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Modèles de masse neuronale de nouvelle génération : mémoire de travail,
modélisation du cerveau entier et phénomènes multi-échelles de temps

Résumé
Dans cette thèse, nous présentons de nouvelles extensions et applications des modèles de
masse neurale de nouvelle génération. Montbrió, Pazó et Roxin (MPR) ont montré que le
comportement collectif d’un ensemble de neurones intègre-et-tir quadratiques (QIF) peut
être décrit en termes de potentiel de membrane moyen et de taux de décharge de façon
exacte, ramenant la dimension du problème d’un réseau microscopique infiniment grand à
une description macroscopique de petite dimension. Vu que la masse neurale donne accès
aux potentiels de membrane moyens, elle peut être utilisée comme un indicateur pour le
potentiel de champ local et les signaux EEG.

Une des contributions de cette thèse est l’implémentation de la plasticité synaptique
à court terme (STP) dans le modèle MPR. Sur la base d’une théorie synaptique de la
mémoire de travail (WM), nous reproduisons les mécanismes de la WM avec un réseau QIF
et de sa limite champ moyen exacte dans une configuration multi-population. Le modèle
de masse neurale présente des oscillations dans la bande β-γ durant le chargement et le
maintien de la mémoire, comme observé dans les expériences, alors que nous rencontrons
des bandes β-γ vides en avec un modèle heuristique. De plus, nous indiquons comment ces
bandes de puissance sont formées par des résonances entre les fréquences fondamentales,
liées au nombre d’éléments retenus en mémoire. Nous fournissons aussi une estimation
analytique de la capacité maximale de la WM d’environ cinq éléments.

La deuxième contribution est l’application d’un modèle multi-population pour tester
l’hypothèse clinique de la propagation des crises épileptiques. Nous utilisons des con-
nectomes structurels obtenus à partir de scans de MRI de diffusion de sujets sains et de
patients épileptiques. Nous décrivons comment les événements de type crise épileptique
peuvent être modélisés comme un recrutement d’un état de faible activité à un état de
forte activité. Des entrées externes peuvent déclencher un tel événement et conduire à
une cascade de recrutements, imitant ainsi la propagation spatio-temporelle des crises.
Les résultats numériques suggèrent que les patients épileptiques sont plus sensibles aux
événements de recrutement étendus que les sujets sains. Nous trouvons aussi un bon ac-
cord entre les premières aires cérébrales à être recrutées dans notre modèle et l’évaluation
pré-chirurgicale des réseaux secondaires recrutés.

Comme troisième contribution, nous étudions le réseau et la masse neurale en présence
de STP en utilisant des dynamiques lentes-rapides. En fonction de l’amplitude d’un
courant périodique lent appliqué à la population, le comportement collectif peut être soit
dans un régime d’oscillations sous-seuil, soit dans un régime de bursting, c’est-à-dire alter-
nant entre une dérive quasi-statique et des oscillations rapides de grande amplitude. Les
deux régimes sont séparés par un étroit intervalle de paramètres, ressemblant à une explo-
sion de canards. Dans cette région, nous signalons des jump-on canards, qui s’approchent
d’ensembles invariants normalement répulsifs. Pour des séparations d’échelles de temps
intermédiaires, le bursting émerge d’une manière continue via des mécanismes d’addition
de spike organisés par des mixed-type torus canards, des trajectoires qui évoluent à prox-
imité de familles d’équilibres et de cycles limites répulsifs. Pour une séparation d’échelles
de temps plus forte, la transition continue est bloquée par des jump-on canards. Les mé-
canismes observés dans la masse neurale sont également responsables de l’émergence du
bursting dans le réseau.

Pour résumer, cette thèse place les modèles de masse neurale de nouvelle génération
dans un contexte plus large de modélisation en neurosciences et fournit de nouvelles per-
spectives pour des travaux futurs. Cela inclut des approches visant à prendre en compte
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de meilleurs modèles de STP et des idées pour des masses neurales exactes basées sur des
modèles de neurones biologiquement plausibles.

Mots clés : systèmes complexes, dynamique non linéaire, théorie du champ
moyen, modèle de masse neurale, mémoire de travail, épilepsie, dynamiques
lentes-rapides, canards
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Next generation neural mass models: working memory, all-brain modelling
and multi-timescale phenomena

Abstract
In this thesis we report new extensions and applications of next generation neural mass models.
Montbrió, Pazó, and Roxin (MPR) have shown that the collective behavior of an ensemble of
quadratic integrate and fire (QIF) neurons can be described in terms of the mean membrane
potential and firing rate in an exact manner, reducing the dimension of the problem from an
infinitely large microscopic network to a low dimensional macroscopic description. Since the neural
mass gives access to the mean membrane potentials, it can be used as a proxy for local field potential
and EEG signals.

One contribution of this thesis is the implementation of short-term synaptic plasticity (STP)
into the MPR model. Based on a synaptic theory of working memory (WM), we reproduce WM
mechanisms using a QIF network and its exact mean-field limit in a multi-population setup. In
particular, we report agreement between the behavior of the network and the extended neural
mass model and we make a comparison between our model and experimental results on cortical
oscillations associated to WM tasks. The neural mass model exhibits oscillations in the β-γ range
during memory loading and maintenance, as also observed in experiments, while we encounter
empty β-γ bands using a heuristic model. Furthermore we report how these power bands are
formed by resonances among fundamental frequencies, which are linked to the number of items
retained in memory. We also provide an analytical estimate for the maximal WM capacity of
around five items.

The second contribution is the application of a multi-population model in order to test clinical
hypothesis of seizure propagation. We use structural connectomes obtained from dMRI scans of
healthy subjects and epileptic patients. We describe how seizure-like events can be modeled as a
recruitment from low activity to high activity states. External inputs can trigger such an event and
lead to a cascade of recruitments, hence mimicking the spatio-temporal propagation of seizures.
The numerical results suggest that epileptic patients are more susceptible to extensive recruitment
events than healthy subjects. We also find good agreement between the first brain areas to be
recruited in our model and the pre-surgical assessment of recruited secondary networks.

As a third contribution we study the network and neural mass in presence of STP using slow-fast
dynamics. Depending on the amplitude of a slow periodic current applied to the population, the
collective behavior can be either in a regime of subthreshold oscillations or bursting, i.e., alternating
between a quasi-static drift and fast large amplitude oscillations. The two regimes are separated
by a narrow parameter interval, resembling a canard explosion. In this region we report jump-on
canards, which approach otherwise repelling invariant sets. We study their impact on the emergence
of bursting. For intermediate timescale separations bursting emerges in a continuous manner via
a spike-adding mechanisms mediated by mixed-type-like torus canards, trajectories which evolve
nearby families of repelling equilibria and limit cycles. For stronger timescale separation the
continuous transition is blocked by jump-on canards. The mechanisms observed in the neural
mass are also responsible for the emergence of bursting in the network.

To summarize, this thesis puts next generation neural mass models into a broader context of
modeling in neuroscience and provides new perspectives for future work. This includes approaches
to take better models of STP into account and ideas for exact neural masses based on biologically
plausible neuron models.

Keywords: complex systems, non-linear dynamics, mean-field theory, neural
mass model, working memory, epilepsy, slow-fast dynamics, canards
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Chapter 1

Introduction

One of the fundamental goals of neuroscience is to understand the functioning of cog-
nition and behavior, and how it arises from biophysical processes [1]. A desired way of
approaching this problem would be to start with first principles of physics, like the Maxwell
equations, and build up an accurate mathematical description of the dynamics, which en-
capsulates the entirety of the known mechanisms. However, given the sheer complexity of
biological and specifically neuronal systems, that approach is virtually impossible to per-
form [2]. A more applicable one is given by mathematical modeling, that is, the attempt
to capture the dynamics of the system partially, whilst still allowing to gain insight and
to make predictions. Naturally, models are only valid within a specific scope, of which the
extent typically (but not always) depends on the level of implemented details.

The upsurge of computational power in the past decades allows for more and more
sophisticated simulations of models in computational neuroscience. Here the complexity
of neuronal systems can be increased across orders of magnitudes of spatial scales: from
chemical processes on molecular level in single cells to large-scale neuronal network models
of the human brain. In recent years neuron simulators have become more and more
elaborate [3], while at the same time full brain network models, that try to bridge the scale
from single neuron dynamics, through microcircuits, towards experimentally accessible
macroscopic measures of brain activity [4], have come into play.

Despite the increasing feasibility of large-scale and detailed biophysical simulations,
the need for simple models remains unalteredly high, for two main reasons. First of all,
detailed models might perform better in predicting and describing experimental results,
than simplified ones. Yet, one inevitable characteristic remains and is related to the large
number of problem-defining equations and parameters. They can render the model a black
box, just like the real brain [5], and aggravate the goal of drawing fundamental conclusions
from properties of the system.

Secondly, many experimental measurements are of macroscopic nature, e.g. given
by local field potential (LFP), electroencephalography (EEG), magnetoencephalography
(MEG) or magnetic resonance imaging (MRI) signals. A common approach to improve
the interpretation of these signals and to understand how they arise from the microscale,
is to model the dynamics starting from the smallest units, e.g. neurons and synapses,
and fit the model parameters to the experimental data. However, one is challenged with
high-dimensional and ill-posed inverse-problems [6]. As an example, a specific LFP signal
distribution across the scalp might arise from a multitude of cellular activity patterns.

An attempt towards simpler macroscopic models is given by neural mass models. They
aim to capture the dynamics of neuronal populations on macroscopic scale, for example
using a firing rate description. Neural mass models are often related to mean-field models,
but the terms have to distinguished: neural mass refers to population models in general,
while mean-field models are typically macroscopic descriptions of an underlying micro-
scopic system, obtained by averaging state variables over the ensemble. Neural mass
models on the other hand are often based on heuristic arguments, like the well-established
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Wilson-Cowan (WC) model [7]. The applications of neural mass model, neural field models
and statistical approaches to questions of computational neuroscience range from memory
[8], in particular working memory [9, 10], over perception [11] and motor planning [12],
towards cognition [13] and behavior [14].

1.1 Next generation neural mass models
In recent years a new class of neural mass models has emerged, that is at the interface of
population modeling in neuroscience and mean-field theory in statistical physics [15, 16].
The basis of applying methods from mean-field theory to neuronal dynamics is given by
the idea that neurons represent oscillators. Their interactions can give rise to complex
dynamical behavior, like asynchronous firing patterns, synchronization, chimera states,
quasi-periodicity, chaos and bursting [17–19], many of which are evidenced by experimental
studies [20–23]. As a matter of fact, LFP and EEG signals arise due to synchronized
activity of single neurons [24, 25], that results in an aggregated and measurable electric
field potential [26].

These next generation neural mass models [27] are not of heuristic nature, but directly
derived from the single neuron dynamics and the interactions in the network. Hence,
as opposed to heuristic models, the parameters of the microscopic system have direct
macroscopic counterparts and one can link the two scales in order to understand the
emerging dynamics. One of the remarkable properties of this approach is the exactness
of the mean-field limit: in the thermodynamic limit and under some assumptions, the
collective dynamics of the microscopic network is exactly described by the resulting mean-
field equations, without the necessity of heuristics or approximations. In other words, it
is derived from first principles given by the underlying network.

The starting point of the exact model by Montbrió, Pazó, and Roxin (MPR) are
quadratic integrate and fire (QIF) neurons [16], a phenomenological model for spiking
neuron dynamics. Given a fully coupled network of QIF neurons, including heterogeneities,
as well as synaptic interactions via action potentials, an exact mean-field limit can be
performed. The approach is based on the pioneering work of Ott and Antonsen (OA),
who showed that under certain conditions, the dynamics of infinitely sized networks of
phase oscillators will converge to a low dimensional manifold, hence reducing the number
of variables and equations, required to describe the macroscopic dynamics [15, 28]. The OA
ansatz can serve as a recipe to perform this exact reduction and was firstly applied to the
prototypical model for synchronization, namely the Kuramoto model [29]. Remarkably,
the OA ansatz is applicable to a broader class of phase oscillator networks and thereby has
founds its way into the field of computational neuroscience. Under certain assumptions
(see Chapter 2) the QIF neuron is rendered equivalent to the Ermentrout-Kopell model
[30], also referred to as θ-model, which represents a phase oscillator model for neuronal
dynamics and indeed fits into the class of problems, which can be treated within the OA
framework. The OA ansatz applied to an ensemble of QIF neurons, in the seminal work
of MPR, has lead to an upsurge of next generation neural mass models.

These models try to capture the macroscopic dynamics of networks of spiking neu-
rons using just a few variables, namely the population firing rate and mean membrane
potential. They hence contribute crucially to studies of collective phenomena in these
otherwise high-dimensional dynamical systems and allow for simple analytical and numer-
ical treatment. Various applications of the MPR model has been studied in recent years.
They range from the inclusion of delayed synaptic interactions [31], giving rise to chaos, to
studies of cortical oscillations in multi-population models [32] and cross-frequency coupling
[33]. While the original MPR model accounts for chemical synapses, the methodology can
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straightforwardly been applied to include as well electrical synapses, formed by gap junc-
tions between neurons [34, 35]. Extensions of the MPR model towards sparse networks
[36] and fluctuation driven dynamics have been proposed [37].

1.2 Outline
The content of this work is divided into four main chapters, which aim to find novel
applications of these next generation neural mass model, propose extensions to include
more biologically relevant phenomena and study the effect of timescale separation. The
thesis will exemplify how next generation neural mass models can give meaningful insight
into neuronal firing rhythms, cognitive processes and brain pathologies, despite being
idealized mathematical descriptions of complex systems.

Model derivation and mathematical framework

First of all, in Chapter 2 the microscopic and macroscopic models are not only introduced
and derived, but also put into the general context of modeling in neuroscience. This is
particularly important in order to understand the limitations and capabilities, as well as
the advantages and novelties of next generation neural mass models. Specifically, we go
through the key aspects of the derivation of the MPR model, starting from a population
of interacting point neurons [16]. The groundwork for this exact reduction methodology
was done by OA [15]. It will be shown that under certain assumptions, the MPR model
can be extended to account for short-term synaptic plasticity (STP), i.e, dynamically
changing synaptic weights [38, 39], without the loss of exactness. This way one can bridge
the spatial scale, from single neuron dynamics to collective population dynamics, through
first principles, whilst keeping biologically relevant effects like spike synchrony and STP.

Working memory

This forms the foundation for one of the main results, that is, the application of the
extended model with STP towards working memory (WM). In Chapter 3 we introduce this
cognitive system and explain the candidates that are thought to be its neural correlates,
like persistent firing [40–42] and so-called population bursts (PBs) [9, 43]. For this chapter
two approaches are compared: (1) using a large-scale microscopic network of hundreds
of thousands of QIF neurons with STP and (2) a system of neural masses with only 10
equations. Naturally we find perfect agreement, owing to the exactness of the mean-field
limit. The contribution of this chapter is first of all a proof-of-concept for the application
of the next generation neural mass to WM. Like previous neural mass approaches [10],
the model is capable of mimicking mechanisms like working memory loading, maintenance
and rehearsal. It is also able to yield an estimate of the maximum working memory
capacity of around five items, as well as providing insight into the so-called primacy and
recency effect [44, 45] . Beyond encompassing the capabilities of previous models, we find
a significantly better agreement between theoretical and experimental results regarding
the role of cortical oscillations during WM tasks. The widely used WC type models do
not account for subthreshold oscillations and spike synchrony, i.e, when many neurons in a
population fire nearly simultaneously [32, 46], hence lack essential characteristic of cortical
oscillations, that are observed experimentally. For example, EEGmeasurements in humans
and LFP measurements in monkeys show β and γ band activity during working memory
tasks [47–49], which are absent in WC type models, but can be reproduced using the next
generation neural mass with STP. In addition we provide a deep analysis, using a multi-
population WM network built of neural masses, on how the frequency bands of cortical
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oscillations are shaped by resonance lines and how their structure changes, depending on
how many items are maintained in WM. The investigation of the various frequency bands
relies on the fact that the next generation models account for spike synchrony and give
direct access to the mean membrane potential of the neural population, that can be used
as a proxy for LFP and EEG signals.

All-brain modeling

Electroencephalography, in particular intracranial EEG (iEEG) and stereotactic EEG
(SEEG), plays also an essential role for clinicians who work with patients suffering from
drug-resistant epilepsy. For these patients, one possible line of treatment is the surgical
resection of brain tissue, that is preceded by qualitative presurgical evaluation by clini-
cians, based on various imaging techniques. The aim of the assessment is to identify the
epileptogenic zone (EZ), referring to a patient-specific brain region, where seizures arise
[50] and start to recruit secondary networks known as propagation zones (PZs) [51–54].
An alternative way of assessing EZs and PZs is given by iEEG and SEEG. Additionally, a
non-invasive imaging method called diffusion-weighted MRI (dMRI) has been developed
in recent years and is able to gain structural information of the whole brain. Using these
patient-specific connectomes, coupled with phenomenological models of seizure genera-
tion, one can try to predict surgical outcomes [55–57]. In these computational models,
each brain region is represented by a network node and the network topology is derived
from the structural connectomes obtained by dMRI or other imaging modalities. In Chap-
ter 4 we demonstrate how each of the nodes in an all-brain network can be represented
by a next generation neural mass model, in order to simulate seizure-like events. The
employed data set comprises dMRI connectivities of 20 healthy subjects and 15 epileptic
patients. For the latter, data on the presurgical evaluation is available, identifying the
nodes that are supposedly either a EZ or PZ. Using the empirical data, we show how the
multi-population neural mass model can reproduce seizure-like events. The system can be
placed in a multistable regime, characterized by low activity (LA) and high activity (HA)
states of single nodes. Exciting a node corresponding to the EZ via a transient external
current, can lead to a switch from LA to HA and trigger a cascade of recruitments of
other nodes to the HA state, eventually leading to recruitment of the whole network. This
cascade of recruitments is what we refer to as seizure-like event. One of the striking results
is an agreement between the simulations and the clinical data: the recruitment order pre-
dictions of the exact multi-population model are in line with the presurgical assessment of
the PZs. Multistability between LA and HA states in the multi-population network are
fundamental for complex firing rhythms to emerge and at the basis of seizure-like events.

Slow-fast dynamics in large networks

Complex dynamical behavior can also arise due to interactions across timescales and in
particular when dynamical system exhibit multistability. One of the most prominent ex-
amples for this is neuronal bursting, describing an alternation between quiescence and fast
repetitive firing as observed in many experiments [22, 23, 58–63]. Bursting emerges due
to a separation of timescales, into slow and fast dynamics, and it can be understood using
singular perturbation techniques. To this end, the basic principles of slow-fast dissection
[64, 65] are introduced in Chapter 2 and used to revise the famous canard solutions [66],
which are trajectories evolving nearby otherwise repelling locally invariant sets. While
slow-fast dissection serves as a powerful tool for low dimensional systems, computational
limitations complicate the analysis in higher dimensional systems, like networks of spiking
neurons. Here OA approach and exact neural mass models come into play. Only a few
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recent works exploit the OA framework in order to understand emerging slow-fast dynam-
ics in large networks [67, 68]. In Chapter 5 we study the transition from quasi-static low
activity firing rhythms to bursting in a population of QIF neuron with STP, subject to a
slow external current. The neural mass model linked with slow-fast dissection facilitates
the understanding on how bursting emerges in the microscopic QIF network and gives
insight into a complicated interplay of slow-fast phenomena. The results comprise sur-
prising mechanisms, namely so-called jump-on canards which are related to the additional
timescales coming along with the presence of STP. Moreover, we find that bursting can
emerge in a continuous manner through a spike-adding mechanisms, that is mediated by
mixed-type-like torus canards [69]. Typically canards are observed in highly timescale
separated problems. Here however the continuous emergence of bursting via mixed-type-
like torus canards is being interfered by the jump-on canards and breaks down for strong
timescale separations, ultimately leading to a differentiation of the routes to bursting.
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Chapter 2

Neural mass model, synaptic
plasticity and slow-fast dynamics

Overall, modeling of brain dynamics is a multiscale problem. Spatially extended neurons
can be modeled in a realistic manner, using detailed biophysical multi-compartment ap-
proaches that take morphology and the spatiotemporal propagation of electrical currents
along the axon and dendritic tree into account [70]. However, due to the heavy compu-
tational and numerical load that comes along with the numerical integration of partial
differential equations, modeling large network of spiking neurons with such level of detail
is challenging.

An alternative way of capturing the rich dynamics of real neurons are point neuron
models, one of the most studied ones being the Hodgkin-Huxley model for the squid giant
axon [71]. As illustrated in Fig. 2.1, it has been the gold standard for point neuron model
in terms of biophysical plausibility over many decades, but comes at high cost in terms of
computational load. On the other end of the scale we can find the integrate and fire (IF)
models, in particular the leaky integrate and fire (LIF) neuron, known for its simplicity and
widely used in theoretical studies [9, 72–75]. In general IF model consist of a differential
equation describing the temporal evolution of the membrane potential, together with a
reset rule. The latter accounts for the spiking behavior of the neuron, i.e, when a certain
voltage threshold is reached, an action potential is generated and the membrane potential
instantaneously reset to some lower value. For the LIF neuron the membrane potential is
the only state variable and its dynamics is characterized by a linear voltage term.

Figure 2.1: Comparison of point neuron models. Biological plausibility in terms of the
number of reproduced features vs. the computational load. Extracted from [76].

Over the years various improvements for the LIF model have been suggested in order
to loosen its limitations, for example by implementing a quadratic voltage term and neural
adaptation as in the Izhikevich model [77]. Other generalizations and extensions of the
LIF model, named GLIF and E-GLIF (extended generalized LIF), were proposed and
enrich the variety of possible firing patterns, while keeping biophysically meaningful model
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parameters [78, 79]. The adaptive exponential integrate and fire (AdEx) model [80], which
tries to combine simplicity, plausibility and meaningfulness, has proven to predict spike
times of detailed biophysical models with high accuracy and is also subject of recent studies
[81, 82].

The focus of this work lies on the QIF neuron (see also Fig. 2.1). In terms of plausibility
and simplicity it can be placed between the standard LIF model and the Izhikevich model
(in absence of adaption). It is outstanding in the family of IF models, since it represents the
canonical model for Saddle-Node on Invariant Circle (SNIC) bifurcations (see Section 2.1
below) [30, 83].

In the following the various elements of the model underpinning this work will be
introduced, starting from the microscopic scale at single neuron level. These neurons
are then considered in a network setup, accounting for a single neuronal population with
recurrent synapses. Here one can introduce the synaptic dynamics in form of short-term
synaptic plasticity. Under certain conditions, in particular imposed on the heterogeneity
among neurons, one can achieve an exact mean-field reduction of the system to a low
dimensional model, based on the Ott-Antonsen ansatz [15, 16].

2.1 Excitability types and canonical model
Spiking neuron models can be characterized by their response to the injection of a current,
which is often measured in terms of the f -I curve, determining the relation of firing
frequency f versus input current I. The dynamics of Hodgkin-Huxley type neurons can
either be in the excitable or tonic regime [71]. Excitable neurons in the absence of input
approach an equilibrium. However, a sufficient input can excite the membrane potential
beyond a threshold leading to the firing of a single action potential, before going back to
the rest state. Tonic neurons on the other hand fire periodically with a frequency f . Based
on the behavior at the transition from excitable to tonic dynamics, one can distinguish (at
least) two classes of membranes. For class I neurons the f -I continuously transitions from
quiescence (f = 0) to repetitive firing with arbitrarily slow frequencies (f > 0). Typically
it occurs at a SNIC bifurcation. Class II neurons on the other hand exhibit a discontinuous
f -I curve, leading to finite firing rates at the onset of tonic firing, and they are usually
associated with a Hopf bifurcation. This Hopf bifurcation is often subcritical, for example
in the Hodgkin-Huxley, FitzHugh-Nagumo [84, 85] and Morris-Lecar model [86]. Here we
want to study the dynamics of class I neurons, characterized by SNIC bifurcations, for
which the QIF model represents a canonical model. We will start with the AdEx neuron
and show how the QIF model can be directly obtained by performing a series expansion.

2.1.1 Adaptive exponential integrate and fire

The dynamics of the AdEx neuron is governed by two differential equations [Eqs. (2.1)]
and two reset rules [Eqs. (2.2)], which describe the temporal evolution of the membrane
potential and adaptation variable.

C
dV
dt = −gL(V − EL) + gL∆T e

V−VT
∆T − w + I (2.1a)

τw
dw
dt = a(V − EL)− w (2.1b)

reset rule 1: if V > Vthresh: V ← Vreset (2.2a)
reset rule 2: if V > Vthresh: w ← w + b (2.2b)
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The parameters of the AdEx neuron provide biological interpretability and are described
in Table 2.1.

Table 2.1: Parameters of the AdEx model and their units.

Symbol Description Unit
C Membrane capacitance 1 F = A2 s4/(kg m2)
gL Leak conductance 1 S = A2 s3/(kg m2)
EL Leak reversal potential 1 V = kg m2/(A s3)
VT Voltage threshold for spike initiation 1 V = kg m2/(A s3)
∆T Slope of spike initiation 1 V = kg m2/(A s3)
I Input current 1 A
τw Adaptation timescale 1 s
a Adaptation coupling parameter 1 S = A2 s3/(kg m2)
b Adaptation increment 1 S = A2 s3/(kg m2)

For simplicity we will neglect the adaptation term in the following (w = const. = 0)
and approximate the right hand side of Eq. (2.1a) for V values nearby the spike initiation
threshold VT . Specifically, we perform a Taylor series expansion in V , up to the second
order term and obtain:

C
dV
dt = gL(V − VT )2

2∆T + gL (EL + ∆T − VT ) + I . (2.3)

Eq. (2.3) can be rewritten by rescaling the membrane potential as V̂ = V/(2∆T ), yielding:

τm
dV̂
dt = V̂ 2 −AV̂ + Î . (2.4)

Here the new quantities are as follows:

τm = C

gL
(2.5a)

A = VT
∆T (2.5b)

Î = 1
2 + 1

2∆T

(
EL − VT + V 2

T

2∆T + I

gL

)
(2.5c)

The Izhikevich model displays the same form of the right hand side as Eq. (2.4), but has
additionally the adaptation dynamics described in Eq. (2.1b).

If we instead use the transformation V̂ = (V − VT )/(2∆T ) we obtain the quadratic
integrate & fire (QIF) model as stated below,

τm
dV̂
dt = V̂ 2 + Î , (2.6)

this time with

Î = 1
2 + 1

2∆T

(
EL − VT + I

gL

)
. (2.7)
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2.1.2 Quadratic integrate & fire neuron

As shown above, the QIF model can be seen as an approximation of the AdEx model
and is equivalent to the Izhikevich one, both in absence of adaptation. We will write the
dynamics of the membrane potential V (t) of a QIF neuron as follows1,

τm
dV (t)

dt = τmV̇ = V 2 + η + IS(t); reset rule: if V > Vthresh: V ← Vreset, (2.8)

where τm is the membrane time constant, which can be eliminated via a time rescaling
t→ t/τm. In the rescaled QIF model the dynamics reads:

V̇ = V 2 + η + IS(t) , (2.9)

and time is measured in units of τm. Parameter η represents a constant external current,
that determines the neuronal excitability. In absence of the additional time dependent
current IS(t), the QIF neuron exhibits two possible dynamics, depending on the sign of η.
The different cases are depicted in Fig. 2.2 and described below.
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Time t [ms]
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5
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lta

ge
V

(t
)
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(a2)

0 t1 t2 t3 200
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Untable FP
Saddle-Node
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(b)

Figure 2.2: Dynamics of a single QIF neuron. (a1) shows the excitable case with V (0) <√
|η|, (a2) with V (0) >

√
|η| and (a3) corresponds to tonic firing. The solid and dashed black

lines mark V = ∓
√
|η| and spike times are denoted by t1, t2, t3. (b) Bifurcation diagram V versus

η. The solid and dashed black lines show the stable and unstable fixed points (FP) of Eq. (2.9).
The saddle-node bifurcation at (V = 0, η = 0) is marked by a black dot; the SNIC bifurcation
at η = 0 by a green line. The orange region marks η ≥ 0, for which stable limit cycles exist.

Parameter values are: τm = 20 ms.

1For the sake of simplicity we will omit the hat symbols introduced in Eq. (2.4) in the following and
additionally set I = η + IS(t) to be in line with notations found in literature.
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Excitable dynamics
(a1) If η is negative, the neuron is excitable. For any initial condition V (0) <√
|η|, it approaches the resting potential V = −

√
|η| [dashed line in Fig. 2.2(a)]

asymptotically. The value V = −
√
|η| corresponds to the stable fixed point branch

in Fig. 2.2(b). The unstable fixed point is a saddle equilibrium. Both branches
disappear via a saddle-node (SN) bifurcation.
(a2) For initial values V (0) >

√
|η| the membrane potential grows unbounded, until

the reset mechanism in Eq. (2.8) applies. This describes the spiking behavior of the
QIF neuron: whenever V (t) reaches the threshold value Vthresh, the neuron spikes
(or fires) and an action potential is generated. Each spike leads to an instantaneous
reset of the membrane potential to the reset value Vreset. The time of the k-th spike
is denoted tk.

Tonic firing
(a3) If η is positive, the neuron fires tonically and emits a regular train of spikes with
frequency ν0 = √η/π. Tonic firing is related to the emergence of stable limit cycles
via a SNIC bifurcation located at η = 0. The SNIC bifurcation can be understood
more easily in the θ-model, introduced below.

2.1.3 From point neuron to phase oscillator

The entire dynamics of a single QIF neuron described above can be transformed to that
of a phase oscillator, given the limit Vthresh = −Vreset → ∞, using the following variable
transformation:

V (t) = tan θ(t)2 (2.10a)

θ(t) = 2 arctanV (t) . (2.10b)

One can now calculate the dynamics of θ via dθ
dt and obtain the well-known Ermentrout-

Kopell model, also referred to as θ-model [30].

θ̇ = (1− cos θ) + (1 + cos θ)(η + IS) (2.11)

The spiking behavior of the QIF neuron is reflected in the θ-neuron by the fact that
limθ→π− tan θ

2 =∞ and limθ→π+ tan θ
2 = −∞. Hence, in the limit Vthresh = −Vreset →∞,

the reset rule V > Vthresh: V ← Vreset applies exactly when θ crosses θ = π from below.
Using the θ description of the QIF neuron, we can see that the firing of a spike is

mediated by the saddle, that repels the trajectory, forcing it through θ = π, see the
trajectory (a2) in Fig. 2.2. Saddle and node collide at the critical value η = 0 and vanish
for η > 0, leaving a stable limit cycle.

2.2 Network model and mean-field limit
In order to investigate the emerging dynamics of interacting neurons, one can consider
an ensemble of synaptically coupled point neurons, in this case, QIF neurons. In such a
network of i = 1, . . . N QIF neurons, the dynamics of the system reads

V̇i = V 2
i (t) + ηi + 1

N

N∑
j=1

J̃ij(t)Sj(t) + IS(t) , (2.12)
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Figure 2.3: Dynamics of the θ-neuron. The blue trajectories (a1 - a3) correspond to the ones
shown in Fig. 2.3(a) and blue crosses mark their initial conditions. The filled black circle represents
a node equilibrium, the empty one a saddle. For η = 0 they form a saddle-node. The arrows point
in the direction of θ̇ given in Eq. (2.11). Whenever a trajectory crosses the red line at θ = π from

below, the neuron emits a spike.

with the strength of the direct synapse J̃ij(t) from neuron j to i that, in absence of plas-
ticity, we assume to be constant in time and all identical, i.e. J̃ij(t) = J . The sign of
J determines if the neurons are excitatory (J > 0) or inhibitory (J < 0). Moreover the
excitability parameters ηi can be heterogeneously distributed. Now the total synaptic cur-
rent due to the recurrent connections with presynaptic neurons reads s(t) = 1

N

∑N
j=1 Sj(t)

and we can rewrite the dynamics as:

V̇i = V 2
i (t) + ηi + Js(t) + IS(t) . (2.13)

For instantaneous postsynaptic potentials (corresponding to Dirac δ-spikes) the neural
activity Sj(t) of neuron j is given by

Sj(t) =
∑

tj(k)<t
δ(t− tj(k)), (2.14)

where Sj(t) is the spike train produced by the j-th neuron and tj(k) denotes the k-th
spike time in such sequence. In such a case the total synaptic current s(t) is identical to
the instantaneous mean firing rate of the network, given by the superposition of all spike
trains:

r(t) = 1
N

N∑
j=1

∑
tj(k)<t

δ(t− tj(k)) = 1
N

N∑
j=1

Sj(t) = s(t) . (2.15)

In general, the dynamics of Sj might be more complex, for example, given by a first-order
differential equation with time scale τs, driven by the single neuron spike train, as stated
below.

τsṠj = −Sj +
∑

tj(k)<t
δ(t− tj(k)) (2.16)

We will restrict the derivation to the case of instantaneous synapses for which s(t) = r(t).
However, it is worth noting, that the application of the mean-field framework introduced in
Section 2.2.1 can also be applied in presence of exponentially decaying synaptic activities
obeying Eq. (2.16) [68, 87].
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2.2.1 Thermodynamic limit

In order to derive a macroscopic model for the collective dynamics of Eq. (2.13), we will
follow the derivation of Montbrió, Pazó, and Roxin [16], which has a QIF network as a
starting point. Alternatively, one might start from the θ-neuron Eq. (2.11) within the OA
framework. However, it has been shown in Ref. [16] that the two approaches, namely,
the Lorentzian ansatz (to be introduced below) and the OA ansatz, are equivalent. The
derivation comprises two different steps of dimensionality reduction, in order to go from
an infinitely large microscopic network of QIF neurons to a finite-dimensional macroscopic
description of the collective dynamics.

We start the derivation of the exact neural mass model by considering Eq. (2.13) in
the thermodynamic limit N → ∞, thereby passing from a discrete description of the
microscopic network in terms of the Vi(t) to a continuous one in terms of a probability
density function (PDF) denoted by ρ(V |η, t). The PDF ρ(V |η, t) determines the fraction
dV ρ(V |η, t) of neurons which have a membrane potential V ∈ [V, V + dV ], given a fixed
value η. Analogously, the ηi become distributed according to a PDF g(η) and at any time
t it must hold that ∫ ∞

−∞
dV ρ(V |η, t) = g(η) . (2.17)

Moreover, a natural consequence of the conservation of the number N of particles, i.e,
neurons, in the system is the continuity equation (2.18), which describes the dynamics of
the distribution, given the drift dV

dt = V̇ (V |η, t) for a fixed η.

∂ρ

∂t
+ ∂

∂V

[
ρV̇
]

= 0 (2.18)

With the right hand side (RHS) of Eq. (2.13) put into Eq. (2.18) we obtain:

∂ρ

∂t
+ ∂

∂V

[
ρ(V 2 + I(η, t))

]
= 0 , (2.19)

where I(η, t) = η + Jr(t) + IS(t) denotes the total current.

Stationary solution

The next step is to realize that the continuity Eq. (2.19), given IS(t) = 0, possesses a
trivial stationary solution ρ0(V |η), i.e, for ∂ρ

∂t = 0:

∂

∂V

[
ρ0V̇

]
= 0 (2.20)

⇔ ρ0V̇ = const. (2.21)

⇔ ρ0 ∝ (V̇ )−1 = 1
V 2 + η + Jr

. (2.22)

The form of Eq. (2.22) is known as Lorentzian distribution and reveals already physical
properties of the system as follows. First of all the density is inversely proportional to
the velocity V̇ , hence neurons will lay dense along V regions with low velocity and sparse
along V regions with high velocity. Secondly, for non-tonic neurons with η + Jr < 0,
as in Fig. 2.2(a, b), the density ρ0(V |η) possesses a singularity, when the denominator
V 2 + η + Jr of Eq. (2.22) becomes zero, i.e., at V = ±

√
−(η + Jr). That corresponds

to the equilibria of a single QIF neuron, as can be seen from Eq. (2.9), of which only
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the negative one is stable. In other words, the stationary PDF ρ0(V |η), given quiescent
neurons, takes the form of a Dirac-δ located at the resting potential (see also Section 2.1.2).

2.2.2 First reduction: Lorentzian ansatz

In [16] it was suggested that for every fixed η, the PDF ρ(V |η, t) converges to a Lorentzian,
even for the non-stationary case and independent of initial conditions. This is the first
reduction of the dimensionality of our problem. With this assumption we can make the
following Lorentzian ansatz:

ρ(V |η, t) = 1
π

x(η, t)
[V − y(η, t)]2 + x2(η, t)

. (2.23)

This ρ(V |η, t) corresponds to a generic Lorentzian distribution with a time and η-dependent
half width at half maximum (HWHM) x(η, t) and center y(η, t). A priori, this ansatz repre-
sents a strong assumption, namely that the dynamics takes place in this lower dimensional
space of Lorentzian distributions. Nevertheless, as mentioned before, it turns out that the
Lorentzian ansatz is equivalent to the OA ansatz for phase oscillator networks in the ther-
modynamic limit. For that, convergence to the so-called OA manifold (here corresponding
to Lorentzian distributions) has been proven under certain conditions [28, 88].

For the moment we will stay within the framework of QIF neurons and the Lorentzian
ansatz, in order to facilitate the physical interpretation of the reduction, specifically of
x(η, t) and y(η, t). The ultimate goal of the mean-field theory here is to obtain a finite
dimensional description of the macroscopic dynamics in the limit N →∞. Naturally the
observables of interest are the mean membrane potential v(t) and the mean firing rate r(t)
of the QIF ensemble. It stands to reason to calculate the means v(η, t), r(η, t) for a given,
fixed η, and later on calculate the mean over η via the PDF g(η).

The firing rate enters into the equation of motion Eq. (2.19), hence is required for the
self-consistency of the approach and can be seen as the probability flux through infinity,
yielding

r(η, t) = lim
V→∞

ρ(V |η, t)V̇ (V, η, t) = lim
V→∞

x(V 2 + I)
π(x2 + (V − y)2)

= 1
π
x(η, t) . (2.24)

This simple result links the firing rate of a population of QIF neurons with excitability η
to the width parameter x(η, t) of the Lorentzian ansatz Eq. (2.23).

For the mean membrane potential v(η, t) we can calculate the Cauchy principal value
and obtain

v(η, t) = p.v.
∫ ∞
−∞

ρ(V |η, t)V dV = lim
R→∞

∫ R

−R
ρ(V |η, t)V dV

= y(η, t) , (2.25)

which is identical to the center y(η, t) of the Lorentzian ansatz Eq. (2.23) for a given η.
The final ensemble means r(t) and v(t) result from an integration over η, weighted by the
distribution g(η):

r(t) = 1
π

∫ ∞
−∞

x(η, t)g(η)dη (2.26a)

v(t) =
∫ ∞
−∞

y(η, t)g(η)dη . (2.26b)
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Complex formulation

In the following the goal will be to find equations of motion for x(η, t) and y(η, t). We
start by inserting the Lorentzian ansatz Eq. (2.23) into the continuity equation Eq. (2.19)
and obtain:

0 = ∂ρ

∂t
+ ∂

∂V

[
ρ(V 2 + I)

]
(2.27)

= ẋ

πΛ −
2x [xẋ− (V − y)ẏ]

πΛ2 + 2V x
πΛ −

2x(V 2 + I)(V − y)
πΛ2 , (2.28)

with Λ = (V −y)2 +x2. In order to solve for {ẋ, ẏ}, we can simplify this equations further
by multiplying by πΛ2

2 :

0 = ẋΛ
2 − x [xẋ− (V − y)ẏ] + V xΛ− x(V 2 + I)(V − y) . (2.29)

The RHS of Eq. (2.29) is a polynomial in V and we sort by the orders of V , after inserting
Λ:

0 = V 2 (ẋ− 2xy)

+ V 1
(
−2Ix+ 2x3 + 2xy2 − 2yẋ+ 2xẏ

)
+ V 0

(
2Ixy − x2ẋ+ y2ẋ− 2xyẏ

)
(2.30)

Eq. (2.30) must be valid for any V ∈ R, hence the coefficients of the V k, k ∈ {0, 1, 2} must
be zero, yielding an algebraic system of equations, that can be solved for {ẋ, ẏ}:

ẋ = 2xy (2.31a)
ẏ = y2 − x2 + I . (2.31b)

As a final step one can express the dynamics in terms of a complex quantity w(η, t) :=
x(η, t) + iy(η, t):

ẇ = ẋ+ iẏ

= 2xy + i(y2 − x2 + I)

= i
[
I − w2

]
= i

[
η + Jr + IS(t)− w2

]
(2.32)

The entire dynamics of the QIF ensemble is now expressed in terms of this new com-
plex quantity w(η, t), in an exact manner and with the remarkable property of being
V -independent. However, it is still infinite dimensional, given the dependence on η. Ad-
ditional it is worth noting that the total firing r(t) enters into Eq. (2.32), rendering it an
integro-differential equation through Eq. (2.26a).

2.2.3 Second reduction: Lorentzian distributed heterogeneities

To obtain the total means r(t) and v(t) one can impose a specific distribution g(η) which
is as well of Lorentzian type, given by:

g(η) = 1
π

∆
(η − η̄)2 + ∆2 . (2.33)
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centered at η̄ and with HWHM ∆. This choice allows to obtain analytic expressions for
Eqs. (2.26), by performing a contour integral in the complex η-plane and applying the
residue theorem. This way we only have to evaluate x(η, t) and y(η, t) at the lower pole
of g(η) located at η̄ − i∆:

πr(t) =
∫ ∞
−∞

x(η, t)g(η)dη = x(η̄ − i∆, t) (2.34a)

v(t) =
∫ ∞
−∞

y(η, t)g(η)dη = y(η̄ − i∆, t) (2.34b)

Straightforwardly, the dynamics of r(t) and v(t) is given via the real and imaginary parts
of Eq. (2.32), evaluated at η̄ − i∆:

πṙ + iv̇ = ẇ(η̄ − i∆, t) = i
[
η̄ − i∆ + Jr + IS(t)− w2(η̄ − i∆, t)

]
(2.35)

= ∆ + 2πr(t)v(t) + i
[
η + Jr(t) + IS(t) + v2(t)− π2r2(t)

]
.

Finally, separating real and imaginary part, the dynamics of r(t) and v(t) is given by:

ṙ = ∆
π

+ 2rv (2.36a)

v̇ = v2 − (πr)2 + η + Jr + IS(t) . (2.36b)

Eqs. (2.36) is referred to as firing rate equations (FRE), MPR model or exact neural mass
model and is the starting point of this thesis.

The upcoming Section 2.3 is dedicated to an extension of the underlying QIF network
Eq. (2.12), to account for synaptic dynamics, i.e., when J̃ij(t) changes in time. We will
show that a treatment of short-term synaptic plasticity on mesoscopic scale allows for
a straightforward application of the mean-field limit, without the loss of exactness. The
final neural mass model consists of Eqs. (2.36), with adjustments to the recurrent synaptic
current Jr, and two additional equations that describe the STP dynamics.

2.3 Short-term synaptic plasticity
In order to reproduce WM mechanisms in the prefrontal cortex (PFC) in Chapter 3,
we follow [9] and assume that excitatory-to-excitatory synapses display depressing and
facilitating transmission, described by the phenomenological model of STP developed by
Markram, Tsodyks and collaborators [38, 39, 89]. Example traces of such dynamics, using
a single QIF neuron, are shown in Fig. 2.4.

Depression

Short-term synaptic depression is related to neurotransmitter depletion. Each neuron i
has a limited amount Xi(t) ∈ [0, 1] of resources (i.e. vesicles ready to be released). Spiking
is followed by the emittance of presynaptic action potentials. Upon their arrival at the
synaptic terminal a fraction Ui(t) ∈ [U0, 1] of the neurotransmitters is released into the
synaptic cleft, resulting in the generation of postsynaptic potentials (PSPs). Therefore,
each presynaptic spike is linked to the utilization and reduction of resources available for
the generation of upcoming PSPs [see Fig. 2.4(b)], consequently leading to a decrease of
future postsynaptic excitations. The resource Xi exponentially recovers to its base value
of Xi = 1 on a timescale τd = 200 ms (depression timescale) [90].



16 Chapter 2. Neural mass model, synaptic plasticity and slow-fast dynamics

−10
0

10

V
(t

) (a)

0

1

X
(t

)

τd = 0.2 s
(b)

0 2 4 6 8
Time t [s]

0

1
U

(t
)

τf = 1.5 s
U0

(c)

Figure 2.4: Short-term synaptic plasticity. (a) Membrane po-
tential V (t), (b) available resources X(t) and (c) utilization U(t)
of a single QIF neuron as a function of time t. In the time win-
dows 0 s < t < 0.5 s and 4 s < t < 4.5 s and external step current
IS(t) of amplitude ∆I = 0.5 is applied to the neuron. The dynamics
obey Eqs. (2.37) and Eq. (2.38). Parameter values are: τm = 20 ms,

τd = 200 ms, τf = 1500 ms, η = 0.

Facilitation

Facilitation, as opposed to depression, leads to enhanced PSPs and is related to the neu-
rotransmitter release probability at the synaptic terminals, which is modeled by the uti-
lization factor Ui. The release probability (and therefore Ui) depends on the intracellular
calcium concentration. The neurotransmitter release is associated with the accumulation
of calcium ions in the presynaptic terminal, hence each spike leads to an increase of Ui
[see Fig. 2.4(c)]. Calcium concentration and the utilization factor decay to the base level
Ui = U0 on the facilitation timescale τf = 1500 ms [90].

QIF network with STP

As done in a previous analysis [91], we also assume for the sake of simplicity, that all the
efferent synapses of a given neuron follow the same dynamical evolution, therefore they
can be characterized by the index of the presynaptic neuron. In a QIF network with STP,
the dynamics of the membrane potential and the synaptic variables Xi(t) and Ui(t) is
ruled by the following ordinary differential equations:

V̇i = V 2
i (t) + ηi + 1

N

N∑
j=1

J̃ij(t)Sj(t) + IS(t) (2.37a)

Ẋi = 1−Xi(t)
τd

−Xi(t)Ui(t)Si(t) (2.37b)

U̇i = U0 − Ui(t)
τf

+ U0(1− Ui(t))Si(t) . (2.37c)

In the Markram and Tsodyks STP model UiXi represents the amount of resources em-
ployed to produce a postsynaptic potential, therefore in presence of STP the synaptic
coupling J̃ij(t) entering into Eq. (2.12) will be modified as follows:

J̃ij(t) = JUj(t)Xj(t) ∀i = 1, . . . , N . (2.38)
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Overall, taking instantaneous synapses and STP into account, the state variables of the
system change in the following way at the k-th spike of neuron j:

Vi(t+) = J

N
Uj(t−)Xj(t−) ∀i = 1, . . . , N (2.39a)

Xj(t+) = Xj(t−)− Uj(t−)Xj(t−) (2.39b)
Uj(t+) = Uj(t−) + U0

(
1− Uj(t−)

)
. (2.39c)

For simplicity the spike time is denoted by t, the time before the increment is denoted
by t−, the time after by t+. Note that for the synaptic variables only the j-th neuron is
affected, while the membrane potentials Vi of all neurons are changed, due to the all-to-all
coupling.

