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Résumé

Dans cette thèse, nous développons une technique de réduction de modèles pour les problèmes
vibro-acoustiques transitoires paramétriques dans un code de calcul par éléments �nis indus-
triel, code_aster, dans le but de traiter des problèmes de complexité industrielle. En particulier,
l'approche est illustrée ici pour le problème du dimensionnement des structures immergées as-
sujetties à une explosion sous-marine. Trois formulations du couplage vibro-acoustique sont
considérées dans ce travail : formulation en déplacement structure - pression �uide (us, p),
formulation en déplacement structure - potentiel de vitesse �uide (us, φ) et formulation en
déplacement structure - potentiel de déplacement �uide - pression �uide (us, p, ϕ). Pour com-
mencer, nous implémentons dans code_aster deux nouvelles formulations, les formulations en
(us, p) et en (us, φ) ainsi que les chargements provenant d'une onde de choc. Ensuite, di�érentes
techniques de stabilisation de modèles d'ordre réduit basé sur la projection de Petrov-Galerkin
sont proposées. Selon les techniques de stabilisation proposées, nous ajoutons quelques modi-
�cations dans l'algorithme glouton et POD-Glouton classiques dans la construction de la base
réduite. Nous traitons aussi le cas où la dépendance en paramètre n'est pas a�ne. Dans ce
cas, nous proposons d'utiliser la Méthode d'Interpolation Empirique (EIM) de manière pure-
ment algébrique et en boite noire pour retrouver une approximation sous la forme a�ne en
paramètre. Ce point est nécessaire dans la construction d'un procédure hors-ligne/en-ligne
e�cace pour assurer la performance des modèles d'ordre réduits dans la phase en ligne. Le
cas où la géométrie de la structure est considérée comme un paramètre du problème est aussi
abordé dans cette thèse. Dans ce cas, nous choisissons la méthode basée sur le déplacement
d'un maillage au sens d'un solide déformable (SEMMT) pour paramétrer la variabilité de la
forme de la structure. Quelques études numériques et les applications industrielles sont aussi
présentées pour illustrer l'e�cacité des techniques de réduction de modèles proposées.

Mots clés : Méthode des éléments �nis, Couplage vibro-acoustique, Interaction de la
structure immergée et l'onde de choc acoustique, Explosion sous-marine, Réduction de modèles,
Méthode d'Interpolation Empirique (EIM), Technique de déplacement du maillage au sens d'un
solide déformable (SEMMT), Algorithme POD-Glouton.
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Abstract

In this thesis, we developed a reduced order modelling framework for parametrized time-domain
vibro-acoustic �nite element model into an open-source industrial software, code_aster, with
the aim of tackling large scale industrial problems. In particular, it is illustrated here for
the design of submerged structures subjected to underwater explosion. Three formulations of
vibro-acoustic coupling are considered in this work: formulation in structure displacement -
�uid pressure - �uid displacement potential (us, p, ϕ), in structure displacement - �uid pres-
sure (us, p) and in structure displacement - �uid velocity potential (us, φ). First, we implement
within code_aster two new formulations, in (us, p) and in (us, φ), and the excitation induced by
the primary acoustic shock wave. Next, di�erent stabilization techniques for Petrov-Galerkin
projection based model order reduction are proposed for each formulation. According to the
stabilization techniques in hand, we propose to make some modi�cations in the classical Greedy
and POD-Greedy algorithm for the construction of the reduced basis. We deal both in the case
of a�ne and non-a�ne parametrized problems. In the case of non-a�ne parametrized prob-
lem, we propose to exploit the Empirical Interpolation Method (EIM) in a purely algebraic
and black box way for recovering an approximation with an a�ne parameter dependence. This
is one of the main ingredients for the construction of an e�cient o�ine/online decomposition
procedure to ensure the performance of the reduced order models at the online stage. We also
consider the case where the geometry of the structure domain represents the parameter of the
problem, for which we chose to employ the Solid Extension Mesh Moving Technique (SEMMT)
for parametrizing the varying shape domain (mesh). Some numerical studies and some indus-
trial applications are also performed in order to illustrate the e�ciency of the proposed reduced
order modelling framework.

Keywords: Finite element method, Vibro-acoustic coupling, Interaction of submerged
structure and acoustic shock wave, Underwater explosion, Model order reduction, Empirical In-
terpolation Method (EIM), Solid Extension Mesh Moving Technique (SEMMT), POD-Greedy
Algorithm.
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Introduction

Vibro-acoustic phenomena, which is one of the �uid-structure interaction problem, are inter-
ested in noise and vibration of structure systems in presence of a compressible �uid. Many
industrial problems are involved by this phenomena, for instance the noise reduction in auto
motive industry, the acoustic discretion and target identi�cation in naval industry, the design
of structures for seismic loading in nuclear engineering, ...

In this thesis, we are mainly interested in a particular case of naval industry where vibro-
acoustic coupling is introduced by the interaction of the submerged structure and the primary
acoustic shock wave generated by an underwater explosion [40]. The prediction of the behaviour
of the submerged structures under these kind of excitations is of paramount importance in the
design of the hulls and appendices of submarine and in the safety justi�cation of equipments
inside the submarine. In both cases, the design of structures requires the prediction of some
physical quantities over a range of values of the model parameter. In the design of the hull and
the appendix of submarine, the main parameter can be for instance the mechanical properties,
the geometry of the structure and the characteristics of the underwater explosion. In the safety
justi�cation of the equipments inside of the submarine, the main parameters can be the size and
the material constitutive of the equipment and the characteristic of the underwater explosion.

Figure 1: First example of industrial problem involved by vibro-acoustic phenomena: Compu-
tation of Von-Mises stresses in an elastic propeller under a primary shock wave of underwater
explosion using a �nite element model.

11



INTRODUCTION

Some analytical and semi-analytical approaches have been proposed in [28, 82] to allow this
parametric analysis. However, the proposed methods are restricted to a very simple geometry
of the structure. Numerical modelling of vibro-acoustic problem is still required in order to
tackle the case where the structure under consideration has a complex geometry.

Figure 2: Second example of industrial problem involved by vibro-acoustic phenomena: Anal-
ysis of the behaviour of an equipment (modelled by a spring-mass system) inside a submarine
subjected to the primary shock wave of underwater explosion with a �nite element model.

In the �eld of numerical vibro-acoustics, one of the most commonly used numerical methods
is the �nite element method [51, 127]. Finite element modelling of vibro-acoustic problem is
nowadays available in many industrial software. The open-source software code_aster [52],
which is developed since the last three decades by EDF R&D, provides also this possibility.

For industrial problems, the number of degrees of freedom in the �nite element models is
usually huge which makes the use of these high-�delity models una�ordable in the situation
where the physical quantities of interest must be evaluated for a huge number of parameters
values, as required in our problems stated above. To overcome this bottleneck, we can turn to
model order reduction techniques which aim at reducing the computational complexity and the
costs associated with the high-�delity models, also called the full order model (FOM), without
losing signi�cantly the accuracy. The main idea of reduced order modelling techniques consists
in replacing the full order model (FOM) by a reduced order model (ROM), featuring a much
lower dimension, but still able to express accurately the physical quantities of interest of the
problem under consideration.

Originally introduced in the 1970's for non-linear structural analysis in [3, 102] and analysed
in [18, 110], the reduced basis method (RBM) emerged as one of the most successful reduced
order modelling technique for parametrized Partial Di�erential Equations (PDEs). The reduced
basis method has been applied in the di�erent types of time-independent PDEs for instance in
harmonic Maxwell's equations in [38], in elasticity problem [73, 123], in steady Navier-Stokes
equation in [91]. For parametrized frequency domain vibro-acoustic problems, a reduced order
modelling based on the reduced basis method has also been recently analysed in [83].

12
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Objectives of thesis

In the previous context of collaboration of Naval Group and EDF R&D, the greedy algo-
rithm for the construction of the reduced basis proposed in [83] has been implemented in the
source of code_aster. Even though the reduced order modelling of parametrized frequency
vibro-acoustic problem can be already su�cient in some applications in naval engineering, for
instance in acoustic discretion under hydrodynamic loading in [85], other applications such
as the design of submerged structures to transient loads induced for instance by underwater
explosion, require the extension to the case of time-domain problem.

The main objective of this thesis is to propose and implement a parametrized stable reduced
order model for time-domain vibro-acoustic problem in the open-source software code_aster.
Afterwards, the application of the proposed reduced order modelling techniques into the inter-
action of submerged structure and underwater explosion's primary shock wave problem is our
main targets.

Thesis contributions

For vibro-acoustic problems, there are various formulations depending on the choice of the
variables to describe the state of the �uid and the structure. Since the formulation based on
structure displacement - �uid pressure - �uid displacement potential (us, p, ϕ), which is the
only formulation already implemented in code_aster, is not the best formulation for our prob-
lem of interest, the �rst work of the thesis is to implement two new formulations. The �rst
one is the formulation based on structure displacement - �uid pressure (us, p) and the second
one is the formulation based on structure displacement - �uid velocity potential (us, φ). The
loading induced by the primary shock wave of an underwater explosion is also implemented
and validated during the thesis.

For time-dependent problem, one of the main challenges in model order reduction is to
preserve the stability of the original full order model. The second contribution of this thesis
is to propose a stabilization technique in reduced order modelling of these three �nite element
formulations. The stabilization technique for the formulation in (us, p) and in (us, φ) has al-
ready been proposed in the literature [121]. For the formulation in (us, p, ϕ), a stabilization
technique is proposed in this thesis. To start, we are interested in the reduced basis con-
structed by a greedy algorithm applied in the corresponding frequency domain, as proposed
in [83]. According to the stabilization techniques in hand, some modi�cations in the classical
greedy algorithm are then introduced. Numerical results on the study of the stability and the
accuracy of the proposed reduced order models are then given.

As we observed numerically that the reduced basis based on the frequency domain solution
is not accurate enough for the high frequency excitation, which is the case of our problem
of interest, we propose to use alternative method for constructing an accurate reduced basis.
Based on the idea of POD-Greedy Algorithm [64, 65, 107], we propose an algorithm to built
a stable parametrized reduced order model for each formulation. We divide the reduced order
modelling framework into two cases. First, we assume an a�ne parameter dependence on the
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operators and the right-hand side of the �nite element model. It occurs when the properties of
constitutive material of the structure, such as the Young's modulus or the density, play the role
of the parameter in our problem. Then, we consider the cases for which this assumption is no
longer valid. For examples, these cases occur when we consider the geometry of the structure
domain as the parameter of the problem. To recover the e�ciency of the reduced order model,
which is mainly based on the a�ne dependence in parameter assumption, we proposed to
exploit the Empirical Interpolation Method (EIM) [17] purely in an algebraical and black
box way. For the shape parametrization, we proposed to employ the mesh motions technique
[115, 117]. In both cases of a�ne and non-a�ne parametrized problems, some numerical results
and industrial applications are also given in order to illustrate the e�ciency of the proposed
reduced order modelling technique.

Organization of manuscript

This manuscript is divided into two parts.

In the �rst part, we give an introduction to the �nite element modelling of the problem of
interest. This part is divided into two chapters :

� Chapter 1 describes the �nite element models of time-domain vibro-acoustic problem.
Three formulations are considered : formulation in (us, p), formulation in (us, φ) and
formulation in (us, p, ϕ). These three formulations are presented in terms of strong
formulation (i.e in form of a PDE) as well as in terms of �nite element models. The main
advantages and drawbacks of each formulation are also pointed out.

� In Chapter 2, we focus on the �nite element modelling of the interaction of submerged
structure and underwater explosion's primary acoustic shock wave problem. This chap-
ter starts with a short introduction on the underwater explosion phenomena. Next, an
overview on di�erent formulations of the corresponding �nite element model of the con-
sidered �uid-structure interaction problems is given. To validate the implementation of
the loading induced by the shock wave and the formulation in (us, p) and in (us, φ) in
code_aster, two study cases are presented. The �rst one is a 2D con�guration academical
problem for which a semi-analytical solution is available. The second validation case is
an extension of the �rst study case into a 3D con�guration.

In the second part, the reduced order modelling techniques are considered. This part is
divided into three chapters :

� Chapter 3 gives an introduction to the reduced order modelling technique of time-domain
vibro-acoustic problem. The focus in this chapter is mainly put on the stability-preserving
model order reduction. Di�erent stabilization techniques are presented for each formula-
tion given in Chapter 1-2. We are also interested in the accuracy of reduced order models
based on the reduced basis of the frequency domain. Two numerical studies are given in
order to verify the stability and investigate the accuracy of the proposed reduced order
models.

14
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� Chapter 4 aims at extending the approach proposed in Chapter 3 into the case of a
parametrized time-domain vibro-acoustic problem. Since we observed numerically in
Chapter 3 that the reduced basis based on the frequency is not accurate enough, we
propose to use an alternative way to construct the reduced basis based on the well known
POD-Greedy Algorithm [64, 65, 107]. Numerical experiments on the e�ciency and the
application of the proposed reduced order modelling framework in the industrial problems
are then investigated.

� Chapter 5 is devoted to extend the reduced order modelling framework proposed in Chap-
ter 4 into the case where the a�ne parameter dependence assumption is not valid. We
are also interested in the case where the geometry of the domain represents the param-
eter of the problem. For the construction of the parametrized mesh, the mesh motions
technique [115, 117] is used. By exploiting the Empirical Interpolation Method (EIM)
[17] purely in an algebraical way to obtain an approximation in form of a�ne parame-
ter dependence, a framework of reduced order model is then proposed and investigated
numerically. Numerical results in the industrial problems are also presented to show the
e�ciency of the proposed reduced order modelling framework.

Finally, conclusions arising from this work and suggestions for future works are o�ered in
the last part of the manuscript. It is then followed by some appendices.
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Chapter 1

Finite element modelling of

vibro-acoustic problem

Various industrial problems, ranging from civil to naval engineering, from power nuclear to
aerospace industries, are concerned by Fluid-Structure Interaction (FSI). In the most general
cases, Fluid-Structure Interaction has to be taken into account in the model when a structure is
in contact with a �uid. Vibro-acoustic problem is one of the �uid-structure interaction problem
which is involved in noise and vibration of structure systems in presence of a compressible �uid.
In the �eld of vibro-acoustic simulation, one of the most commonly used numerical methods
is the �nite element method [51, 127]. The purpose of this chapter is to give an overview
on the �nite element modelling of transient vibro-acoustic problems. In the �rst section, the
modelling assumptions of vibro-acoustic coupling are presented. Depending on the choice of
the variables to describe the state of the �uid, di�erent formulations of vibro-acoustic coupling
can be found in the literature (for instance, see [53, 54, 97, 113]). In this chapter, we are
only interested in three di�erent formulations: formulation in displacement structure-pressure
(us, p), formulation in displacement structure-�uid velocity potential (us, φ) and formulation
in displacement structure-pressure-�uid displacement potential (us, p, ϕ). A short presentation
of these three formulations is given in Section 1.2. Formulation in (us, p, ϕ) is actually the only
formulation implemented in the o�cial version of code_aster. The formulation in (us, p) and
in (us, φ) are implemented in code_aster [52] during the thesis.

1.1 Modelling of vibro-acoustic coupling

Vibro-acoustic systems, which are also called structural acoustic systems or �uid-structure

interaction for compressible �uid, concern noise and vibration of structure systems coupled
with acoustic �uids. Vibro-acoustic problem can be distinguished in two main categories:

� interior problem where the �uid is contained in a structure as illustrated in Figure 1.1a,

� exterior problem where the structure is totally submerged in an unbounded �uid domain
as illustrated in Figure 1.1b.

In this section, we recall the basic equations governing the structure and the �uid of vibro-
acoustic problem. Let us denote by Ωs and Ωf the volume occupied by the structure and the
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1.1. MODELLING OF VIBRO-ACOUSTIC COUPLING

�uid, respectively. We assume here that Ωs and Ωf are two regular open sets of Rd (with d =

2 or 3) and we denote by Γ the interface between the structure and the �uid (see Figure 1.1).
It is considered here that the coupled system is in the context of small perturbation around
its steady state, in which the �uid and the structure are at rest, and that the e�ects of gravity
are neglected. In the following subsections, we give a review of the equations which describe
the motion of structure, the motion of �uid and the coupling condition respectively in Section
1.1.1, 1.1.2 and 1.1.3.

(a) interior problem

(b) exterior problem

Figure 1.1: Geometrical representation of a vibro-acoustic coupling

1.1.1 Structural equations

Under the assumption of small perturbation, the dynamic motion of the structure is classically
described by [86, 113]: 

ρsüs − div σs(us) = 0 in Ωs

σs(us) · ns = fs on ΓN

us = 0 on ΓD

(1.1)

where ρs is the density of the structure, σs is Cauchy stress tensor, ns is outward unit normal
vector of the domain Ωs and us is the displacement �eld of structure. The �rst equation of the
system (1.1) is known as the momentum balance equation in the structure in absence of the
external volume force. The second and the third equations are respectively the Neumann and
Dirichlet boundary conditions.

The relation between the Cauchy stress tensor σs and the displacement �eld us is modelled
by the constitutive equation. First, let us recall the notion of the strain tensor which is is given
by:

es(us) :=
1

2
[∇us +∇uTs +∇uTs · ∇us] (1.2)

Under the small perturbation assumption, the second order contribution of displacement can
be discarded in the displacement-strain relation (1.2), so that we have:

es(us) ≈ εs(us) :=
1

2
[∇us +∇uTs ] (1.3)
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1.1. MODELLING OF VIBRO-ACOUSTIC COUPLING

where εs is called linearised strain tensor.
In the following, we recall the constitutive equation of a linear elastic isotropic material. In

the case that the structure is supposed to be constituted by a linear elastic material, we have
the relation between the Cauchy stress tensor σs and the linearised strain tensor εs:

σs(us) = C : εs(us) (1.4)

where C is a symmetric tensor of order 4 which depends on the properties of the material. In

addition, if the structure constitutive material is supposed to be homogeneous and isotropic
which means that the material properties are constant through out the volume occupied by the
structure and they do not depend on any particular direction of observation, the constitutive
equation is described by the Hooke law which can be formulated in various equivalent ways, all
using two material parameters. A formulation of the Hooke law can be expressed as follow:

σs(us) = λ div(us)1 + 2µεs(us) (1.5)

where λ and µ are the Lamé coe�cients and 1 denotes the identity tensor. The material
properties of an isotropic linear elastic can also be characterized by the Young's modulus E
and the Poisson's ratio ν. The Young's modulus measures the sti�ness of the material. The
value of Poisson's ratio varies between -1 and 0.5. It quanti�es the Poisson e�ect: when
stretched in a given direction, the material tends to contract (when ν > 0) or expand (when
ν < 0) in other directions. Most materials have Poisson's ratio ranging between 0 (for material
which tends to be insensitive to the Poisson e�ect) and 0.5 (in which case the material tends to
be incompressible). The relation between E and ν with the Lamé coe�cients λ and µ writes:

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
(1.6)

and inversely

λ = E
ν

(1 + ν)(1− 2ν)
, µ = E

1

2(1 + ν)
(1.7)

For the case where the structure material has more complex constitutive law, such as
anisotropic elasticity, we refer to [19, 86, 89].

1.1.2 Fluid equations

We recall that the coupled system is supposed to be in the context of small perturbation
around its steady state where the �uid and the structure are both at rest. Moreover, we
neglect the e�ects of gravity. At the �rst order, the momentum conservation equation and the
mass conservation equation are given respectively by [97, 113]:

ρ0üf − div σf = 0, in Ωf (1.8)

ρ̇f + ρ0div u̇f = 0, in Ωf (1.9)

where ρ0 is the �uid density at the steady state, σf is Cauchy stress tensor in the �uid, ρf is

the �uid density and uf is the displacement �eld of �uid.
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Since the �uid is supposed to have a linear acoustic behaviour, we have the following relation
between the stress tensor σf and the pressure p:

σf = −p1 (1.10)

and the relation between the density ρf and the pressure p:

p = c2
0ρf (1.11)

where c0 is the speed of sound in the �uid.

The state of the �uid can be described by various variables. In the following, we give a
review of the �uid equations in terms of pressure p, velocity potential φ and displacement
potential ϕ.

Fluid equations in terms of pressure

The state of the �uid is usually described by the pressure. Taking the divergence of the
momentum conservation equation (1.8) and using the relation (1.10) gives:

ρ0div üf + ∆p = 0, in Ωf (1.12)

while a time derivation of the mass conversation equation (1.9) combining with the relation
(1.11) provides:

1

c2
0

p̈+ ρ0divüf = 0, in Ωf (1.13)

Injecting the relation ρ0divüf = −p̈/c2
0, given from Equation (1.13), into Equation (1.12) yields

the wave equation formulated in terms of pressure:

1

c2
0

p̈−∆p = 0, in Ωf (1.14)

Fluid equations in terms of velocity potential

The state of the �uid can also be described by the velocity potential φ which is de�ned by:

u̇f = ∇φ (1.15)

Using the relations (1.10)-(1.15) in the momentum conservation equation (1.8) provides:

∇(p+ ρ0φ̇) = 0, in Ωf (1.16)

which implies the relation between the pressure and the velocity potential:

p = −ρ0φ̇ (1.17)
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Using the relations (1.11)-(1.17) and the de�nition of velocity potential φ in the relation (1.15)
in the mass conservation equation (1.9) yields the wave equation for φ:

1

c2
0

φ̈−∆φ = 0, in Ωf (1.18)

Fluid equations in terms of displacement potential and pressure

Let us describe here the state of the �uid by two variables: the pressure p and the displacement
potential ϕ which is de�ned by:

uf = ∇ϕ (1.19)

Using the relations (1.10)-(1.19) in the momentum conservation equation (1.8) provides:

∇(p+ ρ0ϕ̈) = 0, in Ωf (1.20)

which gives the �rst the relation of the pressure and the velocity potential:

1

ρ0c2
0

p+
1

c2
0

ϕ̈ = 0, in Ωf (1.21)

Taking a time derivation of the mass conservation equation (1.9) and using the relations (1.11)-
(1.19) gives another relation of the pressure and the velocity potential:

1

c2
0

p̈+ ρ0∆ϕ̈ = 0, in Ωf (1.22)

1.1.3 Interface �uid-structure equations

On the �uid-structure interface Γ, we have the continuity of normal stress and the normal
displacement which are given respectively by equations (1.23) and (1.24):

σs(us) · ns = −pns (1.23)

us · ns = uf · ns (1.24)

Since the �uid and the structure are supposed to be at rest initially, the continuity of normal
displacement is equivalent to the continuity of normal velocity or to the continuity of normal
accelerations which are given respectively by Equations (1.25) and (1.26):

u̇s · ns = u̇f · ns (1.25)

üs · ns = üf · ns (1.26)

Interface �uid-structure equations in terms of us and p

The continuity of normal stress described by Equation (1.23) is already expressed in terms of
us and p. Let us now express the continuity of normal acceleration in terms of us and p. By
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using the relation (1.10) in the momentum conservation equation (1.8), we have the relation
between the displacement �eld uf and the pressure p:

üf = − 1

ρ0
∇p (1.27)

which implies that the continuity of normal acceleration described by Equation (1.26) is equiv-
alent to:

üs · ns = − 1

ρ0
∇p · ns (1.28)

Interface �uid-structure equations in terms of us and φ

Let us now express the �uid-structure interface equations in terms of us and φ. By using the
relation (1.17) in (1.23) and the de�nition of the velocity potential (1.15) in (1.25), the interface
�uid-structure equations are equivalent to:

σs(us) · ns = ρ0φ̇ns (1.29)

u̇s · ns = ∇φ · ns (1.30)

Interface �uid-structure equations in terms of us and ϕ

Let us now express the interface �uid-structure equations in terms of us and ϕ. By using the
relation (1.21) in (1.23) and the de�nition of the displacement potential (1.19) in (1.26), the
interface �uid-structure equations are equivalent to:

σs(us) · ns = ρ0ϕ̈ns (1.31)

üs · ns = ∇ϕ̈ · ns (1.32)

1.1.4 Modelling of radiation condition for exterior problem

For exterior problem, the propagation wave in the �uid must comply with the radiation con-
dition, also known as the Sommerfeld condition which stipulates that waves are not re�ected
at in�nity. The radiation condition is formulated as follows:

lim
r→∞

r(d−1)/2

(
∇p · nf +

ṗ

c0

)
= 0 (1.33)

The Sommerfeld condition is stated as an asymptotic condition so that its numerical imple-
mentation with �nite element-based techniques is not straightforward. To alleviate this, one
can use an approximation of this radiated condition which allows for a �nite element represen-
tation. In the following, we present an approximation of Sommerfeld condition proposed by the
BGT method in [22] (which is named after its authors: A. Bayliss, M. Gunzburger, E. Turkel).
A truncated �uid domain at �nite distance is required in order to use the BGT method, as
illustrated in Figure 1.1. The geometry of the enclosing volume can be varied depending on
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the problem to be tackled. A speci�c boundary condition is then imposed on the boundary of
the truncated domain. The zero-order radiation condition (BGT-0) is de�ned by:

∇p · nf +
ρ0

ZC
ṗ = 0 (1.34)

where ZC = ρ0c0. Note that the zero-order BGT condition (1.34) is equivalent to the exact
condition of radiation for plane wave propagation. The �rst-order radiation condition (BGT-1)
is de�ned by:

∇p · nf + ρ0

(
1

ZC
ṗ+

1

ZR
p

)
= 0 (1.35)

where ZC = ρ0c0. To approximate the behaviour of a wave asymptotically by a cylindrical
(spherical) wave travelling to in�nity, it is usual to truncate �uid domain as a cylinder or half-
cylinder (sphere or half sphere) with radius R and the value of the constant ZR is given by
ZR = 2ρ0R (ZR = ρ0R). Note that the �rst-order BGT condition (1.35) is equivalent to the
exact condition of radiation for spherical wave propagation.

For high-order BGT method, we refer to [22, 67, 94, 113]. For other modelling of radiation
condition techniques, we refer to [23] for the Perfectly Matched Layer, to [78] for the Dirichlet
to Neumann map and to [9, 10, 11, 29] for the In�nite Element.

1.2 Finite element models of time-domain vibro-acoustic prob-

lem

In the previous section, we see that we can use various variables to describe the state of the �uid
in the coupled system. The di�erent choices of the variable to describe the state of the �uid give
di�erent coupling formulations. In this chapter, we consider only three coupling formulations
in which the state of the structure is always described by the displacement us. The �rst one
is the formulation in (us, p), where the state of the �uid is described by the pressure p. The
second formulation is the formulation in (us, φ), where the state of the �uid is described by
velocity potential φ. The last formulation is the formulation in (us, p, ϕ) where the state of the
�uid is described by two variables: the pressure p and the displacement potential ϕ.

1.2.1 Formulation in (us, p)

The most natural vibro-acoustic coupling is in (us, p) couple since these two variables represent
two physical quantities of the problem. The strong formulation in (us, p) couple of an interior
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problem is given by: 

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

σs(us) · ns = fs on ΓN

us = 0 on ΓD

σs(us) · ns = −pns on Γ

üs · ns = − 1

ρ0
∇p · ns on Γ

1

c2
0

p̈−∆p = 0 in Ωf

(1.36)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest and
we assume that fs ∈ L2(]0, T [;L2(ΓN )d). The corresponding weak formulation of the problem
(1.36) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩ C1([0, T ];L2(Ωs)
d) and p ∈ C([0, T ];H1(Ωf )) ∩

C1([0, T ];L2(Ωf )) such that for all (δus, δp) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

+

∫
Γ
p(t,x)[δus(x) · ns(x)]dx =

∫
ΓN

fs(t,x) · δus(x)dx

d2

dt2

∫
Ωf

1

c2
0

p(t,x)δp(x)dx+

∫
Ωf

∇p(t,x) · ∇δp(x)dx

− d2

dt2

∫
Γ
ρ0[us(t,x) · ns(x)]δp(x)dx = 0

(1.37)

The dynamic of the coupled problem spatially discretized using �nite element method are
then described by the set of ordinary di�erential equations:[

Ms 0

−ρ0K
T
c Mf

]
︸ ︷︷ ︸

Mup

[
Üs

P̈

]
+

[
Ks Kc

0 Kf

]
︸ ︷︷ ︸

Kup

[
Us

P

]
=

[
Fs

0

]
(1.38)

where the vector Us and P contains respectively the nodal value of structural displacement
and �uid pressure. The sub matrices Ms, Mf , Ks, Kf , Kc and the right-hand side F are
de�ned by:

(Ms)ij =

∫
Ωs

ρsN
s
i ·Ns

j , (Ks)ij =

∫
Ωs

εs(N
s
j) : C : εs(N

s
i )

(Mf )ij =

∫
Ωf

1

c2
0

Nf
i N

f
j , (Kf )ij =

∫
Ωf

∇Nf
i ·∇Nf

j

(Kc)ij =

∫
Γ
Nf
j (Ns

i · ns) , Fi =

∫
ΓN

fs ·Ns
i

(1.39)

where (Ns
i )i=1,··· ,ns and (Nf

i )i=1,··· ,nf are the �nite element basis functions in the structural
part and in the �uid part, respectively. The matrices Ms, Mf are known as the mass matrices
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of the structural part and the �uid part, respectively. The matrices Ms, Mf are symmetric
positive de�nite. The matrices Ks, Kf are known as the sti�ness matrices of the structural
part and the �uid part, respectively. The matricesKs,Kf are symmetric positive semi-de�nite.
The matrix Kc represents the vibro-acoustic coupling matrix.

In the case of exterior problem where the radiated condition is approximated by BGT-1
method, which imposes the boundary condition (1.35) on the truncated boundary Γ∞, the
dynamic of the coupled problem spatially discretized using �nite element method are then
described by the set of ordinary di�erential equations:[

Ms 0

−ρ0K
T
c Mf

]
︸ ︷︷ ︸

Mup

[
Üs

P̈

]
+

[
0 0

0 ρ0
ZC
Q

]
︸ ︷︷ ︸

C
ext
up

[
U̇s

Ṗ

]
+

[
Ks Kc

0 Kf + ρ0
ZR
Q

]
︸ ︷︷ ︸

K
ext
up

[
Us

P

]
=

[
Fs

0

]
(1.40)

where the matrix Q is a positive semi-de�nite matrix, de�ned by:

Qij =

∫
Γ∞

Nf
i N

f
j (1.41)

Even though the matrices Ms, Mf , Ks and Kf are symmetric, the mass matrix Mup and
the sti�ness matrices Kup, Kext

up of the coupled system are not symmetric which is a major
disadvantage of this coupled formulation.

1.2.2 Formulation in (us, φ)

In order to obtain a symmetric formulation, Everstine proposes in [53] an alternative by using
the �uid velocity potential, de�ned by the relation (1.15), instead of the pressure to describe the
state of the �uid part of the system. The strong formulation in (us, φ) of an interior problem
is given by: 

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

σs(us) · ns = fs on ΓN

us = 0 on ΓD

σs(us) · ns = ρ0φ̇ns on Γ

u̇s · ns = ∇φ · ns on Γ

1

c2
0

φ̈−∆φ = 0 in Ωf

(1.42)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest and
we assume that fs ∈ L2(]0, T [;L2(ΓN )d). The corresponding weak formulation of the problem
(1.42) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩ C1([0, T ];L2(Ωs)
d) and φ ∈ C([0, T ];H1(Ωf )) ∩
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C1([0, T ];L2(Ωf )) such that for all (δus, δφ) ∈ H1
ΓD

(Ωs)
d ×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

− d

dt

∫
Γ
ρ0φ(t,x)[δus(x) · ns(x)]dx =

∫
ΓN

fs(t,x) · δus(x)dx

− d2

dt2

∫
Ωf

ρ0

c2
0

φ(t,x)δφ(x)dx− ρ0

∫
Ωf

∇φ(t,x) · ∇δφ(x)dx

− d

dt

∫
Γ
ρ0[us(t,x) · ns(x)]δφ(x)dx = 0

(1.43)

The dynamic of the coupled problem spatially discretized using �nite element method are
then described by the set of ordinary di�erential equations:[

Ms 0

0 −ρ0Mf

]
︸ ︷︷ ︸

Muφ

[
Üs

Φ̈

]
+

[
0 −ρ0Kc

−ρ0K
T
c 0

]
︸ ︷︷ ︸

Cuφ

[
U̇s

Φ̇

]
+

[
Ks 0

0 −ρ0Kf

]
︸ ︷︷ ︸

Kuφ

[
Us

Φ

]
=

[
Fs

0

]
(1.44)

where the vectors Us, Φ contain respectively the nodal value of structural displacement and
�uid velocity potential with the matrices Ms, Mf , Ks, Kf , Kc and the right-hand side Fs are
de�ned in (1.39).

In the case of exterior problem where the radiated condition is approximated by the BGT-1
method, it leads to impose the following boundary condition on the truncated boundary Γ∞:

∇φ · nf + ρ0

(
1

ZC
φ̇+

1

ZR
φ

)
= 0 (1.45)

The dynamic of the coupled problem spatially discretized using �nite element method are then
described by the set of ordinary di�erential equations:[

Ms 0

0 −ρ0Mf

]
︸ ︷︷ ︸

Muφ

[
Üs

Φ̈

]
+

[
0 −ρ0Kc

−ρ0K
T
c − ρ20

ZC
Q

]
︸ ︷︷ ︸

C
ext
uφ

[
U̇s

Φ̇

]

+

[
Ks 0

0 −ρ0

(
Kf + ρ0

ZR
Q
)]

︸ ︷︷ ︸
K
ext
uφ

[
Us

Φ

]
=

[
Fs

0

]
(1.46)

where the matrix Q is de�ned in (1.41).

Clearly, the coupled formulations (1.44) and (1.46) are both symmetric. Note that the value
of the pressure can be obtained by computing the time derivative of velocity potential with
the relation (1.17). Note that the common used time-integration schemes (such as Newmark
scheme, Wilson scheme, ...) also explicitly compute the time derivative of the primal variables.
In these cases, we could obtain the value of the pressure from the velocity potential through the
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relationship (1.17) without additional computation cost. Even though this coupled formulation
is symmetric, its major disadvantage is that the coupling matrix Kc is a sub-matrix of

the coupled damping matrix Cuφ so that in the modal analysis, one always needs to solve
a quadratic eigenvalue problem (QEP).

1.2.3 Formulation in (us, p, ϕ)

To obtain a symmetric formulation without having the coupling matrix as a sub-matrix of the
coupled damping matrix, we can turn to the formulation in (us, p, ϕ). In this formulation, we
use two variables to describe the state of the �uid: the pressure and the displacement potential

which is de�ned in (1.19). The strong formulation in (us, p, ϕ) of an interior problem is given
by: 

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

σs(us) · ns = fs on ΓN

us = 0 on ΓD

σs(us) · ns = ρ0ϕ̈ns on Γ

üs · ns = ∇ϕ̈ · ns on Γ

1

ρ0c2
0

p+
1

c2
0

ϕ̈ = 0 in Ωf

1

c2
0

p̈+ ρ0∆ϕ̈ = 0 in Ωf

(1.47)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest and
we assume that fs ∈ L2(]0, T [;L2(ΓN )d). The corresponding weak formulation of the problem
(1.47) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩ C1([0, T ];L2(Ωs)
d), p ∈ C1([0, T ];L2(Ωf )) and

ϕ ∈ C1([0, T ];H1(Ωf )) such that for all (δus, δp, δϕ) ∈ H1
ΓD

(Ωs)
d×L2(Ωf )×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

− d2

dt2

∫
Γ
ρ0ϕ(t,x)[δus(x) · ns(x)]dx

=

∫
ΓN

fs(t,x) · δus(x)dx

1

ρ0c2
0

∫
Ωf

p(t,x)δp(x)dx+
d2

dt2

∫
Ωf

1

c2
0

ϕ(t,x)δp(x)dx = 0

− d2

dt2

∫
Ωf

ρ0∇ϕ(t,x) · ∇δϕ(x)dx+
d2

dt2

∫
Ωf

1

c2
0

p(t,x)δϕ(x)dx

− d2

dt2

∫
Γ
ρ0[us(t,x) · ns(x)]δϕ(x)dx = 0

(1.48)

The dynamic of the coupled problem spatially discretized using �nite element method are
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then described by the set of ordinary di�erential equations: Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
T
c Mf −ρ0Kf


︸ ︷︷ ︸

Mupϕ

Üs

P̈

ϕ̈

+

Ks 0 0

0 1
ρ0
Mf 0

0 0 0


︸ ︷︷ ︸

Kupϕ

Us

P

ϕ

 =

Fs0
0

 (1.49)

where the vectors Us, P and ϕ contain respectively the nodal value of structural displacement,
�uid pressure and �uid velocity potential with the matrices Ms, Mf , Ks, Kf , Kc and the
right-hand side Fs are de�ned in (1.39).

Using the relation (1.21) in the approximated radiated condition of the BGT-1 condition
(1.35), we obtain an equivalent boundary condition on Γ∞:

∇ϕ̈ · nf + ρ0

(
1

ZC

...
ϕ +

1

ZR
ϕ̈

)
= 0 (1.50)

The use of the boundary condition (1.50) implies that the dynamic of the coupled problem
spatially discretized using �nite element method for exterior problem are described by the set
of ordinary di�erential equations:0 0 0

0 0 0

0 0 − ρ20
ZC
Q


︸ ︷︷ ︸

I
ext
upϕ


...
Us...
P
...
ϕ

+

 Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
T
c Mf −ρ0Kf −

ρ20
ZR
Q


︸ ︷︷ ︸

M
ext
upϕ

Üs

P̈

ϕ̈



+

Ks 0 0

0 1
ρ0
Mf 0

0 0 0


︸ ︷︷ ︸

Kupϕ

Us

P

ϕ

 =

Fs0
0

 (1.51)

where the matrix Q is de�ned in (1.41).

Clearly, the coupled formulations (1.49) and (1.51) are both symmetric. However, in case
of exterior problem using the boundary condition of BGT-1 method, the coupled formulation
(1.51) is of order 3. To obtain a system of order 2 in this formulation, we remark that the
relation (1.21) implies that:0 0 0

0 0 0

0 0 − ρ20
ZC
Q



...
Us...
P
...
ϕ

 =

0 0 0

0 0 0

0 ρ0
ZC
Q 0


U̇s

Ṗ

ϕ̇

 (1.52)
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so that the system (1.51) is equivalent to: Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
T
c Mf −ρ0Kf −

ρ20
ZR
Q


︸ ︷︷ ︸

M
ext
upϕ

Üs

P̈

ϕ̈

+

0 0 0

0 0 0

0 ρ0
ZC
Q 0


︸ ︷︷ ︸

C
ext
upϕ

U̇s

Ṗ

ϕ̇



+

Ks 0 0

0 1
ρ0
Mf 0

0 0 0


︸ ︷︷ ︸

Kupϕ

Us

P

ϕ

 =

Fs0
0

 (1.53)

Since the formulation in (us, p, ϕ) uses two variables to describe the state of the �uid, the
number of degrees of freedom in this formulation is larger than the one in the formulation
in (us, p) and in (us, φ) for the same mesh and the more we have the number of nodes in
the �uid part, the more it becomes signi�cant. Furthermore, note that the damping matrix
Cext
upϕ of the formulation (1.53) is not symmetric. Therefore, this formulation is clearly not

the best formulation to employ for the simulation of a transient exterior problem compared
to the formulation in (us, p) and in (us, φ). However, since the coupled mass matrix Mupϕ

and the coupled sti�ness matrix Mupϕ are both symmetric and the coupling matrix Kc is not
a sub-matrix of the coupled damping matrix as the formulation in (us, φ), the formulation in
(us, p, ϕ) ismore suitable for the modal analysis of a interior problem than the formulation
in (us, p) and in (us, φ).

1.3 Conclusions

In this chapter, a short review on the modelling of vibro-acoustic coupling is presented. De-
pending on the choice of the variables representing the state of �uid, several formulations can
be found in literature. Three formulations of the transient vibro-acoustic problem have been
given in terms of strong formulation in PDE as well as in terms of �nite element models. In
order to approximate the radiation condition for exterior problems, we propose to use the
BGT-1 method which requires a truncated �uid domain and use a speci�c boundary condition.
For the formulation in (us, p), the system of second-order ordinary di�erential equations of
�nite element model is always non-symmetric. While modelling the radiation condition by
BGT-1 method, the formulation in (us, φ) is still symmetric. For the formulation in (us, p, ϕ),
the approximated radiation condition of BGT-1 method implies that the �nite element model
can be described by a symmetric system of third-order ordinary di�erential equations or by a
non-symmetric second order system.

Even though the three formulations presented in this chapter are equivalent, each formu-
lation has its advantages and drawbacks. The main drawback of the formulation in (us, p)

is that it results in non-symmetric system. Contrary to the formulation in (us, p), the sym-
metric property represents a major advantage of the formulation in (us, φ) while the presence
of the vibro-acoustic coupling matrix in the global damping matrix is the major drawback of
this formulation, especially for modal analysis. The symmetry of the global mass and sti�ness
matrix of coupled system and the absence of the vibro-acoustic coupling matrix in the global

41



1.3. CONCLUSIONS

damping matrix are the major advantages of the formulation in (us, p, ϕ) for modal analysis of
an interior problem. On the contrary, its main drawback is that using two variables to describe
the state �uid leads to a larger number of degrees of freedom compared to the formulation in
(us, p) and (us, φ).

In addition to the advantages and drawbacks mentioned here, we will see in the next chapter
that the choice of the variables representing the state of �uid has a non-negligible impact in
�nite element modelling of submerged structure and shock wave problem (see Remark 2.4.1)
as well as in reduced order modelling in Chapter 3.
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Chapter 2

Finite element modelling of interaction

of submerged structure and shock

wave problem

The survivability of naval ships and submarines is of paramount importance to those who de-
sign, build and sail them. Underwater explosions, produced by the detonation of a submerged
high explosive device, clearly represents a serious threat to that survivability. Hence, under-
water explosion is a major phenomena to be taken into account in the design of submerged
structures.

Under the hypothesis that the explosion is far enough from the submerged structure of
interest, the loading produced by the explosion can be modelled without taking into account
the presence of the structure. Conventionally, the underwater explosion can be viewed as
the generation of acoustic shock waves which propagate at the sound speed in the �uid, and
the �uid �ows caused by the dynamic interaction of the detonation product gases and the
surrounding water. As a consequence, the study of the behaviour of a submerged structure
submitted to an underwater explosion can be split in two main parts. The �rst part consists
of the interaction of submerged structure and acoustic shock waves problem. The second part
is the case of loading induced by the �uid �ows created by gases bubbles.

In this thesis, we are only interested in the interaction of submerged structure and shock
waves problem under the hypothesis that the explosion is far enough from the submerged struc-
ture and the free surface of the �uid. The goal of this chapter is to give a presentation of the
�nite element modelling of interaction of submerged structure and shock wave problems. This
chapter is organized as follows. We begin by a short presentation of underwater explosion phe-
nomena in the �rst section. The modelling of primary acoustic shock wave of an underwater
explosion is then given in Section 2.2. In Section 2.3, the modelling assumptions of interac-
tion of submerged structure and shock wave is presented. As in the classical vibro-acoustic
coupling, di�erent choices of the variables for describing the state in the �uid yield di�erent
coupling formulations of �nite element model. In this chapter, we are interested in four for-
mulations: formulation in displacement structure-scattered velocity potential (us, φ

sca), in dis-
placement structure-radiated velocity potential (us, φ

rad), in displacement structure-radiated
pressure (us, p

rad) and in displacement structure-radiated pressure-radiated displacement po-
tential (us, p

rad, ϕrad). The presentation of these four formulations is given in the Section 2.4.
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2.1. UNDERWATER EXPLOSION

The loadings of shock wave have been implemented in code_aster during the thesis. In Sec-
tion 2.5, we propose a numerical validation of our implementation with two test cases. The
�rst validation case is an academic case in a 2D con�guration where a semi-analytical solution
is available. The second validation case is an extension of the 2D con�guration used in �rst
validation case, into a 3D con�guration.

2.1 Underwater explosion

From the point of view of damage to submerged structures, the underwater explosion can be
modelled by the generation of acoustic waves together with the �uid �ows produced by the
dynamic interaction between the explosion gas bubbles and the surrounding water. The shock
wave propagation phase occurs in millisecond-order timescales, while the bubble expansion
and contraction phase occurs in second-order timescales. Such a large di�erence (about a three
order of magnitude) in the time scales between these two phenomena does pose challenges
for the computational methods which intend to include both phases. The sequence of physical
e�ects of an underwater explosion is usually illustrated by the classical �gure 2.1 of Snay (1956)
[114].

Figure 2.1: The sequence of physic e�ects of an underwater explosion, sourced from [42]

2.1.1 Primary acoustic shock wave

The primary acoustic shock wave, generated when the detonation wave within the explosive
reaches the water-explosive interface, travels out though the water at a very high speed as a
spherical wave. The very high pressures associated with the shock wave can cause considerable
damage on any submerged structure which is not strong enough to resist this loading. About
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2.1. UNDERWATER EXPLOSION

50 % of the initial chemical energy of the explosive is transmitted to the �uid in this initial
shock wave. At �rst, the speed of the shock wave is approximately about ≈ 5000 m/s. The
speed of the shock wave decreases rapidly and stabilizes at the speed of the sound in the �uid
at c0 ≈ 1500 m/s (as shown in Figure 2.2) after a very short distance of about 20 times the
charge radius.

Figure 2.2: Geometric representation of the propagation of underwater explosion's shock waves,
source from [28].

As schematically illustrated in Figure 2.1, at a target point in the �uid located at a distance
greater than 20 times the charge radius, the pressure increases quasi-instantly to a peak value
Pm and then decreases rapidly which can be expressed at a �rst approximation by:

p(t) = Pme
−t/Tc (2.1)

where t = 0 is the arrival time of the shock wave at the target point, Tc denotes the constant
that describes the exponential decay. The variation of constant Pm and Tc depends on the kind
of the explosive material and the distance D from the charge. In case of the explosive material
is Trinitrotoluene (TNT), it has been shown in [108] that the variation is well described by the
relations:

Pm = 52.16 · 106

(
W 1/3

D

)1.13

(2.2)
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Tc = 96.5 · 10−6
(
W 1/3

)(W 1/3

D

)−0.22

(2.3)

where Pm is in Pascal, Tc is in second, W is the mass of TNT in kilogramme and the distance
D is in meters.

When the shock wave arrives at a target point in the �uid, the �uid particle at that point
is subjected simultaneously to a �ow with the velocity vf (t) at direction of wave propagation.
In case of plane waves, the relation between the pressure p(t) and the velocity vf (t) is given
by:

vf (t) =
p(t)

ρ0c0
(2.4)

where ρ0 is the �uid density and c0 is the sound speed in the �uid. The relation (2.4) is
validated only for plane waves, so it can be used only if the submerged structure is su�ciently
far from the explosion. Taking the spherical nature of the shock waves into account, the relation
between the pressure p(t) and the velocity vf (t) is given by:

vf (t) =
p(t)

ρ0c0
+

1

ρ0D

∫ t

0
p(τ)dτ (2.5)

The representation of the primary shock wave of an underwater explosion using the relations
(2.1) and (2.5) can be applied for any size of explosion, from a few grams to a nuclear weapon,
detonated at any depth in the water. It is however accurate only for 0 < t < Tc. The formulas
of pressure and velocity pro�les of an underwater shock wave, which can be validated until 7Tc,
will be given in Section 2.2.

2.1.2 Dynamic behaviour of bubble

The subsequence development of the bubble and its interaction with the surrounding water
create other phenomena which can also in�ict considerable damage on the submerged structure,
particularly if the bubble is formed nearby. After emission of the primary shock wave, the
pressure in the gas bubbles is signi�cantly reduced. It is however still signi�cantly higher than
external hydrostatic pressure. This causes the bubble to expand rapidly. The pressure in the
bubble decreases as the bubble volume increases. Because of the inertia of the outward �owing
�uid, the expansion persists beyond the point at which the pressure in the gas bubble and
the hydrostatic pressure in the surrounding �uid are balanced. According to Cole [40], the
maximum radius of the bubble of the �rst phase of expansion depends on the mass of explosive
material and the depth of the explosion. When the explosive material is Trinitrotoluene (TNT),
it is given experimentally by the following relation [40]:

Rmax = J

(
W

H + 10

)1/3

(2.6)

where the radius Rmax and the depth of explosion H are in meter and W is the mass of
TNT in kilogramme. According to Swift (1947) [116], the value of constant J is approximately
≈ 3.36 m4/3kg−1/3. According to Swisdak (1978) [118], the value of constant J is approximately
≈ 3.50 m4/3kg−1/3.
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When the expansion is �nally stops, the pressure in the bubble is less than the hydrostatic
pressure which causes the bubble to begin contracting. The duration T , since the beginning
of explosion until the bubble reaches its minimum radius, depends also on the mass of ex-
plosive material and on the depth of the explosion. In case of the explosive material is TNT
(Trinitrotoluene), it can be approximated experimentally by the following relation [40]:

T = K
W 1/3

(H + 10)5/6
(2.7)

where the constant K is approximately ≈ 2.11 sm5/6kg−1/3 according to [118] and [116]. As in
the expansion phase, the internal pressure of the bubble is much higher than the surrounding
hydrostatic pressure when the bubble reaches its minimum radius. A new acoustic shock wave
is then generated and a new cycle of expansion and contraction is then set to begin. The
peak value of pressure of the new shock wave is about between 10 % to 15 % of the primary
shock wave. However, this new shock wave can also in�ict damage, with the same order as
the primary shock wave, to any submerged structure because the decreasing is slower than
the primary shock wave. Since a new shock wave is generated and travels out through the
surrounding �uid at each phase of expansion, the bubble loses progressively its energy. The
amplitude of pulsation decreases at each iteration. The sequence of expansion-contraction can
repeat a numerous times. As an example, it has been observed experimentally 12 sequences of
expansion-contraction in [75].

2.2 Modelling of primary acoustic shock wave of an underwater

explosion

The pressure pro�les of shock waves characterised by a simple exponential decay by the relation
(2.1) is a good approximation only for t ≤ Tc. In fact, the decay of pressure is not as fast as in
the relation (2.1) for t > Tc. Now, let us put the focus on the modelling of primary acoustic
shock of underwater explosion which can be validated for times much longer than the expression
given in Section 2.1.1. According to the dimensionless analysis in [55, 106], the pressure pro�le
of an underwater explosion shock wave at the distance r from the charge is given by the
following relation:

P (t) = Pc

[ac
r

]1+A
F
([ac

r

]B vc
ac
t

)
(2.8)

where ac is the charge radius and the constant Pc, vc, A and B depend on the kind of explosive
materials. For the case of TNT (Trinitrotoluene) explosive material, these constants are given
by:

Pc = 1.67 GPa, vc = 1010 m/s, A = 0.18, B = 0.185 (2.9)

according to [106], and

Pc = 1.42 GPa, vc = 992 m/s, A = 0.13, B = 0.18 (2.10)
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according to [40] and the function F is a double exponential decay:

F(t) = 0.8251e−1.338t + 0.1749e−0.1805t, t ≤ 7 (2.11)

For a given mass of explosive material Mexp, the charge radius ac can be approximately by

ac ≈
(
Mexp

4πρexp

)1/3
where ρexp is is mass density of the explosive material. For the case of TNT,

the mass density is approximately given by ρtnt ≈ 1.52 · 103 kg/m3.

At a distance greater than 20 times the charge radius, the shock wave propagates with the
speed of sound in the �uid c0. So, for r > Rl we have:

p(t, r) = Pc

[ac
r

]1+A
F
([ac

r

]B τ

Tc

)
H(τ), τ = t− (r −Rl)/c0 (2.12)

where H is Heaviside function and we denote by Rl = 20ac with ac is the charge radius and
Tc = ac/vc. We remark in the relation (2.8) that the pressure pro�le of primary shock wave
decreases as a function of the distance r, faster than the classical spherical acoustic wave in
which we have the decreasing as a function in 1/r (as illustrated in Figure 2.3).

Figure 2.3: The pressure pro�les of shock wave according to the relation (2.12) for the explosion
of W = 50 kg in TNT. Left : case using the data of Cole [40]. Right : case using the data of
Price [106]. The blue curve represent the decreasing in 1/r using the peak value at times
t = (20−Rl)/c0

The expression of the �uid particle's velocity corresponding to the shock wave are usually
required in the study of interaction of submerged structure and shock wave. To compute the
corresponding �uid velocity, it is usual to introduce the velocity potential φ which is de�ned
by:

p(t, r) = −ρ0
∂φ

∂t
(t, r) (2.13)

where ρ0 is the �uid density. Using the initial condition φ(r, [r − Rl]/c0) = 0, the velocity
potential φ can be explicitly expressed as

φ(t, r) = −Pc
ρ0

[ac
r

]1+A
∫ τ

0
F
([ac

r

]B ζ

Tc

)
dζ, τ = t− (r −Rl)/c0 (2.14)
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Since the shock wave is a spherical wave, then only radial component of velocity vr = ∂φ(t, r)/∂r

is non-zero. Deriving the velocity potential φ according to r gives an expression of the radial
component of velocity:

vr(t, r) =
p(t, r)

ρ0c0
+
PcTc
ρ0r

[ac
r

]1+A−B
(1 +A−B)G

([ac
r

]B τ

Tc

)
H(τ) +

p(t, r)

ρ0

τ

r
B (2.15)

where the function G de�ned by G(t) :=
∫ t

0 F(ζ)dζ. For the case of TNT (Trinitrotoluene)
explosive material, the function is explicitly de�ned by G(t) = 1.5856 − 0.6167e−1.338t −
0.9690e−0.1805t. We remark that the relation (2.4) can be found from the relation (2.15) by
taking A = −1 and B = 0 in the case of plane waves. Figure 2.4 illustrates an example of the
�uid particle's velocity pro�les of shock wave according to the relation (2.15) for the explosion
of W = 50 kg in TNT.

Figure 2.4: The �uid particle's velocity pro�les of shock wave according to the relation (2.15)
for the explosion of W = 50 kg in TNT. Left : case using the data of Cole [40]. Right : case
using the data of Price [106]

2.3 Modelling of interaction of submerged structure and shock

wave problem

In the previous section, the modelling of primary shock wave of underwater explosion is pre-
sented. The aim of this section is to present the modelling of the interaction of submerged
structure and shock wave problems.

The problem of interest is formulated as follows. We consider a linear elastic structure
Ωs ⊂ Rd (with d = 2 or 3) submerged in an in�nite acoustic �uid domain. Both structure and
�uid are supposed to be at rest initially. We denote by Γ the interface between the structure
and the �uid. The submerged structure is supposed to be subjected to a shock wave with the
known pro�le of incident pressure pinc and velocity vinc. A geometrical representation of the
problem is illustrated in Figure 2.5.
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Figure 2.5: Geometrical representation: a submerged structure subjected to a shock wave with
the known pro�le of incident pressure pinc and velocity vinc.

