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Résumé

Dans cette thése, nous développons une technique de réduction de modéles pour les problémes
vibro-acoustiques transitoires paramétriques dans un code de calcul par éléments finis indus-
triel, code_aster, dans le but de traiter des problémes de complexité industrielle. En particulier,
I’approche est illustrée ici pour le probléme du dimensionnement des structures immergées as-
sujetties & une explosion sous-marine. Trois formulations du couplage vibro-acoustique sont
considérées dans ce travail : formulation en déplacement structure - pression fluide (us,p),
formulation en déplacement structure - potentiel de vitesse fluide (us, @) et formulation en
déplacement structure - potentiel de déplacement fluide - pression fluide (us, p, ¢). Pour com-
mencer, nous implémentons dans code_ aster deux nouvelles formulations, les formulations en
(us, p) et en (ug, @) ainsi que les chargements provenant d’une onde de choc. Ensuite, différentes
techniques de stabilisation de modéles d’ordre réduit basé sur la projection de Petrov-Galerkin
sont proposées. Selon les techniques de stabilisation proposées, nous ajoutons quelques modi-
fications dans l’algorithme glouton et POD-Glouton classiques dans la construction de la base
réduite. Nous traitons aussi le cas ou la dépendance en paramétre n’est pas affine. Dans ce
cas, nous proposons d’utiliser la Méthode d’'Interpolation Empirique (EIM) de maniére pure-
ment algébrique et en boite noire pour retrouver une approximation sous la forme affine en
parameétre. Ce point est nécessaire dans la construction d'un procédure hors-ligne/en-ligne
efficace pour assurer la performance des modéles d’ordre réduits dans la phase en ligne. Le
cas oll la géométrie de la structure est considérée comme un paramétre du probléme est aussi
abordé dans cette thése. Dans ce cas, nous choisissons la méthode basée sur le déplacement
d’un maillage au sens d’un solide déformable (SEMMT) pour paramétrer la variabilité de la
forme de la structure. Quelques études numériques et les applications industrielles sont aussi
présentées pour illustrer 'efficacité des techniques de réduction de modéles proposées.

Mots clés : Méthode des éléments finis, Couplage vibro-acoustique, Interaction de la
structure immergée et I’onde de choc acoustique, Explosion sous-marine, Réduction de modéles,
Méthode d’Interpolation Empirique (EIM), Technique de déplacement du maillage au sens d’un
solide déformable (SEMMT), Algorithme POD-Glouton.






Abstract

In this thesis, we developed a reduced order modelling framework for parametrized time-domain
vibro-acoustic finite element model into an open-source industrial software, code_ aster, with
the aim of tackling large scale industrial problems. In particular, it is illustrated here for
the design of submerged structures subjected to underwater explosion. Three formulations of
vibro-acoustic coupling are considered in this work: formulation in structure displacement -
fluid pressure - fluid displacement potential (us,p, ), in structure displacement - fluid pres-
sure (us, p) and in structure displacement - fluid velocity potential (us, ¢). First, we implement
within code_ aster two new formulations, in (us, p) and in (us, ¢), and the excitation induced by
the primary acoustic shock wave. Next, different stabilization techniques for Petrov-Galerkin
projection based model order reduction are proposed for each formulation. According to the
stabilization techniques in hand, we propose to make some modifications in the classical Greedy
and POD-Greedy algorithm for the construction of the reduced basis. We deal both in the case
of affine and non-affine parametrized problems. In the case of non-affine parametrized prob-
lem, we propose to exploit the Empirical Interpolation Method (EIM) in a purely algebraic
and black box way for recovering an approximation with an affine parameter dependence. This
is one of the main ingredients for the construction of an efficient offline/online decomposition
procedure to ensure the performance of the reduced order models at the online stage. We also
consider the case where the geometry of the structure domain represents the parameter of the
problem, for which we chose to employ the Solid Extension Mesh Moving Technique (SEMMT)
for parametrizing the varying shape domain (mesh). Some numerical studies and some indus-
trial applications are also performed in order to illustrate the efficiency of the proposed reduced

order modelling framework.

Keywords: Finite element method, Vibro-acoustic coupling, Interaction of submerged
structure and acoustic shock wave, Underwater explosion, Model order reduction, Empirical In-
terpolation Method (EIM), Solid Extension Mesh Moving Technique (SEMMT), POD-Greedy
Algorithm.
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Introduction

Vibro-acoustic phenomena, which is one of the fluid-structure interaction problem, are inter-
ested in noise and vibration of structure systems in presence of a compressible fluid. Many
industrial problems are involved by this phenomena, for instance the noise reduction in auto
motive industry, the acoustic discretion and target identification in naval industry, the design
of structures for seismic loading in nuclear engineering, ...

In this thesis, we are mainly interested in a particular case of naval industry where vibro-
acoustic coupling is introduced by the interaction of the submerged structure and the primary
acoustic shock wave generated by an underwater explosion [40]. The prediction of the behaviour
of the submerged structures under these kind of excitations is of paramount importance in the
design of the hulls and appendices of submarine and in the safety justification of equipments
inside the submarine. In both cases, the design of structures requires the prediction of some
physical quantities over a range of values of the model parameter. In the design of the hull and
the appendix of submarine, the main parameter can be for instance the mechanical properties,
the geometry of the structure and the characteristics of the underwater explosion. In the safety
justification of the equipments inside of the submarine, the main parameters can be the size and
the material constitutive of the equipment and the characteristic of the underwater explosion.

2.28748590e+03 le+7 1.5e+7 2.53118974e+07

— | | -

Figure 1: First example of industrial problem involved by vibro-acoustic phenomena: Compu-
tation of Von-Mises stresses in an elastic propeller under a primary shock wave of underwater
explosion using a finite element model.
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INTRODUCTION

Some analytical and semi-analytical approaches have been proposed in |28 [82] to allow this
parametric analysis. However, the proposed methods are restricted to a very simple geometry
of the structure. Numerical modelling of vibro-acoustic problem is still required in order to
tackle the case where the structure under consideration has a complex geometry.

Figure 2: Second example of industrial problem involved by vibro-acoustic phenomena: Anal-
ysis of the behaviour of an equipment (modelled by a spring-mass system) inside a submarine
subjected to the primary shock wave of underwater explosion with a finite element model.

In the field of numerical vibro-acoustics, one of the most commonly used numerical methods
is the finite element method [51], [127]. Finite element modelling of vibro-acoustic problem is
nowadays available in many industrial software. The open-source software code_aster [52],
which is developed since the last three decades by EDF R&D, provides also this possibility.

For industrial problems, the number of degrees of freedom in the finite element models is
usually huge which makes the use of these high-fidelity models unaffordable in the situation
where the physical quantities of interest must be evaluated for a huge number of parameters
values, as required in our problems stated above. To overcome this bottleneck, we can turn to
model order reduction techniques which aim at reducing the computational complexity and the
costs associated with the high-fidelity models, also called the full order model (FOM), without
losing significantly the accuracy. The main idea of reduced order modelling techniques consists
in replacing the full order model (FOM) by a reduced order model (ROM), featuring a much
lower dimension, but still able to express accurately the physical quantities of interest of the
problem under consideration.

Originally introduced in the 1970’s for non-linear structural analysis in [3, [102] and analysed
in [I8, 110], the reduced basis method (RBM) emerged as one of the most successful reduced
order modelling technique for parametrized Partial Differential Equations (PDEs). The reduced
basis method has been applied in the different types of time-independent PDEs for instance in
harmonic Maxwell’s equations in [38], in elasticity problem [73] [123], in steady Navier-Stokes
equation in [91]. For parametrized frequency domain vibro-acoustic problems, a reduced order
modelling based on the reduced basis method has also been recently analysed in [83].

12



INTRODUCTION

Objectives of thesis

In the previous context of collaboration of Naval Group and EDF R&D, the greedy algo-
rithm for the construction of the reduced basis proposed in [83] has been implemented in the
source of code aster. Even though the reduced order modelling of parametrized frequency
vibro-acoustic problem can be already sufficient in some applications in naval engineering, for
instance in acoustic discretion under hydrodynamic loading in [85], other applications such
as the design of submerged structures to transient loads induced for instance by underwater
explosion, require the extension to the case of time-domain problem.

The main objective of this thesis is to propose and implement a parametrized stable reduced
order model for time-domain vibro-acoustic problem in the open-source software code aster.
Afterwards, the application of the proposed reduced order modelling techniques into the inter-
action of submerged structure and underwater explosion’s primary shock wave problem is our
main targets.

Thesis contributions

For vibro-acoustic problems, there are various formulations depending on the choice of the
variables to describe the state of the fluid and the structure. Since the formulation based on
structure displacement - fluid pressure - fluid displacement potential (us,p, ), which is the
only formulation already implemented in code_ aster, is not the best formulation for our prob-
lem of interest, the first work of the thesis is to implement two new formulations. The first
one is the formulation based on structure displacement - fluid pressure (us,p) and the second
one is the formulation based on structure displacement - fluid velocity potential (us, ¢). The
loading induced by the primary shock wave of an underwater explosion is also implemented
and validated during the thesis.

For time-dependent problem, one of the main challenges in model order reduction is to
preserve the stability of the original full order model. The second contribution of this thesis
is to propose a stabilization technique in reduced order modelling of these three finite element
formulations. The stabilization technique for the formulation in (ug,p) and in (us, ¢) has al-
ready been proposed in the literature [I2I]. For the formulation in (us,p, ), a stabilization
technique is proposed in this thesis. To start, we are interested in the reduced basis con-
structed by a greedy algorithm applied in the corresponding frequency domain, as proposed
in [83]. According to the stabilization techniques in hand, some modifications in the classical
greedy algorithm are then introduced. Numerical results on the study of the stability and the
accuracy of the proposed reduced order models are then given.

As we observed numerically that the reduced basis based on the frequency domain solution
is not accurate enough for the high frequency excitation, which is the case of our problem
of interest, we propose to use alternative method for constructing an accurate reduced basis.
Based on the idea of POD-Greedy Algorithm [64], [65] [107], we propose an algorithm to built
a stable parametrized reduced order model for each formulation. We divide the reduced order
modelling framework into two cases. First, we assume an affine parameter dependence on the

13
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operators and the right-hand side of the finite element model. It occurs when the properties of
constitutive material of the structure, such as the Young’s modulus or the density, play the role
of the parameter in our problem. Then, we consider the cases for which this assumption is no
longer valid. For examples, these cases occur when we consider the geometry of the structure
domain as the parameter of the problem. To recover the efficiency of the reduced order model,
which is mainly based on the affine dependence in parameter assumption, we proposed to
exploit the Empirical Interpolation Method (EIM) [I7] purely in an algebraical and black
box way. For the shape parametrization, we proposed to employ the mesh motions technique
[115, 117]. In both cases of affine and non-affine parametrized problems, some numerical results
and industrial applications are also given in order to illustrate the efficiency of the proposed
reduced order modelling technique.

Organization of manuscript

This manuscript is divided into two parts.

In the first part, we give an introduction to the finite element modelling of the problem of
interest. This part is divided into two chapters :

e Chapter (1] describes the finite element models of time-domain vibro-acoustic problem.
Three formulations are considered : formulation in (us,p), formulation in (us, ¢) and
formulation in (us,p,¢). These three formulations are presented in terms of strong
formulation (i.e in form of a PDE) as well as in terms of finite element models. The main
advantages and drawbacks of each formulation are also pointed out.

e In Chapter P| we focus on the finite element modelling of the interaction of submerged
structure and underwater explosion’s primary acoustic shock wave problem. This chap-
ter starts with a short introduction on the underwater explosion phenomena. Next, an
overview on different formulations of the corresponding finite element model of the con-
sidered fluid-structure interaction problems is given. To validate the implementation of
the loading induced by the shock wave and the formulation in (us,p) and in (ug, @) in
code__aster, two study cases are presented. The first one is a 2D configuration academical
problem for which a semi-analytical solution is available. The second validation case is
an extension of the first study case into a 3D configuration.

In the second part, the reduced order modelling techniques are considered. This part is
divided into three chapters :

e Chapter [3|gives an introduction to the reduced order modelling technique of time-domain
vibro-acoustic problem. The focus in this chapter is mainly put on the stability-preserving
model order reduction. Different stabilization techniques are presented for each formula-
tion given in Chapter We are also interested in the accuracy of reduced order models
based on the reduced basis of the frequency domain. Two numerical studies are given in
order to verify the stability and investigate the accuracy of the proposed reduced order
models.

14
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e Chapter {] aims at extending the approach proposed in Chapter |3] into the case of a
parametrized time-domain vibro-acoustic problem. Since we observed numerically in
Chapter [3| that the reduced basis based on the frequency is not accurate enough, we
propose to use an alternative way to construct the reduced basis based on the well known
POD-Greedy Algorithm [64], (65, 107]. Numerical experiments on the efficiency and the
application of the proposed reduced order modelling framework in the industrial problems
are then investigated.

e Chapter[fis devoted to extend the reduced order modelling framework proposed in Chap-
ter [4] into the case where the affine parameter dependence assumption is not valid. We
are also interested in the case where the geometry of the domain represents the param-
eter of the problem. For the construction of the parametrized mesh, the mesh motions
technique [I15] 117] is used. By exploiting the Empirical Interpolation Method (EIM)
[17] purely in an algebraical way to obtain an approximation in form of affine parame-
ter dependence, a framework of reduced order model is then proposed and investigated
numerically. Numerical results in the industrial problems are also presented to show the
efficiency of the proposed reduced order modelling framework.

Finally, conclusions arising from this work and suggestions for future works are offered in
the last part of the manuscript. It is then followed by some appendices.
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Chapter 1

Finite element modelling of
vibro-acoustic problem

Various industrial problems, ranging from civil to naval engineering, from power nuclear to
aerospace industries, are concerned by Fluid-Structure Interaction (FSI). In the most general
cases, Fluid-Structure Interaction has to be taken into account in the model when a structure is
in contact with a fluid. Vibro-acoustic problem is one of the fluid-structure interaction problem
which is involved in noise and vibration of structure systems in presence of a compressible fluid.
In the field of vibro-acoustic simulation, one of the most commonly used numerical methods
is the finite element method [51, 127]. The purpose of this chapter is to give an overview
on the finite element modelling of transient vibro-acoustic problems. In the first section, the
modelling assumptions of vibro-acoustic coupling are presented. Depending on the choice of
the variables to describe the state of the fluid, different formulations of vibro-acoustic coupling
can be found in the literature (for instance, see [53, 54, 07, 113]). In this chapter, we are
only interested in three different formulations: formulation in displacement structure-pressure
(us, p), formulation in displacement structure-fluid velocity potential (us, ¢) and formulation
in displacement structure-pressure-fluid displacement potential (us, p, ¢). A short presentation
of these three formulations is given in Section Formulation in (us, p, ) is actually the only
formulation implemented in the official version of code aster. The formulation in (us,p) and
in (us,¢) are implemented in code_ aster [52] during the thesis.

1.1 Modelling of vibro-acoustic coupling

Vibro-acoustic systems, which are also called structural acoustic systems or fluid-structure
interaction for compressible fluid, concern noise and vibration of structure systems coupled
with acoustic fluids. Vibro-acoustic problem can be distinguished in two main categories:

e interior problem where the fluid is contained in a structure as illustrated in Figure [1.1a]

e cxterior problem where the structure is totally submerged in an unbounded fluid domain
as illustrated in Figure [I.Ib]

In this section, we recall the basic equations governing the structure and the fluid of vibro-
acoustic problem. Let us denote by €5 and Q the volume occupied by the structure and the
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fluid, respectively. We assume here that € and {2y are two regular open sets of RY (with d =
2 or 3) and we denote by T' the interface between the structure and the fluid (see Figure [1.1)).
It is considered here that the coupled system is in the context of small perturbation around
its steady state, in which the fluid and the structure are at rest, and that the effects of gravity
are neglected. In the following subsections, we give a review of the equations which describe
the motion of structure, the motion of fluid and the coupling condition respectively in Section
[[.T.0 [1.1.2)and [1.1.3]

(a) interior problem ~ -

-
-
_________

(b) exterior problem

Figure 1.1: Geometrical representation of a vibro-acoustic coupling

1.1.1 Structural equations

Under the assumption of small perturbation, the dynamic motion of the structure is classically
described by [86], 113]:
psis —div og5(us) =0 in Qg

os(ug) - ng =1, only (1.1)
us =0 onl'p

where p; is the density of the structure, o, is Cauchy stress tensor, ng is outward unit normal
vector of the domain Qg and uy is the displacement field of structure. The first equation of the
system is known as the momentum balance equation in the structure in absence of the
external volume force. The second and the third equations are respectively the Neumann and
Dirichlet boundary conditions.

The relation between the Cauchy stress tensor o and the displacement field u, is modelled
by the constitutive equation. First, let us recall the notion of the strain tensor which is is given
by:

&mg:%Wm+v£+vﬁTmM (1.2)
Under the small perturbation assumption, the second order contribution of displacement can
be discarded in the displacement-strain relation , so that we have:
1

gmﬂwgmﬁ:§Wm+Vﬁﬂ (1.3)
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1.1. MODELLING OF VIBRO-ACOUSTIC COUPLING

where ¢, is called linearised strain tensor.

In the following, we recall the constitutive equation of a linear elastic isotropic material. In
the case that the structure is supposed to be constituted by a linear elastic material, we have
the relation between the Cauchy stress tensor o5 and the linearised strain tensor es:

Us(us) = % : es(us) (14)

where C is a symmetric tensor of order 4 which depends on the properties of the material. In

addition, if the structure constitutive material is supposed to be homogeneous and isotropic
which means that the material properties are constant through out the volume occupied by the
structure and they do not depend on any particular direction of observation, the constitutive
equation is described by the Hooke law which can be formulated in various equivalent ways, all
using two material parameters. A formulation of the Hooke law can be expressed as follow:

2(113) = A div(us)l + Q;Le:S(uS) (1.5)

where A and p are the Lamé coefficients and 1 denotes the identity tensor. The material
properties of an isotropic linear elastic can also be characterized by the Young’s modulus F
and the Poisson’s ratio v. The Young’s modulus measures the stiffness of the material. The
value of Poisson’s ratio varies between -1 and 0.5. [t quantifies the Poisson effect: when
stretched in a given direction, the material tends to contract (when v > 0) or expand (when
v < 0) in other directions. Most materials have Poisson’s ratio ranging between 0 (for material
which tends to be insensitive to the Poisson effect) and 0.5 (in which case the material tends to
be incompressible). The relation between F and v with the Lamé coefficients A and p writes:

A+2 A
g HBA+20)

e y:m (1.6)

and inversely
A=E v P
T+ -20) "y

For the case where the structure material has more complex constitutive law, such as

(1.7)

anisotropic elasticity, we refer to [19] 86, [89)].

1.1.2 Fluid equations

We recall that the coupled system is supposed to be in the context of small perturbation
around its steady state where the fluid and the structure are both at rest. Moreover, we
neglect the effects of gravity. At the first order, the momentum conservation equation and the
mass conservation equation are given respectively by [97, [113]:

pouy —div oy =0, in Qf (1.8)

pf + podiv l'lf = O, in Qf (19)

where pg is the fluid density at the steady state, oy is Cauchy stress tensor in the fluid, py is
the fluid density and uy is the displacement field of fluid.
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Since the fluid is supposed to have a linear acoustic behaviour, we have the following relation
between the stress tensor oy and the pressure p:

of=-pl (1.10)
and the relation between the density py and the pressure p:
_ 2
P = Cops (1.11)

where ¢g is the speed of sound in the fluid.

The state of the fluid can be described by various variables. In the following, we give a
review of the fluid equations in terms of pressure p, velocity potential ¢ and displacement
potential .

Fluid equations in terms of pressure

The state of the fluid is usually described by the pressure. Taking the divergence of the
momentum conservation equation (1.8)) and using the relation (1.10) gives:

podiv iy + Ap =0, in Qf (1.12)

while a time derivation of the mass conversation equation (1.9) combining with the relation

(1.11)) provides:

1
0

Injecting the relation podiviiy = —fj/c2, given from Equation 1} into Equation 1) yields
the wave equation formulated in terms of pressure:

1
P —Ap=0, in Q (1.14)
€

Fluid equations in terms of velocity potential
The state of the fluid can also be described by the velocity potential ¢ which is defined by:
u;=Vo (1.15)
Using the relations — in the momentum conservation equation (1.8)) provides:
V(p+ pod) =0, in Qf (1.16)
which implies the relation between the pressure and the velocity potential:
p=—pod (1.17)
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1.1. MODELLING OF VIBRO-ACOUSTIC COUPLING

Using the relations (1.11))-(1.17) and the definition of velocity potential ¢ in the relation (|1.15])
in the mass conservation equation (1.9) yields the wave equation for ¢:

1. )
%QS—A(;S:O, in Q (1.18)

Fluid equations in terms of displacement potential and pressure

Let us describe here the state of the fluid by two variables: the pressure p and the displacement
potential ¢ which is defined by:
u; =Vop (1.19)

Using the relations (1.10)-(1.19) in the momentum conservation equation (1.8]) provides:
Yo+ o) =0, in O (1.20)

which gives the first the relation of the pressure and the velocity potential:

1 1. :
pTC%)p+;%¢:0’ n Qf (1.21)

Taking a time derivation of the mass conservation equation ([1.9) and using the relations ([1.11])-
(1.19) gives another relation of the pressure and the velocity potential:

1
i+ polAg =0, in O (1.22)
0

1.1.3 Interface fluid-structure equations

On the fluid-structure interface I', we have the continuity of normal stress and the normal
displacement which are given respectively by equations (1.23) and ((1.24)):

0s(us) -5 = —pn, (1.23)

U ng = Uy -ng (1.24)

Since the fluid and the structure are supposed to be at rest initially, the continuity of normal
displacement is equivalent to the continuity of normal velocity or to the continuity of normal
accelerations which are given respectively by Equations (1.25) and (1.26]):

U -y = U - g (1.25)

g -ng =1y -n, (1.26)

Interface fluid-structure equations in terms of u; and p

The continuity of normal stress described by Equation ([1.23)) is already expressed in terms of
us and p. Let us now express the continuity of normal acceleration in terms of ug and p. By
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1.1. MODELLING OF VIBRO-ACOUSTIC COUPLING

using the relation (1.10) in the momentum conservation equation (1.8)), we have the relation
between the displacement field u; and the pressure p:

1
ur=—-——Vp (1.27)
Po

which implies that the continuity of normal acceleration described by Equation ([1.26) is equiv-
alent to:

1
s -ng=——Vp-ng (1.28)
Po

Interface fluid-structure equations in terms of u; and ¢

Let us now express the fluid-structure interface equations in terms of u; and ¢. By using the

relation (1.17)) in (1.23) and the definition of the velocity potential (1.15)) in (1.25)), the interface

fluid-structure equations are equivalent to:

as(us) - ng = podmy (1.29)

s -ng=Vo-ng (1.30)

Interface fluid-structure equations in terms of u; and ¢

Let us now express the interface fluid-structure equations in terms of u; and ¢. By using the

relation ([1.21)) in (1.23]) and the definition of the displacement potential (1.19) in (1.26]), the

interface fluid-structure equations are equivalent to:

05(us) - s = pogns (1.31)

{iy-n, = V@ - n, (1.32)

1.1.4 Modelling of radiation condition for exterior problem

For exterior problem, the propagation wave in the fluid must comply with the radiation con-
dition, also known as the Sommerfeld condition which stipulates that waves are not reflected
at infinity. The radiation condition is formulated as follows:

lim r(@=1/2 <Vp ng+ p) =0 (1.33)
r—00 Co

The Sommerfeld condition is stated as an asymptotic condition so that its numerical imple-
mentation with finite element-based techniques is not straightforward. To alleviate this, one
can use an approximation of this radiated condition which allows for a finite element represen-
tation. In the following, we present an approximation of Sommerfeld condition proposed by the
BGT method in [22] (which is named after its authors: A. Bayliss, M. Gunzburger, E. Turkel).
A truncated fluid domain at finite distance is required in order to use the BGT method, as
illustrated in Figure [I.I] The geometry of the enclosing volume can be varied depending on
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1.2. FINITE ELEMENT MODELS OF TIME-DOMAIN VIBRO-ACOUSTIC PROBLEM

the problem to be tackled. A specific boundary condition is then imposed on the boundary of
the truncated domain. The zero-order radiation condition (BGT-0) is defined by:

Vp-nf+ﬂp:0 (1.34)

Zc
where Zc = pocp. Note that the zero-order BGT condition (1.34) is equivalent to the exact
condition of radiation for plane wave propagation. The first-order radiation condition (BGT-1)

is defined by:

1 . 1
Vp-nf+po (Zcp+ ZRP> =0 (135)

where Zo = pocg- To approximate the behaviour of a wave asymptotically by a cylindrical
(spherical) wave travelling to infinity, it is usual to truncate fluid domain as a cylinder or half-
cylinder (sphere or half sphere) with radius R and the value of the constant Zp is given by
Zr = 2poR (Zr = poR). Note that the first-order BGT condition is equivalent to the
exact condition of radiation for spherical wave propagation.

For high-order BGT method, we refer to [22] 67, 94] 113]. For other modelling of radiation
condition techniques, we refer to [23| for the Perfectly Matched Layer, to [78] for the Dirichlet
to Neumann map and to [9, 10 11} 29] for the Infinite Element.

1.2 Finite element models of time-domain vibro-acoustic prob-
lem

In the previous section, we see that we can use various variables to describe the state of the fluid
in the coupled system. The different choices of the variable to describe the state of the fluid give
different coupling formulations. In this chapter, we consider only three coupling formulations
in which the state of the structure is always described by the displacement u,. The first one
is the formulation in (us,p), where the state of the fluid is described by the pressure p. The
second formulation is the formulation in (us, ¢), where the state of the fluid is described by
velocity potential ¢. The last formulation is the formulation in (us, p, ) where the state of the
fluid is described by two variables: the pressure p and the displacement potential .

1.2.1 Formulation in (uy,p)

The most natural vibro-acoustic coupling is in (us, p) couple since these two variables represent
two physical quantities of the problem. The strong formulation in (us, p) couple of an interior
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1.2. FINITE ELEMENT MODELS OF TIME-DOMAIN VIBRO-ACOUSTIC PROBLEM

problem is given by:

psts — div os(us) = 0 in Qg
:5(115) - g : g(US) in
%(US) ‘N = I on FN
Us = 0 on FD (136)
0s(us) - ng = —pn, onT
1
i'ls'ns:—*Vp-ns on I
Po
1 _
P~ Ap =0 n Qf
i)

We denote by H%D(Qs)d ={vec HY(Q)%v=0o0nTp}, T the final time of interest and
we assume that f, € L2(]0, T[; L2(T'y)%). The corresponding weak formulation of the problem
reads: Find u, € C([0,T]; HE  (2)%) N CY([0,T); L*(924)?) and p € C([0,T]; H*(2y)) N
C1([0,T]; L*(Q)) such that for all (dus, dp) € H%D(Qs)d x H'(f), we have:

2
% QSpsus(t,x) -dug(x)dx + /QS €s(0us(x)) :%:g(us(t,x))dx
+ /p(t,x)[éus(x) ‘ng(x)]dx = / fs(t,x) - dus(x)dx
g tw (1.37)
d? 1
a2 /Qf %p(t,x)ép(x)dx + o, Vp(t,x) - Vop(x)dx
d?

~ g Lot ) - nu(x))ape)de = 0

The dynamic of the coupled problem spatially discretized using finite element method are
then described by the set of ordinary differential equations:

M, 0 | |U, K, K.| |U, Fs
, . (1.38)
—poKI M;| | P 0 K;||P 0
Mup Kup

where the vector Uy and P contains respectively the nodal value of structural displacement
and fluid pressure. The sub matrices M, My, Ky, Ky, K. and the right-hand side F are
defined by:

(M) :/Q psNi - N5, (Ks)ij :/Q €s(N3) : €+ €s(N7)

1
(M) :/ SN/N | (Kp)y= | wN]-wN] (1.39)
Qr Qy

(K.)ij = / N/ (N5 my)  Fi = / N3
r I'n

where (st)zzl, n

part and in the fluid part, respectively. The matrices My, M are known as the mass matrices

and (V. f )i=1,m ; are the finite element basis functions in the structural

s (2
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1.2. FINITE ELEMENT MODELS OF TIME-DOMAIN VIBRO-ACOUSTIC PROBLEM

of the structural part and the fluid part, respectively. The matrices M, M are symmetric
positive definite. The matrices K,, Ky are known as the stiffness matrices of the structural
part and the fluid part, respectively. The matrices Ky, Ky are symmetric positive semi-definite.
The matrix K, represents the vibro-acoustic coupling matrix.

In the case of exterior problem where the radiated condition is approximated by BGT-1
method, which imposes the boundary condition on the truncated boundary I's,, the
dynamic of the coupled problem spatially discretized using finite element method are then
described by the set of ordinary differential equations:

M, 0| |U 0 0 ||U, K, K. U, F,
T -+ 0 - 20 (1.40)
-poK, My;| | P 0 7 P 0 Ky+7:Q||P 0
My oozt Keot
where the matrix Q is a positive semi-definite matrix, defined by:
Q; = leN]f (1.41)

I'o

Even though the matrices Mg, M, K, and Ky are symmetric, the mass matrix My, and
the stiffness matrices Ky, Ksz of the coupled system are not symmetric which is a major
disadvantage of this coupled formulation.

1.2.2 Formulation in (uy, ¢)

In order to obtain a symmetric formulation, Everstine proposes in [53] an alternative by using
the fluid velocity potential, defined by the relation , instead of the pressure to describe the
state of the fluid part of the system. The strong formulation in (us, @) of an interior problem
is given by:

in Qg

0
s(us) =C i es(ug) in Qg

2(113) ‘ng = f on I'y
u; =0 onIT'p (1.42)
os(uy) -ng = poéns on I

U; -ng = Vo - ng on I’

—d—Ap=0 in Qf

We denote by H%D(Qs)d ={ve H Q)% v =0o0nTp}, T the final time of interest and
we assume that fy € L2(]0, T[; L?(T'y)?%). The corresponding weak formulation of the problem
(1.42) reads: Find u,s € C([0,T]; H ()4 N C([0,T); L*(Q)4) and ¢ € C((0, T]; H(24)) N
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C1([0,T7]; L*(f)) such that for all (dus,¢) € H%D(Qs)d x H'(f), we have:

d2
p7e] /Qspsus(nx) - dug(x)dx +/Q €s(0uy(x)) :%:g(us(t,x))dx

E]

pod(t, x)[0us(x) - ng(x)]dx = / fs(t,x) - dus(x)dx

dt T 'y

P (1.43)

a2 P ot x)50(x)dx — po | V(t,x) - V5d(x)dx
Q€0

Qf

— 5 [l n (150 x = 0

The dynamic of the coupled problem spatially discretized using finite element method are
then described by the set of ordinary differential equations:

U,
P

U,
é

U,
P

F,
0

M, 0
0 —poMf

0 _pOKc
-mK: 0

K, 0
0 —poKf

] (1.44)

Mug Cug Kug

where the vectors U,, ® contain respectively the nodal value of structural displacement and
fluid velocity potential with the matrices My, My, K, Ky, K. and the right-hand side F are
defined in (1.39).

In the case of exterior problem where the radiated condition is approximated by the BGT-1
method, it leads to impose the following boundary condition on the truncated boundary I's:

1 . 1
V(b -y + po <ZC¢+ ZR¢> =0 (1.45)

The dynamic of the coupled problem spatially discretized using finite element method are then
described by the set of ordinary differential equations:

MS 0 I"JS 0 _pOKc US
. 2 .
0 —pMy| | @ -nKi —-£Q| | ®
My cet
K 0 U F
+| o = (1.46)
0 —po (Kf+Z—RQ) & 0
Koot

where the matrix Q is defined in (|1.41]).

Clearly, the coupled formulations and are both symmetric. Note that the value
of the pressure can be obtained by computing the time derivative of velocity potential with
the relation (1.17). Note that the common used time-integration schemes (such as Newmark
scheme, Wilson scheme, ...) also explicitly compute the time derivative of the primal variables.
In these cases, we could obtain the value of the pressure from the velocity potential through the
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1.2. FINITE ELEMENT MODELS OF TIME-DOMAIN VIBRO-ACOUSTIC PROBLEM

relationship without additional computation cost. Even though this coupled formulation
is symmetric, its major disadvantage is that the coupling matrix K. is a sub-matrix of
the coupled damping matrix C,4 so that in the modal analysis, one always needs to solve
a quadratic eigenvalue problem (QEP).

1.2.3 Formulation in (u,p, ®)

To obtain a symmetric formulation without having the coupling matrix as a sub-matrix of the
coupled damping matrix, we can turn to the formulation in (us,p, ¢). In this formulation, we
use two variables to describe the state of the fluid: the pressure and the displacement potential
which is defined in . The strong formulation in (us,p, ¢) of an interior problem is given
by:

in Qg

psﬁs — div @(us) =0
os(ug) =C:es(us) in

os(us) -ng = £y on I'y
u; =0 onI'p
g(US) "Ny = PoPm on I’ (1.47)
U, ng=Vg-n, onl
polc(g)p—i-cl%(ﬁ—O in Qy
Clgﬁ+p0A¢:0 in Q

We denote by H%D(Qs)d ={ve H Q)% v =00nTp}, T the final time of interest and
we assume that f, € L2(]0, T[; L>(T'n)%). The corresponding weak formulation of the problem
reads: Find u, € C([0,T]; HE ()% N CY([0,T]; L*(Q)?), p € CH([0, T]; L*(2y)) and
¢ € CY([0,T); H(Qy)) such that for all (dus, dp, dp) € H%D(Qs)d x L2(Qy) x H'(2f), we have:

2
6?2/ psus(t,X) . (SuS(X)dX +/ 3(5u5(x)) IQ : 673<us(t,X))dX
& Ja, Q.= = =
d2
- — t,x)[0us(x) - ng(x)]dx
o [ owe(t 000060 o)
—/ fs(t,x) - dug(x)dx
r
1 d2N 1 (1.48)
— 3 ptaX5deX+/ —p(t,x)op(x)dx =0
i o X0+ G [ ot x)apt0
d? 21
—= o, poV(t,x) - Vop(x)dx + p7e] o, %p(t,x)(sgo(x)dx

2
— ;;/Fpg[us(t,x) ‘ng(x)]dp(x)dx =0

The dynamic of the coupled problem spatially discretized using finite element method are
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then described by the set of ordinary differential equations:

M, 0 —pK.| |U, K, 0 0| [u, F,
g . B
0 . 0 My I: +10 LIM; 0| |P|=|0 (1.49)
—poKe My —poKy| | ¢ 0 0 0] | 0
Mupap K’“PW

where the vectors Ug, P and ¢ contain respectively the nodal value of structural displacement,
fluid pressure and fluid velocity potential with the matrices My, My, Ky, Ky, K. and the
right-hand side F are defined in ([1.39).

Using the relation (1.21)) in the approximated radiated condition of the BGT-1 condition
(1.35), we obtain an equivalent boundary condition on I's:

1 ... 1
ng-nf—l—po (ZC(P"FZRSD) =0 (1.50)

The use of the boundary condition (1.50) implies that the dynamic of the coupled problem
spatially discretized using finite element method for exterior problem are described by the set
of ordinary differential equations:

00 0 U, M, 0 —poKe U,
00 0 P+ 0 0 M; P
2 2 .
00 —2Q] |¥ —poKi M; —poK;— Q) | ¢
L M,
K, 0 0| U, F,
+(0 My 0l |[P|=]0 (1.51)
0 0 0 | 0
Kupe

where the matrix Q is defined in (1.41)).

Clearly, the coupled formulations ((1.49) and (1.51]) are both symmetric. However, in case
of exterior problem using the boundary condition of BGT-1 method, the coupled formulation
(1.51)) is of order 3. To obtain a system of order 2 in this formulation, we remark that the

relation (|1.21]) implies that:

00 0 U, 0 o0 o] U,

00 0 P|=(0 0 ofl|P (1.52)
2 A

00 —2Q] |¥ 0 22Q 0] |¢
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so that the system (1.51)) is equivalent to:

M; 0 —poK¢ US 0 0 0 US
0 0 M; P|+|0 0 of|P
2 ..
—poK? My —pK;—2£Q] [ ¢ 0 22Q 0] |¢
Mig5 Cive
K, 0 0| |U, F,
1 _
+]0 My o [P|=]0 (1.53)
0 0 0| 0
Kupe

Since the formulation in (us,p, @) uses two variables to describe the state of the fluid, the
number of degrees of freedom in this formulation is larger than the one in the formulation
in (us,p) and in (us, ¢) for the same mesh and the more we have the number of nodes in
the fluid part, the more it becomes significant. Furthermore, note that the damping matrix
Cif,’fp of the formulation is not symmetric. Therefore, this formulation is clearly not
the best formulation to employ for the simulation of a transient exterior problem compared
to the formulation in (uy,p) and in (us,¢). However, since the coupled mass matrix My,
and the coupled stiffness matrix My, are both symmetric and the coupling matrix K. is not
a sub-matrix of the coupled damping matrix as the formulation in (us, ¢), the formulation in
(us, p, ) is more suitable for the modal analysis of a interior problem than the formulation

in (us,p) and in (us, @).

1.3 Conclusions

In this chapter, a short review on the modelling of vibro-acoustic coupling is presented. De-
pending on the choice of the variables representing the state of fluid, several formulations can
be found in literature. Three formulations of the transient vibro-acoustic problem have been
given in terms of strong formulation in PDE as well as in terms of finite element models. In
order to approximate the radiation condition for exterior problems, we propose to use the
BGT-1 method which requires a truncated fluid domain and use a specific boundary condition.
For the formulation in (us,p), the system of second-order ordinary differential equations of
finite element model is always non-symmetric. While modelling the radiation condition by
BGT-1 method, the formulation in (ug, ¢) is still symmetric. For the formulation in (us, p, ¢),
the approximated radiation condition of BGT-1 method implies that the finite element model
can be described by a symmetric system of third-order ordinary differential equations or by a
non-symietric second order system.

Even though the three formulations presented in this chapter are equivalent, each formu-
lation has its advantages and drawbacks. The main drawback of the formulation in (us,p)
is that it results in non-symmetric system. Contrary to the formulation in (us,p), the sym-
metric property represents a major advantage of the formulation in (us, ¢) while the presence
of the vibro-acoustic coupling matrix in the global damping matrix is the major drawback of
this formulation, especially for modal analysis. The symmetry of the global mass and stiffness
matrix of coupled system and the absence of the vibro-acoustic coupling matrix in the global
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damping matrix are the major advantages of the formulation in (us, p, ¢) for modal analysis of
an interior problem. On the contrary, its main drawback is that using two variables to describe
the state fluid leads to a larger number of degrees of freedom compared to the formulation in
(us,p) and (us, @).

In addition to the advantages and drawbacks mentioned here, we will see in the next chapter
that the choice of the variables representing the state of fluid has a non-negligible impact in
finite element modelling of submerged structure and shock wave problem (see Remark
as well as in reduced order modelling in Chapter [3]
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Chapter 2

Finite element modelling of interaction
of submerged structure and shock
wave problem

The survivability of naval ships and submarines is of paramount importance to those who de-
sign, build and sail them. Underwater explosions, produced by the detonation of a submerged
high explosive device, clearly represents a serious threat to that survivability. Hence, under-
water explosion is a major phenomena to be taken into account in the design of submerged
structures.

Under the hypothesis that the explosion is far enough from the submerged structure of
interest, the loading produced by the explosion can be modelled without taking into account
the presence of the structure. Conventionally, the underwater explosion can be viewed as
the generation of acoustic shock waves which propagate at the sound speed in the fluid, and
the fluid flows caused by the dynamic interaction of the detonation product gases and the
surrounding water. As a consequence, the study of the behaviour of a submerged structure
submitted to an underwater explosion can be split in two main parts. The first part consists
of the interaction of submerged structure and acoustic shock waves problem. The second part
is the case of loading induced by the fluid flows created by gases bubbles.

In this thesis, we are only interested in the interaction of submerged structure and shock
waves problem under the hypothesis that the explosion is far enough from the submerged struc-
ture and the free surface of the fluid. The goal of this chapter is to give a presentation of the
finite element modelling of interaction of submerged structure and shock wave problems. This
chapter is organized as follows. We begin by a short presentation of underwater explosion phe-
nomena in the first section. The modelling of primary acoustic shock wave of an underwater
explosion is then given in Section 2.2} In Section the modelling assumptions of interac-
tion of submerged structure and shock wave is presented. As in the classical vibro-acoustic
coupling, different choices of the variables for describing the state in the fluid yield different
coupling formulations of finite element model. In this chapter, we are interested in four for-
mulations: formulation in displacement structure-scattered velocity potential (ug, ¢*°*), in dis-
placement structure-radiated velocity potential (us, ¢"*?), in displacement structure-radiated

rad) and in displacement structure-radiated pressure-radiated displacement po-

rad)

pressure (ug, p

tential (ug,p"®?, © ). The presentation of these four formulations is given in the Section .
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2.1. UNDERWATER EXPLOSION

The loadings of shock wave have been implemented in code aster during the thesis. In Sec-
tion [2.5] we propose a numerical validation of our implementation with two test cases. The
first validation case is an academic case in a 2D configuration where a semi-analytical solution
is available. The second validation case is an extension of the 2D configuration used in first
validation case, into a 3D configuration.

2.1 Underwater explosion

From the point of view of damage to submerged structures, the underwater explosion can be
modelled by the generation of acoustic waves together with the fluid flows produced by the
dynamic interaction between the explosion gas bubbles and the surrounding water. The shock
wave propagation phase occurs in millisecond-order timescales, while the bubble expansion
and contraction phase occurs in second-order timescales. Such a large difference (about a three
order of magnitude) in the time scales between these two phenomena does pose challenges
for the computational methods which intend to include both phases. The sequence of physical
effects of an underwater explosion is usually illustrated by the classical figure of Snay (1956)
[114].

THIRD BUBBLE
MAXIMUM

SECOND BUBBLE
MAXIMUM [ A T

DEPTH
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Figure 2.1: The sequence of physic effects of an underwater explosion, sourced from [42]

2.1.1 Primary acoustic shock wave

The primary acoustic shock wave, generated when the detonation wave within the explosive
reaches the water-explosive interface, travels out though the water at a very high speed as a
spherical wave. The very high pressures associated with the shock wave can cause considerable
damage on any submerged structure which is not strong enough to resist this loading. About
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2.1. UNDERWATER EXPLOSION

50 % of the initial chemical energy of the explosive is transmitted to the fluid in this initial
shock wave. At first, the speed of the shock wave is approximately about ~ 5000 m/s. The
speed of the shock wave decreases rapidly and stabilizes at the speed of the sound in the fluid
at co ~ 1500 m/s (as shown in Figure after a very short distance of about 20 times the
charge radius.

(rfs)

Figure 2.2: Geometric representation of the propagation of underwater explosion’s shock waves,
source from [28].

As schematically illustrated in Figure [2.1] at a target point in the fluid located at a distance
greater than 20 times the charge radius, the pressure increases quasi-instantly to a peak value
P, and then decreases rapidly which can be expressed at a first approximation by:

p(t) = Ppe /T (2.1)

where t = 0 is the arrival time of the shock wave at the target point, T, denotes the constant
that describes the exponential decay. The variation of constant P, and 7, depends on the kind
of the explosive material and the distance D from the charge. In case of the explosive material
is Trinitrotoluene (TNT), it has been shown in [I08] that the variation is well described by the
relations:

1.13
1/3
P,, =52.16 - 10° (WD ) (2.2)
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2.1. UNDERWATER EXPLOSION

W1/3 —0.22
T.=96.5-10"° (W1/3) RN (2.3)

where P, is in Pascal, T, is in second, W is the mass of TNT in kilogramme and the distance
D is in meters.

When the shock wave arrives at a target point in the fluid, the fluid particle at that point
is subjected simultaneously to a flow with the velocity v () at direction of wave propagation.

In case of plane waves, the relation between the pressure p(t) and the velocity vs(t) is given
by:

_ )
Uf(t) B PoCo

where po is the fluid density and ¢y is the sound speed in the fluid. The relation (2.4)) is
validated only for plane waves, so it can be used only if the submerged structure is sufficiently

(2.4)

far from the explosion. Taking the spherical nature of the shock waves into account, the relation
between the pressure p(t) and the velocity vy (t) is given by:

IR
o) = 22 + o [ (e 2.5

The representation of the primary shock wave of an underwater explosion using the relations
(2.1) and (2.5)) can be applied for any size of explosion, from a few grams to a nuclear weapon,
detonated at any depth in the water. It is however accurate only for 0 < t < T.. The formulas

of pressure and velocity profiles of an underwater shock wave, which can be validated until 77,
will be given in Section [2.2]

2.1.2 Dynamic behaviour of bubble

The subsequence development of the bubble and its interaction with the surrounding water
create other phenomena which can also inflict considerable damage on the submerged structure,
particularly if the bubble is formed nearby. After emission of the primary shock wave, the
pressure in the gas bubbles is significantly reduced. It is however still significantly higher than
external hydrostatic pressure. This causes the bubble to expand rapidly. The pressure in the
bubble decreases as the bubble volume increases. Because of the inertia of the outward flowing
fluid, the expansion persists beyond the point at which the pressure in the gas bubble and
the hydrostatic pressure in the surrounding fluid are balanced. According to Cole [40], the
maximum radius of the bubble of the first phase of expansion depends on the mass of explosive
material and the depth of the explosion. When the explosive material is Trinitrotoluene (TNT),
it is given experimentally by the following relation [40]:

W 1/3
me:J<H+HJ (26)

where the radius Ry.q, and the depth of explosion H are in meter and W is the mass of

TNT in kilogramme. According to Swift (1947) [116], the value of constant .J is approximately
~ 3.36 m¥/3kg™1/3. According to Swisdak (1978) [118], the value of constant .J is approximately
~ 3.50 m*/3kg~1/3.
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When the expansion is finally stops, the pressure in the bubble is less than the hydrostatic
pressure which causes the bubble to begin contracting. The duration T, since the beginning
of explosion until the bubble reaches its minimum radius, depends also on the mass of ex-
plosive material and on the depth of the explosion. In case of the explosive material is TNT
(Trinitrotoluene), it can be approximated experimentally by the following relation [40]:

W1/3

T=K m (2.7)
where the constant K is approximately ~ 2.11 sm®%kg~'/3 according to [I18] and [116]. As in
the expansion phase, the internal pressure of the bubble is much higher than the surrounding
hydrostatic pressure when the bubble reaches its minimum radius. A new acoustic shock wave
is then generated and a new cycle of expansion and contraction is then set to begin. The
peak value of pressure of the new shock wave is about between 10 % to 15 % of the primary
shock wave. However, this new shock wave can also inflict damage, with the same order as
the primary shock wave, to any submerged structure because the decreasing is slower than
the primary shock wave. Since a new shock wave is generated and travels out through the
surrounding fluid at each phase of expansion, the bubble loses progressively its energy. The
amplitude of pulsation decreases at each iteration. The sequence of expansion-contraction can
repeat a numerous times. As an example, it has been observed experimentally 12 sequences of
expansion-contraction in [75].

2.2 Modelling of primary acoustic shock wave of an underwater
explosion

The pressure profiles of shock waves characterised by a simple exponential decay by the relation
(2.1)) is a good approximation only for ¢t < T,. In fact, the decay of pressure is not as fast as in
the relation for t > T.. Now, let us put the focus on the modelling of primary acoustic
shock of underwater explosion which can be validated for times much longer than the expression
given in Section According to the dimensionless analysis in [55] [106], the pressure profile
of an underwater explosion shock wave at the distance r from the charge is given by the
following relation:

T Qe

P(t) = P, [“7] o ({a} 7 ”%) (2.8)

where a, is the charge radius and the constant P,, v., A and B depend on the kind of explosive
materials. For the case of TNT (Trinitrotoluene) explosive material, these constants are given
by:

P.=1.67 GPa,v. = 1010 m/s, A = 0.18, B = 0.185 (2.9)

according to [106], and

P.=1.42 GPa,v. = 992 m/s, A = 0.13, B = 0.18 (2.10)
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according to [40] and the function F is a double exponential decay:

F(t) = 0.8251e 133 4 0.1749¢ 0180 < 7 (2.11)

For a given mass of explosive material M., the charge radius a. can be approximately by

1/3
Qe & ( 4]‘7:[;:;) where pegp is is mass density of the explosive material. For the case of TNT,

the mass density is approximately given by p, ~ 1.52 - 103 kg/ m?.
At a distance greater than 20 times the charge radius, the shock wave propagates with the
speed of sound in the fluid ¢y. So, for r > R; we have:

Qe T

plt,r) = P [ %] A ([ﬂ " T) H(r), 7=t—(r—R)/co (2.12)

where H is Heaviside function and we denote by R; = 20a. with a. is the charge radius and
T. = ac/v.. We remark in the relation that the pressure profile of primary shock wave
decreases as a function of the distance r, faster than the classical spherical acoustic wave in
which we have the decreasing as a function in 1/r (as illustrated in Figure [2.3)).

