for non-tonic neurons with η + Jr < 0, as in Fig. 2.2(a, b), the density ρ 0 (V |η) possesses a singularity, when the denominator V 2 + η + Jr of Eq. (2.22) becomes zero, i.e., at V = ± -(η + Jr). That corresponds to the equilibria of a single QIF neuron, as can be seen from Eq. (2.9), of which only the negative one is stable. In other words, the stationary PDF ρ 0 (V |η), given quiescent neurons, takes the form of a Dirac-δ located at the resting potential (see also Section 2.1.2).

First reduction: Lorentzian ansatz

In [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] it was suggested that for every fixed η, the PDF ρ(V |η, t) converges to a Lorentzian, even for the non-stationary case and independent of initial conditions. This is the first reduction of the dimensionality of our problem. With this assumption we can make the following Lorentzian ansatz:

ρ(V |η, t) = 1 π x(η, t) [V -y(η, t)] 2 + x 2 (η, t)
. (2.23) This ρ(V |η, t) corresponds to a generic Lorentzian distribution with a time and η-dependent half width at half maximum (HWHM) x(η, t) and center y(η, t). A priori, this ansatz represents a strong assumption, namely that the dynamics takes place in this lower dimensional space of Lorentzian distributions. Nevertheless, as mentioned before, it turns out that the Lorentzian ansatz is equivalent to the OA ansatz for phase oscillator networks in the thermodynamic limit. For that, convergence to the so-called OA manifold (here corresponding to Lorentzian distributions) has been proven under certain conditions [START_REF] Ott | Long Time Evolution of Phase Oscillator Systems[END_REF][START_REF] Pazó | Low-Dimensional Dynamics of Populations of Pulse-Coupled Oscillators[END_REF].

For the moment we will stay within the framework of QIF neurons and the Lorentzian ansatz, in order to facilitate the physical interpretation of the reduction, specifically of x(η, t) and y(η, t). The ultimate goal of the mean-field theory here is to obtain a finite dimensional description of the macroscopic dynamics in the limit N → ∞. Naturally the observables of interest are the mean membrane potential v(t) and the mean firing rate r(t) of the QIF ensemble. It stands to reason to calculate the means v(η, t), r(η, t) for a given, fixed η, and later on calculate the mean over η via the PDF g(η).

The firing rate enters into the equation of motion Eq. (2.19), hence is required for the self-consistency of the approach and can be seen as the probability flux through infinity, yielding

r(η, t) = lim V →∞ ρ(V |η, t) V (V, η, t) = lim V →∞ x(V 2 + I) π(x 2 + (V -y) 2 ) = 1 π x(η, t) . (2.24)
This simple result links the firing rate of a population of QIF neurons with excitability η to the width parameter x(η, t) of the Lorentzian ansatz Eq. (2.23).

For the mean membrane potential v(η, t) we can calculate the Cauchy principal value and obtain

v(η, t) = p.v. ∞ -∞ ρ(V |η, t)V dV = lim R→∞ R -R ρ(V |η, t)V dV = y(η, t) , (2.25)
which is identical to the center y(η, t) of the Lorentzian ansatz Eq. (2.23) for a given η.

The final ensemble means r(t) and v(t) result from an integration over η, weighted by the distribution g(η):

r(t) = 1 π ∞ -∞ x(η, t)g(η)dη (2.26a) v(t) = ∞ -∞ y(η, t)g(η)dη . (2.26b)

Complex formulation

In the following the goal will be to find equations of motion for x(η, t) and y(η, t). We start by inserting the Lorentzian ansatz Eq. (2.23) into the continuity equation Eq. (2. [START_REF] Majhi | Chimera States in Neuronal Networks: A Review[END_REF]) and obtain:

0 = ∂ρ ∂t + ∂ ∂V ρ(V 2 + I) (2.27) = ẋ πΛ - 2x [x ẋ -(V -y) ẏ] πΛ 2 + 2V x πΛ - 2x(V 2 + I)(V -y) πΛ 2 , ( 2.28) 
with Λ = (Vy) 2 + x 2 . In order to solve for { ẋ, ẏ}, we can simplify this equations further by multiplying by πΛ 2 2 :

0 = ẋΛ 2 -x [x ẋ -(V -y) ẏ] + V xΛ -x(V 2 + I)(V -y) . (2.29)
The RHS of Eq. (2.29) is a polynomial in V and we sort by the orders of V , after inserting Λ:

0 = V 2 ( ẋ -2xy) + V 1 -2Ix + 2x 3 + 2xy 2 -2y ẋ + 2x ẏ + V 0 2Ixy -x 2 ẋ + y 2 ẋ -2xy ẏ (2.30)
Eq. (2.30) must be valid for any V ∈ R, hence the coefficients of the V k , k ∈ {0, 1, 2} must be zero, yielding an algebraic system of equations, that can be solved for { ẋ, ẏ}:

ẋ = 2xy (2.31a) ẏ = y 2 -x 2 + I . (2.31b)
As a final step one can express the dynamics in terms of a complex quantity w(η, t) :=

x(η, t) + iy(η, t):

ẇ = ẋ + i ẏ = 2xy + i(y 2 -x 2 + I) = i I -w 2 = i η + Jr + I S (t) -w 2 (2.32)
The entire dynamics of the QIF ensemble is now expressed in terms of this new complex quantity w(η, t), in an exact manner and with the remarkable property of being V -independent. However, it is still infinite dimensional, given the dependence on η. Additional it is worth noting that the total firing r(t) enters into Eq. (2.32), rendering it an integro-differential equation through Eq. (2.26a).

Second reduction: Lorentzian distributed heterogeneities

To obtain the total means r(t) and v(t) one can impose a specific distribution g(η) which is as well of Lorentzian type, given by:

g(η) = 1 π ∆ (η -η) 2 + ∆ 2 .
(2.33) centered at η and with HWHM ∆. This choice allows to obtain analytic expressions for Eqs. (2.26), by performing a contour integral in the complex η-plane and applying the residue theorem. This way we only have to evaluate x(η, t) and y(η, t) at the lower pole of g(η) located at η -i∆:

πr(t) = ∞ -∞ x(η, t)g(η)dη = x(η -i∆, t) (2.34a) v(t) = ∞ -∞ y(η, t)g(η)dη = y(η -i∆, t) (2.34b)
Straightforwardly, the dynamics of r(t) and v(t) is given via the real and imaginary parts of Eq. (2.32), evaluated at η -i∆:

π ṙ + i v = ẇ(η -i∆, t) = i η -i∆ + Jr + I S (t) -w 2 (η -i∆, t) (2.35) = ∆ + 2πr(t)v(t) + i η + Jr(t) + I S (t) + v 2 (t) -π 2 r 2 (t) .
Finally, separating real and imaginary part, the dynamics of r(t) and v(t) is given by: The upcoming Section 2.3 is dedicated to an extension of the underlying QIF network Eq. (2.12), to account for synaptic dynamics, i.e., when Jij (t) changes in time. We will show that a treatment of short-term synaptic plasticity on mesoscopic scale allows for a straightforward application of the mean-field limit, without the loss of exactness. The final neural mass model consists of Eqs. (2.36), with adjustments to the recurrent synaptic current Jr, and two additional equations that describe the STP dynamics.

ṙ = ∆ π + 2rv (2.36a) v = v 2 -(πr)

Short-term synaptic plasticity

In order to reproduce WM mechanisms in the prefrontal cortex (PFC) in Chapter 3, we follow [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF] and assume that excitatory-to-excitatory synapses display depressing and facilitating transmission, described by the phenomenological model of STP developed by Markram, Tsodyks and collaborators [START_REF] Tsodyks | The Neural Code between Neocortical Pyramidal Neurons Depends on Neurotransmitter Release Probability[END_REF][START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF][START_REF] Markram | Differential Signaling via the Same Axon of Neocortical Pyramidal Neurons[END_REF]. Example traces of such dynamics, using a single QIF neuron, are shown in Fig. 2.4.

Depression

Short-term synaptic depression is related to neurotransmitter depletion. Each neuron i has a limited amount X i (t) ∈ [0, 1] of resources (i.e. vesicles ready to be released). Spiking is followed by the emittance of presynaptic action potentials. Upon their arrival at the synaptic terminal a fraction U i (t) ∈ [U 0 , 1] of the neurotransmitters is released into the synaptic cleft, resulting in the generation of postsynaptic potentials (PSPs). Therefore, each presynaptic spike is linked to the utilization and reduction of resources available for the generation of upcoming PSPs [see Fig. 2.4(b)], consequently leading to a decrease of future postsynaptic excitations. The resource X i exponentially recovers to its base value of X i = 1 on a timescale τ d = 200 ms (depression timescale) [START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF].
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Facilitation

Facilitation, as opposed to depression, leads to enhanced PSPs and is related to the neurotransmitter release probability at the synaptic terminals, which is modeled by the utilization factor U i . The release probability (and therefore U i ) depends on the intracellular calcium concentration. The neurotransmitter release is associated with the accumulation of calcium ions in the presynaptic terminal, hence each spike leads to an increase of U i [see Fig. 2.4(c)]. Calcium concentration and the utilization factor decay to the base level U i = U 0 on the facilitation timescale τ f = 1500 ms [START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF].

QIF network with STP

As done in a previous analysis [START_REF] Di Volo | Synchronous Dynamics in the Presence of Short-Term Plasticity[END_REF], we also assume for the sake of simplicity, that all the efferent synapses of a given neuron follow the same dynamical evolution, therefore they can be characterized by the index of the presynaptic neuron. In a QIF network with STP, the dynamics of the membrane potential and the synaptic variables X i (t) and U i (t) is ruled by the following ordinary differential equations:

Vi = V 2 i (t) + η i + 1 N N j=1 Jij (t)S j (t) + I S (t) (2.37a) Ẋi = 1 -X i (t) τ d -X i (t)U i (t)S i (t) (2.37b) Ui = U 0 -U i (t) τ f + U 0 (1 -U i (t))S i (t) . (2.37c)
In the Markram and Tsodyks STP model U i X i represents the amount of resources employed to produce a postsynaptic potential, therefore in presence of STP the synaptic coupling Jij (t) entering into Eq. (2.12) will be modified as follows:

Jij (t) = JU j (t)X j (t) ∀i = 1, . . . , N . (2.38)
Overall, taking instantaneous synapses and STP into account, the state variables of the system change in the following way at the k-th spike of neuron j:

V i (t + ) = J N U j (t -)X j (t -) ∀i = 1, . . . , N (2.39a) X j (t + ) = X j (t -) -U j (t -)X j (t -) (2.39b) U j (t + ) = U j (t -) + U 0 1 -U j (t -) . (2.39c)
For simplicity the spike time is denoted by t, the time before the increment is denoted by t -, the time after by t + . Note that for the synaptic variables only the j-th neuron is affected, while the membrane potentials V i of all neurons are changed, due to the all-to-all coupling.

Mesoscopic description

The spiking network model with µ-STP (µ-STP), given in Eqs. (2.37), consists of 3N differential equations: one for the membrane potential and two for the synaptic variables of each neuron. In order to reduce the system size effects and to obtain accurate simulations reproducing the neural mass dynamics, large network sizes are required, namely N > 100, 000. For these network simulations massive numerical resources are required, however the complexity of the synaptic dynamics can be noticeably reduced, by treating the STP at a mesoscopic level under the assumption that the spike trains emitted by each neuron are Poissonian [START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF][START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF]. In this framework, the mesoscopic description of the synapse can be written as

ẋ = 1 -x(t) τ d -u(t)x(t)A(t) (2.40a) u = U 0 -u(t) τ f + U 0 (1 -u(t))A(t) , ( 2.40b) 
where x = X i and u = U i represent the average of the microscopic variables {X i } and {U i } over the whole population 2 and A(t) = S j (t) is the mean firing rate. The synaptic coupling entering in Eq. (2.12) now becomes:

Jij (t) = Ju(t)x(t) ∀ 1 ≤ i, j ≤ N . (2.41)
The dynamics of the QIF network with the mesoscopic STP (m-STP) obeys the N + 2 ODEs given in Eqs. (2.42),

Vi = V 2 i + η i + JuxA(t) + I S (t) (2.42a) ẋ = 1 -x τ d -uxA(t) (2.42b) u = U 0 -u τ f + U 0 (1 -u)A(t) , (2.42c) with A(t) = 1 N N j=1 S j (t).
It should be noted that the synaptic variables X i (t) and U i (t) for the same synapse are correlated, since they are both driven by the same spike train S i (t) of neuron i. These correlations are neglected in the derivation of the m-STP model, therefore one can write

U i (t)X i (t) = U i (t) X i (t) = u(t)x(t).
This approximation is justified in [START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF] by the 2 The population average

• = 1 N N i=1
• is performed over all the neurons N in the population fact that the coefficients of variation of the two variables U i and X i are particularly small for facilitating synapses. Indeed it is possible to write a stochastic mesoscopic model for the STP that includes the second order moments for U i and X i , i.e. their correlations and fluctuations [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF].

Exact neural mass model with STP

So far we have seen the derivation of an exact mean-field limit, following Ref. [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], for the heterogeneous QIF network with instantaneous synapses and in absence of synaptic dynamics, given in Eqs. (2.13) and (2.14). However, by including a dynamical evolution for the synapses and therefore additional collective variables, this neural mass model can be extended to more realistic postsynaptic potentials, see e.g. [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF] for exponential synapses or [START_REF] Coombes | Next Generation Neural Mass Models[END_REF] for conductance based synapses with α-function profile.

In our case the synaptic dynamics at a mesoscopic level is given by Eqs. (2.42b) and (2.42c), therefore it will be sufficient to include the dynamical evolution of the m-STP in the Eqs. (2.36) to obtain an exact neural mass model for the QIF spiking network with STP. Specifically, we consider Eqs. (2.42) for membrane potential and m-STP dynamics and we substitute the population activity A(t) with the instantaneous firing rate r(t), which corresponds to its coarse grained estimation in the limit N → ∞. Furthermore, the synaptic coupling entering in Eqs. (2.36) will become Ju(t)x(t), such that the complete neural mass model reads

τ m ṙ = ∆ τ m π + 2rv (2.43a) τ m v = v 2 -(πτ m r) 2 + Jτ m uxr + η + I S (t) (2.43b) ẋ = 1 -x τ d -uxr (2.43c) u = U 0 -u τ f + U 0 (1 -u)r . (2.43d)
Note that here the time rescaling described in Section 2.1.2 has been reverted, hence the appearance of τ m in the equations. The macroscopic dynamics generated by the neural mass model Eqs. (2.43) and by the QIF network with µ-STP and m-STP are compared in Section 3.2.1.

Numerical simulation of QIF networks and neural mass with STP

For the numerical simulation of the models employed in this thesis see Section 2 in Appendix C.

Multi-populations models

The discussed models can be easily extended to account for multiple interconnected neuronal populations. In the following we restrict this extension to the QIF network with m-STP Eqs. (2.42) and the corresponding neural mass model, since the simulations we performed for the QIF network with µ-STP Eqs. (2.37) are limited to a single population. We consider a network composed of one inhibitory and N pop excitatory interacting neural populations. Therefore the dynamics of the membrane potential V i,k (t) of the ith QIF neuron of the k-th population (k = 0, . . . , N pop ) and of the mesoscopic synaptic variables (u k (t), x k (t)) for the excitatory populations (k > 0) can be written as follows

Vi,k = V 2 i,k + η i,k + I (k) S (t) + Npop l=0 Jkl (t) N l N l j(l)=1 S j,l (t) (2.44a) For i = 1, . . . , N k : ẋk = 1 -x k τ d -u k x k A k (2.44b) uk = U 0 -u k τ f + U 0 (1 -u k )A k ; (2.44c)
where

I (k)
S (t) is the stimulation current applied to the population k and A k (t) is the population activity of the k-th population. Each population l consists of N l neurons, which are indexed by j. We assume that the synaptic couplings Jkl depend on the population indices k and l but not on the neuron indices; moreover we assume that the neurons are globally coupled both at the intra-and inter-population level. The synaptic couplings for excitatory-excitatory connections are plastic, therefore they can be written as

Jkl (t) = J kl u l (t)x l (t) , ( 2.45) 
while if one of the populations k or l is inhibitory, the expression for the synaptic coupling will be simply set to Jkl (t) = const. = J kl . The sign is determined by the pre-synaptic population l, with J kl > 0 for excitatory and J kl < 0 for inhibitory populations. In Chapter 3 a multi-population network is considered that comprises one inhibitory population and multiple excitatory ones. In such case, the inhibitory population is indexed as k = 0. The corresponding multi-population neural mass model, without time rescaling, can be straightforwardly written as

τ k m ṙk = ∆ k τ k m π + 2r k v k k = 0, 1, . . . , N pop (2.46a) τ k m vk = v 2 k + ηk + I (k) S (t) -(πτ k m r k ) 2 + τ k m Npop l=0 Jkl r l (2.46b) ẋl = 1 -x l τ d -u l x l r l (2.46c) ul = U 0 -u l τ f + U 0 (1 -u l )r l l = 1, . . . , N pop ; (2.46d)
where for excitatory-excitatory population interactions

Jkl (t) = J kl u l (t)x l (t) ; (2.47)
and whenever population k or l is inhibitory Jkl (t) = J kl .

Neuronal dynamics across spatio-temporal scales

In Sections 2.1 to 2.5 of this chapter various models have been introduced, which describe neuronal dynamics on different spatial scales: from the single neuron Eq. (2.8) and synaptic dynamics Eqs. (2.37), via the QIF network and mesoscopic description of short-term synaptic plasticity Eqs. (2.42), to the multi-population model Eq. (2.46). Multi-population models are employed in Chapter 3 to working memory and in Chapter 4 for modeling seizure-like events. In both cases the interesting aspects of the models are given by the emerging dynamics across spatial scales, triggered by an external time dependent current. Understanding these responses requires a view on the dynamical properties of the system, like the bifurcation structure. As an example, seizure-like events are modeled by a switch from a low to a high activity state and mediated by bistability. In this specific case, bistability arises due to saddle-node bifurcations of Eqs. (2.36). Dynamical properties also include the timescales appearing in the system. Naturally, as discussed in Section 2.3, short-term synaptic plasticity, which is present in the working memory model, comes along with two additional timescales for depression and facilitation. On one hand, multiple timescales might enrich the possible firing patterns, but they also complicate the analysis of the dynamics. On the other hand, a clear separation of timescales can be exploited, in order to investigate slow and fast dynamics separately. The methodology of this slow-fast dissection is introduced in Section 2.7, exemplified using the prototypical van der Pol (VdP) oscillator and finally applied to the single population neural mass model with STP Eqs. (2.43) in Chapter 5, in order to understand the response to a slow external current.

Slow-fast theory and canards

The dynamics of systems with multiple timescales, also referred to as slow-fast dynamics, can be regarded in terms of fast variables X f (t) ∈ R k and slow variables X s (t) ∈ R l . Their dynamics is governed by the differential equations given in Eqs. (2.48) and here referred to as full system,

Ẋf = F(X f , X s ) (2.48a) Ẋs = εG(X f , X s ) (2.48b)
with fast-time parametrization t (the overdot denoting differentiation with respect to t),

F(X f , X s ) : R k × R l → R k and G(X f , X s ) : R k × R l → R l .
Here the separation of timescales is reflected by a small parameter 0 < ε 1. We will refer to this type of system as k-fast l-slow system.

A different formulation of the full system is obtained in Eqs. (2.49) by parametrizing it in slow time τ := εt.

εX f = F(X f , X s ) (2.49a) X s = G(X f , X s ) . (2.49b)
The derivative with respect to slow time τ is denoted by (_) := d/dτ (_) = 1 ε (_). The two representations Eqs. (2.48) and Eqs. (2.49) are equivalent, but they allow to exploit the premise of slow-fast systems, namely the timescale separation given by a small value of ε, in different ways. It is natural to consider the singular limit ε = 0 and take the fast and slow-time parametrizations into account. One obtains two different subsystems, which represent a dissection of slow and fast dynamics of the full system.

In the first case we obtain the fast subsystem Eqs. (2.50). This limit can be used to understand dynamics of the full system for which X f evolves fast and results in the following k + l ODEs, l of which being trivial:

Ẋf = F(X f , X s ) (2.50a) Ẋs = 0 (2.50b)
Indeed, the dynamics of the slow variables X s is trivial and their value does not change in time. As a matter of fact they can be treated as parameters entering into the dynamics of X f . The second limit ε → 0, now done in the slow-time parametrization Eqs. (2.49), yields the slow subsystem, namely:

0 = F(X f , X s ) (2.51a) X s = G(X f , X s ) . (2.51b)
Eqs. (2.51) is also referred to as the reduced system and it is represented by a differentialalgebraic system, in which the dynamics of the slow variables remains unchanged with respect to the full system and is governed by X s = G(X f , X s ). The dynamics of the fast variables on the other hand are hidden within the k algebraic constraints Eq. (2.51a). They define the critical manifold:

S 0 = {(X f , X s ) | F(X f , X s ) = 0} , (2.52)
usually a l-dimensional manifold embedded in R (k+l) .

In the slow subsystem the dynamics of the fast variables is slaved to the slow variables, their relation is given by the critical manifold's equations, which defines the state space of this limiting problem: motion of the slow subsystem takes place on S 0 . At the same time points of S 0 correspond to equilibria of the fast subsystem, as is clear from equation Eq. (2.50a). By joining solutions of the different subsystems at specific points, singular orbits can be constructed. They are trajectories resulting from the concatenation of slow and fast segments, for which the dynamics is determined by the respective subsystem.

Solutions of systems of the type of Eqs. (2.48) with both slow and fast segments are ε-perturbations of singular orbits and the prototypical slow-fast cycles are relaxation oscillations [START_REF] Van Der Pol | LXXXVIII. On "Relaxation-Oscillations[END_REF]. The way these cycles emerge in the parameter space is rather peculiar and related to the famous canard solutions. After introducing the slow flow below, we review these solutions in Section 2.7.2 in the context of the classical VdP system system.

Slow flow

We make further use of the dissection by studying the slow flow on the critical manifold S 0 . In the slow subsystem Eqs. (2.51) the state space is reduced to S 0 , described by four algebraic conditions in Eq. (5.6), the solutions of which depend on the slow variable I 1 entering into the membrane potential equation. The state variables in this limit are subject to the slow flow (X f , X s ) describing their dynamics on S 0 . For X s = (I 1 , I 2 ) this is explicitly given via the Hopf normal form Eq. (5.4b). For the fast variables X f = (r, v, x, u) however, the algebraic constraints define X f as well as X f on S 0 implicitly. In this case the flow can be obtained by taking the total (slow) time derivative of Eq. (2.51a) as done in Eq. (2.53),

0 = d dτ F(X f (τ ), X s (τ )) = ∂F ∂X f dX f dτ + ∂F ∂X s dX s dτ , ( 2.53) 
where ∂(•) ∂a is the Jacobian of (•) with respect to a. If the Jacobian ∂F ∂X f is invertible, i.e., det ∂F ∂X f = 0, then the slow flow of X f can be calculated and results in Eq. (2.54).

dX f dτ ≡ X f = - ∂F ∂X f -1 ∂F ∂X s X s (2.54)
This slow flow is only defined on S 0 and represents a system of ODEs capturing the dynamics of X f and X s on the manifold.

Classical canards in the van der Pol oscillator

Here we briefly present the essentials of classical canards in the prototypical VdP system given in Eqs. (2.55), consisting of one fast variable x and one slow variable y. Once written in first-order form, the system's equations read:

ẋ = y - x 3 3 + x (2.55a) ẏ = ε(a -x) .
(2.55b)

Critical manifold

The critical manifold S 0 is one dimensional and S-shaped, parametrized by x as y(x) =

x 3 3x [see green curve in Fig. 2.5(b)]. In VdP the critical manifold {(x, y); y = y(x)} has a local maximum and a local minimum, at x = ±1, respectively. Therefore S 0 folds twice and has three branches, of which the middle one is repelling and the other two attracting. They correspond to unstable and stable equilibria of the fast subsystem, respectively. The slow nullcline, determined by ẏ = 0, is the straight line {x = a} and, at a = ±1, it intersects S 0 at the fold points perpendicularly.

Canard explosion in the full system

Overall, the VdP system, with 0 < ε 1 and a as a bifurcation parameter [see Fig. 2.5(a)], displays various regimes, from a stable equilibrium branch, via Hopf cycles and canards, to relaxation oscillations. The subthreshold regime, i.e, the branch of stable equilibria, terminates at a supercritical Hopf bifurcation, at which stable small Hopf cycles emanate. These cycles are not yet of relaxation type and only exist in an O(ε) distance from the Hopf point [Fig. 2.5(b 1 )]. They revolve around the unstable equilibrium at the intersection of S 0 and slow nullcline x = a This regime is followed by an exponentially narrow parameter interval, for which the orbits grow in an explosive manner when the parameter is varied [Fig. 2.5(b 2 -b 5 )]. This phenomenon is known as a canard explosion [START_REF] Brøns | Bifurcations and Instabilities in the Greitzer Model for Compressor System Surge[END_REF] and the associated canards separate the small Hopf cycles from relaxation oscillations [START_REF] Benoît | Chasse Au Canard[END_REF]. They evolve for some time near the repelling sheet of S 0 , before jumping to one of the attracting sheets. Two types of canards can be distinguished, the ones with a head [Fig. 2.5(b 2 -b 4 )], including the maximal canard, which reaches until the fold at a = 1, and those without a head [Fig. 2.5(b 5 )], which follow after the maximal canard. After the canard explosion a wide regime of relaxation oscillation follows, an exemplary trajectory is shown in Fig. 2.5(b 6 ). In approximation, relaxation oscillations can be found in -1 a 1 and they terminate at a second Hopf bifurcation near a ≈ 1, by following the inverse procedure of their emergence: from relaxation oscillations, via canards and Hopf cycles, to stable equilibria. ) the a values are exponentially close. In (b) the solid green line reflects the fact that S 0 is attracting, the dashed one that it is repelling, while the green arrows depict the slow flow defined in Eq. (2.53) and given by (x , y ) = ( a-x x 2 -1 , ax) for VdP.

Slow flow and emergence of a canard point

Canards represent a mechanism which allows to connect the attracting sheet of the critical manifold to the repelling one and they can be understood by taking into account the slow flow of the fast variable x, given in Eq. (2.54) and describing the slow dynamics on S 0 . For VdP, also taking into account y , we obtain the slow flow (x , y ) = ( a-x x 2 -1 , ax), which is in general undefined at the folds (x = ±1). However, its x-component reduces to x = -1 x±1 for a = ±1. In this case the flow remains defined at the corresponding fold x = ±a, but undefined at the other fold x = ∓a. Despite the intersection of the slow nullcline x = a with the cubic nullcline, no equilibrium exists. Instead a turning point forms, which allows for a continuous passage through the corresponding fold without any obstruction. This passage from the attracting to the repelling sheet of S 0 occurs in finite time and is the basis of singular (ε = 0) canard orbits. Therefore the turning point is also referred to as canard point. As we will see in Chapter 5 and in many other problems involving bursting solutions, canard dynamics play an essential role. They separate the subthreshold regime from the one where bursting can occur.

Folded-saddle canards

The understanding of canards based on the VdP system can be extended towards 1-fast 2-slow systems. In the most simple case the parameter a of the VdP system is subject to a slow drift given by ȧ = εµ, with a constant speed µ. Naturally, the slow nullcline is absent in this case and the intersection with the fast subsystem's fold, which is forming the turning point, can not occur. Nevertheless canards can be found and are a result of a slow passage effect: the parameter a dynamically transitions through the canard explosion of the original problem.

In VdP the existence of turning points is conditioned by the fact that the slow variable receives feedback from the fast variable , leading to a "turn" of the slow flow direction, depending on the value of x. In the neural mass model with STP in presence of external periodic forcing, however, this feedback is absent. The turn of the slow flow appears naturally via the form of the external forcing. In both cases the passage through the fold underlies the same mechanisms and it is well understood by making use of an auxiliary system, called the desingularized reduced system (DRS), which is introduced in Chapter 5.

Making use of the DRS, the formation of canards as described above, is reflected by so-called folded-saddle singularities, which allow for a passage from the attracting to the repelling sheet of S 0 . Ultimately, this leads to the existence of canard orbits in the extended VdP system, as well as in the neural mass with STP in presence of periodic forcing.

Torus and mixed-type canards

The term canard is not restricted to dynamics taking place in the vicinity of (or on) attracting and repelling manifolds, which represent equilibria. In general, it refers to any type of solution evolving near attracting and repelling locally invariant sets associated with the fast subsystem. These invariant sets can correspond to equilibria but also to limit cycles. Following this definition, a particular type of canard can be found in elliptic bursters [START_REF] Baspinar | Canonical Models for Torus Canards in Elliptic Bursters[END_REF], which require at least a 2-fast 1-slow system. Here elliptic bursting can arise due to a subcritical Hopf-Bifurcation (in the fast subsystem) giving rise to unstable limit cycles, which stabilize via a fold bifurcation of cycles. The Hopf bifurcation initiates the burst, while the fold of cycles marks their termination. Usually in elliptic bursters the full dynamics follows the family of stable limit cycles of the fast subsystem. However so-called torus canards can be found for small enough ε [START_REF] Benes | An Elementary Model of Torus Canards[END_REF][START_REF] Burke | A Showcase of Torus Canards in Neuronal Bursters[END_REF]. They describe orbits following a stable family of fast subsystem cycles and switching to the unstable one past the fold.

A hybrid of classical canards and torus canards, so-called mixed-type canards, were reported in [START_REF] Desroches | Canards of Mixed Type in a Neural Burster[END_REF]. They describe trajectories that spend time near repelling branches of equilibria as well as limit cycles, and can therefore be seen as a mix of classical canards and torus canards. Segments of these solutions evolve nearby unstable equilibria and connect to unstable limit cycles of the fast subsystem. These last types of canards are found in bursting systems, which are ubiquitous in the modeling of neural activity at both single-cell and population level.

Chapter 3

Working memory and cortical oscillations

A synaptic theory of working memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we employ the neural mass model derived in Chapter 2, which reproduces exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to gain insight of the local field potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are related to stimulus-locked transient oscillations followed by a steady-state activity in the β-γ band, thus resembling what is observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogous to event driven potentials in experiments on humans. Finally we show that the γ power increases with the number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic behaviors. In particular, β and γ rhythms are crucially sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses.

Publication:

The results presented in this chapter are published [START_REF] Taher | Exact Neural Mass Model for Synaptic-Based Working Memory[END_REF]: H. Taher, A. Torcini, and S. Olmi. "Exact Neural Mass Model for Synaptic-Based Working Memory". PLOS Computational Biology 16.12 (Dec. 2020), e1008533

Introduction

Working memory allows us to keep recently accessed information, available for manipulation: it is fundamental in order to pass from reflexive input-output reactions to the organization of goal-directed behavior [START_REF] Just | A Capacity Theory of Comprehension: Individual Differences in Working Memory[END_REF][START_REF] Goldman-Rakic | Cellular Basis of Working Memory[END_REF][START_REF] Engle | Working Memory, Short-Term Memory, and General Fluid Intelligence: A Latent-Variable Approach[END_REF][START_REF] Fuster | Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate[END_REF][START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Chatham | Multiple Gates on Working Memory[END_REF]. Starting from the seminal work of Fuster and Alexander [START_REF] Fuster | Neuron Activity Related to Short-Term Memory[END_REF], several experiments have shown that neurons in higher-order cortex, including the PFC, are characterized by elevated levels of spiking activity during memory delays related to WM tasks. Experimental results seem to suggest that WM maintenance is enhanced by delayed spiking activity, engaging executive functions associated with large part of the cortex, from frontal to posterior cortical areas [START_REF] Miller | An Integrative Theory of Prefrontal Cortex Function[END_REF][START_REF] Lara | The Role of Prefrontal Cortex in Working Memory: A Mini Review[END_REF]. In particular, it has been shown that neurons in the PFC exhibit persistent activity selective to the sample cue during oculomotor delayed-response task [START_REF] Funahashi | Mnemonic Coding of Visual Space in the Monkey's Dorsolateral Prefrontal Cortex[END_REF] as well as during vibrotactile response task [START_REF] Romo | Neuronal Correlates of Parametric Working Memory in the Prefrontal Cortex[END_REF] and that this activity is robust to distractors [START_REF] Miller | Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque[END_REF]. Therefore, classic models proposed persistent spiking for online maintenance of information, since neural ensembles in an active state appear more prone to fast processing [START_REF] Dipoppa | Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony[END_REF][START_REF] Constantinidis | Persistent Spiking Activity Underlies Working Memory[END_REF]. These models have been able to describe multi-item loading and maintenance in WM [START_REF] Amir | Oscillatory Mechanism in Primary Sensory Neurones[END_REF], spatial WM in the cortex [START_REF] Compte | Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model[END_REF], and two interval discrimination tasks [START_REF] Machens | Flexible Control of Mutual Inhibition: A Neural Model of Two-Interval Discrimination[END_REF].

A further relevant aspect, associated with WM operations, is the presence of neural oscillations, whose increase in the oscillatory power during WM maintenance and rehearsal has been reported for humans in the θ-band (4-8 Hz) [START_REF] Gevins | High-Resolution EEG Mapping of Cortical Activation Related to Working Memory: Effects of Task Difficulty, Type of Processing, and Practice[END_REF][START_REF] Jensen | Frontal Theta Activity in Humans Increases with Memory Load in a Working Memory Task[END_REF], as well as in the β (12-25 Hz) and γ-range (25-100 Hz) [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF][START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF], while for monkeys it has been reported in the θ and γ-range [START_REF] Pesaran | Temporal Structure in Neuronal Activity during Working Memory in Macaque Parietal Cortex[END_REF][START_REF] Wimmer | Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits[END_REF] joined to a decrease in the β-band [START_REF] Wimmer | Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits[END_REF]. The results for the activity in the α-band [START_REF] Hopfield | Neurons with Graded Response Have Collective Computational Properties like Those of Two-State Neurons[END_REF][START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF][START_REF] Moreno-Bote | Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistability[END_REF] are somehow more complex: on one side it has been shown that during WM retention in humans no variations are observable [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF] while, on the other side, that it can be associated with the inhibitory action suppressing irrelevant stimuli [START_REF] Sauseng | Brain Oscillatory Substrates of Visual Short-Term Memory Capacity[END_REF]. Despite many studies, the role played by oscillations in WM is still unclear; however numerical studies have suggested that different cycles of a high frequency oscillation in the γ-band can encode a sequence of memory items if nested within a slower θ or β rhythm [START_REF] Lisman | Storage of 7+/-2 Short-Term Memories in Oscillatory Subcycles[END_REF][START_REF] Jensen | Novel Lists of 7+/-2 Known Items Can Be Reliably Stored in an Oscillatory Short-Term Memory Network: Interaction with Long-Term Memory[END_REF][START_REF] Kopell | Neuronal Assembly Dynamics in the Beta1 Frequency Range Permits Short-Term Memory[END_REF]. Moreover, it has been shown in computational models that oscillatory forcing in different frequency bands may provide effective mechanisms for controlling the persistent activity of neural populations and hence the execution of WM tasks [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF][START_REF] Di Volo | Synchronous Dynamics in the Presence of Short-Term Plasticity[END_REF].

Recently, the persistent state paradigm has been criticized on the basis of the inconsistencies emerging in data processing: persistent activity is the result of specific data processings, being neural spiking averaged over time and across trials. Averaging across trials can create the appearance of persistent spiking even when, on individual trials, spiking is actually sparse [START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF][START_REF] Shafi | Variability in Neuronal Activity in Primate Cortex during Working Memory Tasks[END_REF]. Nevertheless, there are examples of single neurons that show real persistent spiking on individual trial rasters, but they represent a small percentage, while the bulk of neurons spike sparsely during WM delays [START_REF] Hussar | Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and Interneurons[END_REF][START_REF] Fujisawa | Behavior-Dependent Short-Term Assembly Dynamics in the Medial Prefrontal Cortex[END_REF].

A pioneering study [START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF] revealed that the interactions among pyramidal neurons in the PFC display synaptic facilitation lasting hundreds of milliseconds. This study paved the way for a development of an alternative model for WM based on synaptic features. More specifically, memory items can be stored by spiking-induced changes in the synaptic weights and these items can be maintained in WM by brief bursts of spiking restoring the synaptic strengths [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Lundqvist | Theta and Gamma Power Increases and Alpha/Beta Power Decreases with Memory Load in an Attractor Network Model[END_REF][START_REF] Rose | Reactivation of Latent Working Memories with Transcranial Magnetic Stimulation[END_REF][START_REF] Miller | Working Memory 2.0[END_REF]. As a result this kind of model is more justifiable from a metabolic point of view, since the memory requires less resources to be held with respect to the persistent activity. Moreover, multiple memory items can be maintained in WM at the same time by having different neuronal populations emitting short bursts at different times. This would solve problems usually observables in models based on persistent spiking: namely, the interference among different stored items and the disruption of memories associated with new sensory inputs [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Miller | Working Memory 2.0[END_REF].

In this context, a fundamental model for WM based on STP has been introduced by Mongillo et al. in [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF]. In this model, synapses among pyramidal neurons display depressed and facilitated transmissions based on realistic cellular mechanisms [START_REF] Tsodyks | The Neural Code between Neocortical Pyramidal Neurons Depends on Neurotransmitter Release Probability[END_REF][START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF][START_REF] Markram | Differential Signaling via the Same Axon of Neocortical Pyramidal Neurons[END_REF]. Synaptic facilitation allows the model to maintain an item stored for a certain period in WM, without the need of an enhanced spiking activity. Furthermore, synaptic depression is responsible for the emergence of population bursts (PBs), which correspond to a subpopulation of neurons firing almost synchronously within a short time window [START_REF] Tsodyks | Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses[END_REF][START_REF] Luccioli | Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks[END_REF]. This WM mechanism is implemented in [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF] within a recurrent network of spiking neurons, while a simplified firing rate model is employed to gain some insight into the population dynamics. The rate model, like most of the models investigated in literature [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF][START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], is heuristic, i.e. the macroscopic description had not a precise correspondence with the microscopic neuronal evolutions.

Recent results for the primate PFC have revealed that the mnemonic stimuli are encoded at a population level allowing for a stable and robust WM maintenance, despite the complex and heterogeneous temporal dynamics displayed by the single neurons [START_REF] Murray | Stable Population Coding for Working Memory Coexists with Heterogeneous Neural Dynamics in Prefrontal Cortex[END_REF]. This analysis suggests that the development of population models which are capable of reproducing the macroscopic dynamics of heterogeneous spiking networks can be extremely useful to shed further light on the mechanisms at the basis of WM. An ideal candidate to solve this task is represented by a neural mass model of new generation able to exactly reproduce the macroscopic dynamics of spiking neural networks [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF][START_REF] Luke | Complete Classification of the Macroscopic Behavior of a Heterogeneous Network of Theta Neurons[END_REF][START_REF] Laing | Derivation of a Neural Field Model from a Network of Theta Neurons[END_REF]. This exact derivation is possible for networks of QIF neurons, representing the normal form of Hodgkin's class I excitable membranes [START_REF] Ermentrout | Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation[END_REF], thanks to the analytic techniques developed for coupled phase oscillators [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF]. This new generation of neural mass models has been recently used to describe the emergence of collective oscillations (CO) in fully coupled networks [START_REF] Coombes | Next Generation Neural Mass Models[END_REF][START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF][START_REF] Laing | Phase Oscillator Network Models of Brain Dynamics[END_REF][START_REF] Dumont | Macroscopic Phase Resetting-Curves Determine Oscillatory Coherence and Signal Transfer in Inter-Coupled Neural Circuits[END_REF] as well as in balanced sparse networks [START_REF] Di Volo | Transition from Asynchronous to Oscillatory Dynamics in Balanced Spiking Networks with Instantaneous Synapses[END_REF]. Furthermore, it has been successfully employed to reveal the mechanisms at the basis of theta-nested gamma oscillations [START_REF] Segneri | Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models[END_REF][START_REF] Ceni | Cross Frequency Coupling in next Generation Inhibitory Neural Mass Models[END_REF] and of the coexistence of slow and fast gamma oscillations [START_REF] Bi | Coexistence of Fast and Slow Gamma Oscillations in One Population of Inhibitory Spiking Neurons[END_REF]. However, to our knowledge, such models have not been yet generalized to spiking networks with plastic synapses.

Our aim is to use a next generation neural mass model encompassing short-term synaptic facilitation and depression [START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF]. This model will enable us to revise the synaptic theory of working memory [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF] with a specific focus on the emergence of neural oscillations and their relevance for WM operations. The neural mass model captures the macroscopic evolution of the network not only in terms of the firing rate, as the standard heuristic models do [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF], but also of the mean membrane potential [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. This will allow for a more direct comparison with the results of electrophysiological experiments often employed to characterize WM processes. Indeed, as shown in [START_REF] Okun | The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats[END_REF], electroencephalograms (EEGs), event-related potentials (ERPs) and local field potentials (LFPs) have the same information content as the mean membrane potentials.

The chapter is organized as follows. First, we will report clear evidence that the neural mass model reproduces, with extreme accuracy, the macroscopic dynamics of heterogeneous networks of QIF neurons with STP. Secondly, we will show that the model is able to mimic the fundamental operations required for WM functioning, whenever memory items are maintained either via spontaneous and selective reactivation or via persistent activity. We will devote particular attention to the spectral features of COs emerging during such operations and to their analogy with experimental findings reported for EEG responses to vibrotactile stimuli in primary somatosensory cortex in humans [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF] and for LFP measurements performed in PFC of primates during objects coding in WM [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF]. In this context, we will show that a heuristic firing rate model, despite being specifically designed to reproduce the mean-field dynamics of QIF networks, is unable to sustain fast oscillations, which usually characterize the neural activity during WM tasks. Then we will perform a detailed analysis of the competition between two consecutively loaded memory items, whenever the memory maintenance is realized in terms of either synaptic facilitation or persistent spiking. Additionally, we will analyze how the memory capacity depends on the presentation rate of a sequence of items and which frequency bands are excited during loading and maintenance of multiple items in WM. We will also derive an analytic estimation of the maximal working memory capacity for our model, by extending recent results obtained in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF]. Furthermore, we will show that the mean membrane potential can represent a proxy to investigate memory load and capacity, in analogy with a series of experiments on neurophysiological measures of the WM capacity in humans [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Vogel | Neural Measures Reveal Individual Differences in Controlling Access to Working Memory[END_REF]. Finally, we will conclude with a discussion on the obtained results and their possible relevance for the field of neuroscience.

Results

We develop a model for WM able to memorize discrete items by following [START_REF] Amit | Model of Global Spontaneous Activity and Local Structured Activity during Delay Periods in the Cerebral Cortex[END_REF] and considering N pop coupled excitatory populations, each coding for one item, and a single inhibitory population connected to all the excitatory neurons. This architecture is justified by recent experimental results indicating that GABAergic interneurons in mouse frontal cortex are not arranged in sub-populations and that they densely innervate all pyramidal cells [START_REF] Fino | Dense Inhibitory Connectivity in Neocortex[END_REF]. The role of inhibition is to avoid abnormal synchronization and to allow for a competition of different items once stored in the excitatory population activity. Furthermore, in order to mimic synaptic-based WM we assume that only the excitatoryexcitatory synapses are plastic displaying short-term depression and facilitation [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF].

The macroscopic activity of N pop excitatory and one inhibitory populations of heterogeneous QIF neurons can be described in terms of the population firing rate r k (t) and mean membrane voltage v k (t) of each population k by the following set of ODEs, which were derived in Chapter 2:

τ n m ṙk = ∆ k τ n m π + 2r k v k k = 0, 1, . . . , N pop (3.1a) τ n m vk = v 2 k -(πτ n m r k ) 2 + H k + I B + I (k) S (t) + τ n m Npop l=0 Jkl (t)r l ; (3.1b)
where τ n m denotes the membrane time constant of excitatory (inhibitory) populations n = e (n = i) and I B denotes a background current common to all populations, whereas H k and the (time dependent) stimulus current I (k) S (t) may be population specific1 . Excitatory populations are characterized by k > 0, the inhibitory one by k = 0. In absence of STP and for instantaneous synapses the synaptic weights are constant in time Jkl (t) = J kl and their sign determines whether the connections are excitatory (J kl > 0) or inhibitory (J kl < 0). The heterogeneous nature of the neurons is taken into account by considering randomly distributed neural excitabilities, reflecting their biological variability. Specifically, we assume that the distribution of the neural excitabilities is a Lorentzian characterized by a median H k and a half width half-maximum (HWHM) ∆ k This choice allows us to derive the neural mass model from the spiking QIF network analytically. However, the overall dynamics does not change substantially by considering other distributions for the neural excitabilities, like Gaussian and Binomial ones [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF][START_REF] Bi | Coexistence of Fast and Slow Gamma Oscillations in One Population of Inhibitory Spiking Neurons[END_REF].

