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Résumé

Pour résoudre des problèmes NP-difficiles, plusieurs paradigmes ont été
développés durant les dernières décennies : l’approximation polynomiale, qui
a pour objet de produire des solutions proches de l’optimum en temps po-
lynomial ; la résolution exacte, qui a pour objectif de renvoyer une solution
optimal en temps exponentiel, où la partie exponentielle dépend de la taille
de l’instance dans le cas d’un algorithme dit exact, ou du paramètre choisi
dans le cas d’un algorithme paramétré ; ou encore l’approximation super-
polynomiale, qui permet d’obtenir un compromis continu entre la qualité de
la solution et le temps d’exécution (allant de l’approximation polynomiale
à la résolution exacte). Seulement, à partir de certaines hypothèses de com-
plexité, il a été prouvé que, sous ces hypothèses, il est impossible d’obtenir
certains algorithmes, et donc certaines performances, selon le problème NP-
difficile étudié.

Dans ce manuscrit, nous présentons certaines méthodes permettant d’ob-
tenir des algorithmes dans ces différents paradigmes, ainsi que des méthodes
pour obtenir des résultats d’impossibilité. Nous illustrons ces méthodes en
les mettant en œuvre et en les adaptant à trois problèmes NP-difficiles que
nous avons étudiés : Min Mixed Dominating Set, où l’on cherche un en-
semble minimum d’arêtes et de sommets qui dominent toutes les arêtes et
sommets du graphe ; Max Min Feedback Vertex Set, où l’on cherche
un feedback vertex set minimal de taille maximum ; et Upper Dominating
Set, où l’on cherche un dominating set minimal de taille maximum. Ces trois
problèmes NP-difficiles que nous avons étudiés sont des problèmes de domi-
nation, et de plus ils offrent tous une structure privée. En effet, pour Min
Mixed Dominating Set, nous prouvons qu’il existe toujours une solution
optimale pour laquelle tout sommet pris dans la solution a deux voisins privés
dominés seulement par lui. Pour Max Min Feedback Vertex Set, nous
cherchons un feedback vertex set minimal, c’est-à-dire une solution où chaque
sommet pris a au moins un cycle privé dominé seulement par lui. Et pour
Upper Dominating Set, nous cherchons un ensemble dominant minimal,
c’est-à-dire une solution où chaque sommet pris a au moins un sommet privé
dominé seulement par lui, que ce soit un voisin privé dominé seulement par
lui ou le sommet lui-même dominé seulement par lui. Nous étudions ces trois
problèmes de domination sous ce spectre de structure privée.

Plus précisément, pour ces problèmes étudiés, nous obtenons les résul-
tats suivants. Pour Min Mixed Dominating Set : nous obtenons une
(2− ε)-inapproximabilité en temps polynomial sous l’Unique Games Conjec-
ture ; nous présentons un algorithme exact de complexité O∗(1.912n) ; nous
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décrivons un algorithme paramétré par la taille de la solution k de com-
plexité O∗(3.510k) ; nous obtenons un algorithme paramétré par la treewidth
tw de complexité O∗(5tw) et nous prouvons que ce résultat est le meilleur
que l’on puisse espérer obtenir sous la Strong Exponential Time Hypothesis.
Pour Max Min Feedback Vertex Set : nous présentons un algorithme
polynomial de rapport d’approximation O(n2/3) et nous prouvons que sous
l’hypothèse P 6= NP c’est le meilleur algorithme que l’on puisse expérer
obtenir ; nous décrivons un algorithme super-polynomial qui renvoie une r-
approximation en temps nO(n/r3/2) et nous montrons que nous ne pouvons
pas obtenir de meilleur algorithme sous l’Exponential Time Hypothesis. Pour
Upper Dominating Set : nous montrons que le problème ne peut pas être
résolu en temps O(no(k)) et qu’il n’existe pas de r-approximation en temps
O(nk1−ε) sous l’Exponential Time Hypothesis ; nous présentons un algorithme
paramétré par la pathwidth pw de complexité O∗(6pw) et nous prouvons que
ce résultat est le meilleur que l’on puisse espérer obtenir sous la Strong Ex-
ponential Time Hypothesis ; nous décrivons un algorithme super-polynomial
qui renvoie une r-approximation en temps nO(n/r) et nous montrons que nous
ne pouvons pas obtenir de meilleur algorithme sous l’Exponential Time Hy-
pothesis.



Contents

1 Introduction 8
1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Private Structure . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Polynomial-Time Approximation . . . . . . . . . . . . . . . . 15
1.4 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Super-Polynomial Approximation . . . . . . . . . . . . . . . . 30
1.6 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Min Mixed Dominating Set 40
2.1 Inapproximability and Nice Solution . . . . . . . . . . . . . . 42
2.2 Improved Exact Algorithm . . . . . . . . . . . . . . . . . . . . 44
2.3 Improved FPT Algorithm . . . . . . . . . . . . . . . . . . . . 53
2.4 Tight Treewidth Algorithm . . . . . . . . . . . . . . . . . . . 62

3 Max Min Feedback Vertex Set 75
3.1 Improved NP-Hardness . . . . . . . . . . . . . . . . . . . . . 78
3.2 Reduction Rules and Combinatorial Tools . . . . . . . . . . . 81
3.3 Polynomial-Time Approximation . . . . . . . . . . . . . . . . 85
3.4 Matching Polynomial-Time Inapproximability . . . . . . . . . 89
3.5 Super-Polynomial Approximation . . . . . . . . . . . . . . . . 91
3.6 Matching Lower Bound . . . . . . . . . . . . . . . . . . . . . . 97

4 Upper Dominating Set 102
4.1 FPT and FPT-Approximation Hardness . . . . . . . . . . . . 104
4.2 Improved Pathwidth Algorithm . . . . . . . . . . . . . . . . . 114
4.3 Tight Intractability Result . . . . . . . . . . . . . . . . . . . . 119
4.4 Super-Polynomial Approximation . . . . . . . . . . . . . . . . 130
4.5 Matching Lower Bound . . . . . . . . . . . . . . . . . . . . . . 134

5 Conclusion 141

6



CONTENTS 7

6 Appendix 144

Bibliography 149



Chapter 1

Introduction

In this manuscript, we study three NP-hard problems: Min Mixed Domi-
nating Set1, Max Min Feedback Vertex Set and Upper Dominat-
ing Set. These three problems belong to the class of NP-hard domination
problems. Indeed, in the Min Mixed Dominating Set problem we seek
to dominate all edges and all vertices of the given graph by taking edges
and vertices. In the Max Min Feedback Vertex Set problem we seek
to dominate all cycles of the graph by taking vertices. And in the Upper
Dominating Set problem we seek to dominate all vertices of the graph by
taking vertices.

Furthermore, we study these three problems under the scope of private
structure. What we mean by private structure is the fact that for a set of
elements to be a feasible solution every element of a specific structure S of
the graph must have another structure which is private for this element. For
the Min Mixed Dominating Set problem, we prove (Lemma 2.3) that
there always exists an optimal solution for which every vertex taken in the
solution has two private neighbors, that is two neighbors dominated only by
this vertex. For the Max Min Feedback Vertex Set problem, which
is the Max-Min version of the more studied Min Feedback Vertex Set
problem, we seek a set of vertices which dominates all cycles of the graph and
which is minimal, that is, such that every vertex taken in the solution has
a private cycle, i.e. a cycle dominated only by this vertex. For the Upper
Dominating Set problem, which is the Max-Min version of the well-known
Min Dominating Set problem, we seek a set of vertices which dominates
all vertices of the graph and which is minimal, that is, such that every vertex
taken in the solution has a private vertex, i.e. every vertex taken either has
a neighbor dominated only by itself or it is its own vertex dominated only

1The problems studied, used, or at least explicitly described in this manuscript, are all
defined in the Appendix.
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CHAPTER 1. INTRODUCTION 9

by itself.
We study these three NP-hard problems under the following frameworks:

the polynomial-time approximation, the exact algorithms, and the super-
polynomial approximation. For each of these three problems, we improve
the state of the art by either giving faster algorithms or by designing better
algorithms for which we give a matching lower bound under some complexity
assumptions showing that our algorithms are the best algorithms we can hope
under these assumptions.

The notion of private structure is crucial in our results, depending on
the problem. For the Min Mixed Dominating Set problem, the fact
that there always exists an optimal solution for which each vertex taken has
two private neighbors allows us to improve the known exact algorithms by
using extensively this more restricted definition, and we also give a tight
algorithm parameterized by the treewidth. For the Max Min Feedback
Vertex Set problem, since it is the Max-Min version of Min Feedback
Vertex Set, the corresponding private structure is mandatory to obtain
a feasible solution and we use it rightfully in order to completely settle the
polynomial-time and the super-polynomial approximations of this problem.
For the Upper Dominating Set problem, again since it is the Max-Min
version of Min Dominating Set, the corresponding private structure is
inherent to the definition of any feasible solution, and we use this private
structure to settle the super-polynomial approximation of this problem, to
improve the best algorithm parameterized by the pathwidth of this problem,
and along the way we give improved hardness results.

We first begin in the next section to present how this manuscript is or-
ganized.

1.1 Organization
This manuscript is based on the following four papers:

• [DLP20] Louis Dublois, Michael Lampis, and Vangelis Th. Paschos,
New Algorithms for Mixed Dominating Set, 15th International Sym-
posium on Parameterized and Exact Computation, IPEC 2020, volume
180, pages 9:1-9:17, 2020.

• [DLP21a] Louis Dublois, Michael Lampis and Vangelis Th. Paschos,
New Algorithms for Mixed Dominating Set, Discrete Mathematics &
Theoretical Computer Science, DMTCS, 2021.

• [DHG+20] Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadiko-
laei, Michael Lampis, and Nikolaos Melissinos, (In)approximability of
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Maximum Minimal FVS, 31st International Symposium on Algorithms
and Computation, ISAAC 2020, volume 181, pages 3:1-3:14, 2020.

• [DLP21b], Louis Dublois, Michael Lampis, and Vangelis Th. Paschos,
Upper Dominating Set: Tight Algorithms for Pathwidth and Sub-
Exponential Approximation, 12th International Conference on Algo-
rithms and Complexity, CIAC 2021, 2021.

In Chapter 2, we focus on the Min Mixed Dominating Set problem.
In this problem, we are given a graph2 G = (V,E), and we seek to find a
subset of vertices D ⊆ V and a subset of edges M ⊆ E such that |D ∪M | is
minimized and the set D ∪M dominates V ∪ E, where a vertex dominates
itself, its neighbors, and its incident edges, and an edge dominates itself,
its two endpoints, and all edges with which it shares an endpoint. For this
problem, we present the following results we have obtained:

• There is no polynomial-time approximation algorithm that can output
a (2− ε)-approximate solution for any ε > 0, under the Unique Games
Conjecture (UGC). Thus we show that the 2-approximation algorithm
of Hatami [Hat07] is the best we can hope under this complexity as-
sumption.

• An exact algorithm of complexity O∗(1.912n) using polynomial space,
improving on the O∗(2n) algorithm of Madathil et al. [MPSS19].

• An FPT algorithm parameterized by the size of the solution k of com-
plexity O∗(3.510k), improving on the O∗(7.465k) and O∗(4.172k) algo-
rithms of Jain et al. [JJPS17] and Xiao and Sheng [XS19], respectively.

• An FPT algorithm parameterized by the treewidth tw of the given
graph with complexity O∗(5tw), improving on the O∗(6tw) algorithm
of Jain et al. [JJPS17], and a tight lower bound stating that there is
no algorithm that solves this problem in time O∗((5 − ε)pw) for any
ε > 0 under the Strong Exponential Time Hypothesis (SETH). Thus
we prove that our previous algorithm for treewidth and the one of Jain
et al. [JJPS17] for pathwidth of complexity O∗(5pw) are optimal under
the SETH.

In Chapter 3, we consider the Max Min Feedback Vertex Set prob-
lem. In this problem, we are given a graph G = (V,E), and we seek to
find a subset of vertices S ⊆ V which forms a minimal feedback vertex set

2A definition of a graph is given in Section 1.6.
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of maximum size, where a set S ⊆ V is a feedback vertex set if the graph
induced by V \ S is a forest, and is minimal if no proper subset of it is a
feedback vertex set of G. For this problem, we present the following results
we have obtained:

• An improved NP-hardness from ∆ ≥ 9 [MS00] to ∆ ≥ 6.

• A non-trivial polynomial-time approximation algorithm of ratioO(n2/3),
and a matching lower bound stating that unlessP=NP no polynomial-
time algorithm can output a n2/3−ε-approximation for any ε > 0. Thus
we completely settle the polynomial-time approximation of this prob-
lem.

• Along the way, we obtain an optimal O(∆)-approximation algorithm
(optimal unless P =NP), some extremal results on the size of any min-
imal feedback vertex set in a graph, and a cubic kernel parameterized
by the size of the solution k

• A super-polynomial algorithm that outputs an r-approximation in time
nO(n/r3/2) for any ratio r ≤ n2/3, thus matching our polynomial-time ap-
proximation, and a matching lower bound stating that under the ran-
domized Exponential Time Hypothesis (ETH) no algorithm can output
an r-approximation in time n(n/r3/2)1−ε for any r and any ε > 0. Thus
we also completely settle the super-polynomial approximation of this
problem.

In Chapter 4, we focus on the Upper Dominating Set problem. In
this problem, we are given a graph G = (V,E), and we seek to find a subset
of vertices D ⊆ V which forms a minimal dominating set of maximum size,
where a set D ⊆ V is a dominating set if every vertex of V is either in D
or adjacent to a vertex in D, and is minimal if no proper subset of it is a
dominating set of G. For this problem, we present the following results we
have obtained:

• An improved W[1]-hardness compared to the one of Bazgan et al.
[BBC+18a], stating that under the ETH there is no algorithm that
solves the problem in time O(no(k)).

• An FPT-approximation intractability: under the ETH, there is no al-
gorithm that outputs an r-approximation in time O(nk1−ε) for any con-
stant r > 0 and any ε > 0. Thus we answer negatively to the existence
of such an FPT-approximation algorithm.
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• An FPT algorithm parameterized by the pathwidth pw of the given
graph of complexity O∗(6pw), improving on the O∗(7pw) algorithm of
Bazgan et al. [BBC+18a], and a tight lower bound stating that there
is no algorithm that solves this problem in time O∗((6− ε)pw) for any
ε > 0 under the SETH. Thus we prove that our previous algorithm for
pathwidth is optimal under the SETH.

• A super-polynomial algorithm that outputs an r-approximation in time
nO(n/r) for any ratio r > 1, and a matching lower bound stating that
under the randomized ETH there is no algorithm that can output an
r-approximation in time n(n/r)1−ε for any r and any ε > 0. Thus we
completely settle the super-polynomial approximation of this problem.

Before presenting these results we have obtained for the three problems
we have studied - Min Mixed Dominating Set, Max Min Feedback
Vertex Set and Upper Dominating Set, we will make in the rest of
this chapter a brief introduction on the concepts we have used to obtain our
results. More precisely, in the next section, we present what we call a private
structure. In Section 1.3, we describe the framework of polynomial-time ap-
proximation, where we present a polynomial-time approximation algorithm
for the Max-Min problem Max Min Vertex Cover, the notion of gap-
introducing reduction, an inapproximability result under the conjecture P 6=
NP obtained via a gap-preserving reduction, and the Unique Games Con-
jecture. In Section 1.4, we focus on exact algorithms, whether they are FPT
algorithms or not, and to do so we give a general exact algorithms solving
two well-known problems, we present the two conjectures Exponential Time
Hypothesis and Strong Exponential Time Hypothesis, we give a branching
FPT algorithm for Max Min Vertex Cover, we present the W hierarchy,
and finally we describe the notions of treewidth and pathwidth. In Section
1.5, we describe the framework of super-polynomial approximation, where we
first present a super-polynomial algorithm for Max Min Vertex Cover,
a matching lower bound on the super-polynomial inapproximability of this
problem, and the notion of parameterized approximation. Finally, we give in
Section 1.6 some notation.

1.2 Private Structure
The problems we are interested in in this manuscript are optimization NP-
hard problems. The problem Min Vertex Cover is an example of an
optimization problem, and is the optimization version of the decision problem
Vertex Cover. In the Min Vertex Cover problem, we are given a graph
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G = (V,E), and we seek to find a vertex cover of minimum size, where a
vertex cover is a set of vertices C ⊆ V such that for every edge (u, v) ∈ E at
least one of u and v is in C. The Min Vertex Cover is a minimization
problem since we are looking for a vertex cover of minimum size. Among the
optimization problems, there are also the subclass of maximization problems.
An example of such a maximization problem is the Max Independent Set
problem. In this problem, we are given a graph G = (V,E), and we seek to
find an independent set of maximum size, where an independent set is a set
of vertices I ⊆ V such that for every pair of vertices u, v in I there is no edge
(u, v) ∈ E.

These two problems, Min Vertex Cover and Max Independent
Set, are studied with a minimization and a maximization objective, respec-
tively. However, these two problems are also studied with, in a sense, an
inverse objective. For Vertex Cover, we would be interested in finding
a vertex cover of maximum size, while being minimal, where a vertex cover
C is minimal if no proper subset C ′ ⊂ C is a vertex cover. This problem is
called Max Min Vertex Cover. For Independent Set, we would be
interested in finding an independent set of minimum size, while being maxi-
mal, where an independent set I is maximal if no proper superset I ′ ⊃ I is
an independent set. This problem is called Min Max Independent Set
(also called Min Independent Dominating Set).

From these two definitions of Max Min Vertex Cover and Min In-
dependent Dominating Set, which are both NP-hard problems, we can
introduce the notion of private structure. Indeed, for the former problem,
the vertex cover C is minimal if no proper subset of it is a vertex cover, that
means if for every vertex u ∈ C, at least one of its neighbors v is not in
C, because otherwise removing u from C would give a vertex cover that is
a proper subset of C. Thus, from this, we can say that the edge (u, v) is a
private edge of u, that is an edge covered only by u. For Min Independent
Dominating Set, we cannot make such an observation. Indeed, for this
problem, an independent set I is maximal if no proper superset of it is an
independent set, that means, if for every vertex u ∈ V , at least one vertex of
N [u] is in I, because otherwise adding u to I would give an independent set
that is a proper superset of C. Nonetheless, note that this vertex v ∈ N [u]
that belongs to I is not necessarily private to u, since it can also be shared
to another vertex w for which v ∈ N [w]. Thus, for Min Independent
Dominating Set, we cannot infer any private structure associated to this
problem.

We can observe first that any Max-Min optimization problem has such
a mandatory private structure. Indeed, consider such a Max-Min problem.
For such a problem, we seek to find a solution that is minimal, so we seek a
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solution S such that no proper subset of it is a solution. Thus, this minimality
implies that every element in S must have a private structure that depends on
the problem, because otherwise S is not minimal. Consider now a Min-Max
problem. As we have mentioned for Min Independent Dominating Set,
Min-Max problems do not have such a private structure. Indeed, for such a
problem, we seek to find a solution that is maximal, so we seek a solution S
such that no proper superset of it is a solution. Thus, this maximality implies
that every element of the instance must intersect with S, but this intersection
is not necessarily private for the considered element of the instance, as we
have showed for Min Independent Dominating Set.

Although Max-Min problems have this mandatory private structure in
their definitions, the natural Min problems also have such a private struc-
ture, but which is implicit in their definitions. Take for example the Min
Vertex Cover problem. An optimal solution for this problem is necessar-
ily minimal, because otherwise it is not minimum, but it is possible to solve
this problem regardless of the minimality, since the fact that a solution is
minimum implies that is is minimal. Note that we cannot make the same
observation for maximization problems, since, as we have described earlier,
the maximality of such problems does not imply a private structure asso-
ciated to any solution. Thus, even though a maximization problem can be
solved using its maximality property, this property has no private structure
associated to it.

Thus, the notion of private structure has to be taken into account, can be
taken into account, or cannot be taken into account, depending on the nature
of the considered problem. Indeed, when studying a Max-Min problem, the
private structure is inherent in the definition of the problem, and thus algo-
rithms solving this problem must depend on this private structure in order
to obtain a feasible solution, as we will show throughout the Introduction
and when studying the two problems Max Min Feedback Vertex Set
and Upper Dominating Set. On the other hand, when studying a min-
imization problem, the private structure is implicit in the definition of the
problem, and thus might not be used in an algorithm solving the problem,
but can be used, and can sometimes help to design faster algorithms solving
the considered problem, as we will show in Section 1.4 and later in Chapter
2 when studying Min Mixed Dominating Set. Finally, when studying a
maximization problem or its Min-Max version, there is a priori no private
structure associated to its maximality, and in this case the notion of private
structure cannot be used to solve the considered problem.

The three problems we have studied have such a private structure, im-
plicit or inherent in the definition of the problem. Naturally, both the Max
Min Feedback Vertex Set and Upper Dominating Set problems
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have such a mandatory private structure since they are Max-Min versions of
the Min Feedback Vertex Set and Min Dominating Set problems,
respectively. More precisely, in the Max Min Feedback Vertex Set
problem, the private structure is the fact that a vertex u in a feedback vertex
set S must have a private cycle, that is a cycle dominated only by u, because
otherwise u can be removed from S. In the Upper Dominating Set prob-
lem, the private structure is the fact that a vertex u in a dominating set D
must have a private vertex, that is either that u is dominated only by itself,
or that u has a neighbor dominated only by u, because otherwise u can be
removed from D.

For our last problem studied, Min Mixed Dominating Set, we prove
in Lemma 2.3 that although this problem has an implicit private structure,
this structure is strong. Indeed, we prove that there always exist an optimal
mixed dominating set D ∪M such that every vertex u ∈ D has two private
neighbors, that is two neighbors in V \ (D ∪ V (M)) dominated only by u.
Interestingly, this implicit private structure is quite strong, even compared
to the two Max-Min problems we have studied, Max Min Feedback Ver-
tex Set and Upper Dominating Set. Indeed, in these two problems, the
cardinality associated to their corresponding private structure is one, one
private cycle and one private vertex, respectively. For Min Mixed Domi-
nating Set, this associated cardinality is two (every vertex in D has two
private neighbors), which allows us to obtain faster algorithms solving this
problem by extensively using this implicit private structure.

Now that we have presented the notion of private structure and showed
how it is related to the three problems we have studied, we present in the next
sections the frameworks of polynomial-time approximation, exact algorithms
and super-polynomial approximation, through the scope of private structure,
beginning with the polynomial-time approximation.

1.3 Polynomial-Time Approximation
Since only polynomial-time algorithms seem to be easy to implement prac-
tically, since a large variety of problems are NP-hard, and since NP-hard
problems cannot be solved exactly in polynomial time under the complexity
assumption P 6= NP, it seems natural to develop a framework where it is
possible to design polynomial-time algorithms for such problems, with the
downside that such algorithms do not output an optimal solution. Such algo-
rithms are called polynomial-time approximation algorithms. In this section,
our objective is to remind the reader of the basic notions of this framework,
and to present some background and cornerstone notions that are relevant to
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the results we have obtained for the two problems Min Mixed Dominating
Set and Max Min Feedback Vertex Set.

More precisely, we present: (i) the
√
n-approximation algorithm for Max

Min Vertex Cover due to Boria et al. [BCP13] which is a good example
of a polynomial-time approximation algorithm for a Max-Min problem, and
which we simplify to mirror with our algorithm for Max Min Feedback
Vertex Set of Section 3.3 (ii) the notion of gap-introducing reduction and
the PCP Theorem (PCP stands for Probabilistically Checkable Proofs) from
which the inapproximability of Max Independent Set is obtained (iii)
the n1/2−ε-inapproximability result for Max Min Vertex Cover also due
to Boria et al. [BCP13], designed via a gap-preserving reduction from the
Max Independent Set and the inapproximability of this latter problem,
and which is related to our inapproximability for Max Min Feedback
Vertex Set of Section 3.4 (iv) the Unique Games Conjecture (UGC) from
which a (2 − ε)-inapproximability was obtained by Dudycz et al. [DLM19]
for the Min Edge Dominating Set problem and from which we obtain
the same inapproximability for our considered problem Min Mixed Domi-
nating Set, which we present in Section 2.1.

Let us begin by presenting the
√
n-approximation algorithm of Boria et

al. [BCP13] for the Max Min Vertex Cover problem. Recall that for
this problem the private structure is that every vertex in the solution has to
have at least one private edge covered, or dominated, only by this vertex.
This algorithm, which we simplify, works as follows: (1) preprocess the given
graph by deleting the isolated vertices (2) if there exists a vertex u with
degree strictly more than

√
n, take the vertex cover C = V \ {u}, delete

vertices from C until C is minimal, and output the solution obtained (3)
else, begin with the vertex cover C = V , delete vertices from it until C is
minimal, and output the solution obtained.

Clearly, this algorithm works in polynomial time, and outputs a minimal
vertex cover since in the two cases (2) and (3) we output C when it is a
minimal vertex cover. So let us now prove that this algorithm is a

√
n-

approximation algorithm. Suppose first that the given graph G = (V,E)
after being preprocessed is connected, because otherwise the approximation
ratio can be applied to every connected component. Recall that a maximum
minimal vertex cover in the given graph G has at most n vertices, so it is
sufficient to prove that the vertex cover output by our algorithm has size at
least

√
n. In the first case (2), necessarily C contains at the end all neighbors

of u because otherwise C is not a vertex cover, so |C| >
√
n, and it is indeed

a
√
n-approximation. In the second case (3), since the case (2) does not

occur, we have ∆ ≤
√
n, and we also have that the number of edges in G is

at least n− 1 since G is connected. So every (minimal) vertex cover has size
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at least c
√
n for a constant c smaller than 1. Indeed, suppose that a minimal

vertex cover has at most c
√
n vertices. Since the maximum degree in G is√

n, the number of edges dominated by this minimal vertex cover is at most
c
√
n×
√
n = cn, which is smaller than n− 1 for n sufficiently large. So any

minimal vertex cover has size at least c
√
n, and we output such a minimal

vertex cover, so our algorithm asymptotically outputs an
√
n-approximation.

We observe that this algorithm also states that any graph without iso-
lated vertices has a minimal vertex cover of size at least

√
n. Interestingly,

our polynomial-time approximation for Max Min Feedback Vertex Set
we describe in Section 3.3 is similar to this approximation algorithm for Max
Min Vertex Cover: our algorithm for Max Min Feedback Vertex
Set begins by preprocessing the given graph by deleting vertices of degree
1 and contracting edges whose endpoints have degree 2 (whereas the prepro-
cessing step of the algorithm for Max Min Vertex Cover simply removes
isolated vertices), and then constructs a minimal feedback vertex set of size at
least cn1/3 for a constant c. It gives us our O(n2/3)-approximation algorithm
for Max Min feedback Vertex Set, and similarly to Max Min Ver-
tex Cover it is a constructive algorithm which implies that any properly
preprocessed graph has a minimal feedback vertex set of size cn1/3 (whereas
it is cn1/2 for Max Min Vertex Cover).

Coming back to Max Min Vertex Cover, Boria et al. [BCP13] in the
same paper designed a matching lower bound stating that, unless P = NP,
no polynomial-time algorithm can output a n1/2−ε-approximation for Max
Min Vertex Cover for any ε > 0. To obtain this inapproximability result,
they produced a gap-preserving reduction from the Max Independent Set
problem, for which there exists a n1−ε-inapproximability under P 6= NP
[Zuc05]. Before presenting what a gap-preserving reduction is, and giving
this reduction from Boria et al. as an example, let us first present the n1−ε-
inapproximability for Max Independent Set.

This inapproximability result for Max Independent Set is due to a
new characterization of the class NP through the PCP Theorem, by Arora
and Safra [AS98]. The PCP Theorem is defined through the notion of prob-
abilistically checkable proof system, as follows:

Definition 1.1 (Probabilistically Checkable Proof System). Given a deci-
sion problem Π, a probabilistically checkable proof system for Π is a quadru-
plet (c(n), s(n), r(n), q(n)) along with a prover and a verifier. The prover,
given an instance I of Π of size n for which the claimed solution is Yes, but
which might be No, produces a proof P which states that I is a Yes-instance
of Π. The verifier is a randomized oracle Turing machine T which checks
the proof P by randomly checking some part of P and decide to accept the
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statement that I is a Yes-instance or not. The system has the following
properties:

• (Completeness): For any Yes-instance I of Π, given the proof P pro-
duced by the prover for the instance I, the verifier accepts the statement
with probability at least c(n).

• (Soundness): For any No-instance I of Π, and given any proof P for
I, the verifier rejects the statement with probability at least s(n).

The two functions r(n) and q(n) concern the complexity of the verifier:
q(n) is the maximum number of random queries of size at most r(n) the
verifier makes on proof P for all instances I.

The complexity class PCPc(n),s(n)[r(n), q(n)] is the class of all decision
problems which have a probabilistically checkable proof system of completeness
c(n) and soundness s(n), and where the verifier works in polynomial time
making all its queries before receiving the answers and depends on q(n) and
r(n).

Arora and Safra [AS98] proved that NP = PCP1,1/2[O(log(n)), O(1)].
From this new characterization of the class of problems NP, gap-introdu-

cing reductions were produced for two well-studied problems: Max-3-Sat
and Max Independent Set. Informally, a gap-introducing reduction be-
tween a decision problem Π1 and an optimization Π2 is a reduction from Π1 to
Π2 such that the existence of an algorithm for Π2 with a specific ratio r would
decide problem Π1, that is would decide for a given instance if the answer is
Yes or No for Π1. From these gap-introducing reductions, inapproximability
results have been obtained for these two problems. For the former problem,
there exists a constant ε > 0 such that there is no (1 − ε)-approximation
algorithm for Max-3-Sat unless P = NP [AB09]. For the latter problem,
and any ε > 0, there is no n1−ε-approximation algorithm for Max Indepen-
dent Set unless P = NP [Hås96]. This last inapproximability result for
Max Independent Set was later derandomized by Zuckerman [Zuc05]. In-
terestingly, this inapproximability result for Max Independent Set states
that the best polynomial-time approximation algorithm for this problem has
ratio n, which was a long-awaited open question.

Moreover, this n1−ε-inapproximability for Max Independent Set has
been widely used as starting point to produce other inapproximability results
for other NP-hard problems, through gap-preserving reductions. Informally,
a gap-preserving reduction between two optimization problems Π1 and Π2 is
a reduction from Π1 to Π2 such that Π1 admits an r-approximation algorithm
for a specific r if and only if Π2 admits an r-approximation algorithm.



CHAPTER 1. INTRODUCTION 19

We now present such a gap-preserving reduction, the one from Max
Independent Set to Max Min Vertex Cover designed by Boria et
al. [BCP13] we have mentioned earlier, and use the inapproximability result
of the former problem to obtain a n1/2−ε-inapproximability for the latter
problem. Given an instance G = (V,E) of Max Independent Set, we
construct an instance G′ = (V ′, E ′) of Max Min Vertex Cover in the
following way: we keep the original graph G; and for each vertex u ∈ V , we
add n vertices only connected to u.

Clearly, this reduction can be made in polynomial time, and the order
of the graph G′ is n2. So let us now prove that the gap is transferred from
n1−ε to n1/2−ε. For the first direction, let C be any minimal vertex cover of
G′. We construct an independent set I in G by taking all vertices of V \ C.
Now, observe the following: for a vertex u ∈ I, the set C necessarily takes
the n newly vertices of V ′ connected to u. Thus, |I| ≥ |C\V |

n
≥ |C|−n

n
. For the

other direction, let I be any independent set of G. We construct a minimal
vertex cover C in G′ by taking the n newly vertices connected to every vertex
u ∈ I and all the vertices of V \ I. Thus, |C| ≥ n|I| + (n − |I|). And for a
maximum independent set I∗ of G, we obtain |C∗| ≥ |C| ≥ n|I∗|+ (n−|I∗|),
for a maximum minimal vertex cover C∗ of G′. Now, suppose there exists an
r-approximation algorithm for Max Min Vertex Cover; we have |C| ≥
r|C∗|. Putting all together, we obtain:

|I| ≥ |C| − n
n

≥ r|C∗| − n
n

≥ r

n
(n|I∗|+ (n− |I∗|))− 1 ≥ r|I∗|

Where the last inequality holds for n sufficiently large. Thus, since the
gap r is preserved from Max Independent Set to Max Min Vertex
Cover, and since this last problem is n1−ε-inapproximable unless P = NP,
we have r ≥ n1−ε. Now, since the order of the graph G′ is n2, we obtain a
n1/2−ε-inapproximability under P 6= NP for Max Min Vertex Cover by
choosing ε carefully.

This inapproximability result for Max Min Vertex Cover matches
the
√
n-approximation algorithm we have described earlier in this section.

We also give in Section 3.4 a matching lower bound under P 6= NP to
our O(n2/3)-approximation algorithm for Max Min Feedback Vertex
Set, again with the inapproximability result of Max Independent Set as
starting point.

These inapproximability results for Max Independent Set and Max
Min Vertex Cover show that the conjecture P 6= NP can provide tight
inapproximability results for some NP-hard problems, but is sometimes not
strong enough for other NP-hard problems. For example, for the more nat-
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ural Min Vertex Cover problem, Dinur and Safra [DS02] proved that
under this conjecture we cannot 1.36-approximate the problem, which was
recently improved by Khot et al. [KMS18] to a (

√
2 − ε)-inapproximability

under the same complexity assumption, whereas the best polynomial-time
approximation for this problem has ratio 2.

Nonetheless, for Min Vertex Cover, a (2 − ε)-inapproximability for
any ε > 0 was obtained by Khot and Regev [KR08] under the Unique Games
Conjecture (UGC). This complexity assumption was introduced by Khot
in 2002 [Kho02] and is commonly used to derive inapproximability results.
This conjecture can be defined in an handful number of ways, but we will de-
scribe it through the Unique Label Cover viewpoint, and more precisely
through the definition made by Khot and Regev [KR08].

In the Unique Label Cover problem, we are given an instance Φ =
(V,E,C,Ψ), where (V,E) defines a graph, C ⊆ N is a set of colors, and Ψ
is a set of constraints, i.e., for every edge (u, v) ∈ E, Ψu,v : Cu → Cv for
Cu, Cv ⊆ C is a bijective function that defines the pairs of colors that are
accepted for u and v. The constraints of Ψ mean the following: for an edge
(u, v) and a color c ∈ C, if the vertex u is affected to color c, then v must
be affected the color c′ = Ψu,v(c), and conversely if the vertex v is affected
the color c′, then u must be affected the color c = Ψ−1

u,v(c′). A label L is
an assignment of colors given to the vertices of V , and we say that an edge
(u, v) is satisfied by the label if c the color given to u belongs to Cu and c′
the color given to v satisfies Ψu,v(c) = c′. The Unique Games Conjecture is
the following:

Definition 1.2 (Unique Games Conjecture). For any ε, γ > 0 and t ∈ N,
there exists an integer k such that it is NP-hard to decide, for an instance
Φ = (V,E,C,Ψ) of Unique Label Cover with |C| = k, between the fol-
lowing:

• (Yes-instance): There exists a 1-label L and a subset W ⊆ V with
|W | ≥ (1− ε)|V | such that L satisfies all edges in the induced subgraph
G[W ].

• (No-instance): For any t-label L and any subset W ⊆ V with |W | ≥
γ|V |, there exists at least one edge in G[W ] that is not satisfied by L.

As we mentioned before, Khot and Regev [KR08] obtained a (2 − ε)-
inapproximability result for any ε > 0 for Min Vertex Cover, via a gap-
preserving reduction from the Unique Label Cover problem to the Min
Vertex Cover problem. More recently, Dudycz et al. [DLM19] obtained,
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by a simple modification of the reduction of Khot and Regev, a (2 − ε)-
inapproximability result for any ε > 0 for the Min Max Matching problem
(also called Min Edge Dominating Set). We will in Section 2.1 present
a gap-preserving reduction from Min Edge Dominating Set to our con-
sidered problem Min Mixed Dominating Set which allows us to obtain
the same inapproximability result for the latter problem.

We now finish this section, where we have presented the basic notions
of the polynomial-time approximation framework: a

√
n-approximation al-

gorithm for Max Min Vertex Cover; the notion of gap-introducing re-
ductions through the PCP Theorem and the UGC; and a matching n1/2−ε-
inapproximability result for Max Min Vertex Cover using a gap-preser-
ving reduction. In the next section, we focus on exact algorithms.

1.4 Exact Algorithms
Although solving an NP-hard problem exactly in polynomial time is not
possible under the assumption P 6= NP, it is still possible to solve them
exponentially. This way of solving NP-hard problems in exponential time
is called exact algorithms. The first approach to solve exactly an NP-hard
problem in exponential time was to design such algorithms with the inherent
exponential blow-up in the size of the instance. Nonetheless, the instances
encountered are in practice specific, and some structural parameters of the
instance might be smaller and known, for example the maximum degree
of the graph, the maximum number of appearance of a variable in a CNF
formula, or directly the size of an optimum solution. If we manage to move
the inherent exponential blow-up to such a parameter, then our algorithm
becomes polynomial if we consider the parameter as a constant. Such an
algorithm is called a parameterized algorithm. In this section, we focus on
exact algorithms with the exponential blow-up in the size of the instance,
and on parameterized algorithms, where we remind the basic notions of this
framework of exact algorithms which are relevant to the results we have
obtained for the two problems Min Mixed Dominating Set and Upper
Dominating Set.

More precisely, we present: (i) a general exact algorithm solving the two
problems Min Vertex Cover and Max Min Vertex Cover, which is a
good example of an exact algorithm with the exponential blow-up in the size
of the instance, and which is a subroutine algorithm for our algorithm for
Min Mixed Dominating Set of Section 2.2 (ii) the two conjectures Ex-
ponential Time Hypothesis (ETH) and Strong Exponential Time Hypothesis
(SETH) for which we give some background and show that they fit the state
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of the art (iii) a parameterized algorithm for Max Min Vertex Cover pa-
rameterized by the size of the solution k inspired by the algorithm of Boria et
al. [BCP13], which is a good example of a parameterized algorithm using the
private structure of the considered problem, similar to our algorithm for Min
Mixed Dominating Set of Section 2.3 (iv) the different complexity classes
of the parameterized complexity framework (v) the two well-studied param-
eters treewidth and pathwidth for which we present how to design dynamic
programming algorithms for these parameters as well as how to obtain tight
lower bounds of such algorithms, notions we use to obtain such results for
Min Mixed Dominating Set in Section 2.4 and for Upper Dominating
Set in Sections 4.2 and 4.3.

Let us begin by presenting an exact algorithm where the exponential
blow-up lies in the size of the instance, almost the same for the two problems
Min Vertex Cover and Max Min Vertex Cover. By a result of Moser
and Moon [MM65], it is possible to compute all maximal independent sets of
a given graph in time O∗(3n/3)3, and this is an upper-bound on the number
of such maximal independent sets. Thus, using this algorithm and the well-
known observation that a maximal independent set is the complement of a
minimal vertex cover, we can solve both Min Vertex Cover and Max
Min Vertex Cover in time O∗(3n/3) = O∗(1.4423n).

Indeed, consider the Min Vertex Cover problem: begin by enumer-
ating all maximal independent sets of the given graph; and then output the
complement of the maximal independent set of maximum size, which is a
minimum vertex cover. For this problem, as we have said in Section 1.2, its
private structure is implicit, and it can be used to design faster algorithms.
And indeed, this algorithm, which uses that a minimum vertex cover is also
minimal, runs in time O∗(1.4423n), faster than the brute-force algorithm of
complexity O∗(2n) which does not use the implicit private structure of Min
Vertex Cover. Observe nonetheless that the current best algorithm for
this problem by Xiao and Nagamochi [XN17] works in time O∗(1.1996n).
For Max Min Vertex Cover: again begin by enumerating all maximal
independent sets of the given graph; and then in contrary to the previous al-
gorithm output the complement of the maximal independent set of minimum
size. For this problem, with a mandatory private structure, this algorithm
directly gives a O∗(1.4423n) exact algorithm. Note that the current best al-
gorithm by Bourgeois et al. [BEP09] for Max Min Vertex Cover works
in time O∗(1.3351n).

There is no intractability result of the type ”problem Π cannot be solved
in time O∗((x− ε)n) for a constant x and any ε” in this framework of exact

3O∗ notation suppresses polynomial factors in the input size.
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algorithms with the exponential blow-up in the size of the instance, but a
major conjecture, the Exponential Time Hypothesis (ETH), has been made
by Impagliazzo and Paturi in 1999 [IP01] on the exact resolution of the k-
Sat problem. To define this conjecture, consider the problem k-Sat for a
given integer k, which is a restriction of the Sat problem where each clause
contains at most k literals. For a given k, let xk be the smaller real number x
such that the problem k-Sat can be solved in time O∗(2xn). Then, we have
xk ≤ xk+1 since k-Sat is less hard than (k+ 1)-Sat. The Exponential Time
Hypothesis is the following:

Definition 1.3 (Exponential Time Hypothesis). For every k > 2, xk > 0.

Informally, the ETH conjectures that the k-Sat problem cannot be solved
in sub-exponential time, that is in O∗(2o(n)) time. This conjecture is widely
used to derive intractability results in the parameterized complexity and
super-polynomial approximation frameworks. We will present later such
hardness results under the ETH. Note that the ETH fits the state of the
art concerning the best exact algorithms for solving k-Sat. Indeed, the
best exact algorithm for 3-Sat is a randomized algorithm due to Hansen
et al. [HKZZ19] and works in time O∗(1.307n). For k-Sat, the best exact
algorithm is a randomized algorithm also due to Hansen et al. [HKZZ19] and
works in time O∗(2cn) for a constant c < 1 that depends on the probability
that a variable is guessed in this randomized algorithm

We have mentioned that the ETH conjectures that the k-Sat prob-
lem cannot be solved in time O∗(2o(n)). In fact, the ETH states an even
stronger result: if the ETH holds, the problem k-Sat cannot be solved in
time O∗(2o(n+m)), where m is the number of clauses in the corresponding
k-CNF formula. Impagliazzo and Paturi [IP01] proved this harder result
using the Sparsification Lemma. This Lemma states that, given a k-CNF
formula φ with n variables and m clauses, and any ε > 0, it is possible to
construct in O∗(2εn) time O(2εn) 3-CNF formulas φi, each containing O(n)
clauses, such that φ is satisfiable if and only if there exists at least an i such
that φi is satisfiable. This Sparsification Lemma implies the O∗(2o(n+m))
hardness result. Indeed, suppose there exists an algorithm which, given a
k-CNF formula φ, solves it in time O∗(2o(n+m)). From this instance φ, apply
the Sparsification Lemma in order to obtain O(2εn) 3-CNF instances φi, each
with O(n) clauses. Use the previous algorithm on every instance φi obtained:
by the Sparsification Lemma, if one of them is satisfiable, then the original
instance φ is satisfiable. Thus, this algorithm solves the original instance of
k-Sat. Now, let us determine its running-time. The Sparsification Lemmas
works in time O∗(2εn) and the algorithm applied to each φi works in time
O∗(2o(n+O(n))) = O∗(2o(n)) since the instances φi have O(n) clauses. So the
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total running time of this procedure is O∗(2o(n)), contradicting the ETH.
So indeed, if the ETH holds, the problem k-Sat cannot be solved in time
O∗(2o(n+m)).