2.3.1 Mesoscopic description

The spiking network model with µ-STP (µ-STP), given in Eqs. (2.37), consists of 3N
differential equations: one for the membrane potential and two for the synaptic variables of
each neuron. In order to reduce the system size effects and to obtain accurate simulations
reproducing the neural mass dynamics, large network sizes are required, namely N >
100, 000.

For these network simulations massive numerical resources are required, however the
complexity of the synaptic dynamics can be noticeably reduced, by treating the STP at a
mesoscopic level under the assumption that the spike trains emitted by each neuron are
Poissonian [39, 92]. In this framework, the mesoscopic description of the synapse can be
written as

ẋ = 1− x(t)
τd

− u(t)x(t)A(t) (2.40a)

u̇ = U0 − u(t)
τf

+ U0(1− u(t))A(t) , (2.40b)

where x = 〈Xi〉 and u = 〈Ui〉 represent the average of the microscopic variables {Xi} and
{Ui} over the whole population2 and A(t) = 〈Sj(t)〉 is the mean firing rate.

The synaptic coupling entering in Eq. (2.12) now becomes:

J̃ij(t) = Ju(t)x(t) ∀ 1 ≤ i, j ≤ N . (2.41)

The dynamics of the QIF network with the mesoscopic STP (m-STP) obeys the N + 2
ODEs given in Eqs. (2.42),

V̇i = V 2
i + ηi + JuxA(t) + IS(t) (2.42a)

ẋ = 1− x
τd
− uxA(t) (2.42b)

u̇ = U0 − u
τf

+ U0(1− u)A(t) , (2.42c)

with A(t) = 1
N

∑N
j=1 Sj(t).

It should be noted that the synaptic variables Xi(t) and Ui(t) for the same synapse
are correlated, since they are both driven by the same spike train Si(t) of neuron i. These
correlations are neglected in the derivation of the m-STP model, therefore one can write
〈Ui(t)Xi(t)〉 = 〈Ui(t)〉〈Xi(t)〉 = u(t)x(t). This approximation is justified in [39] by the

2The population average 〈·〉 = 1
N

∑N

i=1 · is performed over all the neurons N in the population
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fact that the coefficients of variation of the two variables Ui and Xi are particularly small
for facilitating synapses. Indeed it is possible to write a stochastic mesoscopic model for
the STP that includes the second order moments for Ui and Xi, i.e. their correlations and
fluctuations [92].

2.4 Exact neural mass model with STP
So far we have seen the derivation of an exact mean-field limit, following Ref. [16], for
the heterogeneous QIF network with instantaneous synapses and in absence of synaptic
dynamics, given in Eqs. (2.13) and (2.14). However, by including a dynamical evolution
for the synapses and therefore additional collective variables, this neural mass model can
be extended to more realistic postsynaptic potentials, see e.g. [46] for exponential synapses
or [27] for conductance based synapses with α-function profile.

In our case the synaptic dynamics at a mesoscopic level is given by Eqs. (2.42b)
and (2.42c), therefore it will be sufficient to include the dynamical evolution of the m-
STP in the Eqs. (2.36) to obtain an exact neural mass model for the QIF spiking network
with STP. Specifically, we consider Eqs. (2.42) for membrane potential and m-STP dy-
namics and we substitute the population activity A(t) with the instantaneous firing rate
r(t), which corresponds to its coarse grained estimation in the limit N → ∞. Further-
more, the synaptic coupling entering in Eqs. (2.36) will become Ju(t)x(t), such that the
complete neural mass model reads

τmṙ = ∆
τmπ

+ 2rv (2.43a)

τmv̇ = v2 − (πτmr)2 + Jτmuxr + η̄ + IS(t) (2.43b)

ẋ = 1− x
τd
− uxr (2.43c)

u̇ = U0 − u
τf

+ U0(1− u)r . (2.43d)

Note that here the time rescaling described in Section 2.1.2 has been reverted, hence the
appearance of τm in the equations. The macroscopic dynamics generated by the neural
mass model Eqs. (2.43) and by the QIF network with µ-STP and m-STP are compared
in Section 3.2.1.

Numerical simulation of QIF networks and neural mass with STP

For the numerical simulation of the models employed in this thesis see Section 2 in Ap-
pendix C.

2.5 Multi-populations models
The discussed models can be easily extended to account for multiple interconnected neu-
ronal populations. In the following we restrict this extension to the QIF network with
m-STP Eqs. (2.42) and the corresponding neural mass model, since the simulations we
performed for the QIF network with µ-STP Eqs. (2.37) are limited to a single population.

We consider a network composed of one inhibitory and Npop excitatory interacting
neural populations. Therefore the dynamics of the membrane potential Vi,k(t) of the i-
th QIF neuron of the k-th population (k = 0, . . . , Npop) and of the mesoscopic synaptic
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variables (uk(t), xk(t)) for the excitatory populations (k > 0) can be written as follows

V̇i,k = V 2
i,k + ηi,k + I

(k)
S (t) +

Npop∑
l=0

J̃kl(t)
Nl

Nl∑
j(l)=1

Sj,l(t) (2.44a)

For i = 1, . . . , Nk :

ẋk = 1− xk
τd

− ukxkAk (2.44b)

u̇k = U0 − uk
τf

+ U0(1− uk)Ak ; (2.44c)

where I(k)
S (t) is the stimulation current applied to the population k and Ak(t) is the

population activity of the k-th population. Each population l consists of Nl neurons, which
are indexed by j. We assume that the synaptic couplings J̃kl depend on the population
indices k and l but not on the neuron indices; moreover we assume that the neurons are
globally coupled both at the intra- and inter-population level. The synaptic couplings for
excitatory-excitatory connections are plastic, therefore they can be written as

J̃kl(t) = Jklul(t)xl(t) , (2.45)

while if one of the populations k or l is inhibitory, the expression for the synaptic coupling
will be simply set to J̃kl(t) = const. = Jkl. The sign is determined by the pre-synaptic
population l, with Jkl > 0 for excitatory and Jkl < 0 for inhibitory populations. In Chap-
ter 3 a multi-population network is considered that comprises one inhibitory population
and multiple excitatory ones. In such case, the inhibitory population is indexed as k = 0.
The corresponding multi-population neural mass model, without time rescaling, can be
straightforwardly written as

τkmṙk = ∆k

τkmπ
+ 2rkvk k = 0, 1, . . . , Npop (2.46a)

τkmv̇k = v2
k + η̄k + I

(k)
S (t)− (πτkmrk)2 + τkm

Npop∑
l=0

J̃klrl (2.46b)

ẋl = 1− xl
τd

− ulxlrl (2.46c)

u̇l = U0 − ul
τf

+ U0(1− ul)rl l = 1, . . . , Npop ; (2.46d)

where for excitatory-excitatory population interactions

J̃kl(t) = Jklul(t)xl(t) ; (2.47)

and whenever population k or l is inhibitory J̃kl(t) = Jkl.

2.6 Neuronal dynamics across spatio-temporal scales
In Sections 2.1 to 2.5 of this chapter various models have been introduced, which describe
neuronal dynamics on different spatial scales: from the single neuron Eq. (2.8) and synap-
tic dynamics Eqs. (2.37), via the QIF network and mesoscopic description of short-term
synaptic plasticity Eqs. (2.42), to the multi-population model Eq. (2.46). Multi-population
models are employed in Chapter 3 to working memory and in Chapter 4 for modeling
seizure-like events. In both cases the interesting aspects of the models are given by the
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emerging dynamics across spatial scales, triggered by an external time dependent current.
Understanding these responses requires a view on the dynamical properties of the system,
like the bifurcation structure. As an example, seizure-like events are modeled by a switch
from a low to a high activity state and mediated by bistability. In this specific case,
bistability arises due to saddle-node bifurcations of Eqs. (2.36).

Dynamical properties also include the timescales appearing in the system. Naturally,
as discussed in Section 2.3, short-term synaptic plasticity, which is present in the working
memory model, comes along with two additional timescales for depression and facilita-
tion. On one hand, multiple timescales might enrich the possible firing patterns, but they
also complicate the analysis of the dynamics. On the other hand, a clear separation of
timescales can be exploited, in order to investigate slow and fast dynamics separately. The
methodology of this slow-fast dissection is introduced in Section 2.7, exemplified using the
prototypical van der Pol (VdP) oscillator and finally applied to the single population neu-
ral mass model with STP Eqs. (2.43) in Chapter 5, in order to understand the response
to a slow external current.

2.7 Slow-fast theory and canards
The dynamics of systems with multiple timescales, also referred to as slow-fast dynamics,
can be regarded in terms of fast variables Xf(t) ∈ Rk and slow variables Xs(t) ∈ Rl. Their
dynamics is governed by the differential equations given in Eqs. (2.48) and here referred
to as full system,

Ẋf = F(Xf ,Xs) (2.48a)
Ẋs = εG(Xf ,Xs) (2.48b)

with fast-time parametrization t (the overdot denoting differentiation with respect to t),
F(Xf ,Xs) : Rk × Rl → Rk and G(Xf ,Xs) : Rk × Rl → Rl. Here the separation of
timescales is reflected by a small parameter 0 < ε� 1. We will refer to this type of system
as k-fast l-slow system.

A different formulation of the full system is obtained in Eqs. (2.49) by parametrizing
it in slow time τ := εt.

εX′f = F(Xf ,Xs) (2.49a)
X′s = G(Xf ,Xs) . (2.49b)

The derivative with respect to slow time τ is denoted by (_)′ := d/dτ(_) = 1
ε

˙(_). The
two representations Eqs. (2.48) and Eqs. (2.49) are equivalent, but they allow to exploit
the premise of slow-fast systems, namely the timescale separation given by a small value
of ε, in different ways. It is natural to consider the singular limit ε = 0 and take the
fast and slow-time parametrizations into account. One obtains two different subsystems,
which represent a dissection of slow and fast dynamics of the full system.

In the first case we obtain the fast subsystem Eqs. (2.50). This limit can be used
to understand dynamics of the full system for which Xf evolves fast and results in the
following k + l ODEs, l of which being trivial:

Ẋf = F(Xf ,Xs) (2.50a)
Ẋs = 0 (2.50b)
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Indeed, the dynamics of the slow variables Xs is trivial and their value does not change in
time. As a matter of fact they can be treated as parameters entering into the dynamics
of Xf .

The second limit ε→ 0, now done in the slow-time parametrization Eqs. (2.49), yields
the slow subsystem, namely:

0 = F(Xf ,Xs) (2.51a)
X′s = G(Xf ,Xs) . (2.51b)

Eqs. (2.51) is also referred to as the reduced system and it is represented by a differential-
algebraic system, in which the dynamics of the slow variables remains unchanged with
respect to the full system and is governed by X′s = G(Xf ,Xs). The dynamics of the fast
variables on the other hand are hidden within the k algebraic constraints Eq. (2.51a).
They define the critical manifold:

S0 = {(Xf ,Xs) | F(Xf ,Xs) = 0} , (2.52)

usually a l-dimensional manifold embedded in R(k+l).
In the slow subsystem the dynamics of the fast variables is slaved to the slow vari-

ables, their relation is given by the critical manifold’s equations, which defines the state
space of this limiting problem: motion of the slow subsystem takes place on S0. At the
same time points of S0 correspond to equilibria of the fast subsystem, as is clear from
equation Eq. (2.50a). By joining solutions of the different subsystems at specific points,
singular orbits can be constructed. They are trajectories resulting from the concatena-
tion of slow and fast segments, for which the dynamics is determined by the respective
subsystem.

Solutions of systems of the type of Eqs. (2.48) with both slow and fast segments
are ε-perturbations of singular orbits and the prototypical slow-fast cycles are relaxation
oscillations [93]. The way these cycles emerge in the parameter space is rather peculiar
and related to the famous canard solutions. After introducing the slow flow below, we
review these solutions in Section 2.7.2 in the context of the classical VdP system system.

2.7.1 Slow flow

We make further use of the dissection by studying the slow flow on the critical manifold
S0. In the slow subsystem Eqs. (2.51) the state space is reduced to S0, described by
four algebraic conditions in Eq. (5.6), the solutions of which depend on the slow variable
I1 entering into the membrane potential equation. The state variables in this limit are
subject to the slow flow (X′f ,X′s) describing their dynamics on S0. For Xs = (I1, I2) this is
explicitly given via the Hopf normal form Eq. (5.4b). For the fast variables Xf = (r, v, x, u)
however, the algebraic constraints define Xf as well as X′f on S0 implicitly. In this case
the flow can be obtained by taking the total (slow) time derivative of Eq. (2.51a) as done
in Eq. (2.53),

0 = d
dτ F(Xf(τ),Xs(τ)) = ∂F

∂Xf

dXf
dτ + ∂F

∂Xs

dXs
dτ , (2.53)
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where ∂(·)
∂a is the Jacobian of (·) with respect to a. If the Jacobian ∂F

∂Xf
is invertible, i.e.,

det
(
∂F
∂Xf

)
6= 0, then the slow flow of Xf can be calculated and results in Eq. (2.54).

dXf
dτ ≡ X′f = −

(
∂F
∂Xf

)−1 ( ∂F
∂Xs

X′s
)

(2.54)

This slow flow is only defined on S0 and represents a system of ODEs capturing the
dynamics of Xf and Xs on the manifold.

2.7.2 Classical canards in the van der Pol oscillator

Here we briefly present the essentials of classical canards in the prototypical VdP system
given in Eqs. (2.55), consisting of one fast variable x and one slow variable y. Once written
in first-order form, the system’s equations read:

ẋ = y − x3

3 + x (2.55a)

ẏ = ε(a− x) . (2.55b)

Critical manifold

The critical manifold S0 is one dimensional and S-shaped, parametrized by x as y(x) =
x3

3 −x [see green curve in Fig. 2.5(b)]. In VdP the critical manifold {(x, y); y = y(x)} has
a local maximum and a local minimum, at x = ±1, respectively. Therefore S0 folds twice
and has three branches, of which the middle one is repelling and the other two attracting.
They correspond to unstable and stable equilibria of the fast subsystem, respectively. The
slow nullcline, determined by ẏ = 0, is the straight line {x = a} and, at a = ±1, it
intersects S0 at the fold points perpendicularly.

Canard explosion in the full system

Overall, the VdP system, with 0 < ε� 1 and a as a bifurcation parameter [see Fig. 2.5(a)],
displays various regimes, from a stable equilibrium branch, via Hopf cycles and canards,
to relaxation oscillations. The subthreshold regime, i.e, the branch of stable equilibria,
terminates at a supercritical Hopf bifurcation, at which stable small Hopf cycles emanate.
These cycles are not yet of relaxation type and only exist in an O(ε) distance from the
Hopf point [Fig. 2.5(b1)]. They revolve around the unstable equilibrium at the intersection
of S0 and slow nullcline x = a

This regime is followed by an exponentially narrow parameter interval, for which the
orbits grow in an explosive manner when the parameter is varied [Fig. 2.5(b2 - b5)]. This
phenomenon is known as a canard explosion [94] and the associated canards separate the
small Hopf cycles from relaxation oscillations [66]. They evolve for some time near the
repelling sheet of S0, before jumping to one of the attracting sheets. Two types of canards
can be distinguished, the ones with a head [Fig. 2.5(b2 - b4)], including themaximal canard,
which reaches until the fold at a = 1, and those without a head [Fig. 2.5(b5)], which
follow after the maximal canard. After the canard explosion a wide regime of relaxation
oscillation follows, an exemplary trajectory is shown in Fig. 2.5(b6). In approximation,
relaxation oscillations can be found in −1 / a / 1 and they terminate at a second
Hopf bifurcation near a ≈ 1, by following the inverse procedure of their emergence: from
relaxation oscillations, via canards and Hopf cycles, to stable equilibria.
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Figure 2.5: Canard dynamics in the van der Pol system. (a) Bifurcation diagram x versus
a of the full system Eqs. (2.55) with ε = 0.05. (b) Solutions of the full system (blue) superimposed
on critical manifold S0 = {(x, y); y(x) = x3

3 − x} (green) and slow nullcline x = a (black). The a
values in (b1 - b6) are marked in (a) by crosses and in increasing order. For (b1 - b5) the a values
are exponentially close. In (b) the solid green line reflects the fact that S0 is attracting, the dashed
one that it is repelling, while the green arrows depict the slow flow defined in Eq. (2.53) and given

by (x′, y′) = ( a−xx2−1 , a− x) for VdP.

Slow flow and emergence of a canard point

Canards represent a mechanism which allows to connect the attracting sheet of the critical
manifold to the repelling one and they can be understood by taking into account the slow
flow of the fast variable x, given in Eq. (2.54) and describing the slow dynamics on S0.
For VdP, also taking into account y′′, we obtain the slow flow (x′, y′) = ( a−x

x2−1 , a − x),
which is in general undefined at the folds (x = ±1). However, its x-component reduces
to x′ = − 1

x±1 for a = ±1. In this case the flow remains defined at the corresponding fold
x = ±a, but undefined at the other fold x = ∓a. Despite the intersection of the slow
nullcline x = a with the cubic nullcline, no equilibrium exists. Instead a turning point
forms, which allows for a continuous passage through the corresponding fold without any
obstruction. This passage from the attracting to the repelling sheet of S0 occurs in finite
time and is the basis of singular (ε = 0) canard orbits. Therefore the turning point is
also referred to as canard point. As we will see in Chapter 5 and in many other problems
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involving bursting solutions, canard dynamics play an essential role. They separate the
subthreshold regime from the one where bursting can occur.

Folded-saddle canards

The understanding of canards based on the VdP system can be extended towards 1-fast
2-slow systems. In the most simple case the parameter a of the VdP system is subject
to a slow drift given by ȧ = εµ, with a constant speed µ. Naturally, the slow nullcline is
absent in this case and the intersection with the fast subsystem’s fold, which is forming
the turning point, can not occur. Nevertheless canards can be found and are a result of a
slow passage effect: the parameter a dynamically transitions through the canard explosion
of the original problem.

In VdP the existence of turning points is conditioned by the fact that the slow variable
receives feedback from the fast variable , leading to a “turn" of the slow flow direction,
depending on the value of x. In the neural mass model with STP in presence of external
periodic forcing, however, this feedback is absent. The turn of the slow flow appears
naturally via the form of the external forcing. In both cases the passage through the fold
underlies the same mechanisms and it is well understood by making use of an auxiliary
system, called the desingularized reduced system (DRS), which is introduced in Chapter 5.

Making use of the DRS, the formation of canards as described above, is reflected
by so-called folded-saddle singularities, which allow for a passage from the attracting to
the repelling sheet of S0. Ultimately, this leads to the existence of canard orbits in the
extended VdP system, as well as in the neural mass with STP in presence of periodic
forcing.

Torus and mixed-type canards

The term canard is not restricted to dynamics taking place in the vicinity of (or on)
attracting and repelling manifolds, which represent equilibria. In general, it refers to any
type of solution evolving near attracting and repelling locally invariant sets associated
with the fast subsystem. These invariant sets can correspond to equilibria but also to
limit cycles. Following this definition, a particular type of canard can be found in elliptic
bursters [95], which require at least a 2-fast 1-slow system. Here elliptic bursting can arise
due to a subcritical Hopf-Bifurcation (in the fast subsystem) giving rise to unstable limit
cycles, which stabilize via a fold bifurcation of cycles. The Hopf bifurcation initiates the
burst, while the fold of cycles marks their termination. Usually in elliptic bursters the full
dynamics follows the family of stable limit cycles of the fast subsystem. However so-called
torus canards can be found for small enough ε [96, 97]. They describe orbits following a
stable family of fast subsystem cycles and switching to the unstable one past the fold.

A hybrid of classical canards and torus canards, so-called mixed-type canards, were
reported in [69]. They describe trajectories that spend time near repelling branches of
equilibria as well as limit cycles, and can therefore be seen as a mix of classical canards
and torus canards. Segments of these solutions evolve nearby unstable equilibria and
connect to unstable limit cycles of the fast subsystem. These last types of canards are
found in bursting systems, which are ubiquitous in the modeling of neural activity at both
single-cell and population level.
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Chapter 3

Working memory and cortical
oscillations

A synaptic theory of working memory (WM) has been developed in the last decade as a
possible alternative to the persistent spiking paradigm. In this context, we employ the
neural mass model derived in Chapter 2, which reproduces exactly the dynamics of hetero-
geneous spiking neural networks encompassing realistic cellular mechanisms for short-term
synaptic plasticity. This population model reproduces the macroscopic dynamics of the
network in terms of the firing rate and the mean membrane potential. The latter quantity
allows us to gain insight of the local field potential and electroencephalographic signals
measured during WM tasks to characterize the brain activity. More specifically synap-
tic facilitation and depression integrate each other to efficiently mimic WM operations
via either synaptic reactivation or persistent activity. Memory access and loading are
related to stimulus-locked transient oscillations followed by a steady-state activity in the
β-γ band, thus resembling what is observed in the cortex during vibrotactile stimuli in
humans and object recognition in monkeys. Memory juggling and competition emerge
already by loading only two items. However more items can be stored in WM by con-
sidering neural architectures composed of multiple excitatory populations and a common
inhibitory pool. Memory capacity depends strongly on the presentation rate of the items
and it maximizes for an optimal frequency range. In particular we provide an analytic
expression for the maximal memory capacity. Furthermore, the mean membrane potential
turns out to be a suitable proxy to measure the memory load, analogous to event driven
potentials in experiments on humans. Finally we show that the γ power increases with
the number of loaded items, as reported in many experiments, while θ and β power reveal
non monotonic behaviors. In particular, β and γ rhythms are crucially sustained by the
inhibitory activity, while the θ rhythm is controlled by excitatory synapses.

Publication:
The results presented in this chapter are published [98]: H. Taher, A. Torcini, and S. Olmi. “Exact
Neural Mass Model for Synaptic-Based Working Memory”. PLOS Computational Biology 16.12
(Dec. 2020), e1008533

http://dx.doi.org/10.1371/journal.pcbi.1008533
http://dx.doi.org/10.1371/journal.pcbi.1008533
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3.1 Introduction
Working memory allows us to keep recently accessed information, available for manip-
ulation: it is fundamental in order to pass from reflexive input-output reactions to the
organization of goal-directed behavior [99–104]. Starting from the seminal work of Fuster
and Alexander [105], several experiments have shown that neurons in higher-order cortex,
including the PFC, are characterized by elevated levels of spiking activity during memory
delays related to WM tasks. Experimental results seem to suggest that WM maintenance
is enhanced by delayed spiking activity, engaging executive functions associated with large
part of the cortex, from frontal to posterior cortical areas [106, 107]. In particular, it has
been shown that neurons in the PFC exhibit persistent activity selective to the sample
cue during oculomotor delayed-response task [40] as well as during vibrotactile response
task [42] and that this activity is robust to distractors [41]. Therefore, classic models
proposed persistent spiking for online maintenance of information, since neural ensembles
in an active state appear more prone to fast processing [108, 109]. These models have
been able to describe multi-item loading and maintenance in WM [62], spatial WM in the
cortex [110], and two interval discrimination tasks [111].

A further relevant aspect, associated with WM operations, is the presence of neural
oscillations, whose increase in the oscillatory power during WM maintenance and rehearsal
has been reported for humans in the θ-band (4-8 Hz) [112, 113], as well as in the β (12-25
Hz) and γ-range (25-100 Hz) [114, 115], while for monkeys it has been reported in the θ
and γ-range [116, 117] joined to a decrease in the β-band [117]. The results for the activity
in the α-band (8-11 Hz) are somehow more complex: on one side it has been shown that
during WM retention in humans no variations are observable [114] while, on the other side,
that it can be associated with the inhibitory action suppressing irrelevant stimuli [118].
Despite many studies, the role played by oscillations in WM is still unclear; however
numerical studies have suggested that different cycles of a high frequency oscillation in
the γ-band can encode a sequence of memory items if nested within a slower θ or β rhythm
[119–121]. Moreover, it has been shown in computational models that oscillatory forcing in
different frequency bands may provide effective mechanisms for controlling the persistent
activity of neural populations and hence the execution of WM tasks [32, 91].

Recently, the persistent state paradigm has been criticized on the basis of the incon-
sistencies emerging in data processing: persistent activity is the result of specific data
processings, being neural spiking averaged over time and across trials. Averaging across
trials can create the appearance of persistent spiking even when, on individual trials,
spiking is actually sparse [49, 122]. Nevertheless, there are examples of single neurons
that show real persistent spiking on individual trial rasters, but they represent a small
percentage, while the bulk of neurons spike sparsely during WM delays [123, 124].

A pioneering study [90] revealed that the interactions among pyramidal neurons in
the PFC display synaptic facilitation lasting hundreds of milliseconds. This study paved
the way for a development of an alternative model for WM based on synaptic features.
More specifically, memory items can be stored by spiking-induced changes in the synaptic
weights and these items can be maintained in WM by brief bursts of spiking restoring the
synaptic strengths [9, 125–127]. As a result this kind of model is more justifiable from a
metabolic point of view, since the memory requires less resources to be held with respect to
the persistent activity. Moreover, multiple memory items can be maintained in WM at the
same time by having different neuronal populations emitting short bursts at different times.
This would solve problems usually observables in models based on persistent spiking:
namely, the interference among different stored items and the disruption of memories
associated with new sensory inputs [48, 127].
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In this context, a fundamental model for WM based on STP has been introduced by
Mongillo et al. in [9]. In this model, synapses among pyramidal neurons display depressed
and facilitated transmissions based on realistic cellular mechanisms [38, 39, 89]. Synaptic
facilitation allows the model to maintain an item stored for a certain period in WM,
without the need of an enhanced spiking activity. Furthermore, synaptic depression is
responsible for the emergence of population bursts (PBs), which correspond to a sub-
population of neurons firing almost synchronously within a short time window [128, 129].
This WM mechanism is implemented in [9] within a recurrent network of spiking neurons,
while a simplified firing rate model is employed to gain some insight into the population
dynamics. The rate model, like most of the models investigated in literature [7, 10],
is heuristic, i.e. the macroscopic description had not a precise correspondence with the
microscopic neuronal evolutions.

Recent results for the primate PFC have revealed that the mnemonic stimuli are en-
coded at a population level allowing for a stable and robust WM maintenance, despite
the complex and heterogeneous temporal dynamics displayed by the single neurons [130].
This analysis suggests that the development of population models which are capable of re-
producing the macroscopic dynamics of heterogeneous spiking networks can be extremely
useful to shed further light on the mechanisms at the basis of WM. An ideal candidate to
solve this task is represented by a neural mass model of new generation able to exactly
reproduce the macroscopic dynamics of spiking neural networks [16, 131, 132]. This ex-
act derivation is possible for networks of QIF neurons, representing the normal form of
Hodgkin’s class I excitable membranes [30], thanks to the analytic techniques developed
for coupled phase oscillators [15]. This new generation of neural mass models has been
recently used to describe the emergence of collective oscillations (CO) in fully coupled
networks [27, 46, 133, 134] as well as in balanced sparse networks [36]. Furthermore,
it has been successfully employed to reveal the mechanisms at the basis of theta-nested
gamma oscillations [33, 87] and of the coexistence of slow and fast gamma oscillations
[135]. However, to our knowledge, such models have not been yet generalized to spiking
networks with plastic synapses.

Our aim is to use a next generation neural mass model encompassing short-term synap-
tic facilitation and depression [39]. This model will enable us to revise the synaptic theory
of working memory [9] with a specific focus on the emergence of neural oscillations and
their relevance for WM operations. The neural mass model captures the macroscopic evo-
lution of the network not only in terms of the firing rate, as the standard heuristic models
do [7], but also of the mean membrane potential [16]. This will allow for a more direct com-
parison with the results of electrophysiological experiments often employed to characterize
WM processes. Indeed, as shown in [136], electroencephalograms (EEGs), event-related
potentials (ERPs) and local field potentials (LFPs) have the same information content as
the mean membrane potentials.

The chapter is organized as follows. First, we will report clear evidence that the
neural mass model reproduces, with extreme accuracy, the macroscopic dynamics of het-
erogeneous networks of QIF neurons with STP. Secondly, we will show that the model is
able to mimic the fundamental operations required for WM functioning, whenever memory
items are maintained either via spontaneous and selective reactivation or via persistent
activity. We will devote particular attention to the spectral features of COs emerging
during such operations and to their analogy with experimental findings reported for EEG
responses to vibrotactile stimuli in primary somatosensory cortex in humans [47] and for
LFP measurements performed in PFC of primates during objects coding in WM [48, 49].
In this context, we will show that a heuristic firing rate model, despite being specifically
designed to reproduce the mean-field dynamics of QIF networks, is unable to sustain
fast oscillations, which usually characterize the neural activity during WM tasks. Then
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we will perform a detailed analysis of the competition between two consecutively loaded
memory items, whenever the memory maintenance is realized in terms of either synaptic
facilitation or persistent spiking. Additionally, we will analyze how the memory capacity
depends on the presentation rate of a sequence of items and which frequency bands are
excited during loading and maintenance of multiple items in WM. We will also derive an
analytic estimation of the maximal working memory capacity for our model, by extending
recent results obtained in [10]. Furthermore, we will show that the mean membrane po-
tential can represent a proxy to investigate memory load and capacity, in analogy with a
series of experiments on neurophysiological measures of the WM capacity in humans [103,
137]. Finally, we will conclude with a discussion on the obtained results and their possible
relevance for the field of neuroscience.

3.2 Results
We develop a model for WM able to memorize discrete items by following [138] and
considering Npop coupled excitatory populations, each coding for one item, and a single
inhibitory population connected to all the excitatory neurons. This architecture is justified
by recent experimental results indicating that GABAergic interneurons in mouse frontal
cortex are not arranged in sub-populations and that they densely innervate all pyramidal
cells [139]. The role of inhibition is to avoid abnormal synchronization and to allow
for a competition of different items once stored in the excitatory population activity.
Furthermore, in order to mimic synaptic-based WM we assume that only the excitatory-
excitatory synapses are plastic displaying short-term depression and facilitation [9].

The macroscopic activity of Npop excitatory and one inhibitory populations of hetero-
geneous QIF neurons can be described in terms of the population firing rate rk(t) and
mean membrane voltage vk(t) of each population k by the following set of ODEs, which
were derived in Chapter 2:

τnmṙk = ∆k

τnmπ
+ 2rkvk k = 0, 1, . . . , Npop (3.1a)

τnmv̇k = v2
k − (πτnmrk)2 +Hk + IB + I

(k)
S (t) + τnm

Npop∑
l=0

J̃kl(t)rl ; (3.1b)

where τnm denotes the membrane time constant of excitatory (inhibitory) populations n = e
(n = i) and IB denotes a background current common to all populations, whereas Hk and
the (time dependent) stimulus current I(k)

S (t) may be population specific1. Excitatory pop-
ulations are characterized by k > 0, the inhibitory one by k = 0. In absence of STP and
for instantaneous synapses the synaptic weights are constant in time J̃kl(t) = Jkl and their
sign determines whether the connections are excitatory (Jkl > 0) or inhibitory (Jkl < 0).
The heterogeneous nature of the neurons is taken into account by considering randomly
distributed neural excitabilities, reflecting their biological variability. Specifically, we as-
sume that the distribution of the neural excitabilities is a Lorentzian characterized by a
median Hk and a half width half-maximum (HWHM) ∆k This choice allows us to derive
the neural mass model from the spiking QIF network analytically. However, the overall
dynamics does not change substantially by considering other distributions for the neural
excitabilities, like Gaussian and Binomial ones [16, 135].

The inclusion of the depression and facilitation STP mechanisms in the spiking net-
works is reflected in the modification of the synaptic weights entering in the neural mass
model Eqs. (3.1). In particular, these are rewritten as J̃kl(t) = Jklul(t)xl(t) if k and l

1Here the center η̄k of the Lorentzian distribution found in Eq. (2.46) has been decomposed into Hk+IB.
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are both excitatory populations, and simply as J̃kl(t) = Jkl if either k or l is inhibitory.
The terms xk(t) and uk(t) represent the mean available resources and the mean utiliza-
tion factor of the population k, respectively. If we neglect the very fast inactivation of
the depression terms, the dynamical evolution of xk and uk is regulated by the following
ODEs

dxk(t)
dt = 1− xk(t)

τd
− uk(t)xk(t)rk(t) (3.2a)

duk(t)
dt = U0 − uk(t)

τf
+ U0(1− uk(t))rk(t) k = 1, . . . , Npop ; (3.2b)

where U0 = 0.2 is the baseline value of the utilization factor. Furthermore, it is funda-
mental that the facilitation timescale τf (∼ 1 s) is longer than that associated with the
recovery from depression τd (∼ hundreds of milliseconds) [9]. In this way the information
provided by the stimulus will be carried over a time τf by the facilitated synapse. Here
we set τd = 200 ms and τf = 1500 ms according to [9, 90]. These parameter values remain
fixed for all the simulations reported in this chapter.

The model given by Eqs. (3.1) and (3.2) describes the dynamics of one inhibitory and
Npop excitatory coupled neuronal populations with STP in terms of their population firing
rates rk, mean membrane voltages vk, mean available resources xk and mean utilization
factors uk. Details on the derivation of the neural mass model Eqs. (3.1) and (3.2) and on
the underlying spiking networks can be found in Sections 2.2, 2.4 and 2.5 of Chapter 2.

3.2.1 Network dynamics versus neural mass evolution

The neural mass model Eqs. (3.1) reproduces exactly the population dynamics of a net-
work of QIF spiking neurons, in absence of STP, in the infinite size limit, as analytically
demonstrated and numerically verified in [16]. In order to verify if this statement is valid
also in presence of STP, we will compare the macroscopic evolution of a single excitatory
neural population, given by Eqs. (3.1) and (3.2), with those obtained by considering QIF
networks with synaptic plasticity implemented at a microscopic (µ-STP) and at a meso-
scopic (m-STP) level. The results of these comparisons are reported in Fig. 3.1(a) for
µ-STP and in Fig. 3.1(b) for m-STP.

A spiking network of N neurons with µ-STP is described by the evolution of 3N
variables, since each neuron is described in terms of its membrane voltage and the two
synaptic variables Ui(t) and Xi(t) accounting for the dynamics of its N efferent synapses.
The explicit dynamical model is reported in Eqs. (2.37) and Eq. (2.38) in Section 2.3 of
Chapter 2. In the m-STP model, the dynamics of all synapses is treated as a mesoscopic
variable in terms of only two macroscopic variables, namely u(t) and x(t). In this case the
network model reduces to a set of N+2 ODEs, namely Eqs. (2.42) reported in Section 2.3.

In order to compare the different models we examine their response to the same applied
stimulus IS(t), which consists of two identical rectangular pulses of height ∆I = 2 and
duration ∆T = 0.15 s, separated by a time interval of 0.15 s [see Fig. 3.1(b)]. The stimulus
is presented when the system is in a quiescent state, i.e. it is characterized by a low firing
rate. For both comparisons the neural mass model has been integrated starting from initial
values of r,v,x and u as obtained from the microscopic state of the considered networks.

The response is the same in both network models: each pulse triggers a series of four
PBs of decreasing amplitude followed by low activity phases in absence of stimuli [see
Fig. 3.1(a)]. As shown in Fig. 3.1(c), the population firing rate r(t) obtained from the
neural mass model (solid line) is almost coincident with the results of the network simula-
tions both with µ-STP and m-STP (shaded curves). For all models, the average synaptic
variables x and u displayed in Fig. 3.1(d, e) reveal the typical temporal evolution of STP
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Figure 3.1: Comparison among neural mass and network models. The results of the
neural mass model (solid line) are compared with the network simulations (shaded lines) for a single
excitatory population with µ-STP [column (1)] and with m-STP [column (2)]. (a) Corresponding
raster plots for a subset of 2000 neurons. (b) Profiles of the stimulation current IS(t). (c)
Instantaneous population firing rate r(t). (d) Available synaptic resources x(t). (e) Utilization
factor u(t). The variables of the neural mass model are initialized to values coinciding with those of
the corresponding network simulations. Since the numerical experiments for the single excitatory
population with µ-STP and with m-STP are independent, the initial values of the synaptic variables
do not coincide, even though a similar dynamical evolution is observable in both cases. Simulation
parameters are τem = 15 ms, H = 0, ∆ = 0.25, J = 15, IB = −1 and network size N = 200, 000.

upon excitatory stimulation: the available resources x (utilization factor u) decrease (in-
creases) due to the series of emitted PBs in a step-wise fashion. Furthermore, in the
absence of stimulation x and u tend to recover to their stationary values x = 1 and u = U0
for µ-STP (x = 0.73 and u = 0.59 for m-STP) over time-scales dictated by τd and τf , re-
spectively. Due to the fact that τd � τf , the synapses remain facilitated for a time interval
' 1 s after the pre-synaptic resources have recovered from depression. The time courses of
x and u for the neural mass compared to the network ones, shown in Fig. 3.1(d, e), reveal
an almost perfect agreement with the simulations of the network with m-STP, while some
small discrepancies are observable when compared with the network with µ-STP. We have
verified that these discrepancies are not due to finite size effects. Further increasing the
network size, did not improve the agreement. Instead, these residual discrepancies are
probably due the presence of so-called silent neurons and due to the correlations and fluc-
tuations of the microscopic variables {Xi} and {Ui}, which are not taken into account in
the mesoscopic model for STP [39], as pointed out in [92] (see also the discussion on this
aspects reported in Section 2.3 of Chapter 2 and in Appendix A). We can conclude this
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sub-section by affirming that the developed neural mass model reproduces in detail the
macroscopic dynamics of spiking networks of QIF neurons with both µ-STP and m-STP,
therefore in the following we can safely rely on the mean-field simulations to explore the
synaptic mechanisms at the basis of WM.

3.2.2 Multi-Item Architecture

In order to illustrate the architecture employed to store more than one item simultaneously
in WM, we will analyze the simplest non-trivial situation where we want to store two
items. For this purpose, we consider two excitatory populations with STP employed to
store one item each, and an inhibitory one, necessary to allow for item competition and
a homeostatic regulation of the firing activity. We restrict to non-overlapping memories:
neurons belonging to a certain excitatory population encode only one working memory
item. Furthermore, incoming information on a WM item, in form of an external stimulus,
target only the excitatory population which codes for that item, hence making the response
selective.

As previously mentioned, only excitatory-excitatory synapses are plastic, therefore we
will have no time dependence for the synaptic weights towards or from the inhibitory
population. Moreover, the WM items should be free to compete among them on the same
basis, therefore we assume that the synaptic couplings within a population of a certain
type (inhibitory or excitatory) and among populations of the same type are identical. In
summary, we have

J̃00(t) = Jii, J̃0k(t) = Jie, J̃k0(t) = Jei, for k > 0 ; (3.3)
J̃kk(t) = J (s)

ee xk(t)uk(t), Jkj(t) = J (c)
ee xj(t)uj(t), ∀k, j > 0

where we have denoted inhibitory (excitatory) populations by i (e) index. Furthermore,
synaptic connections within each excitatory population, coding for a certain memory, will
be stronger than connections between different excitatory populations, thus we assume
J

(s)
ee > J

(c)
ee . A common background input current IB impinges on all three populations,

thus playing a crucial role in controlling the operational point of the network. The selective
storage and retrieval of memory items induced by incoming stimuli is mimicked via time
dependent external currents I(k)

S (t) applied to the excitatory populations. The discussed
multi-item architecture is displayed in Fig. 3.2.

Due to the fact that each excitatory population is indistinguishable from the others
and we have only one inhibitory pool, we set for clarity H0 = H(i), Hk = H(e) ∀k > 0
and ∆0 = ∆(i), ∆k = ∆(e) ∀k > 0. Furthermore, in order to highlight the variations
of the synaptic parameters better, we report the normalized available resources x̃k and
normalized facilitation factors ũk in the following 2.

3.2.3 Memory maintenance with synaptic facilitation

To show the capability of our model to reproduce WM activity we report three different
numerical experiments in this sub-section. We will show that the model is able to repro-
duce specific computational operations required by WM: namely, memory load, memory
maintenance during a delay period, selective or spontaneous reactivation of the memory
and memory clearance. The results of this analysis are reported in Fig. 3.3, where we
compare the neural mass simulations with the network dynamics with m-STP for the

2These variables are normalized with respect to the difference of their maximal and minimal value taken
within the displayed time interval.
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Figure 3.2: Two-item architecture. The reported network is composed of two identical and
mutually coupled excitatory populations and an inhibitory one: this architecture can at most store

two WM items, one for each excitatory population.

topological architecture displayed in Fig. 3.2. More specifically, we considered three cou-
pled populations for the network simulations, consisting of 600,000 neurons in total. An
analogous comparison is also reported in Fig. 3.5, where the competition between two
memory items is studied.

Selective Reactivation

Let us start from an example of selective reactivation of the target item via a non specific
read-out signal, targeting both excitatory populations, as shown in column (1) of Fig. 3.3.
Since the observed dynamics does not depend on the population into which an item is
loaded, we always load the item in population one (coded by the blue color in Fig. 3.3),
without the loss of generality. The system is initialized in an asynchronous state of low
firing activity common to both populations, as shown in Fig. 3.3(e1), therefore the synaptic
variables have equal values (namely, x̃1 = x̃2 = 0.79 and ũ1 = ũ2 = 0.26) dictated by the
average firing rate [see Fig. 3.3(f1, g1)].

The memory load is performed at time t = 0 s, by applying a stimulation current in
the form of a step with amplitude ∆I1 = 0.2 and width ∆T1 = 350 ms only to population
one [Fig. 3.3(b1)]. In response to this stimulus, the population displays PBs, as shown
by the raster plot in Fig. 3.3(a1). The frequency of these COs is in the β band (namely,
' 21.6 Hz), as evident from the spectrogram in Fig. 3.3(h1). In addition to this, the PBs
in population one trigger PBs in the inhibitory population with a delay of ' 1 − 2 ms,
while the same COs’ frequency is maintained, as evident from the inhibitory population
spectrogram in Fig. 3.3(j1). Therefore, the PBs are generated via a mechanism analogous
to the pyramidal interneuronal network gamma (PING) one [140], despite the fact that
the frequency of the COs is now in the β band.

The intense firing of neurons in population one changes the internal state of its efferent
synapses, thus leading to an initial drop (increase) of x1 (u1) [Fig. 3.3(f1, g1)]. Depression
prevails on short time scales ' τd, while at longer times t > 0.5 s, x̃1 recovers to almost its
initial value and the synapses remain facilitated, with ũ1 > 0.73, for one or two seconds
[Fig. 3.3(g1)]. Population two (denoted by the orange color in Fig. 3.3) is not particularly
affected by the memory loading. Indeed, population two shows only a slight reduction
in its asynchronous activity, which is reflected in a small increase (decrease) of x̃2 (ũ2)
[Fig. 3.3(c1, f1, g1)]. This is due to the action of the inhibitory bursts, which are unable
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Figure 3.3: Memory loading, maintenance and rehearsal. The results of three experiments are reported here
for different background currents: column (1) IB = 1.2, selective reactivation of the target population; column (2)
IB = 1.532, WM maintenance via spontaneous reactivation of the target population and column (3) IB = 2, WM
maintenance via a persistent asynchronous activity. (a) Raster plots of the network activity for the first (blue) and (c)
second (orange) excitatory population; the activity of only 400 out of 200,000 neurons is shown for each population. (b)
Profiles of the stimulation current I(k)

S (t) for the first and (d) second excitatory population. (e) Population firing rates
rk(t), (f) normalized available resources x̃k(t) and (g) normalized utilization factors ũk(t) of the excitatory populations
calculated from the simulations of the neural mass model (solid line) and of the network (shading). Spectrograms of
the mean membrane potentials (h) v1(t), (i) v2(t), and (j) v0(t) obtained from the neural mass model; for clarity the
frequencies in these three cases have been denoted as f1,f2 and f0, respectively. Red arrows in columns (2) and (3)
indicate the time t = 2.15 s at which the background current is set to the value IB = 1.2 employed in column (1). The
network simulations have been obtained by considering three populations of N = 200, 000 neurons each and arranged
with the architecture displayed in Fig. 3.2. For the estimation of the spectrograms see Section 1 of Appendix C.
Other parameters values are: τm = 15 ms H(i) = H(e) = 0, ∆(i) = ∆(e) = 0.1, J (c)

ee = 5
√
a, J (s)

ee = 35
√
a, Jie = 13

√
a,

Jei = −16
√
a, Jii = −14

√
a with a = 0.4.
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to support PBs in population two, but sufficient to modulate its asynchronous activity as
revealed by the spectrogram in Fig. 3.3(i1).

Since the information on the initial stimulus is stored in the facilitation of the synapses,
we expect that, by presenting a weak non-specific read-out signal to both populations, the
memory will be reactivated, even if the population activity is back to the spontaneous
level. Indeed, if after a delay period of 1.2 s from the initial memory load, we inject a
weak stimulation current of amplitude ∆I = 0.1 for a time interval ∆T = 250 ms to all
the excitatory neurons, we observe that only neurons of the blue population respond by
emitting a PB of brief duration. The other neurons not associated with the loaded item
remain at the baseline activity level, despite the stimulus [Fig. 3.3(c1)]. The emission of
the PB in population one has also the effect to refresh the memory, i.e. the utilization
factor u1 which has decreased towards the initial value during the delay period, returns
to the value reached when the item was loaded. Therefore the memory can be maintained
for a longer time period.

Spontaneous Reactivation

In a second example, shown in the central column (2) of Fig. 3.3, we consider a case where
the target population reactivates spontaneously by emitting a regular series of PBs even
in absence of read-out signals. To obtain such situation we increase the background signal
from IB = 1.2 up to IB = 1.532, thus the system is in a regime where the spontaneous
low activity state coexists with states in which one of the excitatory populations peri-
odically emits PBs (for more details on the emerging states see the bifurcation analysis
in Section 3.4.1). As in the previous experiment, the system is initialized in a low firing
activity state, where only spontaneous activity is present. The memory item is loaded in
population one [Fig. 3.3(a2 - e2)]. In this case population one encodes the item by emitting
a series of PBs with a slightly higher frequency (' 24.1 Hz) with respect to the previous
case, due to the increase in IB, but still in the β range, as shown in Fig. 3.3(h2 - j2). After
a short time delay, PBs emerge regularly in a self-sustained manner: each reactivation
leads to an increase of ũ1 and a decrease of x̃1. The time interval between two PBs is
dictated by the time required to recover sufficient synaptic resources in order to emit a
new PB, i.e. by the time scale τd controlling the depression [128, 129] [Fig. 3.3(f2)]. Thus,
we have memory maintenance through synaptic facilitation, which is refreshed by PBs.
As one can appreciate from the spectrogram of population one reported in Fig. 3.3(h2),
whenever a PB is delivered, a transient oscillation in the δ band, at a frequency ' 3 Hz, is
observed. Similar transient oscillations have been observed when items are loaded in the
PFC of monkeys during WM tasks [48]. Signatures of these oscillations are present also
in the spectrogram of the other excitatory population [Fig. 3.3(i2)] but, in this case, they
are due to a modulation of the subthreshold membrane potentials and not to PBs. It is
interesting to note that δ-oscillations are only sustained by the activity of the excitatory
populations, since in the inhibitory spectrogram [Fig. 3.3(j2)] there is no trace of them.