The inclusion of the depression and facilitation STP mechanisms in the spiking networks is reflected in the modification of the synaptic weights entering in the neural mass model Eqs. (3.1). In particular, these are rewritten as Jkl (t) = J kl u l (t)x l (t) if k and l are both excitatory populations, and simply as Jkl (t) = J kl if either k or l is inhibitory. The terms x k (t) and u k (t) represent the mean available resources and the mean utilization factor of the population k, respectively. If we neglect the very fast inactivation of the depression terms, the dynamical evolution of x k and u k is regulated by the following ODEs

dx k (t) dt = 1 -x k (t) τ d -u k (t)x k (t)r k (t) (3.2a) du k (t) dt = U 0 -u k (t) τ f + U 0 (1 -u k (t))r k (t) k = 1, . . . , N pop ; (3.2b)
where U 0 = 0.2 is the baseline value of the utilization factor. Furthermore, it is fundamental that the facilitation timescale τ f (∼ 1 s) is longer than that associated with the recovery from depression τ d (∼ hundreds of milliseconds) [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF]. In this way the information provided by the stimulus will be carried over a time τ f by the facilitated synapse. Here we set τ d = 200 ms and τ f = 1500 ms according to [START_REF] Mongillo | Synaptic Theory of Working Memory[END_REF][START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF]. These parameter values remain fixed for all the simulations reported in this chapter. 

Network dynamics versus neural mass evolution

The neural mass model Eqs. (3.1) reproduces exactly the population dynamics of a network of QIF spiking neurons, in absence of STP, in the infinite size limit, as analytically demonstrated and numerically verified in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. In order to verify if this statement is valid also in presence of STP, we will compare the macroscopic evolution of a single excitatory neural population, given by Eqs. (3.1) and (3.2), with those obtained by considering QIF networks with synaptic plasticity implemented at a microscopic (µ-STP) and at a mesoscopic (m-STP) level. The results of these comparisons are reported in Fig. 3.1(a) for µ-STP and in Fig. 3.1(b) for m-STP. A spiking network of N neurons with µ-STP is described by the evolution of 3N variables, since each neuron is described in terms of its membrane voltage and the two synaptic variables U i (t) and X i (t) accounting for the dynamics of its N efferent synapses. The explicit dynamical model is reported in Eqs. (2.37) and Eq. (2.38) in Section 2.3 of Chapter 2. In the m-STP model, the dynamics of all synapses is treated as a mesoscopic variable in terms of only two macroscopic variables, namely u(t) and x(t). In this case the network model reduces to a set of N + 2 ODEs, namely Eqs. (2.42) reported in Section 2.3.

In order to compare the different models we examine their response to the same applied stimulus I S (t), which consists of two identical rectangular pulses of height ∆I = 2 and duration ∆T = 0.15 s, separated by a time interval of 0.15 s [see Fig. 3.1(b)]. The stimulus is presented when the system is in a quiescent state, i.e. it is characterized by a low firing rate. For both comparisons the neural mass model has been integrated starting from initial values of r,v,x and u as obtained from the microscopic state of the considered networks.

The response is the same in both network models: each pulse triggers a series of four PBs of decreasing amplitude followed by low activity phases in absence of stimuli [see Fig. 3.1(a)]. As shown in Fig. 3.1(c), the population firing rate r(t) obtained from the neural mass model (solid line) is almost coincident with the results of the network simulations both with µ-STP and m-STP (shaded curves). For all models, the average synaptic variables x and u displayed in Fig. 3.1(d,e) reveal the typical temporal evolution of STP upon excitatory stimulation: the available resources x (utilization factor u) decrease (increases) due to the series of emitted PBs in a step-wise fashion. Furthermore, in the absence of stimulation x and u tend to recover to their stationary values x = 1 and u = U 0 for µ-STP (x = 0.73 and u = 0.59 for m-STP) over time-scales dictated by τ d and τ f , respectively. Due to the fact that τ d τ f , the synapses remain facilitated for a time interval 1 s after the pre-synaptic resources have recovered from depression. The time courses of x and u for the neural mass compared to the network ones, shown in Fig. 3.1(d, e), reveal an almost perfect agreement with the simulations of the network with m-STP, while some small discrepancies are observable when compared with the network with µ-STP. We have verified that these discrepancies are not due to finite size effects. Further increasing the network size, did not improve the agreement. Instead, these residual discrepancies are probably due the presence of so-called silent neurons and due to the correlations and fluctuations of the microscopic variables {X i } and {U i }, which are not taken into account in the mesoscopic model for STP [START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF], as pointed out in [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF] (see also the discussion on this aspects reported in Section 2.3 of Chapter 2 and in Appendix A). We can conclude this sub-section by affirming that the developed neural mass model reproduces in detail the macroscopic dynamics of spiking networks of QIF neurons with both µ-STP and m-STP, therefore in the following we can safely rely on the mean-field simulations to explore the synaptic mechanisms at the basis of WM.

Multi-Item Architecture

In order to illustrate the architecture employed to store more than one item simultaneously in WM, we will analyze the simplest non-trivial situation where we want to store two items. For this purpose, we consider two excitatory populations with STP employed to store one item each, and an inhibitory one, necessary to allow for item competition and a homeostatic regulation of the firing activity. We restrict to non-overlapping memories: neurons belonging to a certain excitatory population encode only one working memory item. Furthermore, incoming information on a WM item, in form of an external stimulus, target only the excitatory population which codes for that item, hence making the response selective.

As previously mentioned, only excitatory-excitatory synapses are plastic, therefore we will have no time dependence for the synaptic weights towards or from the inhibitory population. Moreover, the WM items should be free to compete among them on the same basis, therefore we assume that the synaptic couplings within a population of a certain type (inhibitory or excitatory) and among populations of the same type are identical. In summary, we have

J00 (t) = J ii , J0k (t) = J ie , Jk0 (t) = J ei , for k > 0 ; (3.3) Jkk (t) = J (s) ee x k (t)u k (t), J kj (t) = J (c) ee x j (t)u j (t), ∀k, j > 0
where we have denoted inhibitory (excitatory) populations by i (e) index. Furthermore, synaptic connections within each excitatory population, coding for a certain memory, will be stronger than connections between different excitatory populations, thus we assume

J (s) ee > J (c)
ee . A common background input current I B impinges on all three populations, thus playing a crucial role in controlling the operational point of the network. The selective storage and retrieval of memory items induced by incoming stimuli is mimicked via time dependent external currents I (k) S (t) applied to the excitatory populations. The discussed multi-item architecture is displayed in Fig. 3.2.

Due to the fact that each excitatory population is indistinguishable from the others and we have only one inhibitory pool, we set for clarity H 0 = H (i) , H k = H (e) ∀k > 0 and ∆ 0 = ∆ (i) , ∆ k = ∆ (e) ∀k > 0. Furthermore, in order to highlight the variations of the synaptic parameters better, we report the normalized available resources xk and normalized facilitation factors ũk in the following2 .

Memory maintenance with synaptic facilitation

To show the capability of our model to reproduce WM activity we report three different numerical experiments in this sub-section. We will show that the model is able to reproduce specific computational operations required by WM: namely, memory load, memory maintenance during a delay period, selective or spontaneous reactivation of the memory and memory clearance. The results of this analysis are reported in Fig. 3 topological architecture displayed in Fig. 3.2. More specifically, we considered three coupled populations for the network simulations, consisting of 600,000 neurons in total. An analogous comparison is also reported in Fig. 3.5, where the competition between two memory items is studied.

Selective Reactivation

Let us start from an example of selective reactivation of the target item via a non specific read-out signal, targeting both excitatory populations, as shown in column (1) of Fig. 3.3.

Since the observed dynamics does not depend on the population into which an item is loaded, we always load the item in population one (coded by the blue color in Fig. 3.3), without the loss of generality. The system is initialized in an asynchronous state of low firing activity common to both populations, as shown in Fig. The memory load is performed at time t = 0 s, by applying a stimulation current in the form of a step with amplitude ∆I 1 = 0.2 and width ∆T 1 = 350 ms only to population one [Fig. 3.3(b 1 )]. In response to this stimulus, the population displays PBs, as shown by the raster plot in Fig. 3.3(a 1 ). The frequency of these COs is in the β band (namely, 21.6 Hz), as evident from the spectrogram in Fig. 3.3(h 1 ). In addition to this, the PBs in population one trigger PBs in the inhibitory population with a delay of 1 -2 ms, while the same COs' frequency is maintained, as evident from the inhibitory population spectrogram in Fig. 3.3(j 1 ). Therefore, the PBs are generated via a mechanism analogous to the pyramidal interneuronal network gamma (PING) one [START_REF] Tiesinga | Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING?[END_REF], despite the fact that the frequency of the COs is now in the β band.

The intense firing of neurons in population one changes the internal state of its efferent synapses, thus leading to an initial drop (increase) of x 1 (u 1 ) [Fig. 3.3(f 1 , g 1 )]. Depression prevails on short time scales τ d , while at longer times t > 0.5 s, x1 recovers to almost its initial value and the synapses remain facilitated, with ũ1 > 0.73, for one or two seconds [Fig. 3.3(g 1 )]. Population two (denoted by the orange color in Fig. 3.3) is not particularly affected by the memory loading. Indeed, population two shows only a slight reduction in its asynchronous activity, which is reflected in a small increase (decrease) of x2 (ũ 2 ) [Fig. 3.3(c 1 , f 1 , g 1 )]. This is due to the action of the inhibitory bursts, which are unable 

H (i) = H (e) = 0, ∆ (i) = ∆ (e) = 0.1, J (c) ee = 5 √ a, J (s) ee = 35 √ a, J ie = 13 √ a, J ei = -16 √ a, J ii = -14 √ a with a = 0.4.
to support PBs in population two, but sufficient to modulate its asynchronous activity as revealed by the spectrogram in Fig. 3.3(i 1 ). Since the information on the initial stimulus is stored in the facilitation of the synapses, we expect that, by presenting a weak non-specific read-out signal to both populations, the memory will be reactivated, even if the population activity is back to the spontaneous level. Indeed, if after a delay period of 1.2 s from the initial memory load, we inject a weak stimulation current of amplitude ∆I = 0.1 for a time interval ∆T = 250 ms to all the excitatory neurons, we observe that only neurons of the blue population respond by emitting a PB of brief duration. The other neurons not associated with the loaded item remain at the baseline activity level, despite the stimulus [Fig. 3.3(c 1 )]. The emission of the PB in population one has also the effect to refresh the memory, i.e. the utilization factor u 1 which has decreased towards the initial value during the delay period, returns to the value reached when the item was loaded. Therefore the memory can be maintained for a longer time period.

Spontaneous Reactivation

In a second example, shown in the central column (2) of Fig. 3.3, we consider a case where the target population reactivates spontaneously by emitting a regular series of PBs even in absence of read-out signals. To obtain such situation we increase the background signal from I B = 1.2 up to I B = 1.532, thus the system is in a regime where the spontaneous low activity state coexists with states in which one of the excitatory populations periodically emits PBs (for more details on the emerging states see the bifurcation analysis in Section 3.4.1). As in the previous experiment, the system is initialized in a low firing activity state, where only spontaneous activity is present. The memory item is loaded in population one [Fig. 3.3(a 2 -e 2 )]. In this case population one encodes the item by emitting a series of PBs with a slightly higher frequency ( 24.1 Hz) with respect to the previous case, due to the increase in I B , but still in the β range, as shown in Fig. 3.3(h 2 -j 2 ). After a short time delay, PBs emerge regularly in a self-sustained manner: each reactivation leads to an increase of ũ1 and a decrease of x1 . The time interval between two PBs is dictated by the time required to recover sufficient synaptic resources in order to emit a new PB, i.e. by the time scale τ d controlling the depression [START_REF] Tsodyks | Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses[END_REF][START_REF] Luccioli | Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks[END_REF] [Fig. 3.3(f 2 )]. Thus, we have memory maintenance through synaptic facilitation, which is refreshed by PBs. As one can appreciate from the spectrogram of population one reported in Fig. 3.3(h 2 ), whenever a PB is delivered, a transient oscillation in the δ band, at a frequency 3 Hz, is observed. Similar transient oscillations have been observed when items are loaded in the PFC of monkeys during WM tasks [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF]. Signatures of these oscillations are present also in the spectrogram of the other excitatory population [Fig. 3.3(i 2 )] but, in this case, they are due to a modulation of the subthreshold membrane potentials and not to PBs. It is interesting to note that δ-oscillations are only sustained by the activity of the excitatory populations, since in the inhibitory spectrogram [Fig. 3.3(j 2 )] there is no trace of them.

The sequence of PBs can be terminated by reducing the excitation I B : this operation is performed at time t = 2.15 s after the initial stimulation and signaled by the red arrow in Fig. 3.3(a 2 , c 2 ). Also in this experiment the memory load and retrieval is selective, since the second population activity is almost unaffected by these operations as it turns out from the raster plot reported in Fig. 3.3(c 2 ).

Persistent Activity

As a third experiment, we consider a situation where the memory item is maintained via the persistent activity of the target population, as shown in column (3) of Fig. 3.3. This is possible when the non-specific background input I B is increased further such that we can observe multistability among three asynchronous states: one corresponding to the spontaneous activity at low firing rate of both excitatory populations and the other two corresponding to population one (two) in a persistent state with increased firing activity and population two (one) at a spontaneous level of activity. More details can be found in Bifurcation analysis. When at time t = 0 the memory item is loaded in population one, the population responds by emitting a series of PBs at a frequency 27.2 Hz in the β-γ band [Fig. 3.3(h 3 -j 3 )]. As shown in Fig. 3.3(a 3 , e 3 ), once the loading is terminated the blue population enters into a regime of persistent firing characterized by an almost constant firing rate r 1 8.6 Hz joined to constant values of the synaptic variables. In particular, the available resources of population one remain at a constant and low value due to the continuous firing of the neurons (x 1 = 0.13) [Fig. 3.3(f 3 )]. However, the lack of resources is compensated by the quite high utilization factor ũ1 = 0.98, reported in Fig. 3.3(g 3 ). Indeed in this case the memory is continuously refreshed by the persistent spiking activity. At time t = 2.15 s, indicated by red arrows in Fig. 3.3(a 3 , c 3 ), the value of I B is reduced to I B = 1.2 and the persistent activity is interrupted. This would correspond to a memory clearance if WM would be based on the spiking activity only. Instead in this case, it represents only the interruption of the persistent activity, the memory clearance occurring when the facilitation returns to its original value after few more seconds (the decay of u 1 is evident in Fig. 3.3(g 3 )). The second population, not involved in the memory loading, remains always in a low firing rate regime [Fig. 3.3(c 3 , e 3 )].

As expected, the neural mass dynamics reproduces almost perfectly the network dynamics with m-STP for all the three considered experiments. In particular, this can be appreciated through the agreement among shaded lines, corresponding to network simulations, and solid ones, referring to the neural mass evolution, reported in Fig. 3.3(e -g).

Furthermore, it should be remarked that memory loading is characterized by similar spectral features for all three experiments. As shown in Fig. 3.3(h, i), a transient broadband response of the excitatory populations is observable in the range 3-18 Hz, locked with the stimulation onset and followed by a steady-state activity in the β-γ range (namely 21-27 Hz), which lasts for the whole duration of the stimulation. The broad-band oscillations emerge due to the excitation of the harmonics of a fundamental frequency 2 -3 Hz, associated with one item loading in the memory. Similarly, the β-γ activity is initiated by memory loading that induces, in this case, damped oscillations towards a focus equilibrium state in the stimulated excitatory population: the damped oscillations are sustained by the inhibitory pool via a PING-like mechanism. Quite astonishingly, similar evoked power spectra have been reported for stimulus-locked EEG responses to vibrotactile stimuli in primary somatosensory cortex in humans [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF]. In more details, as shown in Fig 1B of Ref. [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF], the stimulus onset induces a broad-band activity in the 4-15 Hz range followed by a stationary activity at 26 Hz during the vibrotactile stimulations.

Comparison with a heuristic firing rate model

To close this sub-section, let us compare the population dynamics obtained by employing the exact neural mass model with STP [Eqs. (3.1) and (3.2)] and a heuristic firing rate model developed to mimic the dynamics of a QIF network with m-STP (for more details see Section 3.4.2 of this chapter). Recent studies have shown that this firing rate model, in absence of plasticity, is unable to capture some macroscopic behavior displayed by the corresponding QIF networks [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF][START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF]. In particular, it does not reproduce fast COs present in inhibitory networks [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF] and it does not feature memory clearance via nonlinear resonance with an external β-forcing, contrary to the spiking network under forcing [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF].

Here, we want to understand which network's dynamics are eventually lost by employing such a heuristic model with STP. Therefore we have repeated the experiments leading to memory maintenance via spontaneous reactivation and persistent activity, previously reported in columns (1) and (2) of Fig. 3.3, with the same topological configuration. The results of this analysis are shown in Fig. 3.4: column (1) is devoted to spontaneous reactivation and column (2) to persistent activity. In more detail, the multi-population network is initialized in the quiescent state with asynchronous activity and low firing rates [Fig. 3.4(b)]; at time t = 0 s, a current step of amplitude ∆I 1 = 0.2 and duration ∆T 1 = 350 ms is injected into population one (blue line), as shown in Fig. 3.4(a). When a background current I B = 1.520 is chosen, as soon as the stimulation is removed, population one enters into a cycle of periodic PBs, each one refreshing the synaptic facilitation and allowing for the memory maintenance (column (1)).

By increasing the current to I B = 2.05, the stimulus leads population one into a state of persistent firing activity, which maintains the synaptic variables at almost constant values (column (2)). Therefore, the heuristic firing rate model is able to reproduce the WM operations performed by the exact neural mass model. However, when comparing the firing rate time traces of the QIF network and of the exact neural mass model [Fig. 3.3(e 2 , e 3 )] with the ones corresponding to the heuristic firing rate model [Fig. 3.4(b)], we note that, after the onset of stimulation, the population firing rates of the QIF network and of the exact neural mass model exhibit fast damped COs in the β-γ range, which are completely absent in the heuristic rate model. These findings are confirmed by the spectrograms3 , which reveal a vanishingly small power in the β-γ bands for the heuristic model in both experiments [compare Fig. 3.3(h 2 -j 2 ) and Fig. 3.

3(h 3 -j 3 ) with Fig. 3.4(f -h)].
The reason for this absence is related to the fact that the stimulation leads population one in an excited state, which turns out to be a stable node equilibrium and not a focus, as for the exact neural mass model; therefore in this case it is not possible to observe transient PBs associated with memory loading. As a consequence, the heuristic model does not show any activity in the β and γ bands, despite this kind of activity has been reported experimentally in the PFC of monkeys performing WM tasks [START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF] and in the primary somatosensory cortex of humans due to vibrotactile stimuli [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF], and associated with memory loading and recall in WM models [START_REF] Dipoppa | Flexible Frequency Control of Cortical Oscillations Enables Computations Required for Working Memory[END_REF]. Furthermore, as we will discuss in detail in Section 3.2.5, the loading of many items in WM is usually associated with γ-power enhancement, as shown by various experiments [START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF][START_REF] Van Vugt | Hippocampal Gamma Oscillations Increase with Memory Load[END_REF][START_REF] Roux | Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory[END_REF]. While this effect is present in our exact neural mass model, where the high frequency oscillations are enhanced due to a resonant mechanism with the transient oscillations towards the focus equilibrium, this aspect cannot be clearly reproduced by this heuristic firing rate model.

Competition between two memory items

In this sub-section we verify the robustness of the investigated set-up when two memory items are loaded, one for each excitatory population. In particular, we will examine the possible outcomes of the competition between two loaded items with emphasis on the mechanisms leading to memory juggling [START_REF] Lewis-Peacock | Competition between Items in Working Memory Leads to Forgetting[END_REF]. More specifically, we will consider three different operational modes, where the items are maintained in the WM due to different mechanisms: namely, in the first case thanks to periodic stimulations; in the second one due to self-sustained periodic PBs and in the last one to persistent spiking activity.

Periodic Stimulations

First we analyze the two-item memory juggling in presence of a periodic unspecific stimulation to the excitatory populations. As shown in column (1) of Fig. 3.5, at time t = 0 we load the first item in population one by stimulating the population for ∆T 1 = 350 ms, with an excitatory step of amplitude ∆I 1 = 0.2 [Fig. 3.5(b 1 )]. Population one encodes the item via the facilitation of its efferent synapses. This is a consequence of a series of PBs emitted via a PING-like mechanism at a frequency 21.6 Hz in the β-range, as evident from the spectrograms in Fig. 3.5(h 1 -j 1 ). Subsequently a periodic sequence of unspecific stimulations of small amplitude and brief duration is delivered to both populations (namely, step currents of amplitude 0.1 and duration 150 ms applied at intervals of 400 ms). These are sufficient to refresh the memory associated with population one, that The second item is loaded at time t = 2.65 s, by presenting to population two a signal equal to the one presented at time t = 0 [Fig. 3.5(d 1 )]. Also the loading of this item is associated with PBs emitted in the β range and involving the inhibitory population. During the presentation of the second item, the previous item is temporarily suppressed. However, when the unspecific stimulations are presented again to both population, PBs are triggered in both populations, resulting to be in anti-phase, i.e. PBs alternate between the two populations at each read-out pulse. The period related to each item is therefore twice the interval between read-out signals [Fig. 3.5(a 1 , c 1 )]. This is due to the fact that a PB in one excitatory population stimulates the action of the inhibitory neurons in population zero which, as a consequence, suppresses the activity of the other excitatory population, leading to the observed juggling between the two items in working memory. As clear from the spectrograms in Fig. 3.5(h 1 -j 1 ), the unspecific stimulations of the excitatory populations induce localized peaks in their spectrograms around 2-3 Hz, not involving the inhibitory population. The latter instead oscillates at a frequency 21.6 Hz, thus inducing a modulation of the neural activity of the two excitatory populations. This explain the presence of the series of peaks in the three spectrograms around 20-25 Hz.

Self-Sustained Population Bursts

Let us now consider a higher background current (namely, I B = 1.532), where selfsustained periodic PBs can be emitted by each excitatory population. In this case it is not necessary to deliver unspecific periodic stimuli to refresh the synaptic memory. The loading of the two items is done by applying the same currents as before (∆I 1 = ∆I 2 = 0.2, ∆T 1 = ∆T 2 = 350 ms) to the two populations, as shown in Fig. 3.5(b 2 , d 2 ). The memory loading occurs, once more, via series of bursts emitted with frequency in the β range, through a PING-like mechanism. Once the item is loaded, a series of subsequent PBs is emitted regularly, at a frequency 2.90 Hz [Fig. 3.5(a 2 , e 2 )].

The second population remains quiescent until the second item is loaded [Fig. 3.5(c 2 , d 2 )]. During the loading period, the activity of the first population is temporarily suppressed while, at later times, both items are maintained in the memory by subsequent periodic reactivations of the two populations. In particular it turns out that periodic reactivations are in anti-phase, with frequency 1.5 Hz, i.e., one observes juggling between the two working memory items [Fig. 3.5(e 2 )]. Also in this case, the inhibitory population is responsible for sustaining the β rhythm, while the excitatory ones for the slow oscillations, as revealed by the spectrograms in [Fig. 3.5(h 2 -j 2 )]. As testified by the comparisons reported in Fig. 3.5(e -g), the agreement among the network simulations (solid lines) and the neural mass results (shaded lines) is impressive even for the two experiments discussed so far in this Section.

For the setup analyzed in column (2) of Fig. 3.5, the competition between the two memory items can have different final outcomes, depending on the characteristics of the stimuli, namely their amplitude and duration. For simplicity we fix these parameters for the first stimulation and vary those of the second stimulation. As shown in Fig. 3.6(a -d), three outcomes are possible for stimuli with the same amplitude ∆I 2 = 0.2 but different pulse duration: item one wins, item two wins or they both coexist in the memory (juggling). If ∆T 2 is too short, the facilitation u 2 has no time to become sufficiently large to compete with that of population one [Fig. The results of a detailed analysis for different amplitudes ∆I 2 and durations ∆T 2 are summarized in Fig. 3.6(e). Population one always receives the same stimulus at time t = 0 (∆I 1 = 0.2 and ∆T 1 = 0.35 s), while ∆I 2 and ∆T 2 of the second stimulus, delivered at time t = 100 s, are varied 4 . In particular, the amplitude has been varied in steps of 0.01 within the interval ∆I 2 ∈ [0, 0.8], while the duration in steps of 0.01 s for ∆T 2 ∈ [0, 1.5] s. The classification of the final states has been performed three seconds after the second stimulation, by estimating the time averaged firing rates r 1 and r 2 over an interval of one second. From this we get the indicator P := r 1 r 1 + r 2 . If P > 0.7 (P < 0.3) item one (item two) has been memorized, otherwise we have juggling between the two items. From Fig. 3.6(e), we see that, for sufficiently small amplitudes ∆I 2 < 0.11 or durations ∆T 2 < 0.2 s, the second stimulation is unable to change the memory state, that remains on item one. This can be understood by looking at the bifurcation diagram shown in Fig. 3.14(b) of Section 3.4.1, from which it is clear that population two, being in the low firing regime, has a low value of the membrane potential v 2 and that such state is separated by the high activity regime from a barrier ∆v 2 , which is of the order of the distance from the saddle (dotted line in the figure). A frequent outcome of the experiments is the coexistence between the two memory items, that we observe in a large parameter region for intermediate pulse durations, namely 0.2 s < ∆T 2 < 0.8 s. For sufficiently long perturbations ∆T 2 > 0.8 s and intermediate amplitudes 0.11 < ∆I 2 < 0.53, item two is memorized. It is unexpected that, for larger amplitudes, we observe a multistability among all the three possible outcomes. Indeed, small variations of amplitude, duration or delivering time can induce a completely different outcome, thus suggesting that for these parameter values, some transient chaotic behavior is observable [START_REF] Lai | Transient Chaos: Complex Dynamics on Finite Time Scales[END_REF][START_REF] Cortes | Short-Term Synaptic Plasticity in the Deterministic Tsodyks-Markram Model Leads to Unpredictable Network Dynamics[END_REF]. 

Persistent State Activity

We have performed the same analysis for the higher current value I B = 2, which supports a persistent state activity of one of the two populations. We set initially population one in the persistent state and we deliver a stimulus in form of a step current to population two. In this case we can obtain only two possible final outcomes: item one (two) loaded corresponding to population one (two) in the persistent state, while the other in the low activity regime. No memory juggling has been observed with persistent states in our model. The results of this investigation are summarized in Fig. 3.7(e); for what concerns the final prevalence of item two, the results are similar to the ones obtained in the previous analysis, where the item was encoded in self-sustained periodic COs. The main differences with the previous case are: (i) the minimal perturbation amplitude needed to observe an item switching, that is now larger, namely ∆I 2 0.2; (ii) the existence of a narrow stripe in the (∆T 2 , ∆I 2 )-plane where item two can be finally selected for brief stimulation duration. The increased value of the minimal ∆I 2 required to switch to item two is justified by the fact that, for I B = 2, the barrier ∆v 2 that has to be overcome to access the high firing regime, is higher than before, as evident from the phase diagram reported in Fig. 3.14(b) of Section 3.4.1. The origin of the stripe can be understood by examining the results reported in Fig. 3.7(a -d), for three stimulations with the same amplitude ∆I 2 = 0.4 and different durations. The effect of the stimulation is to increase the activity of population two and indirectly, also the inhibitory action on population one. However, for short ∆T 2 < 70 ms, the activity of population two is not sufficient to render its efferent synapses stronger than those of population one. As a matter of fact, when the stimulation is over, population one returns into the persistent state. For longer ∆T 2 ≥ 70 ms, population one is not able to recover its resources before population two elicits a PB. Population two takes over and the dynamics relax back, maintaining item two in WM via the persistent activity [Fig. 3.7 column (1)]. For ∆T 2 ≥ 130 ms we observe the emission of two or more successive PBs in population two during the stimulation period. These PBs noticeably depress x 2 , which is unable to recover before population one, characterized by a larger amount of available resources x 1 , emits a PB and item one takes over [Fig. 3.7 column (2)]. However, for much longer ∆T 2 ≥ 850 ms, the absence of activity in population one leads to a noticeable decrease of the utilization factor u 1 . As a matter of fact at the end of the stimulation period, the item two is finally selected [Fig. 3.7 column ( 3)].

To summarize, item two can be selected when the duration of the stimulation is restricted to a narrow time interval, sufficiently long to render the efferent synapses of population two stronger than those of population one, but not so long to highly deplete the resources of the same synapses. Furthermore, item two can be selected when ∆T 2 is sufficiently long to allow for the decay of the synaptic facilitation of population one towards its baseline value.

Multi-Item Memory Loading

In order to be able to load a higher number of memory items in WM, we consider the neural mass model with m-STP (Eqs. (3.1) and (3.2)) arranged in a more complex architecture composed by N pop = 7 excitatory and one inhibitory populations, each excitatory population coding for one memory item. The system is initialized with all the populations in the silent state. Then, each item is loaded by delivering an excitatory pulse of amplitude ∆I k = 1 and duration of ∆T k = 0.2 s to the chosen population, while successive items are loaded at intervals of 1.25 s.

Let us first consider the successive loading of N L = 3 items shown in Fig. 3.8. As one can appreciate from the spectrogram reported in Fig. 3.8(d), during the loading phase, each stimulated excitatory population emits a sequence of PBs in the βγ range ( 27 Hz) via a PING-like mechanism mediated by the inhibitory population. This is joined to stimulus locked transient oscillations in the δ-band around 2 Hz. Furthermore, during each loading period, the activity of the other populations is interrupted and it recovers when the stimulation ends. These results resemble the LFP measurement performed in PFC of primates during coding of objects in short term-memory [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF]. In particular, the experimentally measured power spectrum of the LFP displays transient oscillations at 2 -4 Hz in the δ range, phase-locked to stimulus presentation, together with tonic oscillations at 32 Hz.

As shown in Fig. 3.8(a), the loading of each item is followed by the emission of PBs from the stimulated population at regular time intervals T c . Therefore, in this case, the number N I of items retained in the WM coincides with the number N L of the loaded ones. The PBs of all the excited populations arrange in a sort of splay state with inter-burst periods T b = T c /N I [START_REF] Olmi | Stability of the Splay State in Networks of Pulse-Coupled Neurons[END_REF]. The period T c depends on the number of retained items: for 

N I = 3
J ei = -26, J ie = 4 7 • 97, J ii = -60, I B = 0, H (e) = 0.05, H (i) = -2, ∆ (e) = ∆ (i) = 0.1
In particular, one observes fast COs ( 27 Hz) nested in slow oscillations, characterized by a frequency increasing with the number of loaded items (from the θ-band for 1 item to the β-band for 3 items), similar to what has been reported in [START_REF] Lisman | Storage of 7+/-2 Short-Term Memories in Oscillatory Subcycles[END_REF][START_REF] Jensen | Novel Lists of 7+/-2 Known Items Can Be Reliably Stored in an Oscillatory Short-Term Memory Network: Interaction with Long-Term Memory[END_REF][START_REF] Kopell | Neuronal Assembly Dynamics in the Beta1 Frequency Range Permits Short-Term Memory[END_REF].

A more detailed analysis of the spectrogram in Fig. 3.8(d) reveals that, after each loading phase, several harmonics of the fundamental frequency f c ≡ 1/T c 5 Hz are excited. In particular after the complete loading of the three items the most enhanced harmonics are those corresponding to 3f c 15 Hz and 6f c 30 Hz. This is due to the coincidence of the frequency 3f c = f b ≡ 1/T b with the inter-burst frequency f b , while the main peak in the spectrogram, located at 30 Hz, is particularly enhanced due to the resonance with the proximal βγ rhythm associated with the PING-like oscillations emerging during memory loading.

In Figs. 3.9 and 3.10 we perform similar numerical experiments as in Fig. 3.8, but this time stimulating N L = 5 and N L ∈ {6, 7} excitatory populations, respectively. It is interesting to notice that the transient δ oscillations related to the stimulation phase are only supported by the excitatory population dynamics, as evident by comparing the . Another important aspect is that only the harmonics of f b ≡ N I f c are present in the spectrogram of the inhibitory population, and in that associated with the average excitatory membrane potential, but not all the other harmonics of f c . This is related to the fact that, in the average of the mean excitatory membrane potentials, the bursts of all populations will be present with a period T b , therefore in this time signal there is no more trace of the periodic activity of the single population. This is due to the fact that T c ≡ N I T b . Furthermore, in the dynamics of the inhibitory population, the activity of all excitatory populations are reflected with the same weight, therefore also in this case there is no sign of the fundamental frequency f c . 

Memory Capacity

In Fig. 3.9 the N L = 5 loaded items are retained in WM. However, if we load a sixth item as done in Fig. 3.10 column (1), WM is only able to maintain the loaded N L = 6 items for a short time interval 1 s, after which population five stops emitting PBs. The corresponding item is not in WM anymore and the memory load returns to N I = 5. By loading N L = 7 items [Fig. 3.10 column (2)] we can induce more complex instabilities in the WM, indeed the reported experiment reveals that, in the end, only N I = 4 items can be maintained, suggesting that a too fast acquisition of new memory items can compromise also already stored WM items. As a matter of fact, only the oldest and newest items are retained by WM: this in an example of the so-called primacy and recency effect, which has been reported in many contexts when a list of items should be memorized [START_REF] Postman | Short-Term Temporal Changes in Free Recall[END_REF][START_REF] Morrison | Primacy and Recency Effects as Indices of the Focus of Attention[END_REF].

To investigate more in detail the memory capacity of our model, we have considered different presentation rates f pres for the items. In particular, we have applied stimulation pulses to all the excitatory populations sequentially, from the first to the seventh, with a presentation rate f pres . Each pulse is characterized by an amplitude ∆I = 16 and a duration ∆T = 1/f pres . Results are presented in Fig. 3.11 for presentation rates in the interval [0.5 : 80] Hz. From Fig. 3.11(a) it turns out that the maximal capacity is five, a value that can be mostly achieved for presentation rates within an optimal range f pres ∈ [4.5 : 24.1] Hz, delimited by green dashed lines in Fig. 3.11(a). For these optimal rates we have estimated the probability of retrieving a certain item versus its presentation position, as shown in Fig. 3.11(c) (green dashed line). The probability displays very limited variations ( 45 -85 %) for the 7 considered items, suggesting that in this range the retrieval of an item does not strongly depend on its position in the presentation sequence. Conversely, for slow rates (f pres ≤ 9 Hz) the last loaded items result to be the retained ones (recency effect), as evident from the orange regions in Fig. 3.11(b). This is confirmed by the calculation of the probability of retrieval versus the corresponding serial position shown in Fig. 3 for WM, based on short-term synaptic plasticity, has been recently derived in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF]. By following the approach outlined in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], we have been able to obtain an analytical expression for N max c also for our neural mass model, namely

N max c τ d τ e m ln τ f /τ d 1 -U 0 √ C π ; (3.4)
where

C = H (e) + I B + τ e m -|J ei | + J √ H (e) +I B π , with J = [J (s) ee + (N pop -2)J (c)
ee ]xū. The explicit derivation of Eq. (3.4) is reported in Section 3.4.3. As shown in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], the value of N max c is essentially dictated by the recovery time of the synaptic resources τ d and has a weaker (logarithmic) dependence on the ratio between the facilitation and depression time scales. Furthermore, for our model, the maximal capacity increases by increasing H (e) , I B and the recurrent and cross excitatory synaptic couplings, while it decreases whenever the coupling from inhibitory to excitatory population is strengthened.

By employing the theoretical estimation Eq. (3.4) we get N max c ∈ [3.6, 4.8], in pretty good agreement with the measured maximal capacity. We can affirm this in view of the results reported in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF] for a different mean field model, where the analytical predictions overestimate the maximal capacity by a factor two.

Memory Load Characterization

A feature usually investigated in experiments during the loading or juggling of more items is the power associated with different frequency bands. In particular, a recent experiment has examined the frequency spectra of LFPs measured from cortical areas of monkeys while they maintained multiple visual stimuli in WM [START_REF] Kornblith | Stimulus Load and Oscillatory Activity in Higher Cortex[END_REF]. These results have revealed that higher-frequency power (50-100 Hz) increased with the number of loaded stimuli, while lower-frequency power (8-50 Hz) decreased. Furthermore, the analysis of a detailed network model, biophysically inspired by the PFC structure, has shown that θ and γ power increased with memory load, while the power in the α-β band decreased [START_REF] Lundqvist | Theta and Gamma Power Increases and Alpha/Beta Power Decreases with Memory Load in an Attractor Network Model[END_REF], in accordance with experimental findings in monkeys [START_REF] Wimmer | Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits[END_REF]. However, for humans, an enhance in the oscillatory power during WM retention has been reported for θ [START_REF] Gevins | High-Resolution EEG Mapping of Cortical Activation Related to Working Memory: Effects of Task Difficulty, Type of Processing, and Practice[END_REF][START_REF] Jensen | Frontal Theta Activity in Humans Increases with Memory Load in a Working Memory Task[END_REF], β and γ-bands [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF][START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF], while no relevant variation has been registered in the α-band [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF].

We considered the loading of N L ≤ 5 items and estimated the corresponding power spectra, after the loading of all the considered items, for the following variables: (i) the mean membrane potential v 1 (t) of the excitatory population one; (ii) the mean membrane potential v 0 of the inhibitory population; (iii) the mean membrane potential averaged over all the excitatory populations. The power has been estimated in the θ, β and γ-bands by integrating the spectra in such frequency intervals. The results for 1 ≤ N I ≡ N L ≤ 5 shown in Fig. 3.12 reveal that the power in the γ-band is increasing with N I for all the considered signals, as reported experimentally for several brain areas involved in WM [START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF][START_REF] Van Vugt | Hippocampal Gamma Oscillations Increase with Memory Load[END_REF][START_REF] Roux | Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory[END_REF]. Furthermore, the γ-power obtained for v 0 and the mean excitatory potential are essentially coincident [Fig. 3.12(c)], thus confirming the fundamental role of the inhibition in sustaining γ oscillations via a PING mechanism. Moreover, the power in the β-band, reported in Fig. 3.12(b), increases almost monotonically for v 1 , while it displays a non The integral of the power spectra in the specified frequency bands are displayed for the mean membrane potential v 1 (t) of the excitatory population one (blue symbols), the mean membrane potential v 0 (t) of the inhibitory population (orange symbols) and the mean membrane potentials averaged over all the excitatory populations (green symbols). The power spectra have been evaluated over a 10 s time window, after the loading of N I items, when these items were juggling in WM. Parameter values as in Fig. 3.8. monotonic behavior for the inhibitory population and for the average excitatory membrane potential, while saturating to a constant value for N I ≥ 3. More striking differences emerge when considering the θ power [Fig. 3.12(a)]: in this case the power spectra for v 0 and the average excitatory membrane potential display almost no variations with N I , while that for v 1 increases by passing from one to two loaded items before saturating for larger N I .

The observed discrepancies can be explained by the fact that the fundamental frequency f c and its harmonics are present in the spectrum of v 1 , while they are absent both in the spectrum of v 0 and of the average excitatory membrane potential. We have not observed any variation in the α-power, comparable to what is reported in the experimental study [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF].

Finally, inspired by a series of experimental works reporting neurophysiological measures of WM capacity in humans [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Vogel | Neural Measures Reveal Individual Differences in Controlling Access to Working Memory[END_REF], we have investigated if a similar indicator can be defined also in our context. In particular, the authors in [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF] measured, as a neural correlate of visual memory capacity, the event-related potentials (ERPs) from normal young adults performing a visual memory task. Each patient was presented a bilateral array of 2 × N L colored squares and he/she was asked to remember the N L items in only one of the two hemifields. Due to the organization of the visual system, the relevant ERPs associated with this visual stimulation should appear in the controlateral hemisphere. Therefore the difference between controlateral and ipsilateral activity has been measured in order to remove any nonspecific bilateral ERP activity. The authors observed that, by increasing the number of squares N L , also the ERP difference increases, while it saturates by approaching the maximal capacity (measured during the same test) and even decreases for N L > N max c . Thus the ERP difference can be employed as a reliable neurophysiological predictor of memory capacity. In order to define a similar indicator in our case, we have calculated the membrane potential difference ∆v between the mean membrane potential, averaged over the populations coding, for the retained items [whose activity is reported for example in Fig. 3 To conclude this sub-section, we can affirm that the mean membrane potential can be employed, analogously to the ERP in the experiments [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Vogel | Neural Measures Reveal Individual Differences in Controlling Access to Working Memory[END_REF], as a proxy to measure the memory load and capacity. It is worth noticing that neither the mean membrane potential nor the ERP are accessible for firing rate models.

Discussion

In this chapter we have introduced a next generation neural mass model for WM based on short-term depression and facilitation. The model has been developed to reproduce exactly the macroscopic dynamics of heterogeneous QIF spiking neural networks with mesoscopic short-term plasticity (m-STP), in the limit of an infinite number of neurons with Lorentzian distributed excitabilities. Even though the choice of the excitability distribution allows for an analytical derivation of the model, it does not limit the generality of the results [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF][START_REF] Bi | Coexistence of Fast and Slow Gamma Oscillations in One Population of Inhibitory Spiking Neurons[END_REF]. As shown in Section 3.2.1, the neural mass model reproduces well not only the QIF network dynamics with m-STP plasticity but, to a large extent, it reproduces also the dynamics of networks with plasticity implemented at a microscopic level (µ-STP). Therefore, the macroscopic dynamics of spiking neural networks made of hundreds of thousands of neurons with synapses evolving accordingly to realistic cellular mechanisms, can be well captured in terms of a four dimensional mean-field model.

The novelty of this neural mass model, besides not being heuristic, but derived in an exact manner from the microscopic underlying dynamics, is that it reproduces the evolution of the population firing rate as well as of the mean membrane potential. This allows us to get insight not only on the synchronized spiking activity, but also on the sub-threshold dynamics and to extract information correlated to LFPs, EEGs and ERPs, that are usually measured during WM tasks to characterize the activity of the brain at a mesoscopic/macroscopic scale. The knowledge of the mean membrane potential evolution is fundamental in order to capture the dynamics displayed by the underlying microscopic QIF network, already in the absence of plasticity. Indeed, at variance with this next generation of neural mass models, a rate model cannot reproduce the fast oscillations observed in purely inhibitory networks [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], nor memory clearance obtained via a resonance mechanism between an external β forcing and the intrinsic network oscillations [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF]. As we have shown in Section 3.2.3, a heuristic firing rate model, specifically designed to reproduce the QIF network dynamics with STP, does not display any oscillatory activity in the β-γ range, contrary to what observable in the spiking network itself and in our neural mass model. It should be remarked that this represents a main drawback when employing firing rate models to mimic WM operations, because the emergence of β-γ rhythms is intimately related to short-term memory activity, as shown in several experiments on humans and monkeys [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF][START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF][START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF][START_REF] Pesaran | Temporal Structure in Neuronal Activity during Working Memory in Macaque Parietal Cortex[END_REF][START_REF] Wimmer | Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits[END_REF].

The macroscopic model we developed is extremely flexible since, depending on the operational point, it can mimic WM maintenance in terms of persistent spiking activity or in terms of selective and spontaneous reactivation, based on plastic footprints into the synapses. In particular, short-term depression and facilitation complement each other to obtain an efficient WM model based on synaptic reactivation. Facilitation allows us to maintain a trace of the loaded items stored in WM, while depression is responsible for the bursting activity that refreshes the WM content.

Memory loading is characterized, in any operational condition, by collective oscillations (PBs) with frequencies 22 -28 Hz in the β-γ band. These oscillations emerge spontaneously in the considered model thanks to a PING-like mechanism triggered by the transient oscillations of the selectively stimulated excitatory population towards a focus equilibrium and sustained by the common inhibitory pool. The memory loading also induces stimulus-locked transient oscillations involving the harmonics of a fundamental frequency (i.e. 2 -3 Hz). These results strongly resemble the spectral features observed in experiments on humans and monkeys performing WM tasks. Of particular interest are the responses of the primary somatosensory cortex in humans to vibrotactile stimuli [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF] and the population activity of the PFC measured during a behavioral task of object recognition, performed by monkeys [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF]. In the first experiment stimulus-locked EEG signals have been measured revealing a transient broad-band activity in the 4-15 Hz range, followed by a stationary activity at 26 Hz lasting for the duration of the stimulus [START_REF] Spitzer | Oscillatory Correlates of Vibrotactile Frequency Processing in Human Working Memory[END_REF]. These findings are quite similar to the spectral features displayed by our model during one memory item loading, see Fig. 3.3. In the experiments on primates, the analysis of the LFP spectrograms revealed an evoked response around 2-4 Hz and tonic oscillations around 32 Hz [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF][START_REF] Lundqvist | Gamma and Beta Bursts Underlie Working Memory[END_REF], thus resembling the power spectra that we have obtained for multi-item memory loading reported in Figs. 3.8 and 3.10.