— Decrease in1/r
—_— t:(257R;J/Cf

— Decrease in 1/r
t= (25 — R; /Cf

)
t*(357R;)/Cf 6 t:(357R;J/Cf
=2 t= (45— Ry)/es = = (45 — Ry) /ey
<, = (55— R))/cs < , t= (55— Ri)/cs
231 <
= =

20 30 40 50 50 20 30 10 50 60
r[m] r[m]

Figure 2.3: The pressure profiles of shock wave according to the relation for the explosion
of W =50 kg in TNT. Left: case using the data of Cole [40]. Right: case using the data of
Price [106]. The blue curve represent the decreasing in 1/r using the peak value at times
t= (20 — Rl)/Cg

The expression of the fluid particle’s velocity corresponding to the shock wave are usually
required in the study of interaction of submerged structure and shock wave. To compute the
corresponding fluid velocity, it is usual to introduce the velocity potential ¢ which is defined
by:

p(t.7) = ~po o 1,7) (2.13)

where pg is the fluid density. Using the initial condition ¢(r, [r — Ry]/co) = 0, the velocity
potential ¢ can be explicitly expressed as

b(tr) = — 1 B A /OT]-' <[Q}B 7€> ¢, r =1t — (r— R)/co (2.14)

po LT r c
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Since the shock wave is a spherical wave, then only radial component of velocity v, = d¢(t,r)/0r
is non-zero. Deriving the velocity potential ¢ according to r gives an expression of the radial
component of velocity:

e =B SR s m ([5]7 7 ) a4 00T e

where the function G defined by G(t) := fg F(¢)d¢. For the case of TNT (Trinitrotoluene)
explosive material, the function is explicitly defined by G(t) = 1.5856 — 0.6167e~1-338 —
0.9690e~0-1805¢  We remark that the relation can be found from the relation by
taking A = —1 and B = 0 in the case of plane waves. Figure illustrates an example of the
fluid particle’s velocity profiles of shock wave according to the relation for the explosion
of W =50 kg in TNT.

3.51 — =(25—R)/¢s — t=(25—R)/es
3.0 — t=(35—Ri)/cs — t=(35-1)/cy
55 t={45— Ri)/es 3 = (45— Ri)/es
w —— t=(3-R)/cs 7 —— t=(35—R)/es
E 20 E,l
=15 ;/
1.0 1
0.5
-";‘_—‘———.__ -—-==_______
0.0 0
20 30 40 50 60 20 30 40 50 60
r[m] r[m]

Figure 2.4: The fluid particle’s velocity profiles of shock wave according to the relation (2.15)
for the explosion of W = 50 kg in TNT. Left: case using the data of Cole [40]. Right: case
using the data of Price [106]

2.3 Modelling of interaction of submerged structure and shock

wave problem

In the previous section, the modelling of primary shock wave of underwater explosion is pre-
sented. The aim of this section is to present the modelling of the interaction of submerged
structure and shock wave problems.

The problem of interest is formulated as follows. We consider a linear elastic structure
Qs C RY (with d = 2 or 3) submerged in an infinite acoustic fluid domain. Both structure and
fluid are supposed to be at rest initially. We denote by I' the interface between the structure
and the fluid. The submerged structure is supposed to be subjected to a shock wave with the
known profile of incident pressure p™¢ and velocity v'™¢. A geometrical representation of the
problem is illustrated in Figure [2.5]
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- ——
- -~
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Figure 2.5: Geometrical representation: a submerged structure subjected to a shock wave with
the known profile of incident pressure p"¢ and velocity vi"¢.

Under the assumption of small perturbations, the dynamic motion of the structure is clas-
sically described by:

psig — div os5(us) =0 in Qg
u; =0 onI'p (2.16)
os(ug) -ng = —png onT

with ug is the displacement of structure, ng is outward unit normal of the structure, ps is
structure density, o, is Cauchy stress tensor and p' is the total pressure in the fluid. The

total pressure in the fluid is decomposed by three components: p'® = p™¢ + pref 4 prad. The
first component p™™¢ is the incident pressure which is a given of the problem. The second

component p"fis the reflected pressure which is the diffraction of the incident pressure by

the rigid submerged structure assumed rigid and motionless. The last component p™®® is the
radiated pressure which is induced by the motion of the structure.

The reflected and the
radiated pressure are governed by the equations:

%ﬁ —Ap=0 1inQy

. CO X (2.17)

Vp-ny+ po(Z—Cer Z—Rp) =0 on Ty
with ¢ is the speed of sound in the fluid, pg is the density of the fluid and ny is outward unit
normal of the fluid. The first equation is the well known wave equation. The second equation
is the BGT condition [22] of order 1 applied on the boundary I's, of the truncated fluid domain
(as presented in Section [1.1.4). On the interface I' between the structure and the fluid, the
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boundary condition of the reflected and the radiated pressure are expressed as following:

{mef ‘ng=-Vp™.n, onl (2.18)

Vp.n, = —poits-n, onT

The first equation consists of imposing that the resultant of normal reflected and incident
acceleration is zero. The second equation means that the radiated acceleration and structure
acceleration have the same normal component on the interface. The system equations
is equivalent to the continuity of normal acceleration on the fluid-structure interface.

It is also possible to describe the state of the fluid by the velocity potential which is defined
by:

vi=Ve, p=—po¢ (2.19)

where v is the velocity of fluid particle. The total velocity potential can also be decomposed by
three components: ¢ = ¢""¢ + ¢"ef 4 $7%  The reflected and the radiated velocity potential
are also governed by the wave equation and the BGT boundary condition [22] of order 1 given
by Equation . On the interface I' between the structure and the fluid, the boundary
condition of the reflected and the radiated velocity potential are given by:

{Vqﬁref ‘ng=-v".n; onT (2.20)

qurad ‘Ng = Uy - Ny on I

where the first equation consists of imposing that the resultant of normal reflected and incident
velocity is zeros and the second equation means that the radiated velocity and structure velocity
have the same normal component on the interface. The system equations is equivalent
to the continuity of normal velocity on the fluid-structure interface.

2.4 Finite element models of interaction of submerged structure
and shock wave problems

Depending on the choice of the variables to describe the state of the fluid and the structure,
various formulations can be found in the literature for modelling the coupled problem of in-
terest. In the following, we present the formulations in displacement structure - scattered
velocity potential (us, ¢*°®), in displacement structure - radiated velocity potential (us, ¢"*?),

rad)

in displacement structure - radiated velocity potential (us, p and in displacement structure

- radiated pressure - radiated displacement potential (us, p"®?, ).
Remark 2.4.1 We recall that in the case of the shock wave induced by an underwater explo-
sion, the incident pressure defined by Equation is a discontinuous function both in time
and in space, more precisely p™™¢ € L?(]0,00[; L?(I")). For this reason, the first equation of
the system equations which aim at imposing that the resultant of normal reflected and
incident acceleration is zero, is only defined in sense of distribution. This singularity makes
impossible the use of the formulation in displacement structure - scattered pressure (us, p*¢*) or
sca
)

in displacement structure - scattered pressure - scattered displacement potential (ug, p*®, ¢
in finite element modelling.
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2.4.1 Formulation in (u,, $**)

Let us define the scattered pressure by p*c® := p™®f + pr2@ and the scattered velocity potential
% .= ¢l 4+ ¢ a5 the potential corresponding to the the scattered pressure. The strong
formulation of the problem formulated with (us, ¢***) is given by:

psits — div g,(us) = 0 in Qg
gs(us) = C: €5(uy) in Q
u; =0 onI'p
%(us) . ns e p0¢scans _'p’i’ncns on F (221)
V(bsca.nszils_ns_vznc_ns on T
1 .
56— A =0 in 0
)
1. 1
Vo™ np = —po(-—¢*" + ——¢"*) on T
Zc ZR

We denote by H%D(QS) ={ve H(Q)% v =0o0nTp}, T the final time of interest and
we assume that vi"¢ € L2(]0, T[; L?(I")%) and p™ € L?(]0, T[; L*(T")). The corresponding weak
formulation of the problem reads: Find u, € C([0,T]; H_ (Q2)%) 0 CH([0, T]; L*(Q)%)
and ¢*® € C([0,T); H'(2f)) N C1([0, T); L*(2y)) such that for all (Jug, §¢*) € H%D(Qs)d X
H'(Qy), we have:

d2
dtQ/Qspsus(t,x)~(5u5(x)dx+/§2565(5u5(x)) C: ey (1))

d pggbsca(t X)[0us(x) - ng(x)]dx = — /Fpmc(t,x) [0us(x) - ng(x)] dx

T d@
2
@ ”%ma X)05* (x)dx — po | Vo (t,x) - V3o (x)dx (2.22)
it o,
d p Sca sca p2 Sca sca
i ) Z—g¢ (t,x)0¢ (X)dx—/roo 7;¢ (t,x)0¢% (x)dx
o PO[us(t x) - n5(x)]66% (x)dx :_/r[ V(L x) - ng(x)] 06°° (x)dx

The dynamic of the coupled problem spatially discretized using finite element method and
the BGT-1 boundary condition [22] (see Section [L.1.4)) for modelling the Sommerfeld condition
are then described by the set of ordinary differential equations:

M Xg+ CEXg + KXy By 2:29)
with
Fsca U
5 - FJ X = | 220

where the vector Uy contains the nodal displacement of the structure and ®%* contains the
nodal value of scattered velocity potential of the fluid. The matrices M4, C% ¢ and K‘m
are defined in Equation ([1.46) of Section The right-hand side is given by F:7' :=
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— Jpp™ (N3 - ny), 59 = — [l po(vie - nS)NJf where N* and N7 are respectively the finite
element basis of the structural and the fluid part.

2.4.2 Formulation in (u,, ¢"*)

By pre-computing the reflected pressure which depends only on the geometry of the structure
and using the radiated velocity potential to describe the state of the fluid in the coupled system,
the strong formulation in (us, ¢"%¢) is given by:

psiis — div g(us) =0 in Q,
g(us) = g : e:S(us) in Qg
Ug :6 onI'p
s(us) - my = —p™ng —p"“ng + po¢™? on T (2.25)
V¢ . ng =, - ng onT
012 grad _ Agrad — g in Q;
0

1. 1
V¢rad ‘nyp= _p0(70¢rad + 7R¢rad) on I

We denote by H%D(QS) = {v e H(Q)%v = O on I'p}, T the final time of interest
and we assume that v"¢ € LQ(]O,T[, L2(T)4) and p™c,p'ef € L2(]0,T[; L*(T')). The corre-
sponding weak formulation of the problem 1} reads Find u, € C([0,T); Hf (Qs)d) N
CY([0,T); L*(Q25)?) and ¢™¢ € C((0,T); H*(2f)) NC*([0, T]; L*(£2y)) such that V((Sus Soprad) €
H%D (92s)% x HY(S2y), we have:

CZ; /Qspsus(t,x) -dug(x)dx + /QS €s(0us(x)) : %:e:s(us(t,x))dx
d
o G LR
== [0 5030 () )
&2 » » y y (2.26)
g /chgcb “(t,x)d¢™ " (x)dx — po o, Vo (t, x) - Vo % (x)dx
2
_% A 2¢rad(t7x)5¢rad(x>dx_A glqsrad( ,X)(qurad(x)dx
= 5 [ oolstex) - niGoler i =0

The use of the (ug, ") formulation yields, after a space-discretization by the finite element
method, the following linear system of order 2:

s rad rad

Mud)Xu(b +Cextxu¢ +Kextxrad Frad (227)
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with

(2.28)

Frad _ F;’ad Xrad _
ugp 0 »ugp T

where the vector U, contains the nodal displacement of the structure and ®"%¢ contains the
nodal value of radiated velocity potential of the fluid.

We remark that in the (us, ¢"*?) formulation, we have the same coupling mass, damping
and stiffness matrices as the (us, ¢*“*) formulation (see Equation of Section for
their definition). The only different appears on the right-hand side which is given by Fgfljd =
— [p (" + pref)(Nj -ng), where N? is the finite element basis of the structural part, for the

new coupled formulation.

2.4.3 Formulation in (u,,p )

By pre-computing the reflected pressure which depends only on the geometry of the structure

and using the radiated pressure to describe the state of the fluid in the coupled system, the

strong formulation in (ug,p"?) is given by:

psits — div o5(us) =0 in Qg
2(115) = g : g(us) in Q
u; =0 onI'p
é(us) ‘N = _pincns - pTefns - pradns onI (2.29)
med ‘ng = —poly + Ny on I
1. d d .
?pra _ Apra =0 in Qf
0
rad _ 1 rad 1 rad T
VP g = —po(—p" + oop™) on T
C R

We denote by H%D(Qs)d = {v € H'(Q)%,v = 0on I'p}, T the final time of interest
and we assume that vi"¢ € L2(]0,T[; L*(T')%) and p™¢,p"f € L%*(]0,T[; L*(T)). The corre-
sponding weak formulation of the problem 1} reads: Find ug € C([O,T];H%D Q) N
CL([0,T); L3 (Q25)%) and pod € C([0,T); HY(S2¢)) N CL([0, T); L*(€2f)) such that V(dus, 5p"e?) €

~—
~—
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HllD (Qs)% x HY(Qy), we have:

d2

dtQ/Q psus(t,x) - 5u5(X)alx+/Q €s(0ugs(x)) :%:ei(us(t,x))dx

S

+ 500000, ) ()
= - /F(pi”c +p"0)(t, %) [Bus(x) - ng(x)] dx

d? 1
a2 / 7pTad(t, x)op 4 (x)dx + Vprid(t, x) - Vop"(x)dx
e % 2 (2.30)

d 0 d d
- rad (y Sp'e d
*dt/rmch (£, %)6p"* (x) dx

[ D) )
d200
~a ),

=0

polus(t,x) - ns(x)]dp”ad(x)dx

rad)

The use of the (ug,p formulation yields, after a space-discretization by the finite element

method, the following linear system of order 2:

.. rad - rad
M, X, + CotX, " + Kerxrod = Frod (2.31)
with
J Frad J Us
Fol= "o [ X' = | prod (2.32)

where the vector U, contains the nodal displacement of the structure and P contains the
nodal value of radiated pressure in the fluid. The matrices My, Coy’ and K§7' are defined in

Equation (1.40) of Section [1.2.1]

We remark that in the (us,pmd)

coupled formulation, we have the same right-hand side
vector as (us, qﬁmd) coupled formulation and we recall that a major drawback of the (us, pred)
formulation is that the coupling mass matrix M,,;, and coupling stiffness matrix Kiff are non-

symmetric.

2.4.4 Formulation in (u,,p"¢, o)

By pre-computing the reflected pressure which depends only on the geometry of the structure
and using two variables - the radiated pressure and the radiated displacement potential - to
describe the state of the fluid in the coupled system, the strong formulation in (u, p"¢, ¢"%%)
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coupled is given by:

pss — div o4(ug) =0 in Qg
:8(118) = g : 6:5(118) in Q,
Us = 0 on FD
os(ug) -ng = —p"™ng —p efns + popng  on I’
Vgpmd ‘g = U - Ny on I
1
rad -rad .
— — =0 in
POC(Q)p 6(2)50 f
1
ﬁﬁrad + ,OOASbTad -0 in Qf
c

1 .. 1
V()brad ‘np = —pp <Z(Prad + Z()brad> on Foo
C R

(2.33)

We denote by H%D(Qs) = {v e H(Qy)4v = 0 on I'p}, T the final time of interest
and we assume that v*¢ € LQ(}O,T[, L*(T)%) and p™e,p'ef € L2(]0,T[; L*(T')). The corre-
sponding weak formulation of the problem reads: Find ug € C([O,T];H%D(Qs)d) N
CH([0,T); L2(Q)), ¢ € CH([0, T); L*(2p)) and "¢ € C([0, T); H' (4))NC2([0, T]; L*(2y))

such that for all (dug, 0p", §p"d) € H%D (Q25)% x L2(S2y) x H(2y), we have:

2
G | ) oG+ / cx(6u.(x)) € s (t,))dx

Tl /F poe" (t, %) [us(x) - ng(x)]dx

- /r(PmC + ")t %) [bus(x) - ny(x)] dx

1 d? 1
0 Jo Pt x)0p"  (x)dx + — e /Q CQQDMd(t x)0p % (x)dx = 0
0 f 5
d2
Jdx + —

_dt2/ 00 VQDTad( ) X V(S(prad

rad iy S d
e /Qf 2P (t,x)d¢" " (x)dx
pO rad rad
-5 /FOO 21,5907 () dx

PO rad d
= [ s ey
T'eo R

2
- 4 [ mlue(t0 Gl
=0

The use of the (ug, p"¢, o)

element method, the following linear system of order 3:

ext ext rad rad
IUPQOXHP‘P MuP‘PXUP‘P + KWMXUPSO F“P‘P
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with
Fd U,
F'r'ad _ 0 X'r'ad _ Prad 2.36
uppy — »“rupp T ( . )
0 Qorad

where the vector U, contains the nodal displacement of the structure, P™*¢ contains the nodal
value of radiated pressure and ¢"%¢ contains the nodal value of radiated displacement potential
in the fluid. The matrices Ifﬁa, Mfﬁp and K, are defined in Equation 1) of Section m

The right-hand side is defined by Fgfljd =—Ir (pi”C—f—pTef)(Nj-ns) where N¥ is the finite element

basis of the structural part.

The finite element model (2.35)) is a third order symmetric system. However, as mentioned
in Section of Chapter [2] we can obtain in this formulation an equivalent non-symmetric
second order system:

ext ~rrad ext ~-rad
MUP‘PXU«P‘P + CUPLPXUPW

where the matrix Cif,fo is defined in Equation 1} of Section .

+ Kupo X0l = Fid (2.37)

2.4.5 Pre-computing of reflected pressure

rad) rad)

In order to use the formulation in (ug, ¢"*), in (us, p or in (ug, p"2?, ") it is necessary
to pre-compute the reflected pressure. With the discontinuity of the incident shock wave
of pressure, it is impossible to use the formulation in the reflected pressure because of the
infinite pressure gradient at the shock front which implies that the acoustic loads associated
become indeterminate. A practical solution in this case may model the shock front such that
the pressure rise occurs over a period of time, designated the "rise time", to overcome the
discontinuity at the shock front. This however may result in response with a poor accuracy
in high frequencies, as if a filter was used. Even with the discontinuity at the shock front, it
is however possible to use the formulation in the reflected velocity potential and compute the
reflected pressure by the post-processing with Equation . The strong formulation of the

reflected velocity potential is given by:

1 .
;%¢ref_A¢ref:0 in Qf
V¢ ng = —vin¢. ng onT (2.38)
1 . 1
A ng=—po (Zc(bref =+ ZR¢T6f> on I'

We assume that v*¢ is in L2(]0, T[; L?(T')%). The corresponding weak formulation of the
problem (2.38) reads: Find ¢™/ € C([0,T]; HY(y)) N CY([0,T7; L2(Qy)) such that for all
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sp"el € HY(Sy), we have:
d? PO ref ref ref ref
——= | =¢"(t,x)6¢" (x)dx — po Vo (t,x) - Vip™ (x)dx
dt2 Qf CO Qf
_ 4
dt Jr_

. /F [V (t,x) - ny(x)] 667 (x)dx

P2 p2
Z—gquf(t,x)égbref(x)dx— / 7;¢Tef(t,x)5¢ref(x)dx (2.39)

oo

which yields, after a space-discretization by the finite element method, the following linear
system of order 2:

2
—poM ;@7 — %Q@T@f — po (Kf + ZQ) ol = pref (2.40)

where the vector ®7¢/ contains the nodal value of the reflected velocity potential and the right-
hand side vector is given by: F;ef = — [r po(V}{® - ng)Nj with N is the shape function of the
finite element method. Note that the usual time-integration schemes (such as Newmark scheme,
Wilson scheme, ...) also explicitly compute the time derivative of the primal variables. In these
cases, we could obtain the reflected pressure from the reflected velocity potential through the
relationship without additional computation cost.

2.5 Numerical validation of finite element models

In this section, we propose to validate the numerical model presented in the previous section.
Two test cases are exposed. The first study case is a 2D academic case for which a semi-
analytical solution is available. The second study case is an extension of the previous 2D-
configuration study case into 3D-configuration. In both cases, the four finite element models
presented in the previous section are investigated.

2.5.1 Test case 1: an elastic ring subjected to an acoustic shock wave

For the first study case, we are interested by an elastic ring submitted to an acoustic shock
wave of underwater explosion. A graphical representation of the first study case is presented
in Figure 2.6

58



2.5. NUMERICAL VALIDATION OF FINITE ELEMENT MODELS

Explosive
(d,0)

Figure 2.6: Graphical representation of the first study case

We suppose that the thickness h of the ring is very small compared to its radius R. Under
this hypothesis, we can use the Love-Kirchoff model to describe the dynamical behaviour of
the structure. Using the Love-Kirchoff model for structural part combined with Fourier series
tool, the analytical solution of the problem in Laplace domain can be expressed explicitly in
form of Fourier series. Thus, in order to obtain a semi-analytical solution, it is sufficient to
truncate Fourier series representing the analytical solution in Laplace domain and employ a
numerical inverse Laplace transform to return to time-domain. The presentation in details of
the construction of the semi-analytical solution of the problem are given in Appendix [B]

For numerical application, we suppose that the submerged structure - shock wave inter-
action problem consists of an elastic ring of radius R = 1 m with a thickness h = 0.01 m
submerged in a fluid. It is excited by the primary acoustic shock wave which comes from an
underwater explosion of 1 000 kg TNT at a distance d = 100 m from the centre of the ring.
At t = 0, we suppose that the front of shock wave arrives at the stand-off point (the nearest
point of the structure to explosion). The physical properties of the structure and the fluid in
the problem are given in Table 2.I] The profile of the incident pressure and of the incident
velocity are respectively given by the relations and (2.15). For numerical application, we
use the value of the constants Pe, v, A and B provided by Cole [40] as given in relation ([2.10).

Structure Fluid
Young’s modulus E = 200 GPa | Speed of sound ¢y = 1500 m/s
Poisson’s ratio v = 0.28 Density pp = 1000 kg/m3
Density ps = 7800 kg/m®

Table 2.1: Physical properties of the structure and the fluid in the problem
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Finite element modelling

In order to approximate the radiation condition, a truncated fluid domain in form of a circle
of radius Ry, = 3 m is employed. On the boundary of the truncated fluid domain, the BGT-1
condition is applied in order to approximate the outgoing sound wave by a cylindrical
wave for which we use the value of impedance Zr = 2pgRygt, Zc = poco. Both the elastic
ring and the fluid are modelled using quadratic triangular elements. The finite element
model is obtained by using a mesh in which the largest element size in the fluid part is 0.06 m
and there are at least 4 elements in the thickness of the ring. The using mesh is illustrated in

Figure 2.7

In the finite element model, we have 172 473 degrees of freedom, 91 028 of which corre-
spond to the structural part and 81 445 of which correspond to the acoustic fluid part for the
formulation in (us, ¢*°?), in (us, ¢"*?) and in (u,, p"?). For the formulation in (us, p"*¢, ¢ %),
we have 253 918 degrees of freedom, 91 028 of which correspond to the structural part and
162 890 of which correspond to the acoustic fluid part. Furthermore, the non-symmetric fi-
nite element model will be used in this study. For time-discretization of finite element
model, Newmark scheme with a small numerical dissipation (y = 1/2—q, 8 = (1 — &)? where
a = —0.2) is employed by using the time step of size At = 6.7 - 1076 s which means that the
shock wave needs 100 time steps in order to travel the distance R.

Figure 2.7: Mesh used in finite element modelling in the first study case
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Analysis of numerical results

For numerical analysis, let us begin with the formulation in (ug, $*“*). The numerical and semi-
analytical solution of radial and ortho-radial displacement are respectively illustrated in Figure
and In Figure and the semi-analytical solutions are displayed by the full
lines while the numerical solutions are displayed by dashed lines. Because of the geometrical
symmetry in the problem, the ortho-radial displacement for § = 0 and 6 = 7 is zero as shown
in Figure 2.8b] We can see clearly that the numerical solution is in accordance with the
semi-analytical solution. For the scattered pressure, Figure plots the numerical and semi-
analytical solution in the same graphic and Figure|[2.10|plots the numerical and semi-analytical
solution in two difference graphics. The results show that the scattered pressure obtained by the
finite element model is also in accordance with the semi-analytical solutions. We remark that
there are some unwanted oscillations in the semi-analytical solutions of the scattered pressure
which are essentially due to the Gibb phenomena and numerical instabilities in inverse Laplace
transform algorithm. In the numerical solutions, we have also some unwanted oscillations.
However, it is less significant than those in semi-analytical solutions since numerical dissipations
are implicitly introduced in the time-discretization scheme. For the case where Newmark
scheme without numerical dissipation (8 = 1/4,~v = 1/2) whose results are not displayed here,
we observed large unwanted oscillations in the numerical solutions of finite element model which
is essentially due to the discontinuity in time of the loading.
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(a) Radial displacements U, (b) Ortho-radial displacements V.

Figure 2.8: Numerical solutions of finite element model in (ug, $*“*) (dashed lines) and semi-
analytical solutions (full lines)

P [MPa]

0.0 05 10 15 20 25
thfR

Figure 2.9: Numerical solutions of finite element model in (ug, $*“*) (dashed lines) and semi-
analytical solutions (full lines) of the scattered pressure at fluid-structure interface
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Figure 2.10: Numerical solutions of finite element model in (us, $*“*) (left) and semi-analytical
solutions (right) of the scattered pressure at fluid-structure interface
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Let us now examine the formulations in (us, ¢"%?), in (u,,p"*¢) and in (ug,p"®?, ).

We remind that the pre-computing of reflected pressure p™®f are required in order to use
the formulation in (us, ¢"*?) and (us,p™*?). The same mesh of fluid part of the previous
coupled model in (ug, ¢p*®) is used for the finite element modelling with the formulation in
oret . The reflected pressures are then obtained by the relation . Figure
shows the numerical and the semi-analytical solution of reflected pressure in the same graphic.
Numerical solutions of finite element model are displayed in dashed lines while semi-analytical
solutions are displayed in full lines. The numerical results show that the reflected pressures of
finite element model in ¢"¢f are in agreement with the semi-analytical solutions. Figure
plots the numerical and semi-analytical solutions of the reflected pressure in two different
graphics. As in the previous case, there are also unwanted oscillations in the semi-analytical
solution. It is however less significant than in case of scattered pressure. Contrary to the
case of scattered pressure where the semi-analytical solutions always have larger unwanted
oscillations than those of numerical solutions, we observe that the numerical solutions of the
reflected pressure cause larger unwanted oscillations than the semi-analytical solution for the

case 0 =0 and 0 = .
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Figure 2.11: Numerical solutions of finite element model (dashed lines) and semi-analytical
solutions (full lines) of the reflected pressure at fluid-structure interface
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Figure 2.12: Numerical solutions of finite element model (left) and semi-analytical solutions
(right) of the reflected pressure at fluid-structure interface
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Figure 2.13: Numerical solutions of finite element model in (ug,# ) (dashed lines) and
semi-analytical solutions (full lines)
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Figure 2.14: Numerical solutions of finite element model in (ug, $"*) (dashed lines) and
semi-analytical solutions (full lines) of the radiated pressure at fluid-structure interface
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Figure 2.15: Numerical solutions of finite element model in (us, ") (left) and semi-analytical
solutions (right) of the radiated pressure at fluid-structure interface
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Figure 2.16: Numerical solutions of finite element model in (ug, p"*) (dashed lines) and semi-
analytical solutions (full lines)
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Figure 2.17: Numerical solutions of finite element model in (ug, p"*) (dashed lines) and semi-
analytical solutions (full lines) of the radiated pressure at fluid-structure interface
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Figure 2.18: Numerical solutions of finite element model in (ug, p"®?) (left) and semi-analytical
solutions (right) of the radiated pressure at fluid-structure interface
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Figure 2.19: Numerical solutions of finite element model in (us, p"¢, ¢"%?) (dashed lines) and
semi-analytical solutions (full lines)

P:‘rrri [MP&]

ter/R

Figure 2.20: Numerical solutions of finite element model in (us, p"®?, ©"%%) (dashed lines) and
semi-analytical solutions (full lines) of the radiated pressure at fluid-structure interface
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Figure 2.21: Numerical solutions of finite element model in (us, p"®?, ©"%?) (left) and semi-
analytical solutions (right) of the radiated pressure at fluid-structure interface
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rad) rad)

For the formulations in (ug, #"*), (us,p and (ug, p"®?, "), the results are respec-
tively displayed in Figure [2.13] 2.16] and [2.19] for the radial and ortho-radial displacement.
The radiated pressure are reported by Figure for the formulation in (us, ¢"%¢), by
Figure for the formulation in (us,p"®?) and by Figure for the formulation
in (ug,p %, ©"). We observe that these three formulations provide the same results which
confirm numerically the equivalence as mentioned in Chapter In comparison to the semi-

analytical solution, the numerical results of these three formulations reveal the same observation
as the formulation in (ug, ¢*°*).

As a conclusion, this study case allows us to validate our implementation of the loading
induced by the shock wave and the new formulations (us, p) and (us, ¢) in a 2D configuration.
Numerical results confirm that the three formulations presented in Chapter [1] are equivalent.
Because of the discontinuity of the excitation provided by the shock wave, we note that a small
numerical dissipation is required in Newmark scheme in order to filter the unwanted oscillation
of high frequency.

Remark 2.5.1 It should be note that these parasite oscillations are induced by the dispersive
nature of the Newmark scheme without dissipation (v = 1/2,8 = 1/4), which is consistent
at order 2. When the dissipation is introduced, Newmark scheme becomes only consistent at
order 1, and then numerically smooths the discontinuities: the dispersive nature, which is an
order 3 phenomenon arising around discontinuities, is therefore no longer observed.

2.5.2 Test case 2: a section of cylindrical hull submitted to an acoustic
shock wave

As the second study case, we consider an elastic structure with a form of a section of cylindri-
cal hull submitted to an excitation induced by an underwater explosion in the same manner
as in the first study case. Here, the domain occupied by the structure is Q4 := {(z,y,2) €
R R—e/2<2®+y* < R+e/2,—h/2 < z < h/2} where R, e and h denote respectively the
radius, the thickness and the length of the cylindrical hull.

In order to render negligible the 3D-effect in z-direction, we impose a homogeneous Dirichlet
boundary condition of the displacement in z-direction on the boundary z = h/2 and z = —h/2
of the structure {25. We also assume that the thickness of the cylindrical hull is relatively small
compared to its radius and that the radius of the hull is relatively small compared to distance
of the explosion to the center of the hull. Under these assumptions, the semi-analytical solu-
tion of the first study case can be employed as the reference solution in our 3D-configuration
problem.

For the numerical illustration, we use R = 1 m, e = 0.0l m and h = 0.2 m. The loading
under consideration is excited by the primary acoustic shock wave, which comes from an
underwater explosion of 1 000 kg TNT detonated at (d,0,0), where d = 100 m. At ¢t = 0,
we suppose that the front of the shock wave arrives at the stand-off point (the nearest point
of the structure to explosion). The physical properties of the structure and the fluid in the
problem are given in Table[2.1I] The profile of the incident pressure and of the incident velocity
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are respectively given by the relations (2.12)) and (2.15)). In this study, we use the value of the
constants P,, v., A and B provided by Cole [40] as given in relation (2.10).

Finite element modelling

In order to approximate the radiation condition, a truncated fluid domain in form of a circle
of cylindrical of radius Ry = 3 m and with the same length as the structure, is employed. On
the boundary of the truncated fluid domain, the BGT-1 condition is applied in order
to approximate the outgoing sound wave by a cylindrical wave for which we use the value of
impedance Zr = 2pgRpg, Zc = poco. The structure part is modelled using the quadratic
triangular shell elements [2I]. The fluid part is modelled using quadratic tetrahedron
elements. The using mesh is illustrated in Figure 2.7}

In the resulting finite element model, we have 230 067 degrees of freedom, 111 987 of
which correspond to the structural part and 118 080 of which correspond to the acoustic fluid
part for the formulation in (ug, ¢*°®), in (us, ¢"%?) and in (ug,p™?). For the formulation in
(us, p %, ©") | we have 348 147 degrees of freedom, 111 987 of which correspond to the struc-
tural part and 236 160 of which correspond to the acoustic fluid part and the non-symmetric
finite element model will be used in this study. For time-discretization of finite element
model, Newmark scheme with a small numerical dissipation (y =1/2—«, f = i(l —a)? where
a = —0.2) is employed by using the time step of size At = 6.7 - 107% s which means that the
shock wave needs 100 time steps in order to travel the distance R.

V.

Figure 2.22: Mesh used in finite element modelling in the second validation case
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Analysis of numerical results

For numerical analysis, let us begin with the formulation in (us, ¢***). The numerical and
reference solutions of radial and ortho-radial displacement at z = 0, are respectively illustrated
in Figure 2.23a] and 2.23b] In Figure [2.23a] and [2.23b] the reference solutions are displayed by
full lines while the numerical solutions are displayed by dashed lines. Because of the symmetric

in the problem, the ortho-radial displacement for # = 0 and 6 = 7 is zero as shown in Figure
[2.23b] We can see clearly that the numerical solution is in accordance with the reference
solution. For the scattered pressure, Figure plots the numerical and reference solutions in
the same graphic and Figure [2.25] plots the numerical and reference solution in two differences
graphics. The results show that the scattered pressure obtained by the finite element model
is also in accordance with the reference solution. We remark that there are some unwanted
oscillations in the reference solutions of the scattered pressure which are essentially due to the
Gibb phenomena and the numerical instabilities in inverse Laplace transform algorithm. In
the numerical solutions, we have also some unwanted oscillations. However, it is less significant
than the reference solutions since numerical dissipations are introduced in time-discretization

scheme.
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Let us now interest in the formulations in (us, #"%), (us,p"®?) and (u, p"®?, p"9%). We
remind that the pre-computing of reflected pressure p®f are required in order to use the
formulation in (us, ¢"%%) and (us, p"®?). The same mesh of fluid part of the previous model
in (ug,%®) are used for the finite element modelling in formulation in ¢/ . The
reflected pressures are then obtained by the relation (2.19). Figure shows the numerical
and reference solutions of reflected pressure in the same graphic. Numerical solutions of finite
element model are displayed in dashed lines while reference solution are displayed in full lines.
The numerical results show that the reflected pressures of finite element model in ¢"¢/ are in
agreement with the reference solutions. Figure[2.27plots the numerical and reference solutions
of the reflected pressure in two different graphics. As in the previous case, there are also
parasites oscillations in the reference solutions. It is however less significant than in case of
scattered pressure. Contrary to the case of scattered pressure where the reference solutions
always have parasites oscillations more significant than the numerical solutions, we observe
that the numerical solutions of the reflected pressure cause parasites oscillations larger than

the reference solutions for the case 8 =0 and 6 = 7.
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Figure 2.26: Numerical solutions of finite element model (dashed lines) and reference solutions
(full lines) of the reflected pressure at fluid-structure interface
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Figure 2.27: Numerical solutions of finite element model (left) and reference solutions (right)
of the reflected pressure at fluid-structure interface
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(a) Radial displacements U, (b) Ortho-radial displacements V.

Figure 2.28: Numerical solutions of finite element model in (ug,# ) (dashed lines) and
semi-analytical solutions (full lines)
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Figure 2.29: Numerical solutions of finite element model in (ug, $"*) (dashed lines) and
semi-analytical solutions (in full lines) of the radiated pressure at fluid-structure interface
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Figure 2.30: Numerical solutions of finite element model in (us, ¢"*¢) (left) and semi-analytical
solutions (right) of the radiated pressure at fluid-structure interface
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Figure 2.31: Numerical solutions of finite element model in (ug, p"*®) (dashed lines) and semi-
analytical solutions (full lines)
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Figure 2.32: Numerical solutions of finite element model in (ug, p"*) (dashed lines) and semi-
analytical solutions (full lines) of the radiated pressure at fluid-structure interface
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Figure 2.33: Numerical solutions of finite element model in (ug, p"*?) (left) and semi-analytical
solutions (right) of the radiated pressure at fluid-structure interface
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(a) Radial displacements U, (b) Ortho-radial displacements V.

Figure 2.34: Numerical solutions of finite element model in (us, p"¢, ¢"%?) (dashed lines) and
semi-analytical solutions (full lines)
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Figure 2.35: Numerical solutions of finite element model in (us, p"®?, ©"%%) (dashed lines) and
semi-analytical solutions (full lines) of the radiated pressure at fluid-structure interface
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Figure 2.36: Numerical solutions of finite element model in (us,p™¢, ¢"%%) (left) and semi-
analytical solutions (right) of the radiated pressure at fluid-structure interface
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rad) rad)

For the formulation in (u,, ¢"%%), in (us,p and in (u,, p"®, ¢ %), the results are re-
spectively displayed in Figure 2.28] 2.3T] and 2.34] for the radial and ortho-radial displacement.
The radiated pressure are reported by Figure for the formulation in (us, ¢"%¢), by
Figure for the formulation in (us,p"®?) and by Figure for the formulation
in (ug,p", ©"). We observe that these three formulations provide the same results which
confirm numerically their equivalent as mentioned in Chapter [I In comparison to the semi-

analytical solution, the numerical results of these three formulation reveals the same observation
as the formulation in (ug, ¢*°%).

As a conclusion, this study case allows us to validate our implementation of the loading
induced by the shock wave and the new formulations (us, p) and (us, ¢) in a 3D configuration.
Numerical results confirm that the three formulations presented in Chapter [1] are equivalent.
Because of the discontinuity of the excitation provided by the shock wave, we also note in this
study case that a small numerical dissipation is required in Newmark scheme in order to filter
the unwanted oscillations of high frequency.

2.6 Conclusions

A short presentation of the underwater explosion phenomena and finite element modelling of
interaction of submerged structure and shock wave problem are given in this chapter. Four
formulations: in displacement structure - scattered velocity potential (us, ), in displacement
structure - radiated velocity potential (us, ¢md), in displacement structure - radiated pressure
(us’ prad)

(us, "%, ¢
terms of strong formulation (PDE) as well as in terms of finite element models. Contrary

and in displacement structure - radiated pressure - radiated displacement potential

rad) of the fluid-structure interaction problem of interest have been presented in

to the formulation in (ug, ¢*“*), which requires only the knowledge on the shock wave (i.e
incident pressure and velocity), other three formulations require a pre-computation of the
reflected pressure.

In order to validate the implementation of the loading induced by the acoustic shock wave
and the two new formulations in code aster, numerical results on two test cases are presented in
the last section of the chapter. Numerical results confirm that the three formulations presented
in Chapter [I] are equivalent. It also indicates that a small numerical dissipation is required in
Newmark family scheme in order to filter the high frequency oscillation due to the shock wave
discontinuity.
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Reduced order modelling
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Chapter 3

Reduced order modelling of transient
vibro-acoustic problem

In the previous chapters, finite element models of transient vibro-acoustic problem expressed
in various formulations have been presented. In order to obtain an accurate solution from the
finite element model, it is known that we have to ensure that the size of mesh is small enough
for the highest frequency of interest. Because of the three-dimensional nature of acoustics, the
number of elements increases dramatically as the size of the problem increases. In addition,
since we use the approximation condition of radiation condition by BGT method [22, 67| for
exterior problem, we need to truncate fluid domain at a distance sufficiently far enough from
the propagation source. In practice, these requirements lead to having a large computational
domain together with a very large number of elements to apply the finite element method of
the full model. As expected, in the industrial context, it is not applicable to use the full model
for many parameters. Therefore, we need to develop judicious numerical methods to solve this
problem for many parameters reasonably fast.

In order to overcome the issue of computational costs, we can turn to the reduced order
modelling techniques. The reduced basis method, which was originally introduced in the 1970’s
for non-linear structural analysis in [3, [102] and analysed in [I8] [I10], have been investigated
as model order reduction technique in different parametrized stationary problems; such as in
harmonic Maxwell’s equations in [3§], in elasticity problem [73], [123], in steady Navier-Stokes
equation in [9I]. For parametrized frequency domain vibro-acoustic problem, a reduced order
modelling based on the reduced basis method has been analysed in [83]. The construction
of the reduced order model in the work [83] is based on a Petrov-Galerkin projection on a
suitable trial subspace and a suitable test subspace. An appropriate trial subspace can be
built by an iterative Greedy Algorithm using the norm of residual as error indicator. Galerkin
and Minimum Residual projections are then considered to determine the test subspace and
construct the parametric reduced order model. Numerical results of industrial complexity show
that the proposed reduced order model provides a very good approximation of the full model
with the CPU time gain of several orders of magnitude depending on the desired accuracy.

Unfortunately, it has been shown in [27, 121] that the technique proposed in [83] can not
be directly applied in time domain problem. For transient problem, it is necessary to ensure
that the reduced order model preserves the stability properties of the full model. In the most
general cases of time-dependent problem, the reduced order model based on a Petrov-Galerkin
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projection does not preserve the stability of the full model. Several techniques of stabilization
have been proposed in literature (for instance, see [96 [7, 25] [76] [119]). Balanced Truncation
method proposed in [96] can ensure the stability of the Galerkin-reduced order model. Unfor-
tunately, the computation of the reduced basis involves the Lyapunov equations which require
a complexity of = O(n?), where n is the size of the full model, for the resolution. This complex-
ity makes the application of this technique out of reach in the industrial problem. A general
purpose optimization approaches to obtain a stable Petrov-Galerkin projection reduced order
model are presented in [7] and [25]. For a given couple (W, V), the proposed approach aims
to replace the left basis W by a new one W for which Petrov-Galerkin reduced order model
based on the couple (W,V) is stable. The key idea is to solve a constrained optimization
problem where the constraint is to enforce stability of reduced order model and the objective
function to minimize is the difference between the resulting left basis and the original left basis
in order to ensure that the loss accuracy in the stabilization process is as small as possible.
The method proposed in [7] does not guarantee the existence of the solution of constrained
optimization problem. The method proposed in [25] can guarantee the existence of the solution
of constrained optimization problem. However the proposed algorithms are not guaranteed to
terminate with a finite number of iterations. In 2014, a new approach for stabilizing unstable
reduced order model through an a posteriori post-processing applied to algebraic reduced or-
der model system is developed in [76]. The idea is to modify the unstable eigenvalues of the
reduced order model system by moving these eigenvalues into the stable half of the complex
plane. This approach can ensure that the modified reduced order model is stable however the
accuracy of the stabilized reduced order model is not guaranteed.

Specifically for the case of time-domain vibro-acoustic finite element model, a stable reduced
order modelling has been recently proposed in [121] for the formulation in (ug, p) and in (us, ¢)
for the case of an interior problem. For (ug, ¢) based formulation, the idea is to modify the
original formulation by changing the sign of the set of equations governing the acoustic part
before employing Galerkin projection. For the case of (us, ¢) based formulation, the stability
of Galerkin-reduced order model is achieved by choosing a particular form of the reduced basis
in order to preserve the structure of the original full model. The proposed techniques are then
extended to the case of exterior problem, where the radiation condition is modelled by the
Infinite Element method [I0], in [122].

The first objective of this chapter is to present the stabilization reduced order modelling
technique proposed in [I21] for the time domain vibro-acoustic finite element model in (us, p)
and (us, @) couple and exploit the ideas to give a stabilization reduced order modelling tech-
nique for the finite element model in (us, p, ) couple. The second objective of this chapter is
to study the accuracy of the reduced order model based on the reduced basis built by a Greedy
Algorithm applying on the corresponding frequency domain proposed in [83]. This chapter is
organized as follows. In the first section, we recall the notion of stability and we verify that the
finite element model in (us,p), (us, @) and in (ug,p, @) are all stable. In the second section,
the stable reduced order models based on Petrov-Galerkin projection for the three formulations

are given in Subsection |3.2.3] [3.2.4] and [3.2.5] The third section focuses on the construction of

the reduced basis. Depending on the stabilization technique of each formulation, we propose
to make some modifications in the classical Greedy Algorithm. Numericals validations of the
stability and numerical study on the accuracy of reduced order model are given in Section [3.4]
Finally, conclusions are offered in Section
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3.1. FULL MODEL AND STABILITY

3.1 Full model and stability

In this chapter, the term of full model refers to the finite element model. We consider here the
full model which is described by a set of ordinary differential equations:

MX (t) + CX(t) + KX(t) = f(t)F
X(t=0)=Xp (3.1)
X(t=0) =X,
where M, C and K € C™*"™ are respectively the given mass, damping and stiffness matrix of
the problem, f is a time-dependent function and F is a vector of C™. Before talking about
the reduced order modelling, let us recall briefly the notion of stability of the dynamical sys-
tem (3-1).

Throughout this chapter, the stability means that the state of the system (3.1]) is bounded
(i.e 3 C > 0 such that ||X(t)|| < C, Vt > 0) in the case of absence of the external force, for
any initial condition. In general, it is difficult to directly study the stability of a second-order
system. It is usual to work with an equivalent linear descriptor system since the criteria of the
stability are well established for this kind of system. A linear descriptor system is governed by
the set of equations:

EY(t) = AY(t) + B(t) (3.2)

where E, A are two matrices in C?"*?", B is a time-dependent vector in C?" and Y =

. T
[X(t) X(t)} . The definition of stability of a linear descriptor system li is given by the
following definition [50].

N\

Definition 3.1.1 The linear descriptor system 1s called stable if and only if all
of eigenvalues of the following generalized eigenvalue problem:

Ay= \Ey (3.3)

have a negative real part.

\. J

It is important to note that the second-order system (3.1) can be written as a linear de-
scriptor system ([3.2)) with

E =

Q 0 10 Q
0 M]’A_[—K -C

and B(t) = f(1) lg] (3.4)

where Q is an invertible matrix. Hence, we can use the following definition for the stability of
a second order system ({3.1]).

Definition 3.1.2 The dynamical system is called stable if and only if all root of
the polynomial P(s) := det(s? M + sC + K) have a negative real part.

The roots of the polynomial P(s) are also known as the poles of the system (3.1). The
definition is equivalent to stating that all the poles of the system must be in the closed left-
half complex plane. In what follows, we give an overview on the mathematical conditions under
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3.1. FULL MODEL AND STABILITY

which the system (3.1) and (3.2) are stable. First, let us recall the notion of (semi)-definite

positive of a matrix C™*".

Definition 3.1.3 A matriz A € C"*" s called:
e positive definite if and only if we have R(z Az) > 0,Yzc C*, z+# 0

e semi-positive definite if and only if we have R(zT Az) > 0,Vz € C"

The following lemma gives a mathematical condition under which the linear descriptor

system ([3.2)) is stable.

Lemma 3.1.1 [i21] The linear descriptor system is stable if the matriz E is pos-
itive definite and hermitian and the matriz — A is positive semi-definite.

Proof: Let A € C and v € C" be the eigenvalue and the corresponding eigenvector of the
generalized eigenvalue problem (3.3]), by definition we have:

Av = )\Ev
= vilAv = WEv

Since the matrix E is positive definite and hermitian, we have vEv € R and v Ev > 0. With

_ R(vT Av) <0

the properties of positive semi-definiteness of the matrix —A, we have then R(\) gy e

O

The following lemma gives a mathematical condition under which the second-order system
(3.1) is stable.

Lemma 3.1.2 [121] The system 1s stable if the mass and stiffness matrices M, K
are positive definite and hermitian and the damping matriz C is semi-positive definite.

Proof:  Since the stiffness matrix K is invertible, the second-order system (3.1)) can be
written as a linear descriptor (3.2)) with

K K
- 0]7A:[0

0 M -K -C F

and B = f(t) [0]

Since the matrices K and M are positives definite and hermitian, the matrix E is also

T
positive definite and hermitian. For any x = {Xl X2:| € C?", we have

0 K
K -C

X1

R(xTAx) = R( [X{I Xf} [

]) = —R(xTCxy) <0

X2

Thus, the matrix —A is positive semi-definite. Since the matrix —A is positive semi-definite
and the matrix E is positive definite and hermitian, we can conclude that the second-order

system (3.1) is stable according to Lemma
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An extension of Lemma for the case of the stiffness matrix is only positive semi-definite
is given by the following lemma.

Lemma 3.1.3 The system is stable if the mass M is positive definite and hermi-
tian, the stiffness K s positive semi-definite and hermitian, and the damping matriz C
18 positive semi-definite.

Proof: Let X is a root of the polynomial P(s) = det(s?M + sC + K). By definition, there
is a vector x # 0 such that:

(M +sC+K)x =0
= s2(xTMx) + s(x7 Cx) + xTKx =0

The hypothesis of the lemma implies that x’Mx € R, xMx > 0, xKx € R, x/Kx > 0
and R(x7Cx) > 0. Let us denote by s; = a; + jb; and sy = as + jbs the solution of

algebraic equation s?(xMx) + s(x Cx) + xTKx = 0. Then, we have s + s3 = —)’::III\C/I’; and
58189 = XZKX which implies:
xHCx
R(x"Cx)
=\ P
01+ a2 xIMx —
H
x"Kx
—biby = >0
aray = biby = “Foa 2

arbs +ashy =0

e Case 1 : If a; = 0 (az = 0), the inequality a1 + a2 < 0 implies that ao < 0 (a; < 0).
Then, we have in this case R(s1) < 0,R(s2) <0.

e Case 2 : If a1 # 0,a2 # 0. Suppose that a; and a2 do not have the same sign. Then,
we have ajas < 0 and az/a; < 0. From the equation a1by + a2b; = 0, we have bjbe =
—(az/a1) > 0. Since ajaz < 0 and byby > 0, we have a contradiction in the inequality
ajag — biby > 0. It means that a; and as must have the same sign in which case the
inequality a; + as < 0 implies that R(s1) < 0,R(s2) < 0.

g

In the case of the second-order system resulting from the finite element discretization
of structural dynamic or acoustic problem, the mass matrix M is symmetric and positive defi-
nite and the stiffness matrix K is symmetric and positive semi-definite. Hence, we can directly
conclude that the system is stable according to Lemma [3.1.3|in the condition that if we have a
damping effect, it is represented by a positive semi-definite matrix. For finite element models of
vibro-acoustic coupling presented in the previous chapter, the sufficient conditions of stability
in Lemma is not verified.