The sequence of PBs can be terminated by reducing the excitation IB: this operation
is performed at time t = 2.15 s after the initial stimulation and signaled by the red arrow
in Fig. 3.3(a2, c2). Also in this experiment the memory load and retrieval is selective,
since the second population activity is almost unaffected by these operations as it turns
out from the raster plot reported in Fig. 3.3(c2).

Persistent Activity

As a third experiment, we consider a situation where the memory item is maintained via
the persistent activity of the target population, as shown in column (3) of Fig. 3.3. This
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is possible when the non-specific background input IB is increased further such that we
can observe multistability among three asynchronous states: one corresponding to the
spontaneous activity at low firing rate of both excitatory populations and the other two
corresponding to population one (two) in a persistent state with increased firing activity
and population two (one) at a spontaneous level of activity. More details can be found
in Bifurcation analysis. When at time t = 0 the memory item is loaded in population
one, the population responds by emitting a series of PBs at a frequency ' 27.2 Hz in the
β-γ band [Fig. 3.3(h3 - j3)]. As shown in Fig. 3.3(a3, e3), once the loading is terminated
the blue population enters into a regime of persistent firing characterized by an almost
constant firing rate r1 ' 8.6 Hz joined to constant values of the synaptic variables. In
particular, the available resources of population one remain at a constant and low value
due to the continuous firing of the neurons (x̃1 = 0.13) [Fig. 3.3(f3)]. However, the lack
of resources is compensated by the quite high utilization factor ũ1 = 0.98, reported in
Fig. 3.3(g3). Indeed in this case the memory is continuously refreshed by the persistent
spiking activity. At time t = 2.15 s, indicated by red arrows in Fig. 3.3(a3, c3), the value of
IB is reduced to IB = 1.2 and the persistent activity is interrupted. This would correspond
to a memory clearance if WM would be based on the spiking activity only. Instead in this
case, it represents only the interruption of the persistent activity, the memory clearance
occurring when the facilitation returns to its original value after few more seconds (the
decay of u1 is evident in Fig. 3.3(g3)). The second population, not involved in the memory
loading, remains always in a low firing rate regime [Fig. 3.3(c3, e3)].

As expected, the neural mass dynamics reproduces almost perfectly the network dy-
namics with m-STP for all the three considered experiments. In particular, this can be
appreciated through the agreement among shaded lines, corresponding to network simu-
lations, and solid ones, referring to the neural mass evolution, reported in Fig. 3.3(e - g).

Furthermore, it should be remarked that memory loading is characterized by similar
spectral features for all three experiments. As shown in Fig. 3.3(h, i), a transient broad-
band response of the excitatory populations is observable in the range 3-18 Hz, locked with
the stimulation onset and followed by a steady-state activity in the β-γ range (namely 21-
27 Hz), which lasts for the whole duration of the stimulation. The broad-band oscillations
emerge due to the excitation of the harmonics of a fundamental frequency ' 2 − 3 Hz,
associated with one item loading in the memory. Similarly, the β-γ activity is initiated by
memory loading that induces, in this case, damped oscillations towards a focus equilibrium
state in the stimulated excitatory population: the damped oscillations are sustained by
the inhibitory pool via a PING-like mechanism. Quite astonishingly, similar evoked power
spectra have been reported for stimulus-locked EEG responses to vibrotactile stimuli in
primary somatosensory cortex in humans [47]. In more details, as shown in Fig 1B of Ref.
[47], the stimulus onset induces a broad-band activity in the 4-15 Hz range followed by a
stationary activity at ' 26 Hz during the vibrotactile stimulations.

Comparison with a heuristic firing rate model

To close this sub-section, let us compare the population dynamics obtained by employing
the exact neural mass model with STP [Eqs. (3.1) and (3.2)] and a heuristic firing rate
model developed to mimic the dynamics of a QIF network with m-STP (for more details
see Section 3.4.2 of this chapter). Recent studies have shown that this firing rate model,
in absence of plasticity, is unable to capture some macroscopic behavior displayed by
the corresponding QIF networks [32, 46]. In particular, it does not reproduce fast COs
present in inhibitory networks [46] and it does not feature memory clearance via nonlinear
resonance with an external β-forcing, contrary to the spiking network under forcing [32].



36 Chapter 3. Working memory and cortical oscillations

Here, we want to understand which network’s dynamics are eventually lost by employing
such a heuristic model with STP.
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Figure 3.4: WM operations for a heuristic firing rate model. The results of two exper-
iments are reported here for different background currents: column (1) IB = 1.520, WM main-
tenance via spontaneous reactivation of the target population and column (2) IB = 2.05, WM
maintenance via persistent asynchronous activity. (a) Profiles of the stimulation current I(k)

S (t),
(b) population firing rates rk(t), (c) local field potentials LFPk, (d) normalized available resources
x̃k(t) and (e) normalized utilization factors ũk(t) of the excitatory populations, calculated from
simulations of the firing rate model Eqs. (3.5) and (3.7). Spectrograms of the local field potentials:
(f) LFP1(t), (g) LFP2(t), and (h) LFP0(t). For the estimation of LFPk and the spectrograms

see Section 1 of Appendix C. Other parameter values are as in Fig. 3.3.

Therefore we have repeated the experiments leading to memory maintenance via spon-
taneous reactivation and persistent activity, previously reported in columns (1) and (2) of
Fig. 3.3, with the same topological configuration. The results of this analysis are shown in
Fig. 3.4: column (1) is devoted to spontaneous reactivation and column (2) to persistent
activity. In more detail, the multi-population network is initialized in the quiescent state
with asynchronous activity and low firing rates [Fig. 3.4(b)]; at time t = 0 s, a current step
of amplitude ∆I1 = 0.2 and duration ∆T1 = 350 ms is injected into population one (blue
line), as shown in Fig. 3.4(a). When a background current IB = 1.520 is chosen, as soon
as the stimulation is removed, population one enters into a cycle of periodic PBs, each one
refreshing the synaptic facilitation and allowing for the memory maintenance (column (1)).
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By increasing the current to IB = 2.05, the stimulus leads population one into a state of
persistent firing activity, which maintains the synaptic variables at almost constant values
(column (2)). Therefore, the heuristic firing rate model is able to reproduce the WM op-
erations performed by the exact neural mass model. However, when comparing the firing
rate time traces of the QIF network and of the exact neural mass model [Fig. 3.3(e2, e3)]
with the ones corresponding to the heuristic firing rate model [Fig. 3.4(b)], we note that,
after the onset of stimulation, the population firing rates of the QIF network and of the
exact neural mass model exhibit fast damped COs in the β-γ range, which are completely
absent in the heuristic rate model. These findings are confirmed by the spectrograms3,
which reveal a vanishingly small power in the β-γ bands for the heuristic model in both
experiments [compare Fig. 3.3(h2 - j2) and Fig. 3.3(h3 - j3) with Fig. 3.4(f - h)].

The reason for this absence is related to the fact that the stimulation leads population
one in an excited state, which turns out to be a stable node equilibrium and not a focus,
as for the exact neural mass model; therefore in this case it is not possible to observe
transient PBs associated with memory loading. As a consequence, the heuristic model
does not show any activity in the β and γ bands, despite this kind of activity has been
reported experimentally in the PFC of monkeys performing WM tasks [49] and in the
primary somatosensory cortex of humans due to vibrotactile stimuli [47], and associated
with memory loading and recall in WM models [141]. Furthermore, as we will discuss in
detail in Section 3.2.5, the loading of many items in WM is usually associated with γ-power
enhancement, as shown by various experiments [115, 142, 143]. While this effect is present
in our exact neural mass model, where the high frequency oscillations are enhanced due to
a resonant mechanism with the transient oscillations towards the focus equilibrium, this
aspect cannot be clearly reproduced by this heuristic firing rate model.

3.2.4 Competition between two memory items

In this sub-section we verify the robustness of the investigated set-up when two memory
items are loaded, one for each excitatory population. In particular, we will examine the
possible outcomes of the competition between two loaded items with emphasis on the
mechanisms leading to memory juggling [144]. More specifically, we will consider three
different operational modes, where the items are maintained in the WM due to different
mechanisms: namely, in the first case thanks to periodic stimulations; in the second one
due to self-sustained periodic PBs and in the last one to persistent spiking activity.

Periodic Stimulations

First we analyze the two-item memory juggling in presence of a periodic unspecific stim-
ulation to the excitatory populations. As shown in column (1) of Fig. 3.5, at time t = 0
we load the first item in population one by stimulating the population for ∆T1 = 350 ms,
with an excitatory step of amplitude ∆I1 = 0.2 [Fig. 3.5(b1)]. Population one encodes
the item via the facilitation of its efferent synapses. This is a consequence of a series
of PBs emitted via a PING-like mechanism at a frequency ' 21.6 Hz in the β-range, as
evident from the spectrograms in Fig. 3.5(h1 - j1). Subsequently a periodic sequence of
unspecific stimulations of small amplitude and brief duration is delivered to both popula-
tions (namely, step currents of amplitude 0.1 and duration 150 ms applied at intervals of
400 ms). These are sufficient to refresh the memory associated with population one, that

3The spectrograms for the heuristic model have been evaluated for the local field potentials LFPk
defined in Eqs. (6.14) of Appendix C and reported in Fig. 3.4(c); this is due to the fact that the rate model
cannot provide any information on the membrane potentials.
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Figure 3.5: Juggling between two memory items. The memory juggling is obtained in two experiments with
different background currents: column (1) IB = 1.2, in presence of a periodic unspecific stimulation and column
(1) IB = 1.532, in the case of spontaneous WM reactivation. (a) Raster plots of the network activity for the first
(blue), and (c) second (orange) excitatory population. (b) Profiles of the stimulation current I(k)

S (t) for the first and
(d) second excitatory population. (e) Population firing rates rk(t), (f) normalized available resources x̃k(t) and (g)
normalized utilization factors ũk(t) of the excitatory populations calculated from the simulations of the neural mass
model (solid line) and of the network (shading). Spectrograms of the mean membrane potentials (h) v1(t), (i) v2(t)
and (j) v0(t) obtained from the neural mass model. For the estimation of the spectrograms see Section 1 of Appendix

C. Other parameter values are as in Fig. 3.3.

reacts each time, by emitting a brief PB able to restore ũ1 to a high value [Fig. 3.5(g1)].
On the contrary population two remains in the low activity regime [Fig. 3.5(c1, e1)].

The second item is loaded at time t = 2.65 s, by presenting to population two a signal
equal to the one presented at time t = 0 [Fig. 3.5(d1)]. Also the loading of this item
is associated with PBs emitted in the β range and involving the inhibitory population.
During the presentation of the second item, the previous item is temporarily suppressed.
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However, when the unspecific stimulations are presented again to both population, PBs are
triggered in both populations, resulting to be in anti-phase, i.e. PBs alternate between the
two populations at each read-out pulse. The period related to each item is therefore twice
the interval between read-out signals [Fig. 3.5(a1, c1)]. This is due to the fact that a PB
in one excitatory population stimulates the action of the inhibitory neurons in population
zero which, as a consequence, suppresses the activity of the other excitatory population,
leading to the observed juggling between the two items in working memory. As clear
from the spectrograms in Fig. 3.5(h1 - j1), the unspecific stimulations of the excitatory
populations induce localized peaks in their spectrograms around 2-3 Hz, not involving the
inhibitory population. The latter instead oscillates at a frequency ' 21.6 Hz, thus inducing
a modulation of the neural activity of the two excitatory populations. This explain the
presence of the series of peaks in the three spectrograms around 20-25 Hz.

Self-Sustained Population Bursts

Let us now consider a higher background current (namely, IB = 1.532), where self-
sustained periodic PBs can be emitted by each excitatory population. In this case it
is not necessary to deliver unspecific periodic stimuli to refresh the synaptic memory. The
loading of the two items is done by applying the same currents as before (∆I1 = ∆I2 = 0.2,
∆T1 = ∆T2 = 350 ms) to the two populations, as shown in Fig. 3.5(b2, d2). The memory
loading occurs, once more, via series of bursts emitted with frequency in the β range,
through a PING-like mechanism. Once the item is loaded, a series of subsequent PBs is
emitted regularly, at a frequency ' 2.90 Hz [Fig. 3.5(a2, e2)].

The second population remains quiescent until the second item is loaded [Fig. 3.5(c2, d2)].
During the loading period, the activity of the first population is temporarily suppressed
while, at later times, both items are maintained in the memory by subsequent periodic
reactivations of the two populations. In particular it turns out that periodic reactivations
are in anti-phase, with frequency ' 1.5 Hz, i.e., one observes juggling between the two
working memory items [Fig. 3.5(e2)]. Also in this case, the inhibitory population is re-
sponsible for sustaining the β rhythm, while the excitatory ones for the slow oscillations,
as revealed by the spectrograms in [Fig. 3.5(h2 - j2)]. As testified by the comparisons re-
ported in Fig. 3.5(e - g), the agreement among the network simulations (solid lines) and
the neural mass results (shaded lines) is impressive even for the two experiments discussed
so far in this Section.

For the setup analyzed in column (2) of Fig. 3.5, the competition between the two
memory items can have different final outcomes, depending on the characteristics of the
stimuli, namely their amplitude and duration. For simplicity we fix these parameters for
the first stimulation and vary those of the second stimulation. As shown in Fig. 3.6(a - d),
three outcomes are possible for stimuli with the same amplitude ∆I2 = 0.2 but different
pulse duration: item one wins, item two wins or they both coexist in the memory (jug-
gling). If ∆T2 is too short, the facilitation u2 has no time to become sufficiently large to
compete with that of population one [Fig. 3.6 column (1)]. Therefore, once the second
stimulus is removed, population one recovers its oscillatory activity and population two
returns to the low firing asynchronous activity [Fig. 3.6(b1)]. For intermediate durations
∆T2 [Fig. 3.6 column (2)], at the end of the stimulation period, the facilitation u2 reaches
the value u1 [Fig. 3.6(d2)], thus leading the two items to compete. Indeed, as shown in
Fig. 3.6(b2), the two populations display COs of the same period but in phase opposition,
analogous to the case reported in column (2) of Fig. 3.5 . The stimulation of the second
population suppresses the activity of the first, leading to a relaxation of the facilitation to
the baseline. Hence, whenever ∆T2 is sufficiently long [Fig. 3.6 column (3)], the facilitation
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of population two prevails on that of population one and as a final outcome, population
two displays COs, while population one has a low activity.
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Figure 3.6: Competition between two memory items. The loading of two memory items is
performed in three different ways via two step currents of equal amplitudes ∆I1 = ∆I2 = 0.2, the
first one delivered at t = 0 and the second one at t = 1.5 s. The first step has always a duration of
∆T1 = 0.35 s; the second one ∆T2 = 0.2 s [column (1)], ∆T2 = 0.6 s [column (2)] and ∆T2 = 1.2
s [column (3)]. (a) Stimulation currents I(k)

S (t), (b) instantaneous population firing rates rk(t),
(c) normalized available resources x̃k(t) and (d) normalized utilization factors ũk(t) for the first
(blue) and second (orange) excitatory population. (e) Final memory states as a function of the
amplitude ∆I2 and width ∆T2 of the stimulus to population two. Here the labels (1), (2), (3) refer
to the states examined in the corresponding columns. The data reported in panel (e) has been
obtained by delivering the second stimulation at different phases φ with respect to the period of the
CO of the first population: 20 equidistant phases in the interval φ ∈ [0, 2π) have been considered.
For each of the three possible outcomes an image has been created with a level of transparency
corresponding to the fraction of times it has been measured. The three images have been merged

resulting in panel (e). Other parameter values are as in Fig. 3.3 with IB = 1.532.

The results of a detailed analysis for different amplitudes ∆I2 and durations ∆T2 are
summarized in Fig. 3.6(e). Population one always receives the same stimulus at time t = 0
(∆I1 = 0.2 and ∆T1 = 0.35 s), while ∆I2 and ∆T2 of the second stimulus, delivered at
time t = 100 s, are varied4. In particular, the amplitude has been varied in steps of 0.01
within the interval ∆I2 ∈ [0, 0.8], while the duration in steps of 0.01 s for ∆T2 ∈ [0, 1.5]
s. The classification of the final states has been performed three seconds after the second
stimulation, by estimating the time averaged firing rates 〈r1〉 and 〈r2〉 over an interval
of one second. From this we get the indicator P := 〈r1〉

〈r1〉+〈r2〉 . If P > 0.7 (P < 0.3)
item one (item two) has been memorized, otherwise we have juggling between the two
items. From Fig. 3.6(e), we see that, for sufficiently small amplitudes ∆I2 < 0.11 or
durations ∆T2 < 0.2 s, the second stimulation is unable to change the memory state,
that remains on item one. This can be understood by looking at the bifurcation diagram
shown in Fig. 3.14(b) of Section 3.4.1, from which it is clear that population two, being
in the low firing regime, has a low value of the membrane potential v2 and that such state
is separated by the high activity regime from a barrier ∆v2, which is of the order of the
distance from the saddle (dotted line in the figure). A frequent outcome of the experiments

4The long interval of 100 seconds between the two stimuli is chosen in order to ensure that the outcome
is independent of the characteristic of the first stimulus: namely, ∆I1 and ∆T1.
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is the coexistence between the two memory items, that we observe in a large parameter
region for intermediate pulse durations, namely 0.2 s < ∆T2 < 0.8 s. For sufficiently long
perturbations ∆T2 > 0.8 s and intermediate amplitudes 0.11 < ∆I2 < 0.53, item two
is memorized. It is unexpected that, for larger amplitudes, we observe a multistability
among all the three possible outcomes. Indeed, small variations of amplitude, duration or
delivering time can induce a completely different outcome, thus suggesting that for these
parameter values, some transient chaotic behavior is observable [145, 146].
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Figure 3.7: Memory item switching with persistent activity. The three columns (1-3) refer
to three values of ∆T2, given a background current IB = 2 that supports persistent state activity.
(1) Duration of ∆T2 = 70 ms, (2) ∆T2 = 130 ms and (3) ∆T2 = 850 ms. (a) Stimulation currents
I

(k)
S (t), (b) instantaneous population firing rates rk(t), (c) normalized available resources x̃k(t)
and (d) normalized utilization factors ũk(t) for the first (blue) and second (orange) excitatory
population. (e) Final memory states as a function of the amplitude ∆I2 and width ∆T2 of the
stimulus to population two. Here the labels (1), (2), (3) refer to the states examined in the

corresponding columns. Other parameters values are as in Fig. 3.3 with IB = 2.

Persistent State Activity

We have performed the same analysis for the higher current value IB = 2, which supports
a persistent state activity of one of the two populations. We set initially population one
in the persistent state and we deliver a stimulus in form of a step current to population
two. In this case we can obtain only two possible final outcomes: item one (two) loaded
corresponding to population one (two) in the persistent state, while the other in the low
activity regime. No memory juggling has been observed with persistent states in our
model. The results of this investigation are summarized in Fig. 3.7(e); for what concerns
the final prevalence of item two, the results are similar to the ones obtained in the previous
analysis, where the item was encoded in self-sustained periodic COs. The main differences
with the previous case are: (i) the minimal perturbation amplitude needed to observe an
item switching, that is now larger, namely ∆I2 ' 0.2; (ii) the existence of a narrow stripe in
the (∆T2,∆I2)-plane where item two can be finally selected for brief stimulation duration.
The increased value of the minimal ∆I2 required to switch to item two is justified by the
fact that, for IB = 2, the barrier ∆v2 that has to be overcome to access the high firing
regime, is higher than before, as evident from the phase diagram reported in Fig. 3.14(b) of
Section 3.4.1. The origin of the stripe can be understood by examining the results reported
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in Fig. 3.7(a - d), for three stimulations with the same amplitude ∆I2 = 0.4 and different
durations. The effect of the stimulation is to increase the activity of population two and
indirectly, also the inhibitory action on population one. However, for short ∆T2 < 70 ms,
the activity of population two is not sufficient to render its efferent synapses stronger than
those of population one. As a matter of fact, when the stimulation is over, population
one returns into the persistent state. For longer ∆T2 ≥ 70 ms, population one is not able
to recover its resources before population two elicits a PB. Population two takes over and
the dynamics relax back, maintaining item two in WM via the persistent activity [Fig. 3.7
column (1)]. For ∆T2 ≥ 130 ms we observe the emission of two or more successive PBs
in population two during the stimulation period. These PBs noticeably depress x2, which
is unable to recover before population one, characterized by a larger amount of available
resources x1, emits a PB and item one takes over [Fig. 3.7 column (2)]. However, for
much longer ∆T2 ≥ 850 ms, the absence of activity in population one leads to a noticeable
decrease of the utilization factor u1. As a matter of fact at the end of the stimulation
period, the item two is finally selected [Fig. 3.7 column (3)].

To summarize, item two can be selected when the duration of the stimulation is re-
stricted to a narrow time interval, sufficiently long to render the efferent synapses of
population two stronger than those of population one, but not so long to highly deplete
the resources of the same synapses. Furthermore, item two can be selected when ∆T2
is sufficiently long to allow for the decay of the synaptic facilitation of population one
towards its baseline value.

3.2.5 Multi-Item Memory Loading

In order to be able to load a higher number of memory items in WM, we consider the
neural mass model with m-STP (Eqs. (3.1) and (3.2)) arranged in a more complex archi-
tecture composed by Npop = 7 excitatory and one inhibitory populations, each excitatory
population coding for one memory item. The system is initialized with all the populations
in the silent state. Then, each item is loaded by delivering an excitatory pulse of amplitude
∆Ik = 1 and duration of ∆Tk = 0.2 s to the chosen population, while successive items are
loaded at intervals of 1.25 s.

Let us first consider the successive loading of NL = 3 items shown in Fig. 3.8. As one
can appreciate from the spectrogram reported in Fig. 3.8(d), during the loading phase,
each stimulated excitatory population emits a sequence of PBs in the β − γ range (' 27
Hz) via a PING-like mechanism mediated by the inhibitory population. This is joined
to stimulus locked transient oscillations in the δ-band around 2 Hz. Furthermore, during
each loading period, the activity of the other populations is interrupted and it recovers
when the stimulation ends. These results resemble the LFP measurement performed in
PFC of primates during coding of objects in short term-memory [48, 49]. In particular,
the experimentally measured power spectrum of the LFP displays transient oscillations
at ' 2 − 4 Hz in the δ range, phase-locked to stimulus presentation, together with tonic
oscillations at ' 32 Hz.

As shown in Fig. 3.8(a), the loading of each item is followed by the emission of PBs
from the stimulated population at regular time intervals Tc. Therefore, in this case, the
number NI of items retained in the WM coincides with the number NL of the loaded ones.
The PBs of all the excited populations arrange in a sort of splay state with inter-burst
periods Tb = Tc/NI [147]. The period Tc depends on the number of retained items: for
NI = 3 we have Tc ' 0.2035 s.

The non stimulated populations display a low firing activity modulated by the slow
PB emission occurring in the excitatory populations and by the fast β − γ transient
oscillations towards the focus equilibrium, sustained by the inhibitory activity [Fig. 3.8(b)].
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Figure 3.8: Multi-item memory loading (3 items). (a) Firing rates rk(t) of excitatory
populations: blue, orange and green curves corresponds to k = 1, 2, 3; (b) the black curves refers
to k = 4, . . . , 7. (c) PBs of excitatory populations: horizontal lines in absence of dots indicate
low activity regimes; colored dots mark the PBs’ occurrences. The colored bars on the time
axis denote the presence of a stimulation pulse targeting the corresponding population. Only
populations k = 1, . . . , 3 are stimulated in the present example. (d) Spectrogram of the average
membrane potential v1(t) of population one. For the estimation of the spectrogram see Section 1 of
Appendix C. Parameters values are: Npop = 7, τ e

m = 15 ms, τ i
m = 10 ms, J (s)

ee = 154, J (c)
ee = 4

7 ·18.5,
Jei = −26, Jie = 4

7 · 97, Jii = −60, IB = 0, H(e) = 0.05, H(i) = −2, ∆(e) = ∆(i) = 0.1

In particular, one observes fast COs (' 27 Hz) nested in slow oscillations, characterized
by a frequency increasing with the number of loaded items (from the θ-band for 1 item to
the β-band for 3 items), similar to what has been reported in [119–121].

A more detailed analysis of the spectrogram in Fig. 3.8(d) reveals that, after each
loading phase, several harmonics of the fundamental frequency fc ≡ 1/Tc ' 5 Hz are
excited. In particular after the complete loading of the three items the most enhanced
harmonics are those corresponding to 3fc ' 15 Hz and 6fc ' 30 Hz. This is due to the
coincidence of the frequency 3fc = fb ≡ 1/Tb with the inter-burst frequency fb, while
the main peak in the spectrogram, located at 30 Hz, is particularly enhanced due to
the resonance with the proximal β − γ rhythm associated with the PING-like oscillations
emerging during memory loading.

In Figs. 3.9 and 3.10 we perform similar numerical experiments as in Fig. 3.8, but
this time stimulating NL = 5 and NL ∈ {6, 7} excitatory populations, respectively. It
is interesting to notice that the transient δ oscillations related to the stimulation phase
are only supported by the excitatory population dynamics, as evident by comparing the
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Figure 3.9: Multi-item memory loading (5 items). Response of the system when NL = 5
excitatory populations are subsequently stimulated at a presentation rate of 0.8 Hz. (a) PBs of
excitatory populations: horizontal lines in absence of dots indicate low activity regimes; colored
dots mark the PBs’ occurrences. The colored bars on the time axis denote the presence of a
stimulation pulse targeting the corresponding population. Only populations k = 1, . . . , 5 are
stimulated in the present example. (b) v1(t), (c) v0(t) and (d) of the mean membrane potentials
averaged over all the excitatory populations; for clarity the corresponding frequencies have been
denoted as f1, f0 and fExc. For the estimation of the spectrogram see Section 1 of Appendix C.

Parameter values are as in Fig. 3.8.

spectrograms for v1(t) [Fig. 3.9(b) and Fig. 3.10(b)] and for the membrane potential
averaged over all excitatory populations [Fig. 3.9(d) and Fig. 3.10(d)] with those for
the inhibitory population [Fig. 3.9(c) and Fig. 3.10(c)]. Another important aspect is
that only the harmonics of fb ≡ NIfc are present in the spectrogram of the inhibitory
population, and in that associated with the average excitatory membrane potential, but
not all the other harmonics of fc. This is related to the fact that, in the average of the
mean excitatory membrane potentials, the bursts of all populations will be present with a
period Tb, therefore in this time signal there is no more trace of the periodic activity of the
single population. This is due to the fact that Tc ≡ NITb. Furthermore, in the dynamics
of the inhibitory population, the activity of all excitatory populations are reflected with
the same weight, therefore also in this case there is no sign of the fundamental frequency
fc.
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Figure 3.10: Multi-item memory loading (6 and 7 items). Response of the system when
NL = 6 [column (1)] or NL = 7 [column (2)] excitatory populations are successively stimulated
at a presentation rate of 0.8 Hz. (a) Population bursts of excitatory populations: horizontal lines
in absence of dots indicate quiescence phases at low firing rates rk for populations k = 1, ...7.
Dots mark PBs of the corresponding population. The colored bars on the time axis mark the
starting and ending time of stimulating pulses, targeting each population. Spectrograms of the
mean membrane potential (b) v1(t), (c) v0(t) and (d) of the mean membrane potentials averaged
over all the excitatory populations; for clarity the corresponding frequencies have been denoted as

f1, f0 and fExc. Parameter values are as in Fig. 3.8.

Memory Capacity

In Fig. 3.9 the NL = 5 loaded items are retained in WM. However, if we load a sixth
item as done in Fig. 3.10 column (1), WM is only able to maintain the loaded NL = 6
items for a short time interval ' 1 s, after which population five stops emitting PBs. The
corresponding item is not in WM anymore and the memory load returns to NI = 5. By
loading NL = 7 items [Fig. 3.10 column (2)] we can induce more complex instabilities in
the WM, indeed the reported experiment reveals that, in the end, only NI = 4 items can be
maintained, suggesting that a too fast acquisition of new memory items can compromise
also already stored WM items. As a matter of fact, only the oldest and newest items are
retained by WM: this in an example of the so-called primacy and recency effect, which has
been reported in many contexts when a list of items should be memorized [44, 45].

To investigate more in detail the memory capacity of our model, we have considered
different presentation rates fpres for the items. In particular, we have applied stimulation
pulses to all the excitatory populations sequentially, from the first to the seventh, with
a presentation rate fpres. Each pulse is characterized by an amplitude ∆I = 16 and
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Figure 3.11: Dependence of the memory capacity on the presentation rate. (a) Total
number of retrieved items NI vs. presentation frequency fpres for slow ([0.5 : 9.0] Hz, orange)
and fast presentation rates ([10 : 80] Hz, blue). The two green dotted vertical lines denote an
optimal rate interval where NI is maximal. (b) Map showing the retrieved items at a given serial
position for presentation rates fpres in the interval [0.5 : 80] Hz. (c) Probability of retrieval vs.
serial position for slow (orange) and fast (blue) presentation rates. In order to estimate these
probabilities 150 equidistant rates are considered in the interval [0.5 : 9] Hz and 150 in [10, 80] Hz.
The green dotted line refers to the probability estimated within the rate interval enclosed between
two green dotted vertical lines in (a). An item is considered as retrieved if the corresponding
population is still delivering PBs 20 s after the last stimulation. All other parameter values are as

in Fig. 3.8.

a duration ∆T = 1/fpres. Results are presented in Fig. 3.11 for presentation rates in
the interval [0.5 : 80] Hz. From Fig. 3.11(a) it turns out that the maximal capacity is
five, a value that can be mostly achieved for presentation rates within an optimal range
fpres ∈ [4.5 : 24.1] Hz, delimited by green dashed lines in Fig. 3.11(a). For these optimal
rates we have estimated the probability of retrieving a certain item versus its presentation
position, as shown in Fig. 3.11(c) (green dashed line). The probability displays very
limited variations (' 45− 85 %) for the 7 considered items, suggesting that in this range
the retrieval of an item does not strongly depend on its position in the presentation
sequence. Conversely, for slow rates (fpres ≤ 9 Hz) the last loaded items result to be the
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retained ones (recency effect), as evident from the orange regions in Fig. 3.11(b). This is
confirmed by the calculation of the probability of retrieval versus the corresponding serial
position shown in Fig. 3.11(c) (orange curve), obtained by considering 150 equidistant rate
values in the interval [0.5 : 9] Hz. Finally, the primacy and recency effect is observable
only for presentation rates faster than 9 Hz [blue regions in Fig. 3.11(b)], as confirmed by
the probability shown in Fig. 3.11(c) (blue curve), which has been obtained by considering
150 equidistant frequencies within the interval [10 : 80] Hz.

A theoretical estimation of the maximal capacity Nmax
c for WM, based on short-term

synaptic plasticity, has been recently derived in [10]. By following the approach outlined
in [10], we have been able to obtain an analytical expression for Nmax

c also for our neural
mass model, namely

Nmax
c ' τd

τ e
m

ln
[
τf/τd

1− U0

]√
C

π
; (3.4)

where C =
[
H(e) + IB + τ e

m
(
−|Jei|+ J̄

) √
H(e)+IB
π

]
, with J̄ = [J (s)

ee + (Npop − 2)J (c)
ee ]x̄ū.

The explicit derivation of Eq. (3.4) is reported in Section 3.4.3. As shown in [10], the value
of Nmax

c is essentially dictated by the recovery time of the synaptic resources τd and has a
weaker (logarithmic) dependence on the ratio between the facilitation and depression time
scales. Furthermore, for our model, the maximal capacity increases by increasing H(e),
IB and the recurrent and cross excitatory synaptic couplings, while it decreases whenever
the coupling from inhibitory to excitatory population is strengthened.

By employing the theoretical estimation Eq. (3.4) we get Nmax
c ∈ [3.6, 4.8], in pretty

good agreement with the measured maximal capacity. We can affirm this in view of the
results reported in [10] for a different mean field model, where the analytical predictions
overestimate the maximal capacity by a factor two.

Memory Load Characterization

A feature usually investigated in experiments during the loading or juggling of more items
is the power associated with different frequency bands. In particular, a recent experiment
has examined the frequency spectra of LFPs measured from cortical areas of monkeys
while they maintained multiple visual stimuli in WM [148]. These results have revealed
that higher-frequency power (50–100 Hz) increased with the number of loaded stimuli,
while lower-frequency power (8–50 Hz) decreased. Furthermore, the analysis of a detailed
network model, biophysically inspired by the PFC structure, has shown that θ and γ
power increased with memory load, while the power in the α-β band decreased [125], in
accordance with experimental findings in monkeys [117]. However, for humans, an enhance
in the oscillatory power during WM retention has been reported for θ [112, 113], β and
γ-bands [114, 115], while no relevant variation has been registered in the α-band [114].

We considered the loading of NL ≤ 5 items and estimated the corresponding power
spectra, after the loading of all the considered items, for the following variables: (i) the
mean membrane potential v1(t) of the excitatory population one; (ii) the mean membrane
potential v0 of the inhibitory population; (iii) the mean membrane potential averaged over
all the excitatory populations. The power has been estimated in the θ, β and γ-bands
by integrating the spectra in such frequency intervals. The results for 1 ≤ NI ≡ NL ≤ 5
shown in Fig. 3.12 reveal that the power in the γ-band is increasing with NI for all the
considered signals, as reported experimentally for several brain areas involved in WM [115,
142, 143]. Furthermore, the γ-power obtained for v0 and the mean excitatory potential are
essentially coincident [Fig. 3.12(c)], thus confirming the fundamental role of the inhibition
in sustaining γ oscillations via a PING mechanism. Moreover, the power in the β-band,
reported in Fig. 3.12(b), increases almost monotonically for v1, while it displays a non
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Figure 3.12: Dependence of the power on the number of loaded items. (a) Power
in the θ-band (3-11 Hz), (b) in the β-band (11-25 Hz) and (c) in the γ-band (25-100 Hz) as a
function of the number NL = NI ≤ 5 of loaded items. The integral of the power spectra in the
specified frequency bands are displayed for the mean membrane potential v1(t) of the excitatory
population one (blue symbols), the mean membrane potential v0(t) of the inhibitory population
(orange symbols) and the mean membrane potentials averaged over all the excitatory populations
(green symbols). The power spectra have been evaluated over a 10 s time window, after the loading

of NI items, when these items were juggling in WM. Parameter values as in Fig. 3.8.

monotonic behavior for the inhibitory population and for the average excitatory membrane
potential, while saturating to a constant value forNI ≥ 3. More striking differences emerge
when considering the θ power [Fig. 3.12(a)]: in this case the power spectra for v0 and the
average excitatory membrane potential display almost no variations with NI , while that
for v1 increases by passing from one to two loaded items before saturating for larger NI .
The observed discrepancies can be explained by the fact that the fundamental frequency
fc and its harmonics are present in the spectrum of v1, while they are absent both in the
spectrum of v0 and of the average excitatory membrane potential. We have not observed
any variation in the α-power, comparable to what is reported in the experimental study
[114].

Finally, inspired by a series of experimental works reporting neurophysiological mea-
sures of WM capacity in humans [103, 137], we have investigated if a similar indicator
can be defined also in our context. In particular, the authors in [103] measured, as a neu-
ral correlate of visual memory capacity, the event-related potentials (ERPs) from normal
young adults performing a visual memory task. Each patient was presented a bilateral
array of 2×NL colored squares and he/she was asked to remember the NL items in only
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one of the two hemifields. Due to the organization of the visual system, the relevant ERPs
associated with this visual stimulation should appear in the controlateral hemisphere.
Therefore the difference between controlateral and ipsilateral activity has been measured
in order to remove any nonspecific bilateral ERP activity. The authors observed that, by
increasing the number of squares NL, also the ERP difference increases, while it saturates
by approaching the maximal capacity (measured during the same test) and even decreases
for NL > Nmax

c . Thus the ERP difference can be employed as a reliable neurophysiological
predictor of memory capacity.
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Figure 3.13: Dependence of the membrane potential difference on the number of
loaded items. Difference ∆v of membrane potentials versus time when stimulating different
numbers NL of populations. The presented time-series are aligned to t∗, which marks the deliv-
erance of a PB from population one. The populations are stimulated sequentially with parameter

values as in Fig 3.8.

In order to define a similar indicator in our case, we have calculated the membrane
potential difference ∆v between the mean membrane potential, averaged over the popula-
tions coding, for the retained items [whose activity is reported for example in Fig. 3.8(a)]
and the one averaged over the non-coding populations [e.g. see Fig. 3.8(b)]. By mea-
suring ∆v just after the emittance of a PB by the first population, we observe a clear
growth of this quantity with the number NL of presented items, as shown in Fig. 3.13(f)or
NL ∈ {1, 2, 3, 4, 5, 6, 7}. However, as soon as NL > Nmax

c the membrane difference ∆v
almost saturates to the profile attained for NL = Nmax

c = 5 and even decreases for larger
NL, as evident from the dashed lines corresponding to NL ∈ {6, 7}. Analogous results have
been obtained by considering the mean membrane potential of the next to fire populations
instead of the difference ∆v. Therefore, the results are not biased by the chosen indicator
and ∆v allows for a better presentation clarity.

To conclude this sub-section, we can affirm that the mean membrane potential can be
employed, analogously to the ERP in the experiments [103, 137], as a proxy to measure
the memory load and capacity. It is worth noticing that neither the mean membrane
potential nor the ERP are accessible for firing rate models.
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3.3 Discussion
In this chapter we have introduced a next generation neural mass model for WM based
on short-term depression and facilitation. The model has been developed to reproduce
exactly the macroscopic dynamics of heterogeneous QIF spiking neural networks with
mesoscopic short-term plasticity (m-STP), in the limit of an infinite number of neurons
with Lorentzian distributed excitabilities. Even though the choice of the excitability dis-
tribution allows for an analytical derivation of the model, it does not limit the generality
of the results [16, 135]. As shown in Section 3.2.1, the neural mass model reproduces
well not only the QIF network dynamics with m-STP plasticity but, to a large extent, it
reproduces also the dynamics of networks with plasticity implemented at a microscopic
level (µ-STP). Therefore, the macroscopic dynamics of spiking neural networks made of
hundreds of thousands of neurons with synapses evolving accordingly to realistic cellular
mechanisms, can be well captured in terms of a four dimensional mean-field model.

The novelty of this neural mass model, besides not being heuristic, but derived in
an exact manner from the microscopic underlying dynamics, is that it reproduces the
evolution of the population firing rate as well as of the mean membrane potential. This
allows us to get insight not only on the synchronized spiking activity, but also on the
sub-threshold dynamics and to extract information correlated to LFPs, EEGs and ERPs,
that are usually measured during WM tasks to characterize the activity of the brain at a
mesoscopic/macroscopic scale. The knowledge of the mean membrane potential evolution
is fundamental in order to capture the dynamics displayed by the underlying microscopic
QIF network, already in the absence of plasticity. Indeed, at variance with this next
generation of neural mass models, a rate model cannot reproduce the fast oscillations
observed in purely inhibitory networks [46], nor memory clearance obtained via a resonance
mechanism between an external β forcing and the intrinsic network oscillations[32]. As we
have shown in Section 3.2.3, a heuristic firing rate model, specifically designed to reproduce
the QIF network dynamics with STP, does not display any oscillatory activity in the β-γ
range, contrary to what observable in the spiking network itself and in our neural mass
model. It should be remarked that this represents a main drawback when employing firing
rate models to mimic WM operations, because the emergence of β-γ rhythms is intimately
related to short-term memory activity, as shown in several experiments on humans and
monkeys [48, 49, 114–117].

The macroscopic model we developed is extremely flexible since, depending on the
operational point, it can mimic WM maintenance in terms of persistent spiking activity
or in terms of selective and spontaneous reactivation, based on plastic footprints into the
synapses. In particular, short-term depression and facilitation complement each other to
obtain an efficient WM model based on synaptic reactivation. Facilitation allows us to
maintain a trace of the loaded items stored in WM, while depression is responsible for the
bursting activity that refreshes the WM content.

Memory loading is characterized, in any operational condition, by collective oscilla-
tions (PBs) with frequencies ' 22 − 28 Hz in the β-γ band. These oscillations emerge
spontaneously in the considered model thanks to a PING-like mechanism triggered by
the transient oscillations of the selectively stimulated excitatory population towards a fo-
cus equilibrium and sustained by the common inhibitory pool. The memory loading also
induces stimulus-locked transient oscillations involving the harmonics of a fundamental
frequency (i.e. ' 2−3 Hz). These results strongly resemble the spectral features observed
in experiments on humans and monkeys performing WM tasks. Of particular interest
are the responses of the primary somatosensory cortex in humans to vibrotactile stimuli
[47] and the population activity of the PFC measured during a behavioral task of object
recognition, performed by monkeys [48, 49]. In the first experiment stimulus-locked EEG
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signals have been measured revealing a transient broad-band activity in the 4-15 Hz range,
followed by a stationary activity at ' 26 Hz lasting for the duration of the stimulus [47].
These findings are quite similar to the spectral features displayed by our model during
one memory item loading, see Fig. 3.3. In the experiments on primates, the analysis
of the LFP spectrograms revealed an evoked response around 2-4 Hz and tonic oscilla-
tions around 32 Hz [48, 49], thus resembling the power spectra that we have obtained for
multi-item memory loading reported in Figs. 3.8 and 3.10.

Memory maintenance in the synaptic-based model is ensured by facilitation over a time
scale of a few seconds, even in absence of spiking activity. The memory can be refreshed,
and therefore maintained for a longer period, thanks to the reactivation of the synaptic
resources of the excitatory population storing the item. This can be obtained, on one side,
via brief non specific stimulations given to all the excitatory populations, analogous to the
reactivation of latent working memories performed with single-pulse transcranial magnetic
stimulation realized in humans [126]. In particular, to maintain the memory for long time
intervals, the stimulations should be delivered with a period smaller than the decay time
of the facilitation. On the other side the memory maintenance over long periods can be
achieved thanks to the spontaneous emergence of periodic PBs delivered by the excitatory
population coding for the loaded item.

An interesting aspect that we have investigated, concerns the competition between
two items loaded in non-overlapping populations. When the WM load consists already
of one item coded by an excitatory population, the stimulation of the other population
can be regarded as a distractor. If the items are stored as repetitive PBs, we can observe
three outcomes: for brief stimulations the distractor has no influence on WM, and the
first item remains loaded; for sufficiently long stimulations the second item is loaded in
WM; for intermediate situations both items are maintained in WM. In this latter case
both populations deliver periodic trains of PBs arranged in anti-phase. Such behavior can
be seen as a neural correlate to two items juggling in WM [144]. For sufficiently long and
strong stimulations one observe a chaotic scenario [146], where the final outcome can be
any of the three described above and it depends on small differences in the perturbation
deliverance. Our findings can help in elucidating the results reported in [144], where it
has been shown that, when an attended and an unattended item are juggling for a long
period, the unattended item can prevail leading to a loss of the stored memory.

If the items are stored in WM as persistent states, the memory juggling is no more
observable. As in the previous case, for sufficiently long stimulations, the second item
substitutes the first one in WM. However, due to synaptic depression and facilitation,
even a short stimulation can lead to the loading of the second item in WM, whenever its
duration falls in a narrow time interval (' O(τd/2)) and the amplitude of the stimulation
is sufficiently large. This suggests that there are optimal stimulation strategies to ensure
a fast learning of a new item in WM.

By considering a neural architecture composed of multiple excitatory populations and
a common inhibitory pool, more items can be maintained at the same time in WM as
periodic trains of PBs. This is observable despite the possible interference among exci-
tatory populations that are allowed to directly interact, thanks to the couplings present
among them, and not only via the inhibitory pool, as in similar architectures considered
in the literature [10]. All populations coding for stored items follow the same periodic
dynamics, but they deliver PBs at evenly shifted phases, similarly to the splay states ob-
served for globally coupled excitatory neuronal networks [147]. The inter-burst interval of
two successive PBs approaches a value Tb ' 65 ms when more than 2 items are loaded.
This clearly induces the emergence of a peak in the power spectra of the mean membrane
potentials in the β band for fb ' 15 Hz. However, the most prominent peak in the spectra
is around 30 Hz, due to the resonance of the second harmonic of fb with the oscillations
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of the inhibitory population in the β − γ range. These oscillations are associated with
damped oscillations of the excitatory population towards a focus equilibrium, induced by
the loading of one memory item and sustained by the inhibitory pool thanks to a PING-
like mechanism. The considered architecture allows for the maintenance of multi-items in
WM thanks to their spontaneous reactivation, without destructive or interference effects
often reported for models based on persistent spiking [127]. Furthermore, the memory of
different items is associated with preferential phases with respect to the collective limit
cycle behavior of the whole system, characterized by a period Tc = NITb, where NI is the
number of retained items. Experimental evidences of phase-dependent neural coding of
objects in the PFC of monkeys have been reported in [48].

The memory load NI of our model depends on the presentation rate fpres of a sequence
of memory items, however it is always limited between 3 ≤ NI ≤ 5 analogous to what
is reported in many analysis concerning the WM capacity [149, 150]. In particular, for
slow presentation rates (fpres ≤ 8 Hz) we observe that NI grows proportionally to fpres
and that only the last presented items are retained in the memory. The maximal capacity
Nmax

c = 5 can be attained mainly within an optimal range of presentation rates, namely
[4.5 : 21.4] Hz. These rates correspond to the characteristic frequencies associated to the
PB dynamics of the model, since the inter-burst frequency is fb ' 12− 16 Hz for NI > 2,
while the oscillation frequency of a single population is fc ' 3−5 Hz. In this optimal range
there is no clear preference for the item retained in the memory and its serial position in
the loaded sequence. For faster frequencies fpres > 25 Hz, a destructive interference among
the items leads to a decrease in NI : this mechanism has been suggested in [150] to be
at the origin of the reduced capacity. For sufficiently fast rates fpres ≥ 10 Hz, a primacy
and recency effect [44, 45] is observable with a prevalence for the first loaded items to be
retained.

To obtain a better understanding of the capacity limits of our model, we have derived an
analytical expression for the maximal capacity Nmax

c by following the approach outlined in
[10]. The maximal capacity is essentially controlled by the ratio between the recovery time
of the available synaptic resources τd and the membrane time constant of the excitatory
populations; conversely it reveals a weaker dependence on the ratio between facilitation
and depression time scales. Nmax

c is also controlled by the excitatory and inhibitory drives.
As a matter of fact, for our parameters we obtainedNmax

c ' 4−5, in pretty good agreement
with the measured maximal capacity.

Furthermore, we observed that the power in the γ-band (25-100 Hz) increases with the
number of loaded items NI, in agreement with several experimental studies related to WM
[115, 142, 143]. Interestingly, for the γ-rhythms, the inhibitory pool and the excitatory
populations contribute equally to its generation, confirming that its origin is related to a
PING-like mechanism. Instead the power in the β-band reveals a non monotonic behavior
with NI, characterized by a rapid increase passing from 1 to 2 items, a small drop from
2 to 3 items while remaining essentially constant for NI ≥ 3. The activity in the θ-band
is associated with the single excitatory population dynamics only, due to the fact that
the inhibitory population is not involved in the memory maintenance of single items. No
variation with NI have been observed in the α-band, analogous to what is reported for
experiments on humans during memory retention in [114].