Memory maintenance in the synaptic-based model is ensured by facilitation over a time scale of a few seconds, even in absence of spiking activity. The memory can be refreshed, and therefore maintained for a longer period, thanks to the reactivation of the synaptic resources of the excitatory population storing the item. This can be obtained, on one side, via brief non specific stimulations given to all the excitatory populations, analogous to the reactivation of latent working memories performed with single-pulse transcranial magnetic stimulation realized in humans [START_REF] Rose | Reactivation of Latent Working Memories with Transcranial Magnetic Stimulation[END_REF]. In particular, to maintain the memory for long time intervals, the stimulations should be delivered with a period smaller than the decay time of the facilitation. On the other side the memory maintenance over long periods can be achieved thanks to the spontaneous emergence of periodic PBs delivered by the excitatory population coding for the loaded item.

An interesting aspect that we have investigated, concerns the competition between two items loaded in non-overlapping populations. When the WM load consists already of one item coded by an excitatory population, the stimulation of the other population can be regarded as a distractor. If the items are stored as repetitive PBs, we can observe three outcomes: for brief stimulations the distractor has no influence on WM, and the first item remains loaded; for sufficiently long stimulations the second item is loaded in WM; for intermediate situations both items are maintained in WM. In this latter case both populations deliver periodic trains of PBs arranged in anti-phase. Such behavior can be seen as a neural correlate to two items juggling in WM [START_REF] Lewis-Peacock | Competition between Items in Working Memory Leads to Forgetting[END_REF]. For sufficiently long and strong stimulations one observe a chaotic scenario [START_REF] Cortes | Short-Term Synaptic Plasticity in the Deterministic Tsodyks-Markram Model Leads to Unpredictable Network Dynamics[END_REF], where the final outcome can be any of the three described above and it depends on small differences in the perturbation deliverance. Our findings can help in elucidating the results reported in [START_REF] Lewis-Peacock | Competition between Items in Working Memory Leads to Forgetting[END_REF], where it has been shown that, when an attended and an unattended item are juggling for a long period, the unattended item can prevail leading to a loss of the stored memory.

If the items are stored in WM as persistent states, the memory juggling is no more observable. As in the previous case, for sufficiently long stimulations, the second item substitutes the first one in WM. However, due to synaptic depression and facilitation, even a short stimulation can lead to the loading of the second item in WM, whenever its duration falls in a narrow time interval ( O(τ d /2)) and the amplitude of the stimulation is sufficiently large. This suggests that there are optimal stimulation strategies to ensure a fast learning of a new item in WM.

By considering a neural architecture composed of multiple excitatory populations and a common inhibitory pool, more items can be maintained at the same time in WM as periodic trains of PBs. This is observable despite the possible interference among excitatory populations that are allowed to directly interact, thanks to the couplings present among them, and not only via the inhibitory pool, as in similar architectures considered in the literature [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF]. All populations coding for stored items follow the same periodic dynamics, but they deliver PBs at evenly shifted phases, similarly to the splay states observed for globally coupled excitatory neuronal networks [START_REF] Olmi | Stability of the Splay State in Networks of Pulse-Coupled Neurons[END_REF]. The inter-burst interval of two successive PBs approaches a value T b 65 ms when more than 2 items are loaded. This clearly induces the emergence of a peak in the power spectra of the mean membrane potentials in the β band for f b 15 Hz. However, the most prominent peak in the spectra is around 30 Hz, due to the resonance of the second harmonic of f b with the oscillations of the inhibitory population in the βγ range. These oscillations are associated with damped oscillations of the excitatory population towards a focus equilibrium, induced by the loading of one memory item and sustained by the inhibitory pool thanks to a PINGlike mechanism. The considered architecture allows for the maintenance of multi-items in WM thanks to their spontaneous reactivation, without destructive or interference effects often reported for models based on persistent spiking [START_REF] Miller | Working Memory 2.0[END_REF]. Furthermore, the memory of different items is associated with preferential phases with respect to the collective limit cycle behavior of the whole system, characterized by a period T c = N I T b , where N I is the number of retained items. Experimental evidences of phase-dependent neural coding of objects in the PFC of monkeys have been reported in [START_REF] Siegel | Phase-Dependent Neuronal Coding of Objects in Short-Term Memory[END_REF].

The memory load N I of our model depends on the presentation rate f pres of a sequence of memory items, however it is always limited between 3 ≤ N I ≤ 5 analogous to what is reported in many analysis concerning the WM capacity [START_REF] Cowan | The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity[END_REF][START_REF] Cowan | The Magical Mystery Four: How Is Working Memory Capacity Limited, and Why?[END_REF]. In particular, for slow presentation rates (f pres ≤ 8 Hz) we observe that N I grows proportionally to f pres and that only the last presented items are retained in the memory. The maximal capacity N max c = 5 can be attained mainly within an optimal range of presentation rates, namely [4.5 : 21.4] Hz. These rates correspond to the characteristic frequencies associated to the PB dynamics of the model, since the inter-burst frequency is f b 12 -16 Hz for N I > 2, while the oscillation frequency of a single population is f c 3-5 Hz. In this optimal range there is no clear preference for the item retained in the memory and its serial position in the loaded sequence. For faster frequencies f pres > 25 Hz, a destructive interference among the items leads to a decrease in N I : this mechanism has been suggested in [START_REF] Cowan | The Magical Mystery Four: How Is Working Memory Capacity Limited, and Why?[END_REF] to be at the origin of the reduced capacity. For sufficiently fast rates f pres ≥ 10 Hz, a primacy and recency effect [START_REF] Postman | Short-Term Temporal Changes in Free Recall[END_REF][START_REF] Morrison | Primacy and Recency Effects as Indices of the Focus of Attention[END_REF] is observable with a prevalence for the first loaded items to be retained.

To obtain a better understanding of the capacity limits of our model, we have derived an analytical expression for the maximal capacity N max c by following the approach outlined in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF]. The maximal capacity is essentially controlled by the ratio between the recovery time of the available synaptic resources τ d and the membrane time constant of the excitatory populations; conversely it reveals a weaker dependence on the ratio between facilitation and depression time scales. N max c is also controlled by the excitatory and inhibitory drives. As a matter of fact, for our parameters we obtained N max c 4-5, in pretty good agreement with the measured maximal capacity. Furthermore, we observed that the power in the γ-band (25-100 Hz) increases with the number of loaded items N I , in agreement with several experimental studies related to WM [START_REF] Howard | Gamma Oscillations Correlate with Working Memory Load in Humans[END_REF][START_REF] Van Vugt | Hippocampal Gamma Oscillations Increase with Memory Load[END_REF][START_REF] Roux | Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory[END_REF]. Interestingly, for the γ-rhythms, the inhibitory pool and the excitatory populations contribute equally to its generation, confirming that its origin is related to a PING-like mechanism. Instead the power in the β-band reveals a non monotonic behavior with N I , characterized by a rapid increase passing from 1 to 2 items, a small drop from 2 to 3 items while remaining essentially constant for N I ≥ 3. The activity in the θ-band is associated with the single excitatory population dynamics only, due to the fact that the inhibitory population is not involved in the memory maintenance of single items. No variation with N I have been observed in the α-band, analogous to what is reported for experiments on humans during memory retention in [START_REF] Tallon-Baudry | Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans[END_REF].

Finally, we have defined a measure of the memory capacity in terms of the mean membrane potential measured just after a PB deliverance. This quantity increases with the number of loaded items for N I < 5 and saturates for N I ≥ 5. These results resemble the ones obtained for the ERPs detected in young adults performing visual memory tasks [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF]. This analysis suggests that in our neural mass model the value of the mean membrane potential can be employed to measure memory load and capacity, in analogy with the neurophysiological indicator defined in [START_REF] Vogel | Neural Activity Predicts Individual Differences in Visual Working Memory Capacity[END_REF][START_REF] Vogel | Neural Measures Reveal Individual Differences in Controlling Access to Working Memory[END_REF].

However our neural mass model presents several simplifications from a biological point of view, such as the pulsatile interactions or the absence of transmission delays, therefore more realistic aspects should be included in future developments. As shown for this next generation of neural mass models, in absence of plasticity, the inclusion of the time scales associated with the rise and decay of the post-synaptic potentials could induce the emergence of new oscillatory rhythms [START_REF] Coombes | Next Generation Neural Mass Models[END_REF][START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], while the delayed synaptic transmission could lead to more complex macroscopic behaviors [START_REF] Devalle | Dynamics of a Large System of Spiking Neurons with Synaptic Delay[END_REF]. For what concerns the plasticity terms, we expect to further improve the agreement between the neural mass model and the network dynamics with µ-STP by including the correlations and the fluctuation of the microscopic synaptic variables in the mean-field formulation, analogous to what has been done in [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF].

A fundamental aspect of WM, not included in our model, is the volitional control, which is a cognitive function that allows for the control of behavior from the environment and to turn it towards our internal goals [START_REF] Goldman-Rakic | Cellular Basis of Working Memory[END_REF]. A flexible frequency control of cortical oscillations has been recently proposed as an unified mechanism for the rapid and controlled transitions of the WM between different computational operations [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF][START_REF] Dipoppa | Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony[END_REF][START_REF] Dipoppa | Flexible Frequency Control of Cortical Oscillations Enables Computations Required for Working Memory[END_REF]. In particular, the authors consider as a neural correlate of WM a bistable network with coexisting persistent and resting states that an external periodic modulation can drive from an operating mode to another one depending on the frequency of the forcing. However, in [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF] it has been suggested that the forcing term, in order to be considered more realistic, should self-emerge by the network dynamics in form of trains of periodic PBs and not be imposed from the exterior. In our model for synaptic-based WM we have shown that some WM operations are associated with PBs delivered at different frequencies: namely, item loading and recall with transient oscillations in the δ band, as in [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF], joined to burst oscillations in βγ band as in [START_REF] Dipoppa | Flexible Frequency Control of Cortical Oscillations Enables Computations Required for Working Memory[END_REF]; multi-item maintenance to harmonics in the βγ band. Therefore, we believe that our neural mass model with STP can represent a first building block for the development of an unified control mechanism for WM, relying on the frequencies of deliverance of the self-emerging trains of PBs. However, a development towards realistic neural architectures would require to design a multi-layer network topology to reproduce the interactions among superficial and deep cortical layers [START_REF] Miller | Working Memory 2.0[END_REF].

Methods

Bifurcation analysis

In order to exemplify the dynamical mechanisms underlying the maintenance of different items in presence of STP, we analyze the bifurcation diagram for the model with three populations, given in Eqs. (3.1) to (3.3). In particular, we study the emergence of the different dynamical states occurring in a network made of two excitatory and one inhibitory population corresponding to the network architecture introduced in Section 3.2.2. Due to the symmetries in the synaptic couplings and in the structure of Eqs. (3.1) to (3.3). the macroscopic dynamics observable for the two excitatory networks will be equivalent. Therefore, we will display the bifurcation diagram in terms of the instantaneous firing rate r k (t) and the mean membrane potential v k (t) of one of the two excitatory 1.25647 giving rise to two coexisting stable fixed points with asynchronous dynamics: one at low firing rate due to spontaneous activity in the network and one at high firing rate corresponding to a persistent state. As shown in the inset in Fig. 3.14(a), there is a small region

I B ∈ [I (1)
sn , I [START_REF] Squire | Fundamental Neuroscience[END_REF] bp ] where we can have the coexistence of these three stable asynchronous states.

At I B ≡ I

(1) hb

1.34998 we observe the emergence of coexisting collective oscillations (periodic PBs) at low and high firing rates via supercritical Hopf bifurcations. These oscillations exist in a quite limited range of parameters, namely

I B ∈ [I (1)
hb , I sn , thus the only possible stable regime is a low firing asynchronous activity. The item is loaded into population one by increasing, for a limited time window, the background current only for this population to the level

I B + ∆I 1 > I (1)
hb , thus leading to the emission of a series of PBs, whose final effect is to strongly facilitate the efferent synapses of population one. The subsequent application of a non-specific read-out signal amounts to an effective increase of their common background current to a value beyond I [START_REF] Squire | Fundamental Neuroscience[END_REF] bp , where the persistent state coexists with the low firing activity. Indeed during the read-out stimulation, population one displays a burst of high activity, due to the facilitated state of its synapses, while population two is essentially unaffected by the read-out signal. As soon as the stimulus is removed, the system moves back to the spontaneous activity regime.

The second experiment, shown in the column (2) of Fig. 3.3, concerns spontaneous reactivation of the WM item via collective oscillations (periodic PBs). In this case the background current is set to I B = 1.532, in order to have the coexistence of two stable limit cycles corresponding to periodic PBs with low and high firing rate. The whole system is initialized in the asynchronous regime with spontaneous activity (which is unstable for this value of I B ); upon the presentation of the stimulus to population one, this jumps to the upper limit cycle after loading the item into the memory. Once the stimulation is removed, due to the periodic synaptic refreshment, population one reactivates spontaneously by emitting a periodic sequence of PBs that is terminated by reducing I B to a value smaller than I

(1) sn . The last experiment shown in column (3) of Fig. 3.3 refers to the spontaneous reactivation of the memory associated with a persistent state activity. In this case we set I B = 2, thus the system is in an asynchronous regime beyond

I (2)
hb , where there is coexistence of persistent and low firing activity beyond I [START_REF] Friedhoff | Models of Stochastic Ca2+ Spiking[END_REF] hb . As in the previous experiment, the system is initialized in the asynchronous unstable regime. Upon a brief stimulation, population one

Heuristic Firing Rate Model

Firing rate models have been developed to describe heuristically the dynamics of a neuronal population in terms of the associated firing rate r; one of the most known example is represented by the Wilson-Cowan model [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF]. These models are usually written as [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] τ m ṙ = -r + Φ(I) , (3.5) where I represents the total input current received by each neuron in the population and Φ(I) is the steady-state firing rate solution, or activation function. This function is usually assumed to be a sigmoidal function and it is determined on the basis of the dynamical features of the neurons in the considered population. As stated in [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], these firing rate models, despite being extremely useful to model brain dynamics, do not take into account synchronization phenomena induced by the sub-threshold voltage dynamics. Therefore, these firing rate models fail in reproducing fast oscillations observed in inhibitory networks, without the addition in their dynamics of an ad-hoc time delay. These collective oscillations are instead captured by the neural mass model introduced in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] and considered in this chapter.

By following the analysis in [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], we can obtain a heuristic firing rate model corresponding to the exact neural mass ODEs given in Eqs. (3.1) and (3.2). More specifically this firing rate description can be derived for a QIF network of spiking neurons, by considering the corresponding steady-state solution (v * , r * ) given by 0 = ∆

τ m π + 2r * v * (3.6a) 0 = (v * ) 2 -(πτ m r * ) 2 + I (3.6b)
where I = H +I B +I S +τ m Jr * . This leads to a self-consistent equation for the steady-state firing rate, given by r * = Φ(I), where

Φ(I) = 1 √ 2πτ m I + I 2 + ∆ 2 . (3.7)
The Eqs. (3.5) and (3.7) represent a firing rate model corresponding to the QIF spiking network with m-STP. This firing rate model has been considered in Section 3.2.3 in order to perform numerical experiments on WM maintenance (see Fig. 3.4).

Maximal Working Memory Capacity

By following [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF] we can give an estimate of the maximal memory capacity for our neural mass model with m-STP Eqs. (3.1) and (3.2). The maximal capacity can be estimated as the ratio of two time intervals

N max c T max c T b (3.8)
where T max c is the maximal period of the network limit cycle and T b the inter-burst interval between two successive PBs. In [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF], T max c has been estimated as the time needed to the synaptic efficacy u k (t)x k (t) of a generic population k to recover to the maximum value after a PB emission. Since all the excitatory populations are identically connected among them and with the inhibitory population, this time does not depend on the considered population. The approximate expression reported in [START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF] is the following

T max c τ d ln τ f /τ d 1 -U 0 (3.9)
As expected the recovery time is essentially ruled by the depression time scale τ d .

It can be shown that T b has three components, i.e. the duration of the previous excitatory PB, the delay of the inhibitory burst triggered by the excitatory PB, plus its duration and the time needed for the next active excitatory population to recover from inhibition and to elicit a PB. In our model framework, we can neglect the first two time intervals and limit ourselves to estimate the latter time.

Let us denote the next firing population as the m-th one; we can assume that during T b the connection strength does not vary much and that the firing rates are essentially constants. Therefore we can rewrite the time evolution of the mean membrane potential appearing in Eqs. (3.1) as follows :

τ e m vk = v 2 k + H (e) -(πτ e m r(e) ) 2 + I B + τ e m -|J ei |r (i) + J r(e) = v 2 k + C (3.10) where J = [J (s) ee + (N pop -2)J (c)
ee ]xū takes in account the synaptic efficacy of all excitatory synapses in an effective manner, r(i) and r(e) are the inhibitory and excitatory population rates and C is the constant quantity within square brackets on the right-hand side. The expression of C can be further simplified by noticing that the quadratic term is negligible and by assuming that the excitatory and inhibitory firing rates are similar. Moreover, by assuming that the excitatory neurons are almost uncoupled during T b , one gets:

C = H (e) + I B + τ e m -|J ei | + J H (e) + I B π (3.11)
where r(i) = r(e) and r(e) = √

H (e) +I B π
as for an isolated QIF neuron driven by the mean excitability and by the background current.

Therefore the time needed to the mean membrane potential to go from an initial negative value v m (0) = V 0 , determined by the discharge of the inhibitory neurons, to a threshold value V th , where the PB starts to be delivered, is given by

T b = τ e m √ C arctan V th √ C -arctan V 0 √ C τ e m π √ C (3.12)
where on the right hand side of the equation we have finally assumed that V th 1 and V 0 -1. Thus the following expression for the maximal capacity is obtained 

N max c τ d τ e m ln τ f /τ d 1 -U 0 √ C π . ( 3 

Chapter 4

Testing clinical hypothesis of seizure propagation using human connectomes

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population.

In this study we consider the neural mass model derived in Chapter 2 combined with structural information from non-invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the dynamics. In particular we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values.

We demonstrate, along the example of diffusion-weighted magnetic resonance imaging (MRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone, i.e. the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact meanfield equations turn out to be in line with the clinical presurgical evaluation on recruited secondary networks.

Publication:

The results presented in this chapter are published [START_REF] Gerster | Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation[END_REF] MGe and HT performed the simulations and data analysis, writing original software, and investigating the results. Data curation is contributed by VJ, MGu, FB, AŠ, and JH. All the authors validated the research and participated in the drafting process. SO was responsible for conceptualization, supervision, state-of-the-art review (together with VJ), and the paper write-up.

Introduction

Epilepsy is a chronic neurological disorder characterized by the occurrence and recurrence of seizures and represents the third most common neurological disorder affecting more than 50 million people worldwide [START_REF] Organization | Atlas: Epilepsy Care in the World[END_REF]. Anti-epileptic drugs are the first line of treatment for epilepsy and they provide sufficient seizure control in around two-thirds of cases [START_REF] Kwan | Early Identification of Refractory Epilepsy[END_REF]. However, about 30 to 40% of epilepsy patients do not respond to drugs, a percentage that has remained relatively stable despite significant efforts to develop new anti-epileptic medication over the past decades. For drug-resistant patients, a possible treatment is the surgical resection of the brain tissue responsible for the generation of seizures.

As a standard procedure, epilepsy surgery is preceded by a qualitative assessment of different brain imaging modalities in order to identify the brain tissue responsible for seizure generation, i.e. the epileptogenic zone (EZ) [START_REF] Rosenow | Presurgical Evaluation of Epilepsy[END_REF], which in general represents a localized region or network where seizures arise, before recruiting secondary networks, called the propagation zone (PZ) [START_REF] Talairach | Lesion," Irritative" Zone and Epileptogenic Focus[END_REF][START_REF] Bartolomei | Neural Networks Involving the Medial Temporal Structures in Temporal Lobe Epilepsy[END_REF][START_REF] Spencer | Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment[END_REF][START_REF] Richardson | Large Scale Brain Models of Epilepsy: Dynamics Meets Connectomics[END_REF]. Outcomes are positive whenever the patient has become seizure-free after surgical operation.

Intracranial electroencephalography (iEEG) is commonly used during the presurgical assessment to find the seizure onset zone [START_REF] Rosenow | Presurgical Evaluation of Epilepsy[END_REF][START_REF] David | Imaging the Seizure Onset Zone with Stereo-Electroencephalography[END_REF][START_REF] Duncan | Brain Imaging in the Assessment for Epilepsy Surgery[END_REF], the assumption being that the region where seizures emerge, is at least part of the brain tissue responsible for seizure generation. As a part of the standard presurgical evaluation with iEEG, stereotactic EEG (SEEG) is used to help correctly delineating the EZ [START_REF] Bartolomei | The Presurgical Evaluation of Epilepsies[END_REF]. SEEG employs penetrating depth electrodes that are implanted through small burr holes in the skull and are positioned using stereotactic guidance [START_REF] Talairach | Lesion," Irritative" Zone and Epileptogenic Focus[END_REF], thus allowing for the measurement of neural activity in deeper structures of the brain. Alternative imaging techniques such as structural MRI, magnetoencephalography (MEG, electroencephalography (EEG) and positron emission tomography (PET) help the clinician to estimate the position of the EZ. Recently, dMRI (dMRI) started being evaluated as well, thus giving the possibility to infer the connectivity between different brain regions by computing in-vivo fiber tract trajectories in coherently organized brain white matter pathways [START_REF] Basser | In Vivo Fiber Tractography Using DT-MRI Data[END_REF]. dMRI has revealed a quantitative decrease of regional connectivity around the EZ that is associated with a network reorganization and cognitive impairment [START_REF] Leyden | What Does Diffusion Tensor Imaging (DTI) Tell Us about Cognitive Networks in Temporal Lobe Epilepsy?[END_REF]. In particular it has revealed reduced fractional anisotropy [START_REF] Ahmadi | Side Matters: Diffusion Tensor Imaging Tractography in Left and Right Temporal Lobe Epilepsy[END_REF][START_REF] Bernhardt | Imaging Structural and Functional Brain Networks in Temporal Lobe Epilepsy[END_REF] and structural alterations in the connectome of epileptic patients [START_REF] Bonilha | Medial Temporal Lobe Epilepsy Is Associated with Neuronal Fibre Loss and Paradoxical Increase in Structural Connectivity of Limbic Structures[END_REF][START_REF] Desalvo | Altered Structural Connectome in Temporal Lobe Epilepsy[END_REF][START_REF] Besson | Structural Connectivity Differences in Left and Right Temporal Lobe Epilepsy[END_REF]. However, epilepsy surgery is often unsuccessful and the long-term positive outcome may be lower than 25% in extra-temporal cases [START_REF] Tisi | The Long-Term Outcome of Adult Epilepsy Surgery, Patterns of Seizure Remission, and Relapse: A Cohort Study[END_REF][START_REF] Najm | Temporal Patterns and Mechanisms of Epilepsy Surgery Failure[END_REF], thus meaning that the EZ has not been correctly identified or that the EZ and the seizure onset zone may not coincide [START_REF] Lopes | A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone[END_REF].

In order to quantitatively examine clinical data and to determine targets for surgery, many computational models have been recently proposed [START_REF] Lopes | An Optimal Strategy for Epilepsy Surgery: Disruption of the Rich-Club?[END_REF][START_REF] Freestone | Patient-Specific Neural Mass Modeling-Stochastic and Deterministic Methods[END_REF][START_REF] Hutchings | Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations[END_REF][START_REF] Goodfellow | Estimation of Brain Network Ictogenicity Predicts Outcome from Epilepsy Surgery[END_REF][START_REF] Khambhati | Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution[END_REF][START_REF] Sinha | Predicting Neurosurgical Outcomes in Focal Epilepsy Patients Using Computational Modelling[END_REF][START_REF] Karoly | Seizure Pathways: A Model-Based Investigation[END_REF], that use MRI or iEEG data acquired during presurgical workup to infer structural or functional brain networks. Taking advantages of recent advances in our understanding of epilepsy, that indicate that seizures may arise from distributed ictogenic networks [START_REF] Richardson | Large Scale Brain Models of Epilepsy: Dynamics Meets Connectomics[END_REF][START_REF] Bartolomei | Defining Epileptogenic Networks: Contribution of SEEG and Signal Analysis[END_REF][START_REF] Besson | Anatomic Consistencies across Epilepsies: A Stereotactic-EEG Informed High-Resolution Structural Connectivity Study[END_REF], phenomenological models of seizure transitions are used to compute the escape time, i.e., the time that each network node takes to transit from a normal state to a seizure-like state. Nodes with the lowest escape time are then considered as representative of the seizure onset zone and therefore candidates for surgical resection, by assuming seizure onset zone as a proxy for the EZ [START_REF] Hutchings | Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations[END_REF][START_REF] Sinha | Predicting Neurosurgical Outcomes in Focal Epilepsy Patients Using Computational Modelling[END_REF]. Alternatively, different possible surgeries are simulated in silico to predict surgical outcomes [START_REF] Goodfellow | Computer Models to Inform Epilepsy Surgery Strategies: Prediction of Postoperative Outcome[END_REF][START_REF] Lopes | An Optimal Strategy for Epilepsy Surgery: Disruption of the Rich-Club?[END_REF][START_REF] Lopes | A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone[END_REF] by making use of synthetic networks and phenomenological network models of seizure generation. Further attention has been paid to studying how network structure and tissue heterogeneities underpin the emergence of focal and widespread seizure dynamics in synthetic networks of phase oscillators [START_REF] Lopes | A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone[END_REF][START_REF] Lopes | The Role of Excitability and Network Structure in the Emergence of Focal and Generalized Seizures[END_REF].

More in general there is a vast and valuable literature on computational modeling in epilepsy, where two classes of models are used: (1) macroscopic mean-field models and (2) detailed microscopic network models. Mean field models are often preferred over the more detailed models since they have fewer parameters and thus simplify the study of transitions from interictal to ictal states and the subsequent EEG analysis of data from epilepsy patients. This is justified as the macroelectrodes used for EEG recordings represent the average local field potential arising from neuronal populations. Indeed, much effort has been made so far to explain the biophysical and dynamical nature of seizure onsets and offsets by employing neural mass models [START_REF] Karoly | Seizure Pathways: A Model-Based Investigation[END_REF][START_REF] Da Silva | Model of Brain Rhythmic Activity[END_REF][START_REF] Wendling | Epileptic Fast Activity Can Be Explained by a Model of Impaired GABAergic Dendritic Inhibition[END_REF][START_REF] Kalitzin | Stimulation-Based Anticipation and Control of State Transitions in the Epileptic Brain[END_REF][START_REF] Touboul | Neural Mass Activity, Bifurcations, and Epilepsy[END_REF][START_REF] Baier | The Importance of Modeling Epileptic Seizure Dynamics as Spatio-Temporal Patterns[END_REF][START_REF] Kramer | Human Seizures Self-Terminate across Spatial Scales via a Critical Transition[END_REF][START_REF] Goodfellow | Self-Organised Transients in a Neural Mass Model of Epileptogenic Tissue Dynamics[END_REF][START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF]. Mechanistic interpretability of the mean field parameters is lost, as many physiological details are absorbed in few degrees of freedom. Since the mean field models remain relatively simple, they can also be employed to describe epileptic processes occurring in "large-scale" systems, e.g. the precise identification of brain structures that belong to the seizure-triggering zone (epileptic activity often spreads over quite extended regions and involves several cortical and sub-cortical structures). However, only recently, propagation of epileptic seizures started to be studied using brain network models, and was limited to small populations number [START_REF] Terry | Seizure Generation: The Role of Nodes and Networks[END_REF], or absence seizures [START_REF] Taylor | Towards a Large-Scale Model of Patient-Specific Epileptic Spike-Wave Discharges[END_REF], while partial seizures have been reported to propagate at the mesoscopic scale through cortical columns [START_REF] Kramer | Mechanisms of Seizure Propagation in a Cortical Model[END_REF][START_REF] Goodfellow | Intermittent Spike-Wave Dynamics in a Heterogeneous, Spatially Extended Neural Mass Model[END_REF], at the macroscopic scale through large-scale networks in humans [START_REF] Bartolomei | Abnormal Binding and Disruption in Large Scale Networks Involved in Human Partial Seizures[END_REF] and animal models [START_REF] Toyoda | Early Activation of Ventral Hippocampus and Subiculum during Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy[END_REF]. All in all, even though neural mass models are in general easier to analyze numerically because relatively few variables and parameters are involved, they drastically fail to suggest molecular and cellular mechanisms of epileptogenesis.

On the other hand, detailed network models are best suited for understanding the molecular and cellular bases of epilepsy and thus they may be used to suggest therapeutics targeting molecular pathways [START_REF] Destexhe | G Protein Activation Kinetics and Spillover of Gamma-Aminobutyric Acid May Account for Differences between Inhibitory Responses in the Hippocampus and Thalamus[END_REF][START_REF] Van Drongelen | Emergent Epileptiform Activity in Neural Networks with Weak Excitatory Synapses[END_REF][START_REF] Turrigiano | The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses[END_REF][START_REF] Cressman | The Influence of Sodium and Potassium Dynamics on Excitability, Seizures, and the Stability of Persistent States: I. Single Neuron Dynamics[END_REF][START_REF] Ullah | The Influence of Sodium and Potassium Dynamics on Excitability, Seizures, and the Stability of Persistent States: II. Network and Glial Dynamics[END_REF]. Due to the substantial complexity of neuronal structures, relatively few variables and parameters can be accessed at any time experimentally. Although biophysically explicit modeling is the primary technique to look into the role played by experimentally inaccessible variables in epilepsy, the usefulness of detailed biophysical models is limited by constraints in computational power, uncertainties in detailed knowledge of neuronal systems, and the required simplification for the numerical analysis. Therefore an intermediate "across-scale" approach, establishing relationships between sub-cellular/cellular variables of detailed models and mean-field parameters governing macroscopic models, might be a promising strategy to cover the gaps between these two modeling approaches [START_REF] Brocke | Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations[END_REF][START_REF] Schirner | Inferring Multi-Scale Neural Mechanisms with Brain Network Modelling[END_REF][START_REF] Lindroos | Basal Ganglia Neuromodulation over Multiple Temporal and Structural Scales Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4. 2[END_REF].

In view of developing a cross-scale approach, it is important to point out that large-scale brain network models emphasize the network character of the brain and merge structural information of individual brains with mathematical modeling, thus constituting in-silico approaches for the exploration of causal mechanisms of brain function and clinical hypothesis testing [START_REF] Proix | Individual Structural Connectivity Defines Propagation Networks in Partial Epilepsy[END_REF][START_REF] Proix | Predicting the Spatiotemporal Diversity of Seizure Propagation and Termination in Human Focal Epilepsy[END_REF][START_REF] Olmi | Controlling Seizure Propagation in Large-Scale Brain Networks[END_REF]. In particular, in brain network models, a network region is a neural mass model of neural activity, connected to other regions via a connectivity matrix representing fiber tracts of the human brain. This form of virtual brain modeling [START_REF] Fuchs | Theory of the Relation between Human Brain Activity (MEG) and Hand Movements[END_REF][START_REF] Jirsa | Spatiotemporal Forward Solution of the EEG and MEG Using Network Modeling[END_REF][START_REF] Jirsa | Towards the Virtual Brain: Network Modeling of the Intact and the Damaged Brain[END_REF] exploits the explanatory power of network connectivity imposed as a constraint upon network dynamics and has provided important insights into the mechanisms underlying the emergence of asynchronous and synchronized dynamics of wakefulness and slow-wave sleep [START_REF] Goldman | Brain-Scale Emergence of Slow-Wave Synchrony and Highly Responsive Asynchronous States Based on Biologically Realistic Population Models Simulated in The Virtual Brain[END_REF] while revealing the whole-brain mutual coupling between the neuronal and the neurotransmission systems to understand the flexibility of human brain function despite having to rely on fixed anatomical connectivity [START_REF] Kringelbach | Dynamic Coupling of Whole-Brain Neuronal and Neurotransmitter Systems[END_REF]. Recent studies have pointed out the influence of individual structural variations of the connectome upon the large-scale brain network dynamics of the models, by systematically testing the virtual brain approach along the example of epilepsy [START_REF] Proix | Individual Structural Connectivity Defines Propagation Networks in Partial Epilepsy[END_REF][START_REF] Proix | Predicting the Spatiotemporal Diversity of Seizure Propagation and Termination in Human Focal Epilepsy[END_REF][START_REF] Olmi | Controlling Seizure Propagation in Large-Scale Brain Networks[END_REF]. The employment of patient-specific virtual brain models derived from dMRI may have a substantial impact for personalized medicine, allowing for an increase in predictivity concerning the pathophysiology of brain disorders, and their associated abnormal brain imaging patterns. More specifically a personalized brain network model derived from non-invasive structural imaging data would allow for testing of clinical hypotheses and exploration of novel therapeutic approaches.

In order to exploit the predictive power of personalized brain network models, we have implemented, on subject-specific connectomes, the next generation neural mass model that, differently from the previous applied heuristic mean-field models [START_REF] Proix | Individual Structural Connectivity Defines Propagation Networks in Partial Epilepsy[END_REF][START_REF] Proix | Predicting the Spatiotemporal Diversity of Seizure Propagation and Termination in Human Focal Epilepsy[END_REF][START_REF] Olmi | Controlling Seizure Propagation in Large-Scale Brain Networks[END_REF], is exactly derived from an infinite size network of quadratic integrate-and-fire neurons [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], as shown in Chapter 2. This neural mass model is able to describe the variation of synchrony within a neuronal population, which is believed to underlie the decrease or increase of power seen in given EEG frequency bands while allowing for a more direct comparison with the results of electrophysiological experiments like local field potential, EEG and event-related potentials (ERPs), thanks to its ability to capture the macroscopic evolution of the mean membrane potential.

The next generation neural mass model developed by [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], has been recently extended to take into account time-delayed synaptic coupling [START_REF] Pazó | From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay[END_REF][START_REF] Devalle | Dynamics of a Large System of Spiking Neurons with Synaptic Delay[END_REF] and, when integrated in a large-scale brain network, time delays in the interaction between the different brain areas, due to the finite conduction speed along fiber tracts of different lengths [START_REF] Rabuffo | Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest[END_REF]. The time delay, together with the effective stochasticity of the investigated dynamics give rise, both on structural connectivity matrices of mice and healthy subjects, to preferred spatiotemporal pattern formation [START_REF] Jirsa | Dispersion and Time Delay Effects in Synchronized Spike-Burst Networks[END_REF][START_REF] Petkoski | Renormalization of the Brain Connectome: Duality of Particle and Wave[END_REF] and short-lived neuronal cascades that form spontaneously and propagate through the network under conditions of near-criticality [START_REF] Rabuffo | Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest[END_REF]. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain, thus contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.

In this chapter we have built brain network models for a cohort of 20 healthy subjects and 15 epileptic patients, implementing for each brain region the neural mass model developed by [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. As paradigms for testing the spatiotemporal organization, we have systematically simulated the individual seizure-like propagation patterns, looking for the role played by the individual structural topologies in determining the recruitment mechanisms. Specific attention has been devoted to the analogies and differences among the self-emergent dynamics in healthy and epilepsy-affected subjects. Furthermore, for epileptic patients, we have validated the model against the presurgical SEEG data and the standard-of-care clinical evaluation. More specifically Sec. 2 is devoted to the description of the implemented model and the applied methods. In Sec. 3.1 are reported the results specific for healthy subjects, while in Sec. 3.2 is reported a detailed analysis performed on epileptic patients. Finally a discussion on the presented results is reported in Sec. 4.

Methods

In the following we consider personalized brain models derived from structural data of MRI and Diffusion tensor weighted imaging (DTI), thus implementing different structural connectivity matrices for healthy subjects and epileptic patients. For healthy subjects cortical and volumetric parcellations were performed using the Automatic Anatomical Atlas 1 (AAL1) [START_REF] Tzourio-Mazoyer | Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain[END_REF] with N pop = 90 brain regions: each region will be described in terms of a neural mass model. For epileptic subjects cortical and volumetric parcellations were performed using the Desikan-Killiany atlas with 70 cortical regions and 17 subcortical regions [START_REF] Desikan | An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest[END_REF] (one more empty region is added in the construction of the structural connectivity for symmetry). In this case the structural connectivity matrix is composed, for each epileptic patient, by 88 nodes equipped with the presented region specific neural mass model capable of demonstrating epileptiform discharges.

Multi-population neural mass model

We will make use of the exact multi-population neural mass model described in Section 2.5 of Chapter 2, however, this time in absence of STP. To recall, it describes the dynamics of k = 1, 2 . . . , N pop coupled populations of QIF neurons with heterogeneously distributed excitabilities η i,k , of which the dynamics is governed by Eq. (4.1),

τ m Vi,k = V 2 i,k + η (k) i + I (k) S (t) + τ m N Npop l=1 J kl N j=1 S j,l (t) , ( 4.1) 
with the δ-spike train S j,l (t) of the j-th neuron in population l. The corresponding neural mass model is given by Eqs. (4.2) below.

τ m ṙk = ∆ τ m π + 2r k v k (4.2a) τ m vk = v 2 k + η(k) + I (k) S (t) -(πτ m r k ) 2 + τ m Npop l=1 J kl r l (4.2b)
Parameter τ m = 20 ms is the membrane time constant and the heterogeneity of excitabilities is set to ∆ = 1 throughout this chapter. The connectivity matrix {J kl } represents the synaptic weights among the populations. Diagonal entries J kk denote intra-population and non-diagonal entries J kl , k = l inter-population connections. Entries of J kl are determined via a second matrix { Jkl }, which represents the topology extracted from empirical DTI. The values of { Jkl } are normalized in the range [0, 1] via rescaling with the maximal entry value, and have Jkk = 0 on the diagonal. In order to account for strong intra-coupling (recurrent synapses) and intermediate inter-coupling, we choose the entries of each structural connectivity as

J kl = σ 5 Jkl if k = l 20 if k = l, ( 4.3) 
where σ is a rescaling factor common to all synapses, which we assume to be constant and equal to 1, apart few cases where we investigate the dependence on the synaptic weights. Hence, the synaptic weights for k = l are in the range J kl ∈ [0, 5], while the intra-coupling is set to J kk = 20, if not stated differently. This choice of the rescaling factor ensures that the single brain region finds itself in a bistable regime, thus being able to switch from a low-activity to a high-activity regime. The time dependent stimulus current I (k) S (t) is population specific and a single population at a time is generally stimulated during a numerical experiment. The applied stimulus I (k) S (t) consists of a rectangular pulse of amplitude ∆I and duration ∆T ; the dependence on these parameters is studied in this chapter to support the generality of the results.

Topologies

As a first set of data, we have selected 20 diffusion-weighted magnetic resonance imaging connectomes of healthy subjects (mean age 33 years, standard deviation 5.7 years, 10 females, 2 left-handed) that participated in a study on schizophrenia as a control group [START_REF] Melicher | White Matter Changes in First Episode Psychosis and Their Relation to the Size of Sample Studied: A DTI Study[END_REF]. We will refer to the healthy subjects as H1-H20. All subjects were recruited via local advertisements and had none of the following conditions: Personal lifetime history of any psychiatric disorder or substance abuse established by the Mini-International Neuropsychiatric Interview (M.I.N.I.) [START_REF] Lecrubier | The Mini International Neuropsychiatric Interview (MINI). A Short Diagnostic Structured Interview: Reliability and Validity According to the CIDI[END_REF], any psychotic disorder in first or second-degree relatives. Further exclusion criteria included current neurological disorders, lifetime history of seizures or head injury with altered consciousness, intracranial hemorrhage, neurological sequelae, history of mental retardation, history of substance dependence, any contraindication for MRI scanning.

The scans were performed on a 3T Siemens scanner in the Institute of Clinical and Experimental Medicine in Prague, employing a Spin-Echo EPI sequence with 30 diffusion gradient directions, T R = 8300 ms, T E = 84 ms, 2 × 2 × 2mm 3 voxel size, b-value 900s/mm 2 . The diffusion weighted images (DWI) were analyzed using the Tract-Based Spatial Statistics (TBSS) [START_REF] Smith | Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data[END_REF], part of FMRIB's Software Library (FSL) [START_REF] Smith | Advances in Functional and Structural MR Image Analysis and Implementation as FSL[END_REF]. Image conversion from DICOM to NIfTI format was accomplished using dcm2nii. With FMRIB's Diffusion Toolbox (FDT), the fractional anisotropy (FA) images were created by fitting a tensor model to the raw diffusion data and then, using the Brain Extraction Tool (BET) [START_REF] Smith | Fast Robust Automated Brain Extraction[END_REF], brain-extracted. FA identifies the degree of anisotropy of a diffusion process and it is a measure often used in diffusion imaging where it is thought to reflect fiber density, axonal diameter, and myelination in white matter. A value of zero means that diffusion is isotropic, i.e. it is unrestricted (or equally restricted) in all directions, while a value of one means that diffusion occurs only along one axis and is fully restricted along all other directions. Subsequently the FA images were transformed into a common space by nonlinear registration IRTK [START_REF] Rueckert | Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images[END_REF]. A mean FA skeleton, representing the centers of all tracts common to the group, was obtained from the thinned mean FA image. All FA data were projected onto this skeleton. The resulting data was fed into voxel-wise cross-subject statistics. Prior to analysis in SPM, the FA maps were converted from NIfTI format to Analyze.

The brains were segregated into 90 brain areas according to the Automated Anatomical Labeling Atlas 1 (AAL1) [START_REF] Tzourio-Mazoyer | Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain[END_REF]. The anatomical names of the brain areas for each index k are shown in Table A1 of Appendix B. In each brain network, one AAL brain area corresponds to a node of the network. The weights between the nodes were estimated through the measurement of the preferred diffusion directions, given by a set of n s = 5000 streamlines for each voxel. The streamlines are hypothesized to correlate with the white-matter tracts. The ratio of streamlines connecting area l and area k is given by the probability coefficient p lk . Then, the adjacency matrix J kl is constructed from this probability coefficient. The DTI processing pipeline has been adopted from Ref. [START_REF]Structural Connectivity in Schizophrenia and Its Impact on the Dynamics of Spontaneous Functional Networks[END_REF].

Besides the healthy connectomes, we selected 15 connectomes (9 females, 6 males, mean age 33.4, range 22-56) of patients with different types of partial epilepsy that underwent a presurgical evaluation. The scans were performed at the Centre de Résonance Magnétique et Biologique et Médicale (Faculté de Médecine de la Timone) in Marseille. Throughout the manuscript we refer to the epileptic patients as E1-E15. dMRI images were acquired on a Siemens Magnetom Verio 3T MR-scanner using a DTI-MR sequence with an angular gradient set of 64 directions, T R = 10700 ms, T E = 95 ms, 2 × 2 × 2mm 3 voxel size, 70 slices, b-value 1000s/mm 2 .

The data processing pipeline [START_REF] Schirner | An Automated Pipeline for Constructing Personalized Virtual Brains from Multimodal Neuroimaging Data[END_REF][START_REF] Proix | How Do Parcellation Size and Short-Range Connectivity Affect Dynamics in Large-Scale Brain Network Models?[END_REF] made use of various tools such as FreeSurfer [START_REF] Fischl | FreeSurfer[END_REF], FSL [START_REF] Jenkinson | Fsl[END_REF], MRtrix3 [START_REF] Tournier | MRtrix Package[END_REF] and Remesher [START_REF] Fuhrmann | Direct Resampling for Isotropic Surface Remeshing[END_REF], to reconstruct the individual cortical surface and large-scale connectivity. The surface was reconstructed using 20,000 vertices. Cortical and volumetric parcellations were performed using the Desikan-Killiany atlas with 70 cortical regions and 17 subcortical regions [START_REF] Desikan | An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest[END_REF]. The final atlas consists of 88 regions since one more empty region is added in the construction of the structural connectivity for symmetry. After correction of the diffusion data for eddy-currents and head motions using eddy-correct FSL functions, the Fiber orientation was estimated using Constrained Spherical Deconvolution [START_REF] Tournier | Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-Negativity Constrained Super-Resolved Spherical Deconvolution[END_REF] and improved with Anatomically Constrained Tractography [START_REF] Smith | Anatomically-Constrained Tractography: Improved Diffusion MRI Streamlines Tractography through Effective Use of Anatomical Information[END_REF]. For tractography, 2.5 × 10 6 fibers were used and, for correction, Spherical-Deconvolution Informed Filtering of Tractograms [START_REF] Smith | SIFT: Spherical-Deconvolution Informed Filtering of Tractograms[END_REF] was applied. Summing track counts over each region of the parcellation yielded the adjacency matrix. Here, the AAL2 was employed for brain segregation leading to 88 brain areas for each patient, see Table A2 of Appendix B.