Under the assumption of small perturbations, the dynamic motion of the structure is clas-
sically described by: 

ρsüs − div σs(us) = 0 in Ωs

us = 0 on ΓD

σs(us) · ns = −ptotns on Γ

(2.16)

with us is the displacement of structure, ns is outward unit normal of the structure, ρs is
structure density, σs is Cauchy stress tensor and ptot is the total pressure in the �uid. The

total pressure in the �uid is decomposed by three components: ptot = pinc + pref + prad. The
�rst component pinc is the incident pressure which is a given of the problem. The second
component pref is the re�ected pressure which is the di�raction of the incident pressure by
the rigid submerged structure assumed rigid and motionless. The last component prad is the
radiated pressure which is induced by the motion of the structure. The re�ected and the
radiated pressure are governed by the equations:

1

c2
0

p̈−∆p = 0 in Ωf

∇p · nf + ρ0(
1

ZC
ṗ+

1

ZR
p) = 0 on Γ∞

(2.17)

with c0 is the speed of sound in the �uid, ρ0 is the density of the �uid and nf is outward unit
normal of the �uid. The �rst equation is the well known wave equation. The second equation
is the BGT condition [22] of order 1 applied on the boundary Γ∞ of the truncated �uid domain
(as presented in Section 1.1.4). On the interface Γ between the structure and the �uid, the
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boundary condition of the re�ected and the radiated pressure are expressed as following:{
∇pref · ns = −∇pinc · ns on Γ

∇prad · ns = −ρ0üs · ns on Γ
(2.18)

The �rst equation consists of imposing that the resultant of normal re�ected and incident
acceleration is zero. The second equation means that the radiated acceleration and structure
acceleration have the same normal component on the interface. The system equations (2.18)
is equivalent to the continuity of normal acceleration on the �uid-structure interface.

It is also possible to describe the state of the �uid by the velocity potential which is de�ned
by:

vf = ∇φ, p = −ρ0φ̇ (2.19)

where vf is the velocity of �uid particle. The total velocity potential can also be decomposed by
three components: φtot = φinc + φref + φrad. The re�ected and the radiated velocity potential
are also governed by the wave equation and the BGT boundary condition [22] of order 1 given
by Equation (2.17). On the interface Γ between the structure and the �uid, the boundary
condition of the re�ected and the radiated velocity potential are given by:{

∇φref · ns = −vinc · ns on Γ

∇φrad · ns = u̇s · ns on Γ
(2.20)

where the �rst equation consists of imposing that the resultant of normal re�ected and incident
velocity is zeros and the second equation means that the radiated velocity and structure velocity
have the same normal component on the interface. The system equations (2.20) is equivalent
to the continuity of normal velocity on the �uid-structure interface.

2.4 Finite element models of interaction of submerged structure

and shock wave problems

Depending on the choice of the variables to describe the state of the �uid and the structure,
various formulations can be found in the literature for modelling the coupled problem of in-
terest. In the following, we present the formulations in displacement structure - scattered
velocity potential (us, φ

sca), in displacement structure - radiated velocity potential (us, φ
rad),

in displacement structure - radiated velocity potential (us, p
rad) and in displacement structure

- radiated pressure - radiated displacement potential (us, p
rad, ϕrad).

Remark 2.4.1 We recall that in the case of the shock wave induced by an underwater explo-
sion, the incident pressure de�ned by Equation (2.12) is a discontinuous function both in time
and in space, more precisely pinc ∈ L2(]0,∞[;L2(Γ)). For this reason, the �rst equation of
the system equations (2.18) which aim at imposing that the resultant of normal re�ected and
incident acceleration is zero, is only de�ned in sense of distribution. This singularity makes
impossible the use of the formulation in displacement structure - scattered pressure (us, p

sca) or
in displacement structure - scattered pressure - scattered displacement potential (us, p

sca, ϕsca)

in �nite element modelling.
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2.4.1 Formulation in (us, φ
sca)

Let us de�ne the scattered pressure by psca := pref + prad and the scattered velocity potential
φsca := φref + φrad as the potential corresponding to the the scattered pressure. The strong
formulation of the problem formulated with (us, φ

sca) is given by:

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

us = 0 on ΓD

σs(us) · ns = ρ0φ̇
scans − pincns on Γ

∇φsca · ns = u̇s · ns − vinc · ns on Γ

1

c2
0

φ̈sca −∆φsca = 0 in Ωf

∇φsca · nf = −ρ0(
1

ZC
φ̇sca +

1

ZR
φsca) on Γ∞

(2.21)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest and
we assume that vinc ∈ L2(]0, T [;L2(Γ)d) and pinc ∈ L2(]0, T [;L2(Γ)). The corresponding weak
formulation of the problem (2.21) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩ C1([0, T ];L2(Ωs)
d)

and φsca ∈ C([0, T ];H1(Ωf )) ∩ C1([0, T ];L2(Ωf )) such that for all (δus, δφ
sca) ∈ H1

ΓD
(Ωs)

d ×
H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

− d

dt

∫
Γ
ρ0φ

sca(t,x)[δus(x) · ns(x)]dx = −
∫

Γ
pinc(t,x) [δus(x) · ns(x)] dx

− d2

dt2

∫
Ωf

ρ0

c2
0

φsca(t,x)δφsca(x)dx− ρ0

∫
Ωf

∇φsca(t,x) · ∇δφsca(x)dx

− d

dt

∫
Γ∞

ρ2
0

ZC
φsca(t,x)δφsca(x)dx−

∫
Γ∞

ρ2
0

ZR
φsca(t,x)δφsca(x)dx

− d

dt

∫
Γ
ρ0[us(t,x) · ns(x)]δφsca(x)dx = −

∫
Γ

[
vinc(t,x) · ns(x)

]
δφsca(x)dx

(2.22)

The dynamic of the coupled problem spatially discretized using �nite element method and
the BGT-1 boundary condition [22] (see Section 1.1.4) for modelling the Sommerfeld condition
are then described by the set of ordinary di�erential equations:

MuφẌ
sca
uφ +Cext

uφ Ẋ
sca
uφ +Kext

uφX
sca
uφ = Fscauφ (2.23)

with

Fscauφ =

[
Fscas
Fscaφ

]
,Xsca

uφ =

[
Us

Φsca

]
(2.24)

where the vector Us contains the nodal displacement of the structure and Φsca contains the
nodal value of scattered velocity potential of the �uid. The matrices Muφ, C

ext
uφ and Kext

uφ

are de�ned in Equation (1.46) of Section 1.2.2. The right-hand side is given by Fscas,j :=
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−
∫

Γ p
inc(Ns

j · ns), Fscaφ,j := −
∫

Γ ρ0(vinc · ns)Nf
j where Ns and Nf are respectively the �nite

element basis of the structural and the �uid part.

2.4.2 Formulation in (us, φ
rad)

By pre-computing the re�ected pressure which depends only on the geometry of the structure
and using the radiated velocity potential to describe the state of the �uid in the coupled system,
the strong formulation in (us, φ

rad) is given by:

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

us = 0 on ΓD

σs(us) · ns = −pincns − prefns + ρ0φ̇
rad on Γ

∇φrad · ns = u̇s · ns on Γ

1

c2
0

φ̈rad −∆φrad = 0 in Ωf

∇φrad · nf = −ρ0(
1

ZC
φ̇rad +

1

ZR
φrad) on Γ∞

(2.25)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest
and we assume that vinc ∈ L2(]0, T [;L2(Γ)d) and pinc, pref ∈ L2(]0, T [;L2(Γ)). The corre-
sponding weak formulation of the problem (2.25) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩
C1([0, T ];L2(Ωs)

d) and φrad ∈ C([0, T ];H1(Ωf ))∩C1([0, T ];L2(Ωf )) such that ∀(δus, δφrad) ∈
H1

ΓD
(Ωs)

d ×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

− d

dt

∫
Γ
ρ0φ

rad(t,x)[δus(x) · ns(x)]dx

= −
∫

Γ
(pinc + pref )(t,x) [δus(x) · ns(x)] dx

− d2

dt2

∫
Ωf

ρ0

c2
0

φrad(t,x)δφrad(x)dx− ρ0

∫
Ωf

∇φrad(t,x) · ∇δφrad(x)dx

− d

dt

∫
Γ∞

ρ2
0

ZC
φrad(t,x)δφrad(x)dx−

∫
Γ∞

ρ2
0

ZR
φrad(t,x)δφrad(x)dx

− d

dt

∫
Γ
ρ0[us(t,x) · ns(x)]δφrad(x)dx = 0

(2.26)

The use of the (us, φ
rad) formulation yields, after a space-discretization by the �nite element

method, the following linear system of order 2:

MuφẌ
rad
uφ +Cext

uφ Ẋ
rad
uφ +Kext

uφX
rad
uφ = Fraduφ (2.27)
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with

Fraduφ =

[
Frads

0

]
,Xrad

uφ =

[
Us

Φrad

]
(2.28)

where the vector Us contains the nodal displacement of the structure and Φrad contains the
nodal value of radiated velocity potential of the �uid.

We remark that in the (us, φ
rad) formulation, we have the same coupling mass, damping

and sti�ness matrices as the (us, φ
sca) formulation (see Equation (1.46) of Section 1.2.2 for

their de�nition). The only di�erent appears on the right-hand side which is given by Frads,j :=

−
∫

Γ(pinc + pref )(Ns
j · ns), where Ns is the �nite element basis of the structural part, for the

new coupled formulation.

2.4.3 Formulation in (us, p
rad)

By pre-computing the re�ected pressure which depends only on the geometry of the structure
and using the radiated pressure to describe the state of the �uid in the coupled system, the
strong formulation in (us, p

rad) is given by:



ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

us = 0 on ΓD

σs(us) · ns = −pincns − prefns − pradns on Γ

∇prad · ns = −ρ0üs · ns on Γ

1

c2
0

p̈rad −∆prad = 0 in Ωf

∇prad · nf = −ρ0(
1

ZC
ṗrad +

1

ZR
prad) on Γ∞

(2.29)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest
and we assume that vinc ∈ L2(]0, T [;L2(Γ)d) and pinc, pref ∈ L2(]0, T [;L2(Γ)). The corre-
sponding weak formulation of the problem (2.29) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩
C1([0, T ];L2(Ωs)

d) and prad ∈ C([0, T ];H1(Ωf ))∩C1([0, T ];L2(Ωf )) such that ∀(δus, δprad) ∈
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H1
ΓD

(Ωs)
d ×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

+

∫
Γ
prad(t,x)[δus(x) · ns(x)]dx

= −
∫

Γ
(pinc + pref )(t,x) [δus(x) · ns(x)] dx

d2

dt2

∫
Ωf

1

c2
0

prad(t,x)δprad(x)dx+

∫
Ωf

∇prad(t,x) · ∇δprad(x)dx

+
d

dt

∫
Γ∞

ρ0

ZC
prad(t,x)δprad(x)dx

+

∫
Γ∞

ρ0

ZR
prad(t,x)δprad(x)dx

− d2

dt2

∫
Γ
ρ0[us(t,x) · ns(x)]δprad(x)dx

= 0

(2.30)

The use of the (us, p
rad) formulation yields, after a space-discretization by the �nite element

method, the following linear system of order 2:

MupẌ
rad
up +Cext

up Ẋ
rad
up +Kext

up X
rad
up = Fradup (2.31)

with

Fradup =

[
Frads

0

]
,Xrad

uφ =

[
Us

Prad

]
(2.32)

where the vector Us contains the nodal displacement of the structure and Prad contains the
nodal value of radiated pressure in the �uid. The matrices Mup, Cext

up and Kext
up are de�ned in

Equation (1.40) of Section 1.2.1.

We remark that in the (us, p
rad) coupled formulation, we have the same right-hand side

vector as (us, φ
rad) coupled formulation and we recall that a major drawback of the (us, p

rad)

formulation is that the coupling mass matrix Mup and coupling sti�ness matrix Kext
up are non-

symmetric.

2.4.4 Formulation in (us, p
rad, ϕrad)

By pre-computing the re�ected pressure which depends only on the geometry of the structure
and using two variables - the radiated pressure and the radiated displacement potential - to
describe the state of the �uid in the coupled system, the strong formulation in (us, p

rad, ϕrad)

55



2.4. FINITE ELEMENT MODELS OF INTERACTION OF SUBMERGED STRUCTURE AND SHOCK
WAVE PROBLEMS

coupled is given by:

ρsüs − div σs(us) = 0 in Ωs

σs(us) = C : εs(us) in Ωs

us = 0 on ΓD

σs(us) · ns = −pincns − prefns + ρ0ϕ̈ns on Γ

∇ϕrad · ns = üs · ns on Γ

1

ρ0c2
0

prad +
1

c2
0

ϕ̈rad = 0 in Ωf

1

c2
0

p̈rad + ρ0∆ϕ̈rad = 0 in Ωf

∇ϕ̈rad · nf = −ρ0

(
1

ZC

...
ϕrad +

1

ZR
ϕ̈rad

)
on Γ∞

(2.33)

We denote by H1
ΓD

(Ωs)
d := {v ∈ H1(Ωs)

d,v = 0 on ΓD}, T the �nal time of interest
and we assume that vinc ∈ L2(]0, T [;L2(Γ)d) and pinc, pref ∈ L2(]0, T [;L2(Γ)). The corre-
sponding weak formulation of the problem (2.33) reads: Find us ∈ C([0, T ];H1

ΓD
(Ωs)

d) ∩
C1([0, T ];L2(Ωs)

d), prad ∈ C1([0, T ];L2(Ωf )) and ϕrad ∈ C1([0, T ];H1(Ωf ))∩C2([0, T ];L2(Ωf ))

such that for all (δus, δp
rad, δϕrad) ∈ H1

ΓD
(Ωs)

d × L2(Ωf )×H1(Ωf ), we have:

d2

dt2

∫
Ωs

ρsus(t,x) · δus(x)dx+

∫
Ωs

εs(δus(x)) : C : εs(us(t,x))dx

− d2

dt2

∫
Γ
ρ0ϕ

rad(t,x)[δus(x) · ns(x)]dx

= −
∫

Γ
(pinc + pref )(t,x) [δus(x) · ns(x)] dx

1

ρ0c2
0

∫
Ωf

prad(t,x)δprad(x)dx+
d2

dt2

∫
Ωf

1

c2
0

ϕrad(t,x)δprad(x)dx = 0

− d2

dt2

∫
Ωf

ρ0∇ϕrad(t,x) · ∇δϕrad(x)dx+
d2

dt2

∫
Ωf

1

c2
0

prad(t,x)δϕrad(x)dx

− d3

dt3

∫
Γ∞

ρ2
0

ZC
ϕrad(t,x)δϕrad(x)dx

−
∫

Γ∞

ρ2
0

ZR
ϕrad(t,x)δϕrad(x)dx

− d2

dt2

∫
Γ
ρ0[us(t,x) · ns(x)]δϕrad(x)dx

= 0

(2.34)

The use of the (us, p
rad, ϕrad) formulation yields, after a space-discretization by the �nite

element method, the following linear system of order 3:

Iextupϕ

...
X
rad

upϕ +Mext
upϕẌ

rad
upϕ +KupϕX

rad
upϕ = Fradupϕ (2.35)
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with

Fradupϕ =

Frads

0

0

 ,Xrad
upϕ =

 Us

Prad

ϕrad

 (2.36)

where the vector Us contains the nodal displacement of the structure, Prad contains the nodal
value of radiated pressure and ϕrad contains the nodal value of radiated displacement potential
in the �uid. The matrices Iextupϕ,M

ext
upϕ and Kupϕ are de�ned in Equation (1.51) of Section 1.2.3.

The right-hand side is de�ned by Frads,j := −
∫

Γ(pinc+pref )(Ns
j ·ns) whereNs is the �nite element

basis of the structural part.

The �nite element model (2.35) is a third order symmetric system. However, as mentioned
in Section 1.2.3 of Chapter 2, we can obtain in this formulation an equivalent non-symmetric
second order system:

Mext
upϕẌ

rad
upϕ +Cext

upϕẊ
rad
upϕ +KupϕX

rad
upϕ = Fradupϕ (2.37)

where the matrix Cext
upϕ is de�ned in Equation (1.53) of Section 1.2.3.

2.4.5 Pre-computing of re�ected pressure

In order to use the formulation in (us, φ
rad), in (us, p

rad) or in (us, p
rad, ϕrad), it is necessary

to pre-compute the re�ected pressure. With the discontinuity of the incident shock wave
of pressure, it is impossible to use the formulation in the re�ected pressure because of the
in�nite pressure gradient at the shock front which implies that the acoustic loads associated
become indeterminate. A practical solution in this case may model the shock front such that
the pressure rise occurs over a period of time, designated the "rise time", to overcome the
discontinuity at the shock front. This however may result in response with a poor accuracy
in high frequencies, as if a �lter was used. Even with the discontinuity at the shock front, it
is however possible to use the formulation in the re�ected velocity potential and compute the
re�ected pressure by the post-processing with Equation (2.19). The strong formulation of the
re�ected velocity potential is given by:



1

c2
0

φ̈ref −∆φref = 0 in Ωf

∇φref · ns = −vinc · ns on Γ

∇φref · nf = −ρ0

(
1

ZC
φ̇ref +

1

ZR
φref

)
on Γ∞

(2.38)

We assume that vinc is in L2(]0, T [;L2(Γ)d). The corresponding weak formulation of the
problem (2.38) reads: Find φref ∈ C([0, T ];H1(Ωf )) ∩ C1([0, T ];L2(Ωf )) such that for all
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δφref ∈ H1(Ωf ), we have:

− d2

dt2

∫
Ωf

ρ0

c2
0

φref (t,x)δφref (x)dx− ρ0

∫
Ωf

∇φref (t,x) · ∇δφref (x)dx

− d

dt

∫
Γ∞

ρ2
0

ZC
φref (t,x)δφref (x)dx−

∫
Γ∞

ρ2
0

ZR
φref (t,x)δφref (x)dx

= −
∫

Γ

[
vinc(t,x) · ns(x)

]
δφref (x)dx

(2.39)

which yields, after a space-discretization by the �nite element method, the following linear
system of order 2:

−ρ0Mf Φ̈
ref − ρ2

0

ZC
QΦ̇ref − ρ0

(
Kf +

ρ0

ZR
Q

)
Φref = Fref (2.40)

where the vector Φref contains the nodal value of the re�ected velocity potential and the right-
hand side vector is given by: Frefj := −

∫
Γ ρ0(vincf · ns)Nj with N is the shape function of the

�nite element method. Note that the usual time-integration schemes (such as Newmark scheme,
Wilson scheme, ...) also explicitly compute the time derivative of the primal variables. In these
cases, we could obtain the re�ected pressure from the re�ected velocity potential through the
relationship (2.19) without additional computation cost.

2.5 Numerical validation of �nite element models

In this section, we propose to validate the numerical model presented in the previous section.
Two test cases are exposed. The �rst study case is a 2D academic case for which a semi-
analytical solution is available. The second study case is an extension of the previous 2D-
con�guration study case into 3D-con�guration. In both cases, the four �nite element models
presented in the previous section are investigated.

2.5.1 Test case 1: an elastic ring subjected to an acoustic shock wave

For the �rst study case, we are interested by an elastic ring submitted to an acoustic shock
wave of underwater explosion. A graphical representation of the �rst study case is presented
in Figure 2.6.
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Figure 2.6: Graphical representation of the �rst study case

We suppose that the thickness h of the ring is very small compared to its radius R. Under
this hypothesis, we can use the Love-Kircho� model to describe the dynamical behaviour of
the structure. Using the Love-Kircho� model for structural part combined with Fourier series
tool, the analytical solution of the problem in Laplace domain can be expressed explicitly in
form of Fourier series. Thus, in order to obtain a semi-analytical solution, it is su�cient to
truncate Fourier series representing the analytical solution in Laplace domain and employ a
numerical inverse Laplace transform to return to time-domain. The presentation in details of
the construction of the semi-analytical solution of the problem are given in Appendix B.

For numerical application, we suppose that the submerged structure - shock wave inter-
action problem consists of an elastic ring of radius R = 1 m with a thickness h = 0.01 m
submerged in a �uid. It is excited by the primary acoustic shock wave which comes from an
underwater explosion of 1 000 kg TNT at a distance d = 100 m from the centre of the ring.
At t = 0, we suppose that the front of shock wave arrives at the stand-o� point (the nearest
point of the structure to explosion). The physical properties of the structure and the �uid in
the problem are given in Table 2.1. The pro�le of the incident pressure and of the incident
velocity are respectively given by the relations (2.12) and (2.15). For numerical application, we
use the value of the constants Pc, vc, A and B provided by Cole [40] as given in relation (2.10).

Structure Fluid
Young's modulus E = 200 GPa Speed of sound c0 = 1500 m/s

Poisson's ratio ν = 0.28 Density ρ0 = 1000 kg/m3

Density ρs = 7800 kg/m3

Table 2.1: Physical properties of the structure and the �uid in the problem
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Finite element modelling

In order to approximate the radiation condition, a truncated �uid domain in form of a circle
of radius Rbgt = 3 m is employed. On the boundary of the truncated �uid domain, the BGT-1
condition (1.35) is applied in order to approximate the outgoing sound wave by a cylindrical
wave for which we use the value of impedance ZR = 2ρ0Rbgt, ZC = ρ0c0. Both the elastic
ring and the �uid are modelled using quadratic triangular elements. The �nite element
model is obtained by using a mesh in which the largest element size in the �uid part is 0.06 m
and there are at least 4 elements in the thickness of the ring. The using mesh is illustrated in
Figure 2.7.

In the �nite element model, we have 172 473 degrees of freedom, 91 028 of which corre-
spond to the structural part and 81 445 of which correspond to the acoustic �uid part for the
formulation in (us, φ

sca), in (us, φ
rad) and in (us, p

rad). For the formulation in (us, p
rad, ϕrad),

we have 253 918 degrees of freedom, 91 028 of which correspond to the structural part and
162 890 of which correspond to the acoustic �uid part. Furthermore, the non-symmetric �-
nite element model (2.37) will be used in this study. For time-discretization of �nite element
model, Newmark scheme with a small numerical dissipation (γ = 1/2−α, β = 1

4(1−α)2 where
α = −0.2) is employed by using the time step of size ∆t = 6.7 · 10−6 s which means that the
shock wave needs 100 time steps in order to travel the distance R.

Figure 2.7: Mesh used in �nite element modelling in the �rst study case
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Analysis of numerical results

For numerical analysis, let us begin with the formulation in (us, φ
sca). The numerical and semi-

analytical solution of radial and ortho-radial displacement are respectively illustrated in Figure
2.8a and 2.8b. In Figure 2.8a and 2.8b, the semi-analytical solutions are displayed by the full
lines while the numerical solutions are displayed by dashed lines. Because of the geometrical
symmetry in the problem, the ortho-radial displacement for θ = 0 and θ = π is zero as shown
in Figure 2.8b. We can see clearly that the numerical solution is in accordance with the
semi-analytical solution. For the scattered pressure, Figure 2.9 plots the numerical and semi-
analytical solution in the same graphic and Figure 2.10 plots the numerical and semi-analytical
solution in two di�erence graphics. The results show that the scattered pressure obtained by the
�nite element model is also in accordance with the semi-analytical solutions. We remark that
there are some unwanted oscillations in the semi-analytical solutions of the scattered pressure
which are essentially due to the Gibb phenomena and numerical instabilities in inverse Laplace
transform algorithm. In the numerical solutions, we have also some unwanted oscillations.
However, it is less signi�cant than those in semi-analytical solutions since numerical dissipations
are implicitly introduced in the time-discretization scheme. For the case where Newmark
scheme without numerical dissipation (β = 1/4, γ = 1/2) whose results are not displayed here,
we observed large unwanted oscillations in the numerical solutions of �nite element model which
is essentially due to the discontinuity in time of the loading.
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.8: Numerical solutions of �nite element model in (us, φ
sca) (dashed lines) and semi-

analytical solutions (full lines)

Figure 2.9: Numerical solutions of �nite element model in (us, φ
sca) (dashed lines) and semi-

analytical solutions (full lines) of the scattered pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.10: Numerical solutions of �nite element model in (us, φ
sca) (left) and semi-analytical

solutions (right) of the scattered pressure at �uid-structure interface
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Let us now examine the formulations in (us, φ
rad), in (us, p

rad) and in (us, p
rad, ϕrad).

We remind that the pre-computing of re�ected pressure pref are required in order to use
the formulation in (us, φ

rad) and (us, p
rad). The same mesh of �uid part of the previous

coupled model in (us, φ
sca) is used for the �nite element modelling with the formulation in

φref (2.40). The re�ected pressures are then obtained by the relation (2.19). Figure 2.11
shows the numerical and the semi-analytical solution of re�ected pressure in the same graphic.
Numerical solutions of �nite element model are displayed in dashed lines while semi-analytical
solutions are displayed in full lines. The numerical results show that the re�ected pressures of
�nite element model in φref are in agreement with the semi-analytical solutions. Figure 2.12
plots the numerical and semi-analytical solutions of the re�ected pressure in two di�erent
graphics. As in the previous case, there are also unwanted oscillations in the semi-analytical
solution. It is however less signi�cant than in case of scattered pressure. Contrary to the
case of scattered pressure where the semi-analytical solutions always have larger unwanted
oscillations than those of numerical solutions, we observe that the numerical solutions of the
re�ected pressure cause larger unwanted oscillations than the semi-analytical solution for the
case θ = 0 and θ = π.

Figure 2.11: Numerical solutions of �nite element model (dashed lines) and semi-analytical
solutions (full lines) of the re�ected pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.12: Numerical solutions of �nite element model (left) and semi-analytical solutions
(right) of the re�ected pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.13: Numerical solutions of �nite element model in (us, φ
rad) (dashed lines) and

semi-analytical solutions (full lines)

Figure 2.14: Numerical solutions of �nite element model in (us, φ
rad) (dashed lines) and

semi-analytical solutions (full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.15: Numerical solutions of �nite element model in (us, φ
rad) (left) and semi-analytical

solutions (right) of the radiated pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.16: Numerical solutions of �nite element model in (us, p
rad) (dashed lines) and semi-

analytical solutions (full lines)

Figure 2.17: Numerical solutions of �nite element model in (us, p
rad) (dashed lines) and semi-

analytical solutions (full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.18: Numerical solutions of �nite element model in (us, p
rad) (left) and semi-analytical

solutions (right) of the radiated pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.19: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (dashed lines) and

semi-analytical solutions (full lines)

Figure 2.20: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (dashed lines) and

semi-analytical solutions (full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.21: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (left) and semi-

analytical solutions (right) of the radiated pressure at �uid-structure interface
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For the formulations in (us, φ
rad), (us, p

rad) and (us, p
rad, ϕrad), the results are respec-

tively displayed in Figure 2.13, 2.16 and 2.19 for the radial and ortho-radial displacement.
The radiated pressure are reported by Figure 2.14-2.15 for the formulation in (us, φ

rad), by
Figure 2.17-2.18 for the formulation in (us, p

rad) and by Figure 2.20-2.21 for the formulation
in (us, p

rad, ϕrad). We observe that these three formulations provide the same results which
con�rm numerically the equivalence as mentioned in Chapter 1. In comparison to the semi-
analytical solution, the numerical results of these three formulations reveal the same observation
as the formulation in (us, φ

sca).

As a conclusion, this study case allows us to validate our implementation of the loading
induced by the shock wave and the new formulations (us, p) and (us, φ) in a 2D con�guration.
Numerical results con�rm that the three formulations presented in Chapter 1 are equivalent.
Because of the discontinuity of the excitation provided by the shock wave, we note that a small
numerical dissipation is required in Newmark scheme in order to �lter the unwanted oscillation
of high frequency.

Remark 2.5.1 It should be note that these parasite oscillations are induced by the dispersive
nature of the Newmark scheme without dissipation (γ = 1/2, β = 1/4), which is consistent
at order 2. When the dissipation is introduced, Newmark scheme becomes only consistent at
order 1, and then numerically smooths the discontinuities: the dispersive nature, which is an
order 3 phenomenon arising around discontinuities, is therefore no longer observed.

2.5.2 Test case 2: a section of cylindrical hull submitted to an acoustic

shock wave

As the second study case, we consider an elastic structure with a form of a section of cylindri-
cal hull submitted to an excitation induced by an underwater explosion in the same manner
as in the �rst study case. Here, the domain occupied by the structure is Ωs := {(x, y, z) ∈
R3, R − e/2 < x2 + y2 < R + e/2,−h/2 < z < h/2} where R, e and h denote respectively the
radius, the thickness and the length of the cylindrical hull.

In order to render negligible the 3D-e�ect in z-direction, we impose a homogeneous Dirichlet
boundary condition of the displacement in z-direction on the boundary z = h/2 and z = −h/2
of the structure Ωs. We also assume that the thickness of the cylindrical hull is relatively small
compared to its radius and that the radius of the hull is relatively small compared to distance
of the explosion to the center of the hull. Under these assumptions, the semi-analytical solu-
tion of the �rst study case can be employed as the reference solution in our 3D-con�guration
problem.

For the numerical illustration, we use R = 1 m, e = 0.01 m and h = 0.2 m. The loading
under consideration is excited by the primary acoustic shock wave, which comes from an
underwater explosion of 1 000 kg TNT detonated at (d, 0, 0), where d = 100 m. At t = 0,
we suppose that the front of the shock wave arrives at the stand-o� point (the nearest point
of the structure to explosion). The physical properties of the structure and the �uid in the
problem are given in Table 2.1. The pro�le of the incident pressure and of the incident velocity
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are respectively given by the relations (2.12) and (2.15). In this study, we use the value of the
constants Pc, vc, A and B provided by Cole [40] as given in relation (2.10).

Finite element modelling

In order to approximate the radiation condition, a truncated �uid domain in form of a circle
of cylindrical of radius Rbgt = 3 m and with the same length as the structure, is employed. On
the boundary of the truncated �uid domain, the BGT-1 condition (1.35) is applied in order
to approximate the outgoing sound wave by a cylindrical wave for which we use the value of
impedance ZR = 2ρ0Rbgt, ZC = ρ0c0. The structure part is modelled using the quadratic
triangular shell elements [21]. The �uid part is modelled using quadratic tetrahedron
elements. The using mesh is illustrated in Figure 2.7.

In the resulting �nite element model, we have 230 067 degrees of freedom, 111 987 of
which correspond to the structural part and 118 080 of which correspond to the acoustic �uid
part for the formulation in (us, φ

sca), in (us, φ
rad) and in (us, p

rad). For the formulation in
(us, p

rad, ϕrad), we have 348 147 degrees of freedom, 111 987 of which correspond to the struc-
tural part and 236 160 of which correspond to the acoustic �uid part and the non-symmetric
�nite element model (2.37) will be used in this study. For time-discretization of �nite element
model, Newmark scheme with a small numerical dissipation (γ = 1/2−α, β = 1

4(1−α)2 where
α = −0.2) is employed by using the time step of size ∆t = 6.7 · 10−6 s which means that the
shock wave needs 100 time steps in order to travel the distance R.

Figure 2.22: Mesh used in �nite element modelling in the second validation case
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Analysis of numerical results

For numerical analysis, let us begin with the formulation in (us, φ
sca). The numerical and

reference solutions of radial and ortho-radial displacement at z = 0, are respectively illustrated
in Figure 2.23a and 2.23b. In Figure 2.23a and 2.23b, the reference solutions are displayed by
full lines while the numerical solutions are displayed by dashed lines. Because of the symmetric
in the problem, the ortho-radial displacement for θ = 0 and θ = π is zero as shown in Figure
2.23b. We can see clearly that the numerical solution is in accordance with the reference
solution. For the scattered pressure, Figure 2.24 plots the numerical and reference solutions in
the same graphic and Figure 2.25 plots the numerical and reference solution in two di�erences
graphics. The results show that the scattered pressure obtained by the �nite element model
is also in accordance with the reference solution. We remark that there are some unwanted
oscillations in the reference solutions of the scattered pressure which are essentially due to the
Gibb phenomena and the numerical instabilities in inverse Laplace transform algorithm. In
the numerical solutions, we have also some unwanted oscillations. However, it is less signi�cant
than the reference solutions since numerical dissipations are introduced in time-discretization
scheme.
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.23: Numerical solutions of �nite element model in (us, φ
sca) (dashed lines) and

reference solutions (full lines)

Figure 2.24: Numerical solutions of �nite element model in (us, φ
sca) (dashed lines) and

reference solutions (full lines) of the scattered pressure at �uid-structure interface

(a) Numerical solution (b) Reference solutions

Figure 2.25: Numerical solutions of �nite element model in (us, φ
sca) (left) and reference

solutions (right) of the scattered pressure at �uid-structure interface
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Let us now interest in the formulations in (us, φ
rad), (us, p

rad) and (us, p
rad, ϕrad). We

remind that the pre-computing of re�ected pressure pref are required in order to use the
formulation in (us, φ

rad) and (us, p
rad). The same mesh of �uid part of the previous model

in (us, φ
sca) are used for the �nite element modelling in formulation in φref (2.40). The

re�ected pressures are then obtained by the relation (2.19). Figure 2.26 shows the numerical
and reference solutions of re�ected pressure in the same graphic. Numerical solutions of �nite
element model are displayed in dashed lines while reference solution are displayed in full lines.
The numerical results show that the re�ected pressures of �nite element model in φref are in
agreement with the reference solutions. Figure 2.27 plots the numerical and reference solutions
of the re�ected pressure in two di�erent graphics. As in the previous case, there are also
parasites oscillations in the reference solutions. It is however less signi�cant than in case of
scattered pressure. Contrary to the case of scattered pressure where the reference solutions
always have parasites oscillations more signi�cant than the numerical solutions, we observe
that the numerical solutions of the re�ected pressure cause parasites oscillations larger than
the reference solutions for the case θ = 0 and θ = π.

Figure 2.26: Numerical solutions of �nite element model (dashed lines) and reference solutions
(full lines) of the re�ected pressure at �uid-structure interface

(a) Numerical solutions (b) Reference solutions

Figure 2.27: Numerical solutions of �nite element model (left) and reference solutions (right)
of the re�ected pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.28: Numerical solutions of �nite element model in (us, φ
rad) (dashed lines) and

semi-analytical solutions (full lines)

Figure 2.29: Numerical solutions of �nite element model in (us, φ
rad) (dashed lines) and

semi-analytical solutions (in full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.30: Numerical solutions of �nite element model in (us, φ
rad) (left) and semi-analytical

solutions (right) of the radiated pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.31: Numerical solutions of �nite element model in (us, p
rad) (dashed lines) and semi-

analytical solutions (full lines)

Figure 2.32: Numerical solutions of �nite element model in (us, p
rad) (dashed lines) and semi-

analytical solutions (full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.33: Numerical solutions of �nite element model in (us, p
rad) (left) and semi-analytical

solutions (right) of the radiated pressure at �uid-structure interface
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(a) Radial displacements Ur (b) Ortho-radial displacements Vr

Figure 2.34: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (dashed lines) and

semi-analytical solutions (full lines)

Figure 2.35: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (dashed lines) and

semi-analytical solutions (full lines) of the radiated pressure at �uid-structure interface

(a) Numerical solutions (b) Semi-analytical solutions

Figure 2.36: Numerical solutions of �nite element model in (us, p
rad, ϕrad) (left) and semi-

analytical solutions (right) of the radiated pressure at �uid-structure interface
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For the formulation in (us, φ
rad), in (us, p

rad) and in (us, p
rad, ϕrad), the results are re-

spectively displayed in Figure 2.28, 2.31 and 2.34 for the radial and ortho-radial displacement.
The radiated pressure are reported by Figure 2.29-2.30 for the formulation in (us, φ

rad), by
Figure 2.32-2.33 for the formulation in (us, p

rad) and by Figure 2.35-2.36 for the formulation
in (us, p

rad, ϕrad). We observe that these three formulations provide the same results which
con�rm numerically their equivalent as mentioned in Chapter 1. In comparison to the semi-
analytical solution, the numerical results of these three formulation reveals the same observation
as the formulation in (us, φ

sca).

As a conclusion, this study case allows us to validate our implementation of the loading
induced by the shock wave and the new formulations (us, p) and (us, φ) in a 3D con�guration.
Numerical results con�rm that the three formulations presented in Chapter 1 are equivalent.
Because of the discontinuity of the excitation provided by the shock wave, we also note in this
study case that a small numerical dissipation is required in Newmark scheme in order to �lter
the unwanted oscillations of high frequency.

2.6 Conclusions

A short presentation of the underwater explosion phenomena and �nite element modelling of
interaction of submerged structure and shock wave problem are given in this chapter. Four
formulations: in displacement structure - scattered velocity potential (us, φ

sca), in displacement

structure - radiated velocity potential (us, φ
rad), in displacement structure - radiated pressure

(us, p
rad) and in displacement structure - radiated pressure - radiated displacement potential

(us, p
rad, ϕrad), of the �uid-structure interaction problem of interest have been presented in

terms of strong formulation (PDE) as well as in terms of �nite element models. Contrary
to the formulation in (us, φ

sca), which requires only the knowledge on the shock wave (i.e
incident pressure and velocity), other three formulations require a pre-computation of the
re�ected pressure.

In order to validate the implementation of the loading induced by the acoustic shock wave
and the two new formulations in code_aster, numerical results on two test cases are presented in
the last section of the chapter. Numerical results con�rm that the three formulations presented
in Chapter 1 are equivalent. It also indicates that a small numerical dissipation is required in
Newmark family scheme in order to �lter the high frequency oscillation due to the shock wave
discontinuity.
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Reduced order modelling
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Chapter 3

Reduced order modelling of transient

vibro-acoustic problem

In the previous chapters, �nite element models of transient vibro-acoustic problem expressed
in various formulations have been presented. In order to obtain an accurate solution from the
�nite element model, it is known that we have to ensure that the size of mesh is small enough
for the highest frequency of interest. Because of the three-dimensional nature of acoustics, the
number of elements increases dramatically as the size of the problem increases. In addition,
since we use the approximation condition of radiation condition by BGT method [22, 67] for
exterior problem, we need to truncate �uid domain at a distance su�ciently far enough from
the propagation source. In practice, these requirements lead to having a large computational
domain together with a very large number of elements to apply the �nite element method of
the full model. As expected, in the industrial context, it is not applicable to use the full model
for many parameters. Therefore, we need to develop judicious numerical methods to solve this
problem for many parameters reasonably fast.

In order to overcome the issue of computational costs, we can turn to the reduced order
modelling techniques. The reduced basis method, which was originally introduced in the 1970's
for non-linear structural analysis in [3, 102] and analysed in [18, 110], have been investigated
as model order reduction technique in di�erent parametrized stationary problems; such as in
harmonic Maxwell's equations in [38], in elasticity problem [73, 123], in steady Navier-Stokes
equation in [91]. For parametrized frequency domain vibro-acoustic problem, a reduced order
modelling based on the reduced basis method has been analysed in [83]. The construction
of the reduced order model in the work [83] is based on a Petrov-Galerkin projection on a
suitable trial subspace and a suitable test subspace. An appropriate trial subspace can be
built by an iterative Greedy Algorithm using the norm of residual as error indicator. Galerkin
and Minimum Residual projections are then considered to determine the test subspace and
construct the parametric reduced order model. Numerical results of industrial complexity show
that the proposed reduced order model provides a very good approximation of the full model
with the CPU time gain of several orders of magnitude depending on the desired accuracy.

Unfortunately, it has been shown in [27, 121] that the technique proposed in [83] can not
be directly applied in time domain problem. For transient problem, it is necessary to ensure
that the reduced order model preserves the stability properties of the full model. In the most
general cases of time-dependent problem, the reduced order model based on a Petrov-Galerkin
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projection does not preserve the stability of the full model. Several techniques of stabilization
have been proposed in literature (for instance, see [96, 7, 25, 76, 119]). Balanced Truncation
method proposed in [96] can ensure the stability of the Galerkin-reduced order model. Unfor-
tunately, the computation of the reduced basis involves the Lyapunov equations which require
a complexity of ≈ O(n3), where n is the size of the full model, for the resolution. This complex-
ity makes the application of this technique out of reach in the industrial problem. A general
purpose optimization approaches to obtain a stable Petrov-Galerkin projection reduced order
model are presented in [7] and [25]. For a given couple (W,V), the proposed approach aims
to replace the left basis W by a new one W̃ for which Petrov-Galerkin reduced order model
based on the couple (W̃,V) is stable. The key idea is to solve a constrained optimization
problem where the constraint is to enforce stability of reduced order model and the objective
function to minimize is the di�erence between the resulting left basis and the original left basis
in order to ensure that the loss accuracy in the stabilization process is as small as possible.
The method proposed in [7] does not guarantee the existence of the solution of constrained
optimization problem. The method proposed in [25] can guarantee the existence of the solution
of constrained optimization problem. However the proposed algorithms are not guaranteed to
terminate with a �nite number of iterations. In 2014, a new approach for stabilizing unstable
reduced order model through an a posteriori post-processing applied to algebraic reduced or-
der model system is developed in [76]. The idea is to modify the unstable eigenvalues of the
reduced order model system by moving these eigenvalues into the stable half of the complex
plane. This approach can ensure that the modi�ed reduced order model is stable however the
accuracy of the stabilized reduced order model is not guaranteed.

Speci�cally for the case of time-domain vibro-acoustic �nite element model, a stable reduced
order modelling has been recently proposed in [121] for the formulation in (us, p) and in (us, φ)

for the case of an interior problem. For (us, φ) based formulation, the idea is to modify the
original formulation by changing the sign of the set of equations governing the acoustic part
before employing Galerkin projection. For the case of (us, φ) based formulation, the stability
of Galerkin-reduced order model is achieved by choosing a particular form of the reduced basis
in order to preserve the structure of the original full model. The proposed techniques are then
extended to the case of exterior problem, where the radiation condition is modelled by the
In�nite Element method [10], in [122].

The �rst objective of this chapter is to present the stabilization reduced order modelling
technique proposed in [121] for the time domain vibro-acoustic �nite element model in (us, p)

and (us, φ) couple and exploit the ideas to give a stabilization reduced order modelling tech-
nique for the �nite element model in (us, p, ϕ) couple. The second objective of this chapter is
to study the accuracy of the reduced order model based on the reduced basis built by a Greedy
Algorithm applying on the corresponding frequency domain proposed in [83]. This chapter is
organized as follows. In the �rst section, we recall the notion of stability and we verify that the
�nite element model in (us, p), (us, φ) and in (us, p, ϕ) are all stable. In the second section,
the stable reduced order models based on Petrov-Galerkin projection for the three formulations
are given in Subsection 3.2.3, 3.2.4 and 3.2.5. The third section focuses on the construction of
the reduced basis. Depending on the stabilization technique of each formulation, we propose
to make some modi�cations in the classical Greedy Algorithm. Numericals validations of the
stability and numerical study on the accuracy of reduced order model are given in Section 3.4.
Finally, conclusions are o�ered in Section 3.5.
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3.1. FULL MODEL AND STABILITY

3.1 Full model and stability

In this chapter, the term of full model refers to the �nite element model. We consider here the
full model which is described by a set of ordinary di�erential equations:

MẌ(t) +CẊ(t) +KX(t) = f(t)F

X(t = 0) = X0

Ẋ(t = 0) = Ẋ0

(3.1)

where M, C and K ∈ Cn×n are respectively the given mass, damping and sti�ness matrix of
the problem, f is a time-dependent function and F is a vector of Cn. Before talking about
the reduced order modelling, let us recall brie�y the notion of stability of the dynamical sys-
tem (3.1).

Throughout this chapter, the stability means that the state of the system (3.1) is bounded
(i.e ∃ C > 0 such that ||X(t)|| ≤ C , ∀t ≥ 0) in the case of absence of the external force, for
any initial condition. In general, it is di�cult to directly study the stability of a second-order
system. It is usual to work with an equivalent linear descriptor system since the criteria of the
stability are well established for this kind of system. A linear descriptor system is governed by
the set of equations:

EẎ(t) = AY(t) +B(t) (3.2)

where E,A are two matrices in C2n×2n, B is a time-dependent vector in C2n and Y =[
X(t) Ẋ(t)

]T
. The de�nition of stability of a linear descriptor system (3.2) is given by the

following de�nition [50].

De�nition 3.1.1 The linear descriptor system (3.2) is called stable if and only if all

of eigenvalues of the following generalized eigenvalue problem:

Ay = λEy (3.3)

have a negative real part.

It is important to note that the second-order system (3.1) can be written as a linear de-
scriptor system (3.2) with

E =

[
Q 0

0 M

]
,A =

[
0 Q

−K −C

]
and B(t) = f(t)

[
0

F

]
(3.4)

where Q is an invertible matrix. Hence, we can use the following de�nition for the stability of
a second order system (3.1).

De�nition 3.1.2 The dynamical system (3.1) is called stable if and only if all root of

the polynomial P (s) := det(s2M+ sC+K) have a negative real part.

The roots of the polynomial P (s) are also known as the poles of the system (3.1). The
de�nition 3.1.2 is equivalent to stating that all the poles of the system must be in the closed left-
half complex plane. In what follows, we give an overview on the mathematical conditions under
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which the system (3.1) and (3.2) are stable. First, let us recall the notion of (semi)-de�nite
positive of a matrix Cn×n.

De�nition 3.1.3 A matrix A ∈ Cn×n is called:

� positive de�nite if and only if we have <(xHAx) > 0, ∀x ∈ Cn, x 6= 0

� semi-positive de�nite if and only if we have <(xHAx) ≥ 0,∀x ∈ Cn

The following lemma gives a mathematical condition under which the linear descriptor
system (3.2) is stable.

Lemma 3.1.1 [121] The linear descriptor system (3.2) is stable if the matrix E is pos-

itive de�nite and hermitian and the matrix −A is positive semi-de�nite.

Proof: Let λ ∈ C and v ∈ Cn be the eigenvalue and the corresponding eigenvector of the
generalized eigenvalue problem (3.3), by de�nition we have:

Av = λEv

⇒ vHAv = λvHEv

Since the matrix E is positive de�nite and hermitian, we have vHEv ∈ R and vHEv > 0. With
the properties of positive semi-de�niteness of the matrix−A, we have then <(λ) = <(vHAv)

vHEv
≤ 0

�

The following lemma gives a mathematical condition under which the second-order system
(3.1) is stable.

Lemma 3.1.2 [121] The system (3.1) is stable if the mass and sti�ness matrices M,K

are positive de�nite and hermitian and the damping matrix C is semi-positive de�nite.

Proof: Since the sti�ness matrix K is invertible, the second-order system (3.1) can be
written as a linear descriptor (3.2) with

E =

[
K 0

0 M

]
,A =

[
0 K

−K −C

]
and B = f(t)

[
0

F

]
Since the matrices K and M are positives de�nite and hermitian, the matrix E is also

positive de�nite and hermitian. For any x =
[
x1 x2

]T
∈ C2n, we have

<(xHAx) = <(
[
xH1 xH2

] [ 0 K

−K −C

][
x1

x2

]
) = −<(xH2 Cx2) ≤ 0

Thus, the matrix −A is positive semi-de�nite. Since the matrix −A is positive semi-de�nite
and the matrix E is positive de�nite and hermitian, we can conclude that the second-order
system (3.1) is stable according to Lemma 3.1.1

�
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An extension of Lemma 3.1.2 for the case of the sti�ness matrix is only positive semi-de�nite
is given by the following lemma.

Lemma 3.1.3 The system (3.1) is stable if the mass M is positive de�nite and hermi-

tian, the sti�ness K is positive semi-de�nite and hermitian, and the damping matrix C

is positive semi-de�nite.

Proof: Let λ is a root of the polynomial P (s) = det(s2M+ sC+K). By de�nition, there
is a vector x 6= 0 such that:

(s2M+ sC+K)x = 0

⇒ s2(xHMx) + s(xHCx) + xHKx = 0

The hypothesis of the lemma implies that xHMx ∈ R, xHMx > 0, xHKx ∈ R, xHKx ≥ 0

and <(xHCx) ≥ 0. Let us denote by s1 = a1 + jb1 and s2 = a2 + jb2 the solution of
algebraic equation s2(xHMx) + s(xHCx) + xHKx = 0. Then, we have s1 + s2 = − xHCx

xHMx
and

s1s2 = xHKx

xHCx
which implies: 

a1 + a2 = −<(xHCx)

xHMx
≤ 0

a1a2 − b1b2 =
xHKx

xHMx
≥ 0

a1b2 + a2b1 = 0

• Case 1 : If a1 = 0 (a2 = 0), the inequality a1 + a2 ≤ 0 implies that a2 ≤ 0 (a1 ≤ 0).
Then, we have in this case <(s1) ≤ 0,<(s2) ≤ 0.

• Case 2 : If a1 6= 0, a2 6= 0. Suppose that a1 and a2 do not have the same sign. Then,
we have a1a2 < 0 and a2/a1 < 0. From the equation a1b2 + a2b1 = 0, we have b1b2 =

−(a2/a1) > 0. Since a1a2 < 0 and b1b2 > 0, we have a contradiction in the inequality
a1a2 − b1b2 ≥ 0. It means that a1 and a2 must have the same sign in which case the
inequality a1 + a2 ≤ 0 implies that <(s1) ≤ 0,<(s2) ≤ 0.

�

In the case of the second-order system (3.1) resulting from the �nite element discretization
of structural dynamic or acoustic problem, the mass matrix M is symmetric and positive de�-
nite and the sti�ness matrix K is symmetric and positive semi-de�nite. Hence, we can directly
conclude that the system is stable according to Lemma 3.1.3 in the condition that if we have a
damping e�ect, it is represented by a positive semi-de�nite matrix. For �nite element models of
vibro-acoustic coupling presented in the previous chapter, the su�cient conditions of stability
in Lemma 3.1.3 is not veri�ed.

In what follows, we propose to verify the stability of the second order systems resulting
from a �nite element discretization of transient vibro-acoustic problem.
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3.1.1 Stability of full model in (us, φ)

Let us begin with the formulation in (us, φ) couple. In order to generalize our demonstration,
we consider that the structural and �uid damping e�ects are also taken into account in the
model. For the case of an interior problem, the full model of the formulation in (us, φ) is given
by:[

Ms 0

0 −ρ0Mf

][
Üs

Φ̈

]
+

[
Cs −ρ0Kc

−ρ0K
T
c −ρ0Cf

][
U̇s

Φ̇

]
+

[
Ks 0

0 −ρ0Kf

][
Us

Φ

]
=

[
Fs

Fφ

]
(3.5)

where the matrices Cs and Cf represent respectively the structural and the �uid damping
matrix. We restrict ourselves to the case where these two damping matrices are positive semi-
de�nite. The stability of the system (3.5) is achieved as a particular case (where all matrices
have real coe�cients) of the following lemma.

Lemma 3.1.4 If the mass matrices Ms, Mf are hermitian and positive de�nite, the

sti�ness matrices Ks et Kf are hermitian and positive semi-de�nite and the damping

matrices Cs and Cf are positive semi-de�nite, the dynamical system[
Ms 0

0 −ρ0Mf

]
︸ ︷︷ ︸

Muφ

[
Üs

Φ̈

]
+

[
Cs −ρ0Kc

−ρ0K
H
c −ρ0Cf

]
︸ ︷︷ ︸

Cuφ

[
U̇s

Φ̇

]
+

[
Ks 0

0 −ρ0Kf

]
︸ ︷︷ ︸

Kuφ

[
Us

Φ

]
=

[
Fs
Fφ

]
(3.6)

is stable.

Proof: By changing the sign of the set of equations governing the degree of freedom of
φ, it is obvious that the system (3.6) has the same properties of stability with the following
system:

[
Ms 0

0 ρ0Mf

]
︸ ︷︷ ︸

Mmuφ

[
Üs

Φ̈

]
+

[
Cs −ρ0Kc

ρ0K
H
c ρ0Cf

]
︸ ︷︷ ︸

Cmuφ

[
U̇s

Φ̇

]
+

[
Ks 0

0 ρ0Kf

]
︸ ︷︷ ︸

Kmuφ

[
Us

Φ

]
=

[
Fs

−Fφ

]
(3.7)

We can now use Lemma 3.1.3 to conclude the stability of the system (3.7). It is obvious
that the new coupling mass (sti�ness) matrix Mmuφ (resp. Kmuφ) is hermitian and positive
(semi-) de�nite thanks to the properties of the sub matrix Ms and Mf (resp. Ks and Kf ). It
remains now to show that the coupling damping matrix Cmuφ is positive semi-de�nite. For all

x =
[
x1,x2

]T
, we have:
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3.1. FULL MODEL AND STABILITY

<(xHCmuφx) = <(
[
xH1 ,x

H
2

] [ Cs −ρ0Kc

ρ0K
H
c ρ0Cf

][
x1

x2

]
)

= <(xH1 Csx1 + ρ0x
H
2 Cfx2 − ρ0x

H
1 Kcx2 + ρ0x

H
2 K

H
c x1)

= <(xH1 Csx1 + ρ0x
H
2 Cfx2) ≥ 0

Thus, the matrix Cmuφ is semi-positive de�nite. The system (3.7) is then stable according to
Lemma 3.1.3.

�

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
�nite element model of the formulation in (us, φ) is given by:

[
Ms 0

0 −ρ0Mf

][
Üs

Φ̈

]
+

[
Cs −ρ0Kc

−ρ0K
T
c −ρ0(Cf + ρ0

ZC
Q)

][
U̇s

Φ̇

]

+

[
Ks 0

0 −ρ0(Kf + ρ0
ZR
Q)

][
Us

Φ

]
=

[
Fs

Fφ

]
(3.8)

Since the impedance matrix Q is symmetric and positive semi-de�nite, the sti�ness matrix in
the �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive semi-de�nite and the total

damping matrix in the �uid part Cext
f := Cf + ρ0

ZC
Q remains positive semi-de�nite. Thus,

we can conclude that the system (3.8) is also stable. For exterior problem where the BGT-0
method is used to approximate the radiation condition, the �nite element model remains also
stable since we have in this case Kext

f := Kf and Cext
f := Cf + ρ0

ZC
Q which remains positive

semi-de�nite.

3.1.2 Stability of full model in (us, p)

In this section, we turn to the formulation in (us, p). We recall that the �nite element model
in (us, p) of an interior problem is given by:

[
Ms 0

−ρ0K
T
c Mf

][
Üs

P̈

]
+

[
Cs 0

0 Cf

][
Üs

P̈

]
+

[
Ks Kc

0 Kf

][
Us

P

]
=

[
Fs

Fp

]
(3.9)

where the matricesCs andCf which represent respectively the structural and the �uid damping
terms, are introduced in the model in order to generalize our framework. We consider here
only the case where these two damping matrices are positive semi-de�nite. The stability of the
system (3.9) is achieved as a particular case (where all matrices have real coe�cients) of the
following lemma.
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Lemma 3.1.5 If the mass matrices Ms, Mf are hermitian and positive de�nite, the

sti�ness matrices Ks et Kf are hermitian and positive semi-de�nite and the damping

matrices Cs and Cf are positive semi-de�nite, the dynamical system[
Ms 0

−ρ0K
H
c Mf

]
︸ ︷︷ ︸

Mup

[
Üs

P̈

]
+

[
Cs 0

0 Cf

]
︸ ︷︷ ︸

Cup

[
Üs

P̈

]
+

[
Ks Kc

0 Kf

]
︸ ︷︷ ︸

Kup

[
Us

P

]
=

[
Fs
Fp

]
(3.10)

is stable.

