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Abstra&

The Constrained Application Protocol (CoAP) is a lightweight core protocol designed by the Inter-
net Engineering Task Force (IETF) used for communication between devices in the Internet of Things
(IoT). Congestion control is substantial to overcome the limitations of such devices and the restrictions
imposed by the connecting networks. The CoAP standard defines a simple congestion control mech-
anism based mainly on retransmissions after timeouts and a binary exponential back-off procedure.
However, this simple protocol with its default parameters is not sufficient and can dramatically affect
the efficiency of CoAP. Several advanced mechanisms for CoAP were suggested by the literature. Some
considered improving retransmission timeout estimation whereas others focused on augmenting the
retransmission procedure. The improvements in the second part are twofold: The first is Backoft-based
such as CoCoA+ and pCoCoA, while the second is rate-based such as BDP-CoAP. We will perform
critical analysis of these works and highlight their shortcomings and pitfalls, then present and evaluate
our approach in different uses cases and network scenarios.

In this research work, we propose new exact mathematical models to analyze the performance of
CoAP in lossy IoT networks. This study provides insights about improving CoAP congestion con-
trol in such networks and highlights the properties — including the limitations — of CoAP. Besides, we
show that the simple control mechanism reduces significantly CoAP performance especially in terms
of bandwidth utilization since it prevents the protocol from acting efficiently during congestion pe-
riods. We then propose new improvements in order to enhance the trade-off between reliability and
goodput while keeping the algorithms reasonably simple for constrained devices. First, we optimize fur-
ther the estimation procedure of the retransmission timeout in order to enhance congestion detection.
Timeouts are the only indicator used in CoAP to detect losses, and losses are used as a strong indica-
tor to detect congestion. Second, we replace the backoff algorithm by “real” congestion control algo-
rithms inspired from the well-known Additive Increase Multiplicative Decrease technique and a recent
measurement-based congestion control called BBR. Our analysis using both our simulator and Con-
tiki/Cooja environment show that the rate-based approach outperforms the backoff-based approach.
Moreover, all the results show that our algorithms achieve a much better tradeoff between goodput,

reliability and overhead.
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Introdu&ion

1.1 CONTEXT AND MOTIVATION

Driven by rapid technological advancements, where wired and wireless networks are ubiquitous, soci-
ety is moving towards an always-connected state and has given birth to the era of the Internet-of-Things
(IoT). IoT represents a vision of the world where billions of devices with embedded intelligence, com-
munication means, and sensing capabilities such as washing machines, T'Vs, coffee machines and tiny
objects like sensors are all connected to the Internet [46]. Fig. 1.1 illustrates an overview of the IoT
concept in which objects from different domains are connected to the Internet. Moreover, objects in
the IoT entity are uniquely identifiable, with a known position, status, and added intelligence services to
benefit and expand the entity. Indeed, the integration of these smart objects with ubiquitous network
connectivity, microscopic sensors, and cloud storage has created the Internet of Things. Besides inte-
gration, data storage, processing, and analysis are fundamental requirements, necessary to enrich the
raw IoT data and transform them into useful information. Subsequently, IoT elements are becoming
the objects of everyday life characterized by a diverse capacities and capabilities.

Recently, IoT has grabbed huge attention in almost all areas of scientific and industrial fields such as
agriculture, manufacturing, homes, health care, disaster management and transportation. IoT applica-

tions include but not limited to:
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Figure 1.1: The overall picture of the loT emphasizing different domains

« Smart Home
Home Automation [40] involves controlling and automating all the home’s embedded technol-
ogy. It is a residence where all its appliances such as air conditioners, washers, dryers, refrig-
erators, freezers, and camera systems are able to communicate with each other and remotely
controlled via Internet. Using smart products provides time, energy and money savings. For
instance, smart lightening systems adjust the lightening based on room occupation and day-
light availability. Smart thermostats remotely monitor and control room temperatures. Smart
security cameras using motion sensors detect different activities and can notify authorities if
needed. One important key feature is the flexibility in infrastructure so that devices from differ-
ent vendors can be easily integrated. Smart homes provide many benefits like comfort, energy

efficiency, low operating costs, and less human efforts.

« Healthcare
IoT as envisioned in healthcare systems is geared towards treatment of patients, in particular pa-
tients with chronic issues, disabled, and elderly people. To meet this end, many IoT applications
have been proposed over the years in the healthcare field. Healthcare-based IoT is considered as
an effective method aiming to enhance existing features of healthcare, increase convenience and
the quality of life, and reduce costs. This aim is envisioned via the use of Remote Patient Moni-
toring Systems (RPMS), management of health and fitness programs, supervision of chronic dis-
eases, children and elderly care, blood pressure and body temperature monitoring, monitoring
of glucose and heart functioning, and medication management. For instance, RMPS [41] allows
for real-time monitoring of patients and also provides data for management purposes (informa-
tion, medical emergency management, etc.). Ambient Assisted Living (AAL) [58] addresses

the health care of aging and incapacitated individuals. In addition, fitness accessories are now



suitable for smart devices to help individuals achieve their best shape. Thus, Healthcare-IoT has
the potential of enhancing patient experience, improving medical workflows, and optimizing the

use of resources [34].

« Disaster Management
Disasters can be classified as natural which include volcanoes, forest-fires, floods, and earth-
quakes whereas the man-made mainly include terrorist attacks, urban and industrial disasters.
Disasters have great impact on human life and industry. Being aware is better than being cured
after a disaster, and IoT has proven to be capable to provide significant and efficient solutions
to different problems for disaster management. Existing IoT approaches aggregate many events
related to disasters such as notifications, data analysis, locating victims, and remote monitoring.
Forinstance, the existing IoT applications explored in research deal with major aspects of various
disasters including but not limited to managerial, monitoring, predictive and analysis. Although
there are approaches that handle major issues in disaster incidents, further improvement and

enhancement are still necessary in technological and design perspectives [51].

o Smart Grid
Smart Grids are developed to replace traditional power grids for reliable and efficient energy
service. This technology leverages distributed energy generators for many reasons, including
the improvement of energy-utilization in these generators, the reduction of C'O; emissions, and
connecting customers with utility supplies via bi-directional networks. Integration of smart-
grids and IoT technology in houses and/or buildings can achieve the desired connection by in-
stalling smart meters [36]. Smart metering is one of the significant applications in smart grids
for environmental sustainability and energy issues recently. These advanced energy meters are
used for energy consumption measurement, energy monitoring and interaction with supplies
to provide real-time data including but not limited to supply and demand of energy. With this
data, utility providers and customers get a better idea about energy consumption and can thus

improve resource utilization and reduce energy-related costs [44].

« Smart Cities
Another application of IoT is in the transportation industry, wherein vehicles are part of a com-
munication network that allows for transportation management, control, and computing to ob-
tain an intelligent transportation system. In this system, traffic data and perception data are used

and computing is applied to get a higher safety in the transportation [44].

This widespread use of IoT applications in different areas and the growing number of physical ob-
jects connected to the Internet motivates international communities and organizations to increase their

efforts in developing standards and protocols to respond to the evolution of the IoT. Besides, different



groups — led by Internet Engineering Task Force (IETF), World Wide Web Consortium (W3C), Eu-
ropean Telecommunications Standards Institute (ETSI), and the Institute of Electrical and Electronics
Engineers (IEEE) — have been formed to provide and standardize protocols to support the IoT. Fig. 1.2
presents a summary of the most known protocols defined by these groups.

However, it is important to note that not all of these protocols have to packed together in a given IoT

application. Moreover, some protocols, based on the type of an IoT application, may fail to support

that application.
S
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Figure 1.2: Summary of the most known loT protocols

Application layer protocols are used to exchange data among endpoints of distributed applications.
The importance of application layer protocols is that they provide rules for communication between
objects, type and format of the data being exchanged, and methods for error notification. Perhaps the
most important reason for the widespread adoption of the Internet is the design and development of
application layer protocols. In the following, we provide an overview of some of the presented protocols

in the application layer and their core functionality.

1. Message Queue Telemetry Transport (MQTT)
MQIT [49] is a simple lightweight application layer protocol, which is used to collect data from
remote sensors and send it to servers. MQTT is characterized by low power consumption, and
efficient distribution of information to several receivers. It uses a publish-subscribe architec-
ture. MQTT relies on TCP (Transport Control Protocol) so in network environments with high
packet loss, retransmissions reduce the overall application latency [6]. In particular, TCP sends

and receives additional packets to establish the connection before the data exchange, which fur-



ther increases the latency. In addition to the increased energy consumption, the incremental size

also increases the risk of having errors during the transmission.

. Advanced Message Queuing Protocol (AMQP)

AMQP [18] is an open message exchange protocol that supports reliable delivery of messages. It
is considered in message-oriented environments and can be seen as the asynchronous comple-
ment of HTTP. AMQP implements different architectures such as message distribution, store
and forward, and routing. It also relies on TCP for transport so it is highly impacted by high

packet loss which causes excessive latency [44].

. Extensible Messaging and Presence Protocol (XMPP)

Similarly, XMPP[33] is an instant messaging protocol based on XML streaming protocols that
has been adapted for use in IoT applications by means of protocol extensions. It enables real
time exchange of structured data between connected entities. It also supports bidirectional com-
munication. The client connects to the server and transmits messages based on XML streaming
protocol. XMPP uses XML data format which generates significant overhead. Also, since XMPP
relies on both, TCP for transport and XML for encoding the messages, it inherits some limita-

tions that makes it inefficient in certain IoT network environments [44], [30].

. Constrained Application Protocol (CoAP)

The IETF nominated the Constrained Application Protocol (CoAP), defined in RFC 7252 [53],
as the application-layer protocol for the IoT. CoAP was designed by CORE (IETF Constrained
RESTful Environments) working group and became an Internet standard in 2014. CoAP is a
lightweight application-layer protocol based on REpresentational State Transfer (REST) model
for use with constrained devices and IoT networks [42], [27]. CoAP uses the request and re-
sponse approach between nodes and supports discovery of resources and services. CoAP can be
easily mapped with HTTP (HyperText Transfer Protocol) for integration with the Web. CoAP
provides both non-reliable and reliable modes of transmission based on whether packet losses
are tolerated or not. Reliability is achieved via retransmissions but the cost to pay is shorter bat-
tery life and higher latency. Although low packet losses and low latency are both desired, some-
times one is more sensitive than the other. For example, for weather IoT applications, where the
weather reports are based on a fast sequence of sensor data readouts, latency is more important
than packet loss; if a packet is lost, it can be ignored and the latest sensor values are read again.
On the other hand, for healthcare applications where patient’s health is monitored periodically,
packet loss is much more important because each sensor data readout represents a sensitive state

for the patient.



Due to the limited capabilities of objects in the IoT, the distinction among different protocols
is quite foreseeable. Indeed, HITP and TCP introduce overhead and hence are not suitable in
such areas. Also, HTTP is a text-based and TCP is a connection-oriented transport that requires
setting up and maintaining the connections, which is burdensome from a communication and a
processing perspective. Hence, application layer protocols for the IoT must be selected carefully
by taking into account all these constraints. Unlike the aforementioned protocols, CoAP relies
on the User Datagram Protocol (UDP) instead of TCP, thus eliminating the cost of establishing
and maintaining connections, making it more suitable for the IoT applications. Furthermore,
CoAP adjusts some HTTP functionalities to meet the IoT requirements such as low power con-
sumption and reduced operations in the presence of lossy environment and smart tiny objects
with limited capabilities. Consequently, CoAP is designed to bring web functionalities to con-

strained devices that operate in Low-power and Lossy Networks (LLNs).

Despite its wide implementation in different areas to gather data from tiny objects and con-
trol constrained devices, CoAP reaction to network congestion is considered a great limitation
of the protocol that limits its proper functioning and causes performance degradation such as
packet losses, increased packet latency and overhead. Even worse, the network may become
useless when the periods of congestion are long. Hence, the improvement of IoT protocols’
performance is important, and as discussed previously, it is even critical especially in contexts
where human lives are involved. Specifically, maintaining a proper functionality while improving
the performance includes providing an efficient congestion control mechanism which reduces
packet losses and energy consumption, and improves goodput and delays. This motivates us to

explore and improve CoAP performance in this research work.

1.2 RESEARCH CHALLENGES AND PROBLEM STATEMENT

From one side, with the vast number of objects connected with IoT, a huge amount of data is collected,
transmitted and processed. From the other side, the wireless network and the sensor objects in IoT
have limited network bandwidth and energy. Since constrained devices suffer from limited resources
and processing capacities, congestion occurs when the node’s traffic load exceeds its available capac-
ity, and/or when high traffic is generated during the communication between large number of nodes.
Other network related reasons are involved when some mobile networking technologies embrace sud-
den transmission delay spikes in addition to classic failures or disasters. As we know, congestion nega-
tively affects the performance. Therefore, congestion control plays an important role in satisfying per-
formance requirements. To this regard, it is important to improve performance in IoT networks but
from one side, there is a lossy environment and limited network resources in terms of bandwidth and

from the other side, devices have limited resources in terms of energy, processing capabilities and mem-



ory. Actually, IoT constrained devices can be too small and this can be noticed when these devices
are compared to real life objects as illustrated in Fig. 1.3. This is precisely where the challenges come

through.

Figure 1.3: Constrained devices compared to real life objects

Anotherimportant aspect is that the performance in some IoT applications is critical where sensitive
information is exchanged. In this context, healthcare IoT includes tracking and monitoring patients,
elderly care, chronic diseases and even remote services. In this kind of applications, researchers usually
tend to reduce losses and improve packet delay. For example, if a patient on a wheel chair falls down,
packet losses in this case is unbearable.

Also, another important IoT application is disaster management. Disasters have destructive impact
on economics and human life. Thanks to IoT which has proven to be capable of providing solutions for
disaster management. Here again, performance is critical in terms of packet loss and latency.

Therefore, abad protocol choice will affect the functioning of the smart object and the overall perfor-
mance in general. For instance, HTTP and TCP are not suitable for devices in such environments due
to the overhead they cause. Also, TCP is a connection-oriented transport protocol and requires setting
up and maintaining connections. As a consequence, selecting an application layer protocol must be
done carefully to take into account the aforementioned constraints in IoT networks.

For this reason, IETF designed the Constrained Application Protocol (CoAP) for data transmis-
sions between applications of IoT devices. At the same time, CoAP meets the requirements of IoT
constrained environments. As a result, CoAP has been widely used in different IoT applications rang-
ing from smart cities, smart grid, smart homes to health care and disaster management.

The standard CoAP provides a basic congestion control mechanism based on retransmissions with
a binary exponential backoff in case of packet loss, i.e., when no acknowledgement (ACK) is received
[53]. In particular, it uses a fixed retransmission timeout value which is doubled for each packet retrans-
mission. Nevertheless, recent studies demonstrate that it is still necessary to improve the congestion
control mechanism of CoAP to improve further its performance in terms of reliability and efficiency
[38, 45]. Besides, these studies showed that CoAP is not eligible to be adaptive to different network

conditions.



Other related works have analyzed congestion control of CoAP and proposed improvements in cal-
culating the retransmission timeout and/or the backoff procedure [14, 10, 11]. On one hand, the al-
gorithms proposed by the literature outperform the standard CoAP [ 55 ], while on the other hand, the
improvements come with the cost of performance degradation, more complexity, and increased over-
head as we will see in chapter 2.

Now, clearly, the ultimate challenge is the design of a new congestion control algorithm for CoAP
that is suitable for constrained devices and at the same time maintains an utmost performance in lossy
networks. To do so, first we perform an in-depth analysis of the existing protocol. Second, we identify
the problems of previously suggested algorithms regarding improving the congestion control mecha-
nism in CoAP. In general, ensuring the simplicity of any protocol design surrounded by constrained

factors is a huge challenge.

1.3 CONTRIBUTIONS AND RESEARCH APPROACHES

In this thesis, we are looking to study deeply the CoAP protocol in lossy networks and design a better
congestion control mechanism. Among the different goals of this thesis, the main one is to propose a
new exact analytical model to analyze the performance of CoAP in network environments modeled by
Bernoulli loss model, Simple Gilbert loss model and the well-known Gilbert-Elliott two-state Markov
process. Therefore, CoAP protocol needs to be analyzed so that we will be able to answer clearly this
question: How to improve further the performance of the protocol? Based on our assessment, we found
that the default simple congestion control mechanism can significantly reduce CoAP performance es-
pecially in networks with high packet loss, and thus preventing the protocol from acting efficiently dur-
ing congestion periods. Accordingly, we suggest to reduce efficiently the retransmission timeout and
supplant the backoff by a rate-based control while still ensuring simplicity. The resulting protocols,
named IDC-CoAP and MBC-CoAP, are evaluated against protocols from the literature to show con-
cretely their efficiency. Simulations and experiments in a realistic environment show that our proposed
mechanisms reduce protocol losses and overhead, and provide better rate performance compared to
CoAP and other previous works that aim to enhance it. The contributions of this research work are

summarized as follows:

« Profound analysis and performance evaluation of CoAP through a complete and fast analytical

model under the Gilbert-Elliott network loss model without any approximations.

« Profound analysis and performance evaluation of several previous congestion control algorithms,
supported by the development of an original simulator dedicated to CoAP testing in a controlled

and repeatable environment.

« A new algorithm for retransmission timeout reduction to enhance congestion detection.



« Integration of two new congestion control rate-based algorithms in CoAP instead of the less

efficient backoff procedure while keeping the complexity reasonable for constrained devices.

« Performance evaluation results using both our ad hoc simulator and the well-known Cooja/Contiki
realistic IoT environment show that our rate-based congestion control for CoAP achieves a bet-

ter tradeoft between reliability, transmission overhead and bandwidth utilization.

Hence, our research work is based on analyzing precisely CoAP performance using the analytical
model and we confirm the utility of reducing the retransmission timeout. Besides, the backoft pro-
cedure denies the protocol from achieving a better tradeoff between rate performance, reliability and
overhead. Accordingly, we propose further substantial improvements to congestion control algorithms
for CoAP based on the concept of rate control instead of the backoft in order to overcome previous lim-

itations and enhance the tradeoft between reliability and rate performance.

1.4 THESIs OUTLINE

The remainder of this thesis is organized into 3 parts. In the first part, through chapter 2, we analyze and
synthesize the state of the art concerning CoAP performance evaluation and congestion control, then
we highlight their shortcomings. In the second part, through chapters 3 and 4, we consider CoAP per-
formance evaluation via modelling. In chapter 3, we present our first analytical models using Bernoulli
loss model and Simple Gilbert loss model. There, our performance metrics are presented which will
continue with us in chapter 4 where we compute our formulas using the Gilbert-Elliot Markov chain
model. The third part is drawn in chapters 5 and 6 where our new design for congestion control mecha-
nismis introduced, in particular, its two main components: congestion detection and congestion coun-
teraction. In chapter s, we present our algorithm to efficiently compute the retransmission timeout for
the congestion detection phase while in chapter 6 we present our algorithm for the congestion coun-

teraction phase. Finally, we conclude this thesis in chapter 7 and draw our future work directions.
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Analysis and shortcomings of previous performance

evaluation and congestion control of CoAP

In this chapter, we explore the state of the art related to CoAP performance evaluation and congestion
control algorithms. We introduce different works to evaluate CoAP via modelling and simulations.
We then present in-depth analysis of previous main algorithms suggested to improve CoAP congestion
control mechanisms. In particular, the two components: Congestion detection and congestion coun-
teraction. For this purpose, we developed a simulator using the well-known programming language
Python. Through our simulator, we will be able to perform profound analysis of CoAP algorithms and
show their corresponding behavior. The simulator will be presented in details in Chapter 5. Different
patterns of Round Trip Time (RIT) are generated to study and analyze the performance of RTO cal-
culation (congestion detection) of different congestion control algorithms. Besides, different network
conditions are simulated to evaluate the full congestion control algorithms. Consequently, we highlight
the main problems and weaknesses of the suggested approaches which enable us later on to find better
alternative solutions. Before concluding the chapter, we provide our insights to tackle and overcome

the highlighted problems, and provide more efficient solutions in order to enhance CoAP performance.
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2.1 COAP IN A NUTSHELL

CoAP [53]isalightweight application-layer protocol designed for constrained devices in IoT networks
which is based on Representational State Transfer (REST) that supports basic operations like GET,
POST, PUT and DELETE. Similar to the position of HITP for Web, CoAP is dedicated for IoT de-
vices with limited hardware capacities and functions. CoAP adopts a binary message format to reduce
overhead. CoAP messages have mandatory fields (Version, Type, Token, Code, Message-ID) and op-
tional fields (CoAP Options and Payload). The design of CoAP messages has been intended not only
to keep messages small, but also to make them easy and light to be processed.

CoAP adopts some IoT-oriented features, such as asynchronous message exchange and multicast
communication. Fig. 2.1 is an illustration of a CoAP environment where CoAP clients are communi-
cating with different CoAP servers. The figure shows the client-server interaction model which hap-
pens within the same network or through the internet. The presented network is geographically dis-
tributed over hundreds of meters where communications between CoAP nodes take place via CoAP
protocol. In this client-server relationship, CoAP servers host information about the resource (ex. pres-
sure, temperature, humidity, light state, healthcare related such as blood pressure, EEG, oxygen satu-
ration, heart rate, etc..) which will be manipulated by CoAP clients. Clients send requests for specific
action (read/update/delete using GET/POST/PUT/DELETE methods) on a resource hosted by the

server, and the server sends the response after processing the request. Communication details will be

4 A

presented in the next figure.
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Figure 2.1: An overview of connected devices via CoAP protocol

CoAP operates on top of UDP, which is a lightweight transport protocol because UDP does not
require handshaking or end-to-end connection establishment between communicating devices which
consequently makes UDP communication very efficient. Also, the connection-less nature of UDP does
notrequire communication and memory overheads which is introduced in the establishment and main-
tenance of TCP connections. CoAP is based on a request/response communication model and CoAP

URIs identify the resources of the application. Representations of resources are exchanged between the
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server and the client. A client that is interested in the state of a resource sends a request to the server
then the server responds with the current representation of the resource. CoAP URIs use either the
coap or coaps (secure CoAP). Coaps uses DTLS as a secure transport, similar to HITP’s use of TLS.
The default UDP port for coap is 5683 and 5684 for coaps. As per fig 2.2, the client is requesting the

room temperature (temp) and the server is replying with the sensor value.

mitemp
' :SBBSIneSLbedroo . CoAP Server 1
T Coap:“myhome‘m (Thermostat in Bedroom)

. C -
CoAP Client Onten; 2F CoAP Server 2

(Thermostat in Living room)

Name of
Port (5683 is the parameter
Name of the the default port ~ Name of device controls
protocol CoAP uses) the device (temperature here)

coap://myhome.in:5683/nest_bedroom/temp

Figure 2.2: Communication between nodes using CoAP protocol

Compared to other protocols used for constrained devices such as Message Queue Telemetry Trans-
port (MQTIT) and Advanced Message Queuing Protocol (AMQP) [42], one major difference is that
CoAP relies on UDP for communication, consequently removing the load of establishing and main-
taining connections, which may be infeasible for smart objects with limited capabilities. Hence, it is
suitable for communications in wireless networks that suffer from high packet loss [ 56] because it re-
moves the overhead and complexity imposed by other transport protocols. However, as UDP is inher-
ently not reliable, CoAP should provide its own reliability mechanism which can be designed to be very
simple. CoAP communications can be selected to use either confirmable (CON) or non-confirmable
(NON) messages. The standard CoAP [53] uses a simple mechanism for congestion control based
on retransmissions with a binary exponential backoff (Fig. 2.3) when reliable communication is re-
quired by the application. When a packet containing a CON message is lost, the client re-sends the
message at doubled increasing intervals, until an acknowledgement (ACK) is received or the allowed
number of attempts is reached. Two parameters control the retransmission process: An initial timeout

value RT'O;,;; and a maximum retransmission value . For each new CON message, the first timeout
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is set to a value between RT'O;,,;; and RT'O;,,;; times a randomization factor f, and the retransmis-
sion counter is initialized to 0. If the sender did not receive an ACK for the CON message, CON is
retransmitted and the retransmission counter is incremented and the timeout value is doubled. The
whole process for each CON is repeated until the counter reaches its limit 7 or an ACK is received by
the sender. This process is illustrated in Fig. 2.3.

r+1 max attempts CoAP
r A ~ receiver

r-1 max retransmissions '
15! transmission , A \ '

X \
CON ACK

CON [0x6d34] CON CON CON

x6d34]
[0x6d34] [0x6d34] [0x6d34] [0x6d34] Y
rth retrAnsmission '1‘
y
L ]
[ \ > / CoAP
RTO = b *RTO b™1l.+RTO sender

RTO; .., f * RTO,
[RTOinit '“L‘] Backoff (BEB)

-
= r

Figure 2.3: CoAP Congestion Control. Retransmission counter: r=4, Retransmission timeout: RTO;,,;:+=2s, Random factor:
f=1.5, Backoff factor: b=2

CoAP literature related to our research is twofold. The first one focuses on analyzing the performance
of the default CoAP protocol using modelling and experiments, while the second one includes evaluat-
ing different CoAP congestion control algorithms and presenting improvements on CoAP parameters

and the congestion control mechanism.

2.2 CoAP Modelling and Performance Evaluation

The downside of default CoAP parameters on performance can be identified by simulations and/or
modeling. Although some previous research works have focused on evaluating CoAP based on math-
ematical models, some of these works did not provide models for different performance metrics while
other works are not precise as we will see next. For instance, some analytical models were developed for
CoAP performance in [30] and [31]. However, they are not adequate because they use the steady state
probabilities of the Gilbert-Elliott (GE) Markov chain to analyze successive transmitted packets that
are correlated. In other words, the GE model is used as if it is equivalent to a Geometric distribution
(Bernoulli) with the probability being one of the steady state probabilities of GE. As a consequence,
these models do not even apply for the simple Gilbert case, i.e. K = 1, h = (. Besides, these works
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consider that GE is applied to data packets and also to ack packets. Normally, GE model should be used
as an observed network model by a given node, not as a model that applies losses to all packets coming
from different nodes.

CoAP hires non-reliable and reliable operation modes [ 53] depending on whether packet losses are
tolerated or not, respectively. The author in [29] presented an analytical model of CoAP packet loss
for each CoAP transport mode. Afterwards, CoAP transport mode is dynamically selected based on
the packet loss goal as an input in order to preserve battery life. The model is used to estimate the
packet loss at the application layer and is built in accordance with the Markov chain but not extended
to include other performance metrics such as latency, goodput and overhead. Also, the model is not
used to improve CoAP performance in reliable mode but to switch between different modes.

The authors in [24] carried out quantitative evaluation of CoAP performance in dynamic network
using an emulator (CORE) versus HITP transmission over TCP. They also introduced briefly three
formulas for success rate, overall delay and overhead. The delay is formulated by Do + Zf;_ll Ps(1—
Ps)'t; where Do is the end-to-end one-way delay, Ps is the success rate probability of one transmis-
sion attempt, ¢; is the waiting time of the i’" retransmission attempt, and R is the total number of
transmission attempts. Although they introduced three performance metrics, their probabilities are
not accurate and the presented delay formula is wrong because it is based on the geometric distribution
while we must use the truncated geometric distribution. CoAP was not modelled in different network
loss models such as the Simple Gilbert or Gilbert-Elliot. Moreover, the presented formulas were not
validated with respect to the experimental results.