Finally, we have defined a measure of the memory capacity in terms of the mean
membrane potential measured just after a PB deliverance. This quantity increases with
the number of loaded items for NI < 5 and saturates for NI ≥ 5. These results resemble
the ones obtained for the ERPs detected in young adults performing visual memory tasks
[103, 151]. This analysis suggests that in our neural mass model the value of the mean
membrane potential can be employed to measure memory load and capacity, in analogy
with the neurophysiological indicator defined in [103, 137].
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However our neural mass model presents several simplifications from a biological point
of view, such as the pulsatile interactions or the absence of transmission delays, therefore
more realistic aspects should be included in future developments. As shown for this
next generation of neural mass models, in absence of plasticity, the inclusion of the time
scales associated with the rise and decay of the post-synaptic potentials could induce the
emergence of new oscillatory rhythms [27, 46], while the delayed synaptic transmission
could lead to more complex macroscopic behaviors [152]. For what concerns the plasticity
terms, we expect to further improve the agreement between the neural mass model and
the network dynamics with µ-STP by including the correlations and the fluctuation of the
microscopic synaptic variables in the mean-field formulation, analogous to what has been
done in [92].

A fundamental aspect of WM, not included in our model, is the volitional control, which
is a cognitive function that allows for the control of behavior from the environment and to
turn it towards our internal goals [100]. A flexible frequency control of cortical oscillations
has been recently proposed as an unified mechanism for the rapid and controlled transitions
of the WM between different computational operations [32, 108, 141]. In particular, the
authors consider as a neural correlate of WM a bistable network with coexisting persistent
and resting states that an external periodic modulation can drive from an operating mode
to another one depending on the frequency of the forcing. However, in [32] it has been
suggested that the forcing term, in order to be considered more realistic, should self-emerge
by the network dynamics in form of trains of periodic PBs and not be imposed from the
exterior. In our model for synaptic-based WM we have shown that some WM operations
are associated with PBs delivered at different frequencies: namely, item loading and recall
with transient oscillations in the δ band, as in [32], joined to burst oscillations in β − γ
band as in [141]; multi-item maintenance to harmonics in the β − γ band. Therefore,
we believe that our neural mass model with STP can represent a first building block for
the development of an unified control mechanism for WM, relying on the frequencies of
deliverance of the self-emerging trains of PBs. However, a development towards realistic
neural architectures would require to design a multi-layer network topology to reproduce
the interactions among superficial and deep cortical layers [127].
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3.4 Methods

3.4.1 Bifurcation analysis

In order to exemplify the dynamical mechanisms underlying the maintenance of different
items in presence of STP, we analyze the bifurcation diagram for the model with three
populations, given in Eqs. (3.1) to (3.3). In particular, we study the emergence of the
different dynamical states occurring in a network made of two excitatory and one inhibitory
population corresponding to the network architecture introduced in Section 3.2.2.
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Figure 3.14: Bifurcation diagram for two excitatory populations. Bifurcation diagram
displaying the (a) instantaneous firing rates rk and (b) mean membrane potentials vk for the
excitatory populations as a function of the background current IB. Solid (dashed) black lines
refer to stable (unstable) asynchronous states, while orange solid lines denote the maxima and the
minima of stable collective oscillations. Symbol refer to bifurcation points: branch points (blue
squares), Hopf bifurcations (orange circles) and saddle-node bifurcations (black circles). The inset
in (a) displays an enlargement of the bifurcation diagram. The lower (upper) branch of equilibria
in (a) corresponds to the lower (upper) branch in (b). All the remaining parameters are as in

Fig. 3.3. Numerical bifurcation analysis was performed with AUTO-07P [153].

Due to the symmetries in the synaptic couplings and in the structure of Eqs. (3.1)
to (3.3). the macroscopic dynamics observable for the two excitatory networks will be
equivalent. Therefore, we will display the bifurcation diagram in terms of the instantaneous
firing rate rk(t) and the mean membrane potential vk(t) of one of the two excitatory
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populations (k > 0) as a function of the common background current IB by fixing all
the other parameters of Eqs. (3.1) and (3.2) as in Fig. 3.3. The phase diagram, shown in
Fig. 3.14, reveals that at low values of the background current (IB ≤ I(1)

sn ' 1.2532) there is
a single stable fixed point with an asynchronous low firing dynamics. This looses stability
at I(1)

bp ' 1.25647 giving rise to two coexisting stable fixed points with asynchronous
dynamics: one at low firing rate due to spontaneous activity in the network and one at
high firing rate corresponding to a persistent state. As shown in the inset in Fig. 3.14(a),
there is a small region IB ∈ [I(1)

sn , I
(1)
bp ] where we can have the coexistence of these three

stable asynchronous states.
At IB ≡ I

(1)
hb ' 1.34998 we observe the emergence of coexisting collective oscillations

(periodic PBs) at low and high firing rates via supercritical Hopf bifurcations. These
oscillations exist in a quite limited range of parameters, namely IB ∈ [I(1)

hb , I
(2)
hb ], and they

disappear at I(2)
hb ' 1.5363. Beyond this parameter value we again have a persistent

state coexisting with a low firing activity regime, these states finally annihilate with two
unstable fixed point branches at I(2)

sn ≡ 4.13715.
The knowledge of the bifurcation diagram shown in Fig. 3.14 allows us to interpret

the numerical experiments discussed in Section 3.2.3 and displayed in Fig. 3.3. Let us
consider the first experiment, reported in column (1) of Fig. 3.3 and showing the selective
reactivation of the WM item via a nonspecific read-out signal. The item is firstly loaded
into population one via a specific step current of amplitude ∆I1(t) = 0.2 for a time interval
∆T1 = 350 ms. The selective reactivation of the target is obtained by applying a non-
specific readout signal of amplitude ∆I1(t) = ∆I2(t) = 0.1 to all excitatory neurons in
both populations for a shorter time interval, namely ∆T1 = ∆T2 = 250 ms. For this
numerical experiment we fixed IB = 1.2 < I

(1)
sn , thus the only possible stable regime is a

low firing asynchronous activity. The item is loaded into population one by increasing,
for a limited time window, the background current only for this population to the level
IB + ∆I1 > I

(1)
hb , thus leading to the emission of a series of PBs, whose final effect is to

strongly facilitate the efferent synapses of population one. The subsequent application of a
non-specific read-out signal amounts to an effective increase of their common background
current to a value beyond I

(1)
bp , where the persistent state coexists with the low firing

activity. Indeed during the read-out stimulation, population one displays a burst of high
activity, due to the facilitated state of its synapses, while population two is essentially
unaffected by the read-out signal. As soon as the stimulus is removed, the system moves
back to the spontaneous activity regime.

The second experiment, shown in the column (2) of Fig. 3.3, concerns spontaneous
reactivation of the WM item via collective oscillations (periodic PBs). In this case the
background current is set to IB = 1.532, in order to have the coexistence of two stable limit
cycles corresponding to periodic PBs with low and high firing rate. The whole system is
initialized in the asynchronous regime with spontaneous activity (which is unstable for this
value of IB); upon the presentation of the stimulus to population one, this jumps to the
upper limit cycle after loading the item into the memory. Once the stimulation is removed,
due to the periodic synaptic refreshment, population one reactivates spontaneously by
emitting a periodic sequence of PBs that is terminated by reducing IB to a value smaller
than I(1)

sn .
The last experiment shown in column (3) of Fig. 3.3 refers to the spontaneous reactiva-

tion of the memory associated with a persistent state activity. In this case we set IB = 2,
thus the system is in an asynchronous regime beyond I(2)

hb , where there is coexistence of
persistent and low firing activity beyond I(2)

hb . As in the previous experiment, the system is
initialized in the asynchronous unstable regime. Upon a brief stimulation, population one
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is led in the high activity persistent regime. Reducing the background current to IB = 1.2
stops the persistent activity.

3.4.2 Heuristic Firing Rate Model

Firing rate models have been developed to describe heuristically the dynamics of a neuronal
population in terms of the associated firing rate r; one of the most known example is
represented by the Wilson-Cowan model [7]. These models are usually written as [154]

τmṙ = −r + Φ(I) , (3.5)

where I represents the total input current received by each neuron in the population and
Φ(I) is the steady-state firing rate solution, or activation function. This function is usually
assumed to be a sigmoidal function and it is determined on the basis of the dynamical
features of the neurons in the considered population. As stated in [46], these firing rate
models, despite being extremely useful to model brain dynamics, do not take into account
synchronization phenomena induced by the sub-threshold voltage dynamics. Therefore,
these firing rate models fail in reproducing fast oscillations observed in inhibitory networks,
without the addition in their dynamics of an ad-hoc time delay. These collective oscilla-
tions are instead captured by the neural mass model introduced in [16] and considered in
this chapter.

By following the analysis in [46], we can obtain a heuristic firing rate model correspond-
ing to the exact neural mass ODEs given in Eqs. (3.1) and (3.2). More specifically this
firing rate description can be derived for a QIF network of spiking neurons, by considering
the corresponding steady-state solution (v∗, r∗) given by

0 = ∆
τmπ

+ 2r∗v∗ (3.6a)

0 = (v∗)2 − (πτmr
∗)2 + I (3.6b)

where I = H+IB+IS+τmJ̃r∗. This leads to a self-consistent equation for the steady-state
firing rate, given by r∗ = Φ(I), where

Φ(I) = 1√
2πτm

√
I +

√
I2 + ∆2 . (3.7)

The Eqs. (3.5) and (3.7) represent a firing rate model corresponding to the QIF spiking
network with m-STP. This firing rate model has been considered in Section 3.2.3 in order
to perform numerical experiments on WM maintenance (see Fig. 3.4).

3.4.3 Maximal Working Memory Capacity

By following [10] we can give an estimate of the maximal memory capacity for our neural
mass model with m-STP Eqs. (3.1) and (3.2). The maximal capacity can be estimated as
the ratio of two time intervals

Nmax
c ' Tmax

c
Tb

(3.8)

where Tmax
c is the maximal period of the network limit cycle and Tb the inter-burst interval

between two successive PBs. In [10], Tmax
c has been estimated as the time needed to the

synaptic efficacy uk(t)xk(t) of a generic population k to recover to the maximum value
after a PB emission. Since all the excitatory populations are identically connected among
them and with the inhibitory population, this time does not depend on the considered
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population. The approximate expression reported in [10] is the following

Tmax
c ' τd ln τf/τd

1− U0
(3.9)

As expected the recovery time is essentially ruled by the depression time scale τd.
It can be shown that Tb has three components, i.e. the duration of the previous

excitatory PB, the delay of the inhibitory burst triggered by the excitatory PB, plus its
duration and the time needed for the next active excitatory population to recover from
inhibition and to elicit a PB. In our model framework, we can neglect the first two time
intervals and limit ourselves to estimate the latter time.

Let us denote the next firing population as the m-th one; we can assume that during
Tb the connection strength does not vary much and that the firing rates are essentially
constants. Therefore we can rewrite the time evolution of the mean membrane potential
appearing in Eqs. (3.1) as follows :

τ e
mv̇k = v2

k +
[
H(e) − (πτ e

mr̄
(e))2 + IB + τ e

m
(
−|Jei|r̄(i) + J̄ r̄(e)

)]
= v2

k + C (3.10)

where J̄ = [J (s)
ee + (Npop− 2)J (c)

ee ]x̄ū takes in account the synaptic efficacy of all excitatory
synapses in an effective manner, r̄(i) and r̄(e) are the inhibitory and excitatory population
rates and C is the constant quantity within square brackets on the right-hand side. The
expression of C can be further simplified by noticing that the quadratic term is negligible
and by assuming that the excitatory and inhibitory firing rates are similar. Moreover, by
assuming that the excitatory neurons are almost uncoupled during Tb, one gets:

C =
[
H(e) + IB + τ e

m
(
−|Jei|+ J̄

) √H(e) + IB
π

]
(3.11)

where r̄(i) = r̄(e) and r̄(e) =
√
H(e)+IB
π as for an isolated QIF neuron driven by the mean

excitability and by the background current.
Therefore the time needed to the mean membrane potential to go from an initial

negative value vm(0) = V0, determined by the discharge of the inhibitory neurons, to a
threshold value Vth, where the PB starts to be delivered, is given by

Tb = τ e
m√
C

[
arctan Vth√

C
− arctan V0√

C

]
' τ e

mπ√
C

(3.12)

where on the right hand side of the equation we have finally assumed that Vth � 1 and
V0 � −1.

Thus the following expression for the maximal capacity is obtained

Nmax
c ' τd

τ e
m

ln
[
τf/τd

1− U0

]√
C

π
. (3.13)

For the parameters employed in Section 3.2.5 we obtained the following theoretical
values Tmax

c ' 447 ms, Tb ' 93− 126 ms depending on the value of 0.5 ≤ x̄ū ≤ 1.0, thus
3.6 ≤ Nmax

c ≤ 4.8 not far from the measured value that was Nmax
c = 5.
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Chapter 4

Testing clinical hypothesis of
seizure propagation using human
connectomes

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore,
understanding seizure mechanisms requires identifying the relations between seizure com-
ponents within and across these scales, together with the analysis of their dynamical
repertoire. In this view, mathematical models have been developed, ranging from single
neuron to neural population.

In this study we consider the neural mass model derived in Chapter 2 combined with
structural information from non-invasive brain imaging, thus building large-scale brain
network models to explore emergent dynamics and test clinical hypothesis. We provide
a comprehensive study on the effect of external drives on neuronal networks exhibiting
multistability, in order to investigate the role played by the neuroanatomical connectivity
matrices in shaping the dynamics. In particular we systematically investigate the condi-
tions under which the network displays a transition from a low activity regime to a high
activity state, which we identify with a seizure-like event. This approach allows us to
study the biophysical parameters and variables leading to multiple recruitment events at
the network level. We further exploit topological network measures in order to explain
the differences and the analogies among the subjects and their brain regions, in showing
recruitment events at different parameter values.

We demonstrate, along the example of diffusion-weighted magnetic resonance imag-
ing (MRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual
variations in structural connectivity, when linked with mathematical dynamic models,
have the capacity to explain changes in spatiotemporal organization of brain dynamics,
as observed in network-based brain disorders. In particular, for epileptic patients, by
means of the integration of the clinical hypotheses on the epileptogenic zone, i.e. the local
network where highly synchronous seizures originate, we have identified the sequence of
recruitment events and discussed their links with the topological properties of the specific
connectomes. The predictions made on the basis of the implemented set of exact mean-
field equations turn out to be in line with the clinical presurgical evaluation on recruited
secondary networks.

Publication:
The results presented in this chapter are published [155]: M. Gerster et al. “Patient-Specific Net-
work Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hy-
pothesis of Seizure Propagation”. Frontiers in Systems Neuroscience 15 (2021), p. 79
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validated the research and participated in the drafting process. SO was responsible for conceptu-
alization, supervision, state-of-the-art review (together with VJ), and the paper write-up.

4.1 Introduction
Epilepsy is a chronic neurological disorder characterized by the occurrence and recurrence
of seizures and represents the third most common neurological disorder affecting more
than 50 million people worldwide [156]. Anti-epileptic drugs are the first line of treatment
for epilepsy and they provide sufficient seizure control in around two-thirds of cases [157].
However, about 30 to 40% of epilepsy patients do not respond to drugs, a percentage
that has remained relatively stable despite significant efforts to develop new anti-epileptic
medication over the past decades. For drug-resistant patients, a possible treatment is the
surgical resection of the brain tissue responsible for the generation of seizures.

As a standard procedure, epilepsy surgery is preceded by a qualitative assessment
of different brain imaging modalities in order to identify the brain tissue responsible for
seizure generation, i.e. the epileptogenic zone (EZ) [50], which in general represents a
localized region or network where seizures arise, before recruiting secondary networks,
called the propagation zone (PZ) [51–54]. Outcomes are positive whenever the patient has
become seizure-free after surgical operation.

Intracranial electroencephalography (iEEG) is commonly used during the presurgical
assessment to find the seizure onset zone [50, 158, 159], the assumption being that the
region where seizures emerge, is at least part of the brain tissue responsible for seizure
generation. As a part of the standard presurgical evaluation with iEEG, stereotactic EEG
(SEEG) is used to help correctly delineating the EZ [160]. SEEG employs penetrating
depth electrodes that are implanted through small burr holes in the skull and are positioned
using stereotactic guidance [51], thus allowing for the measurement of neural activity in
deeper structures of the brain. Alternative imaging techniques such as structural MRI,
magnetoencephalography (MEG, electroencephalography (EEG) and positron emission
tomography (PET) help the clinician to estimate the position of the EZ. Recently, dMRI
(dMRI) started being evaluated as well, thus giving the possibility to infer the connectivity
between different brain regions by computing in-vivo fiber tract trajectories in coherently
organized brain white matter pathways [161]. dMRI has revealed a quantitative decrease of
regional connectivity around the EZ that is associated with a network reorganization and
cognitive impairment [162]. In particular it has revealed reduced fractional anisotropy
[163, 164] and structural alterations in the connectome of epileptic patients [165–167].
However, epilepsy surgery is often unsuccessful and the long-term positive outcome may
be lower than 25% in extra-temporal cases [168, 169], thus meaning that the EZ has not
been correctly identified or that the EZ and the seizure onset zone may not coincide [57].

In order to quantitatively examine clinical data and to determine targets for surgery,
many computational models have been recently proposed [56, 170–175], that use MRI
or iEEG data acquired during presurgical workup to infer structural or functional brain
networks. Taking advantages of recent advances in our understanding of epilepsy, that
indicate that seizures may arise from distributed ictogenic networks [54, 176, 177], phe-
nomenological models of seizure transitions are used to compute the escape time, i.e., the
time that each network node takes to transit from a normal state to a seizure-like state.
Nodes with the lowest escape time are then considered as representative of the seizure
onset zone and therefore candidates for surgical resection, by assuming seizure onset zone
as a proxy for the EZ [171, 174]. Alternatively, different possible surgeries are simulated
in silico to predict surgical outcomes [55–57] by making use of synthetic networks and
phenomenological network models of seizure generation. Further attention has been paid
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to studying how network structure and tissue heterogeneities underpin the emergence of
focal and widespread seizure dynamics in synthetic networks of phase oscillators [57, 178].

More in general there is a vast and valuable literature on computational modeling in
epilepsy, where two classes of models are used: (1) macroscopic mean-field models and
(2) detailed microscopic network models. Mean field models are often preferred over the
more detailed models since they have fewer parameters and thus simplify the study of
transitions from interictal to ictal states and the subsequent EEG analysis of data from
epilepsy patients. This is justified as the macroelectrodes used for EEG recordings rep-
resent the average local field potential arising from neuronal populations. Indeed, much
effort has been made so far to explain the biophysical and dynamical nature of seizure
onsets and offsets by employing neural mass models [175, 179–186]. Mechanistic inter-
pretability of the mean field parameters is lost, as many physiological details are absorbed
in few degrees of freedom. Since the mean field models remain relatively simple, they
can also be employed to describe epileptic processes occurring in “large-scale” systems,
e.g. the precise identification of brain structures that belong to the seizure-triggering zone
(epileptic activity often spreads over quite extended regions and involves several corti-
cal and sub-cortical structures). However, only recently, propagation of epileptic seizures
started to be studied using brain network models, and was limited to small populations
number [187], or absence seizures [188], while partial seizures have been reported to prop-
agate at the mesoscopic scale through cortical columns [189, 190], at the macroscopic scale
through large-scale networks in humans [191] and animal models [192]. All in all, even
though neural mass models are in general easier to analyze numerically because relatively
few variables and parameters are involved, they drastically fail to suggest molecular and
cellular mechanisms of epileptogenesis.

On the other hand, detailed network models are best suited for understanding the
molecular and cellular bases of epilepsy and thus they may be used to suggest thera-
peutics targeting molecular pathways [193–197]. Due to the substantial complexity of
neuronal structures, relatively few variables and parameters can be accessed at any time
experimentally. Although biophysically explicit modeling is the primary technique to look
into the role played by experimentally inaccessible variables in epilepsy, the usefulness of
detailed biophysical models is limited by constraints in computational power, uncertainties
in detailed knowledge of neuronal systems, and the required simplification for the numeri-
cal analysis. Therefore an intermediate “across-scale” approach, establishing relationships
between sub-cellular/cellular variables of detailed models and mean-field parameters gov-
erning macroscopic models, might be a promising strategy to cover the gaps between these
two modeling approaches [198–200].

In view of developing a cross-scale approach, it is important to point out that large-scale
brain network models emphasize the network character of the brain and merge structural
information of individual brains with mathematical modeling, thus constituting in-silico
approaches for the exploration of causal mechanisms of brain function and clinical hy-
pothesis testing [201–203]. In particular, in brain network models, a network region is a
neural mass model of neural activity, connected to other regions via a connectivity matrix
representing fiber tracts of the human brain. This form of virtual brain modeling [204–
206] exploits the explanatory power of network connectivity imposed as a constraint upon
network dynamics and has provided important insights into the mechanisms underlying
the emergence of asynchronous and synchronized dynamics of wakefulness and slow-wave
sleep [207] while revealing the whole-brain mutual coupling between the neuronal and the
neurotransmission systems to understand the flexibility of human brain function despite
having to rely on fixed anatomical connectivity [208]. Recent studies have pointed out the
influence of individual structural variations of the connectome upon the large-scale brain
network dynamics of the models, by systematically testing the virtual brain approach
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along the example of epilepsy [201–203]. The employment of patient-specific virtual brain
models derived from dMRI may have a substantial impact for personalized medicine, al-
lowing for an increase in predictivity concerning the pathophysiology of brain disorders,
and their associated abnormal brain imaging patterns. More specifically a personalized
brain network model derived from non-invasive structural imaging data would allow for
testing of clinical hypotheses and exploration of novel therapeutic approaches.

In order to exploit the predictive power of personalized brain network models, we have
implemented, on subject-specific connectomes, the next generation neural mass model
that, differently from the previous applied heuristic mean-field models [201–203], is exactly
derived from an infinite size network of quadratic integrate-and-fire neurons [16], as shown
in Chapter 2. This neural mass model is able to describe the variation of synchrony within
a neuronal population, which is believed to underlie the decrease or increase of power
seen in given EEG frequency bands while allowing for a more direct comparison with the
results of electrophysiological experiments like local field potential, EEG and event-related
potentials (ERPs), thanks to its ability to capture the macroscopic evolution of the mean
membrane potential.

The next generation neural mass model developed by [16], has been recently extended
to take into account time-delayed synaptic coupling [31, 152] and, when integrated in
a large-scale brain network, time delays in the interaction between the different brain
areas, due to the finite conduction speed along fiber tracts of different lengths [209]. The
time delay, together with the effective stochasticity of the investigated dynamics give
rise, both on structural connectivity matrices of mice and healthy subjects, to preferred
spatiotemporal pattern formation [210, 211] and short-lived neuronal cascades that form
spontaneously and propagate through the network under conditions of near-criticality
[209]. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs
of regions across the brain, thus contributing to the organization of the slowly evolving
spontaneous fluctuations in brain dynamics at rest.

In this chapter we have built brain network models for a cohort of 20 healthy sub-
jects and 15 epileptic patients, implementing for each brain region the neural mass model
developed by [16]. As paradigms for testing the spatiotemporal organization, we have
systematically simulated the individual seizure-like propagation patterns, looking for the
role played by the individual structural topologies in determining the recruitment mech-
anisms. Specific attention has been devoted to the analogies and differences among the
self-emergent dynamics in healthy and epilepsy-affected subjects. Furthermore, for epilep-
tic patients, we have validated the model against the presurgical SEEG data and the
standard-of-care clinical evaluation. More specifically Sec. 2 is devoted to the description
of the implemented model and the applied methods. In Sec. 3.1 are reported the results
specific for healthy subjects, while in Sec. 3.2 is reported a detailed analysis performed on
epileptic patients. Finally a discussion on the presented results is reported in Sec. 4.

4.2 Methods
In the following we consider personalized brain models derived from structural data of
MRI and Diffusion tensor weighted imaging (DTI), thus implementing different structural
connectivity matrices for healthy subjects and epileptic patients. For healthy subjects cor-
tical and volumetric parcellations were performed using the Automatic Anatomical Atlas
1 (AAL1) [212] with Npop = 90 brain regions: each region will be described in terms of
a neural mass model. For epileptic subjects cortical and volumetric parcellations were
performed using the Desikan-Killiany atlas with 70 cortical regions and 17 subcortical



62 Chapter 4. Testing clinical hypothesis of seizure propagation using human connectomes

regions [213] (one more empty region is added in the construction of the structural con-
nectivity for symmetry). In this case the structural connectivity matrix is composed, for
each epileptic patient, by 88 nodes equipped with the presented region specific neural mass
model capable of demonstrating epileptiform discharges.

4.2.1 Multi-population neural mass model

We will make use of the exact multi-population neural mass model described in Section 2.5
of Chapter 2, however, this time in absence of STP. To recall, it describes the dynamics
of k = 1, 2 . . . , Npop coupled populations of QIF neurons with heterogeneously distributed
excitabilities ηi,k, of which the dynamics is governed by Eq. (4.1),

τmV̇i,k = V 2
i,k + η

(k)
i + I

(k)
S (t) + τm

N

Npop∑
l=1

Jkl

N∑
j=1

Sj,l(t) , (4.1)

with the δ-spike train Sj,l(t) of the j-th neuron in population l. The corresponding neural
mass model is given by Eqs. (4.2) below.

τmṙk = ∆
τmπ

+ 2rkvk (4.2a)

τmv̇k = v2
k + η̄(k) + I

(k)
S (t)− (πτmrk)2 + τm

Npop∑
l=1

Jklrl (4.2b)

Parameter τm = 20 ms is the membrane time constant and the heterogeneity of excitabili-
ties is set to ∆ = 1 throughout this chapter. The connectivity matrix {Jkl} represents the
synaptic weights among the populations. Diagonal entries Jkk denote intra-population and
non-diagonal entries Jkl, k 6= l inter-population connections. Entries of Jkl are determined
via a second matrix {J̃kl}, which represents the topology extracted from empirical DTI.
The values of {J̃kl} are normalized in the range [0, 1] via rescaling with the maximal entry
value, and have J̃kk = 0 on the diagonal. In order to account for strong intra-coupling (re-
current synapses) and intermediate inter-coupling, we choose the entries of each structural
connectivity as

Jkl = σ

{
5 J̃kl if k 6= l
20 if k = l,

(4.3)

where σ is a rescaling factor common to all synapses, which we assume to be constant and
equal to 1, apart few cases where we investigate the dependence on the synaptic weights.
Hence, the synaptic weights for k 6= l are in the range Jkl ∈ [0, 5], while the intra-coupling
is set to Jkk = 20, if not stated differently. This choice of the rescaling factor ensures
that the single brain region finds itself in a bistable regime, thus being able to switch
from a low-activity to a high-activity regime. The time dependent stimulus current I(k)

S (t)
is population specific and a single population at a time is generally stimulated during
a numerical experiment. The applied stimulus I(k)

S (t) consists of a rectangular pulse of
amplitude ∆I and duration ∆T ; the dependence on these parameters is studied in this
chapter to support the generality of the results.
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4.2.2 Topologies

As a first set of data, we have selected 20 diffusion-weighted magnetic resonance imaging
connectomes of healthy subjects (mean age 33 years, standard deviation 5.7 years, 10 fe-
males, 2 left-handed) that participated in a study on schizophrenia as a control group [214].
We will refer to the healthy subjects as H1-H20. All subjects were recruited via local adver-
tisements and had none of the following conditions: Personal lifetime history of any psychi-
atric disorder or substance abuse established by the Mini-International Neuropsychiatric
Interview (M.I.N.I.) [215], any psychotic disorder in first or second-degree relatives. Fur-
ther exclusion criteria included current neurological disorders, lifetime history of seizures
or head injury with altered consciousness, intracranial hemorrhage, neurological sequelae,
history of mental retardation, history of substance dependence, any contraindication for
MRI scanning.

The scans were performed on a 3T Siemens scanner in the Institute of Clinical and
Experimental Medicine in Prague, employing a Spin-Echo EPI sequence with 30 diffusion
gradient directions, TR = 8300 ms, TE = 84 ms, 2 × 2 × 2mm3 voxel size, b-value
900s/mm2. The diffusion weighted images (DWI) were analyzed using the Tract-Based
Spatial Statistics (TBSS) [216], part of FMRIB’s Software Library (FSL) [217]. Image
conversion from DICOM to NIfTI format was accomplished using dcm2nii. With FMRIB’s
Diffusion Toolbox (FDT), the fractional anisotropy (FA) images were created by fitting a
tensor model to the raw diffusion data and then, using the Brain Extraction Tool (BET)
[218], brain-extracted. FA identifies the degree of anisotropy of a diffusion process and it
is a measure often used in diffusion imaging where it is thought to reflect fiber density,
axonal diameter, and myelination in white matter. A value of zero means that diffusion
is isotropic, i.e. it is unrestricted (or equally restricted) in all directions, while a value
of one means that diffusion occurs only along one axis and is fully restricted along all
other directions. Subsequently the FA images were transformed into a common space by
nonlinear registration IRTK[219]. A mean FA skeleton, representing the centers of all
tracts common to the group, was obtained from the thinned mean FA image. All FA data
were projected onto this skeleton. The resulting data was fed into voxel-wise cross-subject
statistics. Prior to analysis in SPM, the FA maps were converted from NIfTI format to
Analyze.

The brains were segregated into 90 brain areas according to the Automated Anatomical
Labeling Atlas 1 (AAL1) [212]. The anatomical names of the brain areas for each index
k are shown in Table A1 of Appendix B. In each brain network, one AAL brain area
corresponds to a node of the network. The weights between the nodes were estimated
through the measurement of the preferred diffusion directions, given by a set of ns =
5000 streamlines for each voxel. The streamlines are hypothesized to correlate with the
white-matter tracts. The ratio of streamlines connecting area l and area k is given by
the probability coefficient plk. Then, the adjacency matrix Jkl is constructed from this
probability coefficient. The DTI processing pipeline has been adopted from Ref. [220].

Besides the healthy connectomes, we selected 15 connectomes (9 females, 6 males, mean
age 33.4, range 22-56) of patients with different types of partial epilepsy that underwent a
presurgical evaluation. The scans were performed at the Centre de Résonance Magnétique
et Biologique et Médicale (Faculté de Médecine de la Timone) in Marseille. Throughout
the manuscript we refer to the epileptic patients as E1-E15. dMRI images were acquired
on a Siemens Magnetom Verio 3T MR-scanner using a DTI-MR sequence with an angular
gradient set of 64 directions, TR = 10700 ms, TE = 95 ms, 2 × 2 × 2mm3 voxel size, 70
slices, b-value 1000s/mm2.

The data processing pipeline [221, 222] made use of various tools such as FreeSurfer
[223], FSL [224], MRtrix3 [225] and Remesher [226], to reconstruct the individual cortical
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surface and large-scale connectivity. The surface was reconstructed using 20,000 vertices.
Cortical and volumetric parcellations were performed using the Desikan-Killiany atlas with
70 cortical regions and 17 subcortical regions [213]. The final atlas consists of 88 regions
since one more empty region is added in the construction of the structural connectivity for
symmetry. After correction of the diffusion data for eddy-currents and head motions using
eddy-correct FSL functions, the Fiber orientation was estimated using Constrained Spher-
ical Deconvolution [227] and improved with Anatomically Constrained Tractography [228].
For tractography, 2.5 × 106 fibers were used and, for correction, Spherical-Deconvolution
Informed Filtering of Tractograms [229] was applied. Summing track counts over each
region of the parcellation yielded the adjacency matrix. Here, the AAL2 was employed for
brain segregation leading to 88 brain areas for each patient, see Table A2 of Appendix B.

4.2.3 EEG and SEEG data

All 15 drug-resistant patients, mentioned in the previous Section, affected by different
types of partial epilepsy accounting for different epileptogenic zone localizations, under-
went a presurgical evaluation (see Tables A3 and A4 of Appendix B). For each patient a
first non-invasive evaluation procedure is foreseen, that comprises of the patient clinical
record, neurological examinations, PET and EEG along with video monitoring. Following
this evaluation, potential EZs are identified by the clinicians. Further elaboration on the
EZ is done in a second, invasive phase, which consists of positioning SEEG electrodes
in or close to the suspected regions. These electrodes are equipped with 10 to 15 con-
tacts that are 1.5 mm apart. Each contact has a length of 2 mm and measures 0.8 mm
in diameter. Recordings were obtained using a 128 channel DeltamedTM system with a
256 Hz sampling rate and band-pass filtered between 0.16 Hz and 97 Hz by a hardware
filter. Precise electrode positioning was performed by either a computerized tomography
or MRI scan after implanting the electrodes. All patients showed seizures in the SEEG,
starting in one or several localized areas (EZ), before recruiting distant regions, identified
as the propagation zone. It is worth noticing that, among the operated patients, four
of them showed a worthwhile improvement but without resulting completely seizure-free
since surgery (Engel’s score III), while two resulted almost seizure-free, showing rare dis-
abling seizures since surgery (Engel’s score II), thus suggesting that the EZ was correctly
identified in a subset of patients only.

Two methods were used for the identification of the propagation zone (see Table A4
of Appendix B). First, the clinicians evaluated the PZs subjectively on the basis of the
EEG and SEEG recordings gathered throughout the two-step procedure (non-invasive and
invasive). Second, the PZs were identified automatically based on the SEEG recordings:
For each patient, all seizures were isolated in the SEEG time series. The bipolar SEEG
was considered (between pairs of electrode contacts) and filtered between 1-50 Hz using
a Butterworth band-pass filter. An area was defined as a PZ if its electrodes detected at
least 30% of the maximum signal energy over all contacts, and if it was not in the EZ. In
the following, we call the PZs identified by the subjective evaluation of clinicians PZClin
and the PZs identified through SEEG data PZSEEG.

4.2.4 Network Measures

Topological properties of a network can be examined by using different graph measures
that are provided by the general framework of the graph theory. These graph metrics can
be classified in terms of measures that cover three main aspects of the topology: segre-
gation, integration and centrality. The segregation accounts for the specialized processes
that occur inside a restricted group of brain regions, usually densely connected, and it
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eventually reveals the presence of a dense neighborhood around a node, which results to
be fundamental for the generation of clusters and cliques capable to share specialized in-
formation. Among the possible measures of segregation, we have considered the clustering
coefficient, which gives the fraction of triangles around a node and it is equivalent to the
fraction of node’s neighbors that are neighbors of each other as well. In particular the
average clustering coefficient C of a network gives the fraction of closed triplets over the
number of all open and closed triplets, where a triplet consists of three nodes with either
two edges (open triplet) or three edges (closed triplet). The weighted clustering coefficient
cwi [230] considers the weights of its neighbors:

cwi = 1
si(ki − 1)

∑
j,h

wij + wih
2 aijaihajh, (4.4)

where si is the node strength (to be defined below), ki the node degree, wij the weight
of the link, and aij is 1 if the link i → j exists and 0 if node i and j are not connected.
The average weighted clustering coefficient CW is the mean of all weighted clustering
coefficients: CW = 1

N

∑
i ci.

The measures of integration refer to the capacity of the network to rapidly combine
specialized information from not nearby, distributed regions. Integration measures are
based on the concept of communication paths and path lengths, which estimate the unique
sequence of nodes and links that are able to carry the transmission flow of information
between pairs of brain regions. The shortest path dij between two nodes is the path with
the least number of links. The average shortest path length of node i of a graph G is
the mean of all shortest paths from node i to all other nodes of the network: L(G, i) =

1
N−1

∑
j∈N,j 6=i dij . The average shortest path length of all nodes is the mean of all shortest

paths [231]: L(G) = 1
N−1

∑
i,j∈N,i 6=j dij . In a weighted network, distance and weight have

a reciprocal relation. If a weight between two adjacent nodes is doubled, their shortest
path is cut by half: L(G) = 1

N−1
∑
i,j∈N,i 6=j

dij
wij

.
Centrality refers to the importance of network nodes and edges for the network func-

tioning. The most intuitive index of centrality is the node degree, which gives the number
of links connected to the node; for this measure, connection weights are ignored in cal-
culations. In this manuscript, we employ the network measure node strength si, which
corresponds to the weighted node degree of node i and equals the sum of all its weights:
si = ∑

j∈Nwij . Accordingly, the average node strength S corresponds to the mean of all
node strengths S = 1

N

∑
i si. All finite networks have a finite number of shortest paths

d(i, j) between any pair of nodes i, j. The betweenness centrality cB(s) of node s is equal
to all pairs of shortest paths that pass through s divided by the number of all shortest
paths in the network: cB(s) = ∑

i,j∈N
d(i,j|s)
d(i,j) . For the weighted betweenness centrality, the

weighted shorted paths are used.

4.3 Results
The epileptic attractor is commonly described in terms of a self-sustained limit cycle that
comes from the destabilization of the physiological activity while multiple types of tran-
sitions allow for the accessibility of seizure activity, status epilepticus and depolarization
block, that coexist, as verified experimentally in [232]. The single-population firing rate
equations Eqs. (2.36) show, in the absence of forcing, only fixed points as attractors. As
it will become clear in the following Section, a stable node and a stable focus are observ-
able, separated by a bistability region between a high- and a low-activity state, whose
boundaries are the locus of a saddle-node bifurcation (for more details see [16]). In this
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context are not observable self-sustained oscillations, but only damped oscillations at the
macroscopic level that reflect the oscillatory decay to the stable fixed point. This oscilla-
tory decay will be considered here as representative of a seizure-like event, not being able
to observe a stable limit cycle to describe the emergence of a fully developed seizure, as
shown in other phenomenological mathematical models [186, 233], commonly used to de-
scribe a detailed taxonomy of seizures. In particular, seizure-like events will be used here
as paradigm to investigate propagation of seizure-like activity in the network. A detailed
comparison with the taxonomy of seizures described by other phenomenological models
[186, 233, 234] and the possible extension of the single-population firing rate equations
Eqs. (2.36) to show self-emergent periodic and bursting dynamics at the macroscopic level
is reported in Section 1 of Appendix B.

4.3.1 Healthy Subjects

Phase and Bifurcation Diagrams

The analysis of the single-population firing rate equations Eqs. (2.36), performed in [16],
has revealed that there are three distinct regions, when considering the phase diagram of
the system as a function of the external drive η̄ and synaptic weight J , in absence of time
dependent forcing (I(t) = 0): (1) a single stable node equilibrium corresponding to a low-
activity state, (2) a single stable focus (spiral) generally corresponding to a high-activity
state, and (3) a region of bistability between low and high firing rate. In particular, in
the region where the stable focus is observable, the system undergoes damped oscillatory
motion towards this fixed point. The presence of damped oscillations at the macroscopic
level reflects the transitory synchronous firing of a fraction of the neurons in the ensemble.
While this behavior is common in network models of spiking neurons, it is not captured
by traditional firing-rate models [46, 98, 235].

When considering the multi-population neural mass model (2.46) with homogeneously
set η̄(k) = η̄, the corresponding phase diagram Fig. 4.1(b) is qualitatively the same as
the one shown in Fig 1 of [16], since the same attractors are observable. In the original
model these attractors are single-population states, while they reflect multi-population
states in the present case. Single-population low-activity (LA) and high-activity (HA)
states translate into network LA and HA states. In the former all populations have low,
in the latter high firing rates. We observe that the single-population bistability accurately
reflects the hysteretic transition in the network when changing η̄. In the following we will
address how this relation between single-node and multi-population phase diagram occurs.

The network bifurcation diagrams shown in Fig. 4.1(a) for increasing σ values are
obtained by performing an adiabatic analysis along two different protocols: up-sweep
and down-sweep. Following the up-sweep protocol, the system’s state variables rk, vk are
initialized at η̄ = −50 with the values rk = 0, vk = 0; then the excitability is increased
in steps ∆η̄ = 1.5 until the maximal value η̄ = 10 is reached. At each step, the initial
conditions for mean firing rates and mean membrane potentials correspond to the final
state obtained for the previous η̄ value. Note, that the average firing rate increases for
increasing η̄ values, both for the single node and for the network. Once the maximum
η̄ value is reached, the reverse procedure is performed, thus following the down-sweep
protocol. This time the initial conditions correspond to the high-activity state at η̄ = 10,
while the excitability is adiabatically decreased in steps ∆η̄ = 1.5, until a low-activity
state at η̄ = −50 is approached. For both protocols, the investigation of the nature of
the dynamics emerging at each η̄-step is done by using the same procedure: the system
is simulated for a transient time T = 2 s, until it has reached an equilibrium state. At
this time the firing rate averaged over all populations 〈r∗〉 is calculated and the next η̄
iteration is started, using this final state as initial conditions.



4.3. Results 67

0

200

〈r
∗ 〉

[H
z]

σ = 1.5
(a1)

0

100

〈r
∗ 〉

[H
z]

σ = 1.0
(a2)

−40 −20 0
η̄

0

100

〈r
∗ 〉

[H
z]

σ = 0.5
(a3)

−40 −20 0
η̄

0.0

0.5

1.0

1.5

2.0

σ

(b)

−40 −20 0
η̄

(c)

0 100 200
〈r∗〉 [Hz]

0 100 200
〈r∗〉 [Hz]

Figure 4.1: Phase and bifurcation diagrams for healthy subject H1. (a) Equilibrium
firing rates 〈r∗〉 versus η̄ for the up-sweep (blue dots) and down-sweep (orange squares). For each
η̄ ∈ [−50, 10] in steps of ∆η̄ = 1.5 the system is initialized using the final state of the previous run
and evolves for 2 s after which the average network firing rate in the equilibrium state is determined.
Different panels correspond to different σ values: σ = 1.5 (a1), σ = 1 (a2), σ = 0.5 (a3). The solid
(dashed) black line corresponds to the stable (unstable) equilibria in the single-node case. (b, c)
Maps of regimes as a function of σ and η̄ showing the network average 〈r∗〉 color coded for (b)
up-sweep and (c) down-sweep , obtained by following the same procedure as in (a) for σ ∈ [0, 2] in
steps of ∆σ = 0.05. The black line indicates the single-node map of regimes like in [16]. In panels
(b, c) the cyan square and triangle mark η̄ = −6.3,−9.54 respectively. Other parameter values

are: Npop = 90, τm = 20 ms, ∆ = 1, Jkk = 20, Jkl = 5J̃kl ∀k 6= l.

The transition from LA to HA network dynamics is hysteretic: the system does not
follow the same path during the up-sweep and the down-sweep protocol. When the system
is initialized in the low activity regime, it remains there until a critical excitability value
η̄HA is reached. For further increase of the excitability, the average firing rate exhibits
a rapid jump to higher values. However, when the system is initialized in the high-
activity regime, this regime survives for a large η̄ interval until it collapses toward a
low-activity state at η̄ < η̄LA, where η̄LA < η̄HA. There is a considerable difference
between the critical excitability values required to lead the system to a high-activity or a
low-activity regime and the difference increases for increasing coupling strength σ. While
the up-sweep protocol (blue dots) is well approximated by the bifurcation diagram of
the single population, represented in Fig. 4.1(a) by the black (dashed and continuous)
curve, this is no more true for the down-sweep protocol, where the coupling plays a role
in determining the transition at the multi-population level (orange squares). This results
in different phase diagrams for the two protocols: the maps of regimes is dominated by
the low-activity (high-activity) state when following the up-sweep (down-sweep) protocol.
Merging together these results we observe that the region of bistability between LA and
HA network dynamics, is still identifiable by the original boundaries found for the single
population in [16] (see black curve in Fig. 4.1(b, c), even though, for the multi-population
system, the region is wider).

We can make further use of the single-population bifurcation diagram to understand
the hysteretic transition of the multi-population model in more detail. First of all, the
weight matrix {Jkl} has its largest components on the diagonal (Jkk = 20), reflecting
recurrent synapses. This means that synaptic inter-coupling plays a minor role, as long as
the firing rates of the adjacent populations are small. During the up-sweep protocol, this
condition is fulfilled, as all populations are initialized in a low activity regime. Under these
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conditions, the dynamics of all nodes is rendered identical and equal, approximately, to the
single population dynamics. Consequently the single-population LA branch describes the
multi-population LA behavior (in terms of 〈r∗〉) accurately as a function of η̄. Secondly, as
soon as the single-population LA state vanishes for large enough η̄ > η̄HA, the individual
nodes of the multi-population system all transit to the HA state.

In this HA regime, deviations of the network bifurcation diagram with respect to the
single-population curve are observed. The populations in the system have large firing
rates, such that the inter-coupling becomes a relevant contribution to the total current on
each node. This explains why the LA branch of the network is located at higher firing rates
with respect to the black single-population curve: The populations in the network behave,
approximately, as decoupled, irrespectively of being subject, in the HA regime, to an
additional current due to the inter-coupling. This effectively shifts the single-population
bifurcation diagram towards smaller η̄. Moreover this shift occurs for each population
individually, depending on the matrix {Jkl}. During the down-sweep protocol, due to
the population dependent shift, the HA population states vanish at different values of η̄.
Accordingly, whenever this occurs, the network average 〈r∗〉 decreases by a small amount,
such that the network LA state is reached via various intermediate states. We can infer,
using the same type of argument, that single-population LA states disappear for increasing
η̄ in a region around η̄HA. They are not observed here, due to the nature of the up-sweep
protocol and the initialization procedure of rk, vk.

From the reversed viewpoint we can hypothesize, that stable single-population HA
states may take form near η̄LA for increasing η̄, as well as stable LA states for decreasing
η̄ near η̄HA. This implies that the network possesses complex multistability between
many network states in the region η̄LA < η̄ < η̄HA. For these states the existence of LA
and HA states of individual populations are interdependent: whether or not any given
population can be in the LA or HA state is conditioned by the LA-HA configuration
of all other populations. This not only demonstrates how multistability emerges in the
multi-population system, but it also has influence on the response of the network towards
transient input in such a setting. Most importantly, if such an input recruits one population
into high activity, other populations might follow, leading to a cascade of recruitments.

Seizure-like Recruitment in Dependence of Perturbation Site and η̄

To analyze the response of the multi-population system to transient current, we stimulate
one population with a step function IS(t) of amplitude ∆I = 10 and duration ∆T = 0.4
s. By setting η̄ = −9.54, the system is placed in the multistable regime [see cyan triangle
in Fig. 4.1(c)], but, due to the low η̄ value, it only allows for LA-HA configurations with
most of the populations in LA. The stimulation with an external current IS(t) allows the
system to reach a configuration with more populations in the HA. This corresponds to
equivalently choose, in the model, a higher excitability value for the single node such that
it crosses the bistability region, thus reaching the HA regime. We start by initializing all
nodes in the low-activity state and stimulating a single node [Fig. 4.2, column 1]. During
the stimulation [Fig. 4.2(a1)], the stable states of the network change, due to the strong
additional current [Fig. 4.2(b1)]. More specifically, the initial equilibrium vanishes and a
new focus equilibrium of the system appears as the only stable network state. This focus
is characterized by an LA-HA configuration for which only the stimulated node finds itself
in HA while the rest remains in the LA regime; the focus is approached via damped
oscillations in the time interval 0 < t < 0.4 s [Fig. 4.2(c1, d1)]. Due to the multistability in
absence of stimulation, an identical LA-HA configuration exists. Thus, when the current is
removed, the system is able to maintain the LA-HA configuration. However, the position
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of the focus equilibrium is shifted in absence of the transient input and is reached, again,
via damped oscillations for t > 0.4 s.
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Figure 4.2: Spectrograms of mean membrane potentials for healthy subject H1. (a)
Stimulation currents I(k)

S . (b) Space-time plots of the population firing rates rk, color-coding the
value of the firing rate of each node, as a function of time. (c) Population firing rates rk and (d)
mean membrane potentials vk for the EZ (orange) and other populations (black). The blue curves
show the network average firing rate and membrane potential. Non-stimulated node dynamics
is plotted as transparent gray curves: some of the nodes adapt their voltage to the stimulation
of the EZ and change during stimulation. (e) Spectrogram of the network average membrane
potential and (f) of the vk of the EZ. Column (1) shows an asymptomatic seizure-like event for
η̄(k) = η̄ = −9.54, column (2) a generalized seizure-like event for η̄(k) = η̄ = −6.3. In both cases
the EZ node 46 is stimulated. For the estimation of the spectrograms see Section 1 of Appendix C.
Other parameter values are: Npop = 90, τm = 20 ms, ∆ = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl ∀k 6= l.

