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Abstract

The Constrained Application Protocol (CoAP) is a lightweight core protocol designed by the Inter-

net Engineering Task Force (IETF) used for communication between devices in the Internet ofThings

(IoT).Congestion control is substantial to overcome the limitations of suchdevices and the restrictions

imposed by the connecting networks. The CoAP standard defines a simple congestion control mech-

anism based mainly on retransmissions after timeouts and a binary exponential back-off procedure.

However, this simple protocol with its default parameters is not sufficient and can dramatically affect

the efficiency of CoAP. Several advancedmechanisms for CoAPwere suggested by the literature. Some

considered improving retransmission timeout estimation whereas others focused on augmenting the

retransmission procedure. The improvements in the second part are twofold: The first is Backoff-based

such as CoCoA+ and pCoCoA, while the second is rate-based such as BDP-CoAP. We will perform

critical analysis of these works and highlight their shortcomings and pitfalls, then present and evaluate

our approach in different uses cases and network scenarios.

In this research work, we propose new exact mathematical models to analyze the performance of

CoAP in lossy IoT networks. This study provides insights about improving CoAP congestion con-

trol in such networks and highlights the properties – including the limitations – of CoAP. Besides, we

show that the simple control mechanism reduces significantly CoAP performance especially in terms

of bandwidth utilization since it prevents the protocol from acting efficiently during congestion pe-

riods. We then propose new improvements in order to enhance the trade-off between reliability and

goodputwhile keeping the algorithms reasonably simple for constraineddevices. First, weoptimize fur-

ther the estimation procedure of the retransmission timeout in order to enhance congestion detection.

Timeouts are the only indicator used in CoAP to detect losses, and losses are used as a strong indica-

tor to detect congestion. Second, we replace the backoff algorithm by ”real” congestion control algo-

rithms inspired from the well-knownAdditive IncreaseMultiplicative Decrease technique and a recent

measurement-based congestion control called BBR. Our analysis using both our simulator and Con-

tiki/Cooja environment show that the rate-based approach outperforms the backoff-based approach.

Moreover, all the results show that our algorithms achieve a much better tradeoff between goodput,

reliability and overhead.
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1
Introduction

1.1 Context and Motivation

Driven by rapid technological advancements, where wired and wireless networks are ubiquitous, soci-

ety ismoving towards an always-connected state and has given birth to the era of the Internet-of-Things

(IoT). IoT represents a vision of the world where billions of devices with embedded intelligence, com-

munication means, and sensing capabilities such as washing machines, TVs, coffee machines and tiny

objects like sensors are all connected to the Internet [46]. Fig. 1.1 illustrates an overview of the IoT

concept in which objects from different domains are connected to the Internet. Moreover, objects in

the IoTentity are uniquely identifiable, with a knownposition, status, and added intelligence services to

benefit and expand the entity. Indeed, the integration of these smart objects with ubiquitous network

connectivity, microscopic sensors, and cloud storage has created the Internet of Things. Besides inte-

gration, data storage, processing, and analysis are fundamental requirements, necessary to enrich the

raw IoT data and transform them into useful information. Subsequently, IoT elements are becoming

the objects of everyday life characterized by a diverse capacities and capabilities.

Recently, IoT has grabbed huge attention in almost all areas of scientific and industrial fields such as

agriculture, manufacturing, homes, health care, disaster management and transportation. IoT applica-

tions include but not limited to:
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Figure 1.1: The overall picture of the IoT emphasizing different domains

• Smart Home

Home Automation [40] involves controlling and automating all the home’s embedded technol-

ogy. It is a residence where all its appliances such as air conditioners, washers, dryers, refrig-

erators, freezers, and camera systems are able to communicate with each other and remotely

controlled via Internet. Using smart products provides time, energy and money savings. For

instance, smart lightening systems adjust the lightening based on room occupation and day-

light availability. Smart thermostats remotely monitor and control room temperatures. Smart

security cameras using motion sensors detect different activities and can notify authorities if

needed. One important key feature is the flexibility in infrastructure so that devices from differ-

ent vendors can be easily integrated. Smart homes provide many benefits like comfort, energy

efficiency, low operating costs, and less human efforts.

• Healthcare

IoT as envisioned in healthcare systems is geared towards treatment of patients, in particular pa-

tients with chronic issues, disabled, and elderly people. Tomeet this end, many IoT applications

have been proposed over the years in the healthcare field. Healthcare-based IoT is considered as

an effective method aiming to enhance existing features of healthcare, increase convenience and

the quality of life, and reduce costs. This aim is envisioned via the use of Remote Patient Moni-

toring Systems (RPMS),management of health andfitness programs, supervision of chronic dis-

eases, children and elderly care, blood pressure and body temperature monitoring, monitoring

of glucose and heart functioning, andmedicationmanagement. For instance, RMPS [41] allows

for real-time monitoring of patients and also provides data for management purposes (informa-

tion, medical emergency management, etc.). Ambient Assisted Living (AAL) [58] addresses

the health care of aging and incapacitated individuals. In addition, fitness accessories are now
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suitable for smart devices to help individuals achieve their best shape. Thus, Healthcare-IoT has

the potential of enhancing patient experience, improvingmedical workflows, and optimizing the

use of resources [34].

• Disaster Management

Disasters can be classified as natural which include volcanoes, forest-fires, floods, and earth-

quakes whereas the man-made mainly include terrorist attacks, urban and industrial disasters.

Disasters have great impact on human life and industry. Being aware is better than being cured

after a disaster, and IoT has proven to be capable to provide significant and efficient solutions

to different problems for disaster management. Existing IoT approaches aggregate many events

related to disasters such as notifications, data analysis, locating victims, and remote monitoring.

For instance, the existing IoTapplications explored in researchdealwithmajor aspects of various

disasters including but not limited tomanagerial, monitoring, predictive and analysis. Although

there are approaches that handle major issues in disaster incidents, further improvement and

enhancement are still necessary in technological and design perspectives [51].

• Smart Grid

Smart Grids are developed to replace traditional power grids for reliable and efficient energy

service. This technology leverages distributed energy generators for many reasons, including

the improvement of energy-utilization in these generators, the reduction ofCO2 emissions, and

connecting customers with utility supplies via bi-directional networks. Integration of smart-

grids and IoT technology in houses and/or buildings can achieve the desired connection by in-

stalling smart meters [36]. Smart metering is one of the significant applications in smart grids

for environmental sustainability and energy issues recently. These advanced energy meters are

used for energy consumption measurement, energy monitoring and interaction with supplies

to provide real-time data including but not limited to supply and demand of energy. With this

data, utility providers and customers get a better idea about energy consumption and can thus

improve resource utilization and reduce energy-related costs [44].

• Smart Cities

Another application of IoT is in the transportation industry, wherein vehicles are part of a com-

munication network that allows for transportation management, control, and computing to ob-

tain an intelligent transportation system. In this system, traffic data and perception data are used

and computing is applied to get a higher safety in the transportation [44].

This widespread use of IoT applications in different areas and the growing number of physical ob-

jects connected to the Internetmotivates international communities and organizations to increase their

efforts in developing standards and protocols to respond to the evolution of the IoT. Besides, different
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groups – led by Internet Engineering Task Force (IETF), World Wide Web Consortium (W3C), Eu-

ropeanTelecommunications Standards Institute (ETSI), and the Institute of Electrical and Electronics

Engineers (IEEE) – have been formed to provide and standardize protocols to support the IoT. Fig. 1.2

presents a summary of the most known protocols defined by these groups.

However, it is important to note that not all of these protocols have to packed together in a given IoT

application. Moreover, some protocols, based on the type of an IoT application, may fail to support

that application.

Figure 1.2: Summary of the most known IoT protocols

Application layer protocols are used to exchange data among endpoints of distributed applications.

The importance of application layer protocols is that they provide rules for communication between

objects, type and format of the data being exchanged, and methods for error notification. Perhaps the

most important reason for the widespread adoption of the Internet is the design and development of

application layer protocols. In the following, weprovide anoverviewof someof thepresentedprotocols

in the application layer and their core functionality.

1. Message Queue Telemetry Transport (MQTT)

MQTT[49] is a simple lightweight application layer protocol, which is used to collect data from

remote sensors and send it to servers. MQTT is characterized by low power consumption, and

efficient distribution of information to several receivers. It uses a publish-subscribe architec-

ture. MQTTrelies onTCP (Transport Control Protocol) so in network environments with high

packet loss, retransmissions reduce the overall application latency [6]. In particular, TCP sends

and receives additional packets to establish the connection before the data exchange, which fur-
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ther increases the latency. In addition to the increased energy consumption, the incremental size

also increases the risk of having errors during the transmission.

2. Advanced Message Queuing Protocol (AMQP)

AMQP[18] is an openmessage exchange protocol that supports reliable delivery ofmessages. It

is considered in message-oriented environments and can be seen as the asynchronous comple-

ment of HTTP. AMQP implements different architectures such as message distribution, store

and forward, and routing. It also relies on TCP for transport so it is highly impacted by high

packet loss which causes excessive latency [44].

3. Extensible Messaging and Presence Protocol (XMPP)

Similarly, XMPP[33] is an instant messaging protocol based on XML streaming protocols that

has been adapted for use in IoT applications by means of protocol extensions. It enables real

time exchange of structured data between connected entities. It also supports bidirectional com-

munication. The client connects to the server and transmits messages based on XML streaming

protocol. XMPPusesXMLdata formatwhich generates significant overhead. Also, sinceXMPP

relies on both, TCP for transport and XML for encoding the messages, it inherits some limita-

tions that makes it inefficient in certain IoT network environments [44], [30].

4. Constrained Application Protocol (CoAP)

The IETFnominated theConstrainedApplication Protocol (CoAP), defined inRFC7252 [53],

as the application-layer protocol for the IoT. CoAP was designed by CORE (IETF Constrained

RESTful Environments) working group and became an Internet standard in 2014. CoAP is a

lightweight application-layer protocol based on REpresentational State Transfer (REST)model

for use with constrained devices and IoT networks [42], [27]. CoAP uses the request and re-

sponse approach between nodes and supports discovery of resources and services. CoAP can be

easily mapped with HTTP (HyperText Transfer Protocol) for integration with the Web. CoAP

provides both non-reliable and reliable modes of transmission based on whether packet losses

are tolerated or not. Reliability is achieved via retransmissions but the cost to pay is shorter bat-

tery life and higher latency. Although low packet losses and low latency are both desired, some-

times one is more sensitive than the other. For example, for weather IoT applications, where the

weather reports are based on a fast sequence of sensor data readouts, latency is more important

than packet loss; if a packet is lost, it can be ignored and the latest sensor values are read again.

On the other hand, for healthcare applications where patient’s health is monitored periodically,

packet loss ismuchmore important because each sensor data readout represents a sensitive state

for the patient.
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Due to the limited capabilities of objects in the IoT, the distinction among different protocols

is quite foreseeable. Indeed, HTTP and TCP introduce overhead and hence are not suitable in

such areas. Also, HTTP is a text-based and TCP is a connection-oriented transport that requires

setting up andmaintaining the connections, which is burdensome from a communication and a

processing perspective. Hence, application layer protocols for the IoTmust be selected carefully

by taking into account all these constraints. Unlike the aforementioned protocols, CoAP relies

on the User Datagram Protocol (UDP) instead of TCP, thus eliminating the cost of establishing

and maintaining connections, making it more suitable for the IoT applications. Furthermore,

CoAP adjusts someHTTP functionalities to meet the IoT requirements such as low power con-

sumption and reduced operations in the presence of lossy environment and smart tiny objects

with limited capabilities. Consequently, CoAP is designed to bring web functionalities to con-

strained devices that operate in Low-power and Lossy Networks (LLNs).

Despite its wide implementation in different areas to gather data from tiny objects and con-

trol constrained devices, CoAP reaction to network congestion is considered a great limitation

of the protocol that limits its proper functioning and causes performance degradation such as

packet losses, increased packet latency and overhead. Even worse, the network may become

useless when the periods of congestion are long. Hence, the improvement of IoT protocols’

performance is important, and as discussed previously, it is even critical especially in contexts

where human lives are involved. Specifically,maintaining a proper functionalitywhile improving

the performance includes providing an efficient congestion control mechanism which reduces

packet losses and energy consumption, and improves goodput and delays. This motivates us to

explore and improve CoAP performance in this research work.

1.2 Research Challenges and Problem statement

From one side, with the vast number of objects connected with IoT, a huge amount of data is collected,

transmitted and processed. From the other side, the wireless network and the sensor objects in IoT

have limited network bandwidth and energy. Since constrained devices suffer from limited resources

and processing capacities, congestion occurs when the node’s traffic load exceeds its available capac-

ity, and/or when high traffic is generated during the communication between large number of nodes.

Other network related reasons are involved when somemobile networking technologies embrace sud-

den transmission delay spikes in addition to classic failures or disasters. As we know, congestion nega-

tively affects the performance. Therefore, congestion control plays an important role in satisfying per-

formance requirements. To this regard, it is important to improve performance in IoT networks but

from one side, there is a lossy environment and limited network resources in terms of bandwidth and

from the other side, devices have limited resources in terms of energy, processing capabilities andmem-
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ory. Actually, IoT constrained devices can be too small and this can be noticed when these devices

are compared to real life objects as illustrated in Fig. 1.3. This is precisely where the challenges come

through.

Figure 1.3: Constrained devices compared to real life objects

Another important aspect is that the performance in some IoT applications is critical where sensitive

information is exchanged. In this context, healthcare IoT includes tracking and monitoring patients,

elderly care, chronic diseases and even remote services. In this kind of applications, researchers usually

tend to reduce losses and improve packet delay. For example, if a patient on a wheel chair falls down,

packet losses in this case is unbearable.

Also, another important IoT application is disaster management. Disasters have destructive impact

on economics and human life. Thanks to IoTwhich has proven to be capable of providing solutions for

disaster management. Here again, performance is critical in terms of packet loss and latency.

Therefore, a bad protocol choicewill affect the functioning of the smart object and the overall perfor-

mance in general. For instance, HTTP and TCP are not suitable for devices in such environments due

to the overhead they cause. Also, TCP is a connection-oriented transport protocol and requires setting

up and maintaining connections. As a consequence, selecting an application layer protocol must be

done carefully to take into account the aforementioned constraints in IoT networks.

For this reason, IETF designed the Constrained Application Protocol (CoAP) for data transmis-

sions between applications of IoT devices. At the same time, CoAP meets the requirements of IoT

constrained environments. As a result, CoAP has been widely used in different IoT applications rang-

ing from smart cities, smart grid, smart homes to health care and disaster management.

The standard CoAP provides a basic congestion control mechanism based on retransmissions with

a binary exponential backoff in case of packet loss, i.e., when no acknowledgement (ACK) is received

[53]. In particular, it uses a fixed retransmission timeout valuewhich is doubled for each packet retrans-

mission. Nevertheless, recent studies demonstrate that it is still necessary to improve the congestion

control mechanism of CoAP to improve further its performance in terms of reliability and efficiency

[38, 45]. Besides, these studies showed that CoAP is not eligible to be adaptive to different network

conditions.
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Other related works have analyzed congestion control of CoAP and proposed improvements in cal-

culating the retransmission timeout and/or the backoff procedure [14, 10, 11]. On one hand, the al-

gorithms proposed by the literature outperform the standard CoAP [55], while on the other hand, the

improvements come with the cost of performance degradation, more complexity, and increased over-

head as we will see in chapter 2.

Now, clearly, the ultimate challenge is the design of a new congestion control algorithm for CoAP

that is suitable for constrained devices and at the same time maintains an utmost performance in lossy

networks. To do so, first we perform an in-depth analysis of the existing protocol. Second, we identify

the problems of previously suggested algorithms regarding improving the congestion control mecha-

nism in CoAP. In general, ensuring the simplicity of any protocol design surrounded by constrained

factors is a huge challenge.

1.3 Contributions and Research Approaches

In this thesis, we are looking to study deeply the CoAP protocol in lossy networks and design a better

congestion control mechanism. Among the different goals of this thesis, the main one is to propose a

new exact analytical model to analyze the performance of CoAP in network environments modeled by

Bernoulli loss model, Simple Gilbert loss model and the well-known Gilbert-Elliott two-state Markov

process. Therefore, CoAP protocol needs to be analyzed so that we will be able to answer clearly this

question: Howto improve further theperformanceof theprotocol? Basedonour assessment, we found

that the default simple congestion control mechanism can significantly reduce CoAP performance es-

pecially in networks with high packet loss, and thus preventing the protocol from acting efficiently dur-

ing congestion periods. Accordingly, we suggest to reduce efficiently the retransmission timeout and

supplant the backoff by a rate-based control while still ensuring simplicity. The resulting protocols,

named IDC-CoAP and MBC-CoAP, are evaluated against protocols from the literature to show con-

cretely their efficiency. Simulations and experiments in a realistic environment show that our proposed

mechanisms reduce protocol losses and overhead, and provide better rate performance compared to

CoAP and other previous works that aim to enhance it. The contributions of this research work are

summarized as follows:

• Profound analysis and performance evaluation of CoAP through a complete and fast analytical

model under the Gilbert-Elliott network loss model without any approximations.

• Profoundanalysis andperformanceevaluationof several previous congestioncontrol algorithms,

supported by the development of an original simulator dedicated toCoAP testing in a controlled

and repeatable environment.

• A new algorithm for retransmission timeout reduction to enhance congestion detection.
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• Integration of two new congestion control rate-based algorithms in CoAP instead of the less

efficient backoff procedure while keeping the complexity reasonable for constrained devices.

• Performanceevaluation results usingbothouradhoc simulator and thewell-knownCooja/Contiki

realistic IoT environment show that our rate-based congestion control for CoAP achieves a bet-

ter tradeoff between reliability, transmission overhead and bandwidth utilization.

Hence, our research work is based on analyzing precisely CoAP performance using the analytical

model and we confirm the utility of reducing the retransmission timeout. Besides, the backoff pro-

cedure denies the protocol from achieving a better tradeoff between rate performance, reliability and

overhead. Accordingly, we propose further substantial improvements to congestion control algorithms

for CoAP based on the concept of rate control instead of the backoff in order to overcome previous lim-

itations and enhance the tradeoff between reliability and rate performance.

1.4 Thesis Outline

The remainder of this thesis is organized into 3 parts. In the first part, through chapter 2, we analyze and

synthesize the state of the art concerning CoAP performance evaluation and congestion control, then

we highlight their shortcomings. In the second part, through chapters 3 and 4, we consider CoAP per-

formance evaluation via modelling. In chapter 3, we present our first analytical models using Bernoulli

loss model and Simple Gilbert loss model. There, our performance metrics are presented which will

continue with us in chapter 4 where we compute our formulas using the Gilbert-Elliot Markov chain

model. The third part is drawn in chapters 5 and 6where our new design for congestion controlmecha-

nism is introduced, in particular, its twomain components: congestion detection and congestion coun-

teraction. In chapter 5, we present our algorithm to efficiently compute the retransmission timeout for

the congestion detection phase while in chapter 6 we present our algorithm for the congestion coun-

teraction phase. Finally, we conclude this thesis in chapter 7 and draw our future work directions.
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2
Analysis and shortcomings of previous performance

evaluation and congestion control of CoAP

In this chapter, we explore the state of the art related to CoAP performance evaluation and congestion

control algorithms. We introduce different works to evaluate CoAP via modelling and simulations.

We then present in-depth analysis of previousmain algorithms suggested to improveCoAP congestion

control mechanisms. In particular, the two components: Congestion detection and congestion coun-

teraction. For this purpose, we developed a simulator using the well-known programming language

Python. Through our simulator, we will be able to perform profound analysis of CoAP algorithms and

show their corresponding behavior. The simulator will be presented in details in Chapter 5. Different

patterns of Round Trip Time (RTT) are generated to study and analyze the performance of RTO cal-

culation (congestion detection) of different congestion control algorithms. Besides, different network

conditions are simulated to evaluate the full congestion control algorithms. Consequently, we highlight

the main problems and weaknesses of the suggested approaches which enable us later on to find better

alternative solutions. Before concluding the chapter, we provide our insights to tackle and overcome

the highlighted problems, and providemore efficient solutions in order to enhanceCoAPperformance.
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2.1 CoAP in a nutshell

CoAP [53] is a lightweight application-layer protocol designed for constrained devices in IoTnetworks

which is based on Representational State Transfer (REST) that supports basic operations like GET,

POST, PUT and DELETE. Similar to the position of HTTP for Web, CoAP is dedicated for IoT de-

vices with limited hardware capacities and functions. CoAP adopts a binary message format to reduce

overhead. CoAP messages have mandatory fields (Version, Type, Token, Code, Message-ID) and op-

tional fields (CoAP Options and Payload). The design of CoAP messages has been intended not only

to keep messages small, but also to make them easy and light to be processed.

CoAP adopts some IoT-oriented features, such as asynchronous message exchange and multicast

communication. Fig. 2.1 is an illustration of a CoAP environment where CoAP clients are communi-

cating with different CoAP servers. The figure shows the client-server interaction model which hap-

pens within the same network or through the internet. The presented network is geographically dis-

tributed over hundreds of meters where communications between CoAP nodes take place via CoAP

protocol. In this client-server relationship, CoAP servers host information about the resource (ex. pres-

sure, temperature, humidity, light state, healthcare related such as blood pressure, EEG, oxygen satu-

ration, heart rate, etc..) which will be manipulated by CoAP clients. Clients send requests for specific

action (read/update/delete using GET/POST/PUT/DELETEmethods) on a resource hosted by the

server, and the server sends the response after processing the request. Communication details will be

presented in the next figure.

Figure 2.1: An overview of connected devices via CoAP protocol

CoAP operates on top of UDP, which is a lightweight transport protocol because UDP does not

require handshaking or end-to-end connection establishment between communicating devices which

consequentlymakesUDPcommunication very efficient. Also, the connection-less nature ofUDPdoes

not require communication andmemoryoverheadswhich is introduced in the establishment andmain-

tenance of TCP connections. CoAP is based on a request/response communication model and CoAP

URIs identify the resources of the application. Representations of resources are exchanged between the
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server and the client. A client that is interested in the state of a resource sends a request to the server

then the server responds with the current representation of the resource. CoAP URIs use either the

coap or coaps (secure CoAP). Coaps uses DTLS as a secure transport, similar to HTTP’s use of TLS.

The default UDP port for coap is 5683 and 5684 for coaps. As per fig 2.2, the client is requesting the

room temperature (temp) and the server is replying with the sensor value.

Figure 2.2: Communication between nodes using CoAP protocol

Compared to other protocols used for constrained devices such asMessageQueueTelemetryTrans-

port (MQTT) and Advanced Message Queuing Protocol (AMQP) [42], one major difference is that

CoAP relies on UDP for communication, consequently removing the load of establishing and main-

taining connections, which may be infeasible for smart objects with limited capabilities. Hence, it is

suitable for communications in wireless networks that suffer from high packet loss [56] because it re-

moves the overhead and complexity imposed by other transport protocols. However, as UDP is inher-

ently not reliable, CoAP should provide its own reliabilitymechanismwhich can be designed to be very

simple. CoAP communications can be selected to use either confirmable (CON) or non-confirmable

(NON) messages. The standard CoAP [53] uses a simple mechanism for congestion control based

on retransmissions with a binary exponential backoff (Fig. 2.3) when reliable communication is re-

quired by the application. When a packet containing a CON message is lost, the client re-sends the

message at doubled increasing intervals, until an acknowledgement (ACK) is received or the allowed

number of attempts is reached. Two parameters control the retransmission process: An initial timeout

valueRTOinit and a maximum retransmission value r. For each new CON message, the first timeout
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is set to a value between RTOinit and RTOinit times a randomization factor f , and the retransmis-

sion counter is initialized to 0. If the sender did not receive an ACK for the CON message, CON is

retransmitted and the retransmission counter is incremented and the timeout value is doubled. The

whole process for each CON is repeated until the counter reaches its limit r or an ACK is received by

the sender. This process is illustrated in Fig. 2.3.

Figure 2.3: CoAP Congestion Control. Retransmission counter: r=4, Retransmission timeout: RTOinit=2s, Random factor:
f=1.5, Backoff factor: b=2

CoAP literature related toour research is twofold. Thefirst one focusesonanalyzing theperformance

of the default CoAP protocol usingmodelling and experiments, while the second one includes evaluat-

ing different CoAP congestion control algorithms and presenting improvements on CoAP parameters

and the congestion control mechanism.

2.2 CoAP Modelling and Performance Evaluation

The downside of default CoAP parameters on performance can be identified by simulations and/or

modeling. Although some previous research works have focused on evaluating CoAP based on math-

ematical models, some of these works did not provide models for different performance metrics while

otherworks are not precise aswewill see next. For instance, some analyticalmodelswere developed for

CoAP performance in [30] and [31]. However, they are not adequate because they use the steady state
probabilities of the Gilbert-Elliott (GE) Markov chain to analyze successive transmitted packets that

are correlated. In other words, the GE model is used as if it is equivalent to a Geometric distribution

(Bernoulli) with the probability being one of the steady state probabilities of GE. As a consequence,

these models do not even apply for the simple Gilbert case, i.e. k = 1, h = 0. Besides, these works
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consider thatGE is applied to data packets and also to ack packets. Normally, GEmodel should be used

as an observed network model by a given node, not as a model that applies losses to all packets coming

from different nodes.

CoAP hires non-reliable and reliable operation modes [53] depending on whether packet losses are

tolerated or not, respectively. The author in [29] presented an analytical model of CoAP packet loss

for each CoAP transport mode. Afterwards, CoAP transport mode is dynamically selected based on

the packet loss goal as an input in order to preserve battery life. The model is used to estimate the

packet loss at the application layer and is built in accordance with the Markov chain but not extended

to include other performance metrics such as latency, goodput and overhead. Also, the model is not

used to improve CoAP performance in reliable mode but to switch between different modes.

The authors in [24] carried out quantitative evaluation of CoAP performance in dynamic network

using an emulator (CORE) versus HTTP transmission over TCP. They also introduced briefly three

formulas for success rate, overall delay and overhead. The delay is formulated byDO +
∑R−1

i=1 PS(1−
PS)

iti where DO is the end-to-end one-way delay, PS is the success rate probability of one transmis-

sion attempt, ti is the waiting time of the ith retransmission attempt, and R is the total number of

transmission attempts. Although they introduced three performance metrics, their probabilities are

not accurate and the presented delay formula iswrong because it is based on the geometric distribution

while we must use the truncated geometric distribution. CoAP was not modelled in different network

loss models such as the Simple Gilbert or Gilbert-Elliot. Moreover, the presented formulas were not

validated with respect to the experimental results.

In the literature, the Gilbert-Elliot (GE)model is commonly used in several applications. Many pre-

vious works use the GE model as a tool to study the performance of some network mechanisms for

instance [13, 39, 23]. Theseworks can not be applied to compute the performance of CoAP such as the

theoretical loss probability under a given traffic pattern. For instance, GE is usually used to challenge

and evaluate Automatic Repeat Request (ARQ) protocols. In general, ARQ protocol follows three ba-

sic approaches: stop-and-wait (SW), go-back-N (GBN), and selective-repeat (SR) [39]. In SW ARQ,

the sender receives the ACK of a packet before sending a new packet. In GBN ARQ, packets are sent

continuously without waiting for ACKs/NACKs. The sender retransmits the negatively acknowledged

packet and all subsequent packets if a NACK is received. In SR ARQ, packets are sent as in GBNARQ,

but only negatively acknowledged packets are retransmitted. Although Gilbert-Elliot model is used in

[39], the work considers SR ARQ with Negative ACK without the use of timeouts, while CoAP con-

siders Stop-and-Wait behavior which is based on timeouts. The authors have pointed the important

difference between these two behaviors. The analysis is completely different for CoAP. Also, the con-

gestion control behavior in CoAP is absent in ARQ studies for link layers. Their work applies to link

layer reliability protocols in wireless channels.
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On the other hand, previous Gilbert-Elliot models in wireless links are also not applicable. For in-

stance, the authors in [7] presented a model to evaluate the performance of packet loss in wireless en-

vironment based on two-stateMarkov process channel mode. They analyzed the probability of success

packets transmission within a network suffering from bursty losses. They differentiated between two

cases. In the first case, packets are duplicated and the duplicated packet is sent after the transmission of

the original packet while in the second case a newly generated packet is transmitted couple of times. Al-

though they provided strategies for setting packet delay to optimize performance and reduce the effect

of packet losses inmobile environment, they studied a transmissionmechanismwhich is different from

CoAP mechanism which is a Send-and-Wait with the involvement of XORing or duplicating packets.

In [23], the authors study frameaggregation andblock acknowledgments employed in IEEE802.11n

standard. The proposed model calculates an expected number of retransmissions by estimating the

amount of sub-frames to be retransmitted under Gilbert-Elliot channel model. With their Markov

model, they are able to formulate the throughput at MAC layer as a function of other parameters such

as physical data rate, error rate, and path length. Although the proposedmodel can describe some char-

acteristics, such as fluctuations and burstiness, the studied behavior of aggregation and block acknowl-

edgment is different from the behavior of CoAP.The authors do not consider timeouts. As many other

related works, the authors assume that before each transmission attempt, the Gilbert-Elliot model is in

steady state which is not suitable for our CoAP analysis in this thesis.

The authors in [13] tried to characterize the quality of wireless links using the Gilbert-Elliot model.

They considered the reception of packets as a sequence of bits: 1 for the successful reception and 0 for

the lost packet. This formulation leads to the possibility of computing the stationary probabilities of

being in the Good or Bad state in the Gilbert-Elliot model, however, they do not compute the theo-

retical loss probability under a given traffic pattern. They analyze the packet reception ratio based on

real measurements and Gilbert-Elliot model is used only to analyze some network scenarios but not to

model the performance metrics.