Proof: We denote by Pup and Puφ the characteristic polynomial (de�ned in the de�nition
3.1.2) of the system (3.10) and the system (3.6), respectively. By de�nition, the polynomial
Pup of the system (3.10) is given by:

Pup(s) =

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0s
2KH

c s2Mf + sCf +Kf

∣∣∣∣∣
and the polynomial Puφ of the system (3.6) is given by:

Puφ(s) =

∣∣∣∣∣s2Ms + sCs +Ks −ρ0sKc

−ρ0sK
H
c −ρ0(s2Mf + sCf +Kf )

∣∣∣∣∣
We denote by nf the number of degrees of freedom in the �uid part. For s 6= 0, we have

Puφ(s) = (−ρ0s)
nf

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0sK
H
c

1
s (s2Mf + sCf +Kf )

∣∣∣∣∣
= (−ρ0)nf

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0s
2KH

c s2Mf + sCf +Kf

∣∣∣∣∣
= (−ρ0)nfPup(s)

The system (3.10) and the system (3.6) have the same non-zero poles which means that
both systems have the same properties of stability. Since the system (3.6) is stable according
to Lemma 3.1.4, we can then conclude that the system (3.10) is also stable.

�

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
�nite element model of the formulation in (us, p) is given by:

[
Ms 0

−ρ0K
T
c Mf

][
Üs

P̈

]
+

[
Cs 0

0 Cf + ρ0
ZC
Q

][
Üs

P̈

]
+

[
Ks Kc

0 Kf + ρ0
ZR
Q

][
Us

P

]
=

[
Fs

Fp

]
(3.11)

Since the impedance matrix Q is symmetric and positive semi-de�nite, the sti�ness matrix in
the �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive semi-de�nite and the total

damping matrix in the �uid part Cext
f := Cf + ρ0

ZC
Q remains positive semi-de�nite. Thus,

we can conclude that the system (3.11) is also stable. For exterior problem where the BGT-0
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method is used to approximate the radiation condition, the �nite element model remains also
stable since we have in this case Kext

f := Kf and Cext
f := Cf + ρ0

ZC
Q which remains positive

semi-de�nite.

3.1.3 Stability of full model in (us, p, ϕ)

Finally, let us put the focus on the formulation in (us, p, ϕ). We recall that the �nite element
model in (us, p, ϕ) of an interior problem is given by: Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
T
c Mf −ρ0Kf


Üs

P̈

ϕ̈

+

Cs 0 0

0 0 0

0 Cf 0


U̇s

Ṗ

ϕ̇



+

Ks 0 0

0 1
ρ0
Mf 0

0 0 0


Us

P

ϕ

 =

Fs0
Fp

 (3.12)

where the matricesCs andCf which represent respectively the structural and the �uid damping
term, are introduced in order to generalize our framework. We consider here only the case where
these two damping matrices are positive semi-de�nite. The stability of the system (3.12) is
achieved as a particular case (where all matrices have real coe�cients) of the following lemma.

Lemma 3.1.6 If the mass matrices Ms, Mf are hermitian and positive de�nite, the

sti�ness matrices Ks et Kf are hermitian and positive semi-de�nite and the damping

matrices Cs and Cf are positive semi-de�nite, the dynamical system Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
H
c Mf −ρ0Kf


Üs

P̈

ϕ̈

+

Cs 0 0

0 0 0

0 Cf 0


U̇s

Ṗ

ϕ̇



+

Ks 0 0

0 1
ρ0
Mf 0

0 0 0


Us

P

ϕ

 =

Fs0
Fp

 (3.13)

is stable.

Proof: We denote by Pup and Pupϕ the characteristic polynomial (de�ned in the de�nition
3.1.2) of the system (3.10) and the system (3.13), respectively. By de�nition, the polynomial
Pup of the system (3.10) is given by:

Pup(s) =

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0s
2KH

c s2Mf + sCf +Kf

∣∣∣∣∣
and the polynomial Pupϕ of the system (3.13) is given by:

Pupϕ(s) =

∣∣∣∣∣∣∣
s2Ms + sCs +Ks 0 −ρ0s

2Kc

0 1
ρ0
Mf s2Mf

−ρ0s
2KH

c s2Mf + sCf −ρ0s
2Kf

∣∣∣∣∣∣∣
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We denote by nf the number of degrees of freedom of the pressure p which is equal to the
number of degrees of freedom of the potential ϕ. We have:

Pupϕ(s) = (−ρ0s
2)nf

∣∣∣∣∣∣∣
s2Ms + sCs +Ks 0 Kc

0 1
ρ0
Mf − 1

ρ0
Mf

−ρ0s
2KH

c s2Mf + sCf Kf

∣∣∣∣∣∣∣
= (−ρ0s

2)nf

∣∣∣∣∣∣∣
s2Ms + sCs +Ks 0 Kc

0 1
ρ0
Mf 0

−ρ0s
2KH

c s2Mf + sCf s2Mf + sCf +Kf

∣∣∣∣∣∣∣
= (−ρ0s

2)nfdet(
1

ρ0
Mf )

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0s
2KH

c s2Mf + sCf +Kf

∣∣∣∣∣
= (−s2)nfdet(Mf )

∣∣∣∣∣s2Ms + sCs +Ks Kc

−ρ0s
2KH

c s2Mf + sCf +Kf

∣∣∣∣∣
= (−s2)nfdet(Mf )Pup(s)

Since the matrix Mf is positive de�nite, we have det(Mf ) > 0. Thus, the system (3.13)
and the system (3.10) have the same non-zero poles which means that both systems have the
same properties of stability. Since the system (3.10) is stable according to Lemma 3.1.5, we
can then conclude that the system (3.13) is also stable.

�

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
�nite element model of the formulation in (us, p, ϕ) is given by: Ms 0 −ρ0Kc

0 0 Mf

−ρ0K
T
c Mf −ρ0(Kf + ρ0

ZR
Q)


Üs

P̈

ϕ̈

+

Cs 0 0

0 0 0

0 Cf + ρ0
ZC
Q 0


U̇s

Ṗ

ϕ̇



+

Ks 0 0

0 1
c20
Mf 0

0 0 0


Us

P

ϕ

 =

Fs0
Fp

 (3.14)

Since the impedance matrix Q is symmetric and positive semi-de�nite, the sti�ness matrix in
the �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive semi-de�nite and the total

damping matrix in the �uid part Cext
f := Cf + ρ0

ZC
Q remains positive semi-de�nite. Thus,

we can conclude that the system (3.14) is also stable. For exterior problem where the BGT-0
method is used to approximate the radiation condition, the �nite element model remains also
stable since we have in this case Kext

f := Kf and Cext
f := Cf + ρ0

ZC
Q which remains positive

semi-de�nite.

3.2 Reduced order modelling

As mentioned in introduction, the number of degrees of freedom in �nite element model is
often very large in industrial problems which limits the practical use of this so-called full
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model in parametrized problems, due to the required computational cost. This problem can
be overcome by using reduced order modelling techniques. In this section, we are interested
in the Petrov-Galerkin projection-based model reduction techniques which consists to restrict
the solution space to a subspace and enforce the orthogonality of the residual vector to a test
subspace. We denote V and W the trial and the test subspace of dimension N which is much
smaller than the dimension of the full model denoted by n, the reduced order model obtained
by Petrov-Galerkin projection of the full model (3.1) on the couple (V,W) writes:

MrẌr(t) +CrẊr(t) +KrXr(t) = f(t)Fr

Xr(t = 0) = ΠVX0

Ẋr(t = 0) = ΠVẊ0

(3.15)

where Mr = WHMV, Cr = WHCV, Kr = WHKV ∈ CN×N , Fr = WHF ∈ CN and ΠV
denotes the orthogonal projection on the space spanned by the reduced basis V. The approx-
imation of the solution of the full model (3.1) by the reduced order model (3.15) is given by:
Xrom(t) = VXr(t). In the case ofW = V, the projection is well known as Galerkin projection.

The main challenge of projection based model reduction is to �nd the reduced basis W
and V such that the reduced system (3.15) provides an accurate approximation of the output
of interest over the desired ranges of inputs function f . One of necessary conditions to obtain
such reduced order model is to ensure that the stability of the system is preserved. We recall
that the de�nition of the stability used here states that the system (3.1) is stable if and only if
all roots of the polynomial P (s) := det(s2M+ sC+K) have a negative real part. Preserving
of the stability means that the reduced order models must have the same properties of stability
as the full model. This condition is necessary in order to impose the solution of reduced order
model (3.15) to have the same physical meaning as the original full model (3.1).

3.2.1 O�ine/online decomposition

Before talking about the stability of the reduced order model, let us recall brie�y an e�cient
o�ine/online procedure in the reduced order modelling framework. We remind that the com-
plexity of computation in the o�ine phase may depend on the size of the full model. On the
contrary, the complexity of computation in the online phase does not depend on the size of the
full model. It depends only on the size of the reduced order model. We assume here that the
mass, damping and sti�ness matrices of the full model (3.1) do not depend on the parameter.
The parameter that we seek to vary here is the time-dependent function f .

At o�ine phase, we begin by computing the reduced basis V and W. The reduced mass,
sti�ness and damping matrices Mr,Kr,Cr as well as the reduced right-hand side vector Fr
are then computed and saved. Once all the computations of Mr,Kr,Cr and Fr in o�ine
phase are done, the solution Xr of the reduced order model (3.15) can be obtained with a
complexity which depends only on the size of the reduced basis denoted by N and the number
of time steps K considered in time-discretization. We should remark that the computation
of the approximation of the full model's solution Xrom by the relation Xrom(t) = VXr(t)

is in complexity O(nNK). Thus, it still depends on the size of the full model. However, if
we are only interested in some physical quantities which can be expressed by a linear form:
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Sl(t) = LTX(t), where L is a vector of Rn and X is the solution of the full model (3.1), then
the prediction of this physical quantities by reduced order model can be obtained in complexity
O(NK). The idea is to pre-compute o�ine the reduced vector LTr = LTV ∈ C1×N , and using
online the relation Sroml (t) = LTrXr(t). The same technique is also applicable for the physical
quantities which can be expressed by a quadratic form: Sq(t) = XH(t)QX(t), where Q is
a matrix in Cn×n and X is the solution of the full model (3.1), by pre-computing o�ine the
reduced matrixQr = VHQV ∈ CN×N , and using online the relation Sromq (t) = XH

r (t)QrXr(t).
The complexity in online part for the latter case is in O(N2K).

3.2.2 Stability preserving reduced order model

In the most general cases, Petrov-Galerkin reduced order model does not preserve automatically
the stability of the full model. It is possible to have a unstable Petrov-Galerkin projection
reduced order model even if the original full model is stable, as we will see numerically in
Section 3.4 for the case of vibro-acoustic problem. In some particular cases, the reduced order
model based on Galerkin projection preserves automatically the stability of the full model as
stated in the following lemma.

Lemma 3.2.1 If the mass matrix M is positive de�nite and hermitian, the sti�ness

matrix K is positive semi-de�nite and hermitian and the damping matrix C is positive

semi-de�nite, then the reduced order model obtained by Galerkin projection of the full

model (3.1) preserves the stability for any choices of the reduced basis V .

Proof: According to Lemma 3.1.3, it is su�cient to show that the reduced mass matrix
Mr remains hermitian and positive de�nite, the reduced sti�ness matrix Kr remains hermitian
and positive semi-de�nite and the reduced damping matrix Cr remains positive semi-de�nite.

We denote in what follows by Ar = VHAV ∈ CN×N , where N is the dimension of the
subspace spanned by the basis V. Since V is a basis, the rank of the matrix V is maximum.
Thus, for any xr ∈ CN , there exists an unique vector x ∈ Cn such that x = Vxr and we have:

<(xHAx) = <((Vxr)
HA(Vxr)) = <(xHr (VHAV)xr) = <(xHr Arxr)

Clearly, we have x = Vxr 6= 0 if xr 6= 0. The matrix Ar is then positive (semi-) de�nite if the
matrix A is positive (semi-) de�nite. Thus, the reduced mass matrix Mr is positive de�nite
and the reduced sti�ness matrix Kr and reduced damping matrix Cr are positive semi-de�nite.

It remains to show that the reduced mass and sti�ness matrices are hermitian. For any
xr,yr ∈ CN and x = Vxr,y = Vyr ∈ Cn, we have:

yHAx = (Vyr)
HA(Vxr) = yHr (VHAV)xr = yHr Arxr

and
xHAy = (Vxr)

HA(Vyr) = xHr (VHAV)yr = xHr Aryr

If the matrix A is hermitian, we have yHAx = xHAy. It implies that yHr Arxr = xHr Aryr
which means that the reduced matrix Ar is also hermitian. The reduced mass and sti�ness
matrices are then hermitian.

�
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According to Lemma 3.2.1, in the case of the full model resulting from the �nite element
discretization of structural dynamic or acoustic problem, where we have symmetric and positive
de�nite mass matrix M and symmetric and positive semi-de�nite sti�ness matrix K, we can
directly conclude that the reduced order model obtained by Galerkin projection is always stable.
It remains true in the case where we also take into account a positive semi-de�nite damping
matrix in the model. However, Lemma 3.2.1 can not be applied directly to vibro-acoustic
coupling problem.

In the following, we present the stabilization reduced order modelling technique proposed in
[121] for the time domain vibro-acoustic �nite element model in (us, p) and (us, φ) respectively
in Section 3.2.3 and 3.2.4 and we will give a stabilization reduced order modelling technique
for the �nite element model in (us, p, ϕ) in Section 3.2.5.

3.2.3 Stable reduced order models for the formulation in (us, φ)

In the case of the full model in (us, φ), a stable reduced order model can be obtained by Petrov-
Galerkin projection using a particular form of the basis W of test subspace which depends on
the choice of the basis of the trial subspace V as stated in Lemma 3.2.2. This stabilization
technique is equivalent to the technique proposed in [121] which consists to construct a stable
reduced order model by using Galerkin projection on the modi�ed formulation in (us, φ) (3.7).
The stability of the reduced order model proposed in [121] is achieved since all the hypothesis
of Lemma 3.2.1 is veri�ed for the modi�ed formulation (3.7) as shown in the demonstration of
Lemma 3.1.4.

Lemma 3.2.2 For any basis V =

[
Vs

Vf

]
, the Petrov-Galerkin projection of the full

model in (us, φ) on the (W,V) where W =

[
Vs

−Vf

]
yields a stable reduced order model.

Proof: The reduced order model obtained by Galerkin projection of modi�ed formulation

in (us, φ) (3.7) on the basis V =

[
Vs

Vf

]
is given by:

Mr
muφẌr(t) +Cr

muφẊr(t) +Kr
muφXr(t) = Frmuφ (3.16)

where

M
r
muφ =

[
V
H
s V

H
f

] [Ms 0

0 ρ0Mf

] [
Vs

Vf

]
= VH

s MsVs + ρ0V
H
f MfVf

C
r
muφ =

[
V
H
s V

H
f

] [ Cs −ρ0Kc

ρ0K
H
c ρ0Cf

] [
Vs

Vf

]
= VH

s CsVs + ρ0V
H
f CfVf − ρ0VH

s KcVf + ρ0V
H
f K

H
c Vs

K
r
muφ =

[
V
H
s V

H
f

] [Ks 0

0 ρ0Kf

] [
Vs

Vf

]
= VH

s KsVs + ρ0V
H
f KfVf

F
r
muφ =

[
V
H
s V

H
f

] [ Fs
−Fφ

]
= VH

s Fs −V
H
f Fφ
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3.2. REDUCED ORDER MODELLING

The reduced order model obtained by Petrov-Galerkin projection of formulation in (us, φ) (3.6)

on (V,W) where V =

[
Vs

Vf

]
and W =

[
Vs

−Vf

]
is given by:

Mr
uφẌr(t) +Cr

uφẊr(t) +Kr
uφXr(t) = Fruφ (3.17)

where

Mr
uφ =

[
VH
s −VH

f

] [Ms 0

0 −ρ0Mf

][
Vs

Vf

]
= VH

s MsVs + ρ0V
H
f MfVf

Cr
uφ =

[
VH
s −VH

f

] [ Cs −ρ0Kc

−ρ0K
H
c −ρ0Cf

][
Vs

Vf

]
= VH

s CsVs + ρ0V
H
f CfVf − ρ0V

H
s KcVf + ρ0V

H
f K

H
c Vs

Kr
uφ =

[
VH
s −VH

f

] [Ks 0

0 −ρ0Kf

][
Vs

Vf

]
= VH

s KsVs + ρ0V
H
f KfVf

Fruφ =
[
VH
s −VH

f

] [Fs
Fφ

]
= VH

s Fs −VH
f Fφ

The reduced order model (3.16) and (3.17) are then equivalent. As a result, the reduced
order model (3.17) is stable since the reduced order model (3.16) is stable according to Lemma
3.2.1

�

Remark 3.2.1 The reduced mass (sti�ness) matrix of the reduced order model (3.17) is
hermitian and positive (semi-) de�nite. The reduced damping matrix of the reduced order
model (3.17) is positive semi-de�nite but not hermitian. Hence, even in case the basis is in
Rn×N , the reduced order model (3.17) is then not symmetric.

Remark 3.2.2 For exterior problem where the BGT-1 method is used to approximate the
radiation condition (3.8), it is obvious that the statement of Lemma 3.2.2 remains valid since the
sti�ness matrix of �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive semi-de�nite

and the total damping matrix of �uid part Cext
f := Cf + ρ0

ZC
Q remains positive semi-de�nite.

3.2.4 Stable reduced order models for the formulation in (us, p)

For the formulation in (us, p), a stable reduced order model can be obtained by Galerkin pro-
jection on a particular form of reduced basis. The stabilization technique proposed in [121] is
stated as in the following lemma.

Lemma 3.2.3 The Galerkin projection of the full model in (us, p) on a basis

V =

[
Vs 0

0 Vf

]
(3.18)

where Vs and Vf are respectively a reduced basis of structural and �uid part, yields a

stable reduced order model.
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3.2. REDUCED ORDER MODELLING

Proof: The reduced order model obtained by Galerkin projection of the full model in (us, p)

(3.10) on the basis V is given by:

Mr
upẌ

r
up(t) +Cr

upẊ
r
up(t) +Kr

upX
r
up(t) = Frup (3.19)

where

Mr
up =

[
VH
s MsVs 0

−ρ0c
2
0V

H
f K

H
c Vs VH

f MfVf

]
,Cr

up =

[
VH
s CsVs 0

0 VH
f CfVf

]
,

Kr
up =

[
VH
s KsVs VH

s KcVf

0 VH
f KfVf

]
The reduced order model obtained by Petrov-Galerkin of the full model (3.6) of (us, φ) formu-

lation on (V,W) where W =

[
Vs 0

0 −Vf

]
, is given by:

Mr
uφẌ

r
uφ(t) +Cr

uφẊ
r
uφ(t) +Kr

uφX
r
uφ(t) = Fruφ (3.20)

where

Mr
muφ =

[
VH
s MsVs 0

0 ρ0V
H
f MfVf

]
,Cr

uφ =

[
VH
s CsVs −ρ0V

H
s KcVf

ρ0V
H
f K

T
c Vs ρ0V

H
f CfVf

]
,

Kr
uφ =

[
VH
s KsVs 0

0 ρ0V
H
f KfVf

]
By computing the characteristic polynomial P rup and P ruφ of the system (3.19) and (3.20)

using the same technique as in the demonstration of the stability of the full model in (us, p)

in Lemma 3.1.5, we can show that these two reduced order models have the same properties
of stability. Since the reduced order model (3.20) is stable according to Lemma 3.2.2, we can
then conclude that the reduced order model (3.19) is also stable.

�

Remark 3.2.3 The reduced order model (3.19) has the same structure (in the sense that we
have the same sparsity and we have hermitian positive (semi-) de�nite sub matrix) as the full
model (3.10).

Remark 3.2.4 For exterior problem where the BGT-1 method is used to approximate the
radiation condition (3.11), it is obvious that the statement of Lemma 3.2.3 remains valid
since the sti�ness matrix of �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive

semi-de�nite and the total damping matrix of �uid part Cext
f := Cf + ρ0

ZC
Q remains positive

semi-de�nite.

3.2.5 Stable reduced order models for the formulation in (us, p, ϕ)

As for the formulation in (us, p), a stable reduced order model of full model in (us, p, ϕ) can
be obtained by Galerkin projection on a particular form of reduced basis.
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3.2. REDUCED ORDER MODELLING

Lemma 3.2.4 The Galerkin projection of the full model in (us, p, ϕ) on a basis

V =

Vs 0 0

0 Vf 0

0 0 Vf

 (3.21)

where Vs and Vf are respectively the reduced basis of structural and �uid part, yields a

stable reduced order model.

Proof: The proposed reduced order model is given by:

Mr
upϕẌ

r
upϕ(t) +Cr

upϕẊ
r
upϕ(t) +Kr

upϕX
r
upϕ(t) = Frupϕ (3.22)

where

Mr
upϕ =

 VH
s MsVs 0 −ρ0V

H
s KcVf

0 0 VH
f MfVf

−ρ0V
H
f K

H
c Vs VH

f MfVf −ρ0V
H
f KfVf

 ,Cr
upϕ =

VH
s CsVs 0 0

0 0 0

0 VH
f CfVf 0

 ,

Kr
upϕ =

V
H
s KsVs 0 0

0 1
ρ0
VH
f MfVf 0

0 0 0


By computing the characteristic polynomial P rup and P

r
upϕ of the system (3.19) and (3.22)

with the same manner as in the demonstration of the stability of the full model in (us, p, ϕ)

in Lemma 3.1.6, we can show that these two reduced order models have the same properties
of stability. Since the reduced order model (3.19) is stable according to Lemma 3.2.3, we can
then conclude that the reduced order model (3.22) is also stable.

�

Remark 3.2.5 The reduced order model (3.22) has the same structure (in the sense that we
have the same sparsity and we have hermitian positive (semi-) de�nite sub matrix) as the full
model (3.13). Thus, in the case of an interior problem and the reduced basis V is in Rn×N ,
the reduced order model (3.22) is symmetric.

Not only that the reduced order models (3.19) and (3.22) have the same properties of
stability, they are also equivalent since they both inherit the structure of the original full
model.

Lemma 3.2.5 The Galerkin reduced order model (3.19) of (us, p) formulation and the

Galerkin reduced order model (3.22) of (us, p, ϕ) formulation are equivalent.

Proof: We denote by Ms,r = VH
s MsVs,Ks,r = VH

s KsVs,Cs,r = VH
s CsVs,Mf,r =

VH
f MfVf , Kf,r = VH

f KfVf , Cf,r = VH
f CfVf , Kc,r = VH

f KcVs, Fs,r = VH
s Fs and
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3.3. CONSTRUCTION OF THE REDUCED BASIS BY GREEDY ALGORITHM

Fp,r = VH
f Fp. The reduced order model (3.22) writes:

Ms,rÜs,r(t) +CsrU̇s,r(t) +Ks,rUs,r(t)− ρ0Kc,rϕ̈r = Fs,r

Mf,rϕ̈r(t) +
1

ρ0
Mf,rPr(t) = 0

−ρ0K
H
c,rÜs,r(t) +Mf,rP̈r(t)− ρ0Kf,rϕ̈r +Cf,rṖr(t) = Fp,r

(3.23)

From the second equation of the system (3.23), we have ϕ̈r(t) = − 1
ρ0
Pr(t) (since the matrix

Mf,r is invertible). Using this relation to eliminate the variable ϕ in the system (3.23) leads
to the reduced order model (3.19) of (us, p) formulation.

�

Remark 3.2.6 For exterior problem where the BGT-1 method is used to approximate the
radiation condition (3.14), it is obvious that the statement of Lemma 3.2.4 remains valid
since the sti�ness matrix of �uid part Kext

f := Kf + ρ0
ZR
Q remains symmetric and positive

semi-de�nite and the total damping matrix of �uid part Cext
f := Cf + ρ0

ZC
Q remains positive

semi-de�nite.

3.3 Construction of the reduced basis by Greedy Algorithm

The accuracy of reduced order model depends strongly on the choice of the reduced basis.
Many reduced basis have been proposed in the literature such as H2 optimal model reduction
(see [34, 63, 126]), Balanced Truncation method (see [36, 81, 96]) and Krylov subspace model
reduction (see [14, 15]). In this chapter, we are only interested in the reduced basis used in
the paper [83, 84] for parametrized frequency domain of vibro-acoustic problem. The main
reason is that this approach can be extended easily in the case with parametric variation in the
left-hand side of the problem (3.1) and can be accommodated to the stabilization technique
proposed in the previous section by requiring only some small modi�cations of the original
approach, on the contrary to all other methods mentioned above.

We recall that the frequency domain corresponding to the time-domain problem (3.1) is
the following: [

−ω2M+ iωC+K
]︸ ︷︷ ︸

A(ω)

X̃(ω) = F (3.24)

where ω is the pulsation and X̃(ω) is the frequency mode of the given pulsation ω.
Considering the pulsation as a parameter in the problem (3.24), the Classical Greedy Algo-

rithm is de�ned as follows. First, we propose to chose the smallest frequency of interest as the
�rst frequency. The �rst vector of the reduced basis is then built by normalization of the solu-
tion at this frequency. Note that this choice of the minimum frequency of interest as the �rst
frequency is not necessary. We could also use an alternative choice such as a highest frequency
or choose randomly a value between the minimum and the maximum frequency of interest.
After the initialization step, we enrich iteratively the reduced basis until a stopping criterion
is veri�ed. To select the next frequency rationally, we propose to use pieces of information
from the error indicator based on the residual norm. At each iteration, we use the reduced
basis of the previous iteration to built the reduced order model by Galerkin projection. We
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compute then the norm of the corresponding residual vector for all values of the frequency in
a training set and select the next frequency as the one who maximize the norm of the residual
vector. The training set can be built only once for all iterations. However, its size can be
very large in the case of high-dimensional parameter space in order to ensure that there is
no important region forgotten in the parameter space. To avoid this problem, we propose to
perform a new random training set in each iteration. At the end, it is important to note that
enriching the new mode directly into the base may induce an ill-conditioned reduced problem.
To ameliorate this, we can employ the Gram-Schmidt procedure to orthogonalize the reduced
basis. We should also note that the classical Gram-Schmidt procedure su�ers from numerical
instability. Round-o� errors can accumulate and destroy orthogonality of the resulting vectors.
Many modi�ed Gram-Schmidt procedures have been already proposed to cure this issue (see
e.g [1, 44, 45, 59, 70]). The orthogonalization procedure of Kahan-Parlett [59, 104] is chosen
in our work. A summary of the methodology is explicitly given in the following algorithm.

Algorithm 1 Classical Greedy Algorithm
Input: Nmax (maximum number of iterations), Ntrain (size of training set to be performed
in each iteration), the matrices M,C,K and the right-hand side F of the problem, ωmin (the
minimum pulsation of interest), ωmax (the maximum pulsation of interest) and a tolerance ε
Output: A reduced basis V

1: We choose X̃(ωmin) as the �rst vector of reduced basis:

V = { X̃(ωmin)

||X̃(ωmin)||
}

2: Set k = 2
3: while (k ≤ Nmax) do
4: Generate randomly a set of training sample Dk = {ω1, · · · , ωNtrain} ⊂ [ωmin, ωmax]
5: Solve for every values of pulsation ω ∈ Dk, the reduced order model obtained by Galerkin

projection on the basis V of dimension k − 1:

Ar(ω)X̃r(ω) = Fr

where Ar(ω) = VHA(ω)V et Fr = VHF.
6: Find the value of ω∗k which maximises the norm of residual divided by the norm of the

right-hand side:

ω∗k = argmaxω∈Dk ||F−A(ω)VX̃r(ω)||/||F||

7: if (||F−A(ω∗k)VX̃r(ω
∗
k)||/||F|| ≤ ε) then

8: break;

9: else

10: Orthonormalization the new basis X̃(ω∗k) with the basis V of the previous iteration
and enrich the basis:

V = [V, ortho(X̃(ω∗k),V)]

11: end if

12: k = k + 1
13: end while
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For the formulation in (us, φ), it is not necessary to modify the Classical Greedy Algorithm
1 since we can obtain a stable reduced order model by using Petrov-Galerkin projection with
a particular test subspace, which of course would depend on the obtained reduced basis as
indicated in Lemma 3.2.2. In the following, we propose some improvements to the proposed
Greedy Algorithm for the formulation in (us, p) and (us, p, ϕ) in order to obtain the reduced
basis which can ensure the stability of the Galerkin reduced order model.

3.3.1 Case of the formulation in (us, p)

Algorithm 2 Greedy Algorithm (stabilized version for the formulation in (us, p))

Input: Nmax (maximum number of iterations), Ntrain (size of training set to be performed in
each iteration), the matrices Mup,Cup,Kup and the right-hand side Fup of the problem, ωmin
(the minimum pulsation of interest), ωmax (the maximum pulsation of interest) and a tolerance
ε
Output: A reduced basis V

1: We choose X̃(ωmin) =
[
Ũ
T

(ωmin) P̃
T

(ωmin)
]T

2: Transform the reduced basis to the form:

V =

 U(ωmin)

||Ũ(ωmin)|| 0

0
P̃(ωmin)

||P̃(ωmin)||


3: Set k = 2
4: while (k ≤ Nmax) do
5: Generate randomly a set of training set Dk = {ω1, · · · , ωNtrain} ⊂ [ωmin, ωmax]
6: Solve for every values of pulsation ω ∈ Dk, the reduced order model obtained by Galerkin

projection on the basis V of dimension 2(k − 1):

Ar(ω)X̃r(ω) = Fr

where Ar(ω) = VHAup(ω)V et Fr = VHFup.
7: Find the value ω∗k which maximises the norm of residual divided by the norm of the

right-hand side:

ω∗k = argmaxω∈Dk ||Fup −Aup(ω)VX̃r(ω)||/||Fup||

8: if (||Fup −Aup(ω
∗
k)VX̃r(ω

∗
k)||/||Fup|| ≤ ε) then

9: break;

10: else

11: Orthonormalization the two new vectors
[
Ũ
T

(ω∗k) 0T
]T
,
[
0T P̃

T
(ω∗k)

]T
with the

basis V of the previous iteration and enrich the basis:

V =

[
V ortho(

[
Ũ
T

(ω∗k) 0T
]T
,V) ortho(

[
0T P̃

T
(ω∗k)

]T
,V)

]
12: end if

13: k = k + 1
14: end while
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According to Lemma 3.2.3, we propose to modify the Classical Greedy Algorithm 1 to
ensure the stability of Galerkin reduced order model of (us, p) formulation as presented in
Algorithm 2.

The only di�erences compared to Classical Greedy Algorithm 1 are the steps 2, 6 and 11.
At the step 2, we transform the �rst frequency mode into two vectors and save these two
independent vectors in the reduced basis V. At the step 6, instead of having the reduced order
model of size k − 1 as in Classical Greedy Algorithm 1, we have a reduced order model of
2(k − 1) degrees of freedom in the new Greedy Algorithm 2. At the step 11, instead of using
directly the new solution of the frequency domain (where the frequency is selected as the one
who maximizes the indicator error) for enriching the reduced basis V, we �rst transform this
new mode X̃(ω∗k) into two independent vectors:

[
Ũ
T
(ω∗k) 0

T
]T
,
[
0
T

P̃
T
(ω∗k)

]T
and use these

two independent vectors to enrich the reduced basis V.

Depending on the scalar product used in the orthogonalization procedure at the step 11
of Algorithm 2, the output reduced basis of Algorithm 2 may not be in the form of (3.18).
However, the following lemma justi�es that the output reduced basis of Greedy Algorithm 2 is
in the form of (3.18), provided that we use a particular scalar product in the orthogonalization
procedure.

Lemma 3.3.1 The output reduced basis of Greedy Algorithm 2 is in the form of (3.18)

if we use the scalar product de�ned by:

〈
[
U
T
1 P

T
1

]T
,
[
U
T
2 P

T
2

]T 〉 = UH
2 AuU1 +PH2 ApP1 (3.25)

where Au and Ap are two hermitian positive de�nite matrices, in the orthogonalization

procedure. In particular, the output reduced basis of Greedy Algorithm 2 is in the form

of (3.18) if we use euclidean scalar product in orthogonalization procedure.

Proof: The reduced basis V at the step 2 of Algorithm 2 is clearly in the form of (3.18).
Suppose that at iteration k − 1, the reduced basis V is in the form:

Vk−1 =

[
vu1 0 vu2 0 · · · vuk−1 0

0 v
p
1 0 v

p
2 · · · 0 v

p
k−1

]
(3.26)

we will show that the reduced basis Vk of iteration k is in form:

Vk =

[
vu1 0 vu2 0 · · · vuk 0

0 v
p
1 0 v

p
2 · · · 0 v

p
k

]
(3.27)
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Under the hypothesis of Vk−1, we have

ortho(

[
Ũ(ω∗k)

0

]
,Vk−1) =

[
Ũ(ω∗k)

0

]
−
k−1∑
i=1

〈

[
Ũ(ω∗k)

0

]
,

[
vui
0

]
〉

[
vui
0

]

−
k−1∑
i=1

〈

[
Ũ(ω∗k)

0

]
,

[
0

v
p
i

]
〉︸ ︷︷ ︸

=0 according to the property of 〈·,·〉

[
0

v
p
i

]

=

[
vuk
0

]

where vuk = Ũ(ω∗k)−
∑k−1

i=1

(
v
u,H
i AuŨ(ω∗k)

)
vui .

With the same manner for ortho(

[
0

P̃(ω∗k)

]
,Vk−1), we have:

ortho(

[
0

P̃(ω∗k)

]
,Vk−1) =

[
0

v
p
k

]

where v
p
k = P̃(ω∗k)−

∑k−1
i=1

(
v
p,H
i ApP̃(ω∗k)

)
v
p
i .

�

3.3.2 Case of the formulation in (us, p, ϕ)

According to Lemma 3.2.4, we propose to modify the Classical Greedy Algorithm 1 to ensure
the stability of Galerkin reduced order model of (us, p, ϕ) formulation as outlined in Algorithm
3.

The only di�erences compared to Classical Greedy Algorithm 1 are the steps 2, 6 and 11.
At the step 2, we transform the �rst frequency mode into three vectors and use these three
independent vectors to enrich the reduced basis V. At the step 6, instead of having the reduced
order model of size k − 1 as in Classical Greedy Algorithm 1, we have a reduced order model
of 3(k− 1) degrees of freedom in the new Greedy Algorithm 3. At the step 11, instead of using
directly the new solution of the frequency domain (where the frequency is selected as the one
who maximize the indicator error) for enriching the reduced basisV, we �rst transform this new
mode X̃(ω∗k) into three independent vectors:

[
Ũ(ω∗k) 0 0

]T
,
[
0 P̃(ω∗k) 0

]T
,
[
0 0 P̃(ω∗k)

]T
and use these three independent vectors to enrich the reduced basis V.
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Algorithm 3 Greedy Algorithm (stabilized version for the formulation in (us, p, ϕ))

Input: Nmax maximum number of iterations, Ntrain (size of training set to be performed in
each iteration), the matrices Iupϕ,Mupϕ,Cupϕ,Kupϕ and the right-hand side Fupϕ, ωmin (the
minimum pulsation of interest), ωmax (the maximum pulsation of interest) and a tolerance ε
Output: A reduced basis V

1: We choose X̃(ωmin) =
[
Ũ
T

(ωmin) P̃
T

(ωmin) ϕ̃T (ωmin)
]T

2: Transform the reduced basis to the form:

V =


U(ωmin)

||Ũ(ωmin)|| 0 0

0
P̃(ωmin)

||P̃(ωmin)|| 0

0 0
P̃(ωmin)

||P̃(ωmin)||


3: Set k = 2
4: while (k ≤ Nmax) do
5: Generate randomly a set of training sample Dk = {ω1, · · · , ωNtr} ⊂ [ωmin, ωmax]
6: Solve for every values of pulsation ω ∈ Dk, the reduced order model obtained by Galerkin

projection on the basis V of dimension 3(k − 1):

Ar(ω)X̃r(ω) = Fr

where Ar(ω) = VHAupϕ(ω)V et Fr = VHFupϕ.
7: Find the value of ω∗k which maximises the norm of residual divided by the norm of the

right-hand side:

ω∗k = argmaxω∈Dk ||Fupϕ −Aupϕ(ω)VX̃r(ω)||/||Fupϕ||

8: if (||Fupϕ −Aupϕ(ω∗k)VX̃r(ω
∗
k)||/||Fupϕ|| ≤ ε) then

9: break;

10: else

11: Orthonormalization the three new vectors
[
Ũ
T

(ω∗k) 0T 0T
]T
,
[
0T P̃

T
(ω∗k) 0T

]T
,[

0T 0T P̃
T

(ω∗k)
]T

with the basis V of the previous iteration and enrich the basis:

V =
[
V vk1 vk2 vk3

]
where

vk1 = ortho(
[
Ũ
T

(ω∗k) 0T 0T
]T
,V)

vk2 = ortho(
[
0T P̃

T
(ω∗k) 0T

]T
,V)

vk3 = ortho(
[
0T 0T P̃

T
(ω∗k)

]T
,V)

12: end if

13: k = k + 1
14: end while
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Depending on the scalar product used in the orthogonalization procedure at the step 11
of Algorithm 3, the output reduced basis of Algorithm 3 may not be in the form of (3.21).
However, the following lemma justify that the output reduced basis of Greedy Algorithm 3
is in form of (3.21), provided that we use a particular scalar product in orthogonalization
procedure.

Lemma 3.3.2 The output reduced basis of Greedy Algorithm 3 is in the form of (3.21)

if we use the scalar product de�ned by:

〈
[
UT

1 PT1 ϕT1

]T
,
[
UT

2 PT2 ϕT2

]T
〉 = UH

2 AuU1 +PH2 ApP1 +ϕH2 Apϕ1 (3.28)

where Au and Ap are two hermitian positive de�nite matrices, in the orthogonalization

procedure. As a particular case, the output reduced basis of Greedy Algorithm 3 is in the

form of (3.21) if we use euclidean scalar product in orthogonalization procedure.

Proof: The reduced basis V at the step 2 of Algorithm 3 is clearly in the form of (3.21).
Suppose that at iteration k − 1, the reduced basis Vk−1 is in the form:

Vk−1 =

vu1 0 0 vu2 0 0 · · · vuk−1 0 0

0 v
p
1 0 0 v

p
2 0 · · · 0 v

p
k−1 0

0 0 v
p
1 0 0 v

p
2 · · · 0 0 v

p
k−1

 (3.29)

we will show that the reduced basis of iteration k is in form:

Vk =

vu1 0 0 vu2 0 0 · · · vuk 0 0

0 v
p
1 0 0 v

p
2 0 · · · 0 v

p
k 0

0 0 v
p
1 0 0 v

p
2 · · · 0 0 v

p
k

 (3.30)

Under the hypothesis of Vk−1, we have:

ortho(

Ũ(ω∗k)

0

0

 ,Vk−1) =

Ũ(ω∗k)

0

0

− k−1∑
i=1

〈

Ũ(ω∗k)

0

0

 ,
vui0
0

〉
vui0
0


−
k−1∑
i=1

〈

Ũ(ω∗k)

0

0

 ,
 0vpi
0

〉
︸ ︷︷ ︸

=0 according to the property of 〈·,·〉

 0vpi
0



−
k−1∑
i=1

〈

Ũ(ω∗k)

0

0

 ,
 00
v
p
i

〉
︸ ︷︷ ︸

=0 according to the property of 〈·,·〉

 00
v
p
i



=
[
v
u,T
k 0T 0T

]T
where vuk = Ũ(ω∗k)−

∑k−1
i=1

(
v
u,H
i AuŨ(ω∗k)

)
vui .
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With the same manner for ortho(

 0

P̃(ω∗k)

0

 ,Vk−1) and ortho(

 0

0

P̃(ω∗k)

 ,Vk−1), we have:

ortho(

 0

P̃(ω∗k)

0

 ,Vk−1) =

 0vpk
0

 , ortho(

 0

0

P̃(ω∗k)

Vk−1) =

 00
v
p
k


where v

p
k = P̃(ω∗k)−

∑k−1
i=1

(
v
p,H
i ApP̃(ω∗k)

)
v
p
i .

�

Remark 3.3.1 For the formulation in (us, p, ϕ), we can write the frequency domain as a
symmetric equation: [

−iω3I− ω2M+K
]︸ ︷︷ ︸

A
sym(ω)

X̃(ω) = F (3.31)

and we can show that either we use the relation Asym(ω) de�ned in Equation (3.31) or the
relation A(ω) de�ned in Equation (3.24), in Algorithm 3, we obtain the same the evolution of
residual norm in Algorithm 3 and the same output reduced basis.

Remark 3.3.2 If we use the same training set Dk in Algorithm 2 and Algorithm 3 at each
iteration and we use the scalar product de�ned in (3.25) and (3.28) respectively for Algorithm
2 and Algorithm 3, we can show that the evolution of the residual norm in both algorithms
is the same. Furthermore, according to Lemma 3.2.5, the Galerkin reduced order model in
(us, p) formulation based on the output reduced basis of Greedy Algorithm 2 is equivalent to
the Galerkin reduced order models in (us, p, ϕ) formulation based on the output reduced basis
of Greedy Algorithm 3.

3.4 Numerical results

In this section, the stability of reduced order model proposed in Section 3.2 will be veri�ed
numerically in two examples. The �rst numerical model consists of a right cylindrical hull with
square plate immersed in an acoustic �uid. The �st case is an academical example in which
the geometry is very simple. The second case is an industrial problem which consists of a
section of right cylindrical hull with sti�eners in T-form and a generic engine immersed in an
acoustic �uid. In order to show that the proposed stabilization technique does not depend on
the choice of �nite element type, we intentionally chose di�erent �nite element type between
these two study cases. In the �rst study case, we use linear �nite element type. In the second
study case, we use quadratic �nite element type. In both cases, BGT-1 method is used to
approximate the radiation condition. The accuracy of the reduced order model based on the
reduced basis built by Greedy Algorithms applying on the corresponding frequency domain,
will also be investigated.
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3.4.1 Test case 1: a cylindrical hull with square plate immersed in an acous-

tic �uid

Figure 3.1: Graphical representation of the �rst study case

The vibro-acoustic system in this example consists of a cylindrical hull with square plate that
is excited by a point force at (0.1, 0, 0.5) m and radiates sound in an acoustic �uid. A graphical
representation of this system is presented in Figure 3.1. The cylindrical hull has a height of
0.5 m and a radius of 0.1 m. The square plate has an edge length of 0.5 m. Both cylindrical
hull and square plate have a thickness of 0.01 m. On the boundary of the square plate, a
homogeneous Dirichlet condition is applied. To approximate the radiation condition by BGT-
1 method (see Section 1.1.4), a truncated �uid domain in form of a half-spherical of radius
Rbgt = 1 m is used. The physical properties of the structure and the �uid are given in Table
3.1.

Structure Fluid
Young's modulus E = 210 GPa Speed of sound c0 = 1500 m/s

Poisson's ratio ν = 0.3 Density ρ0 = 1000 kg/m3

Density ρs = 7850 kg/m3

Damping parameter αs = 10−5, βs = 0

Table 3.1: Physical properties of the structure and the �uid in the �rst study case of Chapter
3

Finite element modelling

The �nite element model or the full model is obtained by using a mesh in which the max-
imum size of element is chosen such that we have at least �ve elements per wavelength at
1 000 Hz. The cylindrical hull and square plate is modelled using linear Discrete Kirchho�
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Triangular (DKT) elements [20]. The acoustic �uid is modelled using linear tetrahedral el-
ements. A structural damping is also considered in the system. We use Rayleigh damp-
ing model which represents the damping e�ect by a symmetric semi-positive de�nite matrix
Cs = αsKs + βsMs, where the coe�cient αs and βs are given in Table 3.1. On the boundary
of the truncated �uid domain, the condition BGT-1 of Equation (1.35) is applied in order
to approximate the outgoing sound wave by a spherical wave for which we use the value of
impedance ZR = ρ0Rbgt, ZC = ρ0c0.

For the formulation in (us, p) and in (us, φ), the �nite element model consists of 35 503

degrees of freedom, 12 132 of which correspond to the structural part and 23 371 of which
correspond to the acoustic �uid part. For the formulation in (us, p, ϕ), the �nite element
model consists of 58 874 degrees of freedom, 12 132 of which correspond to the structural part
and 46 742 of which correspond to the acoustic �uid part.

Numerical validation of the stability of the reduced order models

First, we propose to verify the stability properties of the Galerkin reduced order models in
(us, p) and in (us, p, ϕ) formulation using respectively the reduced basis obtained by Greedy
Algorithms 2 and 3 and the reduced order models in (us, φ) formulation using Petrov-Galerkin
projection as stated in Lemma 3.2.2. In order to show that this stability properties can not be
achieved automatically without using the proposed techniques in Section 3.2, we will also be
interested in the reduced order models of these three formulations using Galerkin projection
with the reduced basis obtained by Classical Greedy Algorithm 1.

Figure 3.2: Evolution of error indicator in Greedy Algorithms in the �rst study case.

To run Greedy Algorithms, we use fmin = 10 Hz, fmax = 1000 Hz and Nmax = 15. The
same training samples Dk, which are chosen randomly at each iteration such that |Dk| = 100,
are used for all versions of Greedy Algorithms. To orthogonalize the basis, we use the euclidean
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scalar product. The evolution of the error indicator, de�ned as the norm of residual divided
by the norm of the right-hand side, is shown in Figure 3.2.

In Figure 3.2, we see that the evolution of the error indicator in modi�ed Greedy Algorithms
2 and 3 are the same as mentioned in Remark 3.3.2. We observe that the error indicator in the
modi�ed Greedy Algorithm 2 and 3 decrease faster than Classical Greedy Algorithm 1. This
can be explained by the fact that the modi�ed Greedy Algorithm 2 and 3 increase the size of
reduced problem at the step 4. Even though the error indicator decreases well in both cases, we
will see in the following that the Galerkin reduced order model based on the obtained reduced
basis do not have the same stability properties.

To access to the stability, we can compute the poles of the reduced order model. We
recall that the poles of a second order system (3.15) are the roots of the polynomial P (s) :=

det(s2Mr + sCr +Kr) which are also the eigenvalues of the following Generalized Eigenvalue
Problem:

Av = sEv (3.32)

where E =

[
IN 0

0 Mr

]
et A =

[
0 IN

−Kr −Cr

]
.

Figure 3.3 shows the poles of the Galerkin and Petrov-Galerkin reduced order models of
the formulation in (us, φ). Figure 3.4 and 3.5 show respectively the poles of Galerkin reduced
order models in (us, p) and (us, p, ϕ) based on the reduced basis of Classical Greedy Algorithm
1 and modi�ed Greedy Algorithm 2 and 3. We remark that the Galerkin reduced order model
of formulation in (us, p, ϕ) based on the reduced basis of Classical Greedy Algorithm 1 have
some in�nite poles which is due to the singularity of the reduced mass matrix Mr. Only the
�nite poles are then illustrated in Figure 3.5 for this case.

Figure 3.3 con�rms that the Petrov-Galerkin reduced order models of the formulation in
(us, φ) are always stable while the Galerkin reduced order model can be unstable, as we saw
here in the case of k = 3, 5, 10, 15, there are some poles in the right-half of the complex plane.
For the formulation in (us, p), we observe in Figure 3.4 that Galerkin reduced order model is
always stable if we use the reduced basis obtained by modi�ed Greedy Algorithm 2 and that
using the reduced basis of Classical Greedy Algorithm 1 might yield unstable reduced order
model, as we saw here in the case of k = 3, 5, 10, 15. A closer look at Figure 3.4 and 3.5 reveals
that the reduced order models in (us, p, ϕ) using the output reduced basis of Greedy Algorithm
3 has the same non-zeros poles as the reduced order models in (us, p) using the output reduced
basis of Greedy Algorithm 2. Finally, the position of the �nite poles in complex plane in
Figure 3.5 shows clearly that the Galerkin reduced order models based on the reduced basis of
Classical Greedy Algorithm 1 are unstable for k = 5, 10, 15.
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(a) k = 3 (b) k = 3

(c) k = 5 (d) k = 5

(e) k = 10 (f) k = 10

(g) k = 15 (h) k = 15

Figure 3.3: The poles of reduced order models in (us, φ) using the reduced basis of iteration k
of Greedy Algorithm 1. Left: case of Petrov-Galerkin projection of Lemma 3.2.2. Right: case
of Galerkin projection.
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(a) k = 3 (b) k = 3

(c) k = 5 (d) k = 5

(e) k = 10 (f) k = 10

(g) k = 15 (h) k = 15

Figure 3.4: The poles of Galerkin reduced order models in (us, p) using the reduced basis of
iteration k of Greedy Algorithm. Left: case of modi�ed Greedy Algorithm 2. Right: case of
Classical Greedy Algorithm 1
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(a) k = 3 (b) k = 3

(c) k = 5 (d) k = 5

(e) k = 10 (f) k = 10

(g) k = 15 (h) k = 15

Figure 3.5: The poles of Galerkin reduced order models in (us, p, ϕ) using the reduced basis of
iteration k of Greedy Algorithms. Left: case of Classical Greedy Algorithm 1. Right: case of
the modi�ed Greedy Algorithm 3.
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Numerical study of the accuracy of the reduced order models

Now, let us turn to the accuracy of the proposed reduced order models. We recall that the
Galerkin reduced order models in (us, p, ϕ) formulation based on the reduced basis obtained by
Greedy Algorithm 3 is equivalent to the Galerkin reduced order models in (us, p) formulation
based on the reduced basis obtained by Greedy Algorithm 2 (see Remark 3.3.2). Hence, only
the Galerkin reduced order models in (us, p) formulation and the Petrov-Galerkin reduced or-
der models in (us, φ) formulation are considered here.

In the following, we set fmin = 1 Hz, Ntrain = 100, and the stopping criteria ε = 10−8 in
order to run Classical Greedy Algorithm 1 and modi�ed Greedy Algorithm 2. At each iter-
ation k, the same training samples Dk are used for both Greedy Algorithms. Depending on
the value of fmax, the evolution of the error indicators in Classical Greedy Algorithm 1 for the
formulation in (us, φ) and in modi�ed Greedy Algorithm 2 for the formulation in (us, p) are
illustrated in Figure 3.6.

(a) Case of formulation in (us, φ) with Algorithm 1 (b) Case of formulation in (us, p) with Algorithm 2

Figure 3.6: Evolution of error indicator in Greedy Algorithm in the �rst study case

In Figure 3.6, we observe that the number of iterations required increase as we increase
the value of fmax. Although the size of the reduced basis in Algorithm 2 is two times bigger
than in Algorithm 1 at each iteration, we remark that both algorithms need around the same
number of iterations to achieve the stopping criteria ε = 10−8. The size of the reduced basis
of these two algorithms is given in Table 3.2.

fmax Formulation in (us, φ) Formulation in (us, p)

1000 Hz 22 38
2000 Hz 37 72
4000 Hz 60 120
5000 Hz 73 146

Table 3.2: Size of the reduced basis in function of fmax for the �rst study case
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To compute the accuracy of the reduced order models, we consider an input function f

de�ned by:

f(t) =

{
105 sin(2πfdt) , for 0 ≤ t ≤ 1/fd

0 , for t > 1/fd
(3.33)

Newmark scheme with γ = 1/2 − α, β = (1 − α)2/4, where α = −0.1, is employed as time
integration scheme for both full model and reduced order models. The time step is chosen by
∆t = 1/(100fd) which is su�ciently small for our frequency of interest fd. The �nal times in
our study is Tf = 10/fd. To access to the accuracy of reduced order models, we compute the
relative errors of the structural displacement and the pressure, which are de�ned by:

erru(t) =
||Ufom

s (t)−Urom
s (t)||

||Ufom
s (t)||

, errp(t) =
||Pfom(t)−Proms (t)||

||Pfoms (t)||
(3.34)

where ||·|| denotes the euclidean norm andUs and P are two vectors which contain respectively
the nodal displacement and nodal pressure, and where the superscript fom refers to the solution
of the full model and the superscript rom refers to its approximation by the reduced order
models.

We recall that for the case of the formulation in (us, φ), the value of the pressure is obtained
by the relation (1.17).

Here, we are interested in the case where fd ∈ {100 Hz, 300 Hz, 750 Hz, 1000 Hz}. Figure
3.7 shows the evolution of these errors in the case of the Petrov-Galerkin reduced order model
of the formulation in (us, φ). The case of Galerkin reduced order models of the formulation in
(us, p) are reported in Figure 3.8. In both cases, we observe that the errors between the full
model and the reduced order models are signi�cant at �rst and decrease as the times increase.
In addition, the errors increase while we increase the frequency fd of the input function. In all
the cases, we remark that the reduced order models approximate the structural displacement
better than the �uid pressure. When we increase the value of fmax in the construction of
the basis by Greedy Algorithms, we observe that it can slightly improve the accuracy of the
reduced order models. However, the errors are still large at the beginning of the simulation
especially for the case of high frequency.

Recall that the size of Galerkin reduced order model of the formulation in (us, p) is almost
two times bigger than the Petrov-Galerkin reduced order model of the formulation in (us, φ)

even though we use almost the same number of modes to built the reduced basis. As compen-
sation, we observe here that Galerkin reduced order model of the formulation in (us, p) has a
better accuracy than the Petrov-Galerkin reduced order model of the formulation in (us, φ).
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(a) Error on us for the case fd = 100 Hz (b) Error on p for the case fd = 100 Hz

(c) Error on us for the case fd = 300 Hz (d) Error on p for the case fd = 300 Hz

(e) Error on us for the case fd = 750 Hz (f) Error on p for the case fd = 750 Hz

(g) Error on us for the case fd = 1000 Hz (h) Error on p for the case fd = 1000 Hz

Figure 3.7: Relative errors between the solution of the full model and the Petrov-Galerkin
reduced order models in (us, φ) in the �rst study case
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(a) Error of us for the case fd = 100 Hz (b) Error of p for the case fd = 100 Hz

(c) Error of us for the case fd = 300 Hz (d) Error of p for the case fd = 300 Hz

(e) Error of us for the case fd = 750 Hz (f) Error of p for the case fd = 750 Hz

(g) Error of us for the case fd = 1000 Hz (h) Error of p for the case fd = 1000 Hz

Figure 3.8: Relative errors between the solution of the full model and the Galerkin reduced
order models in (us, p) in the �rst study case
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3.4.2 Test case 2: a section of cylindrical hull with sti�eners in T-form and

a generic structure immersed in an acoustic �uid

In the second study case, we consider the case where the structure has a more complex geometry
(sourced from [84]). A graphical representation of this study case is illustrated in Figure 3.9 in
which the structure part are marked in blue. The vibro-acoustic system consists of a section of
a cylindrical hull with sti�eners in form of T and an structure immersed in an acoustic �uid.
The excitation are introduced by a point force acting on the plate of the structure (marked in
red in Figure 3.9). On the top and bottom boundary of the cylindrical hull, a homogeneous
Dirichlet condition is applied. To approximate the radiation condition by BGT-1 method, a
truncated �uid domain in form of a sphere of with a radius equal to two times the radius of
cylindrical hull, is used. The physical properties of the structure and the �uid in this study
case are given in Table 3.3.