Furthermore, an even stronger conjecture based on the ETH, the Strong
Exponential Time Hypothesis (SETH), has also been made by Impagliazzo
and Paturi [IP01]. To define this conjecture, observe that, since xk ≤ xk+1,
the real numbers x3, x4, . . . form a monotonic sequence, which is upper-
bounded by one (since Sat can be solved in time O∗(2n) by a brute-force
algorithm), so the sequence must converge to a limit x∞. The Strong Expo-
nential Time Hypothesis is the following:

Definition 1.4 (Strong Exponential Time Hypothesis). x∞ = 1.

Informally, the SETH is stronger than the ETH and conjectures that Sat
cannot be solved in less than O∗(2n), that is it conjectures that the best exact
algorithm for Sat is the brute-force algorithm, which currently fits the state
of the art, since no better algorithm than the brute-force exists for Sat.
If the SETH holds, then Sat cannot be solved in time O∗((2 − ε)n). The
SETH is also widely used to derive intractability results, generally in the
parameterized complexity framework. We will present later such hardness
results under the SETH. But note that the SETH is also used to derive
intractability results for some problems in P, for example for the Diameter
problem [Bon21], the 2-Sat problem [PW10], and in general in the fine-
grained complexity framework [Wil15].

Now that we have presented some exact algorithms with the exponen-
tial blow-up in the size of the instance and the two main conjectures in this
framework, we will focus in the rest of this section on parameterized algo-
rithms.

We first consider parameterized algorithms parameterized by the solution
size k, also called the natural parameter, and we present an algorithm with
this parameter for the Max Min Vertex Cover problem, inspired by
the algorithm of Boria et al. [BCP13] running in time O∗(1.5874k). This
algorithm is a branching algorithm composed of two branching rules and one
reduction rule.

In this algorithm, we keep track of the minimal vertex cover C we are
constructing. The algorithm applies the rules in order as long as the budget
k is not exceeded. For the first branching rule, consider a vertex u ∈ V of
degree d(u) ≥ 2 such that all its neighbors have degree at least d(u), and
branch on the following sub-instances: either discard u from C and add all
its neighbors in C; or, for every neighbor v of u, discard v from C and add all
its neighbors in C. This first rule is correct because the mandatory private
structure of Max Min Vertex Cover is that every vertex in the solution
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has at least one private edge, and in this branching rule we consider all cases:
either u is not in C and all its neighbors are in C with their common edge
with u as private edge; or u is in C and one of its neighbors v is not in C so
that the edge (u, v) is the private edge of u, and we consider all neighbors of
u. Observe also that when a vertex is discarded, we add all its neighbors in
C. For the second branching rule, consider a vertex u of degree d(u) ≥ 2 and
with at least one of its neighbors, v, of degree 1, and branch on the following
two sub-instances: either discard v from C and add u to C; or discard u from
C and add its neighbors in C. This rule is correct for the same argument as
previously: either v is in C and the edge (u, v) must be its private edge (since
when we discard a vertex we add all its neighbors in C); or v is discarded
and u must be in C.

Observe that if the two previous branching rules do not apply, the vertices
left form a set of connected components, each of size at most 2. At this point,
we apply the following reduction rule: if there is a connected component of
size 2, add one of these two vertices in C; if there is a connected component
of size 1, discard the corresponding vertex. Since in the two branching rules
we add all the neighbors of a vertex we discard, the neighbors of the vertices
left in the connected components are all in C. Thus, if there is a connected
component with two vertices, only the edge between these two vertices is not
dominated, and putting any one of these two vertices is sufficient to have
a correct solution and to have the considered edge as private edge of the
vertex taken, and if there is a connected component with one vertex, all its
incident edges are already dominated, so the vertex must be discarded. So
the reduction rule is correct.

Let us now determine the running time of this algorithm. For the first
branching rule, the reduction is given by the expression T (k) ≤ (d(u) +
1)T (k−d(u)), which has the worst case when d(u) = 2 and gives a complexity
of O∗(1.7321k). For the second branching rule, the reduction is given by
T (k) ≤ T (k−1)+T (k−2), which gives a complexity of O∗(1.6181k). Finally,
the reduction rule can be executed in polynomial time. So the total running
time of this algorithm is O∗(1.7321k).

This algorithm, similar to the algorithm of Boria et al. [BCP13], is sim-
pler, and this is why we obtain a O∗(1.7321k) algorithm compared to the
O∗(1.5874k) algorithm of Boria et al., which is the current best parameter-
ized algorithm for Max Min Vertex Cover with k as parameter. Inter-
estingly, our parameterized algorithm with k as parameter for Min Mixed
Dominating Set we present in Section 2.3 is similar to this algorithm for
Max Min Vertex Cover. Indeed, both use the private structure of the
considered problem: for Max Min Vertex Cover, every vertex put in the
solution has to have at least one neighbor not in the solution, in order to
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have a private edge, and to satisfy the mandatory private structure of this
problem; for Min Mixed Dominating Set, we put two neighbors of a ver-
tex u in the solution outside the solution in order for u to have two private
neighbors, to satisfy the implicit private structure of this problem we have
mentioned in Section 1.2. We note also that, similarly to the algorithm for
Max Min Vertex Cover, the problem Min Mixed Dominating Set
can be solved in polynomial time when the vertices left at the end of the
branching procedure form a set of connected components of size at most 2.

Since Max Min Vertex Cover admits a O∗(1.7321k) algorithm param-
eterized by the natural parameter, we say that Max Min Vertex Cover
is in FPT with respect to this parameter. Indeed, for a decision problem
Π that admits an exact algorithm running in time O(f(p)nc) for a function
f , a constant c and a parameter p, we say that Π is in FPT parameterized
by p, and we say that such an algorithm is an FPT (for Fixed Parameter
Tractable) algorithm for Π with respect to the parameter p.

Two other well-studied classes in parameterized complexity are the W[1]
and W[2] classes, which contain most of the problems for which it is widely
believed that there is no FPT algorithm with the considered parameter, while
the W hierarchy is FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆ XP, where XP regroup
the problems which can be solved in time O(nf(p)) for a function f . Despite
the original definitions of the two classes W[1] and W[2], a characteriza-
tion of these two classes using Turing machines was developed by Cesati in
2001 [Ces01]. By this result, two problems were proved to be W[1]-hard
and W[2]-hard, respectively. Concerning the W[1]-hardness, the associated
problem is to determine if a non-deterministic Turing machine accepts its
input in p steps for an integer p while using a single tape. Concerning the
W[2]-hardness, the associated problem is similar to the one for the W[1]-
hardness, but with the key difference that this time the Turing machine has
a multi-tape, which makes this problem harder that the one with a single
tape, and indeed the W[2]-hard problems with respect to a parameter p are
harder than the W[1]-hard problems with the same parameter.

These two classes W[1] and W[2] are of particular interest since they
characterize many well-knownNP-hard problems for which there is currently
no FPT algorithm for the considered parameter, which is widely believed and
implied by the ETH, as we explain below. For example, with k the natural
parameter, the Independent Set and Clique problems are W[1]-hard,
while the Dominating Set problem is W[2]-hard [DF99].

The two problems Clique and Dominating Set are generally used to
prove the W[1]-hardness and W[2]-hardness, respectively, of the considered
problem, using a linear fpt reduction. Informally, a linear fpt reduction with
parameter p between two decisions problems Π1 and Π2 is a reduction from
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Π1 to Π2 such that there exists a solution for Π1 with parameter p if and only
if there exists a solution for Π2 with parameter f(p) for a function f , and
if this reduction can be made in linear FPT time O(g(p)|I|) for a function
g and |I| the input size of the problem Π1. We explain below why such an
fpt reduction has to be linear in order to derive intractability results in this
framework.

Indeed, when proving that the considered problem isW[1]-hard orW[2]-
hard parameterized by the natural parameter k, it is also interesting to prove
that no algorithm can solve the considered problem in time O(no(k)) if it is
W[1]-hard, and in time O(nO(1)mo(k)) if it is W[2]-hard, where m is the size
of the search space. The first problems for which such results were obtained
are the Clique and Independent Set problems for the former hardness
result, and which hold under the ETH, and the Set Cover, Hitting Set
and Dominating Set problems for the latter hardness result, and which
hold under FPT 6= W[1], in the extensive paper of Chen et al. [CHKX06].
To obtain these hardness results, Chen et al. introduced the notion of linear
fpt reductions.

As we have mentioned before, it is crucial that such reductions are linear
in order to derive the considered intractability results. Indeed, suppose we
have an fpt reduction with parameter p from Π1 to Π2 such that the size
of the instance I2 of Π2 is f(p)|I1|c for an instance I1 of Π1 and a constant
c > 1, and suppose that there exists an FPT algorithm for Π2 running in time
O(g(f(p))|I2|c

′). With this reduction and this algorithm, we can solve Π1 in
time O(g(f(p))f(p)c′|I1|cc

′). Thus, with such a running time, an O(no(k))
or O(nO(1)mo(k)) intractability for Π1 cannot be transferred to Π2, implying
that the fpt reductions have to be linear to derive such hardness results.
In Section 4.1, we present such a linear fpt reduction from Independent
Set to Upper Dominating Set which allows us to derive the considered
intractability result to the latter problem.

Another type of hardness result for W[1]-hard and W[2]-hard problem
is under the SETH, initiated by Patrascu and Williams [PW10], and which
states that Dominating Set cannot be solved in time O(nk−ε) for a ε > 0.
This result of Patrascu and Williams was obtained by a reduction from an
instance of Sat to an instance of Dominating Set with sub-exponentially
many vertices.

Until now, we have first focused on exact algorithms with the exponential
blow-up in the size of the instance, after which we have presented the two
widely used conjectures ETH and SETH, and after that we have focused
on parameterized algorithms parameterized by the natural parameter while
presenting the W hierarchy which holds for any parameter. We now present
two other well-studied parameters, the treewidth and the pathwidth. These
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parameters are defined through the notion of tree decomposition:

Definition 1.5 (Tree decomposition). A tree decomposition of a graph G =
(V,E) is a tree T with nodes X1, . . . , Xt with t ≤ |V |, each of which is a
subset of V , satisfying the following properties:

• ⋃t
i=1Xt = V ;

• If two nodes Xi and Xj both contain the vertex u, then all nodes Xk of
T in the path from Xi to Xj contain u as well;

• For every edge (u, v) ∈ E, there is a node Xi that contains both u and
v.

What we call width of a tree decomposition is the size of the largest set Xi

in the decomposition, minus one. The treewidth tw(G) of the graph G is the
minimum width among all possible tree decompositions of G. The treewidth
of a graph is a measure of how distant the considered graph is from being a
tree. Similarly, the pathwidth of a graph is defined in the same way as the
treewidth, via decompositions, with the difference that T is in this case a
path. Thus, the pathwidth of a graph is bigger or equal to the treewidth of
the graph. And again, the pathwidth of a graph is a measure of how distant
the considered graph is from being a path.

Interestingly, the problem of deciding if the treewidth (resp. the path-
width) of a graph is at most tw (resp. pw) is NP-hard [ACP87]. However,
if the width tw is a constant, there is an FPT algorithm which determines if
the considered graph has a treewidth of width tw, where the dependence on
the size of the instance is linear (although exponential in tw) [Bod96].

Nonetheless, these two parameters are mostly known for their tractabil-
ity in FPT time. There are many W[1]-hard and W[2]-hard problems pa-
rameterized by the natural parameter for which there exists an FPT algo-
rithm parameterized by the treewidth or the pathwidth. Furthermore, a
meta-theorem designed by Courcelle [Cou90] states that all graph problems
which are MSO-expressible can be solved in FPT time parameterized by the
treewidth, in time linear on the size of the instance. This celebrated theorem
is known as Courcelle’s Theorem. Unfortunately, the exponential blow-up of
Courcelle’s Theorem in the treewidth parameter is usually super-exponential.
Thus, since most of the NP-hard problems we are interested in are known
to be FPT parameterized by the treewidth, obtaining the best algorithm for
such problems, and in particular obtaining such an algorithm with the base
of the exponential blow-up as small as possible, has become an interesting
topic.
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To obtain such algorithms, the common technique is to design a dynamic
programming algorithm working on the tree decomposition associated with
the given treewidth. To ease the production of such dynamic programming
algorithms, specific tree decompositions were defined. The most noteworthy
is the nice tree decomposition, which contains the following type of nodes:
Leaf nodes which are leaf of the tree decomposition and which are empty sets;
Introduce nodes which are nodesXt with one child t′ such thatXt = Xt′∪{v}
for a vertex v /∈ Xt′ ; Forget nodes which are nodes Xt with one child t′

such that Xt = Xt′ \ {w} for a vertex w ∈ Xt′ ; and Join nodes which are
nodes t′ with two children t1, t2 such that Xt = Xt1 = Xt2 . Note that path
decompositions do not contain Join nodes since such nodes imply a tree-like
structure.

On such nice tree decompositions, it suffices to prove for each type of
nodes how the dynamic programming algorithm works to design an FPT
algorithm for the considered problem parameterized by the treewidth. For
example, the two problems Min Independent Dominating Set and Max
Min Vertex Cover can be solved in time O∗(3tw) by a result of van Rooij
et al. [vRBR09], while their more natural Max and Min versions can be
solved in time O∗(2tw). In Section 2.4, we present a O∗(5tw) algorithm for
Min Mixed Dominating Set, obtained via a reduction, and in Section 4.2,
we present a O∗(6pw) algorithm for Upper Dominating Set, by modifying
the dynamic programming algorithm of complexity O∗(7pw) of Bazgan et
al. [BBC+18a].

As we have mentioned earlier, obtaining the smaller base of the exponen-
tial blow-up is an interesting topic. It follows that designing hardness results
on the existence of such FPT algorithms parameterized by the treewidth
and the pathwidth have been studied. The first results obtained in this di-
rection come from the extensive paper of Lokshtanov et al. [LMS18]. They
proved that the known algorithms parameterized by the treewidth for Max
Independent Set, Min Dominating Set, Max Cut and other prob-
lems are asymptotically optimal under the SETH. To obtain such hardness
results, they provided reductions from Sat, which cannot be solved in time
O∗((2−ε)n) under the SETH, to the considered problems, where the instances
of the latter problems have the pathwidth upper-bounded by n+O(1), thus
implying that if the latter problem could be solved in time O∗((c− ε)pw) for
a constant c depending on the problem, then this algorithm could solve Sat
in time O∗((2− ε)n), contradicting the SETH. Since for a given graph G we
have tw(G) ≤ pw(G), such an hardness result holds also for the treewidth.

Such SETH-based intractability results have been obtained for a variety
of NP-hard problems. Nonetheless, this method introduced by Lokshtanov
et al. [LMS18] has the downside to design the reductions by beginning with
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an instance of Sat for which we directly use a consequence of the SETH,
that is the O∗((2 − ε)n) intractability. Thus, such reductions designed this
way had to go from a base of value 2 to a base of value c for a constant c de-
pending on the problem. In particular, such reductions implied the grouping
of several variables of the given instance of Sat, which make the reductions
more involved. Fortunately, Lampis [Lam18] obtained a direct implication
of the SETH to the problem q-CSP-B. In this problem, we are given a CSP
instance with n variables which can take values over a set of size B, and
m constraints such that each constraint contains at most q variables and is
given as a list of acceptable assignments of these variables, where an accept-
able assignment is a q-tuple of values from the set B given to the q variables.
Lampis proved that under SETH, for any constant B ≥ 2 and any ε > 0,
there exists a q such that q-CSP-B cannot be solved in time O∗((B − ε)n).
With such an intractability result, it is now easier to design reductions to
obtain hardness result for problems parameterized by the pathwidth, begin-
ning with an instance of q-CSP-B to the considered problem where the base
of the target lower bound is equal to B. In Section 2.4 we give such an in-
tractability result for Min Mixed Dominating Set matching our O∗(5tw)
algorithm we present in the same Section, and in Section 4.3 we give such
an intractability result for Upper Dominating Set matching our O∗(6pw)
algorithm we present in Section 4.2.

We now finish this section, where we have presented the basic notions of
the exact algorithms framework: an exact algorithm for the two problems
Min Vertex Cover and Max Min Vertex Cover; the two complexity
assumptions ETH and SETH; an FPT algorithm for Max Min Vertex
Cover; the W hierarchy; and the treewidth and pathwidth and how to
obtain positive and negative results for these parameters. In the next section,
we focus on super-polynomial approximation.

1.5 Super-Polynomial Approximation
For any NP-hard problem, when we look simultaneously at an exact algo-
rithm and an approximation algorithm, we observe that there exists a double
gap between these two types of algorithms: one gap between the approxi-
mation ratio (1 for an exact algorithm and r > 1 for an approximation
algorithm); and one gap between the time complexity (exponential for an
exact algorithm and polynomial for an approximation algorithm). By this
observation, the framework of super-polynomial approximation (also called
sub-exponential approximation) was developed at the end of the 2000s, and
aims to fill these two gaps by designing schemata of algorithms that can
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achieve any approximation ratio lying on the first gap, in a time complexity
bigger than polynomial, but smaller than the one of exact computation. In
this section, we present the basic notions of this framework, from positive to
negative results, which are relevant to the results we have obtained for the
two problems Max Min Feedback Vertex Set and Upper Dominat-
ing Set.

More precisely, we present: (i) the r-approximation algorithm running in
time 2O(n/r2) for Max Min Vertex Cover due to Bonnet et al. [BLP16]
which is a good example of a super-polynomial approximation algorithm
for a Max-Min problem, and which we mirror with our algorithm for Max
Min Feedback Vertex Set of Section 3.5 and our algorithm for Upper
Dominating Set of Section 4.4 (ii) the inapproximability of Max Inde-
pendent Set obtained from the PCP Theorem, and an argument which
explains why we consider that this inapproximability result ”matches” the
best known super-polynomial approximation algorithm for this problem (iii)
the lower bound for Max Min Vertex Cover that matches the algorithm
presented previously also due to Bonnet et al. [BLP16], and which is similar
to the two inapproximability results in this framework we obtain for Max
Min Feedback Vertex Set in Section 3.6 and for Upper Dominating
Set in Section 4.5 (iv) the notion of parameterized approximation, some lower
bounds obtained in this framework and how to derive such inapproximability
results.

Let us begin by presenting the r-approximation algorithm, for any r ≤√
n, of Bonnet et al. [BLP16], for the Max Min Vertex Cover, running

in time O∗(2O(n/r2)). Recall that for this problem the private structure is
that every vertex in the solution has to have at least one private edge domi-
nated only by this vertex. This algorithm is a divide-and-conquer algorithm,
which works as any divide-and-conquer algorithm in the following way: di-
vide the initial instance into x sub-instances; then execute a sub-exponential
procedure on each of these sub-instances; and finally extend or combine in
polynomial time the solutions found to obtain a solution of the whole graph.

The algorithm of Bonnet et al. [BLP16] works as follows, for any ratio
r ≤
√
n: (1) compute a maximal matching M (2) if |M | ≥ n/r, output any

minimal vertex cover (3) else, partition the set V (M) into r almost equal-
sized sets V1, . . . , Vr, and let I be the set of unmatched vertices (4) for each
subset Vi, iterate through all subsets Z ⊆ Vi such that Z is an independent
set (5) for each such independent set Z, consider the set Z ′ = Z∪(I \N(Z ′)),
let CZ = V \ Z ′, and remove vertices from CZ until it is minimal (6) at the
end, output the best solution encountered.

Let us first determine the running-time of this algorithm. The first two
steps can be executed in polynomial time. At Step (3), which occurs if
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|M | < n/r, every subset Vi has size at most 2n/r2. Thus, at Step (4), the
number of independent sets in the considered set Vi is at most 2O(n/r2). The
rest of the algorithm works in polynomial time. Let us now prove that the
solution output is a minimal vertex cover. At Step (2), if |M | ≥ n/r, we
output any minimal vertex cover. At Step (5), the set Z ′ is an independent
set since Z is an independent set. So CZ = V \ Z ′ is a vertex cover of the
given graph, and we remove vertices from CZ until it is minimal. So the
solution output is a minimal vertex cover.

Let us now prove the approximation ratio. At Step (2), if |M | ≥ n/r,
then any minimal vertex cover will have to contain at least |M | vertices,
which directly gives an r-approximation. So suppose that |M | < n/r. Fix an
optimal solution C∗, and let Ri be the set of vertices of Vi, for 1 ≤ i ≤ r, that
do not belong to C∗, and similarly let RI be the set of vertices of I not in C∗.
Observe first that R = RI ∪

⋃r
i=1Ri is an independent set since R = V \C∗,

and furthermore we have |C∗| ≥ |N(R)|. Now, observe that there exists an
1 ≤ i ≤ r such that |N(RI ∪ Ri)| ≥ |N(R)|/r by the facts that for two
independent set I1, I2 such that I1 ∪ I2 we have N(I1 ∪ I2) = N(I1) ∪N(I2),
that ∑r

i=1 |N(RI) ∪N(Ri)| ≥ |N(R)|, and the pigeonhole principle. For this
i, since we went through all independent sets Z of Vi, we have tried the set
Z = Ri. From this, we have build at Step (5) the set Z ′ = Ri ∪ (I \N(Ri)),
and we have RI ∪Ri ⊆ Z ′ since RI ⊆ I \N(Ri) since it contains no neighbor
of Ri. Thus, we obtain |N(Z ′)| ≥ |N(RI ∪Ri)| ≥ |N(R)|/r. Finally, observe
that the solution CZ we have constructed from Z ′ has size at least |N(Z ′)|
since all neighbors of Z ′ must have been kept in CZ to remain a vertex cover.
So we obtain that the solution output is bigger or equal to |CZ | ≥ |N(Z ′)| ≥
|N(R)|/r, and thus the algorithm outputs an r-approximation.

Observe that this algorithm matches the
√
n-approximation algorithm

for Max Min Vertex Cover we have described in Section 1.3, and allows
us to obtain any ratio r ≤

√
n in sub-exponential time. We note also that

for the super-polynomial approximation for our considered problem Max
Min Feedback Vertex Set we present in Section 3.5, we also use the
divide-and-conquer technique, but this time by dividing the original graph
into

√
r equal-sized subsets Vi, and in the proof of the algorithm for Max

Min Feedback Vertex Set we need to consider pairs of subsets Vi instead
of single subsets Vi, while using a parameterized approximation algorithm.
Moreover, for the super-polynomial approximation for our other considered
problem Upper Dominating set we present in Section 4.4, we also use
the divide-and-conquer technique, where similarly to the algorithm for Max
Min Vertex Cover we enumerate all independent sets for each subset Vi,
as well as other subroutine algorithms.

As in the polynomial-time approximation and the parameterized frame-
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works, it is of interest to prove some intractability results matching the known
super-polynomial approximation algorithms. Interestingly, one of the first
such inapproximability results was obtained for Max Independent Set
by Chalermsook et al. [CLN13]. Similarly to the n1−ε-inapproximability in
polynomial time for this problem we have presented in Section 1.3, this super-
polynomial inapproximability result was obtained using the PCP Theorem,
via a gap-introducing reduction from an instance of 3-Sat, and states the
following: under the ETH, for any ε > 0 and any sufficiently large r > 1,
there cannot exist an r-approximation algorithm for Max Independent
Set running in time 2(n/r)1−ε .

Note that for the Max Independent Set problem, there exists the fol-
lowing super-polynomial approximation, obtained by Bourgeois et al. [BEP11]:
for any r < 1, there exists an r-approximation algorithm for Max Inde-
pendent Set running in time O∗(αrn), where the problem can be solved
exactly in time O∗(αn). In this manuscript, we consider that these two re-
sults ”match”, that is we consider that the super-polynomial approximation
for Max Independent Set is the best we can hope under the ETH by
the inapproximability of Chalermsook et al. [CLN13]. In fact, it is not to-
tally exact since, in particular for Max Independent Set, we can im-
prove the super-polynomial approximation with a log(r) factor. Indeed,
Bansal et al. [BCL+19] proved the following result: there is a randomized
algorithm that outputs with constant probability an r-approximation for
Max Independent Set running in time O∗(e(Õ(n/(r log2 r)+r log2 r))4. This
result of Bansal et al. [BCL+19] prove that the inapproximability result of
Chalermsook et al. [CLN13] is not ”tight” compared to the super-polynomial
approximation of Bourgeois et al. [BEP11].

Nonetheless, we consider that the super-polynomial approximation of
Bourgeois et al. [BEP11] and the corresponding inapproximability of Chalerm-
sook et al. [CLN13] ”match” for the following argument: with the current
PCP constructions, we are unable to distinguish between running times 2n/r
and 2n/(r log r). Indeed, the current most efficient PCP constructions are quasi-
linear: they reduce an instance of 3-Sat with n variables into an instance
of Max-3-Sat of size n log(n)O(1) in which there is a gap on the fraction
of clauses satisfied. Thus, under the ETH, these PCP constructions give an
intractability result with complexity 2o(n/(log(n)O(1))), which we prefer to write
as 2n1−ε since only a linear PCP construction would allow us to distinguish
between these two running times. We make such a consideration for any
problem we consider. Moreover, when we encounter such an intractability
result, we specifically say that it ”matches” the associated algorithm, whereas

4Õ notation suppresses log(log(r))c factors for a constant c.
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for intractability results which are not based on the PCP we say they are
”tight” (for example for the intractability results for pathwidth and treewidth
under the SETH).

We now present a gap-preserving reduction from Max Independent
Set to Max Min Vertex Cover, designed by Bonnet et al. [BLP16],
which allowed them to derive an inapproximability result for the latter prob-
lem that matches the super-polynomial approximation we have described ear-
lier for this problem. For this sake, we recall some details of the reduction of
Chalermsook et al. [CLN13] to obtain the hardness result for Max Indepen-
dent Set. They obtained an instance G = (V,E) of Max Independent
Set with |V | = n1+εr1+ε and such that: if the original instance φ of 3-Sat
with n variables is a Yes-instance, then α(G) ≥ n1+εr, where α(G) denotes
the maximum size of an independent set in G; and if φ is a No-instance, then
α(G) ≤ n1+εr2ε. Thus, if there would be an r1−2ε-approximation algorithm
for Max Independent Set running in time 2(n/r)1−ε , then we would be
able to determine if the original instance φ of 3-Sat is satisfiable or not in
sub-exponential time, contradicting the ETH.

From this instance G = (V,E) of Max Independent Set and with any
ratio r ≤

√
n, we construct an instance G′ = (V ′, E ′) of Max Min Vertex

Cover, similarly as the reduction we made between these two problems in
Section 1.3 to obtain the polynomial-time inapproximability for Max Min
Vertex Cover, in the following way: for every vertex u ∈ V , we add r
vertices connected only to u.

For the first direction of the proof, suppose G admits a maximum inde-
pendent set I of size at least n1+εr (Yes-instance). We construct a minimal
vertex cover by taking all vertices of V \ I and the r newly vertices of ev-
ery vertex in I. The solution is clearly a vertex cover of G′. Let us now
show that the solution satisfies its mandatory private structure: since I is
maximum, it is maximal, so every vertex in V \ I has at least one neighbor
in I and thus a private edge; and for a vertex u ∈ I, the r newly vertices
connected to u in the vertex cover have their common edge with u as private
edge. Now, the size of this minimal vertex cover is at least rα(G) ≥ n1+εr2.
For the other direction, consider any minimal vertex cover C of G′. For
every vertex u ∈ V \ C, at most the r newly vertices connected to u are
in C. And at most |V | vertices are in V ∩ C. Thus, since in this case
(No-instance) every independent set has size at most n1+εr2ε, we have that
|C| ≤ |V |+ rα(G) ≤ n1+εr1+ε + n1+εr1+2ε ≤ 2n1+εr1+2ε.

Thus, an approximation algorithm with ratio r′ = r1−2ε/2 would de-
termine if the original instance of 3-Sat is satisfiable or not. Now, since
|V ′| = r|V | = n1+εr2+ε, and by adjusting correctly r and ε, if this algo-
rithm works in time 2(n/r2)1−ε , then we would be able to solve 3-Sat in
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sub-exponential time, contradicting the ETH.
So we obtain that, for Max Min Vertex Cover, there is no r-approxi-

mation for any r ≤
√
n running in time 2(n/r2)1−ε under the ETH. Ob-

serve that this inapproximability of Max Min Vertex Cover matches
the super-polynomial approximation algorithm we have presented earlier in
this section and due also to Bonnet et al. [BLP16].

In the reduction from Max Independent Set to Max Min Vertex
Cover, the gap is preserved from the former problem to the latter, and
the order of G′ is quadratic in r compared to G, thus giving the right in-
approximability result. Nonetheless, sometimes the blow-up in the size of
the instance is too big, quadratic or worse, compared to the blow-up in the
gap. To answer this difficulty, a solution is to sparsify the instance obtained.
One way to do this is to make a deterministic sparsification, that is to spar-
sify the instance by removing vertices in a deterministic way such that the
blow-up on the size of the instance is chosen accordingly to how the gap is
transferred from the first problem to the second. Another way to do this
is to make a probabilistic sparsification, that is to sparsify the instance by
removing vertices depending on a probability. Then, it is possible to use a
Chernoff bound which ensures that the blow-up in the size of the instance is
contained, while preserving the gap. Generally, the following bound is used
for this sake: suppose that X = ∑p

i=1Xi is the sum of p independent random
0/1 variables Xi, and that E[X] = ∑p

i=1E[Xi] = µ, then for all 0 ≤ δ ≤ 1,
we have Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3. In Section 3.6, we use this Chernoff
bound along with the inapproximability of Chalermsook et al. [CLN13] for
Max Independent Set to derive a super-polynomial inapproximability for
our considered problem Max Min Feedback Vertex Set, and in Section
4.5 we do the same for Upper Dominating Set.

Until now, we have presented in this section the framework of super-
polynomial approximation through the eye of exact algorithms with the ex-
ponential blow-up in the size of the instance, to obtain trade-offs between
such algorithms and polynomial-time approximation. Interestingly, we can
apply the same kind of reasoning to obtain trade-offs between exact param-
eterized algorithms and polynomial-time approximation. This framework is
called parameterized approximation.

Similarly as with exact algorithms with the blow-up in the size of the
instance, the main method to design such schemata of parameterized ap-
proximation algorithms is the divide-and-conquer method by splitting the
instance into x sub-instances, run an FPT subroutine on each sub-instance,
and finally combine the solutions found to obtain a solution of the whole
instance. This method is used in the same way they are used to develop
super-polynomial algorithms with the sub-exponential blow-up in the size
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of the instance, with the difference that in this case an FPT algorithm is
executed instead, and which depends on the parameter considered.

We now focus on the parameterized approximation with the natural pa-
rameter k. On the intractability side of parameterized approximation algo-
rithms, a commonly used negative result is again for the Independent Set
problem. This result, found by Bonnet et al. [BEKP13], is again obtained
via gap-introducing reduction from an instance of 3-Sat to an instance of
Independent Set, using the PCP Theorem. This result states that under
the ETH, for any ε > 0 and any constant r > 0, there is no r-approximation
algorithm for Independent Set running in time O(nk1−ε). In this reduction
from 3-Sat to Independent Set of Bonnet et al. [BEKP13], the instance
G = (V,E) of Independent Set obtained has a specific form: the set of
vertices V is partitioned into k subsets V1, . . . , Vk, each being a clique, and
with k the natural parameter. In Section 4.1, we use this parameterized
inapproximability result for Independent Set and the structure of the in-
stance G from the reduction of Bonnet et al. [BEKP13] to derive the same
inapproximability result for our considered problem Upper Dominating
Set, via a linear fpt reduction.

Note that the result of Bonnet et al. [BEKP13] holds for any ratio r
being a constant, and under the ETH. Very recently, this hardness result for
Independent Set was improved by Lin [Lin21] for the Clique problem:
under FPT 6= W[1], and any constant r > 1, there is no algorithm that
outputs an r-approximation for Clique running in FPT time f(k)nO(1). To
obtain better intractability results with the ratio not only constant, there is
the hardness result of Chen and Lin [CL15] for Dominating Set stating that
for any ratio r constant or super-constant, there is no r-approximation for
this problem running in FPT time, again under the complexity assumption
FPT 6= W[1]. To obtain even stronger intractability results, that is with a
ratio being a function of the natural parameter k, there is the hardness result
of Chalermsook et al. [CCK+17] for Clique and Dominating Set, stating
that there is no o(k)-approximation for Clique or f(k)-approximation for
any function f for Dominating Set that runs in FPT time, under the
Gap Exponential Time Hypothesis (Gap-ETH). The conjecture Gap-ETH is
stronger that the more natural ETH and can be formulated as follows: there
exists a constant ε > 0 such that no algorithm running in time O∗(2o(m)) can
distinguish for an instance φ of 3-Sat if φ is satisfiable or if at most (1− ε)
fraction of the m clauses of φ are satisfied. We note that the result of Lin
[Lin21] for Clique is stronger, in some sense, than the one of Chalermsook
et al. [CCK+17] since it holds under FPT 6= W[1], whereas the one of
Chalermsook et al. holds under the Gap-ETH.

We now finish this section, where we have presented the basic notions
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of the super-polynomial approximation framework: an r-approximation al-
gorithm for Max Min Vertex Cover for any r ≤

√
n running in time

2O(n/r2); the inapproximability of Max Independent Set along with a dis-
cussion of what is a ”matching” inapproximability result in this framework;
a matching lower bound for Max Min Vertex Cover under the ETH;
and finally the notion of parameterized complexity, and in particular inap-
proximability results in this framework. In the next Section, we give some
notations.

1.6 Notations
In this section, we recall some basic definitions about graph theory, boolean
formulas, CSPs and Chernoff bounds.

Graphs
The definitions here can be found in the book of Berge [Ber73]. An undirected
graph G is a pair (V,E), where V is a finite set of elements called vertices,
and E ⊆

(
V
2

)
is a set of pairs of vertices called edges. We denote by V (G)

the vertex set of the graph G if there is ambiguity, and E(G) the edge set,
for the same reason. An edge e between two vertices u and v is denoted
(u, v). A directed graph is a pair (V,A), where V is a finite set of vertices,
and E ⊆ V ×V is a set of arcs. An arc is noted (u, v). A (directed) path is a
sequence of vertices u1, . . . , ux such that, for each 1 ≤ i ≤ x−1, (ui, ui+1) ∈ E
((ui, ui+1) ∈ A). A cycle is a path with u1 = ux. A directed acyclic graph
(DAG) is a directed graph with no cycle. Except when we will mention it
explicitly, a graph will be an undirected graph.

In an undirected graphG = (V,E) without parallel edges, the two vertices
u and v are neighbors if (u, v) ∈ E. We also say that v is a neighbor of u,
and vice versa. In a directed graph G = (V,A), v is a neighbor of u if
(u, v) ∈ A. The set of neighbors of a vertex u in an undirected or directed
graph is denoted N(u), or NG(u) in case of ambiguity, and is called the open
neighborhood of u. N [u] = N(u) ∪ {u} is called the closed neighborhood of
u. For any subset of vertices U ⊆ V , N [U ] is defined as ⋃u∈U N [u], and
N(U) = N [U ] \U . The degree d(u) of a vertex u is the size of N(u). We use
∆(G) (or simply ∆) to denote the maximum degree of G.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that
V ′ ⊆ V and E ′ ⊆ E. An induced subgraph of G = (V,E) is a subgraph G′ =
(V ′, E ′) of G such that V ′ ⊆ V and each edge of E having both endpoints in
V ′ is in E ′. The subgraph induced by U ⊆ V , denoted by G[U ], is the induced
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subgraph of G of the form (V ′, E ′) with U = V ′. The complementary G of
G is defined by G = (V,E), where E = {(u, v)|(u, v) /∈ E}.

For u ∈ V , G−u is the graph G[V \{u}]. For (u, v) ∈ E the graph G/uv
is the graph obtained by contracting the edge (u, v), that is, replacing u, v
by a new vertex connected to N(u) ∪N(v).

An independent set I ⊆ V is a subset of vertices of V such that for all
u, v ∈ I, (u, v) /∈ E. A clique K ⊆ V is a subset of vertices of V such that
for all u, v ∈ K, (u, v) ∈ E. A dominating set D ⊆ V is a subset of vertices
of V such that for all u ∈ V \D, there is a vertex v ∈ N(u) ∩D. A vertex
cover C ⊆ V is a subset of vertices of V such that for all e = (u, v) ∈ E, at
least one of u and v is in C. A forest is an acyclic graph, that is, a graph
without any cycle, and a tree is a connected forest.

An hypergraph G is a pair (V, F ), where V is a finite set of elements
called vertices, and F ⊆ 2V is a set of tuples of vertices called hyperedges.
The definitions given for an undirected graph hold for an hypergraph.

Boolean Formulas
A boolean variable is a variable that can be either True or False. A boolean
formula is either a boolean variable, either the negation (¬) of a boolean
formula, either the conjunction (∧) of two boolean formulas, or the disjunc-
tion (∨) of two boolean formulas. As ∨ and ∧ are associative, we can extend
these two operations to any arity. A literal is a variable or the negation of
a variable. A clause is a disjunction of literals. A conjunctive normal form
(CNF for short) formula is a boolean formula which is the conjunction of
clauses. A truth assignment is a function mapping each variable to True
or False. A satisfying truth assignment is a truth assignment which makes
the formula to be True. A formula is satisfiable if there is a satisfying truth
assignment.

CSPs
A constraint satisfaction problem is defined as a triple (X,D,C), where:
X = {x1, . . . , xn} is a set of variables; D is an alphabet and is generally a
finite subset of N; C = {c0, . . . , cm−1} is a set of constraints. Each variable
xi, 1 ≤ i ≤ n, can take value over the alphabet D. An evaluation of the
variables is a function f : X → D from the variables to the alphabet that
sets values ofD to the variables ofX. Each constraint cj is a list of acceptable
assignments of the variables appearing in cj, that is it is a list of pairs (Y, b),
where Y ⊆ X is a subset of q variables, for 1 ≤ q ≤ n, and b is a q-ary relation
setting the values from D to the q variables of Y appearing in cj. We say
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that a constraint cj is satisfied if the evaluation of the variables satisfies at
least one pair (Y, b) in the list of the constraint cj. We say that an evaluation
satisfies the problem if all constraints are satisfied by this evaluation, and we
say that the problem is satisfiable if there exists an evaluation that satisfies
all constraints.

Chernoff bounds
Chernoff bounds, named after Herman Chernoff, give, in probability theory,
exponentially decreasing bounds on distributions of the sums of independent
0/1 random variables. In contrary to Markov’s inequality and Chebyshev’s
inequality, Chernoff bounds require the random variables to be independent.

In this manuscript, we consider the multiplicative form of the Chernoff
bounds, which is given as follows: we are given p independent 0/1 random
variables X1, . . . , Xp, with X = ∑p

i=1Xi and E[X] = µ the expected value of
the sum of these p variables. The multiplicative Chernoff bound is given as
follows, for any 0 ≤ δ ≤ 1:

Pr[|X − µ| ≥ δµ] ≤
(

eδ

(1 + δ)1+δ

)µ
We use a less strong form of the multiplicative Chenoff bound, given as

follows, for any 0 ≤ δ ≤ 1:

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3



Chapter 2

Min Mixed Dominating Set

Domination problems in graphs are one of the most well-studied topics in
theoretical computer science. In this chapter we study a variant called Min
Mixed Dominating Set: we are given a graph G = (V,E) and are asked
to select D ⊆ V and M ⊆ E such that |D ∪M | is minimized and the set
D ∪M dominates V ∪E, where a vertex dominates itself, its neighbors, and
its incident edges and an edge dominates itself, its endpoints, and all edges
with which it shares an endpoint.

The notion of Min Mixed Dominating Set was first introduced in
1977 by Alavi et al. [ABLN77], and has been studied extensively in graph
theory [ALWZ92,EM77,Mei78,PS94]. See the chapter in [HHS98] for a sur-
vey on the Min Mixed Dominating Set problem. The computational
complexity of Min Mixed Dominating Set was first studied in 1993 by
Majumbar [Maj93], where he showed that the problem is NP-complete. The
problem remains NP-complete on split graphs [ZKS11] and on planar bi-
partite graphs of maximum degree 4 [Man99]. Majumbar [Maj93], Lan and
Chang [LC13], Rajaati et al. [RSS+17] and Madathil et al. [MPSS19] showed
that the problem is polynomial-time solvable on trees, cacti, generalized
series-parallel graphs and proper interval graphs, respectively.

Min Mixed Dominating Set is a natural variation of domination in
graphs as it can be seen as a mix between four standard problems: Min
Dominating Set, where vertices dominate vertices; Min Edge Dominat-
ing Set, where edges dominate edges; Min Vertex Cover, where vertices
dominate edges; and Min Edge Cover, where edges dominate vertices. In
Min Mixed Dominating Set we are asked to select vertices and edges in
a way that dominates all vertices and edges. As only the last of these four
problems is in P, it is not surprising that Min Mixed Dominating Set is
NP-hard.

On the polynomial-time approximation algorithms side, Hatami gave a

40
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2-approximation algorithm [Hat10]. Interestingly, this algorithm is based on
a maximum matching computation, as the 2-approximation of Min Vertex
Cover and the 2-approximation of Min Edge Dominating Set. As we
have mentioned in Section 1.3, Dudycz et al. [DLM19] showed that, under
the Unique Games Conjecture, no algorithm can achieve a ratio better than
2 for the Min Edge Dominating Set problem, result they have obtained
by slightly modifying the (2− ε)-inapproximability of Min Vertex Cover
obtained by Khot and Regev [KR08]. As we explain in the following section
(Proposition 2.1), this hardness result easily carries over to Min Mixed
Dominating Set, thus essentially settling the polynomial approximability
of the problem.