As we have seen, some previous research work considered using modelling to evaluate CoAP, but

they fail to correctly compute the performancemetrics. Some used the steady-state probabilities of the

Gilbert-Elliot model which is inadequate for CoAP protocol. Other related literature performedCoAP

evaluation using experiments [54, 25, 19, 56]. However, evaluating CoAP and choosing its parameters

based on few experiments is insufficient.

2.3 Congestion Detection: RTO Calculation

Recently, there have been works conducted to improve CoAP performance and particularly its conges-

tion control mechanism. According to our perception, two main procedures should form this mech-

anism: Congestion detection and congestion counteraction. In this section, we will present previous
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works related to different RTO calculation approaches proposed to enhance congestion detection. As

a matter of fact, timeouts are the only indicator to detect packet losses in CoAP. These losses are an

important indicator for congestion. After presenting the different works related to estimating the re-

transmision timeout (RTO), we will analyze the shortcomings of the main proposals.

In [20], the authors suggested adjusting CoAP parameters to handle high traffic and high loss prob-

ability. They experimentally adjusted the constant value of the retransmission timeout (RTO) and the

random factorf , and showed that the results achieved by tuningCoAPparameters overtakesMQTTre-

sults in termsof throughput and latency. They adoptednewCoAPcongestion control parameters based

on experiments which is not sufficient since experiments are limited and usually do not cover different

network conditions. Also, using small values of the backoff factors will make the sender to transmit

faster without waiting for the proper time during congestion periods which induces high packet losses.

The work in [43] proposed a congestion control scheme based on round trip time (RTT) measure-

ments through a counter using the option field of the CoAP message. The sender recognizes the ori-

gin of an ACK and calculates the correct RTT to update the retransmission timeout (RTO) without

smoothing. Therefore, instead of using the default RTO CoAP parameter (2 sec) for the retransmis-

sions when ACK is not received, the authors use the new calculated RTO for the retransmissions.

An adaptive mechanism for handling congestion in CoAP called Fast-Slow RTO (FASOR) is pro-

posed in [37]. RTO computation is composed of fast and slow RTO calculation. Fast RTO is based

on TCP retransmission timer and updated with unambiguous RTT samples (where ACK messages

matches CON messages) while slow RTO is measured from the original transmission of a packet till

the arrival of its ACK regardless of the required number of retransmissions. Fast RTO is used as a sign

of link error (interference)whereas slowRTO is a sign of heavy congestion. The authors evaluated their

algorithmamongCoAPandan advanced versionofCoAPcalledCoCoA+,whichwill be explorednext,

using Netem [28] as network emulator and libcoap library [8]. The authors tried to deduce whether

a packet loss is due to link disruption or due to congestion by examining RTT samples (ambiguous or

not), however, RTT analysis can hardly be used to detect the reasons behind a packet loss. Also, when

the network is lossy, the backoffmechanismwill lead to a behavior similar toCoAPdue to the exponen-

tial backoff mechanism. They also set the retransmission counter to 20 instead of 4 which may cause

long packet delays and a very low throughput which might be useful only when packet delivery must

be guaranteed on the behalf of all other performance metrics.

CoAP Simple Congestion Control Advanced CoCoA [15] specifies RTO calculation based on TCP

RTO computation algorithm where RTT is used to update the RTO value automatically. CoCoA uses

twoRTOestimators: A strong and aweakRTOestimator that are updatedwhenmeasuring strongRTTs

and weak RTTs respectively. When an ACK is received after the first transmission of a packet, strong

RTTs are measured while weak RTTs are measured when an ACK is received after at least one retrans-
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mission of the packet. Strong RTTs are used to estimate an average of strong RTTs (RTTV ARstrong)

which is in turn used to update the strong RTO estimate. Similarly, an estimated average of weak RTTs

(RTTV ARweak) is used to update the weak RTO estimate. When a new RTT value is obtained, the

following formulas are calculated:

RTTV ARX = (1− β)RTTV ARX + β|RTTX −RTTXnew| (2.1)

RTTX = (1− α)RTTX + αRTTXnew (2.2)

whereX represents either strongorweakwithα = 1/4 andβ = 1/8. ThenRTOX andRTOoverall

are updated accordingly.

RTOX = RTTX + 4 ∗RTTV ARX (2.3)

RTOoverall = 0.5 ∗RTOX + 0.5 ∗RTOoverall (2.4)

The new RTO estimation is used as the initial RTO (RTOinit) for the next packet transmission.

The authors showed that the performance of CoCoA is better than CoAP in congested networks but

different studies [10] show that it has some limitations with bursty traffic.

The authors in [9] evaluated another version of CoCoA namedCoCoA-S using only the strong esti-

mator. They employed alternative algorithms developed for TCPwhich are shown to be inadequate for

CoAP.CoCoA-S is conservative in lossy networkswhich results in low throughput. Themain algorithm

CoCoA delivers better performance in comparison to CoCoA-S.

CoCoA+ [10] has adopted the same RTO estimation mechanism presented in [15] with minor up-

dates on the weak estimator weights. They also introduced new variables in equation (2.3) to update

RTO estimation. The equation becomesRTOX = RTTX +KX ∗ RTTV ARX whereKX repre-

sents eitherKweak orKstrong with values 1 and 4 respectively. StrongK is used to update the strong

RTO estimate while weak K is used to update the weak RTO estimate. In addition, they added an

ageing mechanism to set RTO values if RTT is not updated for a certain time. The impact of the weak

estimator is reduced by reducing its weight but according to [14], this countermeasure works well only

in steady conditions and when the network load is constant.

pCoCoA [14] has suggested different modifications to CoCoA+RTO estimation in order to reduce

spurious transmissions which refers to packets that are retransmitted because of incorrect estimation

of RTO. Although different research works suggested improvements to CoCoA RTO calculation algo-

rithm and various modifications have been implemented over the past years, pCoCoA proved to over-

come many limitations suggested by other works. As a consequence, in the following, we will explore
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the latest version, pCoCoA [14]. The retransmission timeout calculation is based on TCP Linux. Eval-

uation showed an improvement of the RTO calculation using several weights to set the round-trip time

variance. However, many instructions are used which increases the processing overhead in constrained

devices. The algorithm consists of the following main aspects:

- Introducing an option to match each ACK message with its relevant CON message

- A mechanism to calculate the retransmission timeout (RTO) based on linux TCP

- A variable backoff mechanism to set the RTO for retransmissions adopted from CoCoA+ [10]

which is presented in the next section.

1. ACK-CONmatching: InCoAPandCoCoA+, there is nomechanism tomatch aCONmessage

with its correspondingACK. pCoCoAadopts the transmission counter (TC)option to link each

ACK message with its relevant CON message even when the CON is retransmitted. In particu-

lar, TC is set, incremented for each retransmission and echoed in theACK.ACK-CONmatching

is based on the TC value. This mechanism is used for round-trip time estimation as well as de-

tecting spurious retransmissions. A retransmission is considered to be spurious when the CON

message is falsely retransmitted just because the retransmission timeout value was insufficient.

2. pCoCoA approach for RTO calculation: The RTOinit calculation in pCoCoA follows almost

the same algorithm as the one implemented for TCP in the Linux Kernel [52] with additional

instructions. RTOinit value is updated according to RTT measurements. RTOinit calculation in

pCoCoA tries to handle two problems: First, when RTT increases suddenly and causes RTOinit

overestimation. Second, when RTT variance (RTTVAR) drops to a small value leading to spuri-

ous retransmissions. pCoCoA algorithm introduces the maximum mean deviation (mdevmax)

for the RTO.The parameters are initializedwhen the first corresponding RTTvalue R is received

as follows: SRTT ← R, RTTV AR← R/2, mdevmax ← max(R/2, 250ms), andRTO ←
SRTT +mdevmax.

When a new value R is computed, RTOinit is updated for the future transmissions. SRTT and

RTTVAR are updated using different weights to slow down the sudden decrease when fluctu-

ations happen (block 1 in Algorithm 1 pCoCoA). When RTTVAR is less than the difference

between SRTT and R, the weight β = 1/4 is used to update RTTVAR value, otherwise the pa-

rameter α = 1/8 is used.

When there is a sudden increase in the network delay,mdevmax with agingmechanism is intro-

duced to increase RTO value accordingly (block 2).

If spurious transmission is detected, k is set to 6, otherwise, it is set to 4 (block 3).
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Algorithm 1 pCoCoA RTO calculation: block 1
SRTT = (1− α)SRTT + αR
if R < (SRTT − RTTVAR) then

RTTVAR = (1− γ)RTTVAR + γ|SRTT −R|
else

if |SRTT −R| > RTTVAR then
RTTVAR = (1− β)RTTVAR + β|SRTT −R|

else
RTTVAR = (1− α)RTTVAR + α|SRTT −R|

end if
end if

Algorithm 1 pCoCoA RTO calculation: block 2
if R > SRTT then

if RTTVAR > mdevmax for 3 consecutive times then
mdevmax = average of the last 3 RTTVAR

else if RTTVAR > mdevmax for 8 consecutive times then
mdevmax = (1− β)mdevmax + βRTTVAR

end if
end if

Algorithm 1 pCoCoA RTO calculation: block 3
if (spurious) then

k = 6
else

k = 4
end if
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Lastly, RTOinit is updated using another smoothed variable SRTO. SRTO calculation is based

on the spurious flag k in order to limit the minimum SRTO values. Then,RTOinit is computed

using another weighted sum that combines SRTO and previous RTOinit as per block 4.

Algorithm 1 pCoCoA RTO calculation: block 4
SRTO = SRTT +max(k ∗ RTTVAR,mdevmax)
RTOinit = (1− δ)SRTO + δRTOinit

2.4 Analysis and Shortcomings of Previous RTO Estimation Algorithms

InCoAP, RTO is fixed and its default value is 2s, the initial RTObefore the first retransmission attempt

is chosen from a fixed interval [2, 1.5 ∗ 2] according to CoAP RFC [53]. The main difference in the

improved algorithms of RTO calculation compared to CoAP is the use of Round-Trip Time (RTT)

to set RTO. Then, similar to CoAP, a dithering technique is implemented to the estimated RTO value

and hence the initial value of RTO is chosen from the interval [RTOinit, 1.5 ∗ RTOinit] [10]. In the

following, we will present the shortcomings of previous RTO calculation algorithms.

2.4.1 Inefficient weak and strong estimators

As already mentioned, CoCoA and CoCoA+ use two RTO estimators, weak and strong. A weak RTO

estimator is updated when measuring weak RTTs and strong RTO estimator is updated when measur-

ing strong RTTs. Weak RTT is sampled from transactions that require at least one retransmission of a

CoAP message while strong RTT is sampled from transactions that do not require any retransmission.

However, subsequent updates of the RTO strong estimator when RTT is not oscillating can cause the

new value ofRTOinit to increase enormously if RTT decreases suddenly. In particular, after some sta-

ble measurements, the variance of RTT (RTTVAR) becomes too small, hence, any sudden fluctuation

in RTT increases RTTVAR and consequently increases theRTOinit because it is multiplied by 4 as in

equation (2.3). Therefore, their design leads to undesired effects on the calculation of RTO values.

In CoCoA+, they kept the weights of the strong estimator which imposed the same problem. This

is illustrated in Fig. 2.4, where RTT is varied continuously according to a normal distribution with

mean 2000ms and a standard deviation of 50ms during 50 times, then a sudden change to a normal

distributionwithmean 3000ms and a standard deviation of 50ms during 50 times, then a sudden return

to the previous distribution and so on and so forth. The green plot represents the value of RTO which

is estimated according to RTT samples (red plot). The x-axis represents the number of samples over

time. As shown in the figure,RTOinit increases when RTT decreases and it looks like RTO values are

inversely estimated (x-points at sequence numbers 400 - 415). On the other hand, CoCoA+ authors

tried to minimize the effect of the weak estimator by using 0.25 and 0.75 weights instead of the 0.5
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Figure 2.4: CoCoA+ RTO estimation

weight in their estimation: RTOinit = 0.25 × RTOweak + 0.75 × RTOinit. Also, they reduced

the value ofKweak from 4 to 1. Although this changemight reduce the impact of the weak estimator in

some network scenarios, however, it will fail to increase the RTO value efficiently when RTT increases

as per Fig. 2.4 (x-points at sequence numbers 450 - 452). After x-point 452 and till x-point 460, RTO

keeps converging to a very high value. So here again RTO does not converge properly. Hence, not only

this new update is unable to overcome the shortcomings of CoCoA but will also lead to a sequence of

spurious transmissions.

2.4.2 Spurious Transmissions

InCoCoA+, theRTTVARvariable, that calculates themean variance of RTT, is reducedwhenRTTsam-

ples are similar. Hence,RTOinit values become close to the sampled RTT. The problem occurs when

RTTvalues fluctuates after certain stable behavior of the networkwhich usually happens in case of inter-

ference, low signal strength or intermittently dropping the connection with other nodes. This sudden

change after some stable RTTmeasurements increases the probability of having spurious transmissions

as can be observed from Fig. 2.4.

In pCoCoA,whenRTTincreases suddenly to a higher value, RTO increases because of the smoothed

RTT(SRTT)valuewhich is based on the average of themeasuredRTTs. However, after few transactions

with lower RTTs, RTO decreases very closely to RTT which leads to spurious transmissions. In Fig.

2.5, we simulated such scenario where we plot the evolution of RTT values and RTO values over time.

We used the same RTT samples presented in Fig. 2.4. When RTT decreases suddenly, pCoCoA RTO

converges quickly and this is risky because the sudden decreasemight be followed by a sudden increase

which leads to spurious transmissions as shown in the figure (bold green x-points at sequence numbers
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Figure 2.5: pCoCoA RTO estimation vs preferable RTO Estimation

451 and 452). A better design should handle RTO convergence gradually when RTT decreases as per

the blue plot in the figure.

2.4.3 Large RTO Estimations

It could be simple to estimate RTO much greater than RTT to avoid spurious transmissions. However,

the larger RTO, the lower the goodput and the longer the transmission delay. Also, the reaction to

congestionmay takemore unnecessary time. Ideally, RTO should be as close as possible to RTTvalues

without triggering spurious transmissions. Particularly, when RTT increases suddenly as simulated in

Fig. 2.5 and Fig. 2.4, RTO is calculated by CoCoA+ and pCoCoA after the sudden increase of RTT

but not fastly enough to avoid spurious transmissions. In such case, RTOmust converge quickly as per

the blue plot of Fig. 2.5 to avoid spurious transmissions but without exceeding that much RTT values

as CoCoA+ and pCoCoA are behaving. Note that RTT values can increase suddenly due to severe

congestion or other factors such as burst connection arrivals or handoffs in wireless networks.

2.4.4 Complexity

As per our observations in different network scenarios, the analysis of the RTO values computed by

CoCoA+ has shown very high values of RTOwhen RTTdecreases. We have examined this behavior in

almost all simulations even the ones with few fluctuations in RTT samples before the sudden decrease.

In Fig. 2.6, the RTO estimators could not prevent the unexpected increase of RTO values (x-points

at sequence numbers 200, 300, 400, 500). Also, as presented previously, the weak estimator leads to

23



spurious transmissions. Therefore, the efforts of declaring andmaintaining the variables (Weak - Strong

for each variable name) are doubled without making a substantial impact on RTO convergence.

pCoCoA adopts RTO calculation mechanism similar to the one implemented in Linux TCP [52].

Although Linux TCP is used bymany network applications in the internet, its complexity makes it not

efficient for constrained devices that are limited in storage and processing capabilities. Especially, our

simulations show that the block for calculatingmdevmax in Algorithm 1 pCoCoA block 2 is being exe-

cuted up to 70% in each simulation but not being used inRTOinit final calculation except in few cases

as shown in Fig. 2.7. We tested 29 different RTT network scenarios (x-axis) which are detailed later

in Table 5.1 (Chapter 5 - Section 6.2). The blue bars show the calculation formdevmax if RTTVAR is

greater than mdev for 3 consecutive times, while the red bars present the calculation mdevmax when

RTTVAR is less thanmdev for 8 consecutive times. Theyellowbars present theusageofmdevmax when

calculating SRTO. Although it is calculated in all the transactions, mdevmax is rarely used. This over-

head might seem negligible with normal machines but it increases energy consumption and overhead

computation in a constrained IoT environment for a negligible benefit.

Figure 2.6: CoCoA+ RTO behavior vs RTT fluctuations

2.4.5 Dithering technique

For each newCoAPmessage,RTOinit is set to a randomduration using a random factor. As per CoAP

RFC, this random factor should have a value that is different from 1 to protect from synchronization

effect. The default value used by the original CoAP is 1.5. The same procedure is implemented in the

improved and most recent versions of RTO calculation mechanisms, CoCoA+, 4-state and pCoCoA.

However, applying this dithering technique to RTO values which are calculated using RTT measure-

ments and a couple of instructions to tune the moving averages will have a bad impact on the waiting
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Figure 2.7: mdevmax usage by pCoCoA

time for the next retransmissions. The main reason is that such technique will increase the initial RTO

value by around 25% up to 50%, therefore, all the efforts done to reduce and optimize RTOinit are

vanished.

2.5 Congestion Counteraction

In this part, we present the literature and in-depth discussion related to the complementary part of

congestion control mechanism: The congestion counteraction. We dig up two approaches to handle

congestion counteraction: Backoff-based and Rate-based. From the analysis of both approaches and

through the obtained results, the shortcomings of these mechanisms are identified afterwards.

2.5.1 Backoff-based approach

Here, we present the different works suggested by the literature that follow the backoff-based approach.

The successive retransmission timeouts in the backoff mechanism of CoCoA+ and pCoCoA are based

on themaintainedRTOinit (presented in the previous section) and also on several values of backoff fac-

tors used to multiply the timeouts instead of 2 (doubling) in case of successive losses. The authors of

CoCoA+ introduced a backoff policy to set the timeout for the retransmissions namedVariable Backoff

Factor (VBF) to replace the binary exponential mechanism used by default in CoAP. Although pCo-

CoA presented a full approach for calculating RTO value, they adopt the sameCoCoA+ backoffmech-

anism for setting retransmission timeout values in the backoff period. The value of VBF is chosen from

a list [1.5, 2, 2.5] according toRTOinit value. After the publication of CoCoA+, the authors continue

adaptingVBF values. For instance, they used [1.3, 2, 3] and [1.5, 2, 3] and these suggestionswere based

on experiments. That means some values are better in some cases than others. This presents one of the

weaknesses of CoCoA+ since some values might fit some network scenarios and not other scenarios.
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The RTO for the backoff period is defined by:

RTObackoff = RTOinit × V BF, where (2.5)

V BF =


2.5, RTOinit < 1 sec

2, 1 ≤ RTOinit < 3 sec

1.5, RTOinit ⩾ 3 sec

(2.6)

Using small backoff factors does not increase the time between retransmissions when RTOinit is

larger than 3 seconds, while using large backoff factors whenRTOinit is small avoids quick retransmis-

sions in a short timewhichmay cause further congestion. For RTOvalues smaller than 1 sec, newRTO

value grows faster with VBF than the default BEBCoAPmechanismwhereas it behaves in a similar way

in both mechanisms for RTO values between 1 and 3 sec as presented in [10].

In the literature, some research mainly focused on improving RTO estimation only and adopted the

backoff concept from other works while others focused on improving the backoff concept and adopted

the RTO estimation from previous research. Indeed, CoCoA-4-State-Strong [11] adopted the strong

estimator for RTO calculation from CoCoA and introduced an improvement for the backoff concept

that uses a 4-state estimator for variable backoff factors. They differentiated between four states and

each state was given a weight to be used when a loss is detected. Based on the number of packet re-

transmissions, each transaction is considered to be in one of four states (1-2-3-4). Each time a packet

is retransmitted, its state in increased by 1. When the packet is transmitted and acknowledged, its state

is decreased by one. For each transaction, there are four different backoff factors corresponding to four

different states (VBF1, VBF2, VBF3 and VBF4). This is summarized by:

V BF =


1.1, VBF1 for state 1 (No retransmissions)

1.3, VBF2 for state 2 (1 retransmission)

1.7, VBF3 for state 3 (2 retransmissions)

2.5, VBF4 for state 4 (⩾ 3 retransmissions)

(2.7)

The RTO for the backoff period is computed similar to equation (2.5). Using small weights for the

backoff factor will improve the throughput because transmitting will be faster but packet losses will

increase. In addition, and according to [50], more retransmissions is more likely to occur than CoCoA

which leads to more overhead and consumption of battery life.
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2.5.2 Rate-based approach

The previous works mentioned above follow what we call the backoff-based approach since they act

on the retransmission timeout and its evolution during the backoff period. Few researches suggested

alternative approaches to deal with congestion. The authors of BDP-CoAP [5] implemented the con-

gestion control of TCP BBR protocol [17] which follows a rate-based measurement-based approach.

Instead of using mainly packet loss (three duplicate ACK reception) to infer the congestion, TCP BBR

estimates the Bandwidth-Delay Product and determines the maximum number of packets in flight to

not exceed in order to prevent losses. The Bandwidth-Delay Product is computed by estimating the

round trip propagation delay and the available bandwidth through several measurements. In particu-

lar, an available bandwidthmeasurement is obtained at the reception of every ACK. Amax filter is used

to stabilize the estimated available bandwidth over a sliding time window.

̂AvaiBw = max (MeasBWt) ∀t ∈ [T −WB, T ]

whereWB is a time window, and T is the current time

TCP BBR stops sending packets when the number of packets in flight, i.e. packets that have not

receivedyet their acknowledgements, is larger than theBandwidth-DelayProduct so that thebottleneck

queue does not grow up more and thus buffer overflow is prevented.

The estimatedmax-filtered bandwidth is also used to control the sending rate through an eight-phase

cycle with the use of pacing gains. Each phase corresponds to a packet transmission as shown in Fig.

2.8. At each phase, the sending rate is set to the estimated bandwidth multiplied by the pacing gain.

In the first six phases of the cycle, the pacing gain is equal to 1. Then in the seventh phase it is set to

5/4 to increase the sending rate and probe for the available bandwidth. However, if in this phase, some

losses had occurred as per Fig. 2.9, then the pacing gain is set to 3/4 to reduce the sending rate. In the

eighth phase, the pacing gain is set to 3/4 in a preventive approach in case the probing of the bandwidth

is not successful and also to empty any resulting queue. The values 5/4 and 3/4 are chosen so that

the average sending rate during the two probing and preventive phases does not change from other

phases:
(
5
4
+ 3

4

) /
2 = 8

4

/
2 = 1. Hence, BBR cycles through the following values of pacing_gain:

5/4, 3/4, 1, 1, 1, 1, 1, 1. This approach allows to probe for more bandwidth by increasing the sending

rate using pacing gain factor of 5/4 and then immediately reducing it again using 3/4 pacing gain factor.

According to the authors of TCP BBR [17], this cycling scheme, allows BBR flows to achieve high

throughput, low queuing delay, and convergence to a fair share of bandwidth.

According to the authors of [32], BBR does not reflect the perspective of an individual sender but

the aggregate behavior of all flows which leads to a sustained overload. Also, BBR ignores packet loss as

amain congestion signal which alsomay producemassive packet loss and increases further the conges-

27



Figure 2.8: The eight‐phase cycle scheme in TCP BBR

Figure 2.9: Packet loss in the seventh phase cycle scheme of TCP BBR

tion. On the other hand, the authors of C2TCP [3] showed that although the concept of BBR might

work in a wired network where the bottleneck link bandwidth does not change very fast, in a highly

dynamic environment, it does not perform well.

BDP-CoAP implements all the components proposed by BBR for TCP congestion avoidance with

additional differences. First, BDP-CoAP computes the pacing gain factor through a ten-phase cycle in-

stead of eight. Second, the pacing gain values of the probing phase and the preventive phase are 1.2 and

0.8 instead of 1.25 and 0.75 respectively. Other pacing gains are equal to 1 as in TCP BBR. Third, nei-

ther the pacing gain nor the estimated bandwidth are updated in case of retransmission. Indeed, when

an ACK of a retranssmitted CON is received, the bandwidth measurement that can be done using this

ACK is canceled and the estimation function is not called. Fourth, the filter used to compute the esti-

mated bandwidth uses, in addition to the maximum of previous measurements, the minimum of these

previous measurements. The min and the max are combined together with a weighted sum. Fifth, the

timewindowused to compute the filtered estimated bandwidth is removed. Instead, the filter considers

the last 10 measurements done at the last 10 packet sending instants. Naturally, losses are still detected

via RTOinit expiration but its value is not multiplied by a backoff factor in case of successive losses.

RTOinit is estimated exactly as in CoCoA+. In summary, in addition to BBR components, BDP-CoAP

incorporates somemodifications in an attempt to enhance fairness and to adapt to CoAP andCoCoA+

constraints. Not only the resulting protocol is very complex, butwe also show thatBDPcanoutperform

previous backoff-based protocols in few cases where the network conditions are prosperous.
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2.6 Analysis and Shortcomings of Backoff-based Congestion Control

In the following, we present the issues of the main previous proposals to enhance the backoff-based

mechanisms. In backoff-based Congestion Control algorithms, RTOinit is either calculated dynami-

cally or set statically. Then a backoff mechanism is applied for the remaining retransmissions. In such

mechanisms, the backoff factor can change depending on the previous value of RTOinit as in CoCoA+

and pCoCoA, or according to some state as in 4-state, or based on an exponential increase of the RTO

value as per the default CoAP. Default CoAP does not use any information to adjust the backoff fac-

tor, thus it acts the same in any network condition regardless of the level of congestion, the number of

forwarding nodes, the number of senders, or any other network related matters.

2.6.1 Inadequate backoff factor

We show here the analysis of CoAP backoff factors with a challenging scenario where the average resid-

ual bandwidth is fixed to 1 packet per second and we increment the standard deviation of the residual

bandwidth which is varied according to a uniform distribution. The residual bandwidth changes every

bad period whose length is 5 seconds. The detailed network parameters are summarized in Chapter 6

- Table 6.1. In Figure 2.10, we vary CoAP backoff factor b from 1.5 to 3 and we compute the goodput

and overhead using the default CoAP mechanism suggested in [53]. The goodput is defined as the to-

tal amount of successfully received data in a given time interval while the overhead is the total amount

of lost packets in the network over total amount of packets sent successfully. We notice that changing

the b has no effect on goodput and overhead when the standard deviation is less than 0.4 packets per

second. In such cases, the value of the backoff factor does not matter. As can be seen from Fig. 2.10a,

the lower the backoff factor, the better the goodput when the bandwidth variation is greater than 0.4

packets per second. However, an opposite effect on overhead is observed when the backoff decreases.

As a matter of fact, reducing the backoff will impose fast packet transmissions and retransmissions and

this has a bad impact on the overhead due to packet losses. This proves that varying the backoff factor

will not improve the tradeoff between performancemetrics when the bandwidth is not highly fluctuat-

ing. On the other hand, it will not lead to an acceptable tradeoff between goodput and overhead when

the bandwidth oscillates. We have also seen a similar propertiy using our models in chapters 3 and 4.

2.6.2 Inaccurate Variable Backoff

Remind that VBF is used by pCoCoA and CoCoA+. It is sufficient to highlight that the backoff factor

should be normally related to the state of the network such as losses or goodput decreases, and not to

the value of RTO as proposed by VBF. For instance, if RTOinit value is 1.5 seconds which might be

close to RTT, and the ACK message was not received, in this case the backoff factor will be 2 according
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(a) Goodput (b)Overhead

Figure 2.10: Simulation results ‐ Varying CoAP backoff factor b

to CoCoA+ backoff algorithm, then the sender will unnecessarily wait for 3 seconds. A large RTT, and

thus a large RTO does not signify a congestion. Besides, when RTTvalues are less than 1 second in the

network, then if a packet is lost, the backoff factor that will be used is 3. Hence, RTO grows faster with

the VBF than with the binary exponential mechanism. The waiting time will be a lot increased which

affects the performance in terms of goodput and delay. The negative impact is even worse if the loss

is due to interference or short congestion state. Actually, all the efforts done to reduce and optimize

RTOinit are vanished when we use large backoff factors for no justified reasons.

2.6.3 Inappropriate Dynamic Backoff factors

4-state algorithm uses the same method for RTO calculation as CoCoA+ but differs in the backoff

mechanism where 4 different backoff factors are used. The authors try to increase the throughput of

their algorithm by reducing the values of the VBF and providing a different value to each state. Their

results show that 4-state achieves better goodput than CoCoA+, however, it leads to more retransmis-

sions. On one hand, the packet losses and overhead are not reduced. On the other hand, due to the

limited hardware capacities of constrained IoT nodes, using many variables will require extra storage

capacities.

Another important remark is that when the load increases on the nodes in any network topology,

the number of retransmissions increases as well. In this case, the use of BEB and VBF to schedule

retransmissions negatively affects the performance of the nodes that are far from the data collector node

(or sink node). This is because theRTOestimationdepends on theRTTvalues that are usually larger for

far nodes. The problem is exacerbated when the load on the nodes and the number of retransmissions

increase which results in a longer waiting time before next packet transmissions for the far nodes, thus

reducing the corresponding goodput.
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As a conclusion, the backoff mechansim is inefficient and the backoff factor does not have a good

impact on the performance in many cases. Even though the backoff can be set depending on the con-

gestion state of the network, it is not sufficiently fine-grained to tune precisely the retransmission time-

outs during the backoff. Furthermore, the retransmission timeout is useful to detect congestion but

it is hard to make it perform other roles in parallel and in particular reacting correctly to the detected

congestion. Indeed, retransmission timeouts were not designed originally to control the sending rate

which is supposed to be the more efficient way to control congestion.