EEG and SEEG data

All 15 drug-resistant patients, mentioned in the previous Section, affected by different types of partial epilepsy accounting for different epileptogenic zone localizations, underwent a presurgical evaluation (see Tables A3 andA4 of Appendix B). For each patient a first non-invasive evaluation procedure is foreseen, that comprises of the patient clinical record, neurological examinations, PET and EEG along with video monitoring. Following this evaluation, potential EZs are identified by the clinicians. Further elaboration on the EZ is done in a second, invasive phase, which consists of positioning SEEG electrodes in or close to the suspected regions. These electrodes are equipped with 10 to 15 contacts that are 1.5 mm apart. Each contact has a length of 2 mm and measures 0.8 mm in diameter. Recordings were obtained using a 128 channel DeltamedTM system with a 256 Hz sampling rate and band-pass filtered between 0.16 Hz and 97 Hz by a hardware filter. Precise electrode positioning was performed by either a computerized tomography or MRI scan after implanting the electrodes. All patients showed seizures in the SEEG, starting in one or several localized areas (EZ), before recruiting distant regions, identified as the propagation zone. It is worth noticing that, among the operated patients, four of them showed a worthwhile improvement but without resulting completely seizure-free since surgery (Engel's score III), while two resulted almost seizure-free, showing rare disabling seizures since surgery (Engel's score II), thus suggesting that the EZ was correctly identified in a subset of patients only.

Two methods were used for the identification of the propagation zone (see Table A4 of Appendix B). First, the clinicians evaluated the PZs subjectively on the basis of the EEG and SEEG recordings gathered throughout the two-step procedure (non-invasive and invasive). Second, the PZs were identified automatically based on the SEEG recordings: For each patient, all seizures were isolated in the SEEG time series. The bipolar SEEG was considered (between pairs of electrode contacts) and filtered between 1-50 Hz using a Butterworth band-pass filter. An area was defined as a PZ if its electrodes detected at least 30% of the maximum signal energy over all contacts, and if it was not in the EZ. In the following, we call the PZs identified by the subjective evaluation of clinicians PZ Clin and the PZs identified through SEEG data PZ SEEG .

Network Measures

Topological properties of a network can be examined by using different graph measures that are provided by the general framework of the graph theory. These graph metrics can be classified in terms of measures that cover three main aspects of the topology: segregation, integration and centrality. The segregation accounts for the specialized processes that occur inside a restricted group of brain regions, usually densely connected, and it eventually reveals the presence of a dense neighborhood around a node, which results to be fundamental for the generation of clusters and cliques capable to share specialized information. Among the possible measures of segregation, we have considered the clustering coefficient, which gives the fraction of triangles around a node and it is equivalent to the fraction of node's neighbors that are neighbors of each other as well. In particular the average clustering coefficient C of a network gives the fraction of closed triplets over the number of all open and closed triplets, where a triplet consists of three nodes with either two edges (open triplet) or three edges (closed triplet). The weighted clustering coefficient c w i [START_REF] Barrat | The Architecture of Complex Weighted Networks[END_REF] considers the weights of its neighbors:

c w i = 1 s i (k i -1) j,h w ij + w ih 2 a ij a ih a jh , (4.4) 
where s i is the node strength (to be defined below), k i the node degree, w ij the weight of the link, and a ij is 1 if the link i → j exists and 0 if node i and j are not connected.

The average weighted clustering coefficient C W is the mean of all weighted clustering coefficients:

C W = 1 N i c i .
The measures of integration refer to the capacity of the network to rapidly combine specialized information from not nearby, distributed regions. Integration measures are based on the concept of communication paths and path lengths, which estimate the unique sequence of nodes and links that are able to carry the transmission flow of information between pairs of brain regions. The shortest path d ij between two nodes is the path with the least number of links. The average shortest path length of node i of a graph G is the mean of all shortest paths from node i to all other nodes of the network:

L(G, i) = 1 N -1 j∈N,j =i d ij .
The average shortest path length of all nodes is the mean of all shortest paths [START_REF] Boccaletti | Complex Networks: Structure and Dynamics[END_REF]:

L(G) = 1 N -1 i,j∈N,i =j d ij .
In a weighted network, distance and weight have a reciprocal relation. If a weight between two adjacent nodes is doubled, their shortest path is cut by half:

L(G) = 1 N -1 i,j∈N,i =j d ij
w ij . Centrality refers to the importance of network nodes and edges for the network functioning. The most intuitive index of centrality is the node degree, which gives the number of links connected to the node; for this measure, connection weights are ignored in calculations. In this manuscript, we employ the network measure node strength s i , which corresponds to the weighted node degree of node i and equals the sum of all its weights: s i = j∈N w ij . Accordingly, the average node strength S corresponds to the mean of all node strengths S = 1 N i s i . All finite networks have a finite number of shortest paths d(i, j) between any pair of nodes i, j. The betweenness centrality c B (s) of node s is equal to all pairs of shortest paths that pass through s divided by the number of all shortest paths in the network: c B (s) = i,j∈N d(i,j|s) d(i,j) . For the weighted betweenness centrality, the weighted shorted paths are used.

Results

The epileptic attractor is commonly described in terms of a self-sustained limit cycle that comes from the destabilization of the physiological activity while multiple types of transitions allow for the accessibility of seizure activity, status epilepticus and depolarization block, that coexist, as verified experimentally in [START_REF] Houssaini | The Epileptor Model: A Systematic Mathematical Analysis Linked to the Dynamics of Seizures, Refractory Status Epilepticus and Depolarization Block[END_REF]. The single-population firing rate equations Eqs. (2.36) show, in the absence of forcing, only fixed points as attractors. As it will become clear in the following Section, a stable node and a stable focus are observable, separated by a bistability region between a high-and a low-activity state, whose boundaries are the locus of a saddle-node bifurcation (for more details see [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]). In this context are not observable self-sustained oscillations, but only damped oscillations at the macroscopic level that reflect the oscillatory decay to the stable fixed point. This oscillatory decay will be considered here as representative of a seizure-like event, not being able to observe a stable limit cycle to describe the emergence of a fully developed seizure, as shown in other phenomenological mathematical models [START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF][START_REF] Chizhov | Minimal Model of Interictal and Ictal Discharges "Epileptor-2[END_REF], commonly used to describe a detailed taxonomy of seizures. In particular, seizure-like events will be used here as paradigm to investigate propagation of seizure-like activity in the network. A detailed comparison with the taxonomy of seizures described by other phenomenological models [START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF][START_REF] Chizhov | Minimal Model of Interictal and Ictal Discharges "Epileptor-2[END_REF][START_REF] Saggio | Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-Slow Transitions of Classes[END_REF] and the possible extension of the single-population firing rate equations Eqs. (2.36) to show self-emergent periodic and bursting dynamics at the macroscopic level is reported in Section 1 of Appendix B.

Healthy Subjects

Phase and Bifurcation Diagrams

The analysis of the single-population firing rate equations Eqs. (2.36), performed in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], has revealed that there are three distinct regions, when considering the phase diagram of the system as a function of the external drive η and synaptic weight J, in absence of time dependent forcing (I(t) = 0): (1) a single stable node equilibrium corresponding to a lowactivity state, (2) a single stable focus (spiral) generally corresponding to a high-activity state, and (3) a region of bistability between low and high firing rate. In particular, in the region where the stable focus is observable, the system undergoes damped oscillatory motion towards this fixed point. The presence of damped oscillations at the macroscopic level reflects the transitory synchronous firing of a fraction of the neurons in the ensemble. While this behavior is common in network models of spiking neurons, it is not captured by traditional firing-rate models [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF][START_REF] Taher | Exact Neural Mass Model for Synaptic-Based Working Memory[END_REF][START_REF] Schaffer | A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks[END_REF].

When considering the multi-population neural mass model (2.46) with homogeneously set η(k) = η, the corresponding phase diagram Fig. 4.1(b) is qualitatively the same as the one shown in Fig 1 of [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF], since the same attractors are observable. In the original model these attractors are single-population states, while they reflect multi-population states in the present case. Single-population low-activity (LA) and high-activity (HA) states translate into network LA and HA states. In the former all populations have low, in the latter high firing rates. We observe that the single-population bistability accurately reflects the hysteretic transition in the network when changing η. In the following we will address how this relation between single-node and multi-population phase diagram occurs.

The network bifurcation diagrams shown in Fig. 4.1(a) for increasing σ values are obtained by performing an adiabatic analysis along two different protocols: up-sweep and down-sweep. Following the up-sweep protocol, the system's state variables r k , v k are initialized at η = -50 with the values r k = 0, v k = 0; then the excitability is increased in steps ∆η = 1.5 until the maximal value η = 10 is reached. At each step, the initial conditions for mean firing rates and mean membrane potentials correspond to the final state obtained for the previous η value. Note, that the average firing rate increases for increasing η values, both for the single node and for the network. Once the maximum η value is reached, the reverse procedure is performed, thus following the down-sweep protocol. This time the initial conditions correspond to the high-activity state at η = 10, while the excitability is adiabatically decreased in steps ∆η = 1.5, until a low-activity state at η = -50 is approached. For both protocols, the investigation of the nature of the dynamics emerging at each η-step is done by using the same procedure: the system is simulated for a transient time T = 2 s, until it has reached an equilibrium state. At this time the firing rate averaged over all populations r * is calculated and the next η iteration is started, using this final state as initial conditions. The transition from LA to HA network dynamics is hysteretic: the system does not follow the same path during the up-sweep and the down-sweep protocol. When the system is initialized in the low activity regime, it remains there until a critical excitability value ηHA is reached. For further increase of the excitability, the average firing rate exhibits a rapid jump to higher values. However, when the system is initialized in the highactivity regime, this regime survives for a large η interval until it collapses toward a low-activity state at η < ηLA , where ηLA < ηHA . There is a considerable difference between the critical excitability values required to lead the system to a high-activity or a low-activity regime and the difference increases for increasing coupling strength σ. While the up-sweep protocol (blue dots) is well approximated by the bifurcation diagram of the single population, represented in Fig. 4.1(a) by the black (dashed and continuous) curve, this is no more true for the down-sweep protocol, where the coupling plays a role in determining the transition at the multi-population level (orange squares). This results in different phase diagrams for the two protocols: the maps of regimes is dominated by the low-activity (high-activity) state when following the up-sweep (down-sweep) protocol. Merging together these results we observe that the region of bistability between LA and HA network dynamics, is still identifiable by the original boundaries found for the single population in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] (see black curve in Fig. 4.1(b, c), even though, for the multi-population system, the region is wider).

We can make further use of the single-population bifurcation diagram to understand the hysteretic transition of the multi-population model in more detail. First of all, the weight matrix {J kl } has its largest components on the diagonal (J kk = 20), reflecting recurrent synapses. This means that synaptic inter-coupling plays a minor role, as long as the firing rates of the adjacent populations are small. During the up-sweep protocol, this condition is fulfilled, as all populations are initialized in a low activity regime. Under these conditions, the dynamics of all nodes is rendered identical and equal, approximately, to the single population dynamics. Consequently the single-population LA branch describes the multi-population LA behavior (in terms of r * ) accurately as a function of η. Secondly, as soon as the single-population LA state vanishes for large enough η > ηHA , the individual nodes of the multi-population system all transit to the HA state.

In this HA regime, deviations of the network bifurcation diagram with respect to the single-population curve are observed. The populations in the system have large firing rates, such that the inter-coupling becomes a relevant contribution to the total current on each node. This explains why the LA branch of the network is located at higher firing rates with respect to the black single-population curve: The populations in the network behave, approximately, as decoupled, irrespectively of being subject, in the HA regime, to an additional current due to the inter-coupling. This effectively shifts the single-population bifurcation diagram towards smaller η. Moreover this shift occurs for each population individually, depending on the matrix {J kl }. During the down-sweep protocol, due to the population dependent shift, the HA population states vanish at different values of η. Accordingly, whenever this occurs, the network average r * decreases by a small amount, such that the network LA state is reached via various intermediate states. We can infer, using the same type of argument, that single-population LA states disappear for increasing η in a region around ηHA . They are not observed here, due to the nature of the up-sweep protocol and the initialization procedure of r k , v k .

From the reversed viewpoint we can hypothesize, that stable single-population HA states may take form near ηLA for increasing η, as well as stable LA states for decreasing η near ηHA . This implies that the network possesses complex multistability between many network states in the region ηLA < η < ηHA . For these states the existence of LA and HA states of individual populations are interdependent: whether or not any given population can be in the LA or HA state is conditioned by the LA-HA configuration of all other populations. This not only demonstrates how multistability emerges in the multi-population system, but it also has influence on the response of the network towards transient input in such a setting. Most importantly, if such an input recruits one population into high activity, other populations might follow, leading to a cascade of recruitments.

Seizure-like Recruitment in Dependence of Perturbation Site and η

To analyze the response of the multi-population system to transient current, we stimulate one population with a step function I S (t) of amplitude ∆I = 10 and duration ∆T = 0.4 s. By setting η = -9.54, the system is placed in the multistable regime [see cyan triangle in Fig. 4.1(c)], but, due to the low η value, it only allows for LA-HA configurations with most of the populations in LA. The stimulation with an external current I S (t) allows the system to reach a configuration with more populations in the HA. This corresponds to equivalently choose, in the model, a higher excitability value for the single node such that it crosses the bistability region, thus reaching the HA regime. We start by initializing all nodes in the low-activity state and stimulating a single node [Fig. When the perturbation of a single node has no consequences on the dynamics of the other populations, as shown in Fig. 4.2(b 1 -d 1 ), we are in the presence of an asymptomatic seizure-like event, where the activity is limited to the epileptogenic zone (here represented by the stimulated node) and no propagation takes place. For higher excitability values (η = -6.3, marked by a cyan rectangle in Fig. 4.1(b), the perturbation of a single node gives rise to a different response dynamics. In this case other brain areas are "recruited" and not only the perturbed node, but also other populations reach the high-activity regime by showing damped oscillations [Fig. 4.2(b 2 -d 2 )]. In terms of pathological activity, the seizure-like event originates in the EZ (as a results of the stimulation) and propagates to the PZ, identified by the other regions which rapidly propagate the oscillatory activity. The recruitment of the regions in the propagation zone can happen either by independent activation of the single areas, or by activating multiple areas at the same time, in a domino-like effect [START_REF] Creaser | Domino-like Transient Dynamics at Seizure Onset in Epilepsy[END_REF], until the propagation involves almost all populations (generalized seizure-like event).

The transition of a single population to the HA regime, upon stimulus onset, is characterized by a transient activity in the αβ band (10-14 Hz) and a sustained activity in the γ band (40-80 Hz), present throughout the stimulation, as shown in Fig. 4.2(e 1 , f 1 ).

Here the spectrograms show time varying power spectral densities (PSD) of the mean membrane potentials averaged over the network [Fig. 4.2(e 1 )] and for the single stimulated population [Fig. 4.2(f 1 )]. When more populations are recruited at higher excitability values, in addition to the former activity, it is possible to observe γ activity at higher frequencies [Fig. 4.2(e 2 , f 2 )]. High-frequency oscillations, between 80 and 500 Hz, can be recorded with EEG and reflect the seizure-generating capability of the underlying tissue, thus being used as markers of the epileptogenic zone [START_REF] Jacobs | High-Frequency Oscillations (HFOs) in Clinical Epilepsy[END_REF]. Moreover, even for the generalized seizure-like case, the low-frequency band activity is evoked whenever a brain area gets recruited, leading to a sustained signal in the time interval 1.1 s < t < 1.8s, where a majority of the populations approach the HA state. Similar results have been obtained for all the other investigated subjects (results not shown). In the following we report a wide analysis of the impact of the perturbation site on the recruitment effect, for different excitability values. As before, we use a step current I S (t), with fixed amplitude ∆I = 10 and duration ∆T = 0.4 s, to excite a single population. In each run the stimulating current targets a different brain area and the number of recruitments, i.e. the number of populations, that pass from the LA state to the HA state, is counted. The N pop = 90 brain areas are targeted, one at a time, in 90 individual simulations. We repeat the procedure varying η in a range [-15, -4], with steps of ∆η = 0.1. The results for five exemplary subjects are shown in Fig. 4.3(a).

If the perturbed area jumps back to the LA state when the stimulation is removed and no further recruitment takes place, then the total number of recruited areas is zero, here color coded in white. If the perturbed area remains in the HA state without recruiting other areas, we are in presence of an asymptomatic seizure-like event (blue regions). For every further recruited brain area, the color code changes from cyan to purple. If all brain areas are recruited, we observe a generalized seizure-like event (coded as red). For η < -9, most of the targeted brain areas goes back to the LA state, when the perturbation ends, while for η ≈ -9, we generally observe asymptomatic seizure-like events for all the subjects and for most of the perturbation sites. For increasing η values, the probability for larger recruitment cascades increases, until the system exhibits generalized seizure-like events for η > -6. However, some notable differences between brain areas and among the different subjects are observable. Brain area 72, for example, corresponding to the rh-CAU, exhibits asymptomatic seizure-like events at η > -11 for most of the subjects, thus suggesting that the rh-CAU favors pathological behavior with respect to other brain areas. On the other hand, some brain areas are less likely to cause generalized seizure-like events, when stimulated, than others: Brain area 40, for example, the rh-PHIP1 , causes no generalized seizure-like events for any η > -5. Note that, for very large η values, the system does not exhibit multistability anymore, but instead has only one stable state, namely the network HA state, corresponding to high firing rate of all populations. Approximately, this happens for η ∈ [-5.7, -4.9], with small variations among the subjects.

The scenario remains unchanged when we take into account heterogeneous excitabilities η(k) , as shown in Fig. 4.3(b). In this case η(k) is drawn from a Gaussian distribution with mean ηG , thus mimicking the variability among different brain areas present in a real brain. The populations are stimulated, as before, one at a time in individual simulation runs. However, this time the procedure is repeated for varying ηG ∈ [-15, -4], while keeping the standard deviation of the Gaussian distribution fixed at 0.1. Larger standard deviations (≥ 1) hinder the rich multistability of the network, by eliminating the bistability between LA and HA for individual populations, due to excessively small or large η(k) , thus impeding the analysis of the impact of the stimulation, as shown in Fig. A3 of Appendix B. In particular, for larger standard deviations, an increasing amount of nodes reaches the stable focus regime, thus being able to recruit other brain areas before the stimulation is applied, while nodes whose effective excitability turns out to be very small, are too far from the bistability region to be able to reach the HA regime. The results shown in Fig. 4.3 are obtained averaging over 10 Gaussian distribution realizations of the η parameter; slightly more variability becomes apparent especially when considering the threshold in η to observe generalized seizures. Indeed, the excitability threshold to observe generalized seizures is the most drastically affected as the standard deviation increases, see Fig. A3.

An overview over all the investigated subjects is possible when looking at Fig. 4.4(a), where the average over all subjects is reported. The averaging operation smears out the transition contours and, while the region of generalized seizure-like events shrinks, the region of accessibility of partial seizure-like events becomes wider, where a small percentage gen for each of the 20 subjects and 90 brain areas; the averages over all subjects are denoted by blue and red circles, respectively, for each k ∈ [START_REF] Squire | Fundamental Neuroscience[END_REF][START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF]. Averaging these thresholds over all subjects and brain areas yields an asymptomatic threshold of ηasy = -9.36 ± 0.43 and a generalized threshold of ηgen = -6.04 ± 0.38. Brain areas 72, 73, 67, and 3 have lower thresholds for asymptomatic seizure-like events, areas 40, 86, and 82 have larger thresholds for generalized seizure-like events and do not fall within a standard deviation. The variability in the response among the different areas is more evident for η(k) gen values compared to the η(k) asy ones: the threshold values to obtain an asymptomatic seizure-like event are very similar among the areas and among the subjects, while the threshold values to obtain a generalized seizure-like event strongly depend on the stimulated area and on the subject.

The Role Played by Brain Area Network Measures on Enhancing Recruitment

As shown in Fig. 4.4(b), η(k) asy does not vary significantly among the subjects and among the brain areas; it mainly occurs in the range η(k) asy ∈ [-10, -9], with just few nodes (k ∈ [START_REF] Lapique | Recherches Quantitatives Sur l'excitation Electrique Des Nerfs Traitee Comme Une Polarization[END_REF][START_REF] Brunel | Lapicque's 1907 Paper: From Frogs to Integrate-and-Fire[END_REF][START_REF] Ciszak | Emergent Excitability in Populations of Nonexcitable Units[END_REF][START_REF] Newton | Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics[END_REF]) showing smaller values. Since each brain area is characterized by its own network measure, the first hypothesis that we aim to test, is the role played, on the identification of the threshold, by the different network measures. We will verify in the following that connection strength and shortest path length are determinant to identify the threshold η(k) gen : generalized seizure-like events are enhanced by nodes forming a clique that rapidly communicate through a dense subgraph. In particular, we investigate the When considering the threshold for generalized seizure-like events, we face a higher variability among different nodes (as shown in Fig. 4.4(b), η(k) gen varies mainly between -6.5 and -5.5). The dependency of η(k) gen on the node strength reveals a strong correlation: Areas with very small node strengths are characterized by large thresholds and are less likely to cause generalized seizure-like events. On the other hand, for large node strengths, η ]. This means that brain areas that are crossed by many shortest path lengths (large betweenness centrality) are more likely to cause generalized seizurelike events. For increasing node strength, clustering coefficient and betweenness centrality, we observe a saturation toward η(k) gen ≈ -6.5, that corresponds to the critical excitability value, during the up-sweep simulation, at which the system jumps to the HA network state [Fig. 4.1(a 2 )].

To explore the causal mechanisms of brain dynamics and understand the sequential mechanism of node recruitment in more detail, we investigate the timing at which different brain areas are recruited. For this, the excitability parameter η, common to all populations, is set to the threshold value η(k) gen of the perturbed brain area k, ensuring complete recruitment of all populations, when perturbing populations k ∈ [START_REF] Squire | Fundamental Neuroscience[END_REF][START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF]. The results shown On average, the first recruited brain area (labeled as 1) is connected to the EZ with a weight equal to 0.25 (1/4 of the maximum possible weight) and it is characterized by an average shortest path length to the EZ of less than 4.7. Moreover the area is recruited within an average time of less than 156 ms (calculated after the onset of the external perturbation current). However the first recruited area has, not only the strongest weight and the shortest path to the EZ but it also has, in general, the largest node strength, largest clustering coefficient, shortest average path length and largest betweenness centrality. Clearly, the seizure-like event spreads rapidly along the brain areas with strongest connection weights outgoing from the EZ; to the stronger weights are associated the shortest paths from the EZ. Overall, a region well connected is a region well recruited; this is related to the log-normal distribution of the weights (see Fig. A5 of Appendix B): few connections per node have a strong weight, thus allowing for fast recruitment. Note that the results for one exemplary subject and just one perturbed brain area per time (i.e. not averaged over all the brain areas and over all subjects) are comparable, even though the corresponding relationships are characterized by more variability (data not shown).

If we vary the amplitude ∆I of the perturbation current, the recruitment time will vary accordingly, decreasing for increasing ∆I. In Fig. 4.7 we show an exemplary case, obtained from the stimulation of one brain area [START_REF] Morrison | Primacy and Recency Effects as Indices of the Focus of Attention[END_REF], for a specific subject (results are similar for other trials). Irrespectively of the recruitment order, the time needed by the first ten recruited brain areas to pass from the LA to the HA state decreases slightly for increasing amplitude. However, this decrease reaches a saturation at a current value ∆I ≈ 40 already. The order of recruitment varies little: we observe some exchanges between the 4-th and 5-th and between the 9-th and 10-th recruited areas. For example, for an amplitude ∆I = 15, the 9-th recruited area (dark blue circles) gets recruited earlier than the 10-th area (pink dots) while, for very strong currents (∆I = 100), the 9-th area gets recruited latest. On the other hand we do not observe a significant change in the recruitment time and order if we increase the duration ∆T of the stimulation (see Fig. A6 of Appendix B).

Epileptic Patients

Phase and Bifurcation Diagrams

In this section the structural connectivity matrices of epileptic patients are employed and an analysis, analogous to the one in Section 4. As for the healthy subjects, the transition is hysteretic with ηLA < ηHA . However in this case, the width of the hysteretic transition is bigger, especially for larger σ values, as testified by the comparison with the dotted red curve, reported in Fig. 4.8(a), that represents the results shown in Fig. 4.1(a). This increased width can be translated in terms of the extension of the multistability region in the phase diagram [Fig. 4.8(b, c)], which turns out to be slightly larger than before. Also in this case the results for a healthy subject are reported for a better comparison [red curve in Fig. 4.8(b, c)]. The increase in size mainly occurs due to a shift of ηLA , i.e. of the left boundary of the multistability regime. In this region, the transition from HA to LA, following the down-sweep, is more smooth and elongates towards smaller η values. This implies that, in this transition region, more single population HA states exist for epileptic patients than for healthy subjects. In other words, brain areas of epileptic subjects are more prone to recruitment2 .

While the phase diagram is obtained in the absence of time-varying input, we investigate the response of the multi-population system to transient stimulation in the following, based on the results reported in Fig. 4.9. As for the healthy subjects, a single population is excited by injecting a step current I S (t) of amplitude ∆I = 10 and duration ∆T = 0.4 s. Initially (t < 0), the system is in a multistable regime, starting in the low-activity network state. For small η values (η = -14, identified by the triangle in Fig. 4.8(c), when a single node is stimulated, the system reacts analogously to the healthy subject case: during the stimulation only one stable network state exists, i.e. a focus equilibrium with a LA-HA configuration for which only the stimulated node is in HA [Fig. 4.9(b 1 )]. This focus is approached via damped oscillations (0 s < t < 0.4 s). When the stimulation is removed, the network maintains the LA-HA configuration, but approaches the new location of the focus again via damped oscillations [Fig. 4.9(c 1 , d 1 )]. As a result, the stimulated node has large firing activity, while the remaining network is in a LA regime. For higher excitability values [η = -7.5, square in Fig. 4.8(b)] the perturbation of a single node gives rise to a cascade of recruitments, where other brain areas, initially not perturbed, reach the HA regime by showing damped oscillations [Fig. 4.9(b 2 -d 3 )]. With respect to the recruitment features shown in Fig. 4.2, we observe here a faster emergence of the generalized seizurelike event: once a brain area is stimulated, the others react, in substantial number, quite immediately.

Looking at the spectrograms, the transition of the stimulated population to the HA regime is characterized by a transient activity at low frequency (< 20 Hz) and a sustained activity in the γ band (50-180 Hz), observable throughout the duration of the stimulus, as shown in Fig. 4.9(f 1 ), where the spectrogram for the single stimulated population is reported. Regarding the spectrogram of the mean membrane potentials averaged over the network population [Fig. 4.9(e 1 )], it turns out that the low frequency activity in the δ, θ bands is present, while the activity at high frequency simply reflects the activity of the stimulated area. Activity in the δ band, together with multiple types of α-like rhythms have been recently found in a network of two Jansen-Rit neural mass models, representing two cortical regions, as a result of input changes in the other region [START_REF] Ahmadizadeh | Bifurcation Analysis of Two Coupled Jansen-Rit Neural Mass Models[END_REF], thus confirming that the range of possible activity varies with changes in the external inputs and interconnectivity gains.

In the case of large recruitment events, at larger excitability values, it is possible to observe γ activity at higher frequencies [Fig. 4.9(e 2 , f 2 )], which is enhanced with respect to the situation where an asymptomatic seizure-like event is present. Moreover, comparing the spectrograms in Fig. 4.9 and those reported in Fig. 4.2, we see that the activity takes place at higher frequency ranges when considering structural connectivity matrices of epileptic patients and the activity is mainly concentrated in the EZ. A further comparison is possible, looking at Fig. 4.9(h), where the spectrograms for the healthy subject H2 are reported. With respect to the case shown in Fig. 4.2, here the excitability parameter has been increased in order to observe a faster domino-like effect, on the same temporal scale as for the epileptic patient. While high frequency oscillations (> 200 Hz) are observable for the epileptic patient case, they are not detectable in Fig. 4.9(h 2 ) for the healthy subject case. The last statement may be qualified, however, by recent studies proposing high frequency oscillations (80-500 Hz) recorded not only at seizure onset but also between seizures (the interictal period), as a putative new marker of the epileptogenic focus [START_REF] Jacobs | High-Frequency Oscillations (HFOs) in Clinical Epilepsy[END_REF]. More specifically fast cortical ripples superimposed to interictal epileptiform discharges were correlated with the seizure onset zone and primary propagation area in neocortical epilepsy [START_REF] Khadjevand | Progress and Remaining Challenges in the Application of High Frequency Oscillations as Biomarkers of Epileptic Brain[END_REF]. Neocortical ripples were also found to be more specifically confined to the seizure onset and propagation regions, and thus a better marker compared to interictal epileptiform discharges alone [START_REF] Wang | Ripple Classification Helps to Localize the Seizure-Onset Zone in Neocortical Epilepsy[END_REF]. High frequency oscillations, as obtained via numerical experiments and shown in Fig. 4.9(e 2 , f 2 ), are much more frequent in the seizure-like onset zone than outside, where they are often totally absent. The rather empty spectrograms of mean membrane potentials for patient E6 are a result of a rather rapid recruitment of a majority of nodes, thus giving rise to a strong signal change, immediately upon recruitment, which suppresses the rest of the signal in the spectrogram. At the same time the damped oscillations are all compressed within a narrow time window, and not very elongated in time, as it happens for healthy subjects [Fig. 4.2]. In other words, if the generalized seizure-like event is rapid, all the signals overlap, and this is especially clear looking at the strong low frequency bands. A fast generalized seizure-like event, in absence of high frequency oscillations outside the EZ, can be obtained for healthy subjects only increasing the excitability parameter: for higher η values, the recruitment is more sudden, as shown in Fig. 4.9(h 2 ). A difference between the signals obtained by numerically simulating the multi-population exact neural mass model and the highfrequency oscillations observed in human intracranial EEG studies can be found in the different oscillation amplitudes: High-frequency oscillations recorded during presurgical evaluation in patients, both at the seizure onset and during the interictal period, are characterized by a low amplitude [START_REF] Allen | Very High-Frequency Rhythmic Activity during SEEG Suppression in Frontal Lobe Epilepsy[END_REF][START_REF] Traub | A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures[END_REF][START_REF] Worrell | High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy[END_REF][START_REF] Zijlmans | High-Frequency Oscillations as a New Biomarker in Epilepsy[END_REF], while this is not the case here. We can conjecture that higher amplitudes are related to the nature of the coupling, that we have chosen globally coupled and fully excitatory.

Temporal Recruitment of Clinically and SEEG Predicted Propagation Zones

In the following we test the clinical predictions for epileptic patients, by choosing the EZs, identified by clinical doctors via presurgical invasive evaluation, as perturbation sites.

We investigate the recruitment times of different brain areas following such a perturbation and compare the order of recruitment with the experimental data given for each individual subject.

A general overview on the recruitment times of all brain areas, for all patients, is shown in Fig. 4.10. As perturbation sites, the clinical EZs, are used for all patients. For patients with several nodes detected in the EZ, all areas were stimulated simultaneously. The perturbation step current (∆I = 10, ∆T = 0.4 s) is applied, to each perturbation site, in correspondence with the dashed vertical black line. The parameters are identical for almost all patients and are chosen such that at least 90% of the brain areas are recruited while still allowing multistability among various LA-HA configurations, including the network LA state. For each patient (identified via his/her number on the y-axis), the recruitment time of each brain area is reported: The gray dots represent the time values for each brain area. Superimposed on the grey dots are orange and blue dots that identify the brain areas belonging to the PZ, according to the non invasive (PZ Clin ) or invasive (PZ SEEG ) presurgical evaluation, respectively. The recruitment time averaged over all brain areas is identified, for each patient, by a green vertical line, while the boxes contain the second and third quartile of the distribution, and the whiskers have 1.5 the length of the InterQuartile Range (IQR) from the upper or lower quartiles. A one-sided Mann-Whitney U test has been performed to estimate the statistical significance of PZ SEEG and PZ clin recruitment times, as shown in Fig. A7 of Appendix B. Remarkably, the propagation zones PZ Clin and PZ SEEG turn out to be among the first recruited brain areas for all patients in the numerical experiments. However the temporal dynamics vary for all patients, with E8 and E1 having late recruitments. Looking at the set of the first ten recruited brain areas for each patient (reported in detail in Tables A5 to A7 of Appendix B), we notice that most of the areas, identified by clinicians as belonging to the PZ, are actually within this set: For patients E4, E5, E6, E9, E15 all the areas belonging to PZ Clin are among the first ten recruited areas, while the same holds true for patients E2, E3, E6 if we consider the areas identified by the stereotactic EEG analysis as belonging to the propagation zone (PZ SEEG ). In general a large number of the first ten recruited areas, as revealed by our simulations, coincides with the areas that are supposed to be crucial in the seizure spreading according to the medical doctors (e.g. for patients E2, E3, E10, E12, E13, E14). Moreover the predictability of the model is higher if we compare our results with the predictions PZ Clin , while brain areas belonging to the predicted propagation zones, are in general recruited before the median recruitment time. However the model predictions are not good for the following cases: For patients E1, E8, E11, E14, the areas belonging to the PZ SEEG are only occasionally identified (half or less than half of the times), while for patients E1, E8, E11, other nodes are in generally recruited before those belonging to the PZ Clin , that are identified with a percentage < 50%. In all the former bad cases, the EZ has not been correctly identified, as results from the relative surgical outcomes (see Table 3). Therefore, the incorrect identification of the origin of seizure-like events may lead to a misleading identification of the PZ: In other words, a different potential EZ will lead to a different recruitment order, possibly closer to the experimental data.

To evaluate the dependence of the shown results on the chosen parameters, with the idea in mind of going towards a more biologically realistic framework, we have repeated the previous numerical experiment by employing a random Gaussian distribution of the excitability parameter η(k) (see Fig. 4.11). The distribution is centered at ηG = -7.5 with standard deviation 0.1 for all patients except E1 and E11. For the latter patients we shifted the center towards larger values, in order to get a sufficient number of recruitments when the EZ is stimulated. In all cases the results are averaged over 10 different random realizations of the distribution. More details on the impact of different realizations of η(k) are given in Fig. A8 of Appendix B for one exemplary patient. For sufficiently larger standard deviations than the one employed (≥ 1), a too large fraction of the populations would not be able to exhibit bistability between LA and HA, highlighting the system sensitivity to finite parameter changes. However, for the chosen distribution, the results are comparable with the ones obtained with identical η(k) = η, shown in Fig. 4.10. For patients E2, E3, E4, E5, E6, E9 the predicted propagation zones are always the first ones to be recruited. Moreover most of the areas are usually recruited in the first half of the recruitment process, rapidly increasing in number, once the areas in the propagation zones have been recruited (thus giving rise to a peak in the histogram). As a general remark, in view of the distributed nature of the excitabilities, recruitments at later times, with respect to the former case with homogeneous η(k) = η, may now take place.

For patients with many nodes in the EZ, the recruitment process may result to be more complex, as it happens for patients E14 and E10, for which the histograms are less narrow, but instead widely distributed. However this cannot be taken as a general rule, since comparable histograms are obtained for patients E13 (one node in the EZ) and E8 (two nodes in the EZ), while for E15 and E12 (with both four nodes in the EZ) the histograms result to be very narrow, thus implying a fast recruitment process of most of the brain areas. The differences among the histograms can be partially justified by the facts that patients have specific connectomes with individual characteristics and by the analysis that we have proposed by choosing similar η values for all the patients. In this way we have preferred to have a general look on the multiple self-emergent dynamics in a group of patients, instead of fine-tuning the excitability parameter in order to obtain similar collective behaviors. What we observe here is strongly related to what we have presented in Fig. 4.9: the recruitment speed depends on the excitability parameter and on the individual network structure. Faster recruitment events may be obtained for different subjects by increasing the excitability value. In the following Section we try to understand, on the basis of network topological measures, the origin of the discrepancies among the clinical prediction of PZs and the first recruited areas predicted by the presented model.

Relationship Between DTI Network Structure and Temporal Seizure Recruitment

In order to understand the mechanism underlying the recruitment events, we evaluate the relationship between the network structure, in terms of topological measures, and the recruitment times of the first 10 recruited brain areas, as obtained through numerical experiments. For simplicity, we consider here patients with only one brain area in the EZ and we report, in Fig. 4.12, the potential EZ (orange circle) and the first 10 recruited areas in a graph representation. The results relative to all the other patients are reported in Figs. A9 to A11 of Appendix B. The first recruited areas are ordered according to their recruitment times in clockwise order. Moreover we indicate in blue the areas belonging to the PZ, as identified according to the presurgical invasive evaluation (PZ SEEG ). Black lines identify the weighted connections between all areas and their thickness is proportional to their weight. The sizes of the circles representing each brain area are proportional to their inverse recruitment time (A1-D1), to their weight connecting each area to the EZ (A2-D2), and to their inverse shortest path length between each node and the EZ (A3-D3), while the size of the orange EZ circle remains fixed.

Since in Fig. 4.12(a) the node size is proportional to the inverse recruitment time, large circles indicate early recruitment while small circles indicate late recruitments: Hence the circles become smaller clockwise. In Fig. 4.12(b) the node size is proportional to the weight connecting each area to the EZ and it turns out that, for all patients, the first recruited area has the strongest connecting weight. However, after a few recruitments this does not hold true anymore. There are many examples in which areas with a strong weight to the EZ (see e.g. area 46 or 48 for patient E6) are recruited much later than areas with very small weights (e.g. area 83 for FB). The seizure-like event propagates as a chain reaction and, therefore, the strongest connecting weight to the EZ is only decisive for the very first recruited area. Later, strong connections to other early recruited areas play a decisive role, as it is the case for area 83 in E6 which has a weak connection weight to the EZ. However, through its strong connection to area 74, its weighted shortest path length to the EZ is quite short, thus meaning that the weighted shortest path length to the EZ cannot be underestimated in order to find the recruitment ordering. Indeed, in Fig. 4.12(c) one can see the good predictability of the shortest path: the node size, proportional to the inverse shortest path length to EZ, decreases in general with later recruitment. This is expected, given the fact that the average shortest path to the EZ considers all connections in the network, not just the connections subgraph outgoing the EZ. An example of the high predictability of the shortest path is given by the node 38 in patient E2, which has a shorter path length to the EZ than node 18. Node 38 is recruited before node 18 irrespectively of its strong connection to node 16 and a connection strength to the EZ comparable with the one of node 38. However it is worth noticing that, in general, the nodes that are recruited before the areas belonging to the PZ, show either stronger connecting weights, or shortest path length to EZ. For later recruitments, the prediction becomes even more difficult because one needs to account for the temporal order of the seizing brain areas. As shown before, the area which is first recruited, is the one with the strongest connection to the EZ. However, depending on the strength of the connection, the recruitment time changes and it increases for decreasing strength. In the case of patient E2 the recruitment of the second area is determined, more by the strength of the connections to the EZ (i.e. area 20) than by the connection to area 16, while, for the recruitments of the third and forth areas, the strong connections of node 18 to 16 and of node 17 to 38, i.e. the first and second recruited nodes, are fundamental. On the other hand, when the first recruited areas have strong connections to the EZ, as for example area 74 in patient E6, the successive recruitments are strongly influenced by the first recruited area, whose outgoing graph reveals areas that are recruited with high probability. Thus the connection to area 74 turns out to be, for the second, third, and fourth recruitment almost as important as the connection to the EZ (i.e. area 76). Finally, if we compare two late recruited areas that are characterized by the same shortest path length to the EZ, but with a path to the EZ that crosses very different nodes, we observe that the area with the path going through earlier recruited nodes is recruited earlier.

The longer the seizure-like event propagates, the less important the shortest path length to the EZ becomes and the more important the path lengths to other recruited nodes become. This underlines the difficulty of predicting the seizure propagation in complex networks, however, it is possible to summarize some findings that hold true for almost all patients (including those shown in Figs. A9 to A11): The first recruited node is in general the one with the strongest connection to the EZ and the shortest path; strong connections to early recruited areas are fundamental to determine the recruitment order; nodes belonging to the PZ SEEG , that are not identified by our simulations as first recruited nodes, show intermediate values of connection strength and shortest path, while the nodes that are recruited before are either more strongly connected to the EZ or to the previously recruited nodes.

To confirm the importance of the shortest path length and the strength of the connections outgoing the EZ in determining recruitment events, we report in Fig. 4.13 the recruitment time values as a function of the shortest path and the connection weights for the patients with a single node as potential EZ [Fig. 4.13(a, b)] and for all 15 epileptic patients [Fig. 4.13(c, d)]. In Fig. 4.13(b) the recruitment time is plotted over the logarithm of the weight, in Fig. 4.13(c) the values of the recruitment time are plotted as a function of the shortest path and in Fig. 4.13(d) as a function of the connection weight, ordered according to their recruitment order. In particular the order for recruitment, shortest path, and weight to EZ is ascending from small values to large values. This means that in Fig. 4.13(d) the areas with the strongest weights (87th, 86th, etc.) correspond to the areas that are recruited earliest (1st, 2nd, etc.). The ordering has been preferred to the specific values of the shortest path and connection weight when reporting data for all 15 patients, in order to obtain a better visualization. For patients E2, E3, E13, E6, the recruitment time grows almost linearly with the shortest path, while it decreases for increasing weights. This analysis is confirmed in Fig. A12 of Appendix B, where a regression fit is performed over the data shown in Fig. 4.13(a), thus underlying the approximately linear relationship between the shortest path length and the recruitment time for larger t rec . The relationship is not anymore so evident when we consider different cases of potential EZs, that are composed of more that one area. However, in this case, it is still possible to affirm that the earliest recruitments are associated with the shortest path lengths and the strongest weights, while the nodes corresponding to PZ SEEG or PZ Clin that, according to our simulations, were recruited late, have very long shortest path lengths to the EZs or very small weights.

In general the recruitment mechanism is not completely defined by the shortest path length and the connection weight, therefore it is not possible to match the presurgical predictions in terms of PZ SEEG and PZ Clin if we try to identify the nodes belonging to the PZ by calculating the first recruited nodes according to their shortest paths length or their connection weights. In particular, it turns out that the PZ SEEG areas are well predicted by the investigated model if the shortest path length between the predicted PZ and the EZ is short, as shown in Fig. 4.13(e). However, for patients E8 and E10, the recruitments of the nodes belonging to PZ SEEG happen much later when compared to brain areas of other patients with a similar shortest path length. Equivalently in Fig. 4.13(f) it is possible to observe that, for short values of the shortest path length (< 5), there is a linear correspondence between short recruitment times and PZ Clin areas that are characterized by small values of the shortest path. However the areas belonging to PZ Clin are still not identifiable, in terms of topological measures, for patient E8.

To conclude this Section on the influence of single connectome topology in determining activity spreading and area recruitment, we elaborate the data reported in Fig. 4.10 by sorting, from top to bottom, the patients according to their median shortest path length, calculated on all areas with respect to the EZ. In Fig. 4.14 the recruitment times of all brain areas for all patients are shown. Since patients are ordered according to their median shortest path length, the brain areas of E4 have, on average, the shortest paths to the EZ and the areas of E1 the longest. In general, it is possible to detect a slight trend, for the overall recruitment events, to delay with longer average shortest path lengths. More in detail, E10 and E8 show both very long and very short recruitment times, thus confirming the results obtained in Fig. 4.11 for Gaussian-distributed excitabilities. The scattering of the recruitment times for these patients reflects that, on average, their recruitment times are longer with respect to the other patients. However the mean recruitment times are comparable with those of E11, E1, that show comparatively late recruitments irrespectively of the fact that are characterized by a longer median shortest path. A common characteristic that brings together patients E10, E8, E11, E1 is the weak connection among the EZ and the first recruited area, that slows down the recruitment time (as already mentioned when discussing about Fig. 4.12), thus suggesting that is the interplay between connection strength and shortest path to determine the efficacy of seizure spreading and not the single topology measure alone.