In the literature, the Gilbert-Elliot (GE) model is commonly used in several applications. Many pre-
vious works use the GE model as a tool to study the performance of some network mechanisms for
instance [ 13, 39, 23 ]. These works can not be applied to compute the performance of CoAP such as the
theoretical loss probability under a given traffic pattern. For instance, GE is usually used to challenge
and evaluate Automatic Repeat Request (ARQ) protocols. In general, ARQ protocol follows three ba-
sic approaches: stop-and-wait (SW), go-back-N (GBN), and selective-repeat (SR) [39]. In SW ARQ,
the sender receives the ACK of a packet before sending a new packet. In GBN ARQ, packets are sent
continuously without waiting for ACKs/NACKs. The sender retransmits the negatively acknowledged
packet and all subsequent packets if a NACK is received. In SR ARQ, packets are sent as in GBN ARQ,
but only negatively acknowledged packets are retransmitted. Although Gilbert-Elliot model is used in
[39], the work considers SR ARQ with Negative ACK without the use of timeouts, while CoAP con-
siders Stop-and-Wait behavior which is based on timeouts. The authors have pointed the important
difference between these two behaviors. The analysis is completely different for CoAP. Also, the con-
gestion control behavior in CoAP is absent in ARQ studies for link layers. Their work applies to link

layer reliability protocols in wireless channels.
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On the other hand, previous Gilbert-Elliot models in wireless links are also not applicable. For in-
stance, the authors in [7] presented a model to evaluate the performance of packet loss in wireless en-
vironment based on two-state Markov process channel mode. They analyzed the probability of success
packets transmission within a network suffering from bursty losses. They differentiated between two
cases. In the first case, packets are duplicated and the duplicated packet is sent after the transmission of
the original packet while in the second case a newly generated packet is transmitted couple of times. Al-
though they provided strategies for setting packet delay to optimize performance and reduce the effect
of packet losses in mobile environment, they studied a transmission mechanism which is different from
CoAP mechanism which is a Send-and-Wait with the involvement of XORing or duplicating packets.

In [23], the authors study frame aggregation and block acknowledgments employed in IEEE 802.11n
standard. The proposed model calculates an expected number of retransmissions by estimating the
amount of sub-frames to be retransmitted under Gilbert-Elliot channel model. With their Markov
model, they are able to formulate the throughput at MAC layer as a function of other parameters such
as physical data rate, error rate, and path length. Although the proposed model can describe some char-
acteristics, such as fluctuations and burstiness, the studied behavior of aggregation and block acknowl-
edgment is different from the behavior of CoAP. The authors do not consider timeouts. As many other
related works, the authors assume that before each transmission attempt, the Gilbert-Elliot model is in
steady state which is not suitable for our CoAP analysis in this thesis.

The authors in [13] tried to characterize the quality of wireless links using the Gilbert-Elliot model.
They considered the reception of packets as a sequence of bits: 1 for the successful reception and 0 for
the lost packet. This formulation leads to the possibility of computing the stationary probabilities of
being in the Good or Bad state in the Gilbert-Elliot model, however, they do not compute the theo-
retical loss probability under a given traffic pattern. They analyze the packet reception ratio based on
real measurements and Gilbert-Elliot model is used only to analyze some network scenarios but not to
model the performance metrics.

As we have seen, some previous research work considered using modelling to evaluate CoAP, but
they fail to correctly compute the performance metrics. Some used the steady-state probabilities of the
Gilbert-Elliot model which is inadequate for CoAP protocol. Other related literature performed CoAP
evaluation using experiments [54, 25, 19, 56]. However, evaluating CoAP and choosing its parameters

based on few experiments is insufficient.

2.3 Congestion Detection: RTO Calculation

Recently, there have been works conducted to improve CoAP performance and particularly its conges-
tion control mechanism. According to our perception, two main procedures should form this mech-

anism: Congestion detection and congestion counteraction. In this section, we will present previous
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works related to different RT'O calculation approaches proposed to enhance congestion detection. As
a matter of fact, timeouts are the only indicator to detect packet losses in CoAP. These losses are an
important indicator for congestion. After presenting the different works related to estimating the re-
transmision timeout (RTO), we will analyze the shortcomings of the main proposals.

In [20], the authors suggested adjusting CoAP parameters to handle high traffic and high loss prob-
ability. They experimentally adjusted the constant value of the retransmission timeout (RTO) and the
random factor f, and showed that the results achieved by tuning CoAP parameters overtakes MQTT re-
sults in terms of throughput and latency. They adopted new CoAP congestion control parameters based
on experiments which is not sufficient since experiments are limited and usually do not cover different
network conditions. Also, using small values of the backoft factors will make the sender to transmit
faster without waiting for the proper time during congestion periods which induces high packet losses.

The work in [43] proposed a congestion control scheme based on round trip time (RTT') measure-
ments through a counter using the option field of the CoAP message. The sender recognizes the ori-
gin of an ACK and calculates the correct RIT to update the retransmission timeout (RTO) without
smoothing. Therefore, instead of using the default RTO CoAP parameter (2 sec) for the retransmis-
sions when ACK is not received, the authors use the new calculated RTO for the retransmissions.

An adaptive mechanism for handling congestion in CoAP called Fast-Slow RTO (FASOR) is pro-
posed in [37]. RTO computation is composed of fast and slow RTO calculation. Fast RTO is based
on TCP retransmission timer and updated with unambiguous RTT samples (where ACK messages
matches CON messages) while slow RTO is measured from the original transmission of a packet till
the arrival of its ACK regardless of the required number of retransmissions. Fast RTO is used as a sign
of link error (interference) whereas slow RTO is a sign of heavy congestion. The authors evaluated their
algorithm among CoAP and an advanced version of CoAP called CoCoA+, which will be explored next,
using Netem [28] as network emulator and libcoap library [8]. The authors tried to deduce whether
a packet loss is due to link disruption or due to congestion by examining RTI samples (ambiguous or
not), however, RTT analysis can hardly be used to detect the reasons behind a packet loss. Also, when
the network is lossy, the backoff mechanism will lead to a behavior similar to CoAP due to the exponen-
tial backoff mechanism. They also set the retransmission counter to 20 instead of 4 which may cause
long packet delays and a very low throughput which might be useful only when packet delivery must
be guaranteed on the behalf of all other performance metrics.

CoAP Simple Congestion Control Advanced CoCoA [ 15] specifies RTO calculation based on TCP
RTO computation algorithm where RTT is used to update the RTO value automatically. CoCoA uses
two RTO estimators: A strong and a weak RTO estimator that are updated when measuring strong RTTs
and weak RTTs respectively. When an ACK is received after the first transmission of a packet, strong

RTTs are measured while weak RTTs are measured when an ACK is received after at least one retrans-
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mission of the packet. Strong RTTs are used to estimate an average of strong RTTs (RTTVARStmng)
which is in turn used to update the strong RTO estimate. Similarly, an estimated average of weak RTTs
(RTTV AR ear) is used to update the weak RTO estimate. When a new RTT value is obtained, the

following formulas are calculated:

RTTVARx = (1 = B)RTTVARx + B|RTTx — RTTxnew)| (2.1)

RTTx = (1 —a)RTTx + aRTTxnew (2.2)

where X represents either strong orweakwith v = 1/4and § = 1/8. Then RT'O x and RT O yyeran
are updated accordingly.

RTOx = RTTy + 4« RTTV ARy (2.3)

RTOOMT&U = 0.5 % RTOX + 0.5 * RTOOUE“L” (2.4)

The new RTO estimation is used as the initial RTO (RT'O;y;;) for the next packet transmission.
The authors showed that the performance of CoCoA is better than CoAP in congested networks but
different studies [ 10] show that it has some limitations with bursty traffic.

The authors in [ 9] evaluated another version of CoCoA named CoCoA-S using only the strong esti-
mator. They employed alternative algorithms developed for TCP which are shown to be inadequate for
CoAP. CoCoA-Sis conservative in lossy networks which results in low throughput. The main algorithm
CoCoA delivers better performance in comparison to CoCoA-S.

CoCoA+ [10] has adopted the same RTO estimation mechanism presented in [ 15] with minor up-
dates on the weak estimator weights. They also introduced new variables in equation (2.3) to update
RTO estimation. The equation becomes RI'Ox = RTTx + Kx « RTTV ARx where K x repre-
sents either K yyeq 01 K gtrong with values 1 and 4 respectively. Strong /K is used to update the strong
RTO estimate while weak K is used to update the weak RTO estimate. In addition, they added an
ageing mechanism to set RTO values if RTT is not updated for a certain time. The impact of the weak
estimator is reduced by reducing its weight but according to [ 14], this countermeasure works well only
in steady conditions and when the network load is constant.

pCoCoA [ 14] has suggested different modifications to CoCoA+ RTO estimation in order to reduce
spurious transmissions which refers to packets that are retransmitted because of incorrect estimation
of RTO. Although different research works suggested improvements to CoCoA RTO calculation algo-
rithm and various modifications have been implemented over the past years, pCoCoA proved to over-

come many limitations suggested by other works. As a consequence, in the following, we will explore
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the latest version, pCoCoA [ 14]. The retransmission timeout calculation is based on TCP Linux. Eval-
uation showed an improvement of the RT'O calculation using several weights to set the round-trip time
variance. However, many instructions are used which increases the processing overhead in constrained

devices. The algorithm consists of the following main aspects:
- Introducing an option to match each ACK message with its relevant CON message
- A mechanism to calculate the retransmission timeout (RTO) based on linux TCP

- A variable backoff mechanism to set the RTO for retransmissions adopted from CoCoA+ [10]

which is presented in the next section.

1. ACK-CON matching: In CoAP and CoCoA+, there is no mechanism to match a CON message
with its corresponding ACK. pCoCoA adopts the transmission counter (TC) option to link each
ACK message with its relevant CON message even when the CON is retransmitted. In particu-
lar, TC is set, incremented for each retransmission and echoed in the ACK. ACK-CON matching
is based on the TC value. This mechanism is used for round-trip time estimation as well as de-
tecting spurious retransmissions. A retransmission is considered to be spurious when the CON

message is falsely retransmitted just because the retransmission timeout value was insufficient.

2. pCoCoA approach for RTO calculation: The RTO;,,;; calculation in pCoCoA follows almost
the same algorithm as the one implemented for TCP in the Linux Kernel [52] with additional
instructions. RTOj;,;; value is updated according to RTT measurements. RTO;,,;; calculation in
pCoCoA tries to handle two problems: First, when RTT increases suddenly and causes RT O,y
overestimation. Second, when RTT variance (RTTVAR) drops to a small value leading to spuri-
ous retransmissions. pCoCoA algorithm introduces the maximum mean deviation (mdev,;,,,.)
for the RTO. The parameters are initialized when the first corresponding RTT value R is received
asfollows: SRTT < R, RTTV AR < R/2, mdev,,q, < max(R/2,250ms), and RTO <«
SRTT + mdev,gz-

When a new value R is computed, RTO,,,;; is updated for the future transmissions. SRTT and
RITVAR are updated using different weights to slow down the sudden decrease when fluctu-
ations happen (block 1 in Algorithm 1 pCoCoA). When RITVAR is less than the difference
between SRIT and R, the weight § = 1/4 is used to update RIT'VAR value, otherwise the pa-

rameter v = 1/8 is used.

When there is a sudden increase in the network delay, mdev,,,,, with aging mechanism is intro-

duced to increase RTO value accordingly (block 2).

If spurious transmission is detected, & is set to 6, otherwise, it is set to 4 (block 3).
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Algorithm 1 pCoCoA RTO calculation: block 1

SRTT = (1 —a)SRTT + aR
if R < (SRTT — RIT'VAR) then
RITVAR = (1 — 7)RITVAR + 7|SRTT — R]
else
if |SRTT — R| > RITVAR then
RITVAR = (1 — 8)RITVAR + S|SRTT — R|
else
RITVAR = (1 — a)RITVAR + o|SRTT — R
end if
end if

Algorithm 1 pCoCoA RTO calculation: block 2

if R > SRTT then
if RITVAR > mdevmqz for 3 consecutive times then
mdevmar = average of the last 3 RITVAR
else if RITVAR > mdevp,q, for 8 consecutive times then
mdevmqa: = (1 — f)mdevyq, + SRITVAR
end if
end if

Algorithm 1 pCoCoA RTO calculation: block 3

if (spurious) then

k=6
else
k=4

end if
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Lastly, RTOj;; is updated using another smoothed variable SRTO. SRTO calculation is based
on the spurious flag £ in order to limit the minimum SRTO values. Then, RT'O;,,;; is computed

using another weighted sum that combines SRTO and previous RTOj,;; as per block 4.

Algorithm 1 pCoCoA RTO calculation: block 4

SRTO = SRTT + max(k * RITVAR, mdev,,4, )

2.4 Analysis and Shortcomings of Previous RTO Estimation Algorithms

In CoAP, RTO is fixed and its default value is 25, the initial RTO before the first retransmission attempt
is chosen from a fixed interval [2, 1.5 * 2] according to CoAP RFC [53]. The main difference in the
improved algorithms of RTO calculation compared to CoAP is the use of Round-Trip Time (RTT)
to set RTO. Then, similar to CoAP, a dithering technique is implemented to the estimated RTO value
and hence the initial value of RTO is chosen from the interval [RT'O;y¢, 1.5 % RT'O;p4] [10]. In the

following, we will present the shortcomings of previous RTO calculation algorithms.

2.4.1 Inefficient weak and strong estimators

As already mentioned, CoCoA and CoCoA+ use two RTO estimators, weak and strong. A weak RTO
estimator is updated when measuring weak RTTs and strong RTO estimator is updated when measur-
ing strong RTTs. Weak RTT is sampled from transactions that require at least one retransmission of a
CoAP message while strong RTT is sampled from transactions that do not require any retransmission.
However, subsequent updates of the RTO strong estimator when RTT is not oscillating can cause the
new value of RT'O;,;; to increase enormously if RTT decreases suddenly. In particular, after some sta-
ble measurements, the variance of RTT (RIT'VAR) becomes too small, hence, any sudden fluctuation
in RTT increases RIT'VAR and consequently increases the R7'O);,,;; because it is multiplied by 4 as in
equation (2.3). Therefore, their design leads to undesired effects on the calculation of RTO values.

In CoCoA+, they kept the weights of the strong estimator which imposed the same problem. This
is illustrated in Fig. 2.4, where RTT is varied continuously according to a normal distribution with
mean 200oms and a standard deviation of soms during so times, then a sudden change to a normal
distribution with mean 300oms and a standard deviation of soms during 5o times, then a sudden return
to the previous distribution and so on and so forth. The green plot represents the value of RTO which
is estimated according to RTT samples (red plot). The x-axis represents the number of samples over
time. As shown in the figure, R7'O),,;; increases when RTT decreases and it looks like RTO values are
inversely estimated (x-points at sequence numbers 400 - 415). On the other hand, CoCoA+ authors

tried to minimize the effect of the weak estimator by using 0.25 and 0.75 weights instead of the 0.5

21



RTO valye Ig inversely calculated —— RTO: CoCoA+

4000

" 3500

£

; RTO = RTT

RTO very close to RTT

£ 3000 Y ,

-
2500 Spurious

Spurious

2000 PR P

400 420 440 460 480 500
Sequence Number

Figure 2.4: CoCoA+ RTO estimation

weight in their estimation: RT'O;p;y = 0.25 X RTOyear + 0.75 X RT' Oy Also, they reduced
the value of K cq1, from 4 to 1. Although this change might reduce the impact of the weak estimator in
some network scenarios, however, it will fail to increase the RT'O value efficiently when RTT increases
as per Fig. 2.4 (x-points at sequence numbers 450 - 452). After x-point 452 and till x-point 460, RTO
keeps converging to a very high value. So here again RT'O does not converge properly. Hence, not only
this new update is unable to overcome the shortcomings of CoCoA but will also lead to a sequence of

spurious transmissions.

2.4.2  Spurious Transmissions

In CoCoA+, the RIT VAR variable, that calculates the mean variance of RTT, is reduced when RTT sam-
ples are similar. Hence, R7T'O;,,;; values become close to the sampled RTT. The problem occurs when
RIT values fluctuates after certain stable behavior of the network which usually happens in case of inter-
ference, low signal strength or intermittently dropping the connection with other nodes. This sudden
change after some stable RTT measurements increases the probability of having spurious transmissions
as can be observed from Fig. 2.4.

In pCoCoA, when RTT increases suddenly to a higher value, RTO increases because of the smoothed
RTT (SR1IT) value which is based on the average of the measured RTTs. However, after few transactions
with lower RTTs, RTO decreases very closely to RTT which leads to spurious transmissions. In Fig.
2.5, we simulated such scenario where we plot the evolution of RTT values and RTO values over time.
We used the same RTT samples presented in Fig. 2.4. When RTT decreases suddenly, pCoCoA RTO
converges quickly and this is risky because the sudden decrease might be followed by a sudden increase

which leads to spurious transmissions as shown in the figure (bold green x-points at sequence numbers
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451 and 452). A better design should handle RTO convergence gradually when RTT decreases as per
the blue plot in the figure.

2.4.3 Large RTO Estimations

It could be simple to estimate RT'O much greater than RTT to avoid spurious transmissions. However,
the larger RTO, the lower the goodput and the longer the transmission delay. Also, the reaction to
congestion may take more unnecessary time. Ideally, RTO should be as close as possible to RTT values
without triggering spurious transmissions. Particularly, when RTT increases suddenly as simulated in
Fig. 2.5 and Fig. 2.4, RTO is calculated by CoCoA+ and pCoCoA after the sudden increase of RIT
but not fastly enough to avoid spurious transmissions. In such case, RT'O must converge quickly as per
the blue plot of Fig. 2.5 to avoid spurious transmissions but without exceeding that much RTT values
as CoCoA+ and pCoCoA are behaving. Note that RTT values can increase suddenly due to severe

congestion or other factors such as burst connection arrivals or handoffs in wireless networks.

2.4.4 Complexity

As per our observations in different network scenarios, the analysis of the RTO values computed by
CoCoA+ has shown very high values of RTO when RTT decreases. We have examined this behavior in
almost all simulations even the ones with few fluctuations in RTT samples before the sudden decrease.
In Fig. 2.6, the RTO estimators could not prevent the unexpected increase of RTO values (x-points

at sequence numbers 200, 300, 400, 500). Also, as presented previously, the weak estimator leads to
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spurious transmissions. Therefore, the efforts of declaring and maintaining the variables (Weak - Strong
for each variable name) are doubled without making a substantial impact on RTO convergence.
pCoCoA adopts RTO calculation mechanism similar to the one implemented in Linux TCP [52].
Although Linux TCP is used by many network applications in the internet, its complexity makes it not
efficient for constrained devices that are limited in storage and processing capabilities. Especially, our
simulations show that the block for calculating mdev,,,, in Algorithm 1 pCoCoA block 2 is being exe-
cuted up to 70% in each simulation but not being used in R7'0;,,;; final calculation except in few cases
as shown in Fig. 2.7. We tested 29 different RIT network scenarios (x-axis) which are detailed later
in Table 5.1 (Chapter s - Section 6.2). The blue bars show the calculation for mdev,, ., if RITVAR is
greater than mdev for 3 consecutive times, while the red bars present the calculation mdev,,,, when
RIT' VAR isless than mdev for 8 consecutive times. The yellow bars present the usage of mdev;,,, when
calculating SRTO. Although it is calculated in all the transactions, mdev,,q, is rarely used. This over-
head might seem negligible with normal machines but it increases energy consumption and overhead

computation in a constrained IoT environment for a negligible benefit.
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Figure 2.6: CoCoA+ RTO behavior vs RTT fluctuations

2.4.5 Dithering technique

For each new CoAP message, [R7'O;,,;; is set to a random duration using a random factor. As per CoAP
RFC, this random factor should have a value that is different from 1 to protect from synchronization
effect. The default value used by the original CoAP is 1.5. The same procedure is implemented in the
improved and most recent versions of RTO calculation mechanisms, CoCoA+, 4-state and pCoCoA.
However, applying this dithering technique to RTO values which are calculated using RTT measure-

ments and a couple of instructions to tune the moving averages will have a bad impact on the waiting
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time for the next retransmissions. The main reason is that such technique will increase the initial RTO
value by around 25% up to 50%, therefore, all the efforts done to reduce and optimize RTOj,,;; are

vanished.

2.5 Congestion Counteraction

In this part, we present the literature and in-depth discussion related to the complementary part of
congestion control mechanism: The congestion counteraction. We dig up two approaches to handle
congestion counteraction: Backoff-based and Rate-based. From the analysis of both approaches and

through the obtained results, the shortcomings of these mechanisms are identified afterwards.

2.5.1 Backoff-based approach

Here, we present the different works suggested by the literature that follow the backoff-based approach.
The successive retransmission timeouts in the backoft mechanism of CoCoA+ and pCoCoA are based
on the maintained RTO;,,;; (presented in the previous section) and also on several values of backoff fac-
tors used to multiply the timeouts instead of 2 (doubling) in case of successive losses. The authors of
CoCoA+ introduced a backoff policy to set the timeout for the retransmissions named Variable Backoff
Factor (VBF) to replace the binary exponential mechanism used by default in CoAP. Although pCo-
CoA presented a full approach for calculating RTO value, they adopt the same CoCoA+ backoff mech-
anism for setting retransmission timeout values in the backoft period. The value of VBF is chosen from
alist [1.5, 2, 2.5] according to RT'O;,;; value. After the publication of CoCoA+, the authors continue
adapting VBF values. For instance, they used [ 1.3, 2, 3] and [ 1.5, 2, 3] and these suggestions were based
on experiments. That means some values are better in some cases than others. This presents one of the

weaknesses of CoCoA+ since some values might fit some network scenarios and not other scenarios.
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The RTO for the backoft period is defined by:

RTOpackorr = RTOinie x VBE, where (2.5)

2.5, RT Ot < 1sec
VBF ={ 2. 1< RTO; < 3sec (2.6)
1.5, RTO;,i = 3 sec

Using small backoff factors does not increase the time between retransmissions when R7'O;y,;; is
larger than 3 seconds, while using large backoft factors when R7'O),,;; is small avoids quick retransmis-
sions in a short time which may cause further congestion. For RTO values smaller than 1 sec, new RTO
value grows faster with VBF than the default BEB CoAP mechanism whereas it behaves in a similar way
in both mechanisms for RTO values between 1 and 3 sec as presented in [ 10].

In the literature, some research mainly focused on improving RTO estimation only and adopted the
backoft concept from other works while others focused on improving the backoft concept and adopted
the RTO estimation from previous research. Indeed, CoCoA-4-State-Strong [ 11] adopted the strong
estimator for RT'O calculation from CoCoA and introduced an improvement for the backoft concept
that uses a 4-state estimator for variable backoff factors. They differentiated between four states and
each state was given a weight to be used when a loss is detected. Based on the number of packet re-
transmissions, each transaction is considered to be in one of four states (1-2-3-4). Each time a packet
is retransmitted, its state in increased by 1. When the packet is transmitted and acknowledged, its state
is decreased by one. For each transaction, there are four different backoft factors corresponding to four

different states (VBF1, VBF2, VBF3 and VBF4). This is summarized by:

1.1, VBFai for state 1 (No retransmissions)
1.3,  VBF2 for state 2 (1 retransmission)

VBF = (2.7)
1.7,  VBF3 for state 3 (2 retransmissions)

2.5, VBF4 for state 4 (> 3 retransmissions)

The RTO for the backoff period is computed similar to equation (2.5). Using small weights for the
backoff factor will improve the throughput because transmitting will be faster but packet losses will
increase. In addition, and according to [ 50], more retransmissions is more likely to occur than CoCoA

which leads to more overhead and consumption of battery life.
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2.5.2  Rate-based approach

The previous works mentioned above follow what we call the backoff-based approach since they act
on the retransmission timeout and its evolution during the backoff period. Few researches suggested
alternative approaches to deal with congestion. The authors of BDP-CoAP [s ] implemented the con-
gestion control of TCP BBR protocol [ 17] which follows a rate-based measurement-based approach.
Instead of using mainly packet loss (three duplicate ACK reception) to infer the congestion, TCP BBR
estimates the Bandwidth-Delay Product and determines the maximum number of packets in flight to
not exceed in order to prevent losses. The Bandwidth-Delay Product is computed by estimating the
round trip propagation delay and the available bandwidth through several measurements. In particu-
lar, an available bandwidth measurement is obtained at the reception of every ACK. A max filter is used

to stabilize the estimated available bandwidth over a sliding time window.

AvaiBw = max (MeasBW,) VYte [l —Wpg,T]

where WWp is a time window, and T is the current time

TCP BBR stops sending packets when the number of packets in flight, i.e. packets that have not
received yet their acknowledgements, is larger than the Bandwidth-Delay Product so that the bottleneck
queue does not grow up more and thus bufter overflow is prevented.

The estimated max-filtered bandwidth is also used to control the sending rate through an eight-phase
cycle with the use of pacing gains. Each phase corresponds to a packet transmission as shown in Fig.
2.8. At each phase, the sending rate is set to the estimated bandwidth multiplied by the pacing gain.
In the first six phases of the cycle, the pacing gain is equal to 1. Then in the seventh phase it is set to
5/4 to increase the sending rate and probe for the available bandwidth. However, if in this phase, some
losses had occurred as per Fig. 2.9, then the pacing gain is set to 3/4 to reduce the sending rate. In the
eighth phase, the pacing gain is set to 3/4 in a preventive approach in case the probing of the bandwidth
is not successful and also to empty any resulting queue. The values 5/4 and 3/4 are chosen so that
the average sending rate during the two probing and preventive phases does not change from other
phases: (% + i) / 2 = % / 2 = 1. Hence, BBR cycles through the following values of pacing_gain:
5/4,3/4,1, 1,1, 1, 1, 1. This approach allows to probe for more bandwidth by increasing the sending
rate using pacing gain factor of 5 /4 and then immediately reducing it again using 3 /4 pacing gain factor.
According to the authors of TCP BBR [17], this cycling scheme, allows BBR flows to achieve high
throughput, low queuing delay, and convergence to a fair share of bandwidth.

According to the authors of [32], BBR does not reflect the perspective of an individual sender but
the aggregate behavior of all flows which leads to a sustained overload. Also, BBR ignores packet loss as

amain congestion signal which also may produce massive packet loss and increases further the conges-

27



Cycle (8 phases) Next cycle

i | W/ / / //, /s

Pacing gain 1.25 0.75

Sending rate = pacing gain x AvaiBW

Figure 2.8: The eight-phase cycle scheme in TCP BBR
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Figure 2.9: Packet loss in the seventh phase cycle scheme of TCP BBR

tion. On the other hand, the authors of C2TCP [3] showed that although the concept of BBR might
work in a wired network where the bottleneck link bandwidth does not change very fast, in a highly
dynamic environment, it does not perform well.