2.7 Analysis and Shortcomings of Previous Rate-based Algorithms

Thecongestionavoidance algorithmproposed inTCPBBRfor congestioncontrol follows ameasurement-

based strategy to detect congestion and to set the sending rate adequately, instead of amore classic loss-

based strategy. In this regard, the BBR congestion control can be very efficient since it aims at equating

the sending rate to the available bandwidth which is somewhat the ultimate objective of any conges-

tion control. However, it must be judicially adapted to be incorporated in the CoAP protocol which

has specific properties and is destined to specific devices and network environments. It turns out that

the adaptations proposed by BDP-CoAP have several shortcomings presented in the following.

2.7.1 Bandwidth Sampling Inaccuracy

BBR is designed for TCPCongestion Avoidance periods where usually the bandwidth is very high and

the number of packets sent and ACK received, is very high as well, resulting in a lot of measurement

samples to estimate the available bandwidth quickly and precisely. In CoAP, the sending rate is 1 mes-

sage per RTT or lower and hence the number of bandwidth measurement samples is very low. As a

consequence, in contrast to what is proposed by BDP-CoAP, each samplemust be considered in the es-

timation especially those obtained at the reception of an ACK of a retransmitted CONmessage. These

ACKs reflect also successful transmissions and bandwidth availability and must be considered. Be-

sides, after several successive retransmissions, which means losses, the first ACK received will provide

an actual measurement on the new decreased available bandwidth that causes the losses. Ignoring sam-

ples from retransmitted packets will lead to inaccurate or nonexistent bandwidth estimation if there are

losses in the network. Fig. 2.11 simulates a case of bandwidth sudden decrease showing the inability of

BDP-CoAP to decrease its sending rate due to successive losses despite that many ACKs are received

(green line).
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Figure 2.11: BDP‐CoAP inefficiency in case of sudden bandwidth decrease

2.7.2 Inadequacy of the Bandwidth Filter Time Window

For the same reason, sliding the bandwidthmeasurement window over time is not adequate to filter the

measured samples because after several losses and/or sending rate reduction, the time windowwill not

be able to cover enough number of samples and this number can even be drawn to zero which blocks

totally the protocol. BDP-CoAP uses a window that slides on the instants of sending attempts instead

of time. However, this procedure does not solve the problem because in case of losses, the attempts

continue and make the window sliding further, which yet removes past measurements from the filter

but without adding new ones.

2.7.3 Bandwidth Delay Product Inapplicability

Similar to TCP BBR, BDP-CoAP computes the Bandwidth Delay Product and uses it to control the

number of CoAP CON messages to send without waiting for their acknowledgements during an RTT.

However, the CoAP concept is based on sending only one packet per RTT (NSTART=1 [53]) to keep

its operation simple and avoid using a sending window and all algorithms for its management as TCP.

With this constraint, packets inflight is either 0 or 1, and the Bandwidth Delay Product is always be-

tween 0 and 1. Even, if we allow NSTART to be more than one, the Bandwidth Delay Product might

still be small in IoT environments due to low link data rates and small buffers.

2.7.4 Bandwidth Estimation filter Degradation

Including theminimumof the bandwidthmeasurement samples in the estimation filter is not adequate

in termsof goodputmaximization especially if the bandwidth is variable. Theminimumwas introduced

as an attempt to improve fairness, however, the impact on the goodput is very harmful. Indeed, the
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minimum will slow the convergence to the maximum available bandwidth. Furthermore, in the filter,

theminimum is associated with a weight that is related to the number of retransmissions. Themore the

retransmissions, the higher theweight, the slower the convergence. Fig. 2.12 shows indeed the inability

of BDP-COAP to converge reasonably when the available bandwidth increases suddenly. The wastage

of the bandwidth is huge.

Figure 2.12: BDP‐CoAP inefficiency in case of sudden bandwidth increase

2.7.5 Complexity

Even more than TCP BBR, BDP-CoAP uses many variables, instructions and function calls in order

to perform bandwidth measurements and processing them. Hence, the algorithm becomes too com-

plex. As a matter of fact, all simulations done in the BDP-CoAP work [5] have used a non-constrained

type of devices while the employed simulator was designed especially for constrained devices. Again,

the objective of having a good compromise between efficiency and complexity can not be ignored in

IoT environments. This complexity can be reduced by removing unnecessary components that were

designed for TCP and not really useful for CoAP. Also, one can use a different approach of congestion

control other than a measurement-based.

2.8 Synthesis

Improving CoAP congestion control for IoT devices is clearly a challenging issue. From one side, the

algorithmshould be simple enough in order to be incorporated in these devices that are limited inmem-

ory and processing capacity. From the other side, the algorithm should operate efficiently to increase

the transmission rate and to reduce retransmissions as much as possible to prolong the battery life. In

this regard, it is important to analyzeCoAPdeeply andunderstand the effect of its parameters onperfor-

mance. Accordingly, improvements on the existing approaches can be offered and new approaches can
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[20, 24, 56, 54, 19, 25] , ∗

Figure 2.13: Performance evaluation of CoAP. Our contributions: ∗

be proposed. Deep analysis and tackling the shortcomings of previous congestion control algorithms

will pave the path for introducing an improved approach for congestion control. Recently, there have

been a number of research efforts related to the evaluation and improvement of CoAP. We split CoAP

performance evaluation into three categories sketched in Fig. 2.13. As illustrated, different methods

are considered to evaluate CoAP performance.

Some previous works tried to improve CoAP RTO calculation and its corresponding backoffmech-

anism. On the other hand, few works tried to propose other approaches. For instance, the authors

of BDP-CoAP [5] adopted the idea of TCP BBR protocol [17] in order to control the rate of CoAP

transmissions. Now, how to improve correctly the performance? How to find more efficient alterna-

tive solutions? To answer these questions, our first step is to develop a new precise analytical model in

order to analyze the performance of CoAP in lossy network environments and understand thoroughly

its behavior. Accordingly, we can evaluate and highlight its weaknesses. Besides, improvements for

CoAP congestion control mechanisms suggested by the literature were evaluated to highlight their cor-

responding shortcomings.

There are two components in the congestion control algorithm designed for CoAP: RTOinit calcu-

lation for the first retransmission or for loss detection and a congestion counteraction mechanism for

the remaining retransmissions and possibly all next transmissions. The anatomy of CoAP congestion

control is presented in Fig. 2.14. For RTO calculation, if RTO is less than the Round Trip Time RTT,

then the packet is falsely retransmitted due to incorrect RTO estimation causing a spurious transmis-

sion. If RTO is much larger than RTT, then the sender will wait unnecessarily causing a degradation

in terms of goodput and delays of packets delivery. Therefore, the challenge in RTO estimation is to

reach a good tradeoff between reliability and goodput. For congestion counteraction, based on our

assessment, we conclude that the solution is to replace the backoff procedure by a rate-based control.

Hence, the challenge in this part is to tune adequately the sending rate and improve the tradeoff be-

tween losses and efficiency. In addition to ensuring simplicity, another challenge while working with

IoT constrained devices is reducing the energy consumption. Considering thousands of connected de-

vices deployed in IoT network, recharging them over long periods is practically impossible. Hence,

prolonging the lifetime of power resources of these devices is an achievement by itself. Furthermore,

prolonging the nodes lifetime have a positive impact on the network lifetime. Therefore, the objective
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Congestion
detection

Loss-based
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Figure 2.14: Anatomy of Congestion Control for CoAP. Our contributions: ∗

of our work is to provide a simple algorithm for controlling congestion that tunes the sending rate of

packet transmissions and retransmissions which helps in reducing the energy wastage without impact-

ing the overall performance. In general, a well designed algorithm should reduce energy consumption

and packet losses, and improve reliability and goodput.
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3
CoAPModelling: Bernoulli and Simple Gilbert

Network LossModels

One significant aspect of CoAP is that it relies on User Datagram Protocol (UDP) but introduces a

reliablemode of operation when packet loss is not tolerated. There is a cost to pay when high reliability

is imposed reflected by shorter battery life and higher latency due to retransmissions. Both, low latency

and low packet loss are preferred but one can be more critical than the other. For instance, in weather

application, where the last measurement of the temperature reflects the current state, latency is more

important thanpacket loss. On theother hand, for health care applicationswhere each sensitive readout

might represent critical situation of the patient, packet loss is muchmore important than latency. How

to find a good trade-off between latency and packet lost? Another important aspect is that some IoT

applications might need to impose a desired goodput in order to preserve battery life. How to ensure

such aspects? Theaforementionednecessitate a thorough analysis ofCoAPwhichwill be accomplished

via modelling. In this chapter, we propose new exact mathematical models to study the reliability and

the overall performance of CoAP in lossy networks. This study provides useful insights in order to tune

CoAP parameters and also highlights CoAP properties and limitations so that better mechanisms can

be designed adequately. Our analysis was carried out first in twodifferent types of network lossmodels:

• Bernoulli Network Loss Model
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• Simple Gilbert Network Loss Model

For each network scenario, we compute the following performance metrics:

• Loss ratio

• Delay

• Goodput

• Overhead for a successful transmission

Although it is usuallymorepractical to employmodeling tools such asMarkov chains, which are used

in the next chapter, wemodel here CoAP through ”direct” computations that follow and reflect the be-

havior of CoAP in the presence of losses so that we understand better the protocol and find clearly the

correspondence between the protocol parameters and the closed-form analytical expressions of the dif-

ferent performance metrics. Besides, the results obtained in this chapter will be confronted with those

obtained in the next chapter with Markov chains to ensure definitely their correctness and complete-

ness. As a matter of fact, we were so confident regarding the analytical results then when we found

differences between our models and experiments done with the CoAP implementation in the Contiki

operating system, we use themodel to find precisely themistake in the source code and correct it. Also,

we highlight in this chapter one of the mistakes done in previous works with direct computations and

provide the correct way to derive the analytical expressions of the performance metrics.

3.1 Bernoulli Network Loss Model

In a lossy network environment, the chance of a successful data packet delivery is determined by the

network loss ratio. Denote p as the loss probability of a transmission attempt, 1− p is then the proba-

bility of a successful transmission, r as the maximum counter of CoAP retransmission attempts. There

are two scenarios when transmitting a packet:

• Successful transmission of a packet after one ormore attempts presented in Fig. 3.1a. Theoverall

probability is formalized as: pi(1− p), 1 ≤ i ≤ r.

• Sending trials of a packet ending with failure. This is presented in Fig 3.1b. and the overall prob-

ability is: pr+1.
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(a) Scenario 1: Successful packet transmission (b) Scenario 2: Packet transmission ending with failure

Figure 3.1: Different scenarios for packet transmission

3.1.1 Observed Losses

The observed losses correspond to the case where all retransmission attempts are lost and ACK is not

received (Fig. 3.1b). The mathematical formula for CoAP observed loss ratio PL in Bernoulli Loss

Network Model is simply:

PL = pr+1 (3.1)

3.1.2 Delay

Let D0 be the one-way delay between CoAP sender and receiver. The initial timeout value RTO de-

noted by T0 is multiplied by a random factor f so that the sender waits for a time in the range [RTO,

RTO∗f]before retransmitting thepacket. Theaverage initial timeout value is then: T = (f+1)
2

RTO =

T0
(f+1)

2
.

The delay is calculated starting from the first transmission of a new packet till it is received success-

fully. The duration of i successive retransmissions is defined as the time from the first transmission

until the expiration of the ith one while the timeout is doubled in each attempt which is computed as

T (2i − 1), 1 ≤ i ≤ r.

Let D define a random variable describing the delay of a CoAP successful packet. When a packet

is successfully delivered with zero retransmissions (Fig. 3.2), the delay is denoted as d0 and is equal
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to: d0 = D0 + (20 − 1)T0
(f+1)

2
,with a probability Pr(D = d0) = (1 − p). If the packet is lost

Figure 3.2: Delay without retransmissions

and a single retransmission is needed (Fig. 3.3a), the delay is denoted by d1 and is equal to: d1 =

D0+(21− 1)T0
(f+1)

2
,with a probability Pr(D = d1) = p(1− p). For r retransmissions (Fig. 3.3b

and Fig. 3.3c), the same applies and the delay is given by: dr = D0 + (2r − 1)T0
(f+1)

2
, and Pr(D =

dr) = pr(1− p). Accordingly, the preliminaryCoAP mathematical description for the average overall

delay in the Bernoulli Loss Network Model is:

D̄ =
r∑

i=0

Pr(D = di)× di =
r∑

i=0

pi(1− p)[D0 + (2i − 1)T0
(f + 1)

2
] (3.2)

The above equation ((3.2)) is similar to the one presented in [24] which iswrong because it is based

on the geometric distribution while we must use the truncated geometric distribution. Indeed, in the

CoAPcontext, there is a remaining scenariowhich is the event of a packet lost despite r retransmissions.

This event can be denoted by F (failure) and then we denote its complement, i.e., the event of a suc-

cessful transmission byA, withPr(F ) = pr+1 andPr(A) = 1−Pr(F ) = 1−pr+1. Consequently,

Pr(D = di) for i = 0, 1, . . . , r in equation (3.2) represent unconditional probabilities, and therefore

should be conditioned on the eventA to obtain a valid probability distribution. Normalization by the

use of Bayes’ Rule gives

Pr(D = di| successful transmission) = Pr(D = di|A) (3.3)

=
Pr({D = di} ∩ A)

Pr(A)
=

Pr(D = di)

Pr(A)
=

pi(1− p)

1− pr+1
, (3.4)
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(a) Delay with 1 retransmission (b) Delay with 2 retransmissions (c) Delay with r retransmissions

Figure 3.3: Different scenarios for packet transmission

and we obtain the probability mass function for the desired delay:

pD|A(di) =


pi(1−p)
1−pr+1 , for i ∈ {0, 1, . . . , r}

0 , otherwise

(3.5)

whereD|A is the truncated geometric distribution of retransmission attempts.

Now, we can check that (3.5) is valid since
∑r

i=0 P (D = di|A) =
∑r

i=0 p
i(1−p)

1−pr+1 = 1−pr+1

1−pr+1 = 1. Thus,

our proposed CoAP model for successful transmission delay is now computed as follows:

D̄s = E [D|A] (3.6)

=
r∑

i=0

Pr(D = di|A)× di (3.7)

=
r∑

i=0

pi(1− p)

(1− pr+1)
× di (3.8)

=
r∑

i=0

pi(1− p)

(1− pr+1)
[D0 + (2i − 1)T0

(f + 1)

2
] (3.9)

=
1− p

1− pr+1

r∑
i=0

pi[D0 + (2i − 1)T ] (3.10)

=
D̄

1− pr+1
, where T =

T0(f + 1)

2
. (3.11)
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Simplifying Eq. (3.9), we obtain the closed form:

D̄s =
1− p

1− pr+1

r∑
i=0

pi[D0 + (2i − 1)T ] (3.12)

= D0 + (
1− p

1− pr+1
×

r∑
i=0

2ipi × T )− T (3.13)

= D0 + T

[
1− p

1− pr+1
×
(
1− (2p)r+1

1− 2p

)
− 1

]
(3.14)

The closed form of delay can be also represented as:

D̄s = D0 +

[
p[2(2r−1 − 1)pr − (2r − 1)pr−1 + 1]

(1− 2p)(1− pr)

]
T (3.15)

= D0 +
p

1− pr

(
1− (2p)r−1

1− 2p
− (2r−1 − 1)pr−1

)
T (3.16)

To analyze D̄s, we start by noting that it is undefined for p = 1 and limp→1 D̄s = ∞, since p = 1

means all packet transmissions will fail. Additionally, the closed form expression for D̄s in (3.14) is

inapplicable for p = 0.5, due to the ratio of the term (1 − (2p)r+1) over (1 − 2p). At this point, we

refer back to (3.13) andnote that forp = 0.5 = 2−1,
∑r

i=0 2
ipi =

∑r
i=0 2

i2−i =
∑r

i=0 1 = (r+1).

Finally, we can rewrite the closed form expression as follows:

D̄s =

 D0 + T
(

1−p
1−pr+1 × (r + 1)− 1

)
, for p = 0.5

D0 + T
[

1−p
1−pr+1 ×

(
1−(2p)r+1

1−2p

)
− 1
]
, otherwise

(3.17)

3.1.3 Goodput

The Goodput (GP) is defined as the total number of packets received by the CoAP endpoint during

a period of time (in seconds). It can be calculated through the multiplication of the Packet Sending

Rate (PSR) by the probability of successful transmission, previously denoted by P (A). So, GP =

PSR× Pr(A), and we remind the reader that

P (A = {A0 ∪ A1 ∪ · · ·Ar}) =
r∑

i=0

P (Ar) =
r∑

i=0

pi(1− p) = 1− pr+1, (3.18)
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where Ai denotes the event of successful packet transmission with i required retransmissions.¹ Let

Dapp be the sending duration of 1 successful packet. Therefore, and as illustrated in Fig. 3.4, we have:

GP =
Pr(A)

Dapp

(3.19)

Figure 3.4: Goodput illustration

Dapp can be considered as a random variable like the delay from the previous section, but with two

main differences. Firstly, the round trip delay between CoAP sender and receiver R must be used in-

stead of the one-way delay D0. For instance, the duration of a successful packet transmission with k

¹This notation will be useful later for Overhead too.
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retransmission attempts is given by:

gk = T + 2T + 22T + · · ·+ 2k−1T +R (3.20)

=
k−1∑
i=0

2iT +R (3.21)

= (2k − 1)T +R, (3.22)

where T = T0
(f+1)

2
andPr(Dapp = gk) = pk(1− p) for k = 0, 1, 2, . . . , r, as seen in section 3.1.2.

Secondly, Dapp should include the case when the last retransmission attempt is not successful, which

corresponds to a delayDapp = gr+1 = (2r+1 − 1)T with Pr(Dapp = gr+1) = pr+1.

Thus, the averageDapp is computed as

D̄app = E[Dapp] =
r∑

i=0

Pr(Dapp = gi)gi + Pr(Dapp = gr+1)gr+1 (3.23)

=
r∑

i=0

pi(1− p)[(2i − 1)T +R] + pr+1(2r+1 − 1)T. (3.24)

Equation (3.24) is very similar to (3.17). Taking advantage of the analysis in section 3.1.2, multiply-

ing the first term in (3.24) by 1 − pr+1 in both the numerator and denominator allows for a simplifi-

cation:

D̄app =
1− pr+1

1− pr+1

r∑
i=0

pi(1− p)[(2i − 1)T +R] + pr+1(2r+1 − 1)T, (3.25)

giving us the closed form:

D̄app =


(1− pr+1)

[
R +

(
1−p

1−pr+1 × (r + 1)− 1
)
T
]
+ pr+1(2r+1 − 1)T, for p = 0.5

(1− pr+1)
[
R +

(
1−p

1−pr+1 ×
(

1−(2p)r+1

1−2p

)
− 1
)
T
]
+ pr+1(2r+1 − 1)T, otherwise

(3.26)

which reduces to,

D̄app =


(1− 0.5r+1)R + T

2
(r + 1), for p = 0.5

(1− pr+1)R + p
(

1−(2p)r+1

1−2p

)
T, otherwise

(3.27)

D̄app can be calculated using a different method by adding the product of the success probability by
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RTT and the loss probability by T:

D̄app = (1− pr+1)RTT + T

r∑
i=0

pi+12i. (3.28)

In conclusion, we obtain the following formula for Goodput:

GP =
P (A)

E[Dapp]
=

1− pr+1

D̄app

(3.29)

=
1− pr+1

(1− pr+1)R + p
(

1−(2p)r+1

1−2p

)
T

(3.30)

=
1

R
+

(1− 2p)(1− pr+1)

p(1− (2p)r+1)T
(3.31)

3.1.4 Overhead for a successful transmission

We denote by Y the data payload to be sent between the sender and the receiver. The total size of the

packet including theheaders addedatdifferent layers is denotedbyZ . The total overhead is expressedas

the non-application bits divided by the payload of the packet received Y . Normally, the total overhead

depends only on the number of lost packets which means on the observed network loss ratio, in our

case, PL. Let us detail its computation below. For a successful transmission from the first attempt, the

overhead for receiving the payload is:

(Z − Y )

Y
,with Pr(A0) = (1− p)

If the first transmission attempt is not successful, then the overhead is:

(Z + Z − Y )

Y
,with Pr(A1) = p(1− p)

When the packet requires r retransmission attempts to have a successful transmission, the fraction will

be:
((r + 1)Z − Y )

Y
,with Pr(Ar) = pr(1− p)

Finally, when r + 1 transmissions fail, we will have no application bits and thus we have only non-

application bits:

(r + 1)Z,with Pr(F ) = pr+1
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Figure 3.5: Overhead illustration

Taking the ratio of averages, the overall average Overhead expression is given by:∑r
i=0 p

i(1− p)[(1 + i)Z − Y ] + Z(r + 1)pr+1∑r
i=0 p

i(1− p)Y + 0× pr+1
, (3.32)

where
∑r

i=0 p
i(1 − p)[(1 + i)Z − Y ] refers to the retransmission attempts of non-application bits,

Z(r+1)pr+1 corresponds to the r-th retransmission when an ACK is not received, and
∑r

i=0 p
i(1−

p)Y corresponds to the retransmission attempts of data payload. Since
∑r

i=0 p
i(1− p) = 1− pr+1,

Eq. (3.32) becomes:∑r
i=0 p

i(1− p)[(1 + i)Z − Y ] + Z(r + 1)pr+1

(1− pr+1)Y
(3.33)
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=

∑r
i=0 p

i(1− p)(Z − Y )

(1− pr+1)Y
+

∑r
i=0 Z × i× pi(1− p) + Z(r + 1)pr+1

(1− pr+1)Y
(3.34)

=
Z − Y

Y
+

Z

Y

(
(1− p)

∑r
i=0 i× pi + (r + 1)pr+1

(1− pr+1)

)
. (3.35)

Now, using the following identity:

(1− p)×
r∑

i=0

i× pi =
rpr+2 − (r + 1)pr+1 + p

(1− p)
, (3.36)

replacing (3.36) in (3.35) changes the latter to:

Z − Y

Y
+

Z

Y

[
rpr+2 − (r + 1)pr+1 + p

(1− p)(1− pr+1)
+

(r + 1)pr+1

(1− pr+1)

]
(3.37)

Factoring out pr+1

(1−pr+1)
in (3.37) we get

Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
rp− (r + 1) + p−r

1− p
+ r + 1

)]
(3.38)

=
Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
rp− (r + 1) + p−r + (r + 1)(1− p)

1− p

)]
(3.39)

=
Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
rp− p(r + 1) + p−r

1− p

)]
(3.40)

=
Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
−p+ p−r

1− p

)]
(3.41)

=
Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
p

1− p

)(
p−(r+1) − 1

)]
(3.42)

=
Z − Y

Y
+

Z

Y

[(
pr+1

1− pr+1

)(
p

1− p

)(
1− pr+1

pr+1

)]
(3.43)

=
Z − Y

Y
+

Z

Y

(
p

1− p

)
(3.44)

=
Z − (1− p)Y

(1− p)Y
. (3.45)

As expected, we observe that the overhead depends only on p. However, the overhead for a successful

transmission will include a CoAP parameter. In this case, we should normalize in the numerator and

denominator by 1− pr+1 in equation (3.32) to adjust the probability values after removing the factor

Z(r+1)pr+1 which refers to the last unsuccessful transmission attempt. Thus, we obtain the overhead

for a successful transmissionOS:

OS =

∑r
i=0 p

i(1− p)[(1 + i)Z − Y ]∑r
i=0 p

i(1− p)Y
, (3.46)
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=

∑r
i=0 p

i(1− p)(Z − Y )

(1− pr+1)Y
+

Z(1− p)
∑r

i=0 p
i × i

(1− pr+1)Y
, (3.47)

=
Z − Y

Y
+

Z(1− p)
∑r

i=0 p
i × i

Y (1− pr+1)
. (3.48)

As before, using the identity (3.36) in (3.48)

OS =
Z − Y

Y
+

Z

Y

(
rpr+2 − (r + 1)pr+1 + p

(1− pr+1)(1− p)

)
(3.49)

=
Z − Y

Y
+

Z

Y

(
pr+1(rp− (r + 1) + p−r)

(1− pr+1)(1− p)

)
, (3.50)

=
Z − Y

Y
+

Z

Y

(
pr+1

1− pr+1

)(
p−r − 1− (1− p)r

1− p

)
, (3.51)

=
Z − Y

Y
+

Z

Y

(
pr+1

1− pr+1

)(
p−r − 1

1− p
− r

)
. (3.52)

Given that p−r − 1 = 1−pr

pr
, we get the following closed form of overhead for successful transmission:

OS =
Z − Y

Y
+

Z

Y

(
pr+1

1− pr+1

)(
1− pr

pr(1− p)
− r

)
, (3.53)

OS =
Z − Y

Y
+

Z

Y
× P (F )

P (A)
×
(
P (A0 ∪ A1 ∪ . . . ∪ Ar−1)

P (Ar)
− r

)
. (3.54)

LetR be a random variable defined as the ratio of overhead by the payload. R takes values from the

set{Z−Y
Y

, 2S−Y
Y

, . . . , (r+1)Z−Y
Y

} = { (1+i)Z−Y
Y

}i∈{0,1,...,r}. Again, becausewe ignore the casewith no

ACK reception, the associated probabilities have to be conditioned on the event of successful reception

A. Then we have:

r∑
i=0

pi(1− p)

1− pr+1
× (1 + i)Z − Y

Y
(3.55)

=
r∑

i=0

pi(1− p)

1− pr+1
× Z − Y

Y
+

Z(1− p)

Y

r∑
i=0

pi × i

1− pr+1
(3.56)

=
Z − Y

Y
+

Z(1− p)

Y

r∑
i=0

pi × i

1− pr+1
, (3.57)

and as before, using (3.36) we find that:

Z − Y

Y
+

Z

Y

(rpr+2 − (r + 1)pr+1 + p)

(1− p)(1− pr+1)
(3.58)

=
Z − Y

Y
+

Z

Y

(
pr+1

1− pr+1

)(
rp− (r + 1) + p−r

1− p

)
(3.59)

47



=
Z − Y

Y
+

Z

Y

(
pr+1

1− pr+1

)(
p−r − 1

1− p
− r

)
(3.60)

(3.61)

3.2 Simple Gilbert Network Loss Model

As we have seen in Section 3.1, the Bernoulli network loss model has only one state and one parameter

which is the loss probability p. As amatter of fact, the Bernoulli model is the simplest case of lossmodel

and is used to define and model uncorrelated loss events and thus has its own limitations. In this sec-

tion, we present the Simple Gilbert model which has two states (Good and Bad) and two independent

parameters (p and q). While in the good state, there is very few packet loss; while in the bad state, most

packets are lost. Such models provide the flexibility to model a network with consecutive loss events.

Simple Gilbert network loss model offers a good approximation of packet losses and is widely used.

This model is presented in Fig. 3.6. As per the figure, “0” is the good state and “1” is the bad state. Also,

p is the transition probability from state “0” to state “1”, q the transition probability from state “1” to

state “0”. Thus, 1− p and 1− q are the probabilities of staying within the same state. Also, 1− q is the

probability of having successive loss which clearly impacts on retransmissions and thus CoAP losses.

Figure 3.6: Simple Gilbert Network

3.2.1 Observed Losses

TheobservedCoAP loss ratio in a networkmodelledwith SimpleGilbert equals to the average number

of observed CoAP message losses at the application layer divided by the total number of total CoAP

transmitted messages which includes the average number of observed losses and successful transmis-

sions (Fig. 3.7). We defineNOL to be the random variable that refers to the number of observed losses,

where NOL takes values from the set N+ − {0} = {1, 2, 3, 4, . . .}. Hence, we write the Observed

Loss Ratio PL as:

PL =
E[NOL]

E[NOL] + 1
(3.62)

where E[NOL] is the average of the observed losses presented in Fig. 3.7. The figure shows a typical

scenario inCoAP transmission,where theperiodof timebetween the receptionof two successiveACKs
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consists of many blocks of CoAP lost packets (OL), followed by an event of successful transmission.

The number of said blocks is random, and its average value is denoted by E[NOL]. During the“Loss

Period”, each block constitutes an observed loss and refers to r+1 total transmission attempts. On the

other hand, the“Successful Period” is a single block. As the figure indicates, successful transmission of a

packet usually entails a number of re-transmission attempts, before the eventual reception of an ACK.

Specifically, multiple CON messages may be sent until the source receives the confirmation message

from its intended destination.

TocomputeE[NOL], wemust determine theprobabilities of the randomvariableNOL (Pr(NOL =

1) . . . P r(NOL = i), 1 ≤ i ≤ ∞). For one observed loss, there are r + 1 potential cases and they

are presented in the table below with r = 4.