Figure 3.9: Graphical representation of the second study case

Finite element modelling

The �nite element model or the full model is obtained by using a mesh in which the maximum
size of element is chosen such that we have at least six elements per wavelength at 500 Hz. The
structural part is modelled using quadratic triangular shell elements [21]. The acoustic �uid
is modelled using quadratic tetrahedral elements. A structural damping is introduced in the
system by using the Rayleigh damping model in which the damping e�ect are represented by
a symmetric semi-positive de�nite matrix Cs = αsKs +βsMs. The value of the coe�cients αs
and βs are given in Table 3.3. On the boundary of the truncated �uid domain, the condition
BGT-1 of Equation (1.35) is applied in order to approximate the outgoing sound wave by a
spherical wave for which we use the value of impedance ZR = ρ0Rbgt, ZC = ρ0c0.

For the formulation in (us, p) and in (us, φ), the �nite element model consists of 146 385

degrees of freedom, 106 442 of which correspond to the structural part and 39 963 of which
correspond to the acoustic �uid part. For the formulation in (us, p, ϕ), the �nite element model
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consists of 186 348 degrees of freedom, 106 442 of which correspond to the structural part and
79 926 of which correspond to the acoustic �uid part.

Structure Fluid
Young's modulus E = 210 GPa Speed of sound c0 = 1500 m/s

Poisson's ratio ν = 0.3 Density ρ0 = 1000 kg/m3

Density ρs = 7850 kg/m3

Damping parameter αs = 10−4, βs = 0

Table 3.3: Physical properties of the structure and the �uid in the second study case

Numerical validation of the stability of reduced order models

First, we propose to verify the stability properties of the Galerkin reduced order models in
(us, p) and in (us, p, ϕ) formulation using respectively the reduced basis obtained by Greedy
Algorithms 2 and 3 and the reduced order models in (us, φ) formulation using Petrov-Galerkin
projection as indicated in Lemma 3.2.2. In order to show that this stability properties can
not be achieved automatically without using the proposed techniques in Section 3.2, we will
also investigate the reduced order models of these three formulations using Galerkin projection
with the reduced basis obtained by Classical Greedy Algorithm 1.

To run the Greedy Algorithms, we use fmin = 10 Hz, fmax = 150 Hz and Nmax = 40. The
same training samples Dk, which are chosen randomly at each iteration such that |Dk| = 50,
are used for all versions of Greedy Algorithms. To orthogonalize the basis, we use the euclidean
scalar product. The evolution of the error indicator, de�ned as the norm of residual divided
by the norm of the right-hand side, is shown in Figure 3.10.

Figure 3.10: Evolution of error indicator in Greedy Algorithms in the second study case.
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As expected, we observe that the evolution of the error indicator in modi�ed Greedy Al-
gorithm 2 and 3 are the same, which con�rms the statement in Remark 3.3.2. As in the �rst
study case, we see that the error indicators of modi�ed Greedy Algorithm 2 and 3 decrease
asymptotically faster than Classical Greedy Algorithm 1. For the case of the formulation in
(us, φ), it should be pointed out that the error indicator in the Classical Greedy Algorithm 1
seems to decrease as well as in the case of the formulation in (us, p) and (us, p, ϕ) with the
modi�ed Greedy Algorithm, despite that the size of the reduced basis in this case is smaller.

Let us put the focus on the stability of the reduced order model. To access to the stability,
we compute the poles of the reduced order model. We recall that the poles of a second order
system (3.15) are the roots of the polynomial P (s) := det(s2Mr + sCr +Kr) which are also
the eigenvalues of the Generalized Eigenvalue Problem (3.32).

Figure 3.11 shows the poles of the Galerkin and Petrov-Galerkin reduced order models of
the formulation in (us, φ). Figure 3.12 and 3.13 show respectively the poles of Galerkin reduced
order models in (us, p) and (us, p, ϕ) formulation using the reduced basis obtained by Classical
Greedy Algorithm 1 and modi�ed Greedy Algorithms 2 and 3. We also remark in this study
case that the Galerkin reduced order model of formulation in (us, p, ϕ) using the reduced basis
of Classical Greedy Algorithm 1 have some in�nite poles which is due to the singularity of the
reduced mass matrixMr. Only the �nite poles are then illustrated in Figure 3.13 for this case.

Figure 3.11 con�rms that the Petrov-Galerkin reduced order models of the formulation
in (us, φ) are always stable while the corresponding Galerkin reduced order models can be
unstable, as we see here in the case of k = 10, 30, 40, there are poles in the right-half of the
complex plane. We remark that the Galerkin reduced order model can also be stable as shown
in the case k = 20. For the formulation in (us, p), we can see in Figure 3.12 that Galerkin
reduced order models are always stable if we use the reduced basis obtained by modi�ed
Greedy Algorithm 2 and that using the reduced basis of Classical Greedy Algorithm 1 might
yield unstable reduced order models, as we see here in the case of k = 10, 20, 30, 40. A closer
look at Figure 3.12 and 3.13 reveals that the reduced order models in (us, p, ϕ) formulation
using the output reduced basis of Greedy Algorithm 3 has the same non-zeros poles as the
reduced order models in (us, p) formulation using the reduced basis of Greedy Algorithm 2.
Finally, the position of the �nite poles in complex plane in Figure 3.13 shows clearly that the
Galerkin reduced order models based on the reduced basis of Classical Greedy Algorithm 1 are
unstable for k = 30 and k = 40.
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(a) k = 10 (b) k = 10

(c) k = 20 (d) k = 20

(e) k = 30 (f) k = 30

(g) k = 40 (h) k = 40

Figure 3.11: The poles of reduced order models in (us, φ) using the reduced basis of iteration
k of Classical Greedy Algorithm 1. Left: case of Petrov-Galerkin projection of Lemma 3.2.2.
Right: case of Galerkin projection.
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(a) k = 10 (b) k = 10

(c) k = 20 (d) k = 20

(e) k = 30 (f) k = 30

(g) k = 40 (h) k = 40

Figure 3.12: The poles of Galerkin reduced order models in (us, p) using the reduced basis of
iteration k of Greedy Algorithms. Left: case of modi�ed Greedy Algorithm 2. Right: case of
Classical Greedy Algorithm 1
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(a) k = 10 (b) k = 10

(c) k = 20 (d) k = 20

(e) k = 30 (f) k = 30

(g) k = 40 (h) k = 40

Figure 3.13: The poles of Galerkin reduced order models in (us, p, ϕ) using the reduced basis
of iteration k of Greedy Algorithms. Left: case of Classical Greedy Algorithm 1. Right: case
of modi�ed Greedy Algorithm 3.
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Numerical study of the accuracy of reduced order models

We now turn to the accuracy of the obtained reduced order models. We recall that the Galerkin
reduced order models in (us, p, ϕ) formulation based on the reduced basis obtained by modi�ed
Greedy Algorithm 3 is equivalent to the Galerkin reduced order models in (us, p) formulation
based on the reduced basis obtained by modi�ed Greedy Algorithm 2 (see Remark 3.3.2).
Hence, only the Galerkin reduced order models in (us, p) formulation and the Petrov-Galerkin
reduced order models in (us, φ) formulation will be considered here.

In the following, we set fmin = 1 Hz, Ntrain = 100, and the stopping criteria ε = 10−6 in
order to run Classical Greedy Algorithm 1 and modi�ed Greedy Algorithm 2. At each iteration
k, the same training samples Dk are used in both versions of Greedy Algorithms. Depending
on the value of fmax, the evolution of the error indicators in Classical Greedy Algorithm 1 for
the formulation in (us, φ) and in modi�ed Greedy Algorithm 2 for the formulation in (us, p)

are reported by Figure 3.14.

(a) Case of formulation in (us, φ) with Algorithm 1 (b) Case of formulation in (us, p) with Algorithm 2

Figure 3.14: Evolution of error indicator in Greedy Algorithm in the second study case

In Figure 3.14, we observe that the number of iterations required increase as we increase the
value of fmax. Although the size of the reduced basis in Algorithm 2 is two times bigger than
in Algorithm 1 at each iteration, we remark, as in the �rst study case, that both algorithms
need roughly the same number of iterations to achieve the stopping criteria ε = 10−6. The size
of the reduced basis of these two algorithms is given in Table 3.4.

fmax Formulation in (us, φ) Formulation in (us, p)

500 Hz 73 146
1000 Hz 91 180
1500 Hz 104 216
2000 Hz 111 244

Table 3.4: Size of the reduced basis in function of fmax for the second study case
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To compute the accuracy of the reduced order models, we consider the case where input
function f is de�ned by:

f(t) =

{
105 sin(2πfdt) , for 0 ≤ t ≤ 1/fd

0 , for t > 1/fd
(3.35)

Newmark scheme with γ = 1/2 − α, β = (1 − α)2/4, where α = −0.1, is employed as time
integration scheme for both of full model and reduced order models. The time step is chosen
by ∆t = 1/(100fd) which is su�ciently small for our frequency of interest fd. The �nal times
in our study is Tf = 10/fd. To access to the accuracy of the reduced order models, we compute
the relative errors of the structural displacement and the pressure which are de�ned in Equation
(3.34). We recall that for the case of the formulation in (us, φ), the value of the pressure is
obtained by the relation (1.17).

We are interested here in the case where fd ∈ {100 Hz, 200 Hz, 300 Hz, 500 Hz}. Figure 3.7
shows the evolution of these errors in the case of the Petrov-Galerkin reduced order models
of the formulation in (us, φ). The case of Galerkin reduced order models for the formulation
in (us, p) are illustrated in Figure 3.8. In both cases, we observe that the errors of pressure
between the full model and the reduced order model are larger at the beginning and decrease
rapidly to a minimum value before oscillating around that value. For the displacement, the
errors are also larger at short times. Then, the errors decrease rapidly to a minimum value
before increase rapidly to a maximum value and oscillate around that value afterwards in
exception of the case of Galerkin reduced order models in (us, p) formulation with fd = 100 Hz
where the error seem to decrease as time increase. When we increase the value of fmax in the
construction of the basis by greedy algorithm, we observe that it improves very slightly the
accuracy of the reduced order model and it reveals the same phenomena as discussed above.

We recall that the size of Galerkin reduced order models in the formulation in (us, p) is
almost two times bigger than the Petrov-Galerkin reduced order models of the formulation
in (us, φ) even though we use almost the same number of modes to built the reduced basis.
Despite their bigger size, we do not observe in this study case that Galerkin reduced order
models of the formulation in (us, p) could provide signi�cantly a better accuracy than the
Petrov-Galerkin reduced order models of the formulation in (us, φ).

3.4.3 Conclusions

In both study cases, numerical results con�rm that the reduced order models built by the
proposed stabilization techniques are all stable. Concerning the accuracy, the reduced basis
based on the frequency mode alone does not seem to be an appropriate basis for time-domain
analysis. This is particularly the case when the system converges to its stationary regime slowly
as in the second example and when the excitation is of high frequency.

It nevertheless provides a good approximation for the stationary regime when the excitation
consists of low frequencies, as we saw in the �rst example. As a result, it could be employed
to concatenate with an other reduced basis which can approximate accurately the full order
model for the transient regime.
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(a) Error on us for the case fd = 100 Hz (b) Error on p for the case fd = 100 Hz

(c) Error on us for the case fd = 200 Hz (d) Error on p for the case fd = 200 Hz

(e) Error on us for the case fd = 300 Hz (f) Error on p for the case fd = 300 Hz

(g) Error on us for the case fd = 500 Hz (h) Error on p for the case fd = 500 Hz

Figure 3.15: Relative errors between the solution of the full model and the Petrov-Galerkin
reduced order models in (us, φ) formulation in the second study case
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(a) Error on us for the case fd = 100 Hz (b) Error on p for the case fd = 100 Hz

(c) Error on us for the case fd = 200 Hz (d) Error on p for the case fd = 200 Hz

(e) Error on us for the case fd = 300 Hz (f) Error on p for the case fd = 300 Hz

(g) Error on us for the case fd = 500 Hz (h) Error on p for the case fd = 500 Hz

Figure 3.16: Relative errors between the solution of the full model and the Galerkin reduced
order models in (us, p) formulation in the second study case
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3.5 Conclusions

In this chapter, we give a stabilization reduced order modelling technique for the three for-
mulation of time domain vibro-acoustic problem presented in the previous chapters. For the
formulation in (us, φ), we can obtain a stable reduced order model by using a Petrov-Galerkin
projection on a particular test subspace which depends on the choice of the trial subspace.
Even though the full model in (us, φ) is symmetric, using this stabilization technique results
in a non-symmetric reduced order models. For the formulation in (us, p) and (us, p, ϕ), we
can obtain a stable reduced order model by using a Galerkin projection on a particular form
of reduced basis. In both cases, the reduced order models have the same structure, in the
sense that we have the same sparsity and the same hermitian (semi-) de�nite sub matrices, as
the original full model. The proposed reduced order models in (us, p) formulation are always
non-symmetric. For the formulation in (us, p, ϕ), the reduced order models are symmetric
only in the case of an interior problem without any damping in the �uid part and by using a
real reduced basis, i.e V ∈ Rn×N .

We proposed to construct the reduced basis based on a Greedy Algorithm in the corre-
sponding frequency domain problem by considering the frequency as the parameter. In order
to achieve the stability in Galerkin reduced order models, some modi�cations are introduced
in the Classical Greedy Algorithm for the formulation in (us, p) and (us, p, ϕ). Two numericals
study cases are presented in order to check the stability properties and the accuracy of the
proposed reduced order models. The �rst study case is an academical study case with a simple
geometry. The second study case is of industrial complexity. Between the two study cases, we
used intentionally di�erent �nite element type to built the full model in order to show that the
proposed stabilization technique does not depend on the choice of �nite element type. In both
study cases, numerical results con�rm the stability of the proposed reduced order models.

Concerning the accuracy, we observed that the proposed reduced basis results in signi�cant
error especially for the case where the solicitation is of high frequency. As detailed in Chapter 2,
in �interaction of submerged structure and shock wave problems�, which is a problem of interest
in this thesis, the loading contains high frequency components due to its discontinuity. Hence,
the reduced basis proposed in this chapter may not be the most appropriate for this problem.
As a result, we will propose in the next chapters another approach to built the reduced basis,
in order to improve the reduced order model accuracy for parametrized problem.
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Chapter 4

Reduced order modelling for

parametrized time-domain

vibro-acoustic FE model

This chapter is devoted to a framework for constructing an accurate parametrized reduced
order model in the case where both the operators in the left hand-side of the full order model
and the solicitation depend on the parameter.

Two main classes of reduced order modelling techniques for the parametrized time-domain
problem can be found in the literature. In the �rst class of approaches, the main idea is to
sample o�ine the reduced order models for some selected values of parameter and to approx-
imate the reduced order model for the new values of the parameter by interpolating at the
online stage the corresponding reduced operators. For this class of framework, we refer to
[4, 5, 6, 46, 98, 99] and the references therein.

In the second class of approaches which are chosen in our work, we aim at constructing an
accurate reduced basis over the desired ranges of the parameter values and using the Petrov-
Galerkin projection to built an appropriate parametrized reduced order model. We do not
extend the stabilized greedy algorithm presented in the previous chapter for parametrized
time dependent problem, since we observed numerically in the previous chapter that it yields
inaccurate reduced order models for high frequency solicitation. We propose in this chapter to
use an alternative approach in order to construct an accurate reduced basis. More precisely, we
put here the focus on the POD-Greedy algorithm [62, 64], which can be viewed as a combination
of a classical greedy algorithm on parameters and a temporal compression by performing a
proper orthogonal decomposition (POD, see for instance [96]). We will restrict ourselves to the
case where all the operators in the problem can be written as a�ne parametric dependences.
The case of non-a�ne parametric dependence will be the main subject of the next chapter.

The structure of this chapter is as follows. In the �rst section, we reformulate our problem
into a purely algebraic way. In the second section, we introduce some elements on the Petrov-
Galerkin projection based model order reduction. An error indicator based on the residual
norm and an e�cient o�ine-online decomposition strategy are also discussed in this section.
In the third section, we are interested in the construction of the reduced basis by the POD-
Greedy algorithm. According to the stabilization techniques presented in the previous chapter,
some modi�cations in the classical POD-Greedy algorithm are required. Further remarks and
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the limits of the proposed reduced order modelling framework are discussed in Section 4.5. In
order to illustrate the performance of the proposed methodology, numerical results on a simple
study case of shock wave/submerged structures interaction problems are presented in Section
4.6. In Section 4.7, we propose to apply the developed methodology in two industrial cases.
Finally, concluding remarks are given in the last section.

4.1 Problem setting

In this chapter, we consider that the full model is described by a parametrized second-order
ordinary di�erential equation:

M(µ)Ẍ(t;µ) +C(µ)Ẋ(t;µ) +K(µ)X(t;µ) = F(t;µ) (4.1)

where µ ∈ D (P ≥ 1) is the parameter vector, whose components represent physical feature of
interest; D ⊂ RP denotes the corresponding parameter space. The matrices M, C, K ∈ Rn×n

represent respectively mass, damping and sti�ness matrices of the problem which are supposed
to be parameter dependent and F ∈ Rn is the right-hand side vector of the problem which
is time and parameter dependent. For simplify our presentation, we assume that the initial
condition is given by X(t = 0,µ) = Ẋ(t = 0,µ) = 0.

In this chapter, we restrict ourselves to the case where the geometry of the domain is not
considered as a parameter of the problem and all operators of the left and right-hand sides of
the problem can be written as an a�ne dependent form in parameter µ ∈ D as following:

F(t;µ) =

NF∑
i=1

θFi (t;µ)Fi , A(µ) =

NA∑
i=1

θAi (µ)Ai , ∀A ∈ {M,C,K} (4.2)

where Ai are given constant matrices of Rn×n, Fi are given constants vectors of Rn and θAi , θFi
are given parameter dependent functions. We assume here that the full model (4.1) is stable
for any value of parameter µ ∈ D.

We consider that our output of interest can be written as a linear form Sl(t;µ) = LTX(t;µ),
where L is a vector in Rn, or as a quadratic form Sq(t;µ) = XT (t;µ)QX(t;µ) where Q is a
matrix of Rn×n.

To make this chapter self contained, let us brie�y recall the expression of the matrices
M,C,K of the full model (4.1) for a parametrized time domain vibro-acoustic problem. For
the case where the formulation in (us, φ) is employed, we have:

Muφ(µ) =

[
Ms(µ) 0

0 −ρ0(µ)Mf (µ)

]
,Cuφ(µ) =

[
Cs(µ) −ρ0(µ)Kc

−ρ0(µ)KT
c −ρ0(µ)Cf (µ)

]

Kuφ(µ) =

[
Ks(µ) 0

0 −ρ0(µ)Kf

]
, and Xuφ(t;µ) =

[
Us(t;µ)

Φ(t;µ)

] (4.3)

where ρ0 denotes the �uid density, the matrices Ms and Mf are known respectively as the
mass matrices of the structural part and the �uid part, the matrices Ks and Kf are known
respectively as the sti�ness matrices of the structural part and the �uid part, the matrix Kc

represents the vibro-acoustic coupling matrix, the matrices Cs and Cf represent respectively
the damping matrix in structural part and the �uid part and the vector Us and Φ contain
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respectively the nodal values of structural displacement and velocity potential in the �uid.
By their de�nitions in (1.39), the matrices Ms and Mf are symmetric positive de�nite, the
matrices Ks and Kf are symmetric positive semi-de�nite. In our work, we assume that the
matrices Cs and Cf are positive semi-de�nite which are su�cient conditions for the stability
of the full order model (see Lemma 3.1.4). As a remark, the matrices Kc and Kf depend only
on the geometry of the �uid domain. Thus, they are µ independent through this chapter since
the geometry of the domain is not considered here as a parameter of the problem.

With the same notations, the expression of the matrices M,C,K of the full model (4.1)
for a parametrized time domain vibro-acoustic problem formulated in (us, p) is de�ned by:

Mup(µ) =

[
Ms(µ) 0

−ρ0(µ)KT
c Mf (µ)

]
,Cup(µ) =

[
Cs(µ) 0

0 Cf (µ)

]

Kup(µ) =

[
Ks(µ) Kc

0 Kf

]
and Xup(t;µ) =

[
Us(t;µ)

P(t;µ)

] (4.4)

and in (us, p, ϕ) is de�ned by:

Mupϕ(µ) =

 Ms(µ) 0 −ρ0(µ)Kc

0 0 Mf (µ)

−ρ0(µ)KT
c Mf (µ) −ρ0(µ)Kf

 ,Cupϕ(µ) =

Cs(µ) 0 0

0 0 0

0 Cf (µ) 0


Kupϕ(µ) =

Ks(µ) 0 0

0 1
ρ0(µ)Mf (µ) 0

0 0 0

 and Xupϕ(t;µ) =

Us(t;µ)

P(t;µ)

ϕ(t;µ)


(4.5)

where the vectors P and ϕ contain respectively the nodal values of pressure and displacement
potential in the �uid.

We also recall the expression of the right-hand side vector of full order model (4.1) for the
case of shock wave/submerged structure interaction problem. Assuming that the shock wave is
characterized by a incident pressure pinc and an incident velocity vinc, the right-hand side vector

of the problem formulated in (us, φ
sca) are given by Fscauφ (t;µ) =

[
Fscas (t;µ)T Fscaφ (t;µ)T

]T
where the vectors Fscas (t;µ) and Fscaφ (t;µ) are de�ned by Fscas,j (t;µ) := −

∫
Γ p

inc(x, t;µ)[Ns
j(x)·

ns(x)]dx, Fscaφ,j (t;µ) := −
∫

Γ ρ0(µ)[vinc(x, t;µ)·ns(x)]Nf
j (x)dx withNs and Nf denote respec-

tively the �nite element basis of the structural and the �uid part.

With the same notations, the right-hand side vector of the formulation in (us, φ
rad) and in

(us, p
rad) are given by Fradup (t;µ) =

[
Frads (t;µ)T 0T

]T
, where the vector Frads (t;µ) are de�ned

by Frads,j (t;µ) = −
∫

Γ(pinc+pref )(x, t;µ)[Ns
j(x)·ns(x)]dx. Finally, the right-hand side vector for

the case of the formulation in (us, p
rad, ϕrad) is given by Fradupϕ(t;µ) =

[
Frads (t;µ)T 0T 0T

]T
.

We recall that the re�ected pressure pref has to be pre-computed (see Section 2.4.5) in order
to employ these three formulations. As a remark, the re�ected pressure pref depends only on
the incident velocity vinc and the properties of the �uid.
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4.2 Reduced order modelling

Solving the full model (4.1) is often computationally intractable for parametrized problems.
The aim of this section is to develop a suitable inexpensive and fast reduced-order model
to overcome this computational burden. Here, we are only interested in the Petrov-Galerkin
projection based ROM. The idea of Petrov-Galerkin projection based reduced order modelling
is to approximate the solution of the full model (4.1) in a reduced basis V ∈ Rn×N of dimension
N , which is much smaller than the dimension of the full model, and enforce the orthogonality
of the residual vector to a test subspace spanned by a suitable basis W ∈ Rn×N . The Petrov-
Galerkin reduced order model writes:

Mr(µ)Ẍr(t;µ) +Cr(µ)Ẋr(t;µ) +Kr(µ)Xr(t;µ) = Fr(t;µ) (4.6)

where the reduced matrices and vectors are given by:

Mr(µ) = WTM(µ)V, Cr(µ) = WTC(µ)V

Kr(µ) = WTK(µ)V, Fr(t;µ) = WTF(t;µ)
(4.7)

and the initial condition is given by Xr(t = 0,µ) = Ẋr(t = 0,µ) = 0.

The approximation of the solution of full model (4.1) given by the reduced order model
(4.6) is de�ned by Xrom(t;µ) = VXr(t;µ). For the case where the output of interest can
be written as a linear (quadratic) form, its approximation by the reduced order model (4.6)
is given by Sroml (t;µ) = LTrXr(t;µ) (Sromq (t;µ) = XT

r (t;µ)QrXr(t;µ)), where the reduced
vector Lr ∈ RN is de�ned by LTr = LTV (the reduced matrix Qr ∈ RN×N is de�ned by
Qr = VTQV).

4.2.1 Stability preserving model order reduction

For time-dependent problem, it has been shown in Chapter 3 that the reduced order modelling
has to ensure that the stability of the full model is preserved. In the most general cases,
the Petrov-Galerkin projection based ROM can be unstable even if the original full model is
stable. We recall that the dynamical system (4.1) is called stable if and only if all roots of the
polynomial P (s) := det(s2M + sC + K) have negative real part. In other words, the system
(4.1) is stable if and only if the state of the system remains bounded for any initial condition
in the absence of external force. With this de�nition, the full model (4.1) is stable for the case
where the mass matrix M is symmetric positive de�nite, the sti�ness matrix K symmetric
positive semi-de�nite and the damping matrix C is positive semi-de�nite (see Lemma 3.1.3).
As example, it is the case when the full model (4.1) represents the �nite element model of an
acoustic wave or a structural dynamic equation. For this case, a stable reduced order model
can be obtained by using Galerkin projection on any reduced basis (see Lemma 3.2.1).

For vibro-acoustic problem, the �nite element model in (us, φ), in (us, p) and in (us, p, ϕ)

are all stable thanks to the symmetric positive de�niteness of the mass matrices Ms, Mf and
the symmetric positive semi-de�niteness of sti�ness matrices Ks, Kf and of the impedance
matrix Q (for the case of exterior problem). For the formulation in (us, φ), it has been shown
in Lemma 3.2.2 that we can obtain a stable reduced order model by using a Petrov-Galerkin
projection on a particular test subspace which depends on the choice of the trial subspace.

128



4.2. REDUCED ORDER MODELLING

More precisely, using a Petrov-Galerkin projection on the trial subspace V =

[
Vs

Vf

]
∈ Rn×N

with the test subspace de�ned by W =

[
Vs

−Vf

]
∈ Rn×N yields a stable reduced order model

for any choices of Vs and Vf . For the formulation in (us, p), it has been shown in Lemma

3.2.3 that using Galerkin projection on the reduced basis with a particular form V =

[
Vs 0

0 Vf

]
yields a stable ROM for any choices of the reduced basis in structural partVs and the �uid part
Vf . For the formulation in (us, p, ϕ), it has been shown in Lemma 3.2.4 that using Galerkin

projection on the reduced basis with a particular form V =

Vs 0 0

0 Vf 0

0 0 Vf

 yields a stable

ROM for any choice of the reduced basis in structural part Vs and the �uid part Vf .

4.2.2 Error indicator

An error indicator can provide information on the accuracy of reduced order model. It also
plays an important role in the construction of the reduced basis with a greedy algorithm as we
will see in Section 4.3. In this work, we propose to use the error indicator based on the norm of
residual vector since it is relatively inexpensive to compute. The residual vector corresponding
to the reduced order model (4.6) of the full model (4.1) writes:

R(t;µ) := F(t;µ)−M(µ)VẌr(t;µ)−C(µ)VẊr(t;µ)−K(µ)VXr(t;µ) (4.8)

The error indicator used in this work is de�ned by:

∆(µ) = max
t∈[0,T ]

||R(t;µ)||
||F(t;µ)||

(4.9)

where T is the �nal time of interest in the problem and || · || denotes the euclidean norm.

Under the hypothesis that all operators of both left and the right-hand sides of the problem
can be written in an a�ne dependence form in parameter, characterized by Equation (4.2), the
norm of right-hand side and residual vectors can be written as (see Appendix C):

||F(t;µ)||2 = ΘT
F (t;µ)MFFΘF (t;µ)

||R(t;µ)||2 = ΘT
F (t;µ)MFFΘF (t;µ)

+ Ẍ
T

r (t;µ)MMM (µ)Ẍr(t;µ) + Ẋ
T

r (t;µ)MCC(µ)Ẋr(t;µ) +XT
r (t;µ)MKK(µ)Xr(t;µ)

+ 2
(
Ẍ
T

r (t;µ)MMC(µ)Ẋr(t;µ) + Ẍ
T

r (t;µ)MMK(µ)Xr(t;µ) + Ẋ
T

r (t)MCK(µ)Xr(t)
)

− 2
(
ΘT
F (t;µ)MMF (µ)Ẍr(t;µ) + ΘT

F (t;µ)MCF (µ)Ẋr(t;µ) + ΘT
F (t;µ)MKF (µ)Xr(t;µ)

)
(4.10)

The vector ΘF (t;µ) ∈ RNF is de�ned by ΘF (t;µ) =
[
θF1 (t;µ), · · · , θFNF (t;µ)

]T
∈ RNF .

Here, we denote by 〈·, ·〉 the euclidean scalar product. The matrix MFF ∈ RNF×NF is in-
dependent of µ and is de�ned by (MFF )ij = 〈Fi,Fj〉 and the matrices MAB ∈ RN×N and
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MAF ∈ RNF×N , for A,B ∈ {M,C,K}, are µ-dependent and de�ned by:

MAB(µ) =

NA∑
l=1

NB∑
k=1

θAl (µ)θBk (µ)MAlBk

MAF (µ) =

NA∑
l=1

θAl (µ)MAlF

(4.11)

where the matrices MAlBk ∈ RN×N and MAlF ∈ RN×NF , for l ∈ {1, · · · , NA} and k ∈
{1, · · · , NB}, are µ-independent and respectively de�ned by (MAlBk)ij = 〈Alvi,Bkvj〉 and
(MAlF )ij = 〈Alvi,Fj〉. Here, we denote by vi ∈ Rn the ith column of the reduced basis V ∈
Rn×N . Finally, it should be noticed that for any A ∈ {M,C,K} and any l, k ∈ {1, · · · , NA},
the matrices MAlAl are symmetric and that MAlAk = MT

AkAl
.

Remark 4.2.1 By de�nition of residual vector in Equation (4.8), the dynamic of the error
of the solution of the full model (4.1) and its approximation by the reduced order model (4.6),
e(t;µ) := X(t;µ)−VXr(t;µ), writes:

M(µ)ë(t;µ) +C(µ)ė(t;µ) +K(µ)e(t;µ) = R(t;µ) (4.12)

with initial condition e(t;µ) = ė(t;µ) = 0. In the case where we have R(t;µ) = εF(t;µ), the
linearity of the problem implies that: e(t;µ) = εX(t;µ) which means that the relative error
between the solution of the full model (4.1) and its approximation by the reduced order model
(4.6) is ε. We note that when ∆(µ) = ε, it implies that we have ||R(t;µ)|| ≤ ε||F(t;µ)||, ∀t ∈
[0, T ]. Thus, the smaller the value of error indicator, the more accurate reduced order model
is expected.

Remark 4.2.2 We remark that using the relation (4.10) implies that ||R(t;µ)||/||F(t;µ)|| is
equivalent to a relation in form

√
(a+ b)/a, where a is the square of the norm of the right-

hand side and b is the sum of the second term to the last term of the second equation of (4.10).
Because of round-o� error, the result of the operation a+ b returned by the computer can be
di�erent from its theoretical value, especially when a and b are almost opposite numbers. As a
result, even in the case where a = −b theoretically, when the maximal accumulation of round-
o� errors occurs in the computation of a+ b, the computer would return a value ≈ εmachine|a|,
where εmachine is machine precision. Therefore, the result of

√
(a+ b)/a provided by the

computer has a lower bound ≈ √εmachine.

As consequence of the above remark, the computation of the error indicator ∆(µ) de�ned
in Equation (4.9) by using the relations (4.10)-(4.11) with an expected value smaller than
√
εmachine does not make sense (see Section 4.5.1 for some alternatives to remedy this). We

will see, in the next section, that the relations (4.10)-(4.11) allow us to built an e�cient
o�ine/online strategy for computing the indicator error ∆(µ) de�ned in Equation (4.9).

4.2.3 O�ine-online computational procedures

In this section, we present an o�ine-online computational procedure which allows us to fully
exploit the small dimension of the reduced problem. We should note that the o�ine stage
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whose complexity can depend on the size of the full model, is performed only once. On the
contrary, the online stage whose complexity can depend only the size of the reduced order
model, is performed many times, for each parameter value µ ∈ D.

Assuming that appropriate trial and test spaces V,W ∈ Rn×N (N << n) are known and
all operators of the left and the right-hand sides of the problem can be written in an a�ne
dependent form in parameter (4.2), an e�cient strategy of o�ine-online decomposition can be
de�ned as follows.

O�ine stage

In order to construct the reduced matrices Mr(µ),Cr(µ),Kr(µ) and reduced vector Fr(t;µ)

in the online stage with a complexity which depends only on the size of the reduced order
model, we need to compute and save the reduced matrices Al,r = WTAlV ∈ RN×N , for
A ∈ {M,C,K}, l ∈ {1, · · · , NA}, and the reduced vectors Fl,r = WTFl ∈ RN , l ∈ {1, · · · , NF }.
In order to predict the output of interest by the reduced order model with a complexity in-
dependent of the size of the full model, we also need to compute and save during the o�ine
stage the reduced vector LTr = LTV ∈ R1×N (for a linear form output) and the reduced matrix
Qr = VTQV ∈ RN×N (for a quadratic form output).

For the computation of the error indicator de�ned in Equation (4.9), by using the relations
(4.10)-(4.11, with a complexity which depends only on the size of the reduced order model in
the online stage, we need to compute and save in the o�ine stage the following µ-independent
quantities: MFF ∈ RNF×NF , MAlBk ∈ RN×N for A ≥ B ∈ {M,C,K} (with the convention
K < C < M), l ∈ {1, · · · , NA} and k ∈ {1, · · ·NB} and MAlF ∈ RNF×N for A ∈ {M,C,K}
and l ∈ {1, · · ·NA}.

In practice, we begin by computing the product of matrices and the trial space AlV ∈
Rn×N , A ∈ {M,C,K}, l = 1, · · · , NA, before the computation of the reduced matrices and the
data for the error indicator. The complexity of this �rst step is in O(n2N(NM +NC +NK)).
Using the results of the product matrices and the trial reduced basis, the complexity of the
computation of the reduced matrices is in O(nN2(NM + NC + NK)). The complexity in the
computation of the reduced vector is in O(nNNF ). For the data of output of interest, the com-
plexity is in O(nN) for the linear form case, and in O(n2N) for the quadratic form case. For
the error indicator, the complexity in the computation of the matrixMFF is in O(nN2

F ). Using
the results of the product matrices and the trial reduced basis, the complexity in the computa-
tion of the matrices MAlF , A ∈ {M,C,K}, l ∈ {1, · · · , NA}, is in O(nNNF (NM +NC +NK))

and of the matrices MAlBk , for A ≥ B ∈ {M,C,K} (with the convention K < C < M),
l ∈ {1, · · · , NA} and k ∈ {1, · · ·NB}, is in O(nN2(NM (NM +NC +NK) +NC(NC +NK))).

It should be noticed that the data to be computed in the o�ine part for error indicator
and the linear or quadratic output of interest depend only on the trial subspace V and not on
the test subspace W. The o�ine stage is summarized by Algorithm 4.

Remark 4.2.3 In the full model (4.1) the matrices M,C,K are sparse. Thus, the complex-
ity of the product of matrices and the basis V is in O(nzN(NM + NC + NK)) instead of
O(n2N(NM +NC +NK)), where nz is the number of non-zeros entries in the matrix.
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Algorithm 4 O�ine stage of the reduced order modelling framework in case of a�ne para-
metric dependence

Input: A test and trial reduced basis W,V ∈ Rn×N
Output: The data to be saved for online stage

1: // Compute the product of matrices and the basis V, complexity O(n2N(NM +NC +NK))
2: for A = M,C,K do

3: for l = 1, · · · , NA do

4: Compute AlV ∈ Rn×N
5: end for

6: end for

7: // Data for the reduced matrices, complexity O(nN2(NM +NC +NK))
8: for A = M,C,K do

9: for l = 1, · · · , NA do

10: Compute and save Al,r = WT (AlV ) ∈ RN×N
11: end for

12: end for

13: // Compute and save the data for the reduced vectors, complexity O(nNNF )
14: for l = 1, · · · , NF do

15: Compute and save Fl,r = WTFl
16: end for

17: // Compute and save the data for the linear output, complexity O(nN)
18: Compute and save LTr = LTV ∈ R1×N

19: // Compute and save the data for the quadratic output, complexity O(n2N)
20: Compute and save Qr = VTQV ∈ RN×N
21: // Compute and save the data for the error indicator, complexity O(nN2

F + nNNF (NM +
NC +NK) + nN2(NM (NM +NC +NK) +NC(NC +NK)))

22: Compute MFF ∈ RNF×NF de�ned by (MFF )ij = 〈Fi,Fj〉
23: for A = M,C,K do

24: for l = 1, · · · , NA do

25: Compute and save MAlF ∈ RNF×N de�ned by (MAlF )ij = 〈Alvi,Fj〉, where vi is ith
column of V

26: end for

27: end for

28: for A = M,C,K do

29: for B = M,C,K do

30: if B ≤ A (with the convention K < C < M) then
31: for l = 1, · · · , NA do

32: for k = 1, · · · , NB do

33: Compute and save MAlBk ∈ RN×N de�ned by (MAlBk)ij = 〈Alvi,Bkvj〉
34: end for

35: end for

36: end if

37: end for

38: end for

Online stage

Once all calculations at the o�ine stage are done, the computation of the output of interest
Sroml (t;µ), Sromq (t;µ) and error indicator ∆(µ), for any new value parameter value µ ∈ D,
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can be performed with a complexity which depends only on the small size of the reduced order
model.

Using the a�ne decomposition (4.2) and the data saved in o�ine stage, we can compute
for any new value parameter value µ ∈ D the reduced matrices Mr(µ),Cr(µ),Kr(µ) with a
complexity in O(NN2

A), A ∈ {M,C,K}, by using relation Ar(µ) =
∑NA

i=1 θ
A
i (µ)(Ai)r. The

cost of resolution of the reduced problem (4.6) depends then only on N , NF , the number of time
steps Nt and the choice of time-discretization scheme. The cost of computation of the output
of interest Sroml (t;µ) (Sromq (t;µ)) with the relation Sroml (t;µ) = LTrXr(t;µ) (Sromq (t;µ) =

XT
r (t;µ)QrXr(t;µ)), where Lr ∈ R1×N (Qr ∈ RN×N ) are already computed at o�ine stage,

are in O(NtN) (in O(NtN
2)).

Algorithm 5 Online stage of the reduced order modelling framework in case of a�ne para-
metric dependence
Input: The data of o�ine stage and a new value parameter value µ ∈ D
Output: The output of interest Sroml (t;µ), Sromq (t;µ) and the error indicator
∆(µ)

1: // Overall complexity O(N2(NM +NC +NK))
2: Compute the reduced mass, damping and sti�ness matrices by the relation:

Ar(µ) =

NA∑
i=1

θAi (µ)(Ai)r , A ∈ {M,C,K} (4.13)

3: // Complexity depends only on N,NF and the number of time step Nt

4: Solve the reduced problem

Mr(µ)Ẍr(t;µ) +Cr(µ)Ẋr(t;µ) +Kr(µ)Xr(t;µ) =

NF∑
i=1

θFi (t;µ)(Fi)r (4.14)

5: // Complexity in O(NNt) for linear case and in O(N2Nt) for quadratic case
6: Compute the output of interest

Sroml (t;µ) = LTrXr(t;µ), Sromq (t;µ) = XT
r (t;µ)QrX

T
r (t;µ) (4.15)

7: // Complexity in O(N2(NM (NM +NC +NK) +NC(NC +NK)) +NNF (NM +NC +NK))

8: Compute the data for error indicator: MAF (µ) ∈ RNF×N , MAB(µ) ∈ RN×N , for A,B ∈
{M,C,K} and B ≤ A (with the convention K < C < M), by the relation:

MAB(µ) =

NA∑
l=1

NB∑
k=1

θAl (µ)θBk (µ)MAlBk

MAF (µ) =

NA∑
l=1

θAl (µ)MAlF

(4.16)

9: // Complexity in O(Nt(N
2
F +N2 +NNF ))

10: Compute the error indicator ∆(µ) by the relations (4.9)-(4.10)

133



4.3. CONSTRUCTION OF THE REDUCED BASIS BY POD-GREEDY ALGORITHM

Concerning the error indicator ∆(µ), the �rst step consists of computing the matrices
MAB(µ) ∈ RN×N and MAF (µ) ∈ RNF×N , for A ≥ B ∈ {M,C,K} (with the convention
K < C < M). Using the relation (4.11) and the data ofMAlBk andMAlF , A ≥ B ∈ {M,C,K},
l ∈ {1, · · · , NA}, k ∈ {1, · · · , NB} which are already computed at o�ine stage, the cost of
computation of MAB(µ) et MAF (µ) are respectively in O(N2NANB) and in O(NNFNA).
Once the computation of MAB(µ) ∈ RN×N and MAF (µ) ∈ RNF×N , for A,B ∈ {M,C,K},
are done, we can now compute the error indicator ∆(µ) of Equation (4.9) by using the relation
(4.10) with a complexity in O(Nt(N

2
F + N2 + NNF )). Note that there are no additional

computation cost of Ẋr(t;µ) and Ẍr(t;µ) in the common used time-integration schemes (such
as Newmark scheme, Wilson scheme, ...) which also explicitly compute the time derivate of
the primal variables. The online stage is summarized by Algorithm 5.

4.3 Construction of the reduced basis by POD-Greedy algo-

rithm

The most common way to generate an appropriate reduced basisV for a parametrized unsteady
problem is based on the well known Proper Orthogonal Decomposition (POD) technique, which
is also known as Principal Component Analysis (PCA) in statistics [71, 105], Karhunen-Loève
expansion in stochastic application [87, 77], Hotelling Transformation in image processing, Prin-
cipal Orthogonal Direction (POD) in geophysics and Empirical Orthogonal Functions (EOFs)
in meteorology and geophysics. In the context of model reduction, Proper Orthogonal Decom-
position has been applied successfully for generating an appropriate reduced basis in various
domains of application: in turbulent �ow in [12, 74, 56, 125], in Navier-Stokes equations in
[43], in parabolic partial di�erential equations [80].

In algebraic way, Proper Orthogonal Decomposition can be viewed as a technique for �nding
a low-dimension approximation space by exploiting the singular value decomposition (SVD) of
a suitable snapshot matrix. Considering in our case a set of Nµ well chosen instances of the
parameters {µ∗1, · · · ,µ∗Nµ} ∈ D, we introduce the snapshot matrix S ∈ Rn×Ns de�ned as:

S =
[
X(t1;µ∗1) · · · X(tNt ;µ∗1) · · · X(t1;µ∗Nµ) · · · X(tNt ;µ∗Nµ)

]
(4.17)

where we have introduced a partition of the time interval [0, T ] in Nt time step {tk}Ntk=1,
tk = k∆t, of size ∆t = T/Nt and Ns = NtNµ. By computing the singular value decomposition
(SVD) of the matrix S,

S = UΣZT (4.18)

where Σ = diag(σ1, · · · , σNs), being σ1 ≥ σ2 ≥ · · · , σNs ≥ 0 the Ns singular values of S, the
POD reduced basis VN of dimension N ≤ min{n,Ns} is obtained by selecting the �rst N
columns of the left singular vector U, corresponding to the �rst N largest singular values, that
is VN =

[
u1 · · · ,uN

]
∈ Rn×N . The vector ui is also known as ith principal component or

ith POD mode of the snapshot matrix S.
By construction, the columns of VN are orthonormal with respect to the euclidean scalar

product. The reduced basis provided by POD is optimal in the sense that for all possible N
dimensional subspaces W spanned by any set {w1, · · · ,wN} of N orthonormal vectors in Rn,
the subspace spanned by the columns of VN provides the best reconstruction of snapshots,
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that is,

Nµ∑
i=1

Nt∑
k=1

||X(tk;µ∗k)−ΠVX(tk;µ∗i )||2 = min
w1,··· ,wN∈Rn

Nµ∑
i=1

Nt∑
k=1

||X(tk;µ∗k)−ΠWX(tk;µ∗i )||2 (4.19)

where ΠWX denotes the orthogonal projection of the vectorX ∈ Rn onto the subspace spanned
by the orthonormal vectors {w1, · · · ,wN} with respect to the euclidean scalar product. In
other words, the POD reduced basis minimizes the sum of the squared distances between
each snapshot and the corresponding orthogonal projection onto the subspace. Moreover, the
corresponding minimum value can be expressed explicitly by:

Nµ∑
i=1

Nt∑
k=1

||X(tk;µ∗k)−ΠVX(tk;µ∗i )||2 =

Ns∑
i=N+1

σ2
i (4.20)

With this result, POD is commonly performed with a given tolerance ε, in order to control the
relative error on the approximation of snapshots, by setting the reduced basis dimension N as
the smallest integer such that: ∑Ns

i=N+1 σ
2
i∑Ns

i=1 σ
2
i

≤ ε2 (4.21)

As summarized, for a given snapshot matrix S ∈ Rn×Ns and a tolerance ε, the POD reduced
basis VN ∈ Rn×N , denoted by POD(S; ε), are constructed by Algorithm 6.

Algorithm 6 POD algorithm based on SVD decomposition
Input: A snapshot matrix S and a tolerance ε
Output: A reduced basis VN = POD(S; ε)

1: Compute the singular value decomposition of S: S = UΣZT

2: Set the basis dimension N as the smallest integer such that∑Ns
i=N+1 σ

2
i∑Ns

i=1 σ
2
i

≤ ε2

3: Construct the reduced basis by collecting the �rst N columns of the left sigular vector U:

VN =
[
u1 · · · ,uN

]
∈ Rn×N

Remark 4.3.1 Di�erent norms can also be used in the minimization problem (4.19) instead
of the euclidean norm. If the norm is encoded by a symmetric and positive de�nite matrix
A ∈ Rn×n (||v||A = 〈v,Av〉1/2) which admits a Cholesky factorisation A = LLT , the POD
reduced basis which minimizes the problem (4.19) with respect to the norm || · ||A is given by
VN =

[
(LT )−1u1 · · · (LT )−1uN

]
∈ Rn×N where ui denotes the ith column of the left singular

matrix U of the matrix LTS; LTS = UΣZT .

Remark 4.3.2 An alternative way to built POD reduced basis from the snapshot matrix
S = [s1, · · · , sNs ] relies on computing the eigenvector of the symmetric Gramian matrix (which
also known as Kernel or Correlation matrix) G ∈ RNs×Ns de�ned by Gij = 〈si, sj〉A, where
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〈·, ·〉A denotes a scalar product of interest. The kth POD basis vk is then obtained as:

vk =
1√
λk

Ns∑
i=1

ψk,isk (4.22)

where ψk,i the ith component of the eigenvector corresponding to kth largest eigenvalue λk
of G. The eigenvalues of G directly provide the singular values of the snapshot matrix S,
that is λi = σ2

i , i = 1, · · · , Ns. This approach is well known as "method of snapshots". The
complexity of this approach is dominated by the step of construction of the Gramian matrix
G. The complexity can be approximated by O(nN2

s ) for the case of the euclidean norm and
by O(n2Ns + nN2

s ) for other cases (only in O(nzNs + nN2
s ) if the matrix encoding the norm

is a sparse matrix with nz non-zeros entries). Using this approach to build POD reduced
basis can avoid the di�cult task of computing a Cholesky factorization for the case where the
norm of interest is not the euclidean one, and SVD decomposition of the snapshot matrix by
computing the eigenvalue decomposition of a much smaller symmetric matrix G. However, it
should be pointed out that the conditioning number of the Gramian matrix G is the square of
the conditioning number of the snapshot matrix S. This limits the numerical accuracy of this
approach in comparison to SVD algorithm. For this reason, we employ in our work Algorithm
6 to generate POD reduced basis.

For the case of the euclidean scalar product, the complexity of computation of POD reduced
basis with Algorithm 6 can be approximated by O(nN2

s ) where n is the size of the full model
and Ns = NµNt. As remark, the complexity increases quadratically in Nt and Nµ. We should
also note that a su�cient large number Nµ of solutions of the full model (4.1) is required in or-
der to ensure that the obtained reduced basis is accurate. Hence, computing the POD reduced
basis by Algorithm 6 can become prohibitively expensive. To reduce the computation cost,
we can employ Hierarchical Approximate Proper Orthogonal Decomposition (HAPOD, [69])
in which the main idea is to compute POD of several small subsets of S instead of computing
a POD of a given large snapshot set S. Two particular cases of HAPOD namely Distributed
and Incremental HAPOD are outlined in Algorithm 7 and 8, respectively.

Algorithm 7 Distributed HAPOD algorithm
Input: A snapshot matrix S = [S1 · · ·SN ]
and a tolerance ε
Output: A reduced basis V

1: for i = 1, · · · , N do

2: Set Zi = POD(Si, ε)
3: end for

4: Set V = POD([Z1 · · ·ZN ] , ε)

Algorithm 8 Incremental HAPOD algorithm
Input: A snapshot matrix S = [S1 · · ·SN ]
and a tolerance ε
Output: A reduced basis V

1: Set V = POD(S1, ε)
2: for i = 2, · · · , N do

3: Set Z = POD(Si, ε)
4: Set V = POD([V Z] , ε)
5: end for
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It is worth mentioning that one of the advantages of the Distributed HAPOD algorithm is
that it opens a very easy way in parallelization since the computation of local PODs of each
subset Si can be done independently. For the Incremental HAPOD, the main advantage is
that it can reduce the required memory since in each iteration, the procedure only requires
the current subset Si and the POD reduced basis of the previous iteration, so that the current
subset Si does not need to be saved for the next iteration.

Even though the complexity in the computation of POD reduced basis for the case where
Nµ is large can be overcome by employing HAPOD, a proper choice of Nµ and the set
{µ∗1, · · · ,µ∗Nµ} is not known or predictable in a general case. A too large number of Nµ

leads to a very substantial computation overhead by having to compute too many solutions of
the full model where the majority of these solutions do not contribute to the reduced basis.
A too small number of Nµ leads to an inaccurate reduced basis. To overcome this problem,
we can use the information of the error indicator, which can be computed with a complexity
relatively inexpensive, to propose an iterative procedure in the selection of the number Nµ of
the solution of the full model (4.1) and the corresponding parameter values µ∗1, · · · ,µ∗Nµ in a
greedy way. Combining the Proper Orthogonal Decomposition (POD) to compress the time-
trajectories, with the greedy procedure in the parameter space gives an e�cient algorithm,
namely POD-Greedy algorithm, to construct an accurate reduced basis.

4.3.1 POD-Greedy algorithms

With a given tolerance εPOD for POD compression, a naive POD-Greedy approach can be
de�ned as follows. We can start with a �rst value of parameter µ∗1 by choosing randomly
in the parameter space D or by using knowledge of the problem at hand. The �rst re-
duced basis is then obtained by Algorithm 6 by using the snapshot matrix consisting of
the solution of the full model for this value of parameter; V1 = POD(S1, εPOD) where
S1 = [X(t1,µ

∗
1) · · ·X(tNt ,µ

∗
1)] ∈ Rn×Nt . After the initialization step, we can now update

the reduced basis iteratively until it is su�ciently accurate. At iteration k, we use the reduced
basis Vk ∈ Rn×Nk of the previous iteration to built an appropriate parametrized reduced or-
der model (4.6). The new value of parameter µ∗k+1 is then chosen as the one who maximizes
the error indicator of the reduced order model over the parameter space D. Next, we update
the snapshot matrix by enriching the solution of the full model for the new value of parame-
ter and compute the new reduced basis by using Algorithm 6 with the new snapshot matrix
Sk+1 = [S1 · · ·Sk+1], where Sl = [X(t1,µ

∗
l ) · · ·X(tNt ,µ

∗
l )], l = 1, · · · , k + 1. The procedure is

iterated until the value of the error indicator is su�ciently small. The summary of this naive
approach is outlined in Algorithm 9.
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Algorithm 9 Construction of the reduced basis by a POD-Greedy algorithm (naive version)

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD using the snapshot matrix S1 = [X(t1,µ

∗
1) · · ·X(tNt ,µ

∗
1)] and

ε = εPOD with Algorithm 6

V = POD(S1, εPOD)

3: Set k = 1
4: while (k ≤ Nmax) do
5: Perform the o�ine stage for an appropriate couple (W,V) with Algorithm 4
6: Compute the error indicator ∆(µ) of an appropriate parametrized reduced order model

based on the reduced basis V for all µ ∈ D
7: Set µ∗k+1 = arg maxµ∈D∆(µ)
8: if ∆(µ∗k+1) ≤ εalgo then
9: break

10: else

11: Compute the solution of the full model (4.1) for µ = µ∗k+1
12: Set the snapshot matrix

Sk+1 =
[
X(t1;µ∗1) · · · X(tNt ;µ

∗
1) · · · X(t1;µ∗k+1) · · · X(tNt ;µ

∗
k+1)

]
∈ Rn×(k+1)Nt

13: Construct the basis by POD using the snapshot matrix Sk+1 with the given tolerance
εPOD with Algorithm (6)

V = POD(Sk+1, εPOD)

14: end if

15: Set k = k + 1
16: end while

Two major drawbacks should be pointed out in the naive POD-Greedy algorithm. First,
the computation complexity of the new reduced basis at the step 13 of Algorithm 9 increases
quadratically in k. This issue can be overcome by employing HAPOD [69] (such as Distributed
or Incremental HAPOD, see Algorithm 7 and 8). The second default is that the algorithm
does not generate a hierarchical reduced basis which is computationally disadvantageous (see
Section 4.3.6).