When the perturbation of a single node has no consequences on the dynamics of the
other populations, as shown in Fig. 4.2(b1 - d1), we are in the presence of an asymptomatic
seizure-like event, where the activity is limited to the epileptogenic zone (here represented
by the stimulated node) and no propagation takes place. For higher excitability values
(η̄ = −6.3, marked by a cyan rectangle in Fig. 4.1(b), the perturbation of a single node
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gives rise to a different response dynamics. In this case other brain areas are “recruited”
and not only the perturbed node, but also other populations reach the high-activity regime
by showing damped oscillations [Fig. 4.2(b2 - d2)]. In terms of pathological activity, the
seizure-like event originates in the EZ (as a results of the stimulation) and propagates to
the PZ, identified by the other regions which rapidly propagate the oscillatory activity.
The recruitment of the regions in the propagation zone can happen either by independent
activation of the single areas, or by activating multiple areas at the same time, in a
domino-like effect [236], until the propagation involves almost all populations (generalized
seizure-like event).

The transition of a single population to the HA regime, upon stimulus onset, is char-
acterized by a transient activity in the α− β band (10-14 Hz) and a sustained activity in
the γ band (40-80 Hz), present throughout the stimulation, as shown in Fig. 4.2(e1, f1).
Here the spectrograms show time varying power spectral densities (PSD) of the mean
membrane potentials averaged over the network [Fig. 4.2(e1)] and for the single stimu-
lated population [Fig. 4.2(f1)]. When more populations are recruited at higher excitability
values, in addition to the former activity, it is possible to observe γ activity at higher
frequencies [Fig. 4.2(e2, f2)]. High-frequency oscillations, between 80 and 500 Hz, can be
recorded with EEG and reflect the seizure-generating capability of the underlying tissue,
thus being used as markers of the epileptogenic zone [237]. Moreover, even for the gener-
alized seizure-like case, the low-frequency band activity is evoked whenever a brain area
gets recruited, leading to a sustained signal in the time interval 1.1 s < t < 1.8s, where
a majority of the populations approach the HA state. Similar results have been obtained
for all the other investigated subjects (results not shown).
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Figure 4.3: Number of recruited brain areas as a function of the excitability parameter
η̄. Columns (1) to (5) correspond to 5 exemplary healthy subject connectomes H1, H5, H12,
H16, H19. The color code is as follow. White: no recruitment, gray: one area recruited (marks
asymptomatic threshold), blue to yellow: intermediate number of recruitments, teal: 90 areas
recruited (marks generalized threshold). For row (1) the η̄(k) are uniformly distributed, given by
η̄(k) = η̄. For row (2) the η̄(k) are Gaussian distributed, with mean η̄G and standard deviation
0.1. In this case the results are averaged over 10 Gaussian realizations. Other parameters values

are: Npop = 90, ∆ = 1, σ = 1, ∆I = 10, ∆T = 0.4 s.

In the following we report a wide analysis of the impact of the perturbation site on the
recruitment effect, for different excitability values. As before, we use a step current IS(t),
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with fixed amplitude ∆I = 10 and duration ∆T = 0.4 s, to excite a single population.
In each run the stimulating current targets a different brain area and the number of
recruitments, i.e. the number of populations, that pass from the LA state to the HA
state, is counted. The Npop = 90 brain areas are targeted, one at a time, in 90 individual
simulations. We repeat the procedure varying η̄ in a range [−15,−4], with steps of ∆η̄ =
0.1. The results for five exemplary subjects are shown in Fig. 4.3(a).

If the perturbed area jumps back to the LA state when the stimulation is removed and
no further recruitment takes place, then the total number of recruited areas is zero, here
color coded in white. If the perturbed area remains in the HA state without recruiting
other areas, we are in presence of an asymptomatic seizure-like event (blue regions). For
every further recruited brain area, the color code changes from cyan to purple. If all brain
areas are recruited, we observe a generalized seizure-like event (coded as red). For η̄ < −9,
most of the targeted brain areas goes back to the LA state, when the perturbation ends,
while for η̄ ≈ −9, we generally observe asymptomatic seizure-like events for all the subjects
and for most of the perturbation sites. For increasing η̄ values, the probability for larger
recruitment cascades increases, until the system exhibits generalized seizure-like events for
η̄ > −6. However, some notable differences between brain areas and among the different
subjects are observable. Brain area 72, for example, corresponding to the rh-CAU, exhibits
asymptomatic seizure-like events at η̄ > −11 for most of the subjects, thus suggesting
that the rh-CAU favors pathological behavior with respect to other brain areas. On the
other hand, some brain areas are less likely to cause generalized seizure-like events, when
stimulated, than others: Brain area 40, for example, the rh-PHIP1, causes no generalized
seizure-like events for any η̄ > −5. Note that, for very large η̄ values, the system does
not exhibit multistability anymore, but instead has only one stable state, namely the
network HA state, corresponding to high firing rate of all populations. Approximately,
this happens for η̄ ∈ [−5.7,−4.9], with small variations among the subjects.

The scenario remains unchanged when we take into account heterogeneous excitabilities
η̄(k), as shown in Fig. 4.3(b). In this case η̄(k) is drawn from a Gaussian distribution with
mean η̄G, thus mimicking the variability among different brain areas present in a real
brain. The populations are stimulated, as before, one at a time in individual simulation
runs. However, this time the procedure is repeated for varying η̄G ∈ [−15,−4], while
keeping the standard deviation of the Gaussian distribution fixed at 0.1. Larger standard
deviations (≥ 1) hinder the rich multistability of the network, by eliminating the bistability
between LA and HA for individual populations, due to excessively small or large η̄(k), thus
impeding the analysis of the impact of the stimulation, as shown in Fig. A3 of Appendix
B. In particular, for larger standard deviations, an increasing amount of nodes reaches the
stable focus regime, thus being able to recruit other brain areas before the stimulation is
applied, while nodes whose effective excitability turns out to be very small, are too far from
the bistability region to be able to reach the HA regime. The results shown in Fig. 4.3
are obtained averaging over 10 Gaussian distribution realizations of the η̄ parameter;
slightly more variability becomes apparent especially when considering the threshold in η̄
to observe generalized seizures. Indeed, the excitability threshold to observe generalized
seizures is the most drastically affected as the standard deviation increases, see Fig. A3.

An overview over all the investigated subjects is possible when looking at Fig. 4.4(a),
where the average over all subjects is reported. The averaging operation smears out
the transition contours and, while the region of generalized seizure-like events shrinks, the
region of accessibility of partial seizure-like events becomes wider, where a small percentage

1While the actual role of the specific regions might in reality be affected by other factors, not captured
by the used structural connectivity estimate and the details of the current model, this highlights the effect
of network structure on propensity to seizure-like events. The (para)hippocampal region is, in fact, one of
the most commonly affected by epilepsy.
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Figure 4.4: Thresholds of healthy subjects. (a) Number of recruited brain areas as a
function of the excitability parameter η̄, similar to what is shown in Fig. 4.3 row (1), but averaged
across all 20 healthy subjects. The color code is as follow. White: no recruitment, gray: one area
recruited (marks asymptomatic threshold), blue to yellow: intermediate number of recruitments,
teal: 90 areas recruited (marks generalized threshold). (b) η̄ threshold values for asymptomatic
and generalized seizure-like events. Grey dots show the thresholds for each brain area and each
subject. Blue and red dots show the average over η̄(k)

asy and η̄(k)
gen across all subjects. The blue and

red cross at the bottom show the average value and its standard deviation for both thresholds
across all subjects and across all areas. Parameters values are as in Fig. 4.3.

of nodes (∼ 20%) are recruited. In Fig. 4.4(b) we report η̄(k)
asy (η̄(k)

gen), i.e. the smallest η̄
value for which an asymptomatic (generalized) seizure-like event occurs when stimulating
population k. Grey dots indicate the individual thresholds η̄(k)

asy and η̄
(k)
gen for each of

the 20 subjects and 90 brain areas; the averages over all subjects are denoted by blue
and red circles, respectively, for each k ∈ [1, 90]. Averaging these thresholds over all
subjects and brain areas yields an asymptomatic threshold of η̄asy = −9.36 ± 0.43 and
a generalized threshold of η̄gen = −6.04 ± 0.38. Brain areas 72, 73, 67, and 3 have
lower thresholds for asymptomatic seizure-like events, areas 40, 86, and 82 have larger
thresholds for generalized seizure-like events and do not fall within a standard deviation.
The variability in the response among the different areas is more evident for η̄(k)

gen values
compared to the η̄(k)

asy ones: the threshold values to obtain an asymptomatic seizure-like
event are very similar among the areas and among the subjects, while the threshold values
to obtain a generalized seizure-like event strongly depend on the stimulated area and on
the subject.

The Role Played by Brain Area Network Measures on Enhancing Recruitment

As shown in Fig. 4.4(b), η̄(k)
asy does not vary significantly among the subjects and among

the brain areas; it mainly occurs in the range η̄(k)
asy ∈ [−10,−9], with just few nodes

(k ∈ [72, 73, 67, 3]) showing smaller values. Since each brain area is characterized by its
own network measure, the first hypothesis that we aim to test, is the role played, on the
identification of the threshold, by the different network measures. We will verify in the
following that connection strength and shortest path length are determinant to identify
the threshold η̄(k)

gen: generalized seizure-like events are enhanced by nodes forming a clique
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that rapidly communicate through a dense subgraph. In particular, we investigate the
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Figure 4.5: Thresholds versus network measures. Row (1) η̄(k)
asy for asymptomatic seizure-

like events and row (2) η̄(k)
gen for generalized seizure-like events as a function of node measures:

(a) node strength, (b) clustering coefficient, (c) average shortest path length, (d) betweenness
centrality. For each panel, the thresholds η̄(k)

asy, η̄
(k)
gen are calculated for all k ∈ [1, 90] brain areas and

averaged over all 20 subjects. Parameters values are as in Fig. 4.3.

dependency of η̄(k)
asy on the node strength, clustering coefficient, shortest path length, and

betweenness centrality of the corresponding brain area, as shown in Fig. 4.5(a). A very
strong correlation between asymptomatic threshold and node strength becomes apparent:
brain areas that are strongly connected, need a smaller excitability to pass from the LA
to the HA regime [Fig. 4.5(a1)]. The same holds true for the clustering coefficient, even
though the relationship is less sharp [Fig. 4.5(b1)]. Moreover it is possible to observe a
direct correlation between η̄(k)

asy and shortest path length (i.e. shortest is the path small-
est is the threshold value), while betweenness is smaller for higher threshold values [see
Fig. 4.5(c1) and Fig. 4.5(d1), respectively].

When considering the threshold for generalized seizure-like events, we face a higher
variability among different nodes (as shown in Fig. 4.4(b), η̄(k)

gen varies mainly between −6.5
and−5.5). The dependency of η̄(k)

gen on the node strength reveals a strong correlation: Areas
with very small node strengths are characterized by large thresholds and are less likely to
cause generalized seizure-like events. On the other hand, for large node strengths, η̄(k)

gen
saturates at a value ≈ −6.5 [Fig. 4.5(a2)]. The clustering coefficient, shown in Fig. 4.5(b2),
shows a similar relationship as the node strength, even though more scattered. This is not
surprising since node strength and clustering coefficient are strongly correlated with each
other (the Pearson Correlation coefficient in this case is r = 0.75, as shown in Fig. A4
of Appendix B), thus explaining the similarity between the analyses reported in Fig. 4.5
columns (1 - 2). Moreover, regarding the integration measure, it turns out that the average
shortest path length correlates positively with η̄

(k)
gen [Fig. 4.5(c2)]. Brain areas that are

characterized, on average, by a short path to all the other areas are more likely to cause
generalized seizure-like events. Finally, the betweenness centrality correlates negatively
with η̄(k)

gen [Fig. 4.5(d2)]. This means that brain areas that are crossed by many shortest
path lengths (large betweenness centrality) are more likely to cause generalized seizure-
like events. For increasing node strength, clustering coefficient and betweenness centrality,
we observe a saturation toward η̄(k)

gen ≈ −6.5, that corresponds to the critical excitability
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value, during the up-sweep simulation, at which the system jumps to the HA network
state [Fig. 4.1(a2)].

To explore the causal mechanisms of brain dynamics and understand the sequential
mechanism of node recruitment in more detail, we investigate the timing at which different
brain areas are recruited. For this, the excitability parameter η̄, common to all popula-
tions, is set to the threshold value η̄(k)

gen of the perturbed brain area k, ensuring complete
recruitment of all populations, when perturbing populations k ∈ [1, 90]. The results shown
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Figure 4.6: Recruitment order versus network measures. (a) Recruitment times reported
in ascending order. (b) Connection weights between the recruited brain area and the EZ. (c)
Shortest path between the recruited area and the EZ. (d) Connection weights between the recruited
brain area and all the nodes except EZ. (e) Clustering coefficient between the recruited brain area
and all the nodes except EZ. (f) Shortest path between the recruited area and all the other nodes
except EZ. (g) Betweenness centrality between the recruited brain area and all the nodes except
EZ. In all panels the brain areas are ordered according to their recruitment time, thus following the
indexing of panel (a). The excitability η̄(k) is set to the subject-specific threshold η̄(k)

gen, according
to Fig. 4.3 for each subject separately. Data are averaged over all subjects and all the stimulated

areas. Parameters: Npop = 90, ∆ = 1, σ = 1, ∆I = 10, ∆T = 0.4 s as in Fig. 4.3.

in Fig. 4.6 are obtained by averaging over k and over the different subjects: in 90 indi-
vidual simulations for each subject, a single brain area k = 1, . . . , 90 is stimulated with
an external step current IS(t), characterized by an amplitude ∆I = 10 and a duration
∆T = 0.4 s. For each k the recruitment time of all the other areas is registered. The stim-
ulated brain area stands in for the EZ. The brain areas and corresponding node measures
are sorted by the recruitment time in ascending order. The values for recruitment time
[Fig. 4.6(a)], weight of a connection between a single area and the EZ [Fig. 4.6(b)] and
shortest path [Fig. 4.6(c)] are finally obtained averaging over all the stimulated nodes and
all the subjects (i.e. the average is performed over 1800 simulations across all 90 brain area
perturbations times all 20 subjects). The same averaging procedure has been employed
to obtain the data shown in Fig. 4.6(g - d). However, in this case, the node measures are
evaluated over all the connections of the recruited node minus the connection to the EZ.
While ignoring the link to the excited area (EZ), the overall network measure for connec-
tion weights [Fig. 4.6(d)], clustering coefficient [Fig. 4.6(e)], shortest path [Fig. 4.6(f)] and
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betweenness centrality [Fig. 4.6(g)] are reported.
On average, the first recruited brain area (labeled as 1) is connected to the EZ with

a weight equal to 0.25 (1/4 of the maximum possible weight) and it is characterized by
an average shortest path length to the EZ of less than 4.7. Moreover the area is recruited
within an average time of less than 156 ms (calculated after the onset of the external
perturbation current). However the first recruited area has, not only the strongest weight
and the shortest path to the EZ but it also has, in general, the largest node strength,
largest clustering coefficient, shortest average path length and largest betweenness cen-
trality. Clearly, the seizure-like event spreads rapidly along the brain areas with strongest
connection weights outgoing from the EZ; to the stronger weights are associated the short-
est paths from the EZ. Overall, a region well connected is a region well recruited; this is
related to the log-normal distribution of the weights (see Fig. A5 of Appendix B): few
connections per node have a strong weight, thus allowing for fast recruitment. Note that
the results for one exemplary subject and just one perturbed brain area per time (i.e. not
averaged over all the brain areas and over all subjects) are comparable, even though the
corresponding relationships are characterized by more variability (data not shown).

If we vary the amplitude ∆I of the perturbation current, the recruitment time will
vary accordingly, decreasing for increasing ∆I. In Fig. 4.7 we show an exemplary case,
obtained from the stimulation of one brain area (45), for a specific subject (results are
similar for other trials). Irrespectively of the recruitment order, the time needed by the
first ten recruited brain areas to pass from the LA to the HA state decreases slightly
for increasing amplitude. However, this decrease reaches a saturation at a current value
∆I ≈ 40 already. The order of recruitment varies little: we observe some exchanges
between the 4-th and 5-th and between the 9-th and 10-th recruited areas. For example,
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Figure 4.7: Dependence on input current (healthy subjects). Recruitment times of the
first 10 recruited areas as a function of the input current ∆I. The order of the recruitment is color
coded for each current strength and it changes slightly with different current strengths. Other
parameters values are: Npop = 90, ∆ = 1, σ = 1, ∆T = 0.4 s, η̄(k) = η̄ = −6, stimulation site:

brain area k = 45 of subject H1.

for an amplitude ∆I = 15, the 9-th recruited area (dark blue circles) gets recruited earlier
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than the 10-th area (pink dots) while, for very strong currents (∆I = 100), the 9-th area
gets recruited latest. On the other hand we do not observe a significant change in the
recruitment time and order if we increase the duration ∆T of the stimulation (see Fig. A6
of Appendix B).

4.3.2 Epileptic Patients

Phase and Bifurcation Diagrams

In this section the structural connectivity matrices of epileptic patients are employed and
an analysis, analogous to the one in Section 4.3.1, is provided. We present the phase
and bifurcation diagrams for the multi-population neural mass model, here employing
the structural connectivity matrices of epileptic patients. As detailed before, the bifurca-
tion diagrams for different σ values shown in Fig. 4.8(a) are obtained by performing an
adiabatic scan along η̄(k) = η̄, following the up- and down-sweep protocols.
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Figure 4.8: Phase and bifurcation diagrams for patient E6. (a) Equilibrium firing rates
〈r∗〉 versus η̄ for the up-sweep (blue dots) and down-sweep (orange squares). For each η̄ ∈ [−50, 10]
in steps of ∆η̄ = 1.5 the system is initialized using the final state of the previous run and evolves
for 2 s after which the average network firing rate in the equilibrium state is determined. Different
panels correspond to different σ values: σ = 1.5 (a1), σ = 1 (a2), σ = 0.5 (a3). The solid (dashed)
black line corresponds to the stable (unstable) equilibria in the single-node case. (b, c) Maps of
regimes as a function of σ and η̄ showing the network average 〈r∗〉 color coded for (b) up-sweep
and (c) down-sweep , obtained by following the same procedure as in (a) for σ ∈ [0, 2] in steps of
∆σ = 0.05. The black line indicates the single-node map of regimes like in [16]. In (a) the dotted
and in (b, c) the solid red line depicts the results for the healthy subject H1 reported in Fig. 4.1.
In panels (b, c) the cyan square and triangle mark η̄ = −7.5,−14 respectively. Other parameter

values are: Npop = 88, τm = 20 ms, ∆ = 1, Jkk = 20, Jkl = 5J̃kl ∀k 6= l.

As for the healthy subjects, the transition is hysteretic with η̄LA < η̄HA. However in
this case, the width of the hysteretic transition is bigger, especially for larger σ values,
as testified by the comparison with the dotted red curve, reported in Fig. 4.8(a), that
represents the results shown in Fig. 4.1(a). This increased width can be translated in
terms of the extension of the multistability region in the phase diagram [Fig. 4.8(b, c)],
which turns out to be slightly larger than before. Also in this case the results for a healthy
subject are reported for a better comparison [red curve in Fig. 4.8(b, c)]. The increase
in size mainly occurs due to a shift of η̄LA, i.e. of the left boundary of the multistability
regime. In this region, the transition from HA to LA, following the down-sweep, is more
smooth and elongates towards smaller η̄ values. This implies that, in this transition region,
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more single population HA states exist for epileptic patients than for healthy subjects. In
other words, brain areas of epileptic subjects are more prone to recruitment2.

While the phase diagram is obtained in the absence of time-varying input, we investi-
gate the response of the multi-population system to transient stimulation in the following,
based on the results reported in Fig. 4.9. As for the healthy subjects, a single population
is excited by injecting a step current IS(t) of amplitude ∆I = 10 and duration ∆T = 0.4 s.
Initially (t < 0), the system is in a multistable regime, starting in the low-activity network
state. For small η̄ values (η̄ = −14, identified by the triangle in Fig. 4.8(c), when a single
node is stimulated, the system reacts analogously to the healthy subject case: during the
stimulation only one stable network state exists, i.e. a focus equilibrium with a LA-HA
configuration for which only the stimulated node is in HA [Fig. 4.9(b1)]. This focus is
approached via damped oscillations (0 s < t < 0.4 s). When the stimulation is removed,
the network maintains the LA-HA configuration, but approaches the new location of the
focus again via damped oscillations [Fig. 4.9(c1, d1)]. As a result, the stimulated node has
large firing activity, while the remaining network is in a LA regime. For higher excitability
values [η̄ = −7.5, square in Fig. 4.8(b)] the perturbation of a single node gives rise to a
cascade of recruitments, where other brain areas, initially not perturbed, reach the HA
regime by showing damped oscillations [Fig. 4.9(b2 - d3)]. With respect to the recruitment
features shown in Fig. 4.2, we observe here a faster emergence of the generalized seizure-
like event: once a brain area is stimulated, the others react, in substantial number, quite
immediately.

Looking at the spectrograms, the transition of the stimulated population to the HA
regime is characterized by a transient activity at low frequency (< 20 Hz) and a sustained
activity in the γ band (50-180 Hz), observable throughout the duration of the stimulus,
as shown in Fig. 4.9(f1), where the spectrogram for the single stimulated population is
reported. Regarding the spectrogram of the mean membrane potentials averaged over
the network population [Fig. 4.9(e1)], it turns out that the low frequency activity in the
δ, θ bands is present, while the activity at high frequency simply reflects the activity
of the stimulated area. Activity in the δ band, together with multiple types of α-like
rhythms have been recently found in a network of two Jansen-Rit neural mass models,
representing two cortical regions, as a result of input changes in the other region [238],
thus confirming that the range of possible activity varies with changes in the external
inputs and interconnectivity gains.

In the case of large recruitment events, at larger excitability values, it is possible to
observe γ activity at higher frequencies [Fig. 4.9(e2, f2)], which is enhanced with respect to
the situation where an asymptomatic seizure-like event is present. Moreover, comparing
the spectrograms in Fig. 4.9 and those reported in Fig. 4.2, we see that the activity takes
place at higher frequency ranges when considering structural connectivity matrices of
epileptic patients and the activity is mainly concentrated in the EZ. A further comparison
is possible, looking at Fig. 4.9(h), where the spectrograms for the healthy subject H2 are
reported. With respect to the case shown in Fig. 4.2, here the excitability parameter has
been increased in order to observe a faster domino-like effect, on the same temporal scale
as for the epileptic patient. While high frequency oscillations (> 200 Hz) are observable for
the epileptic patient case, they are not detectable in Fig. 4.9(h2) for the healthy subject
case. The last statement may be qualified, however, by recent studies proposing high
frequency oscillations (80-500 Hz) recorded not only at seizure onset but also between
seizures (the interictal period), as a putative new marker of the epileptogenic focus [237].

2Please note that, irrespectively of the numerical results, any difference observed between the structural
connectivity matrices obtained from the cohort of healthy subjects and epileptic patients may be (at least
partially) ascribed to the different acquisition and processing procedures in the two research centers rather
than due to disease-related causes.
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Figure 4.9: Spectrograms of mean membrane potentials for patient E6. (a) Stimulation
currents I(k)

S . (b) Space-time plots of the population firing rates rk, color-coding the value of
the firing rate of each node, as a function of time. (c) Population firing rates rk and (d) mean
membrane potentials vk for the EZ (orange) and other populations (black). The blue curves show
the network average firing rate and membrane potential. Non-stimulated node dynamics is plotted
as transparent gray curves: some of the nodes adapt their voltage to the stimulation of the EZ and
change during stimulation. (e) Spectrogram of the network average membrane potential and (f)
of the vk of the EZ. Column (1) shows an asymptomatic seizure-like event for η̄ = −14, column
(2) a generalized seizure-like event for η̄ = −7.5. The EZ node 77 (rh-PrG) is stimulated. Other
parameter values are: Npop = 88, τm = 20 ms, ∆ = 1, σ = 1.25, Jkk = 20, Jkl = 5J̃kl ∀k 6= l. For
comparison the space-time plots of (g) the population firing rates rk and (h) the spectrogram of
the network average membrane potential for healthy subject H2 are shown. In accordance with the
above panels, column (1) shows an asymptomatic seizure-like event (for η̄ = −9.20), column (2) a
generalized seizure-like event (for η̄ = −5.3). The EZ node 46 is stimulated. For the estimation of
the spectrograms see Section 1 of Appendix C. Other parameter values are: Npop = 90, τm = 20 ms,

∆ = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl ∀k 6= l.
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More specifically fast cortical ripples superimposed to interictal epileptiform discharges
were correlated with the seizure onset zone and primary propagation area in neocortical
epilepsy [239]. Neocortical ripples were also found to be more specifically confined to the
seizure onset and propagation regions, and thus a better marker compared to interictal
epileptiform discharges alone [240]. High frequency oscillations, as obtained via numerical
experiments and shown in Fig. 4.9(e2, f2), are much more frequent in the seizure-like onset
zone than outside, where they are often totally absent. The rather empty spectrograms
of mean membrane potentials for patient E6 are a result of a rather rapid recruitment
of a majority of nodes, thus giving rise to a strong signal change, immediately upon
recruitment, which suppresses the rest of the signal in the spectrogram. At the same
time the damped oscillations are all compressed within a narrow time window, and not
very elongated in time, as it happens for healthy subjects [Fig. 4.2]. In other words, if
the generalized seizure-like event is rapid, all the signals overlap, and this is especially
clear looking at the strong low frequency bands. A fast generalized seizure-like event,
in absence of high frequency oscillations outside the EZ, can be obtained for healthy
subjects only increasing the excitability parameter: for higher η̄ values, the recruitment
is more sudden, as shown in Fig. 4.9(h2). A difference between the signals obtained
by numerically simulating the multi-population exact neural mass model and the high-
frequency oscillations observed in human intracranial EEG studies can be found in the
different oscillation amplitudes: High-frequency oscillations recorded during presurgical
evaluation in patients, both at the seizure onset and during the interictal period, are
characterized by a low amplitude [241–244], while this is not the case here. We can
conjecture that higher amplitudes are related to the nature of the coupling, that we have
chosen globally coupled and fully excitatory.

Temporal Recruitment of Clinically and SEEG Predicted Propagation Zones

In the following we test the clinical predictions for epileptic patients, by choosing the EZs,
identified by clinical doctors via presurgical invasive evaluation, as perturbation sites.
We investigate the recruitment times of different brain areas following such a perturbation
and compare the order of recruitment with the experimental data given for each individual
subject.

A general overview on the recruitment times of all brain areas, for all patients, is shown
in Fig. 4.10. As perturbation sites, the clinical EZs, are used for all patients. For patients
with several nodes detected in the EZ, all areas were stimulated simultaneously. The
perturbation step current (∆I = 10, ∆T = 0.4 s) is applied, to each perturbation site, in
correspondence with the dashed vertical black line. The parameters are identical for almost
all patients and are chosen such that at least 90% of the brain areas are recruited while
still allowing multistability among various LA-HA configurations, including the network
LA state. For each patient (identified via his/her number on the y-axis), the recruitment
time of each brain area is reported: The gray dots represent the time values for each brain
area. Superimposed on the grey dots are orange and blue dots that identify the brain
areas belonging to the PZ, according to the non invasive (PZClin) or invasive (PZSEEG)
presurgical evaluation, respectively. The recruitment time averaged over all brain areas is
identified, for each patient, by a green vertical line, while the boxes contain the second and
third quartile of the distribution, and the whiskers have 1.5 the length of the InterQuartile
Range (IQR) from the upper or lower quartiles. A one-sided Mann–Whitney U test has
been performed to estimate the statistical significance of PZSEEG and PZclin recruitment
times, as shown in Fig. A7 of Appendix B. Remarkably, the propagation zones PZClin
and PZSEEG turn out to be among the first recruited brain areas for all patients in the
numerical experiments.
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Figure 4.10: Recruitment times of all brain areas for the cohort of epileptic patients.
The recruitment time, reported on the x-axis, identifies the time needed by a brain area to jump
to the HA regime after the application of the perturbation current. The boxplots consist of the
recruitment times of all brain areas for each patient. Patients are identified according to their
numbers on the y-axis. The median is represented as a green vertical line while the boxes contain
the second and third quartile of the distribution. The whiskers are chosen with maximum length
1.5×IQR and show the most extreme observed values that are within 1.5×IQR from the upper or
lower quartiles. The gray dots represent the recruitment times for each brain area. The orange
dots show the recruitment of a brain area clinically predicted to be part of the propagation zone
PZClin. The blue dots represents the recruitment of a brain area which is part of the propagation
zone according to the SEEG measurements PZSEEG. Parameters: Npop = 88, ∆ = 1, σ = 1.25,

∆I = 10, ∆T = 0.4 s, η̄(k) = η̄ = −7.5 (except for patients E1 (η̄ = −6) and E11 (η̄ = −6.5)).

However the temporal dynamics vary for all patients, with E8 and E1 having late
recruitments. Looking at the set of the first ten recruited brain areas for each patient
(reported in detail in Tables A5 to A7 of Appendix B), we notice that most of the areas,
identified by clinicians as belonging to the PZ, are actually within this set: For patients E4,
E5, E6, E9, E15 all the areas belonging to PZClin are among the first ten recruited areas,
while the same holds true for patients E2, E3, E6 if we consider the areas identified by the
stereotactic EEG analysis as belonging to the propagation zone (PZSEEG). In general a
large number of the first ten recruited areas, as revealed by our simulations, coincides with
the areas that are supposed to be crucial in the seizure spreading according to the medical
doctors (e.g. for patients E2, E3, E10, E12, E13, E14). Moreover the predictability of the
model is higher if we compare our results with the predictions PZClin, while brain areas
belonging to the predicted propagation zones, are in general recruited before the median
recruitment time. However the model predictions are not good for the following cases:
For patients E1, E8, E11, E14, the areas belonging to the PZSEEG are only occasionally
identified (half or less than half of the times), while for patients E1, E8, E11, other nodes
are in generally recruited before those belonging to the PZClin, that are identified with a
percentage < 50%. In all the former bad cases, the EZ has not been correctly identified,
as results from the relative surgical outcomes (see Table 3). Therefore, the incorrect
identification of the origin of seizure-like events may lead to a misleading identification of
the PZ: In other words, a different potential EZ will lead to a different recruitment order,
possibly closer to the experimental data.

To evaluate the dependence of the shown results on the chosen parameters, with the
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Figure 4.11: Histograms of recruitment times for all epileptic patients. For each patient
(identified by his/her number), the recruitment times of all the brain areas are collected, once the
EZ is stimulated. If several areas were identified in the EZ, they are all stimulated simultaneously.
The EZ is chosen according to the presurgical evaluation (see Table A4 of Appendix B) and vary
from one patient to the other. Parameters as in Fig. 4.10 except for η̄(k) = −7.5 ± 0.1 (for E1
η̄(k) = −6 ± 0.1, for E11 η̄(k) = −6.5 ± 0.1). Results are averaged over 10 realizations of random

Gaussian distributions.

idea in mind of going towards a more biologically realistic framework, we have repeated
the previous numerical experiment by employing a random Gaussian distribution of the
excitability parameter η̄(k) (see Fig. 4.11). The distribution is centered at η̄G = −7.5
with standard deviation 0.1 for all patients except E1 and E11. For the latter patients we
shifted the center towards larger values, in order to get a sufficient number of recruitments
when the EZ is stimulated. In all cases the results are averaged over 10 different random
realizations of the distribution. More details on the impact of different realizations of
η̄(k) are given in Fig. A8 of Appendix B for one exemplary patient. For sufficiently larger
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standard deviations than the one employed (≥ 1), a too large fraction of the populations
would not be able to exhibit bistability between LA and HA, highlighting the system
sensitivity to finite parameter changes. However, for the chosen distribution, the results
are comparable with the ones obtained with identical η̄(k) = η̄, shown in Fig. 4.10. For
patients E2, E3, E4, E5, E6, E9 the predicted propagation zones are always the first ones
to be recruited. Moreover most of the areas are usually recruited in the first half of the
recruitment process, rapidly increasing in number, once the areas in the propagation zones
have been recruited (thus giving rise to a peak in the histogram). As a general remark,
in view of the distributed nature of the excitabilities, recruitments at later times, with
respect to the former case with homogeneous η̄(k) = η̄, may now take place.

For patients with many nodes in the EZ, the recruitment process may result to be
more complex, as it happens for patients E14 and E10, for which the histograms are less
narrow, but instead widely distributed. However this cannot be taken as a general rule,
since comparable histograms are obtained for patients E13 (one node in the EZ) and E8
(two nodes in the EZ), while for E15 and E12 (with both four nodes in the EZ) the
histograms result to be very narrow, thus implying a fast recruitment process of most of
the brain areas. The differences among the histograms can be partially justified by the
facts that patients have specific connectomes with individual characteristics and by the
analysis that we have proposed by choosing similar η̄ values for all the patients. In this
way we have preferred to have a general look on the multiple self-emergent dynamics in
a group of patients, instead of fine-tuning the excitability parameter in order to obtain
similar collective behaviors. What we observe here is strongly related to what we have
presented in Fig. 4.9: the recruitment speed depends on the excitability parameter and on
the individual network structure. Faster recruitment events may be obtained for different
subjects by increasing the excitability value. In the following Section we try to understand,
on the basis of network topological measures, the origin of the discrepancies among the
clinical prediction of PZs and the first recruited areas predicted by the presented model.

Relationship Between DTI Network Structure and Temporal Seizure Recruit-
ment

In order to understand the mechanism underlying the recruitment events, we evaluate
the relationship between the network structure, in terms of topological measures, and the
recruitment times of the first 10 recruited brain areas, as obtained through numerical
experiments. For simplicity, we consider here patients with only one brain area in the
EZ and we report, in Fig. 4.12, the potential EZ (orange circle) and the first 10 recruited
areas in a graph representation. The results relative to all the other patients are reported
in Figs. A9 to A11 of Appendix B. The first recruited areas are ordered according to their
recruitment times in clockwise order. Moreover we indicate in blue the areas belonging to
the PZ, as identified according to the presurgical invasive evaluation (PZSEEG). Black lines
identify the weighted connections between all areas and their thickness is proportional to
their weight. The sizes of the circles representing each brain area are proportional to their
inverse recruitment time (A1-D1), to their weight connecting each area to the EZ (A2-D2),
and to their inverse shortest path length between each node and the EZ (A3-D3), while
the size of the orange EZ circle remains fixed.

Since in Fig. 4.12(a) the node size is proportional to the inverse recruitment time, large
circles indicate early recruitment while small circles indicate late recruitments: Hence the
circles become smaller clockwise. In Fig. 4.12(b) the node size is proportional to the weight
connecting each area to the EZ and it turns out that, for all patients, the first recruited
area has the strongest connecting weight. However, after a few recruitments this does not
hold true anymore. There are many examples in which areas with a strong weight to the
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Figure 4.12: Recruitment order of epileptic patients, Graph plot of the first 10 recruited areas, ordered
clockwise according to their recruitment times, as found via numerical experiments. (a) Node circle size corresponds
to the inverse recruitment time, (b) to the connection strength to the EZ and (c) to the inverse shortest path length
to the EZ. The size of the orange EZ remains fixed. Blue dots distinguish a recruited area to belong to the PZSEEG,
i.e. the PZ identified according to the presurgical invasive evaluation. Columns (1 - 4) show the results for patients

E2, E3, E6, E13. Parameters values are as in Fig. 4.10.

EZ (see e.g. area 46 or 48 for patient E6) are recruited much later than areas with very
small weights (e.g. area 83 for FB). The seizure-like event propagates as a chain reaction
and, therefore, the strongest connecting weight to the EZ is only decisive for the very first
recruited area. Later, strong connections to other early recruited areas play a decisive
role, as it is the case for area 83 in E6 which has a weak connection weight to the EZ.
However, through its strong connection to area 74, its weighted shortest path length to the
EZ is quite short, thus meaning that the weighted shortest path length to the EZ cannot
be underestimated in order to find the recruitment ordering. Indeed, in Fig. 4.12(c) one
can see the good predictability of the shortest path: the node size, proportional to the
inverse shortest path length to EZ, decreases in general with later recruitment. This is
expected, given the fact that the average shortest path to the EZ considers all connections
in the network, not just the connections subgraph outgoing the EZ. An example of the high
predictability of the shortest path is given by the node 38 in patient E2, which has a shorter
path length to the EZ than node 18. Node 38 is recruited before node 18 irrespectively of
its strong connection to node 16 and a connection strength to the EZ comparable with the
one of node 38. However it is worth noticing that, in general, the nodes that are recruited
before the areas belonging to the PZ, show either stronger connecting weights, or shortest
path length to EZ.

For later recruitments, the prediction becomes even more difficult because one needs to
account for the temporal order of the seizing brain areas. As shown before, the area which
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is first recruited, is the one with the strongest connection to the EZ. However, depending on
the strength of the connection, the recruitment time changes and it increases for decreasing
strength. In the case of patient E2 the recruitment of the second area is determined, more
by the strength of the connections to the EZ (i.e. area 20) than by the connection to area
16, while, for the recruitments of the third and forth areas, the strong connections of node
18 to 16 and of node 17 to 38, i.e. the first and second recruited nodes, are fundamental.
On the other hand, when the first recruited areas have strong connections to the EZ, as
for example area 74 in patient E6, the successive recruitments are strongly influenced by
the first recruited area, whose outgoing graph reveals areas that are recruited with high
probability. Thus the connection to area 74 turns out to be, for the second, third, and
fourth recruitment almost as important as the connection to the EZ (i.e. area 76). Finally,
if we compare two late recruited areas that are characterized by the same shortest path
length to the EZ, but with a path to the EZ that crosses very different nodes, we observe
that the area with the path going through earlier recruited nodes is recruited earlier.
The longer the seizure-like event propagates, the less important the shortest path length
to the EZ becomes and the more important the path lengths to other recruited nodes
become. This underlines the difficulty of predicting the seizure propagation in complex
networks, however, it is possible to summarize some findings that hold true for almost
all patients (including those shown in Figs. A9 to A11): The first recruited node is in
general the one with the strongest connection to the EZ and the shortest path; strong
connections to early recruited areas are fundamental to determine the recruitment order;
nodes belonging to the PZSEEG, that are not identified by our simulations as first recruited
nodes, show intermediate values of connection strength and shortest path, while the nodes
that are recruited before are either more strongly connected to the EZ or to the previously
recruited nodes.

To confirm the importance of the shortest path length and the strength of the con-
nections outgoing the EZ in determining recruitment events, we report in Fig. 4.13 the
recruitment time values as a function of the shortest path and the connection weights for
the patients with a single node as potential EZ [Fig. 4.13(a, b)] and for all 15 epileptic
patients [Fig. 4.13(c, d)]. In Fig. 4.13(b) the recruitment time is plotted over the logarithm
of the weight, in Fig. 4.13(c) the values of the recruitment time are plotted as a function
of the shortest path and in Fig. 4.13(d) as a function of the connection weight, ordered
according to their recruitment order. In particular the order for recruitment, shortest
path, and weight to EZ is ascending from small values to large values. This means that in
Fig. 4.13(d) the areas with the strongest weights (87th, 86th, etc.) correspond to the areas
that are recruited earliest (1st, 2nd, etc.). The ordering has been preferred to the specific
values of the shortest path and connection weight when reporting data for all 15 patients,
in order to obtain a better visualization. For patients E2, E3, E13, E6, the recruitment
time grows almost linearly with the shortest path, while it decreases for increasing weights.
This analysis is confirmed in Fig. A12 of Appendix B, where a regression fit is performed
over the data shown in Fig. 4.13(a), thus underlying the approximately linear relationship
between the shortest path length and the recruitment time for larger trec. The relation-
ship is not anymore so evident when we consider different cases of potential EZs, that are
composed of more that one area. However, in this case, it is still possible to affirm that
the earliest recruitments are associated with the shortest path lengths and the strongest
weights, while the nodes corresponding to PZSEEG or PZClin that, according to our simu-
lations, were recruited late, have very long shortest path lengths to the EZs or very small
weights.

In general the recruitment mechanism is not completely defined by the shortest path
length and the connection weight, therefore it is not possible to match the presurgical
predictions in terms of PZSEEG and PZClin if we try to identify the nodes belonging to



4.3. Results 85

0 20 40
Shortest Path [Value]

0.0

0.2

t r
ec

[s]

(a)

−7.5 −5.0 −2.5
Logarithmic Weight [Value]

E2
E3
E6
E13

(b)

0 25 50 75
Shortest Path [Order]

0

50

t r
ec

[O
rd

er
]

(c)

0255075
Weight to EZ [Order]

PZSEEG

PZClin

Other

(d)

0 10 20 30
Shortest path PZSEEG

0.0

0.2

0.4

t r
ec

[s]

(e)

0 10 20 30
Shortest path PZClin

E1
E2
E3
E4
E5

E6
E7
E8
E9
E10

E11
E12
E13
E14
E15(f)

Figure 4.13: Relationship between network measure and recruitment time, as found
via numerical experiments. (a) Shortest path to EZ; (b) Logarithmic value of the weight to
the EZ for the four patients with a single-node EZ. In (a) all four EZs are shown at (0, 0) while
in (b) the EZs are omitted. The recruitment time is calculated in seconds, after the perturbation
current has started. In (c, d) the recruitment time values are plotted according to their order, as
a function of shortest path to EZ (c) and weight to EZ (d) for all 15 patients. In (d) the x-axis
was inverted for better comparison. (e) Recruitment times trec of the areas belonging to PZSEEG
and (f) PZClin as a function of the shortest path length to EZ, for all 15 patients. For patients
with several nodes detected in the EZ, all areas were stimulated simultaneously. Parameter values

are as in Fig. 4.10.

the PZ by calculating the first recruited nodes according to their shortest paths length
or their connection weights. In particular, it turns out that the PZSEEG areas are well
predicted by the investigated model if the shortest path length between the predicted
PZ and the EZ is short, as shown in Fig. 4.13(e). However, for patients E8 and E10, the
recruitments of the nodes belonging to PZSEEG happen much later when compared to brain
areas of other patients with a similar shortest path length. Equivalently in Fig. 4.13(f) it is
possible to observe that, for short values of the shortest path length (< 5), there is a linear
correspondence between short recruitment times and PZClin areas that are characterized
by small values of the shortest path. However the areas belonging to PZClin are still not
identifiable, in terms of topological measures, for patient E8.

To conclude this Section on the influence of single connectome topology in determining
activity spreading and area recruitment, we elaborate the data reported in Fig. 4.10 by
sorting, from top to bottom, the patients according to their median shortest path length,
calculated on all areas with respect to the EZ. In Fig. 4.14 the recruitment times of all
brain areas for all patients are shown. Since patients are ordered according to their median
shortest path length, the brain areas of E4 have, on average, the shortest paths to the EZ
and the areas of E1 the longest. In general, it is possible to detect a slight trend, for the
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Figure 4.14: Recruitment times of all brain areas and all epileptic patients. The patients
are sorted from top to bottom according to their median shortest path length, calculated by listing
all the shortest path lengths of all areas to the EZ and then locating the number in the center
of that distribution. Grey dots and diamonds show individual recruitments (we use two different
symbols to highlight those values that are beyond the boxplot whiskers); boxes cover the 2nd
and 3rd quartile and whiskers extend 1.5 times the interquantile range (whiskers are asymmetric,
comprising the most extreme observed values that are within 1.5×IQR from the upper or lower

quartiles). Parameters as in Fig. 4.10.

overall recruitment events, to delay with longer average shortest path lengths. More in de-
tail, E10 and E8 show both very long and very short recruitment times, thus confirming the
results obtained in Fig. 4.11 for Gaussian-distributed excitabilities. The scattering of the
recruitment times for these patients reflects that, on average, their recruitment times are
longer with respect to the other patients. However the mean recruitment times are com-
parable with those of E11, E1, that show comparatively late recruitments irrespectively of
the fact that are characterized by a longer median shortest path. A common characteris-
tic that brings together patients E10, E8, E11, E1 is the weak connection among the EZ
and the first recruited area, that slows down the recruitment time (as already mentioned
when discussing about Fig. 4.12), thus suggesting that is the interplay between connection
strength and shortest path to determine the efficacy of seizure spreading and not the single
topology measure alone.

The Impact of the Input Current Strength on the Recruitment Time

Following the same approach used to obtain the results shown in Fig. 4.7 for a healthy
subject, we present here an analysis on the impact of the stimulation strength on the
recruitment mechanism. Fig. 4.15 displays the recruitment times of the first ten recruited
areas using different amplitudes ∆I of the step current IS(t), while fixing the duration
∆T = 0.4 s.

The analysis has been performed for patients E2 [Fig. 4.10(a)], E3 [Fig. 4.10(b)], E6
[Fig. 4.10(c)] and E13 [Fig. 4.10(d)], thus integrating the information on the dependency
on topological measures presented in the previous section. As expected, the recruitment
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Figure 4.15: Dependence on input current (epileptic patients). (a) E2, (b) E3, (c) E6
and (d) E13. The strength of the input current is varied between 0 and 100 on the x-axis while
its duration is kept unchanged at ∆T = 0.4 s with respect to the previous numerical experiments.
The order of the recruitment is color coded for each current strength from violet to yellow and it

holds the same for all investigated patients. Parameters as in Fig. 4.10.

times decrease for larger amplitudes. However, the order of recruitment does not sub-
stantially change. This implies that, whenever we increase the amplitude, the recruitment
mechanism remains unaffected: the same populations are involved in the seizure spread-
ing and in the same order. What changes is the speed of the spreading and the time
necessary to observe a generalized seizure-like event, which is smaller for stronger cur-
rents. As a general remark, the brain areas that are recruited after the first ones (i.e. the
5th, 6th,...,10th recruited areas), tend to be recruited more simultaneously for increasing
∆I, thus leading to possible changes in the recruitment order. This can be appreciated
especially for patient E2: For an amplitude ∆I = 10, for example, the 10th brain area
(pink) gets recruited later than the 9th area (dark blue), while for a very strong currents
(∆I = 100) the darkblue area gets recruited latest whereas the pink area gets recruited
earlier.

On the other hand if we vary the step current duration ∆T keeping the amplitude
∆I = 15 fixed (see Fig. A13 of Appendix B), we do not observe any change in the
recruitment times of the first 10 recruited areas, analogous to the healthy subject case
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presented in Fig. A6.