Case No Transition Dynamics (State) Probability
1 0→ 1→ 1→ 1→ 1→ 1 (OL) p(1− q)r

2 0→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)rq
3 0→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)r(1− q)q
4 0→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)r(1− q)2q
5 0→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)r(1− q)3q
6 0→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)r(1− q)4q

Table 3.1: Cases for observation of one CoAP loss with r = 4

To observe two losses, we start by a single loss and observe one more. This scenario also has r + 1

cases, and they arepresented in the tablebelow. Accordingly, wewrite: Pr(NOL = i) =
∑r

j=0 qp(1−

Case No Transition Dynamics (State) Probability
1 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1 (2OLs) p(1− q)r(1− q)r+1

2 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)2r+1q
3 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)2r+1(1− q)q
4 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)2r+1(1− q)2q
5 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)2r+1(1− q)3q
6 0→ 1→ . . .→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 1→ 0 p(1− q)2r+1(1− q)4q

Table 3.2: Cases for observation of two CoAP losses with r = 4.

q)i(r+1)+j−1, 1 ≤ i ≤ ∞Thus, the average number of losses is given by

E[NOL] =
∞∑
i=1

Pr(NOL = i)× i (3.63)

=
∞∑
i=1

(
r∑

j=0

qp(1− q)i(r+1)+j−1

)
× i (3.64)

= qp
∞∑
i=1

i× (1− q)i(r+1)

r∑
j=0

(1− q)j

(1− q)
(3.65)
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=
qp

1− q

∞∑
i=1

i× (1− q)i(r+1) × 1− (1− q)r+1

1− (1− q)
(3.66)

=
p(1− (1− q)r+1)

1− q

∞∑
i=1

i× (1− q)i(r+1). (3.67)

Using the following identity:

∞∑
i=1

i× xi =
x

(x− 1)2
where |x| < 1, (3.68)

substituting (1− q)(r+1) for x simplifies (3.67) to

E[NOL] =
p(1− q)r

1− (1− q)r+1
. (3.69)

Figure 3.7: Loss Period in Simple Gilbert Network

Substituting equations (3.69) in (3.62), we deduce our mathematical formula for CoAP observed

loss ratio PL for the Simple Gilbert network loss model as follows:

PL =

p(1−q)r

1−(1−q)r+1

1 + p(1−q)r

1−(1−q)r+1

(3.70)

=
p(1− q)r

1− (1− q)r+1 + p(1− q)r
(3.71)

=
p(1− q)r

1− (1− q)r(1− q − p)
(3.72)

=
p(1− q)r

1 + (p+ q − 1)(1− q)r
. (3.73)

Remark: In the special case where q = 1 − p, substituting this value of q in (3.73) yields PL =

(1− q)pr = ppr = pr+1, which equals the loss probability in the Bernoulli Loss Network Model.
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3.2.2 Delay

In this sectionwe consider thedelay of a successful packet transmission. According toFigure 3.7, weno-

tice that the total delaymust include the time incurred due to observed losses in the “Loss Period” (LP),

in addition to delays from re-transmission attempts before the successful transmission in the “Success-

ful Period” (SP).We denote the former byDLP and the latter byDSP . Hence, the delay formula is the

sum of these terms:

D̄ = DLP +DSP , (3.74)

=⇒ E[D] = E[DLP ] + E[DSP ], (3.75)

by linearity of the expectation operator.

The first term DLP refers to the case of a “Loss Period”, where the packet is dropped at least once.

Therefore, this delay is a function of the number of blocks of observed losses (orNOL), where the cost

of a single block is given by the following:

DOL =
r∑

k=0

2kT = (2r+1 − 1)T. (3.76)

For instance, ifNOL = i, we have a delay denoted as

di = i×DOL = i× (2r+1 − 1)T,

with Pr(DLP = di) = P (NOL = i) =
r∑

j=0

qp(1− q)i(r+1)+j−1.

Thus, considering all different scenarios, that is, for all values ofNOL ≥ 1, we obtain the first term as:

E[DLP ] =
∞∑
i=1

P (DLP = di)× di (3.77)

=
∞∑
i=1

r∑
j=0

qp(1− q)i(r+1)+j−1 × i︸ ︷︷ ︸
E[NOL]

(2r+1 − 1)T︸ ︷︷ ︸
delay per block

 (3.78)

=E[NOL]×DOL. (3.79)

As for the second term, it includes D0 and any delay incurred by retransmisson attempts before

eventual success, where the number of re-transmission attempts i is such that 1 ≤ i ≤ r. For instance,

transmission after i failures corresponds to a switch from a good state to a bad state, remaining in the

51



bad state i− 1 times, and finally resting on the good state. So, the incurred delay is:

(2i − 1)T,with probability p(1− q)(i−1)q. (3.80)

Thus, the delay in the “Success Period” is written as

E[DSP ] = D0 + pq

r∑
i=1

(1− q)i−1(2i − 1)T (3.81)

= D0 +
pq

1− q

r∑
i=1

(1− q)i(2i − 1)T (3.82)

= D0 +
pq

1− q

(
2(1− q)(1− 2r(1− q)r)

2q − 1
− (1− q)(1− (1− q)r)

q

)
T (3.83)

= D0 + pq

(
2(1− 2r(1− q)r)

2q − 1
− 1− (1− q)r

q

)
T (3.84)

Finally, the delay is given by the following:

D̄ = E[NOL]DOL +D0 + pq

(
2(1− 2r(1− q)r)

2q − 1
− 1− (1− q)r

q

)
T (3.85)

Simplifying further, the mathematical notation for delay D̄ is obtained:

D̄ = D0 +

(
pq

1− (1− q)r+1

)(
2q (1− 2r(1− q)r)

2q − 1
+ (1− q)r − 1

)
T (3.86)

= D0 +
pq

1− (1− q)r+1

r∑
i=1

(1− q)i−1(2i − 1)T (3.87)

which will be useful in the latter section.

3.2.3 Goodput

As a reminder, the goodput is defined as the rate of packets received by the CoAP endpoint during a

certain duration (in seconds). Equivalently, the goodput is the inverse of the duration between two

successful packet deliveries, with a unit measured in packet per second. In a bursty network, the period

of time between reception of two ACKs is usually interspersed with multiple observed losses and/or

lost ACKsmessages from the destination. Accordingly, the duration between two successful deliveries

includes firstly, the delay incurred by the observed losses that might occur, and secondly, the delay of

successful transmission. The former is equal to the average number of observed losses E[NOL] mul-

tiplied by the delay of each loss DOL, while the latter is simply the delay presented in section 3.2.2,

with a minor change. Namely, we must replace the one-way delayD0 in (3.87) by the round-trip delay
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between the sender and receiverR. Thus, the mathematical notation of the total duration is given as:

Duration = E[NOL]DOL + D̄ (3.88)

The delay of each observed loss OL is

DOL = (2r+1 − 1)T. (3.89)

Substituting the corresponding values, the duration is presented as

p(1− q)r

1− (1− q)r+1
(2r+1 − 1)T +R +

pq

1− (1− q)r+1

r∑
i=1

(1− q)i−1(2i − 1)T (3.90)

Since the duration is calculated as per (3.88), then multiplying by 1 − pr+1 (as in Section 3.1.3)

is not needed in this case to obtain the Goodput. In conclusion, we obtain the following formula for

Goodput:

GP =
1

Duration
(3.91)

=
1− (1− q)r+1

p(1− q)r(2r+1 − 1)T + (1− (1− q)r+1)R + pq
∑r

i=1(1− q)i−1(2i − 1)T
(3.92)

Here again, replacing 1− q by p changes the context of study from the Simple Gilbert model to the

Bernoulli model of losses seen before. Accordingly, the equation in (3.92) should match with (3.29)

when 1− q = p. Indeed, equation (3.92) becomes:

GP =
1− pr+1

pr+1(2r+1 − 1)T + (1− pr+1)RTT + p(1− p)
∑r

i=1(p)
i−1(2i − 1)T

(3.93)

=
1− pr+1

pr+1(2r+1 − 1)T + (1− pr+1)RTT +
∑r

i=0 p
i(1− p)(2i − 1)T

(3.94)

=
1− pr+1

pr+1(2r+1 − 1)T +
∑r

i=0 p
i(1− p)RTT +

∑r
i=1 p

i(1− p)(2i − 1)T
(3.95)

=
1− pr+1

pr+1(2r+1 − 1)T +
∑r

i=0 p
i(1− p) [(2i − 1)T +RTT ]

(3.96)

=
P (A)

D̄app

= GP obtained in 3.29 (3.97)

3.2.4 Overhead for a successful transmission

The overhead is defined as:
NA × Z − Y

Y
, (3.98)
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where NA denotes the total number of transmission attempts. This number is the summation of the

number of:

1. Attempts in a loss period, which is (r + 1)× E[NOL]

2. Attempts before the successful transmission, denoted as B.

B = p

r∑
i=1

q

1− (1− q)r+1
(1− q)i−1i (3.99)

3. Attempt that is successful, which is 1.

The equation ofB is similar to the simplified equation of delay in section 3.2.2 but instead of using

the retransmission delay of the ith attempt: (2i − 1)T0
(f+1)

2
, we use the number of attempts i. As

discussed in section 3.2.1, the average number of OLsE[NOL] is:

p(1− q)r

1− (1− q)r+1
(3.100)

Therefore, the overall overhead formula is given as:[
p(1−q)r

1−(1−q)r+1 (r + 1) + p
∑r

i=1
q

1−(1−q)r+1 (1− q)i−1i+ 1
]
∗ Z − Y

Y
(3.101)

By simplifying the above formula, we obtain the overall overhead in Simple Gilbert Network:

O =
(p+ q)Z − qL

qL
(3.102)

=
Z − π(0)× Y

π(0)× Y
,where π(0) =

q

p+ q
. (3.103)

Again, to check for the validity of our proposed model, we set q = 1− p in (3.102):

O =
(p+ q)Z − qL

qL
(3.104)

=
Z − (1− p)Y

(1− p)Y
= Overhead obtained in (3.45) (3.105)

As we have seen before, the overhead for a successful transmission will include a CoAP parame-

ter. Here, the overhead for successful transmission is calculated by removing the average number of

attempts for observed losses in loss periodE[NOL](r + 1). Hence, the mathematical notation is pre-

sented by:

OST =
(1 + p

∑r
i=1

q
1−(1−q)r+1 (1− q)i−1i) ∗ Z − Y

Y
(3.106)
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Simplifying Eq. (3.106), we obtain the closed form:

OST =

(
1 + pq

(1−q)(1−(1−q)r+1)
· (1−q)(r(1−q)r+1−(r+1)(1−q)r+1)

q2

)
∗ Z − Y

Y
(3.107)

OST =

(
1 + p(r(1−q)r+1−(r+1)(1−q)r+1)

(1−(1−q)r+1)q

)
∗ Z − Y

Y
(3.108)

OST =

(
1 + p(1−qr(1−q)r−(1−q)r)

(1−(1−q)r+1)q

)
∗ Z − Y

Y
(3.109)

3.3 Experimental Environment

Our proposed models are validated by comparing their results with those obtained from experiments.

To do so, in this chapter we used network emulation. The nodes were emulated using Linux virtual-

ization network stack for which we used Ubuntu (v18.04 LTS). The emulated environment consists of

virtual nodes netns [57] and procedures to connect the nodes veth [12] and netem [28]. Real protocols

and applications run on the emulated nodes that form the emulated network. In our network model,

the server is operating on one node whereas the client is running on another node within the same

network.

The advantage of the netem tool is that it can generate losses according to several models including

Bernoulli and Simple Gilbert. It emulates also delays through propagation delays and bandwidth emu-

lation. In our experiments, the RTT value between the server and client node is 200ms. The loss ratio

p values are chosen to be: 10%, 30% and 50% respectively. The value of q is equal to 50%. The network

parameters are summarized in table 3.3.

Description Value
one-way delayD0 100 ms
RTT 200 ms
Loss Ratio p 10-50%
q (Bursty network) 50%

Table 3.3: Network parameters

We implemented the CoAP server and client using the open source library libcoap [8]. Libcoap

is a c-based project that provides the environment with CoAP functions. The client and the server

were pushed to the emulated nodes to run the experiments. In both network scenarios, the traffic was

created by CoAP client via sending “PUT” requests of type CON to the server. CoAP server responds

by sending ACK message to each CON request. The client sends the PUT request for 10000 times

consecutively. Different CoAP parameters are used and summarized in table 3.4.
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Description Value
RTO 0.5 – 1 – 1.5 – 2 – 2.5 s

r 1 – 9
Z 62 – 100 bytes
Y 10 – 48 bytes

Table 3.4: CoAP parameters

3.4 Models Validation and Performance Evaluation via experiments

3.4.1 Bernoulli Loss Model

Our observed loss ratio in the Bernoulli loss networkmodel is pr+1, hence increasing r should as a con-

sequence decrease thismetric. To check the accuracy of ourmodel, we compared it to the experimental

results shown in Fig. 3.8. The graph shows that, despite its simplicity, the observed losses model pro-

duces similar results to the experiments for different values of p and r. We can see that, for example for

p = 0.1 the observed loss ratio decreases as r is increased.

Figure 3.8: Experimental results vs. Model results for Observed Loss Ratio (PL)

The comparison between the delay model and the experimental results is shown in Fig. 3.9. Here

we note that we are examining a network with low losses, given that p = 0.1. According to our model,

increasing r and RTO will result in an increase in the delay. What we can draw from this figure is

thatRTO has a more significant impact on the delay than r in networks with low losses. For instance,

fixing r = 2 and changingT0 from 0.5 to 2 increases the delay by a factor of roughly 2. However, fixing

T0 = 2 and changing r from 2 to 4 increases the delay by a negligible amount. This observation applies

for a low-loss network; further aspects will be explored later in the analysis section.
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Figure 3.9: Experimental results vs. Model results for Delay

The experimental and model results of Goodput are presented in Fig. 3.10, where we used different

combinations of r and RTO values. Again, in the case of a low-loss network (p = 0.1), reducing

RTO is very beneficial for the Goodput and an increase in r does not yield significant changes for a

fixedRTO.

Figure 3.10: Experimental results vs. Model results for Goodput

To test the accuracy of the overhead for successful transmission model, we compared it to experi-

mental results as per Fig. 3.11 again for different combinations of p and r. The graph shows that the

ratios attained from the model and experiments are similar and almost exactly the same in many cases.

To focus on extreme cases, we can examine low and high loss networks: for p = 0.1, changing r from

1 to 3 results in no additional overhead. For p = 0.5, changing r from 5 to 6 results in slightly more

overhead in both the experimental results and the model, despite the little mismatch between the two.

Therefore, for both low and high loss networks, we can see that p has the dominant effect on increasing
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the overhead.

Figure 3.11: Experimental results vs. Model results for Overhead for successful transmission

3.4.2 Simple Gilbert Loss Model

The comparison of the observed losses ratio in Simple Gilbert loss model between the mathematical

model and the experimental results is presented in Fig. 3.12. The observed losses obtained from the

model and the experiment are similar for different values of r with a very small difference.

Figure 3.12: Experimental results vs. Model results for Observed Loss Ratio (PL)

According to the presented results in Fig. 3.13, delay values of the model and the experiments are

also similar for different values of r and RTO. In terms of the effects that the former values have on

the delay, the Simple Gilbert model is similar to the Bernoulli model but not identical when the loss

ratio p is low. In fact, looking at the experimental results, the retransmission counter r does not have as

much effect on the delay as theRTO does, but it does nonetheless yield higher increments (especially
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whenRTO is high as well). For instance, when r = 4, changing T0 from 0.5 to 2 increases the delay

from 0.2s to roughly 0.8s, corresponding to a factor of 4. This phenomenon has been observed in the

Bernoulli case. Now, if we keep RTO constant with T0 = 0.5, changing r from 2 to 4 increases the

delay from 0.2s to about 0.35s, where the difference is∆1 = 0.15s. For a higher value ofRTO where

T0 = 2, changing r from 2 to 4 increases the delay from 0.5s to about 0.78s, with∆2 = 0.28s.

Figure 3.13: Experimental results vs. Model results for Delay

The experimental and model results of the goodput model are presented in Fig. 3.14. The graph

shows that the goodput obtained from the model and experiments is similar for different values of r

andRTO, where a reduction inRTO will result in a significant benefit for Goodput.

Figure 3.14: Experimental results vs. Model results for Goodput
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Thecomparison between themodel and experimental results of theOverhead for a successful trans-

mission is shown in Fig. 3.15. At first glance, the results might not appear to be close. However, ac-

cording to the numerical values, the relative error between our model and the experimental results is

around 3%.

Figure 3.15: Experimental results vs. Model results for Overhead Ratio for successful transmission

3.5 Additional CoAP Performance Analysis using the analytical models

3.5.1 Bernoulli Loss Network Model

In Fig. 3.16, we show CoAP Observed Loss Ratio (PL) as a function of the loss probability p and the

retransmission counter r in a 3-D plot. The blue and green marks show the values of Observed losses

while varying p from 10% to 50% and r from 1 to 9. We observe that observed losses are very high

when the retransmission counter r is not high and the network is lossy. However, observed losses are

reduced enormously when we increment retransmission counter gradually. This can be hired to set the

retransmission counter adequately to avoid packet losses as required by the application.

Fig. 3.17 shows the delay of CoAP packets of successful transmission with different values of r and

RTO while varying p with the following values: 10%, 20%, 30%, 40%. These figures can be used to

determine the appropriate value of r to meet particular target delays. For example, when the loss ratio

p is 10% and the target delay can be up to 0.7 sec, then r can be set to 3.

Thedelay of packet transmission inCoAP is affected by the parameters: RTO and r and the network

loss ratio p. With low loss ratio p, the delay increases whenRTO increases and r does not play a major

role (Fig. 3.17 - a). However, when the losses increase in thenetwork (p > 10%),RTO and r bothplay

a significant role in increasing the delay as seen in Figures 3.17 - b, 3.17 - c, and 3.17 - d. Themain reason

is that when a CON request is not acknowledged, retransmissions are attempted which exponentially
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Figure 3.16: Observed Loss Ratio (PL) as a function of p and r

double the timeout each time, and consequently increase the delay. Although retransmissions increase

the delay of packet delivery in networks with high losses as previously discussed, increasing r reduces

the observed losses as per Fig. 3.16. Thus, when reliability is more important than delay reduction,

increasing r is justifiable.

Fig. 3.18 shows the goodput of CoAP transmission with different values of r and RTO while in-

creasing the loss ratio p to: 10%, 20%, 30% and 40%. The obtained results can be used to determine

the appropriate value of r to meet certain target goodput threshold. For example, if p = 30% and the

target goodput ≥ 1, then r can not be set greater than 2.

In general, selecting small values for the RTO parameter leads to a better goodput. In particular,

when p < 10% (Fig. 3.18-a), r does not havemuch of an effect and only a reduction inRTO will yield

better results since this corresponds to a low loss network. Predictably, goodput in low loss networks

(Fig. 3.18-a) is better than the goodput in a higher loss network (Fig. 3.18-b) due to the value of p. As

the network loss ratio increases (p > 20%), Goodput degrades when both r and RTO increase, as

observed in Figures 3.18-c, 3.18-d. Hence, in networks with high loss ratio, r plays a significant role in

goodput results along withRTO.

In Fig. 3.19, overhead for successful transmission is affected by high values of p. When there are few

losses in the network, retransmission rate will not be high and the overhead for successful transmission

will be reduced. On the other hand, overhead increases with the increased number of retransmissions

in high lossy network.
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Figure 3.17: Delay as a function ofRTO and r

3.5.2 Simple Gilbert Loss Model

Observed losses can be determined by our model according to the network loss ratio and number of

retransmissions r. As before, we plot in Fig. 3.20a the CoAP Observed Losses (PL) in 3-dimensions,

while varyingp from10%to50%and r from1 to9. As the figure indicates, the observed losses decrease

to 0when r is sufficiently high (e.g. r=6), despite the fact that the loss probability p is high (50%). On

the other hand, in Fig. 3.20b, we plot theCoAPObserved Losses while varying q from 10% to 90%and

r from 1 to 9, with p set to 20%. As can be observed from this figure, theCoAPobserved losses increase

as q decreases. This is expected since the complement 1 − q is increasing, and this term represents

the network’s burstiness. The importance of the results presented in 3.20 is that they help determine

the value of the retransmission counter r in cases where we have high losses. As we will see later, the

drawback of increasing r has a negative impact on the goodput.

The delay values are shown in Fig. 3.21, where we vary the parametersRTO from 1 to 4 sec, r from

2 to 10. We use different of value of p (10%, 20%, 30%, 40%). The value of q is set 50% which forces

the occurrence of successive losses and hence packet delivery takes more time, which in turn increases

the delay. As discussed before, although reducing the delay depends onRTO but r plays a significant

role as well. This is especially true for high values of RTO where we can observe from Fig. 3.21 that,
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Figure 3.18: Goodput as a function ofRTO and r

Figure 3.19: Overhead for successful transmission as a function of p and r
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(a)Observed Loss Ratio (PL) as a function of p and r with
q = 50%

(b)Observed Loss Ratio (PL) as a function of q and r with
p = 20%

Figure 3.20: Observed Loss Ratio (PL) as a function of p, q and r

for all network conditions, an increase in r negatively impacts the delay whenRTO is also high.

Figure 3.21: Delay as a function ofRTO and r for q = 50%
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Goodput decreaseswhenwe increase r as seen inFig. 3.22. At the first glance, the results look strange

because when we increase r, losses are reduced and we are supposed to obtain a better goodput, which

is not reflected in Fig. 3.22. However, the reason behind this is that increasing r will involve CoAP

binary exponential back-off mechanism which will in turn increase the waiting time and decrease the

goodput.

Figure 3.22: Goodput as a function ofRTO and r for q = 50%

As we have seen previously, in Fig. 3.23a we vary the values of p and r and we compute the Over-

head for a successful transmission. As the figure indicates, the Overhead for a successful transmission

increases slightly when only p is increased. However, when both variables p and r are increased, the

overhead becomesmuchmore. Similarly, for Fig. 3.23b but here we vary q and r. When the burstiness

increase (i.e when q decreases), the overhead increases as r increases. Therefore, as we can see from

Fig. 3.23, the overhead for a successful transmission in a lossy network increases when r is increased.

The is because re-sending the same payload is imposed for each retransmission attempt.
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(a)Overhead for successful transmission as a function of p
and r with q = 50%

(b)Overhead for successful transmission as a function of q
and r with p = 20%

Figure 3.23: Overhead for successful transmission as a function of p, q and r

3.6 Conclusion

In this chapter, we presented mathematical models of CoAP performance metrics. We showed how

to find these models first using Bernoulli loss model then using the Simple Gilbert loss model. Direct

computation and closed forms for all ourmathematical models were presented. Secondly, we validated

ourmodels using experiments. Then, a profound analysis onCoAPperformancewas carried out by uti-

lizing the presented models. The comparison with experimental results using a real implementation of

CoAP shows the accuracy and the usefulness of our proposed models. On the one hand, the value in

our models is that different network and protocol parameters can be computed, thus providing guid-

ance on the impact of the CoAP parameters on its behavior and performance. For instance, we found

that increasing retransmission attempts r does not increase the goodput in spite of reducing the loss ra-

tio. The reason for this is that theRTO value must change as well. On the other hand, the importance

of this study is that it can be used to determine good (or optimal) values of r andRTO to meet target

requirements such as CoAP losses, latency and goodput which will help in reducing congestion.

Another concrete utility of our model is the following: Assume that T = T1 and r are fixed, then

CoAPwill achieve a certain goodput denoted asG1(T1, r). If we need to reduce losses, we can increase

r by 1 but goodput will consequently decrease and be denoted as G2(T1, r + 1). Can we determine

a new value for the timeout T2 in terms of T1 such that despite the increase in r, the goodput level

is maintained? This can be done easily and dynamically via our model and translates to solving the

following equation:

G1(T1, r) = G2(T2, r + 1). (3.110)
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substituting (3.30) in (3.110), then

1− pr+1

(1− pr+1)R + T0p
(

1−(2p)r+1

1−2p

) =
1− pr+2

(1− pr+2)R + T1p
(

1−(2p)r+2

1−2p

) (3.111)

=⇒ T2 = T1 ×
(1− pr+2)(1− (2p)r+1)

(1− pr+1)(1− (2p)r+2)︸ ︷︷ ︸
Required factor

(3.112)

The behavior of the Required factor versus p and r is presented in Fig. 3.24. For instance, the higher

the network losses, the lower the factor and that means, the new RTO must be reduced further to

compensate the increase in r. As can be noticed from the figure that the relation between the fraction

and p and r is not linear which necessitate the need for the model to find the new value of T .

Figure 3.24: Required factor as a function of p for different r values

To conclude this chapter, CoAP was studied via modelling in two different network scenarios and

this allowed us to identify the CoAP parameters that can lead to a better performance. For instance,

one of CoAP’s parameters that should be optimized is the initial retransmission timeout (RTOinit),

where we realized the need for reducingRTOinit as much as possible to improve packet delivery and

enhance reliability. This motivates Chapter 5 which is related toRTO optimization.
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4
CoAPModelling: Gilbert-Elliot FullModel

4.1 Introduction

In this chapter, we present anothermodelling framework, usingMarkov chains, allowing us to compute

the performance metrics for the full model of Gilbert-Elliott [26, 22] (Figure 4.1). The gradual shift

from a simple model to a more complex (and realistic) one is a good strategy for two reasons. Firstly, it

gives space for validation and offers a correctness-check because the same formulas are obtained using

different frameworks. Secondly, themodelling aspect itself allows for abetter anddeeperunderstanding

of the protocol’s functionalities in practice, such as the timeout behavior when an ACK is not received.

Thus, the previous performed computations were based on the successive modelling of the protocol’s

behavior and the formulas were obtained from these studies, whereas in this chapter we will use the

Markov chain .

The method based on Markov Chains can reduce the complexity of the modelling. Unfortunately,

direct computation is not possible as before and the use of a 1-dimensional Markov Chain to model

CoAP transitions is insufficient because it does not capture the hiddenMarkov Chain states of the full

Gilbert-Elliott model. This fact sheds light on the importance of understanding the protocol first, via

Simple Gilbert modelling, and next studying the Gilbert-Elliott model. The aforementioned model

represents the general case and thus provides expressions for CoAP performance in all scenarios.

The Gilbert-Elliott model is commonly used to model lossy environments and especially wireless
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networks. There are two states, Good (G) and Bad (B). 1 − k is the loss probability in the G state.

1 − h is the loss probability in the B state. p and q are the transition probabilities between the two

states. 1 − q is the probability for a successive loss in the B state while 1 − p is the probability for a

successive success in the G state.

1−h1−k

G B

1−q

q

p

1−p

Figure 4.1: The Gilbert‐Elliott Markov Chain model

Thenovelty in ourwork is the evaluation ofCoAPprotocol underGilbert-Elliotmodelwith a precise

computation without approximations despite the hidden aspect of the Gilbert-Elliot Markov chain.

4.2 An Exact Model for CoAP Performance under Gilbert-Elliott

Weconsider as previously aCoAPsender that is transmittingpacketswhenever allowedby theprotocol.

We study the Confirmed mode of CoAP since it is the one which includes a loss recovery mechanism.

The principle is based on an exponential backoff procedure in case of loss and it is reminded again in

the following: When the CoAP sender transmits a packet with a confirmation request (CON packet),

it waits for an acknowledgment (ACK packet). If the ACK is received after a round-trip-time, then it

moves to the next packet to send. Otherwise, a first timeout expires. In this case, the sender retransmits

the same packet and doubles the timeout. Successive retransmissions are limited to r times after which

the packet is dropped and the sender moves to the next packet to send if any. The timeout value is

randomized via a multiplication factor to avoid synchronization problems (Figure 4.2).

Denote byR the average round trip time,T the average of the first time value including the random-

ization factor.

4.2.1 Modeling CoAP Transmissions

It is important to notice first that modeling CoAP transmissions using one classic dimensionalMarkov

chain will not provide exact analytical results. Such Markov chain is shown in Figure 4.3 representing

the time between the sending instant and the reception of the acknowledgment or the expiration of the

timeout. StateR corresponds to a successful transmission. State 2iT corresponds to a packet loss fol-

lowedby a timeout equals to2iT , 0 ≤ i ≤ r. The terms2iT are shown inFigure 4.2which summarizes

also the retransmission behavior of CoAP. State 2rT is the last unsuccessful attempt (retransmission)
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for the same packet, and thus the packet is dropped since no more retransmissions are allowed. The

applicationmoves to the next packet to send. If this new packet is successful then the chainmoves back

to state R, otherwise, it turns back to state 20T that corresponds to a loss and the expiration of the

timeout.

Dow

. . .

2 T2TT i

. . .

R

CONCON CON CON ACK

. . . . . .

i+1(2    − 1)T  

Figure 4.2: Summary of CoAP exponential backoff procedure for congestion control as described in [53]. T is the first
timeout average value. R is the average Round Trip Time. Dow is the average one‐way delay.

R 2 T
0

P(L/S) P(L/S)P(L/S) P(L/S)

1−P(L/S)

2 T
i

2 T
r. . . . . .

P(L/S)

P(S/L)

P(S/L)
1−P(S/L)

P(S/L)

Figure 4.3: A possible Markov chain modeling CoAP successive transmissions

In order to determine all transition probabilities, we need only to find two probabilities: The prob-

ability of a lost transmission such that the previous one was a success denoted by P (L/S), and the

probability of a success given that the previous one is lost denoted byP (S/L). These probabilities are

difficult to obtain since the Markov chain of Gilbert-Elliott model is hidden [16]. This is because when

a packet is lost, we can not decide if the Markov state is Bad (B) or Good (G) since the loss event is

possible in both states. Consequently, we need to compute the probabilities of being in the B state or in

theG state knowing that the packet is successful or lost. Of course, these probabilities can be computed

using Bayes theorem as follows:

P (L/S) = P (L/G)P (G/S) + P (L/B)P (B/S) (4.1)

P (S/L) = P (S/G)P (G/L) + P (S/B)P (B/L) (4.2)
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Using Bayes theorem yields to

P (L/S) = P (L/G)
P(S/G)P(G)

P(S)
+ P (L/B)

P(S/B)P(B)
P(S)

=
((1− p)(1− k) + p(1− h)) kq + ((1− q)(1− h) + q(1− k))hp

kq + hp
(4.3)

P (S/L) = P (S/G)
P(L/G)P(G)

P(L)
+ P (S/B)

P(L/B)P(B)
P(L)

=
((1− p)k + ph) (1− k)q + ((1− q)h+ qk) (1− h)p

(1− k)q + (1− h)p
(4.4)

Then,we can solve theMarkov chain to obtain the following steady state probabilities ofCoAP trans-

missions:
π(R) = s

(l+s)

π(2iT ) = ls(1−s)i

(l+s)(1−(1−s)r+1)
, 0 ≤ i ≤ r

with l = P (L/S), and s = P (S/L)

However, the drawback of this approach is that P (G), P (S) and P (L) are unknown and can only

be approximated by using steady state probabilities of the Gilbert-Elliott which is not applicable when

analyzing instantaneous events that are correlated. Later, we will show that this approximation does

hold in some particular cases.