To remedy this, we propose to modify the step 12-13 of Algorithm 9, by inspiring the
POD-Greedy Algorithm proposed in [107]. After identifying the new value of parameter µ∗k+1,
we apply POD Algorithm 6 on the snapshot matrix Sk+1 :=

[
X(t1,µ

∗
k+1) · · ·X(tNt ,µ

∗
k+1)

]
∈

Rn×Nt , which is made up of the solution of the full model (4.1) for this new value of parameter
µ∗k+1 with the given value of tolerance εPOD and let Zk+1 = POD(Sk+1, εPOD) ∈ Rn×Mk+1 . The
new reduced basis is then obtained as the concatenation of Zk+1 with the previous reduced basis
Vk. In order to avoid the duplication with the existing reduced basis Vk, we can apply POD
Algorithm 6 on the snapshot matrix [Zk+1 Vk] ∈ Rn×(Nk+Mk+1) with ε = εPOD, to obtain the
new reduced basis Vk+1. This procedure is equivalent to the computation of the reduced basis

138
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V from the well chosen sample {µ∗1, · · · ,µ∗k} at iteration k ≥ 2 by using incremental HAPOD
Algorithm 8 on a large snapshot matrix S = [S1 · · ·Sk+1], where Sl = [X(t1,µ

∗
l ) · · ·X(tNt ,µ

∗
l )],

l = 1, · · · , k + 1. With this solution, the obtained reduced basis is not hierarchical which is
disadvantageous in the computation procedure (see Section 4.3.6). Hence, we propose to employ
Algorithm 11 in order to concatenate the basis Vk and Zk+1 with respect to the given tolerance
εPOD. The methodology is summarized in Algorithm 10.

Algorithm 10 Construction of the reduced basis by a POD-Greedy algorithm

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD using the snapshot matrix S1 = [X(t1,µ

∗
1) · · ·X(tNt ,µ

∗
1)] and

ε = εPOD with Algorithm 6

V = POD(S1, εPOD)

3: Set k = 1
4: while (k ≤ Nmax) do
5: Perform the o�ine stage for an appropriate couple (W,V) with Algorithm 4
6: Compute the error indicator ∆(µ) of an appropriate parametrized reduced order model

based on the reduced basis V for all µ ∈ D
7: Set µ∗k+1 = arg maxµ∈D∆(µ)
8: if ∆(µ∗k+1) ≤ εalgo then
9: break

10: else

11: Compute the solution of the full model (4.1) for µ = µ∗k+1

12: Compute Zk+1 = POD(Sk+1, εPOD) using Algorithm 6 with Sk+1 =[
X(t1,µ

∗
k+1) · · ·X(tNt ,µ

∗
k+1)

]
13: Compute the new reduced basis V with Algorithm 11

V = concatenate(V,Zk+1; εPOD)

14: end if

15: Set k = k + 1
16: end while

Algorithm 11 A procedure for concatenating two basis with respect to a given tolerance

Input: Two orthogonal basis V1 ∈ Rn×N1 , V2 ∈ Rn×N2 , a tolerance ε
Output: A concatenated basis V = concatenate(V1,V2; ε)

1: Set V = V1

2: for i = 1, · · · , N2 do

3: Compute the error ei := v2,i − ΠV v2,i where v2,i is ith column of V2 and ΠV denotes
the orthogonal projection on the subspace spanned by V

4: if ||ei|| ≥ ε||v2,i|| then
5: Enrich the basis V as V = V⊕ [ei/||ei||]
6: end if

7: end for
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Remark 4.3.3 In practical use, the parameter space D ⊂ RP is replaced by a �nite training
set Dtrain which has to be chosen su�ciently large in order to ensure that there is no important
forgotten regions in the parameter space. In the case of high-dimensional parameter space
(P >> 1), the size of the training set can be prohibitive even if we use a sparse uniform grid
in each direction. A very simple way avoid this is to built randomly new training set at each
iteration of POD-Greedy algorithm which allows us to not have too large regions without point
in parameter space with a reasonable probability.

Remark 4.3.4 Instead of using the stopping criterion for the step 8 of Algorithm 10 based
on the value of error indicator, we can use the information on the error of an output of interest
between the full model and the reduced order model, based on the worst case predicted by the
error indicator (i.e for the value of parameter µk+1 = arg maxµ∈D∆(µ)). This requires only
one resolution of the full model whose solution will be used to enrich the reduced basis in the
next iteration if the stopping criterion is not yet veri�ed. Another alternative is to pre-compute
the output of interest by the full model over a test sample Dtest, whose cardinal is relatively
small, and de�ne the stopping criterion based on the error of the output of interest over the
selected values of the parameters in Dtest.

Remark 4.3.5 Another version of POD-Greedy algorithm which is proposed in [64] and
whose convergence rate has been analysed in [65], di�ers from our POD-Greedy algorithm 10
at the steps 12-13. In [64, 65], it has been proposed to construct the new reduced basis by
computing at �rst the error of orthogonal projection of the solution of the full model (4.1)
for the new value of parameter µ = µ∗k+1, onto the reduced basis of previous iteration. We
perform then POD on the snapshot matrix, which is made up of these error vectors, and
chose the �rst Nm principal components to enrich the reduced basis. By construction, these
Nm principal components are orthogonal with the reduced basis of the previous iteration. In
practice Nm can be chosen as the smallest integer which veri�es the inequality (4.21) with
the same given tolerance for temporal compression, ε = εPOD. This alternative approach is
outlined in Algorithm 12.

Remark 4.3.6 As explained in [64], one of the main advantages of Algorithm 12 is that it
generates hierarchical spaces which is computationally advantageous (we will discuss on this
matter in Section 4.3.6). However, it should be pointed out that the accumulation of round-o�
errors in the computation of error projection vectors, at the step 12, and numerical errors in the
computation POD of snapshot Ek can destroy the orthogonality of the reduced basis obtained
at step 13 of Algorithm 12. Because of the loss of orthogonality, the computation of error
vectors at the next iteration would require Nt resolutions of the linear system, whose size is
equal to the dimension of the current reduced basis. This represents an other potential source
of numerical errors which may be accumulated in the computation of POD at the step 13. For
this reason, we prefer to work with the POD-Greedy algorithm inspired by [107].
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Algorithm 12 Construction of the reduced basis by a POD-Greedy algorithm version of Ref
[64]

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD using the snapshot matrix S1 = [X(t1,µ

∗
1) · · ·X(tNt ,µ

∗
1)] and

ε = εPOD with Algorithm 6

V = POD(S1, εPOD)

3: Set k = 1
4: while (k ≤ Nmax) do
5: Perform the o�ine stage for an appropriate couple (W,V) with Algorithm 4
6: Compute the error indicator ∆(µ) of an appropriate parametrized reduced order model

based on the reduced basis V for all µ ∈ D
7: Set µ∗k+1 = arg maxµ∈D∆(µ)
8: if ∆(µ∗k+1) ≤ εalgo then
9: break

10: else

11: Compute the solution of the full model (4.1) for µ = µ∗k+1

12: Compute the snapshot matrix

Ek =
[
X(t1;µ∗k)−ΠVX(t1;µ∗k) · · · X(tNt ;µ

∗
k)−ΠVX(tNt ;µ

∗
k)
]
∈ Rn×Nt

where ΠV denotes the orthogonal projection on the subspace V
13: Enrich the reduced basis

V = V⊕ POD(Ek, εPOD)

14: end if

15: Set k = k + 1
16: end while

In what follows, we present di�erent versions of the POD-Greedy algorithm based on Al-
gorithm 10 for the three �nite element models of vibro-acoustic problem given in Chapter 1,
together with the stabilization techniques presented in Chapter 3.

4.3.2 POD-Greedy algorithm for formulation in (us, φ)

For the formulation in (us, φ), we recall that a stable reduced order model can be obtained

by using Petrov-Galerkin projection on any trial subspace V =

[
Vs

Vf

]
with an test subspace

W de�ned by W =

[
Vs

−Vf

]
(see Lemma 3.2.2). As consequence, it should be emphasised that

the parametrized reduced order model of the step 6 of Algorithm 10 is constructed by using
Petrov-Galerkin projection with this particular test subspace. The POD-Greedy algorithm for
formulation in (us, φ) is outlined in Algorithm 13.
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Algorithm 13 Construction of the basis by a POD-Greedy algorithm for a parametrized
time-domain vibro-acoustic formulated in (us, φ)

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD using the snapshot matrix S1 = [X(t1,µ

∗
1) · · ·X(tNt ,µ

∗
1)] and

ε = εPOD with Algorithm 6

V = POD(S1, εPOD)

3: Set k = 1
4: while (k ≤ Nmax) do

5: Perform the o�ine stage for the couple (W,V) where W =
[
VT
s −VT

f

]T
with Algo-

rithm 4
6: Using Petrov-Galerkin projection on the couple (W,V) to built the parametrized reduced

order model (4.6) and compute the error indicator ∆(µ), for all µ ∈ D
7: Set µ∗k+1 = arg maxµ∈D∆(µ)
8: if ∆(µ∗k+1) ≤ εalgo then
9: break

10: else

11: Compute the solution of the full model (4.1) for µ = µ∗k+1

12: Compute Zk+1 = POD(Sk+1, εPOD) using Algorithm 6 with Sk+1 =[
X(t1,µ

∗
k+1) · · ·X(tNt ,µ

∗
k+1)

]
13: Compute the new reduced basis V with Algorithm 11

V = concatenate(V,Zk+1; εPOD)

14: end if

15: Set k = k + 1
16: end while

4.3.3 POD-Greedy algorithm for formulation in (us, p)

For the formulation in (us, p), we recall that a stable reduced order model can be obtained by

a Galerkin projection on any basis in form V =

[
Vs 0

0 Vf

]
, where Vs and Vf can be viewed

as the reduced basis for the structural and �uid part, respectively (see Lemma 3.2.3). Hence,
we propose to enrich these two reduced basis separately at each iteration of POD-Greedy
algorithm. The POD-Greedy algorithm for formulation in (us, p) is outlined in Algorithm 14.

142



4.3. CONSTRUCTION OF THE REDUCED BASIS BY POD-GREEDY ALGORITHM

Algorithm 14 Construction of the basis by Greedy-POD for a parametrized time-domain
vibro-acoustic formulated in (us, p)

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD for the structural part using the snapshot matrix Su1 =

[U(t1,µ
∗
1) · · ·U(tNt ,µ

∗
1)] and ε = εPOD with Algorithm 6

Vs = POD(Su1 , εPOD)

3: Construct the basis by POD for the �uid part using the snapshot matrix S
p
1 =

[P(t1,µ
∗
1) · · ·P(tNt ,µ

∗
1)] and ε = εPOD with Algorithm 6

Vf = POD(Sp1, εPOD)

4: Set k = 1
5: while (k ≤ Nmax) do

6: Perform the o�ine stage for the couple (W,V), where W = V =

[
Vs 0

0 Vf

]
, with

Algorithm 4
7: Using Galerkin projection on the reduced basis V to built the parametrized reduced

order model (4.6) and compute the error indicator ∆(µ), for all µ ∈ D
8: Set µ∗k+1 = arg maxµ∈D∆(µ)
9: if ∆(µ∗k+1) ≤ εalgo then
10: break

11: else

12: Compute the solution of the full model (4.1) for µ = µ∗k+1

13: Compute Zuk+1 = POD(Suk+1, εPOD) using Algorithm 6 with Suk+1 =[
U(t1,µ

∗
k+1) · · ·U(tNt ,µ

∗
k+1)

]
14: Compute Z

p
k+1 = POD(Spk+1, εPOD) using Algorithm 6 with S

p
k+1 =[

P(t1,µ
∗
k+1) · · ·P(tNt ,µ

∗
k+1)

]
15: Compute the new reduced basis for the structural part Vp as

Vs = concatenate(Vs,Z
u
k+1; εPOD)

16: Compute the new reduced basis for the �uid part Vf as

Vf = concatenate(Vf ,Z
p
k+1; εPOD)

17: end if

18: Set k = k + 1
19: end while

4.3.4 POD-Greedy algorithm for formulation in (us, p, ϕ)

For the formulation in (us, p, ϕ), we recall that a stable reduced order model can be obtained

by a Galerkin projection on any basis in form V =

Vs 0 0

0 Vf 0

0 0 Vf

, where Vs and Vf can be

viewed as the reduced basis for the structural and �uid part, respectively (see Lemma 3.2.4).
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Similarly to the case of the formulation in (us, p) , we propose to enrich these two reduced
basis separately at each iteration of POD-Greedy algorithm. The POD-Greedy algorithm for
formulation in (us, p, ϕ) is outlined in Algorithm 15.

Algorithm 15 Construction of the basis by a POD-Greedy algorithm for a parametrized
time-domain vibro-acoustic formulated in (us, p, ϕ)

Input: A partition {tn}Ntn=1 of the time interval [0, T ], tolerance εPOD, εalgo, maximum number
of iterations Nmax

Output: A reduced basis V

1: Choose randomly µ∗1 ∈ D and compute the solution of the full model (4.1) for µ = µ∗1
2: Construct the basis by POD for the structural part using the snapshot matrix Su1 =

[U(t1,µ
∗
1) · · ·U(tNt ,µ

∗
1)] and ε = εPOD with Algorithm 6

Vs = POD(Su1 , εPOD)

3: Construct the basis by POD for the �uid part using the snapshot matrix S
p
1 =

[P(t1,µ
∗
1) · · ·P(tNt ,µ

∗
1)] and ε = εPOD with Algorithm 6

Vf = POD(Sp1, εPOD)

4: Set k = 1
5: while (k ≤ Nmax) do

6: Perform the o�ine stage for the couple (W,V), where W = V =

Vs 0 0

0 Vf 0

0 0 Vf

, with
Algorithm 4

7: Using Galerkin projection on the reduced basis V to built the parametrized reduced
order model (4.6) and compute the error indicator ∆(µ), for all µ ∈ D

8: Set µ∗k+1 = arg maxµ∈D∆(µ)
9: if ∆(µ∗k+1) ≤ εalgo then
10: break

11: else

12: Compute the solution of the full model (4.1) for µ = µ∗k+1

13: Compute Zuk+1 = POD(Suk+1, εPOD) using Algorithm 6 with Suk+1 =[
U(t1,µ

∗
k+1) · · ·U(tNt ,µ

∗
k+1)

]
14: Compute Z

p
k+1 = POD(Spk+1, εPOD) using Algorithm 6 with S

p
k+1 =[

P(t1,µ
∗
k+1) · · ·P(tNt ,µ

∗
k+1)

]
15: Compute the new reduced basis for the structural part Vp as

Vs = concatenate(Vs,Z
u
k+1; εPOD)

16: Compute the new reduced basis for the �uid part Vf as

Vf = concatenate(Vf ,Z
p
k+1; εPOD)

17: end if

18: Set k = k + 1
19: end while
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4.3.5 Equivalence of the POD-Greedy algorithm for the formulation in

(us, p) and in (us, p, ϕ)

In the case where we employ the norm of the residual vector as error indicator, the POD-Greedy
algorithm for the formulation in (us, p) and in (us, p, ϕ) are equivalent.

Lemma 4.3.1 With the error indicator de�ned in Equation (4.9), the POD-Greedy al-

gorithm 14 for the formulation in (us, p) and the POD-Greedy algorithm 15 for the

formulation in (us, p, ϕ) are equivalent.

Proof : First, we recall that the Galerkin reduced order model in (us, p) based on the

reduced basis Vup =

[
Vs 0

0 Vf

]
and the Galerkin reduced order model in (us, p, ϕ) based on the

reduced basis Vupϕ =

Vs 0 0

0 Vf 0

0 0 Vf

 are equivalent (see Lemma 3.2.5). It remains now to show

that both reduced order models have the same values of error indicator. For the formulation
in (us, p), we have:

Rup(t;µ) := Fup(t;µ)−Mup(µ)VupẌup,r(t;µ)−Cup(µ)VupẊup,r(t;µ)−Kup(µ)VupXup,r(t;µ)

=

[
Fs(t;µ)

Fp(t;µ)

]
−
[
Ms(µ) 0

−ρ0(µ)KT
c Mf (µ)

] [
VsÜs,r(t;µ)

Vf P̈r(t;µ)

]
−
[
Cs(µ) 0

0 Cf (µ)

] [
VsU̇s,r(t;µ)

Vf Ṗr(t;µ)

]
−
[
Ks(µ) Kc

0 Kf

] [
VsUs,r(t;µ)

VfPr(t;µ)

]
=

[
Fs(t;µ)−Ms(µ)VsÜs,r(t;µ)−Cs(µ)VsU̇s,r(t;µ)−Ks(µ)VsUs,r(t;µ)−KcVfPr(t;µ)

Fp(t;µ) + ρ0(µ)KT
c VsÜs,r(t;µ)−Mf (µ)Vf P̈r(t;µ)−Cf (µ)Vf Ṗr(t;µ)−KfVfPr(t;µ)

]
For the formulation in (us, p, ϕ), we have:

Rupϕ(t;µ) := Fupϕ(t;µ)−Mupϕ(µ)VupϕẌupϕ,r(t;µ)−Cupϕ(µ)VupϕẊupϕ,r(t;µ)−Kupϕ(µ)VupϕXupϕ,r(t;µ)

=

Fs(t;µ)0

Fp(t;µ)

−

 Ms(µ) 0 −ρ0(µ)Kc

0 0 Mf (µ)

−ρ0(µ)KT
c Mf (µ) −ρ0(µ)Kf


VsÜs,r(t;µ)

Vf P̈r(t;µ)

Vf ϕ̈r(t;µ)


−

Cs(µ) 0 0

0 0 0

0 Cf (µ) 0


VsU̇s,r(t;µ)

Vf Ṗr(t;µ)

Vf ϕ̇r(t;µ)

−

Ks(µ) 0 0

0
1

ρ0(µ)
Mf (µ) 0

0 0 0


VsUs,r(t;µ)

VfPr(t;µ)

Vfϕr(t;µ)


=

Fs(t;µ)−Ms(µ)VsÜs,r(t;µ)−Cs(µ)VsU̇s,r(t;µ)−Ks(µ)VsUs,r(t;µ) + ρ0(µ)KcVf ϕ̈r(t;µ)

−Mf (µ)Vf ϕ̈r(t;µ)− 1
ρ0(µ)

MfVfPr(t;µ)

Fp(t;µ) + ρ0(µ)K
T
c VsÜs,r(t;µ)−Mf (µ)Vf P̈r(t;µ)−Cf (µ)Vf Ṗr(t;µ) + ρ(µ)KfVf ϕ̈r(t;µ)


We recall that ϕ̈r(t;µ) = − 1

ρ(µ)Pr(t;µ) (see the demonstration of Lemma 3.2.5). Using this
relation to eliminate the variable ϕ leads to:

Rupϕ(t;µ) =

Fs(t;µ)−Ms(µ)VsÜs,r(t;µ)−Cs(µ)VsU̇s,r(t;µ)−Ks(µ)VsUs,r(t;µ)−KcVfPr(t;µ)

0

Fp(t;µ) + ρ0(µ)K
T
c VsÜs,r(t;µ)−Mf (µ)Vf P̈r(t;µ)−Cf (µ)Vf Ṗr(t;µ)−KfVfPr(t;µ)


Hence, we have ||Rup(t;µ)|| = ||Rupϕ(t;µ)||. This implies that the value of error indicator
de�ned in Equation (4.9) is the same for both reduced order models; ∆up(µ) = ∆upϕ(µ).

�
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4.3.6 An e�cient computation procedure for the case where POD-Greedy

algorithm generates a hierarchical reduced basis

We say that POD-Greedy algorithm generates a hierarchical reduced basis if, at each iterations,
the current reduced basis contains the reduced basis of the previous section, that is Vk =[
Vk−1 vNk−1+1 · · ·vNk

]
∈ Rn×Nk , where Nk denotes the size of the reduced basis at iteration

k. In the case that the test subspaceWk is also hierarchical (which is the case for POD-Greedy
Algorithm 13, 14 and 15), we remark that the data to be computed by Algorithm 4 at the step
5 of the POD-Greedy Algorithm 10 are partially computed in the previous iteration.

At iteration k ≥ 2, the product of matrices and the basis AlVk−1, for A ∈ {M,C,K} and
l = 1, · · · , NA, are already computed in the previous iteration. Hence, we only need to compute
Alvj for j = Nk−1+1, · · · , Nk. This requires a total complexity in O(n2(Nk−Nk−1)(NM+NC+

NK)) instead of O(n2Nk(NM +NC +NK)). For the case of sparse matrices with nz non-zeros
entries, it is in O(nz(Nk −Nk−1)(NM +NC +NK)) instead of in O(nzNk(NM +NC +NK)).

In what follows, we use the superscript k for the quantity corresponding to the iteration
k of POD-Greedy Algorithm. We remark that the relation of the reduced matrices Ak

l,r and
Ak−1
l,r writes:

Ak
l,r =

[
Ak−1
l,r

[
w1 · · ·wNk−1

]T
Al

[
vNk−1+1 · · ·vNk

][
wNk−1+1 · · ·wNk

]T
Al

[
v1 · · ·vNk−1

] [
wNk−1+1 · · ·wNk

]T
Al

[
vNk−1+1 · · ·vNk

]]
(4.23)

Then, we only need to compute
[
w1 · · ·wNk−1

]T
Al

[
vNk−1+1 · · ·vNk

]
and

[
wNk−1+1 · · ·wNk

]T
AlVk,

which requires a total complexity inO(n(N2
k−N2

k−1)(NM+NC+NK)) instead of inO(nN2
k (NM+

NC +NK)). The same observation holds for the reduced vectors. We have the relation of the
reduced vectors Fkl,r and F

k−1
l,r :

Fkl,r =

[
Fk−1
l,r[

wNk−1+1 · · ·wNk

]T
Fl

]
(4.24)

which allows us to compute only
[
wNk−1+1 · · ·wNk

]T
Fl to obtain Fkl,r. The total complexity of

the computation of the reduced vectors is then in O(n(Nk −Nk−1)N) instead of O(nNkN).

We now turn to the data for error indicator. To start, we note that the matrix MFF is
independent of V. For the matrices MAlF , for A ∈ {M,C,K} and l ∈ 1, · · · , NA, we have the
relation:

Mk
AlF

=
[
Mk−1

AlF

[
AlvNk−1+1 · · ·AlvNk

]T [
F1 · · · FNF

]]
(4.25)

Then, we only need to compute (Alvi)
TFj , for i = Nk−1 + 1, · · · , Nk and j = 1, · · · , NF .

The total complexity of the computation of the matrices MAlF , for A ∈ {M,C,K} and l ∈
1, · · · , NA, is in O(n(Nk−Nk−1)NF (NM +NC +NK)) instead of O(nNkNF (NM +NC +NK)).
Finally, for the matrices MAlBk , where A ≥ B ∈ {M,C,K} (with convention M > C > K),
l = 1, · · · , NA and k = 1, · · · , NB, we have the relation:

M
k
AlBk

=

[
M

k−1
AlBk

[
Alv1 · · ·AlvNk−1

]T [
BkvNk−1+1 · · ·BkvNk

][
AlvNk−1+1 · · ·AlvNk

]T [
Bkv1 · · ·BkvNk−1

] [
AlvNk−1+1 · · ·AlvNk

]T [
BkvNk−1+1 · · ·BkvNk

]]
(4.26)

which allows us to obtain Mk
AlBk

by computing only
[
Alv1 · · ·AlvNk−1

]T [
BkvNk−1+1 · · ·BkvNk

]
and

[
AlvNk−1+1 · · ·AlvNk

]T
BkVk. The total complexity in the computation of MAlBk , where
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A ≥ B ∈ {M,C,K} (with convention M > C > K), l = 1, · · · , NA and k = 1, · · · , NB is in
O(n(N2

k −N2
k−1)(NM (NM +NC +NK) +NC(NC +NK)) instead of O(nN2

k (NM (NM +NC +

NK) +NC(NC +NK))).

To summary, Table 4.1 presents the complexity of the proposed computation procedure in
the case of a hierarchical reduced basis in compared with the general case.

Data Case of a hierarchical reduced basis Case general
AlVk O(n2(Nk −Nk−1)(NM +NC +NK)) O(n2Nk(NM +NC +NK))
Al,r O(n(N2

k −N2
k−1)(NM +NC +NK)) O(nN2

k (NM +NC +NK))
Fl,r O(n(Nk −Nk−1)NF ) O(nNkNF )
MAlF O(n(Nk −Nk−1)NF (NM +NC +NK)) O(nNkNF (NM +NC +NK))
MAlBk O(n(N2

k −N
2
k−1)(NM (NM +NC +NK) +NC(NC +NK))) O(nN2

k(NM (NM +NC +NK) +NC(NC +NK)))

Table 4.1: Complexity of the computation of the o�ine data (step 5) of POD-Algorithm 10 at
iteration k ≥ 2

Remark 4.3.7 Assuming that the POD-Greedy Algorithm 10 achieves the stopping criterion
in K iterations, the total complexity in the computation of the products of matrices and the
basis AlVk, the reduced vectors Fl,r and the matrices MAlF for the case where the reduced
basis is not hierarchical is (

∑K
k=1Nk)/NK times bigger than the case of hierarchical reduced

basis. For the reduced matrices Al,r and the matricesMAlBk , the complexity of the case where
the reduced basis is not hierarchical is (

∑K
k=1N

2
k )/N2

K times bigger than the case of hierarchical
reduced basis.

4.4 Work�ow

In this section, we condense the results from the previous sections into a structured work�ow
for performing e�cient parametrized time-domain simulation of vibro-acoustic �nite element
models by using the stabilization reduced order modelling technique presented in Chapter 3,
combined with a POD-Greedy algorithm. A schematic of this work�ow is depicted in Figure
4.1.

The �rst step is to choose the formulation and to write the corresponding left hand-side
operators M(µ), C(µ), K(µ) and the vector F(t;µ) of the right-hand side in an a�ne depen-
dent form in parameter µ ∈ D as in Equation (4.2). To obtain such decomposition, it requires
a knowledge on the de�nition of each sub-matrices of the problem (we will see in Section 5.2.4
that the Empirical Interpolation Method (EIM) [17] can be employed to avoid this constraint).

The second step consists of the construction of the reduced basis with a POD-Greedy
algorithm which depends on the choice of formulation. For the formulation in (us, φ), the
POD-Greedy Algorithm 13 is employed. For the formulation in (us, p) and in (us, p, ϕ), we use
respectively the POD-Greedy Algorithm 14 and 15 which are equivalent (see Lemma 4.3.1).
The last step of the o�ine stage is to pre-compute the data for the online stage outlined by
Algorithm 5.

Now that we have computed all the data of the o�ine stage, it becomes possible to compute
the physical output of interest predicted by reduced order model for any values of the parameter
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µ ∈ D by Algorithm 5 with a complexity relatively small compared to the �nite element model.

Choice of the formulation

Formulation in (us, p)Formulation in (us, φ) Formulation in (us, p, ϕ)

Write the operators
Mup(µ),Kup(µ),Cup(µ)

and Fup(µ) in an
a�ne dependent
form in parameter
as in Equation (4.2)

Write the operators
Muφ(µ),Kuφ(µ),Cuφ(µ)

and Fuφ(µ) in an
a�ne dependent
form in parameter
as in Equation (4.2)

Write the operators
Mupϕ(µ),Kupϕ(µ),
Cupϕ(µ) and Fupϕ(µ)
in form a�ne depen-
dence in parameter
as in Equation (4.2

Built the reduced
basis V with POD-
Greedy Algorithm 15

Built the reduced
basis V with POD-
Greedy Algorithm 14

Built the reduced
basis V with POD-
Greedy Algorithm 13

Compute the data of the
o�ine stage with Algo-
rithm 4 on the couple

(W = [Vs,−Vf ]
T
,V =

[Vs,Vf ]
T

)

Compute the data of
the o�ine stage with
Algorithm 4 on the
couple (W = V,V)

Compute the data of
the o�ine stage with
Algorithm 4 on the
couple (W = V,V)

Compute the output of interest
for any values of parameter
µ ∈ D with Algorithm 5

Offline stage

Online stage

Figure 4.1: Work�ow for the case of an a�ne dependency in parameter

4.5 Further remarks and open issues

Before presenting some numerical experiments on the e�ciency of the proposed framework, we
would like to point out the limits of our approach and some ideas to overcome these limits.
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4.5.1 On the numerical lower bound of error indicator

First of all, we recall that the computation of error indicator ∆ de�ned in Equation (4.9) using
the relation (4.10) su�ers from the round-o� errors. This implies that it has a numerical lower
bound of order of magnitude

√
εmachine ≈ 10−7 (see Remark 4.2.2), where εmachine denotes

the machine precision. Despite that, it should be noted that this lower bound is acceptable
in practice since the full model is not so accurate for the PDE model (which is known as
errors of �nite element discretization) and the PDE model is not so accurate compared to
the real physical problem (which is known as errors of modelling). In addition, the numerical
resolution of the �nite element model can also introduce another source of errors, for instance
by the linear system solver and the time-discretization scheme. As a result, a stopping criterion
εalgo in POD-Greedy Algorithm 10 is usually �xed with a value greater than 10−7 so that this
numerical lower bound has no impact in the practice.

However, it should be mentioned that three alternatives can be used to avoid this numerical
lower bound of the error indicator ∆ of Equation (4.9):

� The �rst one is not online e�cient in the sense that the computation cost in online phase
depends on the size of the full model. The idea is to compute �rst the residual vector
R(t,µ) de�ned in Equation (4.8) rather than computing directly its norm using Equation
(4.10). To reduced some computational costs in online part, we can pre-compute and save
in the o�ine stage the product of matrices Al, where A ∈ {M,C,K}, l ∈ {1, · · ·NA},
and the reduced basis V. By doing so, the complexity of the computation of ∆ in online
stage is in O(nN(NM +NC +NK)Nt), where n and N are the size of the full model and
the reduced model respectively, Nt is the number of time steps and NA is the number of
terms in the a�ne decomposition assumption of the matrix A ∈ {M,C,K} of Equation
(4.2). This procedure is mathematically equivalent to our approach but it has a numerical
lower bound due to the round-o� errors in order of εmachine, and not

√
εmachine.

� The second alternative, exploited from [31], is not only equivalent to our approach but
also is online e�cient. The key idea is to rewrite the norm of the residual of Equation
(4.10) as:

||R(t,µ)||2 =

dR∑
i=1

αRi (t;µ)||R(t,µi)||2 (4.27)

where the coe�cient (αRi (t;µ))1≤i≤dF is the solution of a linear system of dR × dR,
and (µi)1≤i≤dR could be chosen randomly. To simplify our presentation, let us con-
sider in the case of ||F(t,µ)||2 de�ned in the �rst equation of (4.10). Let us denote
by dF = NF (NF + 1)/2 and de�ne XF (t;µ) ∈ RdF as a vector with the component[
θFi (t;µ)θFj (t;µ)

]
1≤i≤j≤NF

and qF ∈ RdF as a vector with the component [cij(MFF )ij ]1≤i≤j≤NF ,

where cij = 1 if i = j and cij = 2 if i 6= j. Using the symmetry of the matrix MFF , the
norm of the right-hand side vector can also be written as:

||F(t,µ)||2 =

NF∑
i=1

θFi (t;µ)2(MFF )ii +
∑

1≤i<j≤NF

2θFi (t;µ)θFj (t;µ)(MFF )ij (4.28)

=

dF∑
i=1

qFp X
F
p (t;µ) (4.29)
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where qFp , X
F
p is the pth component of the vector qF and XF ∈ RdF respectively. By

taking dF values, possibly random, (µi)1≤i≤dF of the parameter µ ∈ D, so that the
dimension of span{XF (t;µi), 1 ≤ i ≤ dF } is equal to dF for all t ∈ [0, T ], we can write
XF (t;µ) as:

XF (t;µ) =

dF∑
i=1

αFi (t;µ)XF (t;µi) (4.30)

where the coe�cient (αFi (t;µ))1≤i≤dF is the solution of the linear system
∑dF

j=1A
F
ijα

F
j (t;µ) =

XF
i (t;µ), i = 1, · · · , NF , where AFij := XF

i (t;µj). Injecting the expression of Equa-
tion (4.30) into Equation(4.29) yields:

||F(t,µ)||2 =

dF∑
p=1

dF∑
i=1

qFp α
F
i (t;µ)XF

p (t;µi) (4.31)

=

dF∑
i=1

αFi (t;µ)

dF∑
p=1

qFp X
F
p (t;µi) (4.32)

=

dF∑
i=1

αFi (t;µ)||F(t,µi)||2 (4.33)

The idea is straightforward for the case of residual norm. With Equation (4.27), we can
compute at the online stage the norm of the residual norm with a complexity independent
of the size of the full model. Thus, it is online e�cient provided that the value of residual
norm for µ ∈ {µi, 1 ≤ i ≤ dR} are pre-computed during the o�ine stage. Since the value
of residual norm for µ ∈ {µi, 1 ≤ i ≤ dR} is evaluated in the o�ine stage, we can use the
accurate formula as proposed in the �rst alternative. Assuming that the resolution of a
linear system dR × dR is in O(d3

R), the complexity in the online stage of this approach is
in O(Ntd

3
R) where Nt is the number of time step.

� A drawback of the second alternative is on the choice of the value parameters {µi, 1 ≤
i ≤ dR}. Even though a random selection could work well in practice, it has been
observed in [32] that the matrix representing the linear system to be solved exhibits large
condition numbers especially when the chosen values of the parameters are very close.
To remedy this, the third alternative consists of exploiting the Empirical Interpolation
method (EIM) [17], see Section 5.2.1 for a short presentation of EIM, in order to obtain an
approximation of the vectorXR(t;µ) representing the residual norm (in analogue with the

vector XR(t;µ) mentioned in the second alternative) as
∑dEIMR

i=1 αRi (t;µ)XR(t;µi). This

implies that ||R(t;µ)||2 ≈
∑dEIMR

i=1 αFi (t;µ)||R(t;µi)||2, where dEIMR ≤ dR and such that
the coe�cient (αRi (t;µ))1≤i≤dEIMR

is the solution of a better conditioned linear system.

For the presentation in more detail and numerical experiments of the last two alternative
approaches in the case of parametrized stationary problem, we refer to [31, 32].

4.5.2 On the a posteriori error estimator

Instead of using the error indicator in the construction of the reduced basis by the POD-Greedy
Algorithm 10, a more rigorous way is to use the posteriori error estimator of either the state
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error or quantity of interest error, see for instance [62, 100] for the case of a parametrized
parabolic equation. For the parametrized time-domain vibro-acoustic formulated in (us, p), we
propose a posteriori error bound of the state error in energy norm as stated in the following
theorem.

Theorem 4.5.1 We denote by
[
Rs(t;µ)T Rφ(t;µ)T

]T
= Fuφ(t;µ) −

Muφ(µ)VẌr(t;µ) − Cuφ(µ)VẊr(t;µ) − Kuφ(µ)VXr(t;µ) the residual vector,

es := Us −Urom
s the error of the structural part and ef := Φf −Φrom

f the error of the

�uid part. We introduce an energy norm || · ||µ de�ned by:

||
[
vTs vTf

]T
||µ :=

√
v̇TsMs(µ)v̇s + vTsKs(µ)vs + v̇Tf M̃f (µ)v̇f + vTf K̃f (µ)vf (4.34)

where M̃f (µ) = ρ0(µ)Mf (µ) and K̃f (µ) = ρ0(µ)Kf (µ). The error between the solution

of ROM and the full model in norm || · ||µ is bounded by:

||
[
eTs (t;µ) eTf (t;µ)

]T
||µ ≤

√√√√∫ t

0
et−u

(
1

αMs(µ)
||Rs(u;µ)||2 +

1

αM̃f
(µ)
||Rφ(u;µ)||2

)
du

(4.35)
for t ≥ 0 and µ ∈ D, where αMs(µ) and αM̃f

(µ) are respectively coercivity constant of

the matrices Ms(µ) and M̃f (µ).

Proof: By de�nition of residual vector, we have:{
Msës − ρ0Kcėf +Csės +Kses = Rs

M̃f ëf + ρ0K
T
c ės + ρ0Cf ėf + K̃fef = −Rφ

(4.36)

By left multiplying with ėTs and ėTf in the �rst and the second equation of (4.36), we have:{
ėTsMsës − ρ0ė

T
s K̃cėf + ėTsCsės + ėTsKses = ėTsRs

ėTf M̃f ëf + ρ0ė
T
f K̃

T
c ės + ρ0ė

T
fCf ėf + ėTf K̃fef = −ėTfRφ

(4.37)

Combining the two equations of (4.37), we have:

ėTsMsës + ėTsKses + ėTf M̃f ëf + ėTf K̃fef + ėTsCsės + ρ0ė
T
fCf ėf︸ ︷︷ ︸

≥0

= ėTsRs − ėTfRφ (4.38)

⇒ d

dt

(
ėTsMsės + eTsKses + ėTf M̃f ėf + eTf K̃fef

)
≤ 2

(
ėTsRs − ėTfRφ

)
(4.39)

Using the Cauchy-Schwarz inequality in the right-hand side of the inequality (4.39) yields:

d

dt

(
ėTsMsės + eTsKses + ėTf M̃f ėf + eTf K̃fef

)
≤ 2 (||ės||||Rs||+ ||ėf ||||Rφ||) (4.40)
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We now recall the Young inequality (for a, b ∈ R and ρ > 0):

2|a||b| ≤ a2

ρ2
+ ρ2b2 (4.41)

which we apply twice: �rst choosing a = ||Rs||, b = ||ės|| and ρ =
√
αMs to obtain:

||ės||||Rs|| ≤
||Rs||2

αMs

+ αMs ||ės||2 (4.42)

and second, choosing a = ||Rφ||, b = ||ėf || and ρ =
√
αM̃f

to obtain:

||ėf ||||Rφ|| ≤
||Rφ||2

αM̃f

+ αM̃f
||ėf ||2 (4.43)

Injecting the inequalities (4.42)-(4.43) in (4.40), we obtain:

d

dt

(
ė
T
sMsės + eTsKses + ėTf M̃f ėf + eTf K̃fef

)
≤ αMs

||ės||2 + αM̃f
||ėf ||2 +

1

αMs

||Rs||2 +
1

αM̃f

||Rφ||2

(4.44)

By de�nition of coercivity constants αMs and αM̃f
, we have vTsMsvs ≥ αMs ||vs||2, vTf M̃fvf ≥

αM̃f
||vf ||2, for all vs ∈ Rns and vf ∈ Rnf , so that:

d

dt

(
ė
T
sMsės + eTsKses + ėTf M̃f ėf + eTf K̃fef

)
≤ ėTsMsės + ėTf M̃f ėf +

1

αMs

||Rs||2 +
1

αM̃f

||Rφ||2

(4.45)

Since the matrices Ks and K̃f are positive semi-de�nite, we have eTsKses + eTf K̃fef ≥ 0. By

adding eTsKses + eTf K̃fef in the right-hand side of the inequality (4.45), we obtain:

d

dt
E(t;µ) ≤ E(t;µ) +

1

αMs(µ)
||Rs(t;µ)||2 +

1

αM̃f
(µ)
||Rφ(t;µ)||2 (4.46)

where E(t;µ) := ėTsMsės + eTsKses + ėTf M̃f ėf + eTf K̃fef . Thus, we have:

d

du

(
e−uE(u;µ)

)
= −e−uE(u;µ) + e−u

d

du
E(u;µ) (4.47)

≤ −e−uE(u;µ) + e−uE(u;µ) (4.48)

+ e−u

(
1

αMs(µ)
||Rs(u;µ||2 +

1

αM̃f
(µ)
||Rφ(u;µ)||2

)
(4.49)

≤ e−u
(

1

αMs(µ)
||Rs(u;µ||2 +

1

αM̃f
(µ)
||Rφ(u;µ)||2

)
(4.50)

⇒ e−tE(t;µ)−E(0;µ) ≤
∫ t

0
e−u

(
1

αMs(µ)
||Rs(u;µ)||2 +

1

αM̃f
(µ)
||Rφ(u;µ)||2

)
du (4.51)

Which is the result of the theorem since we have E(0;µ) = 0.

�
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From our current numerical experiments, the aposteriori error bound proposed in the above
theorem is too pessimist even in the context of the interaction of submerged structure and shock
wave where the �nal time of interest is a few milliseconds. A sharp a posteriori error bound
for parametrized time-domain vibro-acoustic problem is still an open issue.

4.5.3 On the convergence of POD-Greedy algorithm

To give a good answer to the question: when can we expect that the error indicator in POD-

Greedy algorithm 10 decreases rapidly ?, it is worth to recall a mathematical notion of the
Kolmogorov N -width of a given manifold [79].

De�nition 4.5.1 Let V be a normed linear space, S be a subset of V and VN be a
generic N -dimensional subspace of V . The deviation of S from VN is:

E(S;VN ) = sups∈S infvN∈VN ||s− vN ||V (4.52)

The Kolmogorov N -width of S in V is de�ned by

dN (S, V ) = infVNE(S;VN ) (4.53)

By de�nition, Kolmogorov N -width of S measures how well the subset S can be ap-
proximated by a N -dimensional subspace of X. Here, the subset S is the solution manifold
Mt,µ := {X(t;µ), t ∈ [0, T ],µ ∈ D} ⊂ Rn, where X is the solution of the full model (4.1).
When the Kolmogorov N -width dN (Mt,µ,Rn) is small, it means that the manifoldMt,µ can be
well approximated by a N -dimensional subspace of Rn. However, the N -dimensional subspace
VN which is the solution of the minimization problem in the de�nition (4.53) is not attainable.
For this reason, we proposed in Section 4.3 to construct an appropriate reduced subspace by
the POD-Greedy algorithm 10.

The convergence rate of the POD-Greedy algorithm 10 depends strongly on how well
the Kolmogorov N -width of solution manifolds Mt,µ decays as a function of N . The faster
dN (Mt,µ,Rn) decreases as a function of N , the better convergence rate in POD-Greedy algo-
rithm 10 can be expected. A rigorous analysis on the convergence rate has also been investigated
in [65] for the POD-Greedy algorithm 12. For the case of stationary problem, we refer to [24]
for a rigorous analysis on the convergence rate of the Greedy algorithm.

Despite numerous numerical evidences in many parametrized elliptic problems showing that
the Kolmogorov N -width of the solution manifold may decay exponentially (see for instance
[124]), there are still very few rigorous mathematical analysis on this matter, see for instance
[39, 95]. A numerical way to access to the decay of the Kolmogorov N -width of a manifold
S ⊂ X is to compute the singular values of a �nite subset Strain ⊂ S whose cardinal is
su�ciently large for representing the manifold S. The decay of the Kolmogorov N -width of S
can be then characterized by the decay of these singular values.

We recall that the singular values of Strain = {s1, · · · , sN}, where N denotes the cardinal of
S, are the square root of the eigenvalues of the symmetric (hermitian in complex case) Gram-
mian matrix G ∈ RN×N which is de�ned by Gij = 〈si, sj〉X (see Remark 4.3.2). The more
the vector (si)1≤i≤N is correlated, which also means that the more the Grammian matrix is
ill-conditioned, the faster the singular values and the Kolmogorov N -width decay, can be ex-
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pected. Hence, the best case occurs when (si)1≤i≤N are collinear where the Grammian matrix
G has only one non zero eigenvalue. The worst case occurs when (si)1≤i≤N are orthonormal
which implies that the Grammian matrix G is the unity matrix so that there is no decay in
the eigenvalue spectrum.

In fact, most of the works in the reduced order modelling of the parametrized problem is
under the assumption of a small Kolmogorov N -width of the solution manifold. Even though
this assumption can be expected or veri�ed in many cases, for instance because of the regularity
of the solution in parameter µ and time t, this assumption may not be veri�ed in some cases
such as in the pure transport and in the pure propagation problem. For the cases of large
Kolmogorov N -width, we refer to [30] and the references therein for some propositions to
overcome this issue.

4.5.4 On the need of the local ROMs

When the parameter space D and the time interval of interest [0, T ] are too large, it implies a
widening of the Kolmogorov N -width of solution manifold so that the size of the reduced basis
required to approximate accurately the solution of full model can be too large, which yields
ine�cient reduced order model approximations. This happens when it has too many di�erent
physical regimes in the solution manifold while varying the parameter values in D and the
time in an interval of interest [0, T ]. A solution to overcome this issue is to built a suitable
partition of the parameter space D = D1∪ · · · DND , where Di∩Dj = ∅, ∀i 6= j, and construct a
local reduced order model for each subset Di, i = 1, · · · , ND. We can also use an alternative by
subdividing the time interval of interest [0, T ] into [0, T ] = [T0, T1]∪[T1, T2] · · ·∪[TNDt−1, TNDt ],
where T0 = 0, TNDt = T , and constructing a local reduced order model for each time interval
[Ti, Ti+1], i = 0, · · · , NDt − 1.

In the latter case, it should be noted that switching from the local reduced order model
for [Ti−1, Ti] to the local reduced order model for [Ti, Ti+1] must be done inexpensively dur-
ing the online stage. In what follows, we denote by Vi,i+1 ∈ Rn×Ni,i+1 and Xi,i+1

r the
reduced basis and the state corresponding to ROMTi,Ti+1 (the local reduced order model
for [Ti, Ti+1]). We remark that the values of Xt=Ti , Ẋt=Ti ∈ Rn are required in order to
determine the initial conditions for ROMTi,Ti+1 , ∀i ≥ 1. For the given Xt=Ti , Ẋt=Ti , the
initial condition of ROMTi,Ti+1 can be de�ned as the orthogonal projection of Xt=Ti and
Ẋt=Ti on the subspace spanned by Vi,i+1. Assuming that the reduced basis Vi,i+1 is or-
thonormal, the initial condition of ROMTi,Ti+1 can be de�ned by Xi,i+1

r,t=Ti
= VT

i,i+1Xt=Ti and

Ẋ
i,i+1
r,t=Ti = VT

i,i+1Ẋt=Ti . We note that the approximation of Xt=Ti and Ẋt=Ti provided by

the ROMTi−1,Ti are Xt=Ti = VT
i−1,iX

i−1,i
r,t=Ti

, Ẋt=Ti = VT
i−1,iẊ

i−1,i
r,t=Ti . Hence, the initial condition

of ROMTi,Ti+1 can be computed with a complexity independent of the size of full model as

X
i,i+1
r,t=Ti

= (VT
i,i+1V

T
i−1,i)X

i−1,i
t=Ti

and Ẋ
i,i+1
r,t=Ti = (VT

i,i+1V
T
i−1,i)Ẋ

i−1,i
t=Ti provided that the matrix

VT
i,i+1V

T
i−1,i ∈ RNi,i+1×Ni−1,i is pre-computed at the o�ine stage.

The idea of local reduced order modelling is not new. It has been already investigated in
various contexts, see for instance [8, 48, 88, 103].
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4.6 Numerical results

In this section, we propose to study numerically the e�ciency of our reduced order modelling
framework in a study case which aims to deal with the study case proposed in Section 2.5.1 by
taking into account a spring-mass system in the model. This can be viewed as a representative
study case for the industrial application considered in the next section. In this study case, the
four formulations presented in Section 2.4 of Chapter 2 are employed for the reduced order
modelling. The comparison of the e�ciency of the reduced order modelling between each
formulations will also be investigated.

Presentation of the study case

Here, we are interested in an elastic ring with a spring-mass system submitted to an underwater
explosion's shock wave. A graphical representation of this study case is given by Figure 4.2.
Here, we consider that the elastic ring has a radius R = 1 m, a thickness h = 0.01 m and
Poisson's ration ν = 0.28. The excitation is induced by an acoustic shock wave generated by an
underwater explosion of 1 000 kg of Trinitrotoluene (TNT) located at (d, 0) where d = 100 m.
The pro�le of the considered shock wave is modelled by Equation (2.12) for the pressure and
Equation (2.15) for the �uid particle's velocity using the value of constants Pc, vc, A and B

of Equation (2.10) provided by [40]. At t = 0, we assume that the shock wave arrives at the
stand-o� point (0, R + h/2) of the structure. The density and the speed of sound of the �uid
are given by ρ0 = 1 000 kg/m3, c0 = 1 500 m/s. The spring-mass system is suspended at the
point (R − h/2, 0) which represents the closest point in the interior part of the ring to the
explosion.

ex
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�

(pinc, vinc)

h

O(0, 0) (d, 0)

Explosive
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�

meq

Figure 4.2: Graphical representation of the �rst study case

The parameter vector in the problem is de�ned by µ := (meq, feq, E, ρs) where meq, feq :=
1

2π

√
keq
meq

are respectively the mass and the frequency of the spring-mass system , E and ρs are
respectively Young's modulus and the density of the elastic ring. The parameter spaces is set
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by D := [10, 500]× [100, 250]× [0.95Ē, 1.05Ē]× [0.95ρ̄s, 1.05ρ̄s] ⊂ R4 where Ē = 200 GPa and
ρ̄s = 7 850 kg/m3 are nominal value of Young's modulus and the density of the elastic ring.

Full model and quantity of interest

In order to approximate the Sommerfeld radiation condition, a truncated �uid domain in form
of a circle of radius Rbgt = 3 m is employed. On the boundary of the truncated �uid domain,
the BGT-1 boundary condition (1.35) is applied in order to approximate the outgoing sound
wave by a cylindrical wave for which we use the value of impedance ZR = 2ρ0Rbgt, ZC = ρ0c0.
In �nite element modelling, we use quadratic triangular elements both for the elastic ring
and the �uid. The largest element size in the �uid part of the mesh is 0.06 m and there are 4
elements in the thickness of the ring. The using mesh is illustrated in Figure 2.7.

In the �nite element model, we have 172 475 degrees of freedom, 91 030 of which correspond
to the structural part (one of which corresponds to the point mass in the spring-mass system)
and 81 445 of which correspond to the acoustic �uid part for the formulation in (us, φ

sca), in
(us, φ

rad) and in (us, p
rad). For the formulation in (us, p

rad, ϕrad), we have 253 920 degrees of
freedom 91 030 of which correspond to the structural part and 162 890 of which correspond
to the acoustic �uid part and the non-symmetric �nite element model (2.37) will be used in
this study. For the time-discretization of the �nite element models, Newmark scheme (with
β = 1

4(1−α)2, γ = 1/2−α where α = −0.1) is employed by using the time step ∆t = 4 ·10−5 s
which means that the shock wave needs 100 times step in order to travel the distance of 6R.
The �nal time of interest is set by T = 6R/c0 so that the total number of time steps is Nt = 100.

In this study case, the acceleration ameq of the point mass in the spring-mass system
represents the output of interest. Therefore, we de�ne the accuracy of the reduced order model
by the following quantity:

∆l(µ) :=

(∫ T
0

∣∣∣afommeq (t;µ)− arommeq (t;µ)
∣∣∣2 dt)1/2

(∫ T
0

∣∣∣afommeq (t;µ)
∣∣∣2 dt)1/2

(4.54)

where the superscripts fom and rom refer respectively to the values provided by the full model
and the reduced order model.

In�uence of the parameter εPOD in POD-Greedy Algorithm 10

First of all, we propose to study the in�uence of the parameter εPOD in POD-Greedy Algorithm
10. To do so, we run the POD-Greedy Algorithm 13 with the formulation in (us, φ

sca) by
varying the value of the εPOD ∈ {10−2, 10−3, 10−4, 10−5, 10−6}. For each value of εPOD, we use
the same training sample Dktrain which is chosen randomly at each iteration with |Dktrain| = 50.
In our study, we employ the same time-integration scheme as the full model for the reduced
order model. We plot in Figure 4.3a the evolution of the maximum value of error indicator ∆

de�ned in Equation (4.9) over the parameter values in Dktrain. Figure 4.3b plots the evolution
of the error of the output of interest ∆l de�ned in Equation (4.54) for the parameter value
µ∗k+1 which maximizes the error indicator ∆ over the parameter values in Dktrain.
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(a) On the error indicator ∆ based on the residual
norm

(b) On the error on the output of interest ∆l de�ned
in 4.54

Figure 4.3: Convergences of the POD-Greedy Algorithm 13 with the formulation in (us, φ
sca)

in the �rst study case

Figure 4.4: The dimension of the reduced basis during the iteration of the POD-Greedy
Algorithm 13 with the formulation in (us, φ

sca) in the �rst study case

In the �gure 4.3, we see that the smaller εPOD, the better convergence rate of the POD-
Greedy Algorithm we have. Except for the case of εPOD = 10−6, we see clearly that both the
error indicator ∆ and the error on the output of interest ∆l are stabilized after some iterations.
This can be explained by the fact that there is relatively only few new basis vectors be added
in the old reduced basis at the procedure of the concatenation at the step 13 of Algorithm 13.
More precisely, after 3 iterations for the case of εPOD = 10−2, after 5 iterations for the case
of εPOD ∈ {10−3, 10−4} and after 7 iterations for the case of εPOD = 10−5 as we can observe
in Figure 4.4 which plots the dimension of the reduced basis during the iteration. Figure 4.4
also indicates that the smaller εPOD, the bigger dimension of the reduced basis, which is the
reason why we have the better convergence rate.

As a �rst conclusion, too small values of εPOD may require small number of iterations (thus
small number of the full model to be solved in o�ine stage) of POD-Greedy Algorithm but
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it could lead to an ine�cient reduced order model for the online stage. On the contrary, too
large values of εPOD could lead to an inaccurate reduced order model.

Comparison of the convergence in POD-Greedy Algorithms for the di�erent for-

mulations

Now, let us compare the convergence in POD-Greedy Algorithm for the di�erent formulations.
Here, we have four formulations: in (us, φ

sca), in (us, φ
rad), in (us, p

rad) and (us, p
rad, ϕrad)

(see Section 2.4 for the presentation of each formulation). We recall that for the formulation in
(us, p

rad) and in (us, p
rad, ϕrad), we use respectively the stabilized POD-Greedy Algorithm 14

and 15. The case of formulation in (us, φ
sca) and (us, φ

rad) are both based on the same POD-
Greedy Algorithm 13. Again, we will use the same training sample Dktrain of 50 values (which
are chosen randomly at each iteration) in the POD-Greedy algorithm of each formulation.

(a) Case of εPOD = 10−4 (b) Case of εPOD = 10−6

Figure 4.5: Evolution of the error indicator ∆ based on the residual norm of the POD-
Algorithm for the di�erent formulations in the �rst study case

(a) Case of εPOD = 10−4 (b) Case of εPOD = 10−6

Figure 4.6: Evolution of the error of the output of interest ∆l de�ned in Equation (4.54) in
the POD-Greedy Algorithm for the di�erent formulations in the �rst study case
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Figure 4.5 illustrates the evolution of the error indicator ∆ de�ned in Equation (4.9) during
the iteration of the POD-Greedy Algorithm for the di�erent formulations. The evolution of
the error on the output of interest ∆l(µ

∗
k+1) de�ned in Equation (4.54) are reported in Figure

4.6.

As could be expected, we see that the same evolution of the error indicator ∆ and the
error on the output of interest ∆l for the formulation in (us, p

rad) and in (us, p
rad, ϕrad).

This results con�rm numerically the equivalence of the POD-Greedy Algorithm 14 and 15 as
mentioned in Lemma 4.3.1. We also remark in Figure 4.6 that the formulation in (us, p

rad)

and in (us, p
rad, ϕrad) has the better convergence rate for ∆l compared to the formulation in

(us, φ
sca) and in (us, φ

rad). This is because the dimension of the reduced basis in the former
cases is bigger than the latter cases (as shown in Figure 4.7) due to the requirement imposed
by the stabilization technique of Lemma 3.2.3.