Thus we are interested in exact algorithms for Min Mixed Dominating
Set. In this context, this problem has recently been the focus of several
works. Concerning exact algorithms with the blow-up in the size of the
instance, an O∗(3n) algorithm is easily obtained by the following observation:
it is safe to assume that the optimal solution has a specific structure where
the selected edges form a matching whose endpoints are disjoint from the
set of selected vertices. This algorithm was recently improved by Madathil
et al. [MPSS19] who obtained an O∗(2n) algorithm using O∗(2n) space, by
a dynamic programming algorithm. In Section 2.2, we design an improved
exact algorithm of complexity O∗(1.912n) using only polynomial space. To
obtain this algorithm, we observe (Lemma 2.3) that there always exists an
optimal solution which has a specific form: the endpoints of the selected edges
are disjoint from the set of selected vertices; and every vertex u selected has
two private neighbors, that is two vertices not involved in the solution and
dominated only by u. We call such a solution a nice solution. In contrary
to the observation which implies the O∗(3n) exact algorithm, letting the
selected edges be an edge cover and not a matching allows us to obtain the
fact that every vertex u taken has two private neighbors. This definition
of nice mixed dominating sets is the private structure of the problem Min
Mixed Dominating Set we have briefly presented in the Introduction, and
our O∗(1.912n) exact algorithm is a branching algorithm that uses extensively
this implicit private structure in the different branching rules, enabling us to
obtain this improved algorithm.

In the context of FPT algorithms, Min Mixed Dominating Set has
also recently been the focus of several works. With respect to the natural
parameter (the size of the solution k), an O∗(7.465k) algorithm was given by
Jain et al. [JJPS17], more recently improved to O∗(4.172k) by Xiao and Sheng
[XS19]. In Section 2.3, we give an improved FPT algorithm parameterized
by k running in time O∗(3.510k). As for our exact algorithm, this FPT
algorithm is a branching algorithm which uses the implicit private structure
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of the solution in a way that speeds up the branching on low-degree vertices.
With respect to the treewidth tw and the pathwidth pw, Jain et al.

[JJPS17] gave algorithms running in O∗(6tw) time and O∗(5pw) time, im-
proving upon the O∗(3tw2) algorithm of Rajaati et al. [RHDS18]. Further-
more, Jain et al. [JJPS17] showed that no algorithm can solve Min Mixed
Dominating Set in time O∗((2 − ε)pw) under the Set Cover Conjecture
(see [CDL+12] for more details about the Set Cover Conjecture). In Section
2.4, we first improve the FPT algorithm parameterized by the treewidth by
giving a O∗(5tw) algorithm. Interestingly, this result is directly obtained from
the observation that Min Mixed Dominating Set is equivalent to Min
Distance-2-Dominating Set in the incidence graph. Finally, we prove
that our algorithm for treewidth and the one of Jain et al. [JJPS17] for path-
width are optimal under the SETH. Indeed, we prove that for any ε > 0
Min Mixed Dominating Set cannot be solved in time O∗((5− ε)pw) un-
der the SETH. To obtain this result, we make a reduction from the q-CSP-5
problem to our problem, as we have briefly presented in Section 1.5.

In the next Section, we begin by giving the (2 − ε)-inapproximability of
Min Mixed Dominating Set under the UGC and defining the notion of
nice mixed dominating set which gives us the implicit private structure of
Min Mixed Dominating Set we will use in our subsequent algorithms.

2.1 Inapproximability and Nice Solution
We begin by noting that the problem Min Mixed Dominating Set is
harder than the more well-studied Min Edge Dominating Set problem,
by a reduction that preserves most parameters from an FPT viewpoint and
the size of the optimal solution. Hence, essentially all hardness results for the
latter problem, such as its (2−ε)-inapproximability under the UGC obtained
by Dudycz et al. [DLM19] or its W[1]-hardness for clique-width from Fomin
et al. [FGLS10], carry over to Min Mixed Dominating Set.

Proposition 2.1. There is an approximation and parameter-preserving re-
duction from Min Edge Dominating Set to Min Mixed Dominating
Set.

Proof. Given an instance G = (V,E) of Min Edge Dominating Set we
seek a set M of k edges such that all edges have an endpoint in V (M). We
add a new vertex u connected to all of V and attach to u |V |+ 2 leaves. The
new graph has a mixed dominating set of size k + 1 if and only if G has an
edge dominating set of size k.

We now define a restricted notion of mixed dominating set.
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Definition 2.2. A nice mixed dominating set of a graph G = (V,E) is a
mixed dominating set D∪M which satisfies the following: (i) D∩V (M) = ∅
(ii) for all u ∈ D there exists at least two private neighbors of u, that is, two
vertices v1, v2 ∈ V \ (D ∪ V (M)) with N(v1) ∩D = N(v2) ∩D = {u}.

We note that a similar notion of nice mixed dominating set was used
in the algorithms of Jain et al. [JJPS17], with the key difference that these
algorithms do not use the fact that every vertex of D must have at least two
private neighbors, that is, two neighbors which are dominated only by this
vertex, though these algorithms use the fact that such vertices have at least
one private neighbor.

Let us now prove that restricting ourselves to nice solutions does not
change the value of an optimal solution, which gives us the implicit private
structure of Min Mixed Dominating Set we use extensively in our follow-
ing algorithms. The idea of the proof is to reuse the arguments of Madathil
et al. [MPSS19] to obtain an optimal solution satisfying the first property;
and then, while there exists u ∈ D with at most one private neighbor, we
replace it by an edge while maintaining a valid solution satisfying the first
property.

Lemma 2.3. For any graph G = (V,E) without isolated vertices, G has a
mixed dominating set D ∪M of size at most k if and only if G has a nice
mixed dominating set D′ ∪M ′ of size at most k.

Proof. One direction is trivial, since any nice mixed dominating set is also by
definition a mixed dominating set. For the other direction, we first recall that
it was shown by Madathil et al. [MPSS19] that if a graph has a mixed dom-
inating of size k, then it also has such a set that satisfies the first condition
of Definition 2.2. Suppose then that D ∪M is such that D ∩ V (M) = ∅.

We will now edit this solution so that we obtain the missing desired prop-
erty, namely the fact that all vertices of D have two private neighbors. Our
transformations will be applicable as long as there exists a vertex u ∈ D with-
out two private neighbors, and will either decrease the size of the solution,
or decrease the size of D, while maintaining a valid solution satisfying the
first property of Definition 2.2. As a result, applying these transformations
at most n times yields a nice mixed dominating set.

Let I = V \ (D ∪ V (M)). If there exists u ∈ D with exactly one private
neighbor, let v ∈ I be this private neighbor. We set D′ = D \ {u} and
M ′ = M ∪{(u, v)} to obtain another solution. This solution is valid because
N(u) \ {v} is dominated by (D ∪M) \ {u}, otherwise u would have more
that one private neighbors.
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Let us now consider u ∈ D such that u has no private neighbor. If
N(u) ⊆ D, then we can simply remove u from the solution and obtain
a better solution (recall that u is not an isolated vertex). Otherwise, let
v ∈ N(u)\D. We set D′ = D\{u} andM ′ = M ∪{(u, v)} to obtain another
feasible solution with fewer vertices, while still satisfying the first property.
We repeat these modifications until we obtain the claimed solution.

In the remainder, when considering a nice mixed dominating set D ∪M
of a graph G = (V,E), we will associate with it the partition V = D ∪P ∪ I
where P = V (M) and I = V \ (D ∪ P ). We will call this a nice mds
partition. We have the following properties: (i) M is an edge cover of G[P ]
since P = V (M) and M is a set of edges (ii) I is an independent set because
if there were two adjacent vertices in I then the edge between them would
not be dominated (iii) D dominates I because if there was a vertex in I not
dominated by D it would not be dominated at all (iv) each u ∈ D has two
private neighbors v1, v2 ∈ I, that is N(v1) ∩D = N(v2) ∩D = {u}.

We also note the following useful relation we will use in our exact algo-
rithm we present in Section 2.2.

Lemma 2.4. For any graph G = (V,E) and any nice mds partition V =
D ∪ P ∪ I of G, there exists a minimal vertex cover C of G such that D ⊆
C ⊆ D ∪ P .

Proof. Since I is an independent set of G, D ∪ P is a vertex cover of G and
hence contains some minimal vertex cover. We claim that any such minimal
vertex cover C ⊆ D∪P satisfies D ⊆ C. Indeed, for each u ∈ D there exists
two private neighbors v1, v2 /∈ D∪P . Hence, if u /∈ C, the edge (u, v1) is not
covered, contradiction.

In the next section, we present our improved exact algorithm running
in time O∗(1.912n) which extensively uses the private structure issued from
Lemma 2.3.

2.2 Improved Exact Algorithm
Let us first give an overview of our algorithm. Consider an instance G =
(V,E) of the Min Mixed Dominating Set problem and fix, for the sake
of the analysis, an optimal solution which is a nice mixed dominating set
D ∪M . Such an optimal solution must exist by Lemma 2.3, so suppose it
gives the nice mds partition V = D ∪ P ∪ I.

By Lemma 2.4, there exists a minimal vertex cover C of G for which
D ⊆ C ⊆ D ∪ P . Our first step is to ”guess” C, by enumerating all minimal
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vertex covers of G. This decreases our search space, since we can now assume
that vertices of C only belong to D ∪ P , and vertices of V \ C only belong
to P ∪ I.

For our second step, we branch on the vertices of V , placing them inD, P ,
or I. The goal of this branching is to arrive at a situation where our partial
solution dominates V \ C. The key idea is that, using the implicit private
structure of Min Mixed Dominating Set we have obtained through the
definition of nice mixed dominating set (Definition 2.2 and Lemma 2.3), any
vertex of C that may belong to D must have at least two private neighbors,
hence this allows us to significantly speed up the branching for low-degree
vertices of D. Finally, once we have a partial solution that dominates all of
V \ C, we show how to complete this optimally in polynomial time using a
minimum edge cover computation.

We now describe the three steps of our algorithm in order and give the
properties we are using step by step. In the remainder we assume that G has
no isolated vertices (since these are handled by taking them in the solution).
Therefore, by Lemma 2.3 there exists an optimal nice mixed dominating set.
Denote the corresponding partition as V = D ∪ P ∪ I.

Step 1: Enumerate all minimal vertex covers of G, which takes time
O∗(3n/3) by a result of Moon and Moser [MM65], as the algorithm we have
presented in Section 1.4 for Min Vertex Cover and Max Min Vertex
Cover. For each such vertex cover C we execute the rest of the algorithm.
In the end we output the best solution found.

Thanks to Lemma 2.4, there exists a minimal vertex cover C with D ⊆
C ⊆ D∪P . Since we will consider all minimal vertex covers, in the remainder
we focus on the case where the set C considered satisfies this property. Let
Z = V \ C. Then Z is an independent set of G. We now get two properties
we will use in the branching step of our algorithm:

1. For all u ∈ C, u can be either in D or in P , because C ⊆ D ∪ P .

2. For all v ∈ Z, v can be either in P or in I, because D ⊆ C.

Step 2: Branch on the vertices of V as described below.
The branching step of our algorithm will be a set of Reduction and

Branching Rules over the vertices of C or Z. In order to describe a recursive
algorithm, it will be convenient to consider a slightly more general version of
the problem: in addition toG, we are given three disjoint setsDf , Pf , P

′
f ⊆ V ,

and the question is to build a nice mds partition V = D∪P ∪ I of minimum
cost which satisfies the following properties: Df ⊆ D ⊆ C, Pf ⊆ P ∩C, and
P ′f ⊆ P ∩Z. Clearly, if Df = Pf = P ′f = ∅ we have the original problem and
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all properties are satisfied. We will say that a branch where all properties are
satisfied is good, and our proof of correctness will rely on the fact that when
we branch on a good instance, at least one of the produced branches is good.
The intuitive meaning of these sets is that when we decide in a branch that a
vertex belongs to D or to P in the optimal partition we place it respectively
in Df , Pf or P ′f (depending on whether the vertex belongs in C or Z).

We now describe a series of Rules which, given an instance of Min Mixed
Dominating Set and three sets Df , Pf , P

′
f , will recursively produce sub-

instances where vertices are gradually placed into these sets. Our algorithm
will consider the Reduction and Branching Rules in order and apply the first
Rule that can be applied. Note that we say that a vertex u is ”decided” if it
is in one of the sets Df ⊆ D, Pf ⊆ P , or P ′f ⊆ P . All the other vertices are
considered ”undecided”.

Throughout the description that follows, we will use U to denote the
set of undecided vertices which are not dominated by Df , that is, U =
V \ (Df ∪ Pf ∪ P ′f ∪ (N(Df ) ∩ Z)). We will show that when no rule can be
applied, U is empty, that is, all vertices are decided or dominated by Df . In
the third step of our algorithm we will show how to complete the solution
in polynomial time when U is empty. Since our Rules do not modify the
graph, we will describe the sub-instances we branch on by specifying the
tuple (Df , Pf , P

′
f ).

To ease notation, let UC = U ∩ C and UZ = U ∩ Z (see Figure 2.1). For
u ∈ V , we use dUC (u) and dUZ (u) to denote the size of the sets N(u)∩UC =
NUC (u) and N(u) ∩ UZ = NUZ (u), respectively.

C Z

Df

Pf P ′f

I

UC UZ

Figure 2.1: Partition of V = C∪Z, of C = Df∪Pf∪UC , and of Z = P ′f∪I∪UZ
during the process of the algorithm, where I = N(Df ) ∩ Z. The only edges
drawn show that I is dominated by Df .

We will present each Rule individually and directly after explain why it
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is correct and its associated running-time, to ease presentation while having
a consistent analysis.

Reduction Rule (R1): If there exists u ∈ UC such that dUZ (u) ≤ 1,
then put u in Pf , that is, recurse on the instance (Df , Pf ∪ {u}, P ′f ).

• Observe that no neighbor of u in UC can be a private neighbor of u
since UC ⊆ C ⊆ D ∪ P , and because dUZ (u) ≤ 1 the vertex u can have
at most one private neighbor, so it must be the case that u ∈ P .

Reduction Rule (R2): If there exists v ∈ UZ such that dUC (v) = 0,
then put v in P ′f , that is, recurse on the instance (Df , Pf , P

′
f ∪ {v}).

• The vertex v must be dominated, but it has no neighbor in UC , so it
must be the case that v ∈ P .

Now that we have presented the two Reduction Rules which first apply
in our algorithm, we will describe the Branching Rules. Thus, we need first
to define our measure of progress. We define it to be the size of the set
{u ∈ UC | dUZ (u) ≥ 2} ∪ {u ∈ UZ | dUC (u) ≥ 1}. In other words, we
count the undecided vertices of UC that have at least two undecided, non-
dominated vertices in UZ , and the undecided, non-dominated vertices of UZ
that have at least one undecided neighbor in C. This is motivated by the
fact that undecided vertices that do not respect these degree bounds are
eliminated by the Reduction Rules and hence do not affect the running time.
Let l denote the number of the vertices that we counted according to this
measure. Clearly, l ≤ n. Let T (l) be the maximum number of branches
produced for an instance where the measure has value l. We now consider
each Branching Rule individually:

Branching Rule (B1): If there exists u ∈ UC such that dUZ (u) ≥
4, then branch on the following two sub-instances: (Df ∪ {u}, Pf , P ′f ) and
(Df , Pf ∪ {u}, P ′f ).

• Branching Rule B1 is correct from UC ⊆ C ⊆ D ∪ P .

• We have T (l) ≤ T (l− 1) + T (l− 5), since in the branch where u ∈ Df

at least 4 vertices of UZ become dominated.

• T (l) ≤ T (l − 1) + T (l − 5) gives x5 = x4 + 1 with root r < 1.3248.

Note that we may now assume that all vertices of UC have dUZ ∈ {2, 3}.
The following two Rules eliminate vertices u ∈ UC with dUZ (u) = 2.

Branching Rule (B2.1): If there exist u1, u2 ∈ UC such that dUZ (u1) =
3, dUZ (u2) = 2, and NUZ (u1) ∩ NUZ (u2) 6= ∅ then branch on the following
instances: (Df ∪ {u1}, Pf ∪ {u2}, P ′f ) and (Df , Pf ∪ {u1}, P ′f ).
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• Branching Rule B2.1 is correct because if u1 ∈ D, then u2 cannot have
two private neighbors and it is forced to be in P .

• We have T (l) ≤ T (l− 1) +T (l− 5), since in the branch where u1 ∈ Df

we also set u2 ∈ Pf and 3 vertices of UZ become dominated.

• T (l) ≤ T (l − 1) + T (l − 5) gives x5 = x4 + 1 with root r < 1.3248.

Branching Rule (B2.2): If there exists u ∈ UC with dUZ (u) = 2 we
branch on the instances (Df ∪ {u}, Pf , P ′f ) and (Df , Pf ∪ {u}, P ′f ).

• Branching Rule B2.2 is correct again from UC ⊆ C ⊆ D ∪ P .

• Let N(u) ∩ UZ = {v1, v2}. Note that if dUC (v1) ≥ 2, then all vertices
u′ ∈ UC adjacent to v1 must have dUZ (u′) = 2. This is because Rules
R1, B1 and B2.1 do not apply. Let s be the number of vertices of
{v1, v2} which have at least two neighbors in UC . We consider the
following cases:

– If s = 0, then T (l) ≤ T (l − 3) + T (l − 3), because when u ∈ Pf ,
v1, v2 no longer contribute to l (they have no other neighbor in
UC).

– If s = 1, then T (l) ≤ T (l−4)+T (l−2). To see this, let u′ ∈ UC be
a neighbor of {v1, v2}. As we said, dUZ (u′) = 2, so setting u ∈ Df

will activate Rule R1 on u′, decreasing l by 4. On the other hand,
if u ∈ Pf , then one of {v1, v2} is deleted by Rule R2.

– If s = 2 and |(N(v1)∪N(v2))∩UC | = 2, then we must have N(v1)∩
UC = N(v2)∩UC = {u, u′} for some u′ ∈ UC with dUZ (u′) = 2. In
this case Rule B2.2 (and Rules R1, R2) will be applied successively
to u, u′ giving T (l) ≤ 3T (l − 4).

– If none of the above applies, then s = 2 and we have T (l) ≤
T (l − 5) + T (l − 1), because when u ∈ Df we force at least two
other vertices of UC into Pf .

• – T (l) ≤ 2T (l − 3) gives x3 = 2 with root r < 1.2600.
– T (l) ≤ T (l− 4) + T (l− 2) gives x4 = x2 + 1 with root r < 1.2721.
– T (l) ≤ 3T (l − 4) gives x4 = 3 with root r < 1.3161.
– T (l) ≤ T (l− 5) + T (l− 1) gives x5 = x4 + 1 with root r < 1.3248.
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We now have that all vertices u ∈ UC have dUZ (u) = 3. Let us now branch
on vertices of UZ to ensure that these also do not have too low degree.

Branching Rule (B3.1): If there exists v ∈ UZ with dUC (v) = 1 let
NUC (v) = {u}. We branch on the instances (Df ∪{u}, Pf , P ′f ) and (Df , Pf ∪
{u}, P ′f ).

• Branching Rule B3.1 is correct again from UC ⊆ C ⊆ D ∪ P .

• We have T (l) ≤ T (l − 4) + T (l − 2), since when u ∈ Pf we apply Rule
R2.

• T (l) ≤ T (l − 4) + T (l − 2) gives x4 = x2 + 1 with root r < 1.2721.

Branching Rule (B3.2): If there exists v ∈ UZ with dUC (v) = 2 let
NUC (v) = {u1, u2}. We branch on the instances (Df ∪ {u1}, Pf , P ′f ), (Df ∪
{u2}, Pf ∪ {u1}, P ′f ), and (Df , Pf ∪ {u1, u2}, P ′f ).

• Branching rule B3.2 is correct since we have the three following cases:
u1 ∈ D; or u1 ∈ P and u2 ∈ D; or u1 and u2 ∈ P .

• We have T (l) ≤ T (l − 3) + T (l − 4) + T (l − 5) using the fact that
dUZ (u1) = dUZ (u2) = 3 and the fact that Rule R2 is applied when
u1, u2 ∈ Pf .

• T (l) ≤ T (l − 3) + T (l − 4) + T (l − 5) gives x5 = x2 + x + 1 with root
r < 1.3248.

If we cannot apply any of the above Rules, for all u ∈ UC we have dUZ (u) =
3 and for all v ∈ UZ we have dUC (v) ≥ 3. We now consider three remaining
cases: (i) two vertices of UC have two common neighbors in UZ (ii) there
exists a vertex v ∈ UZ with dUC (v) = 3 (iii) everything else.

Branching Rule (B4): If there exist u1, u2 ∈ UC and v1, v2 ∈ UZ with
(ui, vj) ∈ E for all i, j ∈ {1, 2}, then we branch on the instances (Df ∪
{u1}, Pf ∪ {u2}, P ′f ) and (Df , Pf ∪ {u1}, P ′f ).

• Branching Rule B4 is correct because if u1 ∈ D, then u2 cannot have
two private neighbors since dUZ (u2) = 3.

• We have T (l) ≤ T (l − 1) + T (l − 5).

• T (l) ≤ T (l − 5) + T (l − 1) gives x5 = x4 + 1 with root r < 1.3248.
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Branching Rule (B5): If there exists v ∈ UZ with dUC (v) = 3, let
NUC (v) = {u1, u2, u3} and for i ∈ {1, 2, 3} let Xi = {w ∈ UC \ {u1, u2, u3},
N(w) ∩ N(ui) ∩ (UZ \ {v}) 6= ∅}, that is, Xi is the set of vertices of UC
that share a neighbor with ui in UZ other than v. Then we branch on the
following 8 instances: (i) the instance (Df , Pf ∪ {u1, u2, u3}, P ′f ∪ {v}} (ii)
for i ∈ {1, 2, 3}, we produce the instances (Df ∪ {ui}, Pf ∪ ({u1, u2, u3} \
{ui}), P ′f ) (iii) for i, j ∈ {1, 2, 3}, with i < j we produce the instances (Df ∪
{ui, uj}, Pf∪({u1, u2, u3}\{ui, uj})∪Xi∪Xj, P

′
f ) (iv) we produce the instance

(Df ∪ {u1, u2, u3}, Pf ∪X1 ∪X2 ∪X3, P
′
f ).

• Branching Rule B5 is correct since we have the following cases: (i) all
vertices u1, u2 and u3 are in P (ii) or exactly one of them is in D (iii)
or exactly two of them are in D (iv) or all of them are in D. Note
first that u1, u2 and u3 only share v as neighbor in UZ since Branching
Rule B4 is not triggered. Branching Rule B5 is correct by the following
arguments:

(i) v must be dominated so it must be the case that v ∈ P ;
(ii) The two vertices not in D necessarily are in P ;
(iii) Since ui and uj share v as common neighbor and both have exactly

three neighbors in UZ , the vertices of Xi and Xj have to be in P
because otherwise ui and uj do not have two private neighbors;

(iv) For the same reason, the vertices of X1, X2 and X3 have to be in
P .

• We have T (l) ≤ T (l−4)+3T (l−6)+3T (l−12)+T (l−14). Indeed we
have: (i) the branch where u1, u2, u3 ∈ Pf , which also effectively elimi-
nates v (ii) the branch where u1 ∈ Df and u2, u3 ∈ Pf , which also dom-
inates N(u1)∩UZ (plus two more symmetric branches) (iii) the branch
where u1, u2 ∈ Df and u3 ∈ Pf (plus two more symmetric branches).
Here we first observe that {v, u1, u2, u3}∪ ((N(u1) ∪N(u2)) ∩ UZ) con-
tains exactly 8 distinct vertices, because dUZ (u1) = dUZ (u2) = 3, while
N(u1)∩UZ andN(u2)∩UZ share exactly one common element (v), since
Rule B4 does not apply. In addition to eliminating these 8 vertices, this
branch also eliminates X1 ∪ X2. We argue that X1 alone contains at
least 4 additional vertices, distinct from the 8 eliminated vertices. Let
N(u1) ∩ UZ = {v, w1, w2}. We know that dUC (w1), dUC (w2) ≥ 3, since
Rule B3.2 did not apply. Furthermore, since w1, w2 share u1 as a com-
mon neighbor in UC , they cannot share another, as Rule B4 would
apply. In addition, neither w1 nor w2 can be connected to u2 or u3,
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since together with v, u1 this would active Rule B4. Hence, we elimi-
nate at least 12 vertices for each of these three branches. Finally, the
case (iv) where u1, u2, u3 ∈ Df is similar, except we also eliminate two
additional neighbors of u3 in UZ which now become dominated.

• T (l) ≤ T (l − 4) + 3T (l − 6) + 3T (l − 12) + T (l − 14) gives x14 =
x10 + 3x8 + 3x2 + 1 with root r < 1.3252.

Branching Rule (B6): Consider u ∈ UC and let NUZ (u) = {v1, v2, v3}.
We branch on the following instances: (Df , Pf ∪ {u}, P ′f ), (Df ∪ {u}, Pf ∪
(NUC (v1) \ {u}), P ′f ), and (Df ∪ {u}, Pf ∪ ((NUC (v2) ∪NUC (v3)) \ {u}), P ′f ).

• Branching Rule B6 is correct because if u ∈ D, then either v1 is one of
its private neighbors, or both v2 and v3 are its private neighbors.

• We have T (l) ≤ T (l−1)+T (l−7)+T (l−10). Here we use the fact that
since Rule B5 does not apply, dUC (vi) ≥ 4 and also that since Rule B4
does not apply, N(vi)∩N(vj)∩UC = {u} for all i, j ∈ {1, 2, 3}. Hence,
the branch where u ∈ Df and v1 is a private neighbor of u forces three
more vertices of UC into Pf , and the branch where v2, v3 are private
neighbors of u forces six more vertices of UC into Pf .

• T (l) ≤ T (l− 1) +T (l− 7) +T (l− 10) gives x10 = x9 +x3 + 1 with root
r < 1.3001.

Our algorithm applies the above Rules in order as long as possible. Since
we have proved the correctness of our Rules individually, we can explain
what happens when no Rule is applicable. But first, let us establish a useful
property.

Lemma 2.5. If none of the Rules can be applied then U = ∅.

Proof. Observe that, by applying rules R1, B1, B2.2, B6, we eventually elim-
inate all vertices of UC , since these rules alone cover all the cases for dUZ (u)
for any u ∈ UC . So, if none of these rules applies, UC is empty. But then
applying R2 will also eliminate UZ , which makes all of U empty.

Step 3: When U is empty, reduce the problem to Min Edge Cover.
We now show how to complete the solution in polynomial time.

Lemma 2.6. Let (Df , Pf , P
′
f ) be a good tuple such that no Rule can be ap-

plied. Then it is possible to construct in polynomial time a mixed dominating
set of size at most |D|+ |M |.
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Proof. Because no Rule can be applied, by Lemma 2.5, we have that U =
V \ (Df ∪ Pf ∪ P ′f ∪ (N(Df ) \ C)) = ∅.

Let M ′ be a minimum edge cover of G[Pf ∪ P ′f ]. Then, we claim that
|D|+ |M | ≥ |Df |+ |M ′|. First, |D| ≥ |Df | because Df ⊆ D. We now claim
that |M | ≥ |M ′|. Note that Pf ⊆ P ∩ C and P ′f ⊆ P ∩ Z, so Pf ∪ P ′f ⊆ P .
M is an edge cover of G[P ], and M ′ is a minimum edge cover of G[Pf ∪ P ′f ],
with Pf ∪ P ′f ⊆ P , so necessarily |M | ≥ |M ′|.

Since Min Edge Cover is in P, we have constructed in polynomial time
a mixed dominating set of size at most |D|+ |M |.

We can now prove the main result of this section :

Theorem 2.7. Min Mixed Dominating Set can be solved in time O∗(1.912n)
and polynomial space.

Proof. The algorithm first enumerates all minimal vertex covers C, then
applies all Rules exhaustively, and then for each branch invokes Lemma 2.6.
At the end we output the best solution found.

By Lemmas 2.3 and 2.4 we obtain (assuming we have already taken iso-
lated vertices) that there exists an optimal nice mds partition V = D∪P ∪ I
and a minimal vertex cover with D ⊆ C ⊆ D ∪ P , so consider the execution
of the algorithm on C. We have proven that one of the branches will end
up with a good tuple, and by Lemma 2.5 when we can no longer apply any
Rules, U is empty, so we correctly solve the resulting instance in polynomial
time by Lemma 2.6. Hence, the algorithm produces a correct solution.

Let us now analyze the running time. First, enumerating all minimal
vertex cover takes time at most O∗(3n/3), which is also an upper bound on
the number of such covers by a result of Moon and Moser [MM65]. Moreover,
we observe that we can decide if a Rule applies in polynomial time, and the
algorithm of Lemma 2.6 runs in polynomial time. We therefore only need
to bound the number of sub-instances the branching step will produce, as a
function of n.

Of all the branching vectors, the worst case is given by Branching Rule
B5, which leads to a complexity of 1.3252l. Taking into account the cost of
enumerating all minimal vertex covers and the fact that l ≤ n, the running
time of our algorithm is O∗(3n/3 · 1.3252n) = O∗(1.912n).

Now that we have presented our improved exact algorithm, we describe in
the next section our improved FPT algorithm parameterized by the natural
parameter k, which is also a branching algorithm using the implicit private
structure of Min Mixed Dominating Set.
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2.3 Improved FPT Algorithm
In this section we present our improved FPT algorithm parameterized by the
solution size k running in time O∗(3.510k). Let us give an overview of our
algorithm. Consider an instance (G = (V,E), k) of the Mixed Dominating
Set problem parameterized by k, and fix, for the sake of the analysis, a
solution of size k which is a nice mixed dominating set. If a solution of size
k exists, then a nice solution must exist by Lemma 2.3 (assuming without
loss of generality that G has no isolated vertices), so suppose it gives the nice
mds partition V = D ∪ P ∪ I. Note that for such a solution D ∪M of size
k, we have k ≥ |D|+ |P |/2 since |M | ≥ |P |/2.

Our algorithm begins by performing a branching step trying to guess a
part of this partition. In particular, we gradually build up two disjoint sets
Df , Pf which store the vertices that must belong to D and P respectively.
Let U = V \ (Df ∪ Pf ) be the set of ”undecided” vertices and, furthermore,
let U∗ = U \N(Df ) be the set of undecided vertices which are not currently
dominated by the solution. Our algorithm proceeds in the following steps:
(i) first, we branch with the goal of eliminating U∗, that is, with the goal
of finding a partial solution that dominates all vertices (ii) then, because
the considered solution is nice, we observe that we cannot place any more
vertices in Df ; we therefore perform a simple ”vertex cover”-type branching
in G[U ], until we arrive at a situation where the maximum degree of G[U ]
is 1 (iii) then, we invoke a result of Xiao and Sheng [XS19] to complete the
solution in polynomial time.
Step 1: Branch to eliminate U∗.

Recall that we have fixed for the sake of the analysis an optimal nice
mds partition V = D ∪ P ∪ I. It will be convenient to describe a recursive
algorithm which is given with two disjoint sets of vertices Df , Pf . We will
say that the sets (Df , Pf ) are good if Df ⊆ D and Pf ⊆ P . Clearly, these
conditions are satisfied if Df = Pf = ∅. We will describe a series of Rules,
which must be applied exhaustively, always selecting the first Rule that can
be applied. For correctness, we will show that for each Branching Rule, if
the current instance is characterized by a good pair (Df , Pf ), at least one of
the produced instances is also good. When no Rule can be applied, we will
proceed to the next step.

Recall that we denote U = V \ (Df ∪ Pf ) and U∗ = U \ N(Df ). Our
strategy will be to branch in a way that eliminates U∗ as quickly as possible
because, as we will see in the next step, once this is done the problem becomes
much easier. We begin by branching on low-degree vertices, which will allow
us to assume that all remaining vertices are high-degree as we consider later
Rules, and which is sped up by the implicit private structure we have obtained



CHAPTER 2. MIN MIXED DOMINATING SET 54

by Lemma 2.3. Here, for a vertex u ∈ U∗ we are mostly interested in its
degrees in G[U ] and in G[U∗]. Note that dU∗(u) ≤ dU(u) since U∗ ⊆ U .

We will present each Rule individually and directly after explain why it
is correct and its associated running-time. Recall for the sake of the analysis
that an instance is good if Df ⊆ D and Pf ⊆ P .
Sanity Check Rule: If |Df |+ |Pf |

2 > k, reject. If there exists u ∈ Df such
that |NU(u) \N(Df \ {u})| ≤ 1, reject.

• The Sanity Check Rule will reject if either the currently marked vertices
in (Df , Pf ) have total cost more than k (which implies that this is not
a good instance, as the correct partition has cost at most k if one such
solution exists); or if a vertex u ∈ Df has at most one private neighbor
in U . Since the number of private neighbors of u can only diminish if
we add vertices to Df , if u ∈ D this would contradict the niceness of
the partition D ∪ P ∪ I. Hence, in this case also the current instance
is not good.

Reduction Rule (R1): If there exists u ∈ U∗ with dU(u) = 0, then put u
in Pf , that is, recurse on the instance (Df , Pf ∪ {u}).

• If the current instance is good, then u 6∈ D (because it would not have
two private neighbors) and u 6∈ I (because it would not be dominated).
Hence, the new instance is also good.

Now that we have presented our Sanity Check Rule and our only Reduc-
tion Rule which first apply in our algorithm, we will describe the Branching
Rules. Thus, we need first to define our measure of progress. We define it
to be l = 2k − 2|Df | − |Pf |. Initially, l = 2k, and we observe that because
of the Sanity Check Rule in all produced instances we have l ≥ 0. We will
therefore upper bound the number of produced instances by measuring how
much each Branching Rule decreases l. Let T (l) be the maximum number
of branches produced for an instance where measure has value l. We now
consider each Branching Rule individually:
Branching Rule (B1): If there exists u ∈ U∗ with dU(u) = 1, then let
NU(u) = {v}. Branch on the following two sub-instances: (Df , Pf ∪ {u})
and (Df ∪ {v}, Pf ).

• We note that u 6∈ D, because it would not have two private neighbors.
If u ∈ I, then v ∈ D, because u must be dominated. Hence, one of the
branches is good.
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• We have T (l) ≤ T (l − 1) + T (l − 2).

• T (l) ≤ T (l − 1) + T (l − 2) gives x2 = x+ 1 with root r < 1.6181.

We are now at a situation where all vertices u ∈ U∗ have dU(u) ≥ 2.
Branching Rule (B2.1): If there exists u ∈ U∗ with dU(u) = 2 and
dU∗(u) ∈ {0, 1}, then let NU(u) = {v1, v2}. Branch on the sub-instances:
(Df , Pf ∪ {u}), (Df ∪ {v1}, Pf ∪ {v2}), (Df ∪ {v2}, Pf ∪ {v1}) and (Df ∪
{v1, v2}, Pf ).

• We again have u 6∈ D, because it would not have two private neighbors.
If u ∈ I, then {v1, v2} ⊆ D ∪ P and we consider all such possibilities,
except v1, v2 ∈ P , because u must be dominated.

• We have T (l) ≤ T (l − 1) + 2T (l − 3) + T (l − 4).

• T (l) ≤ T (l− 1) + 2T (l− 3) + T (l− 4) gives x4 = x3 + 2x+ 1 with root
r < 1.7944.

Before presenting Branching Rule 2.2, we make a simple observation we
will use several times in the rest of the algorithm: for a vertex u ∈ U∗

with two neighbors v1, v2 ∈ U , if we put u in Df with v1 and v2 its private
neighbors, then we must put (NU(v1) ∪NU(v2)) \ {u} in Pf in order to have
v1 and v2 the private neighbors of u.

Let us also introduce another helpful definition. For v1, v2 ∈ U , we will
say that {v1, v2} is a feasible pair if |(N(v1)∩U∗) \N(v2)| ≥ 2 and |(N(v2)∩
U∗) \ N(v1)| ≥ 2. Informally, {v1, v2} is feasible if it is possible that both
v1, v2 ∈ D. In other words, {v1, v2} is not feasible, if placing both vertices
in Df would immediately activate the Sanity Check rule because one of the
two vertices would not have enough private neighbors.
Branching Rule (B2.2): If there exists u ∈ U∗ with dU(u) = 2, then let
NU(u) = {v1, v2}. Branch on the following sub-instances: (Df ∪ {u}, Pf ∪
((NU(v1) ∪ NU(v2)) \ {u})), (Df , Pf ∪ {u}), (Df ∪ {v1}, Pf ∪ {v2}), (Df ∪
{v2}, Pf ∪ {v1}) and (Df ∪ {v1, v2}, Pf ).

• We have the same cases as before, but now it is possible that u ∈
D. However, in this case v1, v2 must be private neighbors of u, hence
(NU(v1) ∪NU(v2)) \ {u} must be a subset of P .

• Since B2.1 does not apply, we have v1, v2 ∈ U∗, so dU(v1), dU(v2) ≥ 2.
We consider the following cases:
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– If {v1, v2} is not a feasible pair, that is (without loss of generality)
we have |NU∗(v1) \ N(v2)| ≤ 1. First, we note that dU(v1) ≥ 2,
since Rule B1 did not apply, so |NU(v1) \ {u}| ≥ 1. Also, the
Sanity Check Rule is activated for the instance where v1, v2 ∈ Df .
Taking into account the remaining instances we have: T (l) ≤
T (l − 1) + 3T (l − 3).

– If {v1, v2} is a feasible pair then |(NU∗(v1) ∪NU∗(v2)) \ {u}| ≥ 4,
because each of v1, v2 has two non-dominated neighbors which are
not neighbors of the other. We have T (l) ≤ T (l− 1) + 2T (l− 3) +
T (l − 4) + T (l − 6).

• – T (l) ≤ T (l−1)+3T (l−3) gives x3 = x2 +3 with root r < 1.8638.
– T (l) ≤ T (l − 1) + 2T (l − 3) + T (l − 4) + T (l − 6) gives x6 =
x5 + 2x3 + x2 + 1 with root r < 1.8199.

We are now at a situation where all vertices u ∈ U∗ have dU(u) ≥ 3.
Branching Rule (B3.1): If there exists u ∈ U∗ with dU(u) = 3 and
dU∗(u) ≤ 2, then let NU(u) = {v1, v2, v3} and let v3 ∈ U \ U∗. We branch
on (Df , Pf ∪ {u}), (Df ∪ {u}, Pf ∪ ((NU(v1)∪NU(v2)) \ {u})), and, for each
non-empty S ⊆ {v1, v2, v3}, we branch on (Df ∪ S, Pf ∪ ({v1, v2, v3} \ S)).

• We observe that if u ∈ D, then v1, v2 must be its private neighbors,
so again (NU(v1) ∪ NU(v2)) \ {u} must be a subset of P . If u ∈ I, we
consider all partitions of NU(u) into D and P , while ensuring that u is
dominated.

• First note that, if vi ∈ U∗, then dU(vi) ≥ 3, since Rules B1-B2.2 do not
apply, hence |NU(vi) \ {u}| ≥ 2. Consider the following subcases:

– dU∗(u) ≤ 1. Then the branch where u ∈ Df is immediately elimi-
nated by the Sanity Check Rule. For the remaining branches we
have T (l) ≤ T (l − 1) + 3T (l − 4) + 3T (l − 5) + T (l − 6).

– dU∗(u) = 2, so NU∗(u) = {v1, v2}, and {v1, v2} is a feasible pair.
Then |(NU(v1) ∪NU(v2)) \ {u}| ≥ 4. We have T (l) ≤ T (l − 1) +
3T (l − 4) + 3T (l − 5) + 2T (l − 6)

– dU∗(u) = 2, so NU∗(u) = {v1, v2}, and {v1, v2} is not a feasible
pair. Then the Sanity Check Rule eliminates the instances where
{v1, v2} ⊆ D. Taking into account the remaining instances we
have T (l) ≤ T (l − 1) + 4T (l − 4) + 2T (l − 5).
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• – T (l) ≤ T (l − 1) + 3T (l − 4) + 3T (l − 5) + T (l − 6) gives x6 =
x5 + 3x2 + 3x+ 1 with root r < 1.8205.

– T (l) ≤ T (l − 1) + 3T (l − 4) + 3T (l − 5) + 2T (l − 6) gives x6 =
x5 + 3x2 + 3x+ 2 with root r < 1.8393.

– T (l) ≤ T (l − 1) + 4T (l − 4) + 2T (l − 5) gives x5 = x4 + 4x + 2
with root r < 1.8305.

Branching Rule (B3.2): If there exists u ∈ U∗ with dU(u) = 3 such that
there exist at least two feasible pairs in NU(u), then we do the following.
Let NU(u) = {v1, v2, v3}. For each i, j ∈ {1, 2, 3}, with i < j, branch on
(Df ∪ {u}, Pf ∪ ((NU(vi) ∪ NU(vj)) \ {u})). Furthermore, branch on the
instances (Df , Pf ∪ {u}) and, for each non-empty S ⊆ {v1, v2, v3}, on the
instance (Df ∪ S, Pf ∪ ({v1, v2, v3} \ S)).

• We branch in a similar fashion as in Branching 3.1, except that, for all
i, j ∈ {1, 2, 3} with i < j, we consider the case that vi, vj are private
neighbors of u, when u ∈ D.

• We have v1, v2, v3 ∈ U∗. We again note that if {vi, vj} is feasible then
|(NU(vi) ∪NU(vj)) \ {u}| ≥ 4. Therefore, a branch corresponding to a
feasible pair diminishes l by at least 6. We consider the subcases:

– All three pairs from {v1, v2, v3} are feasible. Then we get T (l) ≤
T (l − 1) + 3T (l − 4) + 3T (l − 5) + 4T (l − 6).

– Two of the pairs from {v1, v2, v3} are feasible, and one, say {v1, v2}
is not feasible. Then the Sanity Check rule will eliminate the
branches that have {v1, v2} ⊆ D. We therefore get T (l) ≤ T (l −
1) + 4T (l − 4) + 2T (l − 5) + 2T (l − 6).

• – T (l) ≤ T (l − 1) + 3T (l − 4) + 3T (l − 5) + 4T (l − 6) gives x6 =
x5 + 3x2 + 3x+ 4 with root r < 1.8734.

– T (l) ≤ T (l − 1) + 4T (l − 4) + 2T (l − 5) + 2T (l − 6) gives x6 =
x5 + 4x2 + 2x+ 2 with root r < 1.8672.

Branching Rule (B3.3): If there exists u ∈ U∗ with dU(u) = 3, let
NU(u) = {v1, v2, v3} and branch on the following instances: (Df , Pf ∪ {u}),
(Df∪{u}, Pf∪(NU(v1)\{u})), (Df∪{u}, Pf∪((NU(v2)∪NU(v3))\{u})), and
for each non-empty S ⊆ {v1, v2, v3} branch on (Df ∪S, Pf ∪({v1, v2, v3}\S)).