To solve exactly the hidden state problem, we need to split the states of the previous Markov chain

into two. One when transmission events occur in the G state and the other when transmission events

occur in theB state as shown inFigure 4.4. Hence, transitionprobabilities canbe computedexactly. Any

transition probability in theMarkov chain is the product of two probabilities. Thefirst is the probability

of moving from G to B and vice versa. The second is the probability of loss or success in the G state or

in the B state. For example, the transition probability from state 2iTG to state 2i+1TB is p(1− h).

It is more practical to write the steady state equations related to this Markov chain using matrices

and vectors to better reflect the “two dimensions” of the Markov Chain and thus ensure its resolution.

First, we define the following matrices.

A =

[
(1− p)(1− k) q(1− k)

p(1− h) (1− q)(1− h)

]
, VR =

[
π(RG)

π(RB)

]

B =

[
(1− p)k qk

ph (1− q)h

]
, Vi =

[
π(2iTG)

π(2iTB)

]
, 0 ≤ i ≤ r

71



(1−p)(1−k) (1−p)(1−k) (1−p)(1−k)

BR

. . . . . .

(1−p)(1−k)
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0

(1−p)(1−k)

G G

(1−p)k

GR

p(1−h)

q(1−k)
q(1−k)

(1−p)k (1−p)(1−k)

p(1−h)

ph

p(1−h)

p(1−h)
p(1−h)

p(1−h)

q(1−k)

qk

q(1−k)

qk

q(1−k)ph

(1−p)k

. . . . . .2 T
i

2 T
r

2 T
0

B BB

(1−q)(1−h)

(1−q)h

(1−q)(1−h) (1−q)(1−h) (1−q)(1−h)

(1−q)h

(1−q)(1−h)
(1−q)h

(1−q)(1−h)

ph

q(1−k)
qk

(1−p)k

(1−q)h

ph qk

Figure 4.4: The exact Markov Chain modeling CoAP successive transmissions under the Gilbert‐Elliott loss model

MatricesA andB are not to be confusedwith a transition probabilitymatrix. Notice thatA includes

all transition probabilities to a loss state, and B includes all transition probabilities to a success state.

Now, steady state equations can be written using linear algebra as follows

VR = BVR +B
r∑

i=0

Vi (4.5)

V0 = AVR + AVr , Vi = AVi−1, 1 ≤ i ≤ r (4.6)

Now, we can solve the system and compute the transition probabilities thanks to matrix operations.

First, we notice thatVR+
∑r

i=0 Vi = [π(G), π(B)]t. Summing all the steady state probabilities which

means all the terms of equations (4.5) and (4.6) we obtain[
π(G)

π(B)

]
= (A+B)

[
π(G)

π(B)

]
(4.7)

which provides π(G) and π(B). We also have

VR = B

[
π(G)

π(B)

]
(4.8)

72



Then, from equations (4.6) we deduce

Vi = AiV0, 1 ≤ i ≤ r (4.9)

Combining equations (4.9) with (4.6) and (4.8) yields to

Vi = (I2 − Ar+1)−1Ai+1VR, 0 ≤ i ≤ r (4.10)

I2 is the 2×2 identitymatrix. We also use the fact thatAi(I2−Ar+1)−1 = (I2−Ar+1)−1Ai. The

expressions of the elements ofAi+1 can be determined in closed-form via the Cayley-Hamilton theo-

rem [59] (Appendix A) or through diagonalization and similarity transformation (Appendix B). The

Cayley-Hamilton theorem allows to say that a square matrixA satisfies its own characteristic equation

det(xIn − A) = 0 where det() is the determinant function and In is the n × n identity matrix. For

a 2 × 2 square matrix, the equation is x2 − (λ1 + λ2)x + λ1λ2 = 0 where λ1 and λ2 are the two

eigenvalues of matrixA. Thus, we can write the following interesting matrix equation

A2 − (λ1 + λ2)A+ λ1λ2I2 = O (4.11)

Now, define the following two matricesC1 andC2 as follows

C1 = A− λ1I2, C2 = −A+ λ2I2 (4.12)

then thanks to Cayley-Hamilton theorem which means equation (4.11), we can derive several useful

properties:

C1C2 = O, C2
1 = (λ2 − λ1)C1, C

2
2 = (λ2 − λ1)C2 (4.13)

Ci
1 = (λ2 − λ1)

i−1C1, C
i
2 = (λ2 − λ1)

i−1C2 (4.14)

Next, we write the matrixA using the two matricesC1 andC2 as follows

A =
λ1

λ2 − λ1

C2 +
λ2

λ2 − λ1

C1 (4.15)

Using properties (4.13) and (4.14), we deduceAi

Ai =
λi
1

λ2 − λ1

C2 +
λi
2

λ2 − λ1

C1 (4.16)

Finally, replacingC1 andC2 in the previous equation by their expressions as defined in equation (4.12),
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we obtain the final result forAi:

Ai =
λi
2 − λi

1

λ2 − λ1

A+
λ2λ

i
1 − λ1λ

i
2

λ2 − λ1

I2 (4.17)

For our matrixA =

[
(1− p)(1− k) q(1− k)

p(1− h) (1− q)(1− h)

]
, the eigenvalues λ1 and λ2 are computed

as

λ1 = tr(A)/2−
√

tr(A)2/4− det(A) (4.18)

λ2 = tr(A)/2 +
√

tr(A)2/4− det(A) (4.19)

tr(A) = (1− p)(1− k) + (1− q)(1− h) (4.20)

det(A) = (1− k)(1− h) ( (1− p)(1− q)− pq ) (4.21)

To compute all the steady state probabilities Vis, we first compute V0 using equations (4.10) and

(4.8). Then, we use equation (4.6) to compute all the others in an algorithmwith a total time complex-

ity equals toO(r) only. It is also possible to compute directly any Vi using (4.9). Finally, we compute

π(RG) + π(RB) = π(R),

π(2iTG) + π(2iTB) = π(2iT ), 0 ≤ i ≤ r (4.22)

ComputingPerformanceMetricsofCoAP: Using the steady state probabilities of theCoAPMarkov

Chain, i.e. π(R) and π(2iT ), 0 ≤ i ≤ r, now we can compute several performance metrics such as

the experienced loss ratio PL, the average goodput GP , the average delay D̄s, and the overhead for

a successful transmission Os. Other metrics can also be computed such as the average number of re-

transmissions required to send a CoAP packet successfully, the total overhead, the average number of

losses in the Bad state.

4.2.2 Loss Ratio

The loss ratio is defined as the average number of losses divided by the total number of CoAP packets

sent from the application. Thus,

PL =
π(2rT )

π(2rT ) + π(R)
(4.23)
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Using the results from equations (4.17) to (4.21), we can compute the elements ofAr+1. Denote them

by

[
a b

c d

]
, we provide the expressions of the matrix elements in Appendices A and B. Then we can

determine π(2rT ) from equations (4.10) and (4.22):

π(2rT ) =
(b+ d)ph+ (a+ c)qk − (λ1λ2)

r+1(ph+ qk)

(p+ q)
(
1− λr+1

1 + λr+1
2 + (λ1λ2)r+1

) (4.24)

where λ1 and λ2 are the eigenvalues of matrixA as defined in (4.18) and (4.19). Thus, from equation

(4.23), we obtain the closed form expression of the experienced loss ratio PL:

PL =
(b+ d)ph+ (a+ c)qk − (λ1λ2)

r+1(ph+ qk)

(b+ 1− a)ph+ (c+ 1− d)qk
(4.25)

It is important to notice that the loss ratio does not correspond to the probability of having r+1 suc-

cessive losses in the Gilbert-Elliott Markov model which is usually computed through classic dynamic

programming algorithms. Indeed, the loss ratio is computed only when the CoAP sender generates

a new packet, and this event depends on previous sent packets and their status, i.e. loss, success, first

retransmission, last retransmission. Henceforth, our Markov chain combines the Markov chain of the

network model and the application model in order to capture exactly the interaction between the ap-

plication and the network.

4.2.3 Goodput

The average goodput is computed as the average number of successful packets in a given period divided

by the average delay of that period. Here, we select the period to be the inter-arrival delay between

transmissions (new packets from the application and retransmissions). Thus,

GP =
π(R)

π(R)×R +
∑r

i=0 π(2
iT )× 2iT

(4.26)

π(R) and π(2iT )s are obtained as described above for the loss probability.

4.2.4 Delay

For the delay several calculations are possible. For instance:

D̄s = Dow + T

∑r−1
i=0 2

iπ(2iT )− π(2rT ) (2r − 1)

π(R)
(4.27)
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Dow is the average one-way delay between the CoAP sender and receiver which is independent from

the CoAP congestion control procedure. The next term in the equation is the total delay of attempts

before the last one minus the waiting delay in case of loss, divided by the probability of success so that

we obtain the average waiting delay before a success. It is worthy to notice that this delay is valid even

if the CoAP sender does not send continuously its packets.

4.2.5 Overhead for a Successful Transmission

To compute the overhead, first we compute the average number of retransmissions required to send a

CoAP packet successfully. It is obtained by computing the average of the probability of having retrans-

missions such that anACK is received at the end of these retransmissions, without counting application

losses, i.e. observed losses by the application (−π(2rT ) in equation (4.28)). Then, we compute the

total sent data using the size of a packetZ and of a payload Y , divided by the payload Y .

Os =

(
1 +

r−1∑
i=0

π(2iT )− π(2rT )

π(R)

)
Z

Y
− 1 (4.28)

4.3 Using the CoAP Analytical Model to Tune CoAP

We provide here one example how to use the model to tune CoAP parameters. Figure 4.5 shows, for

different values of the re-transmission limit r, the experienced loss ratio by the CoAP sender while

increasing the duration of the Bad period which is controlled by 1− q. Here, we used the exact model.

This result can be used for instance to determine the adequate value of r to deploy in order to meet

some target loss ratio requirement. For instance, if 1− q ≤ 0.8 in the network, and the target loss ratio

is 0.2, then a re-transmission limit of 2 is quite sufficient. This will reduce the delay and the overhead

due to re-transmissions.

4.4 Comparison Between the Exact and Approximated Model

Table 4.1 compares the exact model with the approximated one. In general, the approximated model

provides the exact results if p = 1− q, or k = 1, h = 0, or k = h because in these cases the Gilbert-

Elliott Markov Model is not hidden any more. In other words, it is possible to infer exactly the current

state of the Markov chain (G or B), or not knowing the current state does not impact the computation

due to symmetry of theMarkov chain for instance. If one of these conditions is approximately satisfied,

for instance k ≈ h, then the approximated model provides close results. The farther from the cases

mentioned above, the wronger the approximated model. We observe however that the simple classic
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Figure 4.5: Experienced Loss ratio when 1− q increases. Parameters: p=0.1, k=0.8, h=0.2.

formula (1 − kq+hp
p+q

)r+1 is far from reality in most cases including the Simple Gilbert case, i.e. k =

1, h = 0 except if p is equal exactly to 1− q.

Table 4.1: Comparison between the approximated and the exact models

r = 3 Exact Approximated Using
p q k h Model Model 1− kq+hp

p+q

0.1 0.5 1 0 0.013158 0.013158 0.000772
0.1 0.5 0.95 0.05 0.013129 0.011279 0.001599
0.1 0.5 0.75 0.25 0.018239 0.016534 0.012347
0.1 0.5 0.4 0.4 0.129599 0.129599 0.129600
0.1 0.5 0.9 0.4 0.003700 0.002897 0.001129
0.1 0.1 0.75 0.25 0.096715 0.090301 0.062500
0.1 0.05 0.75 0.25 0.151292 0.146092 0.115788
0.1 0.8 0.75 0.25 0.009399 0.009321 0.008717
0.4 0.6 0.75 0.25 0.041006 0.041006 0.041006
0.75 0.25 0.75 0.25 0.152588 0.152588 0.152588

Fig. 4.6 shows the achieved goodput of the exact and the approximated model while varying the

residual bandwidth. As canbeobserved fromFig. 4.6awherewevary thebandwidth from0 to2packets

per second, for small residual bandwidth values, the results of the approximated model looks the same

as that of the exact model. We argue it is not the case. As per Fig. 4.6b where we zoom between 0 to

0.2 packets per second, the results are not the same.
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Figure 4.6: Approximated results vs. Exact Model results while varying the available bandwidth

4.5 Revisiting the Simple Gilbert Loss Model

We have considered in this chapter the 2-state Markov approach as introduced by Gilbert [26] and

Elliot [22]. TheGilbert-Elliot model has two states (Good and Bad) and four independent parameters

(p, q, h, k). Now, assuming that the good state G is packet loss-free (k = 1) and the bad state B is

packet gain-free (h = 0), the model becomes equivalent to the Simple Gilbert model presented in the

previous chapter. As a result, the transition matrix A is given by the two transitions:

p = P (B|G); q = P (G|B); A =

[
(1− p) p

q (1− q)

]
As mentioned before, the mathematical formula for CoAP observed loss ratio PL is given by:

PL =
π(2rT )

π(2rT ) + π(R)
(4.29)

which refers to the average number of CoAPobserved losses divided by the total number of total CoAP

transmitted messages. Substituting simplifies equation (4.29) to:

PL =
p(1− q)r

p(1− q)r + (1− (1− q)r+1)
(4.30)

=
p(1− q)r

1 + (p+ q − 1)(1− q)r
(4.31)

= PL obtained by the Simple Gilbert Loss Model (Chapter 3) (4.32)

Consequently, ourpresented formulas in chapter 3 canbehandledbyusing the1-dimensionalMarkov
Chain for Simple Gilbert without any hidden aspects and the same results will be found. Here, we re-
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Description Value
RTO 2 s

r 4
Z (Total packet size) 100 bytes

Y (Payload of the packet received) 48 bytes

Table 4.2: CoAP parameters used in Cooja/Contiki

mind the reader about the gradual shift strategy that we followed during our research work.

4.6 Experimental environment

In this section, Cooja platform [48], being a common tool for performing evaluation in IoT environ-

ment with the ContikiOS [21], will be used to validate our model. The importance of Cooja is the

emulation of the constrained nodes hardware taking into account the hardware specifications and pro-

cessing capabilities available in real IoT nodes. More details regarding the Cooja environment will be

presented in chapter 6. In the validation experiments, we consider a ring topology presented in Fig.

4.7. In the network, the RPL router is node 1, CoAP receiver is node 2 and other nodes acting as CoAP

senders. Z1 motes [2] are used for CoAP nodes while a TMote Sky mote is used for the RPL router.

All CoAP clients are sending messages that are routed through the RPL border router to the server us-

ing the IPv6 address. The RPL router serves only as relay for CoAP messages. It is worth noting that

Z1 motes offer more ROM space, giving more room for the code imposed by CoAP protocol or any

other enhanced version of the protocol. An initialization phase around 100 seconds for each simula-

tion is allowed. No results are collected during this phase. Once the network is initialized, CoAP clients

generate messages which are directed towards CoAP server. NSTART is set to 1 as per CoAP default

specification which means that only 1 message is sent at a time per node. The value of Transmission

(TX) ratio is: 100%. The simulations of the different scenarios have a 15min duration and are repeated

5 times for each scenario. We use different CoAP parameters which are summarized in table 4.2. To

challenge our experimentsmore, we used diverse values of Gilbert-Elliott parameters listed in table 4.3.

More precisely, the values of p,q,k, and h are imposed in CoAP engine file. We carried out all our ex-

periments after we corrected a bug with the existing CoAP implementation in Contiki. In particular,

the sender did not wait for the timeout after the last retransmission.

Remark: Cooja/Conitki parameters and hardware specifications of the motes are presented in de-

tails in chapter 6.
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p q k h
0.1 0.6 0.8 0.2
0.2 0.6 0.8 0.2
0.3 0.6 0.8 0.2
0.5 0.6 0.8 0.2
0.7 0.6 0.8 0.2
0.1 0.5 0.4 0.4
0.1 0.5 0.5 0.4
0.1 0.5 0.6 0.4
0.1 0.5 0.7 0.4
0.1 0.5 0.8 0.4

Table 4.3: Gilbert‐Elliott simulation parameters

Figure 4.7: Network topology for Model validation with Cooja/Contiki OS environment

4.7 Model Validation via experiments

To check the correctness of our model, we compared it to the experimental results shown in Fig. 4.8.

In the presented figure, we show CoAP Observed Loss Ratio (PL) while varying the probabilities p

and k respectively. The blue and red plots show the values of Observed losses while varying p from

10% to 70%, with q set to 60%, k set to 80% and h to 20%. Loss ratio refers to the case where all the

re-transmission attempts are lost and ack is not received. When disruption happens, packets may be

lost. The packet loss triggers the retransmission of the packet or transmission of a new packet. As figure

4.8a indicates, when p increases, observed loss ratio PL increases accordingly. On the other hand, in

Fig. 4.8b, we vary k from 40% to 80% while setting p to 10%, q to 50%, and h to 40%. We observe that

as k increases, CoAP observed losses decreases and this is expected since the complement 1−k which

represents the loss probability in the good state is decreasing.

The experimental and model results of Goodput are presented in Fig. 4.9, where we vary p and k as

mentioned in table 4.3. As can been seen, in the case of a low network losses (p > 0), the goodput

increases in both themodel and experiments for different values ofGilbert-Elliott parameters (Fig. 4.9a

and Fig. 4.9b). The graph shows that the ratios attained from the model and experiments are similar

80



(a)Observed Loss Ratio PL results while varying p (b)Observed Loss Ratio PL results while varying k

Figure 4.8: Experimental results vs. Model results for Observed Loss Ratio PL

(a) Goodput results while varying p (b) Goodput results while varying k

Figure 4.9: Experimental results vs. Model results for GoodputGP

and almost exactly the same in many cases.

To test the accuracy of the delaymodel, we compared it to experimental results as per Fig. 4.10, again

with different values of p and k while fixing the remaining parameters as seen before. Fig. 4.10 shows

the delay of CoAP packets of successful transmission with different values of loss probability p: 10%,

20%, 30%, 50% and 70%. As mentioned before, the delay of packet transmission in CoAP is affected

by the network loss which is imposed by the loss probabilities. With high values of p which represents

high network losses, the delay increases to around 3 sec (x-point 0.3 in Fig. 4.10a) and to 5 sec (x-point

0.7 in Fig. 4.10b). Here again, as we can see from the results, the loss probability plays a significant role

in increasing the delay.

4.8 CoAP Performance Analysis via the Analytical Model

Figures 4.11a to 4.11d show the achieved goodputGP versus the available bandwidth in the network

while varying the four Gilbert-Elliott parameters h, k > h, p and q in turn. The available bandwidth

corresponds to kq+hp
(p+q)R

since CoAP is limited to one packet per RTT. The wastage of the bandwidth

is varying between 32% and 80%. The more the losses in the network, the more the wastage. Here,

81



(a) Delay results while varying p (b) Delay results while varying k

Figure 4.10: Experimental results vs. Model results for Delay D̄s

the round trip time R is 500ms. The wastage becomes much larger when R is smaller as shown also

in Figure 4.13b where we vary R from 10ms to 2s which is the default CoAP initial timeout without

randomization. Evenwith the excessiveT = R, the wastage is 10% ormore depending on the network

state. Thewastage is also due to the backoff procedure. Notice though that in reality the timeout should

be sufficiently higher than the round trip time.

Figure 4.11f and 4.11e show the experienced loss probability and the overhead respectively for dif-

ferent values of the retransmission counter r while increasing the network loss probability 1 − h of

the bad period. To improve the reliability of CoAP, it is better to increase r. However, the overhead is

increased and vice versa. It is intricate to control the tradeoffwith the parameter r andwith retransmis-

sions. Actually, retransmissions help only recovering from losses but they can not reduce losseswithout

increasing the overhead.

Fig. 4.12a presents the achieved goodput versus the optimal goodput while varying the available

bandwidth. As can be seen, when the available bandwidth is less than 1/RTT , the goodput wastage is

high. In Fig. 4.12b, we vary the round trip timeR from 0.05 s to 1.9 s. As we have seen previously, for

small values ofR, the achieved goodput is low.

Finally, in Figure 4.13a, we vary R from 500ms to 3.5s and we compute the goodput using backoff

factors according to the Variable Backoff Factor (VBF) algorithm suggested in [10, 14]. VBF uses a

1.5, 2 or 2.5 multiplication factor depending on the value of the retransmission timeout, which in turn

depends onR. Even though in thisworkwepresented the above formulaswith the defaultCoAPmulti-

plication factor of 2, it is easy to extendourmodel to compute for any backoff factor b. Indeed, following

the same reasoning in section 4.2, we obtain the mathematical models of CoAP performance metrics.

For instance, goodputGP (4.26) and delay D̄s (4.27) equations become:

GP =
π(R)

π(R)×R +
∑r

i=0 π(b
iT )× biT

(4.33)
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Figure 4.11: Performance evaluation results using our Makovian model under Gilbert‐Elliott losses

83



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

A
ch

ie
ve

d 
go

od
pu

t (
pa

ck
et

s/
s)

Available bandwidth (packets/s)

r=4; T=2.5s, rtt=0.5s

Achieved goodput 
Optimal

(a) Achieved vs. Optimal goodput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14  16  18

A
ch

ie
ve

d 
go

od
pu

t (
pa

ck
et

s/
s)

Available bandwidth (packets/s)

r=4; T=2.5s

rtt = 0.05 s
rtt = 0.1 s
rtt = 0.5 s

rtt = 1 s
rtt = 1.9 s

(b) Achieved goodput for different RTT values

Figure 4.12: Performance evaluation results while varying the available bandwidth
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Figure 4.13: Impact of round trip time RTT and variable backoff factors on goodput

D̄s = Dow + T

∑r−1
i=0 b

iπ(2iT )− π(2rT ) (br − 1)

π(R)× (b− 1)
(4.34)

Referring back to Figure 4.13a, we see that the benefit from VBF is minor and depends on R. Ac-

tually, it is hard to achieve a fine-grained control using distinct backoff factors even if their number is

large.

4.9 Conclusion

We developed a novel model based on Markov Chains to derive the performance of CoAP under the

Gilbert-Elliott loss model and validated it via simulations. We showed how to compute several perfor-

mance metrics using closed form expressions and with a time complexity no more than O(r) with r

is the maximum re-transmission limit. Thus, the model can also be used to tune CoAP parameters dy-
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namically by IoT devices in order to adapt to network losses. The use of different models, as presented

in this chapter and chapter 3, provides confidence in our analysis, since we find the same results using

several approaches. In fact, we discovered a bug related to the implementation of CoAP in the COOJA

simulator: the r-th re-transmission attempt did not wait for an ACK reception. Thus far, we carried

out the modelling work and it allowed to study precisely the performance of CoAP and the effect that

different parameters have on its behavior.

Synthesis. In order to improve the goodput and reliability while reducing overhead, first we have

to reduce the retransmission timeout as much as possible to be close to the round trip time so that

congestion detection is improved and the reaction to the congestion is accelerated. However, the time-

out should not become lower thanRTTto avoid creating spurious transmissions which are very harmful

because theywaste resources of the constrained device. Second, retransmissions and the backoff proce-

dure are not the right action to counter congestion efficiently. For congestion counteraction, it is better for
theCoAP sender to deploy a “real” congestion controlmechanism in order to decide correctly how long

towait before sending the next packet and avoid losses. The inter-sendingdelay should be inversely pro-

portional to the available bandwidth, and this is hard to achieve through the backoff mechanism even

with variable backoff factors. The above results and analysis suggest to follow a rate-based approach for

congestion control rather than a backoff-based approach. Nevertheless, the algorithms must be devel-

oped with minimal instructions so it can reduce the processing overhead and increase the lifetime of

the constrained devices. That is why also spurious transmissions must be reduced as much as possible

to reduce energy consumption. These algorithms will be covered in the next chapters.
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5
CongestionDetection: Improving Retransmission

Timeout Calculation

Upto this chapter,we focusedonanalyzing andevaluating theConstrainedApplicationProtocol (CoAP)

via modelling. In Chapter 2, we introduced the improvements carried out by previous works in or-

der to enhance CoAP congestion control components, and in particular, the Retransmission Timeout

(RTO) calculation which is used to enhance congestion detection. As a matter of fact, timeouts are

the only indicator used in CoAP to detect losses and losses are used as a strong indicator to detect con-

gestion. The second component, congestion counteraction, defines the procedures taken after RTO

expiration. Then, we analyzed and presented their corresponding shortcomings. The results show that

recent mechanisms suggested to calculate RTO are not sufficient and can be improved further. In this

chapter, we present and evaluate our proposed algorithm to efficiently calculate RTO and overcome

the addressed shortcomings. Using our Python simulator that we developed to analyze different al-

gorithms, different network scenarios are considered to evaluate the performance of RTO estimation

algorithms. The presented results prove that the proposed algorithm provides significant improvement

in RTO estimation for the majority of the considered cases. The rest of the chapter is organized as fol-

lows: In Section 6.1, the design of our RTO calculation proposed algorithm is presented. Section 5.2

describes in detail our new simulator environment. Performance evaluation results are presented in

Section 6.2 where we compare our algorithms with previous works. Section 5.4 concludes the chapter.
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5.1 Proposed algorithm

In this section, we propose ourRTOestimation algorithm in order to overcome the previous shortcom-

ings that we have highlighted inChapter 2 and improveRTOcalculation. We design a new algorithm to

calculate the initial retransmission timeoutRTOinit more efficiently to improve congestion detection.

The outcome will serve as the congestion detection portion of our new proposed congestion control

protocols. The congestion counteraction part of these protocols will be explored in Chapter 6. In both

algorithms, RTOinit is used only to detect losses and it is never doubled or modified in case of loss.

Also, no dithering techniques are implemented, thus we call it also simply RTO.

5.1.1 RTO Calculation Version 1

We present in this section our first version of RTO estimation algorithm. At first, our main challenge is

to keep the algorithmsimple andadapted to IoTconstraineddevices. Ournewalgorithm is basedon the

concept of exponentially weighted moving average (EWMA) with minimal instructions. The pseudo

code is presented in Algorithm 2. SRTT is the maintained average round trip time and RTTVAR is the

computed variation of RTT. SRTT and RTTVAR are updated using the weight α (lines 1 and 3).

Algorithm 2RTO calculation algorithm - Version 1
1: SRTT = (1− α)SRTT + αR
2: if R > SRTT then
3: RTTVAR = (1− α)RTTVAR + α|SRTT −R|
4: end if
5: RTO = SRTT + 4 ∗ RTTVAR

When the first RTT sample value is measured, the algorithm initializes the following variables:

R←− RTT (5.1)

SRTT ←− R (5.2)

RTTV AR←− R

2
(5.3)

if no RTT sample is obtained: RTO ←− 2 sec (5.4)

At the beginning of a new set of transmissions, the variables are initialized. RTO value is initialized

to the default CoAP RTO value (2 seconds), if RTT sample could not be measured due to a missing

ACK.Otherwise, RTO is estimated for each newR as shown inAlgorithm 2. In this version, we update

RTTVAR only if the measured RTT R is greater than the maintained average SRTT . This condition

(R > SRTT ) is used to adapt RTO estimation when RTT increases which is useful in reducing spu-

rious transmission. The case when RTT decreases is not handled in this version to keep the code very
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simple, however, this will be handled in the version 2. Finally,RTO for the next transmission is calcu-

lated using the smoothed value of RTT SRTT to which we add the RTT variance RTTVAR multiplied

byK (line 5). The concept of usingK×RTTV AR is based on Jacobson/Karels algorithm (Timeout

= Estimated_RTT_Average + 4× Estimated_RTT_Deviation) [35].

Afterwards, the sender waits until RTO expires or ACK is received. If RTO expires before ACK recep-

tion, the sender retransmits the CON message. If ACK is received, new RTT value is measured. Then,

SRTT and RTTVAR are updated again and then the sender waits for RTO expiration or ACK arrival

and so on and so forth. Although this version is very simple, it outperforms other RTO calculation al-

gorithms in some cases. However, the drawback is slow convergence when the weightα is small which

may cause having RTO smaller than RTT. On the other hand, when (R < SRTT ) then RTO value

will not change and hence there will be no convergence at all. As a conclusion, this simple version will

not be able to converge adequately during high fluctuations in RTTsamples. Therefore, wewill propose

a new version to allow fast convergence on the behalf of additional instructions.

5.1.2 RTO Calculation Version 2

Another challenge in RTO calculation is the fast convergence during high fluctuations in the network

such as sudden increase and sudden decrease of RTT. Precisely, if the CoAP sender uses a smaller RTO

than RTT, it will generate a spurious transmission and the sending rate will be greater than 1 packet per

RTTwhichmay worsen the situation in case of congestion. Also, RTO should not bemuch higher than

RTTbecause the sender will wait long before detecting the loss and before sending the lost and the next

packets. The sender might also skip some good time intervals where packets can be successfully deliv-

ered. Another challenge is the limited capacities of some IoT constrained devices where the algorithm

must be developedwithminimal instructions so it can reduce the processing overhead and increase the

lifetime of the constrained devices. That is why also spurious transmissions must be reduced as much

as possible to reduce energy consumption.

Our new algorithm is still based on the concept of exponentially weightedmoving average (EWMA)

with several modifications from previous works to minimize further RTO while reducing the number

of spurious transmissions, and in the same time reduce the number of instructions. The pseudo code is

presented in Algorithm 3. Similar to Algorithm 2, SRTT is the maintained average round trip time and

RTTVAR is the computed variation of RTT. SRTT is updated using the weight α (line 1). However, in

this version, RTTVAR is updated using the weights α and γ (lines 2 to 6).