The Impact of the Input Current Strength on the Recruitment Time

Following the same approach used to obtain the results shown in Fig. 4.7 for a healthy subject, we present here an analysis on the impact of the stimulation strength on the recruitment mechanism. times decrease for larger amplitudes. However, the order of recruitment does not substantially change. This implies that, whenever we increase the amplitude, the recruitment mechanism remains unaffected: the same populations are involved in the seizure spreading and in the same order. What changes is the speed of the spreading and the time necessary to observe a generalized seizure-like event, which is smaller for stronger currents. As a general remark, the brain areas that are recruited after the first ones (i.e. the 5th, 6th,...,10th recruited areas), tend to be recruited more simultaneously for increasing ∆I, thus leading to possible changes in the recruitment order. This can be appreciated especially for patient E2: For an amplitude ∆I = 10, for example, the 10th brain area (pink) gets recruited later than the 9th area (dark blue), while for a very strong currents (∆I = 100) the darkblue area gets recruited latest whereas the pink area gets recruited earlier.

On the other hand if we vary the step current duration ∆T keeping the amplitude ∆I = 15 fixed (see Fig. A13 of Appendix B), we do not observe any change in the recruitment times of the first 10 recruited areas, analogous to the healthy subject case presented in Fig. A6.

Discussion

Neural mass models have been actively used since the 1970s to model the coarse grained activity of large populations of neurons and synapses [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF][START_REF] Zetterberg | Performance of a Model for a Local Neuron Population[END_REF]. They have proven especially useful in understanding brain rhythms [START_REF] Da Silva | Model of Brain Rhythmic Activity[END_REF][START_REF] Da Silva | Models of Neuronal Populations: The Basic Mechanisms of Rhythmicity[END_REF][START_REF] Sotero | Realistically Coupled Neural Mass Models Can Generate EEG Rhythms[END_REF], epileptic dynamics [START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF][START_REF] Wendling | Computational Models of Epileptiform Activity[END_REF], brain resonance phenomena [START_REF] Spiegler | Modeling Brain Resonance Phenomena Using a Neural Mass Model[END_REF], resting state [START_REF] Ghosh | Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire[END_REF][START_REF] Deco | Emerging Concepts for the Dynamical Organization of Resting-State Activity in the Brain[END_REF], task activity [START_REF] Huys | Functional Architectures and Structured Flows on Manifolds: A Dynamical Framework for Motor Behavior[END_REF][START_REF] Kunze | Transcranial Direct Current Stimulation Changes Resting State Functional Connectivity: A Large-Scale Brain Network Modeling Study[END_REF], neurological and psychiatric disorders [254] and are very popular in the neuroimaging community [START_REF] Valdes-Sosa | Model Driven EEG/fMRI Fusion of Brain Oscillations[END_REF][START_REF] Moran | Neural Masses and Fields in Dynamic Causal Modeling[END_REF]. Moreover, the desire to understand large-scale brain dynamics as observed using EEG, MEG and functional MRI (fMRI) has prompted the increasing use of computational models [START_REF] Bojak | Neuroimaging, Neural Population Models For[END_REF]. Large-scale simulators such as The Virtual Brain (TVB) [START_REF] Sanz-Leon | Mathematical Framework for Large-Scale Brain Network Modeling in The Virtual Brain[END_REF] and research infrastructures such as EBRAINS (http://ebrains.eu) make heavy use of networks of interconnected neural mass models and enable non-expert users to gain access to expert state-of-the-art brain network simulation tools.

Although motivated by neurobiological considerations, neural mass models are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. In particular their state variables track coarse grained measures of the population firing rate or synaptic activity. At best they are expected to provide appropriate levels of description for many thousands of near identical interconnected neurons with a preference to operate in synchrony, but they cannot reproduce the variation of synchrony within a neuronal population which is believed to underlie the decrease or increase of power seen in given EEG frequency bands. Importantly, unlike its phenomenological counterpart, the next generation neural mass model we have implemented in this chapter, is an exact macroscopic description of an underlying microscopic spiking neurodynamics, and is a natural candidate for use in future large-scale human brain simulations. In addition to this, the inability of a single neural mass model to support event-related desynchronization/synchronisation [START_REF] Pfurtscheller | Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles[END_REF] or to capture the onset of synchronous oscillations in networks of inhibitory neurons [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], reminds us that these phenomenological models could be improved upon. While building more detailed biophysically realistic models of neurons would increase the computational complexity and the difficulties to interpret the behavior of very high-dimensional models in a meaningful way, the next generation neural mass models here applied, are very much in the original spirit of neural mass modeling, yet importantly they can be interpreted directly in terms of an underlying spiking model. This exact derivation is possible for networks of quadratic integrate-and-fire neurons, representing the normal form of Hodgkin's class I excitable membranes [START_REF] Ermentrout | Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation[END_REF], thanks to the analytic techniques developed for coupled phase oscillators [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF]. This new generation of neural mass models has been recently used to describe the emergence of collective oscillations in fully coupled networks [START_REF] Coombes | Next Generation Neural Mass Models[END_REF][START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF][START_REF] Laing | Phase Oscillator Network Models of Brain Dynamics[END_REF][START_REF] Dumont | Macroscopic Phase Resetting-Curves Determine Oscillatory Coherence and Signal Transfer in Inter-Coupled Neural Circuits[END_REF] as well as in balanced sparse networks [START_REF] Di Volo | Transition from Asynchronous to Oscillatory Dynamics in Balanced Spiking Networks with Instantaneous Synapses[END_REF]. Furthermore, it has been successfully employed to reveal the mechanisms at the basis of theta-nested gamma oscillations [START_REF] Segneri | Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models[END_REF][START_REF] Ceni | Cross Frequency Coupling in next Generation Inhibitory Neural Mass Models[END_REF] and the coexistence of slow and fast gamma oscillations [START_REF] Bi | Coexistence of Fast and Slow Gamma Oscillations in One Population of Inhibitory Spiking Neurons[END_REF]. Finally it has been recently applied to modeling electrical synapses [START_REF] Montbrió | Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization[END_REF], working memory [START_REF] Taher | Exact Neural Mass Model for Synaptic-Based Working Memory[END_REF], the influence of transcranial magnetic stimulation on brain dynamics [START_REF] Byrne | Next-Generation Neural Mass and Field Modeling[END_REF] and brain resting state activity [START_REF] Rabuffo | Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest[END_REF].

In this chapter we have extended the single next generation neural mass model derived in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] to a network of interacting neural mass models, where the topology is determined by structural connectivity matrices of healthy and epilepsy-affected subjects. In this way we are able to take into account both the macroscopic dynamics, self-emergent in the system due to the interactions among nodes, and the various differences related to the patientspecific analyses. However, the single population neural mass model does not take into account neither the synaptic kinetics nor the dynamics of the synaptic field characterizing the considered synapses, which is simply modeled as the linear superposition of δ-shaped post-synaptic potentials. Moreover, when extending the excitatory neural mass model derived in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] to a multi-population network, we have considered only excitatory coupling in order to build a minimal model for the investigation of topologically-induced dynamical features. Therefore, the presented neural mass model is not able to reproduce depth-EEG epileptic signals, which represents one of the best successes of heuristic neural mass models [START_REF] Wendling | Epileptic Fast Activity Can Be Explained by a Model of Impaired GABAergic Dendritic Inhibition[END_REF].

In absence of external forcing, the phase diagram of the system as a function of the mean external drive η and synaptic weight J resembles that of the single neural mass model, since the same distinct regions can be observed: (1) a single stable node corresponding to a low-activity state, (2) a single stable focus (spiral) generally corresponding to a high-activity state, and (3) a region of bistability between low and high firing rate. However, when the system is subject to a transient external current, the scenario changes and is ruled by the interactions among different nodes. In this case, for low excitability values, a single stimulated node abandons the bistable region due to the applied current and it approaches, with damped oscillations, the high-activity state, which is a stable focus. On the other hand, for sufficiently high excitabilities, the single node stimulation leads to the recruitment of other brain areas that reach, as the perturbed node, the highactivity regime by showing damped oscillations. This activity mimics a seizure-like event and enables the modeling of propagation and recruitment: the seizure-like event originates in the EZ (as a results of the stimulation) and propagates to the PZ, identified by the other regions where the oscillatory activity propagates rapidly. It is distinct from an actual seizure, which would require the emergence of self-sustained activity in the high-activity state [START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF][START_REF] Saggio | Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-Slow Transitions of Classes[END_REF][START_REF] Saggio | A Taxonomy of Seizure Dynamotypes[END_REF].

However transient activity, like the proposed seizure-like events, can play a potentially important role in localizing tissue involved in the generation of seizure activity, if read in the framework of stimulation of human epileptic tissue with consequent induction of rhythmic, self-terminating responses on the EEG or electrocorticogram (ECoG) [START_REF] Flanagan | Single-Pulse Electrical Stimulation Helps to Identify Epileptogenic Cortex in Children[END_REF][START_REF] Jacobs | Value of Electrical Stimulation and High Frequency Oscillations (80-500 Hz) in Identifying Epileptogenic Areas during Intracranial EEG Recordings[END_REF][START_REF] Valentin | Responses to Single Pulse Electrical Stimulation Identify Epileptogenesis in the Human Brain in Vivo[END_REF]. From the dynamical systems perspective, one can hypothesize that complex stimulus responses are due to a space-dependent induction of self-terminating, spatio-temporal transients that are caused by brief perturbations in an excitable medium [START_REF] Goodfellow | Self-Organised Transients in a Neural Mass Model of Epileptogenic Tissue Dynamics[END_REF]. Accordingly, considering epileptic seizure dynamics as spatio-temporal patterns [START_REF] Baier | The Importance of Modeling Epileptic Seizure Dynamics as Spatio-Temporal Patterns[END_REF][START_REF] Goodfellow | Intermittent Spike-Wave Dynamics in a Heterogeneous, Spatially Extended Neural Mass Model[END_REF] shifts attention on the self-organizing capabilities of spatio-temporal brain networks, thus proposing an alternative explanatory framework for epileptiform EEG to the time dependent modulation in system parameters [START_REF] Breakspear | Neuronal Dynamics and Brain Connectivity[END_REF][START_REF] Kramer | Pathological Pattern Formation and Cortical Propagation of Epileptic Seizures[END_REF][START_REF] Kim | Dynamics of Epileptic Seizures: Evolution, Spreading, and Suppression[END_REF][START_REF] Marten | Onset of Polyspike Complexes in a Mean-Field Model of Human Electroencephalography and Its Application to Absence Epilepsy[END_REF][START_REF] Lopour | A Model of Feedback Control for the Charge-Balanced Suppression of Epileptic Seizures[END_REF].

Moreover, perturbation experiments, like the stimulation of human tissue, turns out to be fundamental in the context of functional brain mapping, as integral part of contemporary neurosurgery [START_REF] Sagar | Functional Brain Mapping: Overview of Techniques and Their Application to Neurosurgery[END_REF]. Surgical planning of the resection procedure depends substantially on the delineation of abnormal tissue, e.g., epileptic foci or tumor tissue, and on the creation of functional map of eloquent cortex in the area close to the abnormal tissue. Traditionally, different methodologies have been used to produce this functional map: electrical cortical stimulation [START_REF] Hara | Representation of Primary Motor Cortex in Humans: Studied with Chronic Subdural Grid[END_REF][START_REF] Ojemann | Cortical Organization of Language[END_REF][START_REF] Uematsu | Motor and Sensory Cortex in Humans: Topography Studied with Chronic Subdural Stimulation[END_REF], functional magnetic resonance imaging [START_REF] Chakraborty | Presurgical Functional Mapping with Functional MRI[END_REF], positron emission tomography [START_REF] Bittar | Localization of Somatosensory Function by Using Positron Emission Tomography Scanning: A Comparison with Intraoperative Cortical Stimulation[END_REF][START_REF] Meyer | Preoperative Motor System Brain Mapping Using Positron Emission Tomography and Statistical Parametric Mapping: Hints on Cortical Reorganisation[END_REF], magnetoencephalography [START_REF] Ganslandt | Functional Neuronavigation with Magnetoencephalography: Outcome in 50 Patients with Lesions around the Motor Cortex[END_REF], evoked potentials [START_REF] Dinner | Invasive Methods of Somatosensory Evoked Potential Monitoring[END_REF] or passive recordings of electrocorticographic signals [START_REF] Brunner | A Practical Procedure for Real-Time Functional Mapping of Eloquent Cortex Using Electrocorticographic Signals in Humans[END_REF]. In particular, ECoG activity recorded from subdural electrodes, placed during surgical protocols, reflect task-related changes [START_REF] Crone | Functional Mapping of Human Sensorimotor Cortex with Electrocorticographic Spectral Analysis. I. Alpha and Beta Event-Related Desynchronization[END_REF][START_REF] Crone | Functional Mapping of Human Sensorimotor Cortex with Electrocorticographic Spectral Analysis. II. Event-Related Synchronization in the Gamma Band[END_REF][START_REF] Aoki | Increased Gamma-Range Activity in Human Sensorimotor Cortex during Performance of Visuomotor Tasks[END_REF][START_REF] Aoki | Changes in Power and Coherence of Brain Activity in Human Sensorimotor Cortex during Performance of Visuomotor Tasks[END_REF][START_REF] Crone | Induced Electrocorticographic Gamma Activity during Auditory Perception[END_REF][START_REF] Sinai | Electrocorticographic High Gamma Activity versus Electrical Cortical Stimulation Mapping of Naming[END_REF][START_REF] Miller | Spectral Changes in Cortical Surface Potentials during Motor Movement[END_REF][START_REF] Leuthardt | Electrocorticographic Frequency Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex[END_REF]: ECoG amplitudes in specific frequency bands carry substantial information about movement or language tasks and they usually increase with the task in the gamma (> 40 Hz) band. Extending the presented multi-population model, via the addition of synaptic dynamics and an inhibitory pool, to reproduce task-related change in ECoG activity, would be essential to extend its predictive power.

The spectrogram analysis has revealed that the recruitment process is characterized by high frequency γ oscillations, thus reproducing the high-frequency (γ-band) EEG activity typical of electrophysiological patterns in focal seizures of human epilepsy. Many hypotheses have been formulated on the origin of this fast activity: (i) the behavior of inhibitory interneurons in hippocampal or neocortical networks in the generation of gamma frequency oscillations [START_REF] Jefferys | Neuronal Networks for Induced '40 Hz' Rhythms[END_REF][START_REF] Whittington | Inhibition-Based Rhythms: Experimental and Mathematical Observations on Network Dynamics[END_REF]; (ii) the nonuniform alteration of GABAergic inhibition in experimental epilepsy (reduced dendritic inhibition and increased somatic inhibition) [START_REF] Wendling | Epileptic Fast Activity Can Be Explained by a Model of Impaired GABAergic Dendritic Inhibition[END_REF][START_REF] Cossart | Dendritic but Not Somatic GABAergic Inhibition Is Decreased in Experimental Epilepsy[END_REF]; (iii) the possible depression of GABA A,f ast circuit activity by GABA A,slow inhibitory postsynaptic currents [START_REF] White | Networks of Interneurons with Fast and Slow γ-Aminobutyric Acid Type A (GABAA) Kinetics Provide Substrate for Mixed Gamma-Theta Rhythm[END_REF][START_REF] Banks | Interactions between Distinct GABAA Circuits in Hippocampus[END_REF]; iv) the out of phase patterns of depolarizing GABAergic post-synaptic potentials onto pyramidal cells, generated by feed-forward activation of cortical interneurons [START_REF] Shamas | On the Origin of Epileptic High Frequency Oscillations Observed on Clinical Electrodes[END_REF]. In any case high-frequency EEG waves originating from one or several brain regions are the most characteristic electrophysiological pattern in focal seizures of human epilepsy and can be observed, in our numerical experiments, both for healthy subjects and epileptic patients, though with a distinction: for the same excitability value, the activity takes place at higher frequency ranges in epileptic patients and it is mainly concentrated in the EZ. Moreover high frequency γ oscillations (> 200 Hz) are observable in the epileptic patient's spectrogram only. Even though it is not possible to exclude discrepancies partially imputable to the different scanning and preparation procedure of the structural connectivity matrices for the cohort of healthy and epilepsy-affected subjects, it turns out that the recruitment process is faster in epileptic patients, for which it is possible to observe generalize seizure-like events for smaller values of the excitability parameter η. In particular, when comparing the results obtained for healthy subjects and epileptic patients, it turns out that the time necessary to recruit areas in the PZ is usually smaller for epileptic patients. However, the first recruited area is, in general, the area with the stronger connection to the EZ, independently of the considered structural connectivity matrix. The recruitment time in both cases is influenced by the strength of the external perturbation ∆I, and decreases for increasing strength, while no dependence is shown on the duration of the external perturbation.

More specifically for healthy subjects we have investigated the dependence of the recruitment mechanism on the single subject, in terms of the position of the eventual EZ and in terms of the topological measures of the single connectome. Brain network models of healthy subjects comprise 90 nodes equipped with region specific next generation neural mass models and each subject is characterized by a specific structural large-scale connectivity amongst brain areas. The smallest excitability values for which an asymptomatic seizure-like event occurs (η (k) asy ) do not vary significantly from one subject to the other and do not show a relevant dependence on the stimulated area, while the smallest excitability values for which a generalized seizure-like event occurs (η (k) gen ), show fluctuations in the interval (-7, -5) for all stimulated nodes and for all the subjects. Nonetheless we have found many similarities at the level of topological measures, since there is always a strong correlation between η(k) asy (η

(k)
gen ) and node strength, clustering coefficient and shortest path, thus meaning that a region well connected is a region well recruited.

For epileptic patients, we have systematically simulated the individual seizure-like propagation patterns and validated the numerical predictions of the PZ against clinical diagnosis and EEG signals. Patient-specific brain network models of epileptic patients comprise 88 nodes equipped with region specific next generation neural mass models and, for this set-up, we have studied the role of the large-scale connectome based on dMRI, in predicting the recruitment of distant areas through seizure-like events originating from a focal epileptogenic network. We have demonstrated that simulations and analytical solutions approximating the large-scale brain network model behavior significantly predict the propagation zone as determined by SEEG recordings and clinical expertise, with performances comparable to previous analyses on this set of data [START_REF] Proix | Individual Structural Connectivity Defines Propagation Networks in Partial Epilepsy[END_REF][START_REF] Olmi | Controlling Seizure Propagation in Large-Scale Brain Networks[END_REF], thus confirming the relevance of using a large-scale network modeling to predict seizure recruitment networks. However, some false positive are still observable, where populations not belonging to PZ SEEG or PZ Clin are first recruited. In these cases, the analysis on topological properties has revealed that nodes are easily recruited whenever they show strong connections to the EZ or to early recruited areas and that are closer to the EZ in terms of shortest path length. Therefore, nodes belonging to the PZ SEEG (PZ Clin ), that are not identified by our simulations as first recruited nodes, are characterized by intermediate values of connection strength and shortest path. Predictions are particularly not good for those patients whose EZ has not been correctly identified, as results from the relative surgical outcomes reported in Table A3. For these patients, the incorrect identification of the origin of seizure-like events may lead to a misleading identification of the PZ, since we are not able to identify, numerically, the recruitment of nodes not directly connected with the real EZ. Finally, comparing the results obtained for epileptic patients with those for healthy subjects, we infer a strong correlation between fast recruitment events and node strength, which is due to the fact that structural connectomes, both for healthy subjects and epileptic patients, are characterized by a log-normal distribution of the weights, where some connections, for each node, have a much stronger weight than the others. Moreover, the strong correlation between fast recruitment and clustering coefficient/shortest path suggests that we are in the presence of hierarchical connectivities, which have been shown to be important for the spreading of activity [START_REF] Luccioli | Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks[END_REF][START_REF] Kaiser | Criticality of Spreading Dynamics in Hierarchical Cluster Networks without Inhibition[END_REF] and the enhancement of the network susceptibility to seizure activity [START_REF] Morgan | Nonrandom Connectivity of the Epileptic Dentate Gyrus Predicts a Major Role for Neuronal Hubs in Seizures[END_REF].

Most computational models of seizure propagation focus on small continuous spatial scales [START_REF] Kim | Dynamics of Epileptic Seizures: Evolution, Spreading, and Suppression[END_REF][START_REF] Hall | Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks[END_REF][START_REF] Ursino | Travelling Waves and EEG Patterns during Epileptic Seizure: Analysis with an Integrate-and-Fire Neural Network[END_REF] or population of neurons [START_REF] Lopes | A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone[END_REF][START_REF] Miles | Spread of Synchronous Firing in Longitudinal Slices from the CA3 Region of the Hippocampus[END_REF][START_REF] Golomb | Propagating Neuronal Discharges in Neocortical Slices: Computational and Experimental Study[END_REF][START_REF] Compte | Cellular and Network Mechanisms of Slow Oscillatory Activity (¡ 1 Hz) and Wave Propagations in a Cortical Network Model[END_REF][START_REF] Bazhenov | Cellular and Network Mechanisms of Electrographic Seizures[END_REF][START_REF] Chouzouris | Chimera States in Brain Networks: Empirical Neural vs. Modular Fractal Connectivity[END_REF][START_REF] Gerster | FitzHugh-Nagumo Oscillators on Complex Networks Mimic Epileptic-Seizure-Related Synchronization Phenomena[END_REF] while only small networks are commonly used to investigate the role of the topology and localization of the epileptogenic zone [START_REF] Terry | Seizure Generation: The Role of Nodes and Networks[END_REF]. However functional, volumetric and electrographic data suggest a broad reorganization of the networks in epileptic patients [START_REF] Lieb | Inter-Hemispheric Propagation of Human Mesial Temporal Lobe Seizures: A Coherence/Phase Analysis[END_REF][START_REF] Lieb | Role of the Frontal Lobes in the Propagation of Mesial Temporal Lobe Seizures[END_REF][START_REF] Cassidy | Mediodorsal Thalamus Plays a Critical Role in the Development of Limbic Motor Seizures[END_REF][START_REF] Rosenberg | Involvement of Medial Pulvinar Thalamic Nucleus in Human Temporal Lobe Seizures[END_REF][START_REF] Bettus | Decreased Basal fMRI Functional Connectivity in Epileptogenic Networks and Contralateral Compensatory Mechanisms[END_REF], thus laying the foundations for a different approach based on large-scale connectomes to identify the recruitment networks. The large-scale character of partial seizure propagation in the human brain has been only recently investigated, using patient-specific dMRI data to systematically test the relevance of the large-scale network modeling in predicting seizure recruitment networks [START_REF] Proix | Individual Structural Connectivity Defines Propagation Networks in Partial Epilepsy[END_REF][START_REF] Proix | Predicting the Spatiotemporal Diversity of Seizure Propagation and Termination in Human Focal Epilepsy[END_REF][START_REF] Olmi | Controlling Seizure Propagation in Large-Scale Brain Networks[END_REF][START_REF] Proix | Permittivity Coupling across Brain Regions Determines Seizure Recruitment in Partial Epilepsy[END_REF]. In this framework of large-scale network modeling we can also place the results presented in this chapter, since we have confirmed the importance of patient-specific connectomes to identify the recruitment process. As shown above, the topological characteristics of connection strength and shortest path play a non-trivial role in determining the spreading of seizure-like events, together with the localization of the epileptogenic zone, while the next generation neural mass model, here employed for the first time to study seizure spreading, allows us to construct patient-specific brain models via a multiscale approach: the variability of brain regions, as extracted from the human brain atlas, can be introduced in the mean-field parameters, thanks to the exact correspondence between microscopic and macroscopic scales guaranteed by the model itself. The possibility to exactly move through the scales has not been fully exploited in this chapter, since we have focused our analysis on the extension of the single neural mass model to a multi-population model, without adding other relevant features to the original model. However it is possible to easily introduce, in the multi-population model, biologically relevant characteristics, keeping intact the exact correspondence between microscopic and macroscopic scales, such as short-term synaptic plasticity [START_REF] Taher | Exact Neural Mass Model for Synaptic-Based Working Memory[END_REF], synaptic delays [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], electrical coupling via gap junctions [START_REF] Montbrió | Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization[END_REF], chemical synapses [START_REF] Coombes | Next Generation Neural Mass Models[END_REF], extrinsic and endogenous noise [START_REF] Goldobin | Reduction Methodology for Fluctuation Driven Population Dynamics[END_REF]. By adding short-term synaptic plasticity we expect to being able to reproduce the emergence of self-sustained activity in the high-activity state and therefore to describe a fully developed seizure. The introduction of synaptic delays and noise guarantees the possibility to observe chaotic dynamics, therefore allowing for the reproduction of more complex signals, like depth-EEG epileptic signals. Improving the predictive power of the model by the means of more biologically relevant characteristics and anatomical data (3D T1-weighted images, high angular and spatial dwRMI data, ion, energetic and neurotransmitter measurements available e.g. in the BigBrain and human brain atlas) will be the scope of further research.

Chapter 5

Emergence of bursting: a slow-fast approach

We report a detailed analysis on the emergence of bursting in the neural mass model with STP developed in Chapter 2 and studied in Chapter 3 in the context of working memory. Neural mass models are capable of mimicking the collective dynamics of large-scale neuronal populations in terms of a few macroscopic variables like mean membrane potential and firing rate. The one being used here is particularly important, as it represents an exact mean-field limit of synaptically coupled QIF neurons, which we recall are canonical models for type I excitability. In absence of synaptic dynamics, a periodic external current with a slow frequency ε can lead to burst-like dynamics. The firing patterns can be understood using techniques of singular perturbation theory, specifically slow-fast dissection. In the model with synaptic dynamics the separation of timescales leads to a variety of slow-fast phenomena and their role for bursting is rendered inordinately more intricate. Canards are one of the main slow-fast elements on the route to bursting. As explained in Chapter 2, they describe trajectories evolving nearby otherwise repelling locally invariant sets of the system and are found in the transition region from subthreshold dynamics to bursting. For values of the timescale separation nearby the singular limit ε = 0, we report peculiar jump-on canards, which block a continuous transition to bursting. In the biologically more plausible regime of ε this transition becomes continuous and bursts emerge via consecutive spike-adding transitions. The onset of bursting is of complex nature and involves mixed-type-like torus canards, which form the very first spikes of the burst and revolve nearby fast-subsystem repelling limit cycles. We provide numerical evidence for the same mechanisms to be responsible for the emergence of bursting in the quadratic integrate & fire network short-term synaptic plasticity. The main conclusions apply for the network, owing to the exactness of the mean-field limit.

Publication:

The results presented in this chapter are submitted to New Journal of Physics and available as pre-print [START_REF] Taher | Bursting in a next Generation Neural Mass Model with Synaptic Dynamics: A Slow-Fast Approach[END_REF]: H. Taher, D. Avitabile, and M. Desroches. "Bursting in a next Generation Neural Mass Model with Synaptic Dynamics: A Slow-Fast Approach". arXiv:2109.06757v1 [nlin] (Sept. 2021)

Introduction

As we have seen in the previous chapters, QIF networks and their neural mass counterparts can give rise to interesting dynamical regimes, typically evoked by bistability or multistability in the system. Indeed, in its simplest form, the original MPR model exhibits a parameter regime where a stable node and a focus coexist [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. This is particularly relevant for the macroscopic response of neuronal ensembles when they are subject to an external current: bistability implies that a time dependent external drive can lead to interesting firing rhythms. A recent study takes into account synaptic dynamics in form of exponentially decaying action potentials and investigates the firing patterns emerging across spatial and specifically temporal scales [START_REF] Avitabile | Cross-Scale Excitability in Networks of Quadratic Integrate-and-Fire Neurons[END_REF].

In this chapter however, we want to explore a QIF network that accounts for synaptic dynamics in form of short-term synaptic plasticity, thus adding to the biological plausibility. To our knowledge, the role of STP in next generation neural mass models has received just little attention, despite being highly relevant in neuroscience. Previous macroscopic models of STP typically make use of the Wilson-Cowan (WC) model, hence are of heuristic nature [START_REF] Wilson | Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons[END_REF][START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF]. In Chapter 3 an extension of the MPR firing rate equations towards STP was employed, in order to model WM. The mean-field limit, in presence of STP, remains exact. Therefore one can exploit this limit, in order to get insight into the emergence of firing patterns in the network. An aspect that can lead to complex behavior is the timescale separation, which comes along with STP. Depression and facilitation might indeed act on different timescales. As an example, measurements in the prefrontal cortex suggest that the facilitation of synapses can be maintained for seconds, while depression decays within a few hundred milliseconds [START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF].

Synaptic dynamics and additional timescales enrich the dynamical landscape, by giving rise to bistability involving limit cycles. This is the foundation for bursting rhythms to emerge. Bursting refers to dynamics that alternates between a quiescent phase and rapid oscillations. When slowly forcing the population of QIF neurons, by virtues of a slowly drifting external current, the system can transit from a quasi-static motion to rapid oscillations associated with the presence of stable cycles in the system with constant external current.

Bursting has been found in various experimental studies in neuroscience [START_REF] Adams | The Generation and Modulation of Endogenous Rhythmicity in the Aplysia Bursting Pacemaker Neurone R15[END_REF][START_REF] Womack | Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons[END_REF][START_REF] Connors | Intrinsic Firing Patterns of Diverse Neocortical Neurons[END_REF][START_REF] Gray | Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex[END_REF][START_REF] Schwindt | Quantitative Analysis of Firing Properties of Pyramidal Neurons From Layer 5 of Rat Sensorimotor Cortex[END_REF][START_REF] Su | Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons[END_REF][START_REF] Amir | Oscillatory Mechanism in Primary Sensory Neurones[END_REF][START_REF] Wellmer | Long-Lasting Modification of Intrinsic Discharge Properties in Subicular Neurons Following Status Epilepticus[END_REF]] and theoretical approaches [START_REF] Rinzel | Bursting Oscillations in an Excitable Membrane Model[END_REF][START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF][START_REF] Plant | On the Mechanism Underlying Bursting in the Aplysia Abdominal Ganglion R15 Cell[END_REF][START_REF] Hindmarsh | A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations[END_REF][START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF][START_REF] Izhikevich | Neural Excitability, Spiking and Bursting[END_REF] not only aim at classifying the observed dynamics, but also mimicking and revealing the mechanisms responsible for the emergence of bursting. While bursting in spiking neural networks is subject of recent studies [START_REF] Bacak | Mixed-Mode Oscillations and Population Bursting in the Pre-Bötzinger Complex[END_REF][START_REF] Ersöz | Canard-Induced Complex Oscillations in an Excitatory Network[END_REF], the mechanisms responsible for their emergence often remain unclear: exploring the state space of large-scale networks is tedious and the addition of slow-fast aspects complicates the problem. The exactness of the MPR model helps to overcome this limitation: analytic tools and bifurcation analysis applied to the neural mass model allow to draw conclusions for the microscopic network.

The main results of this chapter are related to the emergence of bursting in a QIF network with STP. In particular, we investigate the transition from subthreshold oscillations to bursting in presence of an external slow and periodic current. The forcing introduces a clear timescale separation into the problem, giving rise to intricate slow-fast phenomena and allowing for the application of slow-fast dissection methods, to be described later. As an outlook, the findings comprise a differentiation of the route to bursting, depending on the timescale separation. For strongly separated timescales, far away from biologically plausible scenarios, the route is complicated, possibly discontinuous in parameter space and it is related to a certain type of canards. Moderate timescale separations on the other hand reveal a number of intermingled slow-fast mechanisms that lead to a continuous transition from subthreshold oscillations to bursting and are related to different types of canards. Our results are supported by slow-fast arguments and numerical evidence.

A first illustration of the dynamical regime of interest in this chapter is displayed in Fig. 5.1. The response of a large-scale network, exhibiting STP and consisting of N = 10 5 QIF neurons, to a slow external sinusoidal current is depicted in Fig. 5.1(a). The second panel Fig. 5.1(b) shows the firing rate of the QIF network, as well as the firing rate of the mean-field limit. Both systems undergo a quiescence phase of low firing activity. When the external current exceeds a certain level, the systems start to burst, characterized by a rapid series of synchronized firing at high rates. In order to understand how these bursts emerge, we have to encapsulate two main aspects. First, in the upcoming Section 5.2, we will recall the QIF network model with STP as well as the corresponding mean-field limit, and we will analyze the state space structure and dynamics. Second, the presence of a slow external drive calls for the application of slow-fast dissection. We have introduced the slow-fast framework in Section 2.7 of Chapter 2. This generic methodology for timescale separated problems is applied to the present model in Section 5.3. Dissection is crucial for understanding the results in Section 5.4, where canards and in particular jump-on canards are studied using slow-fast arguments. This paves the way to investigate the mechanisms responsible for the emergence of bursting, as done in Section 5.5. Finally, in Section 5.6 the initially posed problem of bursting on macroscopic scale is approached by a comparison of mean-field dynamics versus QIF network dynamics in the bursting regime.

Periodically forced neural mass

Despite having a rather simple state-space structure, the original MPR model without STP can give rise to interesting periodic patterns when externally forced. In the absence of a time depending current, periodic solutions are absent. Instead one can find node, focus and saddle equilibria. However, there are regions of parameter space in which bistability between the node and focus appears. Hence slow periodic forcing, for example given by I 1 = A sin(εt), 0 < ε 1, can lead to a hysteretic loop in these regions, as shown in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. In this case the trajectories consist of a low firing rate segment and a high firing rate segment with damped oscillations, related to the presence of foci in the system with constant I 1 . Orbits of this type can already be seen as bursting patterns characterized by an alternation of slow drifts and fast oscillations. However, in the limit ε = 0 of infinitely slow forcing, the fast oscillations vanish. In that case, the resulting cycles can be classified as relaxation oscillations, which were introduced in Section 2.7.

The model of interest for our work is the canonical model for type I excitability: the QIF neuron. We recall from Chapter 2, that in a network of N synaptically coupled neurons in presence of m-STP the membrane potentials V i (t), depression x(t) and facilitation u(t) obey Eqs. (5.1).

Vi = V 2 i + η i + Juxr + I 1 (t) (5.1a) ẋ = 1 -x τ d -uxr (5.1b) u = U 0 -u τ f + U 0 (1 -u)r (5.1c)
The total current applied to the neuron is a sum of the constant component η i , the synaptic current Ju(t)x(t)r(t), with constant synaptic weight J and an external, possibly time-dependent, current

I 1 (t) 1 . Variable r(t) = 1 N N j=1 S j (t)
denotes the instantaneous firing rate and is composed of the single neuron spike trains S j (t) = k:t j (k)<t δ(tt j (k)), where t j (k) denotes the k-th spike time of neuron j entering into the Dirac δ function.

The collective dynamics of the QIF network in presence of m-STP Eqs. (5.1) is captured by the neural mass model Eqs. (5.2) in an exact manner (see Section 2.3 in Chapter 2). Here we chose the form of the model, in which the membrane time constant has been eliminated via a rescaling of time and we will refer to it as neural mass model with shortterm synaptic plasticity (NMSTP).

ṙ = ∆ π + 2rv (5.2a) v = v 2 -(πr) 2 + Juxr + η + I 1 (t) (5.2b) ẋ = 1 -x τ d -uxr (5.2c) u = U 0 -u τ f + U 0 (1 -u)r (5.2d)
We note that Eqs. (5.2) will evolve on the fastest timescale of our problem. This holds despite the fact that it already possesses multiple timescale via τ d and τ f . However, as we will discuss later, this inherent timescale separation of Eqs. (5.2) is subtle and not observable everywhere in state space. Nevertheless, it has significant impact on how the transition from subthreshold (non-bursting) behavior to bursting occurs (see also Sections 5.4.2 and 5.5.3).

Dynamics under constant forcing

Most of the parameters values used for Eqs. (5.2) will remain fixed in this chapter and if not stated differently given in Table 5.1. Note that time is measured in units of the membrane time constant τ m . We will outline the different dynamical regimes in presence of a constant current I 1 (t) = const., using the above parameter values. The NMSTP 2) is able to generate periodic oscillations due to plastic synapses even in absence of time dependent forcing (I 1 = const.). Their existence depends on the exact choice of parameters values, one of the important ones being the total non-synaptic current given by η +I 1 . Limit cycles can arise via a plethora of bifurcation scenarios. Here we considered the case of a subcritical Hopf bifurcation followed by a fold of limit cycles, giving rise to stable oscillatory behaviour, when considering I 1 as a bifurcation parameter. In 2). For I 1 0.25 there exists only one fixed point (FP, solid black line). At I 1 ≈ 0.25 the FP destabilizes via a subcritical Hopf-Bifurcation (H L , lower orange dot), creating a branch of unstable limit cycles (LC, orange dashed line). Two saddle-node bifurcations (black dots) of the unstable FP branch (dashed black line) occur in a narrow regime of I 1 , folding the branch twice. Stability is regained for I 1 0.7 at a supercritical Hopf-Bifurcation (H U , upper orange dot). The branch of unstable LCs stabilizes (solid orange line) via a saddle-node bifurcation of cycles (purple dot) and vanishes at the second Hopf Bifurcation. The orange line marks the maximum firing rates of the LC branch. (b) Spike scatter plot for 20000 representative neurons of a network consisting of N = 100000 neurons for I 1 = 0.4 marked in panel a by a dashed red line. (c -f) Periodic solution (r(t), v(t), x(t), u(t)) vs. time t for I 1 = 0.4 marked in panel a by a dashed red line. The red curves show simulations results of the NMSTP, the black ones of the network Eqs. (5.1).

For currents I 1 0.25 we find a branch of stable node equilibria at low firing rates. The branch develops into a family of foci and destabilizes around I 1 ≈ 0.25 via a subcritical Hopf bifurcation (H L ) followed by two saddle-node (fold) bifurcation at F L and F U (black dots), where

F k = (r k , v k , x k , u k , I k ), k ∈ {L,
U}, denotes the equilibrium and parameter values of the bifurcations. These folds can also be found in absence of STP, in which case the upper branch is stable. However, in Fig. 5.2(a) the instability persists throughout the S-shaped curve up until the upper supercritical Hopf bifurcation H U . The lower Hopf bifurcation H L generates a family of unstable limit cycles that undergoes a fold bifurcation of cycles, giving rise to stable periodic solutions.

One of these solutions (r(t), v(t), x(t), u(t)) is presented in Fig. 5.2(c -f) as a function of time. It is superimposed onto the corresponding variables calculated by simulating a QIF network governed by Eqs. (5.1) and consisting of N = 100000 neurons. A spike scatter plot can be found in Fig. 5.2(b) for this network. The average firing rate is estimated via binning of time, i.e, by counting the number of spikes per time bin of width ∆t = 10 -2 , while the average membrane potential reads v(t) = 1 N N j=1 V j (t). The primary mechanism driving the oscillations is an interplay of PBs 2 and the ensuing synaptic depression and facilitation. At the microscopic scale, population bursts are emitted via a cascade of spikes throughout the network, which as a consequence leads to the facilitation of synapses, leveraging the firing activity further; see Fig. 5.2(b, c, f). The consequent depression suppresses the activity, but recovers on the timescale τ d allowing for the emittance of population bursts in a periodic manner.

Notably, in the I 1 -interval depicted in the inset of Fig. 5.2(a) we find bistability between equilibria and limit cycles. We can therefore predict that a time dependent slow current I 1 (t) evolving across this region will lead to a dynamic transition from the equilibrium branch to the stable limit cycles, giving rise to bursting. This exact example can be found in Fig. 5.1.

Overall, in contrast to the QIF network without STP and original MPR model, where no limit cycles exist, STP gives rise to bistability among equilibria and cycles. In Ref. [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] a slow periodic currents leads to the emergence of macroscopic relaxation-type oscillations in the network. We want to investigate how the presence of STP impacts the response of the system towards such an input. Simulations of QIF networks are difficult computationally. However, the expected agreement of QIF network results and the NMSTP depicted in Fig. 5.2(b -f) justifies to perform the upcoming analysis using solely the NMSTP. We will return to the implications of the NMSTP dynamics for the network in Section 5.6.

Dynamics under slow periodic forcing

Owing to the previous observations in the system with constant forcing, we will introduce a slow periodic drive into the model via the external current I 1 . We impose that it evolves periodically and on a timescale considerably larger than the slowest timescale of the neural mass, namely the facilitation decay time τ f . In order to remain in a general framework, I 1 (t) will be sinusoidal, given by I 1 (t) = A sin (εt), with period T = 2π ε τ f and amplitude A. Throughout this work we set τ f = 1500 ms/τ m = 75, therefore the separation between forcing and slowest intrinsic timescale of the fast subsystem is calculated as

τ f /T = ε τ f 2π ≈ 10ε.
Through the choice of I 1 to be explicitly time dependent, the system given in Eqs. (5.2) becomes non-autonomous. This in turn comes along with hurdles in the application of slow-fast dissection. Thus, in order to retrieve an autonomous system, a second forcing variable I 2 is introduced. The dynamics of (I 1 , I 2 ) follows a Hopf normal form as given below.

İ1 = εg 1 (I 1 , I 2 ) = ε I 1 (a -I 2 1 -I 2 2 ) + I 2 (5.3a) İ2 = εg 2 (I 1 , I 2 ) = ε I 2 (a -I 2 1 -I 2 2 ) -I 1 (5.3b)
The Hopf bifurcation at a = 0 gives rise to stable limit cycles of the form (I 1 , I 2 ) = A•(sin εt, cos εt), with amplitude A = √ a and angular frequency ε, in the following referred to as forcing cycle. To assure equivalence of the explicitly defined I 1 (t) = A sin(εt) and the one generated by the Hopf form Eq. ( 5.3), the initial conditions ((I 1 (t 0 ), I 2 (t 0 )) will lie on (I 1 , I 2 ) = A • (sin εt, cos εt). According to the definition in Section 2.7 of Chapter 2, the full system is given by the NMSTP in presence of slow external forcing, i.e, Eqs. (5.2) and Eq. ( 5.3).

To understand the impact of this slow forcing, it is advantageous to superimpose solutions of the full problem on the r vs. I 1 bifurcation diagram of the unforced system, this is at the core of the slow-fast dissection introduced by J. Rinzel [START_REF] Rinzel | Bursting Oscillations in an Excitable Membrane Model[END_REF][START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF][START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF]. In Fig. 5.3 we present solutions of Eqs. (5.2) and Eq. ( 5.3) for different values of the forcing amplitude

A. An example of a purely slow trajectory is shown in Fig. 5.3(a 1 -c 1 ) and labeled γ 0 (t). The firing rate r(t) [Fig. 5.3(b 1 )], increases and decreases following the same pattern as the forcing I 1 (t) [Fig. 5.3(a 1 )]. Moreover, in r -I 1 projection [Fig. 5.3(c 1 )], it becomes clear that the dynamics takes place nearby the equilibrium branch of the unforced system. The forcing introduces a drift of the equilibrium, slow enough to be followed by the dynamics in an O(ε) neighbourhood of the branch.

While this example can be understood as a quasi-static motion, the more complex solutions γ 1 (t) to γ 4 (t) in columns ( 2) and (3) of Fig. 5.3, exhibit canard dynamics and bursting, respectively. A more rigorous analysis is required, including a slow-fast dissection of the model. For this we apply the framework introduced in Section 2.7 of Chapter 2 to the NMSTP. 

I 1 γ 0 (t) (a 1 ) -0.3 0.3 γ 1 (t), γ 2 (t), γ 3 (t) (a 2 ) -0.3 0.3 γ 4 (t) (a 3 )

Slow-fast analysis of the model

We will start a systematic investigation of the full system by dissecting it into slow and fast subsystem. The full problem represents a 4-fast 2-slow system with X f = (r, v, x, u)

and X s = (I 1 , I 2 ). Their dynamics is governed by the right hand sides F(X f , X s ) and G(X s ), recalled below in fast-time parametrization.

Ẋf = F(X f , X s ) =      ∆ π + 2rv v 2 + Juxr -(πr) 2 + I 1 (1 -x)/τ d -uxr (U 0 -u)/τ f + U 0 (1 -u)r      (5.4a) Ẋs = εG(X s ) = ε I 1 (a -I 2 1 -I 2 2 ) + I 2 I 2 (a -I 2 1 -I 2 2 ) -I 1 (5.4b)
In the singular limit ε → 0 associated with Eqs. (5.4) we obtain the fast subsystem given in Eqs. (5.5).

Ẋf = F(X f , X s ) (5.5a) Ẋs = 0 (5.5b)
Its equilibrium branches are shown in Fig. 5.2(a) and defined as {X f | Ẋf = 0}, with the slow variable coordinates acting as bifurcation parameters. This naturally coincides with the definition Eq. (5.6) of the critical manifold S 0 .

F(X f , X s ) = 0 (5.6) 
We can therefore already infer the shape of S 0 . It corresponds to the cartersian product S * ×{I 2 |I 2 ∈ R}, where S * denotes the S-shaped branch of equilibria of the fast subsystem and is given in Eq. (5.7).

S * := {(r, v, x, u, I 1 )|F(X f , X s ) = 0} (5.7)
Hence the associated fold set F has two 1D connected components, namely the two lines

F U := {F U } × {I 2 |I 2 ∈ R} and F L := {F L } × {I 2 |I 2 ∈ R}.
This means that the two fold lines are parametrized by I 2 . These two fold lines of S 0 , along F L and F U , can be seen in Fig. 5.4, together with the critical manifold S 0 in I 1 -I 2 -r projection and the trajectories γ 0 (t) to γ 4 (t) of Fig. 5.3. 