• We make a variation of the previous branching by arguing that, if
u ∈ D, then either v1 is its private neighbor, or both v2, v3 are its
private neighbors.
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• Now at least two pairs in {v1, v2, v3} are not feasible (otherwise we
would have applied B3.2). Then, the Sanity Check Rule eliminates
all branches where D contains an infeasible pair. From the remaining
branches we get T (l) ≤ T (l − 1) + 5T (l − 4) + T (l − 5).

• T (l) ≤ T (l− 1) + 5T (l− 4) + T (l− 5) gives x5 = x4 + 5x+ 1 with root
r < 1.8603.

We are now at a situation where all vertices u ∈ U∗ have dU(u) ≥ 4.
The next case we would like to handle is that of a vertex u ∈ U∗ with
dU(u) = dU∗(u) = 4. For such a vertex let NU(u) = {v1, v2, v3, v4}. Let us
now give one more helpful definition. For some i ∈ {1, 2, 3, 4}, we will say
that vi is compatible for u if NU∗(vi) contains at least two vertices which
are not neighbors of any vj, for j ∈ {1, 2, 3, 4} \ {i}. In other words, vi is
compatible if it has two private neighbors, which will remain private even if
we put all of {v1, v2, v3, v4} in Df . Using this definition, we distinguish the
following two cases:
Branching Rule (B4.1): If there exists u ∈ U∗ with dU(u) = dU∗(u) = 4,
NU(u) = {v1, v2, v3, v4}, and all vi are compatible for u, then we branch on
the following instances: (Df , Pf ∪ {u}); for each i, j ∈ {1, 2, 3, 4} with i < j
we branch on (Df ∪{u}, Pf ∪ ((NU(vi)∪NU(vj)) \ {u})); for each non-empty
subset S ⊆ NU(u), let Sc = NU(u) \ S, branch on (Df ∪ S, Pf ∪ Sc).

• The branching is similar to B3.2: if u ∈ D, then two of its neighbors
must be private and we consider all possibilities.

• If all vi ∈ U∗ and all vi are compatible for u that means that for all i, j ∈
{1, 2, 3, 4}, with i < j, we have |(NU(vi) ∪ NU(vj)) \ {u}| ≥ 5, where
we use that vi has at least two neighbors in U which are not connected
to vj (and vice-versa) and that dU(vi), dU(vj) ≥ 4 since previous Rules
do not apply. We therefore have T (l) ≤ T (l − 1) + 4T (l − 5) + 6T (l −
6) + 10T (l − 7) + T (l − 8).

• T (l) ≤ T (l − 1) + 4T (l − 5) + 6T (l − 6) + 10T (l − 7) + T (l − 8) gives
x8 = x7 + 4x3 + 6x2 + 10x+ 1 with root r < 1.8595.

If the previous rule does not apply, vertices u ∈ U∗ with dU(u) = 4 have
either dU∗(u) ≤ 3 or a neighbor vi ∈ NU(u) is not compatible for u.
Branching Rule (B4.2): If there exists u ∈ U∗ with dU(u) = 4, then
let NU(u) = {v1, v2, v3, v4}. Suppose without loss of generality that for all
1 ≤ j ≤ dU∗(u) we have vj ∈ U∗ (that is, vertices of NU∗(u) are ordered first),
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and that, if there exists a feasible pair in NU∗(u), then {v1, v2} is feasible. We
produce the instances: (Df , Pf∪{u}); for each non-empty subset S ⊆ NU(u),
let Sc = NU(u)\S, we branch on (Df ∪S, Pf ∪Sc); if dU∗(u) ≥ 2 we produce
the branch (Df ∪ {u}, Pf ∪ ((NU(v1) ∪ NU(v2)) \ {u})); for 3 ≤ j ≤ dU∗(u)
we produce the branch (Df ∪ {u}, Pf ∪ (NU(vj) \ {u})).

• Either u ∈ P (which we consider), or u ∈ I, so we consider all partitions
of NU(u) into D,P that dominate u, or u ∈ D. For the latter to happen
it must be the case that dU∗(u) ≥ 2. In that case, either v1, v2 are both
private neighbors, or v3 is a private neighbor (if v3 ∈ U∗), or v4 is a
private neighbor (if v4 ∈ U∗).

• – We first handle the case where dU∗(u) ≤ 3. Recall that, if vi ∈ U∗,
then dU(vi) ≥ 4 (otherwise one of the previous Rules applies), so
the (at most two) branches where u ∈ Df diminish l by at least 5.
We have T (l) ≤ T (l−1)+6T (l−5)+6T (l−6)+4T (l−7)+T (l−8).

– If dU∗(u) = 4, we note that it cannot be the case that {v1, v2, v3, v4}
⊆ D, since this would mean that all vi are compatible for u
and Rule B4.1 would have applied. The branch corresponding
to S = {v1, v2, v3, v4} is therefore eliminated by the Sanity Check
Rule. We consider two subcases:

∗ At least one feasible pair exists in NU∗(u), therefore, {v1, v2}
is a feasible pair. Then T (l) ≤ T (l − 1) + 6T (l − 5) + 6T (l −
6) + 5T (l − 7).

∗ No feasible pair exists. In this case the Sanity Check Rule
eliminates all sets S ⊆ NU(u) that contain two or more ver-
tices. We have T (l) ≤ T (l − 1) + 7T (l − 5).

• – T (l) ≤ T (l−1) + 6T (l−5) + 6T (l−6) + 4T (l−7) +T (l−8) gives
x8 = x7 + 6x3 + 6x2 + 4x+ 1 with root r < 1.8665.

– T (l) ≤ T (l − 1) + 6T (l − 5) + 6T (l − 6) + 5T (l − 7) gives x7 =
x6 + 6x2 + 6x+ 5 with root r < 1.8700.

– T (l) ≤ T (l−1)+7T (l−5) gives x5 = x4 +7 with root r < 1.7487.

We are now at a situation where all vertices u ∈ U∗ have dU(u) ≥ 5.
Branching Rule (B5): If there exists u ∈ U∗ with dU(u) ∈ {5, 6, 7, 8},
then select such a u with minimum dU(u) and let i = dU(u) and NU(u) =
{v1, . . . , vi}. Again, without loss of generality we order the vertices of NU∗(u)
first, that is, for 1 ≤ j ≤ dU∗(u), we have vj ∈ U∗. Branch on the following:
(Df , Pf ∪ {u}); for each non-empty subset S ⊆ NU(u), let Sc = NU(u) \ S,
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branch on (Df∪S, Pf∪Sc); if dU∗(u) ≥ 2 branch on (Df∪{u}, Pf∪((NU(v1)∪
NU(v2))\{u})); for 3 ≤ j ≤ dU∗(u), branch on (Df∪{u}, Pf∪(NU(vj)\{u})).

• We generalize the previous branching to higher degrees in the obvious
way: if u ∈ D, either the two first of its dU∗(u) neighbors in U∗ are its
private neighbors, or one of its remaining dU∗(u) − 2 neighbors in U∗
is private.

• Let i = dU(u). Note that we then assume that dU(vj) ≥ i for all j ∈
{1, . . . , dU∗(u)}, since we selected u with the minimum dU(u). Hence
the branches where u ∈ Df diminish l by at least i+ 1. We then have
T (l) ≤ T (l − 1) + (i − 1)T (l − i − 1) + ∑i

j=1

(
i
j

)
T (l − i − j), which

corresponds to the case where dU∗(u) = dU(u).

• T (l) ≤ T (l − 1) + (i− 1)T (l − (i+ 1)) +∑i
j=1

(
i
j

)
· T (l − (i+ j)) gives

x2i = x2i−1 + (i− 1)xi−1 +∑i
j=1

(
i
j

)
· xi−j.

– If i = 5: x10 = x9+9x4+10x3+10x2+5x+1 with root r < 1.8473.
– If i = 6: x12 = x11 + 11x5 + 15x4 + 20x3 + 15x2 + 6x+ 1 with root
r < 1.8104.

– If i = 7: x14 = x13 + 13x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1
with root r < 1.7816.

– If i = 8: x16 = x15+15x7+28x6+56x5+70x4+56x3+28x2+8x+1
with root r < 1.7593.

We are now at a situation where all vertices u ∈ U∗ have dU(u) ≥ 9.
Branching Rule (B6): If there exists u ∈ U∗ with dU(u) ≥ 9, then let
T = {v1, . . . , v9} ⊆ NU(u). Branch on the feasible sub-instances among the
following: (Df ∪ {u}, Pf ); (Df , Pf ∪ {u}); for each (possibly empty) subset
S ⊆ T , let Sc = T \ S, branch on (Df ∪ S, Pf ∪ Sc).

• We consider all possibilities (including the T ⊆ P ), so one produced
instance must be good.

• T (l) ≤ T (l − 1) + T (l − 2) +∑9
j=0

(
9
j

)
· T (l − (9 + j)).

• T (l) ≤ T (l − 1) + T (l − 2) + ∑9
j=0

(
9
j

)
· T (l − (9 + j)) gives x18 =

x17 +x16 +x9 +9x8 +36x7 +84x6 +126x5 +126x4 +84x3 +36x2 +9x+1
with root r < 1.8640.
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Step 2: Branch to eliminate U .
If none of the Rules above apply, we enter the second branching step of

our algorithm, which only involves one Rule that will be applied exhaustively.
We observe that we now have U∗ = ∅:

Lemma 2.8. If none of the Rules from R1 to B6 can be applied, then U∗ = ∅.

Proof. Suppose that none of the Rules up to B6 applies, then U∗ = ∅: indeed
all vertices u ∈ U∗ are handled according to whether dU(u) is 0 (R1), 1 (B1),
2 (B2.2), 3 (B3.3), 4 (B4.2), 5, 6, 7, or 8 (B5), or higher (B6).

The fact that U∗ = ∅ means that all remaining undecided vertices belong
to P ∪ I, because they cannot have two private neighbors. We use this
observation to branch until we eliminate all vertices of G[U ] with degree at
least 2.
Branching Rule (B7): If there exists u ∈ U with dU(u) ≥ 2, then branch
on the following two sub-instances: (Df , Pf ∪ {u}) and (Df , Pf ∪NU(u)).

• If U∗ = ∅ then U ⊆ P ∪ I, because no vertex of U can have two private
neighbors. Hence, if u ∈ I then NU(u) ⊆ P and the Rule B7 is correct.

• T (l) ≤ T (l − 1) + T (l − 2), because |NU(u)| ≥ 2.

• T (l) ≤ T (l − 1) + T (l − 2) gives x2 = x+ 1 with root r < 1.6181.

Step 3: Complete the solution.
We are now in a situation where U∗ = ∅ and G[U ] has maximum degree

1. As for the O∗(1.7321k) FPT algorithm for Max Min Vertex Cover
we have presented in Section 1.4, the problem Mixed Dominating Set is
polynomially solvable when the vertices left form a set of connected compo-
nent each of size at most 2. We recall that Theorem 2 of [XS19] showed that
this problem can now be solved optimally in polynomial time by collapsing
all edges of G[U ] and then performing a minimum edge cover computation.
We recall the relevant result, translated to our terminology:

Lemma 2.9 (Theorem 2 of [XS19]). For an instance characterized by (Df , Pf )
which has U∗ = ∅ and G[U ] has maximum degree 1, we can compute in poly-
nomial time a minimum mixed dominating set D ∪M satisfying Df ⊆ D,
Pf ⊆ V (M).

We are now ready to put everything together to obtain the promised
algorithm.
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Theorem 2.10. Mixed Dominating Set parameterized by the size of the
solution k can be solved in time O∗(3.510k).

Proof. The algorithm applies the Rules exhaustively and when no Rule ap-
plies invokes Lemma 2.9. Fix an optimal nice mds partition V = D ∪ P ∪ I.
We assume that no isolated vertices exist, so such a nice partition exists by
Lemma 2.3.

For correctness, we need to argue that if the cost |D| + |P |
2 is at most k,

the algorithm will indeed output a solution of cost at most k. Observe that
the initial instance is good, and we always produce a correct instance when
we branch since all our Rules are correct, and by Lemma 2.9 the solution is
optimally completed when no Rule applies, so if the optimal partition has
cost at most k, the algorithm will produce a valid solution of cost at most k.

Let us now analyse the running time. We observe first that we can decide
if a Rule applies in polynomial time, and the algorithm of Lemma 2.9 runs
in polynomial time. We therefore only need to bound the number of sub-
instances the branching step will produce, as a function of k.

Of all the branching vectors, the worst case if given by Branching Rule
B3.2, which leads to a complexity of 1.8734l. Taking into account that l ≤ 2k,
the running time of our algorithm is O∗(1.8734l) = O∗(3.510k).

We have described our improved FPT algorithm parameterized by the
solution size k for Mixed Dominating Set. In the next Section, we improve
the best FPT algorithm parameterized by the treewidth, and prove that this
algorithm and the one of Jain et al. [JJPS17] for pathwidth are optimal under
the SETH.

2.4 Tight Treewidth Algorithm
We begin this Section with an algorithm for Min Mixed Dominating Set
running in time O∗(5tw). We rely on three ingredients: (i) the fact that
Min Mixed Dominating Set on G is equivalent to Min Distance-2-
Dominating Set on the incidence graph of G by a result of Madathil et
al. [MPSS19] (ii) the standard fact that the incidence graph of G has the same
treewidth as G (iii) and an O∗(5tw) algorithm (by Borradaile and Le [BL16])
for Min Distance-2-Dominating Set.

Theorem 2.11. There is an O∗(5tw)-time algorithm for Min Mixed Dom-
inating Set in graphs of treewidth tw.

Proof. We are given an instance of Min Mixed Dominating Set G =
(V,E). We first construct the incidence graph of G, which has vertex set
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V ∪ E, and has an edge between v ∈ V and e ∈ E if e is incident on v
in G. We denote this graph as I(G). In other words, I(G) is obtained by
sub-dividing every edge of G once.

We now note the standard fact that tw(I(G)) ≤ tw(G). Indeed, if G is
a forest, then I(G) is also a forest; while if tw(G) ≥ 2, then we can take
any tree decomposition of G and for each e = (u, v) we observe that it must
contain a bag with both u and v. We create a bag containing u, v, e and
attach it to the bag containing u, v. Note that this does not increase the
width of the decomposition. We thus obtain a decomposition of I(G) of
width tw(G).

Second, as observed by [MPSS19], every mixed dominating set of G cor-
responds to a distance-2 dominating set of I(G). Recall that a distance-2
dominating set of a graph is a set of vertices D such that all vertices of V \D
are at distance at most 2 from D.

Finally, we use the algorithm of [BL16] to solve Min Distance-2-Domi-
nating Set in time O∗(5tw) in I(G), which gives us the optimal mixed
dominating set of G.

Now that we have presented an improved FPT algorithm parameterized
by the treewidth, we show next that this algorithm and the one for pathwidth
of Jain et al. [JJPS17] running in time O∗(5pw) are optimal under the SETH.

Indeed, we prove that, under SETH, for any ε > 0, there is no algorithm
for Min Mixed Dominating Set running in time O∗((5 − ε)pw). The
starting point of our reduction is the problem q-CSP-5. In this problem we
are given a Constraint Satisfaction (CSP) instance with n variables and
m constraints. The variables take values in a set of size 5, say {0, 1, 2, 3, 4}.
Each constraint involves at most q variables and is given as a list of acceptable
assignments for this variables, where an acceptable assignment is a q-tuple of
values from the set {0, 1, 2, 3, 4} given to the q variables. The following result
was shown by Lampis [Lam20] to be a natural consequence of the SETH, and
is a special case with B = 5 of the result of Lampis we have presented in
Section 1.4.

Lemma 2.12 (Theorem 3.1 by [Lam20]). If the SETH is true, then for all
ε > 0, there exists a q such that n-variable q-CSP-5 cannot be solved in time
O∗((5− ε)n).

As we have mentioned in Section 1.4, in this theorem of Lampis [Lam20]
it was shown that, for any alphabet size B, q-CSP-B cannot be solved in time
O∗ ((B − ε)n) under the SETH, but for our purposes only the case B = 5 is
relevant, for two reasons: because this corresponds to the base of our target
lower bound; and because in our construction we will represent the B = 5
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possible values for a variable with a path of five vertices in which there exist
exactly five different ways of selecting one vertex and one edge among these
five vertices.

Our plan is therefore to produce a polynomial-time reduction which, given
a q-CSP-5 instance with n variables, produces an equivalent Min Mixed
Dominating Set instance whose pathwidth is at most n + O(1). Then,
the existence of an algorithm for the latter problem running faster than
O∗ ((5− ε)pw) would give an O∗ ((5− ε)n) algorithm for q-CSP-5, contra-
dicting the SETH.

Before giving the details of our reduction let us sketch the basic ideas,
which follow the pattern of other SETH-based lower bounds which have
appeared in the literature: see [HKL+18, JJ17, KLP18, KLP19b, KLP19a,
LMS18]. The constructed graph consists of a main selection part of n paths
of length 5m, divided into m sections. Each path corresponds to a variable
and each section to a constraint. The idea is that the optimal solution will
follow for each path a basic pattern of selecting one vertex and one edge
among the first five vertices and then repeat this pattern throughout the
path (see Figure 2.2). There are 5 natural ways to do this, so this can repre-
sent all assignments to the q-CSP-5 instance. We will then add verification
gadgets to each section, connected only to the vertices of that section that
represent variables appearing in the corresponding constraint (thus keeping
the pathwidth under control), in order to check that the selected assignment
satisfies the constraint.

(a)

(b)

(c)

(d)

(e)

Figure 2.2: Main part of the construction with the five possible configura-
tions. Filled vertices are in D, thick edges are in M .

The main difficulty in completing the proof is showing that the optimal
solution has the desired form, and in particular, that the pattern that is
selected for a variable is kept constant throughout the construction. This
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is in general not possible to prove, but using a technique introduced by
[LMS18], we work around this difficulty by making polynomially many copies
of our construction, gluing them together, and arguing that a large enough
consistent copy must exist.

We now present the reduction. We are given a q-CSP-5 instance ϕ with n
variables x1, . . . , xn taking values over the set {0, 1, 2, 3, 4}, andm constraints
c0, . . . , cm−1. For each constraint we are given a set of at most q variables
which are involved in this constraint and a list of satisfying assignments for
these variables. Without loss of generality, we make the following assump-
tions: (i) each constraint involves exactly q variables, because if it has fewer
variables, we can add to it new variables and augment the list of satisfying
assignments so that the value of the new variables is irrelevant (ii) all con-
straints have lists of satisfying assignments of size C = 5q − 1; note that this
is an upper bound on the size of the list of satisfying assignments since if a
constraint has 5q different satisfying assignments then it is always satisfied
and thus is redundant; and for each constraint which has fewer we add several
copies of one of its satisfying assignments to its list (so the list may repeat an
assignment). We define two ”large” numbers F = (4n+1)(2n+1) and A = 12
and we set our budget to be k = 8AFmn+ 2Fmn+ 2Fmq(C − 1) + n+ 1.

We now construct our graph as follows:

1. We construct a vertex s and attach to it two leaves s1, s2.

2. For i ∈ {1, . . . , n} we construct a path on 5Fm vertices: the vertices
are labeled ui,j, for j ∈ {0, 1, . . . , 5Fm− 1} and for each i, j the vertex
ui,j is connected to ui,j+1. We call these paths the main part of our
construction.

3. For each j ∈ {0, 1, . . . , Fm − 1}, let j′ = j mod m. We construct a
checker gadget Hj as follows (see Figure 2.3):

(a) For each satisfying assignment σ in the list of the constraint cj′ ,
we construct an independent set Zσ,j of size 2q (therefore, C such
independent sets). The 2q vertices are partitioned so that for
each of the q variables involved in cj′ we reserve two vertices. In
particular, if xi is involved in cj′ we denote by z1

σ,j,i, z
2
σ,j,i its two

reserved vertices in Zσ,j.
(b) For each i ∈ {1, . . . , n} such that xi is involved in cj′ , for each

satisfying assignment σ in the list of cj′ , if σ sets xi to value
α ∈ {0, 1, 2, 3, 4} we add the following edges:
i. (ui,5j+α, z1

σ,j,i) and (ui,5j+α, z2
σ,j,i).
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ii. Let β = (α + 2) mod 5 and γ = (α + 3) mod 5. We add the
edges (ui,5j+β, z1

σ,j,i) and (ui,5j+γ, z2
σ,j,i).

(c) For all assignments σ 6= σ′ of cj′ , add all edges between Zσ,j and
Zσ′,j.

(d) We construct an independent set Wj of size 2q(C − 1).
(e) Add all edges between Wj and Zσ,j, for all assignments σ of cj′ .
(f) For each w ∈ Wj, we construct an independent set of size 2k + 1

whose vertices are all connected to w and to s.

4. We define the consistency gadget Qi,j, for i ∈ {1, . . . , n} and j ∈
{0, . . . , Fm− 1} which consists of (see Figure 2.3):

(a) An independent set of size 8 denoted Ai,j.
(b) Five independent sets of size 2 each, denoted Bi,j,0, Bi,j,1, . . . , Bi,j,4.
(c) For each `, `′ ∈ {0, . . . , 4} with ` 6= `′ all edges from Bi,j,` to Bi,j,`′ .
(d) For each ` ∈ {0, . . . , 4} all possible edges from Bi,j,` to Ai,j.
(e) For each a ∈ Ai,j, 2k + 1 vertices connected to a and to s.
(f) For each ` ∈ {0, . . . , 4} both vertices of Bi,j,` are connected to

ui,5j+`.
(g) For each ` ∈ {0, . . . , 4} let `′ = (` + 2) mod 5 and `′′ = (` +

3) mod 5. One vertex of Bi,j,` is connected to ui,5j+`′ and the
other to ui,5j+`′′ .

5. For each i ∈ {1, . . . , n} and j ∈ {0, . . . , Fm− 1} construct A copies of
the gadget Qi,j and connect them to the main part as described above.

This completes the construction. The target size is k, as defined above.
We now argue that the reduction is correct and G has the desired pathwidth.

Lemma 2.13. If ϕ is satisfiable, then there exists a mixed dominating set
in G of size at most k.

Proof. Assume that ϕ admits some satisfying assignment ρ : {x1, . . . , xn} →
{0, 1, 2, 3, 4}. We construct a solution as follows:

1. For each i ∈ {1, . . . , n} let α = ρ(xi). For each j ∈ {0, . . . , Fm − 1},
we select in the dominating set the vertex ui,5j+α.
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2. Let U ′ be the set of vertices ui,j of the main part which were not selected
in the previous step and which do not have a neighbor selected in the
previous step. We add to the solution all edges of a maximum matching
of G[U ′], as well as all vertices of U ′ left unmatched by this matching.

3. For each j ∈ {0, . . . , Fm − 1}, G contains a gadget Hj. Consider the
constraint cj′ for j′ = j mod m. Let σ be an assignment in the list
of cj′ that agrees with ρ (such a σ must exist, since the constraint is
satisfied by ρ). We add to the solution the edges of a perfect matching
from Wj to

⋃
σ′ 6=σ Zσ′,j.

4. For each j ∈ {0, . . . , Fm− 1} and i ∈ {1, . . . , n} we have added to the
graph A copies of the consistency gadget Qi,j. For each copy we add
to the solution a perfect matching from Ai,j to

⋃
`6=ρ(xi) Bi,j,`.

5. We set s ∈ D.

Let us first argue why this solution has size at most k. In the first step we
select Fnm vertices. In the second step we select at most Fnm+n elements.
To see this, note that if ui,j is taken in the previous step, then ui,j+5 is also
taken (assuming j+ 5 < 5Fm), which leaves two adjacent vertices ui,j+2 and
ui,j+3. These vertices will be matched in G[U ′] and in our solution. Note
that, for a variable xi, if ρ(xi) 6= 2, then at most one vertex is left unmatched
by the matching taken, so the cost for this variable is at most Fm + 1. If
ρ(xi) = 2, then at most two vertices are left matched by the matching taken,
so the cost for this variable is at most (Fm− 1) + 2. Furthermore, for each
Hj we select |Wj| = 2q(C− 1) edges. For each copy of Qi,j we select 8 edges,
for a total cost of 8AFmn. Taking into account s, the total cost is at most
Fnm+ Fnm+ n+ 2Fmq(C − 1) + 8AFmn+ 1 = k.

Let us argue why the solution is feasible. First, all vertices ui,j and all
edges connecting them to each other are dominated by the first two steps
of our selection since we have taken a maximum matching in G[U ′] and all
vertices left unmatched by this matching. Second, for each Hj, the vertex
s together with the endpoints of selected edges form a vertex cover of Hj,
so all internal edges are dominated. Furthermore, s dominates all vertices
which are not endpoints of our solution, except Zσ,j, where σ is the selected
assignment of cj′ , with j′ = j mod m. We then need to argue that the vertices
of Zσ,j and the edges connecting it to the main part are covered.

Recall that the 2q vertices of Zσ,j are partitioned into pairs, with each
pair z1

σ,j,i, z
2
σ,j,i reserved for the variable xi involved in cj′ . We now claim

that z1
σ,j,i, z

2
σ,j,i are dominated by our solution, since we have selected the

vertex ui,5j+α, where α = ρ(xi). Furthermore, ui,5j+β, ui,5j+γ, where β = (a+



CHAPTER 2. MIN MIXED DOMINATING SET 68

2) mod m, γ = (a+ 3) mod m, belong in U ′ and therefore the edges incident
to them are covered. Finally, to see that the Qi,j gadgets are covered, observe
that for each such gadget only 2 vertices of some Bi,j,` are not endpoints of
selected edges. The common neighbor of these vertices has been selected in
the first step, and their other neighbors in the main part belong to U ′.

xi

Qi,jQi,j

Bi,j,2

Bi,j,0 Bi,j,4

Bi,j,1 Bi,j,3

Ai,j

s
s1s2

HjHj

Zσ1,j Zσ2,j

...
ZσC ,j

. . .Wj

. . .

s
s1 s2

x2

x1

Figure 2.3: (Double edges between two sets of vertices represent all edges
between the two sets.) Left: Checker gadget Hj connected to the main
part. Here we have considered an instance where the clause cj′ has only
two variables, x1 and x2. Moreover, only the independent set Zσ1,j is shown
connected to the main part. The possible assignment σ1 of cj′ is (x1 = 0, x2 =
2). We have supposed that this assignment is satisfiable, and we have marked
the corresponding mixed dominating set: filled vertices are in D, thick edges
are in M . Right: Checker gadget Qi,j connected to the main part, that is to
the path corresponding to the variable xi. Only the independent sets Bi,j,1
and Bi,j,3 are shown connected to the main part. We have supposed that
the assignment (xi = 3) is satisfiable, and we have marked the corresponding
mixed dominating set: filled vertices are in D, thick edges are in M .

We can now prove the other direction. The idea of the proof of the next
lemma is the following: by partitioning the graph into different parts and
lower bounding the cost of these parts, we prove that if a mixed dominating
set in G has not the same form as in Lemma 2.13 in a sufficiently large copy,
then it has size strictly greater than k, enabling us to produce a satisfiable
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assignment for ϕ using the mixed dominating set which has the desired form.
Note that we use the definition of nice mixed dominating set we have given
in Section 2.1 (Definition 2.2 and Lemma 2.3), and in particular the fact that
D ∩ V (M) = ∅ in order to have a sufficiently large copy where a nice mixed
dominating set of minimum size has the same form as in Lemma 2.13.

Lemma 2.14. If there exists a mixed dominating set in G of size at most k,
then ϕ is satisfiable.

Proof. Suppose that we are given, without loss of generality (Lemma 2.3), a
nice mixed dominating set D ∪M of G of minimum size. We therefore have
a partition of V into V = D∪P ∪I. Before proceeding, let us define for a set
S ⊆ V its cost as cost(S) = |S∩D|+ |S∩P |

2 . Clearly, cost(V ) ≤ k since |M | ≥
|P |/2, and for disjoint sets S1, S2 we have cost(S1∪S2) = cost(S1)+cost(S2).
Our strategy will therefore be to partition V into different parts and lower
bound their cost.

First, we give some notation. Consider some j ∈ {0, . . . , Fm−1} and i ∈
{1, . . . , n}: recall that we have constructed A copies of the gadget Qi,j, call
them Q1

i,j, . . . , Q
A
i,j; also we define the sets Si,j = {ui,5j, ui,5j+1, . . . , ui,5j+4}.

Now, for some j ∈ {0, . . . , Fm− 1}, let:

Sj = Hj ∪
⋃

i∈{1,...,n}

Si,j ∪ ⋃
r∈{1,...,A}

Qr
i,j

 (2.1)

Claim 2.15. cost(Sj) ≥ 2q(C − 1) + 2n+ 8An.

Proof. We begin with some easy observations. First, it must be the case that
s ∈ D. If not, either s1 or s2 are in D, which contradicts the niceness of the
solution, i.e. the fact that every vertex of D has two private neighbors.

Consider some j ∈ {0, . . . , Fm− 1} and i ∈ {1, . . . , n}. We will say that,
for 1 ≤ r ≤ A, Qr

i,j is normal if we have the following: Qr
i,j∩D = ∅ and there

exists ` ∈ {0, . . . , 4} such that Qr
i,j ∩ P = Ai,j ∪

⋃
`′ 6=`Bi,j,`′ . In other words,

Qr
i,j is normal if locally the solution has the form described in Lemma 2.13.
We now observe that for all i, j, r we have cost(Qr

i,j) ≥ 8. To see this,
observe that, if there exists a ∈ Ai,j ∩ I, then the 2k + 1 neighbors of a
must be in D ∪ P , so the solution cannot have cost k. Hence, Ai,j ⊆ D ∪
P . Furthermore, the maximum independent set of ⋃`∈{0,...,4}Bi,j,` is 2, so
|(⋃`∈{0,...,4}Bi,j,`)∩ (D ∪P )| ≥ 8. So cost(Qr

i,j) ≥ 8. Following this reasoning
we also observe that if Qr

i,j is not normal, then we have cost(Qr
i,j) > 8. In

other words, 8 is a lower bound for the cost of every copy of Qi,j, which can
only be attained if a copy is normal.
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Consider some j ∈ {0, . . . , Fm− 1} and i ∈ {1, . . . , n} and suppose that
none of the A copies of Qi,j is normal. We will then arrive at a contradiction.
Indeed, we have cost(⋃rQr

i,j) ≥ 8A + A/2 ≥ 8A + 6. We create another
solution by doing the following: take the five vertices ui,5j, ui,5j+1, . . . , ui,5j+4,
and take in all Qi,j a matching so that Qi,j is normal. This has decreased the
total cost, while keeping the solution valid, which should not be possible.

We can therefore assume from now on that for each i, j at least one copy
of Qi,j is normal, hence, there exists ` ∈ {0, . . . , 4} such that Bi,j,` ⊆ I in
that copy.

Recall that Si,j = {ui,5j, ui,5j+1, . . . , ui,5j+4}. We claim that for all i ∈
{1, . . . , n}, j ∈ {0, . . . , Fm−1}, we have cost(Si,j) ≥ 2. Indeed, if we consider
the normal copy of Qi,j which has Bi,j,` ⊆ I, the two vertices of Bi,j,` have
three neighbors in Si,j, and at least one of them must be in D to dominate
the vertices of Bi,j,`.

In addition, we claim that for all j ∈ {0, . . . , Fm−1} we have cost(Hj) ≥
2q(C − 1). The reasoning here is similar to Qi,j, namely, the vertices of Wj

cannot belong to I (otherwise we get 2k+ 1 vertices in D∪P ); and from the
2qC vertices in ⋃σ Zσ,j at most 2q can belong to I.

We now have the lower bounds we need: cost(Sj) ≥ 2q(C − 1) + 2n +
8An.

Now, if for some j we have cost(Sj) > 2q(C − 1) + 2n+ 8An we will say
that j is problematic.
Claim 2.16. There exists a contiguous interval J ⊆ {0, . . . , Fm− 1} of size
at least m(4n+ 1) in which all j ∈ J are not problematic.

Proof. Let L ⊆ {0, . . . , Fm− 1} be the set of problematic indices. We claim
that |L| ≤ 2n. Indeed, we have cost(V ) = 1 + ∑

j∈{0,...,Fm−1} cost(Sj) ≥
1 + Fm(2q(C − 1) + 2n+ 8An) + |L|/2 = k − n+ |L|/2. But since the total
cost is at most k, we have |L|/2 ≤ n.

We will now consider the longest contiguous interval J ⊆ {0, . . . , Fm−1}
such that all j ∈ J are not problematic. We have |J | ≥ Fm/(|L| + 1) ≥
m(4n+ 1).

Before we proceed further, we note that if j is not problematic, then for
any i ∈ {1, . . . , n}, all edges of M which have an endpoint in Si,j must have
their other endpoint also in the main part, that is, they must be edges of
the main paths. To see this note that, if j is not problematic, all Qi,j are
normal, so there are 8 vertices in Ai,j ∩ P which must be matched to the 8
vertices of (⋃`Bi,j,`) ∩ P . Similarly, in Hj the 2q(C − 1) vertices of Wj ∩ P
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must be matched to the 2q(C − 1) vertices of (⋃σ Zσ,j) ∩ P , otherwise we
would increase the cost and j would be problematic.

Consider now a non-problematic j ∈ J and i ∈ {1, . . . , n} such that
cost(Si,j) = 2. We claim that the solution must follow one of the five config-
urations below (see also Figure 2.2):

(a) ui,5j ∈ D and (ui,5j+2, ui,5j+3) ∈M .

(b) ui,5j+1 ∈ D and (ui,5j+3, ui,5j+4) ∈M .

(c) ui,5j+2 ∈ D, (ui,5j+4, ui,5j+5) ∈M , and (ui,5j−1, ui,5j) ∈M .

(d) ui,5j+3 ∈ D and (ui,5j, ui,5j+1) ∈M .

(e) ui,5j+4 ∈ D and (ui,5j+1, ui,5j+2) ∈M .

Indeed, these configurations cover all the cases where exactly one vertex
of Si,j is in D and exactly two are in P and are endpoints of an edge of M .
This is a condition enforced by the fact that all of the Qi,j copies are normal,
and that cost(Si,j) = 2.
Claim 2.17. There exists a contiguous interval J ′ ⊆ {0, . . . , Fm−1} of size
at least m in which all j ∈ J ′ are not problematic and, for all j1, j2 ∈ J ′,
Si,j1 and Si,j2 are in the same configuration.

Proof. Given the five configurations, we now make the following simple ob-
servations, where statements apply for all i ∈ {1, . . . , n} and j such that
j, j + 1 ∈ J :

• If Si,j is in configuration (a), then Si,j+1 is also in configuration (a).

• If Si,j is in configuration (b), then Si,j+1 is in configuration (a), (b), (c)
or (d).

• If Si,j is in configuration (c), then Si,j+1 is in configuration (c) or (d).

• If Si,j is in configuration (d), then Si,j+1 is in configuration (a) or (d).

• If Si,j is in configuration (e), then Si,j+1 is in configuration (a), (b), (d)
or (e).

For the first claim, we note that in configuration (a) vertex ui,5j+4 is
not dominated, so Si,j+1 cannot be in configuration (b), (d) and (e) by this
fact, and cannot be in configuration (c) because otherwise cost(Si,j) > 2.
For the second claim, we note that Si,j+1 cannot be in configuration (e)
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because otherwise the vertex ui,5(j+1) is not dominated. For the third claim,
we note that Si,j+1 cannot be in configuration (a) since D ∩ P = ∅, nor
in configuration (b) and (e) because otherwise cost(Si,j+1) > 2. For the
fourth claim, Si,j+1 cannot be in configuration (b) and (e) because otherwise
the edge (ui,5j+4, ui,5(j+1)) is not dominated, nor in configuration (c) because
otherwise cost(Si,j) > 2. For the last claim, note that Si,j+1 cannot be in
configuration (c) since D ∩ P = ∅.

We will now say for some i ∈ {1, . . . , n}, j ∈ J , that j is shifted for
variable i if j+ 1 ∈ J but Si,j and Si,j+1 do not have the same configuration.
We observe that there cannot exist distinct j1, j2, j3, j4, j5 ∈ J such that all
of them are shifted for variable i. Indeed, if we draw a directed graph with a
vertex for each configuration, and an arc (u, v) expressing the property that
the configuration represented by v can follow the one represented by u, if
we take into account the observations above, the graph will be a DAG with
maximum path length 4. Hence, a configuration cannot shift 5 times, as
long as we stay in J (the part of the graph where the minimum local cost is
attained everywhere).

By the above, the number of shifted indices j ∈ J is at most 4n. Hence,
the longest contiguous interval without shifted indices has length at least
|J |/(4n+ 1) ≥ m. Let J ′ be this interval.

We are now almost done: we have located an interval J ′ ⊆ {0, . . . , Fm−1}
of length at least m where for all i ∈ {1, . . . , n} and all j1, j2 ∈ J ′ we have
the same configuration in Si,j1 and Si,j2 . We now extract an assignment from
this in the natural way: if ui,5j+` ∈ D, for some j ∈ J ′, ` ∈ {0, . . . , 4}, then
we set xi = `. We claim this satisfies ϕ. Consider a constraint cj′ of ϕ.
There must exist j ∈ J ′ such that j′ = j mod m, because |J ′| ≥ m and J ′ is
contiguous. We therefore check Hj, where there exists σ such that Zσ,j ⊆ I
(this is because j is not problematic, that is, Hj attains the minimum cost).
But because the vertices and incident edges of Zσ,j are dominated, it must
be the case that the assignment we extracted agrees with σ, hence cj′ is
satisfied.

We now show that the pathwidth of G is at most n+O(1).

Lemma 2.18. The pathwidth of G is at most n+O(q5q).

Proof. We will show how to build a path decomposition. First, we can add
s to all bags, so we focus on the rest of the graph. Second, after removing
s from the graph, some vertices become leaves. It is a well-known fact that
removing all leaves from a graph can only increase the pathwidth by at most
1. To see this, let G′ be the graph obtained after deleting all leaves of G and
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suppose we have a path decomposition of G′ of width w. We obtain a path
decomposition of G by doing the following for every leaf v: find a bag of
width at most w that contains the neighbor of v and insert after this bag, a
copy of the bag with v added. Clearly, the width of the new decomposition is
at most w+ 1. Because of this we will ignore all vertices of G which become
leaves after the removal of s.

For all j ∈ {0, . . . , Fm − 1}, let Sj be defined as in Equation (2.1). We
will show how to build a path decomposition of G[Sj] with the following
properties:

• The first bag of the decomposition contains vertices ui,5j, for all i ∈
{1, . . . , n}.

• The last bag of the decomposition contains vertices ui,5j+4, for all i ∈
{1, . . . , n}.

• The width of the decomposition is n+O(q5q).

If we achieve the above then we can obtain a path decomposition of
the whole graph: indeed, the sets Sj partition all remaining vertices of the
graph, while the only edges not covered by the above decompositions are
those between ui,5j+4 and ui,5(j+1). We therefore place the decompositions of
Sj in order, and then between the last bag of the decomposition of Sj and the
first bag of the decomposition of Sj+1 we have 2n ”transition” bags, where
in each transition step we add a vertex ui,5(j+1) in the bag, and then remove
ui,5j+4.

Let us now show how to obtain a decomposition of G[Sj], having fixed the
contents of the first and last bag. First, Hj has order O(q5q) after handling
the leaves, so we place all its vertices to all bags. The remaining graph is a
union of paths of length 4 with the Qi,j gadgets attached. We therefore have
a sequence of O(n) bags, where for each i ∈ {1, . . . , n} we add to the current
bag the vertices of Si,j, then add and remove one after another whole copies
of Qi,j, then remove Si,j except for ui,5j+4.

We are now ready to present the main result of this section. By putting to-
gether Lemmas 2.13, 2.14, 2.18 and the negative result for q-CSP-5 (Lemma
2.12), we get the following theorem:

Theorem 2.19. Under SETH, for all ε > 0, no algorithm solves Min
Mixed Dominating Set in time O∗((5− ε)pw), where pw is the pathwidth
of the input graph.
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Proof. Fix ε > 0 and let q be sufficiently large so that Lemma 2.12 is true.
Consider an instance ϕ of q-CSP-5. Using our reduction, create an instance
(G, k) of Min Mixed Dominating Set. Thanks to Lemmas 2.13 and 2.14,
we know that ϕ is satisfiable if and only if there exists a mixed dominating
set of size at most k in G.

Suppose there exists an algorithm which solves Min Mixed Dominat-
ing Set in time O∗((5−ε)pw). With this algorithm and our reduction, we can
determine if ϕ is satisfiable in time O∗((5− ε)pw), where pw = n+O(q5q) =
n+O(1), so the total running time of this procedure is O∗((5− ε)n), contra-
dicting the SETH.

With this theorem, we proved that our algorithm for Min Mixed Domi-
nating Set for treewidth and the one of Jain et al. [JJPS17] for pathwidth of
complexity O∗(5tw) and O∗(5pw), respectively, are optimal under the SETH.



Chapter 3

Max Min Feedback Vertex Set

In a graph G = (V,E) with |V | = n, a set S ⊆ V is called a feedback vertex
set (fvs for short) if the subgraph induced by V \S is a forest. Typically, Min
Feedback Vertex Set is studied with a minimization objective: given a
graph we are interested in finding the best (that is, smallest) fvs. In this
chapter we are interested in an objective which is, in a sense, the inverse:
we seek an fvs S which is as large as possible, while still being minimal. We
call this problem Max Min Feedback Vertex Set. Since it is the Max-
Min version of Min Feedback Vertex Set, the problem has a mandatory
private structure, given as follows: for every vertex u in the solution, u must
have at least one private cycle only dominated by u.

Max-Min and Min-Max versions of many famous optimization problems
have recently attracted much interest in the literature, such as Upper Dom-
inating Set [BBC+18a] Max Min Separator [HBvdZO19], Max Min
Cut [EHKK19], Min Max Knapsack (also known as Lazy Bureau-
crat) [ABMS03, FLS17, GMP13], and some variants of Max Min Edge
Cover [KGMS20, HGM+20]. Some problems in this area also arise natu-
rally in other forms and have been extensively studied, such as Min Edge
Dominating Set [IN16], Grundy Coloring, which can be seen as a
Max-Min version of Coloring [ABKS20, BKL+20], and Max Min Ver-
tex Cover in hypergraphs, which is known as Upper Transversal
[MRRS12, HY18, HY19, HY20]. Although the initial motivation for study-
ing such problems was a desire to analyze the worst possible performance of
a naive heuristic, these problems have gradually been revealed to possess a
rich combinatorial structure that makes them interesting in their own right.