In this version, we update RTTVAR using a different weight depending on the value of themeasured

RTT R compared to the maintained average SRTT . This condition (R > SRTT ) is necessary to

adapt RTO estimation adequately to RTT fluctuations, on the behalf of some additional complexity.

However, this condition was sufficient to estimate RTO correctly and the algorithm is still simpler than
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Algorithm 3RTO calculation algorithm - Version 2
1: SRTT = (1− α)SRTT + αR
2: if R > SRTT then
3: RTTVAR = (1− α)RTTVAR + α|SRTT −R|
4: else
5: RTTVAR = (1− γ)RTTVAR + γ|SRTT −R|
6: end if
7: RTOinit = SRTT +K ∗ RTTVAR

pCoCoA.Theweights are fixed so that convergence is faster (α > γ) whenR increases (R > SRTT )

because if convergence is not fast enough, there is a high risk to have RTO < R causing spurious

transmissions which is important to avoid utmost as we said before. In contrast, convergence is slower

when R decreases (R < SRTT ) in a preventive approach in order to observe first if this reduction is

permanent or transient. Otherwise, if we converge fast, the estimated RTO can flip down below next R

values causing again spurious transmissions. The weights used to compute RTTVAR should be tuned

to find a good compromise between RTO reduction and spurious reduction as well.

Finally, in the algorithm,RTO for the next transmission is calculated also using the smoothed value

of RTT SRTT to which we add the RTT variance RTTVAR multiplied by margin factorK (lines 7 to

12). Another challenge though is choosing the right value for K . K plays an important role in esti-

mating RTO value. When it is set to 4 for all transmissions, performance can be reduced. Indeed, K

should be preferably chosen dynamically according to the spurious status. Hence, we improved the sec-

ond version of our RTO calculation algorithm by adding another block for computingK dynamically.

This is presented in the next section.

5.1.3 RTO Calculation Final Version

The pseudo code of the final version is presented in Algorithm 4.

Algorithm 4RTO calculation algorithm - Final Version
1: SRTT = (1− α)SRTT + αR
2: if R > SRTT then
3: RTTVAR = (1− α)RTTVAR + α|SRTT −R|
4: else
5: RTTVAR = (1− γ)RTTVAR + γ|SRTT −R|
6: end if
7: if spurious is true then
8: K = 7
9: else

10: K = 4
11: end if
12: RTO = SRTT +K ∗ RTTVAR
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If the previous transmission is spurious, thenRTO valuemust be increased by increasingK to force

the sender to wait for a longer period (lines 7-8). A lower K value should be used when spurious is not

detected (lines 9-11). The latter mechanism increases the value of RTTVARwhen a spurious transmis-

sion is detected, thus limiting successive spurious transmissions.

Thecodepresented in this section summarizes all the instructions tobeperformed. The initialization

phase and the sequence of operations presented in Section 5.1.1 is common for this version and version

2 as well.

5.1.4 RTO Calculation: Choosing the weights

In order to choose a good combination of values for the parametersα, γ andK that support our design

objectives, different values in different network scenarios were tested and analyzed. We show here only

full analysis with one of the most challenging scenarios where RTT is varied continuously according to

a uniform distribution between 500ms and 600ms during 100 times, then a sudden change to a normal

distributionwithmean 100ms and a standard deviation of 20ms during 100 times, then a sudden return

to the uniform distribution and so on and so forth. Besides, a high increase of RTT to 1 second is

generated 5 times every 1000 transmissions (Table 5.1 - Scenario 35). Then, while varying the weights,

we compute both the total number of spurious transmissions and theRootMeanSquareError (RMSE)

which measures the difference between estimated RTO and measured R values.

In Fig. 5.1a, when we fix the value of α to 1/4, then any value of γ will lead to a number of spurious

transmissions around or greater than 1200. It is impossible to find a good combination with this α

value. If we tend to reduce α to any value less than 1/4, spurious transmissions increase more and

more. Therefore, we omit the weight 1/4 and all other weights below it.

As per Fig. 5.1a, the results show that when the value of α is fixed to 1/16, RMSE is reduced but

spurious transmissions are increased to more than 1500. In this case, any chosen value of γ will not

reduce the tradeoff between RMSE and spurious transmissions, therefore theα value 1/16 can not be

combined with any γ value. Consequently, the more we increase α, the more spurious transmissions,

therefore, all α values greater than 1/16 are also dropped.

According to the results from the figures 5.1c and 5.1b, when we fix the value of α, then a low value

of γ reduces both spurious transmissions and RMSE. In Figure 5.1d, when γ is fixed to 1/32, a value of

1/8 for α is a good compromise between spurious and RMSE. Thus, we fix α = 1
8
and γ = 1

32
. This

result confirms our design rule α > γ.

Regarding the K parameter, in Fig. 5.2a, we fix K to 7 if there is a spurious transmission and we vary

the value of K in the case when there is no spurious from 2 to 7. We observe that the higher these K

values, the lower RMSE and number of spurious. However, the value of 4 is a good compromise since

after this value, the improvement is minor compared to the improvement from the values of 2 to 4.
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(a) α = 1
4 (b) α = 1

8

(c) α = 1
16 (d) γ = 1

32

Figure 5.1: Spurious transmissions and RMSE values while varying α and γ weights
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(a) K = 7 when there is a spurious (b) K = 4 when there is no spurious

Figure 5.2: Spurious transmissions and RMSE values while varyingK parameter

(a) α = 1
8 (b) K = 4 when there is no spurious

Figure 5.3: Spurious transmissions and RMSE values for the optimal values of α andK

In Fig. 5.2b, we fix K to 4 if there is no spurious transmission and we vary the value of K in the case

when there is a spurious from 2 to 7. We observe that the value of 7 reduces both spurious and RMSE.

Thus, the portion of the algorithm that computes K is useful to reduce further RMSE and the number

of spurious transmissions.

Finally, to assure the adequacy of our selection, we show the performance of our algorithm with

the chosen weights in an another challenging scenario where RTT is varied continuously according to

a uniform distribution between 5000ms and 6000ms during 100 times, then a sudden decrease to a

normal distribution with mean 1000ms and a standard deviation of 200ms during 100 times, then a

sudden increase to the uniform distribution and so on and so forth. Additionally, a high increase of

RTT value to 10 seconds is generated 5 times every 1000 transmissions (Table 5.1 - Scenario 33). As

can be seen fromFig. 5.3a andFig. 5.3b, the chosen values ofα, γ andK reduce spurious transmissions

and RMSE values in this network scenario as well. In fact, all other simulation results, not shown here,

has confirmed this setting.
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5.2 Ad hoc Simulation Environment

We developed in Python language a dedicated simulator to analyze deeply CoAP algorithms in a con-

trolled environment. Indeed, the simulator can generate different patterns of Round Trip Time (RTT)

or reuse real RTT traces. It is able to emulate the available bandwidth observed by a CoAP sender and

also emulate loss of packets. Hence, congestion and its strength and duration are emulated in a re-

peatable and supervised manner. The evolution of network conditions over time can be kept exactly

the same from one simulation to another so that comparison between different algorithms is fair. Be-

sides, compared to other simulation environments, our Python simulator produces results much faster.

Hence, it is possible to test quicklymany network scenarios andCoAPprotocol variants. Moreover, the

developed simulator helped us to generate and distinguish between network losses caused by interfer-

ence or congestion

5.3 Performance evaluation

In this section, we use our python simulator presented in section 5.2, to evaluate the efficiency of our

algorithm of RTO calculation, and to study and compare its performance against other previous algo-

rithms. Our new algorithm of RTO estimation is compared with algorithms, in particular, pCoCoA

[14], and CoCoA+ since couple of recent works used their method in RTO computation without any

changes.

Table 5.1 shows RTT network scenarios that will be used in this evaluation.

ID Network scenario

Period 1 Period 2 Additional

eventsNumber of

Transmissions

RTT

Distribution

Number of

Transmissions

RTT

Distribution

1 100000 Pareto (3, 1000) N/A N/A Yes

2 100000 Pareto (4, 1000) N/A N/A Yes

3 100000 Pareto (5, 1000) N/A N/A Yes

4 100000 Pareto (6, 1000) N/A N/A Yes

5 100000 Real trace N/A N/A No

6 100000 Real trace N/A N/A No

7 100 Uniform(100,300) 100 Normal(3000,100) No

8 100 Uniform(100,1000) 100 Normal(3000,100) No

9 100 Uniform(100,300) 100 Normal(3000,1000) No
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ID Network scenario

Period 1 Period 2 Additional

eventsNumber of

Transmissions

RTT

Distribution

Number of

Transmissions

RTT

Distribution

10 100 Uniform(100,2000) 100 Normal(4000,1000) No

11 100 Uniform(300,3000) 100 Normal(6000,200) Yes

12 100 Uniform(300,3000) 100 Normal(4000,200) Yes

13 100 Uniform(200,1000) 100 Normal(6000,200) Yes

14 100 Uniform(100,2000) 100 Normal(6000,200) Yes

15 100 Uniform(100,500) 100 Normal(4000,200) Yes

16 100 Uniform(100,500) 100 Normal(4000,1000) Yes

17 100 Uniform(100,500) 100 Fixed(1000) Yes

18 100 Uniform(100,500) 100 Fixed(6000) Yes

19 100 Normal(6000,200) 100 Uniform(200,1000) Yes

20 100 Normal(6000,200) 100 Uniform(300,3000) Yes

21 100 Uniform(300,3000) 100 Normal(4000,2000) Yes

22 100 Uniform(100,2000) 100 Normal(6000,2000) Yes

23 100 Uniform(300,3000) 100 Normal(6000,200) No

24 100 Uniform(300,3000) 100 Normal(4000,200) No

25 100 Uniform(200,1000) 100 Normal(6000,200) No

26 100 Uniform(100,2000) 100 Normal(6000,200) No

27 100 Uniform(100,500) 100 Normal(4000,200) No

28 100 Uniform(100,500) 100 Fixed(6000) No

29 100 Normal(6000,200) 100 Uniform(200,1000) No

30 100 Normal(6000,200) 100 Uniform(300,3000) No

31 100 Uniform(100,300) 100 Normal(3000,300) No

32 100 Uniform(100,1000) 100 Normal(3000,300) No

33 100 Uniform(5000,6000) 100 Normal(1000,200) Yes

34 100 Uniform(5000,6000) 100 Normal(1000,200) No

35 100 Uniform(500,600) 100 Normal(100,20) Yes

36 100 Uniform(500,600) 100 Normal(100,20) No

37 100 Uniform(4000,5000) 100 Normal(1000,200) Yes

38 100 Uniform(4000,5000) 100 Normal(1000,200) No

94



ID Network scenario

Period 1 Period 2 Additional

eventsNumber of

Transmissions

RTT

Distribution

Number of

Transmissions

RTT

Distribution

39 100 Uniform(1000,1500) 100 Normal(500,50) Yes

40 100 Uniform(1000,1500) 100 Normal(500,50) No
Table 5.1: Different simulation scenarios to challenge RTO calculation algorithms

In the first four scenarios, RTT is varied according to Pareto distribution with different shape param-

eters (3, 4, 5, 6). We present it in the table in the form of Pareto(alpha, m) where alpha is the shape

parameter andm is the scale parameter which represents the smallest value that the Pareto distributed

random variable can take. In most of the other scenarios, RTT is varied continuously according to a

Uniform distribution between two values during 100 times (Period 1), then a sudden change to a Nor-

mal distribution with a given mean and a given standard deviation during 100 times (Period 2), then a

sudden return to the Uniform distribution and so on and so forth. The total number of transmissions

is 100000 in all scenarios. Normal distribution is presented in the table in the form: Normal(n, std)

wheren is themean value and std is the standard deviation. Fig. 5.4a shows scenario 7wherewe switch

from a high RTTaverage with a low deviation to a low average with a low deviation and Fig. 5.4b shows

scenario 8 where we switch from a high RTT average with a low deviation to a low average with a high

deviation.

On the other hand, Fig. 5.4c shows scenario 9 where we switch from a high RTTaverage with a large

deviation to a low average with a low deviation and Fig. 5.4d shows scenario 10 where we switch from

a high RTT average with a large deviation to a low average with a high deviation.

Besides, to challenge more the algorithms, in some simulations, we can have additional events cor-

responding to a high increase of RTT to 10 seconds generated 5 times every 1000 transmissions. In

scenario 35, the additional event corresponds to an increase in RTT to 1 second generated 5 times after

1000 transmissions. Scenarios 5 and 6 use RTTs from real measurements between two sites. Scenario 5

is from Paris in France to Auckland in New Zealand, and scenario 6 is from Paris to Rennes in France.

Fig. 5.4f shows RTTs over time of the real trace of scenario 5, while Fig. 5.4e presents RTT samples of

pareto distribution with shape = 3 (Scenario 1).

First, the global behavior of the three versions of RTO calculation algorithm is evaluated using two

performance metrics: The Root Mean Square Error (RMSE) which measures the difference between

RTO and RTT values, and the total number of spurious transmissions observed during the network

simulation. Then, we analyze the instantaneous behavior of our proposed algorithm. For brevity, we

present the instantaneous graphs of the final version only.
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(a) Scenario 7: High average/low deviation to low
average/low deviation and vice versa

(b) Scenario 8: High average/low deviation to low
average/high deviation and vice versa

(c) Scenario 9: High average/high deviation to low
average/low deviation and vice versa

(d) Scenario 10: High average/high deviation to low
average/high deviation and vice versa

(e) Network scenario 1: Example of pareto scenario (f) Network scenario 5: Example of real RTT data set

Figure 5.4: Different RTT scenarios to evaluate the algorithms forRTO calculation
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(a) RMSE (b) Spurious transmissions

Figure 5.5: Spurious transmissions and RMSE results of the proposed algorithm ‐ Version 1

(a) RMSE (b) Spurious transmissions

Figure 5.6: Spurious transmissions and RMSE results of the proposed algorithm ‐ Version 2

5.3.1 RTO Calculation Version 1

Fig. 5.5a andFig. 5.5b show the average of spurious transmissions andRMSEvalues calculatedwith the

first version of RTO estimation algorithm in different scenarios of Table 5.1. For instance, simulation

IDs 1-4 refer to Pareto distributions, simulation IDs 5-6 refer to real RTTscenarios, simulation IDs 7-10

refer to RTT scenarios analyzed instantaneously, simulation IDs 11-40 refer to other challenging RTT

sets varying from high average to a low average with different deviations.

As per the results presented in Fig. 5.5a, our RTO calculation algorithm (Version 1) provides lower

RMSE than pCoCoA in many network scenarios and very close values to pCoCoA in some other sce-

narios(IDs 2, 3). Also, with this simple version and as per Fig. 5.5b, we achievedmuch better results in

terms of spurious transmissions in some network scenario (IDs 1,2,3). CoCoA+ achieve better RMSE

results in the first 4 scenarios according to the results in both figures (5.5a and 5.5b). For this reason,

we had decided to improve the performance further by adding the second part of the algorithm to set

the weights of RTTVAR using α and γ.

5.3.2 RTO Calculation Version 2

The second version ofRTOcalculation is evaluated using the sameperformancemetrics of the previous

section: RMSE and the total number of spurious transmissions.
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Fig. 5.6a and Fig. 5.6b show the average of spurious transmissions and RMSE values calculated with

our new simple RTO estimation algorithm (Version 2) in different scenarios of Table 5.1.

As per the results presented inFig. 5.6a, the improved versionofRTOcalculation algorithm(Version

2) now provides lower RMSE than pCoCoA in all the network scenarios. Also, with this new version

and as per Fig. 5.6b, we achieved better results in terms of spurious transmissions in more network

scenario (IDs 1,2,3,22) and very close results (IDs 4,12,15,16) in many other scenarios. Although Co-

CoA+ achieves a little betterRMSE results in some scenarios (IDs 1, 2, 3, 4), CoCoA+generates almost

double the number of spurious transmissions. We discovered that there is still a margin for improve-

ment. Hence, we had improved the performance further by adding a second chunk to the algorithm in

order to dynamically calculateK (Final Version).

5.3.3 RTO Calculation Final Version

In this section, we evaluate the global and instantaneousbehavior of the final versionofRTOcalculation

algorithm. For the global behavior, the algorithm is evaluated by means of simulations adopting the

same methodology considered in the previous sections.

From Fig. 5.7 and Fig. 5.8, we report the results obtained by our Python simulator using different

scenarios of Table 5.1. In particular, we present the average of spurious transmissions andRMSE values

calculated with our final version of RTO estimation algorithm. As can be seen fromFig. 5.7, except few

minor cases, in all other scenarios, ourRTOcalculation algorithmachieves better results thanCoCoA+.

In these few cases, as per Fig. 5.8, CoCoA+ generates up to 76% more spurious transmissions than our

algorithm. In the same figure, the number of spurious transmissions generated by CoCoA+ in some

cases is even double the amount generated by our RTO calculation algorithm (IDs 5, 6, 8, 25, 26).

Figure 5.7: RMSE

According to Fig. 5.7 and Fig. 5.8, our proposed algorithm provides lower RMSE and lower number

of spurious transmissions in almost all the network scenarios. In the case RMSE of pCoCoA is very
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Figure 5.8: Spurious transmissions

close to our algorithm (IDs 1,5,6,17), pCoCoA generates more spurious transmissions. In the case

pCoCoA generates few spurious transmissions less than the final version of our algorithm (IDs 9,21),

RMSE of pCoCoA is worse. Thus, our RTO calculation achieves a better tradeoff between the two

performance metrics.

Next, we study the instantaneous behavior of RTO estimation (Final Version) using scenarios 7 to

10mentioned in Table 5.1. These scenarios cover all possibilities regarding fluctuations of RTTaverage

and variance. Figures 5.9a and 5.9b show that when observed RTT increases suddenly in the network,

then RTO in the final version of our algorithm also increases quickly to avoid spurious transmissions

due to underestimations of RTO. However, pCoCoA RTO increases more than required which leads

to more delay in packet retransmissions. Besides, this increase is not quick enough to avoid spurious

transmissions as shownmore clearly in Fig. 5.10 that corresponds to the same network scenario as Fig.

5.9a.

Figures 5.9a and 5.9c show a better convergence behavior of our RTO calculation algorithm than

pCoCoA when RTO decreases to smaller values with low variations. pCoCoA decreases faster which

is risky because it can cause spurious transmissions as shown above. Our RTO calculation converges

in a slower manner to be cautious and prevent spurious transmissions. Figures 5.9b and 5.9d show that

when RTO decreases to smaller values but with high variations, then both RTO calculation algorithms

are similar but still our algorithm reacts better to sudden increase by providing less spurious and low

delay.

We observe the similar better behavior in Fig. 5.9f where RTT values in the python network simu-

lator correspond to real RTT measurements (Scenario 5 - Table 5.1). Fig. 5.9e shows the same results

with the Pareto distribution for RTT values. By examining closely these figures, we can see that our

design principle is still applied by converging fastly but not too high when RTT increases fastly, and

by converging relatively slowly when RTT decreases fastly to avoid as much as possible spurious trans-
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(a) RTO calculation ‐ Scenario 7 (b) RTO calculation ‐ Scenario 8

(c) RTO calculation ‐ Scenario 9 (d) RTO calculation ‐ Scenario 10

(e) RTO calculation ‐ Pareto distribution (f) RTO calculation ‐ Real RTTs

Figure 5.9: Instantaneous behavior of RTO estimation (Final Version) for different network scenarios
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missions while trying to minimize RTO values. Indeed, using the python simulator, we were able to

calibrate the different parameters of our RTO calculation to reach this design principle as mentioned

in Section 5.1.4.

Figure 5.10: Spurious transmissions occurrence graph

5.4 Conclusion

In this chapter, we presented a thorough analysis of RTO calculation algorithms. In particular, we con-

sidered challengingRTTscenarios using our Python simulator to evaluateRTOestimation proposed by

different mechanisms. The analysis allowed us to avoid some shortcomings of the previously andmost

recent suggested algorithms for RTO calculation highlighted in chapter 2. We have shown that Co-

CoA+ generates lot of spurious transmissions and that pCoCoA, with its complex instructions, could

not estimate RTO adequately. In order to overcome the issues presented in chapter 2, a new algorithm

to calculate RTO more efficiently was proposed. The new algorithm with its simple design, has shown

to be effective in most of the considered cases. Moreover, the comparison has shown that our RTO

calculation algorithm performs better even in very challenging scenarios. Furthermore, this RTO re-

duction is useful for all algorithms of congestion control especially those that use only RTO to detect

congestion or that use RTO to control congestion through backoffmechanism. In the next chapter, we

will explore the second part of the congestion control mechanism: The congestion counteraction.
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6
Congestion counteraction: Towards a lightweight

rate-based congestion control mechanism

Taking into consideration the hardware limitations of IoT constrained nodes and the limited available

bandwidth in IoT networks, congestion control is essential to guarantee the delivery of data. Conges-

tion is observed when the network is overwhelmed by traffic load generated by nodes or the buffer size

of IoT devices is exceeded. This is likely to happen when packets between large number of devices are

exchanged. CoAP is built overUserDatagramProtocol (UDP)which does not implement any conges-

tion controlmechanism as the TransmissionControl Protocol (TCP). Consequently, CoAP provides a

basic congestion controlmechanismbased on doubling the timeouts to overcome the congestion issue.

Aswe said inChapter 2, advanced congestion controlmechanisms have been proposed by the literature

to improve CoAP basic operations. These are twofold: Backoff-based [10, 14, 15, 11] and rate-based

[5]. Both approaches implement RTO estimation to detect losses and that was covered thoroughly in

Chapter 5. In chapter 2, wepresented a deep analysis of backoff andprevious rate-based approaches and

we showed the limitations and the corresponding shortcomings of the studied algorithms. In this chap-

ter, we focus on the ”second step” of the congestion control mechanism, named, congestion counter-

action. Firstly, we propose our alternative approach to overcome these drawbacks. The resulting algo-

rithms, named IDC-CoAP and MBC-CoAP, follow the rate-based tactic. Secondly, using our Python

simulator and Contiki/Cooja [21, 48], the new presented algorithms are evaluated among previous

102



works such as CoCoA+, pCoCoA, 4-state and BDP-CoAP. We demonstrate from the results that the

new algorithms overcome the issues presented, reduces packet losses and overhead while maintaining

high goodput.

6.1 Proposed algorithms: IDC-CoAP and MBC-CoAP

In this section, we propose new mechanisms in order to overcome the previous shortcomings that we

have discussed in chapter 2 and improve the overall performance of CoAP. First, we include RTO cal-

culation algorithm (presented in Chapter 5) to calculate the initial retransmission timeout RTOinit

more efficiently to improve congestion detection. Then, we design the algorithms for congestion coun-

teraction that follows the rate-based approach. The outcome is two new proposed protocols called

IDC-CoAP and MBC-CoAP. In both cases,RTOinit is used only to detect losses and it is never dou-

bled or modified in case of loss.

As we have observed, most of congestion control algorithms for CoAP follow the backoff based ap-

proach where they try to use a different static backoff factor or use a variable backoff factor according

to some conditions. We claim that the backoff mechanism is not sufficient to leverage the bandwidth

available to the CoAP sender. It is better to deploy a “real” congestion control mechanism in order to

decide correctly how long to wait before sending the next packet and avoid losses. The inter-sending

delay should be inversely proportional to the available bandwidth, and this is hard to achieve through

the backoff mechanism even with variable backoff factors.

Evidently, if one wants to maximize the throughput achieved by the CoAP connection, the sender

can send aggressively at its maximum rate to ensure amaximum throughput. However, this will engen-

der a lot of packet losses, retransmissions and possibly losses of CoAPmessages at the application layer

if many successive packets are lost. More substantially, it will also waste a lot of energy due to wasted

transmissions. This is a different constraint from classic congestion control where losses are not harm-

ful if they are recovered quickly. Here the damage of a packet loss is irreversible and should be avoided.

The challenge is that in order to check if the bandwidth is available or not, the only way for the CoAP

sender to do is to send a packet, but if this packet is sent while the bandwidth is not available then it

will be lost. Retransmission of the lost packet does not reduce the incurred cost related to energy con-

sumption. As a consequence, when a timeout expires indicating that the bandwidth is not available,

determining the right time to wait before sending the retransmission is crucial. A short timemay cause

additional losses and a long time may reduce dramatically the goodput. It is clear that this time should

relate to the available bandwidth.

Hence, the main idea is to remove entirely the backoff mechanism from CoAP and integrate a new

mechanism that determines the adequate spacing between successive transmissions including retrans-
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missions regardless of the RTO value or the retransmission counter. It is essential though to keep this

algorithm as simple as possible. That is why our first proposal is based on the simple Additive Increase

Multiplicative Decrease of the transmission rate even though we apply it to the time spacing between

packets. Wecall the resultedprotocol IDC-CoAP.Thesecondproposal follows themeasurement-based

approach and it is inspired from the recent BBR congestion control [17] where the transmission rate is

determined based on available bandwidth measurements and periodic probing of the bandwidth. We

call this protocol versionMBC-CoAP.Different fromBDP-CoAP,MBC-CoAPadaptsmore adequately

BBR to the existing properties of CoAP and avoids all BDP-CoAP design inaccuracies.

6.1.1 IDC-COAP: Increase/Decrease sending rate

In this version of the protocol, we aim at keeping the control algorithm as simple as possible by simply

following the Additive Increase Multiplicative Decrease principle to control the rate with two differ-

ences. The first consists on working on the spacing between successive packets instead of the rate. The

second consists on adding a phase of fast rate increase to benefit more from the available bandwidth in

case it opens up. When the CoAP sender transmits a packet, there are two main network events from

its point of view:

• An ACK is received. It means that the sending rate ≤ residual bandwidth. The current time

spacing between packets can be decreased to increase the rate.

• The RTO expires. It means in case of congestion that the sending rate > residual bandwidth.

The current time spacing should be increased to decrease the rate.

Algorithm 5 IDC-CoAP pseudo-code
1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: if spacing≥ loss_spacing then
4: spacing = spacing − dw ∗ spacing
5: else
6: spacing = spacing − fw ∗ spacing
7: end if
8: else
9: loss_spacing = spacing /* Save congestion level */

10: spacing = iw ∗ spacing
11: end if
12: spacing = max(spacing, current_time− last_send_time)
13: Send next packet (transmission or retransmission) at: last_send_time+ spacing

The pseudo code of the control algorithm is presented in Algorithm 5.
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When a loss is detected, the sending rate should be decreased. Therefore, the spacing is increased

by multiplying it by the incremental weight iw (line 10). When ACK is received, the spacing is re-

duced gradually using the decremental weight dw (lines 2 and 4). When spacing becomes lower than

the spacing saved at the loss event (line 5) which corresponds to the last known available bandwidth,

then spacing is reduced with a higher decremental factor fw in order to find quickly the new possi-

ble expanded available bandwidth (line 6). The maximum function is invoked to make sure that the

sender can not send before the reception of the next ACK or the expiration of RTO (line 12). In the

performance evaluation section, we show that a good combination of the algorithm parameters is: in-

cremental weight iw = 1.5, decremental weight dw = 0.01 and fast decremental weight fw = 0.5.

These parameters were chosen to achieve a good tradeoff between goodput and loss ratio. However,

they can be easily tuned when the application requires better goodput on behalf of losses and energy

consumption, or vice versa.

6.1.2 MBC-COAP: Measurement-Based sending rate

In this version of the protocol, we follow the measurement-based approach implemented in BBR to

compute the spacing between packet sending instants. We adopt the same concept of themax-filtered

estimation of the available bandwidth and the same values for the probing and preventive pacing gains,

i.e. 1.25 and 0.75 respectively. We also use the same length of the pacing cycle and the same update

procedure. However, in order to overcome the shortcomings mentioned earlier (Section 2.7), we do

not estimate neither the bandwidth delay product nor the minimum round trip propagation delay. We

also do not maintain the packets in flight. These components are unnecessary for CoAP so removing

them simplifies the protocol. Besides, the window used in the bandwidth estimation filter slides each

time the CoAP sender receives an ACK. Thus, we compute the sending rate based on the maximum of

the lastmmeasurements, withm being the size of the slidingwindow. Whichmeans, instead of using a

timewindow, we use a spacewindow. Thismodification is especially useful in high lossy environments.

Importantly, in contrast to BDP-CoAP, we include each received ACK in the estimation of the band-

width including those corresponding to retransmissions so that the number ofmeasurement samples is

sufficient to estimate more precisely the available bandwidth and converge to it rapidly. We simplified

further the algorithm by removing all function calls as presented in the pseudo-code of Algorithm 6.

In the algorithm, wemeasure the spacing between successive received ACKs as an estimation of the

“available spacing” which is inversely proportional to the available bandwidth. The lastm spacingmea-

surement samples are maintained to be used for computing the sending spacing (lines 2-7). After an

ACK reception or an expiration of a timeout,MBC-CoAP sends the next packet according to the previ-

ously computed spacing (line 8). The next spacing for the next sending is computed by calculating first

the next pacing gain (lines 9-20), then calculating the minimum of the last m spacing measurements
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Algorithm 6MBC-CoAP pseudo-code
1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: measurement_sample = current_time− last_ACK_time
4: last_ACK_time = current_time
5: Addmeasurement_sample to Spacings[m]
6: Remove oldest measurement sample from Spacings[m]
7: end if
8: Send next packet (transmission or retransmission) at:

max(last_send_time+ spacing, current_time)
9: cycle_index = (cycle_index+ 1)% 8

10: if cycle_index = 0 then
11: if retransmission then
12: pg = 0.75
13: else
14: pg = 1.25 /* Probing phase */
15: end if
16: else if cycle_index = 1 then
17: pg = 0.75 /* Preventive phase */
18: else
19: pg = 1
20: end if
21: spacing = min(Spacings[m])/pg
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corresponding to themaximumof bandwidth samples (line 21). The pacing gain controls how fast our

sending rate is. A pacing gain = 1 allows the cycle to cruise. On the other hand, a pacing gain > 1

increases the sending rate, while a pacing gain< 1 has the opposite effect. The probing state checks for

higher bandwidth. Consequently, when the residual bandwidth increases, the design of MBC-CoAP

allows to probe for more bandwidth. Similarly, when the residual bandwidth decreases, MBC-CoAP

allows the preventive phase to reduce the sending rate accordingly. Therefore, our design principle us-

ing the cycle allows to send faster and slower in order to correctly estimate the bandwidth. Even though

this algorithm is much simpler than the one in TCP BBR and BDP-CoAP, it is still more complex than

IDC-CoAP due to the need of maintaining measurements.