In what follows, we propose to verify the stability of the second order systems resulting
from a finite element discretization of transient vibro-acoustic problem.
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3.1. FULL MODEL AND STABILITY

3.1.1 Stability of full model in (u, ¢)

Let us begin with the formulation in (us, ¢) couple. In order to generalize our demonstration,
we consider that the structural and fluid damping effects are also taken into account in the
model. For the case of an interior problem, the full model of the formulation in (us, ¢) is given

by:
F
] s

where the matrices C; and Cj represent respectively the structural and the fluid damping

U,
P

U,
F

Cs _POKC
—poK?  —poCy

K 0
0 —poKy

Us

P

M 0
0 —poMy

matrix. We restrict ourselves to the case where these two damping matrices are positive semi-
definite. The stability of the system ({3.5) is achieved as a particular case (where all matrices
have real coefficients) of the following lemma.

Lemma 3.1.4 If the mass matrices My, My are hermitian and positive definite, the
stiffness matrices Ky et Ky are hermitian and positive semi-definite and the damping

matrices Cs and Cy are positive semi-definite, the dynamical system

MS 0 US Cs —POKc US +
0 —poM;| | ® —po K —poCyr| | @
Mu¢ Cuqh
K 0 U, F
S S S (36)
0 _,OOKf P F¢
N——
K,

1s stable.

Proof: By changing the sign of the set of equations governing the degree of freedom of
¢, it is obvious that the system (3.6) has the same properties of stability with the following
System:

M 0 Us Cs —poK. I.Js K, 0 U _ F, (3 7)
0 poM;| | @ poKZ  poCy | | @ 0 poKs| | @ -F,
~——_———— ~ ~——_——

Mmu¢ Cmu¢> Kmu¢’

We can now use Lemma to conclude the stability of the system . It is obvious
that the new coupling mass (stiffness) matrix M4 (resp. Kpnug) is hermitian and positive
(semi-) definite thanks to the properties of the sub matrix M, and My (resp. K, and Ky). It
remains now to show that the coupling damping matrix C,,,4 is positive semi-definite. For all

T
X = |:X]_,X2i| , we have:
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3.1. FULL MODEL AND STABILITY

Cs —poKe

R(xTCprugx) = R(| x4, x4
( ¢X) ([1 2} poKf poC

X1
] )
X2
= R(x} Cyx1 + pox Cyxa — poxi Koxo + poxt K x1)
e

(xF Csx1 + pox& Cyx2) > 0

Thus, the matrix C,,,¢ is semi-positive definite. The system (3.7)) is then stable according to
Lemma B.1.3

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
finite element model of the formulation in (us, ¢) is given by:

M, 0 Us Cs —poKe I.st
0 —poMy| | @ —poKi  —po(Cy+ £2Q)| | @
K, 0 U, F,
+ — (3.8)
0 —po(Ky+ %Q) P Fy

Since the impedance matrix Q is symmetric and positive semi-definite, the stiffness matrix in
the fluid part K?xt =Ky + %Q remains symmetric and positive semi-definite and the total
damping matrix in the fluid part C?xt = Cy + g—gQ remaing positive semi-definite. Thus,
we can conclude that the system is also stable. For exterior problem where the BGT-0
method is used to approximate the radiation condition, the finite element model remains also
stable since we have in this case K?‘t = Ky and C?xt = Cy + g—gQ which remains positive
semi-definite.

3.1.2 Stability of full model in (uy,p)

In this section, we turn to the formulation in (us,p). We recall that the finite element model
in (us,p) of an interior problem is given by:

U,
b

U,
b

C, 0
0 Cy

K. K.
0 K;

Us
P

P

M, 0
[ P (3.9)

—poKI' M,

where the matrices Cs and Cy which represent respectively the structural and the fluid damping
terms, are introduced in the model in order to generalize our framework. We consider here
only the case where these two damping matrices are positive semi-definite. The stability of the
system is achieved as a particular case (where all matrices have real coefficients) of the
following lemma.
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3.1. FULL MODEL AND STABILITY

Lemma 3.1.5 If the mass matrices My, My are hermitian and positive definite, the
stiffness matrices Ky et Ky are hermitian and positive semi-definite and the damping
matrices Cs and Cy are positive semi-definite, the dynamical system

M, 0| |U, c. 0| |U, K, K.||U, F,
K M| P 0o c/|lpP|T|lo k/||P F @)
—poK, f f f P
———
Mup Cup KuP

1s stable.

Proof: We denote by P, and P, the characteristic polynomial (defined in the definition

3.1.2)) of the system (3.10) and the system (3.6), respectively. By definition, the polynomial
P,y of the system (3.10) is given by:

$2M; + sC, + K, K.

P —
up(5) —pos’KH My +sCr + Ky

and the polynomial P,4 of the system (3.6 is given by:

M, + sC, + K, —posK.

P,s(s) =
ug (5) —post —pg(ssz—l-sCf—l-Kf)

We denote by ny the number of degrees of freedom in the fluid part. For s # 0, we have

M, + sCs + K K
P _(_ ny s s s c
ug(5) = (—pos) —pgst %(ssz +5sCy + Ky)
— (—po)™ M, + sC, + K, K.
= (—po) 2 H 2
—pos“K¢ s*My +sCr + Ky

= (_pO)nf Pup(s)

The system (3.10) and the system (3.6) have the same non-zero poles which means that
both systems have the same properties of stability. Since the system (3.6)) is stable according
to Lemma we can then conclude that the system (3.10) is also stable.

O

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
finite element model of the formulation in (ug, p) is given by:

U,
b

U,
b

C, 0
0 Cf—I—%Q

Us

—poK: My

M, 0
0 Kf-i-%Q

[Ks K,

= [::p] (3.11)

Since the impedance matrix Q is symmetric and positive semi-definite, the stiffness matrix in
the fluid part K?xt =K+ %Q remains symmetric and positive semi-definite and the total
damping matrix in the fluid part C]eft = Cy + g—gQ remaing positive semi-definite. Thus,
we can conclude that the system is also stable. For exterior problem where the BGT-0
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3.1. FULL MODEL AND STABILITY

method is used to approximate the radiation condition, the finite element model remains also
stable since we have in this case K;xt = Ky and C?H =Cy + g—gQ which remains positive
semi-definite.

3.1.3 Stability of full model in (uy,p, )

Finally, let us put the focus on the formulation in (us, p, ). We recall that the finite element
model in (ug,p, @) of an interior problem is given by:

M, 0 —pK.|[U,] [c, o o] [0,
0 0 My P|+|0 0 0| |P
—pKI My —poKy| || |0 C; 0 |¢
K, 0 of [u,] F,
1 _
+]0 IM; o| [P |=|0 (3.12)
0 0 o |e| |F

where the matrices Cs and Cy which represent respectively the structural and the fluid damping
term, are introduced in order to generalize our framework. We consider here only the case where
these two damping matrices are positive semi-definite. The stability of the system is
achieved as a particular case (where all matrices have real coefficients) of the following lemma.

Lemma 3.1.6 If the mass matrices My, My are hermitian and positive definite, the
stiffness matrices Ky et Ky are hermitian and positive semi-definite and the damping
matrices Cs and Cy are positive semi-definite, the dynamical system

M, 0 -pk.|[U]| [c, o o] |uU,
0 0 My P|+|0 o0 of|P
—poK, My —poKy| @] |0 Cr 0| ¢
K, 0 o0|[u] [F,
1 —
+10 LMy ool |P|=|0 (3.13)
0o 0 o|e]| |F

15 stable.

Proof: We denote by Py, and Py, the characteristic polynomial (defined in the definition

3.1.2) of the system ({3.10) and the system (3.13)), respectively. By definition, the polynomial
P, of the system ([3.10)) is given by:

82M5 + SCS + Ks KC

P, =
uP(S) —p082K£{ 82Mf + SCf + Kf

and the polynomial P, of the system (3.13)) is given by:

M, + sC, + K, 0 —pos’K.
Pyupo(s) = 0 =My s>M
—,0032Kf 32Mf +sCy —possz
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3.2. REDUCED ORDER MODELLING

We denote by ny the number of degrees of freedom of the pressure p which is equal to the
number of degrees of freedom of the potential . We have:

$?M, + sCs + K, 0 K.
Pupy(s) = (—POSQ)W 0 p%Mf _pLOMf
_pOSQKf SQMf + SCf Kf
s*M; + sC; + K 0 K.
= (—pos*)™ 0 L, 0
—pos”K My +sCy My +sCr + Ky
1 ’M C,+K K
= (—poSQ)nfdet(fo) 57 + 82 5;_ s , ¢
Po —pos K¢ s*My+ sCy+ Ky
‘M C,+K K
= (—sA)rrder(M;) [T T PR c
—pos K, My +sCr+ Ky

= (=s%)" det(M) Pup(s)

Since the matrix My is positive definite, we have det(My) > 0. Thus, the system ({3.13))
and the system have the same non-zero poles which means that both systems have the
same properties of stability. Since the system is stable according to Lemma , we
can then conclude that the system is also stable.

O

For exterior problem where the radiation condition is modelled by the BGT-1 method, the
finite element model of the formulation in (us, p, ) is given by:

M, 0 —poK. U, C, 0 0| U,
0 0 M; Pl+|0 0 o| |P
—poKi My —po(K;+£2Q)| | ¢ 0 Cr+42Q 0] |¢
K, 0 0] |u, F,
+10 ZM; 0] |P|=|0 (3.14)
0 0 of|e F,

Since the impedance matrix Q is symmetric and positive semi-definite, the stiffness matrix in
the fluid part K‘}mt =K+ g—ORQ remains symmetric and positive semi-definite and the total
damping matrix in the fluid part C]ecmt = Cy + g—gQ remaing positive semi-definite. Thus,
we can conclude that the system (3.14)) is also stable. For exterior problem where the BGT-0
method is used to approximate the radiation condition, the finite element model remains also
stable since we have in this case Kfcxt = Ky and C?xt =Cy+ %Q which remains positive
semi-definite.

3.2 Reduced order modelling

As mentioned in introduction, the number of degrees of freedom in finite element model is
often very large in industrial problems which limits the practical use of this so-called full
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3.2. REDUCED ORDER MODELLING

model in parametrized problems, due to the required computational cost. This problem can
be overcome by using reduced order modelling techniques. In this section, we are interested
in the Petrov-Galerkin projection-based model reduction techniques which consists to restrict
the solution space to a subspace and enforce the orthogonality of the residual vector to a test
subspace. We denote V and W the trial and the test subspace of dimension N which is much
smaller than the dimension of the full model denoted by n, the reduced order model obtained
by Petrov-Galerkin projection of the full model on the couple (V, W) writes:

M, X, (1) + C, X, () + K, X, (t) = f(1)F,
X, (t = 0) = Iy Xg (3.15)
X, (t =0) = Iy X,

where M, = WEMV, C, = WICV, K, = WIKV € CV*N_ F, = WHF e CV and Iy
denotes the orthogonal projection on the space spanned by the reduced basis V. The approx-
imation of the solution of the full model by the reduced order model is given by:
X" (t) = VX,(t). In the case of W = V| the projection is well known as Galerkin projection.

The main challenge of projection based model reduction is to find the reduced basis W
and V such that the reduced system provides an accurate approximation of the output
of interest over the desired ranges of inputs function f. One of necessary conditions to obtain
such reduced order model is to ensure that the stability of the system is preserved. We recall
that the definition of the stability used here states that the system is stable if and only if
all roots of the polynomial P(s) := det(s?M + sC + K) have a negative real part. Preserving
of the stability means that the reduced order models must have the same properties of stability

as the full model. This condition is necessary in order to impose the solution of reduced order
model (3.15) to have the same physical meaning as the original full model (3.1).

3.2.1 Offline/online decomposition

Before talking about the stability of the reduced order model, let us recall briefly an efficient
offline/online procedure in the reduced order modelling framework. We remind that the com-
plexity of computation in the offline phase may depend on the size of the full model. On the
contrary, the complexity of computation in the online phase does not depend on the size of the
full model. It depends only on the size of the reduced order model. We assume here that the
mass, damping and stiffness matrices of the full model do not depend on the parameter.
The parameter that we seek to vary here is the time-dependent function f.

At offline phase, we begin by computing the reduced basis V and W. The reduced mass,
stiffness and damping matrices M,, K., C,. as well as the reduced right-hand side vector F,
are then computed and saved. Once all the computations of M,,K,, C, and F, in offline
phase are done, the solution X, of the reduced order model can be obtained with a
complexity which depends only on the size of the reduced basis denoted by N and the number
of time steps K considered in time-discretization. We should remark that the computation
of the approximation of the full model’s solution X" by the relation X" (t) = VX, ()
is in complexity O(nNK). Thus, it still depends on the size of the full model. However, if
we are only interested in some physical quantities which can be expressed by a linear form:
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S)(t) = LTX(t), where L is a vector of R” and X is the solution of the full model (3.1)), then
the prediction of this physical quantities by reduced order model can be obtained in complexity
O(NK). The idea is to pre-compute offline the reduced vector L = LTV € C™¥ | and using
online the relation S7°™(t) = LT X, (t). The same technique is also applicable for the physical
quantities which can be expressed by a quadratic form: S,(t) = X (£)QX(t), where Q is
a matrix in C™*" and X is the solution of the full model , by pre-computing offline the
reduced matrix Q, = VZQV € CV*V and using online the relation Sgem(t) = XH(1)Q, X, (t).
The complexity in online part for the latter case is in O(N2K).

3.2.2 Stability preserving reduced order model

In the most general cases, Petrov-Galerkin reduced order model does not preserve automatically
the stability of the full model. Tt is possible to have a unstable Petrov-Galerkin projection
reduced order model even if the original full model is stable, as we will see numerically in
Section for the case of vibro-acoustic problem. In some particular cases, the reduced order
model based on Galerkin projection preserves automatically the stability of the full model as
stated in the following lemma.

Lemma 3.2.1 If the mass matriz M is positive definite and hermitian, the stiffness
matriz K is positive semi-definite and hermitian and the damping matriz C is positive
semi-definite, then the reduced order model obtained by Galerkin projection of the full
model preserves the stability for any choices of the reduced basis V.

Proof:  According to Lemma [3.1.3] it is sufficient to show that the reduced mass matrix
M, remains hermitian and positive definite, the reduced stiffness matrix K, remains hermitian
and positive semi-definite and the reduced damping matrix C, remains positive semi-definite.

We denote in what follows by A, = VIAV € CVN*N_ where N is the dimension of the
subspace spanned by the basis V. Since V is a basis, the rank of the matrix V is maximum.
Thus, for any x, € CV, there exists an unique vector x € C* such that x = Vx, and we have:

R(x" Ax) = R(Vx,)TA(Vx,)) = RT(VEAV)x,) = R(xTA,x,)

Clearly, we have x = Vx, # 0 if x, # 0. The matrix A, is then positive (semi-) definite if the
matrix A is positive (semi-) definite. Thus, the reduced mass matrix M, is positive definite
and the reduced stiffness matrix K, and reduced damping matrix C,. are positive semi-definite.

It remains to show that the reduced mass and stiffness matrices are hermitian. For any
Xy, € CY and x = Vx,,y = Vy, € C", we have:

y"Ax = (V.Yr)HA(VXT) = y{ﬂ{(VHAV)Xr = y{-{Arxr

and
XHAy = (VXT)HA(VyT) = Xﬁ(VHAV)yr = X7I'{A7”YT

If the matrix A is hermitian, we have y? Ax = x# Ay. It implies that y7A,x, = x7A,y,
which means that the reduced matrix A, is also hermitian. The reduced mass and stiffness
matrices are then hermitian.
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According to Lemma [3.2.1] in the case of the full model resulting from the finite element
discretization of structural dynamic or acoustic problem, where we have symmetric and positive
definite mass matrix M and symmetric and positive semi-definite stiffness matrix K, we can
directly conclude that the reduced order model obtained by Galerkin projection is always stable.
It remains true in the case where we also take into account a positive semi-definite damping
matrix in the model. However, Lemma [3.2.1] can not be applied directly to vibro-acoustic
coupling problem.

In the following, we present the stabilization reduced order modelling technique proposed in
[121] for the time domain vibro-acoustic finite element model in (ug, p) and (us, ¢) respectively
in Section [3.2.3] and [3.2.4] and we will give a stabilization reduced order modelling technique
for the finite element model in (us,p, ¢) in Section

3.2.3 Stable reduced order models for the formulation in (uy, ¢)

In the case of the full model in (us, ¢), a stable reduced order model can be obtained by Petrov-
Galerkin projection using a particular form of the basis W of test subspace which depends on
the choice of the basis of the trial subspace V as stated in Lemma [3.2.2] This stabilization
technique is equivalent to the technique proposed in [I12I] which consists to construct a stable
reduced order model by using Galerkin projection on the modified formulation in (us, ¢) (3.7).
The stability of the reduced order model proposed in [121] is achieved since all the hypothesis
of Lemma is verified for the modified formulation as shown in the demonstration of
Lemma

Vs

Lemma 3.2.2 For any basis V = v
f

, the Petrov-Galerkin projection of the full

yields a stable reduced order model.

model in (us, @) on the (W, V) where W = [ ‘ij
Vs

Proof: The reduced order model obtained by Galerkin projection of modified formulation

n (us, ¢) 1} on the basis V = [Vs
A
M6 Xr () + Chg X () + Ko X (8) = Firps (3.16)

is given by:

where

™M 0 V,

H H H

mus = Ve V7] 0 pOMJ {VJ VIM,V, +poViMVy
C

[ —poK.| [V
VH VH S pO C:| |: S:|
mus = | ey | v,

=VICV,+poV{CsyVy — poVIK. V) + po VKV,

K, 0 Vi
H H s H
VKV, VHK Vv
mu¢ [V Vf ] I 0 pOKf:| |:Vf:| + po f fvr
[ F,
H H H
mu¢ [V Vf ] —F¢:| V F — Vf F¢
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3.2. REDUCED ORDER MODELLING

The reduced order model obtained by Petrov-Galerkin projection of formulation in (us, ¢) (3.6)

\%
on (V,W) where V= |_°| and W = is given by:
Vs —Vs
M, X, () + Crp X (t) + K X, (1) = Fiyy (3.17)
where
M, o |[v
_ [vH H s s| _vH H
o= |V vl o oot | Vo] = VMY VMV
I 7] |Vy
[ C,  —pK.| [V
ro_ [yH fVH} s c s
up |: s f _—pOKCH —pon Vf

=VICV,+poV{CyV; — poVIK. V) + po VIKIV,

K 0 A%
ro_ [vH —VH} s S| = VIK,V VIK vV
ued [ s f _0 _POKf Vf s sVs T pPo ffyys

F,

ro_ {VH _VH}
ug s f _F¢

H H
]_VS FS_VfFQi)

The reduced order model (3.16) and (3.17) are then equivalent. As a result, the reduced
order model (3.17)) is stable since the reduced order model (3.16]) is stable according to Lemma
3.2.1]

O

Remark 3.2.1 The reduced mass (stiffness) matrix of the reduced order model is
hermitian and positive (semi-) definite. The reduced damping matrix of the reduced order
model is positive semi-definite but not hermitian. Hence, even in case the basis is in
RN the reduced order model is then not symmetric.

Remark 3.2.2 For exterior problem where the BGT-1 method is used to approximate the
radiation condition , it is obvious that the statement of Lemmaremains valid since the
stiffness matrix of fluid part K;’” =Ky + Z”—;Q remaing symmetric and positive semi-definite
and the total damping matrix of fluid part C]ecwt =Cy+ g—gQ remains positive semi-definite.

3.2.4 Stable reduced order models for the formulation in (uy,p)

For the formulation in (us,p), a stable reduced order model can be obtained by Galerkin pro-
jection on a particular form of reduced basis. The stabilization technique proposed in [121] is
stated as in the following lemma.

Lemma 3.2.3 The Galerkin projection of the full model in (us,p) on a basis

V= (3.18)

0 Vv

v, 0]

where Vg and Vi are respectively a reduced basis of structural and fluid part, yields a
stable reduced order model.
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3.2. REDUCED ORDER MODELLING

Proof: The reduced order model obtained by Galerkin projection of the full model in (us, p)
(3.10) on the basis V is given by:

T T

M, X, (6) + €, X0, (6) + K1, X, () = F, (3.19)

where

vic,v, 0
0 ViICsvy

roo_
up

)

M — VAM,V, 0
up —pOC2VHKHV VHM \Vs )
0 f*rc s f fvrs

o — |[VIKVe VIKV;
we 0 VKV

The reduced order model obtained by Petrov-Galerkin of the full model (3.6]) of (us, ¢) formu-

V., 0
lation on (V, W) where W = | ° , is given by:
0 —V;
where
P | VIMLV 0 r_ | VICVy  —poVIK.Vy
e 0 poVIM V|77 | poVEKIV,  poVECyV, |7
. | VKV, 0
u 0 poVIK,V;

By computing the characteristic polynomial Py, and Py, of the system (3.19) and (3.20)
using the same technique as in the demonstration of the stability of the full model in (us,p)

in Lemma [3.1.5] we can show that these two reduced order models have the same properties
of stability. Since the reduced order model (3.20) is stable according to Lemma [3.2.2) we can
then conclude that the reduced order model (3.19)) is also stable.

g

Remark 3.2.3 The reduced order model (3.19) has the same structure (in the sense that we
have the same sparsity and we have hermitian positive (semi-) definite sub matrix) as the full

model (3.10).

Remark 3.2.4 For exterior problem where the BGT-1 method is used to approximate the
radiation condition (3.11)), it is obvious that the statement of Lemma remains valid
since the stiffness matrix of fluid part K;’”t =Ky + g—ORQ remains symmetric and positive
semi-definite and the total damping matrix of fluid part C;i” = Cy + %Q remains positive
semi-definite.

3.2.5 Stable reduced order models for the formulation in (uy,p, )

As for the formulation in (us,p), a stable reduced order model of full model in (us,p, @) can
be obtained by Galerkin projection on a particular form of reduced basis.
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3.2. REDUCED ORDER MODELLING

Lemma 3.2.4 The Galerkin projection of the full model in (us,p, ) on a basis

V. 0 0
V=10 V; 0 (3.21)
0 0 V;

where Vs and Vi are respectively the reduced basis of structural and fluid part, yields a
stable reduced order model.

Proof: The proposed reduced order model is given by:

s T

M, X () + Clp o X () + Ko X0 (1) = F (3.22)
where
VEM,V, 0 —po VK.V, vViEC, Vv, 0 0
_ H _
M, = 1? ; ) 0 th}/llfvf ,Chpp = 0 Ho of,
—poVIKIV, VIMVy —pVIKsVy 0 vicsvy 0
VAK,V, 0 0
_ 1 v7H
0 0 0

By computing the characteristic polynomial P}, and Py, of the system (3.19) and (3.22)
with the same manner as in the demonstration of the stability of the full model in (us,p, )
in Lemma [3.1.6] we can show that these two reduced order models have the same properties
of stability. Since the reduced order model is stable according to Lemma we can

then conclude that the reduced order model (3.22)) is also stable.

O

Remark 3.2.5 The reduced order model has the same structure (in the sense that we
have the same sparsity and we have hermitian positive (semi-) definite sub matrix) as the full
model . Thus, in the case of an interior problem and the reduced basis V is in R™*,
the reduced order model is symmetric.

Not only that the reduced order models (3.19) and (3.22) have the same properties of
stability, they are also equivalent since they both inherit the structure of the original full
model.

Lemma 3.2.5 The Galerkin reduced order model of (us,p) formulation and the
Galerkin reduced order model of (us,p, @) formulation are equivalent.

Proof: We denote by M,, = VIM,V, K,, = VIK,V,,C,, = VIC,V,,M;, =
VIMVy, Kp, = VIK;Vy, Cp, = VICiVy, Ko, = VKV, F,, = VIF, and

94



3.3. CONSTRUCTION OF THE REDUCED BASIS BY GREEDY ALGORITHM

F,, = V]IZI F,. The reduced order model 1} writes:

M., U, (t) + Cs, Us(t) + K, U (t) — poKerpr = Fyr

1
M6 (1) + My, Pr(t) = 0 (3.23)
0

_pOKgrﬂs,r(t) + Mf,rPr(t) - pOKf,err + Cf,rPr(t) = Fpﬂ“

From the second equation of the system 1} we have @, (t) = _p%Pr(t) (since the matrix
M, is invertible). Using this relation to eliminate the variable ¢ in the system (3.23) leads
to the reduced order model (3.19) of (us, p) formulation.

O

Remark 3.2.6 For exterior problem where the BGT-1 method is used to approximate the
radiation condition , it is obvious that the statement of Lemma remains valid
since the stiffness matrix of fluid part K?Et = Ky + %Q remains symmetric and positive
semi-definite and the total damping matrix of fluid part C]eczt =Cy + Zp—OCQ remains positive

semi-definite.

3.3 Construction of the reduced basis by Greedy Algorithm

The accuracy of reduced order model depends strongly on the choice of the reduced basis.
Many reduced basis have been proposed in the literature such as Hs optimal model reduction
(see [34, [63], 126]), Balanced Truncation method (see [36, 81, 96]) and Krylov subspace model
reduction (see [14, 15]). In this chapter, we are only interested in the reduced basis used in
the paper [83] 84] for parametrized frequency domain of vibro-acoustic problem. The main
reason is that this approach can be extended easily in the case with parametric variation in the
left-hand side of the problem and can be accommodated to the stabilization technique
proposed in the previous section by requiring only some small modifications of the original
approach, on the contrary to all other methods mentioned above.
We recall that the frequency domain corresponding to the time-domain problem (3.1)) is
the following:
[~w’M + iwC + K| X(w) = F (3.24)

A(w)

where w is the pulsation and X(w) is the frequency mode of the given pulsation w.
Considering the pulsation as a parameter in the problem , the Classical Greedy Algo-
rithm is defined as follows. First, we propose to chose the smallest frequency of interest as the
first frequency. The first vector of the reduced basis is then built by normalization of the solu-
tion at this frequency. Note that this choice of the minimum frequency of interest as the first
frequency is not necessary. We could also use an alternative choice such as a highest frequency
or choose randomly a value between the minimum and the maximum frequency of interest.
After the initialization step, we enrich iteratively the reduced basis until a stopping criterion
is verified. To select the next frequency rationally, we propose to use pieces of information
from the error indicator based on the residual norm. At each iteration, we use the reduced
basis of the previous iteration to built the reduced order model by Galerkin projection. We
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compute then the norm of the corresponding residual vector for all values of the frequency in
a training set and select the next frequency as the one who maximize the norm of the residual
vector. The training set can be built only once for all iterations. However, its size can be
very large in the case of high-dimensional parameter space in order to ensure that there is
no important region forgotten in the parameter space. To avoid this problem, we propose to
perform a new random training set in each iteration. At the end, it is important to note that
enriching the new mode directly into the base may induce an ill-conditioned reduced problem.
To ameliorate this, we can employ the Gram-Schmidt procedure to orthogonalize the reduced
basis. We should also note that the classical Gram-Schmidt procedure suffers from numerical
instability. Round-off errors can accumulate and destroy orthogonality of the resulting vectors.
Many modified Gram-Schmidt procedures have been already proposed to cure this issue (see
e.g |1, 44] 45, [59] [70]). The orthogonalization procedure of Kahan-Parlett [59] [104] is chosen
in our work. A summary of the methodology is explicitly given in the following algorithm.

Algorithm 1 Classical Greedy Algorithm

Input: N4, (maximum number of iterations), Nipqin (size of training set to be performed
in each iteration), the matrices M, C, K and the right-hand side F of the problem, wy,;, (the
minimum pulsation of interest), wmq, (the maximum pulsation of interest) and a tolerance e
Output: A reduced basis V

1: We choose X(wmm) as the first vector of reduced basis:

y g Km)
|1 X (wWrmin)]
2: Set k=2
3: while (k < Nyuq.) do
4:  Generate randomly a set of training sample Dy = {w1, -+, WN,.0in } C [Wimnins Wmagz)
5:  Solve for every values of pulsation w € Dy, the reduced order model obtained by Galerkin

projection on the basis V of dimension k — 1:

A (W)X, (w)=F,

where A, (w) = VEA(w)V et F, = VHF.
6: Find the value of w; which maximises the norm of residual divided by the norm of the
right-hand side:

wj, = argmax,¢p, ||F — AW)VX,(w)]|/|[F]

if (||F — A(w) VX, (@) ||/|IF|| < ¢) then
break;
. else
10: Orthonormalization the new basis X (w}) with the basis V of the previous iteration
and enrich the basis:

V=1V, ortho(f((w;;% V)]

11: end if
122 k=k+1
13: end while
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For the formulation in (us, ¢), it is not necessary to modify the Classical Greedy Algorithm
since we can obtain a stable reduced order model by using Petrov-Galerkin projection with
a particular test subspace, which of course would depend on the obtained reduced basis as
indicated in Lemma [3.2.2] In the following, we propose some improvements to the proposed
Greedy Algorithm for the formulation in (ug,p) and (us,p, ) in order to obtain the reduced
basis which can ensure the stability of the Galerkin reduced order model.

3.3.1 Case of the formulation in (uy,p)

Algorithm 2 Greedy Algorithm (stabilized version for the formulation in (us,p))

Input: N, (maximum number of iterations), Nyyqin (size of training set to be performed in
each iteration), the matrices My, Cyp, Kyp and the right-hand side F, of the problem, wyin
(the minimum pulsation of interest), wpq, (the maximum pulsation of interest) and a tolerance
€

Output: A reduced basis V

- T T T
1: We choose X (wmin) = [U (Wmin) P (wmm)]
2: Transform the reduced basis to the form:

l}(wmin) 0
VvV = | [B@min)ll
0 li)(wmin)
1P (wmin)l|
3: Set k=2
4: while (k < Nyaz) do
5. Generate randomly a set of training set Dy = {w1, -+ ,wWN,.0 } C [Winin, Wmaz)

6:  Solve for every values of pulsation w € Dy, the reduced order model obtained by Galerkin
projection on the basis V of dimension 2(k — 1):

A (W)X, (w)=F,
where A, (w) = VA, (w)V et F, = VAT,
7:  Find the value w; which maximises the norm of residual divided by the norm of the

right-hand side:

wi = argmax,ep, [|[Fup — Aup (@) VX (@)]]/[[Fupll

if (||[Fup — Aup(wi) VX, (@])I/|[Fup|| < €) then

: break;
10:  else . T
11: Orthonormalization the two new vectors {fJT(wZ) OT] , [OT IST(w;;)] with the

basis V of the previous iteration and enrich the basis:

T

V= [V ortho([fJT(w;;) OT}T,V) OrthO([OT ?T(MZ)} ’V>]

12:  end if
13: k=k+1
14: end while
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According to Lemma [3.2.3] we propose to modify the Classical Greedy Algorithm [I] to
ensure the stability of Galerkin reduced order model of (us,p) formulation as presented in
Algorithm [2]

The only differences compared to Classical Greedy Algorithm [I] are the steps [2] [6] and [IT}
At the step 2] we transform the first frequency mode into two vectors and save these two
independent vectors in the reduced basis V. At the step [6] instead of having the reduced order
model of size £ — 1 as in Classical Greedy Algorithm [Ij we have a reduced order model of
2(k — 1) degrees of freedom in the new Greedy Algorithm [2] At the step [11] instead of using
directly the new solution of the frequency domain (where the frequency is selected as the one
who maximizes the indicator error) for enriching the reduced basis V, we first transform this
new mode X(w;;) into two independent vectors: [fJT(w,j) OT]T, [oT PT(M;)}T and use these
two independent vectors to enrich the reduced basis V.

Depending on the scalar product used in the orthogonalization procedure at the step
of Algorithm [2] the output reduced basis of Algorithm [2] may not be in the form of (3.18).
However, the following lemma justifies that the output reduced basis of Greedy Algorithm [2]is
in the form of , provided that we use a particular scalar product in the orthogonalization
procedure.

Lemma 3.3.1 The output reduced basis of Greedy Algorithm is in the form of
if we use the scalar product defined by:

T
]

T
(lvf P{] ,[U; P;])=U]A, U +PjA,P (3.25)

where A, and A, are two hermitian positive definite matrices, in the orthogonalization
procedure. In particular, the output reduced basis of Greedy Algorithm[3 is in the form
of if we use euclidean scalar product in orthogonalization procedure.

Proof: The reduced basis V at the step 2 of Algorithm [2|is clearly in the form of (3.18].
Suppose that at iteration k& — 1, the reduced basis V is in the form:

u 0 U ... YU 0
Via= 0 Ve (3.26)
0 vi 0 v5 --- 0 Vi1
we will show that the reduced basis V. of iteration k is in form:
0 y 0 - V¥ O
V= | Ve (3.27)
0 vi 0 vy -+ 0 vy
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Under the hypothesis of Vi_1, we have

=0 according to the property of (.,

gt

where vi = U(w}) — Zi:ll (V;"HAufJ(w;;D Vi

0
With the same manner for ortho(|~ = |, Vj_1), we have:
_P(Wk>
0 0
tho(| ~ Vi) =
or O( P(w;;) Y k 1) [VZ]

where vP = P(wf) - S} (vf’HApls(wZ)) vP

e

3.3.2 Case of the formulation in (uy,p, )

According to Lemma we propose to modify the Classical Greedy Algorithm (1] to ensure
the stability of Galerkin reduced order model of (us, p, ¢) formulation as outlined in Algorithm

Bl

The only differences compared to Classical Greedy Algorithm [I] are the steps [2] [6] and [1T}
At the step 2] we transform the first frequency mode into three vectors and use these three
independent vectors to enrich the reduced basis V. At the step[6] instead of having the reduced
order model of size k — 1 as in Classical Greedy Algorithm [I] we have a reduced order model
of 3(k — 1) degrees of freedom in the new Greedy Algorithm 3| At the step instead of using
directly the new solution of the frequency domain (where the frequency is selected as the one
who maximize the indicator error) for enriching the reduced basis V, we first transform this new
mode X(w;;) into three independent vectors: [ﬁ(w;) 0 O}T, [0 P(w)) O]T, [0 0 P(wp) !
and use these three independent vectors to enrich the reduced basis V.
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Algorithm 3 Greedy Algorithm (stabilized version for the formulation in (us,p, ¢))

Input: N, maximum number of iterations, Nyqqin (size of training set to be performed in
each iteration), the matrices Lipo, Mupe, Cupps Kupy and the right-hand side Fopyp, wimin (the
minimum pulsation of interest), wmae (the maximum pulsation of interest) and a tolerance e
Output: A reduced basis V

- B B T
1: We choose X(wmm) = [UT(wmin) PT(Wmin) QET(wmin)]
2: Transform the reduced basis to the form:

I;I(wmin) 0 0
(U (wmin)l| f’( )
— 0 al Wmin 0
v Flemall 5
0 0 \Wmin
[P (wmin)l
3: Set k=2
4: while (k < Njpqz) do
5. Generate randomly a set of training sample Dy = {w1, - ,wn,.} C [Wmin, Wmaz)

6:  Solve for every values of pulsation w € Dy, the reduced order model obtained by Galerkin
projection on the basis V of dimension 3(k — 1):

A (W)X, (w) =F,
where A, (w) = VIA ,,(w)V et F, = VIF,,.
7:  Find the value of w; which maximises the norm of residual divided by the norm of the
right-hand side:

wy = argmaxweDkHFuW - AUW(W)VXT(W)H/HFUWH

if (HFUW - AUW(WZ)VXT(WZ)H/HFUWH <€) then

: break;
10: else T T
11: Orthonormalization the three new vectors [fJT (wp) 0T OT} : [OT IST(w;) OT} ;

- T
[OT o” PT((JJZ):| with the basis V of the previous iteration and enrich the basis:

V:[V vh vk Vé]

where
V1:ortho([fj (wp) o7 OT} ,V)
o T
v2:ortho([0T P (wf) OT} V)
T
V3:ortho([0T ol P (wz)} , V)
12:  end if
13: k=k+1

14: end while
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Depending on the scalar product used in the orthogonalization procedure at the step
of Algorithm [3] the output reduced basis of Algorithm [3] may not be in the form of (3.21).
However, the following lemma justify that the output reduced basis of Greedy Algorithm
is in form of , provided that we use a particular scalar product in orthogonalization
procedure.

Lemma 3.3.2 The output reduced basis of Greedy Algorithm@ is in the form of
if we use the scalar product defined by:

T T
(U8 PP ol |UF PL o] )= UF AU+ PY AP +¢f Ay (3.29)
where A, and A, are two hermitian positive definite matrices, in the orthogonalization

procedure. As a particular case, the output reduced basis of Greedy Algorithm[3 is in the
form of if we use euclidean scalar product in orthogonalization procedure.

Proof: The reduced basis V at the step 2 of Algorithm [3]is clearly in the form of (3.21]).
Suppose that at iteration k — 1, the reduced basis Vi_1 is in the form:

vi 0 0 v; 0 O - vy, O 0
Viei=10 v}/ 0 0 v 0 -~ 0 v, O (3.29)
0 O vlf 0 O vg e 0 0 Vi_l

we will show that the reduced basis of iteration & is in form:

vi 0 0 vy 0 O --- v}; 0 O
V=10 vlf 0 O vg o --- 0 vz 0 (3.30)
0 O V113 0 O Vg -0 0 vi

Under the hypothesis of Vi_1, we have:

O(w) U] wa [Oep] [v] [vr
ortho(| 0 |, Vic)=| 0 [=> (] 0o [,[0o])|o0
0 0 i=1 0 0 0

E—1 -INJ(wZ)_ 0] [0 ]

- ( 0 ) Vf> Vf

i=1 0 0 0

=0 according to the property of (.,

k—1 U(wy) 0
- ( 0 ,101]) 0
i=1 0 Vf Vf

=0 according to the property of (.,

T
= v or o]

where vi = U(w}) — Zi:ll (V;"HAufJ(w;;D Vi
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0 0
With the same manner for ortho( |P(w})|, V1) and ortho(| 0 , Vi_1), we have:
0 P ()
0 0 0 0
ortho( |P(wf) |, Vi_1) = |vP|, ortho(| 0 |[Vi1)=]0
0 0 P(w}) Vb

O

Remark 3.3.1 For the formulation in (us,p, ), we can write the frequency domain as a
symmetric equation:
[—iw’I — WM + K] X(w) = F (3.31)
AT (w)
and we can show that either we use the relation A*Y™(w) defined in Equation (3.31) or the

relation A (w) defined in Equation (3.24), in Algorithm [3| we obtain the same the evolution of
residual norm in Algorithm [3] and the same output reduced basis.

Remark 3.3.2 If we use the same training set Dy, in Algorithm [2] and Algorithm [3] at each
iteration and we use the scalar product defined in and respectively for Algorithm
and Algorithm [3] we can show that the evolution of the residual norm in both algorithms
is the same. Furthermore, according to Lemma [3.2.5] the Galerkin reduced order model in
(us, p) formulation based on the output reduced basis of Greedy Algorithm [2[is equivalent to
the Galerkin reduced order models in (ug, p, ¢) formulation based on the output reduced basis
of Greedy Algorithm

3.4 Numerical results

In this section, the stability of reduced order model proposed in Section will be verified
numerically in two examples. The first numerical model consists of a right cylindrical hull with
square plate immersed in an acoustic fluid. The fist case is an academical example in which
the geometry is very simple. The second case is an industrial problem which consists of a
section of right cylindrical hull with stiffeners in T-form and a generic engine immersed in an
acoustic fluid. In order to show that the proposed stabilization technique does not depend on
the choice of finite element type, we intentionally chose different finite element type between
these two study cases. In the first study case, we use linear finite element type. In the second
study case, we use quadratic finite element type. In both cases, BGT-1 method is used to
approximate the radiation condition. The accuracy of the reduced order model based on the
reduced basis built by Greedy Algorithms applying on the corresponding frequency domain,
will also be investigated.
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3.4.1 Test case 1: a cylindrical hull with square plate immersed in an acous-
tic fluid

Figure 3.1: Graphical representation of the first study case

The vibro-acoustic system in this example consists of a cylindrical hull with square plate that
is excited by a point force at (0.1,0,0.5) m and radiates sound in an acoustic fluid. A graphical
representation of this system is presented in Figure 3.1} The cylindrical hull has a height of
0.5 m and a radius of 0.1 m. The square plate has an edge length of 0.5 m. Both cylindrical
hull and square plate have a thickness of 0.01 m. On the boundary of the square plate, a
homogeneous Dirichlet condition is applied. To approximate the radiation condition by BGT-
1 method (see Section [I.1.4), a truncated fluid domain in form of a half-spherical of radius
Rypg¢ = 1 m is used. The physical properties of the structure and the fluid are given in Table

B.I1

Structure Fluid
Young’s modulus E = 210 GPa Speed of sound ¢y = 1500 m/s
Poisson’s ratio v = 0.3 Density pg = 1000 kg/m‘3

Density ps = 7850 kg/m®
Damping parameter ay = 1072, B = 0

Table 3.1: Physical properties of the structure and the fluid in the first study case of Chapter

B

Finite element modelling

The finite element model or the full model is obtained by using a mesh in which the max-
imum size of element is chosen such that we have at least five elements per wavelength at
1 000 Hz. The cylindrical hull and square plate is modelled using linear Discrete Kirchhoff
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Triangular (DKT) elements [20]. The acoustic fluid is modelled using linear tetrahedral el-
ements. A structural damping is also considered in the system. We use Rayleigh damp-
ing model which represents the damping effect by a symmetric semi-positive definite matrix
Cs = as;K; + 8sM;, where the coefficient s and 5 are given in Table 3.1 On the boundary
of the truncated fluid domain, the condition BGT-1 of Equation is applied in order
to approximate the outgoing sound wave by a spherical wave for which we use the value of
impedance Zg = poRygt, Zc = poco.

For the formulation in (us,p) and in (us, @), the finite element model consists of 35 503
degrees of freedom, 12 132 of which correspond to the structural part and 23 371 of which
correspond to the acoustic fluid part. For the formulation in (us,p, ), the finite element
model consists of 58 874 degrees of freedom, 12 132 of which correspond to the structural part
and 46 742 of which correspond to the acoustic fluid part.

Numerical validation of the stability of the reduced order models

First, we propose to verify the stability properties of the Galerkin reduced order models in
(us,p) and in (ug,p, @) formulation using respectively the reduced basis obtained by Greedy
Algorithms [2| and [3| and the reduced order models in (us, ¢) formulation using Petrov-Galerkin
projection as stated in Lemma In order to show that this stability properties can not be
achieved automatically without using the proposed techniques in Section [3.2] we will also be
interested in the reduced order models of these three formulations using Galerkin projection
with the reduced basis obtained by Classical Greedy Algorithm [I]
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10° 4

1071

51072
==

10734

—e— (u., ¢) with classical algorithm
10_,1 1 —e— (u..p) with classical algorithm
(.. p) with modified algorithm
—¥— (u.. p.w) With classical algorithm
—— (u.. p. ) with modified algorithm
2

4 6 8 10 12 14
k

Figure 3.2: Evolution of error indicator in Greedy Algorithms in the first study case.
To run Greedy Algorithms, we use fim = 10 Hz, fiee = 1000 Hz and Ny, = 15. The

same training samples Dy, which are chosen randomly at each iteration such that |Dg| = 100,
are used for all versions of Greedy Algorithms. To orthogonalize the basis, we use the euclidean
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scalar product. The evolution of the error indicator, defined as the norm of residual divided
by the norm of the right-hand side, is shown in Figure [3.2

In Figure (3.2 we see that the evolution of the error indicator in modified Greedy Algorithms
and Bl are the same as mentioned in Remark We observe that the error indicator in the
modified Greedy Algorithm [2] and [3] decrease faster than Classical Greedy Algorithm [I] This
can be explained by the fact that the modified Greedy Algorithm [2] and [3] increase the size of
reduced problem at the step 4. Even though the error indicator decreases well in both cases, we
will see in the following that the Galerkin reduced order model based on the obtained reduced
basis do not have the same stability properties.

To access to the stability, we can compute the poles of the reduced order model. We
recall that the poles of a second order system (3.15) are the roots of the polynomial P(s) :=
det(s®M, + sC, + K,.) which are also the eigenvalues of the following Generalized Eigenvalue
Problem:

Av =sEv (3.32)
where E = Iy 0 et A = 0 Ly .
0 MT _Kr _Cr

Figure [3.3| shows the poles of the Galerkin and Petrov-Galerkin reduced order models of
the formulation in (us, ¢). Figure and show respectively the poles of Galerkin reduced
order models in (ug, p) and (us, p, @) based on the reduced basis of Classical Greedy Algorithm
and modified Greedy Algorithm [2|and [3] We remark that the Galerkin reduced order model
of formulation in (us,p, p) based on the reduced basis of Classical Greedy Algorithm [1| have
some infinite poles which is due to the singularity of the reduced mass matrix M,.. Only the
finite poles are then illustrated in Figure for this case.

Figure [3.3] confirms that the Petrov-Galerkin reduced order models of the formulation in
(us, @) are always stable while the Galerkin reduced order model can be unstable, as we saw
here in the case of kK = 3, 5,10, 15, there are some poles in the right-half of the complex plane.
For the formulation in (us,p), we observe in Figure that Galerkin reduced order model is
always stable if we use the reduced basis obtained by modified Greedy Algorithm [2] and that
using the reduced basis of Classical Greedy Algorithm [I] might yield unstable reduced order
model, as we saw here in the case of k = 3,5,10,15. A closer look at Figure [3.4 and [3.5|reveals
that the reduced order models in (us, p, ¢) using the output reduced basis of Greedy Algorithm
has the same non-zeros poles as the reduced order models in (us, p) using the output reduced
basis of Greedy Algorithm Finally, the position of the finite poles in complex plane in
Figure shows clearly that the Galerkin reduced order models based on the reduced basis of
Classical Greedy Algorithm [I] are unstable for £ = 5,10, 15.
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Figure 3.3: The poles of reduced order models in (us, ¢) using the reduced basis of iteration k
of Greedy Algorithm [I} Left: case of Petrov-Galerkin projection of Lemma Right: case

of Galerkin projection.
106



3.4. NUMERICAL RESULTS

max R(sp) = -1.16165249

20000 A .
[ ]
10000 4 =
= e
3 0{ < 3
—10000 1 .
L J
—20000 A | .. I I I
—2500 —2000 —1500 —1000 —500 0
Rsk)
() k=3
max R(s;) = -1.16093391554
40000 >
L]
20000 4 et
L
L]
= * .
) 01— ]
ler) Py 3
L]
L
—20000 1 .
.
—40000 1 °

3000 —2500 —2000 —1500 —1000 —500 O

R(sk)

(c)k=5

max R(s;) = -1.16062987937

40000 -

20000 A

04

Ry ( Sk

—20000

—40000 q

L4

o

S

»

—15000—12500—10000 —7500 —5000 —2500 0

R(sp)

(e) k=10

max R(s;) = -1.1600383135

L ]
50000 o
.« =t
T °
£ 01 c
= .
. '.'.
— 50000 .
L ]
40000 —30000 —20000  —10000 0
R(si)
(g) k=15

3(5‘),-)

Ri ( S

(k)

o)

max R(s;) = 100.53822637

*
200 |
L ] ® e
0_
L ]
—200 |
— 100 |
—600
®
—3000 —2000 —1000 0
R(sn)
(b) k=3
max R(s;,) — 9646.96757467
2000 1
e o
L ]
01 ° e ee
—20001
L ]
—1000 1
—6000 1
—8000 1
— 100001 | ‘ : : : .
5000 —2500 0 2500 5000 7500 10000
R(sk)
(d) k=5
max R(si) = 2629.6701457
[ ]
L ]
5000 1 . .
2500 1 ad *
1 3
o, R
—2500 n
—5000 1 S b
[ ]
75001 s
6000  —4000 —2000 0 2000
R(sr)
(f) k=10
max R(s;) = 10946.7263314
20000
L J
10000 1 . L
L]
.. -
[ ]
0 5 1
oo . o
—10000 1 = .
L ]
L ]
10000 —5000 0 5000 10000
R(sk)
(h) k = 15
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Numerical study of the accuracy of the reduced order models

Now, let us turn to the accuracy of the proposed reduced order models. We recall that the
Galerkin reduced order models in (us, p, ¢) formulation based on the reduced basis obtained by
Greedy Algorithm [3|is equivalent to the Galerkin reduced order models in (us, p) formulation
based on the reduced basis obtained by Greedy Algorithm [2f (see Remark . Hence, only
the Galerkin reduced order models in (ug, p) formulation and the Petrov-Galerkin reduced or-
der models in (us, ¢) formulation are considered here.