Max Min Feedback Vertex Set, which is a member of this frame-
work of Max-Min and Min-Max problems, was first considered by Mishra
and Sikdar [MS01], who showed that the problem does not admit an n1/2−ε-
approximation underP 6= NP, and that it remainsAPX-hard for ∆ ≥ 9. On

75
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this last front, we will first improve the NP-hardness of Max Min Feed-
back Vertex Set and show that it is NP-hard for ∆ ≥ 6 on planar
bipartite graphs. We present this result in the next section.

On the other hand, the two Max-Min problems Upper Dominating Set
and Max Min Vertex Cover are well-studied problems, in the context
of approximation [AHL+18,BBC+18b,BCP15,BM17,CFHJ90,Dem99,HP20,
JP90, ZZ95]. Our motivation for focusing on Max Min Feedback Ver-
tex Set is the contrast between these two well-studied cousins: the Max
Min Vertex Cover and Upper Dominating Set problems, where the
objective is to find the largest minimal vertex cover or dominating set, re-
spectively. At first glance, one would expect Max Min Vertex Cover to
be the easiest of these two problems: both problems can be seen as trying
to find the largest minimal hitting set of a hypergraph, but in the case of
Max Min Vertex Cover the hypergraph has a very restricted structure,
while in Upper Dominating Set the hypergraph is essentially arbitrary.
This intuition turns out to be correct: while Upper Dominating Set ad-
mits no n1−ε-approximation (see [BBC+18a]), Max Min Vertex Cover
admits a

√
n-approximation (but no n1/2−ε-approximation) [BCP15], as we

have presented in Section 1.3.
This background leads us to the natural question of the approximability

of Max Min Feedback Vertex Set. On an intuitive level, one may
be tempted to think that this problem should be harder than Max Min
Vertex Cover, since hitting cycles is more complex than hitting edges,
but easier than Upper Dominating Set, since hitting cycles still offers us
more structure than an arbitrary hypergraph. However, to the best of our
knowledge, no n1−ε-approximation algorithm is currently known for Max
Min Feedback Vertex Set (so the problem could be as hard as Upper
Dominating Set), and the best hardness result of approximation known
is n1/2−ε [MS01] (so the problem could be as easy as Max Min Vertex
Cover).

We fully answer this question in this chapter, confirming and precisely
quantifying the intuition that Max Min Feedback Vertex Set is a prob-
lem that lies ”between” Max Min Vertex Cover and Upper Dominat-
ing Set: we give in Section 3.3 a polynomial-time approximation algorithm
with ratio O(n2/3) and a hardness of approximation in Section 3.4 which
shows that under P 6= NP no polynomial-time algorithm can obtain a ratio
of n2/3−ε, for any ε > 0. This completely settles the approximability of the
problem in polynomial time. Along the way, we also prove in Section 3.2 that
Max Min Feedback Vertex Set has an approximation algorithm with
ratio O(∆), show in Section 3.4 that no algorithm can achieve ratio ∆1−ε for
any ε > 0, and give in Section 3.3 a cubic kernel when parameterized by the
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solution size.
One interesting aspect of our results is that they have an interpretation

from extremal combinatorics which nicely mirrors the situation for Max Min
Vertex Cover. Recall that a corollary of the

√
n-approximation for Max

Min Vertex Cover [BCP15], which we have mentioned in Section 1.3, is
that any graph without isolated vertices has a minimal vertex cover of size
at least

√
n, and this is tight (see Remark 3.15). Hence, the algorithm only

needs to trivially preprocess the graph (deleting isolated vertices) and then
find this set, which is guaranteed to exist, in polynomial time, as we have
showed in Section 1.3. Our algorithm can be seen in a similar light: we
prove that if one applies two almost trivial preprocessing rules we present
in Section 3.2 to a graph (deleting leaves and contracting edges between
degree-two vertices), a minimal fvs of size at least n1/3 (and Ω(n/∆)) is
always guaranteed to exist, and this is tight (Corollary 3.12 and Remark
3.13). Thus, the approximation ratio of n2/3 is automatically guaranteed
for any graph where we exhaustively apply these very simple rules and our
algorithms only have to work to construct the promised set. This makes it
somewhat remarkable that the ratio of n2/3 turns out to be best possible.

Concerning the super-polynomial approximation of Max Min Feed-
back Vertex Set, no result is currently known to the best of our knowl-
edge. We thus have studied this framework for this problem, and in Section
3.5, we generalize our O(n2/3)-approximation described in Section 3.3 to ob-
tain a super-polynomial approximation algorithm which is able to guarantee
any desired performance, at the cost of increased running time. More pre-
cisely, we describe an r-approximation algorithm for any r ≤ n2/3 running in
time nO(n/r3/2). To obtain this algorithm, we use an algorithm we describe in
Section 3.5 that finds a constant factor approximation in time exponential
in the size of a given fvs. Finally, we present in Section 3.6 a matching lower
bound: for any ε > 0 and any sufficiently large r, there is no r-approximation
algorithm for Max Min Feedback Vertex Set running in time n(n/r3/2)1−ε

under the randomized ETH. To derive this super-polynomial inapproxima-
bility for our considered problem Max Min Feedback Vertex Set, we
make a reduction from Max Independent Set, and we use the inapprox-
imability of Chalermsook et al. [CLN13] for this problem and some Chernoff
bounds, as we have described in Section 1.5.

In the next section, we begin by presenting the improved NP-hardness
of Max Min Feedback Vertex Set.
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3.1 Improved NP-Hardness
Let us present our NP-hardness of Max Min Feedback Vertex Set
on planar bipartite graphs of maximum degree 6, which improves on the
NP-hardness with ∆ ≥ 9 of Mishra and Sikdar [MS01].

To obtain this improved NP-hardness, we make a reduction from Max
Min Vertex Cover, for which there exists an NP-hardness on planar
bipartite graphs of maximum degree 3 [ZZ95], to Max Min Feedback
Vertex Set. We recall the mandatory private structure of the Max Min
Vertex Cover problem, that we have extensively presented in the Intro-
duction: every vertex u in the solution has at least one private edge incident
on itself. To derive the NP-hardness of Max Min Vertex Cover to
our considered problem Max Min Feedback Vertex Set, for which the
mandatory private structure is that every vertex u in the solution has at least
one private cycle, we naturally create a cycle for each edge of the original
graph, in order to have a one-to-one correspondence between the vertices
taken in the maximum minimal vertex cover and the ones taken in the max-
imum minimal feedback vertex set. Nonetheless, we also need to add some
extra vertices and cycles in order to prove our NP-hardness.

Theorem 3.1. Max Min Feedback Vertex Set is NP-hard on planar
bipartite graphs with ∆ = 6.

Proof. We give a reduction from Max Min Vertex Cover, which is NP-
hard on planar bipartite graphs of maximum degree 3 [ZZ95]. Note that the
NP-hardness in [ZZ95] is stated for Min Independent Dominating Set,
but any independent dominating set is also a maximal independent set (and
vice-versa) and the complement of a minimum maximal independent set of
any graph is a maximum minimal vertex cover. Thus, we also obtain an
NP-hardness for Max Min Vertex Cover on the same instances.

We are given a graph G = (V,E) of Max Min Vertex Cover and we
construct a graph G = (V ′, E ′) of Max Min Feedback Vertex Set in
the following way (see Figure 3.1): we keep the graph G; and for every edge
e = (u, v) ∈ E, we add a path of length three from u to v going through
two new vertices e1, e2; and for i ∈ {1, 2}, we add two cycles of length 4,
ei, ci1, c

i
2, c

i
3, e

i and ei, ci4, c
i
5, c

i
6, e

i. Note that u, e1, e2, v, u forms a cycle of
length 4. Because ∆(G) = 3, we have ∆(G′) = 6. Moreover, since G is
planar and bipartite, G′ is also planar and bipartite. We will show that there
is a minimal vertex cover of size at least k in G if and only if there is a
minimal fvs of size at least k + 4|E| in G′.

For the first direction, and given a minimal vertex cover C of size at
least k in G, we construct the set S = C ∪ ⋃e∈E{c1

1, c
1
4, c

2
1, c

2
4}. We have
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Figure 3.1: Edge gadget of e = (u, v) in the constructed graph G′. Thick
edges are originally in G.

|S| ≥ k+4|E|. Let us first argue that S is an fvs of G′. First, since G′[V \C]
is an independent set, it is also acyclic. So if there is a cycle in G′[V ′ \ S],
then it is going through at least one newly added vertices. For each edge
e = (u, v) ∈ E, we have at least one of u and v in C, so without loss of
generality, let u ∈ C. Now, in G′[V ′ \ S], the edges (e1, e2) and (e2, v) are
bridges, and therefore cannot be part of any cycle. The remaining cycles
going through e1 and e2 are handled by the vertices c1

1, c
1
4, c

2
1 and c2

4. To see
that S is minimal, we remark first that since C is a minimal vertex cover of
G, for each u ∈ C there exists v /∈ C with e = (u, v) ∈ E, and thus u ∈ S has
a private cycle, namely the cycle u, e1, e2, v, u. Now, we remark that for each
ci1, c

i
4, for i ∈ {1, 2}, there is a private cycle, namely the cycle going through

ei.
For the other direction, suppose we are given a minimal fvs S of G′

with |S| ≥ k + 4|E|. We will edit S so that is contains only vertices in
V ′ \ ⋃e∈E{e1, e2}, without decreasing its size.

First, suppose that e1, e2 ∈ S for some e ∈ E. We construct a new
minimal fvs S ′ = (S \ {e2}) ∪ {c2

1, c
2
4}. The set S ′ is larger than S since by

the minimality of S we have that c2
j /∈ S for j ∈ {1, . . . , 6}. Moreover, S ′ is an

fvs, since the cycles dominated by e2 in S were the cycles u, e1, e2, v, u, which
is dominated by e1, and the two cycles e2, c2

1, c
2
2, c

2
3, e

2 and e2, c2
4, c

2
5, c

2
6, e

2,
which are dominated by c2

1 and c2
4, respectively. And the two added vertices

c2
1 and c2

4 both have a private cycle, namely the only cycle to which they
belong. Thus, in the remainder, we assume that S contains at most one of
e1 and e2 for all e ∈ E.

Suppose now that for some e = (u, v) ∈ E, we have S ∩ {u, v} 6= ∅ and
S ∩ {e1, e2} 6= ∅. Without loss of generality, let e1 ∈ S. We construct a
new set S ′ = (S \ {e1}) ∪ {c1

1, c
1
4}. The set S ′ is larger than S since by the

minimality of S we have that c1
j /∈ S for j ∈ {1, . . . , 6}. Moreover, S ′ is
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an fvs, since the cycle u, e1, e2, v, u is already dominated by S ∩ {u, v}, and
the two cycles e1, c1

1, c
1
2, c

1
3, e

1 and e1, c1
4, c

1
5, c

1
6, e

1 are dominated by c1
1 and

c1
4, respectively. And the two added vertices c2

1 and c2
4 both have a private

cycle, namely the only cycle to which they belong. Thus, in the remainder,
we assume that if for some e = (u, v) ∈ E, we have S ∩ {e1, e2} 6= ∅, then
u, v /∈ S.

Now, suppose that for some e = (u, v) ∈ E, we have u, v /∈ S and, without
loss of generality, e1 ∈ S. We construct a new minimal fvs S ′ = (S \ {e1}) ∪
{u, c1

1, c
1
4}. Note first that |S ′| ≥ |S|+2. The set S ′ is an fvs, since the cycles

dominated by e1 in S were the cycle u, e1, e2, v, u, which is dominated by u,
and the two cycles e1, c1

1, c
1
2, c

1
3, e

1 and e1, c1
4, c

1
5, c

1
6, e

1, which are dominated
by c1

1 and c1
4, respectively. Nonetheless, the set S ′ is not necessarily minimal.

So we greedily remove vertices from S ′ to obtain a minimal fvs S∗. We
claim that in this process we cannot remove more than two vertices. To
see this, we first note that u, c1

1 and c1
4 cannot be removed from S ′ since

they all have a private cycle, namely the cycle u, e1, e2, v, u, e1, c1
1, c

1
2, c

1
3, e

1

and e1, c1
4, c

1
5, c

1
6, e

1, respectively. Suppose now that w1 ∈ S ′ \ S∗ is the first
vertex to be removed from S ′. Note that, since e1 is the vertex removed
from S to obtain S ′, it follows that the redundant vertices of S ′ belong to
cycles u, e1′, e2′, v′, u for (u, v′) ∈ E. Moreover, w1 cannot be a vertex e1′

or e2′ because these vertices already have a private cycle, going through the
vertices ci1

′
, ci2
′
, ci3
′ and ci4

′
, ci5
′
, ci6
′. So w1 = v′. Now, let w2 ∈ S ′ \ S∗ be the

second vertex to be removed from S ′. This vertex w2 cannot belong to the
cycle u, e1,′ e2′, u, v′, because since w1 = v′ it must be e1′ or e2′ and these two
vertices have a private cycle. So w2 belong to another cycle u, e1′′, e2′′, v′′, u
for (u, v′′) ∈ E, and by the same argument it must be the case that w2 = v′′.
Since |N(u) \ {v}| ≤ 2, it cannot be the case that a third vertex is removed
from S ′. As a result, at most two vertices of S ′ are removed in the process
to obtain the minimal fvs S∗, and, since |S ′| ≥ |S| + 2, we obtain another
minimal fvs of the same size. Thus, in the remainder, we assume that S does
not contain e1, e2 for any e ∈ E.

Now, given a minimal fvs S of G′ of size at least k + 4|E| and with
S ∩ (⋃e∈E{e1, e2}) = ∅, we construct a minimal vertex cover C = S ∩ V .
First, observe that C is a vertex cover, since, for each edge e = (u, v) ∈ E,
if u, v /∈ S then we would have the cycle u, e1, e2, v, u. Moreover, suppose
that C is not minimal, that is suppose there exists a vertex u ∈ V such that
NG[u] ⊆ C ⊆ S. In that case, the vertex u ∈ S has no private cycle since all
the cycles u, e1, e2, v, u with (u, v) ∈ E are also dominated by v ∈ S. So we
obtain a contradiction, and indeed u has a private edge (u, v) in G. Finally,
we argue that |S \ V | ≤ 4|E|. Consider an edge e = (u, v) ∈ E. The set S
cannot contain more than four vertices among the vertices cij, for i ∈ {1, 2}



CHAPTER 3. MAX MIN FEEDBACK VERTEX SET 81

and j ∈ {1, . . . , 6}, since otherwise a vertex of S would not have a private
cycle. So indeed |S \ V | ≤ 4|E| and so |C| = |S ∩ V | ≥ k.

Now that we have proven an improved NP-hardness from ∆ ≥ 9 [MS01]
to ∆ ≥ 6 on planar bipartite graphs, we will in the following section present
the few reduction rules we will use later in our polynomial-time approxima-
tion algorithm.

3.2 Reduction Rules and Combinatorial Tools
We begin by making two basic observations about our problem: deleting ver-
tices or contracting edges can only decrease the size of the optimal solution.
We let mmfvs(G) be the size of the largest minimal fvs of G.

Lemma 3.2. Let G = (V,E) be a graph and u ∈ V . Then, mmfvs(G) ≥
mmfvs(G−u). Furthermore, given any minimal feedback vertex set S of G−u,
it is possible to construct in polynomial time a minimal feedback vertex set
of G of the same size or larger.

Proof. Let S be a minimal fvs of G − u. We observe that S ∪ {u} is an fvs
of G. If S ∪ {u} is minimal, we are done. If not, we delete vertices from
it until it becomes minimal. We now note that the only vertex which may
be deleted in this process is u, since all vertices of S have a private cycle in
G− u and thus in G. Hence, the resulting set is a superset of S.

Lemma 3.3. Let G = (V,E) be a graph, u, v ∈ V with N(u) ∩ N(v) = ∅
and (u, v) ∈ E. Then mmfvs(G) ≥ mmfvs(G/uv). Furthermore, given
any minimal feedback vertex set S of G/uv, it is possible to construct in
polynomial time a minimal feedback vertex set of G of the same size or larger.

Proof. Before we prove the lemma we note that the contraction operation,
under the condition that N(u) ∩ N(v) = ∅, preserves acyclicity in a strong
sense: G is acyclic if and only if G/uv is acyclic. Indeed, if we contract an
edge that is part of a cycle, this cycle must have length at least 4, and will
therefore give a cycle in G/uv. Of course, contractions never create cycles in
acyclic graphs.

Let G′ = G/uv and w be the vertex of G′ which has replaced u, v. Let
V ′ = V (G′), and S be a minimal fvs of G′. We have two cases: w ∈ S or
w 6∈ S.

In the first case w ∈ S, we start with the set S ′ = (S \ {w}) ∪ {u, v}.
S ′ is an fvs of G. Furthermore, no vertex of S ′ \ {u, v} is redundant: for all



CHAPTER 3. MAX MIN FEEDBACK VERTEX SET 82

z ∈ S \ {w}, there is a cycle in G′[(V ′ \ S) ∪ {z}], therefore there is also a
cycle in G[(V \S ′)∪{z}]. Furthermore, we claim that S ′\{u, v} is not a valid
fvs. Indeed, there must be a cycle contained (due to minimality) in G1 =
G′[(V ′ \S)∪{w}]. Therefore, if there is no cycle in G2 = G[(V \S ′)∪{u, v}],
we get a contradiction, as G1 can be obtained by G2 by contracting the edge
(u, v) and contracting edges preserves acyclicity. We conclude that, even if
S ′ is not minimal, if we remove vertices until it becomes minimal, we will
remove at most one vertex, so the size of the fvs obtained is at least |S|.

In the second case w 6∈ S, we will return the same set S. Let F = V \ S
and F ′ = V ′ \ S. By definition, G′[F ′] is acyclic. To see that G[F ] is also
a forest, we note that G′[F ′] is obtained from G[F ] by contracting (u, v),
and as we noted in the beginning, the contractions we use strongly preserve
acyclicity. To see that S is minimal, take z ∈ S and consider the graphs
G1 = G[(V \ S) ∪ {z}] and G2 = G′[(V ′ \ S) ∪ {z}]. We see that G2 can be
obtained from G1 by contracting (u, v). But G2 must have a cycle, by the
minimality of S, so G1 also has a cycle. Thus, S is minimal in G.

We now show two safe versions of Lemmas 3.2 and 3.3.

Lemma 3.4. Let G, u be as in Lemma 3.2 with d(u) ≤ 1. Then mmfvs(G−
u) = mmfvs(G).

Proof. We only need to show that mmfvs(G) ≤ mmfvs(G − u), since the
other direction is given by Lemma 3.2. Let S be a minimal fvs of G. Then,
S is an fvs of G− u. Furthermore, u 6∈ S, as S is minimal in G. To see that
S is also minimal in G − u, note that any cycle of G also exists in G − u,
since no cycle contains u.

Lemma 3.5. Let G, u, v be as in Lemma 3.3 with d(u) = d(v) = 2. Then
mmfvs(G/uv) = mmfvs(G).

Proof. Let G′ = G/uv, w be the vertex that replaced u, v in G′, and V ′ =
V (G′).

We only need to show that mmfvs(G) ≤ mmfvs(G′), since the other
direction is given by Lemma 3.3. Let S be a minimal fvs of G. We consider
two cases:

If u, v 6∈ S, then we claim that S is also a minimal fvs of G′. Indeed,
G′[V ′ \S] is obtained from G[V \S] by contracting (u, v), so both are acyclic.
Furthermore, for all z ∈ S, G′[(V ′\S)∪{z}] is obtained from G[(V \S)∪{z}]
by contracting (u, v), therefore both have a cycle, hence no vertex of S is
redundant in G′.

If {u, v} ∩ S 6= ∅, we claim that exactly one of u and v is in S. Indeed, if
u, v ∈ S, then G[(V \ S) ∪ {u}] does not contain a cycle going through u, as
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u has degree 1 in this graph. Without loss of generality, let u ∈ S and v 6∈ S.
We set S ′ = (S \ {u}) ∪ {w} and claim that S ′ is a minimal fvs of G′. S ′ is
an fvs of G′, since it corresponds to deleting S ∪ {v} from G. To see that it
is minimal, for all z ∈ S ′ \{w} we observe that G′[(V ′ \S ′)∪{z}] is obtained
from G′[(V \ S) ∪ {z}] by deleting v, which has degree 1. Therefore, this
deletion strongly preserves acyclicity and z has a private cycle in G′. Finally,
to see that w is not redundant for S ′ we observe that G[(V \ S) ∪ {u}] has
a cycle, and a corresponding cycle must be present in G′[(V ′ \ S ′) ∪ {w}],
which is obtained from the former graph by contracting (u, v).

We now give a definition, which defines the notion of reduced graph con-
cerning the Max Min Feedback Vertex Set problem. Informally, a
reduced graph is a graph that has been preprocessed in such a way that
our approximation algorithm we will present in the next section always con-
structs on it a minimal fvs that has size at least Ω(n1/3), thus giving us
our O(n2/3)-approximation. Moreover, as we have mentioned in Section 1.3
and at the beginning of this chapter, a reduced graph is a graph which has
been preprocessed by applying Lemmas 3.4 and 3.5 exhaustively for Max
Min Feedback Vertex Set, whereas the preprocessing step for Max
Min Vertex Cover we have presented in Section 1.3 is to simply remove
isolated vertices.

Definition 3.6. For a graph G = (V,E) we say that G is reduced if Lemma
3.4 and Lemma 3.5 have been exhaustively applied.

We now present a counting argument which will be useful in our algo-
rithm, and states, roughly, that if in a reduced graph we find a (not neces-
sarily minimal) fvs, that fvs must have many neighbors in the corresponding
forest.

Lemma 3.7. Let G = (V,E) be a reduced graph and S ⊆ V a feedback vertex
set of G. Let F = V \ S. Then, |N(S) ∩ F | ≥ |F |

4 .

Proof. Let n0 be the number of isolated vertices in G[F ], n1 be the number
of leaves of F , n3 the number of vertices of F with at least three neighbors
in F , n2a the number of vertices of F with two neighbors in F and at least
one neighbor in S, and n2b the number of remaining vertices of F , that is
the number of vertices of F with two neighbors in F and no neighbor in S.
We have n0 + n1 + n2a + n2b + n3 = |F |. Furthermore, n3 ≤ n1 because the
average degree of any forest is less than 2.

We observe that all leaves of the tree have a neighbor in S, because
otherwise we would have applied Lemma 3.4. And all isolated vertices in
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G[F ] have a neighbor in S since G is reduced and thus does not have any
isolated vertex. This gives |N(S) ∩ F | ≥ n0 + n1 + n2a.

Furthermore, none of the n2b vertices which have degree two in the tree
and no neighbors in S can be adjacent to each other, since then Lemma 3.5
would apply. Therefore, n2b ≤ n1 + n2a + n3. Indeed, if n2b > n1 + n2a + n3,
then n2b > |F |/2 and, since these n2b vertices form an independent set, we
would have |E(F )| ≥ 2n2b > |F |, contradicting the assumption that F is a
forest.

Putting things together we get |F | = n0 + n1 + n2a + n2b + n3 ≤ 2n0 +
2n1 + 2n2a + 2n3 ≤ 2n0 + 4n1 + 2n2a ≤ 4|N(S) ∩ F |.

We note that Lemma 3.7 immediately gives an approximation algorithm
with ratio O(∆).

Lemma 3.8. In a reduced graph G with n vertices and maximum degree
∆ ≥ 1, every feedback vertex set has size at least n

5∆ .

Proof. Let S be a feedback vertex set of G and F the corresponding forest.
If |S| < n

5∆ then |N(S) ∩ F | < n
5 since the maximum degree is ∆. So by

Lemma 3.7, we have |F | < 4n
5 . But then |V | = |S| + |F | < n, which is a

contradiction.

Remark 3.9. Lemma 3.7 is tight.

Proof. Take two copies of a complete rooted binary tree with n leaves and
connect their roots. The resulting tree has 2n leaves and 2n − 2 vertices
of degree 3. Subdivide every edge of this tree once. Add two vertices u, v
connected to every leaf. In the resulting graph S = {u, v} is an fvs. The
corresponding forest has 8n−5 vertices. Indeed, we have: 2n−3 new vertices
obtained from the subdivisions between the degree-3 vertices; 2n−2 vertices
of degree 3; and 2(2n) leaves and their adjacent new vertices. And we have
2n vertices connected to S. The graph is reduced.

We finish this section with a final intermediate Lemma that allows us to
construct a large minimal fvs in any reduced graph that is a forest plus one
vertex.

Lemma 3.10. Let G = (V,E) be a reduced graph and u ∈ V such that G−u
is acyclic. Then it is possible to construct in polynomial time a minimal
feedback vertex set S of G with |S| ≥ d(u)/2.

Proof. Let F = V \{u}. Since the graph is reduced, all trees of G[F ] contain
at least two neighbors of u. Indeed, every tree T of G[F ] contains at least
two vertices, because otherwise Lemma 3.4 would apply. Thus every tree T
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contains at least two leaves, and all leaves must be neighbors of u, because
otherwise Lemma 3.4 would apply.

Now, we edit the graph. As long as there exist v, w ∈ F with (v, w) ∈ E
and {v, w} 6⊆ N(u), we contract the edge (v, w). Note that we can apply
Lemma 3.3 since v and w do not have any common neighbors (u is not a
common neighbor by assumption, and they cannot have a common neighbor
in the forest without forming a cycle). Furthermore, this operation does not
change d(u), since for two neighbors v, w in F neighbors of u, the edge (v, w)
is not contracted. Therefore, it will be sufficient to construct a minimal fvs
in the resulting graph after applying this operation exhaustively, by Lemma
3.3.

Suppose now that we have applied this operation exhaustively. We even-
tually arrive at a graph where u is connected to all vertices of F , since every
tree of F initially contains at least two neighbors of u, since all the non-
neighbors of u are absorbed by the contraction operation (each contraction
decreases |F \ N(u)|), and since neighbors of u in F are never absorbed.
Therefore, we arrive at a graph with d(u) = |F ′| for the new forest F ′. And
every tree of F ′ contains at least two vertices.

Now, since G[F ′] is a forest, it is bipartite, so there is a bipartition F ′ =
L∪R. Without loss of generality, |L| ≤ |R|. We return the set S = R. First,
S does have the promised size, since |S| ≥ |F ′|/2 = d(u)/2. Second, S is
an fvs, as L is an independent set and hence L ∪ {u} is a star. Finally, S is
minimal, because every v ∈ S is connected to u, and also has at least one
neighbor w ∈ L which is also connected to u.

Now that we have presented the two rules that are applied to obtain a
reduced graph, and two intermediate lemmas (Lemmas 3.7 and 3.10) which
we will use in our polynomial-time approximation, we give in the following
section our approximation algorithm.

3.3 Polynomial-Time Approximation
In this section we present our polynomial-time algorithm which guarantees
an approximation ratio of O(n2/3). As we will show later in the next section,
this ratio is the best that can be hoped for in polynomial time.

On a high level, our algorithm proceeds as follows: first we apply the
reduction rules of Lemmas 3.4 and 3.5 where the value of the optimal is
guaranteed to stay constant to obtain a reduced graph; then we compute a
minimal fvs S in an arbitrary way. If S is large enough (larger than n1/3),
we simply return this set.
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If not, we apply some counting arguments (by Lemma 3.7) to show that
a vertex u ∈ S with high degree (≥ n2/3) must exist. We then have two
cases: either we are able to construct a large minimal fvs just by looking at
the neighborhood of u in the forest (and ignoring S \ {u}) (by Lemma 3.10),
or u must share many neighbors with another vertex v ∈ S, in which case
we construct a large minimal fvs in the common neighborhood of u and v.

Because our algorithm is constructive (and runs in polynomial time),
we find it interesting to remark an interpretation from the point of view of
extremal combinatorics, given in Corollary 3.12.

We can now present the main theorem of this section:

Theorem 3.11. There is a polynomial time approximation algorithm for
Max Min Feedback Vertex Set with ratio O(n2/3).

Proof. We are given a graph G = (V,E). We begin by applying Lemmas
3.4 and 3.5 exhaustively in order to obtain a reduced graph G′ = (V ′, E ′).
Clearly, if we obtain a |V ′|1/3 solution in G′, since the transformations applied
do not change the optimal, and since we can construct a solution of the
same size in G by Lemmas 3.2, 3.3, 3.4 and 3.5, we get a |V ′|2/3 ≤ |V |2/3
approximation ratio in G. So, in the remainder, to ease presentation, we
assume that G is already reduced and has n vertices.

Our algorithm begins with an arbitrary minimal fvs S. It can be con-
structed, for example, by starting with S = V , and by removing vertices
from S until it becomes minimal. If |S| ≥ n1/3, then we return S. Since
the optimal solution cannot have size more than n, we already have a n2/3-
approximation.

So suppose that |S| < n1/3. Let F be the corresponding forest. We
have |F | > n − n1/3 > n/2 for n sufficiently large. By Lemma 3.7, |N(S) ∩
F | ≥ n/8. Since |S| < n1/3, there must exist a vertex u ∈ S with at least
|N(S)∩F |
|S| > n2/3

8 neighbors in F .
Now, let w ∈ F ∩ N(u). We say that w is a good neighbor of u if there

exists another vertex w′ ∈ F ∩N(u) with w′ 6= w and w′ is in the same tree
of G[F ] as w. Otherwise, we say that w is a bad neighbor of u. By extension,
a tree of G[F ] that contains a good (resp. bad) neighbor of u will be called
good (resp. bad). Note that every vertex of N(u) ∩ F is either good or bad.

Recall that |N(u) ∩ F | ≥ n2/3

8 . We distinguish between the following two
cases: either u has at least n2/3

16 good neighbors in F , or it has at least that
many bad neighbors in F .

In the former case, we delete from the graph the set S \ {u}, and apply
Lemmas 3.4 and 3.5 exhaustively again. We claim that the number of good
neighbors of u does not decrease in this process. Indeed, two good neighbors
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of u cannot be contracted using Lemma 3.5, since they have a common
neighbor, namely u. Furthermore, suppose w is the first good neighbor of
u to be deleted using Lemma 3.4. This would mean that w currently has
no other neighbor except u. However, since w is good, there initially was a
vertex w′ ∈ N(u) in the same tree of G[F ] as w. And since w′ has not been
deleted yet, since we assumed that w was the first to be deleted, and since
Lemmas 3.4 and 3.5 cannot disconnect two vertices which are in the same
component, we obtain that the vertex w cannot be removed by Lemma 3.4.
Thus, we have a reduced graph, where {u} is an fvs, and with d(u) ≥ n2/3

16 .
So, by Lemma 3.10, we obtain a minimal fvs of size at least n2/3

32 , which is an
O(n1/3)-approximation.

In the latter case, u has at least n2/3

16 bad neighbors in F . Consider such a
bad tree T . The tree T must have a neighbor in S \ {u}. Indeed, if |T | = 1,
then the vertex in T must have another neighbor in S, because otherwise it
should have been deleted by Lemma 3.4. And if |T | ≥ 2, then one vertex is
a neighbor of u and at least one leaf is connected to S, because otherwise
this leaf should have been deleted by Lemma 3.4. Furthermore, since u is
connected to one vertex in each bad tree, u is connected to at least n2/3

16 bad
trees. We now find a vertex v ∈ S \ {u} such that v is connected to the
maximum number of bad trees connected to u. Since |S| < n1/3, v must be
connected to at least n2/3

16|S| ≥
n1/3

16 bad trees connected to u.
Now, we delete from the graph the set S \ {u, v} as well as all trees of

G[F ], except the bad trees connected to u and v. Consider such a bad tree
T connected to both u and v, and let u′ ∈ T ∩N(u) and v′ ∈ T ∩N(v) such
that u′ and v′ are as close as possible in T (note that perhaps u′ = v′). We
delete all vertices of the tree T except those on the path from u′ to v′, and
then we contract all internal edges of this path (note that internal vertices
of this path are not connected to u and v by the selection of u′, v′). By
Lemma 3.2 and 3.3, if we are able to produce a large minimal fvs in the
resulting graph, we obtain a solution of the same size or larger for G. We
have that in the resulting graph, every bad tree T connected to u and v has
been reduced to a single vertex connected to u and v. So the graph is either
a K2,s with s ≥ n1/3

16 , or a K2,s with the addition of the edge (u, v). In either
case, by starting with the fvs that contains all vertices except u and v, and
making it minimal, we obtain a solution of size at least s− 1, which gives a
O(n2/3)-approximation.

Now that we have proved our O(n2/3)-approximation algorithm for Max
Min Feedback Vertex Set, we show that this algorithm always creates
a minimal fvs of size at least Ω(n1/3) if the graph is reduced, that is if it has
been properly preprocessed. Note the difference with Max Min Vertex
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Cover, for which there always exists a Ω(n1/2) minimal vertex cover in a
graph which does not contain any isolated vertices, as we have shown in
Section 1.3.

Corollary 3.12. For any reduced graph G on n vertices we have mmfvs(G) =
Ω(n1/3).

Proof. We simply note that the algorithm of Theorem 3.11 always constructs
a solution of size at least n1/3

c
, where c is a constant, assuming that the original

n-vertex graph G was reduced.

Remark 3.13. Corollary 3.12 is tight.

Proof. Take a Kn and, for every pair of vertices u, v in the clique, add 2n
new vertices connected only to u and v. The graph has order n + 2n

(
n
2

)
=

n+ n2(n− 1) = n3− n2 + n ≥ n3/2 for n sufficiently large. Any minimal fvs
of this graph must contain at least n − 2 vertices of the clique. As a result
its maximum size is at most n − 2 + 2n ≤ 3n. We have mmfvs(G) ≤ 3n so
mmfvs(G) = O(|V (G)|1/3).

We briefly mention that Theorem 3.11 also implies the existence of a cubic
kernel of Max Min Feedback Vertex Set when parameterized by the
solution size k. We did not mention the notion of kernel in the Introduction
since it is the only place where we use it, but a kernel is formally defined
through the notion of kernelization. A kernelization for a decision problem Π
is an algorithm that takes an instance (I, k) and maps it in polynomial time
in |I| and k to another instance (I ′, k′) such that: I is a Yes-instance if and
only if I ′ is a Yes-instance; |I ′| ≤ f(k) for a function k; and k′ ≤ g(k) for a
function g. If these conditions are satisfied, the instance (I ′, k′) is called a
kernel.

Recall that the reduction rules do not change the solution size. We sup-
pose that the reduced graph has n vertices. For a constant c, if n ≥ c3k3,
then we can always produce a solution of size at least n1/3/c = k, and thus
the answer is Yes. Otherwise, we have a cubic kernel.

Corollary 3.14. Max Min Feedback Vertex Set admits a cubic kernel
when parameterized by the solution size.

Finally, we remark that a similar combinatorial point of view can be
taken for the related problem of Max Min Vertex Cover, giving another
intuitive explanation for the difference in approximability between the two
problems.
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Remark 3.15. Any graph G = (V,E) with n vertices and without isolated
vertices has a minimal vertex cover of size at least

√
n, and this is asymptot-

ically tight.

Proof. We have shown that a graph without isolated vertices always has a
minimal vertex cover of size at least

√
n in Section 1.3.

To see that the bound given is tight, take a Kn and attach n leaves to
each of its vertices. This graph has n2 vertices, but any minimal vertex cover
has size at most (n− 1) + n = 2n− 1.

Now that we have described our O(n2/3)-approximation algorithm for
Max Min Feedback Vertex Set, we will in the following section prove
that this algorithm is asymptotically the best we could hope.

3.4 Matching Polynomial-Time Inapproxima-
bility

We begin by showing that the best approximation ratio achievable in poly-
nomial time is indeed (essentially) n2/3. For this, we rely on the celebrated
result of Håstad [Hås96] on the hardness of approximating Max Indepen-
dent Set, which was later derandomized by Zuckerman [Zuc05], that we
have presented in Section 1.3.

Theorem 3.16 ( [Hås99,Zuc05]). For any ε > 0, there is no polynomial time
algorithm which approximates Max Independent Set with a ratio of n1−ε

if P 6= NP.

Starting from this result, we present a reduction to Max Min Feedback
Vertex Set. Note that our reduction is similar to the reduction of Boria
et al. [BCP13] we have presented in Section 1.3 from Max Independent
Set to Max Min Vertex Cover which gave the n1/2−ε-inapproximability
for the latter problem.

Theorem 3.17. For any ε > 0, Max Min Feedback Vertex Set is
inapproximable within a factor of n2/3−ε if P 6= NP.

Proof. We give a gap-preserving reduction from Max Independent Set,
which cannot be approximated within a factor of n1−ε underP 6= NP [Zuc05].
We are given a graph G = (V,E) on n vertices as an instance of Max
Independent Set. Recall that α(G) denotes the size of the maximum
independent set of G.
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We transform G into an instance of Max Min Feedback Vertex Set
as follows: we keep the graph G; and for every pair of u, v ∈ V , we add n
vertices such that they are adjacent only to u and v. We denote by Iuv the
set of such vertices. Then Iuv is an independent set. Let G′ = (V ′, E ′) be
the constructed graph.

We now make the following two claims:
Claim 3.18. mmfvs(G′) ≥ (n− 1)

(
α(G)

2

)
Proof. We construct a minimal fvs of G′ as follows: let C be a minimum
vertex cover of G. Then we begin with the set that contains C and the union
of all Iuv (which is clearly an fvs) and remove vertices from it until it becomes
minimal. Let S be the final minimal fvs. We observe that for all u, v ∈ V \C,
S contains at least n− 1 of the vertices of Iuv. Since C is a minimum vertex
cover of G, there are

(
α(G)

2

)
pairs u, v ∈ V \ C.

Claim 3.19. mmfvs(G′) ≤ n
(

2α(G)
2

)
+ n

Proof. Let S be a minimal fvs of G′ and F be the corresponding forest. It
suffices to show that |S \ V | ≤ n

(
2α(G)

2

)
, since |S ∩ V | ≤ n. Consider now a

set Iuv. If u ∈ S or v ∈ S, then Iuv ∩ S = ∅, because all vertices of Iuv have
at most one neighbor in F , and are therefore redundant. So, Iuv contains (at
most n) vertices of S only if u, v ∈ F . However, |F ∩ V | ≤ 2α(G), because
F is bipartite and F ∩ V induces two independent sets, both of which must
be at most equal to the maximum independent set of G. So the number of
pairs u, v ∈ F ∩ V is at most

(
2α(G)

2

)
and, since each corresponding Iuv has

size n, we get the promised bound.

The two claims together imply that there exist constants c1, c2 such that,
for n sufficiently large, we have c1n(α(G))2 ≤ mmfvs(G′) ≤ c2n(α(G))2.
That is, mmfvs(G′) = Θ(n(α(G))2).

Suppose now that there exists a polynomial-time approximation algo-
rithm which, given a graph G′, produces a minimal fvs S with the property
mmfvs(G′)

r
≤ |S| ≤ mmfvs(G′), that is, there exists an r-approximation for

Max Min Feedback Vertex Set. Running this algorithm on the in-
stance we have constructed, we obtain that c1n(α(G))2

r
≤ |S| ≤ c2n(α(G))2.

Therefore, α(G)√
rc2/c1

≤
√
|S|
c2n
≤ α(G). As a result, we obtain an O(

√
r)-

approximation for the value of α(G). We therefore conclude that, if P 6=
NP, any such algorithm must have

√
r > n1−ε, for any ε > 0, hence r > n2−ε

by choosing ε correctly. Since the graph G′ has N = Θ(n3) vertices, we get
that no approximation algorithm can achieve a ratio of N2/3−ε for Max Min
Feedback Vertex Set.
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We notice that, in the construction of the previous theorem, the maximum
degree of the graph is approximately equal to the approximation gap. Thus,
the following corollary also holds.

Corollary 3.20. For any positive constant ε, Max Min Feedback Ver-
tex Set is inapproximable within a factor of ∆1−ε if P 6= NP.

Thus, we have completely settled the polynomial-time approximability of
Max Min Feedback Vertex Set, and along the way we have proved that
the problem also has an asymptotically optimal O(∆) algorithm, that the
problem admits a cubic kernel, and finally that this problem and Max Min
Vertex Cover have some interesting combinatorial extremal solutions. In
the next two sections, we focus on super-polynomial approximation.

3.5 Super-Polynomial Approximation
In this section we give an approximation algorithm that generalizes our
O(n2/3)-approximation algorithm described in Section 3.3 and which is able
to guarantee any desired performance, at the cost of increased running time.
On a high level, our initial approach again constructs an arbitrary minimal
fvs S and, if S is clearly large enough, returns it. However, things become
more complicated from then on, as it is no longer sufficient to consider ver-
tices of S individually or in pairs. We therefore need several new ideas, one
of which is given in the following lemma which states that we can find a
constant factor approximation in time exponential in the size of a given fvs.
This will be useful as we will use the assumption that S is ”small”, and then
cut it up into even smaller pieces to allow us to use this lemma.

Lemma 3.21. Given a graph G = (V,E) on n vertices and a feedback vertex
set S0 ⊆ V of size k, it is possible to produce a minimal fvs S ′ of G of size
|S ′| ≥ mmfvs(G)

3 in time nO(k).

Before we prove this lemma, let us point out that, for k = 1, Max Min
Feedback Vertex Set can be solved optimally in time O(n), using stan-
dard arguments from parameterized complexity. Indeed, in this case, the
graph G has treewidth 2, so by invoking Courcelle’s Theorem and since the
properties ”S is an fvs” and ”S is minimal” are MSO-expressible [CFK+15],
we can solve the problem optimally in time O(n). Unfortunately, this type
of argument is not good enough for larger values of k, as the running time
guaranteed by Courcelle’s Theorem could depend super-exponentially on k,
as we have mentioned in Section 1.4. We could try to avoid this by formu-
lating a treewidth-based dynamic programming algorithm to obtain a better
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running time, but we prefer to give a more direct branching algorithm, since
this is good enough for the super-polynomial approximation algorithm we
seek to design.

Proof. We will assume that S0 is minimal, because otherwise we can remove
vertices from it to make it minimal, and this only decreases the running
time of our algorithm. As a result, we assume also that mmfvs(G) ≥ 3k, as
otherwise S0 is already a 3-approximation.

Let S∗ be a maximum minimal fvs in G, and let F ∗ = V \ S∗. We
formulate an algorithm that maintains two disjoint sets of vertices S and F ,
which, intuitively, correspond to the vertices we have decided to place in the
fvs or in the induced forest, respectively. We will denote U = V \ (S ∪ F )
the set of ”undecided” vertices. Our algorithm will sometimes ”guess’ some
vertices of U to be placed in S or F , and we will upper-bound the guessing
possibilities by nO(k).