6.2 Performance evaluation

In this section, we use our python simulator presented in Chapter 5 Section 5.2 to study and com-

pare the performance of the full congestion control algorithms of IDC-CoAP andMBC-CoAP against

other previous congestion control algorithms. In this aspect, we have chosen two challenging simula-

tion sets where each set consists of different network scenarios. Then, we use Cooja/Contiki [48] to

complement the comparison between rate-based and backoff-based approaches in a more realistic IoT

environment. In this part, we define different network topologies with variable number of nodes. It is

important to note we are not evaluating the congestion counteraction part only but the full algorithm.

Hence, although we evaluated RTO estimation separately to show the originality of our work in chap-

ter 5, we include it in the full version because, first RTO is considered as a detector for packet losses.

Which means that when the first packet is lost, the sender should wait at least for the timeout to expire

before taking any action. Second, when other packets are lost, the sender can not transmit before the

expiry of RTO value even if the sending rate allows to transmit before, therefore, in this case, the RTO

estimated value is considered as a floor for our sending rate. Indeed, each of the two full versions of our

algorithms is now presented by its two parts: RTO estimation for congestion detection and congestion

counteraction.

Firstly, we study the instantaneous behavior of the algorithms using network scenarios mentioned

in Table 6.1. Secondly, the performance of the full congestion control of IDC-CoAP and MBC-CoAP

are analyzed and compared with several previous algorithms using mainly the following performance

metrics:

- Goodput or success rate: Total amount of successfully received data in a given time interval

- Loss ratio: Observed losses at the application level

- Overhead: Total amount of lost packets in the network over total amount of packets sent suc-

cessfully
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In particular, the Overhead performance metric measures the ability of the congestion control to send

packets only when there is no congestion in the network to avoid losses, and also avoid wasting energy.

In otherwords,Overhead computes howmuch effort or energy is spent to send one packet successfully.

This performance metric is very important especially for IoT devices supplied by batteries.

6.2.1 Python Simulation Results - Congested (Bad) period

Here, the performances of our IDC-CoAP and MBC-CoAP are analyzed and compared against pCo-

CoA, CoCoA+, 4-state, BDP-CoAP and BEB of the standard CoAP. Particularly, the objective is to

explore the ability of the congestion control algorithms to adjust their sending rate to utilize the avail-

able network bandwidth.

Fig. 6.1 shows the behavior of the instantaneous sending rate achieved by the different congestion

control algorithms in presence of a variable residual bandwidth. The red and green plots show respec-

tively the sending and success rates of the algorithms, while the blue plot corresponds to the residual

bandwidth available in the network during the simulation period. Simulation parameters for these fig-

ures and the next ones are all summarized in Table 6.1. Regarding the algorithms of previous work, we

have used their default or advised parameters [53, 10, 11, 14, 5].

According to Figures 6.1a, 6.1c and 6.1e, pCoCoA, 4-state and CoCoA+ sending rates are very high

compared to the residual bandwidth because they do not adjust the sending rate according to the avail-

able bandwidth but try to send at the maximum allowable rate as soon as it seems to be possible. In

fact, when a packet is lost, the initial value of the retransmission timeoutRTOinit is multiplied by the

backoff factor and hence the sending rate is decreased but without a direct relationship with the resid-

ual bandwidth. Still, after one or several losses and timeout multiplications, one retransmission goes

through the network successfully. When the ACK of this packet is received, a new CoAP packet is

immediately sent resulting in a sending rate that moves back again to the maximum allowable rate of

1/RTT , which will cause again another loss. The transmission rate after this loss is 1/RTOinit which

will very likely cause also another loss sinceRTOinit is optimized and its value is close toRTT . Even

when the retransmission counter is reached and theCoAPpacket is droppeddefinitively, the algorithms

do not change their congestion counteraction and start sending the next packet usingRTOinit.

In Figures 6.1a and 6.1c, the success rates of pCoCoA and 4-state are able to approach sometimes

the residual bandwidth when it increases but the sending rate continues to be much higher causing

unnecessary retransmissions. In contrast, in Fig. 6.1e, the success rate ofCoCoA+ is always far from the

residual bandwidth despite the fact that its backoffmechanism is the same as pCoCoA.This is because

CoCoA+ does not minimize the computation ofRTOinit as pCoCoA, and hence the time required to

retransmit lost packets is larger and the convergence to the residual bandwidth is slower. Once again,

this shows the importance of minimizingRTOinit.
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Parameter Value Description
r 4 Retransmission counter

α 1/8
First weight for
RTO calculation

γ 1/32
Second weight for
RTO calculation

K 4 or 7 Spurious weight for
RTO calculation

Residual
Bandwidth
(packets/sec)

U(0.6, 1) Instantaneous behavior
simulations

U(0, 0.2) . . .U(0.9, 1.1) . . .U(2.1, 2.3) Low variability
simulations

U(0.9, 1.1) . . .U(0.5, 1.5) . . .U(0, 2) High variability
simulations

Bad Period (ms) Exponential(5000) Distribution and
average duration

RTT (ms) N(500, 10) Round Trip Time
MBC-CoAP specific parameters

m 3 or 10 Number of measurements
pg 1.25, 0.75, 1, 1, 1, 1, 1, 1 Cycle pacing gains

IDC-CoAP specific parameters
iw 1.1, 1.5 Incremental weight
dw 0.01 Decremental weight
fw 0.5 Fast decremental weight

Table 6.1: Simulation parameters used in evaluating congestion control algorithms for CoAP

We notice also that in Fig. 6.1c, the success rate of 4-state is better than pCoCoA because 4-state

uses more tuned backoff factors that allow to retransmit more quickly which can be seen from the os-

cillations of the sending rate plot. Unfortunately, this goodput gain comes with the cost of increasing

retransmissions.

As a first conclusion, these algorithms can be efficient if the bandwidth is available most of the time

and/or losses occurs sparsely due to other reasons such as interference. However, if losses occur be-

cause many connections are using the same bottleneck link in the network, i.e. congestion, then the

three backoff-based algorithms fail to adjust the sending rate adequately, justifying the need for a “real”

congestion control for CoAP.

In IDC-CoAP, the available bandwidth is respected in the calculation of the sending rate tominimize

losses during congestion periods (Fig. 6.1b). When the packets are lost, IDC-CoAP tends to increase

the spacing between successive transmissions which will reduce the sending rate to converge back to
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the available bandwidth and that is why the ratio of packet losses over successful packets is reduced

as per Fig. 6.5e. When the available bandwidth expands, IDC-CoAP ends up increasing its sending

rate after a reasonable amount of time which can be reduced further by tuning the spacing decremental

factor. As a result, the sending rate is the same as the success rate most of the time leading to a small

loss ratio. Besides, the success rate tends to be very close to the available bandwidth when the latter is

somewhat stable.

According to Fig. 6.1d, MBC-CoAP is also avoiding losses by trying to equate the sending rate with

the success rate in order to stay below the residual bandwidth limit. We can see clearly the eight-phase

cycle including the probing phase using the pacing gain of 1.25 that allows the sending rate to increase

and thus converge slowly but surely to the available bandwidth offered to the CoAP sender. When the

rate decreases suddenly, then MBC-CoAP takes some time to reduce its sending rate due to the cycle.

However, this is compensated by a closer sending rate to the available bandwidth when the latter is

somewhat stable.

The previous work rate-based BDP shown in Fig. 6.1f seems to perform similarly as backoff-based

algorithms. This is because when the available bandwidth is lower than the initial estimated bandwidth

which is the starting point of all simulated algorithms, successive losses prevent BDP from converging

as we have explained in Chapter 2 - Section 2.7. Fig. 6.2 shows the same simulation for BDP when

including retransmissions in bandwidth measurements. The modified BDP behaves now similarly to

MBC-CoAP but in reality, the convergence to the available bandwidth is still much slower resulting to

less losses but to a much lower goodput. This is because the bandwidth estimation of BDP includes

in addition to the maximum of previous measurements, the minimum of these measurements. Fig.

6.3 shows the sending rate of BDP when we replace the min-max filter by a max-filter. This second

modification approaches now the behavior and the performance of MBC-CoAP.

From these instantaneous figures, one can conclude that the rate-based approach if well designed

is more appropriate than the backoff-based approach. This will be confirmed further with next results

where averages of Goodput, Loss ratio and Overhead are computed and compared in several network

scenarios.

Fig. 6.5a - Fig. 6.5e represent the average of the 3 performance metrics: Goodput, Application Loss

ratio and Overhead per simulation. The simulation was run up to 5 hours and each simulation was

repeated 3 times. The residual bandwidth has been varied between 0.1 and 2 packets per second.

Fig. 6.5a, shows the average goodput of all algorithms while varying the average residual bandwidth

in each set of simulations. The variance around the average is fixed to the same value since the resid-

ual bandwidth is varied uniformly between the average - 0.1 and the average + 0.1. For small residual

bandwidth values, IDC-COAP andMBC-CoAP are slightly better than backoff-based algorithms since

there is no enough bandwidth to send packets. When the available bandwidth increases, our rate-based
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(a) pCoCoA (b) IDC‐CoAP

(c) 4‐state (d)MBC‐CoAP

(e) CoCoA+ (f) BDP‐CoAP

Figure 6.1: Instantaneous behavior of backoff‐based (left) and rate‐based (right) congestion control algorithms
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Figure 6.2: Correcting BDP‐CoAP: Including bandwidth measurement samples from retransmissions

Figure 6.3: Correcting BDP‐CoAP: Removing the samples minimum from the bandwidth estimation while including
bandwidth measurement samples from retransmissions

algorithms IDC-CoAP andMBC-CoAP show a linear behavior, however a step-wise behavior with the

presence of a large plateau is shown by all backoff-based algorithms. This is caused by the non fine-

grained control performed by the fixed backoff factors that impose few possible values of the retranss-

mion timeouts.

In the plateau, the goodput does not increase with the increase of the residual bandwidth. The value

of the plateau corresponds approximately to

1

RTOinitaverage+RTTaverage

corresponding to a lost transmission followed by a successful retransmission. Thus, for the default

CoAP the plateau is at 1
2 1+1.5

2
+0.5

= 1
2×1.25+0.5

= 0.33. Recall that 1.5 is the randomization factor
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of the retransmission timeout. For other backoff-based algorithms that attempt to minimizeRTOinit,

the plateau is approximately at 1
0.5×1.25+0.5

= 0.88. Another smaller plateau appears for backoff-based

algorithms around 1
0.5+(0.5+2∗0.5)×1.25

= 0.42. In general, the plateau values correspond to

1

RTTaverage+
∑j

i=0 b
i × (RTOinitaverage)

,

j = 0, 1, 2, · · · . The variable backoff factors used by the algorithms are not sufficient to perform a

fine-grained control. Indeed, according to pCoCoA and CoCoA+, the chosen backoff factor for the

given RTT is 2.5, thus the plateau is more precisely at value 1
0.5+(0.5+2.5∗0.5)×1.25

= 0.37. 4-state uses

1.7 half of the time and 2.5 most of the other half during the simulation which allow avoiding a clear

first plateau but not the second large one.

On the contrary, the linear behavior of rate-based IDC and MBC algorithms engenders an addi-

tional gain of the goodput. Ideally, the goodput will be equal to the average available bandwidth which

is not achievable because the rate control algorithm is operating blindly without prior knowledge of

the network status. If the residual bandwidth offered to the CoAP sender is not very variable, then

the expression of the linear relationship between the goodput and the average residual bandwidth can

be obtained through a steady state analysis. For MBC-CoAP, the goodput is computed by assuming

that the gain cycling is operating close to the residual bandwidth and that bandwidth probing with the

pacing gain 1.25 will bypass the available bandwidth as illustrated in Fig. 6.4a where the blue and red

lines represent the residual bandwidth and the sending rate respectively. The residual bandwidth, vary-

ing around 1 packet per second, and the sending rate of our MBC-CoAP algorithm (Algorithm 6) are

sketched over time (x-axis). As per the figure, the relation between the sending rate and the residual

bandwidth can be observed as Residual Bandwidth = 1.25 × SendingRate when the residual

bandwidth is almost stable. The goodput can be approximated by

7

6× 1.25 + 1 + 1.25
0.75

ResBW

For IDC-CoAP, Fig. 6.4b shows the sending rate behavior in red line and the residual bandwidth

in green line. We vary the residual bandwidth to around 1 packet per second. The sending rate of

our IDC-CoAP algorithm (Algorithm 5) is sketched over time (x-axis). Now, we can compute the

spacing values and the number of transmissions in a period comprised between two successive losses,

which means when the spacing is equal to 1/ResBW . Denote by Si the current value of the spacing,

then we will have successively S0 = iw/ResBW,S1 = (1 − dw)iw/ResBW, · · · , Sn = (1 −
dw)niw/ResBW = 1/ResBW . Hence, the total number of transmitted CoAP packets during this

period is equal to
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(a) Behavior of MBC‐CoAP with Residual Bandwidth around
1 packet / sec

(b) Behavior of IDC‐CoAP with Residual Bandwidth around
1 packet / sec

Figure 6.4: MBC‐CoAP and IDC‐CoAP: Stable residual bandwidth

n = − log(iw)
log(1− dw)

The goodput is then approximated by

n∑n
i=0(1− dw)i iw

ResBW

=
dw

iw

n

1− (1− dw)n+1
ResBW (6.1)

This formula can be used to tune the incremental and decremental weights of IDC-CoAP for a given

performance objective. Indeed, an incremental weight iw = 1.1 provides a better goodput than iw =

1.5 and than MBC-CoAP when the bandwidth variability is limited.

The last observation is for BDP-CoAPwhich behaves almost like backoff-based algorithmswhen the

available bandwidth is small. Then, when the bandwidth increases approaching themaximumwhich is

1 packet/RTT (corresponding to 2 packets/sec in our simulation) it provides similar behavior as rate-

based algorithms IDC-COAP and MBC-CoAP in terms of goodput.

Observed Loss ratio at the application level is presented in Fig. 6.5c. When the residual bandwidth

is increased, successive losses are reduced and hence application losses are reduced and even totally

canceled because the re-transmission counter r is 4. However, when the residual bandwidth is small,

we see clearly that CoAP losses are higher with the backoff-based algorithms which means that these

algorithms experience more successive network losses than rate-based algorithms. These results are

confirmed in Fig. 6.5e where the Overhead metric is shown. Usually, the algorithm that achieves a

much higher goodput, experiences also a much higher Overhead. Nevertheless, all backoff-based al-

gorithms show higher Overhead despite of having lower goodput as seen before. Thus, they consume

more energy and reduce battery life. It is difficult though to achieve a good tradeoff betweenOverhead

and goodput. Tuning the parameters of IDC/MBC-CoAP helps improving this tradeoff. For IDC-

CoAP, increasing the incremental weight iw and/or decreasing the decremental weight dw, decreases
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the goodput and reduces theOverhead. As amatter of fact, IDC-CoAPwith iw = 1.5 achieves almost

no overhead when the average residual bandwidth is greater than 0.3 packets/s. As for MBC-CoAP,

decreasing the measurement window m, reduces the Overhead but does not affect the goodput be-

cause the residual bandwidth is not high variable, however, a decrease in goodput is observed when the

variability of the residual bandwidth is high as we will see in next simulations.

Finally, we test the robustness of the algorithms in front of a more dynamic network environment.

In Fig. 6.5b, 6.5d and 6.5f, we fix the average residual bandwidth to 1 packets/s and we increase the

standard deviation of the uniform distribution of the residual bandwidth by increasing the maximum

and the minimum values from [0.9, 1.1] to [0, 2]. Recall that 2 packets/s is the maximum possible rate

which corresponds to 1/RTTaverage. The residual bandwidth changes every 5 seconds. Here again,

all backoff-based congestion control algorithms fail to reach an acceptable tradeoff between goodput

and losses. Fig. 6.5f shows that the overhead of these algorithms is extremely highmore than 100% and

up to 140% indicating that any packetmust be transmitted at least twice in order to be received success-

fully. The Overhead of IDC/MBC-CoAP is much lower while they still achieve a reasonable goodput

in Fig. 6.5b even when the residual bandwidth is very variable. The overhead of IDC with iw = 1.5

is even around 10%. IDC with iw = 1.5 can be considered as a good tradeoff between goodput and

Overhead especially when the residual bandwidth variability is medium. If the performance objective

is a high goodput in a highly dynamic environment regardless of the Overhead and processing com-

plexity, then MBC-CoAP withm = 10 is the choice because its goodput shows more stability thanks

to the bandwidth estimation procedure and the gain cycling. The choice for selectingm = 10 is also

confirmed in Fig. 6.7 where we have performed several simulations and we varied the measurement

window sizem with high variability in the residual bandwidth. Fig. 6.7a shows the impact of varying

m on the goodput while we increase the variance (x-axis) and Fig. 6.7b presents the overhead. The

more the network is variable, the more the residual bandwidth is unstable. In this case, we need to in-

crease the window size to stabilize more themeasurements in order to increase the goodput. However,

the impact is always the opposite on the overhead. For instance, withm = 14, we achieve better good-

put than other values ofm variables but withmore overhead. Themain reason is that when the residual

bandwidth variability increases which means the network is unstable, we need to compensate by sta-

bilizing more our algorithm. Therefore, the design principle that should be applied is that when the

network is unstable, the algorithmmust provide stability andwhen the network is stable, the algorithm

does not need to stabilize but in this case, it should converge fast. For such cases, and to provide fast

convergence,m should be small. As a matter of fact, this is the compromise between stability and fast

convergence. We must converge fast and at the same time, we should have a stable algorithm. Usually,

it is very difficult to have a good compromise between these two factors because we do not know what

is going on in the network. In this case, we prioritize stability. However, if we can ensure the stability
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(a) Goodput ‐ Low variability residual bandwidth (b) Goodput ‐ High variability residual bandwidth

(c) Application Loss ratio ‐ Low variability residual bandwidth (d) Application Loss ratio ‐ High variability residual bandwidth

(e)Overhead ‐ Low variability residual bandwidth (f)Overhead ‐ High variability residual bandwidth

Figure 6.5: Simulation results: Low and high variability residual bandwidth
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(a) Goodput (b)Overhead

Figure 6.6: Performance evaluation of MBC‐CoAP using window of attempts

of a network, then we can tune the algorithm to converge fast without caring about stability which is

already provided by the network. As a summary, the first observation is that when the bandwidth is not

variable,m can be small (≤ 4) to allow fast convergence of the sending rate. The second observation

is that when the bandwidth is variable and we need to maximize the goodput regardless of the over-

head, thenmmust be set high (≥ 14). For our choice, and as can be observed from Fig. 6.7a and Fig.

6.7b, m = 10maintains a good tradeoff between goodput and overhead when the bandwidth is high

variable. On the other hand, we evaluated a different version of MBC-CoAP by replacing the sliding

window of measurements with a sliding window of attempts, which means the window slides at every

transmission attempt. Therefore, instead of considering the last m measurements that are computed

when an ACK is received, the attempts where an ACK is not received are also included in the window.

This version is tested in different network scenarios. We show here the results of a challenging case

with high variability residual bandwidth whose network parameters are listed in Table 6.1. Although

the overhead is reduced as shown in Fig. 6.6b, however, as per the results presented in Fig. 6.6a, when

the standard deviation of the residual bandwidth increases, the goodput degrades. As a consequence, it

is hard to attain an accepted tradeoff between goodput and overhead using this kind of sliding window.

Referring again to the results presented in Fig. 6.5b, the goodput of BDP-CoAP decreases dramat-

ically with the increase of bandwidth variability. This is because the bandwidth is varying quickly be-

tween low and high values, thus themin operator used in the estimation of the residual bandwidth is

not adequate at all. Besides, BDP uses the last ten attempts as measurement points instead of the last

ten measurements, i.e. the measurement window slides at every transmission attempt. Unfortunately,

this generates a similar behavior to a timewindowwhich is not adequate for CoAP because the number

of sent packets per RTT is small especially when there are losses.
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(a) Goodput as a function of bandwidth variation (b)Overhead as a function of bandwidth variation

Figure 6.7: Simulation results: Varying measurement window sizem

6.2.2 Python Simulation Results - Congested and non-congested periods (Good and bad)

In this section, we consider two network scenarios with different good and bad periods to challenge

more the algorithms. In the first scenario set, the average duration of the good period is set to 1minute

and the average duration of the bad period is set to 5minutes. While, in the second scenario set, the av-

erage duration of the good period is set to 5minutes and the average duration of the bad period is set to

5 minutes. The average residual bandwidth in the good period is 1.8 packets/s and we vary the average

residual bandwidth of the bad period from 0.1 packets per second to 1.8 packets/s for both scenarios.

The performance of our IDC-CoAP and MBC-CoAP is analyzed and compared against different con-

gestion control protocols. In particular, we show the results where averages of goodput, observed loss

ratio and overhead are computed and compared in presence of these good and bad periods with dif-

ferent available bandwidth constraints. The simulation was run up to 5 hours and each simulation was

repeated 3 times. Confidence intervals are not shown to not encumber the figures. Simulation network

parameters for the next figures are summarized in Table 6.2. Regarding the other parameters of the

evaluated protocols, we have used the same ones presented in Section 6.2.1. Fig. 6.8a - Fig. 6.8b show

these 3 performance metrics.

Parameter Value Description

Residual
Bandwidth
(packets/sec)

U(1.7, 1.9) Bandwidth in
good period

U(0, 0.2) . . .U(0.9, 1.1) . . .U(2.1, 2.3) Bandwidth in
bad period

Good Period (mn)
Bad Period (mn)

Exp(1), Exp(5)
Exp(5)

Distribution and
average duration

RTT (ms) N(500, 10) Round Trip Time

Table 6.2: Python simulation network parameters
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From Figure 6.8a we can first observe that for a residual bandwidth of the bad period less than 0.5

packets per second, IDC-COAP (iw=1.5 and iw=1.1) and MBC-CoAP (m=10) achieves somewhat

better goodput than backoff-based algorithms. This is expected since there is no sufficient bandwidth

to send packets. In order to get a better insight of the overall performance, we consider an additional

metrics. In particular, Figure 6.8b shows the overhead generated by the algorithms for the same resid-

ual bandwidth intervals. For a residual bandwidth less than 0.5 packets per second, IDC-CoAP and

MBC-CoAP outperforms CoCoA+, pCoCoA and 4-state by 175% reduction in the overhead. This is

a massive difference and has a huge impact on energy consumption. Similar to what we have seen in

the previous section, when the available bandwidth increases, the goodput of IDC-CoAP and MBC-

CoAP behaves linearly while a step-wise behavior with the presence of a small plateau shown by the

backoff-based algorithms (0.4 - 0.8 Residual Bandwidth on the x-axis), then a second larger plateau

at the x-points (1 - 1.8 on the x-axis). The value of the plateau, detailed in Section 6.2.1, corresponds

approximately to 1
T+R

(corresponding to a lost transmission followed by a successful retransmission).

Also, as shown in Figure 6.8a, BDP-CoAP achieves better goodput than other algorithms and is close

to IDC-CoAP in some cases (0.5 till 0.9 packets/sec residual bandwidth), however, this improvement

is on the behalf of the overhead and this can be seen in Fig. 6.8b where the overhead of BDP-CoAP

suddenly increases till 150% (0.5 and 0.6 packets/sec residual bandwidth) and around 100% in other

cases (at residual bandwidth 0.6 - 0.9 packets/sec). Therefore, this increase in goodput is on the cost

of energy consumption due to the increased number of losses. In general, and according to the results

presented in Fig. 6.8, we can still see the inability of backoff-based algorithm to avoid overhead and

bandwidth wastage. As we have seen in this Section and Section 6.2.1, all backoff-based algorithms be-

have in a similar manner. It is important to note that we have also observed this phenomenon while

assessing the algorithms in other network scenarios not mentioned here.

Figure 6.8d shows the observed Loss ratio at the application layer. When the residual bandwidth

is increased, successive losses are reduced and hence application losses are reduced and even totally

canceled because the re-transmission counter r is 4. On the other hand, when the residual bandwidth

is small, we see that losses are higher for all. However, as per Fig., these losses vanish even for small

residual bandwidth if we increase the re-transmission counter r. In Figure 6.8b and when the residual

bandwidth is greater than 0.5 packets per second, the overhead of backoff-based algorithms is greater

by around 100% than rate-based algorithms which means that the former algorithms experience more

successive network losses.

In the second scenario set, we report the results of the goodput and overheadmetrics (Fig.6.9) while

having longer good period duration set to 5 minutes and keeping the same average duration of the bad

period(5minutes). AsperFig. 6.9a, IDC-CoAPandMBC-CoAPperformalwaysbetter thanpCoCoA,
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(a) Goodput (b)Overhead

(c) Application Loss ratio: r = 4 (d) Application Loss ratio: Increasing r

Figure 6.8: Simulation results while varying the residual bandwidth in the bad period

(a) Goodput (b)Overhead

Figure 6.9: Goodput and overhead with long good and bad periods
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4-state and CoCoA+ while varying the residual bandwidth of the bad period on the x-axis. The main

difference from the first scenario is that all algorithms are now able to achieve better goodput due to

the extended good period duration. For instance, when the residual bandwidth is 1 packet/sec in the

bad period, IDC-CoAP (iw = 1.1) can successfully send 1.2 packets/sec. At the first glance, that

looks strange because it is greater than the residual bandwidth, however, this is justified because the

algorithm can now compensate the bad period by sending more during the good period where the

residual bandwidth is up to 1.8 packets per second. This is observed as well for other values of the

residual bandwidth. As shown Fig. 6.9a, BDP-CoAP guarantees a performance close to IDC-CoAP

in some cases and better than MBC-CoAP in most of the cases. Here, the variability is not high and

hence the min-max filter and the window of attempts imposed by IDC-CoAP in this special case have

a better impact on the goodput than using a max filter only. However, as mentioned earlier, this is

achieved on the behalf of overhead which is reflected in Fig. 6.9b. In the same figure, all backoff-based

algorithms showhigh overhead equal or even greater than 100%. Here again, the backoff algorithms fail

to achieve a good compromise between the performance metrics. Finally, it is worth noticing that we

have also performed same set of simulations with lower RTT values down to 50ms and higher values

of the residual bandwidth up to 20 packets/s and we observed similar results including the step-wise

behavior of backoff-based algorithms and the satisfactory performance of IDC-CoAP andMBC-CoAP

in both low and high network bandwidth variability.

6.2.3 Implementation in Contiki OS and Cooja Simulations

In order to validate our study in a realistic environment, we have implemented IDC-CoAP in the Con-

tiki Operating System [21]. Contiki OS is used for IoT devices and especially tiny ones such as the

TelosB/SkyMote family and Zolertia Z1 mote [2]. Then, we use the real hardware emulator MSPSim

[1, 4] to load Contiki OS on it, and we use Cooja simulator [48] to create several network scenarios

composed of motes playing the role of a CoAP receiver and CoAP senders.

One ofMSPSIM andCooja features is the ability of emulating constrained real devices while reflect-

ing their hardware specifications and processing capacities. Themotes implement IEEE 802.15.4 at the

physical and MAC layers. Distinguished from previous works, the radio duty cycle (RDC) feature of

the MAC layer is kept enabled in all our experiments. Two types of motes are used for CoAP senders

and receivers which are Z1 and wismote. Table 6.3 shows the hardware specifications of these motes

and the settings in the Contiki OS loaded in the motes. The RPL router uses the more constrained sky

mote since it implements neither transport nor application layers.

Six network topologies with different number of nodes are defined for the performance analysis.

These topologies are: a grid of 30 nodes, a U-shape with 15 nodes, a Square-shape with 18 nodes, a

ring and a chain with 12 nodes, and a dumbbell with 7 or 10 or 15 nodes. The Square-shape and the
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Zolertia Z1mote specifications
RAM 8KB
ROM 92KB
Micro-Controller MSP430F2617
CPU Clock speed 16MHz
RF standard CC2420 2.4GHz / 250Kbps data rate
Wismotemote specifications
RAM 16KB
ROM 256KB
Micro-Controller MSP430F5
CPU Clock speed 25MHz
RF standard CC2520 2.4GHz / 250Kbps data rate
Simulation Parameters
Physical protocol IEEE 802.15.4
RDC On (Contikimac driver)
MAC CSMA driver
Transmission (TX) ratio 90% or 95% or 100%
Routing protocol RPL
Network protocol 6LoWPAN/IPv6
UIP buffer size 256
CoAP frame size 80 bytes

Table 6.3: Cooja/Conitki parameters and hardware specifications of Z1 and Wismote motes

U-shape are obtained by shutting down some nodes in the grid topology. In the first one, only border

nodes communicate with the CoAP receiver and in the second one only the border nodes forming aU-

shape communicate with the receiver. Fig. 6.10 illustrates these 6 topologies with 1 RPL border router

(green color), CoAP receiver (yellow color) and CoAP senders (pink color). The distance between

the unit squares is 10m. Choosing various network topologies determines how many direct neighbors

each node has. Also, it determines how many nodes compete for the radio channel and the available

bandwidth. These topologies create a diversity of available links, bandwidth and number of CoAP con-

nections in the network.