In the following, we set fmin = 1 Hz, Ngpgin = 100, and the stopping criteria € = 10~8 in
order to run Classical Greedy Algorithm [I] and modified Greedy Algorithm 2| At each iter-
ation k, the same training samples Dy, are used for both Greedy Algorithms. Depending on
the value of fy,qz, the evolution of the error indicators in Classical Greedy Algorithm [I| for the
formulation in (us, ¢) and in modified Greedy Algorithm 2| for the formulation in (us,p) are
illustrated in Figure [3.6

 foee = 1000 H2 : — frae = 1000 H2
e = 2000 Hz 107 e = 2000 Hz
10° 4 — fyue = 4000 Hz — fue = 4000 Hz
Fre = 5000 Hz 10-1 | Fre = 5000 Hz
10721
S e 10—3
£=101 =
7 107"
106
10~
10~
0 & 16 24 32 40 48 56 64 72 0 & 16 24 32 40 48 56 64 72
2 2

(a) Case of formulation in (us, ¢) with Algorithm (b) Case of formulation in (ug,p) with Algorithm

Figure 3.6: Evolution of error indicator in Greedy Algorithm in the first study case

In Figure [B.6] we observe that the number of iterations required increase as we increase
the value of fq,- Although the size of the reduced basis in Algorithm [2] is two times bigger
than in Algorithm [I] at each iteration, we remark that both algorithms need around the same
number of iterations to achieve the stopping criteria e = 1078, The size of the reduced basis
of these two algorithms is given in Table [3.2]

fmaz Formulation in (us, ¢) | Formulation in (us,p)
1000 Hz 22 38
2000 Hz 37 72
4000 Hz 60 120
5000 Hz 73 146

Table 3.2: Size of the reduced basis in function of f,,4, for the first study case
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To compute the accuracy of the reduced order models, we consider an input function f
defined by:

5 -
£(t) = {10 sin(2m fqt) , for 0 <t <1/fq (3.33)
0,fort>1/fy

Newmark scheme with v = 1/2 — a, 8 = (1 — a)?/4, where a = —0.1, is employed as time
integration scheme for both full model and reduced order models. The time step is chosen by
At = 1/(100f;) which is sufficiently small for our frequency of interest f;. The final times in
our study is T = 10/ f4. To access to the accuracy of reduced order models, we compute the
relative errors of the structural displacement and the pressure, which are defined by:

1Gfom () — uem @)l
[Tl @)l

[PFom (t) — P (2)]]
[IPLom (2)]]

erry(t) =

rrp(t) =

(3.34)

where ||-|| denotes the euclidean norm and Uy and P are two vectors which contain respectively
the nodal displacement and nodal pressure, and where the superscript 7°™ refers to the solution
of the full model and the superscript " refers to its approximation by the reduced order
models.

We recall that for the case of the formulation in (us, ¢), the value of the pressure is obtained
by the relation (|1.17]).

Here, we are interested in the case where f; € {100 Hz, 300 Hz, 750 Hz, 1000 Hz}. Figure
[3.7 shows the evolution of these errors in the case of the Petrov-Galerkin reduced order model
of the formulation in (us, ¢). The case of Galerkin reduced order models of the formulation in
(ug, p) are reported in Figure In both cases, we observe that the errors between the full
model and the reduced order models are significant at first and decrease as the times increase.
In addition, the errors increase while we increase the frequency f; of the input function. In all
the cases, we remark that the reduced order models approximate the structural displacement
better than the fluid pressure. When we increase the value of f,4, in the construction of
the basis by Greedy Algorithms, we observe that it can slightly improve the accuracy of the
reduced order models. However, the errors are still large at the beginning of the simulation
especially for the case of high frequency.

Recall that the size of Galerkin reduced order model of the formulation in (ug,p) is almost
two times bigger than the Petrov-Galerkin reduced order model of the formulation in (ug, ¢)
even though we use almost the same number of modes to built the reduced basis. As compen-
sation, we observe here that Galerkin reduced order model of the formulation in (us,p) has a
better accuracy than the Petrov-Galerkin reduced order model of the formulation in (us, ¢).
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Figure 3.7: Relative errors between the solution of the full model and the Petrov-Galerkin
reduced order models in (ug, ¢) in the first study case
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3.4.2 Test case 2: a section of cylindrical hull with stiffeners in T-form and
a generic structure immersed in an acoustic fluid

In the second study case, we consider the case where the structure has a more complex geometry
(sourced from [84]). A graphical representation of this study case is illustrated in Figure[3.9|in
which the structure part are marked in blue. The vibro-acoustic system consists of a section of
a cylindrical hull with stiffeners in form of T and an structure immersed in an acoustic fluid.
The excitation are introduced by a point force acting on the plate of the structure (marked in
red in Figure . On the top and bottom boundary of the cylindrical hull, a homogeneous
Dirichlet condition is applied. To approximate the radiation condition by BGT-1 method, a
truncated fluid domain in form of a sphere of with a radius equal to two times the radius of
cylindrical hull, is used. The physical properties of the structure and the fluid in this study
case are given in Table [3.3]

Figure 3.9: Graphical representation of the second study case

Finite element modelling

The finite element model or the full model is obtained by using a mesh in which the maximum
size of element is chosen such that we have at least six elements per wavelength at 500 Hz. The
structural part is modelled using quadratic triangular shell elements [2I]. The acoustic fluid
is modelled using quadratic tetrahedral elements. A structural damping is introduced in the
system by using the Rayleigh damping model in which the damping effect are represented by
a symmetric semi-positive definite matrix C; = a;Ks + 8:Mjs. The value of the coefficients ag
and (s are given in Table On the boundary of the truncated fluid domain, the condition
BGT-1 of Equation (1.35) is applied in order to approximate the outgoing sound wave by a
spherical wave for which we use the value of impedance Zr = poRygt, Zc = poco-

For the formulation in (us,p) and in (us, ¢), the finite element model consists of 146 385
degrees of freedom, 106 442 of which correspond to the structural part and 39 963 of which
correspond to the acoustic fluid part. For the formulation in (us, p, ¢), the finite element model
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consists of 186 348 degrees of freedom, 106 442 of which correspond to the structural part and
79 926 of which correspond to the acoustic fluid part.

Structure Fluid
Young’s modulus E = 210 GPa Speed of sound ¢y = 1500 m/s
Poisson’s ratio v = 0.3 Density pg = 1000 kg/m3

Density ps = 7850 kg/m®
Damping parameter oy = 1074, 8, = 0

Table 3.3: Physical properties of the structure and the fluid in the second study case

Numerical validation of the stability of reduced order models

First, we propose to verify the stability properties of the Galerkin reduced order models in
(us,p) and in (ug,p, @) formulation using respectively the reduced basis obtained by Greedy
Algorithms [2| and [3| and the reduced order models in (us, ¢) formulation using Petrov-Galerkin
projection as indicated in Lemma In order to show that this stability properties can
not be achieved automatically without using the proposed techniques in Section [3.2] we will
also investigate the reduced order models of these three formulations using Galerkin projection
with the reduced basis obtained by Classical Greedy Algorithm [I]

To run the Greedy Algorithms, we use f:, = 10 Hz, fiee = 150 Hz and Nype, = 40. The
same training samples Dy, which are chosen randomly at each iteration such that |Dy| = 50,
are used for all versions of Greedy Algorithms. To orthogonalize the basis, we use the euclidean
scalar product. The evolution of the error indicator, defined as the norm of residual divided
by the norm of the right-hand side, is shown in Figure [3.10

101 i
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e 10
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—e— (u., p) with classical algorithm
(., p) with modified algorithm
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—— (u., p. ) with modified algorithm

10 15 20 25 30 35 40
k

[y g8

Figure 3.10: Evolution of error indicator in Greedy Algorithms in the second study case.

114



3.4. NUMERICAL RESULTS

As expected, we observe that the evolution of the error indicator in modified Greedy Al-
gorithm [2] and [3] are the same, which confirms the statement in Remark As in the first
study case, we see that the error indicators of modified Greedy Algorithm [2] and [3| decrease
asymptotically faster than Classical Greedy Algorithm [Il For the case of the formulation in
(us, @), it should be pointed out that the error indicator in the Classical Greedy Algorithm
seems to decrease as well as in the case of the formulation in (us,p) and (us,p, ) with the
modified Greedy Algorithm, despite that the size of the reduced basis in this case is smaller.

Let us put the focus on the stability of the reduced order model. To access to the stability,
we compute the poles of the reduced order model. We recall that the poles of a second order

system (3.15)) are the roots of the polynomial P(s) := det(s?M, + sC, + K,) which are also
the eigenvalues of the Generalized Eigenvalue Problem (3.32)).

Figure shows the poles of the Galerkin and Petrov-Galerkin reduced order models of
the formulation in (uy, ¢). Figure[3.12)and [3.13|show respectively the poles of Galerkin reduced
order models in (us, p) and (us, p, ¢) formulation using the reduced basis obtained by Classical
Greedy Algorithm [I] and modified Greedy Algorithms [2] and [3] We also remark in this study
case that the Galerkin reduced order model of formulation in (us, p, ¢) using the reduced basis
of Classical Greedy Algorithm [I] have some infinite poles which is due to the singularity of the
reduced mass matrix M,. Only the finite poles are then illustrated in Figure [3.13]for this case.

Figure |3.11] confirms that the Petrov-Galerkin reduced order models of the formulation
in (us,¢) are always stable while the corresponding Galerkin reduced order models can be
unstable, as we see here in the case of kK = 10, 30,40, there are poles in the right-half of the
complex plane. We remark that the Galerkin reduced order model can also be stable as shown
in the case k = 20. For the formulation in (us,p), we can see in Figure that Galerkin
reduced order models are always stable if we use the reduced basis obtained by modified
Greedy Algorithm [2] and that using the reduced basis of Classical Greedy Algorithm [I] might
yield unstable reduced order models, as we see here in the case of k£ = 10,20, 30,40. A closer
look at Figure and reveals that the reduced order models in (us,p, ¢) formulation
using the output reduced basis of Greedy Algorithm [3| has the same non-zeros poles as the
reduced order models in (ug,p) formulation using the reduced basis of Greedy Algorithm [2|
Finally, the position of the finite poles in complex plane in Figure [3.13] shows clearly that the
Galerkin reduced order models based on the reduced basis of Classical Greedy Algorithm [I] are
unstable for k£ = 30 and k = 40.
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Figure 3.12: The poles of Galerkin reduced order models in (us, p) using the reduced basis of
iteration k of Greedy Algorithms. Left: case of modified Greedy Algorithm[4 Right: case of

Classical Greedy Algorithm
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Figure 3.13: The poles of Galerkin reduced order models in (us, p, ¢) using the reduced basis
of iteration k of Greedy Algorithms. Left: case of Classical Greedy Algorithm [1l Right: case

of modified Greedy Algorithm 3
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Numerical study of the accuracy of reduced order models

We now turn to the accuracy of the obtained reduced order models. We recall that the Galerkin
reduced order models in (us, p, @) formulation based on the reduced basis obtained by modified
Greedy Algorithm [3|is equivalent to the Galerkin reduced order models in (us, p) formulation
based on the reduced basis obtained by modified Greedy Algorithm [2| (see Remark .
Hence, only the Galerkin reduced order models in (ug, p) formulation and the Petrov-Galerkin
reduced order models in (ug, ¢) formulation will be considered here.

In the following, we set fyin = 1 Hz, Nirain = 100, and the stopping criteria ¢ = 1076 in
order to run Classical Greedy Algorithm [[]and modified Greedy Algorithm[2] At each iteration
k, the same training samples Dy, are used in both versions of Greedy Algorithms. Depending
on the value of f,4:, the evolution of the error indicators in Classical Greedy Algorithm [1| for
the formulation in (us, ¢) and in modified Greedy Algorithm [2| for the formulation in (us,p)
are reported by Figure [3.14

10'4 —— fonaw = 500 H:z Lot ] — foe = 500 Hz
. —— foae = 1000 Hz e = 1000 1z
107 ——  finax = 1500 Hz 109 —— frae = 1500 Hz
-1 —— fonae = 2000 H:z e — 2000 1=
10 o
_ ) N
§:10 éflo—Z
== 10-3 e )
£~ 1p = s
—4
10 104
107 10-5
10_0 10—[5
0 15 30 45 60 75 90 105 0 15 30 45 60 75 90 105 120
k k

(a) Case of formulation in (us, ¢) with Algorithm (b) Case of formulation in (ug,p) with Algorithm

Figure 3.14: Evolution of error indicator in Greedy Algorithm in the second study case

In Figure[3.14] we observe that the number of iterations required increase as we increase the
value of fiae- Although the size of the reduced basis in Algorithm [2|is two times bigger than
in Algorithm [l at each iteration, we remark, as in the first study case, that both algorithms
need roughly the same number of iterations to achieve the stopping criteria e = 1076, The size
of the reduced basis of these two algorithms is given in Table

Sfmaz Formulation in (us, ¢) | Formulation in (us, p)
500 Hz 73 146
1000 Hz 91 180
1500 Hz 104 216
2000 Hz 111 244

Table 3.4: Size of the reduced basis in function of f,,4. for the second study case
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To compute the accuracy of the reduced order models, we consider the case where input
function f is defined by:

5 .
F(t) = {10 sin(2m fgt) , for 0 <t <1/fy (3.35)

0,fort>1/fy

Newmark scheme with v = 1/2 — a, 8 = (1 — a)?/4, where a = —0.1, is employed as time
integration scheme for both of full model and reduced order models. The time step is chosen
by At = 1/(100f,) which is sufficiently small for our frequency of interest fy. The final times
in our study is Ty = 10/ fq. To access to the accuracy of the reduced order models, we compute
the relative errors of the structural displacement and the pressure which are defined in Equation
. We recall that for the case of the formulation in (us, ¢), the value of the pressure is
obtained by the relation (1.17)).

We are interested here in the case where fy € {100 Hz, 200 Hz, 300 Hz, 500 Hz}. Figure
shows the evolution of these errors in the case of the Petrov-Galerkin reduced order models
of the formulation in (us, ¢). The case of Galerkin reduced order models for the formulation
in (us,p) are illustrated in Figure In both cases, we observe that the errors of pressure
between the full model and the reduced order model are larger at the beginning and decrease
rapidly to a minimum value before oscillating around that value. For the displacement, the
errors are also larger at short times. Then, the errors decrease rapidly to a minimum value
before increase rapidly to a maximum value and oscillate around that value afterwards in
exception of the case of Galerkin reduced order models in (ug, p) formulation with fz = 100 Hz
where the error seem to decrease as time increase. When we increase the value of fy,4, in the
construction of the basis by greedy algorithm, we observe that it improves very slightly the
accuracy of the reduced order model and it reveals the same phenomena as discussed above.

We recall that the size of Galerkin reduced order models in the formulation in (us,p) is
almost two times bigger than the Petrov-Galerkin reduced order models of the formulation
in (ug, ¢) even though we use almost the same number of modes to built the reduced basis.
Despite their bigger size, we do not observe in this study case that Galerkin reduced order
models of the formulation in (ug,p) could provide significantly a better accuracy than the
Petrov-Galerkin reduced order models of the formulation in (us, ¢).

3.4.3 Conclusions

In both study cases, numerical results confirm that the reduced order models built by the
proposed stabilization techniques are all stable. Concerning the accuracy, the reduced basis
based on the frequency mode alone does not seem to be an appropriate basis for time-domain
analysis. This is particularly the case when the system converges to its stationary regime slowly
as in the second example and when the excitation is of high frequency.

It nevertheless provides a good approximation for the stationary regime when the excitation
consists of low frequencies, as we saw in the first example. As a result, it could be employed
to concatenate with an other reduced basis which can approximate accurately the full order
model for the transient regime.
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Figure 3.15: Relative errors between the solution of the full model and the Petrov-Galerkin
reduced order models in (ug, ¢) formulation in the second study case
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3.5 Conclusions

In this chapter, we give a stabilization reduced order modelling technique for the three for-
mulation of time domain vibro-acoustic problem presented in the previous chapters. For the
formulation in (us, ¢), we can obtain a stable reduced order model by using a Petrov-Galerkin
projection on a particular test subspace which depends on the choice of the trial subspace.
Even though the full model in (us, ¢) is symmetric, using this stabilization technique results
in a non-symmetric reduced order models. For the formulation in (us,p) and (us,p, ), we
can obtain a stable reduced order model by using a Galerkin projection on a particular form
of reduced basis. In both cases, the reduced order models have the same structure, in the
sense that we have the same sparsity and the same hermitian (semi-) definite sub matrices, as
the original full model. The proposed reduced order models in (ug, p) formulation are always
non-symmetric. For the formulation in (us,p, ¢), the reduced order models are symmetric
only in the case of an interior problem without any damping in the fluid part and by using a
real reduced basis, i.e V. € R"*V,

We proposed to construct the reduced basis based on a Greedy Algorithm in the corre-
sponding frequency domain problem by considering the frequency as the parameter. In order
to achieve the stability in Galerkin reduced order models, some modifications are introduced
in the Classical Greedy Algorithm for the formulation in (us, p) and (us,p, ). Two numericals
study cases are presented in order to check the stability properties and the accuracy of the
proposed reduced order models. The first study case is an academical study case with a simple
geometry. The second study case is of industrial complexity. Between the two study cases, we
used intentionally different finite element type to built the full model in order to show that the
proposed stabilization technique does not depend on the choice of finite element type. In both
study cases, numerical results confirm the stability of the proposed reduced order models.

Concerning the accuracy, we observed that the proposed reduced basis results in significant
error especially for the case where the solicitation is of high frequency. As detailed in Chapter [2]
in «interaction of submerged structure and shock wave problems», which is a problem of interest
in this thesis, the loading contains high frequency components due to its discontinuity. Hence,
the reduced basis proposed in this chapter may not be the most appropriate for this problem.
As a result, we will propose in the next chapters another approach to built the reduced basis,
in order to improve the reduced order model accuracy for parametrized problem.
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Chapter 4

Reduced order modelling for
parametrized time-domain
vibro-acoustic FE model

This chapter is devoted to a framework for constructing an accurate parametrized reduced
order model in the case where both the operators in the left hand-side of the full order model
and the solicitation depend on the parameter.

Two main classes of reduced order modelling techniques for the parametrized time-domain
problem can be found in the literature. In the first class of approaches, the main idea is to
sample offline the reduced order models for some selected values of parameter and to approx-
imate the reduced order model for the new values of the parameter by interpolating at the
online stage the corresponding reduced operators. For this class of framework, we refer to
|41 5] 6, 46l 98, 9] and the references therein.

In the second class of approaches which are chosen in our work, we aim at constructing an
accurate reduced bagis over the desired ranges of the parameter values and using the Petrov-
Galerkin projection to built an appropriate parametrized reduced order model. We do not
extend the stabilized greedy algorithm presented in the previous chapter for parametrized
time dependent problem, since we observed numerically in the previous chapter that it yields
inaccurate reduced order models for high frequency solicitation. We propose in this chapter to
use an alternative approach in order to construct an accurate reduced basis. More precisely, we
put here the focus on the POD-Greedy algorithm [62] [64], which can be viewed as a combination
of a classical greedy algorithm on parameters and a temporal compression by performing a
proper orthogonal decomposition (POD, see for instance [96]). We will restrict ourselves to the
case where all the operators in the problem can be written as affine parametric dependences.
The case of non-affine parametric dependence will be the main subject of the next chapter.

The structure of this chapter is as follows. In the first section, we reformulate our problem
into a purely algebraic way. In the second section, we introduce some elements on the Petrov-
Galerkin projection based model order reduction. An error indicator based on the residual
norm and an efficient offline-online decomposition strategy are also discussed in this section.
In the third section, we are interested in the construction of the reduced basis by the POD-
Greedy algorithm. According to the stabilization techniques presented in the previous chapter,
some modifications in the classical POD-Greedy algorithm are required. Further remarks and
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the limits of the proposed reduced order modelling framework are discussed in Section In
order to illustrate the performance of the proposed methodology, numerical results on a simple
study case of shock wave/submerged structures interaction problems are presented in Section
[4.6] In Section [4.7, we propose to apply the developed methodology in two industrial cases.
Finally, concluding remarks are given in the last section.

4.1 Problem setting

In this chapter, we consider that the full model is described by a parametrized second-order
ordinary differential equation:

M(p) X (t; ) + C() X (t; ) + K(p)X(8; ) = F(t; ) (4.1)
where p € D (P > 1) is the parameter vector, whose components represent physical feature of
interest; D C RY denotes the corresponding parameter space. The matrices M, C, K € R"*"
represent respectively mass, damping and stiffness matrices of the problem which are supposed
to be parameter dependent and F € R™ is the right-hand side vector of the problem which
is time and parameter dependent. For simplify our presentation, we assume that the initial
condition is given by X(t =0, ) = X(t = 0, ) = 0.

In this chapter, we restrict ourselves to the case where the geometry of the domain is not
considered as a parameter of the problem and all operators of the left and right-hand sides of
the problem can be written as an affine dependent form in parameter g € D as following:

Ng Ny
F(t;p) =) 07 (twFs, A(p) =) 0 ()Ai, VA € {M,C,K} (4.2)
=1 i=1

where A; are given constant matrices of R"*™, F; are given constants vectors of R” and 6}, 6F
are given parameter dependent functions. We assume here that the full model is stable
for any value of parameter p € D.

We consider that our output of interest can be written as a linear form Sj(t; u) = LT X (¢; ),
where L is a vector in R”, or as a quadratic form Sy(t;u) = XT(t; ) QX (t; ) where Q is a
matrix of R"*".

To make this chapter self contained, let us briefly recall the expression of the matrices
M, C, K of the full model for a parametrized time domain vibro-acoustic problem. For
the case where the formulation in (us, ¢) is employed, we have:

M, () 0 B Ci(p) —po(1)Ke

Musl) =107 )] S T | (KT —po(w)C () )
| Ks(w) 0 = |Ustm) |

Kug(m) =14 —po()K - and Xug (s ) = ®(t; p)

where pg denotes the fluid density, the matrices M, and My are known respectively as the
mass matrices of the structural part and the fluid part, the matrices K; and K are known
respectively as the stiffness matrices of the structural part and the fluid part, the matrix K.
represents the vibro-acoustic coupling matrix, the matrices Cs and Cy represent respectively
the damping matrix in structural part and the fluid part and the vector U; and ® contain
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respectively the nodal values of structural displacement and velocity potential in the fluid.
By their definitions in , the matrices My and M are symmetric positive definite, the
matrices Ky and K are symmetric positive semi-definite. In our work, we assume that the
matrices Cg and Cy are positive semi-definite which are sufficient conditions for the stability
of the full order model (see Lemma. As a remark, the matrices K. and Ky depend only
on the geometry of the fluid domain. Thus, they are g independent through this chapter since
the geometry of the domain is not considered here as a parameter of the problem.

With the same notations, the expression of the matrices M, C, K of the full model (4.1))
for a parametrized time domain vibro-acoustic problem formulated in (us, p) is defined by:

| Mi(p) 0 _|Cs(p) O
Mult) =1 kT M| S ™ =] 0 -
[k K. o |
Kup(“’) = 0 Kf] and Xup(t, p) = (t: )
and in (ug,p, ¢) is defined by:
M () 0 —po(m)Kec Cs(p) 0 0
Mup, (1) = 0 0 My(p) | Cupp(n) =] 0 0 0
—po(WKZ My(p) —po(p)K; 0 Cyp) O (45)
K. (u) 0 0 U.(t: ) |
Kupp(u) = | 0 LsMy(u) 0] and Xyt ) = | P(t: )
0 0 0 P(t; p)

where the vectors P and ¢ contain respectively the nodal values of pressure and displacement
potential in the fluid.

We also recall the expression of the right-hand side vector of full order model (4.1)) for the
case of shock wave/submerged structure interaction problem. Assuming that the shock wave is

¢ and an incident velocity v*™¢, the right-hand side vector

T
of the problem formulated in (us, ¢*“*) are given by Fyd'(t; p) = [Fica(t; I (5 u)T]
where the vectors F™ (t; p) and Fy*(t; ) are defined by F35'(t; u) :== — [ Ppe(x, t; ) (N3 (x)-
n,(x)]dx, B35 (6 ) := — [r po(p)[v™(x, t; u)‘ns(x)]Njf(x)dx with N* and N/ denote respec-
tively the finite element basis of the structural and the fluid part.

characterized by a incident pressure p

With the same notations, the right-hand side vector of the formulation in (us, $"%?) and in

T
(us, p"*9) are given by FZ‘;,d(t; p) = [Fg“d(t; )’ OT] , where the vector F7%(t; 1) are defined

by Fgfljd(t; p) = — [p(Me+prel) (x, t; p) [N3(x)-ns(x)]dx. Finally, the right-hand side vector f;r
rad) is given by BT (; ) = [F’;“d(t; w? o of } .
We recall that the reflected pressure p"¢/ has to be pre-computed (see Section D in order

to employ these three formulations. As a remark, the reflected pressure p"¢ depends only on

the case of the formulation in (us, p"¢, ¢

the incident velocity v"¢ and the properties of the fluid.
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4.2 Reduced order modelling

Solving the full model is often computationally intractable for parametrized problems.
The aim of this section is to develop a suitable inexpensive and fast reduced-order model
to overcome this computational burden. Here, we are only interested in the Petrov-Galerkin
projection based ROM. The idea of Petrov-Galerkin projection based reduced order modelling
is to approximate the solution of the full model in a reduced basis V € R™*¥ of dimension
N, which is much smaller than the dimension of the full model, and enforce the orthogonality
of the residual vector to a test subspace spanned by a suitable basis W € R™*¥ . The Petrov-
Galerkin reduced order model writes:

M, ()Xo (8 ) + Cr ()Xo (85 p) + Ko ()X, (85 1) = Fro (8 p) (4.6)

where the reduced matrices and vectors are given by:

M, (p) = WIM(p)V,  C,(p) = W'C(n)V

4.7
K, (p) = WK(p)V, F.(t;p)=WT'F(tp) (4.7)

and the initial condition is given by X, (t =0, u) = X, (t =0, ) = 0.

The approximation of the solution of full model given by the reduced order model
is defined by X" (t; u) = VX, (t; ). For the case where the output of interest can
be written as a linear (quadratic) form, its approximation by the reduced order model
is given by S/ (t;u) = LIX,(t; ) (Sgem(tipm) = XT(t; u)Q, X, (t; ), where the reduced
vector L, € RV is defined by LI = LTV (the reduced matrix Q, € RN*N is defined by
Q, = vV'QV).

4.2.1 Stability preserving model order reduction

For time-dependent problem, it has been shown in Chapter [3|that the reduced order modelling
has to ensure that the stability of the full model is preserved. In the most general cases,
the Petrov-Galerkin projection based ROM can be unstable even if the original full model is
stable. We recall that the dynamical system is called stable if and only if all roots of the
polynomial P(s) := det(s?M + sC + K) have negative real part. In other words, the system
is stable if and only if the state of the system remains bounded for any initial condition
in the absence of external force. With this definition, the full model is stable for the case
where the mass matrix M is symmetric positive definite, the stiffness matrix K symmetric
positive semi-definite and the damping matrix C is positive semi-definite (see Lemma .
As example, it is the case when the full model represents the finite element model of an
acoustic wave or a structural dynamic equation. For this case, a stable reduced order model
can be obtained by using Galerkin projection on any reduced basis (see Lemma .

For vibro-acoustic problem, the finite element model in (us, ¢), in (us,p) and in (us, p, @)
are all stable thanks to the symmetric positive definiteness of the mass matrices Mg, M and
the symmetric positive semi-definiteness of stiffness matrices Ky, K; and of the impedance
matrix Q (for the case of exterior problem). For the formulation in (usg, ¢), it has been shown
in Lemma that we can obtain a stable reduced order model by using a Petrov-Galerkin
projection on a particular test subspace which depends on the choice of the trial subspace.
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s

c Ran
Vi

More precisely, using a Petrov-Galerkin projection on the trial subspace V = !

v
with the test subspace defined by W = \; e R™N yields a stable reduced order model
VY

for any choices of V, and V. For the formulation in (us,p), it has been shown in Lemma
V, 0
0 Vy
yields a stable ROM for any choices of the reduced basgis in structural part V; and the fluid part
V. For the formulation in (us,p, ), it has been shown in Lemma that using Galerkin

3.2.3[that using Galerkin projection on the reduced basis with a particular form V = {

V, 0 0
projection on the reduced basis with a particular form V.= | 0V, 0 | yields a stable
0 0 Vy

ROM for any choice of the reduced basis in structural part V and the fluid part V.

4.2.2 Error indicator

An error indicator can provide information on the accuracy of reduced order model. It also
plays an important role in the construction of the reduced basis with a greedy algorithm as we
will see in Section In this work, we propose to use the error indicator based on the norm of
residual vector since it is relatively inexpensive to compute. The residual vector corresponding
to the reduced order model of the full model writes:

R(t: p) = F(t 1) - M(L)VE, (1) — C)VX, (6 0) - K(WVX, () (48)

The error indicator used in this work is defined by:

(IRt )
A(p) = max ——— 4.9
)= 6% e o
where T is the final time of interest in the problem and || - || denotes the euclidean norm.

Under the hypothesis that all operators of both left and the right-hand sides of the problem
can be written in an affine dependence form in parameter, characterized by Equation (4.2)), the
norm of right-hand side and residual vectors can be written as (see Appendix |C)):

IF(t p)|]* =
IRt p)|]* =

s)Mpr@®p(t; p)
s MprOrp(t; 1)

CHG
CHE
+ X, (1 ) Masar ()X (1 1) + X, (6 0)Moc(0) X (6 1) + X (8 )M (10) X (8 1)
+2 (X, (6 Mg ()X (8 1) + X (8 ) Magic ()X, (8 1) + X, (Mo ()X, (1))
(

— 2 (OF(t; ) Marr ()Xo (8 1) + OF (1 ) Mer ()X (8 ) +®£(t§U)MKF(N)Xr(t§N))
(4.10)

T
The vector O (t; u) € RVF is defined by Op(t; u) = [Gf(t;u), - ’GJFVF (t; ,u)] € RNF.
Here, we denote by (-,-) the euclidean scalar product. The matrix Mpp € RVFXNF s in-
dependent of p and is defined by (Mpp);; = (F;,F;) and the matrices Myp € RV*N and
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Map € RVeXN for A, B € {M,C, K}, are p-dependent and defined by:

Na Np
Mg (p ZZGZ WM, 5,
Mur(p 291 )My,
where the matrices My, g, € RV*N and My, r € RNXNF for | € {1,--- N4} and k €

{1,---,Np}, are p-independent and respectively defined by (My,s,)ij = (A;vi,Bgv;) and
(My,r)ij = (Ayvi, Fj). Here, we denote by v; € R" the it" column of the reduced basis V €
R™ N Finally, it should be noticed that for any A € {M,C, K} and any I,k € {1,---,Na},
the matrices My, 4, are symmetric and that My, 4, = MgkAl'

Remark 4.2.1 By definition of residual vector in Equation (4.8), the dynamic of the error
of the solution of the full model (4.1)) and its approximation by the reduced order model (4.6)),
e(t;p) :=X(t; ) — VX, (t; ), writes:

M(p)é(t; p) + C(p)e(t; u) + K(pn)e(t; p) = R(t; p) (4.12)

with initial condition e(t; ) = é(¢; ) = 0. In the case where we have R(t; u) = €F(¢; u), the
linearity of the problem implies that: e(t; u) = eX(¢; ) which means that the relative error
between the solution of the full model and its approximation by the reduced order model
is e. We note that when A(p) = ¢, it implies that we have ||R(¢; p)|| < €||F(¢; p)||, Vt €
[0,T]. Thus, the smaller the value of error indicator, the more accurate reduced order model
is expected.

Remark 4.2.2 We remark that using the relation implies that ||R(¢; u)||/||F(¢; p)l] is
equivalent to a relation in form \/(a + b)/a, where a is the square of the norm of the right-
hand side and b is the sum of the second term to the last term of the second equation of .
Because of round-off error, the result of the operation a + b returned by the computer can be
different from its theoretical value, especially when a and b are almost opposite numbers. As a
result, even in the case where a = —b theoretically, when the maximal accumulation of round-
off errors occurs in the computation of a + b, the computer would return a value = €qchine|al,
where €4chine 18 machine precision. Therefore, the result of /(a4 b)/a provided by the
computer has a lower bound ~ \/€pqchine-

As consequence of the above remark, the computation of the error indicator A(u) defined
in Equation by using the relations — with an expected value smaller than
V/€machine does not make sense (see Section for some alternatives to remedy this). We
will see, in the next section, that the relations — allow us to built an efficient
offline/online strategy for computing the indicator error A(u) defined in Equation (4.9).

4.2.3 OffHine-online computational procedures

In this section, we present an offline-online computational procedure which allows us to fully
exploit the small dimension of the reduced problem. We should note that the offline stage
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whose complexity can depend on the size of the full model, is performed only once. On the
contrary, the online stage whose complexity can depend only the size of the reduced order
model, is performed many times, for each parameter value p € D.

Assuming that appropriate trial and test spaces V,W € R™¥ (N << n) are known and
all operators of the left and the right-hand sides of the problem can be written in an affine
dependent form in parameter , an efficient strategy of offline-online decomposition can be
defined as follows.

Offline stage

In order to construct the reduced matrices M, (u), C, (), K, (1) and reduced vector F,.(¢; )
in the online stage with a complexity which depends only on the size of the reduced order
model, we need to compute and save the reduced matrices A;, = WTAV € RVXN | for
Ae{M,C,K}, 1 e€{l,---,Nya}, and the reduced vectors F; , = WIF, e RN, lc{1,---,Np}.
In order to predict the output of interest by the reduced order model with a complexity in-
dependent of the size of the full model, we also need to compute and save during the offline
stage the reduced vector LT = LTV € RV (for a linear form output) and the reduced matrix
Q, = VIQV € RV*V (for a quadratic form output).

For the computation of the error indicator defined in Equation , by using the relations
—, with a complexity which depends only on the size of the reduced order model in
the online stage, we need to compute and save in the offline stage the following p-independent
quantities: Mpp € RVFXNF Muy,B, € RV*N for A > B € {M,C, K} (with the convention
K<C<M),le{l,---,Na}yand k € {1,---Ng} and Myu,r € RVN**N for A € {M,C, K}
and [ € {1,---Na}.

In practice, we begin by computing the product of matrices and the trial space A;V €
RN A e {M,C,K},l=1,---, Ny, before the computation of the reduced matrices and the
data for the error indicator. The complexity of this first step is in O(n?N(Ny; + N¢ + Ni)).
Using the results of the product matrices and the trial reduced basis, the complexity of the
computation of the reduced matrices is in O(nN?(Nys + No + Nk)). The complexity in the
computation of the reduced vector is in O(nN Np). For the data of output of interest, the com-
plexity is in O(nN) for the linear form case, and in O(n%N) for the quadratic form case. For
the error indicator, the complexity in the computation of the matrix Mpp is in O(nN%). Using
the results of the product matrices and the trial reduced basis, the complexity in the computa-
tion of the matrices My, p, A € {M,C, K}, 1 € {1,--- ,Na}, is in O(nNNp(Ny + N + Ni))
and of the matrices M y,p,, for A > B € {M,C, K} (with the convention K < C < M),
le{l,---,Na}and k € {1,--- N}, is in O(nN%(Np(Ny + No + Nk) + No(Ne + Nk))).

It should be noticed that the data to be computed in the offline part for error indicator
and the linear or quadratic output of interest depend only on the trial subspace V and not on
the test subspace W. The offline stage is summarized by Algorithm [4

Remark 4.2.3 In the full model (4.1) the matrices M, C, K are sparse. Thus, the complex-
ity of the product of matrices and the basis V is in O(n,N(Ny; + N¢ + Ng)) instead of
O(n?N(Ny + No + Ni)), where n, is the number of non-zeros entries in the matrix.
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Algorithm 4 Offline stage of the reduced order modelling framework in case of affine para-

metric dependence

Input: A test and trial reduced basis W,V € R™*N
Output: The data to be saved for online stage

I e S e T e

22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

,_\
sl S

// Compute the product of matrices and the basis V, complezity O(n>N(Ny + Nc + Nk))
for A= M,C,K do
for [=1,--- , Ny do
Compute A;V € RN
end for
end for
// Data for the reduced matrices, complexity O(nN?(Ny + No + Nk))
for A=M,C,K do
for [=1,---,Nydo
Compute and save A;, = WT(A;V ) € RV*N
end for

: end for
. // Compute and save the data for the reduced vectors, complexity O(nNNp)
:for [=1,---,Nrp do

Compute and save F;, = WTF,

: end for

: // Compute and save the data for the linear output, complexity O(nN)

. Compute and save LT = LTV € RN

. // Compute and save the data for the quadratic output, complezity O(n>N)

. Compute and save Q, = VIQV € RV*N

. // Compute and save the data for the error indicator, complezity O(nN2 +nNNp(Ny +

N¢ + Nk) +nN?(Npy(Ny + No + Ni) + No(Ne + Ng)))
Compute Mpp € RVFXNF defined by (Mpp)ij = (Fi, Fj)
for A=M,C,K do
for [=1,--- , Ny do
Compute and save My, p € RNFXN defined by (M, r)ij = (Ajvi, Fj), where v; is ith
column of V
end for
end for
for A=M,C,K do
for B=M,C,K do
if B < A (with the convention K < C' < M) then
for [=1,---,N4s do
for k=1,---,Ngdo
Compute and save My, g, € RNXN defined by (Ma,B,)ij = (A1vi, Brv;)
end for
end for
end if
end for
end for

Online stage

Once all calculations at the offline stage are done, the computation of the output of interest

S;om(t; ), Sg"(t; ;) and error indicator A(u), for any new value parameter value p € D,
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can be performed with a complexity which depends only on the small size of the reduced order
model.

Using the affine decomposition and the data saved in offline stage, we can compute
for any new value parameter value pu € D the reduced matrices M,.(u), C, (1), K, (n) with a
complexity in O(NN2), A € {M,C, K}, by using relation A,(p) = N4 04 () (A;),. The
cost of resolution of the reduced problem depends then only on N, Ng, the number of time
steps Ny and the choice of time-discretization scheme. The cost of computation of the output
of interest S7"(t; p) (S;°™(t; ) with the relation S7°™(t; ) = LIX,.(t; ) (Sgom(t; ) =
XT(t; 1)Q, X, (t; ), where L, € RPN (Q, € RV*N) are already computed at offline stage,

are in O(N;N) (in O(N;N?)).

Algorithm 5 Online stage of the reduced order modelling framework in case of affine para-
metric dependence
Input: The data of offline stage and a new value parameter value p € D
Output: The output of interest S7™(t;p), Sgom(t; p) and the error indicator
Ap)

1: // Overall complexity O(N?(Nys + No + Ni))

2: Compute the reduced mass, damping and stiffness matrices by the relation:

Ee*‘ (A),, Aec{M,C K} (4.13)

3: // Complexity depends only on N, Np and the number of time step N,
4: Solve the reduced problem

M, ()X, (8 1) + Cr ()Xo (85 1) + Ko (1) ZGF t; ) (4.14)

5. // Complexity in O(NNy) for linear case and in O(N>Ny) for quadratic case
6: Compute the output of interest

ST (s 1) = LXK (6 ), 5377 (8 p) = X7 (6 ) QX (6 ) (4.15)
7. // Complezity in O(N?(Np(Npy + No+ Nk )+ No(Ne + Nk )) + NNg(Ny + N + N )

8: Compute the data for error indicator: Mp(p) € RVFXN Myp(u) € RV*N for A, B €
{M,C,K} and B < A (with the convention K < C' < M), by the relation:

Na Np

Map(p Z Z 0 (u )My, B,

9: // Complexity in O(N(N%+ N% + NNp))
10: Compute the error indicator A(u) by the relations (4.9)-(4.10))
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Concerning the error indicator A(u), the first step consists of computing the matrices
Mug(p) € RV*N and Map(u) € RVF*N for A > B € {M,C, K} (with the convention
K < C < M). Using the relation and the data of My, g, and M y,p, A > B € {M,C, K},
l € {1,---,Na}, k € {1,---, N} which are already computed at offline stage, the cost of
computation of Mag(p) et Map(p) are respectively in O(N?2N4Ng) and in O(NNpNy).
Once the computation of Mag(p) € RV*N and Map(u) € RVF*N for A,B € {M,C, K},
are done, we can now compute the error indicator A(u) of Equation by using the relation
with a complexity in O(N¢(N% + N? + NNp)). Note that there are no additional
computation cost of X,.(¢; p) and X,.(t; p) in the common used time-integration schemes (such
as Newmark scheme, Wilson scheme, ...) which also explicitly compute the time derivate of
the primal variables. The online stage is summarized by Algorithm

4.3 Construction of the reduced basis by POD-Greedy algo-
rithm

The most common way to generate an appropriate reduced basis V for a parametrized unsteady
problem is based on the well known Proper Orthogonal Decomposition (POD) technique, which
is also known as Principal Component Analysis (PCA) in statistics [71], [105], Karhunen-Loéve
expansion in stochastic application [87, 77|, Hotelling Transformation in image processing, Prin-
cipal Orthogonal Direction (POD) in geophysics and Empirical Orthogonal Functions (EOFs)
in meteorology and geophysics. In the context of model reduction, Proper Orthogonal Decom-
position has been applied successfully for generating an appropriate reduced basis in various
domains of application: in turbulent flow in [12, [74, 56, 125], in Navier-Stokes equations in
[43], in parabolic partial differential equations [80].

In algebraic way, Proper Orthogonal Decomposition can be viewed as a technique for finding
a low-dimension approximation space by exploiting the singular value decomposition (SVD) of
a suitable snapshot matrix. Considering in our case a set of N, well chosen instances of the
parameters {p], - - ’“7\@} € D, we introduce the snapshot matrix S € R™*Ns defined as:

S = [X(thup) o X(VipD) o X(hipy,) o Xy, (4.17)

where we have introduced a partition of the time interval [0,7] in N; time step {tk}é\il,
th = kAt, of size At = T/N; and N, = N¢N,. By computing the singular value decomposition
(SVD) of the matrix S,

S =Uxz? (4.18)

where ¥ = diag(oq,--- ,0n,), being 01 > 09 > --+ ,on, > 0 the Ny singular values of S, the
POD reduced basis Vi of dimension N < min{n, N} is obtained by selecting the first N
columns of the left singular vector U, corresponding to the first N largest singular values, that
is Vy = [ul ,uN} € R™N_ The vector u; is also known as i*® principal component or
ith POD mode of the snapshot matrix S.

By construction, the columns of V are orthonormal with respect to the euclidean scalar
product. The reduced basis provided by POD is optimal in the sense that for all possible V
dimensional subspaces W spanned by any set {wy,--- ,wxy} of N orthonormal vectors in R",
the subspace spanned by the columns of Vy provides the best reconstruction of snapshots,
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that is,
Nu Nt NM Nt
D0 DI )~ T X (s ) P = mim ST XS ) T X (8 )| (4:19)
i=1 k=1 T i=1 k=1

where Il X denotes the orthogonal projection of the vector X € R™ onto the subspace spanned
by the orthonormal vectors {wi,---,wy} with respect to the euclidean scalar product. In
other words, the POD reduced basis minimizes the sum of the squared distances between
each snapshot and the corresponding orthogonal projection onto the subspace. Moreover, the
corresponding minimum value can be expressed explicitly by:

Ny Ny Ns
SO X pp) - My X p)[P = Y o) (4.20)
i=1 k=1 i=N+1

With this result, POD is commonly performed with a given tolerance €, in order to control the
relative error on the approximation of snapshots, by setting the reduced basis dimension N as
the smallest integer such that:

Ns 2
.7 o
ZZ_NJrl 7 S 62 (421)
Ns 2
2t 0;

As summarized, for a given snapshot matrix S € R™ s and a tolerance ¢, the POD reduced
basis Vv € R™¥  denoted by POD(S;¢), are constructed by Algorithm @

Algorithm 6 POD algorithm based on SVD decomposition
Input: A snapshot matrix S and a tolerance €
Output: A reduced basis Vy = POD(S;¢)
1: Compute the singular value decomposition of S: § = UXZT
2: Set the basis dimension N as the smallest integer such that

N 2
Z'L—N+1 (e 2

N,
dis1 Uz‘2

3: Comnstruct the reduced basis by collecting the first N columns of the left sigular vector U:

Vy=[w - uy] e RV

Remark 4.3.1 Different norms can also be used in the minimization problem instead
of the euclidean norm. If the norm is encoded by a symmetric and positive definite matrix
A € RV (||v|[a = (v, Av)Y/?) which admits a Cholesky factorisation A = LLT, the POD
reduced basis which minimizes the problem (4.19) with respect to the norm || - || 4 is given by
Vy = [ tuy - (L) "tuy] € RN where u; denotes the it column of the left singular
matrix U of the matrix LTS; LTS = USZ’.

Remark 4.3.2 An alternative way to built POD reduced basis from the snapshot matrix
S = [s1,- -+ ,sn,] relies on computing the eigenvector of the symmetric Gramian matrix (which
also known as Kernel or Correlation matrix) G € RMs*Ns defined by Gij = (si,sj) A, where
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(-,-) 4 denotes a scalar product of interest. The k" POD basis v}, is then obtained as:

N,

1 E
Vi = —F—— 7/%71‘5]@ 4.22
oW ;1 (4.22)

where 1)y ; the ith component of the eigenvector corresponding to k** largest eigenvalue \j
of G. The eigenvalues of G directly provide the singular values of the snapshot matrix S,
that is A\; = UZ-Q,Z' = 1,---, Ns. This approach is well known as "method of snapshots". The
complexity of this approach is dominated by the step of construction of the Gramian matrix
G. The complexity can be approximated by O(nN2) for the case of the euclidean norm and
by O(n?Ns + nN2) for other cases (only in O(n,Ns + nN2) if the matrix encoding the norm
is a sparse matrix with n, non-zeros entries). Using this approach to build POD reduced
basis can avoid the difficult task of computing a Cholesky factorization for the case where the
norm of interest is not the euclidean one, and SVD decomposition of the snapshot matrix by
computing the eigenvalue decomposition of a much smaller symmetric matrix G. However, it
should be pointed out that the conditioning number of the Gramian matrix G is the square of
the conditioning number of the snapshot matrix S. This limits the numerical accuracy of this
approach in comparison to SVD algorithm. For this reason, we employ in our work Algorithm
[6] to generate POD reduced basis.

For the case of the euclidean scalar product, the complexity of computation of POD reduced
basis with Algorithm @ can be approximated by O(nN2) where n is the size of the full model
and Ny, = N, N;. As remark, the complexity increases quadratically in N; and INV,,. We should
also note that a sufficient large number N, of solutions of the full model is required in or-
der to ensure that the obtained reduced basis is accurate. Hence, computing the POD reduced
basis by Algorithm [6] can become prohibitively expensive. To reduce the computation cost,
we can employ Hierarchical Approximate Proper Orthogonal Decomposition (HAPOD, [69])
in which the main idea is to compute POD of several small subsets of S instead of computing
a POD of a given large snapshot set S. Two particular cases of HAPOD namely Distributed
and Incremental HAPOD are outlined in Algorithm [7] and [§] respectively.

Algorithm 7 Distributed HAPOD algorithm Algorithm 8 Incremental HAPOD algorithm
Input: A snapshot matrix S = [S;---Sy] Input: A snapshot matrix S = [S;---Sy]
and a tolerance € and a tolerance e
Output: A reduced basis V Output: A reduced basis V

1. for i=1,---,N do 1: Set V.=POD(Sy,¢)

2 Set Z; = POD(Si, 6) 2: for 1=2,---,N do
3: end for 3:  Set Z =POD(S;,¢)
4 4
5

: Set V.=POD([Z;---ZnN],¢€) Set V.=POD([V Z],¢)
: end for
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It is worth mentioning that one of the advantages of the Distributed HAPOD algorithm is
that it opens a very easy way in parallelization since the computation of local PODs of each
subset S; can be done independently. For the Incremental HAPOD, the main advantage is
that it can reduce the required memory since in each iteration, the procedure only requires
the current subset S; and the POD reduced basis of the previous iteration, so that the current
subset S; does not need to be saved for the next iteration.

Even though the complexity in the computation of POD reduced basis for the case where
N, is large can be overcome by employing HAPOD, a proper choice of N, and the set
{ps,- - ’“7\7#} is not known or predictable in a general case. A too large number of N,
leads to a very substantial computation overhead by having to compute too many solutions of
the full model where the majority of these solutions do not contribute to the reduced basis.
A too small number of IV, leads to an inaccurate reduced basis. To overcome this problem,
we can use the information of the error indicator, which can be computed with a complexity
relatively inexpensive, to propose an iterative procedure in the selection of the number NV, of
the solution of the full model 1} and the corresponding parameter values pj, - -- ,p}*\,u in a
greedy way. Combining the Proper Orthogonal Decomposition (POD) to compress the time-
trajectories, with the greedy procedure in the parameter space gives an efficient algorithm,
namely POD-Greedy algorithm, to construct an accurate reduced basis.