Throughout the algorithm, we will work to maintain the following four
invariants:

1. S ∪ F is an fvs of G;

2. S ⊆ S∗ and F ⊆ F ∗;

3. G[F ] is acyclic and has at most 2k components;

4. All vertices of S have at least two neighbors in F .

We begin by guessing a set F0 ⊆ S0 such that G[F0] is acyclic and we set
F = F0 and S = S0 \F0. Property 1 is satisfied as S ∪F = S0 is an fvs of G.
Property 2 is satisfied for the right guess F0 = F ∩ S0. Now, if there exists a
vertex u ∈ S which does not satisfy Property 4, we guess one or two vertices
from N(u)∩U and place them into F , so that u has indeed two neighbors in
F . Since u has a private cycle in G[F ∗], by assuming that we have rightfully
guessed F0, if the vertices we guessed are the neighbors of u in that cycle, we
maintain Property 2. We continue in this way until Property 4 is satisfied
for all vertices of S. We now observe that F is acyclic, since for the right
guess we have F ⊆ F ∗. And since we have added at most 2 vertices for each
vertex of S, it follows that F contains at most 2k vertices, hence at most 2k
components, so Property 3 is satisfied also. So far, the total running time
is upper-bounded by 2kn2k: 2k for guessing F0 ⊆ S0 and n2k for guessing at
most two neighbors for every u ∈ S.

We now define the notion of ”connector”. Formally, a connector is a path
P with V (P ) ⊆ F ∗\F such that G[F ∪P ] has strictly fewer components than
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G[F ]. Our algorithm will now repeateadly guess if a connector exists, and if it
does it will guess the first and last vertices u and v of P . Note that u, v ∈ U ,
and, if we rightfully guess u and v, then we can infer all of P , since G[U ]
is acyclic and there is at most one path from u to v in G[U ]. Then, we set
F = F ∪P , and we continue guessing until we guess that no connector exists.
Note that guessing the two endpoints of a connector gives n2 possibilities, and
that adding a connector to F decreases the number of connected components
of F by at least one, which can happen at most 2k times by Property 3. So
the total running time of this procedure is upper-bounded by nO(k). We now
show that the four properties are satisfied so far. Property 1 is satisfied since
S ∪ F was already an fvs of G before adding the connectors to F . Property
2 is satisfied since a connector P verifies V (P ) ⊆ F ∗ \ F . Property 3 is
satisfied since adding a connector decreases the number of components by at
least one. And Property 4 is satisfied since every vertex of S already had
two neighbors in F before adding the connectors.

We now consider every vertex u ∈ U that has at least two neighbors in
F and place all such vertices in S. Properties 1, 3 and 4 are still satisfied.
Furthermore, if our guesses so far are correct, all such vertices u belong to
S. Indeed, they have at least two neighbors in F for which there is a path
between them in F , because otherwise they would function as connectors in
F , and we assume that we have correctly guessed that no more connector
exist. Thus, these vertices u must be in S∗ in order to dominate the cycle
that go through their two neighbors in F .

We are now in a situation where every vertex left in U has at most one
neighbor in F . We construct a new graph H by deleting from G all of S and
replacing F by a single vertex f that is connected to N(F ) ∩ U . Note that
H is a simple graph, i.e. it has no parallel edges, because otherwise a vertex
of U would have two neighbors in F , and we have put all these vertices of U
in S. Moreover, H has an fvs of size 1, namely the set {f}. We therefore use
the aforementioned algorithm implied by Courcelle’s Theorem to produce
a maximum minimal fvs of H, which, without loss of generality, does not
contain f . Let SH ⊆ U be this fvs. In G, the set S ∪ SH is an fvs. But it
might be not minimal, so we remove vertices from it until it is minimal. Let
S ′ be this minimal fvs obtained.

We now prove that this solution S ′ is a 3-approximation. To see that the
resulting solution has the desired size, we focus on the case where all guesses
were correct, and therefore where Properties 1-4 were maintained throughout
the execution of the algorithm. As mentioned earlier, the total running time
of this algorithm is nO(k).

We first observe that mmfvs(H) ≥ mmfvs(G) − |S|. Indeed, the set
S1 = S∗ \ S is a minimal fvs of H. To see that S1 is an fvs, suppose that
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H contains a cycle after deleting S1. This cycle must necessarily go through
f , since G[U ] is acyclic. Now, let P be the vertices of this cycle except f .
We have P ⊆ U \ S∗, so P ⊆ F ∗. However, this means that either P forms
a cycle with a component of F , which contradicts the acyclicity of F ∗ by
Property 2, or P is a connector, which contradicts our guess that no other
connector exists. Therefore, we obtain a contradiction, and S1 must be an
fvs of H. To see that it is minimal, we note that for every u ∈ S1, there is a
private cycle in G[U ∪F ∪{u}], since S1 = S∗ \S and S ⊆ S∗ by Property 2.
And this private cycle is not destroyed by contracting the vertices of F into
f , since F ⊆ F ∗ by Property 2.

We now have that |SH ∪ S| ≥ |S∗|, because |SH | ≥ |S∗ \ S|. We argue
that in the process of making SH minimal to obtain S ′, we delete at most
2k vertices. Indeed, every time a vertex u of S is removed from S ∪ SH as
redundant, since u has at least two neighbors in F by Property 4, the number
of components of G[F ] must decrease. Similarly, every time a vertex u ∈ SH
is removed as redundant, consider the private cycle of u in H \ SH . All of
the vertices of this cycle are present in G after we remove SH , except f .
Therefore, this cycle must form a path between two distinct components of
G[F ], since G[U ] is acyclic and because u has been considered redundant. We
conclude that, since removing a vertex from S ∪SH decreases the number of
components in G[F ], and since they are at most 2k such components in G[F ]
by Property 3, we have |S ′| ≥ |S∗| − 2k. But recall that we have assumed
k ≤ |S∗|

3 , so we obtain |S ′| ≥ |S∗|
3 .

Now that we have proved the existence of such a constant ratio approx-
imation algorithm running in time exponential of a given fvs, we present
our super-polynomial approximation algorithm that uses this algorithm as
subroutine and which generalizes our O(n2/3)-approximation algorithm de-
scribed in Section 3.3.

Recall that our approach is the following. First we construct an arbitrary
minimal fvs S and if S is clearly large enough, return it. However, as it is no
longer sufficient to consider vertices of S individually or in pairs, we therefore
use a divide-and-conquer approach where in each subgraph considered we
use Lemma 3.21 giving us constant approximation ratio on this subgraph,
enabling us to obtain the desired r approximation ratio for the whole graph.

As we have mentioned in Section 1.5, instead of considering each sub-
graph individually, as what is done by Bonnet et al. [BLP16] for Max Min
Vertex Cover, we need in our super-polynomial approximation for Max
Min Feedback Vertex Set to consider pairs of subgraphs and run the
sub-exponential algorithm of Lemma 3.21 on each such pairs.
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Theorem 3.22. There is an algorithm which, given an n-vertex graph G =
(V,E) and a value r ≤ n2/3, produces an r-approximation for Max Min
Feedback Vertex Set in G in time nO(n/r3/2).

Proof. First, let us note that we may assume that r is ω(1), because if r
is bounded above by a constant, then we can solve the problem exactly
in the given time. To ease presentation, we will give an algorithm with
approximation ratio O(r). A ratio of approximation ratio exactly r can be
obtained by multiplying r with an appropriate small constant.

Our algorithm borrows several of the basic ideas from Theorem 3.11, but
requires some new ingredient, including the algorithm of Lemma 3.21. The
first step is, again, to construct a minimal fvs S in some arbitrary way, for
example by setting S = V and then removing vertices from S until it becomes
minimal. If |S| ≥ n/r, then we already have an r-approximation, so in this
case we simply return S. So we assume that |S| < n/r. From this point,
this algorithm departs from the algorithm of Theorem 3.11, because it is no
longer sufficient to compare the size of the output solution with a function
of n, we need to compare it to the actual optimal value in order to obtain a
ratio of r.

Let us now present our algorithm. Let k = d
√
re. Partition S into k

almost equal-sized parts S1, . . . , Sk. Our algorithm proceeds as follows: for
each i, j ∈ {1, . . . , k} with i and j not necessarily distinct, consider the graph
Gi,j obtained by deleting all vertices of S \ (Si ∪ Sj). Compute, using the
algorithm of Lemma 3.21, a solution for Gi,j, taking into account that Si∪Sj
is an fvs of this graph, though not necessarily minimal. Then, for each of
the solutions found, extend it to a solution of G using Lemma 3.2. Finally,
output the largest solution encountered.

The algorithm runs in the promised time: we have |Si ∪ Sj| < 2n
rk
, so the

algorithm of Lemma 3.21 runs in time nO(n/r3/2), and the rest of the algorithm
runs in polynomial time.

Let us now analyze the approximation ratio of the produced solution. Let
S∗ be an optimal solution, and let F = F \S and F ∗ = V \S∗ be the induced
forests corresponding to S and S∗, respectively. We would like to argue that
one of the considered sub-graphs contains at least 1/r fraction of S∗, and
that most of these vertices form part of a minimal fvs of that subgraph.

We will define the notion of ”type” for every u ∈ S∗ ∩ F . For each such
u, there must exist a private cycle in the graph G[F ∗ ∪ {u}], since S∗ is
a minimal fvs. Call this cycle c(u), and consider one such cycle if several
exist. The cycle c(u) must intersect with S since S is an fvs. So let v be
the vertex of c(u) ∩ S closest to u on this cycle, and let v′ be the vertex of
c(u) ∩ S closest to u if we traverse the cycle in the opposite direction. Note
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that perhaps v = v′. Suppose that v ∈ Si and v′ ∈ Sj, and, without loss of
generality, i ≤ j. We then say that u ∈ S∗ ∩ F has type (i, j). In this way,
we define a type for every u ∈ S∗∩F . Note that, according to our definition,
all internal vertices of the paths in c(u) from u to v and from u to v′ belong
to F ∗ ∩ F .

According to the definition of the previous paragraph, there are
(
k
2

)
+k =

k(k + 1)/2 ≤ r possible types of vertices in S∗ ∩ F . Therefore, there must
exist a type (i, j) such that at least |S∗∩F |

r
vertices have this type. We now

concentrate on the corresponding graph Gi,j, for the type (i, j) that satisfies
this condition. Our algorithm has constructed Gi,j by deleting all vertices of
S \ (Si ∪ Sj). We will prove that this graph has a minimal feedback vertex
set of size comparable to |S∗∩F |

r
.

For the sake of the analysis, construct a minimal feedback vertex set Si,j
of Gi,j as follows: start with the fvs Si,j = S∗ ∩ (F ∪ Si ∪ Sj). Let Fi,j be
the corresponding induced forest Fi,j = F ∗ ∩ (F ∪ Si ∪ Sj). The set Si,j is
a feedback vertex set of Gi,j as it contains all vertices of S∗ found in Gi,j

and S∗ is a feasible fvs of all of G. We then make Si,j minimal by removing
vertices from it until it becomes minimal. Call the resulting set S ′i,j ⊆ Si,j
and the corresponding induced forest F ′i,j ⊇ Fi,j.

We will prove now that the number of vertices of S∗∩F of type (i, j) which
have been deleted in the process of making Si,j minimal is upper-bounded
by |Si ∪ Sj|. Consider such a vertex u ∈ (Si,j ∩ F ) \ S ′i,j of type (i, j), and
let c(u) be the cycle that defines the type of u, and v, v′ be the vertices of
Si ∪ Sj which are closest to u on the cycle in either direction. As we have
mentioned earlier, all vertices of c(u) in the paths from u to v and from u to
v′ belong to F ∗ ∩ F , and therefore to Fi,j. If u was removed as redundant,
this means that v and v′ must have been in distinct connected components at
the moment u was removed from the fvs Si,j, because since c(u) is a private
cycle of u, if u has been removed, it means that v and v’ are only connected
by a path going through u and no other vertex. However, the addition of u
to the induced forest creates a path from v to v′ in the induced forest, and
hence decreases the number of connected components containing vertices of
Si ∪ Sj. The number of such connected components cannot decrease more
than |Si ∪ Sj| times. Thus, in the process of making Si,j minimal, we have
removed at most |Si ∪ Sj| vertices of type (i, j) from Si,j ∩ F .

Using the above analysis, and the assumption that Si,j contains at least
|S∗∩F |

r
vertices of type (i, j), we have that mmfvs(Gi,j) ≥ |S ′i,j| ≥

|S∗∩F |
r
−

|Si ∪ Sj|. Now, we can assume that |S∗ ∩ S| < |S∗|
r
, because otherwise S

is already an r-approximation. So we can assume that |S∗ ∩ F | ≥ (r−1)|S∗|
r

.
Furthermore, we obtain |Si ∪ Sj| ≤ 2|S|√

r
≤ 2|S∗|

r
√
r
, where again we assume that
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S is not already an r-approximation. Putting things together, we obtain
mmfvs(Gi,j) ≥ (r−1)|S∗|

r2 − 2|S∗|
r
√
r
≥ |S∗|

r
, for r sufficiently large. Hence, since

our algorithm will return a solution that is at least as large as mmfvs(Gi,j)
3 , we

obtain an O(r)-approximation.

Now that we have presented our super-polynomial approximation algo-
rithm for Max Min Feedback Vertex Set, we will in the following
Section prove that it is asymptotically optimal under the randomized ETH.

3.6 Matching Lower Bound
In this Section, we extend Theorem 3.17 to the realm of super-polynomial
time algorithms. We recall the following result of Chalermsook et al. [CLN13]
we have presented in Section 1.5.

Theorem 3.23 (Theorem 1.2 from [CLN13]). For any ε > 0 and any suffi-
ciently large r, if there exists an r-approximation algorithm for Max Inde-
pendent Set running in time 2(n/r)1−ε, then the randomized ETH is false.

We remark that Theorem 3.23, which gives an almost tight running time
lower bound for Max Independent Set, has already been used as a start-
ing point to derive a similarly tight bound for the running time of any sub-
exponential time approximation for Max Min Vertex Cover, inapprox-
imability result due to Bonnet et al. [BLP16] that we have presented in
Section 1.5. Here, we modify the proof of Theorem 3.17 to obtain a sim-
ilarly tight result for Max Min Feedback Vertex Set. Nevertheless,
the reduction for Max Min Feedback Vertex Set is significantly more
challenging, because the ideas used in Theorem 3.17 involve an inherent
quadratic blow-up in the size of the instance. As a result, in addition to ex-
ecuting an appropriately modified version of the reduction of Theorem 3.17,
we are forced to add an extra ”sparsification” step, and use a probabilistic
analysis with Chernoff bounds to argue that this step does not destroy the
inapproximability gap, as we have described in Section 1.5.

Theorem 3.24. For any ε > 0 and any sufficiently large r, if there exists an
r-approximation algorithm for Max Min Feedback Vertex Set running
in time n(n/r3/2)1−ε, then the randomized ETH is false.

Proof. We recall some details about the reduction used to prove Theorem
3.23. The reduction of Chalermsook et al. [CLN13] begins from a 3-Sat
instance φ on n variables, and for any ε, r, constructs a graph G with n1+εr1+ε

vertices which, with high probability, satisfies the following properties: if φ
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is satisfiable, then α(G) ≥ n1+εr; otherwise α(G) ≤ n1+εr2ε. Hence, any
approximation algorithm with ratio r1−2ε for Max Independent Set would
be able to distinguish between the two cases, and thus solve the initial 3-Sat
instance. If, furthermore, this algorithm runs in time 2(|V (G)|/r)1−2ε , we get a
sub-exponential algorithm for 3-Sat.

Suppose we are given ε, r, and we want to prove the claimed lower bound
on the running time of any algorithm that r-approximates Max Min Feed-
back Vertex Set. To ease presentation, we will assume that r is the
square of an integer (this can be achieved without changing the value of r by
more than a small constant). We will also perform a reduction from 3-Sat
to show that an algorithm that achieves this ratio too rapidly would give
a sub-exponential randomized algorithm for 3-Sat. We begin by executing
the reduction of [CLN13], starting from a 3-Sat instance φ on n variables,
but adjusting their parameters r and ε appropriately so we obtain a graph
G with the following properties, with high probability:

• |V (G)| = n1+εr1/2+ε

• If φ is satisfiable, then α(G) ≥ n1+εr1/2

• If φ is not satisfiable, then α(G) ≤ n1+εr2ε

We now construct a graph G′ as follows: we keep the graph G; and
for each pair u, v ∈ V (G), we introduce an independent set Iuv of size

√
r

connected to u, v. We claim that G′ has the following properties:

• |V (G′)| = Θ(n2+2εr3/2+2ε)

• If φ is satisfiable, then mmfvs(G′) = Ω(n2+2εr3/2)

• If φ is not satisfiable, then mmfvs(G′) = O(n2+2εr1/2+4ε)

Before proceeding, let us establish the properties mentioned above. The
size of |V (G′)| is easy to bound, as for each of the

(
|V (G)|

2

)
pairs of vertices of

G we have constructed an independent set of size
√
r.

For the second property, if φ is satisfiable, we construct a minimal fvs of
G′ by starting with a minimum vertex cover of G to which we add all vertices
of all Iuv. We then make this fvs minimal, for example by removing vertices
until it becomes minimal. We have that, for each Iuv for which u, v ∈ V \C,
our set will in the end contain all of Iuv, except maybe at most one vertex.
Furthermore, if one vertex of Iuv is removed from the fvs as redundant,
this decreases the number of components of the induced forest that contain
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vertices of V , since u, v are now in the same component. This cannot happen
more than |V (G)| times. The number of Iuv with u, v ∈ V \ C is

(
α(G)

2

)
=

Ω(n2+2εr). So, mmfvs(G′) = Ω(n2+2εr3/2 − |V (G)|) = Ω(n2+2εr3/2).
For the third property, take any minimal fvs S of G′ and let F be the

corresponding forest. We have |F ∩V | ≤ 2α(G), because F is bipartite. It is
sufficient to bound |S \V | to obtain the bound, since |S∩V | is already small
enough. To do this, we note that in a set Iuv where u, v are not both in F ,
we have Iuv ∩ S = ∅, as all vertices of Iuv are redundant. So, the number of
sets Iuv which contain vertices of S is at most

(
|F∩V |

2

)
= O(n2+2εr4ε). Each

such set has size
√
r, giving the claimed bound.

We have now constructed an instance where the gap between the values
for mmfvs(G′), depending on whether φ is satisfiable, is almost r. In fact, it is
r1−4ε, but we can make it equal to r by adjusting the parameters accordingly.
The problem is that the order of the new graph depends quadratically on n.
This blow-up makes it impossible to obtain a running time lower bound, as
a fast approximation algorithm for Max Min Feedback Vertex Set,
for example with running time 2n/r2 , would not result in a sub-exponential
algorithm for 3-Sat. We therefore need to ”sparsify” our instance.

We construct a graph G′′ by taking G′ and deleting every vertex of V (G′)\
V (G) with probability n−1

n
. That is, every vertex of the independent sets Iuv

we added survives (independently) with probability 1/n. We now claim the
following properties hold with high probability:

• |V (G′′)| = Θ(n1+2εr3/2+2ε)

• If φ is satisfiable, then mmfvs(G′′) = Ω(n1+2εr3/2)

• If φ is not satisfiable, then mmfvs(G′′) = O(n1+2εr1/2+4ε)

Before we proceed, let us explain why if we establish that G′′ satisfies
these properties, then we obtain the theorem. Indeed, suppose that, for
some sufficiently large r and ε > 0, there exists an approximation algorithm
for Max Min Feedback Vertex Set with ratio r1−5ε running in time
N (N/r3/2)1−5ε for graphs with N vertices. The algorithm has sufficiently small
ratio to distinguish between the two cases in our constructed graph G′′, since
the ratio between mmfvs(G′′) when φ is satisfiable or not is Ω(r1−4ε), and
since r is sufficiently large. So we can use the approximation algorithm
to solve 3-Sat. Furthermore, to compute the running time we see that
N/r3/2 = Θ(n1+2εr2ε) = O(n1+4ε). Therefore, (N/r3/2)1−5ε = o(n) and we
get a sub-exponential time algorithm for 3-Sat. We conclude that for any
sufficiently large r and any ε > 0, no algorithm achieves ratio r1−5ε in time
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N (N/r3/2)1−5ε . By adjusting r, ε appropriately we get the statement of the
theorem.

Let us therefore try to establish that the three claimed properties all
hold with high probability. We will use the same Chernoff bound we have
presented in Sections 1.5 and 1.6: suppose X = ∑p

i=1Xi is the sum of p
independent random 0/1 variables Xi and that E[X] = ∑p

i=1E[Xi] = µ.
Then, for all 0 ≤ δ ≤ 1 we have Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

The first property is easy to establish: we define a random variable Xi for
each vertex of each Iuv of G′. This variable takes value 1 if the corresponding
vertex appears in G′′ and 0 otherwise. Let X be the sum of the Xi variables,
which corresponds to the number of such vertices appearing in G′′. Suppose
that the number of vertices in sets Iuv of G′ is cn2+2εr3/2+2ε, where c is a
constant. Then, E[X] = cn1+2εr3/2+2ε. Also, Pr[|X − E[X]| ≥ E[X]

2 ] ≤
2e−E[X]/12 = o(1). So with high probability, |V (G′′)| is of the promised
magnitude.

For the second property, we consider a maximum minimal fvs S of G′ of
size cn2+2εr3/2. Again, we define an indicator variable for each vertex of this
set in sets Iuv. The expected number of such vertices that survive in G′′ is
cn1+2εr3/2. As in the previous paragraph, with high probability the actual
number will be close to this bound. We now need to argue that almost
the same set is a minimal fvs of G′′. We start in G′′ with the surviving
vertices of S, which is clearly an fvs of G′′, and delete vertices until the
set is minimal. We claim that the size of the set will decrease by at most
|V (G)| = n1+εr1/2+ε. Indeed, if S ∩ Iuv 6= ∅, then u, v 6∈ S. The two vertices
u, v are (deterministically) included in G′′ and start out in the corresponding
induced forest. If a vertex of S ∩ Iuv is deleted as redundant, placing that
vertex in the forest will put u and v in the same component, reducing the
number of components of the forest with vertices from |V (G)|. This can
happen at most |V (G)| times. Since |V (G)| < c(n1+2εr3/2), for n and r
sufficiently large and c a constant, deleting these redundant vertices will not
change the order of magnitude of the solution.

Finally, in order to establish the third property we need to consider every
possible minimal fvs of G′′ and show that none of them end up being too
large. Consider a set F ⊆ V (G) that induces a forest in G. Our goal is
to prove that any minimal fvs S of G′′ that satisfies V (G) \ S = F has a
probability of being ”too large” (that is, violating our claimed bound) much
smaller than 2−|V (G)|. If we achieve this, then we can take a union bound
over all sets F and conclude that with high probability no minimal fvs of G′′
is too large.

Suppose then that we have fixed an acyclic set F ⊆ V (G). We have
|F | ≤ 2α(G) ≤ 2n1+εr2ε. Any minimal fvs with V (G) \ S = F can only
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contain vertices from a set Iuv if u, v ∈ F . The total number of such vertices
in G′ is at most O(n2+2εr1/2+4ε). The expected number of such vertices that
survive in G′′ is, for some constant c, at most µ = cn1+2εr1/2+4ε. Now, using
the Chernoff bound cited above we have Pr[|X−µ| ≥ µ

2 ] ≤ 2e−µ/12. We claim
2e−µ/12 = o(2−|V (G)|). Indeed, this follows because |V (G)| = n1+εr1/2+ε =
o(µ). As a result, the probability that a large minimal fvs exists for a fixed
set F ⊆ V (G) is low enough that taking the union bound over all possible
sets F we have that with high probability, that is with probability o(1), that
no minimal fvs exists with value higher than 3µ/2, which establishes the
third property.

With the two Theorems 3.22 and 3.24, we have completely settled the
super-polynomial approximation of Max Min Feedback Vertex Set.



Chapter 4

Upper Dominating Set

In a graph G(V,E) with |V | = n, a set D ⊆ V is called a dominating set
if all vertices of V are dominated by D, that is for every u ∈ V either u
belongs to D or u is a neighbor of some vertex in D. The well-known Min
Dominating Set problem is studied with a minimization objective: given
a graph, we are interested in finding the smallest dominating set. In this
chapter, we consider upper dominating sets, that is dominating sets that are
minimal, where a dominating set D is minimal if no proper subset of it is
a dominating set, that is if it does not contain any redundant vertex. We
study the problem of finding an upper dominating set of maximum size. This
problem is called Upper Dominating Set, and is the Max-Min version of
the Min Dominating Set problem. Since it is the Max-Min version of
Min Dominating Set, its private structure is mandatory, and, in contrary
to Max Min Feedback Vertex Set, this structure is rather surprising.
Indeed, for a dominating set to be minimal, each vertex u in the solution
must have a private vertex associated to it, but this vertex can either be a
neighbor of u or u itself.

Studying Max-Min and Min-Max versions of some famous optimization
problems is not a new idea, and it has recently attracted some interest in the
literature: see the beginning of Chapter 3 for references on the most well-
studied Max-Min and Min-Max problems. The Upper Dominating Set
problem can be seen as a member of this framework, and studying it within
this framework is one of our motivations.

This problem is also one of the six problems of the well-known domination
chain (see [HHS98,BBCF19]) and is somewhat one which has fewer results,
compared to the famous Min Dominating Set and Max Independent
Set problems. Increasing our understanding of the Upper Dominating
Set problem compared to these two famous problems is another motivation.

Upper Dominating Set was first considered from an algorithmic point

102
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of view by Cheston et al. [CFHJ90], where they showed that the problem
is NP-hard. In the more extensive paper considering this problem, Bazgan
et al. [BBC+18a] studied approximability, and classical and parameterized
complexity of the Upper Dominating Set problem. In the polynomial
approximation paradigm, they proved that the problem does not admit an
n1−ε-approximation for any ε > 0, unless P = NP, making the problem
as hard as Max Independent Set, whereas there exists a greedy lnn-
approximation algorithm for the Min version Min Dominating Set.

Considering the parameterized complexity, they proved that the problem
is as hard as the Independent Set problem: Upper Dominating Set
is W[1]-hard parameterized by the standard parameter k. Nonetheless, in
their reduction, there is an inherent quadratic blow-up in the size of the
solution k, so they essentially proved that there is no algorithm solving Up-
per Dominating Set in time O(no(

√
k)). In the next section, we improve

this FPT intractability by proving that Upper Dominating Set cannot
be solved in time O(no(k)) under the ETH, by making a linear fpt reduction
from Independent Set to Upper Dominating Set and using the FPT
intractability result of the former problem we have presented in Section 1.4.
We mention that more recently, and independently from our work, this result
was also obtained by Araujo et al. [ABCS21]. In the same section, we give
an FPT inappproximability result for Upper Dominating Set: with the
same reduction, we prove that, under the ETH, for any ε > 0 and any con-
stant r > 0, there is no r-approximation algorithm for Upper Dominating
Set running in time O(nk1−ε), using the same inapproximability result for
Independent Set due to Bonnet et al. [BEKP13] we have presented in
Section 1.5.

Bazgan et al. [BBC+18a] also gave FPT algorithms parameterized by the
pathwidth pw and the treewidth tw of the graph, running in time O∗(7pw)
and O∗(10tw), respectively. In Section 4.2, we improve the FPT algorithm
parameterized by the pathwidth by giving a O∗(6pw) algorithm. Surprisingly,
this result is obtained by slightly modifying the algorithm of Bazgan et al.
[BBC+18a]. Then, in Section 4.3, we give a tight lower bound: under the
SETH, and for any ε > 0, there is no algorithm solving Upper Dominating
Set in time O∗((6−ε)pw), by making a reduction from the q-CSP-6 problem,
as we have presented in the Introduction and similarly to what we have done
for Min Mixed Dominating Set in Section 2.4.

Concerning the super-polynomial approximation of Upper Dominat-
ing Set, no result is currently known to the best of our knowledge. We
thus have studied this framework for this problem, and in Section 4.4 we
give an r-approximation algorithm for any r ≤ n running in time nO(n/r),
thus matching the best trivial n-approximation algorithm. To obtain this al-
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gorithm, we use the divide-and-conquer method, where in each subgraph we
consider all independent sets, similarly to the super-polynomial approxima-
tion algorithm for Max Min Vertex Cover we have presented in Section
1.5, before we extend these independent sets to upper dominating sets of the
whole graph. We also need to consider all subsets of such subgraphs in order
to prove the claimed approximation ratio. Finally, we present in Section 4.5
a matching lower bound: for any ε > 0 and any sufficiently large r, there
is no r-approximation algorithm for Upper Dominating Set running in
time n(n/r)1−ε under the randomized ETH. To derive this super-polynomial
inapproximability result, and similarly to what we have done for Max Min
Feedback Vertex Set in Section 3.6, we make a reduction from Max
Independent Set and use the inapproximability result of Chalermsook et
al. [CLN13] for this problem along with some Chernoff bounds.

4.1 FPT and FPT-Approximation Hardness
In this section, we present two hardness results for the Upper Dominat-
ing Set problem in the parameterized paradigm: we prove first that the
considered problem is W[1]-hard, and more precisely that there is no FPT
algorithm solving the Upper Dominating Set problem in time O(no(k))
under the ETH; and we prove then that for any approximation ratio 0 < r < 1
and any ε > 0, there is no FPT algorithm giving an r-approximation for the
Upper Dominating Set problem in time O(nk1−ε), again under the ETH.

In their extensive paper on the Upper Dominating Set problem, Baz-
gan et al. [BBC+18a] proved that the problem is as hard as the Independent
Set problem: Upper Dominating Set isW[1]-hard parameterized by the
standard parameter k. Nonetheless, in their reduction, from the Multicol-
ored Clique problem to Upper Dominating Set, there is an inherent
quadratic blow-up in the size of the solution k, so they essentially proved that
there is no algorithm solving Upper Dominating Set in time O(no(

√
k)). In

this section, we present an improved hardness result for the Upper Dom-
inating Set problem in the parameterized paradigm: we prove that the
considered problem cannot be solved in time O(no(k)) under the ETH.

To obtain our desired negative results, we will make a reduction from
the Independent Set problem to our problem. So recall that we have the
following hardness result for the Independent Set problem that we have
mentioned in Section 1.4 :

Lemma 4.1 (Theorem 5.5 from [CHKX06]). Under the ETH, Indepen-
dent Set cannot be solved in time O(no(k)).
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We will obtain a similar result for the Upper Dominating Set by doing
a linear fpt reduction from Independent Set. This reduction will linearly
increase the size of the solutions between the two problems, so this hardness
result for the latter problem will hold for the former problem.

Before we proceed further in the description of our reduction, note that
we will use the variant of the Independent Set problem due to the inap-
proximability result of Bonnet et al. [BEKP13] we presented in Section 1.5.
In this variant, the graph G contains k cliques which are connected to each
other, and, if a solution of size k exists, then this solution takes exactly one
vertex per clique. Note that Lemma 4.1 holds on such particular instances,
since this is a case where the problem remains hard to solve in FPT time.

Let us now present our reduction. We are given a Independent Set
instanceG where the vertices are partitioned into k distinct cliques V1, . . . , Vk.
We define A = 3 and we set our budget to be k′ = Ak. We construct our
instance G′ of Upper Dominating Set as follows (see Figure 4.1):

1. For any vertex u ∈ V (G), create an independent set Zu of size A.

2. For any edge (u, v) ∈ E(G), add all edges between the vertices of Zu
and the vertices of Zv.

3. For any i ∈ {1, . . . , n}, let Wi be the group associated to the clique
Vi, which contains all vertices of all independent sets Zu such that the
vertex u belongs to the clique Vi. For any i ∈ {1, . . . , k}, create a vertex
zi connected to all vertices of the group Wi.

V1

u

Vi Vk

GG → G′G′

W1

z1

Zu

Wi

zi

Wk

zk

Figure 4.1: (Double edges between two sets of vertices represent all edges
between the two sets.) Reduction from an instance G of Independent Set
to the instance G′ of Upper Dominating Set. Here, the reduction is for
A = 3. Only 3 cliques Vi are drawn (V1, Vi and Vk), and only the A vertices
of the independent sets Zu of the group W1 are shown.
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Now that we have presented our reduction, we argue that it is correct.
Recall that the target size of an optimal solution in G′ is k′ as defined above.
We will first prove that, given an independent set I of size at least k in G,
we can construct an upper dominating set of size at least Ak in G′ by taking
the A vertices of the independent set Zu for any vertex u ∈ I. Note that in
our reduction, we can say that we use only one part of the mandatory private
structure of the Upper Dominating Set problem. Indeed, we construct
an upper dominating set which is also an independent dominating set, that
is we use the fact that the private vertex of every taken vertex u is itself.

Lemma 4.2. If G has an independent set of size at least k, then G′ has an
upper dominating set of size at least k′.

Proof. Assume G admits an independent set I of size at least k. We construct
an upper dominating set D of size at least k′ in G′ as follows: for any vertex
u ∈ V (G)∩ I, put the A vertices of the corresponding independent set Zu in
D.

Clearly, the size of D is at least k′ = Ak since I is of size at least k and
every independent set Zu is of size A.

Consider any i ∈ {1, . . . , k}, and observe that I ∩ Vi ≤ 1 since Vi is a
clique. But there is k such cliques Vi and |I| ≥ k, so necessarily |I| = k and
|I ∩ Vi| = 1 for all i ∈ {1, . . . , k}.

Consider again any i ∈ {1, . . . , k} and the corresponding vertex u which
belongs to I∩Vi. The vertices of the independent set Zu have been put in D.
By the construction, the vertices of Zu are connected to all remaining vertices
of Wi and to the vertex zi. So the vertices of Wi ∪ {zi} are dominated. This
is true for all i ∈ {1, . . . , k}, so the graph G′ is dominated by D.

Moreover, since I is an independent set, and by the construction, it follows
that, for any two vertices u, u′ ∈ I, there is no edge between the vertices of
Zu and the vertices of Zu′ . And, since the sets Zu are independent sets, it
follows that D is an independent set of G′, which means that all vertices of
D are their own private vertices.

We can now prove the other direction of the reduction. The idea of the
proof is the following: if an upper dominating set in G′ of size at least k′ has
not the form described in Lemma 4.2, then it cannot have size at least k′,
enabling us to construct an independent set of size at least k in G from an
upper dominating set which has the desired form.

Lemma 4.3. If G′ has an upper dominating set of size at least k′, then G
has an independent set of size at least k.
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Proof. Assume G′ admits an upper dominating set D of size at least k′. For
any i ∈ {1, . . . , k}, we give the following notations:

• If there exists at least three vertices u1, u2, u3 in Vi such that Zuj∩D 6= ∅
for all j ∈ {1, 2, 3}, then we call the group Wi very bad.

• If there exists exactly two vertices u and u′ in Vi such that Zu ∩D 6= ∅
and Zu′ ∩D 6= ∅, then we call the group Wi bad.

• Otherwise, that is if there exists at most one vertex u ∈ Vi such that
Zu ∩D 6= ∅, then Wi is called good.

Our proof will therefore be to consider that there is some bad and very
bad groups in G′ and we will arrive at a contradiction on the size of D, which
will prove that the solution D as the form described in Lemma 4.2.

So suppose there exists a bad or very bad group Wi. Suppose first that
there exists u ∈ Vi such that |Zu ∩ D| ≥ 2. Observe that the vertices of
Zu which belong to D have the same neighborhood (since they are in the
same independent set Zu), and observe that there exists at least one vertex
u′ ∈ Vi \ {u} with Zu′ ∩D 6= ∅ (since Wi is bad or very bad). So the vertices
of Zu which belong to D are dominated and share the same neighborhood,
which contradicts the fact that D is an upper dominating set. So, for a
bad or very bad group Wi and any u ∈ Vi such that Zu ∩ D 6= ∅, we have
|Zu ∩D| = 1.

Consider now a bad group Wi and the two vertices u, u′ ∈ Vi such that
Zu ∩ D 6= ∅ and Zu′ ∩ D 6= ∅. Let v = Zu ∩ D and v′ = Zu′ ∩ D. The
two vertices v and v′ dominate each other since they belong to two distinct
independent set Zu and Zu′ in the group Wi. Observe now that zi cannot be
in D because otherwise it is dominated and have no private neighbor (since
all vertices of Wi are dominated by v or v′). Moreover, since Wi is a bad
group and |Zu ∩D| = 1 and |Zu′ ∩D| = 1, we have |(Wi ∪ {zi}) ∩D| = 2.

Consider now a very bad group Wi and three vertices u1, u2, u3 in Vi such
that Zuj∩D 6= ∅ for all j ∈ {1, 2, 3}. Let vj = Zuj∩D (since |Zuj∩D| = 1) for
every j ∈ {1, 2, 3}. Consider now any j ∈ {1, 2, 3}. Observe that Wi∪{zi} is
dominated by the two vertices vj′ and vj′′ , for j′, j′′ ∈ {1, 2, 3} and j′, j′′ 6= j.
Indeed, (Wi ∪ {zi}) \ Zuj′ is dominated by vj′ and Zuj′ is dominated by vj′′ .
Since vj is dominated by both vj′ and vj′′ , it follows that vj necessarily have
a private neighbor outside Wi ∪ {zi}. It is true for any vertex u ∈ Vi such
that |Zu ∩D| 6= ∅.

Now consider such a vertex v ∈ {v1, v2, v3} and his private neighbor w,
which let us say is in Wi′ , for i′ ∈ {1, . . . , k} \ {i}, and in Zuw , for uw ∈ Vi′ .
Since w is a private neighbor of v, it follows that, for any u′ ∈ Vi′ \ {uw}, no
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vertex of Zu′ is in D, because otherwise w would not be a private neighbor
of v. Moreover, the vertex zi′ cannot be in D by the same argument. So,
necessarily, the group Wi′ is a good group.

Now suppose that there exists at least two vertices w1, w2 ∈ (Zuw \{w})∩
D. Observe that both w1 and w2 are dominated by v, since there is all edges
between the vertices of Zu (where v belongs) and the vertices of Zuw . But
w1 and w2 have the same neighborhood, which contradicts the fact that D
is an upper dominating set. So |Zuw ∩D| ≤ 1.

Consider any i ∈ {1, . . . , k} and observe that the vertex zi has to be
dominated, and its neighborhood is the group Wi, so |(Wi ∪ {zi}) ∩D| ≥ 1.

Now reconsider the vertex v. Since Wi′ is a good group, since zi does not
belong to D, and since |Zuw ∩D| ≤ 1, we obtain |Zuw ∩D| = 1.

Now consider two vertices v and v′ belonging to D and which are in
the same very bad group or in two distinct very bad groups, and consider
their corresponding private neighbors w and w′. Clearly, w and w′ do not
belong to the same independent set Zuw , since v dominates all vertices of
this independent set. Moreover, since |Zuw ∩D| = 1 for the independent set
Zuw which contains the vertex w, the two vertices w and w′ cannot belong
to the same good group since the vertex in Zuw ∩D dominates all remaining
vertices of Wi′ ∪ {zi′}. So, for any two such vertices v and v′ belonging to D
(whether they are in the same very bad group or not), their corresponding
private neighbors are in distinct good groups.

But, since in these good groups (which contain a private neighbor w) we
have |Wi′ ∩ D| = 1, we have the following: for any vertex v ∈ D which
belongs to a very bad group, there exists at least one distinct good group
Wi′ where a single vertex is in D.

Now, let b be the number of bad groups and B be the number of vertices
in the very bad groups.

Observe now that, in a good group Wi which does not contain a private
neighbor w of a vertex v belonging to a very bad group, we have that at most
A vertices of Wi ∪ {zi} are in D: since Wi is a good group, there exists at
most one vertex u ∈ Vi such that Zu ∩ D 6= ∅, and if the A vertices of Zu
are in D, then the vertex zi cannot be in D since it is dominated and all its
neighbors are either in D or are dominated.

So the total number of vertices in D is upper-bounded by 2b+2B+A(k−
b − B) = Ak + b(2 − A) + B(2 − A). Indeed, we have the following: in a
bad group, exactly two vertices are in D and they can have their private
neighbors in the group; for every vertex in D in a very bad group, it has
one private neighbor outside the group in a good group and a single vertex
is taken in D in the corresponding good group; it remains k − b − B good
groups in which at most A vertices are in D, since there are b bad groups,
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and since the private neighbor of each vertex in a very bad group is in a
distinct good group where exactly one vertex is in D.

But, since A = 3 > 2, the set D has at least k′ = Ak vertices if and only
if b = B = 0. So there exists no bad or very bad group in G′ associated to
D.

Since there is at most A vertices in D for a single good group, since there
is k such groups, and since |D| ≥ Ak, it follows that |Wi ∩ D| = A for all
i ∈ {1, . . . , k}.

We now construct a solution I of the instance G in a natural way: for
any i ∈ {1, . . . , k}, there exists a unique u ∈ Vi such that Wi ∩ D = Zu, so
take u in the solution I.

For any u ∈ I, since Zu ⊆ D and since all vertices of Zu have the same
neighborhood, it follows that the vertices of Zu are their own private vertices.
So, for any two u, u′ ∈ I, there is no edge between the two independent sets
Zu and Zu′ . So, by the construction, the set I is an independent set in G, of
size at least k.

Now that we have proved the correctness of our reduction and since the
blow-up of the reduction is linear in both the size of the instance and the size
of the solution, we can now present one of the main result of this section:

Theorem 4.4. Under the ETH, Upper Dominating Set cannot be solved
in time O(no(k)).

Proof. Consider an instance (G, k) of Independent Set. Apply our reduc-
tion to obtain an instance (G′, k′) of Upper Dominating Set. Thanks to
Lemmas 4.2 and 4.3, we know that G has an independent set of size at least
k if and only if G′ has an upper dominating set of size at least k′ = Ak.

Now suppose that there exists an algorithm that solves Upper Domi-
nating Set in time O(no(k′)). With this algorithm and our reduction, we
can solve Independent Set in time O(no(k′)), where k′ = Ak = O(k), so
the total running time of this procedure is O(no(k)), contradicting Lemma
4.1 and the ETH.

Thus, we cannot hope for an algorithm of complexity better than O(nk)
for the Upper Dominating Set problem assuming the ETH.

We have shown that the problem Upper Dominating Set cannot be
solved in time O(no(k)) under the ETH. Thus, a natural question is to de-
termine if the problem admits an FPT-approximation algorithm with this
complexity. We answer negatively to this question and prove the following:
under the ETH, there is no r-approximation running in time O(nk1−ε) for
Upper Dominating Set for any constant ratio r > 0 and any ε > 0.
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To obtain this hardness result, we will slightly modify the reduction from
the Independent Set problem to our problem. So recall that we have the
following hardness result for the Independent Set problem that we have
presented in Section 1.5:

Lemma 4.5 (Corollary 2 from [BEKP13]). Under the ETH, for any constant
r > 0 and any ε > 0, there is no r-approximation algorithm for Indepen-
dent Set running in time O(nk1−ε).