BDP-CoAP implements all the components proposed by BBR for TCP congestion avoidance with
additional differences. First, BDP-CoAP computes the pacing gain factor through a ten-phase cycle in-
stead of eight. Second, the pacing gain values of the probing phase and the preventive phase are 1.2 and
0.8 instead of 1.25 and 0.75 respectively. Other pacing gains are equal to 1 as in TCP BBR. Third, nei-
ther the pacing gain nor the estimated bandwidth are updated in case of retransmission. Indeed, when
an ACK of a retranssmitted CON is received, the bandwidth measurement that can be done using this
ACK is canceled and the estimation function is not called. Fourth, the filter used to compute the esti-
mated bandwidth uses, in addition to the maximum of previous measurements, the minimum of these
previous measurements. The min and the max are combined together with a weighted sum. Fifth, the
time window used to compute the filtered estimated bandwidth is removed. Instead, the filter considers
the last 10 measurements done at the last 10 packet sending instants. Naturally, losses are still detected
via RTO;,,;; expiration but its value is not multiplied by a backoff factor in case of successive losses.
RTOjy; is estimated exactly as in CoCoA+. In summary, in addition to BBR components, BDP-CoAP
incorporates some modifications in an attempt to enhance fairness and to adapt to CoAP and CoCoA+
constraints. Not only the resulting protocolis very complex, but we also show that BDP can outperform

previous backoff-based protocols in few cases where the network conditions are prosperous.
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2.6  Analysis and Shortcomings of Backoft-based Congestion Control

In the following, we present the issues of the main previous proposals to enhance the backoft-based
mechanisms. In backoff-based Congestion Control algorithms, RTOj,,;; is either calculated dynami-
cally or set statically. Then a backoftf mechanism is applied for the remaining retransmissions. In such
mechanisms, the backoff factor can change depending on the previous value of RTO;,,;; as in CoCoA+
and pCoCoA, or according to some state as in 4-state, or based on an exponential increase of the RTO
value as per the default CoAP. Default CoAP does not use any information to adjust the backoff fac-
tor, thus it acts the same in any network condition regardless of the level of congestion, the number of

forwarding nodes, the number of senders, or any other network related matters.

2.6.1 Inadequate backoff factor

We show here the analysis of CoAP backoft factors with a challenging scenario where the average resid-
ual bandwidth is fixed to 1 packet per second and we increment the standard deviation of the residual
bandwidth which is varied according to a uniform distribution. The residual bandwidth changes every
bad period whose length is § seconds. The detailed network parameters are summarized in Chapter 6
- Table 6.1. In Figure 2.10, we vary CoAP backoft factor b from 1.5 to 3 and we compute the goodput
and overhead using the default CoAP mechanism suggested in [53]. The goodput is defined as the to-
tal amount of successfully received data in a given time interval while the overhead is the total amount
of lost packets in the network over total amount of packets sent successfully. We notice that changing
the b has no effect on goodput and overhead when the standard deviation is less than 0.4 packets per
second. In such cases, the value of the backoff factor does not matter. As can be seen from Fig. 2.10a,
the lower the backoff factor, the better the goodput when the bandwidth variation is greater than o.4
packets per second. However, an opposite effect on overhead is observed when the backoff decreases.
As a matter of fact, reducing the backoft will impose fast packet transmissions and retransmissions and
this has a bad impact on the overhead due to packet losses. This proves that varying the backoff factor
will not improve the tradeoff between performance metrics when the bandwidth is not highly fluctuat-
ing. On the other hand, it will not lead to an acceptable tradeoff between goodput and overhead when

the bandwidth oscillates. We have also seen a similar propertiy using our models in chapters 3 and 4.

2.6.2 Inaccurate Variable Backoff

Remind that VBF is used by pCoCoA and CoCoA+. It is sufficient to highlight that the backoff factor
should be normally related to the state of the network such as losses or goodput decreases, and not to
the value of RTO as proposed by VBE. For instance, if RTO;;,;; value is 1.5 seconds which might be

close to RTT, and the ACK message was not received, in this case the backoff factor will be 2 according
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Figure 2.10: Simulation results - Varying CoAP backoff factor b

to CoCoA+ backoft algorithm, then the sender will unnecessarily wait for 3 seconds. A large RTT, and
thus a large RT'O does not signify a congestion. Besides, when RTT values are less than 1 second in the
network, then if a packet is lost, the backoft factor that will be used is 3. Hence, RTO grows faster with
the VBF than with the binary exponential mechanism. The waiting time will be a lot increased which
affects the performance in terms of goodput and delay. The negative impact is even worse if the loss
is due to interference or short congestion state. Actually, all the efforts done to reduce and optimize

RT Oyt are vanished when we use large backoff factors for no justified reasons.

2.6.3 Inappropriate Dynamic Backoft factors

4-state algorithm uses the same method for RTO calculation as CoCoA+ but differs in the backoff
mechanism where 4 different backoff factors are used. The authors try to increase the throughput of
their algorithm by reducing the values of the VBF and providing a different value to each state. Their
results show that 4-state achieves better goodput than CoCoA+, however, it leads to more retransmis-
sions. On one hand, the packet losses and overhead are not reduced. On the other hand, due to the
limited hardware capacities of constrained IoT nodes, using many variables will require extra storage
capacities.

Another important remark is that when the load increases on the nodes in any network topology,
the number of retransmissions increases as well. In this case, the use of BEB and VBF to schedule
retransmissions negatively affects the performance of the nodes that are far from the data collector node
(orsinknode). Thisis because the RTO estimation depends on the RTT values that are usually larger for
far nodes. The problem is exacerbated when the load on the nodes and the number of retransmissions
increase which results in a longer waiting time before next packet transmissions for the far nodes, thus

reducing the corresponding goodput.
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As a conclusion, the backoff mechansim is inefficient and the backoff factor does not have a good
impact on the performance in many cases. Even though the backoff can be set depending on the con-
gestion state of the network; it is not sufficiently fine-grained to tune precisely the retransmission time-
outs during the backoff. Furthermore, the retransmission timeout is useful to detect congestion but
it is hard to make it perform other roles in parallel and in particular reacting correctly to the detected
congestion. Indeed, retransmission timeouts were not designed originally to control the sending rate

which is supposed to be the more efficient way to control congestion.

2.7  Analysis and Shortcomings of Previous Rate-based Algorithms

The congestion avoidance algorithm proposed in TCP BBR for congestion control follows a measurement-
based strategy to detect congestion and to set the sending rate adequately, instead of a more classicloss-
based strategy. In this regard, the BBR congestion control can be very efficient since it aims at equating
the sending rate to the available bandwidth which is somewhat the ultimate objective of any conges-
tion control. However, it must be judicially adapted to be incorporated in the CoAP protocol which
has specific properties and is destined to specific devices and network environments. It turns out that

the adaptations proposed by BDP-CoAP have several shortcomings presented in the following.

2.7.1  Bandwidth Sampling Inaccuracy

BBR is designed for TCP Congestion Avoidance periods where usually the bandwidth is very high and
the number of packets sent and ACK received, is very high as well, resulting in a lot of measurement
samples to estimate the available bandwidth quickly and precisely. In CoADP, the sending rate is 1 mes-
sage per RTT or lower and hence the number of bandwidth measurement samples is very low. Asa
consequence, in contrast to what is proposed by BDP-CoAP, each sample must be considered in the es-
timation especially those obtained at the reception of an ACK of a retransmitted CON message. These
ACKSs reflect also successful transmissions and bandwidth availability and must be considered. Be-
sides, after several successive retransmissions, which means losses, the first ACK received will provide
an actual measurement on the new decreased available bandwidth that causes the losses. Ignoring sam-
ples from retransmitted packets will lead to inaccurate or nonexistent bandwidth estimation if there are
losses in the network. Fig. 2.11 simulates a case of bandwidth sudden decrease showing the inability of
BDP-CoAP to decrease its sending rate due to successive losses despite that many ACKs are received

(green line).
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Figure 2.11: BDP-CoAP inefficiency in case of sudden bandwidth decrease

2.7.2 Inadequacy of the Bandwidth Filter Time Window

For the same reason, sliding the bandwidth measurement window over time is not adequate to filter the
measured samples because after several losses and/or sending rate reduction, the time window will not
be able to cover enough number of samples and this number can even be drawn to zero which blocks
totally the protocol. BDP-CoAP uses a window that slides on the instants of sending attempts instead
of time. However, this procedure does not solve the problem because in case of losses, the attempts
continue and make the window sliding further, which yet removes past measurements from the filter

but without adding new ones.

2.7.3 Bandwidth Delay Product Inapplicability

Similar to TCP BBR, BDP-CoAP computes the Bandwidth Delay Product and uses it to control the
number of CoAP CON messages to send without waiting for their acknowledgements during an RTT.
However, the CoAP concept is based on sending only one packet per RIT (NSTART=1 [53]) to keep
its operation simple and avoid using a sending window and all algorithms for its management as TCP.
With this constraint, packets inflight is either o or 1, and the Bandwidth Delay Product is always be-
tween o and 1. Even, if we allow NSTART to be more than one, the Bandwidth Delay Product might

still be small in IoT environments due to low link data rates and small buffers.

2.7.4 Bandwidth Estimation filter Degradation

Including the minimum of the bandwidth measurement samples in the estimation filter is not adequate
in terms of goodput maximization especially if the bandwidth is variable. The minimum was introduced

as an attempt to improve fairness, however, the impact on the goodput is very harmful. Indeed, the
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minimum will slow the convergence to the maximum available bandwidth. Furthermore, in the filter,
the minimum is associated with a weight that is related to the number of retransmissions. The more the
retransmissions, the higher the weight, the slower the convergence. Fig. 2.12 shows indeed the inability
of BDP-COAP to converge reasonably when the available bandwidth increases suddenly. The wastage
of the bandwidth is huge.
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Figure 2.12: BDP-CoAP inefficiency in case of sudden bandwidth increase

2.7.5  Complexity

Even more than TCP BBR, BDP-CoAP uses many variables, instructions and function calls in order
to perform bandwidth measurements and processing them. Hence, the algorithm becomes too com-
plex. As a matter of fact, all simulations done in the BDP-CoAP work [ 5] have used a non-constrained
type of devices while the employed simulator was designed especially for constrained devices. Again,
the objective of having a good compromise between efficiency and complexity can not be ignored in
IoT environments. This complexity can be reduced by removing unnecessary components that were
designed for TCP and not really useful for CoAP. Also, one can use a different approach of congestion

control other than a measurement-based.

2.8  Synthesis

Improving CoAP congestion control for IoT devices is clearly a challenging issue. From one side, the
algorithm should be simple enough in order to be incorporated in these devices that are limited in mem-
ory and processing capacity. From the other side, the algorithm should operate efficiently to increase
the transmission rate and to reduce retransmissions as much as possible to prolong the battery life. In
this regard, it is important to analyze CoAP deeply and understand the effect of its parameters on perfor-

mance. Accordingly, improvements on the existing approaches can be offered and new approaches can
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Performance evaluation of CoAP
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Figure 2.13: Performance evaluation of CoAP. Our contributions:

be proposed. Deep analysis and tackling the shortcomings of previous congestion control algorithms
will pave the path for introducing an improved approach for congestion control. Recently, there have
been a number of research efforts related to the evaluation and improvement of CoAP. We split CoAP
performance evaluation into three categories sketched in Fig. 2.13. As illustrated, different methods
are considered to evaluate CoAP performance.

Some previous works tried to improve CoAP RTO calculation and its corresponding backoft mech-
anism. On the other hand, few works tried to propose other approaches. For instance, the authors
of BDP-CoAP [5] adopted the idea of TCP BBR protocol [17] in order to control the rate of CoAP
transmissions. Now, how to improve correctly the performance? How to find more efficient alterna-
tive solutions? To answer these questions, our first step is to develop a new precise analytical model in
order to analyze the performance of CoAP in lossy network environments and understand thoroughly
its behavior. Accordingly, we can evaluate and highlight its weaknesses. Besides, improvements for
CoAP congestion control mechanisms suggested by the literature were evaluated to highlight their cor-
responding shortcomings.

There are two components in the congestion control algorithm designed for CoAP: RTO;y,; calcu-
lation for the first retransmission or for loss detection and a congestion counteraction mechanism for
the remaining retransmissions and possibly all next transmissions. The anatomy of CoAP congestion
control is presented in Fig. 2.14. For RTO calculation, if RTO is less than the Round Trip Time RTT,
then the packet is falsely retransmitted due to incorrect RTO estimation causing a spurious transmis-
sion. If RTO is much larger than RTT, then the sender will wait unnecessarily causing a degradation
in terms of goodput and delays of packets delivery. Therefore, the challenge in RTO estimation is to
reach a good tradeoff between reliability and goodput. For congestion counteraction, based on our
assessment, we conclude that the solution is to replace the backoft procedure by a rate-based control.
Hence, the challenge in this part is to tune adequately the sending rate and improve the tradeoff be-
tween losses and efficiency. In addition to ensuring simplicity, another challenge while working with
IoT constrained devices is reducing the energy consumption. Considering thousands of connected de-
vices deployed in IoT network, recharging them over long periods is practically impossible. Hence,
prolonging the lifetime of power resources of these devices is an achievement by itself. Furthermore,

prolonging the nodes lifetime have a positive impact on the network lifetime. Therefore, the objective
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Congestion Control for CoAP
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Figure 2.14: Anatomy of Congestion Control for CoAP. Our contributions:

of our work is to provide a simple algorithm for controlling congestion that tunes the sending rate of
packet transmissions and retransmissions which helps in reducing the energy wastage without impact-
ing the overall performance. In general, a well designed algorithm should reduce energy consumption

and packet losses, and improve reliability and goodput.
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CoAP Modelling: Bernoulli and Simple Gilbert
Network Loss Models

One significant aspect of CoAP is that it relies on User Datagram Protocol (UDP) but introduces a
reliable mode of operation when packet loss is not tolerated. There is a cost to pay when high reliability
is imposed reflected by shorter battery life and higher latency due to retransmissions. Both, low latency
and low packet loss are preferred but one can be more critical than the other. For instance, in weather
application, where the last measurement of the temperature reflects the current state, latency is more
important than packetloss. On the other hand, for health care applications where each sensitive readout
might represent critical situation of the patient, packet loss is much more important than latency. How
to find a good trade-off between latency and packet lost? Another important aspect is that some IoT
applications might need to impose a desired goodput in order to preserve battery life. How to ensure
such aspects? The aforementioned necessitate a thorough analysis of CoAP which will be accomplished
via modelling. In this chapter, we propose new exact mathematical models to study the reliability and
the overall performance of CoAP in lossy networks. This study provides useful insights in order to tune
CoAP parameters and also highlights CoAP properties and limitations so that better mechanisms can

be designed adequately. Our analysis was carried out first in two different types of network loss models:

o Bernoulli Network Loss Model
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« Simple Gilbert Network Loss Model

For each network scenario, we compute the following performance metrics:

« Lossratio
« Delay
« Goodput

o Overhead for a successful transmission

Although it is usually more practical to employ modeling tools such as Markov chains, which are used
in the next chapter, we model here CoAP through "direct” computations that follow and reflect the be-
havior of CoAP in the presence of losses so that we understand better the protocol and find clearly the
correspondence between the protocol parameters and the closed-form analytical expressions of the dif-
ferent performance metrics. Besides, the results obtained in this chapter will be confronted with those
obtained in the next chapter with Markov chains to ensure definitely their correctness and complete-
ness. As a matter of fact, we were so confident regarding the analytical results then when we found
differences between our models and experiments done with the CoAP implementation in the Contiki
operating system, we use the model to find precisely the mistake in the source code and correct it. Also,
we highlight in this chapter one of the mistakes done in previous works with direct computations and

provide the correct way to derive the analytical expressions of the performance metrics.

3.1 Bernoulli Network Loss Model

In a lossy network environment, the chance of a successful data packet delivery is determined by the
network loss ratio. Denote p as the loss probability of a transmission attempt, 1 — p is then the proba-
bility of a successful transmission, 7" as the maximum counter of CoAP retransmission attempts. There

are two scenarios when transmitting a packet:

« Successful transmission of a packet after one or more attempts presented in Fig. 3.1a. The overall

probability is formalized as: p(1 — p),1 < i < r.

« Sending trials of a packet ending with failure. This is presented in Fig 3.1b. and the overall prob-
ability is: p" 1.
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(a) Scenario 1: Successful packet transmission (b) Scenario 2: Packet transmission ending with failure

Figure 3.1: Different scenarios for packet transmission

3.1.1  Observed Losses

The observed losses correspond to the case where all retransmission attempts are lost and ACK is not
received (Fig. 3.1b). The mathematical formula for CoAP observed loss ratio P, in Bernoulli Loss

Network Model is simply:
Py =p™! (3.1)

3.1.2  Delay

Let Dy be the one-way delay between CoAP sender and receiver. The initial timeout value RTO de-
noted by 7 is multiplied by a random factor f so that the sender waits for a time in the range [ RT'O,

RT Ox f] before retransmitting the packet. The average initial timeout valueis then: 7" = @ RTO =
Ty (f+1)

>
The delay is calculated starting from the first transmission of a new packet till it is received success-
fully. The duration of 7 successive retransmissions is defined as the time from the first transmission
until the expiration of the i*" one while the timeout is doubled in each attempt which is computed as
T(2'—1),1<i<r.
Let D define a random variable describing the delay of a CoAP successful packet. When a packet

is successfully delivered with zero retransmissions (Fig. 3.2), the delay is denoted as djy and is equal
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to: dg = Dy + (20 — l)To@,withaprobability Pr(D = dy) = (1 — p). If the packet is lost

CoAP CoAP
sender receiver
CON [0x6d34] Do
- - !
- # - -
ACK Jﬂx5d34]
- - -
£ -
i=0
| | Delay=Dy ||

Figure 3.2: Delay without retransmissions

and a single retransmission is needed (Fig. 3.3a), the delay is denoted by d; and is equal to: d; =
Do+ (2! — 1)TO@, with a probability Pr(D = d;) = p(1 — p). For r retransmissions (Fig. 3.3b

and Fig. 3.3¢), the same applies and the delay is given by: d,, = Dy + (2" — 1)1 (f;rl) ,and Pr(D =

d,) = p"(1 — p). Accordingly, the preliminary CoAP mathematical description for the average overall
delay in the Bernoulli Loss Network Model is:

D= zr:PT(D =d;) X d; = ipi(l —p)[Do+ (2" - 1)TOM] (32)

: : 2
=0 =0

The above equation ((3.2)) is similar to the one presented in [24] which is wrong because it is based
on the geometric distribution while we must use the truncated geometric distribution. Indeed, in the
CoAP context, there is a remaining scenario which is the event of a packet lost despite 7 retransmissions.
This event can be denoted by F (failure) and then we denote its complement, i.e., the event of a suc-
cessful transmission by A, with Pr(F) = p"™'and Pr(A) = 1— Pr(F) = 1—p"™!. Consequently,
Pr(D = d;)fori =0,1,...,7inequation (3.2) represent unconditional probabilities, and therefore
should be conditioned on the event A to obtain a valid probability distribution. Normalization by the

use of Bayes’ Rule gives

Pr(D = d;| successful transmission) = Pr(D = d;|A) (3:3)
_ Pr({D=d;}nA) Pr(D=d;) p'(1—p) (3.4)
- Pr(A) T P4 1_p 4
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Figure 3.3: Different scenarios for packet transmission

and we obtain the probability mass function for the desired delay:

PO fori € {0,1,...,7}

pplald;) = (3.5)

0, otherwise

where D|A is the truncated geometric distribution of retransmission attempts.

Now, we can check that (3.5) is valid since Z:ZO P(D=d;|A) = Z%Eiigrll_p) = tg:ﬁ = 1. Thus,
our proposed CoAP model for successful transmission delay is now computed as follows:
D, = E[D|A] (3.6)
= " Pr(D =di|A) x d; (37)
i=0
—~ p'(1-p)
_y e, 69
— pr+l
= (1—p*)
— p'(1—p) - (f +1)
= ——=I|D 2 —1)Ty~— .
;<l_pr+1>[ 0+( )0 9 ] (39)
l-p i
1 ZP [Do + (2 = 1)T] (3.10)
i=0
D T; 1
== 1——pr+1’ where T = # (3.11)
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Simplifying Eq. (3.9), we obtain the closed form:

T

IL—p i i
Dszl_—W;p[Do—i-@ - 1)T (3.12)
1—p - i
i=0
1—p 1—(2p)*!
=Dyg+T -1 )
o+ {l—p’”ﬂx( 2 (3.14)

The closed form of delay can be also represented as:

- [p[Q(Q” —Lpr — (27 - 1)p T+ 1]} T
(1 —=2p)(1 —p")
p (1 —(2p)!
1—pr 1—-2p

(3.15)

=Dy + — (2t - 1)pr_1> T (3.16)

To analyze D, we start by noting that it is undefined for p = 1 and lim,,_;; Dy = 00, sincep = 1
means all packet transmissions will fail. Additionally, the closed form expression for Dy in (3.14) is
inapplicable for p = 0.5, due to the ratio of the term (1 — (2p)"*1) over (1 — 2p). At this point, we
referbackto (3.13) andnotethatforp = 0.5 =271, 37 2p' = >0 21277 =37 1= (r+1).

Finally, we can rewrite the closed form expression as follows:

i D0+T(1_1p;f+l><(r+1)—1>, forp = 0.5
bs= Do+ T [ I=p _ « <1_(2p)7»+1> — 1] otherwise (3:17)
0 I—prt1 1-2p )

3.1.3 Goodput

The Goodput (GP) is defined as the total number of packets received by the CoAP endpoint during
a period of time (in seconds). It can be calculated through the multiplication of the Packet Sending
Rate (PSR) by the probability of successful transmission, previously denoted by P(A). So, GP =
PSR x Pr(A), and we remind the reader that

T

PA={AUA U A} =3 P(A) =3 p1-p=1-7y*" (3.18)

=0
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where A; denotes the event of successful packet transmission with ¢ required retransmissions." Let

D, be the sending duration of 1 successful packet. Therefore, and as illustrated in Fig. 3.4, we have:

Total
duration
for 3
0Ox6d34

CoAP
sender

Pr(A)

P =
¢ D

app

=~ CON [0x6d34]

1st tramx

= CON [0x6d34]

(r-1) re-transmissions

T CON [0x6d34]

......><

CON [ex6d34]

ACK_[0x6d34]

-
-
-
-

Fis

Dapp = Total duration for 1
packet

Goodput = Successful

CoAP
receiver

packets per 1 sec

Figure 3.4: Goodput illustration

(3.19)

> RTT

D, can be considered as a random variable like the delay from the previous section, but with two

main differences. Firstly, the round trip delay between CoAP sender and receiver R must be used in-

stead of the one-way delay D,. For instance, the duration of a successful packet transmission with &

'This notation will be useful later for Overhead too.
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retransmission attempts is given by:

g =T+2T+2°T+---+2"'T+ R (3.20)
k—1

= ZZiT—i—R (3.21)
i=0

= (Qk — 1T + R, (3.22)

where T = TO# and Pr(D,,p = gr) = pF(1 —p)fork = 0,1,2,...,r,as seen in section 3.1.2.
Secondly, D, should include the case when the last retransmission attempt is not successful, which
corresponds to a delay D, = gr11 = (2" — 1)T with Pr(Dapp = gry1) = 0"

Thus, the average D, is computed as

Dapp = E[Dap] = ZPT(Dapp = 9i)9i + Pr(Dapp = gr+1)gr+1 (3.23)
=0
=Y PA=p)[2 - )T+ R +p " - 1T (3.24)

Equation (3.24) is very similar to (3.17). Taking advantage of the analysis in section 3.1.2, multiply-
ing the first term in (3.24) by 1 — p" ™! in both the numerator and denominator allows for a simplifi-

cation:

N 1— pr+1 - 7 ) T T
Dapp = T > P =p)(2 =T+ Rl +p (2 = 1T, (3.25)
i=0
giving us the closed form:

=) [B+ (P < 4 ) = 1) T| 4@ = )T, forp =05

-l

app —
(1= ph) [R+ (et x (H25) = 1) 7] #0722+ = DT, otherwise
(3.26)
which reduces to,
(1-05"R+L(r+1), forp=0.5
Dapp = (3.27)
(1—p*HR+p (%) T, otherwise

Dy can be calculated using a different method by adding the product of the success probability by
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RTT and the loss probability by T:

i=0
In conclusion, we obtain the following formula for Goodput:

P(A) B 1— pr+1
E[DGJPP] Dapp
1 _pr+1
r 1—(2p)r+1
R p (FEE Y T
1 (1=2p)(a—p
R™ p(l— (2p) )T

3.1.4 Overhead for a successful transmission

Dy = (1= p"™RIT + Ty pt'2"

(3.28)

(3-29)

(3-30)

(3.31)

We denote by Y the data payload to be sent between the sender and the receiver. The total size of the

packetincluding the headers added at different layers is denoted by Z. The total overhead is expressed as

the non-application bits divided by the payload of the packet received Y. Normally, the total overhead

depends only on the number of lost packets which means on the observed network loss ratio, in our

case, ;.. Let us detail its computation below. For a successful transmission from the first attempt, the

overhead for receiving the payload is:

ﬁé%flmmpmmg:a—p)

If the first transmission attempt is not successful, then the overhead is:

(Z+2Z-Y)

v ,with Pr(A;) = p(1 — p)

When the packet requires 7 retransmission attempts to have a successful transmission, the fraction will

be:
(r+1)Z-Y)

Y

,with Pr(A,) =p"(1 —p)

Finally, when 7 + 1 transmissions fail, we will have no application bits and thus we have only non-

application bits:
(r +1)Z, with Pr(F) = p"*!
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Taking the ratio of averages, the overall average Overhead expression is given by:

Do P =p1+0)Z Y]+ Z(r+1)p*!
Z:zop"(l—p)Y—l—() x prii ’

(3.32)

where >\ p'(1 — p)[(1 + i)Z — Y] refers to the retransmission attempts of non-application bits,
Z(r +1)p"! corresponds to the r-th retransmission when an ACK is not received, and > ., p'(1 —
p)Y corresponds to the retransmission attempts of data payload. Since > ;_,p'(1 —p) =1 — p"*,
Eq. (3.32) becomes:

S P =p) (1482 = Y]+ Z(r + 1)p+! .
(1—pHh)Y 3.33
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P =p)(Z-Y) N S o Z xixp(l—p)+ Z(r+ 1)p T
(

1 _ prJrl)Y (1 — pT‘+1)Y
_Z—Y+£ (1—p) > gixp + (r+1)p+
Y Y (1 —pr+h) '

Now, using the following identity:

replacing (3.36) in (3.35) changes the latter to:

7 _Y 7 Tpr+2 _ (’f’ + l)prJrl +p N (’f’ + 1)pr+1
Y Y[ (I-p(1-pth (L—prtt)

41
Factoring out % in ( 3.37) we get

Z-Y Z 1 rp—(r+1 -
oy () (P )
:Z—Y+ _( prt rp—(7‘+1)+p_r+(7“+1)(1—p))1
% \1—prt 1—p
:Z_Y+ [/ prtt rp—p(r—kl)—i—pr)]
% 1=t 1—p

I
_|_

Il
+

[
~
+
SIS <IN <IN <IN <IN <IN <IN

= —
—_
I‘TS
3
N—

Z—
(

—_
(-
|

p)

(3-34)

(3.35)

(3.36)

(3-37)

(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)
(3.44)

(3-45)

As expected, we observe that the overhead depends only on p. However, the overhead for a successful

transmission will include a CoAP parameter. In this case, we should normalize in the numerator and

denominator by 1 — p"*

!in equation (3.32) to adjust the probability values after removing the factor

Z(r+1)p"*! which refers to the last unsuccessful transmission attempt. Thus, we obtain the overhead

for a successful transmission Og:

0 — Zizo? (L= PIA+0)Z Y]

i P(L=p)Y

46

(3.46)



Zf:op"(l —-p)(Z-=Y)  Z(1-p) Zf:op" X1

- 1-p )Y + 1-py (3.47)
Z-Y  Z0-p) YLy xi
= - : (3.48)
v V(1)
As before, using the identity (3.36) in (3.48)
Z-Y Z [(rpT2—(r+1)p Tt
Os="——+2 (2 ( - ) & (3.49)
vy v 1—=p*H)(1—p)
_Z=Y  Z(ptp—(r+1)+pT") (3.50)
Y YU a-pia-p ) *
Z-Y Z prH p T —=1—(1—=p)r
=——+< - , (3.51)
Y Y \1—pt 1—p
Z-Y Z /[ pt! pm—1
T—i_?(l—p”‘l)( 1—p 7. (3.52)
Giventhatp™ — 1 = 1;,’.' T,we get the following closed form of overhead for successful transmission:
7 _Y VA pr+1 1— pr
Os=——+— — .
Y +Y<1—p"+1) (pr(l—p) ') (3:53)
Z-Y Z P(F) P(AyUAU...UA, )
Oc=2_"° .2 —r). .
s y Y X B < PA) r (3.54)

Let R be a random variable defined as the ratio of overhead by the payload. R takes values from the

Z-Y 25-Y (r+1)Z-Y \ _ (4 Z—Y
set{—Y, e }—{—Y

}iE{O,l ..... r}- Again, because we ignore the case with no
ACK reception, the associated probabilities have to be conditioned on the event of successful reception

A. Then we have:

~pi(1—p) y (1+i1)Z-Y

~p(l-p) Z-Y  Z(1-p)~ P xi
= .56
; — prtl X v + v - il (3.56)
Z-Y  Z1-p)~ P xi
and as before, using (3.36) we find that:
Z-Y Z(@ptP—(r+1)ptt+
L 20w (r+1)p : p) (3.58)
Yy Y (I-p@d-pt)
zZ-Y Z prtt rp—(r+1)+p"
= +5 : (3.59)
Y Y \1-—p+t 1—p
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7Y 7 pr+1 p—r_l
=Ty +?(1—pT+1><1—p —-r (3.60)

(3.61)

3.2 Simple Gilbert Network Loss Model

As we have seen in Section 3.1, the Bernoulli network loss model has only one state and one parameter
which is the loss probability p. As a matter of fact, the Bernoulli model is the simplest case of loss model
and is used to define and model uncorrelated loss events and thus has its own limitations. In this sec-
tion, we present the Simple Gilbert model which has two states (Good and Bad) and two independent
parameters (p and ¢). While in the good state, there is very few packet loss; while in the bad state, most
packets are lost. Such models provide the flexibility to model a network with consecutive loss events.
Simple Gilbert network loss model offers a good approximation of packet losses and is widely used.
This model is presented in Fig. 3.6. As per the figure, “0” is the good state and “1” is the bad state. Also,
p is the transition probability from state “0” to state “1”, ¢ the transition probability from state “1” to
state “0”. Thus, 1 — pand 1 — ¢ are the probabilities of staying within the same state. Also, 1 — ¢ is the

probability of having successive loss which clearly impacts on retransmissions and thus CoAP losses.