4.3.1 POD-Greedy algorithms

With a given tolerance epop for POD compression, a naive POD-Greedy approach can be
defined as follows. We can start with a first value of parameter p] by choosing randomly
in the parameter space D or by using knowledge of the problem at hand. The first re-
duced basis is then obtained by Algorithm [6] by using the snapshot matrix consisting of
the solution of the full model for this value of parameter; Vi = POD(Si,epop) where
S1 = [X(t1,pu}) - X(tn,, u})] € RPNt After the initialization step, we can now update
the reduced basis iteratively until it is sufficiently accurate. At iteration k, we use the reduced
basis V}, € R™*Nk of the previous iteration to built an appropriate parametrized reduced or-
der model . The new value of parameter p;_ , is then chosen as the one who maximizes
the error indicator of the reduced order model over the parameter space D. Next, we update
the snapshot matrix by enriching the solution of the full model for the new value of parame-
ter and compute the new reduced basis by using Algorithm [6] with the new snapshot matrix
Sk+1 = [S1---Sky1), where S; = [X(t1, 1)) - - - X(tn,, 1)), L = 1,--- ,k + 1. The procedure is
iterated until the value of the error indicator is sufficiently small. The summary of this naive
approach is outlined in Algorithm [9]
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Algorithm 9 Construction of the reduced basis by a POD-Greedy algorithm (naive version)

Input: A partition {tn}ﬁf;l of the time interval [0, T'], tolerance epop, €q1g0, Maximum number
of iterations Nyaz
Output: A reduced basis V
1: Choose randomly p] € D and compute the solution of the full model for p = p
2: Construct the basis by POD using the snapshot matrix S; = [X(¢1, ) - - - X(tw,, p})] and
€ = epop with Algorithm [f]

V = POD(S1, epon)

3: Setk=1

4: while (k < Nyjpqz) do

5. Perform the offline stage for an appropriate couple (W, V) with Algorithm

6:  Compute the error indicator A(u) of an appropriate parametrized reduced order model
based on the reduced basis V for all u € D
Set p, = arg max,cpA(p)
if A(pi ) < €ugo then

: break
10:  else
11: Compute the solution of the full model (4.1) for p = pj
12: Set the snapshot matrix
Skr1 = [X(ti;p)) -+ X(twspi) - X(tispi) - X(tw;pigy)] € RTEFDN
13: Construct the basis by POD using the snapshot matrix Sg1 with the given tolerance

epop with Algorithm @
V = POD(Sk+1,€poD)

14:  end if
15: Setk=k+1
16: end while

Two major drawbacks should be pointed out in the naive POD-Greedy algorithm. First,
the computation complexity of the new reduced basis at the step [13] of Algorithm [9] increases
quadratically in k. This issue can be overcome by employing HAPOD [69] (such as Distributed
or Incremental HAPOD, see Algorithm [7] and [§). The second default is that the algorithm
does not generate a hierarchical reduced basis which is computationally disadvantageous (see
Section .

To remedy this, we propose to modify the step of Algorithm [0 by inspiring the
POD-Greedy Algorithm proposed in [107]. After identifying the new value of parameter pj_ ,,
we apply POD Algorithm @ on the snapshot matrix Syy1 := [X(t1, pfy ) - X(tn, pii)] €
RNt which is made up of the solution of the full model for this new value of parameter
py,, with the given value of tolerance epop and let Zy, 1 = POD(Sk11,€pop) € R™Mk+1 The
new reduced basis is then obtained as the concatenation of Zy, 1 with the previous reduced basis
V. In order to avoid the duplication with the existing reduced basis Vi, we can apply POD
Algorithm @ on the snapshot matrix [Zg41 V] € R NetMit1) with € = epop, to obtain the
new reduced basis V1. This procedure is equivalent to the computation of the reduced basis
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V from the well chosen sample {u},---, pj} at iteration & > 2 by using incremental HAPOD
Algorithm [8|on a large snapshot matrix § = [Sy - - - Sp41], where §; = [X(t1, pf) - - - X(tn,, p7)],
[l =1,---,k+ 1. With this solution, the obtained reduced basis is not hierarchical which is
disadvantageous in the computation procedure (see Section . Hence, we propose to employ
Algorithm in order to concatenate the basis Vi, and Z,1 with respect to the given tolerance
epop- The methodology is summarized in Algorithm [I0]

Algorithm 10 Construction of the reduced basis by a POD-Greedy algorithm

Input: A partition {tn}ﬁil of the time interval [0, T, tolerance epop, €algo, maximum number
of iterations N,,qz
Output: A reduced basis V

1: Choose randomly p} € D and compute the solution of the full model (4.1) for p = p}
2: Construct the basis by POD using the snapshot matrix S; = [X(t1, pu}) - - - X(¢tn,, p7)] and
€ = epop with Algorithm []

V = POD(S1, epop)

3: Set k=1

4: while (k < Npyqz) do

5. Perform the offline stage for an appropriate couple (W, V) with Algorithm

6:  Compute the error indicator A(u) of an appropriate parametrized reduced order model
based on the reduced basis V for all p € D
Set py,, = arg max,,cpA(p)
if A(pg, ) < €ago then

break
10: else
11: Compute the solution of the full model (4.1) for p = py
12: Compute Zyy; = POD(Sgi1,epop) using Algorithm @ with Spy1 =
[X(tla l’l’z_t,-l) e X(tNta NZ+1)}
13: Compute the new reduced basis V with Algorithm
V = concatenate(V, Zgy1; €pop)
14: end if

15: Setk=k+1
16: end while

Algorithm 11 A procedure for concatenating two basis with respect to a given tolerance

Input: Two orthogonal basis Vi € RN Vo € R?*N2 | 3 tolerance ¢
Output: A concatenated basis V = concatenate(Vy, Va;¢€)
1: Set V = V1
2: fori=1,---,Ny do
3:  Compute the error e; := vg; — IIyvo; where vo; is it" column of V4 and IIy denotes
the orthogonal projection on the subspace spanned by V

4:  if ||ei]| > €||va,i|| then

5: Enrich the basis V as V=V & [e;/||ei]]]
6: end if

7: end for
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Remark 4.3.3 In practical use, the parameter space D C RY is replaced by a finite training
set Dyrqin Which has to be chosen sufficiently large in order to ensure that there is no important
forgotten regions in the parameter space. In the case of high-dimensional parameter space
(P >> 1), the size of the training set can be prohibitive even if we use a sparse uniform grid
in each direction. A very simple way avoid this is to built randomly new training set at each
iteration of POD-Greedy algorithm which allows us to not have too large regions without point
in parameter space with a reasonable probability.

Remark 4.3.4 Instead of using the stopping criterion for the step [§] of Algorithm [10] based
on the value of error indicator, we can use the information on the error of an output of interest
between the full model and the reduced order model, based on the worst case predicted by the
error indicator (i.e for the value of parameter py,1 = arg max,cpA(p)). This requires only
one resolution of the full model whose solution will be used to enrich the reduced basis in the
next iteration if the stopping criterion is not yet verified. Another alternative is to pre-compute
the output of interest by the full model over a test sample Dyeys, whose cardinal is relatively
small, and define the stopping criterion based on the error of the output of interest over the
selected values of the parameters in Dyegt.

Remark 4.3.5 Another version of POD-Greedy algorithm which is proposed in [64] and
whose convergence rate has been analysed in [65], differs from our POD-Greedy algorithm
at the steps In [64), [65], it has been proposed to construct the new reduced basis by
computing at first the error of orthogonal projection of the solution of the full model
for the new value of parameter p = py  ;, onto the reduced basis of previous iteration. We
perform then POD on the snapshot matrix, which is made up of these error vectors, and
chose the first N, principal components to enrich the reduced basis. By construction, these
N, principal components are orthogonal with the reduced basis of the previous iteration. In
practice N,, can be chosen as the smallest integer which verifies the inequality with
the same given tolerance for temporal compression, € = epop. This alternative approach is
outlined in Algorithm [12]

Remark 4.3.6 As explained in [64], one of the main advantages of Algorithm [12]is that it
generates hierarchical spaces which is computationally advantageous (we will discuss on this
matter in Section . However, it should be pointed out that the accumulation of round-off
errors in the computation of error projection vectors, at the step [I2] and numerical errors in the
computation POD of snapshot E; can destroy the orthogonality of the reduced basis obtained
at step of Algorithm Because of the loss of orthogonality, the computation of error
vectors at the next iteration would require Ny resolutions of the linear system, whose size is
equal to the dimension of the current reduced basis. This represents an other potential source
of numerical errors which may be accumulated in the computation of POD at the step For
this reason, we prefer to work with the POD-Greedy algorithm inspired by [107].
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Algorithm 12 Construction of the reduced basis by a POD-Greedy algorithm version of Ref
[64]
Input: A partition {tn}gél of the time interval [0, T'], tolerance € pop, €qig0, maximum number
of iterations N,,qz
Output: A reduced basis V

1: Choose randomly p] € D and compute the solution of the full model for p = pj

2: Construct the basis by POD using the snapshot matrix S = [X(¢1, p]) - - - X(tn,, p7)] and

€ = epop with Algorithm [f]

V =POD(S1,epop)

3: Set k=1

4: while (k < Nyjy4z) do

5. Perform the offline stage for an appropriate couple (W, V) with Algorithm

6:  Compute the error indicator A(u) of an appropriate parametrized reduced order model
based on the reduced basis V for all p € D
Set py,, = arg max,cpA(p)
if A(pg, ) < €ago then

: break
10:  else
11: Compute the solution of the full model (4.1) for p = py_
12: Compute the snapshot matrix
Ej = [X(t1; ) — My X(t;5) - X(tw; py) — My X(tn,; pj)] € RV
where Iy, denotes the orthogonal projection on the subspace V
13: Enrich the reduced basis
V =V @& POD(Eg, epop)
14:  end if

15: Setk=k-+1
16: end while

In what follows, we present different versions of the POD-Greedy algorithm based on Al-
gorithm [10] for the three finite element models of vibro-acoustic problem given in Chapter [i]
together with the stabilization techniques presented in Chapter

4.3.2 POD-Greedy algorithm for formulation in (uy, ¢)

For the formulation in (us, @), we recall that a stable reduced order model can be obtained

by using Petrov-Galerkin projection on any trial subspace V = P;
f

] with an test subspace

W defined by W = [ \s } (see Lemma [3.2.2)). As consequence, it should be emphasised that
—Vrs

the parametrized reduced order model of the step [6] of Algorithm [10]is constructed by using
Petrov-Galerkin projection with this particular test subspace. The POD-Greedy algorithm for
formulation in (us, ¢) is outlined in Algorithm [13]
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Algorithm 13 Construction of the basis by a POD-Greedy algorithm for a parametrized
time-domain vibro-acoustic formulated in (us, ¢)

Input: A partition {tn}gél of the time interval [0, T'], tolerance € pop, €qig0, maximum number
of iterations Naz
Output: A reduced basis V

1: Choose randomly puj € D and compute the solution of the full model (.1)) for pp = p}
2: Construct the basis by POD using the snapshot matrix S; = [X(¢1, u7) - - - X(tw,, p7)] and
€ = epop with Algorithm []

V = POD(S1,epop)

3: Set k=1

4: while (k < Nyjqz) do

5. Perform the offline stage for the couple (W,V) where W = [VST —V?
rithm [

6:  Using Petrov-Galerkin projection on the couple (W, V) to built the parametrized reduced
order model and compute the error indicator A(u), for all p € D

Set py, = arg max,,.pA(p)
if A(py ) < €ago then

]T with Algo-

: break
10: else
11: Compute the solution of the full model (4.1) for p = pj
12: Compute Zyiy = POD(Sky1,epop) using Algorithm [6] with Spyy =
(X (t1, tpp) - Xty 1))
13: Compute the new reduced basis V with Algorithm
V = concatenate(V, Zgy1; €pop)
14:  end if

15: Setk=k+1
16: end while

4.3.3 POD-Greedy algorithm for formulation in (uy,p)

For the formulation in (us,p), we recall that a stable reduced order model can be obtained by
V., 0
0 Vy
as the reduced basis for the structural and fluid part, respectively (see Lemma . Hence,
we propose to enrich these two reduced basis separately at each iteration of POD-Greedy
algorithm. The POD-Greedy algorithm for formulation in (ug, p) is outlined in Algorithm

a Galerkin projection on any basis in form VvV = [ ], where V, and V; can be viewed
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Algorithm 14 Construction of the basis by Greedy-POD for a parametrized time-domain
vibro-acoustic formulated in (usg, p)

Input: A partition {tn}gél of the time interval [0, T'], tolerance € pop, €aig0, maximum number
of iterations Ny,qz
Output: A reduced basis V

1: Choose randomly pu} € D and compute the solution of the full model (4.1 for p = p}
2: Coustruct the basis by POD for the structural part using the snapshot matrix S} =
[U(t1, ) - - Ultn,, ui)] and € = epop with Algorithm [§]

V;=POD(SY, epop)

3: Construct the basis by POD for the fluid part using the snapshot matrix S} =
[P(t1,p}) - P(tn,, 1)) and € = epop with Algorithm [6]

V; =POD(SY,epon)

4: Set k=1

5: while (k < Nyyoz) do

6: Perform the offline stage for the couple (W,V), where W = V = [‘85 \?

!

Algorithm

7. Using Galerkin projection on the reduced basis V to built the parametrized reduced
order model (4.6 and compute the error indicator A(u), for all p € D
Set py,, = arg max,cpA(p)

o if A(pg, ) < €ago then
10: break

} , with

11:  else
12: Compute the solution of the full model (4.1) for p = pj;
13: Compute Zy,, = POD(S;,,,epop) using Algorithm [6] with Sp,, =
[U(tlv “’l:—&-l) e U(tNtv “Z-H)]
14: Compute Z}, , = POD(S},,epop) using Algorithm @ with 87, =
[P(t1, K1) Pltng, HZH)]
15: Compute the new reduced basis for the structural part V,, as
V, = concatenate(V,, Z}, 1;€pop)
16: Compute the new reduced basis for the fluid part V; as
V; = concatenate(Vy, Z}, 1;€pop)
17:  end if

18: Setk=k-+1
19: end while

4.3.4 POD-Greedy algorithm for formulation in (uy,p, ¢)

For the formulation in (ug, p, @), we recall that a stable reduced order model can be obtained

V, 0 0
by a Galerkin projection on any basis in foorm V=|0 V; o0 |, where V, and V; can be
0 0 Vy

viewed as the reduced basis for the structural and fluid part, respectively (see Lemma [3.2.4)).
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Similarly to the case of the formulation in (us,p) , we propose to enrich these two reduced
basis separately at each iteration of POD-Greedy algorithm. The POD-Greedy algorithm for
formulation in (us, p, ) is outlined in Algorithm

Algorithm 15 Construction of the basis by a POD-Greedy algorithm for a parametrized
time-domain vibro-acoustic formulated in (usg, p, )

Input: A partition {tn}gil of the time interval [0, T'], tolerance epop, €algo, maximum number
of iterations Nyaz
Output: A reduced basis V

1: Choose randomly p} € D and compute the solution of the full model (4.1 for p = p}
2: Construct the basis by POD for the structural part using the snapshot matrix S =
[U(t1, ) - Ultn,, ui)] and € = epop with Algorithm [f]
V. =POD(SY, epop)
3: Construct the basis by POD for the fluid part using the snapshot matrix S} =
[P(t1,13) - P(tn,, p})] and € = epop with Algorithm [g]

V; = POD(S?, epop)

4: Set k=1

5: while (k < Nyyaq) do
V, 0 0

6:  Perform the offline stage for the couple (W,V), where W=V = |0 V; 0 |, with
0 0 Vy

Algorithm
7. Using Galerkin projection on the reduced basis V to built the parametrized reduced
order model and compute the error indicator A(u), for all p € D
Set pj, = arg max,,.pA(p)
o if A(pg, ) < €ago then
10: break

11:  else
12: Compute the solution of the full model ({.1) for p = pj
13: Compute Zy, , = POD(Sy,,,epop) wusing Algorithm @ with Sp,, =
[U(t1, i y1) - Uty 7))
14: Compute Z}, , = POD(S}, ,epop) using Algorithm @ with Sy, =
[P(t1, Hiy1) Pl Wii1)]
15: Compute the new reduced basis for the structural part V,, as
V, = concatenate(Vy, Zp, 1;€pop)
16: Compute the new reduced basis for the fluid part V as
V; = concatenate(Vy, Z}_ |;epop)
17:  end if

18: Setk=k+1
19: end while
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4.3.5 Equivalence of the POD-Greedy algorithm for the formulation in
(us,p) and in (us, p, ¢)

In the case where we employ the norm of the residual vector as error indicator, the POD-Greedy
algorithm for the formulation in (us,p) and in (us,p, @) are equivalent.

Lemma 4.3.1 With the error indicator defined in Equation @, the POD-Greedy al-
gorithm for the formulation in (us,p) and the POD-Greedy algorithm for the
formulation in (us,p, @) are equivalent.

Proof: First, we recall that the Galerkin reduced order model in (us,p) based on the

reduced basis V,, = [‘(I)S \? ] and the Galerkin reduced order model in (us, p, ¢) based on the
f
Vs 0 0
reduced basis Vi, = | 0 V; 0 | are equivalent (see Lemma[3.2.5). It remains now to show
0 0 Vy

that both reduced order models have the same values of error indicator. For the formulation
n (us,p), we have:

Rup(tp) == Fuyp(t;p) — Mw(l‘)vuzoxup,r(t;l‘) Cup(p Vupxupr (t; 1) — Kup (1) VupXup,» (t5 1)

Eetn] ke ) Rf& o) 178 o H‘\/f; )

[ e

_ [ (t; ) — M (N)Vsﬁs.zr(t w) — CS(N)sts,ﬁ(tQ w) — KS(N)VSU§,r(t§ p) — K VP (t; H):|
p(ts 1) + po (WK, ViU (£ 1) = My () V Pr(ts ) = Cr () V Po(ts p) — Ky V Py (s )

For the formulation in (us,p, ¢), we have:

Rupp (t; 1) = Fupp (t; ) — Mumﬁ(l‘)vuznpxuzwm(t? ) — Cupw(l")vupwxupeow(t; 1) — Kupo (1) VupeXupe,r (; 1)

F,(t; p) M (1) 0 —po(wKe| [ViUsr(t;p)
= 0 - 0 0 My () VP (t;p)

Fp(t;p) —po(W)KL  My(p) —po()Ky| | Vigr(t; )
C.(u) 0 0 VsU.s,'r' (t; IJ') Ks(p) 0 0 VsUs,r(t§ w)
-1 O 0 O [ VP (tsp)|—| O tMs(n) 0| | ViP.(t;p)
0 Cy(pm) O] | Vign(tip) 0 0 0| | Vipr(tin)
VU, (6 1) — Co(p)VUs (6 1) — Ko () VU (6 1) + po () KoV 5By (8 )

M () Vbt ) — 5ot M VP (s )
Fy(t; p) + po()KI VU, (6 1) — My () VP (6 p) — Cr(p)ViPr(t; p) + p() Ky V(£ )

We recall thz?t Gty ) = p(“)P (t; ) (see the demonstration of Lemma . Using this
relation to eliminate the variable ¢ leads to:
F.(t;p) — MS(N)Vsﬁsm(té w) — CS(N)VsUsm(t; w) — Ko (p) ViU (t u) — K ViPo(t; )
Rupe(t; p) = . 0 )
Fy(t; 1) + po()KS ViUsr (6 p) — My (R) VPt p) — Cr(n)VyPr(tp) — KpViPr(t p)

Hence, we have ||[Ruyp(t; p)|| = [|[Rupp(t; p)||. This implies that the value of error indicator
defined in Equation (4.9)) is the same for both reduced order models; Ay (1) = Aype ().
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4.3.6 An efficient computation procedure for the case where POD-Greedy
algorithm generates a hierarchical reduced basis

We say that POD-Greedy algorithm generates a hierarchical reduced basis if, at each iterations,
the current reduced basis contains the reduced basis of the previous section, that is Vi =
[Vk—l VN, 41" VNk] € R™*Nk where N}, denotes the size of the reduced basis at iteration
k. In the case that the test subspace Wy, is also hierarchical (which is the case for POD-Greedy
Algorithm and, we remark that the data to be computed by Algorithm @] at the step
of the POD-Greedy Algorithm [10] are partially computed in the previous iteration.

At iteration k£ > 2, the product of matrices and the basis A;Vy_1, for A € {M,C, K} and
l=1,---, N4, are already computed in the previous iteration. Hence, we only need to compute
Ayvjfor j = Ny_1+1,- -+, Ng. This requires a total complexity in O(n?(Ng—Ng_1)(Ny+No+
Ng)) instead of O(n?Ng(Nys + N¢ + Nk)). For the case of sparse matrices with n, non-zeros
entries, it is in O(n,(Ny — Ng—1)(Nyr + No + Nk )) instead of in O(n,Ni(Nyr + No + Nk)).

In what follows, we use the superscript * for the quantity corresponding to the iteration
k of POD-Greedy Algorithm. We remark that the relation of the reduced matrices Af‘jr and
Af’;;l writes:

_ T
Aﬁr ! [Wl . 'WNk—J A [ka—H-l T VNk]

T T

[WNkfl"Fl " ‘WNk] A [Vl v 'ka—l] [WNkfl"l‘l " 'WNIJ Ay [VNk—l"‘l e VNk]
(4.23)

Then, we only need to compute [wy - - ka_JT Ay [v, 41 vy, and [wa, 41 -WNJT AV,
which requires a total complexity in O(n(NZ7—N?_|)(Ny+No+Nk)) instead of in O(nNZ(Na+
N¢ + Ng)). The same observation holds for the reduced vectors. We have the relation of the
reduced vectors Ffﬂ, and Ff;lz

k _
Al,r -

Fk:fl
Fj, = br T (4.24)
’ (W 41w, Fy

which allows us to compute only [WN;C,1+1 e ka]T F; to obtain Ffr. The total complexity of
the computation of the reduced vectors is then in O(n(Ny — Ng—1)N) instead of O(nNiN).

We now turn to the data for error indicator. To start, we note that the matrix Mpp is
independent of V. For the matrices My, r, for A € {M,C, K} and [ € 1,--- , N4, we have the
relation:

— T
MQZF:[M’;I; (A, o1 AV [Fl FNFH (4.25)

Then, we only need to compute (A;v;)TF;, for i = Ny_qy +1,---,Ny and j = 1,---, Np.
The total complexity of the computation of the matrices Mg, p, for A € {M,C,K} and [ €
1,--+, Ny, isin O(n(Ng— Ni_1)Np(Ny + No + Ni)) instead of O(nNpNp(Nyr+ No + Nk)).
Finally, for the matrices My, ,, where A > B € {M,C, K} (with convention M > C > K),
l=1,---,Ngand k=1,--- , Ng, we have the relation:

M, — M’;ﬁ,k [AlVl“‘AlVNk,l]TLBkVNk,qul“‘BkVNk]
e [Aivn, 41 Awvny ] [Brvi-Bevn, ] [Awvn_ 11 Awvn, ] [Bevn,_ 41 Bieva,]
(4.26)

which allows us to obtain Mf‘thk by computing only [Ayvy--- Alkafl]T Birva, 41 Brva,]
and [Ayvy, 41 Alka}TBka. The total complexity in the computation of M 4, g, , where
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A>Be{M,C, K} (with convention M >C > K),l=1,--- ,Nyand k=1,--- ,Np isin
O(n(N2 — N2_)(Nap(Nuy + Ne + Nk ) + No(Ne + Ni)) instead of O(nNZ(Na(Nas + Ne +
Nk) + Nc(N¢ + Nk))).

To summary, Table presents the complexity of the proposed computation procedure in
the case of a hierarchical reduced basis in compared with the general case.

Data Case of a hierarchical reduced basis Case general

AV, O(n?(Nj, — Nj—1)(Na + Ne + Nk)) O(n®Ng(Ny + No + Ni))
Ay O(n(N = Ni_y)(Nu + Ne + Ng)) O(nNi;(Nar + No + Nk))
F;, O(n(Nx — Ng_1)Np) O(nNkNp)

My, F O(n(Nx, — Ng—1)Np(Npyr + No + Ni)) O(nNgNp(Ny + No + Ni))

MAlBk O(n(NZ — N _1)(Nym(Ny + No + Ni) + No(No + Nk))) | OmNZ(Ny(Ny + Ne + Nig) + No(Ne + Ni)))

Table 4.1: Complexity of the computation of the offline data (step [5|) of POD-Algorithm [10|at
iteration k > 2

Remark 4.3.7 Assuming that the POD-Greedy Algorithm [10]achieves the stopping criterion
in K iterations, the total complexity in the computation of the products of matrices and the
basis A;Vy, the reduced vectors F;, and the matrices M 4, r for the case where the reduced
basis is not hierarchical is (Zle Ni)/Ng times bigger than the case of hierarchical reduced
basis. For the reduced matrices A, and the matrices My, g, , the complexity of the case where
the reduced basis is not hierarchical is (Zszl N2)/N# times bigger than the case of hierarchical
reduced basis.

4.4 Workflow

In this section, we condense the results from the previous sections into a structured workflow
for performing efficient parametrized time-domain simulation of vibro-acoustic finite element
models by using the stabilization reduced order modelling technique presented in Chapter [3]
combined with a POD-Greedy algorithm. A schematic of this workflow is depicted in Figure
4.1l

The first step is to choose the formulation and to write the corresponding left hand-side
operators M(p), C(u), K(p) and the vector F(¢; u) of the right-hand side in an affine depen-
dent form in parameter p € D as in Equation . To obtain such decomposition, it requires
a knowledge on the definition of each sub-matrices of the problem (we will see in Section
that the Empirical Interpolation Method (EIM) [I7] can be employed to avoid this constraint).

The second step consists of the construction of the reduced basis with a POD-Greedy
algorithm which depends on the choice of formulation. For the formulation in (us, ¢), the
POD-Greedy Algorithm [13]is employed. For the formulation in (us, p) and in (us, p, ¢), we use
respectively the POD-Greedy Algorithm and (15| which are equivalent (see Lemma .
The last step of the offline stage is to pre-compute the data for the online stage outlined by
Algorithm [f

Now that we have computed all the data of the offline stage, it becomes possible to compute
the physical output of interest predicted by reduced order model for any values of the parameter
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p € D by Algorithm [5] with a complexity relatively small compared to the finite element model.

Before presenting some numerical experiments on the efficiency of the proposed framework, we
would like to point out the limits of our approach and some ideas to overcome these limits.

4.5

Formulation in (uy, ¢)

Write the operators

and F,4(p) in an
affine dependent
form in parameter

as in Equation (4.2))

MU¢ (/J')a Ku¢ (/“) ) CU¢ (H)

Built the reduced
basis V with POD-
Greedy Algorithm

Compute the data of the
offline stage with Algo-

rithm [4 on the couple
(W = [VS’ _Vf]T V=
V. V")

Choice of the formulation

Formulation in (ug, p)

Write the operators
Moy (1), Kup(p), Cup(p)
and F,,(p) in an
affine dependent
form in parameter

as in Equation (4.2))

Built the reduced
basis V with POD-
Greedy Algorithm

Compute the data of
the offline stage with
Algorithm [4] on the
couple (W = V,V)

Compute the output of interest
for any values of parameter
p € D with Algorithm

Formulation in (ug, p, )

Write the operators

Mupw (H’)v Kupcp (N)a
Cupp () and Fop, (1)
in form affine depen-

dence in parameter
as in Equation (4.2}

Built the reduced
basis V with POD-
Greedy Algorithm

Compute the data of
the offline stage with
Algorithm [4] on the
couple (W = V,V)

Figure 4.1: Workflow for the case of an affine dependency in parameter

Further remarks and open issues
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4.5.1 On the numerical lower bound of error indicator

First of all, we recall that the computation of error indicator A defined in Equation using
the relation suffers from the round-off errors. This implies that it has a numerical lower
bound of order of magnitude /€ achine = 10~7 (see Remark , where €,,4chine denotes
the machine precision. Despite that, it should be noted that this lower bound is acceptable
in practice since the full model is not so accurate for the PDE model (which is known as
errors of finite element discretization) and the PDE model is not so accurate compared to
the real physical problem (which is known as errors of modelling). In addition, the numerical
resolution of the finite element model can also introduce another source of errors, for instance
by the linear system solver and the time-discretization scheme. As a result, a stopping criterion
€algo I POD-Greedy Algorithm [10}is usually fixed with a value greater than 1077 so that this
numerical lower bound has no impact in the practice.

However, it should be mentioned that three alternatives can be used to avoid this numerical
lower bound of the error indicator A of Equation (4.9)):

e The first one is not online efficient in the sense that the computation cost in online phase
depends on the size of the full model. The idea is to compute first the residual vector
R(t, p) defined in Equation rather than computing directly its norm using Equation
. To reduced some computational costs in online part, we can pre-compute and save
in the offline stage the product of matrices A;, where A € {M,C,K},l € {1,--- Ny},
and the reduced basis V. By doing so, the complexity of the computation of A in online
stage is in O(nN(Nyr + Neo + Nk )Ny), where n and N are the size of the full model and
the reduced model respectively, IVy is the number of time steps and N4 is the number of
terms in the affine decomposition assumption of the matrix A € {M,C, K} of Equation
. This procedure is mathematically equivalent to our approach but it has a numerical
lower bound due to the round-off errors in order of €,,4chine, and not \/€achine-

e The second alternative, exploited from [31], is not only equivalent to our approach but
also is online efficient. The key idea is to rewrite the norm of the residual of Equation

IR(t, w)l|* = Za (t: I IR(E, )| (4.27)
i=1

where the coefficient (alR(t; W))i<i<dp is the solution of a linear system of dp x dg,
and (p)1<i<d, could be chosen randomly. To simplify our presentation, let us con-
sider in the case of ||F(t,u)||?> defined in the first equation of . Let us denote
by dp = Np(Np +1)/2 and define X (t; u) € R as a vector with the component
0F (¢; u)@f(t; u)} icien and gf" € RYF as a vector with the component [c;;(Mpr);;]
where ¢;; = 1 if ¢ :_j_gi;ldFCij = 2 if i # j. Using the symmetry of the matrix Mpgp, the
norm of the right-hand side vector can also be written as:

Np

IR )12 = 0F (40> (Mpp)i + > 208 (4 w)0F (b ) (Mpp)y;  (4.28)
i=1 1<i<j<Np

dr
=> g X[ (t;p) (4.29)
=1
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where q£ ,Xf is the p* component of the vector qf and X € RYF respectively. By
taking dp values, possibly random, (p;)i1<i<d, of the parameter p € D, so that the
dimension of span{X¥ (t; u;),1 < i < dp} is equal to dp for all t € [0, 7], we can write

XFE(t: ) as: ;
X () =Y af ()X (8 ) (4.30)
i=1

where the coefficient (af"(t; ))1<i<a, is the solution of the linear system Z o Af; f(t NE
XF(t;pu),i = 1,--- , Np, where Af; = XI(t; ;). Injecting the expression of Equa-

tion (4.30)) into Equation(4.29)) yields:

dr dp

F =3¢ Xt o) (4.31)

p=1 =1

= Dol () Y gy X5 (s ) (4.32)

= ol ()R, o)l (4.33)

The idea is straightforward for the case of residual norm. With Equation , we can
compute at the online stage the norm of the residual norm with a complexity independent
of the size of the full model. Thus, it is online efficient provided that the value of residual
norm for p € {p;,1 <i < dr} are pre-computed during the offline stage. Since the value
of residual norm for g € {p;, 1 <i < dp} is evaluated in the offline stage, we can use the
accurate formula as proposed in the first alternative. Assuming that the resolution of a
linear system dr X dp is in O(d?j%), the complexity in the online stage of this approach is
in O(Nyd%,) where Ny is the number of time step.

e A drawback of the second alternative is on the choice of the value parameters {p;,1 <
i < dr}. Even though a random selection could work well in practice, it has been
observed in [32] that the matrix representing the linear system to be solved exhibits large
condition numbers especially when the chosen values of the parameters are very close.
To remedy this, the third alternative consists of exploiting the Empirical Interpolation
method (EIM) [17], see Section [5.2.1]for a short presentation of EIM, in order to obtain an

approximation of the vector X ®(¢; u) representing the residual norm (in analogue with the
EIM
vector X®(¢; u) mentioned in the second alternative) as fjl olt(t; )X (t; ;). This
EIM
implies that ||R(t; u)||? ~ jfl ol (t; ) ||R(t; ps)||?, where dE™ < dp and such that

the coefficient (af(t; l‘))lgz‘gdg”” is the solution of a better conditioned linear system.

For the presentation in more detail and numerical experiments of the last two alternative
approaches in the case of parametrized stationary problem, we refer to [31] [32].

4.5.2 On the a posteriori error estimator

Instead of using the error indicator in the construction of the reduced bagis by the POD-Greedy
Algorithm [0} a more rigorous way is to use the posteriori error estimator of either the state
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error or quantity of interest error, see for instance [62, 100] for the case of a parametrized
parabolic equation. For the parametrized time-domain vibro-acoustic formulated in (us, p), we
propose a posteriori error bound of the state error in energy norm as stated in the following
theorem.

T
Theorem 4.5.1 We denote by [Rs(t;u)T R¢(t;u)T] = Fo(t; p)
M(n) VX (t;p) — Cug() VX, (t; 1) — Kug(p) VX, (t; ) the residual vector,
es := U, — U™ the error of the structural part and ey := ®5 — D™ the error of the
fluid part. We introduce an energy norm || - ||, defined by:

T = =
| ['UZ ’U?} ”N = \/szS(p‘)i}s + szs(”) Vs + 'b?:Mf(/"’) vy + v?Kf(P’) Ui (4.34)

where My(p) = po(p) My(p) and Ky(p) = po() K (). The error between the solution
of ROM and the full model in norm || - ||u is bounded by:

T ' t—u 1 o 1 o
el ) eFtm)] Il < /0 e (aMS(mIIRs(u,u)IIQvLaMf(M)IIRMu,u)IIQ) du

(4.35)
fort >0 and p € D, where ap, () and aMf(u) are respectively coercivity constant of
the matrices Ms(p) and My (p).

Proof: By definition of residual vector, we have:

{ M;é; — poKcéy + Cseé, + Koe; = Ry (4.36)

Myés + poK{ €, + poCrés + Krep = —Ry
By left multiplying with éST and é? in the first and the second equation of li we have:

{ eI M8, — poel K.é; + el Cie, + 6T Kye, = 67 R, )

TN T . . T .
e}FMfef + poe;‘fKC e, + poe?Cfef + e}FKfef = —e}FR¢
Combining the two equations of (4.37)), we have:

eI M6, + 6] Koe, + 6 Myé; + 1 Kyrey + el Ces + poeCrép = 6] R —6[Ry  (4.38)

>0

d /. ) Tr ~ . .
= 7 (eSTMses + eSTKses + e?Mfef + e?Kfef) <2 (eSTRS — e?qu) (4.39)

Using the Cauchy-Schwarz inequality in the right-hand side of the inequality (4.39)) yields:

d /. ) ST ~ . .
(8L, + T Koy + 67 My + ef Kper) < 2 (e l[IRol + llellRgl)  (4.40)
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We now recall the Young inequality (for a,b € R and p > 0):
a’ 212
2|al|b] < 2 + p°b (4.41)

which we apply twice: first choosing a = ||Rs||, b = ||és]| and p = \/ajs, to obtain:

|IRs|?
%3

E]

[les[[[IRs]] < +an || (4.42)

and second, choosing a = ||Ry||, b = ||éf|| and p = /@y, to obtain:

- IRy |* .
leglliRall < 220 oy e (1.43)
My

Injecting the inequalities (4.42)-(4.43) in (4.40), we obtain:

d /. . T - . ) 1 1
o (esTMses +elKoe, + e Myés + e}F-Kfef> < ang,||&s]” + agy [léf]]* + ——|Rq|* + —|Ry|?
M, R

| (4.44)
By definition of coercivity constants ay, and ayy,, we have vIMvs > an||vs||?, V?Mfo >

aMvafHZu for all vy € R™ and vy € R™, so that:

d ~ - ~ 1 1
= (67Moé, + T Ky, + €7 Myes + e Krey ) < 6TMe, + T Myés + —|[R|[2 + — [|Ry P

(4.45)
Since the matrices K, and K are positive semi-definite, we have eSTKSeS + e?Kfef > 0. By

adding el K e, + e:Jff{ rey in the right-hand side of the inequality 1) we obtain:

IR (t; p)|[* +

! 1 . 2
anr, (1) o, () IR (t; p) (4.46)

d
Bt ) <Etp)+

where E(t; p) := €I M, + el K.e, + éTMyés + efK ey Thus, we have:

% (e "E(u;p)) = —e “E(u; ) + 6_“%E(u; ) wn
< —e "B(u; p) + e " B(u; p) (4.48)

—u 1 2 1 y )

- ! sl [? 1 w )12
<e (OZMS(“)HRS(U’MH + OéMf(LL)"R¢( 7“)” ) (4.50)

1R (us ) [” +

= e 'B(t;u) —E(0; ) < /0 e <onl(u)

Which is the result of the theorem since we have E(0; ) = 0.

T )HR¢>(U§N)H2> du (4.51)
My
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From our current numerical experiments, the aposteriori error bound proposed in the above
theorem is too pessimist even in the context of the interaction of submerged structure and shock
wave where the final time of interest is a few milliseconds. A sharp a posteriori error bound
for parametrized time-domain vibro-acoustic problem is still an open issue.

4.5.3 On the convergence of POD-Greedy algorithm

To give a good answer to the question: when can we expect that the error indicator in POD-
Greedy algorithm decreases rapidly ¢, it is worth to recall a mathematical notion of the
Kolmogorov N-width of a given manifold [79].

Definition 4.5.1 Let V be a normed linear space, S be a subset of V and Vi be a
generic N-dimensional subspace of V. The deviation of S from Vy is:

E(Sa VN) = SupsESinvaEVN | |5 - UN| ’V (4'52)
The Kolmogorov N-width of S in V is defined by

dn (S, V) = infy, E(S; Vi) (4.53)

\. J

By definition, Kolmogorov N-width of S measures how well the subset S can be ap-
proximated by a N-dimensional subspace of X. Here, the subset S is the solution manifold
My = {X(t;p),t € [0,T],u € D} C R™, where X is the solution of the full model (1))
When the Kolmogorov N-width dn(My ,, R™) is small, it means that the manifold M, can be
well approximated by a N-dimensional subspace of R™. However, the N-dimensional subspace
Vi which is the solution of the minimization problem in the definition is not attainable.
For this reason, we proposed in Section to construct an appropriate reduced subspace by
the POD-Greedy algorithm [I0]

The convergence rate of the POD-Greedy algorithm depends strongly on how well
the Kolmogorov N-width of solution manifolds My, decays as a function of N. The faster
dn (Mg, R™) decreases as a function of N, the better convergence rate in POD-Greedy algo-
rithm[I0]can be expected. A rigorous analysis on the convergence rate has also been investigated
in [65] for the POD-Greedy algorithm For the case of stationary problem, we refer to [24]
for a rigorous analysis on the convergence rate of the Greedy algorithm.

Despite numerous numerical evidences in many parametrized elliptic problems showing that
the Kolmogorov N-width of the solution manifold may decay exponentially (see for instance
[124]), there are still very few rigorous mathematical analysis on this matter, see for instance
[39, ©5]. A numerical way to access to the decay of the Kolmogorov N-width of a manifold
S C X is to compute the singular values of a finite subset Syrqin C S whose cardinal is
sufficiently large for representing the manifold S. The decay of the Kolmogorov N-width of S
can be then characterized by the decay of these singular values.

We recall that the singular values of Styqin, = {81, ,Sn5}, where N denotes the cardinal of
S, are the square root of the eigenvalues of the symmetric (hermitian in complex case) Gram-
mian matrix G € RV*Y which is defined by Gij = (si,sj)x (see Remark . The more
the vector (s;)1<i<n is correlated, which also means that the more the Grammian matrix is
ill-conditioned, the faster the singular values and the Kolmogorov N-width decay, can be ex-
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pected. Hence, the best case occurs when (s;);1<i<n are collinear where the Grammian matrix
G has only one non zero eigenvalue. The worst case occurs when (s;);<i<n are orthonormal
which implies that the Grammian matrix G is the unity matrix so that there is no decay in
the eigenvalue spectrum.

In fact, most of the works in the reduced order modelling of the parametrized problem is
under the assumption of a small Kolmogorov N-width of the solution manifold. Even though
this assumption can be expected or verified in many cases, for instance because of the regularity
of the solution in parameter g and time ¢, this assumption may not be verified in some cases
such as in the pure transport and in the pure propagation problem. For the cages of large
Kolmogorov N-width, we refer to [30] and the references therein for some propositions to
overcome this issue.

4.5.4 On the need of the local ROMs

When the parameter space D and the time interval of interest [0, 7] are too large, it implies a
widening of the Kolmogorov N-width of solution manifold so that the size of the reduced basis
required to approximate accurately the solution of full model can be too large, which yields
inefficient reduced order model approximations. This happens when it has too many different
physical regimes in the solution manifold while varying the parameter values in D and the
time in an interval of interest [0,77]. A solution to overcome this issue is to built a suitable
partition of the parameter space D = Dy U- - - Dy, where D; N D; = (), Vi # j, and construct a
local reduced order model for each subset D;,7 = 1,--- , Np. We can also use an alternative by
subdividing the time interval of interest [0, T’ into [0, T] = [To, T3]U[T1, T3] - - -U[TNp, —1, TNp, |
where Ty = 0, T Np, =T, and constructing a local reduced order model for each time interval
[T;, Ti+1],i=0,--- ,Np, — 1.

In the latter case, it should be noted that switching from the local reduced order model
for [T;—1,T;] to the local reduced order model for [T;,T;+1] must be done inexpensively dur-
ing the online stage. In what follows, we denote by V;;11 € R Niit1 and X4+ the
reduced basis and the state corresponding to ROMrp, 7,,, (the local reduced order model
for [T;,T;+1]). We remark that the values of Xt:TZ.,Xt:Ti € R"™ are required in order to
determine the initial conditions for ROMr, 1,,,, Vi > 1. For the given Xt:T”Xt:Ti; the
initial condition of ROMr, 1;,, can be defined as the orthogonal projection of X;—r; and
Xt:TZ. on the subspace spanned by V; ;. Assuming that the reduced basis V;;41 is or-
thonormal, the initial condition of ROMy, 7;,, can be defined by X%HT =V} 1 X4—r, and

il '
X;;iTL = VZ-Ti 11 X¢=1; - We note that the approxnnatlon of X¢—1, and Xt 7, provided by
- 1—1,1

the ROMy, , 1 are Xy—p, = =Vv7T Xit“T,Xt 7. =VF X, i—7,- Hence, the initial condition

i—1,2
of ROM7, 1,,, can be computed with a complexity independent of the size of full model as

1 © i—1,0 . .
X;ZttlT (VZ Vi “)Xz ;l and X:,?T = (VI VL “)Xz 7, provided that the matrix

ng'+1VT - € RNuit1XNi—1i ig pre-computed at the offline stage.

i—1,2

The idea of local reduced order modelling is not new. It has been already investigated in
various contexts, see for instance [ [48], 88, T03].
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4.6 Numerical results

In this section, we propose to study numerically the efficiency of our reduced order modelling
framework in a study case which aims to deal with the study case proposed in Section by
taking into account a spring-mass system in the model. This can be viewed as a representative
study case for the industrial application considered in the next section. In this study case, the
four formulations presented in Section of Chapter [2| are employed for the reduced order
modelling. The comparison of the efficiency of the reduced order modelling between each
formulations will also be investigated.

Presentation of the study case

Here, we are interested in an elastic ring with a spring-mass system submitted to an underwater
explosion’s shock wave. A graphical representation of this study case is given by Figure .2
Here, we consider that the elastic ring has a radius R = 1 m, a thickness h = 0.01 m and
Poisson’s ration v = 0.28. The excitation is induced by an acoustic shock wave generated by an
underwater explosion of 1 000 kg of Trinitrotoluene (TNT) located at (d,0) where d = 100 m.
The profile of the considered shock wave is modelled by Equation for the pressure and
Equation for the fluid particle’s velocity using the value of constants P.,v., A and B
of Equation provided by [40]. At ¢ = 0, we assume that the shock wave arrives at the
stand-off point (0, R + h/2) of the structure. The density and the speed of sound of the fluid
are given by pg = 1 000 kg/m3, ¢g = 1 500 m/s. The spring-mass system is suspended at the
point (R — h/2,0) which represents the closest point in the interior part of the ring to the

explosion.

e, Explosive
(d,0)

mc ,17177,(?)
, U

Figure 4.2: Graphical representation of the first study case

The parameter vector in the problem is defined by p := (meq, feq, E, ps) where meq, feq =

1 [ keq
2T Megq

respectively Young’s modulus and the density of the elastic ring. The parameter spaces is set

are respectively the mass and the frequency of the spring-mass system , F and pg are
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by D := [10,500] x [100, 250] x [0.95E,1.05E] x [0.95ps, 1.05p] C R* where E = 200 GPa and
ps = 7 850 kg/m? are nominal value of Young’s modulus and the density of the elastic ring.

Full model and quantity of interest

In order to approximate the Sommerfeld radiation condition, a truncated fluid domain in form
of a circle of radius Ry, = 3 m is employed. On the boundary of the truncated fluid domain,
the BGT-1 boundary condition is applied in order to approximate the outgoing sound
wave by a cylindrical wave for which we use the value of impedance Zr = 2p0 Ry, Zc = poco.
In finite element modelling, we use quadratic triangular elements both for the elastic ring
and the fluid. The largest element size in the fluid part of the mesh is 0.06 m and there are 4
elements in the thickness of the ring. The using mesh is illustrated in Figure 2.7

In the finite element model, we have 172 475 degrees of freedom, 91 030 of which correspond
to the structural part (one of which corresponds to the point mass in the spring-mass system)
and 81 445 of which correspond to the acoustic fluid part for the formulation in (ug, $*“*), in
(us, ¢"%) and in (ug,p"®?). For the formulation in (ug,p"*?, ¢ %), we have 253 920 degrees of
freedom 91 030 of which correspond to the structural part and 162 890 of which correspond
to the acoustic fluid part and the non-symmetric finite element model will be used in
this study For the time-discretization of the finite element models, Newmark scheme (with
B =1(1—a)? v=1/2—a where a = —0.1) is employed by using the time step At =4-1075 s
Wthh means that the shock wave needs 100 times step in order to travel the distance of 6R.
The final time of interest is set by T' = 6 R/cg so that the total number of time steps is Ny = 100.

In this study case, the acceleration a,,, of the point mass in the spring-mass system
represents the output of interest. Therefore, we define the accuracy of the reduced order model
by the following quantity:

5 N\ 1/2
(o [efzz o) = ez o )
Al(ll') = 1/2
<f0 ‘af,fgz t; u‘ dt>

refer respectively to the values provided by the full model

(4.54)

fom rom

where the superscripts and

and the reduced order model.

Influence of the parameter e¢ppp in POD-Greedy Algorithm

First of all, we propose to study the influence of the parameter epop in POD-Greedy Algorithm
To do so, we run the POD-Greedy Algorithm with the formulation in (ug, ¢*°*) by
varying the value of the epop € {10_2 1073,1074,107° 10_6} For each value of epop, we use
| = 50.
In our study, we employ the same time-integration scheme as the full model for the reduced

the same training sample DF . which is chosen randomly at each iteration with |DF

train train

order model. We plot in Figure [4.34] the evolution of the maximum value of error indicator A
defined in Equation (4.9)) over the parameter values in Dtmm Figure m plots the evolution
of the error of the output of interest A; defined in Equation - ) for the parameter value

., which maximizes the error indicator A over the parameter values in DE in-
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(a) On the error indicator A based on the residual (b) On the error on the output of interest A; defined

norm in

Figure 4.3: Convergences of the POD-Greedy Algorithm |13 with the formulation in (ug, %)
in the first study case

8001 —e— epop =107

—e— epop =1077

oo — 10—
600 €POD i
—— ¢epop = 1077
epop = 1078

< 400

2004

Figure 4.4: The dimension of the reduced basis during the iteration of the POD-Greedy
Algorithm (13| with the formulation in (us, ¢*“*) in the first study case

In the figure [4.3] we see that the smaller epop, the better convergence rate of the POD-
Greedy Algorithm we have. Except for the case of epop = 1075, we see clearly that both the
error indicator A and the error on the output of interest A; are stabilized after some iterations.
This can be explained by the fact that there is relatively only few new basis vectors be added
in the old reduced basis at the procedure of the concatenation at the step [I3] of Algorithm [13]
More precisely, after 3 iterations for the case of epop = 1072, after 5 iterations for the case
of epop € {10*3, 10*4} and after 7 iterations for the case of epop = 107° as we can observe
in Figure which plots the dimension of the reduced basis during the iteration. Figure 4.4
also indicates that the smaller epop, the bigger dimension of the reduced basis, which is the
reason why we have the better convergence rate.

As a first conclusion, too small values of epop may require small number of iterations (thus
small number of the full model to be solved in offline stage) of POD-Greedy Algorithm but
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it could lead to an inefficient reduced order model for the online stage. On the contrary, too
large values of eppop could lead to an inaccurate reduced order model.