4.4 Discussion
Neural mass models have been actively used since the 1970s to model the coarse grained
activity of large populations of neurons and synapses [7, 245]. They have proven especially
useful in understanding brain rhythms [179, 246, 247], epileptic dynamics [186, 248], brain
resonance phenomena [249], resting state [250, 251], task activity [252, 253], neurological
and psychiatric disorders [254] and are very popular in the neuroimaging community [255,
256]. Moreover, the desire to understand large-scale brain dynamics as observed using
EEG, MEG and functional MRI (fMRI) has prompted the increasing use of computa-
tional models [257]. Large-scale simulators such as The Virtual Brain (TVB) [258] and
research infrastructures such as EBRAINS (http://ebrains.eu) make heavy use of networks
of interconnected neural mass models and enable non-expert users to gain access to expert
state-of-the-art brain network simulation tools.

Although motivated by neurobiological considerations, neural mass models are phe-
nomenological in nature, and cannot hope to recreate some of the rich repertoire of re-
sponses seen in real neuronal tissue. In particular their state variables track coarse grained
measures of the population firing rate or synaptic activity. At best they are expected to
provide appropriate levels of description for many thousands of near identical intercon-
nected neurons with a preference to operate in synchrony, but they cannot reproduce
the variation of synchrony within a neuronal population which is believed to underlie
the decrease or increase of power seen in given EEG frequency bands. Importantly, un-
like its phenomenological counterpart, the next generation neural mass model we have
implemented in this chapter, is an exact macroscopic description of an underlying mi-
croscopic spiking neurodynamics, and is a natural candidate for use in future large-scale
human brain simulations. In addition to this, the inability of a single neural mass model
to support event-related desynchronization/synchronisation [259] or to capture the onset
of synchronous oscillations in networks of inhibitory neurons [46], reminds us that these
phenomenological models could be improved upon. While building more detailed biophys-
ically realistic models of neurons would increase the computational complexity and the
difficulties to interpret the behavior of very high-dimensional models in a meaningful way,
the next generation neural mass models here applied, are very much in the original spirit
of neural mass modeling, yet importantly they can be interpreted directly in terms of
an underlying spiking model. This exact derivation is possible for networks of quadratic
integrate-and-fire neurons, representing the normal form of Hodgkin’s class I excitable
membranes [30], thanks to the analytic techniques developed for coupled phase oscillators
[15]. This new generation of neural mass models has been recently used to describe the
emergence of collective oscillations in fully coupled networks [27, 46, 133, 134] as well
as in balanced sparse networks [36]. Furthermore, it has been successfully employed to
reveal the mechanisms at the basis of theta-nested gamma oscillations [33, 87] and the
coexistence of slow and fast gamma oscillations [135]. Finally it has been recently applied
to modeling electrical synapses [35], working memory [98], the influence of transcranial
magnetic stimulation on brain dynamics [260] and brain resting state activity [209].

In this chapter we have extended the single next generation neural mass model derived
in [16] to a network of interacting neural mass models, where the topology is determined by
structural connectivity matrices of healthy and epilepsy-affected subjects. In this way we
are able to take into account both the macroscopic dynamics, self-emergent in the system
due to the interactions among nodes, and the various differences related to the patient-
specific analyses. However, the single population neural mass model does not take into
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account neither the synaptic kinetics nor the dynamics of the synaptic field characterizing
the considered synapses, which is simply modeled as the linear superposition of δ-shaped
post-synaptic potentials. Moreover, when extending the excitatory neural mass model
derived in [16] to a multi-population network, we have considered only excitatory coupling
in order to build a minimal model for the investigation of topologically-induced dynamical
features. Therefore, the presented neural mass model is not able to reproduce depth-EEG
epileptic signals, which represents one of the best successes of heuristic neural mass models
[180].

In absence of external forcing, the phase diagram of the system as a function of the
mean external drive η̄ and synaptic weight J resembles that of the single neural mass
model, since the same distinct regions can be observed: (1) a single stable node corre-
sponding to a low-activity state, (2) a single stable focus (spiral) generally corresponding
to a high-activity state, and (3) a region of bistability between low and high firing rate.
However, when the system is subject to a transient external current, the scenario changes
and is ruled by the interactions among different nodes. In this case, for low excitability
values, a single stimulated node abandons the bistable region due to the applied current
and it approaches, with damped oscillations, the high-activity state, which is a stable
focus. On the other hand, for sufficiently high excitabilities, the single node stimulation
leads to the recruitment of other brain areas that reach, as the perturbed node, the high-
activity regime by showing damped oscillations. This activity mimics a seizure-like event
and enables the modeling of propagation and recruitment: the seizure-like event originates
in the EZ (as a results of the stimulation) and propagates to the PZ, identified by the
other regions where the oscillatory activity propagates rapidly. It is distinct from an actual
seizure, which would require the emergence of self-sustained activity in the high-activity
state [186, 234, 261].

However transient activity, like the proposed seizure-like events, can play a potentially
important role in localizing tissue involved in the generation of seizure activity, if read in
the framework of stimulation of human epileptic tissue with consequent induction of rhyth-
mic, self-terminating responses on the EEG or electrocorticogram (ECoG) [262–264]. From
the dynamical systems perspective, one can hypothesize that complex stimulus responses
are due to a space-dependent induction of self-terminating, spatio-temporal transients that
are caused by brief perturbations in an excitable medium [185]. Accordingly, considering
epileptic seizure dynamics as spatio-temporal patterns [183, 190] shifts attention on the
self-organizing capabilities of spatio-temporal brain networks, thus proposing an alterna-
tive explanatory framework for epileptiform EEG to the time dependent modulation in
system parameters [265–269].

Moreover, perturbation experiments, like the stimulation of human tissue, turns out
to be fundamental in the context of functional brain mapping, as integral part of contem-
porary neurosurgery [270]. Surgical planning of the resection procedure depends substan-
tially on the delineation of abnormal tissue, e.g., epileptic foci or tumor tissue, and on
the creation of functional map of eloquent cortex in the area close to the abnormal tissue.
Traditionally, different methodologies have been used to produce this functional map: elec-
trical cortical stimulation [271–273], functional magnetic resonance imaging [274], positron
emission tomography [275, 276], magnetoencephalography [277], evoked potentials [278]
or passive recordings of electrocorticographic signals [279]. In particular, ECoG activity
recorded from subdural electrodes, placed during surgical protocols, reflect task-related
changes [280–287]: ECoG amplitudes in specific frequency bands carry substantial infor-
mation about movement or language tasks and they usually increase with the task in the
gamma (> 40 Hz) band. Extending the presented multi-population model, via the ad-
dition of synaptic dynamics and an inhibitory pool, to reproduce task-related change in
ECoG activity, would be essential to extend its predictive power.
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The spectrogram analysis has revealed that the recruitment process is characterized
by high frequency γ oscillations, thus reproducing the high-frequency (γ-band) EEG ac-
tivity typical of electrophysiological patterns in focal seizures of human epilepsy. Many
hypotheses have been formulated on the origin of this fast activity: (i) the behavior of in-
hibitory interneurons in hippocampal or neocortical networks in the generation of gamma
frequency oscillations [288, 289]; (ii) the nonuniform alteration of GABAergic inhibition in
experimental epilepsy (reduced dendritic inhibition and increased somatic inhibition) [180,
290]; (iii) the possible depression of GABAA,fast circuit activity by GABAA,slow inhibitory
postsynaptic currents [291, 292]; iv) the out of phase patterns of depolarizing GABAer-
gic post-synaptic potentials onto pyramidal cells, generated by feed-forward activation of
cortical interneurons [293]. In any case high-frequency EEG waves originating from one
or several brain regions are the most characteristic electrophysiological pattern in focal
seizures of human epilepsy and can be observed, in our numerical experiments, both for
healthy subjects and epileptic patients, though with a distinction: for the same excitabil-
ity value, the activity takes place at higher frequency ranges in epileptic patients and it
is mainly concentrated in the EZ. Moreover high frequency γ oscillations (> 200 Hz) are
observable in the epileptic patient’s spectrogram only. Even though it is not possible to
exclude discrepancies partially imputable to the different scanning and preparation proce-
dure of the structural connectivity matrices for the cohort of healthy and epilepsy-affected
subjects, it turns out that the recruitment process is faster in epileptic patients, for which
it is possible to observe generalize seizure-like events for smaller values of the excitability
parameter η̄. In particular, when comparing the results obtained for healthy subjects and
epileptic patients, it turns out that the time necessary to recruit areas in the PZ is usually
smaller for epileptic patients. However, the first recruited area is, in general, the area with
the stronger connection to the EZ, independently of the considered structural connectivity
matrix. The recruitment time in both cases is influenced by the strength of the external
perturbation ∆I, and decreases for increasing strength, while no dependence is shown on
the duration of the external perturbation.

More specifically for healthy subjects we have investigated the dependence of the re-
cruitment mechanism on the single subject, in terms of the position of the eventual EZ
and in terms of the topological measures of the single connectome. Brain network models
of healthy subjects comprise 90 nodes equipped with region specific next generation neural
mass models and each subject is characterized by a specific structural large-scale connec-
tivity amongst brain areas. The smallest excitability values for which an asymptomatic
seizure-like event occurs (η̄(k)

asy) do not vary significantly from one subject to the other and
do not show a relevant dependence on the stimulated area, while the smallest excitability
values for which a generalized seizure-like event occurs (η̄(k)

gen), show fluctuations in the
interval (−7,−5) for all stimulated nodes and for all the subjects. Nonetheless we have
found many similarities at the level of topological measures, since there is always a strong
correlation between η̄(k)

asy (η̄(k)
gen) and node strength, clustering coefficient and shortest path,

thus meaning that a region well connected is a region well recruited.
For epileptic patients, we have systematically simulated the individual seizure-like

propagation patterns and validated the numerical predictions of the PZ against clinical
diagnosis and EEG signals. Patient-specific brain network models of epileptic patients
comprise 88 nodes equipped with region specific next generation neural mass models and,
for this set-up, we have studied the role of the large-scale connectome based on dMRI, in
predicting the recruitment of distant areas through seizure-like events originating from a
focal epileptogenic network. We have demonstrated that simulations and analytical so-
lutions approximating the large-scale brain network model behavior significantly predict
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the propagation zone as determined by SEEG recordings and clinical expertise, with per-
formances comparable to previous analyses on this set of data [201, 203], thus confirming
the relevance of using a large-scale network modeling to predict seizure recruitment net-
works. However, some false positive are still observable, where populations not belonging
to PZSEEG or PZClin are first recruited. In these cases, the analysis on topological proper-
ties has revealed that nodes are easily recruited whenever they show strong connections to
the EZ or to early recruited areas and that are closer to the EZ in terms of shortest path
length. Therefore, nodes belonging to the PZSEEG (PZClin), that are not identified by our
simulations as first recruited nodes, are characterized by intermediate values of connection
strength and shortest path. Predictions are particularly not good for those patients whose
EZ has not been correctly identified, as results from the relative surgical outcomes reported
in Table A3. For these patients, the incorrect identification of the origin of seizure-like
events may lead to a misleading identification of the PZ, since we are not able to identify,
numerically, the recruitment of nodes not directly connected with the real EZ. Finally,
comparing the results obtained for epileptic patients with those for healthy subjects, we
infer a strong correlation between fast recruitment events and node strength, which is due
to the fact that structural connectomes, both for healthy subjects and epileptic patients,
are characterized by a log-normal distribution of the weights, where some connections, for
each node, have a much stronger weight than the others. Moreover, the strong correlation
between fast recruitment and clustering coefficient/shortest path suggests that we are in
the presence of hierarchical connectivities, which have been shown to be important for
the spreading of activity [129, 294] and the enhancement of the network susceptibility to
seizure activity [295].

Most computational models of seizure propagation focus on small continuous spatial
scales [267, 296, 297] or population of neurons [57, 298–303] while only small networks
are commonly used to investigate the role of the topology and localization of the epilepto-
genic zone [187]. However functional, volumetric and electrographic data suggest a broad
reorganization of the networks in epileptic patients [304–308], thus laying the founda-
tions for a different approach based on large-scale connectomes to identify the recruitment
networks. The large-scale character of partial seizure propagation in the human brain
has been only recently investigated, using patient-specific dMRI data to systematically
test the relevance of the large-scale network modeling in predicting seizure recruitment
networks [201–203, 309]. In this framework of large-scale network modeling we can also
place the results presented in this chapter, since we have confirmed the importance of
patient-specific connectomes to identify the recruitment process. As shown above, the
topological characteristics of connection strength and shortest path play a non-trivial role
in determining the spreading of seizure-like events, together with the localization of the
epileptogenic zone, while the next generation neural mass model, here employed for the
first time to study seizure spreading, allows us to construct patient-specific brain models
via a multiscale approach: the variability of brain regions, as extracted from the human
brain atlas, can be introduced in the mean-field parameters, thanks to the exact corre-
spondence between microscopic and macroscopic scales guaranteed by the model itself.
The possibility to exactly move through the scales has not been fully exploited in this
chapter, since we have focused our analysis on the extension of the single neural mass
model to a multi-population model, without adding other relevant features to the original
model. However it is possible to easily introduce, in the multi-population model, biologi-
cally relevant characteristics, keeping intact the exact correspondence between microscopic
and macroscopic scales, such as short-term synaptic plasticity [98], synaptic delays [46],
electrical coupling via gap junctions [35], chemical synapses [27], extrinsic and endogenous
noise [37]. By adding short-term synaptic plasticity we expect to being able to reproduce
the emergence of self-sustained activity in the high-activity state and therefore to describe
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a fully developed seizure. The introduction of synaptic delays and noise guarantees the
possibility to observe chaotic dynamics, therefore allowing for the reproduction of more
complex signals, like depth-EEG epileptic signals. Improving the predictive power of the
model by the means of more biologically relevant characteristics and anatomical data (3D
T1-weighted images, high angular and spatial dwRMI data, ion, energetic and neurotrans-
mitter measurements available e.g. in the BigBrain and human brain atlas) will be the
scope of further research.
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Chapter 5

Emergence of bursting: a slow-fast
approach

We report a detailed analysis on the emergence of bursting in the neural mass model with
STP developed in Chapter 2 and studied in Chapter 3 in the context of working memory.
Neural mass models are capable of mimicking the collective dynamics of large-scale neu-
ronal populations in terms of a few macroscopic variables like mean membrane potential
and firing rate. The one being used here is particularly important, as it represents an
exact mean-field limit of synaptically coupled QIF neurons, which we recall are canonical
models for type I excitability. In absence of synaptic dynamics, a periodic external current
with a slow frequency ε can lead to burst-like dynamics. The firing patterns can be un-
derstood using techniques of singular perturbation theory, specifically slow-fast dissection.
In the model with synaptic dynamics the separation of timescales leads to a variety of
slow-fast phenomena and their role for bursting is rendered inordinately more intricate.
Canards are one of the main slow-fast elements on the route to bursting. As explained in
Chapter 2, they describe trajectories evolving nearby otherwise repelling locally invariant
sets of the system and are found in the transition region from subthreshold dynamics to
bursting. For values of the timescale separation nearby the singular limit ε = 0, we report
peculiar jump-on canards, which block a continuous transition to bursting. In the bio-
logically more plausible regime of ε this transition becomes continuous and bursts emerge
via consecutive spike-adding transitions. The onset of bursting is of complex nature and
involves mixed-type-like torus canards, which form the very first spikes of the burst and
revolve nearby fast-subsystem repelling limit cycles. We provide numerical evidence for
the same mechanisms to be responsible for the emergence of bursting in the quadratic
integrate & fire network short-term synaptic plasticity. The main conclusions apply for
the network, owing to the exactness of the mean-field limit.

Publication:
The results presented in this chapter are submitted to New Journal of Physics and available as
pre-print [310]: H. Taher, D. Avitabile, and M. Desroches. “Bursting in a next Generation Neural
Mass Model with Synaptic Dynamics: A Slow-Fast Approach”. arXiv:2109.06757v1 [nlin] (Sept.
2021)

http://arxiv.org/abs/2109.06757
http://arxiv.org/abs/2109.06757
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5.1 Introduction
As we have seen in the previous chapters, QIF networks and their neural mass counter-
parts can give rise to interesting dynamical regimes, typically evoked by bistability or
multistability in the system. Indeed, in its simplest form, the original MPR model ex-
hibits a parameter regime where a stable node and a focus coexist [16]. This is particularly
relevant for the macroscopic response of neuronal ensembles when they are subject to an
external current: bistability implies that a time dependent external drive can lead to in-
teresting firing rhythms. A recent study takes into account synaptic dynamics in form
of exponentially decaying action potentials and investigates the firing patterns emerging
across spatial and specifically temporal scales [68].

In this chapter however, we want to explore a QIF network that accounts for synaptic
dynamics in form of short-term synaptic plasticity, thus adding to the biological plausibil-
ity. To our knowledge, the role of STP in next generation neural mass models has received
just little attention, despite being highly relevant in neuroscience. Previous macroscopic
models of STP typically make use of the Wilson-Cowan (WC) model, hence are of heuris-
tic nature [7, 39]. In Chapter 3 an extension of the MPR firing rate equations towards
STP was employed, in order to model WM. The mean-field limit, in presence of STP,
remains exact. Therefore one can exploit this limit, in order to get insight into the emer-
gence of firing patterns in the network. An aspect that can lead to complex behavior is
the timescale separation, which comes along with STP. Depression and facilitation might
indeed act on different timescales. As an example, measurements in the prefrontal cortex
suggest that the facilitation of synapses can be maintained for seconds, while depression
decays within a few hundred milliseconds [90].

Synaptic dynamics and additional timescales enrich the dynamical landscape, by giving
rise to bistability involving limit cycles. This is the foundation for bursting rhythms
to emerge. Bursting refers to dynamics that alternates between a quiescent phase and
rapid oscillations. When slowly forcing the population of QIF neurons, by virtues of
a slowly drifting external current, the system can transit from a quasi-static motion to
rapid oscillations associated with the presence of stable cycles in the system with constant
external current.

Bursting has been found in various experimental studies in neuroscience [22, 23, 58–63]
and theoretical approaches [64, 65, 311–314] not only aim at classifying the observed dy-
namics, but also mimicking and revealing the mechanisms responsible for the emergence of
bursting. While bursting in spiking neural networks is subject of recent studies [315, 316],
the mechanisms responsible for their emergence often remain unclear: exploring the state
space of large-scale networks is tedious and the addition of slow-fast aspects complicates
the problem. The exactness of the MPR model helps to overcome this limitation: analytic
tools and bifurcation analysis applied to the neural mass model allow to draw conclusions
for the microscopic network.

The main results of this chapter are related to the emergence of bursting in a QIF net-
work with STP. In particular, we investigate the transition from subthreshold oscillations
to bursting in presence of an external slow and periodic current. The forcing introduces a
clear timescale separation into the problem, giving rise to intricate slow-fast phenomena
and allowing for the application of slow-fast dissection methods, to be described later. As
an outlook, the findings comprise a differentiation of the route to bursting, depending on
the timescale separation. For strongly separated timescales, far away from biologically
plausible scenarios, the route is complicated, possibly discontinuous in parameter space
and it is related to a certain type of canards. Moderate timescale separations on the other
hand reveal a number of intermingled slow-fast mechanisms that lead to a continuous
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transition from subthreshold oscillations to bursting and are related to different types of
canards. Our results are supported by slow-fast arguments and numerical evidence.

A first illustration of the dynamical regime of interest in this chapter is displayed in
Fig. 5.1. The response of a large-scale network, exhibiting STP and consisting of N = 105

QIF neurons, to a slow external sinusoidal current is depicted in Fig. 5.1(a). The second
panel Fig. 5.1(b) shows the firing rate of the QIF network, as well as the firing rate of the
mean-field limit. Both systems undergo a quiescence phase of low firing activity. When
the external current exceeds a certain level, the systems start to burst, characterized by a
rapid series of synchronized firing at high rates.
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Figure 5.1: Spiking neuron network and mean-field limit. (a) Scatter plot of a subset of
2000 representative neurons out of 105. Each dot represent a spike. (b) Firing rate of the network
(black) and of the corresponding mean-field limit (red). The blue curve shows a time dependent

external current applied to the two systems and is of sinusoidal form.

In order to understand how these bursts emerge, we have to encapsulate two main
aspects. First, in the upcoming Section 5.2, we will recall the QIF network model with
STP as well as the corresponding mean-field limit, and we will analyze the state space
structure and dynamics. Second, the presence of a slow external drive calls for the appli-
cation of slow-fast dissection. We have introduced the slow-fast framework in Section 2.7
of Chapter 2. This generic methodology for timescale separated problems is applied to
the present model in Section 5.3. Dissection is crucial for understanding the results in
Section 5.4, where canards and in particular jump-on canards are studied using slow-fast
arguments. This paves the way to investigate the mechanisms responsible for the emer-
gence of bursting, as done in Section 5.5. Finally, in Section 5.6 the initially posed problem
of bursting on macroscopic scale is approached by a comparison of mean-field dynamics
versus QIF network dynamics in the bursting regime.

5.2 Periodically forced neural mass
Despite having a rather simple state-space structure, the original MPR model without
STP can give rise to interesting periodic patterns when externally forced. In the absence
of a time depending current, periodic solutions are absent. Instead one can find node, focus
and saddle equilibria. However, there are regions of parameter space in which bistability
between the node and focus appears. Hence slow periodic forcing, for example given by
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I1 = A sin(εt), 0 < ε � 1, can lead to a hysteretic loop in these regions, as shown in
[16]. In this case the trajectories consist of a low firing rate segment and a high firing
rate segment with damped oscillations, related to the presence of foci in the system with
constant I1. Orbits of this type can already be seen as bursting patterns characterized by
an alternation of slow drifts and fast oscillations. However, in the limit ε = 0 of infinitely
slow forcing, the fast oscillations vanish. In that case, the resulting cycles can be classified
as relaxation oscillations, which were introduced in Section 2.7.

The model of interest for our work is the canonical model for type I excitability: the
QIF neuron. We recall from Chapter 2, that in a network of N synaptically coupled neu-
rons in presence of m-STP the membrane potentials Vi(t), depression x(t) and facilitation
u(t) obey Eqs. (5.1).

V̇i = V 2
i + ηi + Juxr + I1(t) (5.1a)

ẋ = 1− x
τd
− uxr (5.1b)

u̇ = U0 − u
τf

+ U0(1− u)r (5.1c)

The total current applied to the neuron is a sum of the constant component ηi, the
synaptic current Ju(t)x(t)r(t), with constant synaptic weight J and an external, possibly
time-dependent, current I1(t)1. Variable r(t) = 1

N

∑N
j=1 Sj(t) denotes the instantaneous

firing rate and is composed of the single neuron spike trains Sj(t) = ∑
k:tj(k)<t δ(t− tj(k)),

where tj(k) denotes the k-th spike time of neuron j entering into the Dirac δ function.
The collective dynamics of the QIF network in presence of m-STP Eqs. (5.1) is captured

by the neural mass model Eqs. (5.2) in an exact manner (see Section 2.3 in Chapter 2).
Here we chose the form of the model, in which the membrane time constant has been
eliminated via a rescaling of time and we will refer to it as neural mass model with short-
term synaptic plasticity (NMSTP).

ṙ = ∆
π

+ 2rv (5.2a)

v̇ = v2 − (πr)2 + Juxr + η̄ + I1(t) (5.2b)

ẋ = 1− x
τd
− uxr (5.2c)

u̇ = U0 − u
τf

+ U0(1− u)r (5.2d)

We note that Eqs. (5.2) will evolve on the fastest timescale of our problem. This
holds despite the fact that it already possesses multiple timescale via τd and τf . How-
ever, as we will discuss later, this inherent timescale separation of Eqs. (5.2) is subtle
and not observable everywhere in state space. Nevertheless, it has significant impact on
how the transition from subthreshold (non-bursting) behavior to bursting occurs (see also
Sections 5.4.2 and 5.5.3).

5.2.1 Dynamics under constant forcing

Most of the parameters values used for Eqs. (5.2) will remain fixed in this chapter and
if not stated differently given in Table 5.1. Note that time is measured in units of the
membrane time constant τm. We will outline the different dynamical regimes in presence
of a constant current I1(t) = const., using the above parameter values. The NMSTP

1In this chapter we use IS(t) ≡ I1(t) for clarity, see also Section 5.2.2.
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Table 5.1: Parameters and their values, which are fixed throughout this work, if
not stated differently.

Symbol Description Value
∆ Width of Lorentzian 0.5
η̄ Centre of Lorentzian -1.7
J Synaptic weight 30
U0 Baseline utilization 0.1
τm Membrane time constant 20 ms
τd Depression timescale 200 ms/τm
τf Facilitation timescale 1500 ms/τm

Eqs. (5.2) is able to generate periodic oscillations due to plastic synapses even in absence
of time dependent forcing (I1 = const.). Their existence depends on the exact choice of
parameters values, one of the important ones being the total non-synaptic current given
by η̄+I1. Limit cycles can arise via a plethora of bifurcation scenarios. Here we considered
the case of a subcritical Hopf bifurcation followed by a fold of limit cycles, giving rise to
stable oscillatory behaviour, when considering I1 as a bifurcation parameter. In Fig. 5.2(a)
the resulting bifurcation diagram is displayed.
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Figure 5.2: Solutions in presence of constant forcing and microscopic network. (a)
Bifurcation diagram r versus I1 of Eqs. (5.2). For I1 . 0.25 there exists only one fixed point (FP,
solid black line). At I1 ≈ 0.25 the FP destabilizes via a subcritical Hopf-Bifurcation (HL, lower
orange dot), creating a branch of unstable limit cycles (LC, orange dashed line). Two saddle-node
bifurcations (black dots) of the unstable FP branch (dashed black line) occur in a narrow regime of
I1, folding the branch twice. Stability is regained for I1 & 0.7 at a supercritical Hopf-Bifurcation
(HU, upper orange dot). The branch of unstable LCs stabilizes (solid orange line) via a saddle-node
bifurcation of cycles (purple dot) and vanishes at the second Hopf Bifurcation. The orange line
marks the maximum firing rates of the LC branch. (b) Spike scatter plot for 20000 representative
neurons of a network consisting of N = 100000 neurons for I1 = 0.4 marked in panel a by a dashed
red line. (c - f) Periodic solution (r(t), v(t), x(t), u(t)) vs. time t for I1 = 0.4 marked in panel a
by a dashed red line. The red curves show simulations results of the NMSTP, the black ones of

the network Eqs. (5.1).

For currents I1 . 0.25 we find a branch of stable node equilibria at low firing rates. The
branch develops into a family of foci and destabilizes around I1 ≈ 0.25 via a subcritical
Hopf bifurcation (HL) followed by two saddle-node (fold) bifurcation at FL and FU (black
dots), where Fk = (rk, vk, xk, uk, Ik), k ∈ {L,U}, denotes the equilibrium and parameter
values of the bifurcations. These folds can also be found in absence of STP, in which case
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the upper branch is stable. However, in Fig. 5.2(a) the instability persists throughout
the S-shaped curve up until the upper supercritical Hopf bifurcation HU. The lower Hopf
bifurcation HL generates a family of unstable limit cycles that undergoes a fold bifurcation
of cycles, giving rise to stable periodic solutions.

One of these solutions (r(t), v(t), x(t), u(t)) is presented in Fig. 5.2(c - f) as a function of
time. It is superimposed onto the corresponding variables calculated by simulating a QIF
network governed by Eqs. (5.1) and consisting of N = 100000 neurons. A spike scatter
plot can be found in Fig. 5.2(b) for this network. The average firing rate is estimated via
binning of time, i.e, by counting the number of spikes per time bin of width ∆t = 10−2,
while the average membrane potential reads v(t) = 1

N

∑N
j=1 Vj(t).

The primary mechanism driving the oscillations is an interplay of PBs2 and the ensu-
ing synaptic depression and facilitation. At the microscopic scale, population bursts are
emitted via a cascade of spikes throughout the network, which as a consequence leads to
the facilitation of synapses, leveraging the firing activity further; see Fig. 5.2(b, c, f). The
consequent depression suppresses the activity, but recovers on the timescale τd allowing
for the emittance of population bursts in a periodic manner.

Notably, in the I1-interval depicted in the inset of Fig. 5.2(a) we find bistability between
equilibria and limit cycles. We can therefore predict that a time dependent slow current
I1(t) evolving across this region will lead to a dynamic transition from the equilibrium
branch to the stable limit cycles, giving rise to bursting. This exact example can be found
in Fig. 5.1.

Overall, in contrast to the QIF network without STP and original MPR model, where
no limit cycles exist, STP gives rise to bistability among equilibria and cycles. In Ref. [16] a
slow periodic currents leads to the emergence of macroscopic relaxation-type oscillations in
the network. We want to investigate how the presence of STP impacts the response of the
system towards such an input. Simulations of QIF networks are difficult computationally.
However, the expected agreement of QIF network results and the NMSTP depicted in
Fig. 5.2(b - f) justifies to perform the upcoming analysis using solely the NMSTP. We will
return to the implications of the NMSTP dynamics for the network in Section 5.6.

5.2.2 Dynamics under slow periodic forcing

Owing to the previous observations in the system with constant forcing, we will introduce
a slow periodic drive into the model via the external current I1. We impose that it evolves
periodically and on a timescale considerably larger than the slowest timescale of the neural
mass, namely the facilitation decay time τf . In order to remain in a general framework,
I1(t) will be sinusoidal, given by I1(t) = A sin (εt), with period T = 2π

ε � τf and amplitude
A. Throughout this work we set τf = 1500 ms/τm = 75, therefore the separation between
forcing and slowest intrinsic timescale of the fast subsystem is calculated as τf/T = ε τf2π ≈
10ε.

Through the choice of I1 to be explicitly time dependent, the system given in Eqs. (5.2)
becomes non-autonomous. This in turn comes along with hurdles in the application of
slow-fast dissection. Thus, in order to retrieve an autonomous system, a second forcing
variable I2 is introduced. The dynamics of (I1, I2) follows a Hopf normal form as given
below.

İ1 = εg1(I1, I2) = ε
[
I1(a− I2

1 − I2
2 ) + I2

]
(5.3a)

İ2 = εg2(I1, I2) = ε
[
I2(a− I2

1 − I2
2 )− I1

]
(5.3b)

2Population bursts are not related to bursting in the slow-fast dynamics sense.
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The Hopf bifurcation at a = 0 gives rise to stable limit cycles of the form (I1, I2) =
A·(sin εt, cos εt), with amplitude A =

√
a and angular frequency ε, in the following referred

to as forcing cycle. To assure equivalence of the explicitly defined I1(t) = A sin(εt) and
the one generated by the Hopf form Eq. (5.3), the initial conditions ((I1(t0), I2(t0)) will
lie on (I1, I2) = A · (sin εt, cos εt). According to the definition in Section 2.7 of Chapter 2,
the full system is given by the NMSTP in presence of slow external forcing, i.e, Eqs. (5.2)
and Eq. (5.3).

To understand the impact of this slow forcing, it is advantageous to superimpose
solutions of the full problem on the r vs. I1 bifurcation diagram of the unforced system,
this is at the core of the slow-fast dissection introduced by J. Rinzel [64, 65, 313]. In Fig. 5.3
we present solutions of Eqs. (5.2) and Eq. (5.3) for different values of the forcing amplitude
A. An example of a purely slow trajectory is shown in Fig. 5.3(a1 - c1) and labeled γ0(t).
The firing rate r(t) [Fig. 5.3(b1)], increases and decreases following the same pattern as the
forcing I1(t) [Fig. 5.3(a1)]. Moreover, in r − I1 projection [Fig. 5.3(c1)], it becomes clear
that the dynamics takes place nearby the equilibrium branch of the unforced system. The
forcing introduces a drift of the equilibrium, slow enough to be followed by the dynamics
in an O(ε) neighbourhood of the branch.

While this example can be understood as a quasi-static motion, the more complex
solutions γ1(t) to γ4(t) in columns (2) and (3) of Fig. 5.3, exhibit canard dynamics and
bursting, respectively. A more rigorous analysis is required, including a slow-fast dissection
of the model. For this we apply the framework introduced in Section 2.7 of Chapter 2 to
the NMSTP.
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Figure 5.3: Typical solutions γ0(t) to γ4(t) of the full system. (a) Periodic forcing current
I1(t) and (b) firing rate r(t) vs. time t. (c) Same trajectories superimposed on the bifurcation
diagram of the unforced system in r-I1 projection. The parameter values are as follows: ε = 10−5;
γ0: A ≈ 0.2487; γ1 to γ3: in increasing order exponentially close to A ≈ 0.2507; γ4: ε = 10−3,

A ≈ 0.2553.

5.3 Slow-fast analysis of the model
We will start a systematic investigation of the full system by dissecting it into slow and
fast subsystem. The full problem represents a 4-fast 2-slow system with Xf = (r, v, x, u)
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and Xs = (I1, I2). Their dynamics is governed by the right hand sides F(Xf ,Xs) and
G(Xs), recalled below in fast-time parametrization.

Ẋf = F(Xf ,Xs) =


∆
π + 2rv

v2 + Juxr − (πr)2 + I1
(1− x)/τd − uxr

(U0 − u)/τf + U0(1− u)r

 (5.4a)

Ẋs = εG(Xs) = ε

((
I1(a− I2

1 − I2
2 ) + I2

)(
I2(a− I2

1 − I2
2 )− I1

)) (5.4b)

In the singular limit ε→ 0 associated with Eqs. (5.4) we obtain the fast subsystem given
in Eqs. (5.5).

Ẋf = F(Xf ,Xs) (5.5a)
Ẋs = 0 (5.5b)

Its equilibrium branches are shown in Fig. 5.2(a) and defined as {Xf |Ẋf = 0}, with the
slow variable coordinates acting as bifurcation parameters. This naturally coincides with
the definition Eq. (5.6) of the critical manifold S0.

F(Xf ,Xs) = 0 (5.6)

We can therefore already infer the shape of S0. It corresponds to the cartersian product
S∗×{I2|I2 ∈ R}, where S∗ denotes the S-shaped branch of equilibria of the fast subsystem
and is given in Eq. (5.7).

S∗ := {(r, v, x, u, I1)|F(Xf ,Xs) = 0} (5.7)

Hence the associated fold set F has two 1D connected components, namely the two lines
FU := {FU} × {I2|I2 ∈ R} and FL := {FL} × {I2|I2 ∈ R}. This means that the two fold
lines are parametrized by I2. These two fold lines of S0, along FL and FU, can be seen in
Fig. 5.4, together with the critical manifold S0 in I1-I2-r projection and the trajectories
γ0(t) to γ4(t) of Fig. 5.3.
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Figure 5.4: Slow-fast dissection and critical manifold. Solutions γ0(t) to γ4(t) of the full
system superimposed on the critical manifold S0 in (I1, I2, r)-space. The parameter values are

identical to those in Fig. 5.3.
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5.3.1 Singular dynamics: fast subsystem

Since points of S0 are equilibria of the fast subsystem, we can associate local stability
properties of the fast subsystem with the critical manifold. Stable (unstable) parts of
the equilibrium branch in Fig. 5.2 will become attracting (repelling) sheets of the critical
manifold. This property can be seen as an indicator for fast flow in the full system,
distant from S0. Here the fast dynamics dominates and (r, v, x, u) will be repelled and
attracted accordingly. The stability changes along the set of Hopf bifurcation given by
HL := {HL} × {I2|I2 ∈ R} and HU := {HU} × {I2|I2 ∈ R} . Attracting (repelling) parts
of S0 are marked as green (light green) surfaces throughout this chapter, as can be seen
in Fig. 5.4.

We can already exploit this in order to examine the full system dynamics further. To
start with, γ0(t) in Fig. 5.4(a1) evolves entirely in the vicinity of the lower attracting
sheet of the critical manifold S0. This means that the dynamics is purely slow and in
approximation bounded to S0. For γ1(t) we see the typical canard dynamics, since it
follows the middle repelling part of S0 for some time, before jumping to the bottom
attracting sheet. Moreover, γ2(t) in Fig. 5.4(a2) resembles the behavior of a canard with
a head, introduced in Section 2.7.2 of Chapter 2 in the context of the VdP oscillator.
However, while in the VdP system the upper branch of the fast subsystem is attracting,
we find the same behavior here, but with a repelling upper sheet of S0. We will refer to
this surprising solution of the full system as jump-on canard. Similarly, γ3(t) exhibits
a jump to the upper sheet, but in absence of a canard segment along the middle sheet.
Finally, the bursting solution γ4(t) in Fig. 5.4(a3) has segments along the bottom sheet of
S0 and displays a short canard segment along the repelling middle sheet, before it pierces
through the critical manifold S0 and starts to burst. In order to understand the emergence
of canards, jump-on canards and bursting, we will proceed with the analysis of the slow
subsystem in the following.

5.3.2 Singular dynamics: slow subsystem

The slow-time parametrization3 of Eqs. (5.4) is given in Eqs. (5.8).

εX′f = F(Xf ,Xs) (5.8a)
X′s = G(Xs). (5.8b)

Here the singular limit ε→ 0 yields the slow subsystem Eqs. (5.9), which has the critical
manifold S0 as the state space, as can be seen from F(Xf ,Xs) = 0.

0 = F(Xf ,Xs) (5.9a)
X′s = G(Xs) (5.9b)

Slow flow

As part of the slow-fast dissection of the model it is useful to calculate the slow flow
Eq. (5.10) of the dissected system, which was derived in Section 2.7.1.

dXf
dτ ≡ X′f = −

(
∂F
∂Xf

)−1 ( ∂F
∂Xs

X′s
)

(5.10)

To recall, values of Xf on S0 are determined via the algebraic conditions Eq. (5.9a), which
entangle the fast variables to each other and to I1. Given either r, v, x or u, the other

3The derivative with respect to slow time τ is denoted by (_)′ := d/dτ(_) = 1
ε

˙(_).
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components can be calculated straightforwardly. In other words, it is sufficient to consider
the slow flow of one the fast variables, here r, to understand the slow dynamics. Taken
this into account we finally obtain the slow flow (r′, I ′1, I ′2) given in Eqs. (5.11) and with
g1, g2 from Eq. (5.3).

r′ = g1(I1, I2)Ar(1 + ruτd)(1 + rU0τf)/D (5.11a)
I ′1 = g1(I1, I2) (5.11b)
I ′2 = g2(I1, I2) (5.11c)

We can see the relevance of the denominator D, given in Eq. (5.12), by noting that D = 0
defines the fold set of S0 at which the fast subsystem Jacobian ∂F

∂Xf
is singular.

D = 2
[
(πr)2 + v2

]
(rτdu+ 1)(rτfU0 + 1)− Jxr(rτfU0 + u) (5.12)

Saddle-node bifurcations of the fast subsystem are characterized by the identical condition
det
(
∂F
∂Xf

)
= 0 and are equivalent to the fold curves FL and FU shown in Fig. 5.4. Therefore,

the slow flow is undefined along these lines and the slow subsystem fails to describe the
slow dynamics. This is for example relevant for the canard trajectories γ1(t) and γ2(t) in
Figs. 5.3 and 5.4, which projected onto the (r, I2) plane cross FL transversely.

Desingularization

This limitation can be mitigated by introducing an auxiliary system and desingularizing
Eqs. (5.11) through the application of a nonlinear time rescaling τ 7→ D · τ . One obtains
the desingularized reduced system (DRS) given in Eqs. (5.13) with τ̂ := Dτ .

dr
dτ̂ = g1(I1, I2)Ar(1 + ruτd)(1 + rU0τf) (5.13a)

dI1
dτ̂ = g1(I1, I2) ·D (5.13b)
dI2
dτ̂ = g2(I1, I2) ·D (5.13c)

The DRS benefits from the fact that the singularities are resolved, allowing to investigate
the slow dynamics near and on the fold lines FL and FU. At the same time new equilibria
are introduced satisfying D = 0. Additionally, as a consequence of the employed non-
linear time rescaling, the flow direction is not preserved. At the fold curves, with D = 0,
a change of sign of D takes place. Hence, between FL and FU, i.e, on the middle sheet of
S0, the flow of the DRS is opposite to the slow flow.

Slow trajectories which entirely remain on the same sheet of S0 can be easily understood
using the slow flow Eqs. (5.11). Canard orbits evolve on attracting as well as repelling
sheets of S0 and therefore require a view on the dynamics near the folds. For this, we
will determine the equilibria of the DRS Eqs. (5.13) in the following and analyze their
invariant manifolds. Equilibria of the DRS which satisfy D = 0 necessarily coincide with
a fold of S0. As we will show in the following section, this gives rise to so-called folded
singularities.

Folded saddle and folded homoclinics

Up to three focus equilibria of Eqs. (5.13) are located at p1 = (I1, I2, r) = (0, 0, rk),
where the rk are points of S0 given (I1, I2) = (0, 0). In this chapter we will remain at
η̄ values for which only one equilibrium p0 = (0, 0, r0) exists. This point is the only
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equilibrium of the slow flow Eqs. (5.11). In the DRS [Eqs. (5.13)] however, the condition
{g1(I1, I2) = 0, D = 0} yields additional fixed points p1 and p2 located on the fold lines at
D = 0.

The three equilibria of the DRS are displayed in Fig. 5.5(a) on S0 in r−I2 projection. In
the full system, for sufficiently small A and ε, solutions lie close to the bottom, attracting,
sheet of S0. When the amplitude is increased, these cycles can pass very close to p1 and
start to follow the middle, repelling sheet. One way to understand this canard dynamics is
to make use of the properties of the pk in the DRS and their role for the slow subsystem.
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Figure 5.5: Folded-saddle singularity. (a) Critical manifold S0 in r − I2 projection superim-
posed with the slow flow [green arrows, see Eqs. (5.11)]. The black dots p0 (unstable focus), p1
(saddle), p2 (center) denote equilibria of the DRS [Eqs. (5.13)]. The point p1 denotes a folded-
saddle equilibrium with the associated stable (unstable) eigendirection indicated by a solid (dashed)
arrow along the slow flow. The orange curvesMFS mark the stable and unstable manifolds of p1,
forming heteroclinic connections through p1. (b) S0 in (I1, I2, r)-space. The curves γ2(t) and
γ3(t) are solutions of the full system. The objects p1, p2 andMFS depend on the choice of A, here
they correspond to the value used to obtain γ3(t). Other parameters values are as in Figs. 5.3

and 5.4.

Located on the bottom sheet of S0, p0 results from the Hopf form given in Eq. (5.3)
and is an unstable focus at (I1, I2) = (0, 0). On the other hand, p2 lies on the upper fold
line FU and denotes a center, i.e., it has purely imaginary complex conjugate eigenvalues.
The equilibrium p1 can be found on the lower fold line FL and is of saddle type. At a
specific value of A, namely, when the forcing cycle intersects with p1, an 8-shaped double
homoclinic connection MFS = ML

FS ∪ MU
FS forms, consisting of two parts, which are

connected via p1; see the orange curve in Fig. 5.5(a, b). The connection ML
FS is located

on the lower sheet, while MU
FS spans the middle and upper sheet of S0. They revolve

around the unstable focus p0 and center p2, respectively, and are the stable and unstable
manifolds of p1.

The points p2, p1, and in particular the invariant manifolds associated with p1, play
an important role for the slow subsystem. Due to the negative sign D < 0 on the middle
sheet of S0 the slow flow is reversed with respect to the DRS. As a consequence the DRS
saddle p1 and center p2 become folded singularities of the slow subsystem. These folded
saddle (p1) and folded center (p2) are not equilibria of the slow flow. However, for the
slow dynamics they have similar impact on the dynamics as there unfolded counterparts,
but with the crucial difference of reversed flow direction between FL and FU. Accordingly,
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the folded saddle p1 has significant influence on the dynamics of the slow subsystem along
MFS, as described in the following.

(i) First of all, trajectories in the DRS evolving onMFS necessarily approach p1 asymp-
totically from the direction of the stable eigenvector, but can never pass through the
saddle.

(ii) In the slow subsystem however, the folded saddle p1 allows a pass-through along this
direction. Below FL trajectories are attracted to and above repelled from p1.

(iii) The double homoclinic connectionMFS of the DRS is referred to as a folded homo-
clinic in the slow subsystem. For this solution the passage of trajectories through
p1 occurs in finite time [317].

(iv) Using the same type of argument, the invariant manifold MU
FS around the folded

center p2 becomes disconnected at the two intersections with FU, due to a reversal
of the slow flow direction. Solutions of the slow subsystem on MU

FS can not cross
this line.

As a consequence of the previous properties (i)-(iv), a singular canard exists in the slow
subsystem, given a specific value of A. It evolves along the folded homoclinicMFS below
the bottom fold line FL and extends, while remaining on S0, beyond the folded saddle p1
until the upper fold FU.

Singular canard orbits

For the construction of singular orbits, we note once more that the middle sheet of S0 is
repelling while the bottom sheet is attracting. Accordingly, a continuum of fast segments
emerging from the middle sheet and connecting to the bottom sheet exist in the fast
subsystem. This family of fast orbits collides with MFS and likewise with the singular
canard described above. As a result, infinitely many singular orbits can be constructed,
by merging the singular canard at arbitrary positions on the middle sheet of S0, with fast
segments.

These singular orbits evolve on the bottom sheet of S0, continue through the folded
saddle p1, while following the folded homoclinic, and jump at different heights, in terms of
the coordinate r, from the middle to the bottom sheet of S0. The full system solution γ1(t)
in Figs. 5.3 and 5.4 displays this type of dynamics. The singular canard, hence also the
family of singular canard orbits, can at most reach the upper fold line FU. Here the slow
flow is undefined and the reduction of state space to S0 fails to describe the dynamics.
This is additionally reflected by the fact that MU

FS is disconnected at the intersections
with FU, due to the folded property of p2; see (iv) above. The singular canard orbit which
reaches up until this point is the maximal canard.

5.4 Full system dynamics: beyond singular orbits and clas-
sical canards

The solutions γ0(t) to γ4(t) are results of numerical computations for ε > 0. As such,
their slow segments evolve not on, but in an O(ε) neighborhood of S0. This is to some
extent an implication of Fenichel’s theory [318]. For 0 < ε� 1, it guarantees the existence
of a slow manifold Sε, that is in an O(ε) neighborhood of S0, if S0 is normally hyperbolic
(see below). Additionally, Sε is locally invariant under the flow of the full system. The
theorem also states that stable and unstable manifolds associated to S0 persist as O(ε)
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perturbations. In other words, the flow on Sε can be seen as a perturbation of the flow on
S0; and the flow perpendicular to S0 as a perturbation of the fast subsystem’s flow. For
normally hyperbolic critical manifolds, one can deduce that singular orbits persist for ε
and perturb into an O(ε) neighborhood.