I 1 I 2 r H L F L F U S a 0 S r 0 γ 0 (a 1 )
I 1 I 2 γ 1 γ 2 γ 3 (a 2 ) I 1 I 2 γ 4 (a 3 )

Singular dynamics: fast subsystem

Since points of S 0 are equilibria of the fast subsystem, we can associate local stability properties of the fast subsystem with the critical manifold. Stable (unstable) parts of the equilibrium branch in Fig. 5.2 will become attracting (repelling) sheets of the critical manifold. This property can be seen as an indicator for fast flow in the full system, distant from S 0 . Here the fast dynamics dominates and (r, v, x, u) will be repelled and attracted accordingly. The stability changes along the set of Hopf bifurcation given by

H L := {H L } × {I 2 |I 2 ∈ R} and H U := {H U } × {I 2 |I 2 ∈ R} .
Attracting (repelling) parts of S 0 are marked as green (light green) surfaces throughout this chapter, as can be seen in Fig. 5.4.

We can already exploit this in order to examine the full system dynamics further. To start with, γ 0 (t) in Fig. 5.4(a 1 ) evolves entirely in the vicinity of the lower attracting sheet of the critical manifold S 0 . This means that the dynamics is purely slow and in approximation bounded to S 0 . For γ 1 (t) we see the typical canard dynamics, since it follows the middle repelling part of S 0 for some time, before jumping to the bottom attracting sheet. Moreover, γ 2 (t) in Fig. 5.4(a 2 ) resembles the behavior of a canard with a head, introduced in Section 2.7.2 of Chapter 2 in the context of the VdP oscillator. However, while in the VdP system the upper branch of the fast subsystem is attracting, we find the same behavior here, but with a repelling upper sheet of S 0 . We will refer to this surprising solution of the full system as jump-on canard. Similarly, γ 3 (t) exhibits a jump to the upper sheet, but in absence of a canard segment along the middle sheet. Finally, the bursting solution γ 4 (t) in Fig. 5.4(a 3 ) has segments along the bottom sheet of S 0 and displays a short canard segment along the repelling middle sheet, before it pierces through the critical manifold S 0 and starts to burst. In order to understand the emergence of canards, jump-on canards and bursting, we will proceed with the analysis of the slow subsystem in the following.

Singular dynamics: slow subsystem

The slow-time parametrization3 of Eqs. (5.4) is given in Eqs. (5.8).

εX f = F(X f , X s ) (5.8a) X s = G(X s ).
(5.8b)

Here the singular limit ε → 0 yields the slow subsystem Eqs. (5.9), which has the critical manifold S 0 as the state space, as can be seen from F(X f , X s ) = 0.

0 = F(X f , X s ) (5.9a) X s = G(X s ) (5.9b)

Slow flow

As part of the slow-fast dissection of the model it is useful to calculate the slow flow Eq. (5.10) of the dissected system, which was derived in Section 2.7.1.

dX f dτ ≡ X f = - ∂F ∂X f -1 ∂F ∂X s X s (5.10)
To recall, values of X f on S 0 are determined via the algebraic conditions Eq. (5.9a), which entangle the fast variables to each other and to I 1 . Given either r, v, x or u, the other components can be calculated straightforwardly. In other words, it is sufficient to consider the slow flow of one the fast variables, here r, to understand the slow dynamics. Taken this into account we finally obtain the slow flow (r , I 1 , I 2 ) given in Eqs. (5.11) and with g 1 , g 2 from Eq. (5.3). r = g 1 (I 1 , I 2 )Ar(1 + ruτ d )(1 + rU 0 τ f )/D (5.11a)

I 1 = g 1 (I 1 , I 2 )
(5.11b)

I 2 = g 2 (I 1 , I 2 ) (5.11c)
We can see the relevance of the denominator D, given in Eq. (5.12), by noting that D = 0 defines the fold set of S 0 at which the fast subsystem Jacobian ∂F ∂X f is singular.

D = 2 (πr) 2 + v 2 (rτ d u + 1)(rτ f U 0 + 1) -Jxr(rτ f U 0 + u) (5.12)
Saddle-node bifurcations of the fast subsystem are characterized by the identical condition det ∂F ∂X f = 0 and are equivalent to the fold curves F L and F U shown in Fig. 5.4. Therefore, the slow flow is undefined along these lines and the slow subsystem fails to describe the slow dynamics. This is for example relevant for the canard trajectories γ 1 (t) and γ 2 (t) in Figs. 5.3 and 5.4, which projected onto the (r, I 2 ) plane cross F L transversely.

Desingularization

This limitation can be mitigated by introducing an auxiliary system and desingularizing Eqs. (5.11) The DRS benefits from the fact that the singularities are resolved, allowing to investigate the slow dynamics near and on the fold lines F L and F U . At the same time new equilibria are introduced satisfying D = 0. Additionally, as a consequence of the employed nonlinear time rescaling, the flow direction is not preserved. At the fold curves, with D = 0, a change of sign of D takes place. Hence, between F L and F U , i.e, on the middle sheet of S 0 , the flow of the DRS is opposite to the slow flow. Slow trajectories which entirely remain on the same sheet of S 0 can be easily understood using the slow flow Eqs. (5.11). Canard orbits evolve on attracting as well as repelling sheets of S 0 and therefore require a view on the dynamics near the folds. For this, we will determine the equilibria of the DRS Eqs. (5.13) in the following and analyze their invariant manifolds. Equilibria of the DRS which satisfy D = 0 necessarily coincide with a fold of S 0 . As we will show in the following section, this gives rise to so-called folded singularities.

Folded saddle and folded homoclinics

Up to three focus equilibria of Eqs. (5.13) are located at p 1 = (I 1 , I 2 , r) = (0, 0, r k ), where the r k are points of S 0 given (I 1 , I 2 ) = (0, 0). In this chapter we will remain at η values for which only one equilibrium p 0 = (0, 0, r 0 ) exists. This point is the only equilibrium of the slow flow Eqs. (5.11). In the DRS [Eqs. (5.13)] however, the condition {g 1 (I 1 , I 2 ) = 0, D = 0} yields additional fixed points p 1 and p 2 located on the fold lines at D = 0.

The three equilibria of the DRS are displayed in Fig. 5.5(a) on S 0 in r-I 2 projection. In the full system, for sufficiently small A and ε, solutions lie close to the bottom, attracting, sheet of S 0 . When the amplitude is increased, these cycles can pass very close to p 1 and start to follow the middle, repelling sheet. One way to understand this canard dynamics is to make use of the properties of the p k in the DRS and their role for the slow subsystem. Located on the bottom sheet of S 0 , p 0 results from the Hopf form given in Eq. ( 5.3) and is an unstable focus at (I 1 , I 2 ) = (0, 0). On the other hand, p 2 lies on the upper fold line F U and denotes a center, i.e., it has purely imaginary complex conjugate eigenvalues. The equilibrium p 1 can be found on the lower fold line F L and is of saddle type. At a specific value of A, namely, when the forcing cycle intersects with p 1 , an 8-shaped double homoclinic connection M FS = M L FS ∪ M U FS forms, consisting of two parts, which are connected via p 1 ; see the orange curve in Fig. 5.5(a, b). The connection M L FS is located on the lower sheet, while M U FS spans the middle and upper sheet of S 0 . They revolve around the unstable focus p 0 and center p 2 , respectively, and are the stable and unstable manifolds of p 1 .

The points p 2 , p 1 , and in particular the invariant manifolds associated with p 1 , play an important role for the slow subsystem. Due to the negative sign D < 0 on the middle sheet of S 0 the slow flow is reversed with respect to the DRS. As a consequence the DRS saddle p 1 and center p 2 become folded singularities of the slow subsystem. These folded saddle (p 1 ) and folded center (p 2 ) are not equilibria of the slow flow. However, for the slow dynamics they have similar impact on the dynamics as there unfolded counterparts, but with the crucial difference of reversed flow direction between F L and F U . Accordingly, the folded saddle p 1 has significant influence on the dynamics of the slow subsystem along M FS , as described in the following.

(i) First of all, trajectories in the DRS evolving on M FS necessarily approach p 1 asymptotically from the direction of the stable eigenvector, but can never pass through the saddle.

(ii) In the slow subsystem however, the folded saddle p 1 allows a pass-through along this direction. Below F L trajectories are attracted to and above repelled from p 1 .

(iii) The double homoclinic connection M FS of the DRS is referred to as a folded homoclinic in the slow subsystem. For this solution the passage of trajectories through p 1 occurs in finite time [START_REF] Desroches | Spike-Adding in Parabolic Bursters: The Role of Folded-Saddle Canards[END_REF].

(iv) Using the same type of argument, the invariant manifold M U FS around the folded center p 2 becomes disconnected at the two intersections with F U , due to a reversal of the slow flow direction. Solutions of the slow subsystem on M U FS can not cross this line.

As a consequence of the previous properties (i)-(iv), a singular canard exists in the slow subsystem, given a specific value of A. It evolves along the folded homoclinic M FS below the bottom fold line F L and extends, while remaining on S 0 , beyond the folded saddle p 1 until the upper fold F U .

Singular canard orbits

For the construction of singular orbits, we note once more that the middle sheet of S 0 is repelling while the bottom sheet is attracting. Accordingly, a continuum of fast segments emerging from the middle sheet and connecting to the bottom sheet exist in the fast subsystem. This family of fast orbits collides with M FS and likewise with the singular canard described above. As a result, infinitely many singular orbits can be constructed, by merging the singular canard at arbitrary positions on the middle sheet of S 0 , with fast segments.

These singular orbits evolve on the bottom sheet of S 0 , continue through the folded saddle p 1 , while following the folded homoclinic, and jump at different heights, in terms of the coordinate r, from the middle to the bottom sheet of S 0 . The full system solution γ 1 (t) in Figs. 5.3 and 5.4 displays this type of dynamics. The singular canard, hence also the family of singular canard orbits, can at most reach the upper fold line F U . Here the slow flow is undefined and the reduction of state space to S 0 fails to describe the dynamics. This is additionally reflected by the fact that M U FS is disconnected at the intersections with F U , due to the folded property of p 2 ; see (iv) above. The singular canard orbit which reaches up until this point is the maximal canard.

Full system dynamics: beyond singular orbits and classical canards

The solutions γ 0 (t) to γ 4 (t) are results of numerical computations for ε > 0. As such, their slow segments evolve not on, but in an O(ε) neighborhood of S 0 . This is to some extent an implication of Fenichel's theory [START_REF] Fenichel | Geometric Singular Perturbation Theory for Ordinary Differential Equations[END_REF]. For 0 < ε 1, it guarantees the existence of a slow manifold S ε , that is in an O(ε) neighborhood of S 0 , if S 0 is normally hyperbolic (see below). Additionally, S ε is locally invariant under the flow of the full system. The theorem also states that stable and unstable manifolds associated to S 0 persist as O(ε) perturbations. In other words, the flow on S ε can be seen as a perturbation of the flow on S 0 ; and the flow perpendicular to S 0 as a perturbation of the fast subsystem's flow. For normally hyperbolic critical manifolds, one can deduce that singular orbits persist for ε and perturb into an O(ε) neighborhood.

Normal hyperbolicity requires all eigenvalues of the Jacobian ∂F ∂X f | S 0 to have non-zero real part [START_REF] Hek | Geometric Singular Perturbation Theory in Biological Practice[END_REF]. The theorem can therefore not be applied on F L and F U , given that they describe lines of saddle-node bifurcations. However, one can consider the three sheets of S 0 separately, each one up to an O(ε) neighborhood of the folds. From this we can conclude the persistence of slow segments nearby S 0 for ε > 0, including the repelling segments within a canard solution, until close to the folds. Fenichel's theory does not encompass whether or not a connection of these segments exists. Yet, γ 1 (t) to γ 3 (t) exemplify such connection numerically: segments that evolve close to the bottom sheet of S 0 connect to segments close the middle sheet. A detailed treatment of these connections nearby the non-hyperbolic points, exceeds the scope of this work. For more rigorous approaches, we refer to non-standard analysis [START_REF] Benoît | Chasse Au Canard[END_REF], matched asymptotics [START_REF] Eckhaus | Relaxation Oscillations Including a Standard Chase on French Ducks[END_REF] and so-called blowup techniques [START_REF] Krupa | Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points-Fold and Canard Points in Two Dimensions[END_REF]. With these advanced methods, it is possible to show that orbits with canard segments of different length perturb at different parameter values within an exponentially narrow regime, thus leading to the canard explosion in the full system.

Jump-on canards

The construction of singular canard orbits linked with Fenichel's theorem explains the dynamics of γ 1 (t) in Figs. 5.3 and 5.4, where the forcing amplitude A is large enough to surpass the lower Hopf bifurcation H L and the lower fold F L . Headless canards, like this one, have a jump to the bottom branch in common. Slow-fast systems may also have canard solutions with a head. They usually appear in systems, which have two folds: the first one destabilizing, the second one stabilizing the branch. Headed canards jump onto this stable upper part. In 3D systems with an 1D or 2D S-shaped critical manifold, the upper sheet is typically unstable near the upper fold, thus preventing the existence of headed canards. Instead, past the maximal canard, fast oscillations related to the existence of limit cycles develop and lead to bursting solutions; see Section 5.5.

The trajectory γ 2 (t) in Figs. 5.3 and 5.4 has the characteristic dynamics of a headed canard. However, it is peculiar for various reasons. First of all, we can classify this type of dynamics as jump-on canard, since the trajectory lands (after the fast jump) on a seemingly repelling slow manifold. Moreover, the jump-on dynamics can occur after a regular canard segment, as for γ 2 or independent of that, like for γ 3 . As a matter of fact, trajectories of the latter type resemble relaxation oscillations, like in VdP, despite the repelling upper sheet of S 0 . This has an additional consequence: for small enough ε a continuous transition from subthreshold oscillations to bursting is blocked by jumpon canards. The fact that fast oscillations other than relaxation oscillations are absent beyond the maximal canard are novel and unexpected phenomena. In the following we will address how these solutions emerge. Their impact on the route towards bursting is discussed in details in Section 5.5.3.

The two solutions γ 2 (t) and γ 3 (t) are shown in Fig. 5.5(b) and Fig. 5.6 using two different projections. They exemplify two types of jump-on canards, that have an approach towards globally repelling equilibria of the fast subsystem in common. The cyan solution γ 3 represents an orbit which does not interact with the folded saddle p 1 . It slowly evolves on the lower sheet of S 0 , crosses the curve of Hopf bifurcations H L and reaches the lower fold curve F L at which the slow subsystem is singular. Fast dynamics come into play and expectedly the dynamics will approach attractors of the fast subsystem. Such attractors for the considered I 1 value at which the curve escapes S 0 are solely the stable limit cycles displayed in Fig. 5.2(a). Instead of entering a period of bursting, the cyan trajectories approaches the upper branch of unstable equilibria. As soon as it jumps onto on S 0 , the slow subsystem becomes a valid limit anew and the curve remains on S 0 until it reaches F U , where it jumps down to the stable sheet.

In the second case, γ 2 in Fig. 5.5(b) and Fig. 5.6, the orbit possesses a canard segment and jumps from the repelling middle sheet to the repelling upper sheet of S 0 . Similar to the previous case, it evolves on S 0 until F U and finally jumps down. The global motion is identical to that of a canard with a head in VdP.

Multiple elements of these singular cycles have to be understood. First of all, both cases have a similar slow segment in common, namely the part of the trajectory on the upper sheet of S 0 . They can be approximated by solutions of the reduced problem Eqs. (2.51) and are enforced by the presence of p 2 , around which the trajectory evolves. Since the center p 2 is folded, full rotations around it are not possible and the slow parts terminate at F U , where the slow flow is undefined. Here the trajectory can be joined to a fast bit which connects from F U to the attracting sheet of S 0 . After this part, the dynamics on S 0 is again governed by the slow subsystem and depending on the forcing amplitude A, the two orbits take different paths. The solution γ 3 crosses F L far from p 1 and the slow segment on the attracting sheet stops; γ 2 passes through a neighborhood of p 1 and exhibits canard dynamics before a jump occurs. These parts of the orbits are entirely described within the scope of the slow subsystem.

Nested timescale separation

Understanding the remaining segment that leads γ 2 and γ 3 towards the repelling sheet of S 0 requires a more detailed analysis. The mechanism is the same for both cases and will be discussed in the following. Since these pieces of the orbits evolve on the fast timescale we present a visualization of the curves in I 1vr space in Fig. 5.6. In this projection the critical manifold S 0 is shown as a green curve r(I 1 ), v(I 1 ) with attracting (repelling) parts as a solid (dashed) line. In the singular limit, the jump-on points γ * 2,3 = (r * 2,3 , v * 2,3 , x * 2,3 , u * 2,3 ) of the jump-on canard solutions γ 2 and γ 3 , marked by the red and cyan dots in Fig. 5.6, are of saddle-focus type. Linearization of the dynamics reveals a weakly and strongly attracting direction in a neighborhood of the jump-on points together with a repelling direction with complex conjugate eigenvalues. This suggests a 2D stable manifold leading to γ * 2,3 . We will simplify the problem further by noting that the entire dynamics of jump-on canards takes place close to the surface M rv defined in Eq. (5.14). On the one hand, for the slow pieces of the curve this observation is as expected, since by definition this conditions holds on S 0 .

ṙ = 0 ⇒ r = - ∆ 2πτ m v for v = 0 (5.14)
On the other hand, also the fast parts of the orbits remain on M rv . This implies a reduction of the fast dynamics to M rv for the part of state space in which jump-on canards can be found. We will exploit this reduction and investigate a secondary differentialalgebraic system resulting from the fast subsystem Eqs. (2.50) in which the flow ṙ is equilibrated. This latter step, without having a complete picture of the time scaling, is analogous to an additional dissection of the fast subsystem. In other words, the full system exhibits three timescales for what concerns jump-on canards: the dynamics of r takes place on a fast, that of (v, x, u) on an intermediate and that of (I 1 , I 2 ) on a slow timescale. The equilibration ṙ = 0 eliminates the fastest of these scales and approximates the intermediate scale dynamics of jump-on canards, which takes place in the vicinity of M rv .

In this new framework M rv describes a manifold on which the dynamics of (v, x, u) take place, while I 1 , I 2 remain frozen. The jump-on points (v * , x * , u * ) [red and cyan dots in Fig. 5.6] are mutual points of M rv and the upper sheet of S 0 . In the reduced problem on M rv , (v * , x * , u * ) are of saddle type with eigenvalues λ 1 λ 2 -λ 3 > 0 and therefore have associated 1D stable manifolds M JO ⊂ M rv [orange curves in Fig. 5.6]. They exists for any value of I 1 after the upper fold. For values of I 1 beyond the lower fold, they extend down to r = 0. The family of 1D stable manifolds associated with the jump-on points can guide trajectories towards the upper repelling sheet of S 0 and this way leads to the existence of jump-on canards.

So far we have discussed singular orbits, for which the fast segments connect different sheets of the critical manifold S 0 . In the case of regular canards, for ε > 0 small enough, these correspond to stable equilibria of the fast subsystem. For jump-on canards they might be unstable, but possess a stable direction, allowing to reach and stay on the repelling sheet of S 0 . The main dynamics of these singular orbits takes place on S 0 and does not display phases of fast oscillations, as for bursting solutions, but only single fast jumps.

Slow-fast transition to bursting: a tale of two routes

Opposed to that, the solution γ 4 (t) [see Figs. 5.3 and 5.4] and the case initially illustrated in Fig. 5.1 exhibit bursts: a slow segment is followed by fast oscillations. Periodic solutions of the fast subsystem are the underpinning elements of bursting, such that a classification in terms of the fast subsystem's bifurcations appears appropriate. As shown in the bifurcation diagram Fig. 5.2(a), limit cycles originate and terminate at Hopf bifurcations, and change stability at a fold of cycles. Strictly following the classification of Izhikevich, bursting solutions in this system are of subcritical Hopf/fold cycle type. However, the subcritical Hopf bifurcation is closely followed by a fold of the underlying equilibrium branch. Due to a delay effect when surpassing the subcritical Hopf bifurcation [START_REF] Neishtadt | Prolongation of the Loss of Stability in the Case of Dynamic Bifurcations. I[END_REF][START_REF] Neishtadt | Prolongation of the Loss of Stability in the Case of Dynamic Bifurcations. II[END_REF][START_REF] Baer | The Slow Passage through a Hopf Bifurcation: Delay, Memory Effects, and Resonance[END_REF], bursting can effectively be initiated at that fold; see e.g. Fig. 5.7(b 4 ). We will restrict our analysis to these cases. Here a more aptly description of the bursting type is fold/fold cycle, which corresponds to elliptic bursting in the classification of Rinzel [START_REF] Rinzel | A Formal Classification of Bursting Mechanisms in Excitable Systems[END_REF].

In order to understand bursting solutions of the full system, we want to remain in the slow-fast dissection. However, the neural mass with STP in presence of periodic forcing turns out to be a peculiar system and numerically difficult to handle. We are constrained by two main factors. First of all, as soon as we leave the singular limit, i.e, for ε > 0, slow segments of trajectories diverge sensitively from the critical manifold. In other words, ε is required to be remarkably small to maintain a good agreement between between full system trajectories and singular orbits. Secondly, numerical simulation as well as numerical continuation of the full system for small enough ε are challenging, since the dynamics appears to be stiff and require high accuracy.

Therefore a clear view on the emergence of bursting can not be gained easily in this framework. For this reason we will provide, additionally to geometrical arguments, numerical evidence on how bursting forms in the present system, either via direct simulation or continuation using the full system. In general, bursts might emerge via a spike-adding mechanism, that is, the consecutive addition of spikes into the orbit, when varying a parameter (e.g., the forcing amplitude). For parabolic bursting this spike-adding is mediated by folded-saddle canards [START_REF] Desroches | Spike-Adding in Parabolic Bursters: The Role of Folded-Saddle Canards[END_REF]; in square-wave bursters on the other hand, passages through a fast-subsystem saddle-homoclinic bifurcation and a folded node determine the number of large-amplitude oscillations in the burst and small-amplitude oscillations before the burst, respectively [START_REF] Desroches | Mixed-Mode Bursting Oscillations: Dynamics Created by a Slow Passage through Spike-Adding Canard Explosion in a Square-Wave Burster[END_REF]. In the following, we report the spike-adding mechanism for the NMSTP. At its basis is an interaction of the canards dynamics invoked by the presence of the folded saddle p 1 , as well as unexpected torus-canard dynamics. Moreover, we will point out the role of jump-on canards for this spike-adding transition.

Canard explosion and spike-adding

To start with, we consider the case ε = 10 -3 and investigate the full system dynamics by performing continuation with the forcing amplitude A as a parameter. We want to stress that this ε value, although very small, proves to be rather distant from the singular limit and slow-fast dissection arguments have to be taken with caution. The initial solution is for an A value corresponding to subthreshold oscillations, like γ 0 (t) in Figs. 5.3 and 5.4, and is continued towards larger amplitudes.

As a solution measure the L 2 -norm of this family is plotted vs. A in Fig. 5.7(a). The first part until A = A * ≈ 0.25531851205 is in the subthreshold regime. Around A * a very sharp transition occurs, resembling a canard explosion. In this transition region the orbits already exhibit first spikes, here defined as the number n s of local maxima of r(t) for which r(t) > 0.21. This is followed up by a series of arches (on the solution branch) at

A > A * .
The arches are clearly related to the addition of new spikes to the orbit: with every termination of an arch, by means of a vertical dip of the curve, the number of spikes n s increases. This behavior can be better observed for larger A, for which each arch is related to the adding of exactly one spike. Prior, the arches lay more dense along A and the spike adding appears to be of more complex nature. Despite the fact that the points of n s vs.

A depend on the choice of the r-threshold for which a spike is counted, it is evident that spikes are added consecutively. It is also clear that these bursting solutions emerge, in a continuous manner, from subthreshold oscillations.

A more detailed view on the full system dynamics near the explosive transition around In projection onto the (I 1 , v, x)-space, the S 0 appears as a curve (I 1 , v(I 1 ), x(I 1 )). Additionally we show the family of fast subsystem limit cycles, which emerge at the lower subcritical Hopf bifurcation H L . Unstable periodic solutions of this branch will be denoted by Γ r , stable ones after the fold of cycles by Γ a . Embedding these solutions Γ a,r (I 1 , t) = (r, v, x, u)(I 1 , t) into the state space of the full system one obtains the surface P = P a ∪ P r , which consists of attracting and repelling parts P a,r = {(Γ a,r (I 1 , t), I 1 )|t ∈ [0, T (I 1 )]} × {I 2 |I 2 ∈ R}, corresponding to stable and unstable branches of the solution family, respectively. The period T (I 1 ) of these cycles depends on I 1 .

A = A * is

Onset of fast oscillations (b 1 -d 1 )

At the smallest of the chosen A values near A * one can already observe fast oscillations, consisting of five not fully developed spikes. They occur after the trajectory has turned around the folded saddle p 1 , marked by a black dot in (c 1 ). It is this motion around p 1 , taking place in the vicinity of the critical manifold S 0 , which has signs of a turning point, guiding the trajectory along the repelling sheet of S 0 . Taking the rather large ε value into account, this turn hints at a canard segment arising due to the presence of the folded saddle p 1 . After this segment, in (I 1 , I 2 , r)-space [Fig. 5.7(c 1 )], the trajectory pierces through the repelling sheet of S 0 and fast oscillations set in. These results suggest that bursting is initiated at the termination of a canard segment, closely following the repelling middle sheet of S 0 .

Taking the fast subsystem LC family Γ a,r into account, a remarkable feature of the dynamics can be seen in (I 1 , v, d) space [Fig. 5.7(d 1 )]. The spikes of the burst appear to follow the family of unstable limit cycles, thus evolving near the repelling surface P r . Unexpectedly, after piercing through the critical manifold, the bursting solution stays in the proximity of P r , instead of being repelled from it. As I 1 slowly drifts towards smaller values, the trajectory remains close to P r . These windings around P r correspond to the first not fully grown spikes of the full system solution. The spikes increase in amplitude, as I 1 decreases, but remain small; see Fig. 5.7(b 1 ) and inset. An enlargement of two full system trajectories in (I 1 , v, x)-space is shown in Fig. 5.8, with two exponentially close A values near A * .

Finally, the fast oscillations terminate via an escape from P r . By approaching the bottom sheet of S 0 , the dynamics change to that of a drifting equilibrium, passing from burst to quiescence.

Explosivity and spike-adding (b 2 -d 2 )

At a slightly larger A value, close to A * , a majority of the trajectory remains essentially unchanged, with respect to the previous A. The slowly drifting part along the bottom equilibrium branch of the fast subsystem and the canard segment, as well as the first oscillations, appear frozen. This is clear by comparing the blue trajectory with the red dashed curves in Fig. 5.7(b 2 -d 2 ), as well as in Fig. 5.8. The fact that part of the trajectory near the fold freezes, while the following part changes significantly, is a strong indication for explosivity of the solution, when varying the parameter. This strong sensitivity towards parameter changes is typical for canard dynamics. It is caused by the presence of repelling objects in the fast subsystem, typically, but not exclusively, equilibria, like the middle sheet of S 0 .

Indeed, in Fig. 5.7(b 2 -d 2 ), the full system trajectory possesses a canard segment staying near the middle sheet of S 0 , when it turns around the folded saddle p 1 . Hence the sensitivity is to be expected. Moreover, during the fast oscillations, the bursting solution evolves close to P r , thus adding an additional layer of sensitivity.

Compared to the previous case in Fig. 5.7(b 1 -d 1 ), the full system solution winds around P r more often until smaller values of I 1 , before jumping back to S 0 . The trajectory essentially remains close to P r , but reaches up higher. This way, by passing through A * , more and more spikes with increasing amplitude are added to the burst. These spikes are yet not fully grown to the amplitude of the stable limit cycles present in this I 1 region. Furthermore, we note that distance of the blue trajectory to P r increases, as it winds around it, indicating some extent of repulsion near the surface; see also Fig. 5.7(b 2 ). This way, the full dynamics starts to escape from P r and gets attracted to P a .

Emergence of bursting (b 3 -d 3 )

As A increases further, the point at which the trajectory starts to escape from P r shifts towards the lower Hopf bifurcation H L . In fact, the last two spikes are already repelled sufficiently to evolve close to the attracting surface P a ; see Fig. 5.7(b 3 , d 3 ). In other words, the number of revolutions near P r reduces, while the ones around P a increases. These oscillations near P a are of large amplitude and mark the start of a dense burst following for larger A.

Bursting (b 4 -d 4 )

In this next step most of the windings around P r have vanished and the fast oscillations take place in the proximity of P a . Additionally, the burst consists of more spikes in total, with respect to the first considered A value [Fig. Here, an additional spike-adding mechanism beyond the critical value A * acts and is related to the period T (I 1 ) of P a as a function of I 1 . When A is beyond the canard explosion at A * the full system dynamics approach P a right after surpassing the lower fold F L , without the excursion on P r . As the amplitude A is increased, this attraction to P a occurs at larger I 1 values. The period T (I 1 ) of the fast subsystem limit cycles decreases with increasing I 1 and this finally leads to more windings around P a . On top of this, the fraction of time for which the trajectory remains near P a increases. Both effects add more spikes to the burst and result in the spike-adding arches observed in Fig. 5.7(a).

The presented results already show the complexity of how bursts are generated, that is, via a transition through the canard explosion at A = A * , which rather surprisingly leads the canard segment to evolve around the repelling object P r . This is followed by spike growth via repulsion from P r and attraction to P a , until all oscillations evolve near P a .

Continuous route to bursting: spike-adding via mixed-type-like torus canards

Before the bursting transition, the full system dynamics can be described by a single slow frequency, determined by ε. After the transition, a full cycle consists of a slow phase followed by fast spiking. It is therefore characterized by the slow frequency and a fast one, given by properties of the fast subsystem. In the context of bursting and in slow-fast systems, whose fast subsystem has both stable and unstable cycles, this change of the dynamics, from one to two frequencies, hints at a torus (Neimark-Sacker) bifurcation in the full system. This can indicate the existence of mixed type-torus canards (MTTCs). Indeed, the full system dynamics nearby the canard explosion not only exhibits a canard segment along the repelling sheet of S 0 , but as well a canard segment on the repelling higher dimensional invariant set P r . This clearly resembles mixed-type canards as described in [START_REF] Desroches | Canards of Mixed Type in a Neural Burster[END_REF]. Very similar MTTCs have been reported in [START_REF] Baspinar | Canonical Models for Torus Canards in Elliptic Bursters[END_REF], where they evidently arise in the singular limit ε → 0. In particular Fig. 2 of [START_REF] Baspinar | Canonical Models for Torus Canards in Elliptic Bursters[END_REF] reports dynamics where a quasi-static motion of the full system along the attracting sheet of S 0 connects to a repelling set of limit cycles created by a subcritical Hopf bifurcation. In the NMSTP however, the understanding of mixed-type torus canards is more complex for various reasons and as we will show, only observed for small, but large enough ε.

First of all, in the ε regime for which we observe mixed-type torus canards, the timescale separation is small enough for the canard segment on the middle sheet of S 0 to persist as a strongly perturbed version of its singular counterpart. One can observe a turn around the lower fold F U , mediated by the folded-saddle singularity p 1 . It forces the trajectory to pierce through S 0 , bringing it very close to P r ; see Fig. 5.8.

Secondly, the solutions Γ r ⊂ P r , despite being globally repelling, possess two stable Floquet multipliers. We argue that the associated stable directions, similar to the jump-on canard case (see Section 5.4.2), form due to the intrinsic timescales of the fast subsystem. Consequently, this means that stable manifolds can be associated with P r : it can attract trajectories along certain directions.

Thirdly, for large enough ε, one can expect dynamics very distinct from singular orbits. In particular, solutions may not only evolve nearby, but also switch between different attracting branches of the fast subsystem. We observe this transition from the middle sheet of S 0 to P r . Despite both being repulsive, the reasoning holds: the folded-saddle canard dynamics enforces the full system to stay close to the middle sheet of S 0 ; stable directions allow an attraction towards P r ; the large ε allows to bridge S 0 to P r and finally torus canard dynamics allow to follow P a closely, adding more and more spikes in the transition region around A * .

Discontinuous route to bursting: block evoked by jump-on canards

The transition from subthreshold oscillations to bursting when increasing the forcing amplitude A explains the emergence of the very first spikes in the burst, which occur for forcing amplitudes exponentially close to A * . They also show how the subsequent spikeadding process, reflected by the arches in Fig. 5.7(a), occurs. In the following we will extend the analysis of this transition, taking into account different values of the parameter ε. As an outlook, we will describe how, for ε values closer to the singular limit, jump-on canards interfere and block the transition. In Fig. 5.9 solution families of periodic orbits are displayed, obtained via numerical continuation of the full system Eqs. (5.2) and Eq. (5.3). The figure comprises seven branches for ε values ranging from ε = 5 • 10 -3 to ε = 1 • 10 -5 and they are aligned to the canard explosion at A = A * (apart from branch 4). Branch 3 is identical to the one shown in Fig. 5.7 and undergoes a continuous transition from subthreshold oscillations to bursting.

As a general result, we find two types of solution families, which, beyond the canard explosion, i.e, for A > A * , take different paths. For ε 2.7 • 10 -4 the branches display a continuous transition from subthreshold oscillations to bursting; see red curves in Fig. 5.9. For ε 2.7 • 10 -4 on the other hand the branches evolve into families of jump-on canards (curves in Fig. 5.9). A value of ε ≈ 2.667521298 • 10 -4 separates the two ε regimes.

However, it is clear by considering branches 4 and 5 that bursting solutions do not cease to exist for smaller ε values. Instead they coexist with the jump-on type solutions.

It remains unclear how bursting forms for ε 2.7 • 10 -4 . Nevertheless the role of jump-on canards for the emergence of bursting becomes evident: for singular or small enough ε 2.7 • 10 -4 regular canards are observed, evolving on the middle sheet of S 0 . Beyond the maximal canard, the intrinsic timescales of the fast subsystem come into play and lead to the emergence of jump-on canards (see Section 5.4.2). They block a transition towards P and as a consequence, bursting remains absent for these solutions families.

For ε 2.7 • 10 -4 however, jump-on canards cease to exist. In the amplitude regime where they would be expected, the system approaches P a and bursts instead. The region around the canard explosion is populated by MTTCs and separates subthreshold oscillations from the bursting regime. It remains an open question for future work how the differentiation depending on ε occurs and in particular which possible bifurcations of the full dynamics result in the distinct regimes of continuous bursting transition and blocking jump-on canards.

Network behavior

The neural mass model with STP Eqs. (5.2) is an exact limit of the underlying QIF network Eqs. (5.1) as N → ∞. We want to emphasize the benefits of neural mass models and their capability of describing neuronal dynamics at a macroscopic scale. In Fig. 5.2(b -f) results using the fast subsystem and the corresponding QIF network have been shown. For the original neural mass model [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF] the exactness of the mean-field limit has been exploited in various studies in order to understand the collective dynamics of large neuronal populations [31-33, 46, 87, 98]. We want to note that STP, as opposed to exponential synapses used in Ref. [START_REF] Avitabile | Cross-Scale Excitability in Networks of Quadratic Integrate-and-Fire Neurons[END_REF], results in a substantially higher sensitivity towards finite size fluctuations and numerical errors, rendering the agreement of network and neural mass less clear, in particular in the canard regime.

Here we want to assess if the mechanisms leading to bursting in the neural mass model persists in a finite-sized network. To our knowledge such analysis, in particular in presence of short-term synaptic plasticity, has not been performed. For this we introduce the external periodic forcing I 1 = A sin(εt) also into the network Eqs. (5.1) and investigate the QIF population dynamics nearby the canard explosion of the neural mass. In Fig. 5.10(a) the family of periodic solutions transitioning from subthreshold oscillation to bursting is shown for ε = 2 • 10 -3 . Two dashed black lines mark the values A = 0.265 and A = 0.27, respectively, for which neural mass (red) as well as QIF network trajectories (black) are depicted in Fig. 5.10(b, c). Row (b) shows the time series x(t) vs. t, row (c) the trajectories in (I 1 , v, x)-space.

The QIF network consists of N = 100000 neurons and ε = 2•10 -3 is chosen to maintain reasonable computation times. In the network, the initial conditions are chosen according to fixed point values (r * , v * , x * , u * ) obtained from the neural mass at I 1 = 0. However, initializing the network firing rate and average membrane potential at a given value is a non-trivial problem. To overcome this, the initial conditions of the QIF network are set to V i = v * for all i = 1, . . . , N , x = x * and u = u * . After a short transient, at time t = 0, the network has reached equilibrium and the forcing I = A sin(εt) sets in.

We start the analysis by considering A = 0.265, marked by the left most dashed line in Fig. 5.10(a). It lays within the spike-adding arches of the neural mass, which displays bursting with a multitude of fully grown spikes; see red curves in Fig. 5.10(b 1 , c 1 ). They mainly evolve in the proximity of the invariant set P a . This periodic solution of the full problem does not highlight a canard segment around the folded singularity p 1 , which is to be expected, since A is not close enough to the canard explosion at A * . On the other hand, the macroscopic state of the QIF network is found to be just at the start of the spike-adding process. The orbit possesses a canard segment: the turn around the lower fold F L is evident. This is clear by looking at the black curve in Fig. 5.10(c 1 ). More strikingly, a few low-amplitude oscillations are picked up in the vicinity of the repelling invariant set P r . This means that, despite the discrepancies, the mixed-type torus canards observed in the neural mass are also found in the QIF network. It is plausible to assume that spike-adding in the network follows the same mechanism as described in Section 5.5.

At the larger amplitude A = 0.270, shown in Fig. 5.10(b 2 , c 2 ), the agreement between neural mass and network trajectory is more distinct. In both systems the canard segment is absent and they both exhibit bursting with a comparable number of large amplitude spikes. Taking also into account the previous case A = 0.265, it appears that the bifurcation structure of the network is shifted towards larger amplitudes with respect to the neural mass.

Discussion

The results of this work lay within the intersection of various fields including mean-field theory and slow-fast dynamics. First of all, we make use of recent developments of meanfield theory, namely the powerful OA ansatz, in order to understand the emergent dynamics of spiking neuronal networks on macroscopic scale.

Secondly, we aim at more biologically plausible models in this work, through the inclusion of synaptic dynamics, in form of STP, while preserving the exactness of the mean-field limit with respect to the QIF network. This adds more realism to the QIF network and neural mass, but at the same time adds to the complexity of the collective dynamics, even in absence of external forcing. In the part of parameter space chosen here, STP allows for the existence limit cycles, that are absent in the original model. As we have shown via extensive numerical evidence, STP leads to various peculiarities, when forcing the system slowly and periodically.

That leads to the third point, which we put our focus on: the treatment of the forced neural mass with STP using methods of singular perturbation theory, in particular slowfast dissection. Without STP, slow external forcing already gives rise to bursts, as shown in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. The fast oscillations of these orbits vanish in the singular limit and relaxation oscillations remain. Accounting for STP, however, leads to more intricate dynamics.

One of the fundamental elements are canards. Expectedly, due to the slow harmonic passage through a fold of the S-shaped critical manifold, they appear as folded-saddle canards, which play a role for spike-adding in parabolic bursters. Here, despite the fact that the equilibrium destabilizing bifurcation is a subcritical Hopf bifurcation, the observed bursts are reminiscent of elliptic bursting (i.e., subcritical fold/fold of cycles bursting), due the slow passage through the Hopf bifurcation.

Concerning the full system dynamics, a folded saddle can be found, with associated explosive canard solutions. It separates quiescent orbits with purely slow dynamics from bursting ones. In this transition region we find an intriguing interplay of slow-fast effects: jump-on canards exist close enough to the singular limit and are associated with a subtle timescale separation of the neural mass, allegedly invoked by STP. They connect two repelling sheets of the critical manifold and more strikingly, block a continuous transition from quiescence to bursting.

Jump-on canards are one of the surprising elements of this work. However, they vanish when considering biologically more plausible frequencies of the periodic external current. Despite the rather insufficient timescale separation in this parameter regime, we find orbits which display a strongly perturbed canard segment. It is remarkable that these canards, as opposed to the jump-on case, do not block a continuous transition towards bursting, but much more promote it. Specifically they guide the trajectories into the proximity of unstable limit cycles of the fast subsystem. Here once again, an unexpected mechanisms sets in and allows attraction towards these globally repelling cycles. The final element to the spike-adding mechanisms in this region are rapidly oscillating segments that revolve around the branch of unstable limit cycles and consecutively add more spikes to the orbit.

Overall, the full dynamics nearby the canard explosion can be seen as mixed-type-like canards of peculiar nature: orbits evolve nearby the repelling middle sheet of the critical manifolds, as well nearby unstable limit cycles. Typically mixed-type canards are observed towards the singular limit, as they represent a slow-fast effect. The neural mass with STP exhibits mixed-type-like canards only for large enough forcing frequency; the phenomenon disappears for too slow forcing and is blocked by jump-on canards.

By virtue of the NMSTP model being the main subject of this work, we want to emphasize that it represents an exact limit of the QIF network with STP. Discrepancies between network and NMSTP arise due to numerical errors and finite-size fluctuations, especially under slow forcing. Nevertheless, our results clearly show a good agreement between the two models. In particular, the network simulations display the mixed-typelike torus canard dynamics, hence this can be regarded as a strong evidence for the same mechanisms to be responsible for burst spike-adding in the network.

In summary, the NMSTP turns out to be a useful approach in order to investigate the ensemble dynamics of neuronal populations in presence of STP. Slow-fast dissection reveals the mechanisms underlying burst generation on population level. As is it turns out, synaptic dynamics indeed enriches the complexity of the problem, by giving rise to peculiar jump-on and mixed-type-like torus canards, which both appear due to the timescales associated with STP.

Finally, while this work is in the scope of neural mass models and STP, the methodology of OA reduction and slow-fast dissection, coupled with numerical bifurcation analysis, can be applied to a much broader class of phase oscillator systems, like the Kuramoto model. This can lead to a better understanding of emerging collective slow-fast dynamics of largescale networks.

Chapter 6

Conclusion and perspective

Next generation neural mass models have emerged from the seminal works of Ott and Antonsen and Montbrió, Pazó, and Roxin [START_REF] Ott | Low Dimensional Behavior of Large Systems of Globally Coupled Oscillators[END_REF][START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. Ever since they have inspired a large community of mathematicians, physicists and theoretical neuroscientists, to implement more plausible biophysical mechanisms and study large scale neuronal dynamics, with focus on different aspects. To recall and name a few examples, the exact MPR firing rate equations have been employed to study (1) the effect of time delay in populations of inhibitory neurons giving rise to collective chaos [START_REF] Pazó | From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay[END_REF], (2) the crucial role of spike synchrony for fast oscillations [START_REF] Devalle | Firing Rate Equations Require a Spike Synchrony Mechanism to Correctly Describe Fast Oscillations in Inhibitory Networks[END_REF], (3) the importance of oscillations in cognitive tasks [START_REF] Schmidt | Network Mechanisms Underlying the Role of Oscillations in Cognitive Tasks[END_REF], (4) nested cortical oscillations [START_REF] Segneri | Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models[END_REF] and (5) the impact of electrical synapses on network synchronization [START_REF] Montbrió | Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization[END_REF]. This latter study is also an example for the versatility of the OA and MPR framework, which allow for the inclusion of relevant biophysical features, without losing the exactness of the mean-field limit. Some recent extensions of the exact neural mass model take into account fluctuation driven populations [START_REF] Goldobin | Reduction Methodology for Fluctuation Driven Population Dynamics[END_REF], spatially extended neural field models [START_REF] Byrne | Next-Generation Neural Mass and Field Modeling[END_REF][START_REF] Byrne | Mean-Field Models for EEG/MEG: From Oscillations to Waves[END_REF] and spike-frequency adaptation [START_REF] Gast | A Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation[END_REF].

Despite considering spiking networks of phenomenological QIF neurons and the corresponding mean-field limits, the above works demonstrate how simple mathematical descriptions can provide insight into biophysical problems. It is important to note that many of the cited works using the MPR framework draw fundamental conclusions regarding neuronal dynamics with respect to properties of the systems, which are ubiquitous in neuroscience, like time delay. These studies might allow for predictions of the expected dynamics in a much broader range of models, which possess (or do not possess) the same properties. An excellent example for this is spike synchrony, which is very relevant for cortical oscillations during working memory tasks.