1-p 1-q

4

Figure 3.6: Simple Gilbert Network

3.2.1  Observed Losses

The observed CoAP loss ratio in a network modelled with Simple Gilbert equals to the average number
of observed CoAP message losses at the application layer divided by the total number of total CoAP
transmitted messages which includes the average number of observed losses and successful transmis-
sions (Fig. 3.7). We define N, to be the random variable that refers to the number of observed losses,
where N, takes values from the set N — {0} = {1,2,3,4,...}. Hence, we write the Observed

Loss Ratio F;, as:
E[Noy]

pp=——9
LT E[Noz) + 1

(3.62)

where E[Ng | is the average of the observed losses presented in Fig. 3.7. The figure shows a typical

scenario in CoAP transmission, where the period of time between the reception of two successive ACKs
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consists of many blocks of CoAP lost packets (OL), followed by an event of successful transmission.

The number of said blocks is random, and its average value is denoted by £[Ny]. During the“Loss

Period”, each block constitutes an observed loss and refers to 7 + 1 total transmission attempts. On the

other hand, the“Successful Period” is a single block. As the figure indicates, successful transmission of a

packet usually entails a number of re-transmission attempts, before the eventual reception of an ACK.

Specifically, multiple CON messages may be sent until the source receives the confirmation message

from its intended destination.

To compute F'[Ng |, we must determine the probabilities of the random variable No , (Pr(Nop =

1)...Pr(Nor = i),1 < i < 00). For one observed loss, there are r + 1 potential cases and they

are presented in the table below with rr = 4.

Case No | Transition Dynamics (State) Probability
1 0—-1—-1—-1—-1—-1 (OL) p(1—q)"
2 0—-1—-1—=-1—-1—>1—=0 p(1—q)"q
3 0—-1—-1-1—-1—-1—-1—-0 p(1—q)"(1 —q)q
4 0-1-1-121—-1-1—-1-0 p(1—¢q)" (1 —q)?%q
5 0—-1—-1—-1—-1—-1—=-1—-1—1—0 p(1—¢q) (1 —q)3q
6 0—-1—=21=21-1—-1=21=-1-1=1=0|p(1-¢"(1-q)q

Table 3.1: Cases for observation of one CoAP loss withr = 4

To observe two losses, we start by a single loss and observe one more. This scenario also has  + 1

cases, and they are presented in the table below. Accordingly, we write: Pr(Noy, = i) =

> o qp(1—

Case No | Transition Dynamics (State) Probability
1 0=1—-...21=21=>1—>1—=1 (20L,) p(1—q) (1 —q)" !
2 0—-1—...21—=21—-1—-1—-1-=0 p(1 —q)* g
3 0=1—-...2121=21—-1—-1—-1-0 p(1—q)* (1 —q)q
4 0=1—-...2121-21-1-1—-1—-1—=0 p(1—q)* (1 —q)%q
5 0=-1—-... 212121212121 -1—-1-0 p(1 —q)* (1 —q)3q
6 0=-1—=... 2121212121212 1=1—=1-=0|p(1l—-q¢*™(1-q)

q)!rTD+771 1 < i < 00 Thus, the average number of losses is given by

q)i(r+1)+j1) < i

Table 3.2: Cases for observation of two CoAP losses with » = 4.

E[Noy] =

ZPr (Nop = 1)
- (;qpa

—quzx
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ZT‘l (1_Q)]
S (1-q)

J=0

(3.63)

(3-64)

(3.65)




= 1q—_pq 3 i x (1—q) D x Ll Gt bl 1__(1<1__Q);)+1 (3.66)
_ p(1 — il_—qq)wrl) ;z x (1 — q)i(rﬂ)_ (3.67)
Using the following identity:
o0 ' .
;z ' = where || < 1, (3.68)

substituting (1 — ¢)") for x simplifies (3.67) to

r
(1 —q)
E|Nor)| = ——— 5 (3.69)
[ ] 1 — (1 _ q)r+1
Average Losses E[Ng]
p ! Re-transmission attempts
oL period: retransmission before the successful
attempts ending with a loss transmission Do
ACK ACK
R X ex s/
o) oy &
¢ Y i
Observed Loss - OL |Observed Loss - OL |.....oevuviininannny Observed Loss -OL| Aeceiniiiniicnnnnnnns :
Time
Loss Period Successful Period

Figure 3.7: Loss Period in Simple Gilbert Network

Substituting equations (3.69) in (3.62), we deduce our mathematical formula for CoAP observed

loss ratio Py, for the Simple Gilbert network loss model as follows:

p((lftz))’“Jrl
P, = _1=d=gm (3.70)
(—q)"
L+
L (s71)
I—(1—q)*+p(l—q)
_ p(l - Q)T (3 72)
1-(1-=¢q¢)"(1-q—p)
1 _ T
= =) (3.73)

l+(p+g—1(1—q)

Remark: In the special case where ¢ = 1 — p, substituting this value of ¢ in (3.73) yields P, =
(1 —¢q)p" = pp" = p" !, which equals the loss probability in the Bernoulli Loss Network Model.
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3.2.2  Delay

In this section we consider the delay of a successful packet transmission. According to Figure 3.7, we no-
tice that the total delay must include the time incurred due to observed losses in the “Loss Period” (LP),
in addition to delays from re-transmission attempts before the successful transmission in the “Success-
ful Period” (SP). We denote the former by D p and the latter by Dgp. Hence, the delay formula is the

sum of these terms:

D = D;p+ Dgp, (3.74)
= FE[D] = E[Dpp| + E[Dsp], (3.75)

by linearity of the expectation operator.
The first term Dy, p refers to the case of a “Loss Period”, where the packet is dropped at least once.
Therefore, this delay is a function of the number of blocks of observed losses (or No,), where the cost

of a single block is given by the following:

r

Do, =Y 2T =2+ - 1T. (3.76)
k=0

For instance, if No;, = ¢, we have a delay denoted as

di =1 x Do =i x (2" — )T,

with Pr(Dpp = d;) = P(Noy, = 1) qu z(r+1)+g L

Thus, considering all different scenarios, that is, for all values of Np;, > 1, we obtain the first term as:

E[Dpp] Z P(Dpp = d;) x d; (377)
=33 a1 - @I | (@ T (3.78)
i=1 j=0 _, L delay per block
E[Nor]
:E[NOL] X DOL~ (3'79)

As for the second term, it includes Dy and any delay incurred by retransmisson attempts before
eventual success, where the number of re-transmission attempts % is such that 1 < ¢ < 7. For instance,

transmission after ¢ failures corresponds to a switch from a good state to a bad state, remaining in the
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bad state ¢ — 1 times, and finally resting on the good state. So, the incurred delay is:
(2 — 1)T, with probability p(1 — ¢)Vq. (3.80)

Thus, the delay in the “Success Period” is written as

E[Dsp] = Do + pq Z(l —q) 2 -1)T (3.81)
— Dy + 1p—_qq > (1—q)i(2 — )T (3.82)
pg (21-q)(1-2"1-¢)") (1-9(-(1-9)")
:D0+1_q( 201 — . )T (3.83)
_ 20-2"(1-¢q)") 1-(1—9q)
= Do+ pg ( 201 = . ) T (3.84)

Finally, the delay is given by the following:

_ 2(1 =2"(1—q)" 1—(1—gq)"
D:E[NOL]DOL+D0+}7Q( ( 2q(_1 q))— (q q) )T

(3.85)

Simplifying further, the mathematical notation for delay D is obtained:

D= Dy (1 _ (1193 q)m) <2q (1 _25}11_ D) - gy - 1) T (3.86)

r

— Do+ # ;u — g2 — )T (3.87)

which will be useful in the latter section.

3.2.3 Goodput

As a reminder, the goodput is defined as the rate of packets received by the CoAP endpoint during a
certain duration (in seconds). Equivalently, the goodput is the inverse of the duration between two
successful packet deliveries, with a unit measured in packet per second. In a bursty network, the period
of time between reception of two ACKs is usually interspersed with multiple observed losses and/or
lost ACKs messages from the destination. Accordingly, the duration between two successful deliveries
includes firstly, the delay incurred by the observed losses that might occur, and secondly, the delay of
successful transmission. The former is equal to the average number of observed losses E[Np | mul-
tiplied by the delay of each loss D¢, while the latter is simply the delay presented in section 3.2.2,
with a minor change. Namely, we must replace the one-way delay D in (3.87) by the round-trip delay
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between the sender and receiver . Thus, the mathematical notation of the total duration is given as:
Duration = E[Nop|Dor, + D (3.88)
The delay of each observed loss OL is
Dor = (271 = 1T. (3.89)

Substituting the corresponding values, the duration is presented as

r

Ry f((ll__qq))iﬂ (2 —1)T + R+ # ;(1 —) 72 - 1DT  (3.90)

Since the duration is calculated as per (3.88), then multiplying by 1 — p"*! (as in Section 3.1.3)
is not needed in this case to obtain the Goodput. In conclusion, we obtain the following formula for

Goodput:

GP = !

Duration

(3.91)
_ 1 — (1 _ q)r—i—l
p= @y @ = T+ (1= (1= g )R+ pg Sy (L= 0 (2 = )T

(3.92)

Here again, replacing 1 — ¢ by p changes the context of study from the Simple Gilbert model to the
Bernoulli model of losses seen before. Accordingly, the equation in (3.92) should match with (3.29)
when 1 — ¢ = p. Indeed, equation (3.92) becomes:

1— pr+1
GP = o +1 v —1(9i (3.93)
prit2rtt = DT + (1= pr ™ )RTT +p(L —p) 35, (p) (20 = )T
1 — pr—f—l
prRHt =T+ (1 —p)RTT + 3, p'(1 —p)(20 = 1)T
1— pr+1
= rtl(or+l T3 [ j (3.95)
pritErtt = )T + Zizopl(l —p)RTT + Zi:1 p(1—p)2 -1T
1 _ pr+1
prtrt = DT+ 30, pi(1 —p) (20 = )T + RTT]
P(A
= _( ) = GP obtained in 3.29 (3.97)
Dapp
3.2.4 Overhead for a successful transmission
The overhead is defined as:
Nyx Z-Y (3.98)
Y 9 3'9
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where N4 denotes the total number of transmission attempts. This number is the summation of the

number of:

1. Attempts in a loss period, whichis (r + 1) X E[Noy]

2. Attempts before the successful transmission, denoted as B.
- q i-1;
B = — (1 - .
p ;1 - q)m( q) (3.99)

3. Attempt that is successful, which is 1.

The equation of B is similar to the simplified equation of delay in section 3.2.2 but instead of using
the retransmission delay of the i attempt: (2 — 1)T} @ , we use the number of attempts 7. As

discussed in section 3.2.1, the average number of OLs E[ N ] is:

-9 (3.100)
1— (1—q)! 3.100
Therefore, the overall overhead formula is given as:
e (r + 1)+ p Y (L — @) 1] «Z—Y
(3.101)

Y

By simplifying the above formula, we obtain the overall overhead in Simple Gilbert Network:

Z —qlL
o= Pt9Z=qa (3.102)
qL
Z—7m(0)xY q
=————-——— wh 0) = ——. .
S0 XY , where 7(0) o (3.103)
Again, to check for the validity of our proposed model, we setg = 1 — pin (3.102):
+q)Z —qL
0- PtaZ—q (3.108)
qL
Z—(1-pY
= ﬂ = Overhead obtained in (3.45) (3.105)
(1-p)Y

As we have seen before, the overhead for a successful transmission will include a CoAP parame-
ter. Here, the overhead for successful transmission is calculated by removing the average number of
attempts for observed losses in loss period E[Nop|(r 4 1). Hence, the mathematical notation is pre-

sented by:
Q+pX i ralgml -9 l)*«Z =Y
ST — Y

(3.106)
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Simplifying Eq. (3.106), we obtain the closed form:

" (=@ (1= (4 1) (1-q)"+1) B
(1 + - t—o 7z ) *Z-Y
Osr = v (3.107)
p(r(1=g)™ ' —(r+1)(1—=q)"+1) B
(1 + I ) xZ-Y
Ogr = v (3.108)
p(l—gqr(1—-¢)"—(1-q)") _
(1 T o ) *Z—Y
Osr = % (3.109)

3.3 Experimental Environment

Our proposed models are validated by comparing their results with those obtained from experiments.
To do so, in this chapter we used network emulation. The nodes were emulated using Linux virtual-
ization network stack for which we used Ubuntu (v18.04 LTS). The emulated environment consists of
virtual nodes netns [ 57] and procedures to connect the nodes veth [ 12] and netem [28]. Real protocols
and applications run on the emulated nodes that form the emulated network. In our network model,
the server is operating on one node whereas the client is running on another node within the same
network.

The advantage of the netem tool is that it can generate losses according to several models including
Bernoulli and Simple Gilbert. It emulates also delays through propagation delays and bandwidth emu-
lation. In our experiments, the RTT value between the server and client node is 200 ms. The loss ratio
p values are chosen to be: 10%, 30% and 50% respectively. The value of g is equal to 50%. The network

parameters are summarized in table 3.3.

Description Value

one-way delay Dy | 100 ms
RIT 200 ms
Loss Ratio p 10-50%

q (Bursty network) | 50%

Table 3.3: Network parameters

We implemented the CoAP server and client using the open source library libcoap [8]. Libcoap
is a c-based project that provides the environment with CoAP functions. The client and the server
were pushed to the emulated nodes to run the experiments. In both network scenarios, the traffic was
created by CoAP client via sending “PUT” requests of type CON to the server. CoAP server responds
by sending ACK message to each CON request. The client sends the PUT request for 10000 times

consecutively. Different CoAP parameters are used and summarized in table 3.4.
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Description | Value
RTO 0.5—-1—-1.5—2-2.58
r 1-9
Z 62 — 100 bytes
Y 10 — 48 bytes

Table 3.4: CoAP parameters

3.4 Models Validation and Performance Evaluation via experiments

3.4.1 Bernoulli Loss Model

Our observed loss ratio in the Bernoulli loss network model is p" ™, hence increasing  should as a con-
sequence decrease this metric. To check the accuracy of our model, we compared it to the experimental
results shown in Fig. 3.8. The graph shows that, despite its simplicity, the observed losses model pro-
duces similar results to the experiments for different values of p and 7. We can see that, for example for

p = 0.1 the observed loss ratio decreases as 7 is increased.

0.018
0.016
=+ P Experiment
0.014
/ \ —=- P Model
0.012 A
0.010 - // \ RTT=200 ms

'\ V f=1.5
0.008 ‘\\ A //f
0.006 \ / \ /
0.004 \ \v
0.002 ‘I
0.000 \/
p=01 p=01 p=01 p=03 p=03 p=05 p=05
r=1 r=2 =3 =3 =4 r=b =6

Observed Loss Ratio

Figure 3.8: Experimental results vs. Model results for Observed Loss Ratio (Pf,)

The comparison between the delay model and the experimental results is shown in Fig. 3.9. Here
we note that we are examining a network with low losses, given that p = 0.1. According to our model,
increasing 7 and R7'O will result in an increase in the delay. What we can draw from this figure is
that RT'O has a more significant impact on the delay than r in networks with low losses. For instance,
fixingr = 2 and changing 7f from 0.5 to 2 increases the delay by a factor of roughly 2. However, fixing
Th = 2 and changing 7 from 2 to 4 increases the delay by a negligible amount. This observation applies

for a low-loss network; further aspects will be explored later in the analysis section.
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Figure 3.9: Experimental results vs. Model results for Delay

The experimental and model results of Goodput are presented in Fig. 3.10, where we used different
combinations of 7 and RT'O values. Again, in the case of a low-loss network (p = 0.1), reducing

RTO is very beneficial for the Goodput and an increase in 1 does not yield significant changes for a

fixed RTO.

4000

3500 | \

3.000 _'\\\ —+— Goodput Experiment

\_ —= Goodput Model
2 2500 —_
=]
g .~ RTT=200ms
G 200 =8 | (=15
— ,

1.500 p=10%

1.000

0.500

0.000

Tp=0.5 Tp=05 Tp=1 Tpy=15 Tp=2 Tp=2
r=2 r=4 r=3 r=3 r=2 r=4

Figure 3.10: Experimental results vs. Model results for Goodput

To test the accuracy of the overhead for successful transmission model, we compared it to experi-
mental results as per Fig. 3.11 again for different combinations of p and r. The graph shows that the
ratios attained from the model and experiments are similar and almost exactly the same in many cases.
To focus on extreme cases, we can examine low and high loss networks: for p = 0.1, changing r from
1 to 3 results in no additional overhead. For p = 0.5, changing 7 from 5 to 6 results in slightly more
overhead in both the experimental results and the model, despite the little mismatch between the two.

Therefore, for both low and high loss networks, we can see that p has the dominant effect on increasing
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the overhead.

4.00 —l
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r=1 r=2 r=3 r=3 r=4 r=5 r=6

Figure 3.11: Experimental results vs. Model results for Overhead for successful transmission

3.4.2  Simple Gilbert Loss Model

The comparison of the observed losses ratio in Simple Gilbert loss model between the mathematical
model and the experimental results is presented in Fig. 3.12. The observed losses obtained from the

model and the experiment are similar for different values of r with a very small difference.
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w
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o
b
3 002 \.
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p=0.1 p=0.1 p=0.1
r=1 r=2 r=3

Figure 3.12: Experimental results vs. Model results for Observed Loss Ratio (Pr,)

According to the presented results in Fig. 3.13, delay values of the model and the experiments are
also similar for different values of  and R7'O. In terms of the effects that the former values have on
the delay, the Simple Gilbert model is similar to the Bernoulli model but not identical when the loss
ratio p is low. In fact, looking at the experimental results, the retransmission counter 7 does not have as

much effect on the delay as the RT'O does, but it does nonetheless yield higher increments (especially
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when RT'O is high as well). For instance, when r = 4, changing T from 0.5 to 2 increases the delay

from 0.2s to roughly 0.8s, corresponding to a factor of 4. This phenomenon has been observed in the

Bernoulli case. Now, if we keep RT'O constant with 7, = 0.5, changing 7 from 2 to 4 increases the

delay from 0.2s to about 0.35s, where the difference is Ay = 0.15s. For a higher value of RT'O where
Ty = 2, changing 7 from 2 to 4 increases the delay from 0.5s to about 0.78s, with Ay = 0.28s.
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—+—Delay Model
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f=1.5
p=10%
g=50%

Figure 3.13: Experimental results vs. Model results for Delay

The experimental and model results of the goodput model are presented in Fig. 3.14. The graph

shows that the goodput obtained from the model and experiments is similar for different values of r

and RT'O, where a reduction in R7T'O will result in a significant benefit for Goodput.
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Figure 3.14: Experimental results vs. Model results for Goodput
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The comparison between the model and experimental results of the Overhead for a successful trans-
mission is shown in Fig. 3.15. At first glance, the results might not appear to be close. However, ac-
cording to the numerical values, the relative error between our model and the experimental results is

around 3%.
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1.40
p=01 p=0.1 p=0.1
r=1 r=2 r=3

Figure 3.15: Experimental results vs. Model results for Overhead Ratio for successful transmission

3.5 Additional CoAP Performance Analysis using the analytical models

3.5.1 Bernoulli Loss Network Model

In Fig. 3.16, we show CoAP Observed Loss Ratio () as a function of the loss probability p and the
retransmission counter 7 in a 3-D plot. The blue and green marks show the values of Observed losses
while varying p from 10% to 50% and 7 from 1 to 9. We observe that observed losses are very high
when the retransmission counter 7 is not high and the network is lossy. However, observed losses are
reduced enormously when we increment retransmission counter gradually. This can be hired to set the
retransmission counter adequately to avoid packet losses as required by the application.

Fig. 3.17 shows the delay of CoAP packets of successful transmission with different values of 7 and
RTO while varying p with the following values: 10%, 20%, 30%, 40%. These figures can be used to
determine the appropriate value of 7 to meet particular target delays. For example, when the loss ratio
pis 10% and the target delay can be up to 0.7 sec, then 7 can be set to 3.

The delay of packet transmission in CoAP is affected by the parameters: 27O and 7 and the network
loss ratio p. With low loss ratio p, the delay increases when R7'O increases and r does not play a major
role (Fig. 3.17 -a). However, when the losses increase in the network (p > 10%), RT'O and r both play
asignificant role in increasing the delay as seen in Figures 3.17-b, 3.17- ¢,and 3.17 - d. The main reason

is that when a CON request is not acknowledged, retransmissions are attempted which exponentially
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Figure 3.16: Observed Loss Ratio (Pr,) as a function of p and r

double the timeout each time, and consequently increase the delay. Although retransmissions increase
the delay of packet delivery in networks with high losses as previously discussed, increasing r reduces
the observed losses as per Fig. 3.16. Thus, when reliability is more important than delay reduction,
increasing 7 is justifiable.

Fig. 3.18 shows the goodput of CoAP transmission with different values of  and RT'O while in-
creasing the loss ratio p to: 10%, 20%, 30% and 40%. The obtained results can be used to determine
the appropriate value of  to meet certain target goodput threshold. For example, if p = 30% and the
target goodput > 1, then 7 can not be set greater than 2.

In general, selecting small values for the R7'O parameter leads to a better goodput. In particular,
when p < 10% (Fig. 3.18-a), r does not have much of an effect and only a reduction in R7'O will yield
better results since this corresponds to a low loss network. Predictably, goodput in low loss networks
(Fig. 3.18-a) is better than the goodput in a higher loss network (Fig. 3.18-b) due to the value of p. As
the network loss ratio increases (p > 20%), Goodput degrades when both 7 and RT'O increase, as
observed in Figures 3.18-c, 3.18-d. Hence, in networks with high loss ratio, 1 plays a significant role in
goodput results along with R7T'O.

In Fig. 3.19, overhead for successful transmission is affected by high values of p. When there are few
losses in the network, retransmission rate will not be high and the overhead for successful transmission
will be reduced. On the other hand, overhead increases with the increased number of retransmissions

in high lossy network.
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Figure 3.17: Delay as a function of RT'O and 1

3.5.2  Simple Gilbert Loss Model

Observed losses can be determined by our model according to the network loss ratio and number of
retransmissions 7. As before, we plot in Fig. 3.20a the CoAP Observed Losses () in 3-dimensions,
while varying p from 10% to 50% and 7 from 1 to 9. As the figure indicates, the observed losses decrease
to 0 when r is sufficiently high (e.g. r=6), despite the fact that the loss probability p is high (50%). On
the other hand, in Fig. 3.20b, we plot the CoAP Observed Losses while varying g from 10% to 90% and
r from 1 to 9, with p set to 20%. As can be observed from this figure, the CoAP observed losses increase
as ¢ decreases. This is expected since the complement 1 — ¢ is increasing, and this term represents
the network’s burstiness. The importance of the results presented in 3.20 is that they help determine
the value of the retransmission counter " in cases where we have high losses. As we will see later, the
drawback of increasing 7 has a negative impact on the goodput.

The delay values are shown in Fig. 3.21, where we vary the parameters RT'O from 1 to 4 sec, r from
2 to 10. We use different of value of p (10%, 20%, 30%, 40%). The value of ¢ is set 50% which forces
the occurrence of successive losses and hence packet delivery takes more time, which in turn increases
the delay. As discussed before, although reducing the delay depends on RO but r plays a significant

role as well. This is especially true for high values of RT'O where we can observe from Fig. 3.21 that,

62



Figure 3.18: Goodput as a function of RT'O and r

Overhead for successful transmission

Figure 3.19: Overhead for successful transmission as a function of p and r
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Figure 3.20: Observed Loss Ratio (Py,) as a function of p, g and r

for all network conditions, an increase in 7" negatively impacts the delay when R7°O is also high.