Comparison of the convergence in POD-Greedy Algorithms for the different for-
mulations

Now, let us compare the convergence in POD-Greedy Algorithm for the different formulations.
Here, we have four formulations: in (ug, $*°?), in (us, ¢"%%), in (ug,p™®?) and (ug, p"*?, ")
(see Section [2.4] for the presentation of each formulation). We recall that for the formulation in
(us, p") and in (ug, p %, "), we use respectively the stabilized POD-Greedy Algorithm
and [15 . The case of formulation in (us, $*®) and (us, ¢"*?) are both based on the same POD-
of 50 values (which

are chosen randomly at each iteration) in the POD-Greedy algorithm of each formulation.

Greedy Algorithm . Again, we will use the same training sample DF

train

—— (U, ™) —— (1, )
o ('Us- (Dmrfj 10! 4 ('U ()er'J
10! 4 ('”s- prmi') ('l[ pr mi)
('l( p:rm' ‘;: rm"J ('U pr mi ,.nm")
—r 5

= = 10
4 4
1094 1014
102
I 2 3 4 5 6 7 8 9 10 I 2 3 4 5 6 7 8 9 10
k k
(a) Case of epop = 1074 (b) Case of epop = 1076

Figure 4.5: Evolution of the error indicator A based on the residual norm of the POD-
Algorithm for the different formulations in the first study case

10!
(15, p*) e (U, 6%
10[] i ('l( O:rrrf 1071 | ('Us- (D;-mi)
) .
(1 mr (H prmiJ
10-1 ( ””i 'Jm[) ('U ptm] nm'J
3 G0
4 10724 4l -
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10~7 4
104 ‘
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(a) Case of epop = 1074 (b) Case of epop = 1076

Figure 4.6: Evolution of the error of the output of interest A; defined in Equation 1 in
the POD-Greedy Algorithm for the different formulations in the first study case
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Figure |4.5|illustrates the evolution of the error indicator A defined in Equation (4.9)) during
the iteration of the POD-Greedy Algorithm for the different formulations. The evolution of
the error on the output of interest Aj(uj ) defined in Equation 1} are reported in Figure
1.6l

As could be expected, we see that the same evolution of the error indicator A and the
error on the output of interest A; for the formulation in (ug,p™?) and in (ug,p"®?, %),
This results confirm numerically the equivalence of the POD-Greedy Algorithm [14] and [15] as
mentioned in Lemma We also remark in Figure that the formulation in (ug,p"*?)

and in (ug,p"?, gomd)

has the better convergence rate for A; compared to the formulation in
(15, %) and in (ug, ¢"*?). This is because the dimension of the reduced basis in the former
cases is bigger than the latter cases (as shown in Figure due to the requirement imposed
by the stabilization technique of Lemma [3.2.3

rad) rad)

Even though the formulation in (us, prd o and the formulation in (ug,p are equiv-
alent, we see in Figure that the dimension of the reduced basis for the former case is larger
than the latter case. It is because the stabilized reduced order model in (us, p"¢, ©"%?) formu-
lation proposed in Lemma [3.2.4] we have two degrees of freedom for the fluid part (p and ¢)
instead of one as in the stabilized reduced order model in (ug,p"*?) formulation proposed in

Lemma

It should also be pointed out, as illustrated in Figure [£.5] and [4.6] that the formulation in
(us, ¢°°*) have a slightly better convergence rate for A, than the formulation in (u, ¢"*%) while
Figure 4.7 shows that this can be essentially due to the dimension of the reduced basis in the
case of (us, ¢"*) increases slower than in the case of (us, $*°%).

1000 4 —e— (u,, &™) 20001 —a— (u, ¢*4)
(uﬁ:@rmi') (H Umd
| rad nrm'
8001 —-— (us,p™) 15004 —=— (us,
(“ prmi ,Jﬂ'ff) (I mrf ,lﬂhij
6004 N
= = 1000 -
400 4
500 1
2001
0 . 0+
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k k
(a) Case of epop = 107* (b) Case of epop = 1076

Figure 4.7: Evolution of the dimension of the reduced basis in the POD-Greedy Algorithm for
the different formulations in the first study case

As observed in the previous section for the formulation in (us, $"¢), it can also be seen
in the case of the other three formulations that the smaller eppp, the bigger dimension of
the reduced basis, which leads to a better convergence rate for the error on the output 4A; as
compensation.
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On the efficiency of the reduced order models

We now turn to the efficiency of the proposed reduced order model. First, let us put the focus
on the accuracy. To do so, we compute the maximum error of the output of interest defined
in Equation over a test sample Dyesr which consists of ngs = 30 values of parameters
chosen randomly.

Figure [£.8] shows the evolution of the accuracy of the reduced order model during the
iteration of the POD-Greedy algorithm for the different formulations. Since the reduced order

md) formulation and in (us,pradv SDrad)

model in (us,p are equivalent, it is expected that they
have the same accuracy, as observed in Figure For the formulation in (ug, ¢"*?) which
yields a smaller dimension of the reduced basis compared to the case of the formulation in
(us, ¢°“*) (as shown in Figure [4.7)), we see in Figure that the formulation in (ug, ¢*“*)
displays a slightly better accuracy than the formulation in (ug, ™). For the formulations
in (usjprad) rad)

iterations in the case of epop = 10™* and after 6 iterations in the case of epop = 1076, This

and in (us, p"®?, "), the accuracy of the reduced basis seem be limited after 4

can be explained by the fact that the accuracy of reduced order models have already reached
a value close to epop.

100 —— (U, ™)
10° : —— (us, ™)
10 —.— ('l[,.pw"]J
\-‘é ) :-E 10’2 ('l[,: pr'mil t;rrm")
1 10~ - N
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(a) Case of epop = 10~* (b) Case of epop = 1076

Figure 4.8: Evolution of the accuracy of the reduced basis in the POD-Greedy Algorithm for
the different formulations in the first study case

In order to show the performance of the reduced order modelling, we are interested in
the time speed-up which is defined as the ratio of the time required for the full model to the
time required for its corresponding reduced order model. Here, only the smallest reduced or-
der models satisfying the criterion: max,ep,.,, Ai(p) < 1072, are considered. In both cases
epop = 107% and epop = 1075, Figure indicates that it corresponds to the reduced order
models obtained after 5 iterations of the POD-Greedy Algorithm for the formulation in
(us, p*®) and (ug, p"®?) and after 3 iterations the POD-Greedy Algorithm [14] and 15| for the

Tad) Tad) )

formulations in (us, p and in (ug,p", ¢
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Table and present respectively the time speed up of the considered reduced order
models of each formulation constructed by POD-Greedy algorithm with epop = 10~* and
€POD = 1076,

Formulation Number of dofs | Time consumption Time Speed-up
FE Model | ROM | FE Model | ROM
(ug, ¢*°) 172 475 269 123.21s | 1.63 s 75,59
(u,, ¢"%9) 172 475 193 131.49s | 1.47 s 89.45
(u,, p"9) 172 475 304 132.20s | 1.74 s 75.98
(us,p, ™) | 253 920 529 145.08 s | 2.11 s 68,76

Table 4.2:  The speed-up of the reduced order model (for epop = 107%) for the different
formulations in the first study case

Formulation Number of dofs | Time consumption Time Speed-up
FE Model | ROM | FE Model | ROM
(ug, ¢*°) 172 475 415 12321s | 191 64,50
(us, ¢"%9) 172 475 380 131.49s | 1.82 s 72.25
(u,, p"9) 172 475 471 132.20s | 2.08 s 63,56
(us,p, ™) | 253 920 747 145.08 s | 2.70 s 53,73

Table 4.3: The speed-up of the reduced order model (for epop = 107%) for the different
formulations in the first study case

To construct a reduced order model with 99% accuracy, Table and show that the
case of epop = 107% is more efficient than the case of epop = 107%. On the other hand, we
can see in Figure that the case of epop = 1076 could be employed to construct a reduced
order model with 99.99 % accuracy (in the sense that it verifies: maxyep,.,, A(p) < 107%)
which might be not the case of epop = 1074,

Finally, we present in Figure the time evolution of the acceleration of the point mass in
the spring-mass system given by the finite element model and the reduced order model obtained
by POD-Greedy algorithm (with epop = 107* at k = 5) of the formulation in (us, $**) for
some selected values of the parameters.
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Figure 4.9:

The acceleration of the point mass in the spring-mass system given by the full
model and the reduced order model in (ug, $*“*) in the first study case

Concluding remarks

In this study case, numerical results show that the choice of value of eppop in POD-Greedy
algorithm has an influence both on the accuracy and on the performance of the reduced order
model. Small values of epop tend to ameliorate the accuracy of the reduced order model at
the price of a degradation of its performance. Hence, in order to construct a reduced order

model with a desired accuracy e, the parameter epop of the POD-Greedy algorithm should be
fixed with a value which is not too small compared to e.

In all formulations considered in this study, we also note that the error indicator A based
on the norm of the residual is very pessimist in the prediction of the error of the acceleration of
the point mass in the spring-mass system, which is considered here as the output of interest.
Therefore, for this type of problem, another alternatives for the stopping criterion in the POD-
Greedy algorithm (as mentioned in Remark should be used.
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4.7 Industrial application

In this section, we aim to apply our reduced order modelling framework in the industrial
problems. More precisely, this parametric study may contribute to the technical justification
of the shock resistance of the equipment subjected to the primary shock wave, in pre-project
phase of submarine design.

Presentation of the study case

We divide our study into two scenarios. In the first study case, we consider that the equipment
is suspended directly on the hull of a submarine. The second study case deals with the situation
where the equipment is suspended on a stiffener in T-form attached on the hull of a submarine.

For simplifying our problem, we model the equipment as a one degree of freedom system
with equivalent mass and spring whose properties are calibrated by its first mode of vibration
in the direction perpendicular to the hull. By doing so, different types of equipments can be
simply characterized by their equivalent point mass and stiffness in the spring-mass system.

Here, we only consider a section of the resistance hull. The geometry of the hull is defined
by Quun := {(z,y,2) € R3, Ry —ep/2 < 22 +y? < Ry, + e /2, —hy/2 < z < hy/2} where Ry,
en, and hy denote respectively the radius, the thickness and the height of the cylindrical hull.
In the first study case where there is no stiffener attached to the hull, the spring-mass system
is suspended at the point (Rp — €3/2,0,0). In the second study case, the domain occupied
by the stiffener in T-form is Qp = Qg U Qr, where Qp, = {(z,y,2) € R}, Ry, —ep/2 — 11 <
22 +y? < Ry, —ep/2,—e1/2 < z < e1/2} is the part perpendicular to the cylindrical hull and
Qp, = {(:r,y,z) € R3,Rh—eh/2—l1 —e9 < $2+y2 < Rh—eh/Q—ll,—lg/Q <z < l2/2} is the
part parallel to the cylindrical hull. Here, we denote by /; and e; the length and the thickness
of T;, with ¢ € {1,2}. In the second case, the spring-mass system is suspended at the point
(Rp —en/2 — 11 — €2,0,0). The geometry of the structure part in the problem is illustrated by
Figure for the first study case and by Figure for the second study case.

The excitation is created by an underwater explosion detonated at (Rj, + en/2 + d,0,0),
where d denotes the distance of the charge to the the stand-off point (Rp + ep,/2,0,0). The
primary shock wave characterized by the Equation and with the value of constants
P, ve, A and B given by [40] (see Equation (2.10))), is used in our study.

Finite element modelling

In order to approximate the Sommerfeld radiation condition, a truncated fluid domain in form
of a cylindrical of radius Ry, = 4R), and of the same height as the hull is employed. On the
boundary of the truncated fluid domain, the BGT-1 boundary condition (1.35) is applied in
order to approximate the outgoing sound wave by a cylindrical wave for which we use the value
of impedance Zg = 2poRygt, Zc = poco, where py and cy are respectively the density and the
sound speed in the fluid. On the boundary z = —hy,/2 and z = hy /2 of the cylindrical hull
Qpatr, 2 homogeneous Dirichlet condition is applied.
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Figure 4.10: Geometrical representation of the structure part in the first study case of the in-
dustrial application: a section of cylindrical hull (in green) and a spring-mass system submitted
to an underwater explosion’s primary shock wave

Figure 4.11: Geometrical representation of the structure part in the second study case of the
industrial application: a section of cylindrical hull (in green) with a stiffness in T-form (in red
and blue) and a spring-mass system submitted to an underwater explosion’s primary shock
wave
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P

Figure 4.12: The mesh used for finite element modelling in the first study case of the industrial
application: a section of cylindrical hull (in green) and a spring-mass system submitted to an
underwater explosion’s primary shock wave

Pl

Figure 4.13: The mesh used for finite element modelling in the second study case of the
industrial application: a section of cylindrical hull (in green) with a stiffness in T-form (in red
and blue) and a spring-mass system submitted to an underwater explosion’s primary shock
wave

In numerical application, we use Ry = 4 m and e, = 0.03 m. Both the stiffener and the hull
are supposed to be constituted by a linear elastic material with the density ps = 7 800 kg/mg7
Young’s modulus E; = 2.0 - 10! Pa and Poisson’s ratio v = 0.3. The underwater explosion
under consideration is generated by My,; = 1 000 kg of Trinitrotoluene (TNT). The density
and the sound speed in the fluid are given by pg = 1 000 kg/m?, ¢y = 1 500 m/s.
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The formulation in (us, ¢*°*) is employed for our study. In the finite element modelling, we
employ the quadratic tetrahedral elements for the fluid part. The structural part is modelled by
the quadratic triangular shell elements [21]. The underlying mesh are presented in Figure
for the first study case and by Figure for the second study case. The number of degrees
of freedom in the fluid part and the structure part of the finite element model is summarized
in the Table 4]

Study case Number of dofs i'n FE model
Structural part | Fluid part | Total
Without stiffener 236 421 215 648 452 069
With a stiffener in T-form 392 781 215 648 608 429

Table 4.4: Characteristics of the finite element model in the industrial case

For the time-discretization of the finite element model, Newmark scheme (with 8 = (1 —
a)?, v =1/2 — a where a = —0.2) is employed by using the time step At = 2.67-107% s which
means that the shock wave needs 600 times steps in order to travel the distance of 6Ry. The
final time of interest is set by T'= 6 R}, /co so that the total number of time steps is N; = 600.

Variability of parameters and output of interest

The output of interest in our problem is the acceleration a,,, of the point mass in the spring-
mass system. The main parameters considered in the problem are the equivalent mass meq
and the equivalent frequency fe, of the spring-mass system. The domain of variability is set
by D := [1 kg, 10 000 kg] x [1 Hz, 10 000 Hz] C R2.

Reduced order modelling

We start by generating randomly a test sample Diest of ngesr = 25 values of the parameter.
Next, we compute and save the quantity of interest, the acceleration a,,, of the point mass, for
all values in the test sample Dy.q using the full order model. To construct the reduced order
model, we run the POD-Greedy Algorithm [I3|with the training set Dy, qin of 30 values generated
randomly at each iterations, and the stopping criterion defined by: max,ep,.,, Ai(p) < 1072,
where the error on the output of interest 4; is defined by Equation as the study case
of the previous section. The value of tolerance for the POD process at the step and the
concatenation of the basis by Algorithm [IT]at the step [L3] of the POD-Greedy Algorithm [13]is
fixed by epop = 1074

The evolutions of the error indicator A of Equation , of the error on the output of
interest evaluated at the value of the parameter which maximize the error indicator and of the
value of max,ep,.,, Ai(p) during the iteration of the POD-Greedy Algorithm |[13|are reported
in Figure {.14] The dimension of the corresponding reduced basis during the iteration are

shown in Figure {.15]
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Figure 4.14: Evolution of the accuracy of the reduced basis in the POD-Greedy Algorithm in
the industrial cases

| —e— case with stiffener
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Figure 4.15: The dimension of the reduced basis during the iteration of the POD-Greedy
Algorithm (13| with the formulation in (us, $*“®) in the industrial cases

To achieve the stopping criterion, Figure {4.14a] and [4.14b| indicate that it only need 3
iterations for both cases. In order to show the performance of the proposed reduced order
model, we present in Table the comparison of the number of degrees of freedom and the
time-speed up in the two study cases.

Study case Number of dofs | Time consumption Time Speed-up
FE Model | ROM | FE Model | ROM
Without stiffener 452 069 271 14 mins 21 s 40
With a T-form stiffener | 608 429 257 17 mins 20 s 51

Table 4.5: The speed-up of the reduced order models in the industrial case
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Application of the reduced order models

In order to illustrate a possible industrial application of the obtained reduced order models,
whose time complexity is approximately 40 times cheaper than the full model for the first case
and approximately 51 times cheaper than the full model for the second case, we put the focus
here on the computation of the so called « real spectrum » of the equipment which is defined,
for a fixed mass meq, by a function: feq — max.c(o 7] am,, (t; feq) Where ap,,, is the acceleration
of the equipment for the mass m.,. For a given equipment, this « real spectrum » curve yields
its acceleration level as a function of its suspension frequency. It may for instance help to
specify the acceleration levels that the equipment must withstand. It may also help to design
architects to find a frequency at which an equipment must be suspended to stay below a given
level of acceleration.

Figure plots the « real spectrum » for different values of mass of equipment. For the
first case where the equipment is suspended directly on the hull, the results are represented
by dashed lines. For the second case where the equipment is suspended on the stiffener of the
hull, the results are represented by full lines. To construct a « real spectrum » curve for a fixed
mass of equipment, we divide uniformly the interval [fin, fimaz] into 200 equidistant points
in logarithm scale. Using the reduced order model requires in both case approximately 1 hour
to obtain a « real spectrum » curve which would requires approximately 2.5 days for the first
study case and 3 days for the second study case if the full model is employed.

— my=15ky | e

— My = 100 kg
— gy = 250 kg
- me, = 1000 kg < L LLLLLLLELEEEEE

— 111y = 2000 kg

(0]

0,77 Gm,

max;q|

102 4

10! 102 10°% 104
fHz|

Figure 4.16: The real spectrum of the equipment for different values of mass of equipment in
the case with (in full lines) and without the T-form stiffener (in dashed lines).

We can remark that the case with a stiffener implies a higher level of acceleration on the
equipment than the case where the equipment is suspended directly on the resistance hull.
This can be explained by the fact that the presence of the stiffener induces logically a local
stiffening of the structure, which reduces the spectrum dip effect [109, 112].

At the end, we present in Figure the time-evolution of the acceleration of equipment
for some selected values of mass and frequency of suspension provided by the reduced order
model (in dashed lines) and the full model (in full line).
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Figure 4.17: Time evolution of acceleration of equipment in the two industrial study cases
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4.8 Conclusions

In this chapter, we present a reduced order modelling framework for parametrized time-domain
vibro-acoustic problem. For the construction of the reduced basis, we derive an algorithm based
on the idea of the well-known POD-Greedy algorithm for all the formulations given in Chapter
and 2] by integrating the stabilization techniques proposed in Chapter [3] In order to get an
advantage in the computation procedure at the offline stage, we ensured that the POD-Greedy
algorithm generates a hierarchical reduced basis. We proposed here to use the norm of the
residual vector as an indicator error, for which it can be shown that the proposed reduced
order models for the formulation in (us,p) and in (us, p, @) are equivalent.

A simple numerical study and two industrial applications are given in order to show the
efficiency of the proposed reduced order modelling framework. Numerical results on the simple
case show that our error indicator based on the norm of the residual vector seems very pessimist.
As a result, we proposed to use the error of the output of interest evaluated on a test sample
as the stopping criterion of the POD-Greedy in the industrial cases. The time speed-up gain
compared to the finite element model is one to two orders of magnitude, which opens a way
for parametric analysis as required in industrial applications.

The efficiency of the proposed reduced order modelling framework relies on the assumption
of affine-dependencies in parameter. This requirement can not be verified in some applications,
for instance in the case where we aim to consider the shape of the domain as the parameter
in the problem. Since the accuracy and the performance of the resulting reduced order model
are promising, we extend this framework into the case non-affine dependencies in parameter,
which is the objective of the next chapter.
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Chapter 5

Reduced order modelling for
non-affinely parametrized time-domain
vibro-acoustic FE model

In the previous chapter, we introduced an efficient reduced order modelling framework for
parametrized time-domain vibro-acoustic problems. The framework proposed in Chapter
deals only with the case where all operators and the right hand side can be written as affine
parametric dependences. In this chapter, we aim at extending the proposed framework to the
case where this assumption is not verified. For instance, it occurs when the geometry of the
fluid or the structure domain or the mass of TNT (Trinitrotoluene) in the explosion in the
interaction of submerged structure and underwater explosion’s shock wave problem are varied.

In this context, the Empirical Interpolation Method (EIM) [I7] is classically employed to
obtain an approximation in form of affine parametric dependence. This enables to recover
the efficiency of the reduced order modelling framework based on an offline/online decompo-
sition. For stationary problems, the integration of Empirical Interpolation Method (EIM) in
the reduced order modelling framework for tackling non-affine dependencies has been already
investigated in the different contexts, see for instance [61] 90, 124]. At first, EIM has been
widely applied on the non-affinely parametrized function appearing in the definition of the
left-hand side operators and the right-hand side vector of the full order model. In the case
where the full order model results from a finite element discretization, EIM can also be applied
directly and efficiently on the parametrized matrix/vector by exploiting the local support of
finite element basis, see for instance [43] [92], 100} [120].

For the case where the geometry of the domain is considered as the parameter in the prob-
lem, one of the main challenges in model order reduction is the parametrization of the varying
shape. Here, we restrict ourselves to the case where the parameter dependent domain can
be described by a flexible boundary parametrizations of a reference domain. In our work, we
choose to employ the so-called Solid Extension Mesh Moving Technique (SEMMT) which aims
at generating the mesh for a new geometry by deforming a reference mesh via the displacement
fields obtained by an elasticity problem [115, 117] (alternatively by an analytical formulation
for the simplest case or by a Laplacian [16l 35] or bi-Laplacian [68] problem).
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The goal of this chapter is to exploit the EIM and the SEMMT for extending the re-
duced order modelling framework proposed in the previous chapter into the case of non-affinely
parametrized time-domain vibro-acoustic problem. This chapter is structured as follows. In
the first section, we give a short presentation of the EIM and its potential applications in
the context of model order reduction. In this section, we will also introduce an application
of EIM for approximating the solution of the interaction of submerged structure and under-
water explosion’s shock wave problem when the mass of TNT is the only parameter of the
problem. Numerical results on a simple case are also given for illustrating the accuracy of
the proposed approximations. In Section we give a presentation of Solid Extension Mesh
Moving Technique (SEMMT). An application of EIM for reducing the computational cost of
the parametrized displacement fields of SEMMT are also pointed out in this section. The inte-
gration of EIM and SEMMT non-affinely parametrized time-domain vibro-acoustic problem is
described in Section To show the efficiency of the proposed framework, numerical results
are then presented in Section Finally, conclusions are offered in Section

5.1 Problem setting

In this chapter, we consider that the full model is described by a parametrized ordinary differ-
ential equation of second order:

M(p)X(t; p) + C(p)X(t p) + K(p)X(t; 1) = F(t; p) (5.1)
where g € D (P > 1) is the parameter vector and D C R denotes the corresponding pa-
rameter space. The matrices M, C, K € R™ " represent respectively the mass, damping
and stiffness matrices of the problem which are supposed to be parameter dependent and
F € R" is the right-hand side vector of the problem which is time and parameter depen-
dent. As in the previous chapter, we consider that our output of interest can be written
as a linear form Sy(t; ) = LTX(t; ), where L is a vector in R™, or as a quadratic form
Sy(t; 1) = X7 (t; u)QX(t; ) where Q is a matrix of R"*™.

In the opposition to the previous chapter, we do not restrict ourselves here to the case where
all operators of the left and the right-hand side of the problem can be expressed in a form affine
parametric dependence. In addition, we will also consider the case where the geometry of the
domain represents the parameter in the problem.

To make this chapter self contained, let us briefly recall the expressions of the matrices
M, C, K of the full model (5.1)) for a parametrized time domain vibro-acoustic problem. For
the case where the formulation in (us, ¢) is employed, we have:

M) 0 B C,(p) —po(1)Ke(p)
B B R B OS] B

K. 0 o oy | Us(tip) |
B B %] R %

where pg denotes the fluid density, the matrices My and My are known respectively as the
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mass matrices of the structural part and the fluid part, the matrices K; and Ky are known
respectively as the stiffness matrices of the structural part and the fluid part, the matrix K,
represents the vibro-acoustic coupling matrix, the matrices Cs and C; represent respectively
the damping in structural part and the fluid part and the vector U and ® contain respectively
the nodal values of structural displacement and velocity potential in the fluid. From their
definitions in , the matrices My and M are symmetric positive definite, the matrices
K, and K are symmetric positive semi-definite. In our work, we assume that the matrices C,
and C; are positive semi-definite which are sufficient conditions for the stability of the finite
element model (see Lemma . As a remark, the matrices K. and Ky depend only on the
geometry of the fluid domain. Thus, they are u-dependent only in the case when the geometry
of the fluid domain is considered as the parameter of the problem.

With the same notations, the expression of the matrices M, C, K of the full model
for a parametrized time domain vibro-acoustic problem formulated in (ug,p) is defined by:

B M;(p) 0 _|Cs(n) 0
Mt = kI M| C" W T 0 s .
K(w) Kew)| v oo [UtEm) |
Kulw) =17 Ky (p) A Xl 1) P(t; )
and in (us,p, ¢) is defined by:
M, (1) 0 —po(p)Ke(p) Cip) 0 0
MUW(N) = 0 0 Mf(“) 7Cu1w(“) = 0 0 0
oKL (1) My(p) —po(p)Ky(p) | 0 Cy(w) O
K, (1) 0 0 Us(t; )|
Kupo (1) = 0 PO%M) My(p) 0| and Xupo(t; ) = | P(t; p)
0 0 0 o(t; )
) (5.4)

where the vector P and ¢ contain respectively the nodal values of pressure and displacement
potential in the fluid.

We would also like to recall the expression of the right-hand side vector of the full model
(5.1)) for the case of an interaction of submerged structure and shock wave problem. Assum-
ing that the shock wave is characterized by a incident pressure p® and an incident velocity

vin¢ the right-hand side of the problem formulated in (ug,¢*®) are given by Foi(tip) =
T
[Fsca (t; H)T Fir(t; [L)T] where the vectors F3 (¢; ) and F3™(¢; ) are defined by Fi%' (t; p) :

i PO )N () - (01, FE2(6 1) 1= — fo p0()V™(x, £ 1) - mu ()1 ()
with Ns and N/ denote respectively the finite element basis of the structural and the fluid
part.

With the same notation, the right-hand side vector of the formulation in (us, "*?) and in
T
(us, p"?) are glven by Fmd( p) = [F;“d(t; w)t OT} , where the vector F7%%(t; u) is defined

by Fmd( = — fF(u) pine + pred)(x, t; p)[N3(x) - ns(x)]dx. Finally, the right-hand side for
T

the case of the formulation in (uj, p"2?, ") is given by FZ‘;?D( NES [Fg“d(t; wt ol of
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We recall that the reflected pressure p"®/ has to be pre-computed (see Section i in order
to employ these three formulations. Since the reflected pressure p™/ depends on the incident

C

velocity vi"¢ and the properties of the fluid, it becomes p-dependent when the geometry of
fluid domain represents the parameter of the problem and when the incident velocity v is u-
dependent, for instance in the case where the shock wave comes from an underwater explosion

with a varying mass of explosive material.

5.2 Empirical Interpolation Method (EIM) and its applications

As exposed in the previous chapter, the affine parametric dependence assumption is a key
for the offline-online efficiency of the procedure and in construction of the reduced basis by a
POD-Greedy algorithm. In the case where this assumption is not valid, we can rely on the
Empirical Interpolation Method (EIM) [17] to recover this assumption approximately. The aim
of this section is to recall the EIM and give an overview of its applications in the context of
the reduced order modelling.

5.2.1 A short presentation of EIM

To begin, we give a short presentation of the original version of EIM proposed in [I7]. The aim
of EIM is to seek an approximation of any function g(x, ) : 2 x D — R depending on both
the spatial variable x and the parameter vector @ in a non affine way, in a separated form with
respect to x and p:

M
g6, ) ~ ghf M (x ) = Bi(w)ai(x) (5.5)

i=1
by choosing on a greedy manner the nested sets interpolation points {x{, - ,x%,} C Q (also
called magic points) and the nested set of basis functions {q1, -, g }. Being an interpolation

method, the coefficients (5;(p))1<i<nr are determined by solving the following linear system:
M
j=1

Let us denote by Dgé% C D a finite training set, egras a given tolerance, M4, the maximum
number of terms and pf an initial parameter value which can be determined randomly or
by using knowledge of the problem at hand, the EIM procedure for finding the magic points
(x7)1<i<m and the basis functions (g;)1<i<a is as follows. The first interpolation point x{ and

the first basis function g; are defined by:

g _

g
g x,
I — argmasycnlg(x, 1)), g1 (x) = L0 HL). (5.7)

91, 1)
Then, for 2 < M < M4z, we set “?\4 as the solution of following minimization problem:

EIM
iy = argmax, cpei|g(- 1) — ga7 =1 (5 )l e () (5.8)

where g (x, u) defined by g¥/* (x, pu) = Z;‘i}l ij_lqj(x) with (6?{_1(;1))&5]\/[,1 being
the solution of linear system Zj‘i}l ﬁjM_l(u)qj (x?)y=g(xI,p),i=1,---, M —1. We compute
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then the residual for this new value of parameter ry (x) := g(x, u%,) — g5/ M (-, pu9,) and set

the next interpolation points and the basis functions gs as

TM (X)
rar (X3)

g

Xy = argmaxyeq|ry (%), qu (%) = (5.9)

The procedure is iterated until the stopping criterion is verified or the maximal number of
iteration is reached. The summary of EIM [I7] procedure is outlined in Algorithm [16]

Algorithm 16 Greedy EIM algorithm [17]
Input: A function ¢ : Q x D —, a fixed tolerance egjps, a maximal number of terms M nqz,

a finite training set DEIM < D and a selection of u{ € DEIM

Output: The interpolations points {x{,--- ,x?w} C € and the basis functions
{ar, - am}
g
1 Set x{ = argmaxyeqlg(x, )|, and q1(x) = 2242
2: Set M =2
3: while (M < M,,,,) do
4:  Compute for all p € DEM  BIM. ) = Zj]\/izl,é’;w_l(u)qj(x) where

(5]].”_1(u))1§j5M_1 is the solution of linear system

M-1
B g (xd) = g(xf w)i=1,--- M —1 (5.10)
j=1
5. Set pfy = argmax,cppnv |[g( 1) — g1 (- )| ()
6 if (|lg( ) — 957 G i) L) < emrmllg(s pi) Le(o)) then
T break;
8: else
9 Compute the residual 7y (x) = g(x, u%,) — g5 (-, 1))
10: Set x%, = argmax,cq|ram(x)| and gp(x) = 7";%’(:%)
11:  end if
122 Set M =M+1
13: end while
By the construction of the interpolation points {x, - - - ,x%,} and the basis function (¢;)1<i<m,

the matrix BM~1 ¢ RIM=Dx(M=1) (defined by B?fﬁl = ¢j(x?)) representing the linear system
of the step ] of Algorithm [16]is a lower triangular matrix with unity diagonal. Hence, the pro-

cedure of EIM is well defined. We note that span{qi,--- ,qm} = span{g(-, ), -, g(-, u%,)},

so the approximation gf}[ M of ¢ in Equation 1} can be written in a equivalent way as:

M
gt M (x ) =D ai(p)g(x, 1) (5.11)
=1

where the coefficient (o;(pt))1<i<as is the solution of the linear system:

M

Zg(xgv“g)aj(u) :g(xgv“)7Vi: L M (5'12)
j=1
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It is worth mentioning a conservation property of the approximation g by gEI M as stated
in the following lemma.

Lemma 5.2.1 [66] Let L a linear form over the functional space span{g(-, ), n € D}
and let L(g(-,p)) =0,V € D, then we also have

L(git™ (- m)) = 0,Vp €D (5.13)

Proof: Combining the linearity of L and the definition of g¥/* in Equation (5.11)), we have
for any p € D : L(gf/M (- p) = 2oLy i) Lig(x, pf)) = 0.

O

A particular case of Lemma [5.2.1] is that if x* € Q is a zero/root of the function g(-, u),
for any p € D, then x* is also zero/root of its approximation by EIM ¢i/M (-, u). An other
particular case is the case of zero-mean functions: if fQ g(x,p)dz =0 for any p € D, then its
approximation by EIM is also a zero-mean function: fQ gEIM(x, p)dr =0,V € D.

Finally, it should be noted that in the case where the dimension of the space W,
span{g(-, u), 0 € D} is equal to M the number of terms used in EIM approximation, then

we have g = gEIM

5.2.2 Application of EIM to obtain an approximation in form affine para-
metric dependence

One of the most powerful application of EIM is that it allows to approximate any operator
A (p) which is nonaffine parametric dependence into an affine parametric dependence form:

M

A(p) =AM () =D 07 (w) A, (5.14)
=1

where the matrices A; are p-independent. This allows us to recover the efficient offline-online

computation procedure in the context of the reduced order modelling. As an example, assuming
that the operator A(u) arises from the finite element discretization of the bilinear form:

a(u,v;p) == /Q [9(x, p)u(x)v(x) + Vu(x) - Vv(x)]dx (5.15)

then replacing the function g by its approximation gEI M of Equation 1} by the EIM, leads
to:

M
A(p) = Zaf(H)Ai + Ao (5.16)
i=1
where the matrices A; correspond to the bilinear form a;(u,v) := [q [9(x, pf)u(x)v(x)] dx,
for i = 1,---, M and the matrix Ag corresponds to the bilinear form ag(u,v) := [, Vu(x)

Vv (x)dx which are p-independent.
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5.2.3 Application of EIM for an nonintrusive procedure

Another potential application of EIM is in the construction of an nonintrusive procedure [33]
in the sense that it should not require to construct the matrices A; in the affine parametric
dependence assumption:

Na
A(p) =) (A, (5.17)
i=1
but only the matrices A(u) for some selected values of the parameter {u},--- , pu3,}, that is:
M
A~ S aom()A () (5.15)
m=1

The construction of a non-intrusive procedure is motivated by the fact that in the most
general cases it requires to modify the assembling routines in the computational code to obtain
the matrices A;, for i = 1,--- , N4, of Equation (5.17). The main idea to obtain such a non-
intrusive form of Equation is to apply the EIM to approximate the function 6;(p) seen
as a function depending on two variables i € Q:={1,--- N4} and p € D:

(i, p) ~ OFM (i, Zam 0; () (5.19)

Then, injecting the approximation (5.19)) into the Equation (5.17)) yields:

N M
i=1 m=1

m=1

m=1

It should be remarked that an EIM algorithm applied on the function 6;(p) can stop before
M = Ny. It occurs when the dimension of span{6(-, ), p € D} is less than M. In the case
where (i, ) = 05/M (i, u) (when M = N4 or when the dimension of span{f(-, u), u € D} is
equal to the dimension of span{0¥/M (-, u), u € D}), there is no loss of accuracy to obtain a
non-intrusive procedure. The proposed technique can also be extended to the case where the

operator A(u) depends on p in a non-affine way by seeking at first its approximation in form
of affine dependence in p as presented in Section

5.2.4 Application of EIM Algorithm with a black box way in context of
finite element model

In order to apply the EIM to obtain an approximation in an affine parametric dependence form
with a non-intrusive way as presented in Section we remark that it requires the knowledge
on the definition of the bilinear form of which the operator A arises from the finite element
discretization. In this section, we propose to exploit the idea of EIM to develop an algorithm for
finding an approximation of any matrix A(p) : p € D — R™ ™ or vector F(u) : p € D — R"
resulting from a finite element discretization of a parametrized bilinear or linear form and being
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non-affine dependence in p into an affine parametric dependence form:

EIM EIM
NA NF

Ap) = AP () = Z 0 (L) A (1), F(p) ~ FEM () = Z 0F (WF(u)  (5.21)

purely in algebraic way without any knowledge on the definition of the matrix A and the
vector F. In our work, the matrix A refers, as a particular case, to the mass matrix M or the
damping matrix C or the stiffness matrix K of a finite element vibro-acoustic model, whose
definitions are given by Equation for the formulation in (ug, ¢), by Equation for the
formulation in (us,p) and by Equation for the formulation in (ug,p, ). The vector F
refers to the right-hand side vector of the interaction of submerged structure and shock wave
problem whose definition is given in Section

The key idea is not to apply EIM algorithm on the continuous function depending on two
parameters g : (x, ) € Q x D, underlying in the definition of the bilinear form of the matrix
A or the linear form of the vector F, but to apply directly on the matrix A or the vector F.
To begin, we consider the case of the vector F(u). The first step consists in the construction
of the vectors F for all values of the parameter in a finite training set Dyyqin. By applying EIM
algorithm [16] on the function f : (i,p) € {1, ,n} X Dygin — R defined by f(i, u) = Fi(p)

th

where Fj; is <" component of the vector F, we obtain then a set of magical indices (le )i<i< NEIM

and a set of the selected values of parameter (u,lF)lngN;;zM such that:

EIM
NF

o~ > 0 (WF(p),YypeD (5.22)

where the coefficients (6 (1)1<i< nEerv are determined by Lagrange interpolation at magical

. . .F .
indices (% )1§1§N51M.

NEI]W

Zal VEr(uf) = Fyr(p), VI =1,--- [ NE™M (5.23)

4

In order to obtain the value of the coefficients (Gf(u))lngNgzM for any new value of
p € D by Equation (5.23), it should not require to construct the whole vector F(p) but
only to access to its values at the magical indices: {if’,1 <1 < NEIM} < {1,--- n} chosen
by EIM. In the context of the finite element model, these values can be obtained with an
complexity independent of n thanks to the property of the local support of the finite element
basis functions.

The strategy [L00] consists of computing and assembling only the elementary terms which
have a non-zero contribution on the values of the vector F at the magical indices. To do so, it
suffices to identify such a group of elements in the mesh and to restrict the loop of the vector
assembly over those elements. From the data structures defining the mesh and the procedure
of assembling, we can identify a set of the nodes {an , 1 <IN 51 M1 whose degree of freedom
corresponds to magical indices (if )1<i< nemv- In the case of vectorial problem where each
node can have more than one degree of freedom, it is possible that the total number of these
nodes is less than NEIM. The group of elements, namely reduced elements, which provide a
non-zero contribution to the value of the vector F(p) at the magical indices (z'lF)lngNEIM is
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then defined as the union of the element in the mesh which contains at least one node of the
set {nf",1 <1< NEM} The summary of the methodology for the case of vector is outlined

by Algorithm [17] and

Algorithm 17 Greedy EIM algorithm in a black box way for the case of vectors

Input: A fixed tolerance egrys, a maximal number of terms Mz, [F(p21), -+, F(fny0i, )] €
R™*ntrain and a selection of puf € {p1, -+, thny,.: }

Output:  The magical indices {if’,1 < I < NEM} < {1,.-. n} and the chosen value
parameters {u!", 1 <1 < NEIMY C Dypgin = {1, Bngrain |

1: Define the function f: (i, ) € {1, ,n} X Dain — R as

f(i, n) = Fi(p) (5.24)

where Fj is i*" component of the vector F

2: Run the EIM Algorithm with the function f seen as a function depending on two
variables i € Q := {1, -+ ,n} and p € Dyrqin

Algorithm 18 Construction of the reduced elements in the mesh which have a non-zero
contribution on the values of the vector F at the magical indices

Input: The magical indices (if° )1<i< ngr provided by EIM algorithm
Output: A group of elements e/ which have a non-zero contribution on the values of the
vector F at the magical indices (ilF)ISlSNgzM

1: Identify the set of nodes {nf",1 < I < NEIM} whose degree of freedom correspond to
magical indices {if",1 <1 < NEIM}

2: Set e as the union of the element in the mesh which contains at least one node of the set
{nf',1 <1< NEMY

The same approach can also be applied to the case of the matrix A by vectorizing at first
the matrix A to obtain its representation vec(A) as a vector of R”2, for instance by stacking the
columns of A (see Remark for some optimisation). By running the Algorithm [17] we ob-
tain the set of chosen values of parameter {uf‘, 1<I< NEIM} C Dirain = {H1s** s Bngrgin |
and the set of magical indices {if!,1 < I < N¥IM}  {1,-.. ,n?}. To construct the group
element which have a non-zero contribution on the value of vec(A) at the magical indices
(if‘)lSlSNEzM, we seek the set of pair of row-columns index {(j;,k;),1 < I < NFM}
{1,---,n} x {1,--- ,n} corresponding to the magical indices (z’f‘)lSlSN?M in vector format.
We identify then a group of nodes: {nf‘, 1<I<2N EI M1 whose degree of freedom corresponds
to the set of indices {j;,1 <1 < NEIM} U{k,1 <1< NEIM}. Note that if the index if‘ of
vec(A) corresponds to a diagonal term of the matrix A, it corresponds to only one node in the
mesh. On the contrary, it can correspond to two nodes in the mesh. The group of elements, so
called reduced elements, which provide a non-zero contribution to the value of vec(F)(u) at the
magical indices (ilA)lglg nenv s then defined as the union of the element in the mesh which
contains at least one node of the set {nf‘, 1<I<2N fl MY The summary of the methodology
for the case of matrix is outlined by Algorithm [I7] and [I§]
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Algorithm 19 Greedy EIM algorithm in a black box way for the case of matrices

Input: A fixed tolerance egrps, a maximal number of terms Myaz, [A(f1), -, A(Bnyoin )] €
R™ ™ and a selection of it € {p1,+ , tnyyuin }

Output:  The magical indices {i{',1 < I < N¥™} < {1,--- ,n?} and the chosen value
parameters {pf, 1 <1< NE™MY C Dipgin = {11, , Bngpoin }

1: Define an application for transforming the matrix A(p) € R™™ to a vector format
vec(A)(p) € R™
2: Define the function f: (i, ) € {1,--+ ,n2?} X Dypain — R as

J(i, 1) = vect(A)i(p) (5.25)

where vect(A); is i component of the vector vec(A) € R™’

3: Run the EIM Algorithm with the function f seen as a function depending on two
variables i € Q := {1,--- ,n%} and p € Dyrain

Algorithm 20 Construction of the reduced elements in the mesh which have a non-zero
contribution on the value of the vector vec(A) at the magical indices

Input: The magical indices (ilA)lglg NEIM provided by EIM algorithm
Output: A group of elements e which have a non-zero contribution on the value of the
vector vec(A) at the magical indices (if‘)lglngfM
1: Identify the set of pair of row-columns index {(j;,k;),1 < I < N¥™M} < {1,--- n} x
{1,---,n} corresponding to the magical indices (if‘)lSlSNfIM in vector format
2: Identify the set of node {nf‘, 1 <1 < 2NEIM} whose degree of freedom correspond to the
set of indices {ji,1 <1< NYIMYyu {k;,1 <1< NFIMY
3: Set e” as the union of the element in the mesh which contains at least one node of the set
{nff, 1 <1 <2NEIMY

An illustration of the procedure of identification of the reduced elements for the case of
matrix, resulting from a P! finite element discretization, is given by Figure .

X

Figure 5.1: On the left: red boxes represent the magical indices chosen by EIM. In the middle:
red boxes represent to the pairs of row-column index in the matrix format corresponding to
the chosen magical indices. On the right, the obtained reduced elements in the mesh. (source
from [100])

180



5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

Remark 5.2.1 In the case where the matrices A(u) have the same sparse structure for any
p € D, the procedure of the matrix case can be implemented by exploiting its sparse format so
that the actual dimension of the vector vec(A) is n, rather than n, where n, is the number of
non-zero entries in the matrix A. Furthermore, if the matrices A(u) are all symmetric then the
dimension of the vector vec(A) is the number of non-zero entries in the superior (or inferior)
block.

Remark 5.2.2 We note that the property of symmetry is automatically inherited in the ap-
proximation by the EIM. In the opposition, this might be not the case for the definite def-
initeness. On this matter, it is worth to recall a general result of perturbation of theory of

eigenvalue problem, proposed by Bauer-Fike theorem (see for instance in [60]), which states
EIM

that: the deviation between the singular values o; of the approximation matrix A" and

the singular values o; of the original matrix A is bounded by:
oM — o] < [|A — AP (5.26)

where || - ||2 denotes the Frobenius norm. As a result, it should be sufficient by increasing
the number of terms N EIM in the EIM’s approximation li to recover this definiteness
properties.

Remark 5.2.3 For the case where the matrices A(u) are positive semi-definiteness, for all
p € D, with the kernel Ker(A(p)) := {x € R"|A(p)x = 0} is p-independent, as a particular
case of Lemma we can show that that the kernel of the matrix A () is a subset of the
kernel of its EIM approximation AP/ (y). This result implies that in the case where the
matrix A represents the structural stiffness matrix Kj, its EIM approximation Kfl M has the
same rigid body modes as the original matrix Ky and it ensures that this mode corresponds
well to the eigenvalue A = 0, not A &~ teprys which would destroy the positive semi-definiteness
property of A¥TM (1), The same conclusion can also be valid for the case of the fluid stiffness
matrix Ky where its kernel represents the pressure constant mode. As a conclusion, for the
case the matrices A(u) are positive semi-definiteness with a p-independent kernel, we believe
that it could be recover the positive semi-definiteness property for AZTM (p) by increasing the

number of terms NEIM in the EIM’s approximation (5.21}).

Remark 5.2.4 An alternative way to obtain an approximation in affine parametric depen-
dence form of any nonaffine parametric dependence vector or matrix in a purely algebraic
and black box way is to construct the basis by applying the POD on the snapshot matrix
S = [F(p1), - ,F(pn,,,,, )] € R Mrain with respect to a given tolerance instead of choos-
ing with a greedy procedure the basis as: F(uf),--- ,F(uiE,M), see for instance [37, [100].
The interpolation points are then defined using a greedy procedure from the resulting basis
Fi,--- ,Fy. The complexity of this alternative is dominated by the computation of the basis
by POD, thus in O(nnfmm) while the complexity of our approach is only in O(nngyqinN PEI My,
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5.2.5 Application of EIM to approximate the solution of the linear problem
with non-affine parameter dependent right-hand side

EIM can also be employed to approximate the solution of the linear problem with non-affine
parameter dependent right-hand side:

MX (t; ) + CX(t; p) + KX(t; ) = F(t; p) (5.27)

over the parameter value range pu € D. Here, we consider that the left hand-side operator
of the problem is p-independent. Assuming that the right-hand side of the problem (5.27)) is
defined by:

Pt = [ gl timoy(x)dxj =1, n (5.28)

which is for instance the case of a finite element discretization of a linear form, then applying the
EIM to obtain an approximation for g as: g(x,t; ) ~ ¢¥™ (x,t; ) == M au(p)g(x, t; u?)
leads to F(t;p) ~ Zﬁl a;(p)F(t; u?). By linearity, the solution of the problem |D can

then be approximated by:

M
X(tp) ~ Y ai(p)X(t;pd),Yu € D (5.29)
=1

Remark 5.2.5 It can be used with the same approach for the parametrized stationary prob-
lem:

AX(p) = F(p) (5.30)

where the matrix A is p-independent and the right-hand side vector F depends on the parame-
ter g in a non-affine way, for instance via a relation [F(p)]; = [, 9(x, p)vj(x)dx,j € {1, ,n}.
The approximation of the solution of Equation (5.30) can be obtained as follows:

M

X(p) ~ Y ()X (pf) (5.31)
=1

where (a;(p))1<i<ym and (p)? are defined in the definition of the approximation of g by gif"

of Equation (5.11)).

Remark 5.2.6 The computation of the approximation of X(¢; i) by the relation for
any new values of parameter pu € D has a complexity in O(nM N;) where IV, is the number of
time step and n is the number of degrees of freedom in the problem. It is worth to mention
that in the case where we are only interested in a linear physical output of interest, S;(¢; ) :=
LTX(t; ) with L is a vector of R", we can obtain an approximation of Sy(t; ) for any new
value of the parameter p € D with a complexity independent of n via the relation S;(t; pu) ~
M () S (t; u?) provided that [S(t; 1)) ;< are pre-computed in an offline stage. The
same holds for the case of a quadratic outpat_Sq(t; ) = XT(t; u)QX(t; p), where Q is a
matrix in R"*". An approximation of S (¢; u) can be obtained with a complexity independent
of n via the relation S;(t;p) ~ Zz 12 L ai(p)a (u)Séj(t) provided that the quantities
[Séj(t) =XT(t; ug)QX(t; uf)] Leiieny A€ pre-computed in an offline stage.