Let us redefine the gap-preserving reduction from Independent Set to
Upper Dominating Set. We will reuse the variant of the Independent
Set problem: in this variant, the graph G contains k cliques which are
connected to each other, and if a solution of size k exists, then this solution
takes exactly one vertex per clique. Note that this variant corresponds to
the instance of Independent Set Bonnet et al. [BEKP13] obtained for the
inapproximability of Independent Set of the previous lemma.

From now one and to obtain the FPT-approximation hardness result, we
now consider our reduction above with A being sufficiently large. Note that
all the properties we have found before still hold since A remains a constant.

Let 0 < r < 1. To obtain the FPT-approximation hardness result for the
Independent Set problem (see Lemma 4.5), Bonnet et al. [BEKP13] made
a gap-amplification reduction from an instance φ of 3-Sat to an instance
(G, k) of Independent Set problem. Essentially, this reduction gives the
following gap:

• Yes-instance: If φ is satisfiable, then α(G) = k.

• No-instance: If φ is not satisfiable, then α(G) ≤ rk.

In this gap, recall that α(G) is the size of a maximum independent set in
G, and k corresponds in fact to a value which depends on the reduction, but
designating it by k ease our purpose.

To obtain a similar result for the Upper Dominating Set problem,
and by using our reduction above, we have to prove that our reduction keep
a gap of value r. Thus, we need to prove the following:

• Yes-instance: If φ is satisfiable, then α(G) = k and Γ(G′) = Ak.

• No-instance: If φ is satisfiable, then α(G) ≤ rk and Γ(G′) ≤ rAk.

Here, Γ(G′) is the size of a maximum upper dominating set in G′.
Note that we have proved the first condition in Lemma 4.2, since an

independent set of size at least k in G necessarily has size exactly k and
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since all the properties we have found before in Lemmas 4.2 and 4.3 still
hold because A remains a constant.

Thus, we just need to prove the second condition. To prove it, we will in
fact prove the contraposition. The proof of this lemma uses some arguments
made in the proof of Lemma 4.3, and by choosing carefully which vertices
we can put in the independent set we want to construct.

Lemma 4.6. If there exists an upper dominating set in G′ of size > rAk,
then there exists an independent set in G of size > rk.

Proof. Assume G′ admits an upper dominating set D of size > rAk. We
will use some properties we have proven in Lemma 4.3. Recall that, for any
i ∈ {1, . . . , k}, we make the difference whether the group Wi is bad, very
bad, or good. Now consider a bad group Wi and recall that |Wi ∩ D| = 2
and that there exists two vertices u, u′ ∈ Vi such that Zu ∩ D = {v} and
Zu′ ∩D = {v′}. For a bad group, we will distinguish between three different
types of group:

• For any j ∈ {0, 1, 2}, we say that the group Wi is bad of type j if
there exists exactly j vertices among v and v′ which have their private
neighbor outside of Wi ∪ {zi}.

Now, given our upper dominating set D, we construct an independent set
I of G as follows:

• For a bad group Wi of type 0, recall that there exists exactly two
vertices u, u′ ∈ Vi such that |Zu ∩D| = 1 and |Zu′ ∩D| = 1. Put in the
solution either u or u′.

• For a bad group Wi of type 1, and without loss of generality, let u ∈ Vi
be such that v = Zu ∩ D is the unique vertex of Wi which have its
private neighbor outside of Wi∪{zi}. Let w be the private neighbor of
v, and let uw be the vertex of V (G) for which w ∈ Zuw . Put the vertex
uw in the solution.

• For a bad group Wi of type 2, let u, u′ ∈ Vi be the two vertices such
that Zu ∩D 6= ∅ and Zu′ ∩D 6= ∅. Let v = Zu ∩D and v′ = Zu′ ∩D,
let w and w′ be the private neighbors of v and v′, respectively, and let
uw and uw′ be the vertices of V (G) for which w ∈ Zuw and w′ ∈ Zuw′ ,
respectively. Put the vertices uw and uw′ in the solution.

• For a very bad group Wi, let v be any vertex in Wi ∩D. Let w be the
private neighbor of v and let u be the vertex of V (G) for which w ∈ Zu.
Put u in the solution. Do this for all the vertices v ∈ Wi ∩D.
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• For a good group Wi, let u ∈ Vi such that Zu ∩D 6= ∅. If |Zu ∩D| ≥ 2,
then put u in the solution.

We will prove first that the solution I we have constructed is an indepen-
dent set of V (G).

Consider a bad group Wi of type 0, and let v = Zu ∩D and v′ = Zu′ ∩D.
SinceWi is of type 0, it means that the private neighbor of v is in Zu′ and the
private neighbor of v′ is in Zu, since (Wi ∪ {zi}) \ (Zu ∪ Zu′) are dominated
by both v and v′. It means that the vertices of Zu are only dominated by v′
and the vertices of Zu′ are only dominated by v. So, since we put either u or
u′ in the solution, the vertex selected in I has no neighbor in I.

Consider now a bad groupWi of type 1. Since w is the private neighbor of
v, it means that the vertices of Zuw are only dominated by v. So the selected
vertex uw has no neighbor in I.

Consider now a bad group Wi of type 2. By a similar argument as for a
bad group of type 1, the vertices of Zuw are only dominated by v, and the
vertices of Zuw′ are only dominated by v′. So, the two selected vertices uw
and uw′ have no neighbor in I.

Consider now a very bad group Wi. We have proven in Lemma 4.3 that,
for any vertex v ∈ Wi ∩D, it has a private neighbor outside Wi ∪ {zi} in an
independent set Zu. So the vertices of Zu are only dominated by the vertex
v. So the selected vertex u has no neighbor in I. This is true for all vertices
v ∈ Wi ∩D.

Consider now a good group Wi. Since Wi is a good group, there exists
at most one u ∈ Vi such that Zu ∩D 6= ∅. If |Zu ∩D| ≥ 2, then the vertices
of Zu in D are their own private vertices. So the selected vertex u has no
neighbor in I.

So the solution I we have constructed is an independent set in G.
We will now show that |I| > rk.
First, consider a vertex u ∈ Vi such thatWi is bad of type 1 or 2, Zu∩D =

{v}, and the private neighbor of v is outsideWi∪{zi}. By the same arguments
as for the very bad groups in Lemma 4.3, we have that the private neighbor
w of v is in a good groupWi′ and in a set Zu′ such that |(Wi′∪{zi′})∩D| = 1
and this unique vertex must be in Zu′ .

Now, we give the following notations: let bj be the number of bad groups
of type j, for j ∈ {0, 1, 2}; let B be the number of vertices in all the very
bad groups; let B′ be the number of very bad groups; let F be the number of
good groups which have at least two vertices in D; and let f be the number
of good groups which have at most one vertex in D and which do not contain
private neighbors of vertices in the bad and very bad groups.
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We have |I| ≥ (b0 + b1 + 2b2) + B + F . This is easy to see from how we
constructed I.

Recall that there exists exactly k groups Wi. We have the following:
F ≥ k − ((b0 + 2b1 + 3b2) + (B + B′) + f). Indeed, from k groups Wi, we
subtract the following: the b0 bad groups of type 0; the b1 bad groups of
type 1 and the corresponding good groups (there is one such good group for
each bad group of type 1); the b2 bad groups of type 2 and the corresponding
good groups (there is two such good groups for each bad group of type 2);
the B good groups which contain the private neighbors of the vertices of the
very bad groups; the B′ very bad groups; and the f remaining good groups.

From these two inequalities, we obtain the following: |I| ≥ k − ((b1 +
b2) +B′ + f).

Now, we will upper-bound the size of D to upper-bound B′. Recall that
for a good group counted in F , there are at most A vertices which can be in
D. We have: |D| ≤ (2b0 + 3b1 + 4b2) + 2B + f + AF . To see this, make the
following observations: two vertices are taken for each bad group of type 0;
two vertices and a single vertex from a good group are taken for each bad
group of type 1; two vertices and a single vertex from two good groups are
taken for each bag group of type 2; B vertices and a single vertex from B
good groups are taken for the very bad groups; at most A vertices are taken
for the good groups with |Wi ∩D| ≥ 2 ; and at most one vertex is taken for
each remaining good group.

But D is of size > rAk, so we obtain:

Ak+ b0(2−A) + b1(3−2A) + b2(4−3A) +B(2−A)−AB′+ f(1−A) > rAk

Which is equivalent to:

B′ < b0(2/A−1)+b1(3/A−2)+b2(4/A−3)+B(2/A−1)+f(1/A−1)−(r−1)k

For A sufficiently large, we obtain: B′ < −b1 − b2 − f − (r − 1)k
With this inequality and the one on the size of I, we obtain:

|I| > k − ((b1 + b2) + f) + (b1 + b2 + f + (r − 1)k) = k + (r − 1)k = rk

So we have constructed an independent set I of G of size > rk.

Now that we have proved the correctness of our gap-preserving reduction,
we can present the main result of this section:

Theorem 4.7. Under the ETH, for any constant r > 0 and any ε > 0, there
is no r-approximation algorithm for Upper Dominating Set running in
time O(nk1−ε).
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Proof. Fix 0 < r < 1 and ε > 0. Consider an instance φ of 3-Sat. Apply
the reduction of Bonnet et al. [BEKP13] to obtain an instance (G, k) of
Independent Set, and then apply our reduction to obtain an instance
(G′, k′) of Upper Dominating Set. Thanks to Lemmas 4.2 and 4.6, and
to the gap-amplification reduction of Bonnet et al. [BEKP13] (see Lemma
4.5), we know the following:

• Yes-instance: If φ is satisfiable, then α(G) = k and thus Γ(G′) = Ak.

• No-instance: If φ is not satisfiable, then α(G) ≤ rk and thus Γ(G′) ≤
rAk.

Now suppose there exists an algorithm that outputs an r-approximation
for Upper Dominating Set in time O(nk1−ε). With this algorithm and our
reduction, we can obtain an r-approximation for Independent Set, and
thus determine if φ is satisfiable or not in time O(nk1−ε). But, by Lemma
4.5, this would contradict ETH.

By this theorem, we cannot hope under the ETH for an FPT-approxima-
tion algorithm with constant ratio running in time O(nk1−ε). In the next
Section, we present an improved FPT algorithm parameterized by the path-
width for Upper Dominating Set.

4.2 Improved Pathwidth Algorithm
In this Section, we prove that, given a graph G = (V,E) and a path decom-
position (T, {Xt}t∈V (T )) of width pw, there exists a dynamic programming
algorithm that solves Upper Dominating Set problem in time O(6pw ·pw).

We now suppose that we are given a path decomposition (T, {Xt}t∈V (T ))
of the given graph G = (V,E). Recall, as we have presented in Section
1.4, that in such a path decomposition, we have three types of bag: the
Initialization bags, the Forget bags, and the Introduce bags. We can assume
that we are given a nice path decomposition, where a vertex is introduced
only once, and forgotten only once also. So we only need to describe the
Initialization, Forget and Introduce nodes.

Our algorithm essentially works as the O∗(7pw) algorithm of Bazgan et
al. [BBC+18a], but we are more careful in the Introduce bags, which enables
us to get the desired complexity.

We will now present how our dynamic programming works for each type
of bag. To do so, we first distinguish between six different colors for each
vertex. We define a coloring of a bag Xt to be a mapping f : Xt →
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{I, F, F ∗, O∗, O, P} assigning six different colors to the vertices of the bag
Xt. These six colors are defined below, and directly come from the private
structure of Upper Dominating Set, i.e. the fact the every vertex u in
the solution either has a private neighbor, or is its own private vertex.

• I: the set of vertices which are in the dominating set and which forms
an independent set, i.e. the vertices of the solution which are their own
private vertices.

• F : the set of vertices which are in the dominating set and which are
already matched to a private neighbor.

• F ∗: the set of vertices which are in the dominating set and which have
no private neighbor yet.

• O∗: the set of vertices which are not in the dominating set and which
are not dominated yet.

• O: the set of vertices which are not in the dominating set, which are
dominated, but which are not private neighbors of vertices of the solu-
tion.

• P : the set of vertices which are not in the dominating set, which are
dominated, and which are private neighbors of some vertex of the so-
lution.

Note that, since f−1(I)∪ f−1(F )∪ f−1(F ∗)∪ f−1(O∗)∪ f−1(O)∪ f−1(P )
is a partition of Xt, there are 6|Xt| colorings of Xt. These colorings form
the space of states of the node Xt, and we will use this fact to improve the
algorithm of Bazgan et al. [BBC+18a] from O∗(7pw) to O(6pw · pw).

For a bag Xt, we denote by c[t, f ] the maximum size of an upper domi-
nating set D ⊆ Vt (where Vt denotes the set of vertices belonging to any bag
Xt of the subtree Tt rooted at the node t), such that:

• f−1(I) ∪ f−1(F ) ∪ f−1(F ∗) = D ∩Xt;

• f−1(O) ∪ f−1(P ) is dominated by D.

We call such a set D a maximum compatible set for t and f . If no maxi-
mum compatible set for t and f exists, then we put c[t, f ] = −∞.

Let us now define some useful notations. For a subset X ⊆ V , con-
sider a coloring f : X → {I, F, F ∗, O∗, O, P}. For a vertex v ∈ V , and a
color α ∈ {I, F, F ∗, O∗, O, P}, we define a new coloring fv→α : X ∪ {v} →
{I, F, F ∗, O∗, O, P} as follows:
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fv→α(x) =
f(x) if x 6= v

α if x = v

We now proceed to present the recursive formulas for the values of c.
Initialization node. For a node Xt = {v} which initializes the table, we

make the following observations: the vertex v cannot be in F since it cannot
have a private neighbor; it cannot be neither in O nor in P since it cannot
be dominated; and for the three other cases (for I, F ∗ and O∗), we just have
to give the size of the corresponding solution. We obtain:

c[t, f ] =


1 if v ∈ I ∪ F ∗

0 if v ∈ O∗

−∞ otherwise

Forget node. Let t be a forget node with a unique child t′ such that
Xt = Xt′ \ {v} for some v ∈ Xt′ . We make the following observations: the
vertex v cannot be forgotten if it belongs to F ∗ since it contradicts the fact
that the solution is minimal; v cannot be forgotten if it belongs to O∗ since
in this case it remains not dominated; the four other cases are valid and we
just need to take the maximum value between these four cases. We obtain:

c[t, f ] = max{c[t′, fv→I ], c[t′, fv→F ], c[t′, fv→O], c[t′, fv→P ]}
Note that for these Initialization and Forget nodes, since in the worst

case we go through all possible colorings of the bag Xt, the running-time for
these two types of bags is O(6pw).

Introduce node. Let t be an introduce node with a unique child t′ such
that Xt = Xt′ ∪ {v} for some v /∈ Xt′ . Here, instead of going through all
possible colorings of the bag t and considering every subset of the neighbor-
hood of v to put in O∗, as Bazgan et al. did [BBC+18a], we go through
all possible colorings of the bag t′ and update the value of c[t, f ] depending
on the corresponding coloring and any color affected to v. This enables us
to lower the complexity to O(6pw · pw) since we don’t need anymore to go
through every subset of the neighborhood of v. First, we affect the value
−∞ to c[t, f ] for every coloring f of the bag t. Then, for every coloring
f : Xt′ → {I, F, F ∗, O∗, O, P} and any color α : {v} → {I, F, F ∗, O∗, O, P},
we will define a new coloring fnew which corresponds to the coloring f of the
vertices of Xt′ plus the coloring α of v, and an associated value knew which
will be the size of the corresponding upper dominating set. To get the final
value c[t, fnew] for the bag t, we just update it by knew if c[t, fnew] < knew for
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the new coloring fnew, so at the end each entry of the table of t will have the
maximum size for the corresponding coloring fnew. Now, for each coloring f
of the bag t′ and each color α ∈ {I, F, F ∗, O∗, O, P} of the vertex v, we have
the following cases:

• If α = I and N(v) ∩ (f−1(I) ∩ f−1(F ) ∩ f−1(F ∗) ∩ f−1(P )) = ∅, then:

fnew(u) =
O if f(u) = O∗ and (u, v) ∈ E
f(u) otherwise

For v to be in I, we need that all its neighbors are either in O or in O∗.
Then, if this condition is satisfied, we can give the color O to all neighbors
of v which are not dominated in the bag t′ since they become dominated in
the new bag.

• If α = F and N(v)∩ (f−1(I)∪ f−1(P )) = ∅ and ∃w ∈ N(v)∩ f−1(O∗),
then:

fnew(u) =


P if u = w

O if f(u) = O∗ and u 6= w and (u, v) ∈ E
f(u) otherwise

For v to be in F , note that its neighbors cannot be in I or in P , because
otherwise its neighbors in I are dominated and its neighbors in P cannot be
private neighbors of other vertices of F anymore. Note also that at least one
neighbor of v has to be in O∗ in the bag t′ in order to become the private
neighbor of v. Moreover, v belongs to F if at least one of its neighbors
belongs to P in the new coloring, so we can take any neighbor of v which is
not dominated in t′ and put it in P in the new coloring, since it is enough
to have just one neighbor of v being its private neighbor. For the other
neighbors of v which are not dominated in t′, we can give them the color O
since they become dominated. Finally, all other vertices keep the same color
from the coloring f .

• If α = F ∗ and N(v) ∩ (f−1(I) ∪ f−1(P )) = ∅, then:

fnew(u) =
O if f(u) = O∗ and (u, v) ∈ E
f(u) otherwise

For v to be in F ∗, we need that its neighbors are neither in I nor in
P , because otherwise its neighbors in I are dominated and its neighbors in
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P cannot be private neighbors of vertices of F anymore. If this condition
is satisfied, we can give the color O to all neighbors of v which are not
dominated in the bag t′ since they become dominated in the new bag.

• If α = O∗ and N(v)∩(f−1(I)∪f−1(F )∪f−1(F ∗)) = ∅, then: fnew(u) =
f(u) ∀u ∈ Xt′

For v to be in O∗, we just need to check that all its neighbors are not in
the solution, that is they do not have the colors I, F or F ∗. If this condition
is satisfied, v can be added as a non dominated vertex and the coloring fnew
is the coloring f .

• If α = O and N(v)∩ (f−1(I)∪f−1(F )∪f−1(F ∗)) 6= ∅, then: fnew(u) =
f(u) ∀u ∈ Xt′

For v to be in O, we just need that at least one of its neighbors is in the
solution, that is one of its neighbor is in I, in F or in F ∗. If this condition is
satisfied, v can get color O and the coloring fnew is the coloring f .

• If α = P and N(v)∩ (f−1(I)∪f−1(F )) = ∅ and ∃!w ∈ N(v)∩f−1(F ∗),
then:

fnew(u) =
F if u = w

f(u) otherwise

For v to have color P , we need firstly that its neighbors are neither in I
nor in F , because otherwise v cannot be a private neighbor of some vertex
of the solution, and we also need that exactly one neighbor of v is in F ∗ in
the bag t′, so that these two vertices become matched. If these conditions
are satisfied, we give color F to the only neighbor of v in F ∗ in the bag t′
and all other vertices keep the same color from the coloring f .

Note that, since we go through all possible colorings f in the bag t′ and
through all colors for the vertex v, the running time of any Introduce node
is O(6pw · pw).

Given this dynamic programming algorithm, we have the following result:

Theorem 4.8. The Upper Dominating Set problem can be solved in time
O(6pw · pw), where pw is the pathwidth of the input graph.

Now that we have improved the best FPT algorithm parameterized by
the pathwidth from O∗(7pw) to O∗(6pw), we will show in the following section
that our algorithm is optimal under SETH.
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4.3 Tight Intractability Result
We prove in this section that, under the SETH, for all ε > 0, there is no algo-
rithm for Upper Dominating Set with complexity O∗((6− ε)pw). To get
this result, we will do a reduction from the q-CSP-6 problem (see [Lam20])
to the Upper Dominating Set problem, similarly to our reduction for
Min Mixed Dominating Set in Section 2.4. Recall that, in the q-CSP-6
problem, we are given a CSP instance with n variables and m constraints.
The variables take values over a set of size 6. Without loss of generality,
let {0, 1, 2, 3, 4, 5} be this set. Each constraint involves at most q variables,
and is given as a list of acceptable assignments for these variables. Without
loss of generality, we force the following condition: each constraint involves
exactly q variables, because if it has fewer, we can add to it new variables
and augment the list of satisfying assignments so that the value of the new
variables is irrelevant.

Recall also the following result of Lampis [Lam20] to be a natural conse-
quence of the SETH, specified with the value B = 6:

Lemma 4.9 (Lemma 2 from [Lam20]). If the SETH is true, then, for all
ε > 0, there exists a q such that n-variables q-CSP-6 cannot be solved in
time O∗((6− ε)n).

We will produce a polynomial-time reduction, similarly to what we have
done for Min Mixed Dominating Set in Section 2.4, from an instance of
q-CSP-6 with n variables to an equivalent instance of Upper Dominating
Set whose pathwidth is bounded by n+O(1). Thus, any algorithm for the
latter problem running faster than O∗((6 − ε)pw) would give a O∗((6 − ε)n)
algorithm for the former problem, contradicting the SETH.

The constructed graph consists of a main part of n paths of length 4m,
each divided into m sections. The idea is that an optimal solution will verify,
for each path, a specific pattern in the whole graph. For four consecutive
vertices, there are six ways for taking exactly two vertices among the four and
dominating the two others. These six ways for each path will represent all
possible assignments for all variables (see Figure 4.2). Then, we will add some
verification gadgets for each constraint and attach it to the corresponding
section, in order to check that the selected assignment satisfies the constraint
or not.

As for the Min Mixed Dominating Set problem, a first difficulty is to
prove that an optimal solution of the Upper Dominating Set instance has
the desired form, and more precisely that the pattern selected for a variable
is kept constant throughout the graph. To answer this difficulty, we make
a polynomial number of copies of this construction and we connect them
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.2: Main part of the construction with the six possible configurations.
Filled vertices are in D.

together, enabling us to have a sufficiently large copy where the patterns are
kept constant in this copy.

Moreover, we need to be careful in our verification gadget in order to
have the following conditions: the vertices of the paths taken in the solution
must not have any private neighbor in the corresponding verification gadget,
because otherwise it would be impossible to keep the patterns constant in a
sufficiently large copy of the graph; and the vertices of the paths not taken
in the solution must not be dominated by the corresponding verification
gadget, because otherwise there can be some vertices of the paths taken in
the solution that have no private neighbor. Thus, we extensively use in our
proofs that a vertex in an upper dominating set either is its own private
vertex, or has at least one private neighbor.

We now present our reduction. We are given a q-CSP-6 instance ϕ
with n variables x1, . . . , xn taking values over the set {0, 1, 2, 3, 4, 5}, and m
constraints c0, . . . , cm−1, each containing exactly q variables and Cj possible
assignments over these q variables, for each j ∈ {0, . . . ,m − 1}. We define
the following numbers: A = 4q + 2 and F = (2n + 1)(4n + 1). We set our
budget to be k = Fm(2n+ A) + 2n.

We construct our instance of Upper Dominating Set as follows:

1. For i ∈ {1, . . . , n}, we construct a path Pi of 4Fm + 6 vertices: the
vertices are labeled ui,j for j ∈ {−3, . . . , 4Fm+2}; and for each i, j the
vertex ui,j is connected to ui,j+1. We call these paths the main part of
our graph.

2. For each section j ∈ {0, . . . , Fm−1}, let j′ = j mod m. We construct
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a verification gadget Hj as follows (see Figure 4.3):

(a) A cliqueKj of size ACj′ such that the ACj′ vertices are partitioned
into Cj′ cliques K1

j , . . . , K
Cj′
j , each corresponding to a satisfying

assignment σl in the list of cj′ , for l ∈ {1, . . . , Cj′}, and each
containing exactly A vertices.

(b) A clique Lj of size ACj′ such that the ACj′ vertices are partitioned
into Cj′ cliques L1

j , . . . , L
Cj′
j , each containing exactly A vertices.

(c) For each i ∈ {1, . . . , n} such that xi is involved in cj′ , and for
each satisfying assignment σl in the list of cj′ : if σl sets xi value
0, connect the two vertices ui,4j+2 and ui,4j+3 to the A vertices of
the clique K l

j; if σl sets xi value 1, connect the two vertices ui,4j+3
and ui,4j to the A vertices of the clique K l

j; if σl sets xi value 2,
connect the two vertices ui,4j and ui,4j+1 to the A vertices of the
clique K l

j; if σl sets xi value 3, connect the two vertices ui,4j+1
and ui,4j+2 to the A vertices of the clique K l

j; if σl sets xi value
4, connect the two vertices ui,4j+1 and ui,4j+3 to the A vertices of
the clique K l

j; if σl sets xi value 5, connect the two vertices ui,4j
and ui,4j+2 to the A vertices of the clique K l

j.
(d) For each satisfying assignment σl in the list of cj′ , do the following:

add a perfect matching between the vertices of K l
j and the vertices

of Llj; for any l′ ∈ {1, . . . , Cj′} with l′ 6= l, add all the edges
between the vertices of K l

j and the vertices of Ll′j .
(e) Add a vertex w connected to all the vertices of the clique Lj.

Now that we have presented our reduction, we argue that it is correct
and that the obtained graph G has the desired pathwidth. Recall that the
target size of an optimal solution in G is k as defined above.

Lemma 4.10. If ϕ is satisfiable, then there exists an upper dominating set
in G of size at least k.

Proof. Assume ϕ admits some satisfying assignment ρ : {x1, . . . , xn} →
{0, 1, 2, 3, 4, 5}. We construct a solution D of the instance G of Upper
Dominating Set as follows:

1. For each i ∈ {1, . . . , n}, let α and β be the following numbers: if
ρ(xi) = 0, let α = 2 and β = 3; if ρ(xi) = 1, let α = 3 and β = 0; if
ρ(xi) = 2, let α = 0 and β = 1; if ρ(xi) = 3, let α = 1 and β = 2; if
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HjHj

Kj

Lj

w

K1
j

.. K l
j

.. KCj′
j

L1
j

.. Llj .. LCj′j

x1
x2

Figure 4.3: (Double edges between two sets of vertices represent all edges
between the two sets, triple edges between two sets of vertices represent
perfect matching between the two sets.) Checker gadget Hj connected to the
main part. Here we have considered an instance where the clause cj′ has only
two variables, x1 and x2. Moreover, only the clique K l

j is shown connected
to the main part. The possible assignment σl of cj′ is (x1 = 1, x2 = 3). We
have supposed that this assignment is satisfiable, and we have marked the
corresponding upper dominating set: filled vertices and filled rectangles are
in D.

ρ(xi) = 4, let α = 1 and β = 3; if ρ(xi) = 5, let α = 0 and β = 2.
Let U = ⋃Fm−1

j=0 {ui,4j+α, ui,4j+β}. We add to the solution all vertices of
(V (Pi) \ {ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1, ui,4Fm+2}) \ U .

2. For each j ∈ {0, . . . , Fm− 1}, let j′ = j mod m. Consider the unique
possible assignment σl∗ in the list of cj′ satisfied by ρ (such a unique
possible assignment must exist since ρ satisfies ϕ), and take the A
vertices of the clique Ll∗j .

3. For each i ∈ {1, . . . , n}, do the following: if ρ(xi) = 0, then add ui,−3,
ui,4Fm and ui,4Fm+1 to D; if ρ(xi) = 1, then add ui,−2 and ui,4Fm+1 to
D; if ρ(xi) = 2, then add ui,−2, ui,−1 and ui,4Fm+2 to D; if ρ(xi) = 3,
then add ui,−3 and ui,4Fm+2 to D; if ρ(xi) = 4, then add ui,−3 and
ui,4Fm+1 to D; if ρ(xi) = 5, then add ui,−2 and ui,4Fm+2 to D.
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Let us now argue why this solution has size at least k. In the first
step, we have selected 2Fmn vertices. To see this, let Qi,j be the sub-
path of Pi corresponding to the section j (j ∈ {0, . . . , Fm− 1}), i.e. Qi,j =
{ui,4j, ui,4j+1, ui,4j+2, ui,4j+3}. Observe that we have put exactly two vertices
of Qi,j in U , which leaves two vertices in the solution, for all i and all j. Con-
sider now any j ∈ {0, . . . , Fm−1} and the corresponding verification gadget
Hj. In this gadget, we have selected all the vertices of the clique Ll∗j , corre-
sponding to the satisfied assignment σl∗ . So we have selected AFm vertices
for all the verification gadgets. Finally, at least 2n vertices have been added
to the solution at Step 3. So the total size is at least 2Fmn+AFm+2n = k.

Let us now argue why the solution is a valid upper dominating set.
Consider any j ∈ {0, . . . , Fm − 1} and let j′ = j mod m. We have se-

lected the A vertices of the clique Ll∗j corresponding to the unique possible
assignment σl∗ in the list of cj′ satisfied by ρ (such a unique possible assign-
ment must exist since ρ satisfies ϕ). Since Lj is a clique, since the vertices of
Ll
∗
j are connected to all vertices of K l′

j , for any l′ ∈ {1, . . . , Cj′} with l′ 6= l∗,
since there is a perfect matching between the vertices of Ll∗j and the vertices
of K l∗

j , and since the vertex w is connected to all vertices of Lj, we have that
all the vertices of Hj are dominated by D.

Now, observe that, since σl∗ is satisfied by ρ, it means that the values
given by ρ to the variables appearing in the constraint cj′ satisfy σl∗ , so by
the construction it follows that the neighbors of the vertices of K l∗

j in the
paths all belong to U . Indeed, consider any variable xi appearing in cj′ : if
σl∗ sets value 0 to xi, then ρ(xi) = 0, and then, for α = 2 and β = 3, we have
that ui,4j+α and ui,4j+β are in U and are the only vertices of Qi,j neighbors
of the vertices of K l∗

j ; it remains true whether σl∗ sets value 1, 2, 3, 4 or 5
to xi with the convenient α and β. So all the neighbors of K l∗

j in the main
part of the graph are not in D. Moreover, no vertex of Kj is taken in the
solution, and no vertex of Lj \Ll

∗
j is taken in the solution. By these facts, and

since the only edges between Ll∗j and K l∗
j form a perfect matching between

the vertices of these two sets, it follows that each vertex of Ll∗j has a private
neighbor, namely its unique neighbor in K l∗

j .
Consider now any i ∈ {1, . . . , n}. The set U never takes three consec-

utive vertices in the path Pi, so (V (Pi) \ {ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1,
ui,4Fm+2})\U is a dominating set in the path (V (Pi)\{ui,−3, ui,−2, ui,−1, ui,4Fm,
ui,4Fm+1, ui,4Fm+2}). Observe now that, for any j ∈ {0, . . . , Fm−1}, the ver-
tices of the clique Kj in the gadget Hj are never taken by the solution, so
the vertices of the path Pi are only dominated by the vertices of Pi, whether
the variable xi appears in cj′ or not (for j′ = j mod m). Moreover, by the
same argument, the neighbors in the verification gadgets of the vertices of
the path Pi taken in the solution are never taken in the solution.
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If ρ(xi) ∈ {0, 1, 2, 3}, then U takes two consecutive vertices, leaves two
consecutive vertices in D, takes again two consecutive vertices, and so on. In
these cases, the two vertices of d each have a private neighbor, namely their
other neighbor in the path. If ρ(xi) ∈ {4, 5}, then U takes a vertex, leaves
a vertex in D, takes a vertex, and so on. In these cases, the vertices of D
are their own private vertex. So all the vertices of the paths either have a
private neighbor, or are their own private vertices.

Nonetheless, we have to be more careful for the first and last sections
(for j = 0 and j = Fm − 1). By Step 3 of our construction of the solution
D, and by some simple observations, we have that all vertices of the main
part are dominated, and that the vertices of the main part which belong to
the solution either have a private neighbor in the corresponding path, or are
their own private vertices.

Let us now prove the other direction of our reduction. The idea of this
proof is the following: by partitioning the graph into different parts and upper
bounding the cost of these parts, we prove that, if an upper dominating set in
G has not the same form as in Lemma 4.10 in a sufficiently large copy, then
it has size strictly less than k, enabling us to produce a satisfiable assignment
for ϕ using the copy where the upper dominating set has the desired form.

Lemma 4.11. If there exists an upper dominating set of size at least k in
G, then ϕ is satisfiable.

Proof. Suppose that we are given an upper dominating set D of maximum
size. Before we proceed any further, let us define, for each S ⊆ V , its cost as
cost(S) = |S ∩D|. Clearly, cost(V ) ≥ k. Also, for two disjoint sets S1 and
S2, we have cost(S1 ∪ S2) = cost(S1) + cost(S2). Our strategy will therefore
be to partition V into different parts and upper bound their cost.

Let Vj = Hj ∪
⋃n
i=1Qi,j with Qi,j = {ui,4j, ui,4j+1, ui,4j+2, ui,4j+3}.

Claim 4.12. cost(Vj) ≤ 2n+ A.

Proof. Consider any j ∈ {0, . . . , Fm − 1}, and let j′ = j mod m. We will
prove that cost(Hj) ≤ A. Note that the vertex w has to be dominated, so
either it is in D, or at least one vertex of Lj is in D.

First, suppose that the vertex w belongs to D. No vertex of Lj can
be in D, because otherwise w has no private neighbor and is the neighbor
of another vertex of D. Moreover, since Lj is dominated, either only one
vertex of Kj belongs to D and all the other vertices of Kj can be its private
neighbor, and in this case, the desired bound is obtained, or more that one
vertex of Kj belongs to D. In this last case, since Kj is a clique, and since
Lj is dominated, the vertices in D ∩ Kj must have their private neighbor
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in the main part of the graph. Note first that, for any l ∈ {1, . . . , Cj′}, it
cannot be the case that two vertices of K l

j are in D, since they share the
same neighborhood. So the vertices of Kj that belong to D are in at least
two distinct cliques K l1

j and K l2
j (for l1, l2 ∈ {1, . . . , Cj′} and l1 6= l2). Note

that, for any i ∈ {1, . . . , n} such that xi is involved in cj′ , any vertex of Kj

is connected to two vertices of Qi,j (for Qi,j = {ui,4j, ui,4j+1, ui,4j+2, ui,4j+3}).
So it cannot be the case that three vertices of Kj are in D, because it would
imply that one of them has no private neighbor. So if the vertex w is in D,
then we have cost(Hj) ≤ 3.

Let us now consider the case where w does not belong to D. Suppose
now that there exist l1, l2 ∈ {1, . . . , Cj′} with l1 6= l2 such that at least two
vertices of Ll1j , let us say v1 and v′1, and at least one vertex of Ll2j , let say v2,
belong to D. Note that, since Lj ∪ {w} is a clique, the three vertices v1, v′1
and v2 must have, each of them, a private neighbor in Kj. Now observe that
all the vertices of Ll1j are connected to all vertices of Kj \K l1

j , so the private
neighbors of v1 and v′1 must belong to K l1

j . But the vertex v2 is connected to
all vertices of K l1

j , since all vertices of Ll2j are, which implies that v1 and v′1
have no private neighbor. So it cannot be the case that at least two vertices
of Ll1j and at least one vertex of Ll2j are in D, for any l1, l2.

Suppose now that there exist l1, l2, l3 ∈ {1, . . . , Cj′} with l1 6= l2 6= l3 such
that one vertex of Ll1j , let us say v1, one vertex of Ll2j , let us say v2, and
one vertex of Ll3j , let us say v3, are in D. By a similar argument, we have
that the private neighbor of v1 has to be in K l1

j : it cannot be in K l2
j since

all vertices of K l2
j are connected to v1 and v3; it cannot be in K l3

j since all
vertices of K l3

j are connected to v1 and v2; and it cannot be in any other K l′
j

(for l′ 6= l1, l2, l3) since the vertices of K l′
j are connected to v1, v2 and v3. But

observe that all the vertices of K l1
j are connected to v2 and v3, which implies

that v1 has no private neighbor. So it cannot be the case that one vertex of
Ll1j , one vertex of Ll2j and one vertex of Ll3j , are in D, for any l1, l2, l3.

So, by these arguments, we have that at most A vertices of Lj ∪ {w}
belong to D, i.e., the A vertices of a single clique Llj (for l ∈ {1, . . . , Cj′}).
Now, suppose that there exists l ∈ {1, . . . , Cj′} such that D ∩ Lj = Llj. The
private neighbors of these vertices taken in D must be in K l

j, which implies
that no vertex of Kj can be in D. It follows that cost(Hj) ≤ A, and this
bound is attained if there exists an l ∈ {1, . . . , Cj′} such that Llj ⊆ D and
such that the vertices of K l

j are only dominated by the vertices of Llj.
Now, consider any j ∈ {0, . . . , Fm− 1} and any i ∈ {1, . . . , n} such that

variable xi is involved in cj′ , for j′ = j mod m. Suppose that at least three
vertices of Qi,j are in D, where we recall Qi,j = {ui,4j, ui,4j+1, ui,4j+2, ui,4j+3}.
Then all vertices of Kj are dominated, since every vertex of Kj is connected
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to two vertices of Qi,j. From this it follows that at most one vertex of Hj

is in D, since Lj ∪ {w} is a clique. Let Wj = Hj ∪
⋃
xiactive Qi,j. We have

cost(Wj) ≤ 4q + 1. We construct another solution by doing the following:
consider a satisfying assignment σl in the list of cj′ and take all vertices of
the clique Llj; plus take all the vertices of Qi,j not neighbors of the vertices
of K l

j, for any active variable xi; and modify the solution to obtain an upper
dominating set. Clearly, it gives us a valid solution. Moreover, this has
increased the total cost. Indeed, we lose at most 4q + 1 vertices: at most 2
vertices per Qi,j if the original solution had taken the four vertices; at most
the two vertices ui,4j−1 and ui,4(j+1), for each xi active, in order to keep the
solution valid; and the vertex of Lj ∪{w}. On the other side, we have added
4q+2 vertices: the A = 4q+2 vertices of Llj. Doing so should not be possible
since D is of maximum size, so for any active variable xi, at most two vertices
of Qi,j belong to D.

Now, consider any j ∈ {0, . . . , Fm− 1} and any i ∈ {1, . . . , n} such that
variable xi is not involved in cj′ , for j′ = j mod m. Observe that, since the
vertices of Qi,j are not connected to any verification gadget, it cannot be the
case that three vertices of Qi,j belong to D, because otherwise at least one of
them would be neighbor of another vertex of D and would have no private
neighbor.

We now have all the lower bounds we need: cost(Hj) ≤ A; and cost(Qi,j) ≤
2, whether xi is active or not. For each j ∈ {0, . . . , Fm − 1}, recall that
Vj = Hj ∪

⋃n
i=1Qi,j. We have cost(Vj) ≤ 2n+ A.

We will say that j is problematic if cost(Vj) < 2n+ A.
Claim 4.13. There exists a contiguous interval K ⊆ {0, . . . , Fm−1} of size
at least m(4n+ 1) in which all j ∈ K are not problematic.

Proof. Now, consider any i ∈ {1, . . . , n} and observe that among the three
vertices ui,−3, ui,−2 and ui,−1, at most two vertices can be in D, because
otherwise the vertex ui,−3 has no private neighbor. The same observation
holds for the last three vertices ui,4Fm, ui,4Fm+1 and ui,4Fm+2.

Let L ⊆ {0, . . . , Fm − 1} be the set of problematic indices. We claim
that |L| ≤ 2n. Indeed, we have cost(V ) ≤ ∑Fm−1

j=0 cost(Vj) + 4n ≤ Fm(2n+
A)− |L|+ 4n = k + 2n− |L|. But, since the total cost is at least k, we have
|L| ≤ 2n. Now consider the longest contiguous interval K ⊆ {0, . . . , Fm−1}
such that all j ∈ K are not problematic. Since F = (2n + 1)(4n + 1), we
have K ≥ Fm/(|L|+ 1) = m(4n+ 1).

Before we proceed further, note that, if j is not problematic, then we have
the following: cost(Hj) = A, which implies that there exists l ∈ {1, . . . , Cj′}
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such that Llj ⊆ D and such that the vertices of K l
j are only dominated by

Llj; for any i ∈ {1, . . . , n}, cost(Qi,j) = 2, so exactly two vertices in Qi,j are
in D, and these two vertices are not connected to the vertices of K l

j (since
this set is only dominated by Llj).

Consider now a non-problematic j ∈ K and i ∈ {1, . . . , n}. Since
cost(Qi,j) = 2, we claim that the solution must follow one of the six fol-
lowing configurations below:

(a) ui,4j, ui,4j+1 ∈ D;

(b) ui,4j+1, ui,4j+2 ∈ D;

(c) ui,4j+2, ui,4j+3 ∈ D;

(d) ui,4j+3, ui,4j ∈ D;

(e) ui,4j, ui,4j+2 ∈ D;

(f) ui,4j+1, ui,4j+3 ∈ D.

Indeed, these six configurations cover all the cases where exactly two
vertices of Qi,j are in D (since cost(Qi,j) = 2).

Now we make the following observations. For any j ∈ K and any i ∈
{1, . . . , n}, the vertices of Qi,j which are not in D are only dominated by the
vertices of the main part. Firstly, it is obvious if xi is not active in cj′ (for
j′ = j mod m) since in this case the vertices of Qi,j are not connected to
any verification gadget. If xi is active in cj′ , it is also clear when we note that
no vertex of Kj is taken in the solution (since cost(Hj) = A). Moreover, the
vertices of Qi,j which are in D are not neighbors of vertices in D outside the
main part. It is again obvious if xi is not active in cj′ . If xi is active in cj′ , it
is also clear since no vertex of Kj is taken in D. Furthermore, the neighbors
in the verification gadgets of the vertices of Qi,j not in the solution are all
dominated by the vertices of Llj. From these observations, we obtain the
following: the vertices of Qi,j which are in D must have a private neighbor
in the path Pi or must be their own private vertex; and the vertices of Qi,j

which are not in D must be dominated by the vertices in the path Pi.
Now, we claim the following:

Claim 4.14. There exists a contiguous interval K ′ ⊆ {0, . . . , Fm−1} of size
at least m in which all j ∈ K ′ are not problematic and, for all j1, j2 ∈ K ′,
Qi,j1 and Qi,j2 are in the same configuration.