Delay (sec}
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Delay (sec)

Figure 3.21: Delay as a function of RT'O and r for ¢ = 50%
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Goodput decreases when we increase " as seenin Fig. 3.22. Atthe first glance, the results look strange
because when we increase r, losses are reduced and we are supposed to obtain a better goodput, which
is not reflected in Fig. 3.22. However, the reason behind this is that increasing 7 will involve CoAP
binary exponential back-off mechanism which will in turn increase the waiting time and decrease the

goodput.

Figure 3.22: Goodput as a function of RT'O and r for ¢ = 50%

As we have seen previously, in Fig. 3.23a we vary the values of p and 7 and we compute the Over-
head for a successful transmission. As the figure indicates, the Overhead for a successful transmission
increases slightly when only p is increased. However, when both variables p and r are increased, the
overhead becomes much more. Similarly, for Fig. 3.23b but here we vary ¢ and 7. When the burstiness
increase (i.e when ¢ decreases), the overhead increases as " increases. Therefore, as we can see from
Fig. 3.23, the overhead for a successful transmission in a lossy network increases when 7 is increased.

The is because re-sending the same payload is imposed for each retransmission attempt.
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(a) Overhead for successful transmission as a function of p  (b) Overhead for successful transmission as a function of ¢
and r with ¢ = 50% and r with p = 20%

Figure 3.23: Overhead for successful transmission as a function of p, g and r

3.6 Conclusion

In this chapter, we presented mathematical models of CoAP performance metrics. We showed how
to find these models first using Bernoulli loss model then using the Simple Gilbert loss model. Direct
computation and closed forms for all our mathematical models were presented. Secondly, we validated
our models using experiments. Then, a profound analysis on CoAP performance was carried out by uti-
lizing the presented models. The comparison with experimental results using a real implementation of
CoAP shows the accuracy and the usefulness of our proposed models. On the one hand, the value in
our models is that different network and protocol parameters can be computed, thus providing guid-
ance on the impact of the CoAP parameters on its behavior and performance. For instance, we found
that increasing retransmission attempts 7 does not increase the goodput in spite of reducing the loss ra-
tio. The reason for this is that the R7'O value must change as well. On the other hand, the importance
of this study is that it can be used to determine good (or optimal) values of 7 and RT'O to meet target

requirements such as CoAP losses, latency and goodput which will help in reducing congestion.

Another concrete utility of our model is the following: Assume that 7" = 7} and r are fixed, then
CoAP will achieve a certain goodput denoted as G1 (17, ). If we need to reduce losses, we can increase
7 by 1 but goodput will consequently decrease and be denoted as G5(77, r + 1). Can we determine
a new value for the timeout 75 in terms of 77 such that despite the increase in r, the goodput level
is maintained? This can be done easily and dynamically via our model and translates to solving the

following equation:

Gl(Tlvlr> = G2<T27 T+ 1) (3'110)
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substituting (3.30) in (3.110), then

1— pr-i-l 1 — pr+2 ( )
_ 1 = _ 2 3.111
A=y R+Top (S) (- 2R+ Tip (527

(1 — pr+2)(1 — <2p)r+1) (3 112)
= p ) (1= (2p) ™) |

~
Required factor

- T2:T1X

The behavior of the Required factor versus p and r is presented in Fig. 3.24. For instance, the higher
the network losses, the lower the factor and that means, the new R7'O must be reduced further to
compensate the increase in 7. As can be noticed from the figure that the relation between the fraction

and p and r is not linear which necessitate the need for the model to find the new value of 7.

Plot of required factor vs. probability for different r values
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Figure 3.24: Required factor as a function of p for different r values

To conclude this chapter, CoAP was studied via modelling in two different network scenarios and
this allowed us to identify the CoAP parameters that can lead to a better performance. For instance,
one of CoAP’s parameters that should be optimized is the initial retransmission timeout (R7'O;p;;),
where we realized the need for reducing R7'O;,,;; as much as possible to improve packet delivery and

enhance reliability. This motivates Chapter 5 which is related to 27O optimization.
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CoAP Modelling: Gilbert-Elliot Full Model

4.1 Introduction

In this chapter, we present another modelling framework, using Markov chains, allowing us to compute
the performance metrics for the full model of Gilbert-Elliott [26, 22] (Figure 4.1). The gradual shift
from a simple model to a more complex (and realistic) one is a good strategy for two reasons. Firstly, it
gives space for validation and offers a correctness-check because the same formulas are obtained using
different frameworks. Secondly, the modelling aspectitself allows for a better and deeper understanding
of the protocol’s functionalities in practice, such as the timeout behavior when an ACK is not received.
Thus, the previous performed computations were based on the successive modelling of the protocol’s
behavior and the formulas were obtained from these studies, whereas in this chapter we will use the
Markov chain .

The method based on Markov Chains can reduce the complexity of the modelling. Unfortunately,
direct computation is not possible as before and the use of a 1-dimensional Markov Chain to model
CoAP transitions is insufficient because it does not capture the hidden Markov Chain states of the full
Gilbert-Elliott model. This fact sheds light on the importance of understanding the protocol first, via
Simple Gilbert modelling, and next studying the Gilbert-Elliott model. The aforementioned model
represents the general case and thus provides expressions for CoAP performance in all scenarios.

The Gilbert-Elliott model is commonly used to model lossy environments and especially wireless
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networks. There are two states, Good (G) and Bad (B). 1 — k is the loss probability in the G state.
1 — h is the loss probability in the B state. p and ¢ are the transition probabilities between the two
states. 1 — q is the probability for a successive loss in the B state while 1 — p is the probability for a

successive success in the G state.

1-p 1-q
G B
q

Figure 4.1: The Gilbert-Elliott Markov Chain model

The novelty in our work is the evaluation of CoAP protocol under Gilbert-Elliot model with a precise

computation without approximations despite the hidden aspect of the Gilbert-Elliot Markov chain.

4.2 An Exact Model for CoAP Performance under Gilbert-Elliott

We consider as previously a CoAP sender that is transmitting packets whenever allowed by the protocol.
We study the Confirmed mode of CoAP since it is the one which includes a loss recovery mechanism.
The principle is based on an exponential backoft procedure in case of loss and it is reminded again in
the following: When the CoAP sender transmits a packet with a confirmation request (CON packet),
it waits for an acknowledgment (ACK packet). If the ACK is received after a round-trip-time, then it
moves to the next packet to send. Otherwise, a first timeout expires. In this case, the sender retransmits
the same packet and doubles the timeout. Successive retransmissions are limited to  times after which
the packet is dropped and the sender moves to the next packet to send if any. The timeout value is
randomized via a multiplication factor to avoid synchronization problems (Figure 4.2).

Denote by 1R the average round trip time, 7" the average of the first time value including the random-

ization factor.

4.2.1  Modeling CoAP Transmissions

It is important to notice first that modeling CoAP transmissions using one classic dimensional Markov
chain will not provide exact analytical results. Such Markov chain is shown in Figure 4.3 representing
the time between the sending instant and the reception of the acknowledgment or the expiration of the
timeout. State 12 corresponds to a successful transmission. State 27" corresponds to a packet loss fol-
lowed by a timeout equals to 2'T',0 < i < r. The terms 27 are shown in Figure 4.2 which summarizes

also the retransmission behavior of CoAP. State 2”7 is the last unsuccessful attempt (retransmission)
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for the same packet, and thus the packet is dropped since no more retransmissions are allowed. The
application moves to the next packet to send. If this new packet is successful then the chain moves back

to state R, otherwise, it turns back to state 2°7" that corresponds to a loss and the expiration of the

timeout.
Dow
>
CON /|CON CON CON ACK
>
T 2T oiT R

@ -NnT

Figure 4.2: Summary of CoAP exponential backoff procedure for congestion control as described in [53]. T is the first
timeout average value. R is the average Round Trip Time. D, is the average one-way delay.

P(L/S) P(L/S) P(L/S) P(L/S) P(L/S)

> P(SID)
1-P(L/S)

P(SIL)

Figure 4.3: A possible Markov chain modeling CoAP successive transmissions

In order to determine all transition probabilities, we need only to find two probabilities: The prob-
ability of a lost transmission such that the previous one was a success denoted by P(L/S), and the
probability of a success given that the previous one is lost denoted by P(.S/L). These probabilities are
difficult to obtain since the Markov chain of Gilbert-Elliott model is hidden [ 16]. This is because when
a packet is lost, we can not decide if the Markov state is Bad (B) or Good (G) since the loss event is
possible in both states. Consequently, we need to compute the probabilities of being in the B state or in
the G state knowing that the packet is successful or lost. Of course, these probabilities can be computed

using Bayes theorem as follows:

P(L/S) = P(L/G)P(G/S) + P(L/B)P(B/S) (4.1)

P(S/L) = P(S/G)P(G/L) + P(S/B)P(B/L) (42)
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Using Bayes theorem yields to

$/G)P(G)

P(L/S) = P(L/G)P( oS P(S/B)P(B)

+py By oS

(L=p) A —k)+p( —h)kg+ (1 —q)(1—h)+q(1 —F))hp

- kq + hp (43)
P(‘S/L) :P(S/G)w—i_P(S/B)w

_ ((L=pk+ph) (1 —k)g+ (1 —qh+qk)(L—h)p (40)
(1—=k)g+ (1 —=h)p '

Then, we can solve the Markov chain to obtain the following steady state probabilities of CoAP trans-

missions:
m(R) = )
i _ Is(1—s)t .
m(2'T) = (l+s)(17(1fs)7"+1)’0 <17

with! = P(L/S), ands = P(S/L)

However, the drawback of this approach is that P(G), P(S) and P(L) are unknown and can only
be approximated by using steady state probabilities of the Gilbert-Elliott which is not applicable when
analyzing instantaneous events that are correlated. Later, we will show that this approximation does
hold in some particular cases.

To solve exactly the hidden state problem, we need to split the states of the previous Markov chain
into two. One when transmission events occur in the G state and the other when transmission events
occur in the B state as shown in Figure 4.4. Hence, transition probabilities can be computed exactly. Any
transition probability in the Markov chain is the product of two probabilities. The first is the probability
of moving from G to B and vice versa. The second is the probability of loss or success in the G state or
in the B state. For example, the transition probability from state 2T to state 2" T is p(1 — h).

It is more practical to write the steady state equations related to this Markov chain using matrices
and vectors to better reflect the “two dimensions” of the Markov Chain and thus ensure its resolution.

First, we define the following matrices.

L | a=ma-n at=k)] |, [ wlBe)
| p(1—h) (1-q)(1—h) 7(Rp)

B (1-p)k qk ] _ w(2fTG) Ocicr
ph (1=q)h m(2Tg) -
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Figure 4.4: The exact Markov Chain modeling CoAP successive transmissions under the Gilbert-Elliott loss model

Matrices A and B are not to be confused with a transition probability matrix. Notice that A includes

all transition probabilities to a loss state, and B includes all transition probabilities to a success state.

Now, steady state equations can be written using linear algebra as follows
Ve =BVr+B) V, (45)
i=0
(4.6)

Vo=AVr+AV,, Vi=AV,4,1<i<r

Now, we can solve the system and compute the transition probabilities thanks to matrix operations.
First, we notice that Vp+> ., V; = [7(G), n(B i Summing all the steady state probabilities which

means all the terms of equations (4.5) and (4.6) we obtain
(G (G
m(B) m(B)
which provides 7(G) and 7(B). We also have
m(G)
V=8B 4.8
R (B) (4.8)
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Then, from equations (4.6) we deduce
Vi=AVp,1<i<r (4.9)
Combining equations (4.9) with (4.6) and (4.8) yields to
Vi= (I — AT AT VR 0<i <7 (4.10)

I is the 2 X 2 identity matrix. We also use the fact that A*(I; — A™™1)~! = (I, — A™"1)"1 A", The
expressions of the elements of A°™! can be determined in closed-form via the Cayley-Hamilton theo-
rem [59] (Appendix A) or through diagonalization and similarity transformation (Appendix B). The
Cayley-Hamilton theorem allows to say that a square matrix A satisfies its own characteristic equation
det(x, — A) = 0 where det() is the determinant function and /,, is the n x n identity matrix. For
a2 X 2 square matrix, the equation is 22 — (A; + Ao)x + A\; Ay = 0 where \; and )\, are the two

eigenvalues of matrix A. Thus, we can write the following interesting matrix equation
A? — M+ XA+ =0 (4.11)
Now, define the following two matrices C'; and C5 as follows
Cr=A—-\1L, Cy=—-A+ X1, (4.12)

then thanks to Cayley-Hamilton theorem which means equation (4.11), we can derive several useful
properties:

CCy = O, 012 = (>\2 - )\1)01, 022 = ()\2 - )\1)02 (4-13)

Ci = ()\2 — )\1)141017 Cé = ()\2 — Al)iilcg (4.14)
Next, we write the matrix A using the two matrices C'; and (' as follows

A o
_ c
U VR v

A 4 (4.15)

Using properties (4.13) and (4.14), we deduce A’

A Py
1 02 + 2

A=
he = A0 de— A

G (4.16)

Finally, replacing C'y and C in the previous equation by their expressions as defined in equation (4.12),
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we obtain the final result for A*:

A=A AN — )\1>\§]2

Al = - /\1A+ N (4.17)

For our matrix A = (1=p)(1=k) a(l =k , the eigenvalues \; and A\, are computed
p(1—h) (I-q¢)(1—h

AN =tr(A)/2 — \/tT(A)2/4 — det(A) (4.18)

Ao = tr(A)/2 + \/tr(A)2/4 — det(A) (4.19)

tr(A)=(1-p)1—k)+(1—-q)(1—h) (4.20)

det(A) = (1 = k)(1 = n) ((1 —p)(1 —q) —pq) (4.21)

To compute all the steady state probabilities Vs, we first compute 1 using equations (4.10) and
(4.8). Then, we use equation (4.6) to compute all the others in an algorithm with a total time complex-

ity equals to O(7) only. It is also possible to compute directly any V; using (4.9). Finally, we compute

W(Rg) + W(RB> = W(R),
T(2'Tg) + w(2Tg) = =(2'T), 0<i<r (4.22)

Computing Performance Metrics of CoAP: Using the steady state probabilities of the CoAP Markov
Chain, ie. 7(R) and 7(2'T),0 < i < r, now we can compute several performance metrics such as
the experienced loss ratio P, the average goodput G P, the average delay D,, and the overhead for
a successful transmission Oy. Other metrics can also be computed such as the average number of re-
transmissions required to send a CoAP packet successfully, the total overhead, the average number of

losses in the Bad state.

4.2.2 Loss Ratio

The loss ratio is defined as the average number of losses divided by the total number of CoAP packets

sent from the application. Thus,
w(2"'T)

b= Ty

(4-23)
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Using the results from equations (4.17) to (4.21), we can compute the elements of A”*!. Denote them

a b
by [ 4 ] , we provide the expressions of the matrix elements in Appendices A and B. Then we can
c

determine 7(2"7") from equations (4.10) and (4.22):

(b4 d)ph + (a + c)gk — (A X) 1 (ph + gk)

m(2"T) =
( ) (p—i— q) (1 . )\7{+1 + )\72“+1 + ()\1>\2)r+1)

(4.24)

where A1 and \; are the eigenvalues of matrix A as defined in (4.18) and (4.19). Thus, from equation

(4.23), we obtain the closed form expression of the experienced loss ratio Py

(b+ d)ph + (a + ¢)gk — (M) (ph + qk)
(b+1—a)ph+ (c+1—d)gk

P = (425)

Itis important to notice that the loss ratio does not correspond to the probability of having 7 + 1 suc-
cessive losses in the Gilbert-Elliott Markov model which is usually computed through classic dynamic
programming algorithms. Indeed, the loss ratio is computed only when the CoAP sender generates
a new packet, and this event depends on previous sent packets and their status, i.e. loss, success, first
retransmission, last retransmission. Henceforth, our Markov chain combines the Markov chain of the
network model and the application model in order to capture exactly the interaction between the ap-

plication and the network.

4.2.3 Goodput

The average goodput is computed as the average number of successful packets in a given period divided
by the average delay of that period. Here, we select the period to be the inter-arrival delay between

transmissions (new packets from the application and retransmissions). Thus,

m(R)
GP = . 4 26
m(R) x R+ >, 7(2T) x 2T (4-26)
7(R) and 7(2'T')s are obtained as described above for the loss probability.
4.2.4 Delay
For the delay several calculations are possible. For instance:
r—1 ;i ;
_ 22T — w(27T) (27 — 1
Ds = Dow + TZz:O Tr( ) 7T( ) ( ) (4-27)

m(R)
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D,,, is the average one-way delay between the CoAP sender and receiver which is independent from
the CoAP congestion control procedure. The next term in the equation is the total delay of attempts
before the last one minus the waiting delay in case of loss, divided by the probability of success so that
we obtain the average waiting delay before a success. It is worthy to notice that this delay is valid even

if the CoAP sender does not send continuously its packets.

4.2.5 Overhead for a Successful Transmission

To compute the overhead, first we compute the average number of retransmissions required to send a
CoAP packet successfully. It is obtained by computing the average of the probability of having retrans-
missions such that an ACK is received at the end of these retransmissions, without counting application
losses, i.e. observed losses by the application (—7(2"T") in equation (4.28)). Then, we compute the
total sent data using the size of a packet Z and of a payload Y/, divided by the payload Y.

0. ( - ZO ﬂzqur (—R7)r(27”T)> é . (129)

4.3 Using the CoAP Analytical Model to Tune CoAP

We provide here one example how to use the model to tune CoAP parameters. Figure 4.5 shows, for
different values of the re-transmission limit 7, the experienced loss ratio by the CoAP sender while
increasing the duration of the Bad period which is controlled by 1 — ¢. Here, we used the exact model.
This result can be used for instance to determine the adequate value of 7 to deploy in order to meet
some target loss ratio requirement. For instance, if 1 — ¢ < 0.8 in the network, and the target loss ratio
is 0.2, then a re-transmission limit of 2 is quite sufficient. This will reduce the delay and the overhead

due to re-transmissions.

4.4 Comparison Between the Exact and Approximated Model

Table 4.1 compares the exact model with the approximated one. In general, the approximated model
provides the exactresultsif p = 1 — q,or k = 1,h = 0, or k = h because in these cases the Gilbert-
Elliott Markov Model is not hidden any more. In other words, it is possible to infer exactly the current
state of the Markov chain (G or B), or not knowing the current state does not impact the computation
due to symmetry of the Markov chain for instance. If one of these conditions is approximately satisfied,
for instance & ~ h, then the approximated model provides close results. The farther from the cases

mentioned above, the wronger the approximated model. We observe however that the simple classic
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Experienced Loss Ratio

Figure 4.5: Experienced Loss ratio when 1 — g increases. Parameters: p=0.1, k=0.8, h=0.2.

kQ+hp)7"+1
p+q

1, h = 0 exceptif pis equal exactlyto 1 — q.

formula (1 — is far from reality in most cases including the Simple Gilbert case, i.e. & =

Table 4.1: Comparison between the approximated and the exact models

r=3 Exact  Approximated Using

p g k h  Mode Model 1 — kthe
0.1 0.5 1 o 0.013158 0.013158 0.000772
0.1 0.§ 0.95 0.0§ 0.013129 0.011279 0.001599
0.1 0.§ 0.7§ 0.2§ 0.018239 0.016534 0.012347
0.1 0.5 0.4 0.4 0.129599 0.129599 0.129600
0.1 0.5 0.9 0.4 0.003700 0.002897 0.001129
0.1 0.1 0.7§ 0.2§ 0.096715§ 0.090301 0.062500
0.1 0.0§ 0.7§ 0.25 0.151292 0.146092 0.115788
0.1 0.8 0.75 0.2§ 0.009399 0.009321 0.008717
0.4 0.6 0.75 0.2§5 0.041006 0.041006 0.041006
0.7§ 0.2§ 0.75 0.25 0.152588 0.152588 0.152588

Fig. 4.6 shows the achieved goodput of the exact and the approximated model while varying the
residual bandwidth. As can be observed from Fig. 4.6a where we vary the bandwidth from 0 to 2 packets
per second, for small residual bandwidth values, the results of the approximated model looks the same
as that of the exact model. We argue it is not the case. As per Fig. 4.6b where we zoom between 0 to

0.2 packets per second, the results are not the same.
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Figure 4.6: Approximated results vs. Exact Model results while varying the available bandwidth

4.5 Revisiting the Simple Gilbert Loss Model

We have considered in this chapter the 2-state Markov approach as introduced by Gilbert [26] and
Elliot [22]. The Gilbert-Elliot model has two states (Good and Bad) and four independent parameters
(p, q, h, k). Now, assuming that the good state G is packet loss-free (k = 1) and the bad state B is
packet gain-free (h = 0), the model becomes equivalent to the Simple Gilbert model presented in the

previous chapter. As a result, the transition matrix A is given by the two transitions:

(1-p) p
q (1—1q)

As mentioned before, the mathematical formula for CoAP observed loss ratio [, is given by:

p=P(B|G); q=P(G|B); A=

2'T
P, __T2T)

~ 7(2T) + 7(R) (429)

which refers to the average number of CoAP observed losses divided by the total number of total CoAP

transmitted messages. Substituting simplifies equation (4.29) to:

p(l—q)
T e e (i3
= pil - a) (4.31)
1+ (p+qg—1)(1—q) '
= P, obtained by the Simple Gilbert Loss Model (Chapter 3) (4.32)

Consequently, our presented formulas in chapter 3 can be handled by using the 1-dimensional Markov

Chain for Simple Gilbert without any hidden aspects and the same results will be found. Here, we re-
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Description Value

RTO 2s
r 4
Z (Total packet size) 100 bytes

Y (Payload of the packet received) | 48 bytes

Table 4.2: CoAP parameters used in Cooja/Contiki
mind the reader about the gradual shift strategy that we followed during our research work.

4.6 Experimental environment

In this section, Cooja platform [48], being a common tool for performing evaluation in IoT environ-
ment with the ContikiOS [21], will be used to validate our model. The importance of Cooja is the
emulation of the constrained nodes hardware taking into account the hardware specifications and pro-
cessing capabilities available in real IoT nodes. More details regarding the Cooja environment will be
presented in chapter 6. In the validation experiments, we consider a ring topology presented in Fig.
4.7. In the network, the RPL router is node 1, CoAP receiver is node 2 and other nodes acting as CoAP
senders. Z1 motes [2] are used for CoAP nodes while a TMote Sky mote is used for the RPL router.
All CoAP clients are sending messages that are routed through the RPL border router to the server us-
ing the IPv6 address. The RPL router serves only as relay for CoAP messages. It is worth noting that
Z1 motes offer more ROM space, giving more room for the code imposed by CoAP protocol or any
other enhanced version of the protocol. An initialization phase around 100 seconds for each simula-
tion is allowed. No results are collected during this phase. Once the network s initialized, CoAP clients
generate messages which are directed towards CoAP server. NSTART is set to 1 as per CoAP default
specification which means that only 1 message is sent at a time per node. The value of Transmission
(TX) ratio is: 100%. The simulations of the different scenarios have a 15 min duration and are repeated
s times for each scenario. We use different CoAP parameters which are summarized in table 4.2. To
challenge our experiments more, we used diverse values of Gilbert-Elliott parameters listed in table 4.3.
More precisely, the values of p,q,k, and h are imposed in CoAP engine file. We carried out all our ex-
periments after we corrected a bug with the existing CoAP implementation in Contiki. In particular,
the sender did not wait for the timeout after the last retransmission.

Remark: Cooja/Conitki parameters and hardware specifications of the motes are presented in de-

tails in chapter 6.
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P q k h

0.1 0.6 0.8 0.2

0.2 0.6 0.8 0.2
0.3 0.6 0.8 0.2
0.§ 0.6 0.8 0.2
0.7 0.6 0.8 0.2

0.1 0.5 0.4 0.4
0.1 0.5 0.5 0.4
0.1 0.5 0.6 0.4
0.1 0.5 0.7 0.4
0.1 0.5 0.8 o0.4

Table 4.3: Gilbert-Elliott simulation parameters

@ e
@ ®
5@ © “®
@ =)

® @

Figure 4.7: Network topology for Model validation with Cooja/Contiki OS environment

4.7 Model Validation via experiments

To check the correctness of our model, we compared it to the experimental results shown in Fig. 4.8.
In the presented figure, we show CoAP Observed Loss Ratio (P,) while varying the probabilities p
and £ respectively. The blue and red plots show the values of Observed losses while varying p from
109% to 70%, with ¢ set to 60%, k set to 80% and h to 20%. Loss ratio refers to the case where all the
re-transmission attempts are lost and ack is not received. When disruption happens, packets may be
lost. The packet loss triggers the retransmission of the packet or transmission of a new packet. As figure
4.8a indicates, when p increases, observed loss ratio /7, increases accordingly. On the other hand, in
Fig. 4.8b, we vary k from 40% to 80% while setting p to 10%, g to 50%, and h to 40%. We observe that
as k increases, CoAP observed losses decreases and this is expected since the complement 1 — k£ which
represents the loss probability in the good state is decreasing.

The experimental and model results of Goodput are presented in Fig. 4.9, where we vary p and £ as
mentioned in table 4.3. As can been seen, in the case of a low network losses (p > 0), the goodput
increases in both the model and experiments for different values of Gilbert-Elliott parameters (Fig. 4.9a

and Fig. 4.9b). The graph shows that the ratios attained from the model and experiments are similar
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Figure 4.8: Experimental results vs. Model results for Observed Loss Ratio Pr,
q=0.6, k=0.8, h=0.2 p=0.1, q=0.5, h=0.4
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Figure 4.9: Experimental results vs. Model results for Goodput G P

and almost exactly the same in many cases.

To test the accuracy of the delay model, we compared it to experimental results as per Fig. 4.10, again
with different values of p and k while fixing the remaining parameters as seen before. Fig. 4.10 shows
the delay of CoAP packets of successful transmission with different values of loss probability p: 10%,
20%, 30%, 50% and 70%. As mentioned before, the delay of packet transmission in CoAP is affected
by the network loss which is imposed by the loss probabilities. With high values of p which represents
high network losses, the delay increases to around 3 sec (x-point 0.3 in Fig. 4.10a) and to 5 sec (x-point
0.7 in Fig. 4.10b). Here again, as we can see from the results, the loss probability plays a significant role

in increasing the delay.

4.8 CoAP Performance Analysis via the Analytical Model

Figures 4.11a to 4.11d show the achieved goodput G P versus the available bandwidth in the network

while varying the four Gilbert-Elliott parameters i, & > h, p and ¢ in turn. The available bandwidth

kq+hp
(rt+a)R

is varying between 32% and 80%. The more the losses in the network, the more the wastage. Here,

corresponds to since CoAP is limited to one packet per RTT. The wastage of the bandwidth
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Figure 4.10: Experimental results vs. Model results for Delay D_S

the round trip time 1 is sooms. The wastage becomes much larger when I? is smaller as shown also
in Figure 4.13b where we vary I from 10ms to 2s which is the default CoAP initial timeout without
randomization. Even with the excessive I = R, the wastage is 10% or more depending on the network
state. The wastage is also due to the backoft procedure. Notice though that in reality the timeout should
be sufficiently higher than the round trip time.

Figure 4.11f and 4.11e show the experienced loss probability and the overhead respectively for dif-
ferent values of the retransmission counter 7 while increasing the network loss probability 1 — h of
the bad period. To improve the reliability of CoAP, it is better to increase . However, the overhead is
increased and vice versa. Itis intricate to control the tradeoff with the parameter r and with retransmis-
sions. Actually, retransmissions help only recovering from losses but they can not reduce losses without
increasing the overhead.