Normal hyperbolicity requires all eigenvalues of the Jacobian ∂F
∂Xf
|S0 to have non-zero

real part [319]. The theorem can therefore not be applied on FL and FU, given that they
describe lines of saddle-node bifurcations. However, one can consider the three sheets of S0
separately, each one up to an O(ε) neighborhood of the folds. From this we can conclude
the persistence of slow segments nearby S0 for ε > 0, including the repelling segments
within a canard solution, until close to the folds. Fenichel’s theory does not encompass
whether or not a connection of these segments exists. Yet, γ1(t) to γ3(t) exemplify such
connection numerically: segments that evolve close to the bottom sheet of S0 connect to
segments close the middle sheet. A detailed treatment of these connections nearby the
non-hyperbolic points, exceeds the scope of this work. For more rigorous approaches,
we refer to non-standard analysis [66], matched asymptotics [320] and so-called blow-
up techniques [321]. With these advanced methods, it is possible to show that orbits
with canard segments of different length perturb at different parameter values within an
exponentially narrow regime, thus leading to the canard explosion in the full system.

5.4.1 Jump-on canards

The construction of singular canard orbits linked with Fenichel’s theorem explains the
dynamics of γ1(t) in Figs. 5.3 and 5.4, where the forcing amplitude A is large enough
to surpass the lower Hopf bifurcation HL and the lower fold FL. Headless canards, like
this one, have a jump to the bottom branch in common. Slow-fast systems may also have
canard solutions with a head. They usually appear in systems, which have two folds:
the first one destabilizing, the second one stabilizing the branch. Headed canards jump
onto this stable upper part. In 3D systems with an 1D or 2D S-shaped critical manifold,
the upper sheet is typically unstable near the upper fold, thus preventing the existence
of headed canards. Instead, past the maximal canard, fast oscillations related to the
existence of limit cycles develop and lead to bursting solutions; see Section 5.5.

The trajectory γ2(t) in Figs. 5.3 and 5.4 has the characteristic dynamics of a headed
canard. However, it is peculiar for various reasons. First of all, we can classify this
type of dynamics as jump-on canard, since the trajectory lands (after the fast jump) on
a seemingly repelling slow manifold. Moreover, the jump-on dynamics can occur after a
regular canard segment, as for γ2 or independent of that, like for γ3. As a matter of
fact, trajectories of the latter type resemble relaxation oscillations, like in VdP, despite
the repelling upper sheet of S0. This has an additional consequence: for small enough
ε a continuous transition from subthreshold oscillations to bursting is blocked by jump-
on canards. The fact that fast oscillations other than relaxation oscillations are absent
beyond the maximal canard are novel and unexpected phenomena. In the following we
will address how these solutions emerge. Their impact on the route towards bursting is
discussed in details in Section 5.5.3.

The two solutions γ2(t) and γ3(t) are shown in Fig. 5.5(b) and Fig. 5.6 using two
different projections. They exemplify two types of jump-on canards, that have an approach
towards globally repelling equilibria of the fast subsystem in common. The cyan solution
γ3 represents an orbit which does not interact with the folded saddle p1. It slowly evolves
on the lower sheet of S0, crosses the curve of Hopf bifurcations HL and reaches the lower
fold curve FL at which the slow subsystem is singular. Fast dynamics come into play and
expectedly the dynamics will approach attractors of the fast subsystem. Such attractors
for the considered I1 value at which the curve escapes S0 are solely the stable limit cycles
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displayed in Fig. 5.2(a). Instead of entering a period of bursting, the cyan trajectories
approaches the upper branch of unstable equilibria. As soon as it jumps onto on S0, the
slow subsystem becomes a valid limit anew and the curve remains on S0 until it reaches
FU, where it jumps down to the stable sheet.

In the second case, γ2 in Fig. 5.5(b) and Fig. 5.6, the orbit possesses a canard segment
and jumps from the repelling middle sheet to the repelling upper sheet of S0. Similar to
the previous case, it evolves on S0 until FU and finally jumps down. The global motion is
identical to that of a canard with a head in VdP.

Multiple elements of these singular cycles have to be understood. First of all, both cases
have a similar slow segment in common, namely the part of the trajectory on the upper
sheet of S0. They can be approximated by solutions of the reduced problem Eqs. (2.51)
and are enforced by the presence of p2, around which the trajectory evolves. Since the
center p2 is folded, full rotations around it are not possible and the slow parts terminate at
FU, where the slow flow is undefined. Here the trajectory can be joined to a fast bit which
connects from FU to the attracting sheet of S0. After this part, the dynamics on S0 is
again governed by the slow subsystem and depending on the forcing amplitude A, the two
orbits take different paths. The solution γ3 crosses FL far from p1 and the slow segment
on the attracting sheet stops; γ2 passes through a neighborhood of p1 and exhibits canard
dynamics before a jump occurs. These parts of the orbits are entirely described within
the scope of the slow subsystem.

5.4.2 Nested timescale separation

Understanding the remaining segment that leads γ2 and γ3 towards the repelling sheet
of S0 requires a more detailed analysis. The mechanism is the same for both cases and
will be discussed in the following. Since these pieces of the orbits evolve on the fast
timescale we present a visualization of the curves in I1 − v − r space in Fig. 5.6. In this
projection the critical manifold S0 is shown as a green curve r(I1), v(I1) with attracting
(repelling) parts as a solid (dashed) line. In the singular limit, the jump-on points γ∗2,3 =
(r∗2,3, v∗2,3, x∗2,3, u∗2,3) of the jump-on canard solutions γ2 and γ3, marked by the red and
cyan dots in Fig. 5.6, are of saddle-focus type. Linearization of the dynamics reveals a
weakly and strongly attracting direction in a neighborhood of the jump-on points together
with a repelling direction with complex conjugate eigenvalues. This suggests a 2D stable
manifold leading to γ∗2,3. We will simplify the problem further by noting that the entire
dynamics of jump-on canards takes place close to the surfaceMrv defined in Eq. (5.14).
On the one hand, for the slow pieces of the curve this observation is as expected, since by
definition this conditions holds on S0.

ṙ = 0⇒ r = − ∆
2πτmv

for v 6= 0 (5.14)

On the other hand, also the fast parts of the orbits remain on Mrv. This implies a
reduction of the fast dynamics toMrv for the part of state space in which jump-on canards
can be found. We will exploit this reduction and investigate a secondary differential-
algebraic system resulting from the fast subsystem Eqs. (2.50) in which the flow ṙ is
equilibrated.

This latter step, without having a complete picture of the time scaling, is analogous
to an additional dissection of the fast subsystem. In other words, the full system exhibits
three timescales for what concerns jump-on canards: the dynamics of r takes place on
a fast, that of (v, x, u) on an intermediate and that of (I1, I2) on a slow timescale. The
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equilibration ṙ = 0 eliminates the fastest of these scales and approximates the intermediate
scale dynamics of jump-on canards, which takes place in the vicinity ofMrv.

In this new framework Mrv describes a manifold on which the dynamics of (v, x, u)
take place, while I1, I2 remain frozen. The jump-on points (v∗, x∗, u∗) [red and cyan dots
in Fig. 5.6] are mutual points ofMrv and the upper sheet of S0. In the reduced problem
onMrv, (v∗, x∗, u∗) are of saddle type with eigenvalues λ1 � λ2 � −λ3 > 0 and therefore
have associated 1D stable manifoldsMJO ⊂Mrv [orange curves in Fig. 5.6]. They exists
for any value of I1 after the upper fold. For values of I1 beyond the lower fold, they extend
down to r = 0. The family of 1D stable manifolds associated with the jump-on points
can guide trajectories towards the upper repelling sheet of S0 and this way leads to the
existence of jump-on canards.

So far we have discussed singular orbits, for which the fast segments connect different
sheets of the critical manifold S0. In the case of regular canards, for ε > 0 small enough,
these correspond to stable equilibria of the fast subsystem. For jump-on canards they
might be unstable, but possess a stable direction, allowing to reach and stay on the
repelling sheet of S0. The main dynamics of these singular orbits takes place on S0 and
does not display phases of fast oscillations, as for bursting solutions, but only single fast
jumps.

5.5 Slow-fast transition to bursting: a tale of two routes
Opposed to that, the solution γ4(t) [see Figs. 5.3 and 5.4] and the case initially illustrated
in Fig. 5.1 exhibit bursts: a slow segment is followed by fast oscillations. Periodic solutions
of the fast subsystem are the underpinning elements of bursting, such that a classification in
terms of the fast subsystem’s bifurcations appears appropriate. As shown in the bifurcation
diagram Fig. 5.2(a), limit cycles originate and terminate at Hopf bifurcations, and change
stability at a fold of cycles. Strictly following the classification of Izhikevich, bursting
solutions in this system are of subcritical Hopf/fold cycle type. However, the subcritical
Hopf bifurcation is closely followed by a fold of the underlying equilibrium branch. Due
to a delay effect when surpassing the subcritical Hopf bifurcation [322–324], bursting can
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effectively be initiated at that fold; see e.g. Fig. 5.7(b4). We will restrict our analysis to
these cases. Here a more aptly description of the bursting type is fold/fold cycle, which
corresponds to elliptic bursting in the classification of Rinzel [65].

In order to understand bursting solutions of the full system, we want to remain in the
slow-fast dissection. However, the neural mass with STP in presence of periodic forcing
turns out to be a peculiar system and numerically difficult to handle. We are constrained
by two main factors. First of all, as soon as we leave the singular limit, i.e, for ε > 0, slow
segments of trajectories diverge sensitively from the critical manifold. In other words,
ε is required to be remarkably small to maintain a good agreement between between
full system trajectories and singular orbits. Secondly, numerical simulation as well as
numerical continuation of the full system for small enough ε are challenging, since the
dynamics appears to be stiff and require high accuracy.

Therefore a clear view on the emergence of bursting can not be gained easily in this
framework. For this reason we will provide, additionally to geometrical arguments, nu-
merical evidence on how bursting forms in the present system, either via direct simulation
or continuation using the full system. In general, bursts might emerge via a spike-adding
mechanism, that is, the consecutive addition of spikes into the orbit, when varying a
parameter (e.g., the forcing amplitude). For parabolic bursting this spike-adding is medi-
ated by folded-saddle canards [317]; in square-wave bursters on the other hand, passages
through a fast-subsystem saddle-homoclinic bifurcation and a folded node determine the
number of large-amplitude oscillations in the burst and small-amplitude oscillations before
the burst, respectively [325]. In the following, we report the spike-adding mechanism for
the NMSTP. At its basis is an interaction of the canards dynamics invoked by the presence
of the folded saddle p1, as well as unexpected torus-canard dynamics. Moreover, we will
point out the role of jump-on canards for this spike-adding transition.

5.5.1 Canard explosion and spike-adding

To start with, we consider the case ε = 10−3 and investigate the full system dynamics by
performing continuation with the forcing amplitude A as a parameter. We want to stress
that this ε value, although very small, proves to be rather distant from the singular limit
and slow-fast dissection arguments have to be taken with caution. The initial solution is
for an A value corresponding to subthreshold oscillations, like γ0(t) in Figs. 5.3 and 5.4,
and is continued towards larger amplitudes.

As a solution measure the L2-norm of this family is plotted vs. A in Fig. 5.7(a). The
first part until A = A∗ ≈ 0.25531851205 is in the subthreshold regime. Around A∗ a
very sharp transition occurs, resembling a canard explosion. In this transition region the
orbits already exhibit first spikes, here defined as the number ns of local maxima of r(t)
for which r(t) > 0.21. This is followed up by a series of arches (on the solution branch) at
A > A∗.

The arches are clearly related to the addition of new spikes to the orbit: with every
termination of an arch, by means of a vertical dip of the curve, the number of spikes ns
increases. This behavior can be better observed for larger A, for which each arch is related
to the adding of exactly one spike. Prior, the arches lay more dense along A and the spike
adding appears to be of more complex nature. Despite the fact that the points of ns vs.
A depend on the choice of the r-threshold for which a spike is counted, it is evident that
spikes are added consecutively. It is also clear that these bursting solutions emerge, in a
continuous manner, from subthreshold oscillations.

A more detailed view on the full system dynamics near the explosive transition around
A = A∗ is given in the columns (b - d) of Fig. 5.7. Column b shows the solution in
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Figure 5.7: Emergence of bursting. (a) Bifurcation diagram of the full system. The
black curve shows the L2-norm of a family of periodic solutions vs. the forcing amplitude
A. The blue dots show the number of spikes ns, defined as the local maxima of for which
r(t) > 0.21 τ−1

m . The dashed vertical line is located at A = A∗ = 0.25531851205. (b) Solu-
tions (r(t), v(t), x(t), v(t), I1(t), I2(t)) in r− I projection superimposed on the bifurcation diagram
of the fast subsystem. The insets show the solution in time. (c - d) Same solutions as in (b)
and critical manifold S0, for (c) in (I1, I2, r)-space and for (d) in (I1, v, x)-space. In (d) attract-
ing (repelling) sheets of S0 are visualized as a green solid (dotted) line; the orange surface (wire
frame) represents the family of stable (unstable) limit cycles of the fast subsystem [orange branch
in column (b)]. Note that here the x-axis is inverted. In (b) the black dots denote FL and FU,
the orange dot HL, while the black dots in (c) show the folded singularity p1, assuming A = A∗.
Spikes contributing to ns are marked with blue dots. The dashed red curve shows the solution of
the panels above. The A values in (b - d) are in increasing order from top to bottom and near A∗.

Full system solutions obtained at ε = 10−3.

r − I1 projection superimposed on the fast subsystem’s bifurcation diagram; column c in
(I1, I2, r)-space together with S0; column d in (I1, v, x)-space.

In projection onto the (I1, v, x)-space, the S0 appears as a curve (I1, v(I1), x(I1)).
Additionally we show the family of fast subsystem limit cycles, which emerge at the
lower subcritical Hopf bifurcation HL. Unstable periodic solutions of this branch will
be denoted by Γr, stable ones after the fold of cycles by Γa. Embedding these solutions
Γa,r(I1, t) = (r, v, x, u)(I1, t) into the state space of the full system one obtains the surface
P = Pa ∪ Pr, which consists of attracting and repelling parts Pa,r = {(Γa,r(I1, t), I1)|t ∈
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[0, T (I1)]} × {I2|I2 ∈ R}, corresponding to stable and unstable branches of the solution
family, respectively. The period T (I1) of these cycles depends on I1.

Onset of fast oscillations (b1 - d1)

At the smallest of the chosen A values near A∗ one can already observe fast oscillations,
consisting of five not fully developed spikes. They occur after the trajectory has turned
around the folded saddle p1, marked by a black dot in (c1). It is this motion around
p1, taking place in the vicinity of the critical manifold S0, which has signs of a turning
point, guiding the trajectory along the repelling sheet of S0. Taking the rather large ε
value into account, this turn hints at a canard segment arising due to the presence of
the folded saddle p1. After this segment, in (I1, I2, r)-space [Fig. 5.7(c1)], the trajectory
pierces through the repelling sheet of S0 and fast oscillations set in. These results suggest
that bursting is initiated at the termination of a canard segment, closely following the
repelling middle sheet of S0.

Taking the fast subsystem LC family Γa,r into account, a remarkable feature of the
dynamics can be seen in (I1, v, d) space [Fig. 5.7(d1)]. The spikes of the burst appear
to follow the family of unstable limit cycles, thus evolving near the repelling surface Pr.
Unexpectedly, after piercing through the critical manifold, the bursting solution stays in
the proximity of Pr, instead of being repelled from it. As I1 slowly drifts towards smaller
values, the trajectory remains close to Pr. These windings around Pr correspond to the
first not fully grown spikes of the full system solution. The spikes increase in amplitude,
as I1 decreases, but remain small; see Fig. 5.7(b1) and inset. An enlargement of two full
system trajectories in (I1, v, x)-space is shown in Fig. 5.8, with two exponentially close A
values near A∗.

Finally, the fast oscillations terminate via an escape from Pr. By approaching the
bottom sheet of S0, the dynamics change to that of a drifting equilibrium, passing from
burst to quiescence.

Explosivity and spike-adding (b2 - d2)

At a slightly larger A value, close to A∗, a majority of the trajectory remains essentially
unchanged, with respect to the previous A. The slowly drifting part along the bottom
equilibrium branch of the fast subsystem and the canard segment, as well as the first
oscillations, appear frozen. This is clear by comparing the blue trajectory with the red
dashed curves in Fig. 5.7(b2 - d2), as well as in Fig. 5.8. The fact that part of the trajectory
near the fold freezes, while the following part changes significantly, is a strong indication
for explosivity of the solution, when varying the parameter. This strong sensitivity towards
parameter changes is typical for canard dynamics. It is caused by the presence of repelling
objects in the fast subsystem, typically, but not exclusively, equilibria, like the middle
sheet of S0.

Indeed, in Fig. 5.7(b2 - d2), the full system trajectory possesses a canard segment stay-
ing near the middle sheet of S0, when it turns around the folded saddle p1. Hence the
sensitivity is to be expected. Moreover, during the fast oscillations, the bursting solution
evolves close to Pr, thus adding an additional layer of sensitivity.

Compared to the previous case in Fig. 5.7(b1 - d1), the full system solution winds
around Pr more often until smaller values of I1, before jumping back to S0. The trajectory
essentially remains close to Pr, but reaches up higher. This way, by passing through A∗,
more and more spikes with increasing amplitude are added to the burst. These spikes are
yet not fully grown to the amplitude of the stable limit cycles present in this I1 region.
Furthermore, we note that distance of the blue trajectory to Pr increases, as it winds
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explosion at A∗. Solutions obtained for ε = 10−3.

around it, indicating some extent of repulsion near the surface; see also Fig. 5.7(b2). This
way, the full dynamics starts to escape from Pr and gets attracted to Pa.

Emergence of bursting (b3 - d3)

As A increases further, the point at which the trajectory starts to escape from Pr shifts
towards the lower Hopf bifurcation HL. In fact, the last two spikes are already repelled
sufficiently to evolve close to the attracting surface Pa; see Fig. 5.7(b3, d3). In other words,
the number of revolutions near Pr reduces, while the ones around Pa increases. These
oscillations near Pa are of large amplitude and mark the start of a dense burst following
for larger A.

Bursting (b4 - d4)

In this next step most of the windings around Pr have vanished and the fast oscillations
take place in the proximity of Pa. Additionally, the burst consists of more spikes in total,
with respect to the first considered A value [Fig. 5.7(b1 - d1)].



112 Chapter 5. Emergence of bursting: a slow-fast approach

Here, an additional spike-adding mechanism beyond the critical value A∗ acts and
is related to the period T (I1) of Pa as a function of I1. When A is beyond the canard
explosion at A∗ the full system dynamics approach Pa right after surpassing the lower fold
FL, without the excursion on Pr. As the amplitude A is increased, this attraction to Pa

occurs at larger I1 values. The period T (I1) of the fast subsystem limit cycles decreases
with increasing I1 and this finally leads to more windings around Pa. On top of this, the
fraction of time for which the trajectory remains near Pa increases. Both effects add more
spikes to the burst and result in the spike-adding arches observed in Fig. 5.7(a).

The presented results already show the complexity of how bursts are generated, that
is, via a transition through the canard explosion at A = A∗, which rather surprisingly
leads the canard segment to evolve around the repelling object Pr. This is followed by
spike growth via repulsion from Pr and attraction to Pa, until all oscillations evolve near
Pa.

5.5.2 Continuous route to bursting: spike-adding via mixed-type-like
torus canards

Before the bursting transition, the full system dynamics can be described by a single slow
frequency, determined by ε. After the transition, a full cycle consists of a slow phase
followed by fast spiking. It is therefore characterized by the slow frequency and a fast
one, given by properties of the fast subsystem. In the context of bursting and in slow-fast
systems, whose fast subsystem has both stable and unstable cycles, this change of the
dynamics, from one to two frequencies, hints at a torus (Neimark-Sacker) bifurcation in
the full system.

This can indicate the existence of mixed type-torus canards (MTTCs). Indeed, the full
system dynamics nearby the canard explosion not only exhibits a canard segment along
the repelling sheet of S0, but as well a canard segment on the repelling higher dimensional
invariant set Pr. This clearly resembles mixed-type canards as described in [69]. Very
similar MTTCs have been reported in [95], where they evidently arise in the singular limit
ε→ 0. In particular Fig. 2 of [95] reports dynamics where a quasi-static motion of the full
system along the attracting sheet of S0 connects to a repelling set of limit cycles created by
a subcritical Hopf bifurcation. In the NMSTP however, the understanding of mixed-type
torus canards is more complex for various reasons and as we will show, only observed for
small, but large enough ε.

First of all, in the ε regime for which we observe mixed-type torus canards, the
timescale separation is small enough for the canard segment on the middle sheet of S0
to persist as a strongly perturbed version of its singular counterpart. One can observe a
turn around the lower fold FU, mediated by the folded-saddle singularity p1. It forces the
trajectory to pierce through S0, bringing it very close to Pr; see Fig. 5.8.

Secondly, the solutions Γr ⊂ Pr, despite being globally repelling, possess two stable
Floquet multipliers. We argue that the associated stable directions, similar to the jump-on
canard case (see Section 5.4.2), form due to the intrinsic timescales of the fast subsystem.
Consequently, this means that stable manifolds can be associated with Pr: it can attract
trajectories along certain directions.

Thirdly, for large enough ε, one can expect dynamics very distinct from singular orbits.
In particular, solutions may not only evolve nearby, but also switch between different
attracting branches of the fast subsystem. We observe this transition from the middle
sheet of S0 to Pr. Despite both being repulsive, the reasoning holds: the folded-saddle
canard dynamics enforces the full system to stay close to the middle sheet of S0; stable
directions allow an attraction towards Pr; the large ε allows to bridge S0 to Pr and finally
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torus canard dynamics allow to follow Pa closely, adding more and more spikes in the
transition region around A∗.

5.5.3 Discontinuous route to bursting: block evoked by jump-on canards

The transition from subthreshold oscillations to bursting when increasing the forcing am-
plitude A explains the emergence of the very first spikes in the burst, which occur for
forcing amplitudes exponentially close to A∗. They also show how the subsequent spike-
adding process, reflected by the arches in Fig. 5.7(a), occurs. In the following we will
extend the analysis of this transition, taking into account different values of the parame-
ter ε. As an outlook, we will describe how, for ε values closer to the singular limit, jump-on
canards interfere and block the transition.
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Figure 5.9: Families of bursting solutions and canards: The bifurcation diagram shows solution
families of the full system in terms of the L2-norm vs. the shifted forcing amplitude A− A∗. For
all branches (br.) apart from br. 4, the A∗ denotes the location of the canard explosion. For
br. 4 on the other hand it marks the termination of continuation due to insufficient accuracy.
There are two types of solution families: the ones which undergo a continuous transition from
subthreshold oscillations to bursting (red curves) and those which transition from subthreshold to

jump-on canard dynamics (cyan curves). Br. 4 and 5 have identical ε ≈ 2.667521298 · 10−4.

In Fig. 5.9 solution families of periodic orbits are displayed, obtained via numerical
continuation of the full system Eqs. (5.2) and Eq. (5.3). The figure comprises seven
branches for ε values ranging from ε = 5 · 10−3 to ε = 1 · 10−5 and they are aligned to
the canard explosion at A = A∗ (apart from branch 4). Branch 3 is identical to the one
shown in Fig. 5.7 and undergoes a continuous transition from subthreshold oscillations to
bursting.

As a general result, we find two types of solution families, which, beyond the canard
explosion, i.e, for A > A∗, take different paths. For ε ' 2.7 · 10−4 the branches display a
continuous transition from subthreshold oscillations to bursting; see red curves in Fig. 5.9.
For ε / 2.7 · 10−4 on the other hand the branches evolve into families of jump-on canards
(curves in Fig. 5.9). A value of ε ≈ 2.667521298 · 10−4 separates the two ε regimes.

However, it is clear by considering branches 4 and 5 that bursting solutions do not
cease to exist for smaller ε values. Instead they coexist with the jump-on type solutions.
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It remains unclear how bursting forms for ε / 2.7 · 10−4. Nevertheless the role of
jump-on canards for the emergence of bursting becomes evident: for singular or small
enough ε / 2.7 · 10−4 regular canards are observed, evolving on the middle sheet of S0.
Beyond the maximal canard, the intrinsic timescales of the fast subsystem come into play
and lead to the emergence of jump-on canards (see Section 5.4.2). They block a transition
towards P and as a consequence, bursting remains absent for these solutions families.

For ε ' 2.7 · 10−4 however, jump-on canards cease to exist. In the amplitude regime
where they would be expected, the system approaches Pa and bursts instead. The region
around the canard explosion is populated by MTTCs and separates subthreshold oscil-
lations from the bursting regime. It remains an open question for future work how the
differentiation depending on ε occurs and in particular which possible bifurcations of the
full dynamics result in the distinct regimes of continuous bursting transition and blocking
jump-on canards.

5.6 Network behavior
The neural mass model with STP Eqs. (5.2) is an exact limit of the underlying QIF network
Eqs. (5.1) as N →∞. We want to emphasize the benefits of neural mass models and their
capability of describing neuronal dynamics at a macroscopic scale. In Fig. 5.2(b - f) results
using the fast subsystem and the corresponding QIF network have been shown. For the
original neural mass model [16] the exactness of the mean-field limit has been exploited in
various studies in order to understand the collective dynamics of large neuronal populations
[31–33, 46, 87, 98]. We want to note that STP, as opposed to exponential synapses used
in Ref. [68], results in a substantially higher sensitivity towards finite size fluctuations
and numerical errors, rendering the agreement of network and neural mass less clear, in
particular in the canard regime.

Here we want to assess if the mechanisms leading to bursting in the neural mass model
persists in a finite-sized network. To our knowledge such analysis, in particular in presence
of short-term synaptic plasticity, has not been performed. For this we introduce the
external periodic forcing I1 = A sin(εt) also into the network Eqs. (5.1) and investigate the
QIF population dynamics nearby the canard explosion of the neural mass. In Fig. 5.10(a)
the family of periodic solutions transitioning from subthreshold oscillation to bursting is
shown for ε = 2 · 10−3. Two dashed black lines mark the values A = 0.265 and A = 0.27,
respectively, for which neural mass (red) as well as QIF network trajectories (black) are
depicted in Fig. 5.10(b, c). Row (b) shows the time series x(t) vs. t, row (c) the trajectories
in (I1, v, x)-space.

The QIF network consists of N = 100000 neurons and ε = 2·10−3 is chosen to maintain
reasonable computation times. In the network, the initial conditions are chosen according
to fixed point values (r∗, v∗, x∗, u∗) obtained from the neural mass at I1 = 0. However,
initializing the network firing rate and average membrane potential at a given value is a
non-trivial problem. To overcome this, the initial conditions of the QIF network are set to
Vi = v∗ for all i = 1, . . . , N , x = x∗ and u = u∗. After a short transient, at time t = 0,
the network has reached equilibrium and the forcing I = A sin(εt) sets in.

We start the analysis by considering A = 0.265, marked by the left most dashed line
in Fig. 5.10(a). It lays within the spike-adding arches of the neural mass, which displays
bursting with a multitude of fully grown spikes; see red curves in Fig. 5.10(b1, c1). They
mainly evolve in the proximity of the invariant set Pa. This periodic solution of the full
problem does not highlight a canard segment around the folded singularity p1, which is to
be expected, since A is not close enough to the canard explosion at A∗.
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Figure 5.10: Bursting in the QIF network: (a) The bifurcation diagram shows a family of
periodic orbits of the full neural mass system in terms of the L2-norm vs. the forcing amplitude
A−A∗. It corresponds to br. 2 in Fig. 5.9. The black dashed lines mark A = 0.265 and A = 0.270
respectively. (b - c) Trajectories of the full system (red) superimposed on results obtained by
simulating the QIF network Eqs. (5.1) with N = 100000 neurons and in presence of sinusoidal
forcing I1(t) = A sin(εt). In (b1,c1) the forcing amplitude is given by A = 0.265; in (b2,c2) by
A = 0.270. Row b shows the time series of the solution in terms of x(t) vs. time t. In row c
they are shown in (I1, v, x)-space together with the critical manifold S0, with attracting (repelling)
sheets as a solid (dashed) green line, and the invariant manifold P of the fast subsystem (orange
wire frame and surface). The orange dot denotes HL, the black dots FL and FU. The x-axis is

inverted in c.

On the other hand, the macroscopic state of the QIF network is found to be just
at the start of the spike-adding process. The orbit possesses a canard segment: the
turn around the lower fold FL is evident. This is clear by looking at the black curve
in Fig. 5.10(c1). More strikingly, a few low-amplitude oscillations are picked up in the
vicinity of the repelling invariant set Pr. This means that, despite the discrepancies, the
mixed-type torus canards observed in the neural mass are also found in the QIF network.
It is plausible to assume that spike-adding in the network follows the same mechanism as
described in Section 5.5.

At the larger amplitude A = 0.270, shown in Fig. 5.10(b2, c2), the agreement between
neural mass and network trajectory is more distinct. In both systems the canard segment is
absent and they both exhibit bursting with a comparable number of large amplitude spikes.
Taking also into account the previous case A = 0.265, it appears that the bifurcation
structure of the network is shifted towards larger amplitudes with respect to the neural
mass.

5.7 Discussion
The results of this work lay within the intersection of various fields including mean-field
theory and slow-fast dynamics. First of all, we make use of recent developments of mean-
field theory, namely the powerful OA ansatz, in order to understand the emergent dynamics
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of spiking neuronal networks on macroscopic scale.
Secondly, we aim at more biologically plausible models in this work, through the inclu-

sion of synaptic dynamics, in form of STP, while preserving the exactness of the mean-field
limit with respect to the QIF network. This adds more realism to the QIF network and
neural mass, but at the same time adds to the complexity of the collective dynamics, even
in absence of external forcing. In the part of parameter space chosen here, STP allows for
the existence limit cycles, that are absent in the original model. As we have shown via
extensive numerical evidence, STP leads to various peculiarities, when forcing the system
slowly and periodically.

That leads to the third point, which we put our focus on: the treatment of the forced
neural mass with STP using methods of singular perturbation theory, in particular slow-
fast dissection. Without STP, slow external forcing already gives rise to bursts, as shown
in [16]. The fast oscillations of these orbits vanish in the singular limit and relaxation
oscillations remain. Accounting for STP, however, leads to more intricate dynamics.

One of the fundamental elements are canards. Expectedly, due to the slow harmonic
passage through a fold of the S-shaped critical manifold, they appear as folded-saddle
canards, which play a role for spike-adding in parabolic bursters. Here, despite the fact
that the equilibrium destabilizing bifurcation is a subcritical Hopf bifurcation, the observed
bursts are reminiscent of elliptic bursting (i.e., subcritical fold/fold of cycles bursting), due
the slow passage through the Hopf bifurcation.

Concerning the full system dynamics, a folded saddle can be found, with associated
explosive canard solutions. It separates quiescent orbits with purely slow dynamics from
bursting ones. In this transition region we find an intriguing interplay of slow-fast effects:
jump-on canards exist close enough to the singular limit and are associated with a subtle
timescale separation of the neural mass, allegedly invoked by STP. They connect two
repelling sheets of the critical manifold and more strikingly, block a continuous transition
from quiescence to bursting.

Jump-on canards are one of the surprising elements of this work. However, they vanish
when considering biologically more plausible frequencies of the periodic external current.
Despite the rather insufficient timescale separation in this parameter regime, we find orbits
which display a strongly perturbed canard segment. It is remarkable that these canards,
as opposed to the jump-on case, do not block a continuous transition towards bursting,
but much more promote it. Specifically they guide the trajectories into the proximity of
unstable limit cycles of the fast subsystem. Here once again, an unexpected mechanisms
sets in and allows attraction towards these globally repelling cycles. The final element to
the spike-adding mechanisms in this region are rapidly oscillating segments that revolve
around the branch of unstable limit cycles and consecutively add more spikes to the orbit.

Overall, the full dynamics nearby the canard explosion can be seen as mixed-type-like
canards of peculiar nature: orbits evolve nearby the repelling middle sheet of the critical
manifolds, as well nearby unstable limit cycles. Typically mixed-type canards are observed
towards the singular limit, as they represent a slow-fast effect. The neural mass with STP
exhibits mixed-type-like canards only for large enough forcing frequency; the phenomenon
disappears for too slow forcing and is blocked by jump-on canards.

By virtue of the NMSTP model being the main subject of this work, we want to
emphasize that it represents an exact limit of the QIF network with STP. Discrepancies
between network and NMSTP arise due to numerical errors and finite-size fluctuations,
especially under slow forcing. Nevertheless, our results clearly show a good agreement
between the two models. In particular, the network simulations display the mixed-type-
like torus canard dynamics, hence this can be regarded as a strong evidence for the same
mechanisms to be responsible for burst spike-adding in the network.
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In summary, the NMSTP turns out to be a useful approach in order to investigate
the ensemble dynamics of neuronal populations in presence of STP. Slow-fast dissection
reveals the mechanisms underlying burst generation on population level. As is it turns
out, synaptic dynamics indeed enriches the complexity of the problem, by giving rise
to peculiar jump-on and mixed-type-like torus canards, which both appear due to the
timescales associated with STP.

Finally, while this work is in the scope of neural mass models and STP, the methodology
of OA reduction and slow-fast dissection, coupled with numerical bifurcation analysis, can
be applied to a much broader class of phase oscillator systems, like the Kuramoto model.
This can lead to a better understanding of emerging collective slow-fast dynamics of large-
scale networks.
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Chapter 6

Conclusion and perspective

Next generation neural mass models have emerged from the seminal works of Ott and
Antonsen and Montbrió, Pazó, and Roxin [15, 16]. Ever since they have inspired a large
community of mathematicians, physicists and theoretical neuroscientists, to implement
more plausible biophysical mechanisms and study large scale neuronal dynamics, with fo-
cus on different aspects. To recall and name a few examples, the exact MPR firing rate
equations have been employed to study (1) the effect of time delay in populations of in-
hibitory neurons giving rise to collective chaos [31], (2) the crucial role of spike synchrony
for fast oscillations [46], (3) the importance of oscillations in cognitive tasks [32], (4) nested
cortical oscillations [33] and (5) the impact of electrical synapses on network synchroniza-
tion [35]. This latter study is also an example for the versatility of the OA and MPR
framework, which allow for the inclusion of relevant biophysical features, without losing
the exactness of the mean-field limit. Some recent extensions of the exact neural mass
model take into account fluctuation driven populations [37], spatially extended neural field
models [260, 326] and spike-frequency adaptation [327].

Despite considering spiking networks of phenomenological QIF neurons and the cor-
responding mean-field limits, the above works demonstrate how simple mathematical de-
scriptions can provide insight into biophysical problems. It is important to note that
many of the cited works using the MPR framework draw fundamental conclusions regard-
ing neuronal dynamics with respect to properties of the systems, which are ubiquitous in
neuroscience, like time delay. These studies might allow for predictions of the expected
dynamics in a much broader range of models, which possess (or do not possess) the same
properties. An excellent example for this is spike synchrony, which is very relevant for
cortical oscillations during working memory tasks.

This thesis gives a glimpse at what can be achieved with next generation neural mass
models, but it also leaves open questions. Therefore, we will address several aspects which
are relevant with regards to the studies in Chapters 3 to 5, but also to the model derivation
in Chapter 2. In the following the key results of this thesis will be summarized and put
in a broader context. We will also comment on the limitation of the neural mass model
with short-term synaptic plasticity and give perspectives for future projects.

6.1 Working memory
The implementation of STP into the QIF network and exact mean-field framework in
Chapter 2 is one possible extension of next generation neural mass models, aimed at the
very specific application of the model towards working memory. In this thesis we have
seen that first of all a QIF network with STP is able to reproduce basic working memory
operations like information loading, maintenance and rehearsal, based on either popula-
tions bursts or persistent activity. Secondly and more importantly, the entire dynamics of
the QIF network in presence of STP on mesoscopic scale is captured in an exact manner
by the corresponding neural mass model.
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Both models exhibit spike synchrony and thereby give rise to fast oscillations in the
β-band, as observed in experimental studies with monkeys and humans. We can confirm
one prediction of previous studies in the context of working memory, namely that these
oscillations are absent in models that do not take into account spike synchrony, like the
Wilson-Cowan model. Hence, using the next generation neural mass model with STP,
we reported a better agreement with experimental results regarding powers of cortical
oscillations in various frequency bands, compared to the WC model.

Moreover, thanks to the exactness and low dimension of the mean-field model, a sys-
tematic analysis revealed how the spectrograms are shaped by the interplay and resonances
of fundamental frequencies in the system, which are linked to the number of items main-
tained in memory. One of the remarkable results of Chapter 3 is the analytical estimation
of the maximum working capacity of around five items, which is in line with experimental
studies.

6.1.1 Perspective

We want to address the validity and limitations of the mean-field approach that we have
employed in order to study working memory. In particular, the comparison of microscopic
system and neural mass in Chapter 3 was performed using descriptions of STP on different
scales, in this thesis referred to as microscopic STP (µ-STP) with 3N equations in the
network and mesoscopic STP (m-STP) with N + 2 equations. Naturally the former one
represents a more accurate description of STP, by incorporating the dynamical evolution
of the resources and utilization factors at the single neuron level. It is clear that the neural
mass model with STP developed in this thesis does not represent an exact mean-field limit
for the µ-STP case, as also pointed out in [328]. However the exactness is given for the
m-STP network case, as we have shown in Chapters 2 and 3.

The justification for mainly using m-STP in this thesis was given by the Poissonian
assumption, which allows to neglect correlations between the depression and facilitation
variables [92], resulting in the m-STP equations. And indeed, when comparing the µ-
STP network with the neural mass model that has m-STP at its basis (hence is not an
exact description for µ-STP), we find remarkable agreement of the time traces, despite not
taking into account correlations and fluctuations of the synaptic variables. The agreement
is particularly good, when the network exhibits high firing rate dynamics, but discrepancies
increase for low firing activity.

The influence of firing rate heterogeneities in the µ-STP network is also reported in
[328]. The authors suggest that the agreement between the neural mass model developed in
this thesis and the µ-STP network improve when heterogeneities are low. Independently,
we have made similar considerations in Appendix A and find that silent neurons are at the
core of the discrepancies between our neural mass model and the µ-STP network. First of
all, we have only considered depressing synapses in absence of facilitation, but still found
discrepancies, implying that the Poissonian assumption is not the root of the problem.
Secondly, we find better agreement between the mean-field limit and µ-STP network for
states in which silent neurons are sparse. This is in line with the approach in [328].

The neural mass model with STP proposed in this work suffices for the application to
working memory, as we have demonstrated in Chapter 3. This is supported by the fact
that working memory loading, maintenance and rehearsal are associated with enhanced
firing rates, for example found in persistent state activity or population bursts. Overall,
the model developed in this thesis represents an exact limit of the m-STP network and
allows for a better understanding of phenomena relevant to questions of WM.

An exact macroscopic description of the dynamics in a QIF network with µ-STP is
desirable and interesting to study from a mathematical point of view, but it remains
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an open question whether or not such a limit can be performed. The considerations in
Appendix A and [92, 328] can be seen as a starting point to answer that.

6.2 All-brain modeling
In Chapter 4 experimentally obtained data were employed to model neuronal dynamics on
the scale of the whole brain. In this thesis, structural connectomes obtained from diffusion-
weighted MRI were used for the first time within a multi-population model, in which each
network node, representing a brain area, obeys the dynamics of a MPR neural mass. With
regards to the biophysical plausibility, it is important to note that we have deliberately
refrained from implementing phenomena like STP or adaptation, in order to keep the
model simple. This way we provide a proof-of-concept for idealized next generation neural
mass models able to test clinical hypothesis of seizure propagation.

The healthy subject and epileptic patient connectomes are provided by different labo-
ratories and do not use the same anatomical atlases for the segregation into brain areas.
As such, direct comparisons of the data sets have to be taken with caution. Yet, in order
to validate the applicability of the neural mass model, it was crucial to testify that with
otherwise identical parameters, our approach yields distinct emerging dynamics, when
comparing healthy subject to epileptic patient connectomes. Accordingly, we have re-
ported numerical evidence, hinting at the epileptic patient connectomes to be more prone
to seizure-like events, through a reduction of the external current required to trigger re-
cruitments into the high activity states.

We also exploited the presurgical assessment, allowing to identify epileptogenic zones
and in particular propagation zones for individual patients. Here we find good agree-
ment between the recruitment order predicted by the multi-population model and the
nodes which supposedly are propagation zones, according to the presurgical invasive and
non-invasive evaluation. In summary, the results provided in Chapter 4 illustrate how
next generation neural mass models can be used for clinically relevant studies on seizure
propagation, despite being phenomenological and idealized.

6.2.1 Perspective

As mentioned above, the multi-population neural mass model employed to study seizure-
like events is chosen to be minimalistic. Its major limitations are given by the absence
of sustained collective oscillations and spontaneously emerging and terminating seizures.
Hence, modeling fully developed seizures and their propagation is not possible.

In order to lift this limitation, the implementation of short-term synaptic plasticity
into the multi-population model appears a natural choice. STP gives rise to stable limit
cycles, as shown in this thesis, and contributes two additional timescales. Moreover, the
multi-population model in presence of STP allows for heterogeneities in the depression
and facilitation time constants of individual populations, which have also been reported
experimentally [90]. Furthermore, the OA exact reduction methodology allows many other
biophysical mechanisms to be implemented, rendering the model more sophisticated and
realistic, but also more opaque.

In this context a compelling research line would be the assessment of the capabilities of
the exact neural mass model in reproducing all-brain dynamics, when taking into account
more detailed mechanisms. An effective method for this assessment has been performed in
[329] and requires functional connectomes obtained from fMRI, in addition to the struc-
tural diffusion-weighted MRI connectomes. Functional MRI is based on the calculation
of signal correlations among different brain regions. These correlations have to arise from
structure. Therefore, one can feed the structural information into the dynamical model
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and measure the correlations arising in the numerical simulation, in order to estimate a
fMRI connectome. This allows for an optimization loop, in which parameters are changed
iteratively, in order to achieve a better match of the empirical functional connectomes and
the simulated ones, thus benchmarking the model capabilities.

6.3 Slow-fast dynamics in large networks
The focus in Chapter 5 was on understanding the response of a spiking neural network
to a periodic external drive. It is one of the first studies combining slow-fast dissection
with the exact reduction methodology from statistical physics, to gain insight into the
collective response of large coupled networks. A look into the original model by MPR
already reveals an interesting bifurcation structure which displays bistability, an essential
ingredient for complex dynamical behavior to arise, when periodically forcing the neural
population. Motivated by this characteristic, we studied the extended model used for
working memory, which in this thesis has proven to complexify the bifurcation structure
by giving rise to stable limit cycles.

The slowly forced system exhibits disproportionately more convoluted slow-fast dy-
namics in presence of STP. Besides the classical canard, we reported jump-on canards,
which at first appeared to be primarily a mathematical curiosity. A rigorous numerical
investigation revealed their central role in blocking the continuous route from subthreshold
oscillations to bursting, when considering extensive timescale separations.

For biologically more relevant separations, the route to bursting is continuous and
shaped by mixed-type-like torus canard, which mediate a continuous spike-adding transi-
tion. Interestingly this behavior associated with the onset of bursting breaks down when
approaching the singular limit. We provided evidence that shows the continuous transition
to bursting via mixed-type-like torus canards also in the underlying microscopic network.

Studies which examine networks of phase oscillator are pervasive in physics and non-
linear dynamics. Models which describe phenomena that are very different from the above
study on collective bursting in a spiking neural network might possess similar bifurcation
scenarios, giving rise to the same slow-fast mechanisms reported here. The methodology
employed in Chapter 5, i.e, mean-field theory coupled with slow-fast analysis, can be
applied to other systems and shed light onto the emerging collective dynamics as a response
to external drives.

6.3.1 Perspective

The slow-fast analysis of the neural mass model also brings up new intriguing questions.
First of all, some details regarding the emergence of bursting in the non-continuous case
remain unclear. In particular, the branch of bursting solutions for strong timescale sepa-
ration, appears to be an isola, i.e, a disconnected branch. A problem we encounter here
is the stiffness of the slow-fast dynamics, such that the numerical bifurcation analysis
becomes challenging. One possible way of extending the analysis could be to construct a
minimalistic model that exhibits the essential multi-timescale phenomena: jump-on and
mixed-type-like torus canards. Two crucial elements for this could be the proximity of the
saddle-node and subcritical Hopf bifurcations, as well as the subtle timescale separation
in the fast subsystem.

Secondly, we have seen that a folded-saddle singularity can give rise to interesting
canard dynamics and shapes the transition to bursting oscillations. Here the slow periodic
Hopf forcing is partially responsible for the emergence of a folded saddle. However, the
forcing dynamics does not need to be of Hopf form, in order to produce a periodic drive.
Instead one could realize it through a feedback loop between the neural mass and forcing
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term. Depending on the exact choice, it is possible to obtain a folded-node singularity,
replacing the folded saddle. In such a case we expect to observe mixed-mode bursting
oscillations [325], which are solutions exhibiting both small-amplitude oscillations and
bursts of large-amplitude oscillations. An interesting aspect to study in this case is the
role of jump-on canards and if they impact the transition to bursting.

6.4 Beyond the MPR firing rate equations
To bring this dissertation to an end, let us address the plausibility of the employed neural
mass models, which have quadratic integrate and fire neurons at their basis, hence are
inherently phenomenological. The fact that QIF neurons are not biophysically grounded
does not imply that they are not capable of describing neuronal dynamics accurately. As a
matter of fact the phenomenological AdEx model has biophysically meaningful parameters,
which can be fitted to empirical data. Moreover, one can link the AdEx to the QIF model
as shown in Chapter 2. This opens up an interesting question, namely whether or not
an exact mean-field limit in the OA framework can be performed, while maintaining
the leak term and adaptation dynamics. The Izhikevich model stands out in terms of
biological plausibility compared to most of the integrate and fire models. Hence, trying
to obtain an exact macroscopic description for networks of Izhikevich neurons, including
meaningful microscopic and macroscopic parameters which bridge the scales, appears to
be a worthwhile future project.
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Appendix A

The following appendix contains considerations, which are related to the implementation of
short-term synaptic plasticity on microscopic level and the corresponding mean-field limit.
Together with the pre-print [328] they provide first ideas on how a better mean-field limit
can be performed, without relying on the mesoscopic description of STP described in [92].
They also give an intuition on why the neural mass model derived in this thesis is able
to reproduce the dynamics of the QIF network in presence of microscopic STP to some
extent, despite not being an exact limit.

1 Fully coupled QIF network with microscopic depression
We want to estimate the average resource 〈X〉 of a QIF network with microscopic depres-
sion. For simplicity we neglect facilitation. Following from Eqs. (2.37) in Chapter 2, the
dynamics of a fully coupled QIF network with short-term depression and in absence of
facilitation, i.e., U(t) = const. = U0, reads

V̇i = V 2
i + ηi + JU0

1
N

N∑
j=1

XjSj (6.1a)

Ẋi = 1−Xi(t)
τd

− U0XiSi , (6.1b)

with the spike train of the j-th neuron

Sj(t) =
∑

tj(k)<t
δ(t− tj(k)) . (6.2)

We define Ii(t) = ηi + JU0
1
N

∑N
j=1XjSj as the total current that is applied to neuron i.

When the network is in a quasi-equilibrium state, i.e, when Ii(t) = const and if Ii > 0 is
satisfied, the analytical solution of Eq. (6.1a) yields tonic firing at a frequency

f(Ii) =
√
Ii
π

. (6.3)

Neurons with Ii < 0 decay to their resting potential V = −
√
|Ii| and remain silent in

approximation.