DestinationOrientedDirectedAcyclicGraph(DODAG) is initiatedby theRPLborder routerwhich

stores the routing information for all the nodes. TheRPL border router serves as a relay for CoAPmes-

sages, it does not send or receive any CoAP message. An initialization phase around 100 seconds for

each simulation is allowed since the RPL border router needs an amount of time to build the DODAG

across the network. No results are collected during this phase. Once the network is initialized, CoAP
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(a) Grid Topology (b) Ring Topology (c) Dumbbell Topology

(d) Chain Topology

Figure 6.10: Network topologies for CoAP congestion control performance evaluation with Cooja/Contiki OS environment

senders generate messages which are directed towards the CoAP receiver. NSTART is set to 1 as per

CoAP default specification. The simulations of the different scenarios have a 15 min duration. These

simulations are repeated 5 times for each scenario. On one hand, as shown in the previous sections,

IDC-CoAPwith iw = 1.5 is a good tradeoff between goodput, Overhead and code simplicity then we

can choose it as a representative of rate-based congestion control algorithms in this study with Con-

tiki/Cooja. On the other hand, we have obtained the last version of the implementation of CoCoA+

from its authors, which will serve as a representative of backoff-based approach for congestion control.

In the previous section we showed that the performance of CoCoA+ is indeed very close to pCoCoA

and 4-state. Besides, we will compare with the existing CoAP implementation in Contiki that follows

the current standard using the simple binary exponential backoff [53].

Fig. 6.11 shows the threemeasured performancemetrics: Goodput, Loss ratio andOverhead for the

three protocols: IDC-CoAP,CoCoA+ andCoAP for each of the four network topologies: Ring, Chain,

Dumbbell and Grid. As a first observation, it is clear that IDC-CoAP is always better than CoCoA+,

and that CoAP is evidently not efficient enough in all cases.

More closely, Fig. 6.11a shows that the Goodput of IDC-CoAP is higher than CoCoA+ even when

the transmission ratio TX is 100%, i.e. no loss simulation by Cooja. In the ring topology, most of the

motes send directly to theCoAP receiver and thus the network is somewhat stable with less congestion

events. To challenge more the algorithms, we decrease the transmission ratio to 95% and 90%. Still

CoCoA+ and CoAP achieve lower Goodput than IDC-CoAP. They also experience more application
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losses (Fig. 6.11b) and overhead (Fig. 6.11c). Even when transmission losses are high (TX=90%),

IDC-CoAP is able to reduce the Overhead compared to other algorithms as shown in Fig. 6.11c. This

is because transmission losses are perceived as a residual bandwidth reduction from the sender and thus

IDC-CoAP which applies the rate-based congestion control reacts better to these losses.

In the chain topology, we varied the number of nodes in the chain to study the impact on the Good-

put, Loss ratio and Overhead. Naturally, the overall performance degrades when the number of nodes

in the chain increases because the nodes near to the receiver becomes more congested. In Fig. 6.11d,

IDC-CoAP algorithm results in a better goodput than CoCoA+ and CoAP in all number of nodes. It

also achieves zero loss ratio and lower overhead when the number of nodes varies as per Fig. 6.11e and

Fig. 6.11f. Hence, IDC-CoAP preformance is still robust when we have more congested nodes in the

network.

Thanks to our rate-based mechanism which tends to leverage from the available bandwidth and re-

duces the sending rate when the residual bandwidth is not sufficient. More nodes enforce more traffic

in the networkwhich leads tomore congestion, therefore, in such conditions, IDC-CoAP tends tomin-

imize packet losses and save the battery life of constrained devices.

Similar to chain and ring topologies, IDC-CoAP attains better performance results in dumbbell

topology and this is illustrated in Fig. 6.11g to Fig. 6.11i. The creation of a congested link between the

RPL router and the CoAP receiver does not impact the relative performance of IDC-CoAP compared

to the others. Here also we varied the number of nodes with similar results as in the chain topology.

The results of the grid topology and its sub-topologies Square-shape and U-shape are shown in Fig.

6.11j to Fig. 6.11l. Here, the position of congestion in the network topology becomes more variable

and the residual bandwidth as perceived by senders can be more dynamic, especially in the full grid

topology. Even in this case, IDC-CoAP is still showing a higher goodput, a lower application loss ratio

and also a lower overhead. This reinforces the necessity of rate-based congestion control for CoAP

rather than current backoff-based ones.

6.3 Other Proposed Algorithms

In order to improve our algorithms further, we developed and evaluated other versions for the conges-

tion control. For instance, we developed another version of IDC-CoAP with few more instructions

(lines 3 and 4), an incremental weight iw = 1.7, decremental weight dw = 0.01 and fast decremental

weight fw = 0.5. The detailed pseudo-code of this version is presented in Algorithm 7. As matter of

fact, the results obtained by this version are similar to the ones obtained by the final version, however, to

maintain simplicity, we reduced the extra instructions and kept the final version of IDC-CoAP already

presented in Algorithm 5. Thanks to our formula (6.1) that helped us to find the optimal parameters

and reduce instructions in IDC-CoAP final version.
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(a) Goodput ‐ Ring Topology (b) Application Loss Ratio ‐ Ring (c)Overhead ‐ Ring

(d) Goodput ‐ Chain (e) Application Loss Ratio ‐ Chain (f)Overhead ‐ Chain

(g) Goodput ‐ Dumbbell (h) Application Loss Ratio ‐ Dumbbell (i)Overhead ‐ Dumbbell

(j) Goodput ‐ Grid (k) Application Loss Ratio ‐ Grid (l)Overhead ‐ Grid

Figure 6.11: Performance evaluation results of IDC‐CoAP (rate‐based) vs. CoCoA+ and CoAP (backoff‐based) using
Cooja/Contiki
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Algorithm 7 IDC-CoAP pseudo-code with more instructions
1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: if previous packet is lost then
4: spacing = spacing − 3∗(spacing−loss_spacing)

4

5: else
6: if spacing≥ loss_spacing then
7: spacing = spacing − dw ∗ spacing
8: else
9: spacing = spacing − fw ∗ spacing

10: end if
11: end if
12: else
13: loss_spacing = spacing /* Save congestion level */
14: spacing = iw ∗ spacing
15: end if
16: spacing = max(spacing, current_time− last_send_time)
17: Send next packet (transmission or retransmission) at: last_send_time+ spacing

6.3.1 IDC-CoAP with probing

Moreover, we worked on an approach by following the Additive IncreaseMultiplicative Decrease prin-

ciple to control the rate with periodic probing of the bandwidth. In order to optimize the goodput, we

need to probe the bandwidth. Now, if we probe the bandwidth frequently and the congestion is high,

then the overhead will be high too due to losses. From one side we need to reduce the overhead and on

the other side, we need to optimize the goodput. We need to find a good compromise between these

two contradictory ideas. In this approach and similar to MBC-CoAP, if there is no packet loss after

probing, the sending rate is increased. Also, similar to IDC-CoAP, we reduce the spacing using a decre-

mental weight in order to increase the sending rate, and we increase the spacing using an incremental

weight to decrease the sending rate when a packet is lost. This approach, named IDC-CoAPwith prob-

ing, merges the concept of both algorithms: IDC-CoAP and MBC-CoAP with some difference in the

design concept. For instance, we probewith loss_spacingwhich is saved at the loss event. Also, when

a packet is lost, we immediately reduce the sending rate unless we are in the probing phase. In this case,

we converge to the original sending rate. The pseudo-code of this approach is presented in Algorithm

8.

Similar to IDC-CoAP, when a loss is detected, the spacing is increased by multiplying it by the in-

cremental weight iw (line 18). When ACK is received, we implement ten-phase cycle including the

probing phase using loss_spacing to increase the sending rate and thus converge slowly (line 5). The

spacing is reduced slowly (line 8) during the cycle. To ensure that the loss_spacing does not ex-

ceed 1
ResidualBw

in terms of rate, we use a security margin of 1.01 (lines 9, 16, 18). When no losses

126



Algorithm 8 IDC-CoAP with probing
1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: if cycle_index = 10 then
4: cycle_index+ = 1
5: spacing_before_probing = spacing /* Save spacing before probing */
6: spacing = loss_spacing /* Probing phase - Spacing saved at the loss event */
7: else if cycle_index < 10 then
8: cycle_index+ = 1

9: spacing = spacing − 3∗(spacing−1.01∗loss_spacing)
4

/* Slow decrease */
10: else
11: /* No losses are observed and Cycle index = 11*/
12: spacing = dw ∗ spacing /* Fast decrease to increase the sending rate*/
13: end if
14: if previous packet is lost then
15: if cycle_index ≤ 10 then
16: spacing = spacing − 3∗(spacing−1.01∗loss_spacing)

4

17: else
18: spacing = spacing_before_probing − 3∗(spacing_before_probing−1.01∗loss_spacing)

4

19: end if
20: cycle_index = 1
21: end if
22: else
23: if cycle_index ≤ 10 then
24: spacing = iw ∗ spacing
25: else
26: spacing = spacing_before_probing
27: end if
28: end if
29: spacing = max(spacing, current_time− last_send_time)
30: Send next packet (transmission or retransmission) at: last_send_time+ spacing
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Figure 6.12: Instantaneous behavior of other proposed algorithms: IDC with probing

(a) Goodput: High variability residual bandwidth (b)Overhead: High variability residual bandwidth

Figure 6.13: Simulation results of IDC‐CoAP with probing

are observed during the probing cycle, spacing is reduced with a decremental factor dw (line 11). The

instantaneous sending rate behavior of IDC-CoAP with probing is shown in Fig. 6.12 for dw = 0.25.

The value of the sending rate can be reduced by choosing greater dw value. The blue plot represents

the residual bandwidth while the red and blue plots represent the sending and success rates of the algo-

rithm. Simulation parameters are summarized in Table 6.1. As can been seen from the instantaneous

behavior of this approach, when the bandwidth increases, the sending rate becomes higher than the

success rates which has a negative impact on the goodput. As per Fig. 6.13a, the goodput decreases

when the bandwidth becomes highly variable. Although this approach provides better goodput than

IDC-CoAP with iw = 1.5, however, this is achieved on the behalf of increased overhead as per Fig.

6.13b and additional number of instructions and complexity (Algorithm 8).

In our opinion, the code can be simplifiedmore and the parameters can be tuned to further improve

the results and achieve a better tradeoff between performance metrics.
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6.3.2 IDC-CoAP: Exponential growth

Of equivalent importance and noteworthy is that we also implemented and evaluated the principle of

IDC-CoAP with exponential growth. In this version of the protocol, we try to replace the additive in-

crease principle of the proposed algorithm IDC-CoAP with a faster increase principle. According to

our observation, when the sending rate converges slowly, some bandwidth will be wasted. However,

if we converge faster, we will reduce the wastage of the bandwidth. As we have seen in IDC-CoAP,

there was a wastage of the bandwidth. For instance, when the residual bandwidth is 2 packets per sec-

ond, IDC-CoAP can not achieve more than 1.6 packets per second which is almost 80% of the avail-

able bandwidth. Actually, this is a drawback in the additive increase approach. Hence, when there is a

congestion, it takes time to converge and transmit quickly. The new idea is to converge immediately.

Therefore, instead of waiting t time, we wait t
2
then t

4
and so on until the sending rate becomes very

close to the residual bandwidth. This fast convergence can be done using a binary or exponential ap-

proach. In addition to using 1
2
in order to increase and decrease the sending rate, we might also use 3

4

instead as an increase and decrease exponential factor. However, according to our analysis, the 1
2
factor

provides better convergence which will be confirmed in the instantaneous behavior. The outcome is a

new approach called IDC-CoAP exponential growth, and the exponential factor can be either 1
2
or 3

4
.

The pseudo-code of this approach is presented in Algorithm 9. When ACK is received, we maintain

a counter which is relevant to the target overhead. For instance, if the number of packets inside the

period isn, the overhead is 1
n
. It is like we lose a packet aftern times. We fix the countern according to

the target overhead. Here, we use n = 10 (line 3). The security margin used is 1.01 (lines 8 and 15).

The spacing is exponentially reduced (line 8) to increase the sending rate. Here, we show the instruc-

tions with 1
2
exponential factors (lines 8 and 15). When no losses are observed after n transmissions,

spacing is reducedwith a 0.5 factor (line 11). The instantaneous sending rates of IDC-CoAP exponen-

tial growth with 1
2
and 3

4
factors are presented in Fig. 6.14a and Fig. 6.14b respectively. The network

scenario for the instantaneous behavior is similar to the one simulated in Fig. 6.1. We can see clearly

the exponential growth that allows the sending rate to increase and converge quickly after a packet loss

when the simulation time is between 10000 ms and 40000 ms in Fig. 6.14a) and between 20000 ms

and 40000 ms in Fig. 6.14b). Due to the exponential increase, the sending rate exceeds the residual

bandwidth in many cases which will cause packet losses.

Although such approaches will reduce the wastage of the bandwidth, however, it is very risky in case

the bandwidth is highly variable. The main reason is that this fast behavior does not provide the net-

work with sufficient time after congestion and hence worsen the situation. In addition to making the

congestion worse, another drawback of such approaches is that they impose more losses. Fig. 6.15a

129



shows that IDC-CoAP exponential growth achieves better goodput than IDC-CoAP with iw = 1.5

when the residual bandwidth is very variable. The goodput of IDC-CoAPwith iw = 1.5 decreases be-

cause of the slow convergence when the variability of the residual bandwidth increases. However, and

as shown in Fig. 6.15b, IDC-CoAP exponential growth imposes more overhead up to 20% and 30%.

The increase in the overhead is due to the increased number of losses caused by the fast convergence of

the exponential growth.

On the other hand, IDC-CoAPwith probling and IDC-CoAPexponential growth aremore complex

than IDC-CoAP. However, a better tuning for these versions might improve the performance further.

Hence, we consider these approaches as an open research problem.

Algorithm 9 IDC-CoAP with exponential growth
1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: if n = 10 then
4: n+ = 1
5: spacing = loss_spacing /* Spacing saved at the loss event */
6: else if n < 10 then
7: n+ = 1
8: spacing = spacing − (spacing−1.01∗loss_spacing)

2
/* Exponential growth */

9: else
10: /* No losses are observed and n = 11*/
11: spacing = 0.5 ∗ spacing /* Increasing the sending rate*/
12: end if
13: if previous packet is lost then
14: n = 1
15: spacing = spacing − (spacing−1.01∗loss_spacing)

2

16: end if
17: else
18: loss_spacing = spacing /* Save congestion level */
19: spacing = iw ∗ spacing
20: end if
21: spacing = max(spacing, current_time− last_send_time)
22: Send next packet (transmission or retransmission) at: last_send_time+ spacing

6.4 Summary

IoT devices are typically constrained by power capacity, memory and computational abilities in spite

of the rapid changes in technology. As a result, these limitations increase the difficulty of data trans-

mission and hence many algorithms may not perform efficiently if not well designed. Several research

works have tried to improve further CoAP performance, in particular, its congestion control mecha-
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(a) IDC‐CoAP: Exponential growth with 1/2 factor (b) IDC‐CoAP: Exponential growth with 3/4 factor

Figure 6.14: Instantaneous behavior of other proposed algorithms: IDC‐CoAP exponential growth

(a) Goodput: High variability residual bandwidth (b)Overhead: High variability residual bandwidth

Figure 6.15: Simulation results of IDC‐CoAP exponential growth
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nism which plays an important role in its efficiency in terms of reliability, energy consumption and

rate performance. Based on our analysis in chapter 2 and according to the proposal of modifications

of the evaluated algorithms, we developed, in this chapter, new rate-based algorithms, IDC-CoAP and

MBC-CoAP. Most previous works have followed the backoff-based approach for congestion control

while we proved in our performance evaluation section that a rate-based approach is much better than

backoff-based approaches in most of the network topologies and scenarios. Our results, obtained from

experiments, show significant advantages, with respect to goodput, loss ratio and overhead, in using

rate-based approaches. IDC-CoAP provides lower overhead than MBC-CoAP and better goodput in

scenarios where the residual bandwidth is not high variable, whileMBC-CoAP is resilient against high

variability of residual bandwidth and provides better goodput results than other algorithms. However,

the linear approach of IDC-CoAP is less complex thanMBC-CoAP and uses less instructions. In addi-

tion to the proposed algorithms, we have also explored and implemented different approaches that can

be used as a guideline for further developments.
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7
Conclusions and Future work

7.1 Conclusion

Since the design of the Constrained Application Protocol (CoAP), several research works have tried to

improve its performance and increase its widespread usage in different IoT fields. In terms of efficiency,

congestion control algorithms are particularly important in this protocol since they affect its reliability,

energy consumption, and rate performance.

In this thesis, we developed novelmodels to represent the performance ofCoAPunder the Bernoulli

loss model, the Simple Gilbert and Gilbert-Elliot loss models. We showed how to compute several

performancemetrics and validated thesemodels via simulations in realistic network environments. The

models are used to study precisely the performance of CoAP. The first observation that is brought up

after this study is the importance of reducing the retransmission timeout in CoAP. Additionally, the

performance analysis sheds light on the inadequacy of the backoff procedure in CoAP. In fact, it shows

the necessity for replacing the default backoff procedure by a rate-based congestion controlmechanism

to improve bandwidth utilization, while maintaining simplicity.

Most previousworks have followed the backoff-based approach for congestion control. However, we

showed in this thesis that a rate-based approach is much more appropriate in most network scenarios.

Indeed, the non fine-grained nature of the backoff-based procedure does not allow for precise control;

this is true even when several backoff factors and weights are used. Thus, to be concretely efficient,
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the proposed rate-based control must be both simple and well adapted to IoT networks and to devices

that employ the CoAP protocol. Our two rate-based protocols IDC-CoAP and MBC-CoAP are able

to leverage the available bandwidth in the network and thus reduce message losses and unnecessary

retransmissions, which are very harmful to IoT constrained devices.

On theonehand, thedesign concept ofMBC-CoAPallows to increase and reduce the sending rate to

estimate the bandwidth accurately. However, this design concept imposes complexity when attempt-

ing to obtain and maintain the measurements. Also, another challenge is choosing the measurement

window size m. When m is small, the sending rate converges fast and this is useful if the bandwidth

is not variable. However, if the bandwidth is variable, then the value ofm should be high to maximize

the goodput. Now, how can one determine the variability of the bandwidth in the network? Equiva-

lently, how should one set the measurement window sizem? The answer to both questions is not clear

because the status of the constrained networks is usually unpredictable.

On the other hand, IDC-CoAPdesign is simpler but the parameters should bewell chosen to achieve

a good tradeoff between goodput and loss ratio. Also, IDC-CoAP will be slow in convergence and the

goodput is reduced when the decremental weights are small. Unfortunately, the risk of choosing high

values of decremental weights is packet losses. In order to overcome this problem, we have developed

a formula to generate the incremental and decremental weights of IDC-CoAP to meet a given per-

formance objective. The parameters that we have selected achieved a good tradeoff between different

performance metrics in the majority of the tested network scenarios. Our results, obtained from sim-

ulation and from the Cooja/Contiki environment, show that the more the available bandwidth or the

network dynamics, the higher the gain in all performance metrics.

Another important aspect of our congestion control protocols is that, depending on the application,

they can be tuned to optimize further the performance. We have shown in chapter 6 that a good com-

bination of IDC-CoAP parameters is: incremental weight iw = 1.5, decremental weight dw = 0.01

and fast decremental weight fw = 0.5. For instance, in IoT health-monitoring applications, some

information should be delivered with high reliability (such as the body temperature or the heart rate).

In this case, theCoAP sending rate can be reduced conservatively to avoid losses. In particular, a higher

incremental weight iw must be chosen. On the other hand, in a weather sensing application for exam-

ple, a packet loss is less damaging because the next packet has an updated data of the weather. In this

case, a lower value of incremental weight iw can be selected to increase the sending rate. Besides, if

sensors are using wired power supplies, increasing the sending rate allows more data to be collected.

Finally, since CoAP can be used also for file transfer, incorporating an effective rate-based control in it

is beneficial.
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7.2 Future Work

7.2.1 CoAP Evaluation

An important future work would be developing mathematical models, similar to the ones presented

in this thesis, for IDC-CoAP and MBC-CoAP to complete their study from an analytical perspective.

In this thesis, the developed models for CoAP evaluation assume that the bandwidth is one packet per

RTT , the acknowledgement (ACK)of eachpacket is either receivedby the sender or not, and a backoff

mechanism is involved when the ACK is not received. However, IDC-CoAP and MBC-CoAP assume

that the bandwidth is variable and the sending rate is adapted according to the available bandwidth.

Therefore, future work should take into account this behavior ofMBC-CoAP and IDC-CoAP, which is

different fromthebackoff-basedapproach. Besides, itwouldbe interesting to include in themodelother

factors such as the impact of fragmentation. Thismay be done bymodifying the loss probabilities of the

Gilbert-Elliottmodel, which in turn can be obtained throughmeasurements. Furthermore, other states

can be added to ourMarkov chain to consider different packet sizes that would experience different loss

ratios.

Another important future work is to compare our newCoAPprotocols with other protocols that use

Transmission Control Protocol (TCP) as a transport protocol, such as the Message Queue Telemetry

Transport (MQTT). MQTT is an important application layer protocol designed for communications

in IoT networks. It uses a topic-based publish/subscribe architecture, where reliability of messages is

provided by three levels ofQuality of Service (QoS).MQTTrelies onTCP, and its reliance on this type

of connection increases the overhead and thus the total packet size. Therefore, while MQTT can offer

high reliability, it can lead to aharmful increase inpower consumption [47]. Previousworkshave shown

that it is appropriate to use MQTT in some specific IoT applications. Hence, performing an in-depth

and relative analysis between our proposed CoAP protocols and protocols like MQTT is necessary to

gain insight into their strengths and limitations, according to the application at hand.

7.2.2 Congestion Control mechanism

The results of this thesis prove that there is no congestion control mechanism that is optimal in all

performance metrics and for all network scenarios. Our new proposals, IDC-CoAP and MBC-CoAP,

performbetter thanother algorithms suggestedby the literature in themajority of the considered cases.

There is no doubt that finding solutions that lead to better performance with less complexity is a

difficult task. Indeed, one must take into account several aspects, such as (i) the capacity of the con-

strained devices, (ii) the traffic load on each node in the IoT network, and (iii) the ability to strike a

balance between latency and reliability. In this thesis, we have presented different approaches to solve

this problem. The first goal of our work is to keep the algorithms simple while achieving better perfor-
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(a) Instantaneous behavior of IDC‐CoAP algorithm (b) Instantaneous behavior of MBC‐CoAP algorithm

Figure 7.1: MBC‐CoAP and IDC‐CoAP: Future improvements

mance. In our future work, we aim to improve our proposed congestion control mechanism to provide

even higher performance while maintaining simplicity. In particular, our objective is to estimate the

bandwidth more precisely in order to improve goodput and reduce losses.

Fig. 7.1 presents the behavior of the instantaneous sending rate achieved by IDC-CoAP and MBC-

CoAP algorithms in presence of a variable residual bandwidth. These graphs were introduced in details

in Chapter 6. As can be seen from figures 7.1a and 7.1b, there is still room for improvement. Particu-

larly, in Fig. 7.1a, we highlight points where the algorithm can better leverage the available bandwidth:

at x-point 50000, the sending rate converges slowly although the bandwidth opens up. We see simi-

lar behavior at x-points 15000 and 120000. This takes place due to the gradual reduction in spacing

via the decremental weight. In these instances, the available bandwidth is wasted and thus the good-

put is reduced. Hence, one possible limitation of IDC-CoAP is that after 2 or more successive packet

losses, its sending rate does not grow fast. Also, in Fig. 7.1b, the pacing cycle can be manipulated to

engender additional gain of the goodput while minimizing packet losses, to achieve battery-life saving

in constrained devices.

Since our results show that MBC-CoAP has robust stability and convergence properties, another

future work aims to further reduce its complexity so that it can be incorporated in tiny IoT devices.

Other approaches for congestion control may be adopted, but the addition of instructions will increase

the overall complexity. While this problem has been explored in this thesis, better solutions can be

sought after. On the other hand, we already started implementing MBC-CoAP in Cooja/Contiki. In

fact, integrating MBC-CoAP in constrained IoT devices is one of the recent challenges we encoun-

tered. The initial results show that MBC-CoAP performs better than other algorithms on some nodes

in our network topology but has negative impact on the performance of other nodes. Our first obser-

vation regarding this negative impact is due toMBC-CoAP’s inability to converge quickly with sudden

bandwidth changes. We think that tuning the measurement window size m will improve the overall

performance of the algorithm on all the nodes. This is an area to be explored.
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Chapter 6 was concluded by introducing new approaches – considered as open research problems –

which aremainly IDC-CoAPwith probing and IDC-CoAPwith exponential growth. In the former, we

followed theAdditive IncreaseMultiplicativeDecrease approachwith probing of the bandwidth. In the

latter, we considered exponential increase to increment the sending rate. Firstly, we did not consider

reducing the number of instructions. Secondly, and in some cases, the sending rate exceeded the resid-

ual bandwidth due to the exponential growth; more induced packet losses is the consequence. Also,

packet retransmissions are increased which is a waste of significant energy. Hence, another important

future work is to consider tuning the parameters of these algorithms. More importantly, a reduction

in these algorithms’ complexity while maintaining a good tradeoff between performance metrics is a

must. Another important area to study is the dynamic update of the proposed algorithms’ parameters

according to the network’s state. One way to accomplish this is by computing the loss probability p of

the network periodically and update the parameters accordingly. This is an area of more research.

In addition to tuning the parameters of the previous algorithms and updating them dynamically,

we may adopt a hybrid protocol that switches between the Additive Increase Multiplicative Decrease

approach and the exponential growth-based approach, depending on the network’s state of congestion.

For instance, in Chapter 6, we have seen that some proposals for IDC-CoAP perform well in cases

where bandwidth variation is not high. Therefore, switching between different approaches according

to bandwidth variability will be considered as well.

Finally, we state that loss is sometimes the result of the algorithm’s ‘aggressiveness’. As a protocol gets

more aggressive (e.g., by using a fast decremental weight to increase the sending rate), it creates more

loss and thus, needs to send at a lower rate. However, a less aggressive algorithm is less responsive to

the available bandwidth (e.g., one that employs a slow decremental weight to reduce the sending rate).

Therefore, we can see that there are many facets to the problem, requiring more research efforts. We

believe that fast convergence to efficiency requires a mechanism that detects the availability of unused

bandwidth, which is an active research area. In general, we foresee that advances in this fieldwill greatly

benefit the congestion control research.
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A
Expressions ofAr+1 elements: Cayley-Hamilton

theorem

Through Cayley-Hamilton theorem, we found the following terms ofAr+1 =

[
a b

c d

]
as follows:

a =
λ2λ

r+1
1 − λ1λ

r+1
2

λ2 − λ1

+ (1− p)(1− k)
λr+1
2 − λr+1

1

λ2 − λ1

(A.1)

b = q(1− k)
λr+1
2 − λr+1

1

λ2 − λ1

(A.2)

c = p(1− h)
λr+1
2 − λr+1

1

λ2 − λ1

(A.3)

d =
λ2λ

r+1
1 − λ1λ

r+1
2

λ2 − λ1

+ (1− q)(1− h)
λr+1
2 − λr+1

1

λ2 − λ1

(A.4)
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B
Expressions ofAr+1 elements:

Diagonalization/similarity

We provide in this section an alternative method to compute a, b, c and d using diagonalization and

similarity transformation.

A =

[
(1− p)(1− k) q(1− k)

p(1− h) (1− q)(1− h)

]

DefineP =

[
(1− p)(1− k) q(1− k)

p(1− h) (1− q)(1− h)

]
which is formed by eigen vectors. Then:

Ar+1 = P

[
λr+1
1 0

0 λr+1
2

]
P−1

P−1 =

[
p(1− h) (1− q)(1− h)− λ2

−p(1− h) λ1 − (1− q)(1− h)

]
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However,

p(1− h)[λ1 − (1− q)(1− h)]− p(1− h)[λ2 − (1− q)(1− h)] = p(1− h)(λ1 − λ2) = 1

Substituting for p(1− h) = 1
(λ1−λ2)

, we obtain:

P−1 =

[
1

(λ1−λ2)
(1−q)(1−h)−λ2

p(1−h)(λ1−λ2)

1
(λ1−λ2)

λ1−(1−q)(1−h)
p(1−h)(λ1−λ2)

]
Simplifying further, we obtain:

a =
λr+1
1 [λ1 − (1− q)(1− h)]− λr+1

2 [λ2 − (1− q)(1− h)]

λ1 − λ2

b =
λr+1
1 [λ1 − (1− q)(1− h)][(1− q)(1− h)− λ2]

p(1− h)(λ1 − λ2)
+

λr+1
2 [λ2 − (1− q)(1− h)][λ1 − (1− q)(1− h)]

p(1− h)(λ1 − λ2)

c =
λr+1
2 p(1− h)− λr+1

1 p(1− h)

λ2 − λ1

d =
λr+1
1 [(1− q)(1− h)− λ2] + λr+1

2 [λ1 − (1− q)(1− h)]

λ1 − λ2

Simplifying using the fact that

[λ1 − (1− q)(1− h)][λ2 − (1− q)(1− h)] = −pq(1− h)(1− k)

We found the same expressions for a, b, c and d ofAr+1 calculated using Cayley-Hamilton theorem

in Appendix A.
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