Fig. 4.12a presents the achieved goodput versus the optimal goodput while varying the available
bandwidth. As can be seen, when the available bandwidth is less than 1/ RT'T’, the goodput wastage is
high. In Fig. 4.12b, we vary the round trip time R from 0.05 s to 1.9 s. As we have seen previously, for
small values of I, the achieved goodput is low.

Finally, in Figure 4.13a, we vary 2 from sooms to 3.5s and we compute the goodput using backoft
factors according to the Variable Backoff Factor (VBF) algorithm suggested in [10, 14]. VBF uses a
1.5, 2 or 2.5 multiplication factor depending on the value of the retransmission timeout, which in turn
depends on RR. Even though in this work we presented the above formulas with the default CoAP multi-
plication factor of 2, it is easy to extend our model to compute for any backoff factor b. Indeed, following
the same reasoning in section 4.2, we obtain the mathematical models of CoAP performance metrics.

For instance, goodput G'P (4.26) and delay D, (4.27) equations become:

(R)

P = . .
¢ m(R) x R+ n(b'T) x b'T

(4.33)

82



Packets/s

Packets/s

Overhead (%)

q=0.5, k=0.9, h=0.4, R=0.5, r=4, T=2.5

1.8 =

Available bandwidth -
L6 | Achieved goodput

0 0.1 02 03 04 05 06 0.7 0.8 09 1
p

(a) Goodput vs. available bandwidth
while varying p

p=0.1, g=0.5, k=0.9, R=0.5, =4, T=2.5

1.8

1.6 [

14 ¢ 1
1.2 ¢ 8

08 r 1

0.6 i idth e i
04 . Achieved goodput

0 01 02 03 04 05 06 07 08 09
h

(c) Goodput vs. available bandwidth
while varying h

p=0.1, q=0.1, k=0.9, R=0.5, T=2.5
220

P —
ol 1o2 7
r=3
S 7
r=>5
oo | 126 - 7
180 7
1 70 .u,nu.‘n.uu

]60 1 1 1 1
0.1 02 03 04 05 06 0

1-h

7 08 09 1

(e) Impact of the retransmission counter r
on overhead. Z=8%bytes, Y=37bytes

Packets/s Packets/s

Observed Loss Probability

p=0.1, k=0.9, h=0.4, R=0.5, =4, T=2.5

1.8 .......
0 S ]
14+ |
1
0.8
0.6
04 r
02 | Available bandwidth e
0 Achieved goodput -
0 0.1 02 03 04 05 0.6 0.7 0.8 09
q
(b) Goodput vs. available bandwidth
while varying ¢

p=0.1, g=0.5, h=0.4, R=0.5, =4, T=2.5

O 1 1

0.4 0.5 0.6 0.7 0.8 0.9

k

(d) Goodput vs. available bandwidth
while varying k

p=0.1, g=0.1, k=0.9, R=0.5, T=2.5

0.09 ————
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

1-h

(f) Impact of the retransmission counter r
on reliability

Figure 4.11: Performance evaluation results using our Makovian model under Gilbert-Elliott losses
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Dy =Dow +T (B X (b= 1)

(4.34)

Referring back to Figure 4.13a, we see that the benefit from VBF is minor and depends on I?. Ac-
tually, it is hard to achieve a fine-grained control using distinct backoft factors even if their number is

large.

4.9 Conclusion

We developed a novel model based on Markov Chains to derive the performance of CoAP under the
Gilbert-Elliott loss model and validated it via simulations. We showed how to compute several perfor-
mance metrics using closed form expressions and with a time complexity no more than O(r) with r

is the maximum re-transmission limit. Thus, the model can also be used to tune CoAP parameters dy-
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namically by IoT devices in order to adapt to network losses. The use of different models, as presented
in this chapter and chapter 3, provides confidence in our analysis, since we find the same results using
several approaches. In fact, we discovered a bug related to the implementation of CoAP in the COOJA
simulator: the r-th re-transmission attempt did not wait for an ACK reception. Thus far, we carried
out the modelling work and it allowed to study precisely the performance of CoAP and the effect that
different parameters have on its behavior.

Synthesis. In order to improve the goodput and reliability while reducing overhead, first we have
to reduce the retransmission timeout as much as possible to be close to the round trip time so that
congestion detection is improved and the reaction to the congestion is accelerated. However, the time-
out should not become lower than RTT to avoid creating spurious transmissions which are very harmful
because they waste resources of the constrained device. Second, retransmissions and the backoff proce-
dure are not the right action to counter congestion efficiently. For congestion counteraction, it is better for
the CoAP sender to deploy a “real” congestion control mechanism in order to decide correctly howlong
to wait before sending the next packet and avoid losses. The inter-sending delay should be inversely pro-
portional to the available bandwidth, and this is hard to achieve through the backoff mechanism even
with variable backoft factors. The above results and analysis suggest to follow a rate-based approach for
congestion control rather than a backoff-based approach. Nevertheless, the algorithms must be devel-
oped with minimal instructions so it can reduce the processing overhead and increase the lifetime of
the constrained devices. That is why also spurious transmissions must be reduced as much as possible

to reduce energy consumption. These algorithms will be covered in the next chapters.
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Congeé’cion Dete&ion: Improving Retransmission

Timeout Calculation

Up to this chapter, we focused on analyzing and evaluating the Constrained Application Protocol (CoAP)
via modelling. In Chapter 2, we introduced the improvements carried out by previous works in or-
der to enhance CoAP congestion control components, and in particular, the Retransmission Timeout
(RTO) calculation which is used to enhance congestion detection. As a matter of fact, timeouts are
the only indicator used in CoAP to detect losses and losses are used as a strong indicator to detect con-
gestion. The second component, congestion counteraction, defines the procedures taken after RTO
expiration. Then, we analyzed and presented their corresponding shortcomings. The results show that
recent mechanisms suggested to calculate RTO are not sufficient and can be improved further. In this
chapter, we present and evaluate our proposed algorithm to efficiently calculate RTO and overcome
the addressed shortcomings. Using our Python simulator that we developed to analyze different al-
gorithms, different network scenarios are considered to evaluate the performance of RTO estimation
algorithms. The presented results prove that the proposed algorithm provides significant improvement
in RTO estimation for the majority of the considered cases. The rest of the chapter is organized as fol-
lows: In Section 6.1, the design of our RTO calculation proposed algorithm is presented. Section 5.2
describes in detail our new simulator environment. Performance evaluation results are presented in

Section 6.2 where we compare our algorithms with previous works. Section 5.4 concludes the chapter.
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5.1 Proposed algorithm

In this section, we propose our RTO estimation algorithm in order to overcome the previous shortcom-
ings that we have highlighted in Chapter 2 and improve RTO calculation. We design a new algorithm to
calculate the initial retransmission timeout [27'0);,,;; more efficiently to improve congestion detection.
The outcome will serve as the congestion detection portion of our new proposed congestion control
protocols. The congestion counteraction part of these protocols will be explored in Chapter 6. In both
algorithms, RT'O;y,;; is used only to detect losses and it is never doubled or modified in case of loss.

Also, no dithering techniques are implemented, thus we call it also simply RTO.

5.1.1  RTO Calculation Version 1

We present in this section our first version of RTO estimation algorithm. At first, our main challenge is
to keep the algorithm simple and adapted to IoT constrained devices. Our new algorithm is based on the
concept of exponentially weighted moving average (EWMA) with minimal instructions. The pseudo
code is presented in Algorithm 2. SRTT is the maintained average round trip time and RTTVAR is the
computed variation of RTT. SRTT and RTT'VAR are updated using the weight « (lines 1 and 3).

Algorithm 2 RTO calculation algorithm - Version 1
i SRTT = (1 —a)SRTT + aR
2: if R > SRT'T then
3:  RITVAR = (1 — «)RITVAR + |SRTT — R)|
4: endif
s: RTO = SRTT + 4 « RITVAR

When the first RTT sample value is measured, the algorithm initializes the following variables:

R+<— RIT (5.1)

SRTT +— R (52)

RTTVAR «— g (53)

if no RTT sample is obtained: RT'O «— 2 sec (5.4)

At the beginning of a new set of transmissions, the variables are initialized. RTO value is initialized
to the default CoAP RTO value (2 seconds), if RIT sample could not be measured due to a missing
ACK. Otherwise, RTO is estimated for each new R as shown in Algorithm 2. In this version, we update
RITVAR only if the measured RTT R is greater than the maintained average S/RT"I". This condition
(R > SRTT) is used to adapt RTO estimation when RTT increases which is useful in reducing spu-

rious transmission. The case when RTT decreases is not handled in this version to keep the code very
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simple, however, this will be handled in the version 2. Finally, RT'O for the next transmission is calcu-
lated using the smoothed value of RIT S RT"T" to which we add the RTT variance RIT VAR multiplied
by K (line 5). The concept of using ' x RTT'V AR is based on Jacobson/Karels algorithm (Timeout
= Estimated RTI Average + 4 X Estimated RTI Deviation) [35].

Afterwards, the sender waits until RTO expires or ACK is received. If RTO expires before ACK recep-
tion, the sender retransmits the CON message. If ACK is received, new RTT value is measured. Then,
SRIT and RTTVAR are updated again and then the sender waits for RTO expiration or ACK arrival
and so on and so forth. Although this version is very simple, it outperforms other RTO calculation al-
gorithms in some cases. However, the drawback is slow convergence when the weight v is small which
may cause having RTO smaller than RIT. On the other hand, when (R < SRT'T) then RTO value
will not change and hence there will be no convergence at all. As a conclusion, this simple version will
not be able to converge adequately during high fluctuations in RTT samples. Therefore, we will propose

a new version to allow fast convergence on the behalf of additional instructions.

5.1.2  RTO Calculation Version 2

Another challenge in RT'O calculation is the fast convergence during high fluctuations in the network
such as sudden increase and sudden decrease of RTT. Precisely, if the CoAP sender uses a smaller RTO
than RTT, it will generate a spurious transmission and the sending rate will be greater than 1 packet per
RTT which may worsen the situation in case of congestion. Also, RT'O should not be much higher than
RTT because the sender will wait long before detecting the loss and before sending the lost and the next
packets. The sender might also skip some good time intervals where packets can be successfully deliv-
ered. Another challenge is the limited capacities of some IoT constrained devices where the algorithm
must be developed with minimal instructions so it can reduce the processing overhead and increase the
lifetime of the constrained devices. That is why also spurious transmissions must be reduced as much
as possible to reduce energy consumption.

Our new algorithm is still based on the concept of exponentially weighted moving average (EWMA)
with several modifications from previous works to minimize further RTO while reducing the number
of spurious transmissions, and in the same time reduce the number of instructions. The pseudo code is
presented in Algorithm 3. Similar to Algorithm 2, SRTT is the maintained average round trip time and
RTTVAR is the computed variation of RIT. SRTT is updated using the weight « (line 1). However, in
this version, RITVAR is updated using the weights o and 7y (lines 2 to 6).

In this version, we update RTT'VAR using a different weight depending on the value of the measured
RIT R compared to the maintained average SR1'T". This condition (R > SRTT) is necessary to
adapt RTO estimation adequately to RTT fluctuations, on the behalf of some additional complexity.

However, this condition was sufficient to estimate RT'O correctly and the algorithm is still simpler than

88



Algorithm 3 RTO calculation algorithm - Version 2
: SRTT = (1 —a)SRTT + aR
if R > SRTT then
RITVAR = (1 — a)RITVAR + «a|SRTT — R)|

©

3:

4: else

s:  RITVAR = (1 — )RITVAR + 7|SRTT — R]
6: end if

7:

pCoCoA. The weights are fixed so that convergence is faster (o« > ) when Rincreases (R > SRTT)
because if convergence is not fast enough, there is a high risk to have RT'O < R causing spurious
transmissions which is important to avoid utmost as we said before. In contrast, convergence is slower
when R decreases (R < SRT'T) in a preventive approach in order to observe first if this reduction is
permanent or transient. Otherwise, if we converge fast, the estimated RTO can flip down below next R
values causing again spurious transmissions. The weights used to compute RTTVAR should be tuned
to find a good compromise between RTO reduction and spurious reduction as well.

Finally, in the algorithm, RT'O for the next transmission is calculated also using the smoothed value
of RIT SRT'T to which we add the RIT variance RITVAR multiplied by margin factor K (lines 7 to
12). Another challenge though is choosing the right value for K. K plays an important role in esti-
mating RTO value. When it is set to 4 for all transmissions, performance can be reduced. Indeed, /X'
should be preferably chosen dynamically according to the spurious status. Hence, we improved the sec-
ond version of our RTO calculation algorithm by adding another block for computing A dynamically.

This is presented in the next section.

5.1.3 RTO Calculation Final Version

The pseudo code of the final version is presented in Algorithm 4.

Algorithm 4 RTO calculation algorithm - Final Version
: SRTT = (1 —a)SRTT + aR
2: if R > SRTT then

RITVAR = (1 — a)RITVAR + | SRTT — R)|

3:

4: else

s:  RITVAR = (1 — 4)RITVAR + ~|SRTT — R|
6: endif

7: if spurious is true then

8: K=17

9: else
: K =4
11: end if

12: RTO = SRTT + K % RITVAR
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If the previous transmission is spurious, then [27'O value must be increased by increasing K to force
the sender to wait for a longer period (lines 7-8). A lower K value should be used when spurious is not
detected (lines 9-11). The latter mechanism increases the value of RITVAR when a spurious transmis-
sion is detected, thus limiting successive spurious transmissions.

The code presented in this section summarizes all the instructions to be performed. The initialization
phase and the sequence of operations presented in Section §.1.1 is common for this version and version

2 as well.

5.1.4 RTO Calculation: Choosing the weights

In order to choose a good combination of values for the parameters ¢, y and K that support our design
objectives, different values in different network scenarios were tested and analyzed. We show here only
full analysis with one of the most challenging scenarios where RTT is varied continuously according to
a uniform distribution between sooms and 6ooms during 100 times, then a sudden change to a normal
distribution with mean 10oms and a standard deviation of 20ms during 100 times, then a sudden return
to the uniform distribution and so on and so forth. Besides, a high increase of RIT to 1 second is
generated 5 times every 1000 transmissions (Table 5.1 - Scenario 35). Then, while varying the weights,
we compute both the total number of spurious transmissions and the Root Mean Square Error (RMSE)
which measures the difference between estimated RTO and measured R values.

In Fig. 5.1a, when we fix the value of o to 1 /4, then any value of y will lead to a number of spurious
transmissions around or greater than 1200. It is impossible to find a good combination with this
value. If we tend to reduce « to any value less than 1/4, spurious transmissions increase more and
more. Therefore, we omit the weight 1/4 and all other weights below it.

As per Fig. s.1a, the results show that when the value of « is fixed to 1/16, RMSE is reduced but
spurious transmissions are increased to more than 1500. In this case, any chosen value of v will not
reduce the tradeoff between RMSE and spurious transmissions, therefore the « value 1/16 can not be
combined with any 7 value. Consequently, the more we increase «, the more spurious transmissions,
therefore, all «v values greater than 1/16 are also dropped.

According to the results from the figures s.1c and 5.1b, when we fix the value of c, then a low value

of v reduces both spurious transmissions and RMSE. In Figure 5.1d, when 7 is fixed to 1/32, a value of

1/8 for v is a good compromise between spurious and RMSE. Thus, we fix v = % andy = 3—12 This
result confirms our design rule o > 7.

Regarding the K parameter, in Fig. 5.2a, we fix K to 7 if there is a spurious transmission and we vary
the value of K in the case when there is no spurious from 2 to 7. We observe that the higher these K
values, the lower RMSE and number of spurious. However, the value of 4 is a good compromise since

after this value, the improvement is minor compared to the improvement from the values of 2 to 4.
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Figure 5.3: Spurious transmissions and RMSE values for the optimal values of o and K

In Fig. 5.2b, we fix K to 4 if there is no spurious transmission and we vary the value of K in the case
when there is a spurious from 2 to 7. We observe that the value of 7 reduces both spurious and RMSE.
Thus, the portion of the algorithm that computes K is useful to reduce further RMSE and the number
of spurious transmissions.

Finally, to assure the adequacy of our selection, we show the performance of our algorithm with
the chosen weights in an another challenging scenario where RTT is varied continuously according to
a uniform distribution between soooms and 6oooms during 100 times, then a sudden decrease to a
normal distribution with mean 100oms and a standard deviation of 20oms during 100 times, then a
sudden increase to the uniform distribution and so on and so forth. Additionally, a high increase of
RTT value to 10 seconds is generated 5 times every 1000 transmissions (Table 5.1 - Scenario 33). As
can be seen from Fig. 5.3a and Fig. 5.3b, the chosen values of ¢, 7y and K reduce spurious transmissions
and RMSE values in this network scenario as well. In fact, all other simulation results, not shown here,

has confirmed this setting.
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5.2 Adhoc Simulation Environment

We developed in Python language a dedicated simulator to analyze deeply CoAP algorithms in a con-
trolled environment. Indeed, the simulator can generate different patterns of Round Trip Time (RTT)
or reuse real RTT traces. It is able to emulate the available bandwidth observed by a CoAP sender and
also emulate loss of packets. Hence, congestion and its strength and duration are emulated in a re-
peatable and supervised manner. The evolution of network conditions over time can be kept exactly
the same from one simulation to another so that comparison between different algorithms is fair. Be-
sides, compared to other simulation environments, our Python simulator produces results much faster.
Hence, it is possible to test quickly many network scenarios and CoAP protocol variants. Moreover, the
developed simulator helped us to generate and distinguish between network losses caused by interfer-

ence or congestion

5.3 Performance evaluation

In this section, we use our python simulator presented in section §.2, to evaluate the efficiency of our
algorithm of RTO calculation, and to study and compare its performance against other previous algo-
rithms. Our new algorithm of RTO estimation is compared with algorithms, in particular, pCoCoA
[14], and CoCoA+ since couple of recent works used their method in RTO computation without any
changes.

Table 5.1 shows RTT network scenarios that will be used in this evaluation.

ID Network scenario
Period 1 Period 2 Additional
Number of RIT Number of RIT events
Transmissions Distribution Transmissions Distribution

1 100000 Pareto (3, 1000) N/A N/A Yes
2 100000 Pareto (4, 1000) N/A N/A Yes
3 100000 Pareto (5, 1000) N/A N/A Yes
4 100000 Pareto (6, 1000) N/A N/A Yes
5 100000 Real trace N/A N/A No
6 100000 Real trace N/A N/A No
7 100 Uniform(100,300) 100 Normal(3000,100) No
8 100 Uniform(100,1000) 100 Normal(3000,100) No
9 100 Uniform(100,300) 100 Normal(3000,1000) No
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ID Network scenario
Period 1 Period 2 Additional
Number of RIT Number of RIT events
Transmissions Distribution Transmissions Distribution

10 100 Uniform(100,2000) 100 Normal(4000,1000) No
11 100 Uniform(300,3000) 100 Normal(6000,200) Yes
12 100 Uniform(300,3000) 100 Normal(4000,200) Yes
13 100 Uniform(200,1000) 100 Normal(6000,200) Yes
14 100 Uniform(100,2000) 100 Normal(6000,200) Yes
15 100 Uniform(100,500) 100 Normal(4000,200) Yes
16 100 Uniform(100,500) 100 Normal(4000,1000) Yes
17 100 Uniform(100,500) 100 Fixed(1000) Yes
18 100 Uniform(100,500) 100 Fixed(6000) Yes
19 100 Normal(6000,200) 100 Uniform(200,1000) Yes
20 100 Normal(6000,200) 100 Uniform(300,3000) Yes
21 100 Uniform(3oo,3ooo) 100 Normal(4ooo,2ooo) Yes
22 100 Uniform(100,2000) 100 Normal(6000,2000) Yes
23 100 Uniform(300,3000) 100 Normal(6000,200) No
24 100 Uniform(300,3000) 100 Normal(4000,200) No
25 100 Uniform(200,1000) 100 Normal(6000,200) No
26 100 Uniform(100,2000) 100 Normal(6000,200) No
27 100 Uniform(100,500) 100 Normal(4000,200) No
28 100 Uniform(100,500) 100 Fixed(6000) No
29 100 Normal(6000,200) 100 Uniform(200,1000) No
30 100 Normal(6000,200) 100 Uniform(300,3000) No
31 100 Uniform(100,300) 100 Normal(3000,300) No
32 100 Uniform(100,1000) 100 Normal(3000,300) No
33 100 Uniform(5000,6000) 100 Normal(1000,200) Yes
34 100 Uniform(5000,6000) 100 Normal(1000,200) No
35 100 Uniform(500,600) 100 Normal(100,20) Yes
36 100 Uniform(500,600) 100 Normal(100,20) No
37 100 Uniform(4000,5000) 100 Normal(1000,200) Yes
38 100 Uniform(4000,5000) 100 Normal(1000,200) No
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ID Network scenario
Period 1 Period 2 Additional
Number of RIT Number of RIT events
Transmissions Distribution Transmissions Distribution
39 100 Uniform(looo,lsoo) 100 Normal(soo,so) Yes
40 100 Uniform(1000,1500) 100 Normal(500,50) No

Table 5.1: Different simulation scenarios to challenge RTO calculation algorithms

In the first four scenarios, RTT is varied according to Pareto distribution with different shape param-
eters (3, 4, 5, 6). We present it in the table in the form of Pareto(alpha, m) where alpha is the shape
parameter and 1 is the scale parameter which represents the smallest value that the Pareto distributed
random variable can take. In most of the other scenarios, RTT is varied continuously according to a
Uniform distribution between two values during 100 times (Period 1), then a sudden change to a Nor-
mal distribution with a given mean and a given standard deviation during 100 times (Period 2), then a
sudden return to the Uniform distribution and so on and so forth. The total number of transmissions
is 100000 in all scenarios. Normal distribution is presented in the table in the form: Normal(n, std)
where 1 is the mean value and std is the standard deviation. Fig. 5.4a shows scenario 7 where we switch
from a high RTT average with a low deviation to a low average with a low deviation and Fig. 5.4b shows
scenario 8 where we switch from a high RTT average with a low deviation to a low average with a high
deviation.

On the other hand, Fig. 5.4c shows scenario 9 where we switch from a high RTT average with a large
deviation to a low average with a low deviation and Fig. 5.4d shows scenario 10 where we switch from
a high RTT average with a large deviation to a low average with a high deviation.

Besides, to challenge more the algorithms, in some simulations, we can have additional events cor-
responding to a high increase of RTT to 10 seconds generated 5 times every 1000 transmissions. In
scenario 3, the additional event corresponds to an increase in RTT to 1 second generated s times after
1000 transmissions. Scenarios 5 and 6 use RTTs from real measurements between two sites. Scenario s
is from Paris in France to Auckland in New Zealand, and scenario 6 is from Paris to Rennes in France.
Fig. 5.4f shows RTTs over time of the real trace of scenario s, while Fig. 5.4e presents RTT samples of
pareto distribution with shape = 3 (Scenario 1).

First, the global behavior of the three versions of RTO calculation algorithm is evaluated using two
performance metrics: The Root Mean Square Error (RMSE) which measures the difference between
RTO and RIT values, and the total number of spurious transmissions observed during the network
simulation. Then, we analyze the instantaneous behavior of our proposed algorithm. For brevity, we

present the instantaneous graphs of the final version only.
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Figure 5.4: Different RTT scenarios to evaluate the algorithms for RT'O calculation
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Figure 5.6: Spurious transmissions and RMSE results of the proposed algorithm - Version 2

5.3.1 RTO Calculation Version 1

Fig. 5.saand Fig. 5.5b show the average of spurious transmissions and RMSE values calculated with the
first version of RTO estimation algorithm in different scenarios of Table 5.1. For instance, simulation
IDs 1-4 refer to Pareto distributions, simulation IDs 5-6 refer to real RTT scenarios, simulation IDs 7-10
refer to RTT scenarios analyzed instantaneously, simulation IDs 11-40 refer to other challenging RTT
sets varying from high average to a low average with different deviations.

As per the results presented in Fig. 5.5a, our RTO calculation algorithm (Version 1) provides lower
RMSE than pCoCoA in many network scenarios and very close values to pCoCoA in some other sce-
narios(IDs 2, 3). Also, with this simple version and as per Fig. 5.5b, we achieved much better results in
terms of spurious transmissions in some network scenario (IDs 1,2,3). CoCoA+ achieve better RMSE
results in the first 4 scenarios according to the results in both figures (5.5a and 5.5b). For this reason,
we had decided to improve the performance further by adding the second part of the algorithm to set
the weights of RTTVAR using v and .

5.3.2  RTO Calculation Version 2

The second version of RTO calculation is evaluated using the same performance metrics of the previous

section: RMSE and the total number of spurious transmissions.
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Fig. 5.6a and Fig. 5.6b show the average of spurious transmissions and RMSE values calculated with
our new simple RTO estimation algorithm (Version 2) in different scenarios of Table s.1.

Asper the results presented in Fig. 5.6a, the improved version of RTO calculation algorithm (Version
2) now provides lower RMSE than pCoCoA in all the network scenarios. Also, with this new version
and as per Fig. 5.6b, we achieved better results in terms of spurious transmissions in more network
scenario (IDs 1,2,3,22) and very close results (IDs 4,12,15,16) in many other scenarios. Although Co-
CoA+ achieves a little better RMSE results in some scenarios (IDs 1, 2, 3, 4), CoCoA+ generates almost
double the number of spurious transmissions. We discovered that there is still a margin for improve-
ment. Hence, we had improved the performance further by adding a second chunk to the algorithm in

order to dynamically calculate /& (Final Version).

5.3.3 RTO Calculation Final Version

In this section, we evaluate the global and instantaneous behavior of the final version of RTO calculation
algorithm. For the global behavior, the algorithm is evaluated by means of simulations adopting the
same methodology considered in the previous sections.

From Fig. 5.7 and Fig. 5.8, we report the results obtained by our Python simulator using different
scenarios of Table §.1. In particular, we present the average of spurious transmissions and RMSE values
calculated with our final version of RTO estimation algorithm. As can be seen from Fig. 5.7, except few
minor cases, in all other scenarios, our RTO calculation algorithm achieves better results than CoCoA+.
In these few cases, as per Fig. 5.8, CoCoA+ generates up to 76% more spurious transmissions than our
algorithm. In the same figure, the number of spurious transmissions generated by CoCoA+ in some

cases is even double the amount generated by our RTO calculation algorithm (IDs s, 6, 8, 25, 26).
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Figure 5.7: RMSE

According to Fig. 5.7 and Fig. 5.8, our proposed algorithm provides lower RMSE and lower number

of spurious transmissions in almost all the network scenarios. In the case RMSE of pCoCoA is very
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close to our algorithm (IDs 1,5,6,17), pCoCoA generates more spurious transmissions. In the case
pCoCoA generates few spurious transmissions less than the final version of our algorithm (IDs 9,21),
RMSE of pCoCoA is worse. Thus, our RTO calculation achieves a better tradeoff between the two
performance metrics.