This thesis gives a glimpse at what can be achieved with next generation neural mass models, but it also leaves open questions. Therefore, we will address several aspects which are relevant with regards to the studies in Chapters 3 to 5, but also to the model derivation in Chapter 2. In the following the key results of this thesis will be summarized and put in a broader context. We will also comment on the limitation of the neural mass model with short-term synaptic plasticity and give perspectives for future projects.

Working memory

The implementation of STP into the QIF network and exact mean-field framework in Chapter 2 is one possible extension of next generation neural mass models, aimed at the very specific application of the model towards working memory. In this thesis we have seen that first of all a QIF network with STP is able to reproduce basic working memory operations like information loading, maintenance and rehearsal, based on either populations bursts or persistent activity. Secondly and more importantly, the entire dynamics of the QIF network in presence of STP on mesoscopic scale is captured in an exact manner by the corresponding neural mass model.

Both models exhibit spike synchrony and thereby give rise to fast oscillations in the β-band, as observed in experimental studies with monkeys and humans. We can confirm one prediction of previous studies in the context of working memory, namely that these oscillations are absent in models that do not take into account spike synchrony, like the Wilson-Cowan model. Hence, using the next generation neural mass model with STP, we reported a better agreement with experimental results regarding powers of cortical oscillations in various frequency bands, compared to the WC model.

Moreover, thanks to the exactness and low dimension of the mean-field model, a systematic analysis revealed how the spectrograms are shaped by the interplay and resonances of fundamental frequencies in the system, which are linked to the number of items maintained in memory. One of the remarkable results of Chapter 3 is the analytical estimation of the maximum working capacity of around five items, which is in line with experimental studies.

Perspective

We want to address the validity and limitations of the mean-field approach that we have employed in order to study working memory. In particular, the comparison of microscopic system and neural mass in Chapter 3 was performed using descriptions of STP on different scales, in this thesis referred to as microscopic STP (µ-STP) with 3N equations in the network and mesoscopic STP (m-STP) with N + 2 equations. Naturally the former one represents a more accurate description of STP, by incorporating the dynamical evolution of the resources and utilization factors at the single neuron level. It is clear that the neural mass model with STP developed in this thesis does not represent an exact mean-field limit for the µ-STP case, as also pointed out in [START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF]. However the exactness is given for the m-STP network case, as we have shown in Chapters 2 and 3.

The justification for mainly using m-STP in this thesis was given by the Poissonian assumption, which allows to neglect correlations between the depression and facilitation variables [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF], resulting in the m-STP equations. And indeed, when comparing the µ-STP network with the neural mass model that has m-STP at its basis (hence is not an exact description for µ-STP), we find remarkable agreement of the time traces, despite not taking into account correlations and fluctuations of the synaptic variables. The agreement is particularly good, when the network exhibits high firing rate dynamics, but discrepancies increase for low firing activity.

The influence of firing rate heterogeneities in the µ-STP network is also reported in [START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF]. The authors suggest that the agreement between the neural mass model developed in this thesis and the µ-STP network improve when heterogeneities are low. Independently, we have made similar considerations in Appendix A and find that silent neurons are at the core of the discrepancies between our neural mass model and the µ-STP network. First of all, we have only considered depressing synapses in absence of facilitation, but still found discrepancies, implying that the Poissonian assumption is not the root of the problem. Secondly, we find better agreement between the mean-field limit and µ-STP network for states in which silent neurons are sparse. This is in line with the approach in [START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF].

The neural mass model with STP proposed in this work suffices for the application to working memory, as we have demonstrated in Chapter 3. This is supported by the fact that working memory loading, maintenance and rehearsal are associated with enhanced firing rates, for example found in persistent state activity or population bursts. Overall, the model developed in this thesis represents an exact limit of the m-STP network and allows for a better understanding of phenomena relevant to questions of WM.

An exact macroscopic description of the dynamics in a QIF network with µ-STP is desirable and interesting to study from a mathematical point of view, but it remains an open question whether or not such a limit can be performed. The considerations in Appendix A and [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF][START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF] can be seen as a starting point to answer that.

All-brain modeling

In Chapter 4 experimentally obtained data were employed to model neuronal dynamics on the scale of the whole brain. In this thesis, structural connectomes obtained from diffusionweighted MRI were used for the first time within a multi-population model, in which each network node, representing a brain area, obeys the dynamics of a MPR neural mass. With regards to the biophysical plausibility, it is important to note that we have deliberately refrained from implementing phenomena like STP or adaptation, in order to keep the model simple. This way we provide a proof-of-concept for idealized next generation neural mass models able to test clinical hypothesis of seizure propagation.

The healthy subject and epileptic patient connectomes are provided by different laboratories and do not use the same anatomical atlases for the segregation into brain areas. As such, direct comparisons of the data sets have to be taken with caution. Yet, in order to validate the applicability of the neural mass model, it was crucial to testify that with otherwise identical parameters, our approach yields distinct emerging dynamics, when comparing healthy subject to epileptic patient connectomes. Accordingly, we have reported numerical evidence, hinting at the epileptic patient connectomes to be more prone to seizure-like events, through a reduction of the external current required to trigger recruitments into the high activity states.

We also exploited the presurgical assessment, allowing to identify epileptogenic zones and in particular propagation zones for individual patients. Here we find good agreement between the recruitment order predicted by the multi-population model and the nodes which supposedly are propagation zones, according to the presurgical invasive and non-invasive evaluation. In summary, the results provided in Chapter 4 illustrate how next generation neural mass models can be used for clinically relevant studies on seizure propagation, despite being phenomenological and idealized.

Perspective

As mentioned above, the multi-population neural mass model employed to study seizurelike events is chosen to be minimalistic. Its major limitations are given by the absence of sustained collective oscillations and spontaneously emerging and terminating seizures. Hence, modeling fully developed seizures and their propagation is not possible.

In order to lift this limitation, the implementation of short-term synaptic plasticity into the multi-population model appears a natural choice. STP gives rise to stable limit cycles, as shown in this thesis, and contributes two additional timescales. Moreover, the multi-population model in presence of STP allows for heterogeneities in the depression and facilitation time constants of individual populations, which have also been reported experimentally [START_REF] Wang | Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex[END_REF]. Furthermore, the OA exact reduction methodology allows many other biophysical mechanisms to be implemented, rendering the model more sophisticated and realistic, but also more opaque.

In this context a compelling research line would be the assessment of the capabilities of the exact neural mass model in reproducing all-brain dynamics, when taking into account more detailed mechanisms. An effective method for this assessment has been performed in [START_REF] Palesi | The Importance of Cerebellar Connectivity on Simulated Brain Dynamics[END_REF] and requires functional connectomes obtained from fMRI, in addition to the structural diffusion-weighted MRI connectomes. Functional MRI is based on the calculation of signal correlations among different brain regions. These correlations have to arise from structure. Therefore, one can feed the structural information into the dynamical model and measure the correlations arising in the numerical simulation, in order to estimate a fMRI connectome. This allows for an optimization loop, in which parameters are changed iteratively, in order to achieve a better match of the empirical functional connectomes and the simulated ones, thus benchmarking the model capabilities.

Slow-fast dynamics in large networks

The focus in Chapter 5 was on understanding the response of a spiking neural network to a periodic external drive. It is one of the first studies combining slow-fast dissection with the exact reduction methodology from statistical physics, to gain insight into the collective response of large coupled networks. A look into the original model by MPR already reveals an interesting bifurcation structure which displays bistability, an essential ingredient for complex dynamical behavior to arise, when periodically forcing the neural population. Motivated by this characteristic, we studied the extended model used for working memory, which in this thesis has proven to complexify the bifurcation structure by giving rise to stable limit cycles.

The slowly forced system exhibits disproportionately more convoluted slow-fast dynamics in presence of STP. Besides the classical canard, we reported jump-on canards, which at first appeared to be primarily a mathematical curiosity. A rigorous numerical investigation revealed their central role in blocking the continuous route from subthreshold oscillations to bursting, when considering extensive timescale separations.

For biologically more relevant separations, the route to bursting is continuous and shaped by mixed-type-like torus canard, which mediate a continuous spike-adding transition. Interestingly this behavior associated with the onset of bursting breaks down when approaching the singular limit. We provided evidence that shows the continuous transition to bursting via mixed-type-like torus canards also in the underlying microscopic network.

Studies which examine networks of phase oscillator are pervasive in physics and nonlinear dynamics. Models which describe phenomena that are very different from the above study on collective bursting in a spiking neural network might possess similar bifurcation scenarios, giving rise to the same slow-fast mechanisms reported here. The methodology employed in Chapter 5, i.e, mean-field theory coupled with slow-fast analysis, can be applied to other systems and shed light onto the emerging collective dynamics as a response to external drives.

Perspective

The slow-fast analysis of the neural mass model also brings up new intriguing questions. First of all, some details regarding the emergence of bursting in the non-continuous case remain unclear. In particular, the branch of bursting solutions for strong timescale separation, appears to be an isola, i.e, a disconnected branch. A problem we encounter here is the stiffness of the slow-fast dynamics, such that the numerical bifurcation analysis becomes challenging. One possible way of extending the analysis could be to construct a minimalistic model that exhibits the essential multi-timescale phenomena: jump-on and mixed-type-like torus canards. Two crucial elements for this could be the proximity of the saddle-node and subcritical Hopf bifurcations, as well as the subtle timescale separation in the fast subsystem.

Secondly, we have seen that a folded-saddle singularity can give rise to interesting canard dynamics and shapes the transition to bursting oscillations. Here the slow periodic Hopf forcing is partially responsible for the emergence of a folded saddle. However, the forcing dynamics does not need to be of Hopf form, in order to produce a periodic drive. Instead one could realize it through a feedback loop between the neural mass and forcing term. Depending on the exact choice, it is possible to obtain a folded-node singularity, replacing the folded saddle. In such a case we expect to observe mixed-mode bursting oscillations [START_REF] Desroches | Mixed-Mode Bursting Oscillations: Dynamics Created by a Slow Passage through Spike-Adding Canard Explosion in a Square-Wave Burster[END_REF], which are solutions exhibiting both small-amplitude oscillations and bursts of large-amplitude oscillations. An interesting aspect to study in this case is the role of jump-on canards and if they impact the transition to bursting.

Beyond the MPR firing rate equations

To bring this dissertation to an end, let us address the plausibility of the employed neural mass models, which have quadratic integrate and fire neurons at their basis, hence are inherently phenomenological. The fact that QIF neurons are not biophysically grounded does not imply that they are not capable of describing neuronal dynamics accurately. As a matter of fact the phenomenological AdEx model has biophysically meaningful parameters, which can be fitted to empirical data. Moreover, one can link the AdEx to the QIF model as shown in Chapter 2. This opens up an interesting question, namely whether or not an exact mean-field limit in the OA framework can be performed, while maintaining the leak term and adaptation dynamics. The Izhikevich model stands out in terms of biological plausibility compared to most of the integrate and fire models. Hence, trying to obtain an exact macroscopic description for networks of Izhikevich neurons, including meaningful microscopic and macroscopic parameters which bridge the scales, appears to be a worthwhile future project. on the index i and is given by

X * T,i = 1 1 + √ I i π U 0 τ d . ( 6.4) 
In summary we have for the equilibrium X * i of neuron i:

X * i =    1 if I i ≤ 0 1 1+ √ I i π U 0 τ d if I i > 0    (6.5)

Ensemble average

In the limit N → ∞ and given that the network is in quasi-equilibrium, we can calculate X * , as well as the mean firing rate r of the tonic neurons, using an integral. For this we have to take into account the PDF g(η) and approximate further, by assuming that the contribution of the recurrent current is neglectable, in other words, I i = η i . This is justified by the fact that the present approach serves as an estimate for cases where many neurons are silent. We proceed by calculating the mean firing rate r of the tonic neurons

1 : r = ∞ 0 √ η π g(η) ( * ) = 1 π η + η2 + ∆ 2 2 (6.6)
X * T,i in the thermodynamic limit becomes X * T (η) and we can integrate: with R = η2 + ∆ 2 , φ = arctan η ∆ and r from Eq. (6.6). Note that Eq. (6.10) is only valid for ∆, U 0 , τ d > 0. A comparison of the analytical expression Eq. (6.10) and a numerically estimated integral is shown in Fig. A1. We hypothesize that the meanfield limit above does not take into account silent neurons. Instead the dynamics of x(t) follows from the assumption, that all X i (t) are driven by the firing rate r, as stated below. Ẋi = 1 -X i τ d -U 0 X i r (6.12)

X * = ∞ -∞ X * T (η)g(η) = X * S + X * T (6.7) 
Taking the network simulation, we mimic this behavior, by calculating a different mean of X, given by

X * MF = 1 N T i∈N T X i + X S X T,i (r) . (6.13)
We denote the set and number of tonic neurons by N T and N T respectively. Moreover, X S reflects the fraction of silent neurons and r is the estimated firing rate of tonic neurons from Eq. (6.6). Essentially, in Eq. (6.13) we assume that tonic neurons contribute to the total average X * MF through their actual values X i , while silent neurons contribute as if X i would be driven by the mean firing rate r of the tonic neurons. A comparison of the estimation is given in Fig. A2. From column (1) to (4) the parameters are such, that the number of silent neurons (obtained from the network simulation) decreases. In column [START_REF] Squire | Fundamental Neuroscience[END_REF] we find good agreement between Eqs. (6.6) and (6.10) (orange) and network (black). At the same time time we have agreement between Eq. (6.13) (red) and Eq. (6.11) (blue). The same holds for column (b). As we approach smaller numbers of silent neurons the discrepancy of the estimates and the network results increases. However, for vanishingly small number of silent neurons, network Eq. (6.1) and meanfield Eq. (6.11) start to coincide. In summary, these results suggest that the mean-field model Eq. (6.11) describes the collective dynamics of Eq. (6.1) accurately, whenever silent neurons are sparse (gray versus blue curve in Fig. A2). This is in line with the results in [START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF], in which firing rate heterogeneities has been suggested as the cause for discrepancies. Additionally, the above results suggest that the dynamics of the mean-field model Eq. (6.11) describes a network, in which depression variables X i of neurons, which are actually silent in Eq. (6.1), are instead driven by the network's mean firing rate (blue versus red curve in Fig. A2).

Appendix B 1 Minimal biophysical models of seizure dynamics

The detection of epileptic seizures via electrophysiological recordings allowed for the establishment of a detailed taxonomy of seizures. The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomenological mathematical model, the Epileptor [START_REF] Jirsa | On the Nature of Seizure Dynamics[END_REF]. In this model, seizure events are driven by a slow permittivity variable and occur via saddle node and homoclinic bifurcations at seizure onset and offset, respectively. The saddle-node bifurcation at the onset of ictal discharges was chosen based on experimentally observed features, such as fixed frequency and fixed amplitude of abruptly starting oscillations, and a shift of baseline field potential. The homoclinic bifurcation at the offset of ictal discharges, on the other hand, reproduces the logarithmic scaling of interspike intervals when approaching seizure offset. As part of the dynamic repertoire of the Epileptor, the epileptic attractor is described in terms of a selfsustained limit cycle that comes from the destabilization of the physiological activity while multiple types of transitions allow for the accessibility of seizure activity, status epilepticus and depolarization block, that coexist, as verified experimentally in [START_REF] Houssaini | The Epileptor Model: A Systematic Mathematical Analysis Linked to the Dynamics of Seizures, Refractory Status Epilepticus and Depolarization Block[END_REF].

The Epileptor model has been reduced to a minimal canonical mathematical representation of high codimension (up to 4) that, appropriately tuned, can display several types of fast-slow behaviors [START_REF] Saggio | Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-Slow Transitions of Classes[END_REF]. The model contains two subsystems acting at different time scales, in which the fast subsystem is unfolded in a plane showing several bifurcation paths of a high codimension singularity. The slow subsystem steers the fast one back and forth along these paths leading to fast-slow (aka bursting) behavior, mimicking epileptiform activity. The model is able to produce almost all the classes of bursting predicted for systems with a planar fast subsystem, including the Epileptor class, and has been demonstrated to be the dominant class, so-called dynamotype, in empirical epilepsy data [START_REF] Saggio | A Taxonomy of Seizure Dynamotypes[END_REF]. Other dynamotypes have been also found empirically.

When performing the analysis of the single-population firing rate equations Eqs. (2.36), it turns out that, in the absence of forcing, the only attractors are fixed points. As it becomes clear in Section 4.3.1, a stable node and a stable focus are observable, separated by a bistability region between a high-and a low-activity state, whose boundaries are the locus of a saddle-node bifurcation (for more details see [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]). In this context are not observable self-sustained oscillations, but only damped oscillations at the macroscopic level that reflect the oscillatory decay to the stable fixed point. This oscillatory decay will here be considered as representative of a seizure-like event, not being able to observe a stable limit cycle to describe the emergence of a fully developed seizure as in the Epileptor. However, seizure-like events can be used as paradigm to investigate propagation of seizurelike activity in the network. Furthermore, a recently developed model of interictal and ictal discharges, called Epileptor-2 [START_REF] Chizhov | Minimal Model of Interictal and Ictal Discharges "Epileptor-2[END_REF], makes links to underlying physiology and suggests how to eventually obtain all observed dynamotypes for the exact neural mass model Eqs. (2.36) and enable transitions towards fully developed seizure activity.

Epileptor-2 is a simple population-type model that includes four principal variables, i.e. the extracellular potassium concentration, the intracellular sodium concentration, the membrane potential and the synaptic resource diminishing due to short-term synaptic depression. A QIF neuron model, whose dynamics is ruled by an equation similar to Eq. (1), is used as an observer of the population activity. While the potassium accumulation governs the transition from the silent state to the state of ictal discharge, the sodium accumulated during the discharge, activates the sodium-potassium pump, which terminates the ictal discharge by restoring the potassium gradient, thus polarizing the neuronal membranes. This means that, in high potassium conditions, Epileptor-2 produces bursts of bursts, described as ictal-like discharges.

Therefore, the association of a slow subsystem describing ion concentration variations together with a fast subsystem, identified by Eqs. (4), should give rise to self-emergent periodic and bursting dynamics at the macroscopic level, thus allowing us to identify different combinations of onset/offset bifurcations. Whenever not sufficient, it will be possible to investigate the dynamics emergent in the exact neural mass model, provided with short-term synaptic plasticity, when subject to a global feedback acting on a slow timescale, describing ion concentration variations. The exact neural mass model, when equipped with short-term synaptic plasticity, shows a more complex dynamics that eventually results in a bifurcation diagram that provides stable limit cycles [START_REF] Taher | Exact Neural Mass Model for Synaptic-Based Working Memory[END_REF]. However the introduction of short-term plasticity, itself, adds complexity to the dynamics, allowing for the emergence of bursting activity [START_REF] Tsodyks | Neural Networks with Dynamic Synapses[END_REF]. White: no recruitment, gray: one area recruited (marks asymptotic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). For very large values of ηG (usually ηG > -5), the system enters the stable focus regime before the stimulation is applied. In that case η(k) gen is not defined because no brain areas are recruited as a result of the applied stimulation current: for this reason white color, corresponding to no recruited areas, is visible also in the right part of the different panels. For increasing standard deviation values, the effective excitability of the more and more nodes turn out to be close to the one that allows the system to be in the stable focus regime, therefore the probability of finding nodes in the stable focus regime increases. As a result, more and more nodes enter the HA state and recruite the other areas before the stimulation current is applied. This means that, for increasing standard deviation, η(k) gen become less defined while η(k) asy move to larger values of ηG , still remaining better identifiable for increasing heterogeneity. For one exemplary patient, E2, we show here in detail the impact of different realizations of η(k) , drawn from a Gaussian distribution (centred at ηG = -7.5 with standard deviation 0.1), on the recruitment times of the brain areas. In particular we have considered it to be sufficient to present results for six out of ten realizations, due to the large similarities between the outcomes. Space-time plots of the average firing rates give an immediate visualization of the recruitment events for each brain area. We find that the pattern of recruitment does not change substantially for different realizations of the η(k) . The EZ is localized in the area lh-LOCC, that corresponds to node k = 21: The firing rate of this population increases immediately upon stimulation, thus giving rise to the recruitment mechanism. The brain areas in the PZ are rapidly recruited: In general the first ten areas are always recruited in less then 0.1s, followed by a continuous increase of the number of recruited nodes. Finally, it is worth noticing that the first recruited areas correspond to those predicted clinically. Figure A9: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig. 4.12 but for the patients with more than one area in the EZ (orange node). All areas belonging to the EZ are merged into one for visualization clarity, keeping intact the recruitment order, the recruitment times and the connection weights to the areas in the EZ. (a) Node size corresponds to the inverse recruitment time, (b) to the connection strength to the EZ (A2-D2) and (c) to the inverse shortest path length to the EZ. The size of the orange EZ circle remains fixed. Blue dots distinguish recruited areas to belong to the PZ SEEG , i.e. the PZ identified according to the presurgical invasive evaluation. Results are obtained for patients E1 (column 1), E4 (column 2), E5 (column 3), E7 (column 4). Note that patient E1 has very weak connections outgoing the EZ which results in very late recruitment times indicated by small circle sizes in A1. For patient E4, the first ten recruited nodes are strongly connected with the EZ. The recruitment of node 31 before node 80 (stronger connected to the EZ with respect to the previous one), is justified by the strong connection to node 36 and the comparable shortest path length. For patient E5 the shortest path length is more determinant than the connection strength to the EZ to determine the recruitment order. In particular are strongly connected the nodes sequentially recruited, thus explaining the recruitment of node 17, weakly connected to the EZ, but strongly connected to the previously recruited node. Patient E4, on the other hand, has very strong connections outgoing the EZ and very short recruitment times indicated by large circle sizes in B1. As shown in Fig. 4.12, the first recruited node is usually the one with the strongest connection strength to the EZ and with the shortest path to the EZ (apart for the case B3). Parameters are as in Fig. but for patients E12 (column 1), E14 (column 2), E15 (column 3). For patients E12 and E15 the recruitment order is mostly determined by the shortest path length to the EZ, supported by the connection strength, which results to be determinant for the first 4-5 recruited nodes. Node 77, belonging to the PZ SEEG for patient E15, do not result to be first recruited due to its middle values of connection strength and shortest path, while the nodes that are recruited before are either more strongly connected to the EZ or to the previously recruited node. On the other hand, for patient E14, the connection strength turns out to be more important than the shortest path to determine the recruitment order. It is worth noticing that node 24, closer to the EZ and strongly connected to node 18, is recruited before nodes 22 and 39 that are more strongly connected to the EZ, but less close in terms of shortest path. As shown in Fig. 4.12, the first recruited node is usually the one with the strongest connection strength to the EZ and with the shortest path to the EZ (apart for the case B3). Parameters as in Fig. 4 where we neglect the constant current components for the calculation of the LFPs, as they do not contribute to the frequency spectra. Furthermore, to make a comparison possible with experimental measurements where high (low) activity states correspond to a minimum (maximum) value of the LFPs, we reversed the sign of the synaptic inputs in (6.14).

Numerical methods

Numerical bifurcation analysis

The results in Fig. 

Neural mass simulations

The numerical integration of neural mass models of the form Eq. (2.46) was performed in Python, using the adaptive Dormand-Prince method [START_REF] Dormand | DRS Desingularized reduced system. 102-104 DTI Diffusion tensor weighted imaging[END_REF].

QIF network simulation

Direct simulations of the QIF network with STP given in Eqs. (2.44) were performed in Python. The numerical integration requires simplifications of the problem, in order to maintain reasonable computation times. For this we followed the method suggested in [START_REF] Montbrió | Macroscopic Description for Networks of Spiking Neurons[END_REF]. First of all, the network is integrated using the Euler scheme, with a timestep dt = 10 -4 . Second, the limit V thresh → ∞ is not realizable numerically. However, one can approximate the time T ∞ required for the membrane potential of a QIF neuron to evolve from a value V max to infinity as T ∞ ≈ 1 Vmax , given that the total input I to that neuron fulfills √ I V max . The time from negative infinity to V i = -V max is given by the same expression. As soon as a neuron crosses the threshold V i > V max it is reset to V i = -V max and enters into a refractory period of 2T ∞ = 2/V max , for which its dynamics is deactivated. This is to account for the integration from V i = V max to infinity and from negative infinity to V i = -V max . A spike is registered at half of this refractory period, via an instantaneous change of all membrane potentials and the synaptic variables, as stated below.

V i (t + ) = J N u(t -)x(t -) (6.15)

x(t + ) = x(t -) -1 N u(t -)x(t -) (6.16)

u(t + ) = u(t -) + 1 N U 0 (1 -u(t -)) (6.17) 
For clarity the time before the increment is denoted by t -, the time after by t + .

Deterministic Lorentzian distribution

The QIF network simulations use values of the Lorentzian distributed constant currents η i , that are deterministically set as given below.

η i = η + ∆ tan π(2i -N -1) 2(N + 1) (6.18)
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 21 Figure 2.1: Comparison of point neuron models. Biological plausibility in terms of the number of reproduced features vs. the computational load. Extracted from [76].
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 22 Figure 2.2: Dynamics of a single QIF neuron. (a 1 ) shows the excitable case with V (0) < |η|, (a 2 ) with V (0) > |η| and (a 3 ) corresponds to tonic firing. The solid and dashed black lines mark V = ∓ |η| and spike times are denoted by t 1 , t 2 , t 3 . (b) Bifurcation diagram V versus
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 1223 Figure 2.3: Dynamics of the θ-neuron.The blue trajectories (a 1 -a 3 ) correspond to the ones shown in Fig.2.3(a) and blue crosses mark their initial conditions. The filled black circle represents a node equilibrium, the empty one a saddle. For η = 0 they form a saddle-node. The arrows point in the direction of θ given in Eq.(2.11). Whenever a trajectory crosses the red line at θ = π from below, the neuron emits a spike.
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 24 Figure 2.4: Short-term synaptic plasticity. (a) Membrane potential V (t), (b) available resources X(t) and (c) utilization U (t) of a single QIF neuron as a function of time t. In the time windows 0 s < t < 0.5 s and 4 s < t < 4.5 s and external step current I S (t) of amplitude ∆I = 0.5 is applied to the neuron. The dynamics obey Eqs. (2.37) and Eq. (2.38). Parameter values are: τ m = 20 ms, τ d = 200 ms, τ f = 1500 ms, η = 0.
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 25 Figure 2.5: Canard dynamics in the van der Pol system. (a) Bifurcation diagram x versus a of the full system Eqs. (2.55) with ε = 0.05. (b) Solutions of the full system (blue) superimposed on critical manifold S 0 = {(x, y); y(x) = x 3 3 -x} (green) and slow nullcline x = a (black). The a values in (b 1 -b 6 ) are marked in (a) by crosses and in increasing order. For (b 1 -b 5) the a values are exponentially close. In (b) the solid green line reflects the fact that S 0 is attracting, the dashed one that it is repelling, while the green arrows depict the slow flow defined in Eq. (2.53) and given by (x , y ) = ( a-x x 2 -1 , ax) for VdP.
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 31 Figure 3.1: Comparison among neural mass and network models. The results of the neural mass model (solid line) are compared with the network simulations (shaded lines) for a single excitatory population with µ-STP [column (1)] and with m-STP [column (2)]. (a) Corresponding raster plots for a subset of 2000 neurons. (b) Profiles of the stimulation current I S (t). (c) Instantaneous population firing rate r(t). (d) Available synaptic resources x(t). (e) Utilization factor u(t). The variables of the neural mass model are initialized to values coinciding with those of the corresponding network simulations. Since the numerical experiments for the single excitatory population with µ-STP and with m-STP are independent, the initial values of the synaptic variables do not coincide, even though a similar dynamical evolution is observable in both cases. Simulation parameters are τ e m = 15 ms, H = 0, ∆ = 0.25, J = 15, I B = -1 and network size N = 200, 000.
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 331 , therefore the synaptic variables have equal values (namely, x1 = x2 = 0.79 and ũ1 = ũ2 = 0.26) dictated by the average firing rate [see Fig. 3.3(f 1 , g 1 )].
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 33 Figure 3.3: Memory loading, maintenance and rehearsal. The results of three experiments are reported here for different background currents: column (1) I B = 1.2, selective reactivation of the target population; column (2) I B = 1.532, WM maintenance via spontaneous reactivation of the target population and column (3) I B = 2, WM maintenance via a persistent asynchronous activity. (a) Raster plots of the network activity for the first (blue) and (c) second (orange) excitatory population; the activity of only 400 out of 200,000 neurons is shown for each population. (b) Profiles of the stimulation current I

  for the first and (d) second excitatory population. (e) Population firing rates r k (t), (f) normalized available resources xk (t) and (g) normalized utilization factors ũk (t) of the excitatory populations calculated from the simulations of the neural mass model (solid line) and of the network (shading). Spectrograms of the mean membrane potentials (h) v 1 (t), (i) v 2 (t), and (j) v 0 (t) obtained from the neural mass model; for clarity the frequencies in these three cases have been denoted as f 1 ,f 2 and f 0 , respectively. Red arrows in columns (2) and (3) indicate the time t = 2.15 s at which the background current is set to the value I B = 1.2 employed in column (1). The network simulations have been obtained by considering three populations of N = 200, 000 neurons each and arranged with the architecture displayed in Fig. 3.2. For the estimation of the spectrograms see Section 1 of Appendix C. Other parameters values are: τ m = 15 ms
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 34 Figure 3.4: WM operations for a heuristic firing rate model. The results of two experiments are reported here for different background currents: column (1) I B = 1.520, WM maintenance via spontaneous reactivation of the target population and column (2) I B = 2.05, WM maintenance via persistent asynchronous activity. (a) Profiles of the stimulation current I

  population firing rates r k (t), (c) local field potentials LFP k , (d) normalized available resources xk (t) and (e) normalized utilization factors ũk (t) of the excitatory populations, calculated from simulations of the firing rate model Eqs. (3.5) and (3.7). Spectrograms of the local field potentials: (f) LFP 1 (t), (g) LFP 2 (t), and (h) LFP 0 (t). For the estimation of LFP k and the spectrograms see Section 1 of Appendix C. Other parameter values are as in Fig. 3.3.
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 35 Figure 3.5: Juggling between two memory items. The memory juggling is obtained in two experiments with different background currents: column (1) I B = 1.2, in presence of a periodic unspecific stimulation and column (1) I B = 1.532, in the case of spontaneous WM reactivation. (a) Raster plots of the network activity for the first (blue), and (c) second (orange) excitatory population. (b) Profiles of the stimulation current I

S

  (t) for the first and (d) second excitatory population. (e) Population firing rates r k (t), (f) normalized available resources xk (t) and (g) normalized utilization factors ũk (t) of the excitatory populations calculated from the simulations of the neural mass model (solid line) and of the network (shading). Spectrograms of the mean membrane potentials (h) v 1 (t), (i) v 2 (t) and (j) v 0 (t) obtained from the neural mass model. For the estimation of the spectrograms see Section 1 of Appendix C. Other parameter values are as in Fig. 3.3.reacts each time, by emitting a brief PB able to restore ũ1 to a high value [Fig. 3.5(g 1 )]. On the contrary population two remains in the low activity regime [Fig. 3.5(c 1 , e 1 )].

  3.6 column (1)]. Therefore, once the second stimulus is removed, population one recovers its oscillatory activity and population two returns to the low firing asynchronous activity [Fig. 3.6(b 1 )]. For intermediate durations ∆T 2 [Fig. 3.6 column (2)], at the end of the stimulation period, the facilitation u 2 reaches the value u 1 [Fig. 3.6(d 2 )], thus leading the two items to compete. Indeed, as shown in Fig. 3.6(b 2 ), the two populations display COs of the same period but in phase opposition, analogous to the case reported in column (2) of Fig. 3.5 . The stimulation of the second population suppresses the activity of the first, leading to a relaxation of the facilitation to the baseline. Hence, whenever ∆T 2 is sufficiently long [Fig. 3.6 column (3)], the facilitation of population two prevails on that of population one and as a final outcome, population two displays COs, while population one has a low activity.
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 36 Figure 3.6: Competition between two memory items. The loading of two memory items is performed in three different ways via two step currents of equal amplitudes ∆I 1 = ∆I 2 = 0.2, the first one delivered at t = 0 and the second one at t = 1.5 s. The first step has always a duration of ∆T 1 = 0.35 s; the second one ∆T 2 = 0.2 s [column (1)], ∆T 2 = 0.6 s [column (2)] and ∆T 2 = 1.2 s [column (3)]. (a) Stimulation currents I (k) S (t), (b) instantaneous population firing rates r k (t), (c) normalized available resources xk (t) and (d) normalized utilization factors ũk (t) for the first (blue) and second (orange) excitatory population. (e) Final memory states as a function of the amplitude ∆I 2 and width ∆T 2 of the stimulus to population two. Here the labels (1), (2), (3) refer to the states examined in the corresponding columns. The data reported in panel (e) has been obtained by delivering the second stimulation at different phases φ with respect to the period of the CO of the first population: 20 equidistant phases in the interval φ ∈ [0, 2π) have been considered. For each of the three possible outcomes an image has been created with a level of transparency corresponding to the fraction of times it has been measured. The three images have been merged resulting in panel (e). Other parameter values are as in Fig. 3.3 with I B = 1.532.
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 371 Figure 3.7: Memory item switching with persistent activity. The three columns (1-3) refer to three values of ∆T 2 , given a background current I B = 2 that supports persistent state activity. (1) Duration of ∆T 2 = 70 ms, (2) ∆T 2 = 130 ms and (3) ∆T 2 = 850 ms. (a) Stimulation currents I (k) S (t), (b) instantaneous population firing rates r k (t), (c) normalized available resources xk (t) and (d) normalized utilization factors ũk (t) for the first (blue) and second (orange) excitatory population. (e) Final memory states as a function of the amplitude ∆I 2 and width ∆T 2 of the stimulus to population two. Here the labels (1), (2), (3) refer to the states examined in the corresponding columns. Other parameters values are as in Fig. 3.3 with I B = 2.

  we have T c 0.2035 s. The non stimulated populations display a low firing activity modulated by the slow PB emission occurring in the excitatory populations and by the fast βγ transient oscillations towards the focus equilibrium, sustained by the inhibitory activity [Fig. 3.8(b)].
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 38 Figure 3.8: Multi-item memory loading (3 items). (a) Firing rates r k (t) of excitatory populations: blue, orange and green curves corresponds to k = 1, 2, 3; (b) the black curves refers to k = 4, . . . , 7. (c) PBs of excitatory populations: horizontal lines in absence of dots indicate low activity regimes; colored dots mark the PBs' occurrences. The colored bars on the time axis denote the presence of a stimulation pulse targeting the corresponding population. Only populations k = 1, . . . , 3 are stimulated in the present example. (d) Spectrogram of the average membrane potential v 1 (t) of population one. For the estimation of the spectrogram see Section 1 of Appendix C. Parameters values are: N pop = 7, τ e m = 15 ms, τ i m = 10 ms, J (s) ee = 154, J (c) ee = 4 7 •18.5, J ei = -26, J ie = 4 7 • 97, J ii = -60, I B = 0, H (e) = 0.05, H (i) = -2, ∆ (e) = ∆ (i) = 0.1
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 39 Figure 3.9: Multi-item memory loading (5 items). Response of the system when N L = 5 excitatory populations are subsequently stimulated at a presentation rate of 0.8 Hz. (a) PBs of excitatory populations: horizontal lines in absence of dots indicate low activity regimes; colored dots mark the PBs' occurrences. The colored bars on the time axis denote the presence of a stimulation pulse targeting the corresponding population. Only populations k = 1, . . . , 5 are stimulated in the present example. (b) v 1 (t), (c) v 0 (t) and (d) of the mean membrane potentials averaged over all the excitatory populations; for clarity the corresponding frequencies have been denoted as f 1 , f 0 and f Exc . For the estimation of the spectrogram see Section 1 of Appendix C. Parameter values are as in Fig. 3.8.
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 310 Figure 3.10: Multi-item memory loading (6 and 7 items). Response of the system when N L = 6 [column (1)] or N L = 7 [column (2)] excitatory populations are successively stimulated at a presentation rate of 0.8 Hz. (a) Population bursts of excitatory populations: horizontal lines in absence of dots indicate quiescence phases at low firing rates r k for populations k = 1, ...7. Dots mark PBs of the corresponding population. The colored bars on the time axis mark the starting and ending time of stimulating pulses, targeting each population. Spectrograms of the mean membrane potential (b) v 1 (t), (c) v 0 (t) and (d) of the mean membrane potentials averaged over all the excitatory populations; for clarity the corresponding frequencies have been denoted as f 1 , f 0 and f Exc . Parameter values are as in Fig. 3.8.
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 311 Figure 3.11: Dependence of the memory capacity on the presentation rate. (a) Total number of retrieved items N I vs. presentation frequency f pres for slow ([0.5 : 9.0] Hz, orange) and fast presentation rates ([10 : 80] Hz, blue). The two green dotted vertical lines denote an optimal rate interval where N I is maximal. (b) Map showing the retrieved items at a given serial position for presentation rates f pres in the interval [0.5 : 80] Hz. (c) Probability of retrieval vs.serial position for slow (orange) and fast (blue) presentation rates. In order to estimate these probabilities 150 equidistant rates are considered in the interval [0.5 : 9] Hz and 150 in[START_REF] Mi | Synaptic Correlates of Working Memory Capacity[END_REF][START_REF] Brette | Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity[END_REF] Hz. The green dotted line refers to the probability estimated within the rate interval enclosed between two green dotted vertical lines in (a). An item is considered as retrieved if the corresponding population is still delivering PBs 20 s after the last stimulation. All other parameter values are as in Fig.3.8.

  .11(c) (orange curve), obtained by considering 150 equidistant rate values in the interval [0.5 : 9] Hz. Finally, the primacy and recency effect is observable only for presentation rates faster than 9 Hz [blue regions in Fig.3.11(b)], as confirmed by the probability shown in Fig.3.11(c) (blue curve), which has been obtained by considering 150 equidistant frequencies within the interval[10 : 80] Hz.A theoretical estimation of the maximal capacity N max c
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 312 Figure 3.12: Dependence of the power on the number of loaded items. (a) Power in the θ-band (3-11 Hz), (b) in the β-band (11-25 Hz) and (c) in the γ-band (25-100 Hz) as a function of the number N L = N I ≤ 5 of loaded items.The integral of the power spectra in the specified frequency bands are displayed for the mean membrane potential v 1 (t) of the excitatory population one (blue symbols), the mean membrane potential v 0 (t) of the inhibitory population (orange symbols) and the mean membrane potentials averaged over all the excitatory populations (green symbols). The power spectra have been evaluated over a 10 s time window, after the loading of N I items, when these items were juggling in WM. Parameter values as in Fig.3.8.
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 313 Figure 3.13: Dependence of the membrane potential difference on the number of loaded items. Difference ∆v of membrane potentials versus time when stimulating different numbers N L of populations. The presented time-series are aligned to t * , which marks the deliverance of a PB from population one. The populations are stimulated sequentially with parameter values as in Fig 3.8.