=0
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Application in the interaction of submerged structure and underwater explosion
shock wave problem

In what follows, we illustrate this application of EIM in the context of the interaction structure
and underwater explosion’s shock wave problem when the mass of explosion in Trinitrotoluene
(TNT) represents the only parameter in the problem. We only consider here the case of the
formulation in (ug, ¢*°*). For the other formulations presented in Section , the application
of the approach is straightforward. To begin, we recall that the loading induced by a shock
wave in the finite element model formulated in (ug, $*°*) reads (see Section [2.4.1):

FSCa(t; Fl/)
o (G 1) = | Foca 5.32
=y <t;m] 532
where the vectors F:“(t; u) and F3™(t; p) are defined by F35 (t; p) := — [ P, b5 ) [N5(x)-
ng(x)]dx and F%(t; pu) == — [ po[v vine(x,t; p) - ng(x)] j( x)dx with N* and N7 denote re-

spectively the finite element basis of the structural and the fluid part. For the case of TNT
(Trinitrotoluene) explosive material, we recall that a good approximation of the incident pres-
sure p™¢ and the incident velocity vi"¢ (whose the radial component vi"¢ is non-zero) can be
expressed analytically as follows (see Section .

pcirt) = P[] HAf([?}B;C)Hm (5:33)
=g ] aaoma [ ) o505 o

where the constant P., v., A and B are given by the relation according to [106] and the
relation according to [40]. H is Heaviside function, 7 =t — (r — R;)/co and we denote
by R; = 20a. with a. is the charge radius, T, = a./v. and r > R; denotes the distance from
the center of charge. The function F is defined by F(¢) = 0.8251e 71338 4 0.1749¢=0-1805¢ The
function G is defined by G(t) = 1.5856 — 0.6167e~ 1338 — 0.9690e 01805 For a given value of

mass My, (which represents here the parameter of problem), the radius of charge a. can be
Mip,
471’;757;5

given by pne ~ 1.52 - 103 kg/m”.

approximated by a. = ( )1/3 where py,; is the mass density of TNT which is approximately

Here, we denote by dpin and dig, the distance of the center of charge to the closest (the
stand-off point) and the farthest point of the structure Q,. Without loss of generality, we
assume that the front of the shock wave arrived at the stand-off point at ¢ = 0 so that the
retarded time 7 in Equation and is defined by 7 =t — (r — dnin)/co. With T
denotes the final time of interest, the first step of the methodology consist of applying the
EIM on the function p™(x; ) and vi"¢(x; i), where x := (7,t) € [dmin, dmaz] x [0,T] and
= My € D, to obtain an approximation in form:

NPEI]W

Pt i) ~ PG (i) = Y ol ()p™ (6 417) (5.35)
i=1
NEI]\/I

mnc ch

VI (7 by ) A NEIM T t; ) Z (ryt; ) (5.36)
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Then, injecting the approximation of p™¢ and v given by the relation (5.35)-(5.36) in the
definition of F** and F™ implies that the right-hand side vector of the finite element model
formulated in (us, ¢°°*) couple of Equation (5.32)) can be approximated by:

NEIM ( p) NEIM
Fsca t: 1L v 0
sca t; ~ p s [ ) v 537
u¢( 1) ;:1: @G (1) [ 0 + ;:1 Q; (1) [F;ca(t; Mf)] ( )

As a result, by computing in the offline stage XZ¢(t§ ©?) the solution of the problem ({2.23)) with
T
the right-hand side vector [Fzm(t; )T OT} fori=1,--- ,NEIM and X7 4(¢; p7) the solution

T
of the problem (2.23)) with the right-hand side vector [OT ij“(t; ,uf)T] fori=1,---, NFIM
we can obtain by linearity of the problem an approximation of the solution, for any new values

of parameter u = My, € D at the online stage, with the following relation:

NEIM NEIM
stip) ~ > ol (WXE () + D o ()Xt ) (5.38)
=1 =1

Remark 5.2.7 It should be noted that in the definition of F£°* the incident pressure p™™(x, t, i)
is defined for x € T by: p™¢(x,t,u) = p™¢(r,t,p), where r = ||x — Xezp|| With Xeqzp de-
notes the position of the explosion. Hence, when the position of explosion X, is fixed, an
inc(

accurate approximation of p(r,t, ) in form p™€(r.t, u) ~ Zf\il a;(p)p™e(r, t; p;) implies

that we would also have an accurate approximation for p™¢(x,t,u) in form p¢(x,t, u) ~
Zij\il a; (11)p™€(x,t; ;) so that the right-hand side F5°* can be approximated accurately by
Fi(t;p) = Zf‘il a;(p)Fi(t; ;). The same conclusion is also valid for the incident velocity
v On the contrary, this conclusion is not valid for the case that the position of the explosion
is the parameter of the problem, 7.e @ = Xczp. To explain this, we recall that for a fixed time
t the kernel of the function p™¢(x, t; ) can be expressed explicitly by Ker(p™¢(-, t; u)) = {x €
I',such that ||x — p|| < cot} assuming that the incident pressure arrived at stand-off point at
t = 0. Thus, for any t < dyqe/co we can remark that Ker(p™¢(-, t; p;)) # Ker(p™©(-, t; u;)) for

inc(

all p; # pj which indicates that the function p*“(x,¢; ) can not be approximated accurately
by Ef\il a; ()p™e(x, t; ;) when g # p;, Vi =1,--- M and t < dpaz/co-

As a remark, the proposed methodology above results in an non-intrusive procedure in the
sense that we need to compute the solutions X? » and Xug Which are not the solutions of our
problem of interest. Next, we propose to exploit the idea presented in Section (which is
originally proposed in [33]) to obtain approximation of X7&" in the following form:

NZJ)E;IIW
WAGIDERD R ST (5.39)
=1

so that it requires only to compute the solution of our problem of interest for some values
of parameters at the offline stage. The idea consists of approximating the coefficients vector

T
a(p) = (off(u), e ’aIJ)Vf’M (1), af(p), - ,oz?VJEIM (,u)) , whose components are defined in the
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5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

approximation (5.35))-(5.36)), in form:

EIM
va

alp)~ Y o (pa(ul”) (5.40)

i=1

To achieve that, it suffices to apply the Greedy EIM algorithm [16] with the parametrized
function g : (i,p) € {1,--+ , NEM 4 NFIM} x D — R defined by g(i,n) = of (u) if 1 <4 <
NfIM and g(i,u) = O‘;}—N;JIM( w) if @ > N];EIM. Because the dimension of {g(., ), u € D} is at

most equal to NFIM 4 NEIM ‘the Greedy EIM algorithm [16{will reach a machine precision after
q p v g

at most NFIM 4 NEIM jterations. Using the approximation ((5.40) in the relation (5.35)-(5.36)
P v g
leads to:

; ) NEIM ;
pﬁ\Yflgsz (1t 1) _ y 2 a?(u)p ne(r, t; M?) (5.41)
; = EIM .
U;?J\C[UE‘IAI (r,t; 1) Z;V 1 a?(,u) mc(T‘ t; ,U,J)
Ny AN PO\ inc (. 4. P
241 i=1 ai ()i (g )p™ e (ry 5 415)
WEIM _ NEIM

2t i af”(u)aj (1Yo (r, 5 1)

%

(5.42)

Nﬁ’IM N M pvy, inc D
~ pv Zj:pl ay (/J’z )p (7“7 t; :uj) 5.43
~ a; () NEIM o\ ine Y (5.43)
=1 Z] 1 aj(ui )UT (Tat; ;U'j)

NE‘I]\I

inc,l pU ; pv
pNEIM (ryt; p1) < v PNEIM (ot g )
~ <vmc 1 (’I“, t, M) = Z ai (,LL) ’ng . ,,pv (544)

7
NEIM i1 U NEIM (rts )

inc(

Since we have p ine(

Tt ) =~ pNEIM(r t;p) and vC(r t;p) ~ vff‘]f[PM(r,t;u), we can then

conclude that:

. inc,2 + NZ%IM inc w
p’.m(r,t; 1) ~ pNEzM(T L) _ Z o (1) pe(r, t',u ) (5.45)
v, b5 ) ,Ulnjffgllw (rt; ) i1 ! mc(r t; M ) .

Then, injecting this new approximation of p’™® and vi"® given by the relation (5.45)) in the defi-
nition of F;* and Fj™ implies that the right-hand side of the finite element model formulated

in (us, ¢**) of Equation ([5.32) can be approximated by:

NPEUH\/I
vt = Y ol (FSE (t ) (5.46)
i=1

which, by linearity of the problem, allows us to conclude that the approximation of the solution
of our problem for any values of the parameter in D can be obtained by the desired relation
(15.39).

Remark 5.2.8 An alternative way to obtain an approximation in form (5.45]) is to apply the
Greedy EIM algorithm with a parametrized function{ gpv © (x = (4,7, t),p) € {1,2} x
[dmin; dmaz] % [0,T] x D — R defined by gp,(x,p) = pmc(r,t; p) if i = 1 and gp(x, p) =
vi(r t; 1) if i = 2, rather than applylng it separately for p¢ and vi*¢. However, we can remark

from Equation ( -—- 5.34) that p™© and v are not in same order of magnitude. As a result,
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5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

it can occur that all the magical points chosen by the Greedy EIM algorithm (16| correspond to
inc
4

use parametrized function gp, : (x := (4,7, 1), 1) € {1, 2} X [dmin, dmaz] X [0, T] x D — R defined
by Gpo(x, ) = p*( :
to be determined in order to ensure that p**“ and cv!"“ have a same order of magnitude. Since
the second and the last term in the expression of vi"¢ given by Equation (5.34)) are relatively

T

only p™¢ which would results in a relatively significant error for v?*¢. To remedy this, we can

inc

e(r,t; p) if @ = 2, where the constant ¢

rotop) if @ =1 and Gpy(x, p) = cv

inc
small compared to the first term, it is recommended to use ¢ = pgcg.

Numerical experiments

We propose now to illustrate numerically the accuracy of the proposed approximation. To
do so, we consider the study case proposed in Section of Chapter In the considered
study case, we have an elastic ring with a spring-mass system submitted to an underwater
explosion’s shock wave. A graphical representation of this study case is given by Figure [5.2]
Here, we also consider that the elastic ring has a radius R = 1 m, a thickness h = 0.01 m and
Poisson’s ration v = 0.28. The excitation is induced by an acoustic shock wave generated by an
underwater explosion of My, kilograms of Trinitrotoluene (TNT), which is considered here as
the only parameter of the problem, located at (d,0) with d = 20 m. The profile the considered
shock wave are modelled by Equation for the pressure and Equation for the fluid
particle’s velocity using the value of constants P.,v., A and B of Equation provided by
[40]. At ¢ = 0, we assume that the shock wave arrives at the stand-off point (0, R 4+ h/2) of
the structure. The density and the speed sound of the fluid are given by py = 1 000 kg/m?,
c¢o = 1500 m/s. The system of spring-mass is suspended at the point (R — h/2,0) which
represents the closest point in the interior part of the ring to the explosion.

€y

~
+

e, Explosive
(d,0)

I
I
|
I
|
]
I
I
I
I
I
I
I
I
|
17
Lo ___

0/(0,0)

(pim:7 ,U'i,nz,t)

Figure 5.2: Graphical representation of the study case in context of the application of EIM for
approximating the solutions of the interaction of structure and underwater explosion’s shock
wave where the mass of Trinitrotoluene (TNT) represents the only parameter in the problem
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5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

In our numerical experiments, we set m¢, = 500 and f.; = 250 and the parameter space
D, = [100,1000]. In our study case, the values dp,in and dyqz, the distance of the center
of charge to the closest (the stand-off point) and the farthest point of the structure, are given
by dmin =d — R —h/2 and dper = d+ R+ h/2. For time discretization, we set the time step
by At = 2-107°s, which means the the incident wave need N; = 200 time step for travelling
a distance of 6R. The final time of interest is T'= 6R/cy. In this study, the output of interest
refers to the acceleration of the point-mass in the spring-mass system.
nc

and v, For that

To begin, we are interested in the convergence of the EIM for p 4

purpose, we devise the interval [dpin, dmaz] into 100 of equidistant points. The convergence
of the Greedy EIM algorithm applying on the function p(x;u) and v¥*¢(x; ), where
X := (r,t) € [dmin, dmaz) X [0,T] with a training set Df@fiﬁ of 100 values generated randomly
is reported in Figure [5.3]

Z

(st 1)

(a) Zoom on M € [1,5] (b) For M € [1,10]

Figure 5.3: Evolution of error indicator in the greedy EIM algorithm [16| for p""¢ and v for
the case where mass of TNT is considered as the parameter

Here, we define the error indicator as the relative error of the EIM approximation evaluated
at the next value of parameter to be chosen in the step [f| of Greedy EIM algorithm [16] Figure
m shows that the convergence of the error indicator are almost in the same rate for both v
and p™¢. This result can be explained by the fact in the expression of v/"¢, the second and
the third term of right-hand side of Equation are relatively small compared to the first
term which is collinear to p™¢. It should be pointed out that when increasing the distance
d between the charge and the structure, these two terms tend to zeros which implies that
v~ P /(pocy). As a result, for the case d = 100 m whose results is not given here, we have
observed that the EIM algorithm chooses the same values of parameter and the same magical
e and p
Next, let us put the focus on the convergence of the Greedy EIM algorithm apply-

inc

points for both v

T
ing on the coefficients vector a(p) := (o/f(,u), e (), 08 (), - ,aij’vEIM(,u)> , whose
components are defined in the approximation (5.35)-(5.36). Since the convergence of the error

indicator are almost in the same rate for both v/*® and p'*‘, we only consider here the case

fo M — NEIM  The convergence of the Greedy EIM algorithm pplying on the coefficients

EIM
NP

vector a(pu) for different values of are reported in Figure As can be expected, we
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5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

observed in Figure [5.4) that the error indicator in the greedy EIM algorithm [I6]reaches a value
in order of machine precision after at most Nfl M NEIM jterations.

10—14 i

Figure 5.4: Evolution of error indicator in the greedy EIM algorithm applying on the
coefficient vector a

We now turn to the accuracy of the proposed approximations. For a given test sample
Diest, we are interested in the errors e, defined by

ot ) — gEIM (¢, ol
e, = max max g€ 8 1) = gz~ (o by Ill2e (dnin mas)) for g € {p

z'nc7 Uinc (547)
EDyest tE[0,T] g (ot i) 2o ([dumin sdimac]) "

where M denotes the number of terms in EIM approximation, in order to ensure an accurate
approximation for every time step.

With a test sample Dﬁjﬁit consisting of 50 values of parameter chosen randomly, the errors

eg for the approximation provides by employing the EIM separately for p'*¢ and v,"*¢, as given
by the relation (5.35)-(5.36), are illustrated by Figure 5.5
. —— . ——
10771 T OO VIV vl O POVY PEVPY 10771 ol ) il e
— Py M) —— o e
10744 10774
1054 107+
1077 10771
10—!) i 10—9 i
10114 10-11
1 2 3 4 5 6 7 8 9 10 1 2 3 1 5 6 7 8 0 10
M M
(a) Case of p™° (b) Case of v

Figure 5.5: Error of approximation of p¢ and v" by EIM approximation
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Figure shows that the error indicator (in red), which is based on the error in norm
[+ 1] 2o° ([drmin dmaz] x [0,7]) €Valuated at the next value of parameter to be chosen by the step [5| of
the Greedy EIM algorithm , provides a good estimate of the error e, (in blue), defined in

Equation (5.47)), for both case of g = p""¢ and g = v"*¢

10° 5 ol

— lp
10—1_
1025
10734
1074,

1 2 3 1 5 6
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10° 4 o
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(e) Case of g = p© with NFIM = NFIM = 5

Figure 5.6: Error of EIM approximations for g = p"™, v

with a non-intrusive procedure
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5.2. EMPIRICAL INTERPOLATION METHOD (EIM) AND ITS APPLICATIONS

In what follows, we note for g € {p"¢, vinc}:

. e; as the error between g defined in Equation 1’1} and its approximation by the
classical EIM as given in the relation (5.35)-(5.36))

. eg as the error between g defined in Equation 1’1} and its approximation, in the
non-intrusive procedure, given by the relation (|5.45))

1

The norm used to define the error €y

and eg here is the same as e, in Equation (5.47)).

In Figure we plot the evolution of errors 6}1 and e?] in function of N[‘EIM in the same
graph for different values of N];EI M and NFIM We observe that in order to achieve the same
order of accuracy in the approximation (5.45) in the non-intrusive procedure as in the case
where we apply EIM algorithm separately for p™¢ and vi"¢, it requires that the number of
N]E}IM in approximation of the coefficients vector a(u) in the relation is equal to NZFIM
and NP This can be due to the fact that the second and the third term in the definition
of vi"¢ given by Equation are relatively small compared to the first term, so that vi"¢ is

almost collinear with p¢. It should also be pointed out that when Nﬁl Mo Nfl M _ Nf] M
the approximation (5.45) in non-intrusive procedure provided a better accuracy then the clas-

sical approximation by EIM separately of the relation (5.35])-(5.36).

C

It is worth to recall that the number of solutions of the problem of interest to be solved
in offline stage in the proposed non-intrusive procedure is N;J;I M For the case where we seek
separately EIM approximation for pi¢ and v¥"¢, it requires NPE[ M 4 NFIM problems (in which
each problem is of the same complexity as our problem of interest) to be solved at offline stage.
As a result, we can expect that using the proposed non-intrusive procedure can reduce signif-
icantly the complexity required at the offline stage compared to the naive approach where we

inc
-

apply EIM algorithm separately for p?*¢ and v

In order to show the accuracy of the output of interest in the problem provided by EIM
approximation (5.38)) and (5.39), we define the error by:

T EIM 2 2
Iy me (8 1) = aB1M (8 )|t

(7 Lt 10) P at)

where the superscript £/M refers to the values provided by the approximation 1 or l)
and a,,, denotes the acceleration of the point mass in the spring mass system.

AZEHV[(

p) = (5.48)

In our study, we use the same mesh as in the study case of Section 4.6 with the finite element
model in (uy, ¢*°®). Newmark scheme (with 8 = 3(1—a)?, v = 1/2—a where a = —0.1) is used
for time-discretization. The error on the output of interest in the case where we approximate
p™¢ and vi"¢ by EIM separately is reported in Figure .
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Figure 5.7: Evolution of error of the acceleration of m., using the approximation of right-hand
side by greedy EIM algorithm [16|for the case where Mjy,; represents the parameter

For the proposed non-intrusive procedure (5.39)), the accuracy of the output of interest is
reported by Figure . As for the error between p'™©, " and its approximation by relation

(5.45), we can also see in Figure that in order to achieve the same order of accuracy for
the approximation of the output of interest in the non-intrusive procedure as in the case where

we apply EIM algorithm separately for p'¢ and v/, it requires that the number of Nﬁf M

in approximation of the coefficients vector a(u) by the relation lb is equal to Nfl M and
NEIM,

T 0]
10° 4 o NEIM _ NEIM _ 4 10 —e— NEIM = NEIM _ 5
1071 )
102
—2
T z
T 109 T 1074
‘i:_ 10~ EI_ .
§ . é 10-5 4
g 107 &
10°° 10754
1077
1 2 3 4 5 6 1 8 1 2 3 4 5 6 7 & 9 10
NEIM NEIM
spv “Ypu
(a) Case of NFIM = NEIM — 4 (b) Case of NFIM = NFIM — 5
Figure 5.8: Evolution of error of the acceleration of me, using the approximation of the

right-hand side vector by a non-intrusive procedure for the case where My, represents the

parameter
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5.3. PARAMETRIZATION OF A VARYING SHAPE DOMAIN (MESH) BY MEANS OF A SOLID
EXTENSION

Finally, we present in Figure the time evolution of the acceleration of the point mass
in the spring-mass system given by the finite element model and its approximation by the
proposed non-intrusive procedure with NZ?;IM = NI’,LHM = NEFIM — 4 (in dashed lines) for
some selected values of the parameters.

0_

—1000 1

T 2000 -
£

% —3000

—4000 1

—5000 1

ff_':[]‘fR

Figure 5.9: Time evolution of acceleration of m, in the spring-mass system for the different
values of mass of TNT. The approximation provided by EIM via relation (5.39)) is represented
by dashed lines.

As a conclusion, both classical EIM and its variant for a non-intrusive procedure can be
employed to approximate accurately the solution of an parametrized interaction of submerged
structure and underwater explosion’s shock wave problem in the case of mass of explosive
material is the only parameter of the problem. Here, we would like to emphasize that we are
under assumption that the left-hand side of the problem is independent of parameter.

For the case where the left-hand side of the problem also depends on the parameter, we
will see Section that we can turn to the reduced order modelling techniques in which the
procedure proposed here allows us to obtain an approximation in form of affine dependent in
parameter for the the right-hand side vector, which is one of the main ingredients for ensuring
the performance of the reduced order model in online stage.

5.3 Parametrization of a varying shape domain (mesh) by means
of a solid extension

One of the main challenges in the reduced order modelling for the case where the shape of
the domain represents one of the parameters in the problem is the automatisation of the
construction of the domain (or the mesh) while varying the value of parameter in an inexpensive

192



5.3. PARAMETRIZATION OF A VARYING SHAPE DOMAIN (MESH) BY MEANS OF A SOLID
EXTENSION

way. The mesh motion strategy which is often referred to as Solid Extension Mesh Moving
Technique (SEMMT) [115] [117] is chosen in our work. For other alternatives, we refer to [111
57]. In what follows, we give a short presentation of the so-called Solid Extension Mesh Moving
Technique (SEMMT) in Section The application of EIM for reducing the computational
cost in the proposed technique is then presented in Section [5.3.2]

5.3.1 Presentation of mesh motion strategy technique

Here, we denote by Q.. C R? d = 2 or 3, by the reference domain and 7Z'ef a volumetric
mesh of that reference domain. The main idea of the mesh motion strategy is to construct a
parametrized mesh 7y, (pu) for a parametrized domain Q(p) by moving the reference mesh 7'hTef
with respect to a displacement field which is a solution of an elasticity problem on the reference
domain, with a non-homogeneous Dirichlet boundary conditions to be defined in function of
p € D. By doing so, the strategy ensures that geometric embedding of T, (p) (i.e., its nodes
positions) is modified so that 75, (p) conforms to Q(p) while keeping the mesh topology (i.e.,
its connectivity) of the reference mesh 7, .

Gl
00, () = [Iy + ud(w) oL

00, 00, () =00,

Figure 5.10: Geometrical representation of the reference domain and the parametrized domain

Without loss of generality, we assume that the boundary of the parametrized domain Q(u)
can be split into two parts: 0Q(p) = 0Q U0, () where 02y is the fixed boundary (it can be
an empty set) and 9€, is the parameter dependent boundary. We suppose that the domain of
reference Q"¢ can also be split into two parts: 9Q7¢/ = OQ;ef U oL where 0Q;ef coincides

with 090 and there is a bijective application T* = I; + u?(p) which transforms 995 into
O (see Figure [5.10). A displacement field u : Q"¢ — R? which allows us to transform the
reference mesh 7'hmf into Tn(p) = {x € RLx = Xpep + U(Xper), Xpef € 7'hmf} a conform mesh
of Q(u), can be obtained as the solution of the following elasticity problem:

in Q"¢

on aszjff (5.49)
u= ud(,u) on 892#

where g(u) is Cauchy stress tensor which is related to the displacement field u by: g(u) =

A div(u)l + 2pe(u) where 1 is identity tensor, (A, p) = ((1+u§q—2u)’ 2(£FV)) are Lamé coeffi-
cients, with E the Young’s modulus and v the Poisson’s ratio, e(u) := (Vu+ Vu”) /2 denotes
the linearised strain tensor and ud(p) € HY2(8 )4 to be defined.

193
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For the sake of generality, let us consider the case where the parametrized domain Q(p) is
composed of two subdomains: Q(p) := Q(p) UQs(p), for instance the case of a vibro-acoustic
coupling where 2, and €2y denote respectively the structural and the fluid domain. We assume
that the interface T'(p) = 9Qs(p) N 9Qy(p) can be split into two parts ['(p) = I UTY
where I'y is the parameter dependent boundary and F’]ﬁ is the fixed boundary (possibly empty)
which coincides with the interface I‘;ef of the reference domain Q"¢ = Q"¢ U Q;ef with

rref — 90t n aQ;ef = F}ef urre . A displacement field which allows us to construct a
mesh 771” of the parametrized domain (p), by moving the position of nodes in the mesh of the
reference domain 7'hmf , can be obtained as the solution of the following elasticity problems, for
ie{s, f}:
—div g(u;) =0 in Qgef
u; =0 sur 9Q\r7ef (5.50)

w =ul(p) sur I7¢

where ug; and uy denote respectively the displacement fields for ¢l and Q}ef , ul(p) €

HY2(T5 ) to be defined in order to ensure that the bijective application T# = I 4+ u®(u)
transforms T into Y. Thanks to the third equation of the system QD if the mesh of

' coincide at the

reference is conform, in the sense that the nodes of the domain Q5% and Q;e
interface I'"®f| the mesh of the parametrized domain obtained by the proposed displacement
field is also conform. The extension to the case where the parametrized domain is composed

of N > 2 subdomains, the proposed strategy is straightforward.

Now, let us focus on how to construct the boundary displacement u(p). We restrict
ourselves to the case where a parametrization of the boundary I'}% and T¥ are possible. We
denote by Yrer : t € [0,1]%1 = xp0(t) € Th and 4, : t € [0,1]%1 = x,(t) € T¥ two
bijective continuous applications representing a parametrization of I',% and T', respectively.
The boundary displacement u?(u) can be defined as follows:

u? () (t) = xpu(t) — Xpef () (5.51)

or equivalently:
ud(ﬂ) (Xpef) = ’7#(’77;;()(7‘6]”)) —x"e/ (5.52)

Remark 5.3.1 For d = 2, in the case where the boundary I'} can be described by the graph
of a parametrized function y,, = fu(zu;p), where z, € [a(p),b(p)] C R, we recall that a
parametrization of the boundary I}/ can be defined as:

, zu(t)) _ (alp) +tb(p) —a(p)]
”“'te[o’”*(y:(w)( Fulzat); ) )Ew (5:53)

If the reference boundary I} can also be described by the graph of a function Yref =
Jref(Tref), where z € [a,b] C R, and we parametrize the reference boundary ¢/ as:

. xref(t) — a+ t(b - CL) ref
K he [07 1] ” (yref(t)> (fref(xref(t))> © FU (554)
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then, the boundary displacement u?() can be defined as follows:

ud(“) . (xref> c Pzef N <xu> _ (a(ﬂ) + t(xref) [b(N) - G,([,I,)] - wref) c Fv” (555)

yref Yu fu(mu(xref);llf) _yref

where t(z,qf) = 22

Remark 5.3.2 For d = 3, in the case where the boundary 't can be described by the surface

of a parametrized function 2z, = fu(Tu, yu; 1), where (zy,yu) € [a(p), b(p)] x [c(p),d(p)] C
R?, we recall that a parametrization of the boundary erf can be defined as:

Ty (t) a(p) +t1 [b(p) — a(p)]
Vrep 6= (t,t2) € [0,1]* = | yu(t) | = [ c(p) +t2[d(p) — c(p)] | €T (5.56)
Zu(t) fu(zp(t), yu(ta); 1)

If the reference boundary I7¢ can also be described by the surface of a function z..; =
fref(Tref, Yres), where (z,y) € [a,b] X [c,d] C R?, and we parametrize the reference boundary
7% as:

Zref(t) a+t1(b—a)
Yref : t= (tl,tg) S [0, 1]2 — yref(t) = c+ tg(d - C) S erf (5.57)
Zref(t) fref(xref(tl)7xref(t2))

then, the boundary displacement u®(p) can be defined as follows:

Tref Ty a(p) +t1(zres) [b(p) — a(p)] = Trey
w(p) | yper | €T3 = [y | = | c(i) + ta(@rep) [d(p) — ()] — yrey | €TY (5.58)
Zref Zp fu(xu(xref)a yu(fUref); p) — Zref

Tref—a Yref—C

where t1(Zref) = "5t~ to(Yref) = "5t

Remark 5.3.3 In the most general cases where a parametrization of the boundary I'Y is
not possible and I'f can only be characterized implicitly by the set of points in R? such that
f(x; ) = 0, we refer to [35] for an alternative approach based on a penalization technique.

In order to illustrate the methodology of the proposed strategy, we provide in what follows
two examples.

Example 1: Case of a parametrized 2D domain

As the first example, we consider a parametrized 2D domain Q(p) := {(z,y) €]0,1[x]0,1/2], fl—;+
z—; > 1} where p := (a,b) € [0.2,0.4)% is the parameter. We define the reference domain as

Q¢ = Q(prey) where prep = (r,7), 7 = 0.3 (see Figure [5.11)).
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D(0,1/2) C(1,1/2) D(0,1/2) C(1,1/2)
E(0,0.3)
P (0,) Q) Qref
y y
0(0,0) ’ A'(a,0) B(1,0) 0(0,0) ! A(0.3,0) B(1,0)

Figure 5.11: The geometry of the parametrized domain (left) and the geometry of the reference

domain (right) for the first example

The parameter dependent boundary 995 and the fixed boundary 8Q7}ef can be defined
respectively by 905 = DE U EA U AB (in red in Figure D and 8Q}ef = BCUCD (in

blue in Figure 5.11l . A boundary displacement field u?(u) = [u

d

T

(),

to transform 0Q;° into OO .= DE' UE'A" U A'B can be defined by:

ul(z,y; 1) =0

dio o) — y—r _p) —

a
ul(z,y; p) = (; — 1)z

b
uy (@, yi ) = (- = 1)y
xr—7r
Wi = a+ (1= a)—

| ud(z,y ) =0

on DFE
on DFE

on FA

on KA

on AB
on AB

(u)]T which allows us

(5.59)

In the linear elasticity problem (5.49) with homogeneous Dirichlet boundary condition on
8Q;ef and non-homogeneous Dirichlet boundary condition defined by Equation 1} on O
we choose to set the Young modulus to £ = 2.1-10'" Pa and the Poisson’s ratio to v = 0.3. The

mesh of the reference domain which consists of 1 553 linear triangular elements and 843 nodes

and the deformed mesh through the displacement fields which is the solution of the proposed
linear elasticity problem for some values of a and b € [0.2,0.4] are illustrated in Figure [5.12]
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Figure 5.12: The reference mesh (top left) and the deformed mesh in the first example

Example 2: Case of the domain consist of two parametrized subdomains

For the second example, we choose to deal with the case where the parametrized domain is com-
posed by two main subdomains and we seek to make the form of interface vary between the two
domains. Here, we consider Q(p) := Qs(p)UQ s (1) where Q(p) == {(z,y) € [-1/2,1/2]%, 272+
z—; > 1}, Qp(p) = {(z,y) € [-1/2, 1/2]2,%2 + g—; < 1} and p = (a,b) € [0.2,0.3]? denotes
the parameter of the problem. The interface between Qg(p) and Qf(p) is characterized by
T(p) := 0Qs(p) N OQs(p) = {(w,y) € [-1/2,1/2)%, %; + :Z; = 1}. We cousider that the refer-
ence domain Q7¢/ is the particular case of Q(p) where p,ef = (r,7) with r = 0.25 (see Figure
5.13).
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Fref

Qs(p) A

Figure 5.13: The geometry of the parametrized domain (left) and the geometry of the reference
domain (right) for the second example

An interface displacement u(p) = [ud(p) ud(u)]T which allows us to transform I'"®/ into

€T » Yy
I'(p) can be defined as:
a
u(w,y; ) = (=D
b (5.60)
uy (@, 1) = (- = 1)y

In the linear elasticity problems with homogeneous Dirichlet boundary condition on
OQ:ef \I'"*f,i = {s, f} and non-homogeneous Dirichlet boundary condition defined by Equation
on ¢/ we choose to set the Young modulus to F = 2.1-10"! Pa and the Poisson’s ratio
to v = 0.3. The mesh of the reference domain consists of 4 194 quadratic triangular elements
and 8 704 nodes for Q5% of 1 592 quadratic triangular elements and 3 341 nodes for Q}ef and
of 312 nodes on the interface I'"®f. The reference mesh and the deformed mesh through the
displacement fields which is the solution of the proposed linear elasticity problems for some
values of a and b € [0.2,0.3] are reported by Figure in which the interface I'(pt) is marked

in white curve.
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Figure 5.14: The reference mesh (top left) and the deformed mesh in the second example

5.3.2 Approximation of the solution of the parametrized elasticity problem
by EIM

Now that we have presented a strategy of automatisation of the mesh construction for a
parametrized domain, we seek now to exploit the EIM, presented in Section [5.2] to reduced
its computational cost while varying the geometrical parameter value pu9 € DI. To begin, let
us recall briefly the resolution of the elasticity problem with a non-homogeneous Dirich-
let boundary condition by finite element method. We introduce a Hilbert space V := {v €
HY QM) v = 0 on F;ef and v = u?(p) on I} }. The corresponding weak formulation of

the problem ([5.49) reads:

Find u € V such that
) . (5.61)
a(u,v) = 0,vv € Hi(Qel)
where a is a bilinear form on € H'(Q"¢/)? defined by:
a(u,v) = / 2ue(u) : (v) + Adiv(w)div(v)] dx (5.62)
o e £
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To simplify our presentation, we consider in what follows the case where d = 1. We denote by
{¢1, - pn} the nodal basis of Lagrange finite element corresponding to the nodes {a1,--- ,an}.
Without loss of generality, we assume that the nodes {a1,---,ap} located at the boundary
097l We can then introduce the finite element trial and test functions spaces as:

V, =span{pi,- - ,0on} CV
{ n = span{p1, -+, n} (5.63)

VhO = span{g0D+1, T 7@”} C H&(Qref)

By seeking the approximation of u in Vy, that is u = > | u;;, the problem yields to the

IDD 0 UD(ug) _

Kip K| | Ur(p)
where Up := (u1,--- ,up) € RP?, Ur := (upy1, - ,uy) € R* P UL (u9) € RP is defined
by [U%(u9)]; = ud(u9)(a;) for i € {1,---,D}, K;p € RO=DIx(=D) and Kp; € R(—-D)xD

are defined by (Kr7)ij = a(¢j+p,¢i+p), fori,j € {1,--- ,n — D} and (Krp)ij = alj, i+D),
i€{l,---,n—D}, je{l,---,D}. The linear system (5.64)) is equivalent to:

linear system:

U (p9) (5.64)

Up(p?)

0 K| U (5.65)

Ipp 0
~K;pU%(p9)

_ [ U ()

We remark that the elasticity problem depends on the parameters only through its
right-hand side. Hence, by using the EIM to obtain an approximation of U4, (u9) as U4 (u?) ~
Zf\i L (9 US (pi), as presented in Section we can obtain by linearity of the problem
an approximation of Uy(u) for all p € D as:

M

Us(p) = UF™M(p9) = ai(p?)Ur(p)?) (5.66)
=1

Since the value of the displacement of the nodes located at 17 is determined by u?(u9)
which can be expressed as an analytical function in the case where a parametrization of e is
possible, it ensures that these nodes locate exactly on T'y ? after the modification of the reference
mesh via the displacement field u. Note that using the approximation by Equation for
U;(p9) impacts only on the positions of the nodes located in interior of Ty, (u?). Thus, it could
be expected that this approximation does not have a major impact on the quality of the mesh
compared to the case where we use Uy(u?) rather than UM (y9).

Finally, we remark that the approximation of U by U}E] M of Equation , for any new
value of the parameter pu9 € D at the online stage, can be obtained in O(M(n — D)) after

having pre-computed at the offline stage Ur(p?) for p9 € {u;9,1 <i < M}.

Remark 5.3.4 Additional parameters, for instance via the Young modulus E as a function
depending on the spatial variable x € 2 and the parameter 9 € DY, could be introduced in
the problem in order to ameliorate the quality of the mesh of the parametrized domain.
This implies that the operator K;; at the left hand side of Equation is pu9-dependent.
For this case, in order to obtain an approximation of Ur(pY) in an inexpensive way, we can
turn to the reduced order modelling technique, see for instance [92], 43].
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5.4 Reduced order modelling for non-affinely parametrized time-
domain vibro-acoustic FE model

In the previous sections, we have presented how to exploit the EIM for finding an approximation
of any non-affine dependence operator in a affine dependence form (with a purely algebraic
and black box way) and for the mesh construction of a varying shape domain based on the
Solid Extension Mesh Moving Technique (SEMMT) in a complexity linear in nej,s, where njqs
denotes the number of degrees of freedom in the corresponding linear elasticity problem. In this
section, we aim to exploit these results to develop an efficient reduced order modelling technique
framework for the case non-affinely parametrized with a variability of the geometrical domain.

In what follows, we consider that the parameter vector p is written as pu = (uP, p9) €
D = DP x DI C R where uP represents vector of physical parameters and pu9 represents
vector of geometrical parameters. Before talking about the reduced order modelling, let us
clarify the notion of the full model in the case where the parameter vector of the problem
contains at least one geometrical parameters, i.e ny, > 1. Here, we denote by 77:6f the reference
mesh corresponding to the reference domain Q7¢/. For pu? € DI, we denote by u(pd) the
displacement fields which transform the reference mesh 7'{6]( into a conform mesh 75(u9) of
the parametrized domain Q(u9). In our work, we recall that the displacement fields u(p?) is
defined as the solution of an appropriate parametrized linear elasticity problem on ’T};ref (see
Section . As a result, the notion of full model considered here refers to the following
parametrized ordinary second order differential equation:

Np
M ()X (t; ) + C(p)X (8 ) + K ()X (1 ) = > 0:(1)Fi(p) (5.67)
=1

where the matrices M, C, K and the vector F; are constructed based on the parametrized mesh
ﬂL(“g) = {X € Rdax = Xpef + u(ug)(xref)axref € 7ZEf}-

In the reduced order modelling technique framework proposed here, the offline stage can be
split into three main steps. The presentations of each step are given in the following subsections.

5.4.1 Step 1: Reduction of the complexity in the construction of the
parametrized mesh

In order to construct the finite element models for any new values of geometrical param-
eter pY, it is necessary to compute u(p?) which is the solution of a linear elasticity problem
on ’77:6f , thus in a complexity of the resolution of a linear system nejqs X Nejas, Where nejgs
depends on the dimension of the full order model via the characteristic of the reference
mesh 7—}/Lref . The first step of our reduced order modelling framework is to exploit the EIM for
constructing an approximation of the displacement field u(u?), which allows us to transform
the reference domain to the parametrized domain, for any new value of u9 € DY at online stage
with a complexity linear in the number of degrees of freedoms in the elasticity problem (as
presented in Section . In this stage, we start by finding an approximation in affine form
of the boundary displacement u(pu9) which transforms the boundary of 907/ to 9Q(u9) by
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the Greedy EIM algorithm [I6] that is:
NE(iI]W

ul(p?) = ubPM () = Y ai(pd)ud () (5.68)
=1

Thanks to the fact that the left-hand side of the linear elasticity problem ({5.64)) is p9-independent,
using the approximation of u?(u9) by u®#™M(u9) defined in Equation (5.68) leads to:

NEIM
ud

u(pd) = u” ™M) = " aa(p)u(p)) (5.69)
=1

To summary, the first step of the reduced order modelling framework consists simply of re-
placing parametrized mesh Tp(pn9) = {x € R x = Xpof + U(p9)(Xpef), Xpef € 77Lref} by its
approximation T,PIM (p9) = {x € RY, x = xX,ep + 0™ (u9)(Xyef), Xref € 7',fef}.

Remark 5.4.1 Using the relation , the construction of mesh for any new geometry
pd € DI requires then a complexity in O(negqsV. fd] M ), where ngjqs is the number of degrees
of freedom in the linear elasticity problem , provided that the displacement fields u are
pre-computed and saved at the offline stage for the value of parameters ("7 )1<i< NEfM chosen
by the Greedy EIM algorithm [16] Here, we emphasize that the complexity of the computatlon
of uf™ (pu9) still depends on the number of degrees of freedom in the linear elasticity problem
. However, we will see in Remark of the next section that in the computation of
the EIM’s approximation of the operator and the right-hand side vector of the problem in the

online stage, it requires only the value of the displacement field u®/M(

p9) for some nodes of
the reference mesh, and not for all nodes of the mesh, thus it can be done in a complexity

independent of neys.

Remark 5.4.2 For the case where the left-hand side of the linear elasticity problem
is p9-dependent, we can rely on the reduced order modelling technique to obtain an approx-
imation of u(p9) in a complexity of O(neiqsNeias) where Nejqs denotes the dimension of the
reduced order model of the elasticity problem , see for instance in [92) 43].

5.4.2 Step 2: Application of EIM to obtain an approximation in affine
dependence in parameter for M, C,K and F

The second step consists of applying the EIM with a purely black-box way to obtain an ap-
proximation in form of affine dependence in parameter for M, C,K and F as presented in
Section [5.2.4] To do so, for A € {M,C, K, F}, we compute A (p) for all values of the parame-
ter g = (P, u9) in a chosen training set Dﬁam,EIM and run the Algorithm [19|for the case of
matrix and the Algorithm [I7] for the case of vector. At the end of this second step, we have
transformed the full order model into an approximative full order model:

MEM ()X (85 ) + CFM ()X (8 ) + KM (n 29 OF M () (5.70)

where the matrices MM CEIM KEIM 314 the vector FZ-EIM,Z' =1,---,Np are now affine

dependence in parameter and are defined on the parametrized mesh T,7/M (u9) = {x € R%, x =
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Xref + uEIM(Ng)(Xref>aXref S 7—}'Lref}.

Remark 5.4.3 We recall that in the computation of the coefficient (024([1'))1SISNEI]M, for any
new values of parameter p € D, in the EIM’s approximation requires only the values
of A at the magical indices chosen by EIM algorithm. Thanks to the property of the local
support of the finite element basis functions, these values can be computed with a complexity
independent of the dimension of the full model. It is sufficient to compute the elementary terms
corresponding to A only for the reduced elements et which have a non-zeros contribution to
the value of A at the magical indices (identified by Algorithm |I§|for the case of vector and by
Algorithm for the case of matrix) and restrict the assembling procedure on this group of
elements in the mesh. As a result, it is very important to note that it requires only to compute
the new geometry of this group of elements e in the mesh and not the new geometry of the
entire mesh. This allows us to compute the coefficient (91‘4(u))1§lS nem with a complexity
independent of the total number of node in the mesh. The complexity depends only on the
number of nodes in the group of elements e?.

Remark 5.4.4 In the context of the interaction of submerged structure and shock wave prob-
lem, the right-hand side vector F(¢; ) depends on 9 only in the case where the fluid-structure
interface I' is p9-dependent. For the case where the mass of explosive material represents one
of the parameter of the problem and that the interface I' is independent of parameter, we rec-
ommend to use the non-intrusive approximation given by Equation since the underlying
linear form of F(¢; ) is known explicitly. Furthermore, it can also be noted that applying EIM

inc

/¢ requires a computational cost, for both in offline and

on a parametrized function p™¢, v
online stage, less than its variant in black box way for its corresponding parameter-dependent

vector F(t; ) as proposed in Section

Remark 5.4.5 On the contrary to the first step, the second step could induce an instability
in the approximative full order model for the case of time-domain vibro-acoustic prob-
lem. As a reminder, the demonstration of the stability property of the finite element models
of time-domain vibro-acoustic problem given in Chapter [3| is under the hypothesis that the
mass matrices M, M are symmetric and positive definite, the stiffness matrices K, K are
symmetric and positives semi-definite and that the the damping matrices C,, C; are posi-
tives semi-definite, see for instance Lemma for (us, ¢) based formulation. In the EIM’s
approximation, it can only be ensured that the matrices MSE IM \ETM KSE IM K EIM are sym-
metric. The positive (semi-) definiteness property of ME1M M?[M, KM KJ]?IM, CPIM and
CJ]ZJI M are not mathematically guaranteed. However, thanks to the Bauer-Fike theorem men-
tioned in Remark we believe that the property of positive definite of the mass matrices
MSEI M MJ]ZH M could be recovered by increasing the number of terms in the EIM’s approxima-
tion. For the positive semi-definiteness property, it could also be expected that this property
can be recovered by increasing the number of terms in the EIM’s approximation under condi-
tion that the kernel of the parametrized matrix A () under consideration is p-independent,
as mentioned in Remark For the stiffness matrix of fluid part K, this condition is
achieved as its kernel represents the constant pressure mode which is clearly independent of
p. For the stiffness matrix of structure part K, its kernel represents the rigid body modes
and is of six dimensions in the case of 3D-configuration (of three dimensions in the case of

2D-configuration). It refers to three modes of translation and three modes of rotation. The
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three translation modes are p-independent. In the opposition, the three rotation modes can
be p9-dependent via the position of nodes in the mesh depending on the chosen finite element
types. For the case of the classical finite elements, such as tetrahedron with 6 or 10 nodes
and hexahedron with 9, 20 or 27 nodes, where the nodes contain only the degree of freedom of
translation, the three rotation modes are p9-dependent. For the case of the finite element of
type shell element [2I] or Discrete Kirchhoff Triangular (DKT) elements [20] where the nodes
contain also the degrees of freedom of rotation, it has to be verified if the three rotation modes
are pd-independent. It should also be remarked that in the case where there is a Dirichlet con-
dition at a portion of boundary of structure part aiming to avoid these rotation modes, we also
believe that the property of K could be preserved by increasing simply the number of terms in
the EIM’s approximation. To sum up, in the case where the geometry of structure domain is
also considered as a parameter of the problem, we would like to alert that the instability of the
approximative full order model might not be avoided by simply increasing the number
of terms in the EIM’s approximation.

5.4.3 Step 3: Construction of Petrov-Galerkin reduced order model with
the reduced basis based on POD-Greedy algorithm

Now that we have transformed the full order model into an approximative full order
model in which all the operators and the right-hand size are affine parametric depen-
dence, the next and the last step consist of constructing an appropriated parametrized Petrov-
Galerkin reduced order model corresponding to the approximative full order model , with
the same approach as presented in the previous chapter.

For a given trial and test reduced basis V, W € R we recall that the Petrov-Galerkin
projection reduced order model of the approximative full model writes:

MM ()X, (8 ) + CFM ()X (8 ) + KM ()X Ze (OFEM () (5.71)

where the reduced matrices and vectors are defined by:

MED () = WIMEY (u)V, GBI () = WTCFIM (11)v

, , . (5.72)
K () = WP (V. BEY () = WY (1)1 < 0 < N

We would like also to recall that approximation of the solution of the full order model
by the reduced order model is defined by X(¢; ) = VX,.(t; u). For the case where the
output of interest can be written as a linear (quadratic) form, its approximation by the reduced
order model is given by ST (t; u) = LI X, (t; ) (Sgom (t; m) = XT(t; 0)Q, X (t; 1))
where the reduced vector L, € RY is defined by LT = LTV (the reduced matrix Q, € RV*¥
is defined by Q, = VTQV). For the construction of the reduced basis V in the context
of parametrized time-domain vibro-acoustic problem, we recall that we have introduced in
the previous chapter some modifications in the classical POD-Greedy in order to ensure the
stability of the reduced order model. For the formulation in (ug,¢), the proposed POD-
Greedy algorithm is outlined by Algorithm [13] For the formulation in (us,p) and (us,p, ¢),
the proposed POD-Greedy algorithm are outlined respectively by Algorithm [14] and
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5.4.4 Workflow

To sum up, we condense the results from the preceding sections into a structured workflow
for constructing an efficient reduced order model of a non-affinely parametrized time-domain
vibro-acoustic finite element models. A schematic of this workflow is depicted in Figure [5.15
in which we would like to emphasize that the three steps presented in the above sections are
performed in offline stage.

Identify the displacement field u(u?)
for the construction of the parametrized
mesh Tp(p9) of the full order model

STEP 1 OF OFFLINE STAGE

Use EIM to obtain an approxima-
tion of the solution u(p?) of the
parametrized linear elasticity prob-

lem (5.49) as in the relation (5.69)

STEP 2 OF OFFLINE STAGE

Use EIM in an algebraic and black box
way to obtain an approximation in affine
form for the matrices M, C, K and the
right-hand side vectors F; and identify
the corresponding reduced elements

(Us, 0, 9)
STEP 3 OF OFFLINE STAGE

Construction the reduced Construction the reduced Construction the reduced
basis V with POD- basis V with POD- basis V with POD-
Greedy Algorithm Greedy Algorithm Greedy Algorithm

Computation of the data

. . Computation of the Computation of the
of the offline stage with . )
. data of the offline stage data of the offline stage
Algorithm (4] on the couple ‘ - ‘ -
(W = [V,,-V,]T,V = with Algorithm [4] on the with Algorithm [4] on the
IR A couple (W = V V) couple (W = V V)

V., V")

ONLINE

Computation of the
output of interest for
any values of parameter
u € D with Algorithm

Figure 5.15: Workflow for the case of non-affine dependence in parameter
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5.5 Numerical results

The aim of this section is to illustrate numerically the efficiency of our reduced order mod-
elling framework in a simple study case, of interaction of submerged structure and shock wave
problem, before applying it in the industrial cases. Here, we will consider only the case of the
formulation in (us, ¢5°*) (see Section[2.4.1)). However, it should be noted that the methodology
can also be applied in for the three other three formulations presented in Section

Presentation of the study case

A graphical representation of the study case is presented in Figure [5.16] The structural part
consists of an elastic ring of radius R and thickness h and an elastic structure in form of T on
which a spring-mass system is suspended. The structure under consideration is subjected to an
acoustic shock wave induced by an underwater explosion of My, kilograms of Trinitrotoluene
(TNT) detonated at (d,0). At ¢t = 0, we assume that the shock wave arrives at the stand-off
point (R, 0).