Even though the formulation in (us, p
rad, ϕrad) and the formulation in (us, p

rad) are equiv-
alent, we see in Figure 4.7 that the dimension of the reduced basis for the former case is larger
than the latter case. It is because the stabilized reduced order model in (us, p

rad, ϕrad) formu-
lation proposed in Lemma 3.2.4, we have two degrees of freedom for the �uid part (p and ϕ)
instead of one as in the stabilized reduced order model in (us, p

rad) formulation proposed in
Lemma 3.2.3.

It should also be pointed out, as illustrated in Figure 4.5 and 4.6, that the formulation in
(us, φ

sca) have a slightly better convergence rate for ∆l than the formulation in (us, φ
rad) while

Figure 4.7 shows that this can be essentially due to the dimension of the reduced basis in the
case of (us, φ

rad) increases slower than in the case of (us, φ
sca).

(a) Case of εPOD = 10−4 (b) Case of εPOD = 10−6

Figure 4.7: Evolution of the dimension of the reduced basis in the POD-Greedy Algorithm for
the di�erent formulations in the �rst study case

As observed in the previous section for the formulation in (us, φ
rad), it can also be seen

in the case of the other three formulations that the smaller εPOD, the bigger dimension of
the reduced basis, which leads to a better convergence rate for the error on the output ∆l as
compensation.
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On the e�ciency of the reduced order models

We now turn to the e�ciency of the proposed reduced order model. First, let us put the focus
on the accuracy. To do so, we compute the maximum error of the output of interest de�ned
in Equation (4.54) over a test sample Dtest which consists of ntest = 30 values of parameters
chosen randomly.

Figure 4.8 shows the evolution of the accuracy of the reduced order model during the
iteration of the POD-Greedy algorithm for the di�erent formulations. Since the reduced order
model in (us, p

rad) formulation and in (us, p
rad, ϕrad) are equivalent, it is expected that they

have the same accuracy, as observed in Figure 4.8. For the formulation in (us, φ
rad) which

yields a smaller dimension of the reduced basis compared to the case of the formulation in
(us, φ

sca) (as shown in Figure 4.7), we see in Figure 4.8a that the formulation in (us, φ
sca)

displays a slightly better accuracy than the formulation in (us, φ
rad). For the formulations

in (us, p
rad) and in (us, p

rad, ϕrad), the accuracy of the reduced basis seem be limited after 4

iterations in the case of εPOD = 10−4 and after 6 iterations in the case of εPOD = 10−6. This
can be explained by the fact that the accuracy of reduced order models have already reached
a value close to εPOD.

(a) Case of εPOD = 10−4 (b) Case of εPOD = 10−6

Figure 4.8: Evolution of the accuracy of the reduced basis in the POD-Greedy Algorithm for
the di�erent formulations in the �rst study case

In order to show the performance of the reduced order modelling, we are interested in
the time speed-up which is de�ned as the ratio of the time required for the full model to the
time required for its corresponding reduced order model. Here, only the smallest reduced or-
der models satisfying the criterion: maxµ∈Dtest ∆l(µ) < 10−2, are considered. In both cases
εPOD = 10−4 and εPOD = 10−6, Figure 4.8 indicates that it corresponds to the reduced order
models obtained after 5 iterations of the POD-Greedy Algorithm 13, for the formulation in
(us, p

sca) and (us, p
rad) and after 3 iterations the POD-Greedy Algorithm 14 and 15 for the

formulations in (us, p
rad) and in (us, p

rad, ϕrad).
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Table 4.2 and 4.3 present respectively the time speed up of the considered reduced order
models of each formulation constructed by POD-Greedy algorithm with εPOD = 10−4 and
εPOD = 10−6.

Formulation
Number of dofs Time consumption

Time Speed-up
FE Model ROM FE Model ROM

(us, φ
sca) 172 475 269 123.21 s 1.63 s 75,59

(us, φ
rad) 172 475 193 131.49 s 1.47 s 89.45

(us, p
rad) 172 475 304 132.20 s 1.74 s 75.98

(us, p, ϕ
rad) 253 920 529 145.08 s 2.11 s 68,76

Table 4.2: The speed-up of the reduced order model (for εPOD = 10−4) for the di�erent
formulations in the �rst study case

Formulation
Number of dofs Time consumption

Time Speed-up
FE Model ROM FE Model ROM

(us, φ
sca) 172 475 415 123.21 s 1.91 s 64,50

(us, φ
rad) 172 475 380 131.49 s 1.82 s 72.25

(us, p
rad) 172 475 471 132.20 s 2.08 s 63,56

(us, p, ϕ
rad) 253 920 747 145.08 s 2.70 s 53,73

Table 4.3: The speed-up of the reduced order model (for εPOD = 10−6) for the di�erent
formulations in the �rst study case

To construct a reduced order model with 99% accuracy, Table 4.2 and 4.3 show that the
case of εPOD = 10−4 is more e�cient than the case of εPOD = 10−6. On the other hand, we
can see in Figure 4.8 that the case of εPOD = 10−6 could be employed to construct a reduced
order model with 99.99 % accuracy (in the sense that it veri�es: maxµ∈Dtest ∆l(µ) < 10−4)
which might be not the case of εPOD = 10−4.

Finally, we present in Figure 4.9 the time evolution of the acceleration of the point mass in
the spring-mass system given by the �nite element model and the reduced order model obtained
by POD-Greedy algorithm (with εPOD = 10−4 at k = 5) of the formulation in (us, φ

sca) for
some selected values of the parameters.
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(a) Case of µ = (320, 250, 1.03Ē, 0.98ρ̄s) (b) Case of µ = (450, 170, 0.97Ē, 1.01ρ̄s)

(c) Case of µ = (100, 140, 1.02Ē, 1.04ρ̄s) (d) Case of µ = (80, 230, 0.99Ē, 1.02ρ̄s)

Figure 4.9: The acceleration of the point mass in the spring-mass system given by the full
model and the reduced order model in (us, φ

sca) in the �rst study case

Concluding remarks

In this study case, numerical results show that the choice of value of εPOD in POD-Greedy
algorithm has an in�uence both on the accuracy and on the performance of the reduced order
model. Small values of εPOD tend to ameliorate the accuracy of the reduced order model at
the price of a degradation of its performance. Hence, in order to construct a reduced order
model with a desired accuracy ε, the parameter εPOD of the POD-Greedy algorithm should be
�xed with a value which is not too small compared to ε.

In all formulations considered in this study, we also note that the error indicator ∆ based
on the norm of the residual is very pessimist in the prediction of the error of the acceleration of
the point mass in the spring-mass system, which is considered here as the output of interest.
Therefore, for this type of problem, another alternatives for the stopping criterion in the POD-
Greedy algorithm (as mentioned in Remark 4.3.4) should be used.
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4.7 Industrial application

In this section, we aim to apply our reduced order modelling framework in the industrial
problems. More precisely, this parametric study may contribute to the technical justi�cation
of the shock resistance of the equipment subjected to the primary shock wave, in pre-project
phase of submarine design.

Presentation of the study case

We divide our study into two scenarios. In the �rst study case, we consider that the equipment
is suspended directly on the hull of a submarine. The second study case deals with the situation
where the equipment is suspended on a sti�ener in T-form attached on the hull of a submarine.

For simplifying our problem, we model the equipment as a one degree of freedom system
with equivalent mass and spring whose properties are calibrated by its �rst mode of vibration
in the direction perpendicular to the hull. By doing so, di�erent types of equipments can be
simply characterized by their equivalent point mass and sti�ness in the spring-mass system.

Here, we only consider a section of the resistance hull. The geometry of the hull is de�ned
by Ωhull := {(x, y, z) ∈ R3, Rh − eh/2 < x2 + y2 < Rh + eh/2,−hh/2 < z < hh/2} where Rh,
eh and hh denote respectively the radius, the thickness and the height of the cylindrical hull.
In the �rst study case where there is no sti�ener attached to the hull, the spring-mass system
is suspended at the point (Rh − eh/2, 0, 0). In the second study case, the domain occupied
by the sti�ener in T-form is ΩT = ΩT1 ∪ ΩT2 where ΩT1 := {(x, y, z) ∈ R3, Rh − eh/2 − l1 <
x2 + y2 < Rh − eh/2,−e1/2 < z < e1/2} is the part perpendicular to the cylindrical hull and
ΩT2 := {(x, y, z) ∈ R3, Rh− eh/2− l1− e2 < x2 + y2 < Rh− eh/2− l1,−l2/2 < z < l2/2} is the
part parallel to the cylindrical hull. Here, we denote by li and ei the length and the thickness
of Ti, with i ∈ {1, 2}. In the second case, the spring-mass system is suspended at the point
(Rh − eh/2− l1 − e2, 0, 0). The geometry of the structure part in the problem is illustrated by
Figure 4.10 for the �rst study case and by Figure 4.11 for the second study case.

The excitation is created by an underwater explosion detonated at (Rh + eh/2 + d, 0, 0),
where d denotes the distance of the charge to the the stand-o� point (Rh + eh/2, 0, 0). The
primary shock wave characterized by the Equation (2.12) and (2.15) with the value of constants
Pc, vc, A and B given by [40] (see Equation (2.10)), is used in our study.

Finite element modelling

In order to approximate the Sommerfeld radiation condition, a truncated �uid domain in form
of a cylindrical of radius Rbgt = 4Rh and of the same height as the hull is employed. On the
boundary of the truncated �uid domain, the BGT-1 boundary condition (1.35) is applied in
order to approximate the outgoing sound wave by a cylindrical wave for which we use the value
of impedance ZR = 2ρ0Rbgt, ZC = ρ0c0, where ρ0 and c0 are respectively the density and the
sound speed in the �uid. On the boundary z = −hh/2 and z = hh/2 of the cylindrical hull
Ωhull, a homogeneous Dirichlet condition is applied.

163



4.7. INDUSTRIAL APPLICATION

Figure 4.10: Geometrical representation of the structure part in the �rst study case of the in-
dustrial application: a section of cylindrical hull (in green) and a spring-mass system submitted
to an underwater explosion's primary shock wave

Figure 4.11: Geometrical representation of the structure part in the second study case of the
industrial application: a section of cylindrical hull (in green) with a sti�ness in T-form (in red
and blue) and a spring-mass system submitted to an underwater explosion's primary shock
wave
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Figure 4.12: The mesh used for �nite element modelling in the �rst study case of the industrial
application: a section of cylindrical hull (in green) and a spring-mass system submitted to an
underwater explosion's primary shock wave

Figure 4.13: The mesh used for �nite element modelling in the second study case of the
industrial application: a section of cylindrical hull (in green) with a sti�ness in T-form (in red
and blue) and a spring-mass system submitted to an underwater explosion's primary shock
wave

In numerical application, we use Rh = 4 m and eh = 0.03 m. Both the sti�ener and the hull
are supposed to be constituted by a linear elastic material with the density ρs = 7 800 kg/m3,
Young's modulus Es = 2.0 · 1011 Pa and Poisson's ratio ν = 0.3. The underwater explosion
under consideration is generated by Mtnt = 1 000 kg of Trinitrotoluene (TNT). The density
and the sound speed in the �uid are given by ρ0 = 1 000 kg/m3, c0 = 1 500 m/s.
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The formulation in (us, φ
sca) is employed for our study. In the �nite element modelling, we

employ the quadratic tetrahedral elements for the �uid part. The structural part is modelled by
the quadratic triangular shell elements [21]. The underlying mesh are presented in Figure 4.12
for the �rst study case and by Figure 4.13 for the second study case. The number of degrees
of freedom in the �uid part and the structure part of the �nite element model is summarized
in the Table 4.4.

Study case
Number of dofs in FE model

Structural part Fluid part Total
Without sti�ener 236 421 215 648 452 069

With a sti�ener in T-form 392 781 215 648 608 429

Table 4.4: Characteristics of the �nite element model in the industrial case

For the time-discretization of the �nite element model, Newmark scheme (with β = 1
4(1−

α)2, γ = 1/2−α where α = −0.2) is employed by using the time step ∆t = 2.67 · 10−4 s which
means that the shock wave needs 600 times steps in order to travel the distance of 6Rh. The
�nal time of interest is set by T = 6Rh/c0 so that the total number of time steps is Nt = 600.

Variability of parameters and output of interest

The output of interest in our problem is the acceleration ameq of the point mass in the spring-
mass system. The main parameters considered in the problem are the equivalent mass meq

and the equivalent frequency feq of the spring-mass system. The domain of variability is set
by D := [1 kg, 10 000 kg]× [1 Hz, 10 000 Hz] ⊂ R2.

Reduced order modelling

We start by generating randomly a test sample Dtest of ntest = 25 values of the parameter.
Next, we compute and save the quantity of interest, the acceleration ameq of the point mass, for
all values in the test sample Dtest using the full order model. To construct the reduced order
model, we run the POD-Greedy Algorithm 13 with the training set Dtrain of 30 values generated
randomly at each iterations, and the stopping criterion de�ned by: maxµ∈Dtest ∆l(µ) < 10−2,
where the error on the output of interest ∆l is de�ned by Equation (4.54) as the study case
of the previous section. The value of tolerance for the POD process at the step 12 and the
concatenation of the basis by Algorithm 11 at the step 13 of the POD-Greedy Algorithm 13 is
�xed by εPOD = 10−4.

The evolutions of the error indicator ∆ of Equation (4.9), of the error on the output of
interest evaluated at the value of the parameter which maximize the error indicator and of the
value of maxµ∈Dtest ∆l(µ) during the iteration of the POD-Greedy Algorithm 13 are reported
in Figure 4.14. The dimension of the corresponding reduced basis during the iteration are
shown in Figure 4.15.
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(a) Case without sti�ener (b) Case with a T-form sti�ener

Figure 4.14: Evolution of the accuracy of the reduced basis in the POD-Greedy Algorithm in
the industrial cases

Figure 4.15: The dimension of the reduced basis during the iteration of the POD-Greedy
Algorithm 13 with the formulation in (us, φ

sca) in the industrial cases

To achieve the stopping criterion, Figure 4.14a and 4.14b indicate that it only need 3
iterations for both cases. In order to show the performance of the proposed reduced order
model, we present in Table 4.5 the comparison of the number of degrees of freedom and the
time-speed up in the two study cases.

Study case
Number of dofs Time consumption

Time Speed-up
FE Model ROM FE Model ROM

Without sti�ener 452 069 271 14 mins 21 s 40
With a T-form sti�ener 608 429 257 17 mins 20 s 51

Table 4.5: The speed-up of the reduced order models in the industrial case
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Application of the reduced order models

In order to illustrate a possible industrial application of the obtained reduced order models,
whose time complexity is approximately 40 times cheaper than the full model for the �rst case
and approximately 51 times cheaper than the full model for the second case, we put the focus
here on the computation of the so called � real spectrum � of the equipment which is de�ned,
for a �xed mass meq, by a function: feq → maxt∈[0,T ] ameq(t; feq) where ameq is the acceleration
of the equipment for the mass meq. For a given equipment, this � real spectrum � curve yields
its acceleration level as a function of its suspension frequency. It may for instance help to
specify the acceleration levels that the equipment must withstand. It may also help to design
architects to �nd a frequency at which an equipment must be suspended to stay below a given
level of acceleration.

Figure 4.16 plots the � real spectrum � for di�erent values of mass of equipment. For the
�rst case where the equipment is suspended directly on the hull, the results are represented
by dashed lines. For the second case where the equipment is suspended on the sti�ener of the
hull, the results are represented by full lines. To construct a � real spectrum � curve for a �xed
mass of equipment, we divide uniformly the interval [fmin, fmax] into 200 equidistant points
in logarithm scale. Using the reduced order model requires in both case approximately 1 hour
to obtain a � real spectrum � curve which would requires approximately 2.5 days for the �rst
study case and 3 days for the second study case if the full model is employed.

Figure 4.16: The real spectrum of the equipment for di�erent values of mass of equipment in
the case with (in full lines) and without the T-form sti�ener (in dashed lines).

We can remark that the case with a sti�ener implies a higher level of acceleration on the
equipment than the case where the equipment is suspended directly on the resistance hull.
This can be explained by the fact that the presence of the sti�ener induces logically a local
sti�ening of the structure, which reduces the spectrum dip e�ect [109, 112].

At the end, we present in Figure 4.17 the time-evolution of the acceleration of equipment
for some selected values of mass and frequency of suspension provided by the reduced order
model (in dashed lines) and the full model (in full line).
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(a) Case of meq = 15 kg and feq = 100 Hz (b) Case of meq = 15 kg and feq = 500 Hz

(c) Case of meq = 100 kg and feq = 100 Hz (d) Case of meq = 100 kg and feq = 500 Hz

(e) Case of meq = 500 kg and feq = 100 Hz (f) Case of meq = 500 kg and feq = 500 Hz

(g) Case of meq = 1 000 kg and feq = 100 Hz (h) Case of meq = 1 000 kg and feq = 500 Hz

Figure 4.17: Time evolution of acceleration of equipment in the two industrial study cases
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4.8 Conclusions

In this chapter, we present a reduced order modelling framework for parametrized time-domain
vibro-acoustic problem. For the construction of the reduced basis, we derive an algorithm based
on the idea of the well-known POD-Greedy algorithm for all the formulations given in Chapter
1 and 2 by integrating the stabilization techniques proposed in Chapter 3. In order to get an
advantage in the computation procedure at the o�ine stage, we ensured that the POD-Greedy
algorithm generates a hierarchical reduced basis. We proposed here to use the norm of the
residual vector as an indicator error, for which it can be shown that the proposed reduced
order models for the formulation in (us, p) and in (us, p, ϕ) are equivalent.

A simple numerical study and two industrial applications are given in order to show the
e�ciency of the proposed reduced order modelling framework. Numerical results on the simple
case show that our error indicator based on the norm of the residual vector seems very pessimist.
As a result, we proposed to use the error of the output of interest evaluated on a test sample
as the stopping criterion of the POD-Greedy in the industrial cases. The time speed-up gain
compared to the �nite element model is one to two orders of magnitude, which opens a way
for parametric analysis as required in industrial applications.

The e�ciency of the proposed reduced order modelling framework relies on the assumption
of a�ne-dependencies in parameter. This requirement can not be veri�ed in some applications,
for instance in the case where we aim to consider the shape of the domain as the parameter
in the problem. Since the accuracy and the performance of the resulting reduced order model
are promising, we extend this framework into the case non-a�ne dependencies in parameter,
which is the objective of the next chapter.

170



Chapter 5

Reduced order modelling for

non-a�nely parametrized time-domain

vibro-acoustic FE model

In the previous chapter, we introduced an e�cient reduced order modelling framework for
parametrized time-domain vibro-acoustic problems. The framework proposed in Chapter 4
deals only with the case where all operators and the right hand side can be written as a�ne
parametric dependences. In this chapter, we aim at extending the proposed framework to the
case where this assumption is not veri�ed. For instance, it occurs when the geometry of the
�uid or the structure domain or the mass of TNT (Trinitrotoluene) in the explosion in the
interaction of submerged structure and underwater explosion's shock wave problem are varied.

In this context, the Empirical Interpolation Method (EIM) [17] is classically employed to
obtain an approximation in form of a�ne parametric dependence. This enables to recover
the e�ciency of the reduced order modelling framework based on an o�ine/online decompo-
sition. For stationary problems, the integration of Empirical Interpolation Method (EIM) in
the reduced order modelling framework for tackling non-a�ne dependencies has been already
investigated in the di�erent contexts, see for instance [61, 90, 124]. At �rst, EIM has been
widely applied on the non-a�nely parametrized function appearing in the de�nition of the
left-hand side operators and the right-hand side vector of the full order model. In the case
where the full order model results from a �nite element discretization, EIM can also be applied
directly and e�ciently on the parametrized matrix/vector by exploiting the local support of
�nite element basis, see for instance [43, 92, 100, 120].

For the case where the geometry of the domain is considered as the parameter in the prob-
lem, one of the main challenges in model order reduction is the parametrization of the varying
shape. Here, we restrict ourselves to the case where the parameter dependent domain can
be described by a �exible boundary parametrizations of a reference domain. In our work, we
choose to employ the so-called Solid Extension Mesh Moving Technique (SEMMT) which aims
at generating the mesh for a new geometry by deforming a reference mesh via the displacement
�elds obtained by an elasticity problem [115, 117] (alternatively by an analytical formulation
for the simplest case or by a Laplacian [16, 35] or bi-Laplacian [68] problem).
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The goal of this chapter is to exploit the EIM and the SEMMT for extending the re-
duced order modelling framework proposed in the previous chapter into the case of non-a�nely
parametrized time-domain vibro-acoustic problem. This chapter is structured as follows. In
the �rst section, we give a short presentation of the EIM and its potential applications in
the context of model order reduction. In this section, we will also introduce an application
of EIM for approximating the solution of the interaction of submerged structure and under-
water explosion's shock wave problem when the mass of TNT is the only parameter of the
problem. Numerical results on a simple case are also given for illustrating the accuracy of
the proposed approximations. In Section 5.3, we give a presentation of Solid Extension Mesh
Moving Technique (SEMMT). An application of EIM for reducing the computational cost of
the parametrized displacement �elds of SEMMT are also pointed out in this section. The inte-
gration of EIM and SEMMT non-a�nely parametrized time-domain vibro-acoustic problem is
described in Section 5.4. To show the e�ciency of the proposed framework, numerical results
are then presented in Section 5.5. Finally, conclusions are o�ered in Section 5.6.

5.1 Problem setting

In this chapter, we consider that the full model is described by a parametrized ordinary di�er-
ential equation of second order:

M(µ)Ẍ(t;µ) +C(µ)Ẋ(t;µ) +K(µ)X(t;µ) = F(t;µ) (5.1)

where µ ∈ D (P ≥ 1) is the parameter vector and D ⊂ RP denotes the corresponding pa-
rameter space. The matrices M, C, K ∈ Rn×n represent respectively the mass, damping
and sti�ness matrices of the problem which are supposed to be parameter dependent and
F ∈ Rn is the right-hand side vector of the problem which is time and parameter depen-
dent. As in the previous chapter, we consider that our output of interest can be written
as a linear form Sl(t;µ) = LTX(t;µ), where L is a vector in Rn, or as a quadratic form
Sq(t;µ) = XT (t;µ)QX(t;µ) where Q is a matrix of Rn×n.

In the opposition to the previous chapter, we do not restrict ourselves here to the case where
all operators of the left and the right-hand side of the problem can be expressed in a form a�ne
parametric dependence. In addition, we will also consider the case where the geometry of the
domain represents the parameter in the problem.

To make this chapter self contained, let us brie�y recall the expressions of the matrices
M,C,K of the full model (5.1) for a parametrized time domain vibro-acoustic problem. For
the case where the formulation in (us, φ) is employed, we have:

Muφ(µ) =

[
Ms(µ) 0

0 −ρ0(µ)Mf (µ)

]
,Cuφ(µ) =

[
Cs(µ) −ρ0(µ)Kc(µ)

−ρ0(µ)KT
c (µ) −ρ0(µ)Cf (µ)

]

Kuφ(µ) =

[
Ks(µ) 0

0 −ρ0(µ)Kf (µ)

]
, and Xuφ(t;µ) =

[
Us(t;µ)

Φ(t;µ)

] (5.2)

where ρ0 denotes the �uid density, the matrices Ms and Mf are known respectively as the
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mass matrices of the structural part and the �uid part, the matrices Ks and Kf are known
respectively as the sti�ness matrices of the structural part and the �uid part, the matrix Kc

represents the vibro-acoustic coupling matrix, the matrices Cs and Cf represent respectively
the damping in structural part and the �uid part and the vector Us and Φ contain respectively
the nodal values of structural displacement and velocity potential in the �uid. From their
de�nitions in (1.39), the matrices Ms and Mf are symmetric positive de�nite, the matrices
Ks and Kf are symmetric positive semi-de�nite. In our work, we assume that the matrices Cs

and Cf are positive semi-de�nite which are su�cient conditions for the stability of the �nite
element model (see Lemma 3.1.4). As a remark, the matrices Kc and Kf depend only on the
geometry of the �uid domain. Thus, they are µ-dependent only in the case when the geometry
of the �uid domain is considered as the parameter of the problem.

With the same notations, the expression of the matrices M,C,K of the full model (5.1)
for a parametrized time domain vibro-acoustic problem formulated in (us, p) is de�ned by:

Mup(µ) =

[
Ms(µ) 0

−ρ0(µ)KT
c (µ) Mf (µ)

]
,Cup(µ) =

[
Cs(µ) 0

0 Cf (µ)

]

Kup(µ) =

[
Ks(µ) Kc(µ)

0 Kf (µ)

]
and Xup(t;µ) =

[
Us(t;µ)

P(t;µ)

] (5.3)

and in (us, p, ϕ) is de�ned by:

Mupϕ(µ) =

 Ms(µ) 0 −ρ0(µ)Kc(µ)

0 0 Mf (µ)

−ρ0(µ)KT
c (µ) Mf (µ) −ρ0(µ)Kf (µ)

 ,Cupϕ(µ) =

Cs(µ) 0 0

0 0 0

0 Cf (µ) 0


Kupϕ(µ) =

Ks(µ) 0 0

0 1
ρ0(µ)Mf (µ) 0

0 0 0

 and Xupϕ(t;µ) =

Us(t;µ)

P(t;µ)

ϕ(t;µ)


(5.4)

where the vector P and ϕ contain respectively the nodal values of pressure and displacement
potential in the �uid.

We would also like to recall the expression of the right-hand side vector of the full model
(5.1) for the case of an interaction of submerged structure and shock wave problem. Assum-
ing that the shock wave is characterized by a incident pressure pinc and an incident velocity
vinc, the right-hand side of the problem formulated in (us, φ

sca) are given by Fscauφ (t;µ) =[
Fscas (t;µ)T Fscaφ (t;µ)T

]T
where the vectors Fscas (t;µ) and Fscaφ (t;µ) are de�ned by Fscas,j (t;µ) :=

−
∫

Γ(µ) p
inc(x, t;µ)[Ns

j(x) · ns(x)]dx, Fscaφ,j (t;µ) := −
∫

Γ(µ) ρ0(µ)[vinc(x, t;µ) · ns(x)]Nf
j (x)dx

with Ns and Nf denote respectively the �nite element basis of the structural and the �uid
part.

With the same notation, the right-hand side vector of the formulation in (us, φ
rad) and in

(us, p
rad) are given by Fradup (t;µ) =

[
Frads (t;µ)T 0T

]T
, where the vector Frads (t;µ) is de�ned

by Frads,j (t;µ) = −
∫

Γ(µ)(p
inc + pref )(x, t;µ)[Ns

j(x) · ns(x)]dx. Finally, the right-hand side for

the case of the formulation in (us, p
rad, ϕrad) is given by Fradupϕ(t;µ) =

[
Frads (t;µ)T 0T 0T

]T
.
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We recall that the re�ected pressure pref has to be pre-computed (see Section 2.4.5) in order
to employ these three formulations. Since the re�ected pressure pref depends on the incident
velocity vinc and the properties of the �uid, it becomes µ-dependent when the geometry of
�uid domain represents the parameter of the problem and when the incident velocity vinc is µ-
dependent, for instance in the case where the shock wave comes from an underwater explosion
with a varying mass of explosive material.

5.2 Empirical Interpolation Method (EIM) and its applications

As exposed in the previous chapter, the a�ne parametric dependence assumption is a key
for the o�ine-online e�ciency of the procedure and in construction of the reduced basis by a
POD-Greedy algorithm. In the case where this assumption is not valid, we can rely on the
Empirical Interpolation Method (EIM) [17] to recover this assumption approximately. The aim
of this section is to recall the EIM and give an overview of its applications in the context of
the reduced order modelling.

5.2.1 A short presentation of EIM

To begin, we give a short presentation of the original version of EIM proposed in [17]. The aim
of EIM is to seek an approximation of any function g(x,µ) : Ω × D → R depending on both
the spatial variable x and the parameter vector µ in a non a�ne way, in a separated form with
respect to x and µ:

g(x,µ) ≈ gEIMM (x,µ) :=

M∑
i=1

βi(µ)qi(x) (5.5)

by choosing on a greedy manner the nested sets interpolation points {xg1, · · · ,x
g
M} ⊂ Ω (also

called magic points) and the nested set of basis functions {q1, · · · , qM}. Being an interpolation
method, the coe�cients (βi(µ))1≤i≤M are determined by solving the following linear system:

M∑
j=1

qj(x
g
i )βj(µ) = g(xgi ,µ), ∀i = 1, · · · ,M (5.6)

Let us denote by DEIMtrain ⊂ D a �nite training set, εEIM a given tolerance, Mmax the maximum
number of terms and µg1 an initial parameter value which can be determined randomly or
by using knowledge of the problem at hand, the EIM procedure for �nding the magic points
(xgi )1≤i≤M and the basis functions (qi)1≤i≤M is as follows. The �rst interpolation point xg1 and
the �rst basis function q1 are de�ned by:

x
g
1 = argmaxx∈Ω|g(x,µg1)|, q1(x) =

g(x,µg1)

g(xg1,µ
g
1)

(5.7)

Then, for 2 ≤M ≤Mmax, we set µ
g
M as the solution of following minimization problem:

µgM = argmaxµ∈DEIMtrain
||g(·,µ)− gEIMM−1(·,µ)||L∞(Ω) (5.8)

where gEIMM−1(x,µ) de�ned by gEIMM−1(x,µ) =
∑M−1

j=1 βM−1
j qj(x) with (βM−1

j (µ))1≤j≤M−1 being

the solution of linear system
∑M−1

j=1 βM−1
j (µ)qj(x

g
i ) = g(xgi ,µ), i = 1, · · · ,M − 1. We compute
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then the residual for this new value of parameter rM (x) := g(x,µgM ) − gEIMM−1(·,µgM ) and set
the next interpolation points and the basis functions qM as

x
g
M = argmaxx∈Ω|rM (x)|, qM (x) =

rM (x)

rM (xgM )
(5.9)

The procedure is iterated until the stopping criterion is veri�ed or the maximal number of
iteration is reached. The summary of EIM [17] procedure is outlined in Algorithm 16.

Algorithm 16 Greedy EIM algorithm [17]
Input: A function g : Ω×D →, a �xed tolerance εEIM , a maximal number of terms Mmax,
a �nite training set DEIMtrain ⊂ D and a selection of µg1 ∈ DEIMtrain

Output: The interpolations points {xg1, · · · ,x
g
M} ⊂ Ω and the basis functions

{q1, · · · , qM}
1: Set xg1 = argmaxx∈Ω|g(x,µg1)|, and q1(x) =

g(x,µg1)

g(xg1,µ
g
1)

2: Set M = 2
3: while (M ≤Mmax) do
4: Compute for all µ ∈ DEIMtrain , gEIMM−1(·,µ) :=

∑M−1
j=1 βM−1

j (µ)qj(x) where

(βM−1
j (µ))1≤j≤M−1 is the solution of linear system

M−1∑
j=1

βM−1
j (µ)qj(x

g
i ) = g(xgi ,µ), i = 1, · · · ,M − 1 (5.10)

5: Set µgM = argmaxµ∈DEIMtrain
||g(·,µ)− gEIMM−1(·,µ)||L∞(Ω)

6: if (||g(·,µgM )− gEIMM−1(·,µgM )||L∞(Ω) ≤ εEIM ||g(·,µgM )||L∞(Ω)) then
7: break;

8: else

9: Compute the residual rM (x) = g(x,µgM )− gEIMM−1(·,µgM )

10: Set xgM = argmaxx∈Ω|rM (x)| and qM (x) = rM (x)
rM (xgM )

11: end if

12: Set M = M + 1
13: end while

By the construction of the interpolation points {xg1, · · · ,x
g
M} and the basis function (qi)1≤i≤M ,

the matrix BM−1 ∈ R(M−1)×(M−1) (de�ned by BM−1
ij = qj(x

g
i )) representing the linear system

of the step 4 of Algorithm 16 is a lower triangular matrix with unity diagonal. Hence, the pro-
cedure of EIM is well de�ned. We note that span{q1, · · · , qM} = span{g(·,µg1), · · · , g(·,µgM )},
so the approximation gEIMM of g in Equation (5.5) can be written in a equivalent way as:

gEIMM (x,µ) :=
M∑
i=1

αi(µ)g(x,µgi ) (5.11)

where the coe�cient (αi(µ))1≤i≤M is the solution of the linear system:

M∑
j=1

g(xgj ,µ
g
i )αj(µ) = g(xgi ,µ), ∀i = 1, · · · ,M (5.12)
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It is worth mentioning a conservation property of the approximation g by gEIMM as stated
in the following lemma.

Lemma 5.2.1 [66] Let L a linear form over the functional space span{g(·,µ),µ ∈ D}
and let L(g(·,µ)) = 0,∀µ ∈ D, then we also have

L(gEIMM (·,µ)) = 0,∀µ ∈ D (5.13)

Proof: Combining the linearity of L and the de�nition of gEIMM in Equation (5.11), we have
for any µ ∈ D : L(gEIMM (·,µ)) =

∑M
i=1 αi(µ)L(g(x,µgi )) = 0.

�

A particular case of Lemma 5.2.1 is that if x∗ ∈ Ω is a zero/root of the function g(·,µ),
for any µ ∈ D, then x∗ is also zero/root of its approximation by EIM gEIMM (·,µ). An other
particular case is the case of zero-mean functions: if

∫
Ω g(x,µ)dx = 0 for any µ ∈ D, then its

approximation by EIM is also a zero-mean function:
∫

Ω g
EIM
M (x,µ)dx = 0, ∀µ ∈ D.

Finally, it should be noted that in the case where the dimension of the space Wg =

span{g(·,µ),µ ∈ D} is equal to M the number of terms used in EIM approximation, then
we have g = gEIMM .

5.2.2 Application of EIM to obtain an approximation in form a�ne para-

metric dependence

One of the most powerful application of EIM is that it allows to approximate any operator
A(µ) which is nona�ne parametric dependence into an a�ne parametric dependence form:

A(µ) ≈ AEIM
M (µ) :=

M∑
i=1

θAi (µ)Ai (5.14)

where the matrices Ai are µ-independent. This allows us to recover the e�cient o�ine-online
computation procedure in the context of the reduced order modelling. As an example, assuming
that the operator A(µ) arises from the �nite element discretization of the bilinear form:

a(u,v;µ) :=

∫
Ω

[g(x,µ)u(x)v(x) + ∇u(x) ·∇v(x)] dx (5.15)

then replacing the function g by its approximation gEIMM of Equation (5.11) by the EIM, leads
to:

A(µ) ≈
M∑
i=1

αgi (µ)Ai +A0 (5.16)

where the matrices Ai correspond to the bilinear form ai(u,v) :=
∫

Ω [g(x,µgi )u(x)v(x)] dx,
for i = 1, · · · ,M and the matrix A0 corresponds to the bilinear form a0(u,v) :=

∫
Ω ∇u(x) ·

∇v(x)dx which are µ-independent.
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5.2.3 Application of EIM for an nonintrusive procedure

Another potential application of EIM is in the construction of an nonintrusive procedure [33]
in the sense that it should not require to construct the matrices Ai in the a�ne parametric
dependence assumption:

A(µ) =

NA∑
i=1

θi(µ)Ai (5.17)

but only the matrices A(µ) for some selected values of the parameter {µ∗1, · · · ,µ∗M}, that is:

A(µ) ≈
M∑
m=1

αm(µ)A(µ∗m) (5.18)

The construction of a non-intrusive procedure is motivated by the fact that in the most
general cases it requires to modify the assembling routines in the computational code to obtain
the matrices Ai, for i = 1, · · · , NA, of Equation (5.17). The main idea to obtain such a non-
intrusive form of Equation (5.18) is to apply the EIM to approximate the function θi(µ) seen
as a function depending on two variables i ∈ Ω := {1, · · · , NA} and µ ∈ D:

θ(i,µ) ≈ θEIMM (i,µ) =
M∑
m=1

αm(µ)θi(µ
θ
m) (5.19)

Then, injecting the approximation (5.19) into the Equation (5.17) yields:

A(µ) ≈
NA∑
i=1

[
M∑
m=1

αm(µ)θi(µ
θ
m)

]
Ai =

M∑
m=1

αm(µ)

NA∑
i=1

θi(µ
θ
m)Ai =

M∑
m=1

αm(µ)A(µθm) (5.20)

It should be remarked that an EIM algorithm applied on the function θi(µ) can stop before
M = NA. It occurs when the dimension of span{θ(·,µ),µ ∈ D} is less than M . In the case
where θ(i,µ) = θEIMM (i,µ) (when M = NA or when the dimension of span{θ(·,µ),µ ∈ D} is
equal to the dimension of span{θEIMM (·,µ),µ ∈ D}), there is no loss of accuracy to obtain a
non-intrusive procedure. The proposed technique can also be extended to the case where the
operator A(µ) depends on µ in a non-a�ne way by seeking at �rst its approximation in form
of a�ne dependence in µ as presented in Section 5.2.2.

5.2.4 Application of EIM Algorithm with a black box way in context of

�nite element model

In order to apply the EIM to obtain an approximation in an a�ne parametric dependence form
with a non-intrusive way as presented in Section 5.2.3, we remark that it requires the knowledge
on the de�nition of the bilinear form of which the operator A arises from the �nite element
discretization. In this section, we propose to exploit the idea of EIM to develop an algorithm for
�nding an approximation of any matrix A(µ) : µ ∈ D → Rn×n or vector F(µ) : µ ∈ D → Rn

resulting from a �nite element discretization of a parametrized bilinear or linear form and being
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non-a�ne dependence in µ into an a�ne parametric dependence form:

A(µ) ≈ AEIM (µ) :=

NEIM
A∑
i=1

θAi (µ)A(µAi ), F(µ) ≈ FEIM (µ) :=

NEIM
F∑
i=1

θFi (µ)F(µFi ) (5.21)

purely in algebraic way without any knowledge on the de�nition of the matrix A and the
vector F. In our work, the matrix A refers, as a particular case, to the mass matrix M or the
damping matrix C or the sti�ness matrix K of a �nite element vibro-acoustic model, whose
de�nitions are given by Equation (5.2) for the formulation in (us, φ), by Equation (5.3) for the
formulation in (us, p) and by Equation (5.4) for the formulation in (us, p, ϕ). The vector F
refers to the right-hand side vector of the interaction of submerged structure and shock wave
problem whose de�nition is given in Section 5.1.

The key idea is not to apply EIM algorithm on the continuous function depending on two
parameters g : (x,µ) ∈ Ω × D, underlying in the de�nition of the bilinear form of the matrix
A or the linear form of the vector F, but to apply directly on the matrix A or the vector F.
To begin, we consider the case of the vector F(µ). The �rst step consists in the construction
of the vectors F for all values of the parameter in a �nite training set Dtrain. By applying EIM
algorithm 16 on the function f : (i,µ) ∈ {1, · · · , n} × Dtrain → R de�ned by f(i,µ) = Fi(µ)

where Fi is ith component of the vector F, we obtain then a set of magical indices (iFl )1≤l≤NEIM
F

and a set of the selected values of parameter (µFl )1≤l≤NEIM
F

such that:

F(µ) ≈
NEIM
F∑
l=1

θFl (µ)F(µFl ), ∀µ ∈ D (5.22)

where the coe�cients (θFl (µ))1≤l≤NEIM
F

are determined by Lagrange interpolation at magical

indices (iFl )1≤l≤NEIM
F

:

NEIM
F∑
l=1

θFl (µ)FiFl
(µFl ) = FiFl

(µ),∀l = 1, · · · , NEIM
F (5.23)

In order to obtain the value of the coe�cients (θFl (µ))1≤l≤NEIM
F

for any new value of
µ ∈ D by Equation (5.23), it should not require to construct the whole vector F(µ) but
only to access to its values at the magical indices: {iFl , 1 ≤ l ≤ NEIM

F } ⊂ {1, · · · , n} chosen
by EIM. In the context of the �nite element model, these values can be obtained with an
complexity independent of n thanks to the property of the local support of the �nite element
basis functions.

The strategy [100] consists of computing and assembling only the elementary terms which
have a non-zero contribution on the values of the vector F at the magical indices. To do so, it
su�ces to identify such a group of elements in the mesh and to restrict the loop of the vector
assembly over those elements. From the data structures de�ning the mesh and the procedure
of assembling, we can identify a set of the nodes {nFl , 1 ≤ l ≤ NEIM

F }, whose degree of freedom
corresponds to magical indices (iFl )1≤l≤NEIM

F
. In the case of vectorial problem where each

node can have more than one degree of freedom, it is possible that the total number of these
nodes is less than NEIM

F . The group of elements, namely reduced elements, which provide a
non-zero contribution to the value of the vector F(µ) at the magical indices (iFl )1≤l≤NEIM

F
is
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then de�ned as the union of the element in the mesh which contains at least one node of the
set {nFl , 1 ≤ l ≤ NEIM

F }. The summary of the methodology for the case of vector is outlined
by Algorithm 17 and 18.

Algorithm 17 Greedy EIM algorithm in a black box way for the case of vectors
Input: A �xed tolerance εEIM , a maximal number of terms Mmax, [F(µ1), · · · ,F(µntrain)] ∈
Rn×ntrain and a selection of µF1 ∈ {µ1, · · · ,µntrain}
Output: The magical indices {iFl , 1 ≤ l ≤ NEIM

F } ⊂ {1, · · · , n} and the chosen value
parameters {µFl , 1 ≤ l ≤ NEIM

F } ⊂ Dtrain := {µ1, · · · ,µntrain}
1: De�ne the function f : (i,µ) ∈ {1, · · · , n} × Dtrain → R as

f(i,µ) = Fi(µ) (5.24)

where Fi is ith component of the vector F
2: Run the EIM Algorithm 16 with the function f seen as a function depending on two

variables i ∈ Ω := {1, · · · , n} and µ ∈ Dtrain

Algorithm 18 Construction of the reduced elements in the mesh which have a non-zero
contribution on the values of the vector F at the magical indices

Input: The magical indices (iFl )1≤l≤NEIM
F

provided by EIM algorithm 17

Output: A group of elements eF which have a non-zero contribution on the values of the
vector F at the magical indices (iFl )1≤l≤NEIM

F

1: Identify the set of nodes {nFl , 1 ≤ l ≤ NEIM
F } whose degree of freedom correspond to

magical indices {iFl , 1 ≤ l ≤ NEIM
F }

2: Set eF as the union of the element in the mesh which contains at least one node of the set
{nFl , 1 ≤ l ≤ NEIM

F }

The same approach can also be applied to the case of the matrix A by vectorizing at �rst
the matrixA to obtain its representation vec(A) as a vector of Rn2

, for instance by stacking the
columns of A (see Remark 5.2.1 for some optimisation). By running the Algorithm 17, we ob-
tain the set of chosen values of parameter {µAl , 1 ≤ l ≤ NEIM

A } ⊂ Dtrain := {µ1, · · · ,µntrain}
and the set of magical indices {iAl , 1 ≤ l ≤ NEIM

A } ⊂ {1, · · · , n2}. To construct the group
element which have a non-zero contribution on the value of vec(A) at the magical indices
(iAl )1≤l≤NEIM

A
, we seek the set of pair of row-columns index {(jl, kl), 1 ≤ l ≤ NEIM

A } ⊂
{1, · · · , n} × {1, · · · , n} corresponding to the magical indices (iAl )1≤l≤NEIM

A
in vector format.

We identify then a group of nodes: {nAl , 1 ≤ l ≤ 2NEIM
A } whose degree of freedom corresponds

to the set of indices {jl, 1 ≤ l ≤ NEIM
A } ∪ {kl, 1 ≤ l ≤ NEIM

A }. Note that if the index iAl of
vec(A) corresponds to a diagonal term of the matrix A, it corresponds to only one node in the
mesh. On the contrary, it can correspond to two nodes in the mesh. The group of elements, so
called reduced elements, which provide a non-zero contribution to the value of vec(F)(µ) at the
magical indices (iAl )1≤l≤NEIM

A
is then de�ned as the union of the element in the mesh which

contains at least one node of the set {nAl , 1 ≤ l ≤ 2NEIM
A }. The summary of the methodology

for the case of matrix is outlined by Algorithm 17 and 18.
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Algorithm 19 Greedy EIM algorithm in a black box way for the case of matrices
Input: A �xed tolerance εEIM , a maximal number of termsMmax, [A(µ1), · · · ,A(µntrain)] ∈
Rn×n and a selection of µA1 ∈ {µ1, · · · ,µntrain}
Output: The magical indices {iAl , 1 ≤ l ≤ NEIM

A } ⊂ {1, · · · , n2} and the chosen value
parameters {µAl , 1 ≤ l ≤ NEIM

A } ⊂ Dtrain := {µ1, · · · ,µntrain}
1: De�ne an application for transforming the matrix A(µ) ∈ Rn×n to a vector format

vec(A)(µ) ∈ Rn2

2: De�ne the function f : (i,µ) ∈ {1, · · · , n2} × Dtrain → R as

f(i,µ) = vect(A)i(µ) (5.25)

where vect(A)i is ith component of the vector vec(A) ∈ Rn2

3: Run the EIM Algorithm 16 with the function f seen as a function depending on two
variables i ∈ Ω := {1, · · · , n2} and µ ∈ Dtrain

Algorithm 20 Construction of the reduced elements in the mesh which have a non-zero
contribution on the value of the vector vec(A) at the magical indices

Input: The magical indices (iAl )1≤l≤NEIM
A

provided by EIM algorithm 19

Output: A group of elements eA which have a non-zero contribution on the value of the
vector vec(A) at the magical indices (iAl )1≤l≤NEIM

A

1: Identify the set of pair of row-columns index {(jl, kl), 1 ≤ l ≤ NEIM
A } ⊂ {1, · · · , n} ×

{1, · · · , n} corresponding to the magical indices (iAl )1≤1≤NEIM
A

in vector format

2: Identify the set of node {nAl , 1 ≤ l ≤ 2NEIM
A } whose degree of freedom correspond to the

set of indices {jl, 1 ≤ l ≤ NEIM
A } ∪ {kl, 1 ≤ l ≤ NEIM

A }
3: Set eA as the union of the element in the mesh which contains at least one node of the set
{nAl , 1 ≤ l ≤ 2NEIM

A }

An illustration of the procedure of identi�cation of the reduced elements for the case of
matrix, resulting from a P 1 �nite element discretization, is given by Figure 5.1.

Figure 5.1: On the left: red boxes represent the magical indices chosen by EIM. In the middle:
red boxes represent to the pairs of row-column index in the matrix format corresponding to
the chosen magical indices. On the right, the obtained reduced elements in the mesh. (source
from [100])
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Remark 5.2.1 In the case where the matrices A(µ) have the same sparse structure for any
µ ∈ D, the procedure of the matrix case can be implemented by exploiting its sparse format so
that the actual dimension of the vector vec(A) is nz rather than n, where nz is the number of
non-zero entries in the matrix A. Furthermore, if the matrices A(µ) are all symmetric then the
dimension of the vector vec(A) is the number of non-zero entries in the superior (or inferior)
block.

Remark 5.2.2 We note that the property of symmetry is automatically inherited in the ap-
proximation by the EIM. In the opposition, this might be not the case for the de�nite def-
initeness. On this matter, it is worth to recall a general result of perturbation of theory of
eigenvalue problem, proposed by Bauer-Fike theorem (see for instance in [60]), which states
that: the deviation between the singular values σEIMi of the approximation matrix AEIM and
the singular values σi of the original matrix A is bounded by:

|σEIMi − σi| ≤ ||A−AEIM ||2 (5.26)

where || · ||2 denotes the Frobenius norm. As a result, it should be su�cient by increasing
the number of terms NEIM

A in the EIM's approximation (5.21) to recover this de�niteness
properties.

Remark 5.2.3 For the case where the matrices A(µ) are positive semi-de�niteness, for all
µ ∈ D, with the kernel Ker(A(µ)) := {x ∈ Rn|A(µ)x = 0} is µ-independent, as a particular
case of Lemma 5.2.1, we can show that that the kernel of the matrix A(µ) is a subset of the
kernel of its EIM approximation AEIM (µ). This result implies that in the case where the
matrix A represents the structural sti�ness matrix Ks, its EIM approximation KEIM

s has the
same rigid body modes as the original matrix Ks and it ensures that this mode corresponds
well to the eigenvalue λ = 0, not λ ≈ ±εEIM which would destroy the positive semi-de�niteness
property of AEIM (µ). The same conclusion can also be valid for the case of the �uid sti�ness
matrix Kf where its kernel represents the pressure constant mode. As a conclusion, for the
case the matrices A(µ) are positive semi-de�niteness with a µ-independent kernel, we believe
that it could be recover the positive semi-de�niteness property for AEIM (µ) by increasing the
number of terms NEIM

A in the EIM's approximation (5.21).

Remark 5.2.4 An alternative way to obtain an approximation in a�ne parametric depen-
dence form of any nona�ne parametric dependence vector or matrix in a purely algebraic
and black box way is to construct the basis by applying the POD on the snapshot matrix
S = [F(µ1), · · · ,F(µntrain)] ∈ Rn×ntrain with respect to a given tolerance instead of choos-
ing with a greedy procedure the basis as: F(µF1 ), · · · ,F(µF

NEIM
F

), see for instance [37, 100].
The interpolation points are then de�ned using a greedy procedure from the resulting basis
F1, · · · ,FN . The complexity of this alternative is dominated by the computation of the basis
by POD, thus in O(nn2

train) while the complexity of our approach is only in O(nntrainN
EIM
F ).
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5.2.5 Application of EIM to approximate the solution of the linear problem

with non-a�ne parameter dependent right-hand side

EIM can also be employed to approximate the solution of the linear problem with non-a�ne
parameter dependent right-hand side:

MẌ(t;µ) +CẊ(t;µ) +KX(t;µ) = F(t;µ) (5.27)

over the parameter value range µ ∈ D. Here, we consider that the left hand-side operator
of the problem is µ-independent. Assuming that the right-hand side of the problem (5.27) is
de�ned by:

[F(t;µ)]j =

∫
Ω
g(x, t;µ)vj(x)dx, j = 1, · · · , n (5.28)

which is for instance the case of a �nite element discretization of a linear form, then applying the
EIM to obtain an approximation for g as: g(x, t;µ) ≈ gEIMM (x, t;µ) :=

∑M
i=1 αi(µ)g(x, t;µgi )

leads to F(t;µ) ≈
∑M

i=1 αi(µ)F(t;µgi ). By linearity, the solution of the problem (5.27) can
then be approximated by:

X(t;µ) ≈
M∑
i=1

αi(µ)X(t;µgi ),∀µ ∈ D (5.29)

Remark 5.2.5 It can be used with the same approach for the parametrized stationary prob-
lem:

AX(µ) = F(µ) (5.30)

where the matrix A is µ-independent and the right-hand side vector F depends on the parame-
ter µ in a non-a�ne way, for instance via a relation [F(µ)]j =

∫
Ω g(x,µ)vj(x)dx,j ∈ {1, · · · , n}.

The approximation of the solution of Equation (5.30) can be obtained as follows:

X(µ) ≈
M∑
i=1

αi(µ)X(µgi ) (5.31)

where (αi(µ))1≤i≤M and (µ)gi are de�ned in the de�nition of the approximation of g by gEIMM

of Equation (5.11).

Remark 5.2.6 The computation of the approximation of X(t;µ) by the relation (5.29) for
any new values of parameter µ ∈ D has a complexity in O(nMNt) where Nt is the number of
time step and n is the number of degrees of freedom in the problem. It is worth to mention
that in the case where we are only interested in a linear physical output of interest, Sl(t;µ) :=

LTX(t;µ) with L is a vector of Rn, we can obtain an approximation of Sl(t;µ) for any new
value of the parameter µ ∈ D with a complexity independent of n via the relation Sl(t;µ) ≈∑M

i=1 αi(µ)Sl(t;µ
g
i ) provided that [Sl(t;µ

g
i )]1≤i≤M are pre-computed in an o�ine stage. The

same holds for the case of a quadratic output Sq(t;µ) = XT (t;µ)QX(t;µ), where Q is a
matrix in Rn×n. An approximation of Sq(t;µ) can be obtained with a complexity independent
of n via the relation Sq(t;µ) ≈

∑M
i=1

∑M
j=1 αi(µ)αj(µ)Sijq (t) provided that the quantities[

Sijq (t) := XT (t;µgj )QX(t;µgi )
]

1≤i,j≤M
are pre-computed in an o�ine stage.
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Application in the interaction of submerged structure and underwater explosion

shock wave problem

In what follows, we illustrate this application of EIM in the context of the interaction structure
and underwater explosion's shock wave problem when the mass of explosion in Trinitrotoluene
(TNT) represents the only parameter in the problem. We only consider here the case of the
formulation in (us, φ

sca). For the other formulations presented in Section 2.4, the application
of the approach is straightforward. To begin, we recall that the loading induced by a shock
wave in the �nite element model formulated in (us, φ

sca) reads (see Section 2.4.1):

Fscauφ (t;µ) =

[
Fscas (t;µ)

Fscaφ (t;µ)

]
(5.32)

where the vectors Fscas (t;µ) and Fscaφ (t;µ) are de�ned by Fscas,j (t;µ) := −
∫

Γ p
inc(x, t;µ)[Ns

j(x)·
ns(x)]dx and Fscaφ,j (t;µ) := −

∫
Γ ρ0[vinc(x, t;µ) · ns(x)]Nf

j (x)dx with Ns and Nf denote re-
spectively the �nite element basis of the structural and the �uid part. For the case of TNT
(Trinitrotoluene) explosive material, we recall that a good approximation of the incident pres-
sure pinc and the incident velocity vinc (whose the radial component vincr is non-zero) can be
expressed analytically as follows (see Section 2.2):

pinc(r, t) = Pc

[ac
r

]1+A
F
([ac

r

]B τ

Tc

)
H(τ) (5.33)

vincr (r, t) =
p(r, t)

ρ0c0
+
PcTc
ρ0r

[ac
r

]1+A−B
(1 +A−B)G

([ac
r

]B τ

Tc

)
H(τ) +

p(r, t)

ρ0

τ

r
B (5.34)

where the constant Pc, vc, A and B are given by the relation (2.9) according to [106] and the
relation (2.10) according to [40]. H is Heaviside function, τ = t − (r − Rl)/c0 and we denote
by Rl = 20ac with ac is the charge radius, Tc = ac/vc and r > Rl denotes the distance from
the center of charge. The function F is de�ned by F(t) = 0.8251e−1.338t+0.1749e−0.1805t. The
function G is de�ned by G(t) = 1.5856− 0.6167e−1.338t − 0.9690e−0.1805t. For a given value of
mass Mtnt (which represents here the parameter of problem), the radius of charge ac can be
approximated by ac ≈ ( Mtnt

4πρtnt
)1/3 where ρtnt is the mass density of TNT which is approximately

given by ρtnt ≈ 1.52 · 103 kg/m3.