Proof. Now, given the last observations, and the six configurations given
before, we make the following statements, where a statement apply for any
i ∈ {1, . . . , n} and j such that j and j + 1 are in K:
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• If Qi,j is in configuration (a), then Qi,j+1 is in configuration (a), (d) or
(e)

• If Qi,j is in configuration (b), then Qi,j+1 is in configuration (b) or (f)

• If Qi,j is in configuration (c), then Qi,j+1 is in configuration (c)

• If Qi,j is in configuration (d), then Qi,j+1 is in configuration (c), (d) or
(f)

• If Qi,j is in configuration (e), then Qi,j+1 is in configuration (b), (d),
(e) or (f)

• If Qi,j is in configuration (f), then Qi,j+1 is in configuration (c) or (f)

For the first statement, we have the following: (b), (c) and (f) cannot
follow (a) since it would left at least one vertex not dominated. For the
second statement, we have the following: (a), (d) and (e) cannot follow (b)
since at least one vertex will not have a private neighbor; (c) cannot follow
(b) since it would left a vertex non dominated. For the third statement,
we have the following: (a), (b), (d), (e) and (f) cannot follow (c) since at
least one vertex will not have a private neighbor. For the fourth statement,
we have the following: (a), (b) and (e) cannot follow (d) since at least one
vertex will not have a private neighbor. For the fifth statement, we have
the following: (a) cannot follow (e) since at least one vertex will not have
a private neighbor; (c) cannot follow (e) since it would left a vertex non
dominated. For the last statement, we have the following: (a), (b), (d) and
(e) cannot follow (f) since at least one vertex will not have a private neighbor.

For some i ∈ {1, . . . , n} and j ∈ K, we will say that j is shifted for
variable i if j + 1 ∈ K but Qi,j and Qi,j+1 are not in the same configuration.
We observe that there cannot exist distinct j1, j2, j3, j4, j5 ∈ K such that
they are all shifted for variable i. Indeed, if we draw a directed graph with a
vertex for each configuration and an arc (u, v) expressing the property that
the configuration represented by v can follow the configuration represented
by u, then we observe that the graph obtained is a DAG of maximum path
length 4.

Then, by the above, the number of shifted indices j ∈ K is at most 4n.
Hence, the longest contiguous interval without shifted indices has length at
least |K|/(4n+ 1) ≥ m, since |K| ≥ m(4n+ 1). Let K ′ be this interval.

We have located an interval K ′ ⊆ {0, . . . , Fm − 1} of length at least m
where, for all i ∈ {1, . . . , n} and all j1, j2 ∈ K ′, we have the same configu-
ration in Qi,j1 and Qi,j2 . We now extract a satisfying assignment for ϕ from
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this in the natural way. For some j ∈ K ′: if Qi,j is in configuration (a), then
we set xi = 0; if Qi,j is in configuration (b), then we set xi = 1; if Qi,j is
in configuration (c), then we set xi = 2; if Qi,j is in configuration (d), then
we set xi = 3; if Qi,j is in configuration (e), then we set xi = 4; if Qi,j is in
configuration (f), then we set xi = 5. We claim this satisfies ϕ. Consider
a constraint cj′ of ϕ. There must exist j ∈ K ′ such that j′ = j mod m
since |K ′| ≥ m and K ′ is contiguous. We therefore check the verification
gadget Hj, where there exists σl such that Llj ⊆ D (this is because j is not
problematic, that is, Hj attains its maximum cost). But because the vertices
of K l

j are only dominated by the vertices Llj and not by the vertices of the
main part, it must be the case that the assignment we extracted agrees with
σl, hence cj′ is satisfied. This is true for all constraint cj′ of ϕ.

We now show that the pathwidth of G is bounded by n+O(1).

Lemma 4.15. The pathwidth of G is at most n+O(1).

Proof. We will show how to build a path decomposition of G. As in Lemma
4.11, for all j ∈ {0, . . . , Fm − 1}, let Vj = Hj ∪

⋃n
i=0Qi,j, where Qi,j =

{ui,4j, ui,4j+1, ui,4j+2, ui,4j+3}. We will show how to obtain a path decomposi-
tion of G[Vj] with the following properties:

• The first bag of the decomposition contains the vertices ui,4j, for all
i ∈ {1, . . . , n}

• The last bag of the decomposition contains the vertices ui,4j+3, for all
i ∈ {1, . . . , n}

• The width of the decomposition is n+O(q6q)

We now show how to obtain such a decomposition of G[Vj], having par-
tially fixed the contents of the first and last bag of the decomposition. The
verification gadget Hj contains at most 2(4q + 2)(6q − 1) + 1 vertices (since
6q− 1 is an upper bound on the number of assignments in the list of the cor-
responding constraint), so we place all its vertices in all bags. The remaining
graph is a union of paths of length 4. We therefore have a sequence of O(n)
bags, where, for each i ∈ {1, . . . , n}, we add to the current bag the vertices
of Qi,j and then we add another bag with Qi,j removed except for ui,4j+3.

Now that we have found a path decomposition of G[Vj] with the desired
properties, we present how to obtain a path decomposition of the whole
graph. The sets Vj partition all remaining vertices of the graph (except the
first three vertices and the last three vertices of each path Pi), while the only
edges not covered by the above decompositions of G[Vj] are those between
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the vertices ui,4j+3 and ui,4(j+1). We therefore place the decompositions of
G[Vj] in order, and then, between the last bag of the decomposition of G[Vj]
and the first bag of the decomposition of G[Vj+1], we have 2n ”transition”
bags, where in each transition step we add a vertex ui,4(j+1) in the bag, and
then remove the corresponding vertex ui,4j+3.

We have now a path decomposition of the whole graph except the first
three and the last three vertices of each path Pi, for all i ∈ {1, . . . , n}. So,
before the first bag of the decomposition of G[V0], we have a sequence of
O(n) bags, where, for each i ∈ {1, . . . , n}, we add to the current bag the four
vertices ui,−3, ui,−2, ui,−1 and ui,0 and then we add another bag with only the
vertex ui,0. We use the same method for the last three vertices of the paths
Pi, after the decomposition of G[VFm−1].

Thus, we obtain a path decomposition of width n+O(1).

We are now ready to present the main result of this Section:

Theorem 4.16. Under the SETH, for all ε > 0, no algorithm solves Upper
Dominating Set in time O∗((6 − ε)pw), where pw is the pathwidth of the
input graph.

Proof. Fix ε > 0 and let q be sufficiently large so that Lemma 4.9 is true.
Consider an instance ϕ of q-CSP-6. Apply our reduction to obtain an in-
stance (G, k) of Upper Dominating Set. Thanks to Lemmas 4.10 and
4.11, we know that ϕ is satisfiable if and only if there exists an upper domi-
nating set of size at least k in G.

Now suppose that there exists an algorithm that solves Upper Dom-
inating Set in time O∗((6 − ε)pw). With this algorithm and our reduc-
tion, we can determine if ϕ is satisfiable in time O∗((6− ε)pw), where pw =
n + O(1) (Lemma 4.15), so the total running time of this procedure is at
most O∗((6− ε)n), contradicting the SETH.

With this theorem, we proved that our algorithm parameterized by the
pathwidth for Upper Dominating Set running in time O∗(6pw) is optimal
under the SETH. In the next two sections, we focus on super-polynomial
approximation.

4.4 Super-Polynomial Approximation
In this section, we present a super-polynomial approximation algorithm for
the Upper Dominating Set problem. We prove the following: for any r ≤
n, there exists an r-approximation algorithm for the Upper Dominating
Set problem running in time nO(n/r).
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Let us first give an overview of our algorithm. We use a common tool to
design sub-exponential algorithms: the divide-and-conquer method where we
partition the set of vertices V (G) of the input graph into a convenient number
of subsets of the same size. On each subset, we create a number of solutions:
all maximal independent sets I in the subgraph induced by the considered
set of vertices, similarly to the super-polynomial approximation algorithm for
Max Min Vertex Cover we have presented in Section 1.5; and all subsets
S of the considered subset of the partition. For each maximal independent
set I, we extend it to the whole graph. For each subset S as defined above,
we first go through all subsets of neighbors of vertices of S in order to find the
correct set of private neighbors, and then we extend the solution to the whole
graph. At the end, we output the best solution encountered. By computing
all maximal independent sets I and by going through all subsets S, we prove
that there exists at least one valid upper dominating set which has the desired
size. Note that, given a subset of an upper dominating set whose vertices
have private neighbors, it may be impossible to extend the partial solution
if we do not know their private vertices. This is why we need to find the
private vertices of the subset S we consider, since in our proof the solution
which has the desired size may come from such a subset S. Interestingly, the
two steps of our algorithm correspond to the two possible private vertices
of the mandatory private structure of Upper Dominating Set: either a
vertex u taken in the solution is its own private vertex, corresponding to the
independent sets I we extend in the first step; or a vertex u taken in the
solution has a private neighbor, corresponding to the subsets S for which we
”guess” their private neighbors. We prove the following:
Theorem 4.17. For any r ≤ n, Upper Dominating Set is r-approximable
in time nO(n/r).
Proof. Let D∗ = S∗∪ I∗ be any maximum upper dominating set of G, where
S∗ is the set of vertices of D∗ which have some private neighbors, and I∗ is
the set of vertices of D∗ which forms an independent set.

We begin our algorithm by partitioning the set of vertices V (G) into l
subsets V1, . . . , Vl, where l = b r2c.

Now, for each i ∈ {1, . . . , l}, we do the following:
1. Enumerate all maximal independent sets of G[Vi]. Let Ii be this family

of independent sets.

2. For each maximal independent set I ∈ Ii, do the following:

(a) Extend I greedily to obtain a maximal independent set I ′ of the
whole graph G, in the natural way: while there exists a vertex
u ∈ V \N [I ′], add u to I ′.
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3. Consider all subsets of vertices S of Vi.

4. For each such subset S ⊆ Vi, do the following:

(a) For each vertex u ∈ S, go trough all vertices v ∈ N(u) \ N [S] so
that the vertex v is the private neighbor of u.

(b) Let P be the set of private neighbors of the vertices of S found in
the previous step, if such a set exists.

(c) Let NSP = N(S) ∩N(P ), NS = N(S) \NSP , NP = N(P ) \NSP ,
VSP = V \ (N [S] ∪N [P ]), and QP = NP \N(VSP ).

(d) We extend the partial solution S as follows:
i. Let T1 = N(QP ) ∩NS.
ii. Greedily remove vertices of T1 which have not a private neigh-

bor in NP , that is vertices u ∈ T1 such that (N(u) ∩ NP ) ⊆
N(T1 \ {u}).

iii. Let T2 = N(NP \N(T1)) ∩ VSP .
iv. Greedily remove vertices of T2 which have not a private neigh-

bor in NP \N(T1), that is vertices u ∈ T2 such that (N(u) ∩
(NP \N(T1))) ⊆ N(T2 \ {u}).

v. Extend S ∪ T1 ∪ T2 greedily to obtain an upper dominating
set S ′ of the whole graph G, in the natural way: while there
exists a vertex u ∈ VSP \N [T2], add u to S ′.

vi. Discard S ′ if it is not an upper dominating set of G.

5. Output the solution of maximum size encountered.

We first prove that our algorithm has the desired running-time. For each
i ∈ {1, . . . , l}, the set Vi is of size roughly n

l
= 2n/r, so we have that enu-

merating all maximal independent sets of G[Vi] takes time O∗(32n/3r), by the
well-known result of Moon and Moser [MM65] which states that comput-
ing all maximal independent sets of a graph of order n can be done in time
O∗(3n/3). Moreover, by the same upper-bound on the size of the set Vi, we
have that considering all subsets S ⊆ Vi takes time 22n/r, and there are that
many subsets S. Now, observe that at Step 4.(a), for a vertex u ∈ S, we
go through all vertices v ∈ N(u) \N [S], so through at most n vertices, and
that there are at most 2n/r such vertices u ∈ S. So, for a subset S ⊆ Vi, we
consider at most n2n/r sets P of private neighbors of the vertices of S. Note
that the other steps of our algorithm can be done in polynomial time. So the
total running-time of our algorithm is:

l · (O∗(32n/3r) + 22n/r · n2n/r) = nO(n/r)
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Now, we will prove that our algorithm outputs an upper dominating set.
Consider any i ∈ {1, . . . , l} and any maximal independent set I ∈ Ii of
G[Vi]. Note that, since I is a maximal independent set of G[Vi], it can be
easily extended to obtain a maximal independent set I ′ of the whole graph
G. Indeed, by greedily adding vertices of V \ N [I ′], we obtain at the end
of Step 2.(a) a maximal independent set of G, since every vertex of V (G)
is either in I ′ or has a neighbor in I ′. Note that, since I ′ is maximal, it is
also an upper dominating set: all vertices of V (G) are dominated and the
vertices of I ′ form an independent set. So all the independent set I ′ for all i
are valid upper dominating sets of the graph G.

Consider any i ∈ {1, . . . , l}. For the sets S ′ constructed at Step 4 of our
algorithm, we will show that at least one of them is an upper dominating
set of G. Since we consider all subsets S of Vi, we consider the set S∗i =
S∗ ∩ Vi. Then, for each vertex u in this set S∗i , we consider all its neighbors
in N(u) \N [S∗i ] to be its private neighbor. So we consider the set P ∗i which
contains the private neighbor v for each vertex u ∈ S∗i associated to the
optimal solution D∗. Observe that the sets NS∗i P

∗
i
and NS∗i

are dominated
by S∗i . Now consider the vertices of the set QP ∗i

: they are not neighbors of
VS∗i P ∗i by definition; and they cannot be dominated by N(P ∗i ) since this set
contains only neighbors of the vertices of P ∗i and the vertices of P ∗i are the
private neighbors of the vertices of S∗i . So the vertices of QP ∗i

can only be
dominated by vertices of NS∗i

. By our construction, the set T1 is a set of
vertices of NS∗i

which dominates QP ∗i
and such that each vertex u ∈ T1 has

a private neighbor. So the set QP ∗i
is dominated by T1 and the vertices of

T1 each have at least one private neighbor (in QP ∗i
or in NP ∗i

\ QP ∗i
). Now

consider the vertices of the set NP ∗i
\N(T1): they cannot be in the solution

since they are neighbors of P ∗i ; and they all have at least one neighbor in
VS∗i P ∗i (since they were not in QP ∗i

). By our construction, the set T2 is a
set of vertices of VS∗i P ∗i which dominates NP ∗i

\ N(T1) and such that each
vertex u ∈ T2 has a private neighbor in NP ∗i

\ N(T1): if a vertex of T2
has no private neighbor in NP ∗i

\ N(T1), then it is removed from T2 and
NP ∗i
\N(T1) stay dominated. Now observe that all vertices of T2 have their

private neighbor in NP ∗i
\N(T1). So we can greedily extend S∗i ∪ T1 ∪ T2 in

a maximal independent set fashion by adding vertices of VS∗i P ∗i \N [T2] until
the whole graph G becomes dominated. So the set S∗i ′ obtained is an upper
dominating set of G. So for any i ∈ {1, . . . , l}, there exists at least one set
S ′ which is an upper dominating set of G, and the non-valid solutions are
discarded at the end of Step 4.(d).

Thus, the algorithm always outputs an upper dominating set.
Now, we will prove the approximation ratio. Note first that, since we

have partitioned V (G) into l = b r2c almost equal-sized subsets V1, . . . , Vl,
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there exists i∗ ∈ {1, . . . , l} such that |D∗∩Vi∗| ≥ |D∗|/l ≥ 2|D∗|/r. Consider
the corresponding subset Vi∗ . Note now that, since D∗ = S∗ ∪ I∗, we have
the following: either at least |D∗ ∩ Vi∗|/2 vertices of D∗ ∩ Vi∗ are in I∗, or at
least |D∗ ∩ Vi∗|/2 vertices of D∗ ∩ Vi∗ are in S∗.

Suppose first that at least |D∗ ∩ Vi∗ |/2 vertices of D∗ ∩ Vi∗ are in I∗.
Since we have enumerated all maximal independent sets I ∈ Ii∗ of G[Vi∗ ],
and since I∗ ∩ Vi∗ is an independent set of Vi∗ , we have found at least one
maximal independent set Ii∗ of G[Vi∗ ] such that I∗ ∩ Vi∗ ⊆ Ii∗ . Then, we
have extended Ii∗ to obtain a maximal independent set I ′i∗ of G. Thus, we
have the following:

|I ′i∗| ≥ |Ii∗| ≥ |I∗ ∩ Vi∗ | ≥ |D∗ ∩ Vi∗ |/2 ≥ 2|D∗|/2r = |D∗|/r

But since our algorithm outputs the maximum-sized solution encoun-
tered, we have the desired approximation ratio in this case.

Suppose now that at least |D∗∩Vi∗|/2 vertices of D∗∩Vi∗ are in S∗. Since
we have considered all subsets S of Vi∗ , we have considered the subset S∗i =
S∗∩Vi∗ . For this set, we have considered all possible sets of private neighbors
of vertices of S∗i , and we have extended the set to an upper dominating set
S∗i
′ of G (note that the set S∗i has been successfully extended since it is the set

we have considered when we have proved that at least one set S ′ constructed
at Step 4 is a valid upper dominating set of G). Thus, we have the following:

|S∗i
′| ≥ |S∗i | = |S∗ ∩ Vi∗| ≥ |D∗ ∩ Vi∗|/2 ≥ 2|D∗|/2r = |D∗|/r

Again, since our algorithm outputs the maximum-sized solution encoun-
tered, we have the desired approximation ratio in this case also.

Now that we have presented our super-polynomial approximation algo-
rithm for Upper Dominating Set, we will in the following section prove
that it is asymptotically optimal under the randomized ETH.

4.5 Matching Lower Bound
In this section, we give a lower bound on the complexity of any r-approxima-
tion algorithm for Upper Dominating Set, matching our algorithm of
the previous section. We get the following result: for any r < n and any
ε > 0, there is no algorithm that outputs an r-approximation for the Upper
Dominating Set problem running in time n(n/r)1−ε under the randomized
ETH.

To obtain this result, we will first prove the desired lower bound for
the Max Min Hitting Set problem, similarly of what Bazgan et al. did
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in [BBC+18a] to obtain the n1−ε-inapproximability for Upper Dominating
Set. To obtain this lower bound for the Max Min Hitting Set problem,
we will do a reduction from the Max Independent Set problem. Then,
we will make a reduction from the Max Min Hitting Set problem to
the Upper Dominating Set problem to transfer this lower bound to our
problem.

Recall that we have the following lower bound by Chalermsook et al.
[CLN13] for the Max Independent Set problem, which is the starting
point of our reduction, and which we have already used to derive the super-
polynomial inapproximability of Max Min Feedback Vertex Set in
Section 3.6:

Theorem 4.18 (Theorem 1.2 from [CLN13]). For any ε > 0 and any suf-
ficiently large r > 1, if there exists an r-approximation algorithm for Max-
imum Independent Set running in time 2(n/r)1−ε, then the randomized
ETH is false.

Our first reduction is similar to the reduction of Bazgan et al. [BBC+18a]
from Max Independent Set to Max Min Hitting Set, and will allow
us to get the desired hardness result for the latter problem. Our second
reduction, from Max Min Hitting Set to Upper Dominating Set is the
approximation-preserving reduction designed by Bazgan et al. [BBC+18a].

Nonetheless, note that our reduction from Max Independent Set to
Max Min Hitting Set creates a quadratic blow-up of the size of the
instance of the latter problem. Such a blow-up does not allow us to derive
the desired running-time. To answer this difficulty, we make another step in
the reduction where we ”sparsify” the instance of Max Min Hitting Set in
order to keep the blow-up under control. To prove that the inapproximability
gap stays the same, we use a probabilistic analysis with Chernoff bounds,
method we have already used for Max Min Feedback Vertex Set in
Section 3.6.

We will first prove the following hardness result:

Theorem 4.19. For any ε > 0 and any sufficiently large r > 1, if there
exists an r-approximation algorithm for Max Min Hitting Set running
in time n(n/r)1−ε, then the randomized ETH is false.

Proof. First, we recall some details about Theorem 4.18. To get this result,
Chalermsook et al. [CLN13] designed a reduction from an instance φ of 3-Sat
with n variables, and for any ε > 0 and r sufficiently large, they construct
a graph G with |V (G)| = n1+εr1+ε vertices which, with high probability,
satisfies the following properties:



CHAPTER 4. UPPER DOMINATING SET 136

• Yes-instance: if φ is satisfiable, then α(G) ≥ n1+εr

• No-instance: if φ is not satisfiable, then α(G) ≤ n1+εr2ε.

With these properties, any approximation algorithm with ratio r1−2ε for
Max Independent Set would distinguish whether φ is satisfiable or not,
and so would solve the 3-Sat instance. If this algorithm runs in time 2(n/r)1−ε ,
then we obtain a sub-exponential algorithm for 3-Sat, which contradicts the
randomized ETH.

Suppose that we are given ε > 0 and r sufficiently large. Let d = 1
ε1/2 We

will also design a reduction from the instance φ of 3-Sat to an instance of
Max Min Hitting Set going through an instance of Max Independent
Set to show that an algorithm for the Max Min Hitting Set that achieves
this ratio r too rapidly would give a sub-exponential algorithm for 3-Sat.
So we start with the reduction of [CLN13], from an instance φ of 3-Sat
on n variables, and we adjust the parameter r so that we obtain with high
probability a graph G with the following properties:

• |V (G)| = n1+εr1/d+ε/d

• Yes-instance: if φ is satisfiable, then α(G) ≥ n1+εr1/d.

• No-instance: if φ is not satisfiable, then α(G) ≤ n1+εr2ε/d.

We now construct an hypergraph G′ for the Max Min Hitting Set
problem in the following way: we keep the graph G; for every subset S ⊆
V (G) with |S| = d, we construct an independent set ZS of size t = r1/d; and,
for every vertex u ∈ ZS, we add the hyper-edge S ∪{u}. Now, we claim that
the graph G′ has the following properties:

• |V (G′)| = Θ(nd+dεr1+1/d+ε)

• Yes-instance: if φ is satisfiable, then mmhs(G′) = Ω(nd+dεr1+1/d).

• No-instance: if φ is not satisfiable, then mmhs(G′) = O(nd+dεr1/d+2ε).

Here, mmhs(G′) is the maximum size of a minimal hitting set in G′.
Let us prove why the hypergraph G′ has these properties.
For the first property, note that there are

(
|V (G)|
d

)
subsets S of V (G) of

size d, and that for each of them we have added t = r1/d vertices in the
corresponding independent set ZS. So we have the following:

|V (G′)| = t ·
(
|V (G)|
d

)
+ |V (G)| = Θ(nd+dεr1+1/d+ε)
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For the second property, suppose that φ is satisfiable. It follows that
α(G) ≥ n1+εr1/d. We construct a minimal hitting set of G′ as follows: we
take a minimum vertex cover C of G; and for every subset S of I = V (G)\C
of size d, we take the t vertices of the corresponding independent set ZS.
We observe that this solution is a minimal hitting set of G′. Indeed, C is a
minimum vertex cover of G, so all edges of G are dominated by the solution,
and every vertex of C has at least one private edge since C is a minimum
vertex cover. Now observe that all the hyper-edges added in the construction
of G′ which still have to be covered are hyper-edges between some vertices of
the independent set I = V (G) \ C and the corresponding independent sets
ZS, since all hyper-edges connected at least one vertex of C are covered. But
we took the t vertices of the independent set ZS for every subset S ⊆ I of size
d, so it follows that all the remaining hyper-edges are covered by our solution.
Moreover, for any subset S of I of size d, note that S is an independent set, so
every vertex u of ZS taken has a private hyper-edge, namely the hyper-edge
S ∪ {u}. So our solution is a minimal hitting set. Now, let us determine its
size. The number of independent sets ZS with S ⊆ I of size d is

(
α(G)
d

)
. So

the size of our solution is at least:

t ·
(
α(G)
d

)
= Ω(nd+dεr1+1/d)

For the third property, take any minimal hitting set in G′ and let I be
the corresponding independent set of G (I = V (G) \ C where C is a vertex
cover in G which belongs to the minimal hitting set). We have that for any
subset S of I of size d, the minimal hitting set takes at most the t vertices
of the independent set ZS. And there are at most

(
α(G)
d

)
such subsets S. So

the size of any minimal hitting set is bounded by:

t ·
(
α(G)
d

)
+ |V (G)| = O(nd+dεr1/d+2ε)

We have now constructed a graph G′ of the Max Min Hitting Set
problem where the gap between the values of mmhs(G′), corresponds to
whether φ is satisfiable or not, is smaller than r (it is r1−2ε). Nonetheless, we
cannot derive the desired hardness result since the order of G′ is quadratic on
n. This blow-up makes it impossible to derive a sub-exponential algorithm
for 3-SAT. So we need to sparsify the gaph G′.

Thus, we construct a graph G′′ in the following way: we keep the graph
G′; and we delete every vertex of V (G′) \ V (G) with probability nd−1

nd
. That

is, for every vertex u in an independent set ZS, the vertex u stays in G′′ with
probability 1

nd
. We claim that the graph G′′ has the following properties:
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• |V (G′′)| = Θ(n1+dεr1+1/d+ε)

• Yes-instance: if φ is satisfiable, then mmhs(G′′) = Ω(n1+dεr1+1/d).

• No-instance: if φ is not satisfiable, then mmhs(G′′) = O(n1+dεr1/d+2ε).

To establish these three properties, we will use the following Chernoff
bound: suppose X = ∑p

i=1Xi is the sum of p independent random 0/1
variables Xi and that E[X] = ∑p

i=1E[Xi] = µ. We have the following: for
all 0 ≤ δ ≤ 1, Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

For the first property, we begin by defining a random variable Xi for each
vertex of each independent set ZS of G′: Xi = 1 if the corresponding vertex
stays in G′′; and Xi = 0 otherwise. Let X be the sum of these Xi variables,
which is equal to the number of such vertices staying in G′′. Suppose now
that the number of vertices in the sets ZS in G′ is cnd+dεr1+1/d+ε, where c is
a constant (it follows from the size of V (G′)). Then E[X] = cn1+dεr1+1/d+ε.
We obtain Pr[|X −E[X]| ≥ E[X]

2 ] ≤ 2e−E[X]/12 = o(1). So we conclude with
high probability that |V (G′′)| = Θ(n1+dεr1+1/d+ε).

For the second property, we consider a minimal hitting set F of G′, of size
cnd+dεr1+1/d. We define a variable for each vertex of F in the independent
sets ZS. As in the previous paragraph, we have that the expected number
of such vertices which stay in G′′ is cn1+dεr1+1/d. Again, as in the previous
paragraph, the actual number of such vertices will be close to this bound.
We just need to prove that almost the same set is a minimal hitting set of
G′′. So we begin with the surviving vertices of F , which is a hitting set of
G′′ (since the removal of a vertex of F implies the removal of its incident
hyper-edges). Now, we delete vertices from F until we obtain a minimal
hitting set of G′′. We will prove that the number of vertices deleted as
redundant is at most |V (G)| = n1+εr1/d+ε/d. Consider first an independent
set ZS such that ZS ∩ F 6= ∅. Since ZS ∩ F 6= ∅, it follows that the vertices
of the set S are not in the solution F , because otherwise the vertices of
ZS ∩ F would not have a private hyper-edge. But because S ∩ F = ∅,
the vertices of ZS ∩ F cannot be considered as redundant, since for every
vertex u ∈ ZS ∩ F , it covers the hyper-edge S ∪ {u}. Thus, no vertex of
the independent sets ZS can be removed as redundant. So the only vertices
which can be removed as redundant are the vertices initially in V (G). So
at most |V (G)| = n1+εr1/d+ε/d vertices can be removed as redundant. Since
|V (G)| < c(n1+dεr1+1/d) (for n and r sufficiently large and a constant c), it
follows that removing these redundant vertices will not change the order of
magnitude of the solution in G′′.

For the third property, we need to consider every possible minimal hitting
set of G′′ and prove that none of them is too large. So consider any subset I ⊆
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V (G) being an independent set of G. Our goal is to prove that any minimal
hitting set F of G′′ that satisfies V (G) \ I ⊆ F has a probability of being
too big smaller than 2−|V (G)|. Indeed, if we prove this, we can take the union
bound over all sets I and conclude that with high probability no minimal
hitting set ofG′′ is too big. So suppose now that we have fixed an independent
set I ⊆ V (G). We have |I| ≤ α(G) ≤ n1+εr2ε/d. We now make the following
observation: any minimal hitting set F which satisfies V (G) \ I ⊆ F cannot
contain any vertex of a set ZS if S ∩F 6= ∅; but may contain the t vertices of
an independent set ZS if S ∩F = ∅. The total number of such vertices in G′
is O(nd+dεr1/d+2ε), since it is an upper bound on mmhs(G′). So, by the same
argument as in the previous paragraph, the expected number of such vertices
which stay in G′′ is at most µ = cn1+dεr1/d+2ε, for a constant c. By using
the Chernoff bound, we have Pr[|X − µ| ≥ µ

2 ] ≤ 2e−µ/12. We claim that
2e−µ/12 = o(2−|V (G)|). Indeed, it follows since |V (G)| = n1+εr1/d+ε/d = o(µ).
Thus, the probability that a minimal hitting set being too large exists for
a fixed independent set I ⊆ V (G) is low enough so that taking the union
bound over all possible independent sets I give a probability that at least one
minimal hitting set is too big of value o(1). So we have with high probability
that no minimal hitting set of size greater than 3µ/2 exists. So we obtain
the third property.

Now that we have proved that G′′ satisfies these three properties, we will
show how to obtain the theorem. Suppose that, for sufficiently large r and
any ε > 0, there exists an approximation algorithm for Max Min Hitting
Set with ratio r1−3ε running in time N (N/r)1−4ε for graphs of order N . The
ratio of this algorithm is sufficiently small to distinguish between the two
cases in our graph G′′, as the ratio between mmhs(G′′) when φ is satisfiable
or not is Ω(r1−2ε) (for r sufficiently large). So we can use this approximation
algorithm to solve 3-Sat. Furthermore, we have the following:

N/r = Θ((n1+dεr1+1/d+ε)/r) = O(n1+(d+1)ε+1/d) = O(n1+ε+2ε1/2)

Therefore, (N/r)1−4ε = o(n). We obtain an algorithm for 3-Sat in time
N (N/r)1−ε = 2n1−ε′ for ε′ < ε chosen appropriately. This contradicts the
randomized ETH. So by adjusting r and ε, we get that no r-approximation
algorithm for Max Min Hitting Set can run in time N (N/r)1−ε for graphs
of order N . Thus we get the statement of the theorem.

With this hardness result for Max Min Hitting Set, and by using the
reduction of Bazgan et al. [BBC+18a], we get the following hardness result
for Upper Dominating Set:
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Theorem 4.20. For any ε > 0 and any sufficiently large r > 1, if there
exists an r-approximation for Upper Dominating Set running in time
n(n/r)1−ε, then the randomized ETH is false.

Proof. We start with an instance G′′ of Max Min Hitting Set obtained
from Theorem 4.19. From this instance, we construct an instance G∗ of
Upper Dominating Set by the Theorem 12 of Bazgan et al. [BBC+18a],
and we know that this reduction is approximation-preserving. So the gap
from the hardness result of Max Min Hitting Set stays the same for
Upper Dominating Set. Now observe that in Theorem 4.19, the number
of hyper-edges in G′′ has the same order of magnitude than the number of
vertices in G′′. Thus, the number of vertices in G∗ is linearly dependent on
the number of vertices in G′′. So an r-approximation algorithm for Upper
Dominating Set running in time n(n/r)1−ε would give an r-approximation
algorithm for Max Min Hitting Set with the same running time, which
would contradict Theorem 4.19 and the randomized ETH. So we obtain the
desired hardness result for Upper Dominating Set.

With the two Theorems 4.17 and 4.20, we have completely settled the
super-polynomial approximation of Upper Dominating Set.
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Conclusion

We have begun by introducing the basic notions about three main frame-
works to tackle NP-hard problems: the polynomial-time approximation, ex-
act algorithms, and the super-polynomial approximation. Indeed, we have
presented in the Introduction how to obtain algorithms in these frameworks,
as well as intractability results under some complexity assumptions.

We have then studied three domination NP-hard problems, under the
scope of private structure: Min Mixed Dominating Set, Max Min
Feedback Vertex Set and Upper Dominating Set. For each of these
problems, we have improved the state of the art in the different frameworks,
either by giving faster algorithms, or by designing better algorithms for which
we give a matching lower bound under some complexity assumptions show-
ing that our algorithms are the best algorithms we can hope under these
assumptions.

From these results, there are some questions that could be interesting to
investigate:

• For Min Mixed Dominating Set:

– Can we design FPT algorithms for this problem, with other pa-
rameters? Designing such an algorithm parameterized by the ver-
tex cover vc of the graph could be interesting due to the strong
relationship between these two problems (see Lemma 2.4).

– Can we improve the exact and FPT (parameterized by k) algo-
rithms for this problem, maybe using the measure-and-conquer
method?

– Can we obtain a super-polynomial approximation algorithm for
this problem matching the 2-approximation algorithm of Hatami
[Hat07] and our exact or FPT algorithm?

141
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• For Max Min Feedback Vertex Set:

– Can we design FPT algorithms for this problem? For example
parameterized by the treewidth tw and using the cut-and-count
method introduced by Cygan et al. [CNP+11] which gave a good
algorithm for the Min version Min Feedback Vertex Set.

– Can we improve the super-polynomial approximation of this prob-
lem from nO(n/r3/2) to cO(n/r3/2) for a constant c? Using an FPT
algorithm parameterized by the treewidth could improve such an
algorithm compared to our algorithm of Lemma 3.21 which out-
puts a constant factor approximation in exponential time of a
given feedback vertex set.

– Can we prove that the cubic kernel for this problem is the best we
can hope for?

• For Upper Dominating Set:

– Can we design a O∗(6tw) FPT algorithm parameterized by the
treewidth tw for this problem? The current best algorithm of
Bazgan et al. [BBC+18a] works in time O∗(10tw) and could be im-
proved, maybe using the fast subset convolution technique. Such
a result would automatically be optimal due to our O∗((6− ε)pw)
intractability result under the SETH.

– Can we improve the super-polynomial approximation of this prob-
lem from nO(n/r) to cO(n/r) for a constant c? Designing a subroutine
algorithm which would be able to determine the private neighbors
of a given set of vertices effectively would allow to obtain such a
running time.

Finally, some more optimistic direction would be to study more general
problems. For example, we could ask if we can design FPT algorithms pa-
rameterized by the treewidth tw for a large class of problems as the Max-Min
versions of domination-like problems? Recall that van Rooij et al. [vRBR09]
have obtained such general algorithms for the [ρ, σ]-Dominating Set prob-
lems using the fast subset convolution technique. An interesting question
would be determine if we can transfer such algorithms for the Max-Min and
Min-Max versions of [ρ, σ]-Dominating Set. Nonetheless, in contrary to
the connectivity versions of some NP-hard problems for which there exist
FPT algorithms parameterized by the treewidth running in time O∗((c+1)tw)
compared to the O∗(ctw) for the not connected version (see [CNP+11] for ex-
ample), such an additive ”plus one” in the base seems not to work for the
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Max-Min and Min-Max versions of the [ρ, σ]-Dominating Set problems.
Indeed, Max Independent Set can be solved in time O∗(2tw) and its Min-
Max version in time O∗(3tw), while Min Dominating Set can be solved
in time O∗(3tw) and its Max-Min version in at least O∗(6tw) (due to our in-
tractability result under the SETH). Nonetheless, it could be interesting to
focus on the Max-Min versions of the Min versions of [ρ, σ]-Dominating
Set.



Chapter 6

Appendix

3-Sat:
INSTANCE: A 3-CNF formula φ (that is a CNF formula where each clause has
at most 3 literals) over the variable set X.
QUESTION: Is there a truth assignment of the variables of X that satisfies all
clauses of φ?

Clique:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m, and
an integer k ≤ n.
QUESTION: Is there a clique, that is a set K of vertices such that any two
vertices of K are neighbors, of size at least k in G?

Dominating Set:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m, and
an integer k ≤ n.
QUESTION: Is there a dominating set, that is a set D of vertices such that for
all vertices u ∈ V , there exists a vertex v ∈ N [u] ∩D, of size at most k?

Independent Set:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m, and
an integer k ≤ n.
QUESTION: Is there an independent set of size at least k in G?
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k-Sat:
INSTANCE: A k-CNF formula φ (that is a CNF formula where each clause has
at most k literals) over the variable set X.
QUESTION: Is there a truth assignment of the variables of X that satisfies all
clauses of φ ?

Max-3-Sat:
INSTANCE: A 3-CNF formula φ (that is a CNF formula where each clause has
at most 3 literals) over the variable set X.
QUESTION: Determine the maximum number of clauses a truth assignment
can satisfy in φ.

Max Independent Set:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the maximum size of an independent set in G, i.e., of
a subset I ⊆ V of vertices of maximum size such that for any two vertices
u, u′ ∈ I there is no edge (u, u′) ∈ E.

Max Min Feedback Vertex Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: determine the maximum size of a minimal feedback vertex set in
G, i.e., of a subset S ⊆ V of vertices of maximum size which forms a minimal
feedback vertex set, that is a set S such that for every cycle of G at least one
vertex from this cycle is in S, and which is inclusion-wise minimal that is if
we remove a vertex from S it is not a feedback vertex set anymore.

Max Min Hitting Set:
INSTANCE: An hypergraph G = (V,A), with |V | = n and |E| = m.
QUESTION: Determine the maximum size of a minimal hitting set in G, i.e.,
of subset C ⊆ V of vertices of maximum size which forms a minimal hit-
ting set, that is a set of vertices that cover all hyper-edges of G, and which
is inclusion-wise minimal that is if we remove a vertex from C it is not an
hitting set anymore.
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Max Min Vertex Cover:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the maximum size of a minimal vertex cover in G, i.e.,
of a subset C ⊆ V of vertices of maximum size which forms a minimal vertex
cover, that is a subset C of vertices such that all edges of G are covered by
the vertices of C, and which is inclusion-wise minimal that is if we remove a
vertex from C it is not a vertex cover anymore.

Min Distance-2-Dominating Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a distance-2-dominating set in G,
i.e., of a set D ⊆ V of vertices of minimum size which forms a distance-2-
dominating set, that is a set of vertices D such that every vertex u ∈ V \D
is at distance at most 2 from a vertex of D.

Min Dominating Set:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a dominating set in G, i.e., of a
set D ⊆ V such that for all vertices u ∈ V , there exits a vertex v ∈ N [u]∩D,
of minimum size.

Min Edge Cover:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum sie of an edge cover in G, i.e., of a subset
M ⊆ E of edges that dominates all vertices of G.

Min Edge Dominating Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of an edge dominating set in G, i.e.,
of a subset M ⊆ E of edges that dominates all edges of G.
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Min Independent Dominating Set:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of an independent dominating set
in G, i.e., of a subset I ⊆ V of vertices of minimum size such that any two
vertices of I are not adjacent, and all vertices of V have at least one neighbor
in S.

Min Feedback Vertex Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a feedback vertex set in G, i.e. of
a subset S ⊆ V of vertices of minimum size which forms a minimal feedback
vertex set, that is a set S such that for every cycle of G at least one vertex
from this cycle is in S.

Min Max Matching:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a maximal matching in G, i.e., of
a maximal matching, i.e. a set of edges M such that each edge e ∈ E is
adjacent to an edge of M , of minimum size.

Min Mixed Dominating Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a mixed dominating set in G, i.e.
of a set D ∪M , that is a set of vertices D ⊆ V and a set of edges S ⊆ E
such that V ∪ E is dominated, of minimum size.

Min Vertex Cover:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the minimum size of a vertex cover in G, i.e., of a subset
C ⊆ V of vertices of minimum size such that for every edge (u, v) ∈ E, at
least one of u and v is in C.
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Mixed Dominating Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m, and an integer
k ≤ n+m.
QUESTION: Is there a mixed dominating set D ∪M , that is a set of vertices
D ⊆ V and a set of edges M ⊆ E such that V ∪ E is dominated, of size at
most k ?s

q-CSP-B:
INSTANCE: A CSP instance with n variables and m constraints, where the n
variables take values over a set of size B, and each constraint involves at
most q variables, and is given as a list of acceptable assignments for these
variables.
QUESTION: Is there an evaluation that satisfies all constraints ?

Sat:
INSTANCE: A CNF formula φ over the variable set X.
QUESTION: Is there a truth assignment of the variables of X that satisfies all
clauses of φ ?

Upper Dominating Set:
INSTANCE: A graph G = (V,E), with |V | = n and |E| = m.
QUESTION: Determine the maximum size of an upper dominating set in G, i.e.,
of a subset D ⊆ V of vertices of maximum size and which forms a minimal
dominating set, that is a set D such that every vertex v ∈ V \D is adjacent
to a vertex of D, and which is inclusion-wise minimal, that is if we remove a
vertex from D it is not a dominating set anymore.

Vertex Cover:
INSTANCE: An undirected graph G = (V,E), with |V | = n and |E| = m, and
an integer k ≤ n.
QUESTION: Is there a vertex cover of size at most k in G ?
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MOTS CLÉS

Problèmes NP-difficiles, Approximation, Complexité Paramétrée

RÉSUMÉ

Pour résoudre des problèmes NP-difficiles, plusieurs paradigmes ont été développés durant les dernières décennies :
l’approximation polynomiale, la résolution exacte, ou encore l’approximation super-polynomiale. Aussi, il a été prouvé
que sous certaines hypothèses de complexité, il est impossible d’obtenir certains algorithmes. Dans cette thèse, nous
présentons certaines méthodes permettant d’obtenir des algorithmes dans ces différents paradigmes, ainsi que des
méthodes pour obtenir des résultats d’impossibilité. Nous illustrons ces méthodes en les mettant en œuvre sur trois
problèmes de domination NP-difficiles qui possèdent une structure privée: Min Mixed Dominating Set, où l’on cherche un
ensemble minimum d’arêtes et de sommets qui dominent toutes les arêtes et sommets du graphe ; Max Min Feedback
Vertex Set, où l’on cherche un feedback vertex set minimal de taille maximum ; et Upper Dominating Set, où l’on cherche
un dominating set minimal de taille maximum.

ABSTRACT

To tackle NP-hard problems, several paradigms have been developed in the last decades: the polynomial-time approxi-
mation, the exact resolution, or the super-polynomial approximation. Moreover, under some complexity assumptions, it
has been proven that it is impossible to obtain certain algorithms. In this thesis, we present some methods which allow to
obtain algorithms in these paradigms, as well as some methods to obtain intractability results. We illustrate these meth-
ods on three NP-hard domination problems which possess some private structure: Min Mixed Dominating Set, where we
seek a minimum size set of edges and vertices which dominate all edges and vertices of the graph; Max Min Feedback
Vertex Set, where we seek a minimal feedback vertex set of maximum size; and Upper Dominating Set, where we seek
a minimal dominating set of maximum size.
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