Explosive
(d,0)

inc
)

s

2yinc
, ')

Figure 5.16: Graphical representation of the first study case

For numerical application, we use R =2m, h = 0.5m, e; = e = 0.2 m and d = 50 m.
Both the elastic ring and the structure in T-form have Young’s modulus £ = 200 GPa, mass
density ps = 7 800 kg/m3 and Poisson’s ratio v = 0.28. The density and the speed sound of
the fluid are given by pp = 1 000 kg/mS, cp = 1 500 m/s. For the characteristics of the shock
wave which are modelled by Equation for incident pressure and by Equation for
incident fluid particle’s velocity, we use the value of constants P., v., A and B provided by

Equation (2.10) according to [40].
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The parameter vector in the problem is defined by p := (meq, feq, Mint, U1, l2) where me, and

feq = %\/g are respectively the mass and the frequency of the spring-mass system, My, is
the mass of Trinitrotoluene (TNT) in explosion and Iy, Iy are the lengths of the structure in T-
form. The parameter spaces is set by D := [10,1000] x [250, 1000] x [100, 1000] x [0.911, 1.111] x
[O.9Z2, 1.1[2] C R® where [; =l = 0.8 m are the nominal values of the lengths of the structure
in T-form. Here, the vector of geometrical parameter p9 is defined by pf := (l1,l3). The

geometry of reference is chosen as the particular case where u9 = (I1,l2).

Full order model and output of interest

In order to approximate the Sommerfeld radiation condition, a truncated fluid domain in form
of a circle of radius R4 = 4 m is employed. On the boundary of the truncated fluid domain, the
BGT-1 boundary condition is applied in order to approximate the outgoing sound wave
by a cylindrical wave for which we use the value of impedance Zr = 2pgRyg; and Zo = poco.
In finite element modelling, we use quadratic triangular elements both for the structure
and the fluid part. The reference mesh of structure part is illustrated in Figure (.17 In the
reference mesh, the largest element size in the fluid part and structure part are respectively
0.08 m and 0.04 m.

Figure 5.17: The structural part in the reference mesh.

Here, we denote by I'y, I'y and I's the boundary of the structural part €25 which are re-
spectively marked in blue, red and green in Figure [5.16] In order to transform the geometry
(mesh) of reference to a new geometry (mesh), we solve the elasticity problem ([5.49)) which is
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defined only on the structure part with the following boundary displacement:

“i(d’ﬂay,ﬂ ) =0 on Fl
ug(ac, y;u?) =0 on I'y
d . —
uy(z,y; p?) = 0 ~oonly (5.73)
ul(z,y;p9) = —(lh —h) onTy
ly — I
ul(z, y; pf) = 2572211 on I's

In our study, we use the same values of Young’s modulus and Poisson’s ratio in the elasticity
problem as in the fluid-structure interaction problem. It should be noted that we impose
in Equation that the boundary displacement on I'; is zero so that the fluid-structure
interface I' C T’y is independent of p9. As a result, the position of nodes in fluid part do not
change in function of 9. Thus, a coupling damping matrix nggf in finite element model
is p-independent in this study case.

In the finite element model, we have 61 243 degrees of freedoms, 31 525 of which correspond
to the structural part (one of which corresponds to the point mass in the spring-mass system)
and 29 718 of which correspond to the acoustic fluid part. For time-discretization of finite
element model, Newmark scheme (with 8 = (1 — a)? and v = 1/2 — a where a = —0.2) is
employed by using the time step At = 4 - 107° which means that the shock wave needs 100
times step in order to travel the distance of 3R. The final time of interest is set by T'= 6R/cg
so that the total number of time steps is N; = 200. In this study case, the acceleration ay,,, of
the point mass in the spring-mass system represents the output of interest.

Errors introduced by the approximative full order model

In this study case, we note that the boundary displacement u? exhibits a trivial affine decom-
position such that it can be exactly recovered by EIM with two basis functions. As a result,
the first step presented in Section of our framework does not introduce any error. To
access to the influence of the tolerance egyps used for approximating the full order model, we
are interested in the error defined by:

5 N\ 1/2
(o s — ol s

(foT‘CLmeq(t; “)’2dt)1/2

Ay(p) = (5.74)

fom and fom,EIM

where the superscripts refer respectively to the values provided by the original

full model and the approximative full order model proposed in the second step of our framework.

For the left-hand side operators, we only run the algebraic version of EIM algorithm outlined

in Algorithm [19] with the mass matrix M, and the stiffness matrix K, since the damping

EIM
train

matrix Cfﬂ is p-independent. With a training sample D C D consisting of 100 values of
parameters chosen randomly, the convergence of the error indicator (which is defined as the

relative error evaluated at the value of parameter which maximizes the residual) for the both
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matrices M4 and K, 4 are reported by Figure

102
107! 4

0+

_ 10-2 4

1070

10—?'4 il 10_3 3

10—1[1 1 107_1 ]

107124 .
10774

10—14 i
10—0 il

1 2 3 4 5 6 7 0O 3 6 9 12 15 18 21 24
k k
(a) Case of mass matrix M, (b) Case of stiffness matrix K¢

Figure 5.18: The evolution of error indicator in EIM algorithm (19| applied on M4 and K

Based on the decay of the value of error indicator, the number of terms to be retained in
EIM approximation in the case where egryr = 1076 is NAEYM = 7 for the mass matrix and
N El M — 25 for the stiffness matrix. The corresponding reduced elements in the structure in
T-form part are then displayed in Figure [5.19]

(a) Case of mass matrix M, (b) Case of stiffness matrix K,

Figure 5.19: The corresponding reduced elements (marked in blue) in the structure in T-form
part.

For the right-hand side, the parameter dependence is only via the mass of explosive. Ac-
cording to Remark we will use the approximation in affine form of the relation (5.46|) in
which, from the numerical results presented in Section , we set NﬁIM = NfIM = NEIM

where fo M and Nfi M are determined by EIM Algorithm [16|applied on the incident pressure
inc

"¢ with respect to the given tolerance egras. With a

p™¢ and incident fluid particle’s velocity v
training sample Djyy,,, C [100,1000] consisting of 100 values chosen randomly, the decay of the
error indicator, which is defined as the relative error evaluated at the value of parameter which

maximizes the residual (i.e the next value of parameter to be chosen by EIM algorithm), are

209



5.5. NUMERICAL RESULTS

displayed in Figure [5.20]

., .
Vet e

..,.
LA TERY

1077 5

1075 4

M

inc

Figure 5.20: The convergence of error indicator in EIM algorithm [16{applying on p™¢ and v’

Figure indicates that it requires respectively N;HM = NFIM = 5 and NEIM =

NfIM = 6 in order to respect to the stopping criterion egrpr = 10~* and egrpy = 1076,

From a test sample Dyt C D consisting of 50 values of parameters chosen randomly, the
errors introduced in full order model approximation by the second step of our framework is
summarized by Table

. Number of terms in EIM Errors

POV TNEIT T NETT T NEI | maxep,.,, M) | mingep,.,, M) [ moy,cp,., M)
10~4 7 16 5 1.82-10°1 2.93-1074 1.1-1072
1076 7 25 6 4.66-1073 5.42-107° 5.84-1071

Table 5.1: The errors introduced by the approximative full order model.

Convergence of POD-Greedy algorithm and efficiency of the reduced order models

Next, we run the POD-Greedy algorithm [13| for both case of egryr = 107* and egrpr = 1076

with the value of epop set by 107%. For both cases, we use the same training sample DF, .

k

train
and the error of output of interest evaluated at pj , = argmax, cpr Ay(p) are displayed in

Figure [5.21] The dimension of the corresponding reduced basis are reported by Figure [5.22]

which is chosen randomly at each iteration with |D | = 50. The evolution of error indicator
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. 101 10+ —=— ey = 1071
—=— epy = ;
10-5 —— egnr = 1070
—— CEIM =
10—1 4
a o
i} 3 10774
¥ 100
10724
| 1 2 3 4 5
1 2 3 1 5 N

(b) Error of output of interest for py.
argmax,cpr  Ay(p)

train

(a) Indicator error A

Figure 5.21: The convergence of POD-Greedy algorithm

225
200 1
175
=150
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1001 —— eppy =107
75 | —— eppy = 107°
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Figure 5.22: Size of the reduced basis

We observed that in both case, POD-Greedy algorithm chose the same value of parameter
for enriching the basis and that we have the same evolution of the dimension of the reduced
basis. This can be explained by the fact that we have a small error between the approximative
full order model with ez = 10~* and the case of egrpyr = 1076, As in the numerical results
presented in the previous chapter, we remark again that the indicator error based on the
norm of residual is very pessimist for predicting the error on the output of interest, which is
represented by the acceleration of the point mass of spring-mass system.

We now turn to the accuracy of the obtained reduced order models. Here, we denote by
Afom’f " the error between the reduced order model and the full order model, by A;*™ “P fom
the error between the reduced order model and the approximative full model and by Alf om, appfom
the error between the approximative full model and the original full order model. The evo-
lution of errors Almm’f HENVAVAG o™ quring the iterations of POD-Greedy Algorithm and
the error Alf om, app fom are reported by Figure
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(a) Case of egrp = 1074 (b) Case of egrp = 107°

Figure 5.23: The evolution of accuracy of reduced order model.

Figure shows that the error Afom’fom is bounded after 3 iterations of POD-Greedy
algorithm for the case of egry = 10~% and after 4 iterations for the case egrar = 1076, This is

due to the domination of the error Alfom’ app fom

introduced in the second step of the proposed
framework which aims to recover the affine parametric dependence property.

In this numerical study, the development is not yet accomplished for the computation of
new mesh by changing only the position of reduced elements which is necessary in order to
ensure that the complexity of online stage depends only on the dimension of the reduced order
model (see Remark . Even though, we would like to point out that the reduced order
model obtained with 3 iterations of POD-Greedy algorithm in the case of egrpr = 10~4, which
already provides an average error less than 2%, takes about 3 seconds. In comparison with the

full order model which takes about 45 seconds, we have in this case a factor 15 as time-speed
up.

5.6 Conclusions

In this chapter, we expose a reduced order modelling framework for a non-affinely parametrized
time-domain vibro-acoustic finite element model. We start with a presentation of the Empirical
Interpolation Method. Next, we derived its applications for approximating the right-hand
side vector of an interaction between a submerged structure and a shock wave problem in an
affine parametric dependence form for the case where the mass of explosive material is one of
parameter of the problem. We also derive its application in purely algebraic and black box way
for any non-affinely parametrized matrix/vector resulting from a finite element discretization.
With a parametrization of a varying shape domain (mesh) using the Solid Extension Mesh
Moving Technique (SEMMT) and the application of EIM for recovering approximately the
property of affine dependence in parameter, the reduced order modelling framework proposed in
Chapter {4 can then be extended to the case of non-affinely parametric dependence with /without
the variability of geometry.

A simple numerical study case with five parameters, two of which are geometrical param-
eters, is presented in order to highlight the efficiency of the proposed framework. Since the
development is not yet accomplished for the computation of new mesh by changing only the
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position of reduced elements at online stage, numerical results presented here do not show a
very high performance of the reduced order models. Thus, a short-term objective is to optimize
the complexity in online stage and to apply the proposed framework into industrial cases.
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Conclusions and perspectives

The main objective of this thesis is to propose and develop some reduced order modelling
frameworks for parametrized time-domain vibro-acoustic finite element model into an indus-
trial software, code aster, with the aim of applying the approach on an industrial problem:
« the design of structures subjected to underwater explosion’s primary shock wave ».

In the first part, we exposed the different formulations of vibro-acoustic finite elements
models and we remark that the formulation based on structure displacement - fluid pressure
- fluid displacement potential (us, p, @), which is the only formulation already implemented in
code__aster, is not the best formulation to be employed in the context of our industrial problem
of interest which is the problem of interaction of submerged structure and acoustic shock wave.
As a result, we developed two new formulations, formulation in structure displacement - fluid
pressure (ug,p) and in structure displacement - fluid velocity potential (us, ¢), in code_ aster.
The excitation induced by an acoustic shock wave is then developed and validated numerically
with two study cases for each formulation.

In the second part, we start with an overview on the stabilization techniques for Petrov-
Galerkin based model order reduction of the three formulations considered in the thesis. At
first, we propose to use the reduced basis based on the corresponding frequency modes, whose
frequencies are selected by a Greedy algorithm. According to the proposed stabilization tech-
niques, some modifications are introduced in the classical Greedy algorithm. Numerical results
confirm the stability of the obtained reduced order model. Concerning the accuracy, we ob-
serve that the proposed reduced basis results in an inaccurate reduced order model especially
in the case where the excitation is of high frequency. Therefore, we turn to an alternative for
the construction of an accurate reduced basis. The construction of the reduced basis with a
POD-Greedy algorithm is considered in this work. With some modifications for ensuring the
stability of the reduced order model and an inexpensive error indicator based on the norm
of residual, we derive an efficient reduced order modelling framework for parametrized time-
domain vibro-acoustic problem. The extension of the proposed framework into the case of
non-affine dependence in parameter is also given by exploiting the well-known Empirical In-
terpolation Method (EIM) with a purely algebraic and black box way and the so-called Solid
Extension Mesh Moving Technique (SEMMT) for parametrizing the varying shape domain
(mesh). In the context of the interaction of submerged structure and acoustic shock wave
problem, numerical results on both simple study cases and industrial cases show that the effi-
ciency of the proposed model order reduction techniques is very promising.
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With these promising results, the proposed reduced order modelling framework should be
pursued in several directions:

e Extension to the case of a vibro-acoustic problem with a free surface. Only
the case without a free surface in the fluid part are considered in this thesis. Taking
into account the effect of free surface in the model is necessary in order to tackle a more
complex and general case which can occurs for instance when the submarine is submerged
at a shallow depth of the sea, and of course for the case of the ships.

e Application in other contexts of vibro-acoustic problem. In this thesis, we only
put the interest on vibro-acoustic phenomena resulting from the interaction of submerged
structure and acoustic shock wave problem. However, it should be mentioned that the
developed reduced order modelling framework can readily be applied for any parametrized
time-domain vibration and vibro-acoustic problem. It should also be interesting to point
out if the error indicator based on the norm of residual and the error estimator in energy
norm proposed in this thesis are still very pessimist in other contexts of vibro-acoustic
problems, such as in dimensioning of structures for seismic problem in nuclear industry,
acoustic discretion problem in naval and automotive industry, ...

e Introduction of dual problems for linear output of interest. For the case where
the output of interest is a linear form, a dual problem can be introduced in order to double
the convergence rate of the accuracy of the output of interest predicted by the reduced
order model. For stationary problems, it has been widely investigated in |38 123, [73], O1].
For time-domain vibro-acoustic problem, it should be exploited the idea proposed in [62]
in a context of parametrized parabolic problem.

e Extension to the case where the Dirichlet condition is treated by Lagrange
multiplier. In this thesis, we restrict ourselves to the case where the Dirichlet condition
is treated by the elimination method. Thus, it can not yet be applied to a more general
case, for instance when we aim to impose a part of structure to have a rigid behaviour.
A possible approach for the case of Lagrange method is to follow the idea in [41] for
non-linear transient heat conduction problem, in which it has been proposed to construct
a reduced basis for physical (i.e temperature) and Lagrange multiplier degrees of freedom
separately.

e Application of the reduced order models in optimization problem. With a
complexity relatively inexpensive compared to the full order model, it should also be
interesting to apply on other problems such as in optimization problem (for instance, see
[93] for the case of a stationary problem with quadratic functional cost and [49] for the
case of the parabolic problem with a linear functional cost).

¢ Extension to the case with non-linear structural. A more challenging problem is to
extend the approach to the case where the structure under consideration has a non-linear
behaviour. To start, we advise to exploit some ideas from [26] which aims at tackling the
parametrized non-linear elasticity in stationary regime.
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Appendix A

Numerical time-integration with
Newmark method

In this appendix, we give a review on Newmark method [I01] which is one of the most widely
used numerical integration methods for the second Order Differential Equations (ODE). For
example, the second-order ordinary differential equation obtained after a spatial discretization
by the finite element method of a structural dynamic or a time-domain vibro-acoustic problem.

Here, we consider a general second-order ordinary differential equation:

MX (t) + CX(t) + KX (t) = F(t)
X(t = 0) = X, (A1)
X(t=0) =X,

where the matrices M, C and K are in R™" and the right-hand side F is a time dependent
vector of R" and we assume that the time interval of interest [0,77] is partitioned into Ny
equidistant time steps {tn}n Lo, of size At = T/N;. Let X, X,, and X, be respectively the
displacement, velocity and acceleration at the time step ¢, = nAt, the Newmark method [101]
consists of using the following approximations for the velocity Xn+1 and the displacement
Xn+1:

Xn+1 = Xn + At |:(1 - 'Y)Xn + 7X”+1}
: . . (A.2)
X1 = X + ALK, + (At)?2 [(1 12— B) X + BR i1

where 3, v are the two parameters of the method, in the equilibrium equation written at ¢,1,
that is:
MXn+1 + CXTL+1 + KXn+1 - F(tn+1) (A?‘))

In what follows, we note:

D S A S
ao_BAtQ’al_BAt’GQ_BAt’ag_26 (A4)
At '
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The relation (A.2)) is equivalent to:

Xn+1 = aO(Xn+1 - Xn) - QZXn - a3xn

. . . . (A.5)
X1 =Xy +aeXy + arXpqq
Eliminating X,,41 and X,,+1 in Equation 1) by using the relation 1) leads to:
KX, 11 = F(tn+1) (A.6)
where
K =K+ CLQM + Cblc
. (A.7)

F(thrl) = F(tn+1) +C {alxn + a4xn + a5xn} +M {aOXn + a2Xn + a3Xn}

The equation allows us to compute the displacement Xn+1 from the value of X,,, X, and
X,,. After that the value of the displacement Xn+1 is computed, we can update the value of
the acceleration Xn+1 and the velocity Xn+1 by using the relation . The implementation
of the Newmark method is summarized in Algorithmn

Algorithm 21 Numerical integration with Newmark method

Input: Size of time step At, Number of time step N, Parameters (v, ), Initial conditions
X0, Xo o
Output: Values of X,,,X,,,X,,, forall 1 <n < N

1: Compute the coefficients (a;)o<i<7 in Equation (A.4])
2: Compute the initial acceleration Xg by:

Xo=M"! {F(O) — CXq - KXO} (A.8)

3: Compute and factorize the matrix K=K+ aoM + a1 C
4: forn=20,--- ,N;—1do
5: Compute F(tn_ﬂ) = F(tn+1) +C {alxn + CL4Xn + a5Xn} +M {a()Xn + aan + agxn}

6:  Compute the displacement X,,+1 by solving the following linear system:

KX, 11 = F(tai1) (A.9)

7:  Compute the acceleration Xn+1 and the velocity Xn+1 by the following relations:

Xn+1 = aO(Xn,+1 - Xn) - QZX'n, - a3xn

| . ) ) (A.10)
X1 =X, +asXy, +arXpqq

8: end for
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Properties of the Newmark method

Now, we give an overview on some important properties of Newmark method. To start, let
us recall the notion « consistency » of the numerical scheme. A numerical scheme is called
consistent if it reduces to the original system of differential equations as the size of time step
At tends to zeros. Equivalently speaking, let II(X) be a system of differential equations and we
denote the corresponding numerical scheme by ITa+(X), we say that the numerical scheme TIa¢
is consistent if the truncation error, defined by II(X) — IIx(X), tends to zeros when At — 0
for any sufficiently smooth solution X. Furthermore, we say that the numerical scheme is con-
sistent of order p if the truncation error tends to zeros in O(At?). Another important notion
of the numerical scheme is « stability » property. A numerical scheme is called stable if the
error caused by a small perturbation in the numerical solution at time step ¢, remains bounded
for all t,4;, Vj > 0.

The analysis on consistency and stability properties of the Newmark family scheme is clas-
sically done with a system without damping by using spectral analysis, see for instance [58 [72].
The consistency and stability of Newmark scheme depend on the value of its two parameters
(v, B). For the case where v = 1/2, the Newmark scheme is consistent of order 2. In the case
where v # 1/2, the consistency of the Newmark scheme is only of order 1. Assuming that the
mass matrix M is symmetric and positive definite and that the stiffness matrix K is symmetric
and semi-positive definite, the Newmark method is

e Unstable if v < 1/2
e Unconditionally stable if v > 1/2 and 28 —~v >0

e Conditionally stable if v > 1/2 and 28 — v < 0. In this case, the stability is achieved if
the size of time step At verifies the following inequality:

2
At < min

1
1<i<n A\ /27 — 48

where A is the eigenvalue of the Generalized Eigenvalue problem: KX = AMX.

One of the most used Newmark scheme is the case where v = 1/2 and § = 1/4 since
it provides an unconditionally stable scheme with a consistent of order 2 and without any
numerical dissipation. However, in some cases, a small numerical dissipation is required in
order to damp out the unwanted contribution of high-frequency modes, for instance in the
case where the excitation is a discontinuous function in time as in the study case in Section
of Chapter For the case where v < 1/2, the Newmark scheme introduces a negative
damping which results in instability. For the case where 4 > 1/2, it can be shown that
the numerical dissipation is proportional to (y — 1/2)At. Hence, it is commonly practice
to introduce a negative value parameter « for controlling the numerical dissipation via the
relation 7 = 1/2 — a. To have an increasing numerical dissipation as a function of frequency,
it is sufficient to chose 8 > %(1 — «)?, in which the case of equality leads to an optimum
compromise between the precision and the numerical damping in high frequency modes.
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Time complexity of the Newmark method for the case of a direct solver

With the assumption that we have partitioned the time interval of interest [0,7] into a set
of equidistant time steps {tn}ﬁil of size At, the matrix K of the left hand-side of Equation
, which allows us to compute the displacement X, ;1 at the new time steps, does not
change during the iteration. Hence, in practical use, when a direct solver is employed for the
resolution of the linear system , the matrix K is factorized into a form: K = LU where
L and U are respectively lower and upper triangular matrices, before entering the loop of the
step [] of Algorithm [21] By doing so, the cost of the resolution of the linear system at
each iteration is in O(n?).

Therefore, the total complexity of Algorithm when a direct solver is used, is in O(facry (K)—i—

n?Ny) where Ny is the number of time steps and O(faczy(K)) denotes the complexity of the
factorization LU of the matrix K which depends strongly on its sparse structure.
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Appendix B

Semi-analytical solution of the study

case of Section 2.5.

In this appendix, we give a short presentation of the construction of a semi-analytical solution
of the study case presented in Section For the presentation in more detail, we refer to [82].

We assume here that the thickness h of the ring is very small compared to its radius R.
Under this hypothesis, using Love-Kirchoff model (see for instance [I13]) for describing the
dynamical of structure derives the following equations:

. Eh 02U, U, 23U,
By — —— (g 4 k2 r_ 20 0]
pshto = oy e [( +E) B T ag 393} 0 B
. Eh 20, | 0Us  ,0°Ug tot .
pShUr+(1_V2)R2[UT+k R e

where U,., Uy are radial and ortho-radial displacements. The constant k? is equal to h?/(12R?).
Next, let us render structural and fluid variables dimensionless using the following table of of
normalization.

Variable Factor of normalization
Displacement R
Times R/co
Pressure poc%
Velocity potential Rey

Table B.1: Table of normalization

The equivalent of Equations (B.1) in term of dimensionless radial and of ortho-radial dis-
placement reads as:

Uy 2 |~ +EDYE, (L k22| [Us| 0
Y 2 o1 =K1 (B.2)
Ur 96 — k" 593 1+ k* 55 Uy p
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where the dimensionless constants C, K are defined by:

C] M
2 = B.
C= K=" (B.3)

with M = ps/po,€ = h/R and ¢; = \/E/(ps(1 — v?)). Since the functions U,., Uy are 2m— pe-
riodic in @, they can be expressed in form of Fourier series as:

o0

+2

=1

U(f" t

B.4

The total pressure at the interface fluid-structure is also a 27— periodic in 6. Thus, it can be
written as Fourier series:

P =1 = Pl (t) + D Pt (£) cos(nf) + > pier (t) sin(nd) (B.5)
n=1

Injecting the relations (B.4)-(B.5) in Equation (B.2]) with some obvious manipulations leads to
the following equations:

Ud(t) =0 (B.6)
UP(t) +C* = —Kpjy (B.7)
Uy (1) 1+E)n2  (1+k22n] [Usrw] [ o
Ufs"(t) e (1+En%)n (14 k*nt) ] UfSn(t) =K pfog] (B.8)
Ugn(t) (1+k*)n? —(1+ k2n2)n_ uir| 0
Uz“"(t) e —(1+kn%)n  (1+kn?) | Ui“"(t) K _pﬁg] (B.9)

where p? ., po? and p{l? are Fourier coefficients of the total pressure at the interface fluid-
structure.

In the fluid part, we chose to use the velocity potential ¢ to describe its state. By using
Table B.1] the wave equation in term of dimensionless velocity potential ¢ written in Laplace
domain and in cylindrical coordinate is given by:

2 190 10 ,]-

I T 0.5)=0 B.10

[8r2+r8r+r2602 S]¢(T’ ) ( )

where s denotes the Laplace variable and gZ; denotes the Laplace transformed of ¢. The ana-
lytical solution of Equation (B.10) can be expressed as (see [2]) :

o(r,0,s) ZA (rs) cos(nf) + ZB K, (rs) sin(nf) (B.11)
n=0

where the function K, is modified Bessel function order n of the second kind and the coefficients
Ay, By, are to be determined by using the boundary conditions. We recall that the total velocity
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potential can be decomposed by three components: ¢!t = ¢ + ¢/ 4+ $7% where the first
term is the data of the problem. We recall that ¢’”€f and qﬁmd also verify the wave equation
(B.10). Therefore, they can be analytically expressed by Equation (B.11). The boundary
conditions of czAS’"ef and (ngd are respectively given by:

aéref

7“:1 = Vmc|7"=1 *€r, |r 1= sU, (B.12)

where v"¢|,—; denotes the incident velocity of fluid particles on the fluid-structure interface.

We remark that the function vmc|r:1 - e, is 2m-periodic also in 6. Hence, vmc|r:1 - e, can be
written as the following Fourier series:
oo
vy - e, = 00 —I—vac cos(nh) + Z o7 (5) sin(nf) (B.13)
where
0 1 2
Vjne(S) = / v'"e,=1 - e,db
mnc 27T 0 T T
1 [
05 (s) = — [ v"™|,—1 - e, cos(nb)do

2T

1"
Bime(s) = o /0 v*7"|.—1 - e, sin(nb)d6

By combining Equation with the first equation of (B.12)), we can determine the value
of the coefficients A,, and B,, in Equation for the reflected velocity potential ¢"¢f. By
combing the second equation of written in Laplace domain with the second equation of
, we can determine the value of the coefficients A,, and B,, in Equation for the
radiated velocity potential ¢"* provided that the value of U, is known. The reflected and
radiated velocity potential can be expressed explicitly by:

¢ (1,0, 5) = Zo(r, 5)vha( Z 5) [95(s) cos(nf) + 0y (s) sin(n)]
n=1 (B.14)
G (r,0,s) = —Zo(r, s)sU (s Z Z,(r,s { US"(s) cos(nf) + sUA™(s) sin(n@)}
where the complex functions Z,(r, s) are defined by:
5 K, K,
Zo(r,s) = —Lnlrs) _ (rs) (B.15)

sK'(s)  sKnp1 —nk,(s)

In Laplace domain, the relation between p and ¢ given by Equation (1.17)), in term of di-
mensionless variables given by Table , writes: p = —ngA). This relation implies that the
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expression of the dimensionless reflected and radiated pressure can be written as:

ﬁref(r, 0,s) = —ﬁo(r, s)sv?m(s) — Z 2n(r, s) [s@i{é(s) cos(nf) + svmc(s) sin(n@)]

o=t (B.16)
B(r,0,5) = Zo(r,5)s°00(s) + 3 Zn(r,s) [5205”(5) cos(nf) + s2UA"(s) sin(n&)}
n=1

The reflected pressure can be then computed numerically using the first equation of by
truncating the Fourier series and using a numerical inverse Laplace transform algorithm. With
the same approach, the radiated pressure can be computed using the second equation of
provided that US"(s) and UA™(s) are known.

To compute the radial and ortho-radial displacement in Laplace domain, we need to evaluate
the pressure at the fluid-structure interface. At interface where r = 1, we can write the incident
pressure in Laplace domain in form of Fourier series as:

P(1,0,5) = p2,.(s) + mec cos(nf) + mec sin(nf) (B.17)

Combining Equation (B.16) and Equation (B.17)), the total pressure at fluid-structure interface
is given by:

ptot(l 0 S) p?nc(s) _20(T7 ‘9)5 znc( )+ZO(T S)S UO( )

[e.9]

+ 7 [Bis) = Za(1,5)s055(s) + Za(1,5)5205"(s)] cos(né)

n

(B.18)

Il
—

_'_

inc

WE

[Pi4n(5) = Za(1, 5)5080(s) + Za(1, )20 (5)| sin(n0)

Il
—

n

Injecting the relation (B.18)) in Equations (B.7)-(B.8) and written in Laplace domain

leads to the following linear systems:

Wio()02(5) = K () = Zo(1.8)s0,0(5))

. [)’Sn(s) 0

M3 (s) ﬁ%n(s) =-k Ai{é—z (1,s)s mC(S)] (B.19)
R U’An(s) B 0
M;?(S) UiAn(S) K A‘;}{é( ) Z (1 8) 'mc(s)]

where R
Mo(s) = 82 (1 + Z(1, s)) + 2

g s+ C3(1+ k*)n? C*(1 + k*)n?
M (s) = 2 2,2 2 5 2 2, 4
CC1+E)n? s (1+/CZn(l,s)> +C2(1 + k2nt) (B.20)
MA §2 —I—CQ(l—I—kQ)nZ —C2(1—|—k2)n2
n) =1 e 82 (1 +K2n(1,s)) C2(1 + K2nY)
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With Equation , the coefficients Ug”(s), [754”(8), US"(s) and UA"(s) can be com-
puted with a resolution of the linear systems 2 x 2. Therefore, we can obtain a semi-analytical
solution of p"®¢, Uy and U, by truncating their corresponding Fourier series in Laplace domain
and by using a numerical inverse Laplace transform algorithm in order to turn back to time-
domain.

For numerical applications, the semi-analytical solutions used in Section [2.5.1] are obtained
by devising the interval [0, 27] into 800 of equidistant points in order to compute numerically
the Fourier coefficients pfnnc, pfxz, vﬁfé and Uf}@z using the Midpoint rule. All Fourier series rep-
resenting the analytical solutions in Laplace domain are then truncated using the 200 number
of modes, i.e Nyoge = 200. To return to time-domain, we use the numerical algorithm of

inversion Laplace transform proposed in [47].
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Appendix C

Expression of residual norm in the case
of affine parametric dependence

In this appendix, we give a short demonstration of the expression of the norm of the right-hand
side and the residual, given by Equation (4.10)), for the case of affine parametric dependence.

Let us begin by the first equation of (4.10]). Since we consider that the right-hand side
vector of the problem can be expressed as:

Np
=30 (1 w)F, (C.1)
i=1
we have:
IF(t; w)|” = Z9F t; p) z,ZOF t; w)F
Nr Nk (C.2)
=3 07 (6 w)0F (t; ) (Fi, Fy)
=1 j=1

= O%L (L W)MprO®p(t; p)

T
where the vector @ (t; u) € RVF is defined by @p(t; ) = |08 (t; ), - - 791}\7& (t; )| € RNF
and the matrix Mpp € RVFXNF i independent of p and is defined by (Mpp);; = (Fi, F;).

We recall that the residual vector is defined by:
R(t: p) = F(t; 1) — M) VX, (8 1) — C()VX, (1 p) — K(m)VX, (£ 1) (C.3)
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Thus, we have:

R Gt )12 = ({5 1) — M)V (1 1) — C) VR (1 1) + K () VX (1 1),
F(t; ) — M(p) VX, (8 ) — C() VX, (t; ) + K(p) VX, (8 )

= P (t: )|+ M) VR (8 ) 12+ IC) VR (1 )2+ K () VX (8 )]
+ 2 (M) VX, (1 1), C) VXL (85 ) + (M) VR (8 1), K () VX (8 1))
HC() VX, (b 1), K (1) VX (t 0)) )

=2 ((F(t; 1), M)V, (1 ) + (Bt 1), C(1) V(s 1)

+ (Rt 1), K (1) VX (1)

(C.4)

We remark that the first term of the right hand-side of the relation is the square
of the right-hand side norm. In the following, we use the notation: XM (t;pu) = X,.(t; p),
XC(t;p) == X, (t; ) and XX (t; ) := X,.(t; ). For i € {1,---,N}, we denote by x;f}l-(t; )
the i*" component of the vector Xf(t; p) and by v; € R” the i'® column of the given basis
V e RN, For A,B € {M,C, K}, we have:

N
(A(R) VXt 1), B(w)VXP (1) = (A() Z it p)vi, B(p) Y a6 p)vy)

where the matrix M ap(p) € RV*Y is y-dependent and is defined by (M ap(p))ij == (A(p)vi, B(n)v;).
Using the affine decomposition of A(u):

Z@A JA; , VA = {M, C,K} (C.6)

leads to:

(A(p)vi, B(p)vy) = ZHZ AquZQk; )Biv;)

NA NB (C.7)
=D >0 (w0 () (Arvi, Bevy)
1=1 k=1
Thus, we have:
Na Np
Map(p) =YY 607 ()0F (1)Map, (C.8)
=1 k=1
where the matrices My,p, € RV*N for I € {1,---,Na} and k € {1,---,Ng}, are p-

independent and are defined by (My,B, )ij := (A;vi, Bivj).
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Now, let us put the focus in the last three terms of the right-hand side of Equation (C.4]).
Using the affine decomposition of Equation (C.1)), we have, for A € {M,C, K}:

N
(F(t; ), A(n) VXA (t; ) = O 05 (4 )Fi, A(p) VX (4 )

=1

N
ZHFtqu,A ijtuvj
=1 7j=1

—ZZ@Ftu (£ ) (B, A(p)vy)

i=1 j=1
= OFL(t; W)Mar () XA(t; )

where the matrix M ap(p) € RVP*Y is y-dependent and is defined by (M ar(p))ij := (Fi, A(p)v;).
Using the affine decomposition assumption of Equation (C.6)) leads to:

= (C.10)

Thus, we have:

Mar(n) = 3 07 ()Mo, (C.11)

where the matrices My, r € RNeXN “for [ € {1,--- ,Na}, are p-independent and are defined
by (My,r)ij := (Fi, Ayvy).

To conclude, by injecting the relations (C.2)-(C.5) and (C.9) in Equation (C.4)), we obtain
the desired relation:

IR(t; p)|* = @5(t; WM pr@p (t; )
X, (6 ) Mg (10X, (1 ) + X, (8 )Mo ()X (8 1) + X (6 )M (1) X, (8 o)
+4 (85 1) Mase ()X (8 1) + X (8 ) Mg (1) X (85 1) + X ()Mo ()% (1))

)
— 2 (O (t; i)Murr ()X, (t; 1) + OF (8 w)Mor(p) X (15 1) + OF (£ )M (1) Xor (1 u))
(C.12)

g
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Appendix D

Implementation in code aster

In this appendix, we give a short overview of our work of implementation in the industrial finite
element open-source software, code aster. We start with a presentation of our developments
in the finite element models of vibro-acoustic coupling in the first section. The definition of
the new operators developed for the reduced order modelling framework proposed in this thesis
are then presented in Section

D.1 Implementation of the FE models of vibro-acoustic coupling
in code_ aster

The formulation in (ug, p, ¢) is actually the only formulation already implemented in the official
version of code aster. The development of the two new formulations: formulation in (ug,p)
and in (us, ), is done with a personal version and will be integrated in the official version
latter. In our work, we chose to not modify the name of command but to modify of the
underlying definition of the elementary matrices. As a result, we will have three branches in
our development framework as depicted in Figure [D.1

An old version of code_ aster

Formulation in (us, ¢) Formulation in (us, p) Formulation in (us, p, )

Figure D.1: The three branches in our development framework

In the context of vibro-acoustic coupling, the fluid-structure mesh can be divided into three
parts: structural part, fluid part and fluid-structure interface. In our implementation, only the
definition of elementary matrices in the fluid part and fluid-structure interface change in func-
tion of the formulation.
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D.1. IMPLEMENTATION OF THE FE MODELS OF VIBRO-ACOUSTIC COUPLING IN CODE_ASTER

In code_aster, the computation of the element matrices is done by the operator
CALC_MATR_ELEM. We summarize the definition of the elementary matrices of each for-
mulation in Table D.1} [D.2] and [D.3| (in which the notation A€ refers to the elementary contri-
bution corresponding to the matrix A) for option MASS MECA, option RIGI_ MECA and
AMOR_MECA which compute respectively the elementary mass, stiffness and damping ma-
trices of the problem. We recall that the definition of My, M, K, Ky and K, are given in
Section .21

Option Formulation in (us, ¢)
P Structural part | Fluid part | Interface fluid-structure
, [0 0] [U¢]
e e e e S
MASS_MECA Mg |U¢] M [P _poKeT 0] [P
0 KI] [U]
RIGI_MECA K¢ (U K [P 0 06_ P
AMOR_MECA 0 0 0

Table D.1: Definition of elementary matrices in the formulation in (us, p)

Option Formulation in (us, ¢)

P Structural part | Fluid part Interface fluid-structure
MASS_MECA M [U¢| —poM§ | ®°| 0
RIGI_MECA K; U —poK§ | 0

0 —poK} | [U]
AMOR_MECA 0 0 kT 0 |a]

Table D.2: Definition of elementary matrices in the formulation in (us, ¢)

Option Formulation in (us, p, )
P Structural part Fluid part Interface fluid-structure
} 0 0 —poK¢| [U*
ME e C S
MASS_MECA M¢ [U¢] 0 s 0 (N P*
_ s s ME _pOKe SO(, T
! ! —pKET 0 0 | ¢
'iMe 0' Pe
RIGI_MECA K¢ |U¢ po- S ] 0
—_ S [ S] I 0 0- |:CP(:|
AMOR_MECA 0 0 0

Table D.3: Definition of elementary matrices in the formulation in (us,p, ¢)

Now that we have redefined all elementary matrices for the operator CALC_MATR_ELEM,
we can assemble the matrices for the new formulations with operator ASSE_ MATRICE with
the same approach as the formulation in (usg, p, ¢) and use the obtained results to compute the
response in time-domain or frequency-domain with operator DYNA VIBRA, or for the modal
analysis with operator CALC_MODE.
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D.1. IMPLEMENTATION OF THE FE MODELS OF VIBRO-ACOUSTIC COUPLING IN CODE_ASTER

Next, let us discuss on the impact of the modelling of the Sommerfeld radiation’s condition
by the BGT-1 method [22]. The computation of the elementary terms of the impedance matrix
is done with the operation CALC_MATR _ELEM via option IMPE_MECA.

In the formulation in (us,p), the elementary terms of the impedance matrix is defined
by £2Q° [P"} (see Equation (|1.41) for the definition of the impedance matrix Q). To take
into account the BGT-1 boundary condition in the model, we start by computing the
elementary terms of the impedance matrix of the elements on the truncated boundary 'y, for
the values Z = Z, = pocyp and Z = Zr = poR. We recall that pg denotes the density of the
fluid, co denotes the speed of sound in the fluid and R denotes the radius of the truncated

fluid domain. An assembling procedure are then performed in order to construct the following

0O 0 0 o0

C . R . D

Iup : [0 Zpo ] 7Iup ) [0 go ] Y ( 1)
C R

matrices:

The matrix Igp represents the damping matrix CZ‘? in Equation (|1.40)). To obtain the matrix
KZ? in Equation 1} it is sufficient to make an addition of the matrix K, of Equation
(1.38]), which can be obtained by assembling the elementary stiffness matrices computed by
the operator CALC_MATR_ELEM, with the matrix I,

The same procedure holds for the case of the formulation in (us, ¢) and in (us,p,¢). In

2
the formulation in (us, ¢), the elementary impedance matrix is defined by —%OQE {(I)‘}. The
matrices to be computed with an assembling procedure are given by:

S L e 0.2)
LS 2 , = 2 , .
S [T o ] N [N o

To obtain the matrix Cfg and KZT; in Equation 1' we make an addition of the matrix
Cus and K4 of Equation 1D with I§¢ and If¢, respectively.

For the formulation in (us, p, ¢) which is the only formulation already implemented in the of-

ficial version of code aster, the elementary impedance matrix is defined by [ B ng Q° Z: :
The matrices to be computed with an assembling procedure are given by:
00 0 00 0
Lpe =100 0 | I =00 0 |, (D.3)
0 0 —7£Q 00 —2£Q

up upp upyp
Equation li we make an addition of the matrix My, of Equation 1’ with If¢.
To obtain the damping matrix C¢ in Equation 1} we also developed in the branch

upp
of the formulation in (us, p, ¢) an other option, namely IMPE _MECA NEW, in the operator

CALC MATR_ELEM, for computing the elementary matrix:

The matrix I¢ ., represents the matrix I¢*! in Equation 1} To obtain the matrix M in

P€

€

@

(D.4)

0 0
5a o
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D.2. IMPLEMENTATION OF THE REDUCED ORDER MODELLING TECHNIQUES IN CODE_ASTER

ext

which allows us to obtain directly the non-symmetric matrix Gy,

by setting Z = Z¢ = poco,
after the assembling procedure.

D.2 Implementation of the reduced order modelling techniques
in code_ aster

Some new operators are developed in the context of the proposed reduced order modelling
techniques. They can be distinguished in two main categories. The first category refers to all
the operators whose the definition are different in each formulation, such as:

e DEFI_BASE REDUITE: which computes the reduced basis. For this operator, we
developed three main options: GLOUTON, POD and CONCATENATION. The option
GLOUTON refers to the construction of the reduced basis based on the corresponding
frequency domain. In this option, the Classical Greedy Algorithm [I] is implemented for
the formulation in (ug, ¢). The modified greedy algorithms 2| and [3| are implemented
for the formulation in (us,p) and (us,p, ), respectively. For the option «POD», the
computation of the reduced basis with Algorithm [6] is implemented for the formulation
in (us,¢). In this option, we begin by computing the reduced basis for the fluid part
Vs and the structure part V respectively by Algorithm @ before transforming them into

S

the output reduced basis in form [ for the formulation in (us,p) and into the

f
Vs, 0 0
output reduced basis in form | 0 V; 0 | for the formulation in (u,p,¢). At the
0 0 Vy

end, the same concatenation procedure of two basis with Algorithm [I1] is implemented
for the option « CONCATENATION» for each formulation.

e PROD_ MATR_ BASE and PROD_ VECT _ BASE: which compute the reduced matrix
and the reduced vector, respectively. For the formulation in (us,p) and (us, p, ), the re-
duced matrix or the reduced vector are always computed by mean of Galerkin projection.
For the formulation in (us, ¢), we also allow the case of the Petrov-Galerkin projection as
in Lemma [3.2.2] via a keyword STABILISE_IFS, in order to stabilize the time-domain
reduced order model.

The second category refers to all the operators which are common for each formulation, such
as:

e COMB_VECT_ GENE and COMB_MATR__ASSE: which allow us make a linear com-
bination of the reduced vectors and the reduced matrices, respectively.

e CALC_ DONNEE_ RESI: which computes the required data for an online-efficient eval-
uation of the error indicator based on the norm of residual. In this operator, we also
developed an option to make a linear combination of the results previously computed by
this operator.

e DYNA TRAN_EMPI: which takes as input the reduced mass, stiffness, damping matrix
and the reduced vector and solve the corresponding reduced order model. In this operator,
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D.2. IMPLEMENTATION OF THE REDUCED ORDER MODELLING TECHNIQUES IN CODE_ASTER

we also introduce an option to compute the value of error indicator based on the norm
of the residual.

e CALC_ RESU_MOR: which takes as input the data provided by DYNA TRAN_ EMPI
and a reduced vector (case linear) or a reduced matrix (case quadratic) and computes
the physical output of interest predicted by the reduced order model.

e CALC EIM: which computes the magical indices and the values of the parameters chosen
by the Greedy EIM algorithm [17] (for the case of vector) and the Greedy EIM algorithm
(for the case of matrix).

e DEFI_DOMAINE REDUIT EIM: which takes as input the data computed by
CALC EIM and creates, in the given mesh, a group of the reduced elements chosen by
Algorithm [I8] for the case of vector and Algorithm [20] for the case of matrix.

e CALC_COEF _EIM: which computes the coefficients (QlA(p))lSlSNsz or
(HlF(u))lSlSNEIM in the approximation by EIM as in Equation (5.21}).

We have also introduced some developments in the operator CALC_ MATR _ELEM. In this
operator, we add a new keyword GROUP_MA which allows us to compute the elementary
contribution only on the given group of elements, for instance the reduced elements in the
context of EIM approximation with a purely algebraic and black box way as presented in

Section [£.2.4]
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Titre : Réduction de modeles pour les problémes vibro-acoustique transitoires paramétriques - Application aux
problémes de pré-dimensionnement de structures immergées aux ondes de choc d’explosion.

Résumé : Dans cette thése, nous développons une technique de réduction de modéles pour les problémes vibro-
acoustiques transitoires paramétriques dans un code de calcul par éléments finis industriel, code_aster, dans le
but de traiter des problémes de complexité industrielle. En particulier, ’approche est illustrée ici pour le
probléme du dimensionnement des structures immergées assujetties a une explosion sous-marine. Trois
formulations du couplage vibro-acoustique sont considérées dans ce travail : formulation en déplacement
structure - pression fluide (ug, p), formulation en déplacement structure - potentiel de vitesse fluide (uy, ¢) et
formulation en déplacement structure - potentiel de déplacement fluide - pression fluide (ug, p, ). Pour
commencer, nous implémentons dans code_aster deux nouvelles formulations, les formulations en (ug, p), et en
(us, ¢) ainsi que les chargements provenant d’une onde de choc. Ensuite, différentes techniques de stabilisation
de modé¢les d’ordre réduit basé sur la projection de Petrov-Galerkin sont proposées. Selon les techniques de
stabilisation proposées, nous ajoutons quelques modifications dans I’algorithme glouton et POD-Glouton
classiques dans la construction de la base réduite. Nous traitons aussi le cas ou la dépendance en paramétre n’est
pas affine. Dans ce cas, nous proposons d’utiliser la Méthode d’Interpolation Empirique (EIM) de maniére
purement algébrique et en boite noire pour retrouver une approximation sous la forme affine en parametre. Ce
point est nécessaire dans la construction d’un procédure hors-ligne/enligne efficace pour assurer la performance
des modéles d’ordre réduits dans la phase en ligne. Le cas ou la géométrie de la structure est considérée comme
un parameétre du probléme est aussi abordé dans cette thése. Dans ce cas, nous choisissons la méthode basée sur
le déplacement d’un maillage au sens d’un solide déformable (SEMMT) pour paramétrer la variabilité de la
forme de la structure. Quelques études numériques et les applications industrielles sont aussi présentées pour
illustrer I’efficacité des techniques de réduction de modéles proposées.

Mots clés : Méthode des éléments finis, Couplage vibro-acoustique, Interaction de la structure immergée et
I’onde de choc acoustique, Explosion sous-marine, Réduction de modéles, Méthode d’Interpolation Empirique
(EIM), Technique de déplacement du maillage au sens d’un solide déformable (SEMMT), Algorithme POD-
Glouton.

Title: Reduced order modelling for parametrized time-domain vibro-acoustic problems - Application to the
design of structures subjected to underwater explosions.

Abstract: In this thesis, we developed a reduced order modelling framework for parametrized time-domain
vibro-acoustic finite element model into an open-source industrial software, code_aster, with the aim of tackling
large scale industrial problems. In particular, it is illustrated here for the design of submerged structures
subjected to underwater explosion. Three formulations of vibro-acoustic coupling are considered in this work:
formulation in structure displacement - fluid pressure - fluid displacement potential (ug, p, @), in structure
displacement - fluid pressure (ug, p), and in structure displacement - fluid velocity potential (us, ¢p). First, we
implement with in code_aster two new formulations, in (u,, p) and in (us, ¢), and the excitation induced by the
primary acoustic shock wave. Next, different stabilization techniques for Petrov-Galerkin projection based
model order reduction are proposed for each formulation. According to the stabilization techniques in hand, we
propose to make some modifications in the classical Greedy and POD-Greedy algorithm for the construction of
the reduced basis. We deal both in the case of affine and non-affine parametrized problems. In the case of non-
affine parametrized problem, we propose to exploit the Empirical Interpolation Method (EIM) in a purely
algebraic and black box way for recovering an approximation with an affine parameter dependence. This is one
of the main ingredients for the construction of an efficient offline/online decomposition procedure to ensure the
performance of the reduced order models at the online stage. We also consider the case where the geometry of
the structure domain represents the parameter of the problem, for which we chose to employ the Solid Extension
Mesh Moving Technique (SEMMT) for parametrizing the varying shape domain (mesh). Some numerical
studies and some industrial applications are also performed in order to illustrate the efficiency of the proposed
reduced order modelling framework.

Keywords: Finite element method, Vibro-acoustic coupling, Interaction of submerged structure and acoustic
shock wave, Underwater explosion, Model order reduction, Empirical Interpolation Method (EIM), Solid
Extension Mesh Moving Technique (SEMMT), POD-Greedy Algorithm.
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