Here, we denote by dmin and dmax the distance of the center of charge to the closest (the
stand-o� point) and the farthest point of the structure Ωs. Without loss of generality, we
assume that the front of the shock wave arrived at the stand-o� point at t = 0 so that the
retarded time τ in Equation (5.33) and (5.34) is de�ned by τ = t − (r − dmin)/c0. With T

denotes the �nal time of interest, the �rst step of the methodology consist of applying the
EIM on the function pinc(x;µ) and vincr (x;µ), where x := (r, t) ∈ [dmin, dmax] × [0, T ] and
µ = Mtnt ∈ D, to obtain an approximation in form:

pinc(r, t;µ) ≈ pincNEIM
p

(r, t;µ) :=

NEIM
p∑
i=1

αpi (µ)pinc(r, t;µpi ) (5.35)

vincr (r, t;µ) ≈ vincr,NEIM
v

(r, t;µ) :=

NEIM
v∑
i=1

αvi (µ)vincr (r, t;µvi ) (5.36)
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Then, injecting the approximation of pinc and vincr given by the relation (5.35)-(5.36) in the
de�nition of Fscas and Fscaφ implies that the right-hand side vector of the �nite element model
formulated in (us, φ

sca) couple of Equation (5.32) can be approximated by:

Fscauφ (t;µ) ≈
NEIM
p∑
i=1

αpi (µ)

[
Fscas (t;µpi )

0

]
+

NEIM
v∑
i=1

αvi (µ)

[
0

Fscaφ (t;µvi )

]
(5.37)

As a result, by computing in the o�ine stage Xp
uφ(t;µpi ) the solution of the problem (2.23) with

the right-hand side vector
[
Fscas (t;µpi )

T 0T
]T

for i = 1, · · · , NEIM
p andXv

uφ(t;µvi ) the solution

of the problem (2.23) with the right-hand side vector
[
0T Fscaφ (t;µvi )

T
]T

for i = 1, · · · , NEIM
v ,

we can obtain by linearity of the problem an approximation of the solution, for any new values
of parameter µ = Mtnt ∈ D at the online stage, with the following relation:

Xsca
uφ (t;µ) ≈

NEIM
p∑
i=1

αpi (µ)Xp
uφ(t;µpi ) +

NEIM
v∑
i=1

αvi (µ)Xv
uφ(t;µvi ) (5.38)

Remark 5.2.7 It should be noted that in the de�nition of Fscas the incident pressure pinc(x, t, µ)

is de�ned for x ∈ Γ by: pinc(x, t, µ) = pinc(r, t, µ), where r := ||x − xexp|| with xexp de-
notes the position of the explosion. Hence, when the position of explosion xexp is �xed, an
accurate approximation of pinc(r, t, µ) in form pinc(r, t, µ) ≈

∑M
i=1 αi(µ)pinc(r, t;µi) implies

that we would also have an accurate approximation for pinc(x, t, µ) in form pinc(x, t, µ) ≈∑M
i=1 αi(µ)pinc(x, t;µi) so that the right-hand side Fscas can be approximated accurately by

Fscas (t;µ) ≈
∑M

i=1 αi(µ)Fscas (t;µi). The same conclusion is also valid for the incident velocity
vincr . On the contrary, this conclusion is not valid for the case that the position of the explosion
is the parameter of the problem, i.e µ = xexp. To explain this, we recall that for a �xed time
t the kernel of the function pinc(x, t;µ) can be expressed explicitly by Ker(pinc(·, t;µ)) = {x ∈
Γ, such that ||x − µ|| < c0t} assuming that the incident pressure arrived at stand-o� point at
t = 0. Thus, for any t < dmax/c0 we can remark that Ker(pinc(·, t;µi)) 6= Ker(pinc(·, t;µj)) for
all µi 6= µj which indicates that the function pinc(x, t;µ) can not be approximated accurately
by
∑M

i=1 αi(µ)pinc(x, t;µi) when µ 6= µi, ∀i = 1, · · · ,M and t < dmax/c0.

As a remark, the proposed methodology above results in an non-intrusive procedure in the
sense that we need to compute the solutions Xp

uφ and Xv
uφ which are not the solutions of our

problem of interest. Next, we propose to exploit the idea presented in Section 5.2.3 (which is
originally proposed in [33]) to obtain approximation of Xsca

uφ in the following form:

Xsca
uφ (t;µ) ≈

NEIM
pv∑
i=1

αpvi (µ)Xsca
uφ (t;µpvi ) (5.39)

so that it requires only to compute the solution of our problem of interest for some values
of parameters at the o�ine stage. The idea consists of approximating the coe�cients vector

α(µ) :=
(
αp1(µ), · · · , αp

NEIM
p

(µ), αv1(µ), · · · , αv
NEIM
v

(µ)
)T

, whose components are de�ned in the
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approximation (5.35)-(5.36), in form:

α(µ) ≈
NEIM
pv∑
i=1

αpvi (µ)α(µpvi ) (5.40)

To achieve that, it su�ces to apply the Greedy EIM algorithm 16 with the parametrized
function g : (i, µ) ∈ {1, · · · , NEIM

p + NEIM
v } × D → R de�ned by g(i, µ) = αpi (µ) if 1 ≤ i ≤

NEIM
p and g(i, µ) = αv

i−NEIM
p

(µ) if i > NEIM
p . Because the dimension of {g(., µ), µ ∈ D} is at

most equal to NEIM
p +NEIM

v , the Greedy EIM algorithm 16 will reach a machine precision after
at most NEIM

p +NEIM
v iterations. Using the approximation (5.40) in the relation (5.35)-(5.36)

leads to:(
pinc
NEIM
p

(r, t;µ)

vinc
r,NEIM

v
(r, t;µ)

)
=

(∑NEIM
p

j=1 αpj (µ)pinc(r, t;µpj )∑NEIM
v

j=1 αvj (µ)vincr (r, t;µvj )

)
(5.41)

≈

∑NEIM
p

j=1

∑NEIM
pv

i=1 αpvi (µ)αj(µ
pv
i )pinc(r, t;µpj )∑NEIM

v
j=1

∑NEIM
pv

i=1 αpvi (µ)αj(µ
pv
i )vincr (r, t;µvj )

 (5.42)

≈
NEIM
pv∑
i=1

αpvi (µ)

(∑NEIM
p

j=1 αj(µ
pv
i )pinc(r, t;µpj )∑NEIM

v
j=1 αj(µ

pv
i )vincr (r, t;µvj )

)
(5.43)

≈

(
pinc,1
NEIM
pv

(r, t;µ)

vinc,1
r,NEIM

pv
(r, t;µ)

)
:=

NEIM
pv∑
i=1

αpvi (µ)

(
pinc
NEIM
p

(r, t;µpvi )

vinc
r,NEIM

v
(r, t;µpvi )

)
(5.44)

Since we have pinc(r, t;µ) ≈ pinc
NEIM
p

(r, t;µ) and vincr (r, t;µ) ≈ vinc
r,NEIM

v
(r, t;µ), we can then

conclude that:(
pinc(r, t;µ)

vincr (r, t;µ)

)
≈

(
pinc,2
NEIM
pv

(r, t;µ)

vinc,2
r,NEIM

pv
(r, t;µ)

)
:=

NEIM
pv∑
i=1

αpvi (µ)

(
pinc(r, t;µpvi )

vincr (r, t;µpvi )

)
(5.45)

Then, injecting this new approximation of pinc and vincr given by the relation (5.45) in the de�-
nition of Fscas and Fscaφ implies that the right-hand side of the �nite element model formulated
in (us, φ

sca) of Equation (5.32) can be approximated by:

Fscauφ (t;µ) ≈
NEIM
pv∑
i=1

αpvi (µ)Fscauφ (t;µpvi ) (5.46)

which, by linearity of the problem, allows us to conclude that the approximation of the solution
of our problem for any values of the parameter in D can be obtained by the desired relation
(5.39).

Remark 5.2.8 An alternative way to obtain an approximation in form (5.45) is to apply the
Greedy EIM algorithm 16 with a parametrized function gpv : (x := (i, r, t), µ) ∈ {1, 2} ×
[dmin, dmax] × [0, T ] × D → R de�ned by gpv(x, µ) = pinc(r, t;µ) if i = 1 and gpv(x, µ) =

vincr (r, t;µ) if i = 2, rather than applying it separately for pinc and vincr . However, we can remark
from Equation (5.33)-(5.34) that pinc and vincr are not in same order of magnitude. As a result,
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it can occur that all the magical points chosen by the Greedy EIM algorithm 16 correspond to
only pinc which would results in a relatively signi�cant error for vincr . To remedy this, we can
use parametrized function g̃pv : (x := (i, r, t), µ) ∈ {1, 2}× [dmin, dmax]× [0, T ]×D → R de�ned
by g̃pv(x, µ) = pinc(r, t;µ) if i = 1 and g̃pv(x, µ) = c̃vincr (r, t;µ) if i = 2, where the constant c̃
to be determined in order to ensure that pinc and c̃vincr have a same order of magnitude. Since
the second and the last term in the expression of vincr given by Equation (5.34) are relatively
small compared to the �rst term, it is recommended to use c̃ = ρ0c0.

Numerical experiments

We propose now to illustrate numerically the accuracy of the proposed approximation. To
do so, we consider the study case proposed in Section 4.6 of Chapter 4. In the considered
study case, we have an elastic ring with a spring-mass system submitted to an underwater
explosion's shock wave. A graphical representation of this study case is given by Figure 5.2.
Here, we also consider that the elastic ring has a radius R = 1 m, a thickness h = 0.01 m and
Poisson's ration ν = 0.28. The excitation is induced by an acoustic shock wave generated by an
underwater explosion of Mtnt kilograms of Trinitrotoluene (TNT), which is considered here as
the only parameter of the problem, located at (d, 0) with d = 20 m. The pro�le the considered
shock wave are modelled by Equation (2.12) for the pressure and Equation (2.15) for the �uid
particle's velocity using the value of constants Pc, vc, A and B of Equation (2.10) provided by
[40]. At t = 0, we assume that the shock wave arrives at the stand-o� point (0, R + h/2) of
the structure. The density and the speed sound of the �uid are given by ρ0 = 1 000 kg/m3,
c0 = 1 500 m/s. The system of spring-mass is suspended at the point (R − h/2, 0) which
represents the closest point in the interior part of the ring to the explosion.

ex

ey

R

�

(pinc, vinc)

h

O(0, 0) (d, 0)

Explosive

keq
�

meq

Figure 5.2: Graphical representation of the study case in context of the application of EIM for
approximating the solutions of the interaction of structure and underwater explosion's shock
wave where the mass of Trinitrotoluene (TNT) represents the only parameter in the problem
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In our numerical experiments, we set meq = 500 and feq = 250 and the parameter space
DMtnt = [100, 1000]. In our study case, the values dmin and dmax, the distance of the center
of charge to the closest (the stand-o� point) and the farthest point of the structure, are given
by dmin = d−R− h/2 and dmax = d+R+ h/2. For time discretization, we set the time step
by ∆t = 2 · 10−5s, which means the the incident wave need Nt = 200 time step for travelling
a distance of 6R. The �nal time of interest is T = 6R/c0. In this study, the output of interest
refers to the acceleration of the point-mass in the spring-mass system.

To begin, we are interested in the convergence of the EIM for pinc and vincr . For that
purpose, we devise the interval [dmin, dmax] into 100 of equidistant points. The convergence
of the Greedy EIM algorithm 16 applying on the function pinc(x;µ) and vincr (x;µ), where
x := (r, t) ∈ [dmin, dmax] × [0, T ] with a training set DtrainMtnt

of 100 values generated randomly
is reported in Figure 5.3.

(a) Zoom on M ∈ [1, 5] (b) For M ∈ [1, 10]

Figure 5.3: Evolution of error indicator in the greedy EIM algorithm 16 for pinc and vincr for
the case where mass of TNT is considered as the parameter

Here, we de�ne the error indicator as the relative error of the EIM approximation evaluated
at the next value of parameter to be chosen in the step 5 of Greedy EIM algorithm 16. Figure
5.3 shows that the convergence of the error indicator are almost in the same rate for both vincr

and pinc. This result can be explained by the fact in the expression of vincr , the second and
the third term of right-hand side of Equation (5.34) are relatively small compared to the �rst
term which is collinear to pinc. It should be pointed out that when increasing the distance
d between the charge and the structure, these two terms tend to zeros which implies that
vincr ≈ pinc/(ρ0c0). As a result, for the case d = 100 m whose results is not given here, we have
observed that the EIM algorithm chooses the same values of parameter and the same magical
points for both vincr and pinc.

Next, let us put the focus on the convergence of the Greedy EIM algorithm 16 apply-

ing on the coe�cients vector α(µ) :=
(
αp1(µ), · · · , αp

NEIM
p

(µ), αv1(µ), · · · , αv
NEIM
v

(µ)
)T

, whose

components are de�ned in the approximation (5.35)-(5.36). Since the convergence of the error
indicator are almost in the same rate for both vincr and pinc, we only consider here the case
NEIM
p = NEIM

v . The convergence of the Greedy EIM algorithm 16 applying on the coe�cients
vector α(µ) for di�erent values of NEIM

p are reported in Figure 5.4. As can be expected, we
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observed in Figure 5.4 that the error indicator in the greedy EIM algorithm 16 reaches a value
in order of machine precision after at most NEIM

p +NEIM
v iterations.

Figure 5.4: Evolution of error indicator in the greedy EIM algorithm 16 applying on the
coe�cient vector α

We now turn to the accuracy of the proposed approximations. For a given test sample
Dtest, we are interested in the errors eg de�ned by

eg = max
µ∈Dtest

max
t∈[0,T ]

||g(·, t, µ)− gEIMM (·, t, µ)||L∞([dmin,dmax])

||g(·, t, µ)||L∞([dmin,dmax])
, for g ∈ {pinc, vincr } (5.47)

where M denotes the number of terms in EIM approximation, in order to ensure an accurate
approximation for every time step.

With a test sample DtestMtnt
consisting of 50 values of parameter chosen randomly, the errors

eg for the approximation provides by employing the EIM separately for pinc and vincr , as given
by the relation (5.35)-(5.36), are illustrated by Figure 5.5.

(a) Case of pinc (b) Case of vincr

Figure 5.5: Error of approximation of pinc and vincr by EIM approximation
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Figure 5.5 shows that the error indicator (in red), which is based on the error in norm
|| · ||L∞([dmin,dmax]×[0,T ]) evaluated at the next value of parameter to be chosen by the step 5 of
the Greedy EIM algorithm 16, provides a good estimate of the error eg (in blue), de�ned in
Equation (5.47), for both case of g = pinc and g = vincr .

(a) Case of g = pinc with NEIM
p = NEIM

v = 3 (b) Case of g = vincr with NEIM
p = NEIM

v = 3

(c) Case of g = pinc with NEIM
p = NEIM

v = 4 (d) Case of g = vincr with NEIM
p = NEIM

v = 4

(e) Case of g = pinc with NEIM
p = NEIM

v = 5 (f) Case of g = vincr with NEIM
p = NEIM

v = 5

Figure 5.6: Error of EIM approximations for g = pinv, vinvr in the classical case and in the case
with a non-intrusive procedure
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In what follows, we note for g ∈ {pinc, vincr }:

� e1
g as the error between g de�ned in Equation (5.33)-(5.34) and its approximation by the
classical EIM as given in the relation (5.35)-(5.36)

� e2
g as the error between g de�ned in Equation (5.33)-(5.34) and its approximation, in the
non-intrusive procedure, given by the relation (5.45)

The norm used to de�ne the error e1
g and e

2
g here is the same as eg in Equation (5.47).

In Figure 5.6, we plot the evolution of errors e1
g and e2

g in function of NEIM
pv in the same

graph for di�erent values of NEIM
p and NEIM

v . We observe that in order to achieve the same
order of accuracy in the approximation (5.45) in the non-intrusive procedure as in the case
where we apply EIM algorithm separately for pinc and vincr , it requires that the number of
NEIM
pv in approximation of the coe�cients vector α(µ) in the relation (5.40) is equal to NEIM

p

and NEIM
v . This can be due to the fact that the second and the third term in the de�nition

of vincr given by Equation (5.34) are relatively small compared to the �rst term, so that vincr is
almost collinear with pinc. It should also be pointed out that when NEIM

pv > NEIM
p = NEIM

v

the approximation (5.45) in non-intrusive procedure provided a better accuracy then the clas-
sical approximation by EIM separately of the relation (5.35)-(5.36).

It is worth to recall that the number of solutions of the problem of interest to be solved
in o�ine stage in the proposed non-intrusive procedure is NEIM

pv . For the case where we seek
separately EIM approximation for pinc and vincr , it requires NEIM

p +NEIM
v problems (in which

each problem is of the same complexity as our problem of interest) to be solved at o�ine stage.
As a result, we can expect that using the proposed non-intrusive procedure can reduce signif-
icantly the complexity required at the o�ine stage compared to the naive approach where we
apply EIM algorithm separately for pinc and vincr .

In order to show the accuracy of the output of interest in the problem provided by EIM
approximation (5.38) and (5.39), we de�ne the error by:

∆EIM
l (µ) :=

(∫ T
0

∣∣∣ameq(t;µ)− aEIMmeq (t;µ)
∣∣∣2 dt)1/2

(∫ T
0

∣∣ameq(t;µ)
∣∣2 dt)1/2

(5.48)

where the superscript EIM refers to the values provided by the approximation (5.38) or (5.39)
and ameq denotes the acceleration of the point mass in the spring mass system.

In our study, we use the same mesh as in the study case of Section 4.6 with the �nite element
model in (us, φ

sca). Newmark scheme (with β = 1
4(1−α)2, γ = 1/2−α where α = −0.1) is used

for time-discretization. The error on the output of interest in the case where we approximate
pinc and vincr by EIM separately is reported in Figure 5.7.
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Figure 5.7: Evolution of error of the acceleration of meq using the approximation of right-hand
side by greedy EIM algorithm 16 for the case where Mtnt represents the parameter

For the proposed non-intrusive procedure (5.39), the accuracy of the output of interest is
reported by Figure 5.8. As for the error between pinc, vincr and its approximation by relation
(5.45), we can also see in Figure 5.8 that in order to achieve the same order of accuracy for
the approximation of the output of interest in the non-intrusive procedure as in the case where
we apply EIM algorithm separately for pinc and vincr , it requires that the number of NEIM

pv

in approximation of the coe�cients vector α(µ) by the relation (5.40) is equal to NEIM
p and

NEIM
v .

(a) Case of NEIM
p = NEIM

v = 4 (b) Case of NEIM
p = NEIM

v = 5

Figure 5.8: Evolution of error of the acceleration of meq using the approximation of the
right-hand side vector by a non-intrusive procedure for the case where Mtnt represents the
parameter
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Finally, we present in Figure 5.9 the time evolution of the acceleration of the point mass
in the spring-mass system given by the �nite element model and its approximation by the
proposed non-intrusive procedure with NEIM

pv = NEIM
p = NEIM

v = 4 (in dashed lines) for
some selected values of the parameters.

Figure 5.9: Time evolution of acceleration of meq in the spring-mass system for the di�erent
values of mass of TNT. The approximation provided by EIM via relation (5.39) is represented
by dashed lines.

As a conclusion, both classical EIM and its variant for a non-intrusive procedure can be
employed to approximate accurately the solution of an parametrized interaction of submerged
structure and underwater explosion's shock wave problem in the case of mass of explosive
material is the only parameter of the problem. Here, we would like to emphasize that we are
under assumption that the left-hand side of the problem is independent of parameter.

For the case where the left-hand side of the problem also depends on the parameter, we
will see Section 5.5 that we can turn to the reduced order modelling techniques in which the
procedure proposed here allows us to obtain an approximation in form of a�ne dependent in
parameter for the the right-hand side vector, which is one of the main ingredients for ensuring
the performance of the reduced order model in online stage.

5.3 Parametrization of a varying shape domain (mesh) by means

of a solid extension

One of the main challenges in the reduced order modelling for the case where the shape of
the domain represents one of the parameters in the problem is the automatisation of the
construction of the domain (or the mesh) while varying the value of parameter in an inexpensive
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way. The mesh motion strategy which is often referred to as Solid Extension Mesh Moving
Technique (SEMMT) [115, 117] is chosen in our work. For other alternatives, we refer to [111,
57]. In what follows, we give a short presentation of the so-called Solid Extension Mesh Moving
Technique (SEMMT) in Section 5.3.1. The application of EIM for reducing the computational
cost in the proposed technique is then presented in Section 5.3.2

5.3.1 Presentation of mesh motion strategy technique

Here, we denote by Ωref ⊂ Rd, d = 2 or 3, by the reference domain and T refh a volumetric
mesh of that reference domain. The main idea of the mesh motion strategy is to construct a
parametrized mesh Th(µ) for a parametrized domain Ω(µ) by moving the reference mesh T refh

with respect to a displacement �eld which is a solution of an elasticity problem on the reference
domain, with a non-homogeneous Dirichlet boundary conditions to be de�ned in function of
µ ∈ D. By doing so, the strategy ensures that geometric embedding of Th(µ) (i.e., its nodes
positions) is modi�ed so that Th(µ) conforms to Ω(µ) while keeping the mesh topology (i.e.,
its connectivity) of the reference mesh T refh .

Figure 5.10: Geometrical representation of the reference domain and the parametrized domain

Without loss of generality, we assume that the boundary of the parametrized domain Ω(µ)

can be split into two parts: ∂Ω(µ) = ∂Ωf ∪∂Ωv(µ) where ∂Ωf is the �xed boundary (it can be
an empty set) and ∂Ωv is the parameter dependent boundary. We suppose that the domain of
reference Ωref can also be split into two parts: ∂Ωref = ∂Ωref

f ∪ ∂Ωref
v where ∂Ωref

f coincides

with ∂Ωref
v and there is a bijective application Tµ = Id + ud(µ) which transforms ∂Ωref

v into
∂Ωµ

v (see Figure 5.10). A displacement �eld u : Ωref → Rd which allows us to transform the
reference mesh T refh into Th(µ) = {x ∈ Rd,x = xref + u(xref ),xref ∈ T refh } a conform mesh
of Ω(µ), can be obtained as the solution of the following elasticity problem:

−div σ(u) = 0 in Ωref

u = 0 on ∂Ωref
f

u = ud(µ) on ∂Ωref
v

(5.49)

where σ(u) is Cauchy stress tensor which is related to the displacement �eld u by: σ(u) =

λ div(u)1 + 2µε(u) where 1 is identity tensor, (λ, µ) = ( Eν
(1+ν)(1−2ν) ,

E
2(1+ν)) are Lamé coe�-

cients, with E the Young's modulus and ν the Poisson's ratio, ε(u) :=
(
∇u+∇uT

)
/2 denotes

the linearised strain tensor and ud(µ) ∈ H1/2(∂Ωref
v )d to be de�ned.
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For the sake of generality, let us consider the case where the parametrized domain Ω(µ) is
composed of two subdomains: Ω(µ) := Ωs(µ)∪Ωf (µ), for instance the case of a vibro-acoustic
coupling where Ωs and Ωf denote respectively the structural and the �uid domain. We assume
that the interface Γ(µ) := ∂Ωs(µ) ∩ ∂Ωf (µ) can be split into two parts Γ(µ) = Γµf ∪ Γµv
where Γµv is the parameter dependent boundary and Γµf is the �xed boundary (possibly empty)

which coincides with the interface Γreff of the reference domain Ωref := Ωref
s ∪ Ωref

f with

Γref := ∂Ωref
s ∩ ∂Ωref

f = Γreff ∪ Γrefv . A displacement �eld which allows us to construct a
mesh T µh of the parametrized domain Ω(µ), by moving the position of nodes in the mesh of the
reference domain T refh , can be obtained as the solution of the following elasticity problems, for
i ∈ {s, f}: 

−div σ(ui) = 0 in Ωref
i

ui = 0 sur ∂Ωref
i \Γ

ref
v

ui = ud(µ) sur Γrefv

(5.50)

where us and uf denote respectively the displacement �elds for Ωref
s and Ωref

f , ud(µ) ∈
H1/2(Γrefv )d to be de�ned in order to ensure that the bijective application Tµ = Id + ud(µ)

transforms Γrefv into Γµv . Thanks to the third equation of the system (5.50), if the mesh of
reference is conform, in the sense that the nodes of the domain Ωref

s and Ωref
f coincide at the

interface Γref , the mesh of the parametrized domain obtained by the proposed displacement
�eld is also conform. The extension to the case where the parametrized domain is composed
of N ≥ 2 subdomains, the proposed strategy is straightforward.

Now, let us focus on how to construct the boundary displacement ud(µ). We restrict
ourselves to the case where a parametrization of the boundary Γrefv and Γµv are possible. We
denote by γref : t ∈ [0, 1]d−1 → xref (t) ∈ Γrefv and γµ : t ∈ [0, 1]d−1 → xµ(t) ∈ Γµv two
bijective continuous applications representing a parametrization of Γrefv and Γµv , respectively.
The boundary displacement ud(µ) can be de�ned as follows:

ud(µ)(t) = xµ(t)− xref (t) (5.51)

or equivalently:
ud(µ)(xref ) = γµ(γ−1

ref (xref ))− xref (5.52)

Remark 5.3.1 For d = 2, in the case where the boundary Γµv can be described by the graph
of a parametrized function yµ = fµ(xµ;µ), where xµ ∈ [a(µ), b(µ)] ⊂ R, we recall that a
parametrization of the boundary Γrefv can be de�ned as:

γµ : t ∈ [0, 1]→

(
xµ(t)

yµ(t)

)
=

(
a(µ) + t [b(µ)− a(µ)]

fµ(xµ(t);µ)

)
∈ Γµv (5.53)

If the reference boundary Γrefv can also be described by the graph of a function yref =

fref (xref ), where x ∈ [a, b] ⊂ R, and we parametrize the reference boundary Γrefv as:

γµ : t ∈ [0, 1]→

(
xref (t)

yref (t)

)
=

(
a+ t(b− a)

fref (xref (t))

)
∈ Γrefv (5.54)
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then, the boundary displacement ud(µ) can be de�ned as follows:

ud(µ) :

(
xref
yref

)
∈ Γrefv →

(
xµ
yµ

)
=

(
a(µ) + t(xref ) [b(µ)− a(µ)]− xref

fµ(xµ(xref );µ)− yref

)
∈ Γµv (5.55)

where t(xref ) =
xref−a
b−a .

Remark 5.3.2 For d = 3, in the case where the boundary Γµv can be described by the surface
of a parametrized function zµ = fµ(xµ, yµ;µ), where (xµ, yµ) ∈ [a(µ), b(µ)] × [c(µ), d(µ)] ⊂
R2, we recall that a parametrization of the boundary Γrefv can be de�ned as:

γref : t = (t1, t2) ∈ [0, 1]2 →

xµ(t)

yµ(t)

zµ(t)

 =

a(µ) + t1 [b(µ)− a(µ)]

c(µ) + t2 [d(µ)− c(µ)]

fµ(xµ(t1), yµ(t2);µ)

 ∈ Γµv (5.56)

If the reference boundary Γrefv can also be described by the surface of a function zref =

fref (xref , yref ), where (x, y) ∈ [a, b]× [c, d] ⊂ R2, and we parametrize the reference boundary
Γrefv as:

γref : t = (t1, t2) ∈ [0, 1]2 →

xref (t)

yref (t)

zref (t)

 =

 a+ t1(b− a)

c+ t2(d− c)
fref (xref (t1), xref (t2))

 ∈ Γrefv (5.57)

then, the boundary displacement ud(µ) can be de�ned as follows:

ud(µ) :

xrefyref
zref

 ∈ Γrefv →

xµyµ
zµ

 =

a(µ) + t1(xref ) [b(µ)− a(µ)]− xref
c(µ) + t2(xref ) [d(µ)− c(µ)]− yref
fµ(xµ(xref ), yµ(xref );µ)− zref

 ∈ Γµv (5.58)

where t1(xref ) =
xref−a
b−a , t2(yref ) =

yref−c
d−c .

Remark 5.3.3 In the most general cases where a parametrization of the boundary Γµv is
not possible and Γµv can only be characterized implicitly by the set of points in Rd such that
f(x;µ) = 0, we refer to [35] for an alternative approach based on a penalization technique.

In order to illustrate the methodology of the proposed strategy, we provide in what follows
two examples.

Example 1: Case of a parametrized 2D domain

As the �rst example, we consider a parametrized 2D domain Ω(µ) := {(x, y) ∈]0, 1[×]0, 1/2[, x
2

a2
+

y2

b2
> 1} where µ := (a, b) ∈ [0.2, 0.4]2 is the parameter. We de�ne the reference domain as

Ωref = Ω(µref ) where µref = (r, r), r = 0.3 (see Figure 5.11).
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x

y

O(0, 0) A
′
(a, 0) B(1, 0)

C(1, 1/2)D(0, 1/2)

E
′
(0, b)

Ω(µ)

x

y

O(0, 0) A(0.3, 0) B(1, 0)

C(1, 1/2)D(0, 1/2)

E(0, 0.3)
Ωref

Figure 5.11: The geometry of the parametrized domain (left) and the geometry of the reference
domain (right) for the �rst example

The parameter dependent boundary ∂Ωref
v and the �xed boundary ∂Ωref

f can be de�ned

respectively by ∂Ωref
v = DE ∪ EA ∪ AB (in red in Figure 5.11) and ∂Ωref

f = BC ∪ CD (in

blue in Figure 5.11). A boundary displacement �eld ud(µ) =
[
udx(µ), udy(µ)

]T
which allows us

to transform ∂Ωref
v into ∂Ωµv := DE

′ ∪ E′A′ ∪A′B can be de�ned by:



udx(x, y;µ) = 0 on DE

udy(x, y;µ) = b+
y − r

1/2− r
(1/2− b)− y on DE

udx(x, y;µ) = (
a

r
− 1)x on EA

udy(x, y;µ) = (
b

r
− 1)y on EA

udx(x, y;µ) = a+
x− r
1− r

(1− a)− x on AB

udy(x, y;µ) = 0 on AB

(5.59)

In the linear elasticity problem (5.49) with homogeneous Dirichlet boundary condition on
∂Ωref

f and non-homogeneous Dirichlet boundary condition de�ned by Equation (5.59) on ∂Ωref
v ,

we choose to set the Young modulus to E = 2.1·1011 Pa and the Poisson's ratio to ν = 0.3. The
mesh of the reference domain which consists of 1 553 linear triangular elements and 843 nodes
and the deformed mesh through the displacement �elds which is the solution of the proposed
linear elasticity problem for some values of a and b ∈ [0.2, 0.4] are illustrated in Figure 5.12.
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(a) The reference mesh (b) Case of a = 0.2, b = 0.3

(c) Case of a = 0.15, b = 0.35 (d) Case of a = 0.2, b = 0.2

Figure 5.12: The reference mesh (top left) and the deformed mesh in the �rst example

Example 2: Case of the domain consist of two parametrized subdomains

For the second example, we choose to deal with the case where the parametrized domain is com-
posed by two main subdomains and we seek to make the form of interface vary between the two
domains. Here, we consider Ω(µ) := Ωs(µ)∪Ωf (µ) where Ωs(µ) := {(x, y) ∈ [−1/2, 1/2]2, x

2

a2
+

y2

b2
> 1}, Ωf (µ) := {(x, y) ∈ [−1/2, 1/2]2, x

2

a2
+ y2

b2
< 1} and µ = (a, b) ∈ [0.2, 0.3]2 denotes

the parameter of the problem. The interface between Ωs(µ) and Ωf (µ) is characterized by

Γ(µ) := ∂Ωs(µ) ∩ ∂Ωs(µ) = {(x, y) ∈ [−1/2, 1/2]2, x
2

a2
+ y2

b2
= 1}. We consider that the refer-

ence domain Ωref is the particular case of Ω(µ) where µref = (r, r) with r = 0.25 (see Figure
5.13).
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x
y

Ωs(µ)

Ωf (µ)

Γ(µ)

O(0, 0)

x
y

Ωref
s

Ωref
f

Γref

O(0, 0)

Figure 5.13: The geometry of the parametrized domain (left) and the geometry of the reference
domain (right) for the second example

An interface displacement ud(µ) =
[
udx(µ), udy(µ)

]T
which allows us to transform Γref into

Γ(µ) can be de�ned as: 
udx(x, y;µ) = (

a

r
− 1)x

udy(x, y;µ) = (
b

r
− 1)y

(5.60)

In the linear elasticity problems (5.50) with homogeneous Dirichlet boundary condition on
∂Ωref

i \Γref , i = {s, f} and non-homogeneous Dirichlet boundary condition de�ned by Equation
(5.60) on Γref , we choose to set the Young modulus to E = 2.1 ·1011 Pa and the Poisson's ratio
to ν = 0.3. The mesh of the reference domain consists of 4 194 quadratic triangular elements
and 8 704 nodes for Ωref

s , of 1 592 quadratic triangular elements and 3 341 nodes for Ωref
f and

of 312 nodes on the interface Γref . The reference mesh and the deformed mesh through the
displacement �elds which is the solution of the proposed linear elasticity problems for some
values of a and b ∈ [0.2, 0.3] are reported by Figure 5.14 in which the interface Γ(µ) is marked
in white curve.
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(a) The reference mesh (b) Case of a = 0.2, b = 0.3

(c) Case of a = 0.3, b = 0.2 (d) Case of a = 0.2, b = 0.2

Figure 5.14: The reference mesh (top left) and the deformed mesh in the second example

5.3.2 Approximation of the solution of the parametrized elasticity problem

by EIM

Now that we have presented a strategy of automatisation of the mesh construction for a
parametrized domain, we seek now to exploit the EIM, presented in Section 5.2, to reduced
its computational cost while varying the geometrical parameter value µg ∈ Dg. To begin, let
us recall brie�y the resolution of the elasticity problem (5.49) with a non-homogeneous Dirich-
let boundary condition by �nite element method. We introduce a Hilbert space V := {v ∈
H1(Ωref )d,v = 0 on Γreff and v = ud(µ) on Γrefv }. The corresponding weak formulation of
the problem (5.49) reads: {

Find u ∈ V such that

a(u,v) = 0, ∀v ∈ H1
0 (Ωref )d

(5.61)

where a is a bilinear form on ∈ H1(Ωref )d de�ned by:

a(u,v) :=

∫
Ω

[
2µε(u) : ε(v) + λdiv(u)div(v)

]
dx (5.62)
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To simplify our presentation, we consider in what follows the case where d = 1. We denote by
{ϕ1, · · ·ϕn} the nodal basis of Lagrange �nite element corresponding to the nodes {a1, · · · , an}.
Without loss of generality, we assume that the nodes {a1, · · · , aD} located at the boundary
∂Ωref . We can then introduce the �nite element trial and test functions spaces as:{

Vh = span{ϕ1, · · · , ϕn} ⊂ V
Vh0 = span{ϕD+1, · · · , ϕn} ⊂ H1

0 (Ωref )
(5.63)

By seeking the approximation of u in Vh, that is u =
∑n

i=1 uiϕi, the problem yields to the
linear system: [

IDD 0

KID KII

][
UD(µg)

UI(µ)

]
=

[
Ud
D(µg)

0

]
(5.64)

where UD := (u1, · · · , uD) ∈ RD, UI := (uD+1, · · · , uN ) ∈ Rn−D, Ud
D(µg) ∈ RD is de�ned

by [Ud
D(µg)]i = ud(µg)(ai) for i ∈ {1, · · · , D}, KII ∈ R(n−D)×(n−D) and KDI ∈ R(n−D)×D

are de�ned by (KII)ij = a(ϕj+D, ϕi+D), for i, j ∈ {1, · · · , n−D} and (KID)ij = a(ϕj , ϕi+D),
i ∈ {1, · · · , n−D}, j ∈ {1, · · · , D}. The linear system (5.64) is equivalent to:[

IDD 0

0 KII

][
UD(µg)

UI(µ
g)

]
=

[
Ud
D(µg)

−KIDU
d
D(µg)

]
(5.65)

We remark that the elasticity problem (5.49) depends on the parameters only through its
right-hand side. Hence, by using the EIM to obtain an approximation of Ud

D(µg) as Ud
D(µg) ≈∑M

i=1 αi(µ
g)Ud

D(µ∗,gi ), as presented in Section 5.2.4, we can obtain by linearity of the problem
an approximation of UI(µ) for all µ ∈ D as:

UI(µ) ≈ UEIM
I (µg) :=

M∑
i=1

αi(µ
g)UI(µ

∗,g
i ) (5.66)

Since the value of the displacement of the nodes located at Γrefv is determined by ud(µg)

which can be expressed as an analytical function in the case where a parametrization of Γrefv is
possible, it ensures that these nodes locate exactly on Γµ

g

v after the modi�cation of the reference
mesh via the displacement �eld u. Note that using the approximation by Equation (5.66) for
UI(µ

g) impacts only on the positions of the nodes located in interior of Th(µg). Thus, it could
be expected that this approximation does not have a major impact on the quality of the mesh
compared to the case where we use UI(µ

g) rather than UEIM
I (µg).

Finally, we remark that the approximation of UI by U
EIM
I of Equation (5.66), for any new

value of the parameter µg ∈ D at the online stage, can be obtained in O(M(n − D)) after
having pre-computed at the o�ine stage UI(µ

g) for µg ∈ {µ∗,gi , 1 ≤ i ≤M}.

Remark 5.3.4 Additional parameters, for instance via the Young modulus E as a function
depending on the spatial variable x ∈ Ω and the parameter µg ∈ Dg, could be introduced in
the problem (5.49) in order to ameliorate the quality of the mesh of the parametrized domain.
This implies that the operator KII at the left hand side of Equation (5.65) is µg-dependent.
For this case, in order to obtain an approximation of UI(µ

g) in an inexpensive way, we can
turn to the reduced order modelling technique, see for instance [92, 43].
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5.4 Reduced order modelling for non-a�nely parametrized time-

domain vibro-acoustic FE model

In the previous sections, we have presented how to exploit the EIM for �nding an approximation
of any non-a�ne dependence operator in a a�ne dependence form (with a purely algebraic
and black box way) and for the mesh construction of a varying shape domain based on the
Solid Extension Mesh Moving Technique (SEMMT) in a complexity linear in nelas, where nelas
denotes the number of degrees of freedom in the corresponding linear elasticity problem. In this
section, we aim to exploit these results to develop an e�cient reduced order modelling technique
framework for the case non-a�nely parametrized with a variability of the geometrical domain.

In what follows, we consider that the parameter vector µ is written as µ = (µp,µg) ∈
D = Dp × Dg ⊂ Rnp+ng where µp represents vector of physical parameters and µg represents
vector of geometrical parameters. Before talking about the reduced order modelling, let us
clarify the notion of the full model in the case where the parameter vector of the problem
contains at least one geometrical parameters, i.e ng ≥ 1. Here, we denote by T refh the reference
mesh corresponding to the reference domain Ωref . For µg ∈ Dg, we denote by u(µg) the
displacement �elds which transform the reference mesh T refh into a conform mesh Th(µg) of
the parametrized domain Ω(µg). In our work, we recall that the displacement �elds u(µg) is
de�ned as the solution of an appropriate parametrized linear elasticity problem on T refh (see
Section 5.3.1). As a result, the notion of full model considered here refers to the following
parametrized ordinary second order di�erential equation:

M(µ)Ẍ(t;µ) +C(µ)Ẋ(t;µ) +K(µ)X(t;µ) =

NF∑
i=1

θi(t)Fi(µ) (5.67)

where the matricesM,C,K and the vector Fi are constructed based on the parametrized mesh
Th(µg) = {x ∈ Rd,x = xref + u(µg)(xref ),xref ∈ T refh }.

In the reduced order modelling technique framework proposed here, the o�ine stage can be
split into three main steps. The presentations of each step are given in the following subsections.

5.4.1 Step 1: Reduction of the complexity in the construction of the

parametrized mesh

In order to construct the �nite element models (5.67) for any new values of geometrical param-
eter µg, it is necessary to compute u(µg) which is the solution of a linear elasticity problem
on T refh , thus in a complexity of the resolution of a linear system nelas × nelas, where nelas
depends on the dimension of the full order model (5.67) via the characteristic of the reference
mesh T refh . The �rst step of our reduced order modelling framework is to exploit the EIM for
constructing an approximation of the displacement �eld u(µg), which allows us to transform
the reference domain to the parametrized domain, for any new value of µg ∈ Dg at online stage
with a complexity linear in the number of degrees of freedoms in the elasticity problem (as
presented in Section 5.3.2). In this stage, we start by �nding an approximation in a�ne form
of the boundary displacement ud(µg) which transforms the boundary of ∂Ωref to ∂Ω(µg) by
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the Greedy EIM algorithm 16, that is:

ud(µg) ≈ ud,EIM (µg) :=

NEIM
u
d∑

i=1

αi(µ
g)ud(µ∗,gi ) (5.68)

Thanks to the fact that the left-hand side of the linear elasticity problem (5.64) is µg-independent,
using the approximation of ud(µg) by ud,EIM (µg) de�ned in Equation (5.68) leads to:

u(µg) ≈ uEIM (µg) :=

NEIM
u
d∑

i=1

αi(µ
g)u(µ∗,gi ) (5.69)

To summary, the �rst step of the reduced order modelling framework consists simply of re-
placing parametrized mesh Th(µg) = {x ∈ Rd,x = xref + u(µg)(xref ),xref ∈ T refh } by its
approximation T EIMh (µg) = {x ∈ Rd,x = xref + uEIM (µg)(xref ),xref ∈ T refh }.

Remark 5.4.1 Using the relation (5.69), the construction of mesh for any new geometry
µg ∈ Dg requires then a complexity in O(nelasN

EIM
ud

), where nelas is the number of degrees
of freedom in the linear elasticity problem (5.64), provided that the displacement �elds u are
pre-computed and saved at the o�ine stage for the value of parameters (µ∗,gi )1≤i≤NEIM

u
d

chosen

by the Greedy EIM algorithm 16. Here, we emphasize that the complexity of the computation
of uEIM (µg) still depends on the number of degrees of freedom in the linear elasticity problem
(5.49). However, we will see in Remark 5.4.3 of the next section that in the computation of
the EIM's approximation of the operator and the right-hand side vector of the problem in the
online stage, it requires only the value of the displacement �eld uEIM (µg) for some nodes of
the reference mesh, and not for all nodes of the mesh, thus it can be done in a complexity
independent of nelas.

Remark 5.4.2 For the case where the left-hand side of the linear elasticity problem (5.64)
is µg-dependent, we can rely on the reduced order modelling technique to obtain an approx-
imation of u(µg) in a complexity of O(nelasNelas) where Nelas denotes the dimension of the
reduced order model of the elasticity problem (5.64), see for instance in [92, 43].

5.4.2 Step 2: Application of EIM to obtain an approximation in a�ne

dependence in parameter for M,C,K and F

The second step consists of applying the EIM with a purely black-box way to obtain an ap-
proximation in form of a�ne dependence in parameter for M,C,K and F as presented in
Section 5.2.4. To do so, for A ∈ {M,C,K,F}, we compute A(µ) for all values of the parame-
ter µ = (µp,µg) in a chosen training set DAtrain,EIM and run the Algorithm 19 for the case of
matrix and the Algorithm 17 for the case of vector. At the end of this second step, we have
transformed the full order model (5.67) into an approximative full order model:

MEIM (µ)Ẍ(t;µ) +CEIM (µ)Ẋ(t;µ) +KEIM (µ)X(t;µ) =

NF∑
i=1

θi(t)F
EIM
i (µ) (5.70)

where the matrices MEIM ,CEIM ,KEIM and the vector FEIMi , i = 1, · · · , NF are now a�ne
dependence in parameter and are de�ned on the parametrized mesh T EIMh (µg) = {x ∈ Rd,x =
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xref + uEIM (µg)(xref ),xref ∈ T refh }.

Remark 5.4.3 We recall that in the computation of the coe�cient (θAl (µ))1≤l≤NEIM
A

, for any
new values of parameter µ ∈ D, in the EIM's approximation (5.21) requires only the values
of A at the magical indices chosen by EIM algorithm. Thanks to the property of the local
support of the �nite element basis functions, these values can be computed with a complexity
independent of the dimension of the full model. It is su�cient to compute the elementary terms
corresponding to A only for the reduced elements eA which have a non-zeros contribution to
the value of A at the magical indices (identi�ed by Algorithm 18 for the case of vector and by
Algorithm 20 for the case of matrix) and restrict the assembling procedure on this group of
elements in the mesh. As a result, it is very important to note that it requires only to compute
the new geometry of this group of elements eA in the mesh and not the new geometry of the
entire mesh. This allows us to compute the coe�cient (θAl (µ))1≤l≤NEIM

A
with a complexity

independent of the total number of node in the mesh. The complexity depends only on the
number of nodes in the group of elements eA.

Remark 5.4.4 In the context of the interaction of submerged structure and shock wave prob-
lem, the right-hand side vector F(t;µ) depends on µg only in the case where the �uid-structure
interface Γ is µg-dependent. For the case where the mass of explosive material represents one
of the parameter of the problem and that the interface Γ is independent of parameter, we rec-
ommend to use the non-intrusive approximation given by Equation (5.46) since the underlying
linear form of F(t;µ) is known explicitly. Furthermore, it can also be noted that applying EIM
on a parametrized function pinc, vincr requires a computational cost, for both in o�ine and
online stage, less than its variant in black box way for its corresponding parameter-dependent
vector F(t;µ) as proposed in Section 5.2.4.

Remark 5.4.5 On the contrary to the �rst step, the second step could induce an instability
in the approximative full order model (5.70) for the case of time-domain vibro-acoustic prob-
lem. As a reminder, the demonstration of the stability property of the �nite element models
of time-domain vibro-acoustic problem given in Chapter 3 is under the hypothesis that the
mass matrices Ms,Mf are symmetric and positive de�nite, the sti�ness matrices Ks,Kf are
symmetric and positives semi-de�nite and that the the damping matrices Cs,Cf are posi-
tives semi-de�nite, see for instance Lemma 3.1.4 for (us, φ) based formulation. In the EIM's
approximation, it can only be ensured that the matricesMEIM

s ,MEIM
f ,KEIM

s ,KEIM
f are sym-

metric. The positive (semi-) de�niteness property ofMEIM
s ,MEIM

f , KEIM
s ,KEIM

f , CEIM
s and

CEIM
f are not mathematically guaranteed. However, thanks to the Bauer-Fike theorem men-

tioned in Remark 5.2.2, we believe that the property of positive de�nite of the mass matrices
MEIM

s ,MEIM
f could be recovered by increasing the number of terms in the EIM's approxima-

tion. For the positive semi-de�niteness property, it could also be expected that this property
can be recovered by increasing the number of terms in the EIM's approximation under condi-
tion that the kernel of the parametrized matrix A(µ) under consideration is µ-independent,
as mentioned in Remark 5.2.3. For the sti�ness matrix of �uid part Kf , this condition is
achieved as its kernel represents the constant pressure mode which is clearly independent of
µ. For the sti�ness matrix of structure part Ks, its kernel represents the rigid body modes
and is of six dimensions in the case of 3D-con�guration (of three dimensions in the case of
2D-con�guration). It refers to three modes of translation and three modes of rotation. The
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three translation modes are µ-independent. In the opposition, the three rotation modes can
be µg-dependent via the position of nodes in the mesh depending on the chosen �nite element
types. For the case of the classical �nite elements, such as tetrahedron with 6 or 10 nodes
and hexahedron with 9, 20 or 27 nodes, where the nodes contain only the degree of freedom of
translation, the three rotation modes are µg-dependent. For the case of the �nite element of
type shell element [21] or Discrete Kirchho� Triangular (DKT) elements [20] where the nodes
contain also the degrees of freedom of rotation, it has to be veri�ed if the three rotation modes
are µg-independent. It should also be remarked that in the case where there is a Dirichlet con-
dition at a portion of boundary of structure part aiming to avoid these rotation modes, we also
believe that the property of Ks could be preserved by increasing simply the number of terms in
the EIM's approximation. To sum up, in the case where the geometry of structure domain is
also considered as a parameter of the problem, we would like to alert that the instability of the
approximative full order model (5.70) might not be avoided by simply increasing the number
of terms in the EIM's approximation.

5.4.3 Step 3: Construction of Petrov-Galerkin reduced order model with

the reduced basis based on POD-Greedy algorithm

Now that we have transformed the full order model (5.67) into an approximative full order
model (5.70) in which all the operators and the right-hand size are a�ne parametric depen-
dence, the next and the last step consist of constructing an appropriated parametrized Petrov-
Galerkin reduced order model corresponding to the approximative full order model (5.70), with
the same approach as presented in the previous chapter.

For a given trial and test reduced basis V,W ∈ Rn×N , we recall that the Petrov-Galerkin
projection reduced order model of the approximative full model (5.70) writes:

MEIM
r (µ)Ẍr(t;µ) +CEIM

r (µ)Ẋr(t;µ) +KEIM
r (µ)Xr(t;µ) =

NF∑
i=1

θi(t)F
EIM
i,r (µ) (5.71)

where the reduced matrices and vectors are de�ned by:

MEIM
r (µ) = WTMEIM (µ)V, CEIM

r (µ) = WTCEIM (µ)V

KEIM
r (µ) = WTKEIM (µ)V, FEIMi,r (µ) = WTFEIMi,r (µ), 1 ≤ i ≤ NF

(5.72)

We would like also to recall that approximation of the solution of the full order model (5.70)
by the reduced order model (5.71) is de�ned by X(t;µ) = VXr(t;µ). For the case where the
output of interest can be written as a linear (quadratic) form, its approximation by the reduced
order model (5.71) is given by Sroml (t;µ) = LTrXr(t;µ) (Sromq (t;µ) = XT

r (t;µ)QrXr(t;µ)) ,
where the reduced vector Lr ∈ RN is de�ned by LTr = LTV (the reduced matrix Qr ∈ RN×N

is de�ned by Qr = VTQV). For the construction of the reduced basis V in the context
of parametrized time-domain vibro-acoustic problem, we recall that we have introduced in
the previous chapter some modi�cations in the classical POD-Greedy in order to ensure the
stability of the reduced order model. For the formulation in (us, φ), the proposed POD-
Greedy algorithm is outlined by Algorithm 13. For the formulation in (us, p) and (us, p, ϕ),
the proposed POD-Greedy algorithm are outlined respectively by Algorithm 14 and 15.
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5.4.4 Work�ow

To sum up, we condense the results from the preceding sections into a structured work�ow
for constructing an e�cient reduced order model of a non-a�nely parametrized time-domain
vibro-acoustic �nite element models. A schematic of this work�ow is depicted in Figure 5.15
in which we would like to emphasize that the three steps presented in the above sections are
performed in o�ine stage.

Identify the displacement �eld u(µg)
for the construction of the parametrized
mesh Th(µg) of the full order model

Use EIM to obtain an approxima-
tion of the solution u(µg) of the

parametrized linear elasticity prob-
lem (5.49) as in the relation (5.69)

Use EIM in an algebraic and black box
way to obtain an approximation in a�ne
form for the matrices M, C, K and the
right-hand side vectors Fi and identify
the corresponding reduced elements

Construction the reduced
basis V with POD-
Greedy Algorithm 15

Construction the reduced
basis V with POD-
Greedy Algorithm 14

Construction the reduced
basis V with POD-
Greedy Algorithm 13

Computation of the
data of the o�ine stage
with Algorithm 4 on the
couple (W = V,V)

Computation of the data
of the o�ine stage with

Algorithm 4 on the couple
(W = [Vs,−Vf ]

T
,V =

[Vs,Vf ]
T

)

Computation of the
data of the o�ine stage
with Algorithm 4 on the
couple (W = V,V)

Computation of the
output of interest for

any values of parameter
µ ∈ D with Algorithm 5

Step 1 of offline stage

Step 2 of offline stage

(us, p, ϕ) (u
s , p)(us

, φ
)

Online stage

Step 3 of offline stage

Figure 5.15: Work�ow for the case of non-a�ne dependence in parameter
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5.5 Numerical results

The aim of this section is to illustrate numerically the e�ciency of our reduced order mod-
elling framework in a simple study case, of interaction of submerged structure and shock wave
problem, before applying it in the industrial cases. Here, we will consider only the case of the
formulation in (us, φ

sca) (see Section 2.4.1). However, it should be noted that the methodology
can also be applied in for the three other three formulations presented in Section 2.4.

Presentation of the study case

A graphical representation of the study case is presented in Figure 5.16. The structural part
consists of an elastic ring of radius R and thickness h and an elastic structure in form of T on
which a spring-mass system is suspended. The structure under consideration is subjected to an
acoustic shock wave induced by an underwater explosion of Mtnt kilograms of Trinitrotoluene
(TNT) detonated at (d, 0). At t = 0, we assume that the shock wave arrives at the stand-o�
point (R, 0).

ex

ey

l2

l1

e1

e2 �

(pinc, vinc)

(d, 0)

Explosive

keq
�

meqh

R

Figure 5.16: Graphical representation of the �rst study case

For numerical application, we use R = 2 m, h = 0.5 m, e1 = e2 = 0.2 m and d = 50 m.
Both the elastic ring and the structure in T-form have Young's modulus E = 200 GPa, mass
density ρs = 7 800 kg/m3 and Poisson's ratio ν = 0.28. The density and the speed sound of
the �uid are given by ρ0 = 1 000 kg/m3, c0 = 1 500 m/s. For the characteristics of the shock
wave which are modelled by Equation (2.12) for incident pressure and by Equation (2.15) for
incident �uid particle's velocity, we use the value of constants Pc, vc, A and B provided by
Equation (2.10) according to [40].
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The parameter vector in the problem is de�ned by µ := (meq, feq,Mtnt, l1, l2) wheremeq and

feq := 1
2π

√
keq
meq

are respectively the mass and the frequency of the spring-mass system, Mtnt is

the mass of Trinitrotoluene (TNT) in explosion and l1, l2 are the lengths of the structure in T-
form. The parameter spaces is set by D := [10, 1000]× [250, 1000]× [100, 1000]× [0.9l̄1, 1.1l̄1]×
[0.9l̄2, 1.1l̄2] ⊂ R5 where l̄1 = l̄2 = 0.8 m are the nominal values of the lengths of the structure
in T-form. Here, the vector of geometrical parameter µg is de�ned by µg := (l1, l2). The
geometry of reference is chosen as the particular case where µg = (l̄1, l̄2).