Next, we study the instantaneous behavior of RTO estimation (Final Version) using scenarios 7 to
10 mentioned in Table 5.1. These scenarios cover all possibilities regarding fluctuations of RTT average
and variance. Figures 5.9a and 5.9b show that when observed RTT increases suddenly in the network,
then RTO in the final version of our algorithm also increases quickly to avoid spurious transmissions
due to underestimations of RTO. However, pCoCoA RTO increases more than required which leads
to more delay in packet retransmissions. Besides, this increase is not quick enough to avoid spurious
transmissions as shown more clearly in Fig. 5.10 that corresponds to the same network scenario as Fig.
5.92.

Figures s.9a and 5.9c show a better convergence behavior of our RTO calculation algorithm than
pCoCoA when RTO decreases to smaller values with low variations. pCoCoA decreases faster which
is risky because it can cause spurious transmissions as shown above. Our RTO calculation converges
in a slower manner to be cautious and prevent spurious transmissions. Figures 5.9b and 5.9d show that
when RTO decreases to smaller values but with high variations, then both RTO calculation algorithms
are similar but still our algorithm reacts better to sudden increase by providing less spurious and low
delay.

We observe the similar better behavior in Fig. 5.9f where RTT values in the python network simu-
lator correspond to real RTT measurements (Scenario s - Table 5.1). Fig. 5.9e shows the same results
with the Pareto distribution for RTT values. By examining closely these figures, we can see that our
design principle is still applied by converging fastly but not too high when RTT increases fastly, and

by converging relatively slowly when RTT decreases fastly to avoid as much as possible spurious trans-
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missions while trying to minimize RTO values. Indeed, using the python simulator, we were able to
calibrate the different parameters of our RTO calculation to reach this design principle as mentioned

in Section §.1.4.
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Figure 5.10: Spurious transmissions occurrence graph

5.4 Conclusion

In this chapter, we presented a thorough analysis of RTO calculation algorithms. In particular, we con-
sidered challenging RTT scenarios using our Python simulator to evaluate RT'O estimation proposed by
different mechanisms. The analysis allowed us to avoid some shortcomings of the previously and most
recent suggested algorithms for RTO calculation highlighted in chapter 2. We have shown that Co-
CoA+ generates lot of spurious transmissions and that pCoCoA, with its complex instructions, could
not estimate RT'O adequately. In order to overcome the issues presented in chapter 2, a new algorithm
to calculate RTO more efficiently was proposed. The new algorithm with its simple design, has shown
to be effective in most of the considered cases. Moreover, the comparison has shown that our RTO
calculation algorithm performs better even in very challenging scenarios. Furthermore, this RTO re-
duction is useful for all algorithms of congestion control especially those that use only RTO to detect
congestion or that use RTO to control congestion through backoff mechanism. In the next chapter, we

will explore the second part of the congestion control mechanism: The congestion counteraction.
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Congestion counteraction: Towards a lightweight

rate-based congestion control mechanism

Taking into consideration the hardware limitations of IoT constrained nodes and the limited available
bandwidth in IoT networks, congestion control is essential to guarantee the delivery of data. Conges-
tion is observed when the network is overwhelmed by traffic load generated by nodes or the buffer size
of IoT devices is exceeded. This is likely to happen when packets between large number of devices are
exchanged. CoAP is built over User Datagram Protocol (UDP) which does not implement any conges-
tion control mechanism as the Transmission Control Protocol (TCP). Consequently, CoAP provides a
basic congestion control mechanism based on doubling the timeouts to overcome the congestion issue.
Aswe said in Chapter 2, advanced congestion control mechanisms have been proposed by the literature
to improve CoAP basic operations. These are twofold: Backoff-based [10, 14, 15, 11] and rate-based
[5]. Both approaches implement RTO estimation to detect losses and that was covered thoroughly in
Chapter 5. In chapter 2, we presented a deep analysis of backoff and previous rate-based approaches and
we showed the limitations and the corresponding shortcomings of the studied algorithms. In this chap-
ter, we focus on the “second step” of the congestion control mechanism, named, congestion counter-
action. Firstly, we propose our alternative approach to overcome these drawbacks. The resulting algo-
rithms, named IDC-CoAP and MBC-CoAP, follow the rate-based tactic. Secondly, using our Python

simulator and Contiki/Cooja [21, 48], the new presented algorithms are evaluated among previous
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works such as CoCoA+, pCoCoA, 4-state and BDP-CoAP. We demonstrate from the results that the
new algorithms overcome the issues presented, reduces packet losses and overhead while maintaining

high goodput.

6.1 Proposed algorithms: IDC-CoAP and MBC-CoAP

In this section, we propose new mechanisms in order to overcome the previous shortcomings that we
have discussed in chapter 2 and improve the overall performance of CoAP. First, we include RTO cal-
culation algorithm (presented in Chapter 5) to calculate the initial retransmission timeout R7'O;;,;
more efficiently to improve congestion detection. Then, we design the algorithms for congestion coun-
teraction that follows the rate-based approach. The outcome is two new proposed protocols called
IDC-CoAP and MBC-CoAP. In both cases, RT'O);,,;; is used only to detect losses and it is never dou-

bled or modified in case of loss.

As we have observed, most of congestion control algorithms for CoAP follow the backoft based ap-
proach where they try to use a different static backoff factor or use a variable backoff factor according
to some conditions. We claim that the backoft mechanism is not sufficient to leverage the bandwidth
available to the CoAP sender. It is better to deploy a “real” congestion control mechanism in order to
decide correctly how long to wait before sending the next packet and avoid losses. The inter-sending
delay should be inversely proportional to the available bandwidth, and this is hard to achieve through
the backoff mechanism even with variable backoff factors.

Evidently, if one wants to maximize the throughput achieved by the CoAP connection, the sender
can send aggressively at its maximum rate to ensure a maximum throughput. However, this will engen-
der alot of packet losses, retransmissions and possibly losses of CoAP messages at the application layer
if many successive packets are lost. More substantially, it will also waste a lot of energy due to wasted
transmissions. This is a different constraint from classic congestion control where losses are not harm-
fulif they are recovered quickly. Here the damage of a packet loss is irreversible and should be avoided.
The challenge is that in order to check if the bandwidth is available or not, the only way for the CoAP
sender to do is to send a packet, but if this packet is sent while the bandwidth is not available then it
will be lost. Retransmission of the lost packet does not reduce the incurred cost related to energy con-
sumption. As a consequence, when a timeout expires indicating that the bandwidth is not available,
determining the right time to wait before sending the retransmission is crucial. A short time may cause
additional losses and a long time may reduce dramatically the goodput. It is clear that this time should
relate to the available bandwidth.

Hence, the main idea is to remove entirely the backoff mechanism from CoAP and integrate a new

mechanism that determines the adequate spacing between successive transmissions including retrans-
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missions regardless of the RT'O value or the retransmission counter. It is essential though to keep this
algorithm as simple as possible. That is why our first proposal is based on the simple Additive Increase
Multiplicative Decrease of the transmission rate even though we apply it to the time spacing between
packets. We call the resulted protocol IDC-CoAP. The second proposal follows the measurement-based
approach and it is inspired from the recent BBR congestion control [ 17] where the transmission rate is
determined based on available bandwidth measurements and periodic probing of the bandwidth. We
call this protocol version MBC-CoAP. Different from BDP-CoAP, MBC-CoAP adapts more adequately
BBR to the existing properties of CoAP and avoids all BDP-CoAP design inaccuracies.

6.1.1 IDC-COAP: Increase/Decrease sending rate

In this version of the protocol, we aim at keeping the control algorithm as simple as possible by simply
following the Additive Increase Multiplicative Decrease principle to control the rate with two differ-
ences. The first consists on working on the spacing between successive packets instead of the rate. The
second consists on adding a phase of fast rate increase to benefit more from the available bandwidth in
case it opens up. When the CoAP sender transmits a packet, there are two main network events from

its point of view:

« An ACK is received. It means that the sending rate < residual bandwidth. The current time

spacing between packets can be decreased to increase the rate.

« The RTO expires. It means in case of congestion that the sending rate > residual bandwidth.

The current time spacing should be increased to decrease the rate.

Algorithm 5 IDC-CoAP pseudo-code
1: Wait for CoAP ACK or RTO expiration
if ack is true then

©

3:  if spacing > loss_spacing then

4: spacing = spacing — dw * spacing
s: else

6: spacing = spacing — fw * spacing
7 end if

8: else

9:

loss_spacing = spacing /* Save congestion level */

10:  Spacing = 1w * spacing

11: end if

12: spacing = maz(spacing, current_time — last_send_time)

13: Send next packet (transmission or retransmission) at: last_send_time + spacing

The pseudo code of the control algorithm is presented in Algorithm s.
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When a loss is detected, the sending rate should be decreased. Therefore, the spacing is increased
by multiplying it by the incremental weight 7w (line 10). When ACK is received, the spacing is re-
duced gradually using the decremental weight dw (lines 2 and 4). When spacing becomes lower than
the spacing saved at the loss event (line 5) which corresponds to the last known available bandwidth,
then spacing is reduced with a higher decremental factor fw in order to find quickly the new possi-
ble expanded available bandwidth (line 6). The maximum function is invoked to make sure that the
sender can not send before the reception of the next ACK or the expiration of RTO (line 12). In the
performance evaluation section, we show that a good combination of the algorithm parameters is: in-
cremental weight 7w = 1.5, decremental weight dw = 0.01 and fast decremental weight fw = 0.5.
These parameters were chosen to achieve a good tradeoff between goodput and loss ratio. However,
they can be easily tuned when the application requires better goodput on behalf of losses and energy

consumption, or vice versa.

6.1.2  MBC-COAP: Measurement-Based sending rate

In this version of the protocol, we follow the measurement-based approach implemented in BBR to
compute the spacing between packet sending instants. We adopt the same concept of the max-filtered
estimation of the available bandwidth and the same values for the probing and preventive pacing gains,
ie. 1.25 and 0.75 respectively. We also use the same length of the pacing cycle and the same update
procedure. However, in order to overcome the shortcomings mentioned earlier (Section 2.7), we do
not estimate neither the bandwidth delay product nor the minimum round trip propagation delay. We
also do not maintain the packets in flight. These components are unnecessary for CoAP so removing
them simplifies the protocol. Besides, the window used in the bandwidth estimation filter slides each
time the CoAP sender receives an ACK. Thus, we compute the sending rate based on the maximum of
the last 7 measurements, with 1 being the size of the sliding window. Which means, instead of using a
time window, we use a space window. This modification is especially useful in high lossy environments.
Importantly, in contrast to BDP-CoAP, we include each received ACK in the estimation of the band-
width including those corresponding to retransmissions so that the number of measurement samples is
sufficient to estimate more precisely the available bandwidth and converge to it rapidly. We simplified
further the algorithm by removing all function calls as presented in the pseudo-code of Algorithm 6.
In the algorithm, we measure the spacing between successive received ACKs as an estimation of the
“available spacing” which is inversely proportional to the available bandwidth. The last 7 spacing mea-
surement samples are maintained to be used for computing the sending spacing (lines 2-7). After an
ACK reception or an expiration of a timeout, MBC-CoAP sends the next packet according to the previ-
ously computed spacing (line 8). The next spacing for the next sending is computed by calculating first

the next pacing gain (lines 9-20), then calculating the minimum of the last m spacing measurements
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Algorithm 6 MBC-CoAP pseudo-code

1: Wait for CoAP ACK or RTO expiration
if ack is true then
measurement_sample = current_time — last_ ACK _time
last ACK time = current_time
Add measurement_sample to Spacings[m)|
Remove oldest measurement sample from Spacings[m|
end if
Send next packet (transmission or retransmission) at:
max(last_send_time + spacing, current_time)
o: cycle_index = (cycle_index 4+ 1) % 8
10: if cycle_index = ( then

)

Y >0 @

11:  if retransmission then

12: pPg = 0.75

13:  else

14 pg = 1.25 /* Probing phase */
15: end if

16: elseif cycle indexr = 1 then

17: pg = 0.75 /* Preventive phase */
18: else

19: pg = 1

20: end if

212 spacing = min(Spacings[m])/pg
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corresponding to the maximum of bandwidth samples (line 21). The pacing gain controls how fast our
sending rate is. A pacing gain = 1 allows the cycle to cruise. On the other hand, a pacing gain > 1
increases the sending rate, while a pacing gain < 1 has the opposite effect. The probing state checks for
higher bandwidth. Consequently, when the residual bandwidth increases, the design of MBC-CoAP
allows to probe for more bandwidth. Similarly, when the residual bandwidth decreases, MBC-CoAP
allows the preventive phase to reduce the sending rate accordingly. Therefore, our design principle us-
ing the cycle allows to send faster and slower in order to correctly estimate the bandwidth. Even though
this algorithm is much simpler than the one in TCP BBR and BDP-CoADP, it is still more complex than

IDC-CoAP due to the need of maintaining measurements.

6.2 Performance evaluation

In this section, we use our python simulator presented in Chapter § Section 5.2 to study and com-
pare the performance of the full congestion control algorithms of IDC-CoAP and MBC-CoAP against
other previous congestion control algorithms. In this aspect, we have chosen two challenging simula-
tion sets where each set consists of different network scenarios. Then, we use Cooja/Contiki [48] to
complement the comparison between rate-based and backoff-based approaches in a more realistic IoT
environment. In this part, we define different network topologies with variable number of nodes. It is
important to note we are not evaluating the congestion counteraction part only but the full algorithm.
Hence, although we evaluated RTO estimation separately to show the originality of our work in chap-
ter 5, we include it in the full version because, first RTO is considered as a detector for packet losses.
Which means that when the first packet is lost, the sender should wait at least for the timeout to expire
before taking any action. Second, when other packets are lost, the sender can not transmit before the
expiry of RTO value even if the sending rate allows to transmit before, therefore, in this case, the RTO
estimated value is considered as a floor for our sending rate. Indeed, each of the two full versions of our
algorithms is now presented by its two parts: RTO estimation for congestion detection and congestion
counteraction.

Firstly, we study the instantaneous behavior of the algorithms using network scenarios mentioned
in Table 6.1. Secondly, the performance of the full congestion control of IDC-CoAP and MBC-CoAP
are analyzed and compared with several previous algorithms using mainly the following performance

metrics:
- Goodput or success rate: Total amount of successfully received data in a given time interval
- Loss ratio: Observed losses at the application level

- Overhead: Total amount of lost packets in the network over total amount of packets sent suc-

cessfully
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In particular, the Overhead performance metric measures the ability of the congestion control to send
packets only when there is no congestion in the network to avoid losses, and also avoid wasting energy.
In other words, Overhead computes how much effort or energy is spent to send one packet successfully.

This performance metric is very important especially for IoT devices supplied by batteries.

6.2.1 Python Simulation Results - Congested (Bad) period

Here, the performances of our IDC-CoAP and MBC-CoAP are analyzed and compared against pCo-
CoA, CoCoA+, 4-state, BDP-CoAP and BEB of the standard CoAP. Particularly, the objective is to
explore the ability of the congestion control algorithms to adjust their sending rate to utilize the avail-
able network bandwidth.

Fig. 6.1 shows the behavior of the instantaneous sending rate achieved by the different congestion
control algorithms in presence of a variable residual bandwidth. The red and green plots show respec-
tively the sending and success rates of the algorithms, while the blue plot corresponds to the residual
bandwidth available in the network during the simulation period. Simulation parameters for these fig-
ures and the next ones are all summarized in Table 6.1. Regarding the algorithms of previous work, we
have used their default or advised parameters [53, 10, 11, 14, 5].

According to Figures 6.1a, 6.1c and 6.1e, pCoCoA, 4-state and CoCoA+ sending rates are very high
compared to the residual bandwidth because they do not adjust the sending rate according to the avail-
able bandwidth but try to send at the maximum allowable rate as soon as it seems to be possible. In
fact, when a packet is lost, the initial value of the retransmission timeout R7'O;,;; is multiplied by the
backoft factor and hence the sending rate is decreased but without a direct relationship with the resid-
ual bandwidth. Still, after one or several losses and timeout multiplications, one retransmission goes
through the network successfully. When the ACK of this packet is received, a new CoAP packet is
immediately sent resulting in a sending rate that moves back again to the maximum allowable rate of
1/RTT, which will cause again another loss. The transmission rate after this loss is 1/ RT'O;,,;; which
will very likely cause also another loss since RT'O;,,;; is optimized and its value is close to R7"T". Even
when the retransmission counter is reached and the CoAP packet is dropped definitively, the algorithms
do not change their congestion counteraction and start sending the next packet using R7'O);y,1.

In Figures 6.1a and 6.1¢, the success rates of pCoCoA and 4-state are able to approach sometimes
the residual bandwidth when it increases but the sending rate continues to be much higher causing
unnecessary retransmissions. In contrast, in Fig. 6.1e, the success rate of CoCoA+ is always far from the
residual bandwidth despite the fact that its backoft mechanism is the same as pCoCoA. This is because
CoCoA+ does not minimize the computation of R7'O;,;; as pCoCoA, and hence the time required to
retransmit lost packets is larger and the convergence to the residual bandwidth is slower. Once again,

this shows the importance of minimizing R71'O; ;.
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Parameter ‘ Value Description

r 4 Retransmission counter
First weight for
o 1/8 RTO calculation
Second weight for
Y 1/32 RTO calculation
Spurious weight for
K 4017 RTO calculation
Instantaneous behavior
. U(0.6,1) simulations
Residual Low variabilit
Bandwidth U(o,0.2)...U(0.9,1.1) ... U(2.1,2.3) simulations Y
(packets/sec) High variability
U(0.9,1.1)...U(0.5,1.5) ... U(o,2) simulations

Distributi
Bad Period (ms) | Exponential(5000) istribution z‘md
average duration

RIT (ms) N(s500, 10) Round Trip Time
MBC-CoAP specific parameters

m 30ri10 Number of measurements

pg 1.25,0.75,1,1,1,1,1, 1 Cyclepacinggains
IDC-CoAP specific parameters

iw 1.1, 1.§ Incremental weight

dw 0.01 Decremental weight

fw 0.5 Fast decremental weight

Table 6.1: Simulation parameters used in evaluating congestion control algorithms for CoAP

We notice also that in Fig. 6.1¢, the success rate of 4-state is better than pCoCoA because 4-state
uses more tuned backoff factors that allow to retransmit more quickly which can be seen from the os-
cillations of the sending rate plot. Unfortunately, this goodput gain comes with the cost of increasing
retransmissions.

As a first conclusion, these algorithms can be efficient if the bandwidth is available most of the time
and/or losses occurs sparsely due to other reasons such as interference. However, if losses occur be-
cause many connections are using the same bottleneck link in the network, i.e. congestion, then the
three backoff-based algorithms fail to adjust the sending rate adequately, justifying the need for a “real”
congestion control for CoAP.

In IDC-CoAP, the available bandwidth is respected in the calculation of the sending rate to minimize
losses during congestion periods (Fig. 6.1b). When the packets are lost, IDC-CoAP tends to increase

the spacing between successive transmissions which will reduce the sending rate to converge back to
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the available bandwidth and that is why the ratio of packet losses over successful packets is reduced
as per Fig. 6.se. When the available bandwidth expands, IDC-CoAP ends up increasing its sending
rate after a reasonable amount of time which can be reduced further by tuning the spacing decremental
factor. As a result, the sending rate is the same as the success rate most of the time leading to a small
loss ratio. Besides, the success rate tends to be very close to the available bandwidth when the latter is
somewhat stable.

According to Fig. 6.1d, MBC-CoAP is also avoiding losses by trying to equate the sending rate with
the success rate in order to stay below the residual bandwidth limit. We can see clearly the eight-phase
cycle including the probing phase using the pacing gain of 1.25 that allows the sending rate to increase
and thus converge slowly but surely to the available bandwidth offered to the CoAP sender. When the
rate decreases suddenly, then MBC-CoAP takes some time to reduce its sending rate due to the cycle.
However, this is compensated by a closer sending rate to the available bandwidth when the latter is
somewhat stable.

The previous work rate-based BDP shown in Fig. 6.1f seems to perform similarly as backoft-based
algorithms. This is because when the available bandwidth is lower than the initial estimated bandwidth
which is the starting point of all simulated algorithms, successive losses prevent BDP from converging
as we have explained in Chapter 2 - Section 2.7. Fig. 6.2 shows the same simulation for BDP when
including retransmissions in bandwidth measurements. The modified BDP behaves now similarly to
MBC-CoAP but in reality, the convergence to the available bandwidth is still much slower resulting to
less losses but to a much lower goodput. This is because the bandwidth estimation of BDP includes
in addition to the maximum of previous measurements, the minimum of these measurements. Fig.
6.3 shows the sending rate of BDP when we replace the min-max filter by a max-filter. This second
modification approaches now the behavior and the performance of MBC-CoAP.

From these instantaneous figures, one can conclude that the rate-based approach if well designed
is more appropriate than the backoff-based approach. This will be confirmed further with next results
where averages of Goodput, Loss ratio and Overhead are computed and compared in several network
scenarios.

Fig. 6.5a - Fig. 6.5e represent the average of the 3 performance metrics: Goodput, Application Loss
ratio and Overhead per simulation. The simulation was run up to 5 hours and each simulation was
repeated 3 times. The residual bandwidth has been varied between 0.1 and 2 packets per second.

Fig. 6.5a, shows the average goodput of all algorithms while varying the average residual bandwidth
in each set of simulations. The variance around the average is fixed to the same value since the resid-
ual bandwidth is varied uniformly between the average - 0.1 and the average + o.1. For small residual
bandwidth values, IDC-COAP and MBC-CoAP are slightly better than backoff-based algorithms since

there is no enough bandwidth to send packets. When the available bandwidth increases, our rate-based
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Figure 6.1: Instantaneous behavior of backoff-based (left) and rate-based (right) congestion control algorithms
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algorithms IDC-CoAP and MBC-CoAP show a linear behavior, however a step-wise behavior with the
presence of a large plateau is shown by all backoff-based algorithms. This is caused by the non fine-
grained control performed by the fixed backoft factors that impose few possible values of the retranss-

mion timeouts.

In the plateau, the goodput does not increase with the increase of the residual bandwidth. The value

of the plateau corresponds approximately to

1
RTO;pisaverage + RT Taverage

corresponding to a lost transmission followed by a successful retransmission. Thus, for the default

CoAP the plateau is at 5 1+21}, 05— 2X1‘215 05 = 0.33. Recall that 1.5 is the randomization factor




of the retransmission timeout. For other backoff-based algorithms that attempt to minimize 7Oy,

1

T5x125705 — 0-88. Another smaller plateau appears for backoff-based

the plateau is approximately at

algorithms around = 0.42. In general, the plateau values correspond to

1
0.5+(0.5+2%0.5)x 1.25

1
RTTaverage + Zzzo bt x (RTOinitave’r’age)’

J = 0,1,2,---. The variable backoff factors used by the algorithms are not sufficient to perform a

fine-grained control. Indeed, according to pCoCoA and CoCoA+, the chosen backoff factor for the

1
0.54(0.5+2.5%0.5)x1.25

1.7 half of the time and 2.5 most of the other half during the simulation which allow avoiding a clear

given RTT is 2.5, thus the plateau is more precisely at value = 0.37. 4-state uses
first plateau but not the second large one.

On the contrary, the linear behavior of rate-based IDC and MBC algorithms engenders an addi-
tional gain of the goodput. Ideally, the goodput will be equal to the average available bandwidth which
is not achievable because the rate control algorithm is operating blindly without prior knowledge of
the network status. If the residual bandwidth offered to the CoAP sender is not very variable, then
the expression of the linear relationship between the goodput and the average residual bandwidth can
be obtained through a steady state analysis. For MBC-CoAP, the goodput is computed by assuming
that the gain cycling is operating close to the residual bandwidth and that bandwidth probing with the
pacing gain 1.25 will bypass the available bandwidth as illustrated in Fig. 6.4a where the blue and red
lines represent the residual bandwidth and the sending rate respectively. The residual bandwidth, vary-
ing around 1 packet per second, and the sending rate of our MBC-CoAP algorithm (Algorithm 6) are
sketched over time (x-axis). As per the figure, the relation between the sending rate and the residual
bandwidth can be observed as Residual Bandwidth = 1.25 x SendingRate when the residual
bandwidth is almost stable. The goodput can be approximated by

7

6x125+1+ 32

ResBW

For IDC-CoAP, Fig. 6.4b shows the sending rate behavior in red line and the residual bandwidth
in green line. We vary the residual bandwidth to around 1 packet per second. The sending rate of
our IDC-CoAP algorithm (Algorithm s) is sketched over time (x-axis). Now, we can compute the
spacing values and the number of transmissions in a period comprised between two successive losses,
which means when the spacing is equal to 1/ Res BIV. Denote by S; the current value of the spacing,
then we will have successively Sy = iw/ResBW,S; = (1 — dw)iw/ResBW,--- .S, = (1 —
dw)"iw/ResBW = 1/ResBW . Hence, the total number of transmitted CoAP packets during this

period is equal to
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Figure 6.4: MBC-CoAP and IDC-CoAP: Stable residual bandwidth

L log(iw)
~ log(1 — dw)
The goodput is then approximated by
n dw n
i =— ResBW 6.
Syl —dw)iz e w1 — (1 — dw)"t! €s (6.1)

This formula can be used to tune the incremental and decremental weights of IDC-CoAP for a given
performance objective. Indeed, an incremental weight . = 1.1 provides a better goodput than 1w =
1.5 and than MBC-CoAP when the bandwidth variability is limited.

The last observation is for BDP-CoAP which behaves almost like backoft-based algorithms when the
available bandwidth is small. Then, when the bandwidth increases approaching the maximum which is
1 packet/RTT (corresponding to 2 packets/sec in our simulation) it provides similar behavior as rate-
based algorithms IDC-COAP and MBC-CoAP in terms of goodput.

Observed Loss ratio at the application level is presented in Fig. 6.5c. When the residual bandwidth
is increased, successive losses are reduced and hence application losses are reduced and even totally
canceled because the re-transmission counter 7 is 4. However, when the residual bandwidth is small,
we see clearly that CoAP losses are higher with the backoff-based algorithms which means that these
algorithms experience more successive network losses than rate-based algorithms. These results are
confirmed in Fig. 6.5e where the Overhead metric is shown. Usually, the algorithm that achieves a
much higher goodput, experiences also a much higher Overhead. Nevertheless, all backoff-based al-
gorithms show higher Overhead despite of having lower goodput as seen before. Thus, they consume
more energy and reduce battery life. It is difficult though to achieve a good tradeoff between Overhead
and goodput. Tuning the parameters of IDC/MBC-CoAP helps improving this tradeoff. For IDC-

CoAP, increasing the incremental weight w and/or decreasing the decremental weight dw, decreases
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the goodput and reduces the Overhead. As a matter of fact, IDC-CoAP with ¢w = 1.5 achieves almost
no overhead when the average residual bandwidth is greater than 0.3 packets/s. As for MBC-CoAP,
decreasing the measurement window m, reduces the Overhead but does not affect the goodput be-
cause the residual bandwidth is not high variable, however, a decrease in goodput is observed when the
variability of the residual bandwidth is high as we will see in next simulations.