Silent neurons

For the set of silent neurons NS, calculating the equilibrium X∗S of the depression variable
Xi is trivial. Since Si = 0, Xi will converge to X∗S = 1.

Tonic neurons

For the set of tonic neurons NT, one can coarse grain the spike train and set Si = f(Ii) =√
Ii
π in approximation. The equilibrium depression variable for tonic neurons X∗T,i depends
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on the index i and is given by

X∗T,i = 1
1 +

√
Ii
π U0τd

. (6.4)

In summary we have for the equilibrium X∗i of neuron i:

X∗i =

1 if Ii ≤ 0
1

1+
√
Ii
π
U0τd

if Ii > 0

 (6.5)

1.1 Ensemble average

In the limit N →∞ and given that the network is in quasi-equilibrium, we can calculate
〈X∗〉, as well as the mean firing rate r̄ of the tonic neurons, using an integral. For this
we have to take into account the PDF g(η) and approximate further, by assuming that
the contribution of the recurrent current is neglectable, in other words, Ii = ηi. This is
justified by the fact that the present approach serves as an estimate for cases where many
neurons are silent. We proceed by calculating the mean firing rate r̄ of the tonic neurons1:

r̄ =
∫ ∞

0

√
η

π
g(η) (∗)= 1

π

√
η̄ +

√
η̄2 + ∆2

2 (6.6)

X∗T,i in the thermodynamic limit becomes X∗T(η) and we can integrate:

〈X∗〉 =
∫ ∞
−∞

X∗T(η)g(η) = 〈X∗〉S + 〈X∗〉T (6.7)

=
∫ 0

−∞
1 · g(η)dη +

∫ ∞
0

g(η)
1 + U0τd

√
η
π

dη . (6.8)

With the contribution 〈X∗〉S of silent and 〈X∗〉T of tonic neurons. To recall, g(η) is a
Lorentzian distribution given by g(η) = 1

π
∆

(η−η̄)2+∆2 . Using the cumulative distribution
function of a Lorentzian, the first term can be calculated as:

∫ 0

−∞
g(η)dη = 1

2 −
arctan

(
η̄
∆

)
π

, (6.9)

and is not only 〈X∗〉S, but at the same time the fraction of silent neurons. For the second
term we obtain1:∫ ∞

0

g(η)

1 + U0τd
√
η
π

dη
(∗)
= (6.10)

π

(
−2π3r̄U0τd + 2

√
R− (πrr̄)2U3

0 ∆τ3
d + 2πr̄U3

0 η̄τ
3
d + π2(π + 2φ)− U2

0 τ
2
d

(
πη̄ + 2η̄φ + 2∆ log(R) + 4∆ log

(
U0τd
π

)))
2(π4 − 2π2U2

0 η̄τ
2
d + R2U4

0 τ
4
d)

,

with R =
√
η̄2 + ∆2, φ = arctan

( η
∆
)
and r̄ from Eq. (6.6). Note that Eq. (6.10) is

only valid for ∆, U0, τd > 0. A comparison of the analytical expression Eq. (6.10) and a
numerically estimated integral is shown in Fig. A1.

1 Result after (∗) obtained using Wolfram Mathematica [330].
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Figure A1: Comparison of Eq. (6.10) and a numerically es-
timated integral. Parameter values are: U0 = 0.2, τd = 200 ms

1.2 Comparison to network simulation

Here we want to compare results obtained by simulating Eq. (6.1) with the above esti-
mations, taking into account different parameter sets, in order to reflect cases in which
the network consists of a variable number of silent neurons. Additionally we perform a
comparison with the neural mass model, derived in Chapter 2, but here in absence of
facilitation. The neural mass model obeys:

ṙ = ∆
π

+ 2rv (6.11a)

v̇ = v2 − (πr)2 + JU0xr + η̄ + IS(t) (6.11b)

ẋ = 1− x
τd
− U0xr . (6.11c)

We hypothesize that the meanfield limit above does not take into account silent neurons.
Instead the dynamics of x(t) follows from the assumption, that all Xi(t) are driven by the
firing rate r, as stated below.

Ẋi = 1−Xi

τd
− U0Xir (6.12)

Taking the network simulation, we mimic this behavior, by calculating a different mean
of X, given by

〈X∗〉MF = 1
NT

∑
i∈NT

Xi +XSXT,i(r̄) . (6.13)

We denote the set and number of tonic neurons by NT and NT respectively. Moreover,
XS reflects the fraction of silent neurons and r̄ is the estimated firing rate of tonic neurons
from Eq. (6.6). Essentially, in Eq. (6.13) we assume that tonic neurons contribute to the
total average 〈X∗〉MF through their actual values Xi, while silent neurons contribute as if
Xi would be driven by the mean firing rate r̄ of the tonic neurons. A comparison of the
estimation is given in Fig. A2. From column (1) to (4) the parameters are such, that the
number of silent neurons (obtained from the network simulation) decreases. In column (1)
we find good agreement between Eqs. (6.6) and (6.10) (orange) and network (black). At
the same time time we have agreement between Eq. (6.13) (red) and Eq. (6.11) (blue). The
same holds for column (b). As we approach smaller numbers of silent neurons the discrep-
ancy of the estimates and the network results increases. However, for vanishingly small
number of silent neurons, network Eq. (6.1) and meanfield Eq. (6.11) start to coincide.
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Figure A2: Comparison of numerical simulations and analytical estimates. (a) Mean
firing rate r(t) and (b) mean depression x(t) versus time t, obtained from simulation of Eq. (6.1)
(black line) and Eq. (6.11) (blue line). In (a) the dashed orange line marks r̄ from Eq. (6.6); in (b)
〈X∗〉 from Eq. (6.10). The dashed red line in (b) marks Eq. (6.13). The number of silent neurons
NS is given by the number of neurons in the network, which do not emit any spike in 1 s ≤ t ≤ 2 s.
Other parameter values are: number of QIF neuronsN = 10000,U0 = 0.2, τd = 200 ms, τm = 20 ms.

In summary, these results suggest that the mean-field model Eq. (6.11) describes the
collective dynamics of Eq. (6.1) accurately, whenever silent neurons are sparse (gray versus
blue curve in Fig. A2). This is in line with the results in [328], in which firing rate
heterogeneities has been suggested as the cause for discrepancies. Additionally, the above
results suggest that the dynamics of the mean-field model Eq. (6.11) describes a network,
in which depression variables Xi of neurons, which are actually silent in Eq. (6.1), are
instead driven by the network’s mean firing rate (blue versus red curve in Fig. A2).
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Appendix B

1 Minimal biophysical models of seizure dynamics
The detection of epileptic seizures via electrophysiological recordings allowed for the estab-
lishment of a detailed taxonomy of seizures. The majority of seizures recorded in humans
and experimental animal models can be described by a generic phenomenological math-
ematical model, the Epileptor [186]. In this model, seizure events are driven by a slow
permittivity variable and occur via saddle node and homoclinic bifurcations at seizure
onset and offset, respectively. The saddle-node bifurcation at the onset of ictal discharges
was chosen based on experimentally observed features, such as fixed frequency and fixed
amplitude of abruptly starting oscillations, and a shift of baseline field potential. The
homoclinic bifurcation at the offset of ictal discharges, on the other hand, reproduces the
logarithmic scaling of interspike intervals when approaching seizure offset. As part of the
dynamic repertoire of the Epileptor, the epileptic attractor is described in terms of a self-
sustained limit cycle that comes from the destabilization of the physiological activity while
multiple types of transitions allow for the accessibility of seizure activity, status epilepticus
and depolarization block, that coexist, as verified experimentally in [232].

The Epileptor model has been reduced to a minimal canonical mathematical represen-
tation of high codimension (up to 4) that, appropriately tuned, can display several types
of fast-slow behaviors [234]. The model contains two subsystems acting at different time
scales, in which the fast subsystem is unfolded in a plane showing several bifurcation paths
of a high codimension singularity. The slow subsystem steers the fast one back and forth
along these paths leading to fast-slow (aka bursting) behavior, mimicking epileptiform ac-
tivity. The model is able to produce almost all the classes of bursting predicted for systems
with a planar fast subsystem, including the Epileptor class, and has been demonstrated
to be the dominant class, so-called dynamotype, in empirical epilepsy data [261]. Other
dynamotypes have been also found empirically.

When performing the analysis of the single-population firing rate equations Eqs. (2.36),
it turns out that, in the absence of forcing, the only attractors are fixed points. As it
becomes clear in Section 4.3.1, a stable node and a stable focus are observable, separated
by a bistability region between a high- and a low-activity state, whose boundaries are
the locus of a saddle-node bifurcation (for more details see [16]). In this context are
not observable self-sustained oscillations, but only damped oscillations at the macroscopic
level that reflect the oscillatory decay to the stable fixed point. This oscillatory decay will
here be considered as representative of a seizure-like event, not being able to observe a
stable limit cycle to describe the emergence of a fully developed seizure as in the Epileptor.
However, seizure-like events can be used as paradigm to investigate propagation of seizure-
like activity in the network. Furthermore, a recently developed model of interictal and ictal
discharges, called Epileptor-2 [233], makes links to underlying physiology and suggests how
to eventually obtain all observed dynamotypes for the exact neural mass model Eqs. (2.36)
and enable transitions towards fully developed seizure activity.

Epileptor-2 is a simple population-type model that includes four principal variables,
i.e. the extracellular potassium concentration, the intracellular sodium concentration, the
membrane potential and the synaptic resource diminishing due to short-term synaptic
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depression. A QIF neuron model, whose dynamics is ruled by an equation similar to Eq.
(1), is used as an observer of the population activity. While the potassium accumulation
governs the transition from the silent state to the state of ictal discharge, the sodium
accumulated during the discharge, activates the sodium-potassium pump, which termi-
nates the ictal discharge by restoring the potassium gradient, thus polarizing the neuronal
membranes. This means that, in high potassium conditions, Epileptor-2 produces bursts
of bursts, described as ictal-like discharges.

Therefore, the association of a slow subsystem describing ion concentration variations
together with a fast subsystem, identified by Eqs. (4), should give rise to self-emergent
periodic and bursting dynamics at the macroscopic level, thus allowing us to identify
different combinations of onset/offset bifurcations. Whenever not sufficient, it will be
possible to investigate the dynamics emergent in the exact neural mass model, provided
with short-term synaptic plasticity, when subject to a global feedback acting on a slow
timescale, describing ion concentration variations. The exact neural mass model, when
equipped with short-term synaptic plasticity, shows a more complex dynamics that even-
tually results in a bifurcation diagram that provides stable limit cycles [98]. However the
introduction of short-term plasticity, itself, adds complexity to the dynamics, allowing for
the emergence of bursting activity [39].

2 Supplementary Figures and Tables

Label Region Abbreviation Label Region Abbreviation
1 Precentral Gyrus PRE 46 Cuneus Q
2 Precentral Gyrus PRE 47 Lingual Gyrus LING
3 Superior Frontal Gyrus F1 48 Lingual Gyrus LING
4 Superior Frontal Gyrus F1 49 Superior Occipital Gyrus O1
5 Superior Frontal Gyrus Orbital Part F1O 50 Superior Occipital Gyrus O1
6 Superior Frontal Gyrus Orbital Part F1O 51 Middle Occipital Gyrus O2
7 Middle Frontal Gyrus F2 52 Middle Occipital Gyrus O2
8 Middle Frontal Gyrus F2 53 Inferior Occipital Gyrus O3
9 Middle Frontal Gyrus Orbital Part F2O 54 Inferior Occipital Gyrus O3
10 Middle Frontal Gyrus Orbital Part F2O 55 Fusiform Gyrus FUSI
11 Inferior Frontal Gyrus Opercular Part F3OP 56 Fusiform Gyrus FUSI
12 Inferior Frontal Gyrus Opercular Part F3OP 57 Postcentral Gyrus POST
13 Inferior Frontal Gyrus Triangular Part F3T 58 Postcentral Gyrus POST
14 Inferior Frontal Gyrus Triangular Part F3T 59 Superior Parietal Gyrus P1
15 Inferior Frontal Gyrus Orbital Part F3O 60 Superior Parietal Gyrus P1
16 Inferior Frontal Gyrus Orbital Part F3O 61 Inferior Parietal Gyrus P2
17 Rolandic Operculum RO 62 Inferior Parietal Gyrus P2
18 Rolandic Operculum RO 63 Supramarginal Gyrus SMG
19 Supplementary Motor Area SMA 64 Supramarginal Gyrus SMG
20 Supplementary Motor Area SMA 65 Angular Gyrus AG
21 Olfactory Cortex OC 66 Angular Gyrus AG
22 Olfactory Cortex OC 67 Precuneus PQ
23 Superior Frontal Gyrus Medial F1M 68 Precuneus PQ
24 Superior Frontal Gyrus Medial F1M 69 Paracentral Lobule PCL
25 Superior Frontal Gyrus Medial Orbital F1MO 70 Paracentral Lobule PCL
26 Superior Frontal Gyrus Medial Orbital F1MO 71 Caudate Nucleus CAU
27 Gyrus Rectus GR 72 Caudate Nucleus CAU
28 Gyrus Rectus GR e 73 Putamen PUT
29 Insula IN 74 Putamen PUT
30 Insula IN 75 Pallidum PAL
31 Anterior Cingulate and paracingulate gyri ACIN 76 Pallidum PAL
32 Anterior Cingulate and paracingulate gyri ACIN 77 Thalamus THA
33 Median Cingulate and paracingulate gyri MCIN 78 Thalamus THA
34 Median Cingulate and paracingulate gyri MCIN 79 Heschl Gyrus HES
35 Posterior Cingulate Gyrus PCIN 80 Heschl Gyrus HES
36 Posterior Cingulate Gyrus PCIN 81 Superior Temporal Gyrus T1
37 Hippocampus HIP 82 Superior Temporal Gyrus T1
38 Hippocampus HIP 83 Heschl Gyrus HES
39 ParaHippocampal Gyrus PHIP 84 Temporal Pole: superior temporal gyrus T1P
40 ParaHippocampal Gyrus PHIP 85 Temporal Pole: superior temporal gyrus T1P
41 Amygdala AMYG 86 Temporal Mid T2
42 Amygdala AMYG 87 Temporal Mid T2
43 Calcarine fissure and surrounding cortex V1 88 Temporal Pole: middle temporal gyrus T2P
44 Calcarine fissure and surrounding cortex V1 89 Middle Temporal Gyrus T2
45 Cuneus Q 90 Inferior Temporal Gyrus T3

Table A1: Cortical and subcortical regions, according to the Automated Anatom-
ical Labeling atlas 1(AAL1) [212]. Odd/even numbers correspond to the left/right

hemisphere.
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Figure A3: Number of recruited brain areas as a function of the excitability parameter
η̄G. Columns (1) to (2) correspond to 5 exemplary healthy subject connectomes H1, H5, H12, H16,
H19 as in in Fig. 4.3. Here η̄G represents the mean value of a Gaussian distribution with increasing
standard deviations σG. (a) σG = 0.3; (b) σG = 0.5; (c) σG = 1. The color code is as follow.
White: no recruitment, gray: one area recruited (marks asymptotic threshold), blue to yellow:
intermediate number of recruitments, teal: 90 areas recruited (marks generalized threshold). For
very large values of η̄G (usually η̄G > −5), the system enters the stable focus regime before the
stimulation is applied. In that case η̄(k)

gen is not defined because no brain areas are recruited as a
result of the applied stimulation current: for this reason white color, corresponding to no recruited
areas, is visible also in the right part of the different panels. For increasing standard deviation
values, the effective excitability of the more and more nodes turn out to be close to the one that
allows the system to be in the stable focus regime, therefore the probability of finding nodes in the
stable focus regime increases. As a result, more and more nodes enter the HA state and recruite
the other areas before the stimulation current is applied. This means that, for increasing standard
deviation, η̄(k)

gen become less defined while η̄(k)
asy move to larger values of η̄G, still remaining better

identifiable for increasing heterogeneity. Other parameters values are: Npop = 90, ∆ = 1, σ = 1,
IS = 10, ∆T = 0.4 s.
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Figure A4: Network measure correlations of healthy subjects. Panels (a - f) are obtained
plotting independently all node values for all the subjects (90× 20 = 1800 data points). (g) Data
is averaged over all 20 subjects. The single node values are averaged over the different subjects and
afterwards, the correlation between node strength and clustering coefficient is estimated. Infinite
values were excluded. The Pearson correlation of clustering coefficient and node strength of the
averaged healthy DTI topology is r = 0.9 and much stronger compared to the average of all

individual topologies r = 0.75 from panel (a).
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Figure A5: Weight Distribution of the DTI graphs. The weight distribution with weights
on the x-axis in ascending order. (a) Weight distribution, (b) logarithmic weight distribution and
(c) inverse weight distribution of the healthy averaged DTI graph. Note that (b) matches the

curve of recruitment times in Fig. 4.6(a).
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Figure A6: Input current duration variation. Dependence of the recruitment time on the
current duration ∆T while the current strength is kept constant at ∆I = 15. The y-axis shows the
recruitment times of the first 10 recruited areas for each current strength. Blue is the EZ, green is
the first recruited area, red the second, etc. The recruitment times are independent of the pulse
duration. Parameters: Npop = 90, σ = 1, ∆ = 1, η̄ = −6, ∆I = 15, stimulation site: brain area

k = 45 for the healthy H1.

Label Region Abbreviation Label Region Abbreviation
1 Unknown
2 Brain-Stem
3 Left-Cerebellum Cortex 46 Right-Cerebellum-Cortex
4 Left-Thalamus Proper lh-Th 47 Right-Thalamus Proper rh-Th
5 Left-Caudate lh-Cd 48 Right-Caudate rh-Cd
6 Left-Putamen lh-Pu 49 Right-Putamen rh-Pu
7 Left-Pallidum lh-Pal 50 Right-Pallidum rh-Pal
8 Left-Hippocampus lh-Hi 51 Right-Hippocampus rh-Hi
9 Left-Amygdala lh-Amg 52 Right-Amygdala rh-Amg
10 Left-Accumbens-Area 53 Right-Accumbens Area
11 Left-unknown 54 Right-unknown
12 Left-bankssts 55 Right-bankssts
13 Left-Caudal Anterior Cingulate lh-CACC 56 Right-Caudal Anterior Cingulate rh-CACC
14 Left-Caudal Middle Frontal lh-CMFG 57 Right-Caudal Middle Frontal rh-CMFG
15 Left-Cuneus lh-Cun 58 Right-Cuneus rh-Cun
16 Left-Entorhinal Cortex lh-EntC 59 Right-Entorhinal cortex rh-EntC
17 Left-Fusiform Gyrus lh-FuG 60 Right-Fusiform Gyrus rh-FuG
18 Left-Inferior Parietal Cortex lh-IPC 61 Right-Inferior Parietal Cortex rh-IPC
19 Left-Inferior Temporal Gyrus lf-ITG 62 Right-Inferior Temporal Gyrus rh-ITG
20 Left-Isthmus Cingulate Cortex lh-ICC 63 Right-Isthmus Cingulate Cortex rh-ICC
21 Left-Lateral Occipital Cortex lh-LOCC 64 Right-Lateral Occipital Cortex rh-LOCC
22 Left-Lateral Orbito Frontal Cortex lh-LOFC 65 Right-Lateral Orbito Frontal Cortex rh-LOFC
23 Left-Lingual Gyrus lf-LgG 66 Right-Lingual Gyrus rh-LgG
24 Left-Medial Orbito Frontal Cortex lh-MOFC 67 Right-Medial Orbito Frontal Cortex rh-MOFC
25 Left-Middle Temporal Gyrus lh-MTG 68 Right-Middle Temporal Gyrus rh-MTG
26 Left-Parahippocampal Gyrus lh-PHiG 69 Right-Parahippocampal Gyrus rh-PHiG
27 Left-Paracentral Cortex lh-PaC 70 Right-Paracentral Cortex rh-PaC
28 Left-Pars Opercularis lh-Pop 71 Right-Pars Opercularis rh-Pop
29 Left-Pars Orbitalis lh-POr 72 Right-Pars Orbitalis rh-POr
30 Left-Pars Triangularis lh-PT 73 Right-Pars Triangularis rh-PT
31 Left-Pericalcarine lh-PC 74 Right-Pericalcarine rh-PC
32 Left-Postcentral Gyrus lh-PoG 75 Right-Postcentral Gyrus rh-PoG
33 Left-Posterior Cingulate Gyrus lh-PCG 76 Right-Posterior Cingulate Gyrus rh-PCG
34 Left-Precentral Gyrus lh-PrG 77 Right-Precentral Gyrus rh-PrG
35 Left-Precuneus Cortex lh-PCunC 78 Right-Precuneus Cortex rh-PCunC
36 Left-Rostral Anterior Cingulate Cortex lh-RACC 79 Right-Rostral Anterior Cingulate Cortex rh-RACC
37 Left-Rostral Middle Frontal Gyrus lh-RMFG 80 Right-Rostral Middle Frontal Gyrus rh-RMFG
38 Left-Superior Frontal Gyrus lh-SFG 81 Right-Superior Frontal Gyrus rh-SFG
39 Left-Superior Parietal Cortex lh-SPC 82 Right-Superior Parietal Cortex rh-SPC
40 Left-Superior Temporal Gyrus lh-STG 83 Right-Superior Temporal Gyrus rh-STG
41 Left-Supramarginal Gyrus lh-SMG 84 Right-Supramarginal Gyrus rh-SMG
42 Left-Frontal Pole lh-FP 85 Right-Frontal Pole rh-FP
43 Left-Temporal Pole lh-TmP 86 Right-Temporal Pole rh-TmP
44 Left-Transverse Temporal Pole lh-TTmP 87 Right-Transverse Temporal Pole rh-TTmP
45 Left-Insula lh-Ins 88 Right-Insula rh-Ins

Table A2: Cortical and subcortical regions, according to the Desikan-Killiany
atlas [213].
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Figure A7: Statistical significance of PZSEEG and PZclin recruitment times. The figure shows the recruitment
times of all brain areas on the y-axis. Blue (orange) dots correspond to PZSEEG (PZclin). The grey dots correspond to
all brain areas except for the EZ and the areas identified as PZSEEG; the white dots to all brain areas except for the
EZ and the areas identified as PZClin. Note that some brain areas of the PZ are either identified as PZSEEG or PZClin
while others are identified as both PZSEEG and PZClin. Therefore the set of grey and white dots is very similar but
not identical. A one-sided Mann-Whitney U test detected significantly earlier recruitment of the PZSEEG (p < 0.05)
for patients E1, E2, E4, E5, E8, and E9. For the PZClin, the recruitment was significantly earlier for all patients.
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Figure A8: Recruitment times for patient E2 obtained for 6 different realizations of Gaussian
distributions for η̄k. (a) Spacetime plots of the average firing rates of all brain areas. (b) His-
tograms of the recruitment times. Orange (blue) bins identify those recruited area that belong
to PZClin (PZSEEG). (c) Cumulative histograms of the recruitment times. Orange bins: first
10 recruited areas. Parameters as in Fig. 4.10. For one exemplary patient, E2, we show here in
detail the impact of different realizations of η̄(k), drawn from a Gaussian distribution (centred at
η̄G = −7.5 with standard deviation 0.1), on the recruitment times of the brain areas. In particu-
lar we have considered it to be sufficient to present results for six out of ten realizations, due to
the large similarities between the outcomes. Space-time plots of the average firing rates give an
immediate visualization of the recruitment events for each brain area. We find that the pattern of
recruitment does not change substantially for different realizations of the η̄(k). The EZ is localized
in the area lh-LOCC, that corresponds to node k = 21: The firing rate of this population increases
immediately upon stimulation, thus giving rise to the recruitment mechanism. The brain areas in
the PZ are rapidly recruited: In general the first ten areas are always recruited in less then 0.1s,
followed by a continuous increase of the number of recruited nodes. Finally, it is worth noticing

that the first recruited areas correspond to those predicted clinically.
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Figure A9: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig. 4.12
but for the patients with more than one area in the EZ (orange node). All areas belonging to the EZ are merged into
one for visualization clarity, keeping intact the recruitment order, the recruitment times and the connection weights to
the areas in the EZ. (a) Node size corresponds to the inverse recruitment time, (b) to the connection strength to the
EZ (A2-D2) and (c) to the inverse shortest path length to the EZ. The size of the orange EZ circle remains fixed. Blue
dots distinguish recruited areas to belong to the PZSEEG, i.e. the PZ identified according to the presurgical invasive
evaluation. Results are obtained for patients E1 (column 1), E4 (column 2), E5 (column 3), E7 (column 4). Note that
patient E1 has very weak connections outgoing the EZ which results in very late recruitment times indicated by small
circle sizes in A1. For patient E4, the first ten recruited nodes are strongly connected with the EZ. The recruitment
of node 31 before node 80 (stronger connected to the EZ with respect to the previous one), is justified by the strong
connection to node 36 and the comparable shortest path length. For patient E5 the shortest path length is more
determinant than the connection strength to the EZ to determine the recruitment order. In particular are strongly
connected the nodes sequentially recruited, thus explaining the recruitment of node 17, weakly connected to the EZ,
but strongly connected to the previously recruited node. Patient E4, on the other hand, has very strong connections
outgoing the EZ and very short recruitment times indicated by large circle sizes in B1. As shown in Fig. 4.12, the first
recruited node is usually the one with the strongest connection strength to the EZ and with the shortest path to the

EZ (apart for the case B3). Parameters are as in Fig. 4.10)
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Figure A10: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig. A9
but for patients E8 (column 1), E9 (column 2), E10 (column 3), E11 (column 4). For patient E8, the first two recruited
areas show strong connection strengths to the EZ, while the areas recruited later are all characterized by shortest path
to the EZ and by strong connections between sequentially recruited nodes. Looking at the graph plots for patient E9,
the first four recruited nodes are both strongly connected with the EZ and among them. Node 73, which do not result
to belong to the PZSEEG, is recruited, according to our simulations, due to its topological characteristics: proximity to
the EZ, in terms of shortest path length, and high coupling strength. For patient E10, the node 70 (belonging to the
PZSEEG), do not result to be first recruited due to its middle values of connection strength and shortest path, while the
nodes that are recruited before are either more strongly connected to the EZ or to the previously recruited node. For
patient E11 the recruitment order is mostly determined, as before, by the shortest path length and by the connection
strength between sequentially recruited node. As shown in Fig. 4.12, the first recruited node, for all patients, is the one
with the strongest connection strength to the EZ and with the shortest path to the EZ. Parameters are as in Fig. 4.10.
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Figure A11: Graph plots for the epileptic patients with more than one area in the EZ. Same as Fig. A9
but for patients E12 (column 1), E14 (column 2), E15 (column 3). For patients E12 and E15 the recruitment order
is mostly determined by the shortest path length to the EZ, supported by the connection strength, which results to
be determinant for the first 4-5 recruited nodes. Node 77, belonging to the PZSEEG for patient E15, do not result to
be first recruited due to its middle values of connection strength and shortest path, while the nodes that are recruited
before are either more strongly connected to the EZ or to the previously recruited node. On the other hand, for patient
E14, the connection strength turns out to be more important than the shortest path to determine the recruitment
order. It is worth noticing that node 24, closer to the EZ and strongly connected to node 18, is recruited before nodes
22 and 39 that are more strongly connected to the EZ, but less close in terms of shortest path. As shown in Fig. 4.12,
the first recruited node is usually the one with the strongest connection strength to the EZ and with the shortest path

to the EZ (apart for the case B3). Parameters as in Fig. 4.10.

Patient Gender Epilepsy Age at seizure Epilepsy Surgical Surgical MRI Histopathology Side
duration onset (years) type procedure outcome
(years)

E1 F 14 8 Temporo Sr III Anterior temporal Gliosis R
-frontal necrosis

E2 F 14 9 Occipital Sr III N FCD type 1 L
E3 M 35 7 Insular GK I N NA L
E4 F 18 5 SMA Sr I N FDC type 2 L
E5 F 23 7 Parietal Sr I FCD SPC FCD type 2 L
E6 F 16 7 Premotor Th II N NA R
E7 M 45 11 Temporo Sr I FCD F FCD type 2 R

-frontal
E8 M 5 28 Temporal Sr III Temporopolar FCD type 1 R

hypersignal
E9 F 18 20 Occipital N NO N NA R
E10 M 11 18 Frontal Sr I Frontal necrosis Gliosis R

(post-trauma)
E11 F 10 17 Temporal Gk II Hyppocampal NA R

sclerosis
E12 M 15 14 Temporal N NO N NA R
E13 M 29 7 Temporal Sr I Cavernoma Cavernoma R
E14 M 28 35 Temporal Sr III N Gliosis L
E15 F 24 4 Occipital N NO PVH NA R

Table A3: Clinical characteristics of the patients. N, normal; L, left; R, right; Th,
thermocoagulation; Gk, Gamma knife; Sr, surgical resection; NO, not operated;
PVH, periventricular nodular heterotopia; FCD, focal cortical dysplasia; SPC, su-

perior parietal cortex; F, Frontal; NA, not available.
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Figure A12: Recruitment time and Shortest Path. The recruitment times trec as a function
of the shortest path to the EZ are shown for four patients and all brain areas. Same as Fig. 4.13(a),
with a regression fit that underlines the approximately linear relationship between the shortest path
length and the recruitment time. Spearman correlation coefficients ρ and corresponding p-values

are significant. Parameters are as in Fig. 4.10.
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Figure A13: Input Current Duration Variation. Dependence of the recruitment time on the
current duration ∆T , while the current strength is kept constant at ∆I = 15, for epileptic patients
(a) E2; (b) E3; (c) E6; (d) E13. The y-axis shows the recruitment times of the first 10 recruited
areas for each current strength. Blue is the EZ, green is the first recruited area, red the second,
etc. The recruitment times are independent of the pulse duration. Parameters: σ = 4, ∆ = 1,

η̄ = −12.5, ∆I = 15.
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Patient EZ location PZ location SEEG PZ clinical prediction
E1 rLOFC, rTmP rRMFG, lRMFG rRMFG, rMOFC, rPOr, rIns

rPu, rPT, rAccumbes
E2 lLOCC lFuG, lPC, lSPC lFuG, lSPC, lITG, lIPC, lPC, lLgG
E3 lIns lPoG lPu, lLOFC, lSMG, lPrG, lPop, lPoG
E4 lPCG, lCMFG, lSFG lPrG, lSPC, lPoG lRMFG, lPrG, rSFG, lCACC, lPaC
E5 lPCG, lPCunC lPoG, lIPC lICC, lIPC, lSPC
E6 rPrG rCMFG rPoG, rCMFG, rPop, rSFG

rTh, rPu, rPaC, rSMG
E7 rAmg, rTmP, rLOFC rFuG, lPHiG, rITG rTmP, rIns, rPu, rMOFC, rPOr, rRMFG
E8 rAmg, rHi rITG, rTmP rPHiG, rEntC, rTmP, rFuG, rPal, rTh
E9 rLgG, rPHiG rHi, rFuG, rIPC, rLOCC, rSPC, rITG rFuG, rHi, rPC, rLOCC, rICC
E10 rMOFC, rFP, rRMFG, rPOr rPop, rMTG, rLOFC rSFG, rPT, rPrG, rCd, rPop, rPu
E11 rHi, rAmg rLOFC, rMTG rTh, rLOFC, rRACC, rIns

rCd, rPu, rMOFC
E12 rHi, rFuG, rEntC, rTmP lFuG, rITG rITG, rLOCC, rLgG, rPHiG, rAmg
E13 rFuG rEntC, rIPC, rHi rITG, rLOCC, rTmP
E14 lAmg, lHi, lEntC, lFuG lMTG, rMTG, lIns lITG, lLOCC, lPHiG, lLgG

lTmP, rEntC lCerebellum
E15 rLgG, rLOCC, rCun, rPC lPCunC, lCun, rPHiG rFuG, rIPC, rITG, rMTG, rSPC

Table A4: Results of Propagation zone prediction for each patient. Abbreviations
are given in Table A2.

Patient Recruitment order Recruitment time (s) Type Region
E1 0 0.0 EZ rh-LOFC
E1 1 0.0005 EZ rh-TmP
E1 2 0.123 PZSEEG, PZClin rh-RMFG
E1 3 0.1324 PZClin rh-Pu
E1 4 0.1546 other rh-SFG
E1 5 0.1587 PZClin rh-Ins
E1 6 0.1718 other rh-Pal
E1 7 0.1747 other rh-PrG
E1 8 0.175 other rh-MOFC
E1 9 0.1769 other rh-Cd
E1 10 0.1797 other lh-SFG
E1 11 0.1801 other rh-PoG
E2 0 0.0 EZ lh-LOCC
E2 1 0.0255 PZSEEG, PZClin lh-FuG
E2 2 0.0294 PZSEEG, PZClin lh-SPC
E2 3 0.0333 PZClin lh-ITG
E2 4 0.0354 PZSEEG, PZClin lh-IPC
E2 5 0.045 other lh-MTG
E2 6 0.046 other lh-SMG
E2 7 0.0466 other lh-PCunC
E2 8 0.0479 PZClin lh-LgG
E2 9 0.0482 other lh-PoG
E2 10 0.0521 other lh-PrG
E3 0 0.0 EZ lh-Ins
E3 1 0.0224 PZClin lh-Pu
E3 2 0.0369 other lh-SFG
E3 3 0.0394 PZClin lh-LOFC
E3 4 0.04 PZClin lh-PrG
E3 5 0.0438 PZSEEG, PZClin lh-PoG
E3 6 0.0446 other lh-RMFG
E3 7 0.0451 other lh-Th
E3 8 0.0453 other lh-CMFG
E3 9 0.0459 other rh-SFG
E3 10 0.0465 PZClin lh-Pop
E4 0 0.0 EZ lh-SFG
E4 1 0.0016 EZ lh-CMFG
E4 2 0.0026 EZ lh-PCG
E4 3 0.007 PZSEEG, PZClin lh-PrG
E4 4 0.0085 PZClin lh-RMFG
E4 5 0.0122 PZSEEG lh-PoG
E4 6 0.0126 PZClin rh-SFG
E4 7 0.0155 PZClin lh-PaC
E4 8 0.0168 other lh-Pop
E4 9 0.0168 other lh-Pu
E4 10 0.0175 other lh-Th
E4 11 0.0211 other lh-SMG
E4 12 0.0212 PZClin lh-CACC
E5 0 0.0 EZ lh-PCunC
E5 1 0.0006 EZ lh-PCG
E5 2 0.0181 PZClin lh-SPC
E5 3 0.0219 PZClin lh-ICC
E5 4 0.0244 PZSEEG, PZclin lh-IPC
E5 5 0.0284 other lh-SFG
E5 6 0.0318 other lh-LOCC
E5 7 0.0345 other rh-SFG
E5 8 0.0363 other lh-Cun
E5 9 0.0364 other lh-SMG
E5 10 0.0366 other lh-Th
E5 11 0.0374 other lh-PrG

Table A5: List of the first 10 recruited brain areas for each patient. The column
“Type” indicates whether the recruited area belongs or not to the PZ estimated via

presurgical invasive (PZSEEG) or non-invasive (PZClin ) evaluation.
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Patient Recruitment order Recruitment time (s) Type Region
E6 0 0.0 EZ rh-PrG
E6 1 0.0146 PZClin rh-PoG
E6 2 0.02 PZClin rh-SFG
E6 3 0.0287 PZSEEG, PZClin rh-CMFG
E6 4 0.0342 PZClin rh-SMG
E6 5 0.0369 PZClin rh-Pop
E6 6 0.038 other lh-SFG
E6 7 0.0382 PZClin rh-Th
E6 8 0.0396 other rh-RMFG
E6 9 0.0417 PZClin rh-PaC
E6 10 0.042 PZClin rh-Pu
E7 0 0.0 EZ rh-LOFC
E7 1 0.0012 EZ rh-TmP
E7 2 0.0012 EZ rh-Amg
E7 3 0.0379 PZClin rh-Ins
E7 4 0.0516 PZClin rh-Pu
E7 5 0.0875 other rh-SFG
E7 6 0.0949 other rh-PrG
E7 7 0.0954 other rh-Pal
E7 8 0.098 PZClin rh-RMFG
E7 9 0.1027 other rh-PoG
E7 10 0.1031 other rh-CMFG
E7 11 0.1034 other lh-SFG
E7 12 0.1067 other rh-Th
E8 0 0.0 EZ rh-Hi
E8 1 0.0003 EZ rh-Amg
E8 2 0.3184 PZClin rh-PHiG
E8 3 0.3735 PZClin rh-FuG
E8 4 0.3905 PZSEEG rh-ITG
E8 5 0.3965 other rh-LOCC
E8 6 0.3999 other rh-MTG
E8 7 0.4027 other rh-LgG
E8 8 0.4097 other rh-IPC
E8 9 0.4106 other rh-STG
E8 10 0.4137 other rh-PC
E8 11 0.4179 other rh-bnks
E9 0 0.0 EZ rh-LgG
E9 1 0.0006 EZ rh-PHiG
E9 2 0.0128 PZSEEG, PZClin rh-FuG
E9 3 0.0181 PZSEEG, PZClin rh-Hi
E9 4 0.0205 PZSEEG, PZClin rh-LOCC
E9 5 0.0217 PZSEEG rh-ITG
E9 6 0.0264 PZClin rh-PC
E9 7 0.0408 PZSEEG rh-IPC
E9 8 0.0417 other rh-MTG
E9 9 0.0453 PZSEEG rh-SPC
E9 10 0.0483 other rh-Th
E9 11 0.0483 other rh-Cun
E10 0 0.0 EZ rh-RMFG
E10 1 0.0006 EZ rh-MOFC
E10 2 0.0008 EZ rh-FP
E10 3 0.0008 EZ rh-POr
E10 4 0.0414 PZClin rh-SFG
E10 5 0.0745 PZClin rh-PrG
E10 6 0.0882 other rh-PoG
E10 7 0.0894 other rh-CMFG
E10 8 0.0957 other rh-SMG
E10 9 0.1035 other rh-SPC
E10 10 0.1103 PZSEEG, PZClin rh-Pop
E10 11 0.1119 other rh-IPC
E10 12 0.1155 other rh-PaC

Table A6: Continued from Table A5.
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Patient Recruitment order Recruitment time (s) Type Region
E11 0 0.0 EZ rh-Hi
E11 1 0.0003 EZ rh-Amg
E11 2 0.158 PZClin rh-Th
E11 3 0.185 PZClin rh-Cd
E11 4 0.19 other rh-SFG
E11 5 0.1993 other rh-RMFG
E11 6 0.2006 other BS
E11 7 0.2015 PZClin rh-Pu
E11 8 0.2035 other rh-Pal
E11 9 0.2072 other rh-PrG
E11 10 0.2084 other lh-SFG
E11 11 0.2123 other rh-CMFG
E12 0 0.0 EZ rh-FuG
E12 1 0.0006 EZ rh-Hi
E12 2 0.0014 EZ rh-EntC
E12 3 0.0016 EZ rh-TmP
E12 4 0.008 PZClin rh-LOCC
E12 5 0.0137 PZSEEG, PZClin rh-ITG
E12 6 0.0202 PZClin rh-LgG
E12 7 0.0215 other rh-MTG
E12 8 0.0243 other rh-SPC
E12 9 0.0267 other rh-IPC
E12 10 0.0288 other rh-PC
E12 11 0.0298 PZClin rh-PHiG
E12 12 0.0324 other rh-PCunC
E12 13 0.0325 other rh-SMG
E13 0 0.0 EZ rh-FuG
E13 1 0.035 PZClin rh-LOCC
E13 2 0.0375 PZClin rh-ITG
E13 3 0.062 other rh-MTG
E13 4 0.0683 PZSEEG rh-IPC
E13 5 0.0742 other rh-SPC
E13 6 0.084 other rh-STG
E13 7 0.0864 other rh-SMG
E13 8 0.0903 other rh-bnks
E13 9 0.0907 other rh-PrG
E13 10 0.0922 other rh-PoG
E14 0 0.0 EZ lh-Hi
E14 1 0.0 EZ lh-FuG
E14 2 0.0008 EZ lh-EntC
E14 3 0.0008 EZ lh-TmP
E14 4 0.0008 EZ rh-EntC
E14 5 0.0008 EZ lh-Amg
E14 6 0.016 PZClin lh-ITG
E14 7 0.0166 PZClin lh-PHiG
E14 8 0.0266 PZClin lh-LOCC
E14 9 0.0336 PZSEEG lh-MTG
E14 10 0.0391 PZClin lh-LgG
E14 11 0.0474 other lh-STG
E14 12 0.0504 other lh-IPC
E15 0 0.0 EZ rh-LOCC
E15 1 0.0003 EZ rh-PC
E15 2 0.0003 EZ rh-LgG
E15 3 0.0008 EZ rh-Cun
E15 4 0.0095 PZClin rh-FuG
E15 5 0.021 PZClin rh-IPC
E15 6 0.024 PZClin rh-SPC
E15 7 0.0253 PZClin rh-ITG
E15 8 0.0272 PZSEEG rh-PCunC
E15 9 0.0293 PZClin rh-MTG
E15 10 0.0338 other rh-SMG
E15 11 0.0361 other rh-bnks
E15 12 0.0374 other rh-PoG

Table A7: Continued from Tables A5 and A6.
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Appendix C

1 Spectrogram Estimation
In order to generate the spectrograms shown in Chapters 3 and 4 the signal package, which
is part of the SciPy library [151], is used. The subroutine stft (short time Fourier transform,
STFT) generates Fourier transforms F [s(t)](t, f) of a signal s(t) within a running time
window of length ∆Twin at time t. The STFT is performed using overlapping windows
(95% overlap) throughout this work. For Figs. 3.3 to 3.5, 4.2 and 4.9 the window length
is set to ∆Twin = 0.2 s, leading to a sufficiently fine resolution in time and frequency. For
Figs. 3.8 to 3.10, it is set to ∆Twin = 1 s, resulting in a better frequency resolution and
decrease of time-resolution. The colors in the spectrograms code the normalized power
spectral density |F [vk(t)](t, f)|2/(max |F [vk(t)](t, f)|2) obtained from voltage signals vk
of different populations. For better visibility a log10 scale is used and values < 10−2 set
to 10−2. To obtain the data favg shown in Figs. 4.2 and 4.9 the Fourier transforms of
the individual voltage signals vk of different populations are first calculated giving rise to
individual power spectral densities, which are subsequently averaged over the populations.
Finally the spectrograms in Figs. 3.3 to 3.5, 4.2 and 4.9 are shifted to the right by 0.1 s
and in Figs. 3.8 to 3.10 by 0.35 s to preserve causality in correspondence of the stimulus
onset.

Since the average membrane potential is not accessible for the firing rate model Eqs. (3.5)
and (3.7), in this case we made use of simulated local field potentials LFPk in order to
estimate the spectrograms. By following [331], we have estimated the local field potentials
for the three populations appearing in the multi-item architecture displayed in Fig. 3.2 as
the sum of the absolute values of the synaptic inputs stimulating each populations:

LFP0 = −[|Jie|(r1 + r2) + |Jii|r0] (6.14a)
LFP1 = −[|J (s)

ee |x1u1r1 + |J (c)
ee |x2u2r2 + |Jei|r0] (6.14b)

LFP2 = −[|J (s)
ee |x2u2r2 + |J (c)

ee |x1u1r1 + |Jei|r0] (6.14c)

where we neglect the constant current components for the calculation of the LFPs, as
they do not contribute to the frequency spectra. Furthermore, to make a comparison
possible with experimental measurements where high (low) activity states correspond to
a minimum (maximum) value of the LFPs, we reversed the sign of the synaptic inputs in
(6.14).

2 Numerical methods
Numerical bifurcation analysis

The results in Fig. 2.2(b), Fig. 2.5, Fig. 3.14, Fig. 5.2(a), Fig. 5.3, Fig. 5.4, Fig. 5.5(b),
Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9 Fig. 5.10(a) have been obtained using the continu-
ation software AUTO-07p [153].
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Neural mass simulations

The numerical integration of neural mass models of the form Eq. (2.46) was performed in
Python, using the adaptive Dormand-Prince method [332].

QIF network simulation

Direct simulations of the QIF network with STP given in Eqs. (2.44) were performed
in Python. The numerical integration requires simplifications of the problem, in order
to maintain reasonable computation times. For this we followed the method suggested
in [16]. First of all, the network is integrated using the Euler scheme, with a timestep
dt = 10−4. Second, the limit Vthresh → ∞ is not realizable numerically. However, one
can approximate the time T∞ required for the membrane potential of a QIF neuron to
evolve from a value Vmax to infinity as T∞ ≈ 1

Vmax
, given that the total input I to that

neuron fulfills
√
I � Vmax. The time from negative infinity to Vi = −Vmax is given by

the same expression. As soon as a neuron crosses the threshold Vi > Vmax it is reset to
Vi = −Vmax and enters into a refractory period of 2T∞ = 2/Vmax, for which its dynamics
is deactivated. This is to account for the integration from Vi = Vmax to infinity and from
negative infinity to Vi = −Vmax. A spike is registered at half of this refractory period, via
an instantaneous change of all membrane potentials and the synaptic variables, as stated
below.

Vi(t+) = J

N
u(t−)x(t−) (6.15)

x(t+) = x(t−)− 1
N
u(t−)x(t−) (6.16)

u(t+) = u(t−) + 1
N
U0(1− u(t−)) (6.17)

For clarity the time before the increment is denoted by t−, the time after by t+.

Deterministic Lorentzian distribution

The QIF network simulations use values of the Lorentzian distributed constant currents
ηi, that are deterministically set as given below.

ηi = η̄ + ∆ tan
(
π(2i−N − 1)

2(N + 1)

)
(6.18)

Code availability

The simulation results presented in this thesis were obtained using Python. The code
is available under: https://github.com/halgurdtaher/MeanfieldQIF. The example "Meso-
scopicSTP" reproduces the results reported in Fig. 3.1(b) of Chapter 3.

https://github.com/halgurdtaher/MeanfieldQIF
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9, 122

CO Collective oscillation. 27, 32, 35, 37, 39–41,
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EZ Epileptogenic zone. 4, 59, 64, 69, 70, 74, 75,
77–86, 89–91, 132–140

fMRI Functional MRI. 88, 120, 121

HA High activity. 4, 66–68, 70, 71, 73–77, 80
HWHM Half width at half maximum. 13, 15

iEEG Intracranial EEG. 4, 59

LA Low activity. 4, 66–68, 71, 73, 75, 77, 79, 82
LC Limit cycle. 97, 110
LFP Local field potential. 1, 2, 4, 27, 36, 42, 51

m-STP Mesoscopic STP. 17, 18, 29–31, 35, 42, 50,
56, 96, 119

MEG Magnetoencephalography. 1, 59, 88
MPR Montbrió, Pazó, Roxin. iii, v, viii, 2, 3, 15,
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MRI Magnetic resonance imaging. 1, 4, 58, 59, 61,

63, 64, 88, 120

NMSTP Neural mass with short-term synaptic plastic-
ity. 96, 98, 99, 112, 116, 117
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PB Population burst. 3, 27, 29, 30, 32, 34, 35,
37–39, 42, 44–46, 49, 51–53, 55, 56, 98

PDF Probability density function. 12, 13, 124
PET Positron emission tomography. 59
PFC Prefrontal cortex. 15, 26, 27, 34, 37, 42, 47,
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