Full order model and output of interest

In order to approximate the Sommerfeld radiation condition, a truncated �uid domain in form
of a circle of radius Rbgt = 4 m is employed. On the boundary of the truncated �uid domain, the
BGT-1 boundary condition (1.35) is applied in order to approximate the outgoing sound wave
by a cylindrical wave for which we use the value of impedance ZR = 2ρ0Rbgt and ZC = ρ0c0.
In �nite element modelling, we use quadratic triangular elements both for the structure
and the �uid part. The reference mesh of structure part is illustrated in Figure 5.17. In the
reference mesh, the largest element size in the �uid part and structure part are respectively
0.08 m and 0.04 m.

Figure 5.17: The structural part in the reference mesh.

Here, we denote by Γ1, Γ2 and Γ3 the boundary of the structural part Ωs which are re-
spectively marked in blue, red and green in Figure 5.16. In order to transform the geometry
(mesh) of reference to a new geometry (mesh), we solve the elasticity problem (5.49) which is
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de�ned only on the structure part with the following boundary displacement:

udx(x, y;µg) = 0 on Γ1

udy(x, y;µg) = 0 on Γ1

udy(x, y;µg) = 0 on Γ2

udx(x, y;µg) = −(l1 − l̄1) on Γ3

udy(x, y;µg) =
l2 − l̄2
l̄2

y on Γ3

(5.73)

In our study, we use the same values of Young's modulus and Poisson's ratio in the elasticity
problem (5.49) as in the �uid-structure interaction problem. It should be noted that we impose
in Equation (5.73) that the boundary displacement on Γ1 is zero so that the �uid-structure
interface Γ ⊂ Γ1 is independent of µg. As a result, the position of nodes in �uid part do not
change in function of µg. Thus, a coupling damping matrix Cext

uφ in �nite element model (2.23)
is µ-independent in this study case.

In the �nite element model, we have 61 243 degrees of freedoms, 31 525 of which correspond
to the structural part (one of which corresponds to the point mass in the spring-mass system)
and 29 718 of which correspond to the acoustic �uid part. For time-discretization of �nite
element model, Newmark scheme (with β = 1

4(1 − α)2 and γ = 1/2 − α where α = −0.2) is
employed by using the time step ∆t = 4 · 10−5 which means that the shock wave needs 100
times step in order to travel the distance of 3R. The �nal time of interest is set by T = 6R/c0

so that the total number of time steps is Nt = 200. In this study case, the acceleration ameq of
the point mass in the spring-mass system represents the output of interest.

Errors introduced by the approximative full order model

In this study case, we note that the boundary displacement ud exhibits a trivial a�ne decom-
position such that it can be exactly recovered by EIM with two basis functions. As a result,
the �rst step presented in Section 5.4.1 of our framework does not introduce any error. To
access to the in�uence of the tolerance εEIM used for approximating the full order model, we
are interested in the error de�ned by:

∆l(µ) :=

(∫ T
0

∣∣∣afommeq (t;µ)− afom,EIMmeq (t;µ)
∣∣∣2 dt)1/2

(∫ T
0

∣∣ameq(t;µ)
∣∣2 dt)1/2

(5.74)

where the superscripts fom and fom,EIM refer respectively to the values provided by the original
full model and the approximative full order model proposed in the second step of our framework.

For the left-hand side operators, we only run the algebraic version of EIM algorithm outlined
in Algorithm 19 with the mass matrix Muφ and the sti�ness matrix Kuφ since the damping
matrix Cext

uφ is µ-independent. With a training sample DEIMtrain ⊂ D consisting of 100 values of
parameters chosen randomly, the convergence of the error indicator (which is de�ned as the
relative error evaluated at the value of parameter which maximizes the residual) for the both
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matrices Muφ and Kuφ are reported by Figure 5.18.

(a) Case of mass matrix Muφ (b) Case of sti�ness matrix Kuφ

Figure 5.18: The evolution of error indicator in EIM algorithm 19 applied on Muφ and Kuφ

Based on the decay of the value of error indicator, the number of terms to be retained in
EIM approximation in the case where εEIM = 10−6 is NEIM

M = 7 for the mass matrix and
NEIM
K = 25 for the sti�ness matrix. The corresponding reduced elements in the structure in

T-form part are then displayed in Figure 5.19.

(a) Case of mass matrix Muφ (b) Case of sti�ness matrix Kuφ

Figure 5.19: The corresponding reduced elements (marked in blue) in the structure in T-form
part.

For the right-hand side, the parameter dependence is only via the mass of explosive. Ac-
cording to Remark 5.4.4, we will use the approximation in a�ne form of the relation (5.46) in
which, from the numerical results presented in Section 5.2.5, we set NEIM

pv = NEIM
p = NEIM

v

where NEIM
p and NEIM

v are determined by EIM Algorithm 16 applied on the incident pressure
pinc and incident �uid particle's velocity vincr with respect to the given tolerance εEIM . With a
training sample DMtnt ⊂ [100, 1000] consisting of 100 values chosen randomly, the decay of the
error indicator, which is de�ned as the relative error evaluated at the value of parameter which
maximizes the residual (i.e the next value of parameter to be chosen by EIM algorithm), are
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displayed in Figure 5.20.

Figure 5.20: The convergence of error indicator in EIM algorithm 16 applying on pinc and vincr

Figure 5.20 indicates that it requires respectively NEIM
p = NEIM

v = 5 and NEIM
p =

NEIM
v = 6 in order to respect to the stopping criterion εEIM = 10−4 and εEIM = 10−6.

From a test sample Dtest ⊂ D consisting of 50 values of parameters chosen randomly, the
errors introduced in full order model approximation by the second step of our framework is
summarized by Table 5.1.

εEIM
Number of terms in EIM Errors
NEIM
M NEIM

K NEIM
pv maxµ∈Dtest ∆l(µ) minµ∈Dtest ∆l(µ) moyµ∈Dtest∆l(µ)

10−4 7 16 5 1.82 · 10−1 2.93 · 10−4 1.1 · 10−2

10−6 7 25 6 4.66 · 10−3 5.42 · 10−5 5.84 · 10−4

Table 5.1: The errors introduced by the approximative full order model.

Convergence of POD-Greedy algorithm and e�ciency of the reduced order models

Next, we run the POD-Greedy algorithm 13 for both case of εEIM = 10−4 and εEIM = 10−6

with the value of εPOD set by 10−4. For both cases, we use the same training sample Dktrain
which is chosen randomly at each iteration with |Dktrain| = 50. The evolution of error indicator
and the error of output of interest evaluated at µ∗k+1 = argmaxµ∈Dktrain∆l(µ) are displayed in
Figure 5.21. The dimension of the corresponding reduced basis are reported by Figure 5.22.
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(a) Indicator error ∆
(b) Error of output of interest for µ∗k+1 =
argmaxµ∈Dk

train
∆l(µ)

Figure 5.21: The convergence of POD-Greedy algorithm

Figure 5.22: Size of the reduced basis

We observed that in both case, POD-Greedy algorithm chose the same value of parameter
for enriching the basis and that we have the same evolution of the dimension of the reduced
basis. This can be explained by the fact that we have a small error between the approximative
full order model with εEIM = 10−4 and the case of εEIM = 10−6. As in the numerical results
presented in the previous chapter, we remark again that the indicator error based on the
norm of residual is very pessimist for predicting the error on the output of interest, which is
represented by the acceleration of the point mass of spring-mass system.

We now turn to the accuracy of the obtained reduced order models. Here, we denote by
∆rom,fom
l the error between the reduced order model and the full order model, by ∆rom, app fom

l

the error between the reduced order model and the approximative full model and by ∆fom, appfom
l

the error between the approximative full model and the original full order model. The evo-
lution of errors ∆rom,fom

l , ∆rom, app fom
l during the iterations of POD-Greedy Algorithm and

the error ∆fom, app fom
l are reported by Figure 5.23.
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(a) Case of εEIM = 10−4 (b) Case of εEIM = 10−6

Figure 5.23: The evolution of accuracy of reduced order model.

Figure 5.23 shows that the error ∆rom,fom
l is bounded after 3 iterations of POD-Greedy

algorithm for the case of εEIM = 10−4 and after 4 iterations for the case εEIM = 10−6. This is
due to the domination of the error ∆fom, app fom

l introduced in the second step of the proposed
framework which aims to recover the a�ne parametric dependence property.

In this numerical study, the development is not yet accomplished for the computation of
new mesh by changing only the position of reduced elements which is necessary in order to
ensure that the complexity of online stage depends only on the dimension of the reduced order
model (see Remark 5.4.3). Even though, we would like to point out that the reduced order
model obtained with 3 iterations of POD-Greedy algorithm in the case of εEIM = 10−4, which
already provides an average error less than 2%, takes about 3 seconds. In comparison with the
full order model which takes about 45 seconds, we have in this case a factor 15 as time-speed
up.

5.6 Conclusions

In this chapter, we expose a reduced order modelling framework for a non-a�nely parametrized
time-domain vibro-acoustic �nite element model. We start with a presentation of the Empirical
Interpolation Method. Next, we derived its applications for approximating the right-hand
side vector of an interaction between a submerged structure and a shock wave problem in an
a�ne parametric dependence form for the case where the mass of explosive material is one of
parameter of the problem. We also derive its application in purely algebraic and black box way
for any non-a�nely parametrized matrix/vector resulting from a �nite element discretization.
With a parametrization of a varying shape domain (mesh) using the Solid Extension Mesh
Moving Technique (SEMMT) and the application of EIM for recovering approximately the
property of a�ne dependence in parameter, the reduced order modelling framework proposed in
Chapter 4 can then be extended to the case of non-a�nely parametric dependence with/without
the variability of geometry.

A simple numerical study case with �ve parameters, two of which are geometrical param-
eters, is presented in order to highlight the e�ciency of the proposed framework. Since the
development is not yet accomplished for the computation of new mesh by changing only the
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position of reduced elements at online stage, numerical results presented here do not show a
very high performance of the reduced order models. Thus, a short-term objective is to optimize
the complexity in online stage and to apply the proposed framework into industrial cases.
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Conclusions and perspectives

The main objective of this thesis is to propose and develop some reduced order modelling
frameworks for parametrized time-domain vibro-acoustic �nite element model into an indus-
trial software, code_aster, with the aim of applying the approach on an industrial problem:
� the design of structures subjected to underwater explosion's primary shock wave �.

In the �rst part, we exposed the di�erent formulations of vibro-acoustic �nite elements
models and we remark that the formulation based on structure displacement - �uid pressure
- �uid displacement potential (us, p, ϕ), which is the only formulation already implemented in
code_aster, is not the best formulation to be employed in the context of our industrial problem
of interest which is the problem of interaction of submerged structure and acoustic shock wave.
As a result, we developed two new formulations, formulation in structure displacement - �uid
pressure (us, p) and in structure displacement - �uid velocity potential (us, φ), in code_aster.
The excitation induced by an acoustic shock wave is then developed and validated numerically
with two study cases for each formulation.

In the second part, we start with an overview on the stabilization techniques for Petrov-
Galerkin based model order reduction of the three formulations considered in the thesis. At
�rst, we propose to use the reduced basis based on the corresponding frequency modes, whose
frequencies are selected by a Greedy algorithm. According to the proposed stabilization tech-
niques, some modi�cations are introduced in the classical Greedy algorithm. Numerical results
con�rm the stability of the obtained reduced order model. Concerning the accuracy, we ob-
serve that the proposed reduced basis results in an inaccurate reduced order model especially
in the case where the excitation is of high frequency. Therefore, we turn to an alternative for
the construction of an accurate reduced basis. The construction of the reduced basis with a
POD-Greedy algorithm is considered in this work. With some modi�cations for ensuring the
stability of the reduced order model and an inexpensive error indicator based on the norm
of residual, we derive an e�cient reduced order modelling framework for parametrized time-
domain vibro-acoustic problem. The extension of the proposed framework into the case of
non-a�ne dependence in parameter is also given by exploiting the well-known Empirical In-
terpolation Method (EIM) with a purely algebraic and black box way and the so-called Solid
Extension Mesh Moving Technique (SEMMT) for parametrizing the varying shape domain
(mesh). In the context of the interaction of submerged structure and acoustic shock wave
problem, numerical results on both simple study cases and industrial cases show that the e�-
ciency of the proposed model order reduction techniques is very promising.
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With these promising results, the proposed reduced order modelling framework should be
pursued in several directions:

� Extension to the case of a vibro-acoustic problem with a free surface. Only
the case without a free surface in the �uid part are considered in this thesis. Taking
into account the e�ect of free surface in the model is necessary in order to tackle a more
complex and general case which can occurs for instance when the submarine is submerged
at a shallow depth of the sea, and of course for the case of the ships.

� Application in other contexts of vibro-acoustic problem. In this thesis, we only
put the interest on vibro-acoustic phenomena resulting from the interaction of submerged
structure and acoustic shock wave problem. However, it should be mentioned that the
developed reduced order modelling framework can readily be applied for any parametrized
time-domain vibration and vibro-acoustic problem. It should also be interesting to point
out if the error indicator based on the norm of residual and the error estimator in energy
norm proposed in this thesis are still very pessimist in other contexts of vibro-acoustic
problems, such as in dimensioning of structures for seismic problem in nuclear industry,
acoustic discretion problem in naval and automotive industry, ...

� Introduction of dual problems for linear output of interest. For the case where
the output of interest is a linear form, a dual problem can be introduced in order to double
the convergence rate of the accuracy of the output of interest predicted by the reduced
order model. For stationary problems, it has been widely investigated in [38, 123, 73, 91].
For time-domain vibro-acoustic problem, it should be exploited the idea proposed in [62]
in a context of parametrized parabolic problem.

� Extension to the case where the Dirichlet condition is treated by Lagrange

multiplier. In this thesis, we restrict ourselves to the case where the Dirichlet condition
is treated by the elimination method. Thus, it can not yet be applied to a more general
case, for instance when we aim to impose a part of structure to have a rigid behaviour.
A possible approach for the case of Lagrange method is to follow the idea in [41] for
non-linear transient heat conduction problem, in which it has been proposed to construct
a reduced basis for physical (i.e temperature) and Lagrange multiplier degrees of freedom
separately.

� Application of the reduced order models in optimization problem. With a
complexity relatively inexpensive compared to the full order model, it should also be
interesting to apply on other problems such as in optimization problem (for instance, see
[93] for the case of a stationary problem with quadratic functional cost and [49] for the
case of the parabolic problem with a linear functional cost).

� Extension to the case with non-linear structural. A more challenging problem is to
extend the approach to the case where the structure under consideration has a non-linear
behaviour. To start, we advise to exploit some ideas from [26] which aims at tackling the
parametrized non-linear elasticity in stationary regime.
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Appendix A

Numerical time-integration with

Newmark method

In this appendix, we give a review on Newmark method [101] which is one of the most widely
used numerical integration methods for the second Order Di�erential Equations (ODE). For
example, the second-order ordinary di�erential equation obtained after a spatial discretization
by the �nite element method of a structural dynamic or a time-domain vibro-acoustic problem.

Here, we consider a general second-order ordinary di�erential equation:
MẌ(t) +CẊ(t) +KX(t) = F(t)

X(t = 0) = X0

Ẋ(t = 0) = Ẋ0

(A.1)

where the matrices M,C and K are in Rn×n and the right-hand side F is a time dependent
vector of Rn and we assume that the time interval of interest [0, T ] is partitioned into Nt

equidistant time steps {tn}Ntn=0, of size ∆t = T/Nt. Let Xn, Ẋn and Ẍn be respectively the
displacement, velocity and acceleration at the time step tn = n∆t, the Newmark method [101]
consists of using the following approximations for the velocity Ẋn+1 and the displacement
Xn+1:

Ẋn+1 = Ẋn + ∆t
[
(1− γ)Ẍn + γẌn+1

]
Xn+1 = Xn + ∆tẊn + (∆t)2

[
(1/2− β)Ẍn + βẌn+1

] (A.2)

where β, γ are the two parameters of the method, in the equilibrium equation written at tn+1,
that is:

MẌn+1 +CẊn+1 +KXn+1 = F(tn+1) (A.3)

In what follows, we note:

a0 =
1

β∆t2
, a1 =

γ

β∆t
, a2 =

1

β∆t
, a3 =

1

2β
− 1

a4 =
γ

β
− 1, a5 =

∆t

2
(
γ

β
− 2), a6 = ∆t(1− γ), a7 = γ∆t

(A.4)
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The relation (A.2) is equivalent to:

Ẍn+1 = a0(Xn+1 −Xn)− a2Ẋn − a3Ẍn

Ẋn+1 = Ẋn + a6Ẍn + a7Ẍn+1

(A.5)

Eliminating Ẍn+1 and Ẋn+1 in Equation (A.3) by using the relation (A.5), leads to:

K̃Xn+1 = F̃(tn+1) (A.6)

where

K̃ = K+ a0M+ a1C

F̃(tn+1) = F(tn+1) +C
{
a1Xn + a4Ẋn + a5Ẍn

}
+M

{
a0Xn + a2Ẋn + a3Ẍn

} (A.7)

The equation (A.6) allows us to compute the displacement Ẍn+1 from the value of Xn, Ẋn and
Ẍn. After that the value of the displacement Ẍn+1 is computed, we can update the value of
the acceleration Ẍn+1 and the velocity Ẋn+1 by using the relation (A.5). The implementation
of the Newmark method is summarized in Algorithm 21.

Algorithm 21 Numerical integration with Newmark method
Input: Size of time step ∆t, Number of time step Nt, Parameters (γ, β), Initial conditions
X0, Ẋ0

Output: Values of Xn, Ẋn, Ẍn, for all 1 ≤ n ≤ Nt

1: Compute the coe�cients (ai)0≤i≤7 in Equation (A.4)
2: Compute the initial acceleration Ẍ0 by:

Ẍ0 = M−1
{
F(0)−CẊ0 −KX0

}
(A.8)

3: Compute and factorize the matrix K̃ = K+ a0M+ a1C

4: for n = 0, · · · , Nt − 1 do

5: Compute F̃(tn+1) = F(tn+1)+C
{
a1Xn + a4Ẋn + a5Ẍn

}
+M

{
a0Xn + a2Ẋn + a3Ẍn

}
6: Compute the displacement Xn+1 by solving the following linear system:

K̃Xn+1 = F̃(tn+1) (A.9)

7: Compute the acceleration Ẍn+1 and the velocity Ẋn+1 by the following relations:

Ẍn+1 = a0(Xn+1 −Xn)− a2Ẋn − a3Ẍn

Ẋn+1 = Ẋn + a6Ẍn + a7Ẍn+1

(A.10)

8: end for
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Properties of the Newmark method

Now, we give an overview on some important properties of Newmark method. To start, let
us recall the notion � consistency � of the numerical scheme. A numerical scheme is called
consistent if it reduces to the original system of di�erential equations as the size of time step
∆t tends to zeros. Equivalently speaking, let Π(X) be a system of di�erential equations and we
denote the corresponding numerical scheme by Π∆t(X), we say that the numerical scheme Π∆t

is consistent if the truncation error, de�ned by Π(X)−Π∆t(X), tends to zeros when ∆t→ 0

for any su�ciently smooth solution X. Furthermore, we say that the numerical scheme is con-
sistent of order p if the truncation error tends to zeros in O(∆tp). Another important notion
of the numerical scheme is � stability � property. A numerical scheme is called stable if the
error caused by a small perturbation in the numerical solution at time step tn remains bounded
for all tn+j , ∀j ≥ 0.

The analysis on consistency and stability properties of the Newmark family scheme is clas-
sically done with a system without damping by using spectral analysis, see for instance [58, 72].
The consistency and stability of Newmark scheme depend on the value of its two parameters
(γ, β). For the case where γ = 1/2, the Newmark scheme is consistent of order 2. In the case
where γ 6= 1/2, the consistency of the Newmark scheme is only of order 1. Assuming that the
mass matrixM is symmetric and positive de�nite and that the sti�ness matrix K is symmetric
and semi-positive de�nite, the Newmark method is

� Unstable if γ < 1/2

� Unconditionally stable if γ ≥ 1/2 and 2β − γ ≥ 0

� Conditionally stable if γ ≥ 1/2 and 2β − γ < 0. In this case, the stability is achieved if
the size of time step ∆t veri�es the following inequality:

∆t ≤ min
1≤i≤n

1

λi

2√
2γ − 4β

where λ is the eigenvalue of the Generalized Eigenvalue problem: KX = λMX.

One of the most used Newmark scheme is the case where γ = 1/2 and β = 1/4 since
it provides an unconditionally stable scheme with a consistent of order 2 and without any
numerical dissipation. However, in some cases, a small numerical dissipation is required in
order to damp out the unwanted contribution of high-frequency modes, for instance in the
case where the excitation is a discontinuous function in time as in the study case in Section
2.5 of Chapter 2. For the case where γ < 1/2, the Newmark scheme introduces a negative
damping which results in instability. For the case where γ > 1/2, it can be shown that
the numerical dissipation is proportional to (γ − 1/2)∆t. Hence, it is commonly practice
to introduce a negative value parameter α for controlling the numerical dissipation via the
relation γ = 1/2 − α. To have an increasing numerical dissipation as a function of frequency,
it is su�cient to chose β ≥ 1

4(1 − α)2, in which the case of equality leads to an optimum
compromise between the precision and the numerical damping in high frequency modes.
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Time complexity of the Newmark method for the case of a direct solver

With the assumption that we have partitioned the time interval of interest [0, T ] into a set
of equidistant time steps {tn}Ntn=1 of size ∆t, the matrix K̃ of the left hand-side of Equation
(A.6), which allows us to compute the displacement Xn+1 at the new time steps, does not
change during the iteration. Hence, in practical use, when a direct solver is employed for the
resolution of the linear system (A.6), the matrix K̃ is factorized into a form: K̃ = LU where
L and U are respectively lower and upper triangular matrices, before entering the loop of the
step 4 of Algorithm 21. By doing so, the cost of the resolution of the linear system (A.6) at
each iteration is in O(n2).

Therefore, the total complexity of Algorithm 21, when a direct solver is used, is inO(facLU (K̃)+

n2Nt) where Nt is the number of time steps and O(facLU (K̃)) denotes the complexity of the
factorization LU of the matrix K̃ which depends strongly on its sparse structure.
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Appendix B

Semi-analytical solution of the study

case of Section 2.5.1

In this appendix, we give a short presentation of the construction of a semi-analytical solution
of the study case presented in Section 2.5.1. For the presentation in more detail, we refer to [82].

We assume here that the thickness h of the ring is very small compared to its radius R.
Under this hypothesis, using Love-Kircho� model (see for instance [113]) for describing the
dynamical of structure derives the following equations:

ρshÜθ −
Eh

(1− ν2)R2

[
(1 + k2)

∂2Uθ
∂θ2

+
∂Ur
∂θ
− k2∂

3Ur
∂θ3

]
= 0

ρshÜr +
Eh

(1− ν2)R2

[
Ur + k2∂

4Ur
∂θ4

+
∂Uθ
∂θ
− k2∂

3Uθ
∂θ3

]
= −ptot

(B.1)

where Ur, Uθ are radial and ortho-radial displacements. The constant k2 is equal to h2/(12R2).
Next, let us render structural and �uid variables dimensionless using the following table of of
normalization.

Variable Factor of normalization
Displacement R

Times R/c0

Pressure ρ0c
2
0

Velocity potential Rc0

Table B.1: Table of normalization

The equivalent of Equations (B.1) in term of dimensionless radial and of ortho-radial dis-
placement reads as:[

Üθ
Ür

]
+ C2

[
−(1 + k2) ∂

2

∂θ2
−( ∂∂θ − k

2 ∂3

∂θ3
)

∂
∂θ − k

2 ∂3

∂θ3
1 + k2 ∂4

∂θ4

][
Uθ
Ur

]
= K

[
0

−ptot

]
(B.2)
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where the dimensionless constants C, K are de�ned by:

C =
cl
c0
,K =

M
E

(B.3)

withM = ρs/ρ0, E = h/R and cl =
√
E/(ρs(1− ν2)). Since the functions Ur, Uθ are 2π− pe-

riodic in θ, they can be expressed in form of Fourier series as:[
Uθ(θ, t)

Ur(θ, t)

]
=

[
U0
θ (t)

U0
r (t)

]
+
∞∑
n=1

[
USnθ (t) cos(nθ)

USnr (t) cos(nθ)

]
+
∞∑
n=1

[
UAnθ (t) sin(nθ)

UAnr (t) sin(nθ)

]
(B.4)

The total pressure at the interface �uid-structure is also a 2π− periodic in θ. Thus, it can be
written as Fourier series:

ptot|r=1 = p0
tot(t) +

∞∑
n=1

pSntot(t) cos(nθ) +
∞∑
n=1

pAntot (t) sin(nθ) (B.5)

Injecting the relations (B.4)-(B.5) in Equation (B.2) with some obvious manipulations leads to
the following equations:

Ü0
θ (t) = 0 (B.6)

Ü0
r (t) + C2 = −Kp0

tot (B.7)

[
ÜSnθ (t)

ÜSnr (t)

]
+ C2

[
(1 + k2)n2 (1 + k2n2)n

(1 + k2n2)n (1 + k2n4)

][
USnθ (t)

USnr (t)

]
= K

[
0

−pSntot

]
(B.8)

[
ÜAnθ (t)

ÜAnr (t)

]
+ C2

[
(1 + k2)n2 −(1 + k2n2)n

−(1 + k2n2)n (1 + k2n4)

][
UAnθ (t)

UAnr (t)

]
= K

[
0

−pAntot

]
(B.9)

where p0
tot, p

Sn
tot and pAntot are Fourier coe�cients of the total pressure at the interface �uid-

structure.

In the �uid part, we chose to use the velocity potential φ to describe its state. By using
Table B.1, the wave equation in term of dimensionless velocity potential φ written in Laplace
domain and in cylindrical coordinate is given by:[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− s2

]
φ̂(r, θ, s) = 0 (B.10)

where s denotes the Laplace variable and φ̂ denotes the Laplace transformed of φ. The ana-
lytical solution of Equation (B.10) can be expressed as (see [2]) :

φ̂(r, θ, s) =
∞∑
n=0

An(s)Kn(rs) cos(nθ) +
∞∑
n=0

Bn(s)Kn(rs) sin(nθ) (B.11)

where the functionKn is modi�ed Bessel function order n of the second kind and the coe�cients
An, Bn are to be determined by using the boundary conditions. We recall that the total velocity
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potential can be decomposed by three components: φtot = φinc + φref + φrad, where the �rst
term is the data of the problem. We recall that φ̂ref and φ̂rad also verify the wave equation
(B.10). Therefore, they can be analytically expressed by Equation (B.11). The boundary
conditions of φ̂ref and φ̂rad are respectively given by:

∂φ̂ref

∂r
|r=1 = −vinc|r=1 · er,

∂φ̂rad

∂r
|r=1 = sÛr (B.12)

where vinc|r=1 denotes the incident velocity of �uid particles on the �uid-structure interface.
We remark that the function vinc|r=1 · er is 2π-periodic also in θ. Hence, vinc|r=1 · er can be
written as the following Fourier series:

vinc|r=1 · er = v̂0
inc(s) +

∞∑
n=1

v̂Sninc(s) cos(nθ) +
∞∑
n=1

v̂Aninc(s) sin(nθ) (B.13)

where

v̂0
inc(s) =

1

2π

∫ 2π

0
vinc|r=1 · erdθ

v̂Sninc(s) =
1

2π

∫ π

0
vinc|r=1 · er cos(nθ)dθ

v̂Aninc(s) =
1

2π

∫ π

0
vinc|r=1 · er sin(nθ)dθ

By combining Equation (B.13) with the �rst equation of (B.12), we can determine the value
of the coe�cients An and Bn in Equation (B.11) for the re�ected velocity potential φref . By
combing the second equation of (B.4) written in Laplace domain with the second equation of
(B.12), we can determine the value of the coe�cients An and Bn in Equation (B.11) for the
radiated velocity potential φrad provided that the value of Ur is known. The re�ected and
radiated velocity potential can be expressed explicitly by:

φ̂ref (r, θ, s) = Ẑ0(r, s)v0
inc(s) +

∞∑
n=1

Ẑn(r, s)
[
v̂Sninc(s) cos(nθ) + v̂Aninc(s) sin(nθ)

]
φ̂ray(r, θ, s) = −Ẑ0(r, s)sÛ0

r (s)−
∞∑
n=1

Ẑn(r, s)
[
sÛSnr (s) cos(nθ) + sÛAnr (s) sin(nθ)

] (B.14)

where the complex functions Ẑn(r, s) are de�ned by:

Ẑ0(r, s) = −Kn(rs)

sK ′(s)
=

Kn(rs)

sKn+1 − nKn(s)
(B.15)

In Laplace domain, the relation between p and φ given by Equation (1.17), in term of di-
mensionless variables given by Table B.1, writes: p̂ = −sφ̂. This relation implies that the
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expression of the dimensionless re�ected and radiated pressure can be written as:

p̂ref (r, θ, s) = −Ẑ0(r, s)sv0
inc(s)−

∞∑
n=1

Ẑn(r, s)
[
sv̂Sninc(s) cos(nθ) + sv̂Aninc(s) sin(nθ)

]
p̂ray(r, θ, s) = Ẑ0(r, s)s2Û0

r (s) +
∞∑
n=1

Ẑn(r, s)
[
s2ÛSnr (s) cos(nθ) + s2ÛAnr (s) sin(nθ)

] (B.16)

The re�ected pressure can be then computed numerically using the �rst equation of (B.16) by
truncating the Fourier series and using a numerical inverse Laplace transform algorithm. With
the same approach, the radiated pressure can be computed using the second equation of (B.16)
provided that ÛSnr (s) and ÛAnr (s) are known.

To compute the radial and ortho-radial displacement in Laplace domain, we need to evaluate
the pressure at the �uid-structure interface. At interface where r = 1, we can write the incident
pressure in Laplace domain in form of Fourier series as:

p̂inc(1, θ, s) = p̂0
inc(s) +

∞∑
n=1

p̂Sninc(s) cos(nθ) +

∞∑
n=1

p̂Aninc(s) sin(nθ) (B.17)

Combining Equation (B.16) and Equation (B.17), the total pressure at �uid-structure interface
is given by:

p̂tot(1, θ, s) = p̂0
inc(s)− Ẑ0(r, s)sv0

inc(s) + Ẑ0(r, s)s2Û0
r (s)

+
∞∑
n=1

[
p̂Sninc(s)− Ẑn(1, s)sv̂Sninc(s) + Ẑn(1, s)s2ÛSnr (s)

]
cos(nθ)

+

∞∑
n=1

[
p̂Aninc(s)− Ẑn(1, s)sv̂Aninc(s) + Ẑn(1, s)s2ÛAnr (s)

]
sin(nθ)

(B.18)

Injecting the relation (B.18) in Equations (B.7)-(B.8) and (B.9) written in Laplace domain
leads to the following linear systems:

M̂0(s)Û0
r (s) = −K

(
p̂0
inc(s)− Ẑ0(1, s)sv̂0

inc(s)
)

M̂S
n (s)

[
ÛSnθ (s)

ÛSnr (s)

]
= −K

[
0

p̂Sninc − Ẑn(1, s)sv̂Sninc(s)

]

M̂A
n (s)

[
ÛAnθ (s)

ÛAnr (s)

]
= −K

[
0

p̂Aninc(s)− Ẑn(1, s)sv̂Aninc(s)

] (B.19)

where
M̂0(s) = s2

(
1 + Ẑ0(1, s)

)
+ C2

M̂S
n (s) =

[
s2 + C2(1 + k2)n2 C2(1 + k2)n2

C2(1 + k2)n2 s2
(

1 +KẐn(1, s)
)

+ C2(1 + k2n4)

]

M̂A
n (s) =

[
s2 + C2(1 + k2)n2 −C2(1 + k2)n2

−C2(1 + k2)n2 s2
(

1 +KẐn(1, s)
)

+ C2(1 + k2n4)

] (B.20)
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With Equation (B.19), the coe�cients ÛSnθ (s), ÛAnθ (s), ÛSnr (s) and ÛAnr (s) can be com-
puted with a resolution of the linear systems 2× 2. Therefore, we can obtain a semi-analytical
solution of prad, Uθ and Ur by truncating their corresponding Fourier series in Laplace domain
and by using a numerical inverse Laplace transform algorithm in order to turn back to time-
domain.

For numerical applications, the semi-analytical solutions used in Section 2.5.1 are obtained
by devising the interval [0, 2π] into 800 of equidistant points in order to compute numerically
the Fourier coe�cients pSninc, p

An
inc, v

Sn
inc and v

An
inc using the Midpoint rule. All Fourier series rep-

resenting the analytical solutions in Laplace domain are then truncated using the 200 number
of modes, i.e Nmode = 200. To return to time-domain, we use the numerical algorithm of
inversion Laplace transform proposed in [47].

227



228



Appendix C

Expression of residual norm in the case

of a�ne parametric dependence

In this appendix, we give a short demonstration of the expression of the norm of the right-hand
side and the residual, given by Equation (4.10), for the case of a�ne parametric dependence.

Let us begin by the �rst equation of (4.10). Since we consider that the right-hand side
vector of the problem can be expressed as:

F(µ) =

NF∑
i=1

θFi (t;µ)Fi (C.1)

we have:

||F(t;µ)||2 = 〈
NF∑
i=1

θFi (t;µ)Fi,

NF∑
j=1

θFj (t;µ)Fj〉

=

NF∑
i=1

NF∑
j=1

θFi (t;µ)θFj (t;µ)〈Fi,Fj〉

= ΘT
F (t;µ)MFFΘF (t;µ)

(C.2)

where the vector ΘF (t;µ) ∈ RNF is de�ned by ΘF (t;µ) =
[
θF1 (t;µ), · · · , θFNF (t;µ)

]T
∈ RNF

and the matrix MFF ∈ RNF×NF is independent of µ and is de�ned by (MFF )ij = 〈Fi,Fj〉.

We recall that the residual vector is de�ned by:

R(t;µ) := F(t;µ)−M(µ)VẌr(t;µ)−C(µ)VẊr(t;µ)−K(µ)VXr(t;µ) (C.3)
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Thus, we have:

||R(t;µ)||2 = 〈F(t;µ)−M(µ)VẌr(t;µ)−C(µ)VẊr(t;µ) +K(µ)VXr(t;µ),

F(t;µ)−M(µ)VẌr(t;µ)−C(µ)VẊr(t;µ) +K(µ)VXr(t;µ)〉

= ||F(t;µ)||2 + ||M(µ)VẌr(t;µ)||2 + ||C(µ)VẊr(t;µ)||2 + ||K(µ)VXr(t;µ)||2

+ 2
(
〈M(µ)VẌr(t;µ),C(µ)VẊr(t;µ)〉+ 〈M(µ)VẌr(t;µ),K(µ)VXr(t;µ)〉

+〈C(µ)VẊr(t;µ),K(µ)VXr(t;µ)〉
)

− 2
(
〈F(t;µ),M(µ)VẌr(t;µ)〉+ 〈F(t;µ),C(µ)VẊr(t;µ)〉

+ 〈F(t;µ),K(µ)VXr(t;µ)〉)

(C.4)

We remark that the �rst term of the right hand-side of the relation (C.4) is the square
of the right-hand side norm. In the following, we use the notation: XM

r (t;µ) := Ẍr(t;µ),
XC
r (t;µ) := Ẋr(t;µ) and XK

r (t;µ) := Xr(t;µ). For i ∈ {1, · · · , N}, we denote by xAr,i(t;µ)

the ith component of the vector XA
r (t;µ) and by vi ∈ Rn the ith column of the given basis

V ∈ Rn×N . For A,B ∈ {M,C,K}, we have:

〈A(µ)VXA
r (t;µ),B(µ)VXB

r (t;µ)〉 = 〈A(µ)

N∑
i=1

xAr,i(t;µ)vi,B(µ)

N∑
j=1

xBr,j(t;µ)vj〉

=
N∑
i=1

N∑
j=1

xAr,i(t;µ)xBr,j(t;µ)〈A(µ)vi,B(µ)vj〉

= XA
r (t;µ)MAB(µ)XB

r (t;µ)

(C.5)

where the matrixMAB(µ) ∈ RN×N is µ-dependent and is de�ned by (MAB(µ))ij := 〈A(µ)vi,B(µ)vj〉.
Using the a�ne decomposition of A(µ):

A(µ) =

NA∑
i=1

θAi (µ)Ai , ∀A = {M,C,K} (C.6)

leads to:

〈A(µ)vi,B(µ)vj〉 = 〈
NA∑
l=1

θAl (µ)Alvi,

NB∑
k=1

θBk (µ)Bkvj〉

=

NA∑
l=1

NB∑
k=1

θAl (µ)θBk (µ)〈Alvi,Bkvj〉

(C.7)

Thus, we have:

MAB(µ) =

NA∑
l=1

NB∑
k=1

θAl (µ)θBk (µ)MAlBk (C.8)

where the matrices MAlBk ∈ RN×N , for l ∈ {1, · · · , NA} and k ∈ {1, · · · , NB}, are µ-
independent and are de�ned by (MAlBk)ij := 〈Alvi,Bkvj〉.
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Now, let us put the focus in the last three terms of the right-hand side of Equation (C.4).
Using the a�ne decomposition of Equation (C.1), we have, for A ∈ {M,C,K}:

〈F(t;µ),A(µ)VXA
r (t;µ)〉 = 〈

NF∑
i=1

θFi (t;µ)Fi,A(µ)VXA
r (t;µ)〉

= 〈
NF∑
i=1

θFi (t;µ)Fi,A(µ)
N∑
j=1

xAr,j(t;µ)vj〉

=

NF∑
i=1

N∑
j=1

θFi (t;µ)xAr,j(t;µ)〈Fi,A(µ)vj〉

= ΘT
F (t;µ)MAF (µ)XA

r (t;µ)

(C.9)

where the matrixMAF (µ) ∈ RNF×N is µ-dependent and is de�ned by (MAF (µ))ij := 〈Fi,A(µ)vj〉.
Using the a�ne decomposition assumption of Equation (C.6) leads to:

〈Fi,A(µ)vj〉 = 〈Fi,
NA∑
l=1

θAl (µ)Alvj〉

=

NA∑
l=1

θAl (µ)〈Fi,Alvj〉

(C.10)

Thus, we have:

MAF (µ) =

NA∑
l=1

θAl (µ)MAlF (C.11)

where the matrices MAlF ∈ RNF×N , for l ∈ {1, · · · , NA}, are µ-independent and are de�ned
by (MAlF )ij := 〈Fi,Alvj〉.

To conclude, by injecting the relations (C.2)-(C.5) and (C.9) in Equation (C.4), we obtain
the desired relation:

||R(t;µ)||2 = ΘT
F (t;µ)MFFΘF (t;µ)

+ Ẍ
T
r (t;µ)MMM (µ)Ẍr(t;µ) + Ẋ

T
r (t;µ)MCC(µ)Ẋr(t;µ) +XT

r (t;µ)MKK(µ)Xr(t;µ)

+ 2
(
Ẍ
T
r (t;µ)MMC(µ)Ẋr(t;µ) + Ẍ

T
r (t;µ)MMK(µ)Xr(t;µ) + Ẋ

T
r (t)MCK(µ)Xr(t)

)
− 2

(
ΘT
F (t;µ)MMF (µ)Ẍr(t;µ) + ΘT

F (t;µ)MCF (µ)Ẋr(t;µ) + ΘT
F (t;µ)MKF (µ)Xr(t;µ)

)
(C.12)

�
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Appendix D

Implementation in code_aster

In this appendix, we give a short overview of our work of implementation in the industrial �nite
element open-source software, code_aster. We start with a presentation of our developments
in the �nite element models of vibro-acoustic coupling in the �rst section. The de�nition of
the new operators developed for the reduced order modelling framework proposed in this thesis
are then presented in Section D.2.

D.1 Implementation of the FE models of vibro-acoustic coupling

in code_aster

The formulation in (us, p, ϕ) is actually the only formulation already implemented in the o�cial
version of code_aster. The development of the two new formulations: formulation in (us, p)

and in (us, φ), is done with a personal version and will be integrated in the o�cial version
latter. In our work, we chose to not modify the name of command but to modify of the
underlying de�nition of the elementary matrices. As a result, we will have three branches in
our development framework as depicted in Figure D.1.

An old version of code_aster

Formulation in (us, p)Formulation in (us, φ) Formulation in (us, p, ϕ)

Figure D.1: The three branches in our development framework

In the context of vibro-acoustic coupling, the �uid-structure mesh can be divided into three
parts: structural part, �uid part and �uid-structure interface. In our implementation, only the
de�nition of elementary matrices in the �uid part and �uid-structure interface change in func-
tion of the formulation.
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D.1. IMPLEMENTATION OF THE FE MODELS OF VIBRO-ACOUSTIC COUPLING IN CODE_ASTER

In code_aster, the computation of the element matrices is done by the operator
CALC_MATR_ELEM. We summarize the de�nition of the elementary matrices of each for-
mulation in Table D.1, D.2 and D.3 (in which the notation Ae refers to the elementary contri-
bution corresponding to the matrix A) for option MASS_MECA, option RIGI_MECA and
AMOR_MECA which compute respectively the elementary mass, sti�ness and damping ma-
trices of the problem. We recall that the de�nition of Ms,Mf ,Ks,Kf and Kc are given in
Section 1.2.1.

Option
Formulation in (us, φ)

Structural part Fluid part Interface �uid-structure

MASS_MECA Me
s

[
Ue
s

]
Me

f

[
Pe
] [

0 0

−ρ0K
e,T
c 0

] [
Ue
s

Pe

]
RIGI_MECA Ke

s

[
Ue
s

]
Ke
f

[
Pe
] [

0 Ke
c

0 0

] [
Ue
s

Pe

]
AMOR_MECA 0 0 0

Table D.1: De�nition of elementary matrices in the formulation in (us, p)

Option
Formulation in (us, φ)

Structural part Fluid part Interface �uid-structure
MASS_MECA Me

s

[
Ue
s

]
−ρ0M

e
f

[
Φe
]

0

RIGI_MECA Ke
s

[
Ue
s

]
−ρ0K

e
f

[
Φe
]

0

AMOR_MECA 0 0

[
0 −ρ0K

T
c

−ρ0K
e,T
c 0

] [
Ue
s

Φe

]

Table D.2: De�nition of elementary matrices in the formulation in (us, φ)

Option
Formulation in (us, p, ϕ)

Structural part Fluid part Interface �uid-structure

MASS_MECA Me
s

[
Ue
s

] [
0 Me

f

Me
f −ρ0K

e
f

] [
Pe

ϕe

]  0 0 −ρ0K
e
c

0 0 0

−ρ0K
e,T
c 0 0

Ue
s

Pe

ϕe


RIGI_MECA Ke

s

[
Ue
s

] [ 1
ρ0
Me

f 0

0 0

] [
Pe

ϕe

]
0

AMOR_MECA 0 0 0

Table D.3: De�nition of elementary matrices in the formulation in (us, p, ϕ)

Now that we have rede�ned all elementary matrices for the operator CALC_MATR_ELEM,
we can assemble the matrices for the new formulations with operator ASSE_MATRICE with
the same approach as the formulation in (us, p, ϕ) and use the obtained results to compute the
response in time-domain or frequency-domain with operator DYNA_VIBRA, or for the modal
analysis with operator CALC_MODE.
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D.1. IMPLEMENTATION OF THE FE MODELS OF VIBRO-ACOUSTIC COUPLING IN CODE_ASTER

Next, let us discuss on the impact of the modelling of the Sommerfeld radiation's condition
by the BGT-1 method [22]. The computation of the elementary terms of the impedance matrix
is done with the operation CALC_MATR_ELEM via option IMPE_MECA.

In the formulation in (us, p), the elementary terms of the impedance matrix is de�ned

by ρ0
Z Q

e
[
Pe
]
(see Equation (1.41) for the de�nition of the impedance matrix Q). To take

into account the BGT-1 boundary condition (1.35) in the model, we start by computing the
elementary terms of the impedance matrix of the elements on the truncated boundary Γ∞, for
the values Z = Zc = ρ0c0 and Z = ZR = ρ0R. We recall that ρ0 denotes the density of the
�uid, c0 denotes the speed of sound in the �uid and R denotes the radius of the truncated
�uid domain. An assembling procedure are then performed in order to construct the following
matrices:

ICup :=

[
0 0

0 ρ0
ZC
Q

]
, IRup :=

[
0 0

0 ρ0
ZR
Q

]
, (D.1)

The matrix ICup represents the damping matrix Cext
up in Equation (1.40). To obtain the matrix

Kext
up in Equation (1.40), it is su�cient to make an addition of the matrix Kup of Equation

(1.38), which can be obtained by assembling the elementary sti�ness matrices computed by
the operator CALC_MATR_ELEM, with the matrix IRup.

The same procedure holds for the case of the formulation in (us, φ) and in (us, p, ϕ). In

the formulation in (us, φ), the elementary impedance matrix is de�ned by −ρ20
Z Q

e
[
Φe
]
. The

matrices to be computed with an assembling procedure are given by:

ICuφ :=

[
0 0

0 − ρ20
ZC
Q

]
, IRuφ :=

[
0 0

0 − ρ20
ZR
Q

]
, (D.2)

To obtain the matrix Cext
uφ and Kext

uφ in Equation (1.46), we make an addition of the matrix
Cuφ and Kuφ of Equation (1.44) with ICuφ and IRuφ, respectively.

For the formulation in (us, p, ϕ) which is the only formulation already implemented in the of-

�cial version of code_aster, the elementary impedance matrix is de�ned by

[
0 0

0 −ρ20
Z Q

e

][
Pe

ϕe

]
.

The matrices to be computed with an assembling procedure are given by:

ICupϕ :=

0 0 0

0 0 0

0 0 − ρ20
ZC
Q

 , IRupϕ :=

0 0 0

0 0 0

0 0 − ρ20
ZR
Q

 , (D.3)

The matrix ICupϕ represents the matrix Iextupϕ in Equation (1.51). To obtain the matrix Mext
upϕ in

Equation (1.51), we make an addition of the matrix Mupϕ of Equation (1.49) with IRuφ.

To obtain the damping matrix Cext
upϕ in Equation (1.53), we also developed in the branch

of the formulation in (us, p, ϕ) an other option, namely IMPE_MECA_NEW, in the operator
CALC_MATR_ELEM, for computing the elementary matrix:[

0 0
ρ0
Z Q

e 0

][
Pe

ϕe

]
(D.4)
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D.2. IMPLEMENTATION OF THE REDUCED ORDER MODELLING TECHNIQUES IN CODE_ASTER

which allows us to obtain directly the non-symmetric matrix Cext
upϕ, by setting Z = ZC = ρ0c0,

after the assembling procedure.

D.2 Implementation of the reduced order modelling techniques

in code_aster

Some new operators are developed in the context of the proposed reduced order modelling
techniques. They can be distinguished in two main categories. The �rst category refers to all
the operators whose the de�nition are di�erent in each formulation, such as:

� DEFI_BASE_REDUITE: which computes the reduced basis. For this operator, we
developed three main options: GLOUTON, POD and CONCATENATION. The option
GLOUTON refers to the construction of the reduced basis based on the corresponding
frequency domain. In this option, the Classical Greedy Algorithm 1 is implemented for
the formulation in (us, φ). The modi�ed greedy algorithms 2 and 3 are implemented
for the formulation in (us, p) and (us, p, ϕ), respectively. For the option �POD�, the
computation of the reduced basis with Algorithm 6 is implemented for the formulation
in (us, φ). In this option, we begin by computing the reduced basis for the �uid part
Vf and the structure part Vs respectively by Algorithm 6 before transforming them into

the output reduced basis in form

[
Vs 0

0 Vf

]
for the formulation in (us, p) and into the

output reduced basis in form

Vs 0 0

0 Vf 0

0 0 Vf

 for the formulation in (us, p, ϕ). At the

end, the same concatenation procedure of two basis with Algorithm 11 is implemented
for the option �CONCATENATION� for each formulation.

� PROD_MATR_BASE and PROD_VECT_BASE: which compute the reduced matrix
and the reduced vector, respectively. For the formulation in (us, p) and (us, p, ϕ), the re-
duced matrix or the reduced vector are always computed by mean of Galerkin projection.
For the formulation in (us, φ), we also allow the case of the Petrov-Galerkin projection as
in Lemma 3.2.2, via a keyword STABILISE_IFS, in order to stabilize the time-domain
reduced order model.

The second category refers to all the operators which are common for each formulation, such
as:

� COMB_VECT_GENE and COMB_MATR_ASSE: which allow us make a linear com-
bination of the reduced vectors and the reduced matrices, respectively.

� CALC_DONNEE_RESI: which computes the required data for an online-e�cient eval-
uation of the error indicator based on the norm of residual. In this operator, we also
developed an option to make a linear combination of the results previously computed by
this operator.

� DYNA_TRAN_EMPI: which takes as input the reduced mass, sti�ness, damping matrix
and the reduced vector and solve the corresponding reduced order model. In this operator,
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D.2. IMPLEMENTATION OF THE REDUCED ORDER MODELLING TECHNIQUES IN CODE_ASTER

we also introduce an option to compute the value of error indicator based on the norm
of the residual.

� CALC_RESU_MOR: which takes as input the data provided by DYNA_TRAN_EMPI
and a reduced vector (case linear) or a reduced matrix (case quadratic) and computes
the physical output of interest predicted by the reduced order model.

� CALC_EIM: which computes the magical indices and the values of the parameters chosen
by the Greedy EIM algorithm 17 (for the case of vector) and the Greedy EIM algorithm
19 (for the case of matrix).

� DEFI_DOMAINE_REDUIT_EIM: which takes as input the data computed by
CALC_EIM and creates, in the given mesh, a group of the reduced elements chosen by
Algorithm 18 for the case of vector and Algorithm 20 for the case of matrix.

� CALC_COEF_EIM: which computes the coe�cients (θAl (µ))1≤l≤NEIM
A

or

(θFl (µ))1≤l≤NEIM
F

in the approximation by EIM as in Equation (5.21).

We have also introduced some developments in the operator CALC_MATR_ELEM. In this
operator, we add a new keyword GROUP_MA which allows us to compute the elementary
contribution only on the given group of elements, for instance the reduced elements in the
context of EIM approximation with a purely algebraic and black box way as presented in
Section 5.2.4.
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Titre : Réduction de modèles pour les problèmes vibro-acoustique transitoires paramétriques - Application aux 
problèmes de pré-dimensionnement de structures immergées aux ondes de choc d’explosion. 
 
Résumé : Dans cette thèse, nous développons une technique de réduction de modèles pour les problèmes vibro-
acoustiques transitoires paramétriques dans un code de calcul par éléments finis industriel, code_aster, dans le 
but de traiter des problèmes de complexité industrielle. En particulier, l’approche est illustrée ici pour le 
problème du dimensionnement des structures immergées assujetties à une explosion sous-marine. Trois 
formulations du couplage vibro-acoustique sont considérées dans ce travail : formulation en déplacement 
structure - pression fluide (𝑢𝑠, 𝑝), formulation en déplacement structure - potentiel de vitesse fluide (𝑢𝑠, 𝜙) et 
formulation en déplacement structure - potentiel de déplacement fluide - pression fluide (𝑢𝑠, 𝑝, 𝜑). Pour 
commencer, nous implémentons dans code_aster deux nouvelles formulations, les formulations en (𝑢𝑠, 𝑝), et en 
(𝑢𝑠, 𝜙) ainsi que les chargements provenant d’une onde de choc. Ensuite, différentes techniques de stabilisation 
de modèles d’ordre réduit basé sur la projection de Petrov-Galerkin sont proposées. Selon les techniques de 
stabilisation proposées, nous ajoutons quelques modifications dans l’algorithme glouton et POD-Glouton 
classiques dans la construction de la base réduite. Nous traitons aussi le cas où la dépendance en paramètre n’est 
pas affine. Dans ce cas, nous proposons d’utiliser la Méthode d’Interpolation Empirique (EIM) de manière 
purement algébrique et en boite noire pour retrouver une approximation sous la forme affine en paramètre. Ce 
point est nécessaire dans la construction d’un procédure hors-ligne/enligne efficace pour assurer la performance 
des modèles d’ordre réduits dans la phase en ligne. Le cas où la géométrie de la structure est considérée comme 
un paramètre du problème est aussi abordé dans cette thèse. Dans ce cas, nous choisissons la méthode basée sur 
le déplacement d’un maillage au sens d’un solide déformable (SEMMT) pour paramétrer la variabilité de la 
forme de la structure. Quelques études numériques et les applications industrielles sont aussi présentées pour 
illustrer l’efficacité des techniques de réduction de modèles proposées. 
 
Mots clés : Méthode des éléments finis, Couplage vibro-acoustique, Interaction de la structure immergée et 
l’onde de choc acoustique, Explosion sous-marine, Réduction de modèles, Méthode d’Interpolation Empirique 
(EIM), Technique de déplacement du maillage au sens d’un solide déformable (SEMMT), Algorithme POD-
Glouton. 
 

Title: Reduced order modelling for parametrized time-domain vibro-acoustic problems - Application to the 
design of structures subjected to underwater explosions. 

Abstract: In this thesis, we developed a reduced order modelling framework for parametrized time-domain 
vibro-acoustic finite element model into an open-source industrial software, code_aster, with the aim of tackling 
large scale industrial problems.  In particular, it is illustrated here for the design of submerged structures 
subjected to underwater explosion. Three formulations of vibro-acoustic coupling are considered in this work: 
formulation in structure displacement - fluid pressure - fluid displacement potential (𝑢𝑠, 𝑝, 𝜑), in structure 
displacement - fluid pressure (𝑢𝑠, 𝑝), and in structure displacement - fluid velocity potential (𝑢𝑠, 𝜙). First, we 
implement with in code_aster two new formulations, in (𝑢𝑠, 𝑝) and in (𝑢𝑠, 𝜙), and the excitation induced by the 
primary acoustic shock wave. Next, different stabilization techniques for Petrov-Galerkin projection based 
model order reduction are proposed for each formulation. According to the stabilization techniques in hand, we 
propose to make some modifications in the classical Greedy and POD-Greedy algorithm for the construction of 
the reduced basis. We deal both in the case of affine and non-affine parametrized problems. In the case of non-
affine parametrized problem, we propose to exploit the Empirical Interpolation Method (EIM) in a purely 
algebraic and black box way for recovering an approximation with an affine parameter dependence. This is one 
of the main ingredients for the construction of an efficient offline/online decomposition procedure to ensure the 
performance of the reduced order models at the online stage. We also consider the case where the geometry of 
the structure domain represents the parameter of the problem, for which we chose to employ the Solid Extension 
Mesh Moving Technique (SEMMT) for parametrizing the varying shape domain (mesh). Some numerical 
studies and some industrial applications are also performed in order to illustrate the efficiency of the proposed 
reduced order modelling framework. 
 
Keywords:  Finite element method, Vibro-acoustic coupling, Interaction of submerged structure and acoustic 
shock wave, Underwater explosion, Model order reduction, Empirical Interpolation Method (EIM), Solid 
Extension Mesh Moving Technique (SEMMT), POD-Greedy Algorithm. 
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