  .8(a)] and the one averaged over the non-coding populations [e.g. see Fig. 3.8(b)]. By measuring ∆v just after the emittance of a PB by the first population, we observe a clear growth of this quantity with the number N L of presented items, as shown in Fig. 3.13(f)or N L ∈ {1, 2, 3, 4, 5, 6, 7}. However, as soon as N L > N max c the membrane difference ∆v almost saturates to the profile attained for N L = N max c = 5 and even decreases for larger N L , as evident from the dashed lines corresponding to N L ∈ {6, 7}. Analogous results have been obtained by considering the mean membrane potential of the next to fire populations instead of the difference ∆v. Therefore, the results are not biased by the chosen indicator and ∆v allows for a better presentation clarity.
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 260314 Figure 3.14: Bifurcation diagram for two excitatory populations. Bifurcation diagram displaying the (a) instantaneous firing rates r k and (b) mean membrane potentials v k for the excitatory populations as a function of the background current I B . Solid (dashed) black lines refer to stable (unstable) asynchronous states, while orange solid lines denote the maxima and the minima of stable collective oscillations. Symbol refer to bifurcation points: branch points (blue squares), Hopf bifurcations (orange circles) and saddle-node bifurcations (black circles). The inset in (a) displays an enlargement of the bifurcation diagram. The lower (upper) branch of equilibria in (a) corresponds to the lower (upper) branch in (b). All the remaining parameters are as in Fig. 3.3. Numerical bifurcation analysis was performed with AUTO-07P [153].

  populations (k > 0) as a function of the common background current I B by fixing all the other parameters of Eqs. (3.1) and (3.2) as in Fig. 3.3. The phase diagram, shown in Fig. 3.14, reveals that at low values of the background current (I B ≤ I (1) sn 1.2532) there is a single stable fixed point with an asynchronous low firing dynamics. This looses stability at I (1) bp

  . Beyond this parameter value we again have a persistent state coexisting with a low firing activity regime, these states finally annihilate with two unstable fixed point branches at I (2) sn ≡ 4.13715. The knowledge of the bifurcation diagram shown in Fig. 3.14 allows us to interpret the numerical experiments discussed in Section 3.2.3 and displayed in Fig. 3.3. Let us consider the first experiment, reported in column (1) of Fig. 3.3 and showing the selective reactivation of the WM item via a nonspecific read-out signal. The item is firstly loaded into population one via a specific step current of amplitude ∆I 1 (t) = 0.2 for a time interval ∆T 1 = 350 ms. The selective reactivation of the target is obtained by applying a nonspecific readout signal of amplitude ∆I 1 (t) = ∆I 2 (t) = 0.1 to all excitatory neurons in both populations for a shorter time interval, namely ∆T 1 = ∆T 2 = 250 ms. For this numerical experiment we fixed I B = 1.2 < I (1)

. 13 )

 13 For the parameters employed in Section 3.2.5 we obtained the following theoretical values T max c 447 ms, T b 93 -126 ms depending on the value of 0.5 ≤ xū ≤ 1.0, thus 3.6 ≤ N max c ≤ 4.8 not far from the measured value that was N max c = 5.
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 41 Figure 4.1: Phase and bifurcation diagrams for healthy subject H1. (a) Equilibrium firing rates r * versus η for the up-sweep (blue dots) and down-sweep (orange squares). For each η ∈ [-50, 10] in steps of ∆η = 1.5 the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (a 1 ), σ = 1 (a 2 ), σ = 0.5 (a 3 ). The solid (dashed) black line corresponds to the stable (unstable) equilibria in the single-node case. (b, c) Maps of regimes as a function of σ and η showing the network average r * color coded for (b) up-sweep and (c) down-sweep , obtained by following the same procedure as in (a) for σ ∈ [0, 2] in steps of ∆σ = 0.05. The black line indicates the single-node map of regimes like in [16]. In panels (b, c) the cyan square and triangle mark η = -6.3, -9.54 respectively. Other parameter values are: N pop = 90, τ m = 20 ms, ∆ = 1, J kk = 20, J kl = 5 Jkl ∀k = l.
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 4242 Figure 4.2: Spectrograms of mean membrane potentials for healthy subject H1. (a) Stimulation currents I (k) S . (b) Space-time plots of the population firing rates r k , color-coding the value of the firing rate of each node, as a function of time. (c) Population firing rates r k and (d) mean membrane potentials v k for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential. Non-stimulated node dynamics is plotted as transparent gray curves: some of the nodes adapt their voltage to the stimulation of the EZ and change during stimulation. (e) Spectrogram of the network average membrane potential and (f) of the v k of the EZ. Column (1) shows an asymptomatic seizure-like event for η(k) = η = -9.54, column (2) a generalized seizure-like event for η(k) = η = -6.3. In both cases the EZ node 46 is stimulated. For the estimation of the spectrograms see Section 1 of Appendix C. Other parameter values are: N pop = 90, τ m = 20 ms, ∆ = 1, J kk = 20, σ = 1, J kl = 5 Jkl ∀k = l.
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 43 Figure 4.3: Number of recruited brain areas as a function of the excitability parameter η. Columns (1) to (5) correspond to 5 exemplary healthy subject connectomes H1, H5, H12, H16, H19. The color code is as follow. White: no recruitment, gray: one area recruited (marks asymptomatic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). For row (1) the η(k) are uniformly distributed, given by η(k) = η. For row (2) the η(k) are Gaussian distributed, with mean ηG and standard deviation 0.1. In this case the results are averaged over 10 Gaussian realizations. Other parameters values are: N pop = 90, ∆ = 1, σ = 1, ∆I = 10, ∆T = 0.4 s.
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 44 Figure 4.4: Thresholds of healthy subjects. (a) Number of recruited brain areas as a function of the excitability parameter η, similar to what is shown in Fig. 4.3 row (1), but averaged across all 20 healthy subjects. The color code is as follow. White: no recruitment, gray: one area recruited (marks asymptomatic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). (b) η threshold values for asymptomatic and generalized seizure-like events. Grey dots show the thresholds for each brain area and each subject. Blue and red dots show the average over η(k) asy and η(k) gen across all subjects. The blue and red cross at the bottom show the average value and its standard deviation for both thresholds across all subjects and across all areas. Parameters values are as in Fig. 4.3.
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 45 Figure 4.5: Thresholds versus network measures. Row (1) η(k) asy for asymptomatic seizurelike events and row (2) η(k) gen for generalized seizure-like events as a function of node measures: (a) node strength, (b) clustering coefficient, (c) average shortest path length, (d) betweenness centrality. For each panel, the thresholds η(k) asy , η(k) gen are calculated for all k ∈ [1, 90] brain areas and averaged over all 20 subjects. Parameters values are as in Fig. 4.3. dependency of η(k) asy on the node strength, clustering coefficient, shortest path length, and betweenness centrality of the corresponding brain area, as shown in Fig. 4.5(a). A very strong correlation between asymptomatic threshold and node strength becomes apparent: brain areas that are strongly connected, need a smaller excitability to pass from the LA to the HA regime [Fig. 4.5(a 1 )]. The same holds true for the clustering coefficient, even though the relationship is less sharp [Fig. 4.5(b 1 )]. Moreover it is possible to observe a direct correlation between η(k) asy and shortest path length (i.e. shortest is the path smallest is the threshold value), while betweenness is smaller for higher threshold values [see Fig. 4.5(c 1 ) and Fig. 4.5(d 1 ), respectively].When considering the threshold for generalized seizure-like events, we face a higher variability among different nodes (as shown in Fig.4.4(b), η(k) gen varies mainly between -6.5 and -5.5). The dependency of η(k) gen on the node strength reveals a strong correlation: Areas with very small node strengths are characterized by large thresholds and are less likely to cause generalized seizure-like events. On the other hand, for large node strengths, η(k)

gen saturates at a value ≈ - 6 . 5 [

 65 Fig. 4.5(a 2 )]. The clustering coefficient, shown in Fig. 4.5(b 2 ), shows a similar relationship as the node strength, even though more scattered. This is not surprising since node strength and clustering coefficient are strongly correlated with each other (the Pearson Correlation coefficient in this case is r = 0.75, as shown in Fig. A4 of Appendix B), thus explaining the similarity between the analyses reported in Fig. 4.5 columns (1 -2). Moreover, regarding the integration measure, it turns out that the average shortest path length correlates positively with η(k) gen [Fig. 4.5(c 2 )]. Brain areas that are characterized, on average, by a short path to all the other areas are more likely to cause generalized seizure-like events. Finally, the betweenness centrality correlates negatively with η(k) gen [Fig. 4.5(d 2 )
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 46 Figure 4.6: Recruitment order versus network measures. (a) Recruitment times reported in ascending order. (b) Connection weights between the recruited brain area and the EZ. (c) Shortest path between the recruited area and the EZ. (d) Connection weights between the recruited brain area and all the nodes except EZ. (e) Clustering coefficient between the recruited brain area and all the nodes except EZ. (f) Shortest path between the recruited area and all the other nodes except EZ. (g) Betweenness centrality between the recruited brain area and all the nodes except EZ. In all panels the brain areas are ordered according to their recruitment time, thus following the indexing of panel (a). The excitability η(k) is set to the subject-specific threshold η(k) gen , according to Fig. 4.3 for each subject separately. Data are averaged over all subjects and all the stimulated areas. Parameters: N pop = 90, ∆ = 1, σ = 1, ∆I = 10, ∆T = 0.4 s as in Fig. 4.3. in Fig. 4.6 are obtained by averaging over k and over the different subjects: in 90 individual simulations for each subject, a single brain area k = 1, . . . , 90 is stimulated with an external step current I S (t), characterized by an amplitude ∆I = 10 and a duration ∆T = 0.4 s. For each k the recruitment time of all the other areas is registered. The stimulated brain area stands in for the EZ. The brain areas and corresponding node measures are sorted by the recruitment time in ascending order. The values for recruitment time [Fig. 4.6(a)], weight of a connection between a single area and the EZ [Fig. 4.6(b)] and shortest path [Fig. 4.6(c)] are finally obtained averaging over all the stimulated nodes and all the subjects (i.e. the average is performed over 1800 simulations across all 90 brain area perturbations times all 20 subjects). The same averaging procedure has been employed to obtain the data shown in Fig. 4.6(g -d). However, in this case, the node measures are evaluated over all the connections of the recruited node minus the connection to the EZ. While ignoring the link to the excited area (EZ), the overall network measure for connection weights [Fig. 4.6(d)], clustering coefficient [Fig. 4.6(e)], shortest path [Fig. 4.6(f)] and
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 47 Figure 4.7: Dependence on input current (healthy subjects). Recruitment times of the first 10 recruited areas as a function of the input current ∆I. The order of the recruitment is color coded for each current strength and it changes slightly with different current strengths. Other parameters values are: N pop = 90, ∆ = 1, σ = 1, ∆T = 0.4 s, η(k) = η = -6, stimulation site: brain area k = 45 of subject H1.
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 31 is provided. We present the phase and bifurcation diagrams for the multi-population neural mass model, here employing the structural connectivity matrices of epileptic patients. As detailed before, the bifurcation diagrams for different σ values shown in Fig.4.8(a) are obtained by performing an adiabatic scan along η(k) = η, following the up-and down-sweep protocols.
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 48 Figure 4.8: Phase and bifurcation diagrams for patient E6. (a) Equilibrium firing rates r * versus η for the up-sweep (blue dots) and down-sweep (orange squares). For each η ∈ [-50, 10] in steps of ∆η = 1.5 the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (a 1 ), σ = 1 (a 2 ), σ = 0.5 (a 3 ). The solid (dashed) black line corresponds to the stable (unstable) equilibria in the single-node case. (b, c) Maps of regimes as a function of σ and η showing the network average r * color coded for (b) up-sweep and (c) down-sweep , obtained by following the same procedure as in (a) for σ ∈ [0, 2] in steps of ∆σ = 0.05. The black line indicates the single-node map of regimes like in [16]. In (a) the dotted and in (b, c) the solid red line depicts the results for the healthy subject H1 reported in Fig. 4.1. In panels (b, c) the cyan square and triangle mark η = -7.5, -14 respectively. Other parameter values are: N pop = 88, τ m = 20 ms, ∆ = 1, J kk = 20, J kl = 5 Jkl ∀k = l.
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 49 Figure 4.9: Spectrograms of mean membrane potentials for patient E6. (a) Stimulation currents I (k) S . (b) Space-time plots of the population firing rates r k , color-coding the value of the firing rate of each node, as a function of time. (c) Population firing rates r k and (d) mean membrane potentials v k for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential. Non-stimulated node dynamics is plotted as transparent gray curves: some of the nodes adapt their voltage to the stimulation of the EZ and change during stimulation. (e) Spectrogram of the network average membrane potential and (f) of the v k of the EZ. Column (1) shows an asymptomatic seizure-like event for η = -14, column (2) a generalized seizure-like event for η = -7.5. The EZ node 77 (rh-PrG) is stimulated. Other parameter values are: N pop = 88, τ m = 20 ms, ∆ = 1, σ = 1.25, J kk = 20, J kl = 5 Jkl ∀k = l. For comparison the space-time plots of (g) the population firing rates r k and (h) the spectrogram of the network average membrane potential for healthy subject H2 are shown. In accordance with the above panels, column (1) shows an asymptomatic seizure-like event (for η = -9.20), column (2) a generalized seizure-like event (for η = -5.3). The EZ node 46 is stimulated. For the estimation of the spectrograms see Section 1 of Appendix C. Other parameter values are: N pop = 90, τ m = 20 ms, ∆ = 1, J kk = 20, σ = 1, J kl = 5 Jkl ∀k = l.

Figure 4 . 10 :

 410 Figure 4.10: Recruitment times of all brain areas for the cohort of epileptic patients.The recruitment time, reported on the x-axis, identifies the time needed by a brain area to jump to the HA regime after the application of the perturbation current. The boxplots consist of the recruitment times of all brain areas for each patient. Patients are identified according to their numbers on the y-axis. The median is represented as a green vertical line while the boxes contain the second and third quartile of the distribution. The whiskers are chosen with maximum length 1.5×IQR and show the most extreme observed values that are within 1.5×IQR from the upper or lower quartiles. The gray dots represent the recruitment times for each brain area. The orange dots show the recruitment of a brain area clinically predicted to be part of the propagation zone PZ Clin . The blue dots represents the recruitment of a brain area which is part of the propagation zone according to the SEEG measurements PZ SEEG . Parameters: N pop = 88, ∆ = 1, σ = 1.25, ∆I = 10, ∆T = 0.4 s, η(k) = η = -7.5 (except for patients E1 (η = -6) and E11 (η = -6.5)).

410 E15Figure 4 . 11 :

 410411 Figure 4.11: Histograms of recruitment times for all epileptic patients.For each patient (identified by his/her number), the recruitment times of all the brain areas are collected, once the EZ is stimulated. If several areas were identified in the EZ, they are all stimulated simultaneously. The EZ is chosen according to the presurgical evaluation (see TableA4of Appendix B) and vary from one patient to the other. Parameters as in Fig.4.10 except for η(k) = -7.5 ± 0.1 (for E1 η(k) = -6 ± 0.1, for E11 η(k) = -6.5 ± 0.1). Results are averaged over 10 realizations of random Gaussian distributions.

Figure 4 . 12 :

 412 Figure 4.12: Recruitment order of epileptic patients, Graph plot of the first 10 recruited areas, ordered clockwise according to their recruitment times, as found via numerical experiments. (a) Node circle size corresponds to the inverse recruitment time, (b) to the connection strength to the EZ and (c) to the inverse shortest path length to the EZ. The size of the orange EZ remains fixed. Blue dots distinguish a recruited area to belong to the PZ SEEG , i.e. the PZ identified according to the presurgical invasive evaluation. Columns (1 -4) show the results for patients E2, E3, E6, E13. Parameters values are as in Fig. 4.10.

Figure 4 . 13 :

 413 Figure 4.13: Relationship between network measure and recruitment time, as found via numerical experiments. (a) Shortest path to EZ; (b) Logarithmic value of the weight to the EZ for the four patients with a single-node EZ. In (a) all four EZs are shown at (0, 0) while in (b) the EZs are omitted. The recruitment time is calculated in seconds, after the perturbation current has started. In (c, d) the recruitment time values are plotted according to their order, as a function of shortest path to EZ (c) and weight to EZ (d) for all 15 patients. In (d) the x-axis was inverted for better comparison. (e) Recruitment times t rec of the areas belonging to PZ SEEG and (f) PZ Clin as a function of the shortest path length to EZ, for all 15 patients. For patients with several nodes detected in the EZ, all areas were stimulated simultaneously. Parameter values are as in Fig. 4.10.

Figure 4 . 14 :

 414 Figure 4.14: Recruitment times of all brain areas and all epileptic patients. The patients are sorted from top to bottom according to their median shortest path length, calculated by listing all the shortest path lengths of all areas to the EZ and then locating the number in the center of that distribution. Grey dots and diamonds show individual recruitments (we use two different symbols to highlight those values that are beyond the boxplot whiskers); boxes cover the 2nd and 3rd quartile and whiskers extend 1.5 times the interquantile range (whiskers are asymmetric, comprising the most extreme observed values that are within 1.5×IQR from the upper or lower quartiles). Parameters as in Fig. 4.10.

Fig. 4 .

 4 15 displays the recruitment times of the first ten recruited areas using different amplitudes ∆I of the step current I S (t), while fixing the duration ∆T = 0.4 s. The analysis has been performed for patients E2 [Fig. 4.10(a)], E3 [Fig. 4.10(b)], E6 [Fig. 4.10(c)] and E13 [Fig. 4.10(d)], thus integrating the information on the dependency on topological measures presented in the previous section. As expected, the recruitment

Figure 4 . 15 :

 415 Figure 4.15: Dependence on input current (epileptic patients). (a) E2, (b) E3, (c) E6 and (d) E13. The strength of the input current is varied between 0 and 100 on the x-axis while its duration is kept unchanged at ∆T = 0.4 s with respect to the previous numerical experiments. The order of the recruitment is color coded for each current strength from violet to yellow and it holds the same for all investigated patients. Parameters as in Fig.4.10.
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 51 Figure 5.1: Spiking neuron network and mean-field limit. (a) Scatter plot of a subset of 2000 representative neurons out of 10 5 . Each dot represent a spike. (b) Firing rate of the network (black) and of the corresponding mean-field limit (red). The blue curve shows a time dependent external current applied to the two systems and is of sinusoidal form.
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 52 Figure 5.2: Solutions in presence of constant forcing and microscopic network. (a) Bifurcation diagram r versus I 1 of Eqs. (5.2). For I 1 0.25 there exists only one fixed point (FP, solid black line). At I 1 ≈ 0.25 the FP destabilizes via a subcritical Hopf-Bifurcation (H L , lower orange dot), creating a branch of unstable limit cycles (LC, orange dashed line). Two saddle-node bifurcations (black dots) of the unstable FP branch (dashed black line) occur in a narrow regime of

Figure 5 . 3 :

 53 Figure 5.3: Typical solutions γ 0 (t) to γ 4 (t) of the full system. (a) Periodic forcing current I 1 (t) and (b) firing rate r(t) vs. time t. (c) Same trajectories superimposed on the bifurcation diagram of the unforced system in r-I 1 projection. The parameter values are as follows: ε = 10 -5 ; γ 0 : A ≈ 0.2487; γ 1 to γ 3 : in increasing order exponentially close to A ≈ 0.2507; γ 4 : ε = 10 -3 , A ≈ 0.2553.

Figure 5 . 4 :

 54 Figure 5.4: Slow-fast dissection and critical manifold. Solutions γ 0 (t) to γ 4 (t) of the full system superimposed on the critical manifold S 0 in (I 1 , I 2 , r)-space. The parameter values are identical to those in Fig. 5.3.

  through the application of a nonlinear time rescaling τ → D • τ . One obtains the desingularized reduced system (DRS) given in Eqs. (5.13) with τ := Dτ . dr dτ = g 1 (I 1 , I 2 )Ar(1 + ruτ d )(1 + rU 0 τ f ) (5.13a) dI 1 dτ = g 1 (I 1 , I 2 ) • D (5.13b) dI 2 dτ = g 2 (I 1 , I 2 ) • D (5.13c)

2 Figure 5 . 5 :

 255 Figure 5.5: Folded-saddle singularity. (a) Critical manifold S 0 in r -I 2 projection superimposed with the slow flow [green arrows, see Eqs. (5.11)]. The black dots p 0 (unstable focus), p 1 (saddle), p 2 (center) denote equilibria of the DRS [Eqs. (5.13)]. The point p 1 denotes a foldedsaddle equilibrium with the associated stable (unstable) eigendirection indicated by a solid (dashed) arrow along the slow flow. The orange curves M FS mark the stable and unstable manifolds of p 1 , forming heteroclinic connections through p 1 . (b) S 0 in (I 1 , I 2 , r)-space. The curves γ 2 (t) and γ 3 (t) are solutions of the full system. The objects p 1 , p 2 and M FS depend on the choice of A, here they correspond to the value used to obtain γ 3 (t). Other parameters values are as in Figs. 5.3 and 5.4.

Figure 5 . 6 :

 56 Figure 5.6: Jump-on canards. S 0 in I 1 -v-r space (green curve). The blue surface M rv is defined by r = -∆ πτmv . The curves γ 2,3 (t) are solutions of the full system and their jump-on points γ * 2,3 on the upper repelling sheet of S 0 are marked by dots. Parameters values are as in Fig. 5.5.

2 r(c 4 )Figure 5 . 7 :

 2457 Figure 5.7: Emergence of bursting. (a) Bifurcation diagram of the full system. The black curve shows the L 2 -norm of a family of periodic solutions vs. the forcing amplitude A. The blue dots show the number of spikes n s , defined as the local maxima of for which r(t) > 0.21 τ -1 m . The dashed vertical line is located at A = A * = 0.25531851205. (b) Solutions (r(t), v(t), x(t), v(t), I 1 (t), I 2 (t)) in r -I projection superimposed on the bifurcation diagram of the fast subsystem. The insets show the solution in time. (c -d) Same solutions as in (b) and critical manifold S 0 , for (c) in (I 1 , I 2 , r)-space and for (d) in (I 1 , v, x)-space. In (d) attracting (repelling) sheets of S 0 are visualized as a green solid (dotted) line; the orange surface (wire frame) represents the family of stable (unstable) limit cycles of the fast subsystem [orange branch in column (b)]. Note that here the x-axis is inverted. In (b) the black dots denote F L and F U , the orange dot H L , while the black dots in (c) show the folded singularity p 1 , assuming A = A * . Spikes contributing to n s are marked with blue dots. The dashed red curve shows the solution of the panels above. The A values in (b -d) are in increasing order from top to bottom and near A * .Full system solutions obtained at ε = 10 -3 .

Figure 5 . 8 :

 58 Figure 5.8: Mixed-type-like torus canards. enlargement of Fig. 5.7(d 2 ). Critical manifold in (I 1 , v, x)-space with attracting (repelling) sheets of S 0 visualized as a green solid (dotted) line; the orange surface (wire frame) represents the family of stable (unstable) limit cycles of the fast subsystem [orange branch in column b], emerging from the lower Hopf bifurcation H L (orange dot). The blue and red curves show solutions of the full system near the canard explosion. Forcing amplitude A for the blue trajectory is larger than for red and both exponentially close the canard explosion at A * . Solutions obtained for ε = 10 -3 .

  5.7(b 1 -d 1 )].

Br. 1 :Figure 5 . 9 :

 159 Figure5.9: Families of bursting solutions and canards: The bifurcation diagram shows solution families of the full system in terms of the L 2 -norm vs. the shifted forcing amplitude A -A * . For all branches (br.) apart from br. 4, the A * denotes the location of the canard explosion. For br. 4 on the other hand it marks the termination of continuation due to insufficient accuracy. There are two types of solution families: the ones which undergo a continuous transition from subthreshold oscillations to bursting (red curves) and those which transition from subthreshold to jump-on canard dynamics (cyan curves). Br. 4 and 5 have identical ε ≈ 2.667521298 • 10 -4 .
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 22 ε = 2.0 • 10 3

Figure 5 . 10 :

 510 Figure 5.10: Bursting in the QIF network: (a) The bifurcation diagram shows a family of periodic orbits of the full neural mass system in terms of the L 2 -norm vs. the forcing amplitude A -A * . It corresponds to br. 2 in Fig. 5.9. The black dashed lines mark A = 0.265 and A = 0.270 respectively. (b -c) Trajectories of the full system (red) superimposed on results obtained by simulating the QIF network Eqs. (5.1) with N = 100000 neurons and in presence of sinusoidal forcing I 1 (t) = A sin(εt). In (b 1 ,c 1 ) the forcing amplitude is given by A = 0.265; in (b 2 ,c 2 ) by A = 0.270. Row b shows the time series of the solution in terms of x(t) vs. time t.In row c they are shown in (I 1 , v, x)-space together with the critical manifold S 0 , with attracting (repelling) sheets as a solid (dashed) green line, and the invariant manifold P of the fast subsystem (orange wire frame and surface). The orange dot denotes H L , the black dots F L and F U . The x-axis is inverted in c.
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 823242 With the contribution X * S of silent and X * T of tonic neurons. To recall, g(η) is a Lorentzian distribution given by g(η) = 1 π ∆ (η-η) 2 +∆ 2 .Using the cumulative distribution function of a Lorentzian, the first term can be calculated as: only X * S , but at the same time the fraction of silent neurons. For the second term we obtain 1 : + π 2 (π + 2φ) -U 2 0 τ 2 d π η + 2ηφ + 2∆ log(R) + 4∆ log
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 A1122 Figure A1: Comparison of Eq. (6.10) and a numerically estimated integral. Parameter values are: U 0 = 0.2, τ d = 200 ms

Figure A2 :

 A2 Figure A2: Comparison of numerical simulations and analytical estimates. (a) Mean firing rate r(t) and (b) mean depression x(t) versus time t, obtained from simulation of Eq. (6.1) (black line) and Eq. (6.11) (blue line). In (a) the dashed orange line marks r from Eq. (6.6); in (b) X * from Eq. (6.10). The dashed red line in (b) marks Eq. (6.13). The number of silent neurons N S is given by the number of neurons in the network, which do not emit any spike in 1 s ≤ t ≤ 2 s. Other parameter values are: number of QIF neurons N = 10000,U 0 = 0.2, τ d = 200 ms, τ m = 20 ms.

Figure A3 :

 A3 Figure A3: Number of recruited brain areas as a function of the excitability parameter ηG . Columns (1) to (2) correspond to 5 exemplary healthy subject connectomes H1, H5, H12, H16, H19 as in in Fig. 4.3. Here ηG represents the mean value of a Gaussian distribution with increasing standard deviations σ G . (a) σ G = 0.3; (b) σ G = 0.5; (c) σ G = 1. The color code is as follow.White: no recruitment, gray: one area recruited (marks asymptotic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). For very large values of ηG (usually ηG > -5), the system enters the stable focus regime before the stimulation is applied. In that case η(k) gen is not defined because no brain areas are recruited as a result of the applied stimulation current: for this reason white color, corresponding to no recruited areas, is visible also in the right part of the different panels. For increasing standard deviation values, the effective excitability of the more and more nodes turn out to be close to the one that allows the system to be in the stable focus regime, therefore the probability of finding nodes in the stable focus regime increases. As a result, more and more nodes enter the HA state and recruite the other areas before the stimulation current is applied. This means that, for increasing standard deviation, η(k) gen become less defined while η(k) asy move to larger values of ηG , still remaining better identifiable for increasing heterogeneity. Other parameters values are: N pop = 90, ∆ = 1, σ = 1,

  Figure A3: Number of recruited brain areas as a function of the excitability parameter ηG . Columns (1) to (2) correspond to 5 exemplary healthy subject connectomes H1, H5, H12, H16, H19 as in in Fig. 4.3. Here ηG represents the mean value of a Gaussian distribution with increasing standard deviations σ G . (a) σ G = 0.3; (b) σ G = 0.5; (c) σ G = 1. The color code is as follow.White: no recruitment, gray: one area recruited (marks asymptotic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). For very large values of ηG (usually ηG > -5), the system enters the stable focus regime before the stimulation is applied. In that case η(k) gen is not defined because no brain areas are recruited as a result of the applied stimulation current: for this reason white color, corresponding to no recruited areas, is visible also in the right part of the different panels. For increasing standard deviation values, the effective excitability of the more and more nodes turn out to be close to the one that allows the system to be in the stable focus regime, therefore the probability of finding nodes in the stable focus regime increases. As a result, more and more nodes enter the HA state and recruite the other areas before the stimulation current is applied. This means that, for increasing standard deviation, η(k) gen become less defined while η(k) asy move to larger values of ηG , still remaining better identifiable for increasing heterogeneity. Other parameters values are: N pop = 90, ∆ = 1, σ = 1, I S = 10, ∆T = 0.4 s.
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 A4A5 Figure A4: Network measure correlations of healthy subjects. Panels (a -f) are obtained plotting independently all node values for all the subjects (90 × 20 = 1800 data points). (g) Data is averaged over all 20 subjects. The single node values are averaged over the different subjects and afterwards, the correlation between node strength and clustering coefficient is estimated. Infinite values were excluded. The Pearson correlation of clustering coefficient and node strength of the averaged healthy DTI topology is r = 0.9 and much stronger compared to the average of all individual topologies r = 0.75 from panel (a).
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 A6A7 Figure A6: Input current duration variation. Dependence of the recruitment time on the current duration ∆T while the current strength is kept constant at ∆I = 15. The y-axis shows the recruitment times of the first 10 recruited areas for each current strength. Blue is the EZ, green is the first recruited area, red the second, etc. The recruitment times are independent of the pulse duration. Parameters: N pop = 90, σ = 1, ∆ = 1, η = -6, ∆I = 15, stimulation site: brain area k = 45 for the healthy H1.

(c 6 )Figure A8 :

 6A8 Figure A8: Recruitment times for patient E2 obtained for 6 different realizations of Gaussian distributions for ηk . (a) Spacetime plots of the average firing rates of all brain areas. (b) Histograms of the recruitment times. Orange (blue) bins identify those recruited area that belong to PZ Clin (PZ SEEG ). (c) Cumulative histograms of the recruitment times. Orange bins: first 10 recruited areas. Parameters as in Fig.4.10. For one exemplary patient, E2, we show here in detail the impact of different realizations of η(k) , drawn from a Gaussian distribution (centred at ηG = -7.5 with standard deviation 0.1), on the recruitment times of the brain areas. In particular we have considered it to be sufficient to present results for six out of ten realizations, due to the large similarities between the outcomes. Space-time plots of the average firing rates give an immediate visualization of the recruitment events for each brain area. We find that the pattern of recruitment does not change substantially for different realizations of the η(k) . The EZ is localized in the area lh-LOCC, that corresponds to node k = 21: The firing rate of this population increases immediately upon stimulation, thus giving rise to the recruitment mechanism. The brain areas in the PZ are rapidly recruited: In general the first ten areas are always recruited in less then 0.1s, followed by a continuous increase of the number of recruited nodes. Finally, it is worth noticing that the first recruited areas correspond to those predicted clinically.

Figure A11 :

 A11 Figure A9: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig.4.12 but for the patients with more than one area in the EZ (orange node). All areas belonging to the EZ are merged into one for visualization clarity, keeping intact the recruitment order, the recruitment times and the connection weights to the areas in the EZ. (a) Node size corresponds to the inverse recruitment time, (b) to the connection strength to the EZ (A2-D2) and (c) to the inverse shortest path length to the EZ. The size of the orange EZ circle remains fixed. Blue dots distinguish recruited areas to belong to the PZ SEEG , i.e. the PZ identified according to the presurgical invasive evaluation. Results are obtained for patients E1 (column 1), E4 (column 2), E5 (column 3), E7 (column 4). Note that patient E1 has very weak connections outgoing the EZ which results in very late recruitment times indicated by small circle sizes in A1. For patient E4, the first ten recruited nodes are strongly connected with the EZ. The recruitment of node 31 before node 80 (stronger connected to the EZ with respect to the previous one), is justified by the strong connection to node 36 and the comparable shortest path length. For patient E5 the shortest path length is more determinant than the connection strength to the EZ to determine the recruitment order. In particular are strongly connected the nodes sequentially recruited, thus explaining the recruitment of node 17, weakly connected to the EZ, but strongly connected to the previously recruited node. Patient E4, on the other hand, has very strong connections outgoing the EZ and very short recruitment times indicated by large circle sizes in B1. As shown in Fig.4.12, the first recruited node is usually the one with the strongest connection strength to the EZ and with the shortest path to the EZ (apart for the case B3). Parameters are as in Fig.4.10)

  ρ = 0.93, p = 1.3 • 10 -38 E3: ρ = 0.95, p = 7.2 • 10 -45 E6: ρ = 0.92, p = 8.4 • 10 -37 E13: ρ = 0.83, p = 3.2 • 10 -23
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 A12A13 Figure A12: Recruitment time and Shortest Path. The recruitment times t rec as a function of the shortest path to the EZ are shown for four patients and all brain areas. Same as Fig. 4.13(a), with a regression fit that underlines the approximately linear relationship between the shortest path length and the recruitment time. Spearman correlation coefficients ρ and corresponding p-values are significant. Parameters are as in Fig. 4.10.

-2 set to 10 - 2 .

 102 To obtain the data f avg shown in Figs. 4.2 and 4.9 the Fourier transforms of the individual voltage signals v k of different populations are first calculated giving rise to individual power spectral densities, which are subsequently averaged over the populations. Finally the spectrograms in Figs. 3.3 to 3.5, 4.2 and 4.9 are shifted to the right by 0.1 s and in Figs. 3.8 to 3.10 by 0.35 s to preserve causality in correspondence of the stimulus onset.Since the average membrane potential is not accessible for the firing rate model Eqs. (3.5) and(3.7), in this case we made use of simulated local field potentials LFP k in order to estimate the spectrograms. By following[START_REF] Mazzoni | Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons[END_REF], we have estimated the local field potentials for the three populations appearing in the multi-item architecture displayed in Fig.3.2 as the sum of the absolute values of the synaptic inputs stimulating each populations:LFP 0 = -[|J ie |(r 1 + r 2 ) + |J ii |r 0 ] (6.14a) LFP 1 = -[|J (s) ee |x 1 u 1 r 1 + |J (c)ee |x 2 u 2 r 2 + |J ei |r 0 ] (6.14b) LFP 2 = -[|J (s) ee |x 2 u 2 r 2 + |J (c) ee |x 1 u 1 r 1 + |J ei |r 0 ] (6.14c)

  2.2(b), Fig. 2.5, Fig. 3.14, Fig. 5.2(a), Fig. 5.3, Fig. 5.4, Fig. 5.5(b), Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9 Fig. 5.10(a) have been obtained using the continuation software AUTO-07p [153].
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 21 Parameters of the AdEx model and their units.

  The model given by Eqs. (3.1) and (3.2) describes the dynamics of one inhibitory and N pop excitatory coupled neuronal populations with STP in terms of their population firing rates r k , mean membrane voltages v k , mean available resources x k and mean utilization factors u k . Details on the derivation of the neural mass model Eqs. (3.1) and (3.2) and on the underlying spiking networks can be found in Sections 2.2, 2.4 and 2.5 of Chapter 2.

  .[START_REF] Newton | Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics[END_REF], where we compare the neural mass simulations with the network dynamics with m-STP for the

	Excitatory
	1
	Inhibitory
	0
	Excitatory
	2
	Figure 3.2: Two-item architecture. The reported network is composed of two identical and mutually coupled excitatory populations and an inhibitory one: this architecture can at most store two WM items, one for each excitatory population.

  : M. Gerster et al. "Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation". Frontiers in Systems Neuroscience 15 (2021), p. 79 Authors contributions:
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 51 Parameters and their values, which are fixed throughout this work, if not stated differently.

	Symbol Description ∆ Width of Lorentzian η Centre of Lorentzian J Synaptic weight U 0 Baseline utilization τ m Membrane time constant 20 ms Value 0.5 -1.7 30 0.1 τ d Depression timescale 200 ms/τ m τ f Facilitation timescale 1500 ms/τ m
	Eqs. (5.

Table A3 :

 A3 .10. Clinical characteristics of the patients.

	Patient E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15	Gender F F M F F F M M F M F M M M F	Epilepsy duration (years) 14 14 35 18 23 16 45 5 18 11 10 15 29 28 24	Age at seizure onset (years) 8 9 7 5 7 7 11 28 20 18 17 14 7 35 4	Epilepsy type Temporo -frontal Occipital Insular SMA Parietal Premotor Temporo -frontal Temporal Occipital Frontal Temporal Temporal Temporal Temporal Occipital	Surgical procedure Sr Sr GK Sr Sr Th Sr Sr N Sr Gk N Sr Sr N	Surgical outcome III III I I I II I III NO I II NO I III NO	MRI Anterior temporal necrosis N N N FCD SPC N FCD F Temporopolar hypersignal N Frontal necrosis (post-trauma) Hyppocampal sclerosis N Cavernoma N PVH	Histopathology Gliosis FCD type 1 NA FDC type 2 FCD type 2 NA FCD type 2 FCD type 1 NA Gliosis NA NA Cavernoma Gliosis NA	Side R L L L L R R R R R R R R L R

N, normal; L, left; R, right; Th, thermocoagulation; Gk, Gamma knife; Sr, surgical resection; NO, not operated; PVH, periventricular nodular heterotopia; FCD, focal cortical dysplasia; SPC, superior parietal cortex; F, Frontal; NA, not available.

Table A6 :

 A6 Continued from TableA5.

	Patient E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15	EZ location rLOFC, rTmP lLOCC lIns lPCG, lCMFG, lSFG lPCG, lPCunC rPrG rAmg, rTmP, rLOFC rAmg, rHi rLgG, rPHiG rMOFC, rFP, rRMFG, rPOr rHi, rAmg rHi, rFuG, rEntC, rTmP rFuG lAmg, lHi, lEntC, lFuG lTmP, rEntC rLgG, rLOCC, rCun, rPC Patient Recruitment order E6 0 E6 1 E6 2 E6 3 E6 4 E6 5 E6 6 E6 7 E6 8 E6 9 E6 10 E7 0 E7 1 E7 2 E7 3 E7 4 E7 5 E7 6 E7 7 E7 8 E7 9 E7 10 E7 11 E7 12 E8 0 E8 1 E8 2 E8 3 E8 4 E8 5 E8 6 E8 7 E8 8 E8 9 E8 10 E8 11 E9 0 E9 1 E9 2 E9 3 E9 4 E9 5 E9 6 E9 7 E9 8 E9 9 E9 10 E9 11 E10 0 E10 1 E10 2 E10 3 E10 4 E10 5 E10 6 E10 7 E10 8 E10 9 E10 10 E10 11 E10 12 Patient Recruitment order PZ location SEEG rRMFG, lRMFG lFuG, lPC, lSPC lPoG lPrG, lSPC, lPoG lPoG, lIPC rCMFG rFuG, lPHiG, rITG rITG, rTmP rHi, rFuG, rIPC, rLOCC, rSPC, rITG rPop, rMTG, rLOFC rLOFC, rMTG lFuG, rITG rEntC, rIPC, rHi lMTG, rMTG, lIns lPCunC, lCun, rPHiG Recruitment time (s) Type 0.0 EZ 0.0146 PZ Clin 0.02 PZ Clin 0.0287 PZ SEEG , PZ Clin 0.0342 PZ Clin 0.0369 PZ Clin 0.038 other 0.0382 PZ Clin 0.0396 other 0.0417 PZ Clin 0.042 PZ Clin 0.0 EZ 0.0012 EZ 0.0012 EZ 0.0379 PZ Clin 0.0516 PZ Clin 0.0875 other 0.0949 other 0.0954 other 0.098 PZ Clin 0.1027 other 0.1031 other 0.1034 other 0.1067 other 0.0 EZ 0.0003 EZ 0.3184 PZ Clin 0.3735 PZ Clin 0.3905 PZ SEEG 0.3965 other 0.3999 other 0.4027 other 0.4097 other 0.4106 other 0.4137 other 0.4179 other 0.0 EZ 0.0006 EZ 0.0128 PZ SEEG , PZ Clin 0.0181 PZ SEEG , PZ Clin 0.0205 PZ SEEG , PZ Clin 0.0217 PZ SEEG 0.0264 PZ Clin 0.0408 PZ SEEG 0.0417 other 0.0453 PZ SEEG 0.0483 other 0.0483 other 0.0 EZ 0.0006 EZ 0.0008 EZ 0.0008 EZ 0.0414 PZ Clin 0.0745 PZ Clin 0.0882 other 0.0894 other 0.0957 other 0.1035 other 0.1103 PZ SEEG , PZ Clin 0.1119 other 0.1155 other Recruitment time (s) Type E11 0.0 EZ E11 0.0003 EZ E11 0.158 PZ Clin E11 0.185 PZ Clin E11 0.19 other E11 0.1993 other E11 0.2006 other E11 0.2015 PZ Clin E11 0.2035 other E11 0.2072 other E11 0.2084 other E11 0.2123 other E12 0.0 EZ E12 0.0006 EZ E12 0.0014 EZ E12 0.0016 EZ E12 0.008 PZ Clin E12 0.0137 PZ SEEG , PZ Clin PZ clinical prediction rRMFG, rMOFC, rPOr, rIns rPu, rPT, rAccumbes lFuG, lSPC, lITG, lIPC, lPC, lLgG lPu, lLOFC, lSMG, lPrG, lPop, lPoG lRMFG, lPrG, rSFG, lCACC, lPaC lICC, lIPC, lSPC rPoG, rCMFG, rPop, rSFG rTh, rPu, rPaC, rSMG rTmP, rIns, rPu, rMOFC, rPOr, rRMFG rPHiG, rEntC, rTmP, rFuG, rPal, rTh rFuG, rHi, rPC, rLOCC, rICC rSFG, rPT, rPrG, rCd, rPop, rPu rTh, rLOFC, rRACC, rIns rCd, rPu, rMOFC rITG, rLOCC, rLgG, rPHiG, rAmg rITG, rLOCC, rTmP lITG, lLOCC, lPHiG, lLgG lCerebellum rFuG, rIPC, rITG, rMTG, rSPC Region rh-PrG rh-PoG rh-SFG rh-CMFG rh-SMG rh-Pop lh-SFG rh-Th rh-RMFG rh-PaC rh-Pu rh-LOFC rh-TmP rh-Amg rh-Ins rh-Pu rh-SFG rh-PrG rh-Pal rh-RMFG rh-PoG rh-CMFG lh-SFG rh-Th rh-Hi rh-Amg rh-PHiG rh-FuG rh-ITG rh-LOCC rh-MTG rh-LgG rh-IPC rh-STG rh-PC rh-bnks rh-LgG rh-PHiG rh-FuG rh-Hi rh-LOCC rh-ITG rh-PC rh-IPC rh-MTG rh-SPC rh-Th rh-Cun rh-RMFG rh-MOFC rh-FP rh-POr rh-SFG rh-PrG rh-PoG rh-CMFG rh-SMG rh-SPC rh-Pop rh-IPC rh-PaC Region rh-Hi rh-Amg rh-Th rh-Cd rh-SFG rh-RMFG BS rh-Pu rh-Pal rh-PrG lh-SFG rh-CMFG rh-FuG rh-Hi rh-EntC rh-TmP rh-LOCC rh-ITG E12 0.0202 PZ Clin rh-LgG E12 0.0215 other rh-MTG E12 0.0243 other rh-SPC E12 0.0267 other rh-IPC E12 0.0288 other rh-PC E12 0.0298 PZ Clin rh-PHiG E12 0.0324 other rh-PCunC E12 0.0325 other rh-SMG E13 0.0 EZ rh-FuG E13 0.035 PZ Clin rh-LOCC E13 0.0375 PZ Clin rh-ITG E13 0.062 other rh-MTG E13 0.0683 PZ SEEG rh-IPC E13 0.0742 other rh-SPC E13 0.084 other rh-STG E13 0.0864 other rh-SMG E13 0.0903 other rh-bnks E13 0.0907 other rh-PrG E13 0.0922 other rh-PoG E14 0.0 EZ lh-Hi E14 0.0 EZ lh-FuG E14 0.0008 EZ lh-EntC E14 0.0008 EZ lh-TmP E14 0.0008 EZ rh-EntC E14 0.0008 EZ lh-Amg E14 0.016 PZ Clin lh-ITG E14 0.0166 PZ Clin lh-PHiG E14 0.0266 PZ Clin lh-LOCC E14 0.0336 PZ SEEG lh-MTG E14 0.0391 PZ Clin lh-LgG E14 0.0474 other lh-STG E14 0.0504 other lh-IPC E15 0.0 EZ rh-LOCC E15 0.0003 EZ rh-PC E15 0.0003 EZ rh-LgG E15 0.0008 EZ rh-Cun E15 0.0095 PZ Clin rh-FuG E15 0.021 PZ Clin rh-IPC E15 0.024 PZ Clin rh-SPC E15 0.0253 PZ Clin rh-ITG E15 0.0272 PZ SEEG rh-PCunC E15 0.0293 PZ Clin rh-MTG E15 0.0338 other rh-SMG E15 0.0361 other rh-bnks E15 0.0374 other rh-PoG

Table A7 :

 A7 Continued from TablesA5 and A6.In order to generate the spectrograms shown in Chapters 3 and 4 the signal package, which is part of the SciPy library[START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF], is used. The subroutine stft (short time Fourier transform, STFT) generates Fourier transforms F[s(t)](t, f ) of a signal s(t) within a running time window of length ∆T win at time t. The STFT is performed using overlapping windows (95% overlap) throughout this work. For Figs. 3.3 to 3.5, 4.2 and 4.9 the window length is set to ∆T win = 0.2 s, leading to a sufficiently fine resolution in time and frequency. For Figs. 3.8 to 3.10, it is set to ∆T win = 1 s, resulting in a better frequency resolution and decrease of time-resolution. The colors in the spectrograms code the normalized power spectral density|F[v k (t)](t, f )| 2 /(max |F[v k (t)](t, f )| 2 ) obtained from voltage signals v k of different populations.For better visibility a log10 scale is used and values < 10

	Appendix C
	1 Spectrogram Estimation

For the sake of simplicity we will omit the hat symbols introduced in Eq. (2.4) in the following and additionally set I = η + I S (t) to be in line with notations found in literature.

Here the center ηk of the Lorentzian distribution found in Eq. (2.46) has been decomposed into H k +I B .

These variables are normalized with respect to the difference of their maximal and minimal value taken within the displayed time interval.

The spectrograms for the heuristic model have been evaluated for the local field potentials LFP k defined in Eqs.(6.14) of Appendix C and reported in Fig.3.4(c); this is due to the fact that the rate model cannot provide any information on the membrane potentials.

The long interval of 100 seconds between the two stimuli is chosen in order to ensure that the outcome is independent of the characteristic of the first stimulus: namely, ∆I1 and ∆T1.

While the actual role of the specific regions might in reality be affected by other factors, not captured by the used structural connectivity estimate and the details of the current model, this highlights the effect of network structure on propensity to seizure-like events. The (para)hippocampal region is, in fact, one of the most commonly affected by epilepsy.

Please note that, irrespectively of the numerical results, any difference observed between the structural connectivity matrices obtained from the cohort of healthy subjects and epileptic patients may be (at least partially) ascribed to the different acquisition and processing procedures in the two research centers rather than due to disease-related causes.

In this chapter we use I S (t) ≡ I1(t) for clarity, see also Section 5.2.2.

The derivative with respect to slow time τ is denoted by (_) := d/dτ (_) = 1 ε (_).

Result after ( * ) obtained using Wolfram Mathematica[330].

Code availability

The simulation results presented in this thesis were obtained using Python. The code is available under: https://github.com/halgurdtaher/MeanfieldQIF. The example "Meso-scopicSTP" reproduces the results reported in Fig. 3.1(b) of Chapter 3.

Appendix A

The following appendix contains considerations, which are related to the implementation of short-term synaptic plasticity on microscopic level and the corresponding mean-field limit. Together with the pre-print [START_REF] Gast | Mean-Field Approximations of Networks of Spiking Neurons with Short-Term Synaptic Plasticity[END_REF] they provide first ideas on how a better mean-field limit can be performed, without relying on the mesoscopic description of STP described in [START_REF] Schmutz | Mesoscopic Population Equations for Spiking Neural Networks with Synaptic Short-Term Plasticity[END_REF]. They also give an intuition on why the neural mass model derived in this thesis is able to reproduce the dynamics of the QIF network in presence of microscopic STP to some extent, despite not being an exact limit.

Fully coupled QIF network with microscopic depression

We want to estimate the average resource X of a QIF network with microscopic depression. For simplicity we neglect facilitation. Following from Eqs. (2.37) in Chapter 2, the dynamics of a fully coupled QIF network with short-term depression and in absence of facilitation, i.e., U (t) = const. = U 0 , reads

with the spike train of the j-th neuron

We define

X j S j as the total current that is applied to neuron i. When the network is in a quasi-equilibrium state, i.e, when I i (t) = const and if I i > 0 is satisfied, the analytical solution of Eq. (6.1a) yields tonic firing at a frequency

Neurons with I i < 0 decay to their resting potential V = -|I i | and remain silent in approximation.

Silent neurons

For the set of silent neurons N S , calculating the equilibrium X * S of the depression variable X i is trivial. Since S i = 0, X i will converge to X * S = 1.

Tonic neurons

For the set of tonic neurons N T , one can coarse grain the spike train and set Size ∝ inverse shortest path to EZ Weights (c 4 ) Figure A10: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig. A9 but for patients E8 (column 1), E9 (column 2), E10 (column 3), E11 (column 4). For patient E8, the first two recruited areas show strong connection strengths to the EZ, while the areas recruited later are all characterized by shortest path to the EZ and by strong connections between sequentially recruited nodes. Looking at the graph plots for patient E9, the first four recruited nodes are both strongly connected with the EZ and among them. Node 73, which do not result to belong to the PZ SEEG , is recruited, according to our simulations, due to its topological characteristics: proximity to the EZ, in terms of shortest path length, and high coupling strength. For patient E10, the node 70 (belonging to the PZ SEEG ), do not result to be first recruited due to its middle values of connection strength and shortest path, while the nodes that are recruited before are either more strongly connected to the EZ or to the previously recruited node. For patient E11 the recruitment order is mostly determined, as before, by the shortest path length and by the connection strength between sequentially recruited node. As shown in Fig. 4.12, the first recruited node, for all patients, is the one with the strongest connection strength to the EZ and with the shortest path to the EZ. Parameters are as in Fig. 4.10.