Finally, we test the robustness of the algorithms in front of a more dynamic network environment.
In Fig. 6.5b, 6.5d and 6.5f, we fix the average residual bandwidth to 1 packets/s and we increase the
standard deviation of the uniform distribution of the residual bandwidth by increasing the maximum
and the minimum values from [0.9, 1.1] to [0, 2]. Recall that 2 packets/s is the maximum possible rate
which corresponds to 1/ RT'T'average. The residual bandwidth changes every 5 seconds. Here again,
all backoff-based congestion control algorithms fail to reach an acceptable tradeoff between goodput
and losses. Fig. 6.5f shows that the overhead of these algorithms is extremely high more than 100% and
up to 140% indicating that any packet must be transmitted at least twice in order to be received success-
fully. The Overhead of IDC/MBC-CoAP is much lower while they still achieve a reasonable goodput
in Fig. 6.5b even when the residual bandwidth is very variable. The overhead of IDC with 1w = 1.5
is even around 10%. IDC with tw = 1.5 can be considered as a good tradeoft between goodput and
Overhead especially when the residual bandwidth variability is medium. If the performance objective
is a high goodput in a highly dynamic environment regardless of the Overhead and processing com-
plexity, then MBC-CoAP with m = 10 is the choice because its goodput shows more stability thanks
to the bandwidth estimation procedure and the gain cycling. The choice for selecting 7 = 10 is also
confirmed in Fig. 6.7 where we have performed several simulations and we varied the measurement
window size m with high variability in the residual bandwidth. Fig. 6.7a shows the impact of varying
m on the goodput while we increase the variance (x-axis) and Fig. 6.7b presents the overhead. The
more the network is variable, the more the residual bandwidth is unstable. In this case, we need to in-
crease the window size to stabilize more the measurements in order to increase the goodput. However,
the impact is always the opposite on the overhead. For instance, with m = 14, we achieve better good-
put than other values of m variables but with more overhead. The main reason is that when the residual
bandwidth variability increases which means the network is unstable, we need to compensate by sta-
bilizing more our algorithm. Therefore, the design principle that should be applied is that when the
network is unstable, the algorithm must provide stability and when the network is stable, the algorithm
does not need to stabilize but in this case, it should converge fast. For such cases, and to provide fast
convergence, 1 should be small. As a matter of fact, this is the compromise between stability and fast
convergence. We must converge fast and at the same time, we should have a stable algorithm. Usually,
it is very difficult to have a good compromise between these two factors because we do not know what

is going on in the network. In this case, we prioritize stability. However, if we can ensure the stability
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Figure 6.6: Performance evaluation of MBC-CoAP using window of attempts

of a network, then we can tune the algorithm to converge fast without caring about stability which is
already provided by the network. As a summary, the first observation is that when the bandwidth is not
variable, 7 can be small (< 4) to allow fast convergence of the sending rate. The second observation
is that when the bandwidth is variable and we need to maximize the goodput regardless of the over-
head, then m must be set high (> 14). For our choice, and as can be observed from Fig. 6.7a and Fig.
6.7b, m = 10 maintains a good tradeoff between goodput and overhead when the bandwidth is high
variable. On the other hand, we evaluated a different version of MBC-CoAP by replacing the sliding
window of measurements with a sliding window of attempts, which means the window slides at every
transmission attempt. Therefore, instead of considering the last 772 measurements that are computed
when an ACK is received, the attempts where an ACK is not received are also included in the window.
This version is tested in different network scenarios. We show here the results of a challenging case
with high variability residual bandwidth whose network parameters are listed in Table 6.1. Although
the overhead is reduced as shown in Fig. 6.6b, however, as per the results presented in Fig. 6.6a, when
the standard deviation of the residual bandwidth increases, the goodput degrades. As a consequence, it

is hard to attain an accepted tradeoff between goodput and overhead using this kind of sliding window.

Referring again to the results presented in Fig. 6.5b, the goodput of BDP-CoAP decreases dramat-
ically with the increase of bandwidth variability. This is because the bandwidth is varying quickly be-
tween low and high values, thus the min operator used in the estimation of the residual bandwidth is
not adequate at all. Besides, BDP uses the last ten attempts as measurement points instead of the last
ten measurements, i.e. the measurement window slides at every transmission attempt. Unfortunately,
this generates a similar behavior to a time window which is not adequate for CoAP because the number

of sent packets per RTT is small especially when there are losses.
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Figure 6.7: Simulation results: Varying measurement window size m

6.2.2  Python Simulation Results - Congested and non-congested periods (Good and bad)

In this section, we consider two network scenarios with different good and bad periods to challenge
more the algorithms. In the first scenario set, the average duration of the good period is set to 1 minute
and the average duration of the bad period is set to 5 minutes. While, in the second scenario set, the av-
erage duration of the good period is set to 5§ minutes and the average duration of the bad period is set to
s minutes. The average residual bandwidth in the good period is 1.8 packets/s and we vary the average
residual bandwidth of the bad period from o.1 packets per second to 1.8 packets/s for both scenarios.
The performance of our IDC-CoAP and MBC-CoAP is analyzed and compared against different con-
gestion control protocols. In particular, we show the results where averages of goodput, observed loss
ratio and overhead are computed and compared in presence of these good and bad periods with dif-
ferent available bandwidth constraints. The simulation was run up to § hours and each simulation was
repeated 3 times. Confidence intervals are not shown to not encumber the figures. Simulation network
parameters for the next figures are summarized in Table 6.2. Regarding the other parameters of the
evaluated protocols, we have used the same ones presented in Section 6.2.1. Fig. 6.8a - Fig. 6.8b show

these 3 performance metrics.

’ Parameter ‘ Value ‘ Description
Residual U(1.7,1.9) Bandw1d'th -

. good period
Bandwidth Bandwidth in
(packets/sec) U(o,0.2)...U(0.9,1.1) ...U(2.1,2.3) bad period
Good Period (mn) | Exp(1), Exp(s) Distribution and
Bad Period (mn) Exp(s) average duration
RIT (ms) N(s00, 10) Round Trip Time

Table 6.2: Python simulation network parameters
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From Figure 6.8a we can first observe that for a residual bandwidth of the bad period less than o.5
packets per second, IDC-COAP (iw=1.5 and iw=1.1) and MBC-CoAP (m=10) achieves somewhat
better goodput than backoff-based algorithms. This is expected since there is no sufficient bandwidth
to send packets. In order to get a better insight of the overall performance, we consider an additional
metrics. In particular, Figure 6.8b shows the overhead generated by the algorithms for the same resid-
ual bandwidth intervals. For a residual bandwidth less than o.5 packets per second, IDC-CoAP and
MBC-CoAP outperforms CoCoA+, pCoCoA and 4-state by 175% reduction in the overhead. This is
a massive difference and has a huge impact on energy consumption. Similar to what we have seen in
the previous section, when the available bandwidth increases, the goodput of IDC-CoAP and MBC-
CoAP behaves linearly while a step-wise behavior with the presence of a small plateau shown by the
backoff-based algorithms (0.4 - 0.8 Residual Bandwidth on the x-axis), then a second larger plateau
at the x-points (1 - 1.8 on the x-axis). The value of the plateau, detailed in Section 6.2.1, corresponds
approximately to ﬁ% (corresponding to a lost transmission followed by a successful retransmission).
Also, as shown in Figure 6.8a, BDP-CoAP achieves better goodput than other algorithms and is close
to IDC-CoAP in some cases (0.5 till 0.9 packets/sec residual bandwidth), however, this improvement
is on the behalf of the overhead and this can be seen in Fig. 6.8b where the overhead of BDP-CoAP
suddenly increases till 150% (0.5 and 0.6 packets/sec residual bandwidth) and around 100% in other
cases (at residual bandwidth 0.6 - 0.9 packets/sec). Therefore, this increase in goodput is on the cost
of energy consumption due to the increased number of losses. In general, and according to the results
presented in Fig. 6.8, we can still see the inability of backoff-based algorithm to avoid overhead and
bandwidth wastage. As we have seen in this Section and Section 6.2.1, all backoff-based algorithms be-
have in a similar manner. It is important to note that we have also observed this phenomenon while
assessing the algorithms in other network scenarios not mentioned here.

Figure 6.8d shows the observed Loss ratio at the application layer. When the residual bandwidth
is increased, successive losses are reduced and hence application losses are reduced and even totally
canceled because the re-transmission counter 7 is 4. On the other hand, when the residual bandwidth
is small, we see that losses are higher for all. However, as per Fig,, these losses vanish even for small
residual bandwidth if we increase the re-transmission counter 7. In Figure 6.8b and when the residual
bandwidth is greater than o.5 packets per second, the overhead of backoft-based algorithms is greater
by around 100% than rate-based algorithms which means that the former algorithms experience more

successive network losses.
In the second scenario set, we report the results of the goodput and overhead metrics (Fig.6.9) while

having longer good period duration set to 5 minutes and keeping the same average duration of the bad

period (s minutes). As per Fig. 6.9a,IDC-CoAP and MBC-CoAP perform always better than pCoCoA,
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4-state and CoCoA+ while varying the residual bandwidth of the bad period on the x-axis. The main
difference from the first scenario is that all algorithms are now able to achieve better goodput due to
the extended good period duration. For instance, when the residual bandwidth is 1 packet/sec in the
bad period, IDC-CoAP (iw = 1.1) can successfully send 1.2 packets/sec. At the first glance, that
looks strange because it is greater than the residual bandwidth, however, this is justified because the
algorithm can now compensate the bad period by sending more during the good period where the
residual bandwidth is up to 1.8 packets per second. This is observed as well for other values of the
residual bandwidth. As shown Fig. 6.9a, BDP-CoAP guarantees a performance close to IDC-CoAP
in some cases and better than MBC-CoAP in most of the cases. Here, the variability is not high and
hence the min-max filter and the window of attempts imposed by IDC-CoAP in this special case have
a better impact on the goodput than using a max filter only. However, as mentioned earlier, this is
achieved on the behalf of overhead which is reflected in Fig. 6.9b. In the same figure, all backoff-based
algorithms show high overhead equal or even greater than 100%. Here again, the backoff algorithms fail
to achieve a good compromise between the performance metrics. Finally, it is worth noticing that we
have also performed same set of simulations with lower RTT values down to soms and higher values
of the residual bandwidth up to 20 packets/s and we observed similar results including the step-wise
behavior of backoft-based algorithms and the satisfactory performance of IDC-CoAP and MBC-CoAP
in both low and high network bandwidth variability.

6.2.3 Implementation in Contiki OS and Cooja Simulations

In order to validate our study in a realistic environment, we have implemented IDC-CoAP in the Con-
tiki Operating System [21]. Contiki OS is used for IoT devices and especially tiny ones such as the
TelosB/SkyMote family and Zolertia Z1 mote [2]. Then, we use the real hardware emulator MSPSim
[1, 4] to load Contiki OS on it, and we use Cooja simulator [48] to create several network scenarios
composed of motes playing the role of a CoAP receiver and CoAP senders.

One of MSPSIM and Cooja features is the ability of emulating constrained real devices while reflect-
ing their hardware specifications and processing capacities. The motes implement IEEE 802.15.4 at the
physical and MAC layers. Distinguished from previous works, the radio duty cycle (RDC) feature of
the MAC layer is kept enabled in all our experiments. Two types of motes are used for CoAP senders
and receivers which are Z1 and wismote. Table 6.3 shows the hardware specifications of these motes
and the settings in the Contiki OS loaded in the motes. The RPL router uses the more constrained sky
mote since it implements neither transport nor application layers.

Six network topologies with different number of nodes are defined for the performance analysis.
These topologies are: a grid of 30 nodes, a U-shape with 15 nodes, a Square-shape with 18 nodes, a

ring and a chain with 12 nodes, and a dumbbell with 7 or 10 or 15 nodes. The Square-shape and the
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Zolertia Z1 mote specifications

RAM 8KB

ROM 92KB

Micro-Controller MSP430F2617

CPU Clock speed 16MHz

RF standard CC24202.4GHz / 250Kbps data rate
Wismote mote specifications

RAM 16KB

ROM 256KB

Micro-Controller MSP430F5

CPU Clock speed 25MHz

RF standard CC25202.4GHz / 250Kbps data rate
Simulation Parameters

Physical protocol IEEE 802.15.4

RDC On (Contikimac driver)

MAC CSMA driver

Transmission (TX) ratio | 90% or 95% or 100%

Routing protocol RPL

Network protocol 6LoWPAN/IPv6

UIP buffer size 256

CoAP frame size 80 bytes

Table 6.3: Cooja/Conitki parameters and hardware specifications of Z1 and Wismote motes

U-shape are obtained by shutting down some nodes in the grid topology. In the first one, only border
nodes communicate with the CoAP receiver and in the second one only the border nodes forming a U-
shape communicate with the receiver. Fig. 6.10 illustrates these 6 topologies with 1 RPL border router
(green color), CoAP receiver (yellow color) and CoAP senders (pink color). The distance between
the unit squares is 10om. Choosing various network topologies determines how many direct neighbors
each node has. Also, it determines how many nodes compete for the radio channel and the available
bandwidth. These topologies create a diversity of available links, bandwidth and number of CoAP con-
nections in the network.

Destination Oriented Directed Acyclic Graph (DODAG) is initiated by the RPL border router which
stores the routing information for all the nodes. The RPL border router serves as a relay for CoAP mes-
sages, it does not send or receive any CoAP message. An initialization phase around 100 seconds for
each simulation is allowed since the RPL border router needs an amount of time to build the DODAG

across the network. No results are collected during this phase. Once the network is initialized, CoAP
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Figure 6.10: Network topologies for CoAP congestion control performance evaluation with Cooja/Contiki OS environment

senders generate messages which are directed towards the CoAP receiver. NSTART is set to 1 as per
CoAP default specification. The simulations of the different scenarios have a 15 min duration. These
simulations are repeated 5 times for each scenario. On one hand, as shown in the previous sections,
IDC-CoAP with 1w = 1.5 is a good tradeoft between goodput, Overhead and code simplicity then we
can choose it as a representative of rate-based congestion control algorithms in this study with Con-
tiki/Cooja. On the other hand, we have obtained the last version of the implementation of CoCoA+
from its authors, which will serve as a representative of backoff-based approach for congestion control.
In the previous section we showed that the performance of CoCoA+ is indeed very close to pCoCoA
and 4-state. Besides, we will compare with the existing CoAP implementation in Contiki that follows
the current standard using the simple binary exponential backoff 53 ].

Fig. 6.11 shows the three measured performance metrics: Goodput, Loss ratio and Overhead for the
three protocols: IDC-CoAP, CoCoA+ and CoAP for each of the four network topologies: Ring, Chain,
Dumbbell and Grid. As a first observation, it is clear that IDC-CoAP is always better than CoCoA+,
and that CoAP is evidently not efficient enough in all cases.

More closely, Fig. 6.11a shows that the Goodput of IDC-CoAP is higher than CoCoA+ even when
the transmission ratio TX is 100%, i.e. no loss simulation by Cooja. In the ring topology, most of the
motes send directly to the CoAP receiver and thus the network is somewhat stable with less congestion
events. To challenge more the algorithms, we decrease the transmission ratio to 95% and 9o%. Still

CoCoA+ and CoAP achieve lower Goodput than IDC-CoAP. They also experience more application
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losses (Fig. 6.11b) and overhead (Fig. 6.11c). Even when transmission losses are high (TX=90%),
IDC-CoAP is able to reduce the Overhead compared to other algorithms as shown in Fig. 6.11c. This
is because transmission losses are perceived as a residual bandwidth reduction from the sender and thus
IDC-CoAP which applies the rate-based congestion control reacts better to these losses.

In the chain topology, we varied the number of nodes in the chain to study the impact on the Good-
put, Loss ratio and Overhead. Naturally, the overall performance degrades when the number of nodes
in the chain increases because the nodes near to the receiver becomes more congested. In Fig. 6.11d,
IDC-CoAP algorithm results in a better goodput than CoCoA+ and CoAP in all number of nodes. It
also achieves zero loss ratio and lower overhead when the number of nodes varies as per Fig. 6.11e and
Fig. 6.11f. Hence, IDC-CoAP preformance is still robust when we have more congested nodes in the
network.

Thanks to our rate-based mechanism which tends to leverage from the available bandwidth and re-
duces the sending rate when the residual bandwidth is not sufficient. More nodes enforce more traffic
in the network which leads to more congestion, therefore, in such conditions, IDC-CoAP tends to min-
imize packet losses and save the battery life of constrained devices.

Similar to chain and ring topologies, IDC-CoAP attains better performance results in dumbbell
topology and this is illustrated in Fig. 6.11g to Fig. 6.11i. The creation of a congested link between the
RPL router and the CoAP receiver does not impact the relative performance of IDC-CoAP compared
to the others. Here also we varied the number of nodes with similar results as in the chain topology.

The results of the grid topology and its sub-topologies Square-shape and U-shape are shown in Fig.
6.11j to Fig. 6.111. Here, the position of congestion in the network topology becomes more variable
and the residual bandwidth as perceived by senders can be more dynamic, especially in the full grid
topology. Even in this case, IDC-CoAP is still showing a higher goodput, a lower application loss ratio
and also a lower overhead. This reinforces the necessity of rate-based congestion control for CoAP

rather than current backoff-based ones.

6.3 Other Proposed Algorithms

In order to improve our algorithms further, we developed and evaluated other versions for the conges-
tion control. For instance, we developed another version of IDC-CoAP with few more instructions
(lines 3 and 4), an incremental weight 4w = 1.7, decremental weight dw = 0.01 and fast decremental
weight fw = 0.5. The detailed pseudo-code of this version is presented in Algorithm 7. As matter of
fact, the results obtained by this version are similar to the ones obtained by the final version, however, to
maintain simplicity, we reduced the extra instructions and kept the final version of IDC-CoAP already
presented in Algorithm 5. Thanks to our formula (6.1) that helped us to find the optimal parameters

and reduce instructions in IDC-CoAP final version.
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Algorithm 7 IDC-CoAP pseudo-code with more instructions
1: Wait for CoAP ACK or RTO expiration
2: if ackis true then

3:  if previous packet is lost then

" SpCLCiTLg _ SpCLCi’I’Lg . 3*(spacing—ioss_spacing)
5. else

6: if spacing > loss_spacing then

7: spacing = spacing — dw * spacing

8: else

9: spacing = spacing — fw * spacing
10: end if
11: end if
12: else

13:  loss_spacing = spacing /* Save congestion level */

142 Spacing = 1w * spacing

15: end if

16: spacing = max(spacing, current_time — last_send_time)

17: Send next packet (transmission or retransmission) at: last_send_time + spacing

6.3.1 IDC-CoAP with probing

Moreover, we worked on an approach by following the Additive Increase Multiplicative Decrease prin-
ciple to control the rate with periodic probing of the bandwidth. In order to optimize the goodput, we
need to probe the bandwidth. Now, if we probe the bandwidth frequently and the congestion is high,
then the overhead will be high too due to losses. From one side we need to reduce the overhead and on
the other side, we need to optimize the goodput. We need to find a good compromise between these
two contradictory ideas. In this approach and similar to MBC-CoADP, if there is no packet loss after
probing, the sending rate is increased. Also, similar to IDC-CoAP, we reduce the spacing using a decre-
mental weight in order to increase the sending rate, and we increase the spacing using an incremental
weight to decrease the sending rate when a packet is lost. This approach, named ID C-CoAP with prob-
ing, merges the concept of both algorithms: IDC-CoAP and MBC-CoAP with some difference in the
design concept. For instance, we probe with [0ss_spacing which is saved at the loss event. Also, when
a packet is lost, we immediately reduce the sending rate unless we are in the probing phase. In this case,
we converge to the original sending rate. The pseudo-code of this approach is presented in Algorithm
8.

Similar to IDC-CoAP, when a loss is detected, the spacing is increased by multiplying it by the in-
cremental weight iw (line 18). When ACK is received, we implement ten-phase cycle including the
probing phase using l0ss_spacing to increase the sending rate and thus converge slowly (line ). The
spacing is reduced slowly (line 8) during the cycle. To ensure that the loss_spacing does not ex-

in terms of rate, we use a security margin of 1.01 (lines 9, 16, 18). When no losses

1
ceed Residual Bw
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Algorithm 8 IDC-CoAP with probing

1: Wait for CoAP ACK or RTO expiration
2: if ackis true then

3:  if cycle index = 10 then
4: cycle _inder+ =1
5: spacing before_probing = spacing /* Save spacing before probing */
6: spacing = loss_spacing /* Probing phase - Spacing saved at the loss event */
7. elseif cycle _indexr < 10 then
8: cycle _index+ =1
9: spacing = spacing — 2:pacing _1'041 +loss_spacing) /x §low decrease */
10:  else
11: /* No losses are observed and Cycle index = 11*/
12: spacing = dw * spacing /* Fast decrease to increase the sending rate*/
13: end if
14:  if previous packet is lost then
15: if cycle_indexr < 10 then
16: SpCLCi’I’Lg _ spacmg o 3*(spacingf1.0i*loss_spacing)
17: else
18: spacing — spacing_be fore_probing — 3*(spacingibe.fore)prolzling—1.01*lossispacing)
19: end if
20: cycle _indexr =1
21: end if
22: else
23: if cycle_indexr < 10 then
24: spacing = 1w * spacing
25 else
26: spacing = spacing _be fore_probing
27 end if
28: end if

29: spacing = maz(spacing, current_time — last_send_time)
30: Send next packet (transmission or retransmission) at: last_send_time + spacing
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Figure 6.13: Simulation results of IDC-CoAP with probing

are observed during the probing cycle, spacing is reduced with a decremental factor dw (line 11). The
instantaneous sending rate behavior of IDC-CoAP with probing is shown in Fig. 6.12 for dw = 0.25.
The value of the sending rate can be reduced by choosing greater dw value. The blue plot represents
the residual bandwidth while the red and blue plots represent the sending and success rates of the algo-
rithm. Simulation parameters are summarized in Table 6.1. As can been seen from the instantaneous
behavior of this approach, when the bandwidth increases, the sending rate becomes higher than the
success rates which has a negative impact on the goodput. As per Fig. 6.13a, the goodput decreases
when the bandwidth becomes highly variable. Although this approach provides better goodput than
IDC-CoAP with sw = 1.5, however, this is achieved on the behalf of increased overhead as per Fig.
6.13b and additional number of instructions and complexity (Algorithm 8).

In our opinion, the code can be simplified more and the parameters can be tuned to further improve

the results and achieve a better tradeoff between performance metrics.
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6.3.2 IDC-CoAP: Exponential growth

Of equivalent importance and noteworthy is that we also implemented and evaluated the principle of
IDC-CoAP with exponential growth. In this version of the protocol, we try to replace the additive in-
crease principle of the proposed algorithm IDC-CoAP with a faster increase principle. According to
our observation, when the sending rate converges slowly, some bandwidth will be wasted. However,
if we converge faster, we will reduce the wastage of the bandwidth. As we have seen in IDC-CoAP,
there was a wastage of the bandwidth. For instance, when the residual bandwidth is 2 packets per sec-
ond, IDC-CoAP can not achieve more than 1.6 packets per second which is almost 80% of the avail-
able bandwidth. Actually, this is a drawback in the additive increase approach. Hence, when there is a
congestion, it takes time to converge and transmit quickly. The new idea is to converge immediately.
Therefore, instead of waiting ¢ time, we wait % then i and so on until the sending rate becomes very
close to the residual bandwidth. This fast convergence can be done using a binary or exponential ap-
proach. In addition to using % in order to increase and decrease the sending rate, we might also use %
instead as an increase and decrease exponential factor. However, according to our analysis, the % factor
provides better convergence which will be confirmed in the instantaneous behavior. The outcome is a
new approach called IDC-CoAP exponential growth, and the exponential factor can be either % or %.
The pseudo-code of this approach is presented in Algorithm 9. When ACK is received, we maintain
a counter which is relevant to the target overhead. For instance, if the number of packets inside the
period is n, the overhead is % It is like we lose a packet after nn times. We fix the counter 1 according to
the target overhead. Here, we use n = 10 (line 3). The security margin used is 1.01 (lines 8 and 15).
The spacing is exponentially reduced (line 8) to increase the sending rate. Here, we show the instruc-
tions with % exponential factors (lines 8 and 15). When no losses are observed after 7 transmissions,
spacing is reduced with a 0.5 factor (line 11). The instantaneous sending rates of IDC-CoAP exponen-
tial growth with % and % factors are presented in Fig. 6.14a and Fig. 6.14b respectively. The network
scenario for the instantaneous behavior is similar to the one simulated in Fig. 6.1. We can see clearly
the exponential growth that allows the sending rate to increase and converge quickly after a packet loss
when the simulation time is between 10000 ms and 40000 ms in Fig. 6.14a) and between 20000 ms
and 40000 ms in Fig. 6.14b). Due to the exponential increase, the sending rate exceeds the residual
bandwidth in many cases which will cause packet losses.

Although such approaches will reduce the wastage of the bandwidth, however, it is very risky in case
the bandwidth is highly variable. The main reason is that this fast behavior does not provide the net-

work with sufficient time after congestion and hence worsen the situation. In addition to making the

congestion worse, another drawback of such approaches is that they impose more losses. Fig. 6.15a
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shows that IDC-CoAP exponential growth achieves better goodput than IDC-CoAP with 7w = 1.5
when the residual bandwidth is very variable. The goodput of IDC-CoAP with ¢w = 1.5 decreases be-
cause of the slow convergence when the variability of the residual bandwidth increases. However, and
as shown in Fig. 6.15b, IDC-CoAP exponential growth imposes more overhead up to 20% and 30%.
The increase in the overhead is due to the increased number of losses caused by the fast convergence of

the exponential growth.

On the other hand, IDC-CoAP with probling and ID C-CoAP exponential growth are more complex
than IDC-CoAP. However, a better tuning for these versions might improve the performance further.

Hence, we consider these approaches as an open research problem.

Algorithm 9 IDC-CoAP with exponential growth
1: Wait for CoAP ACK or RTO expiration
2: if ackis true then

32 if n = 10 then
4: nt+=1
5: spacing = loss_spacing /* Spacing saved at the loss event */
6: elseif n < 10 then
7: nt=1
8: spacing = spacing — £acing 71'012* loss_spacing) /% Exponential growth */
9: else
10: /* No losses are observed andn=11%/
11: spacing = 0.5 * spacing /* Increasing the sending rate™/
12: end if
13:  if previous packet is lost then
14: n=1
s SpCLCiTLg _ spacing . (spacing—1.012*loss_spacmg)
16:  endif
17: else

18:  loss_spacing = spacing /* Save congestion level */

19:  Spacing = 1w * spacing

20: end if

21: spacing = maz(spacing, current_time — last_send_time)

22: Send next packet (transmission or retransmission) at: last_send_time + spacing

6.4 Summary

IoT devices are typically constrained by power capacity, memory and computational abilities in spite
of the rapid changes in technology. As a result, these limitations increase the difficulty of data trans-
mission and hence many algorithms may not perform efficiently if not well designed. Several research

works have tried to improve further CoAP performance, in particular, its congestion control mecha-
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nism which plays an important role in its efficiency in terms of reliability, energy consumption and
rate performance. Based on our analysis in chapter 2 and according to the proposal of modifications
of the evaluated algorithms, we developed, in this chapter, new rate-based algorithms, IDC-CoAP and
MBC-CoAP. Most previous works have followed the backoff-based approach for congestion control
while we proved in our performance evaluation section that a rate-based approach is much better than
backoft-based approaches in most of the network topologies and scenarios. Our results, obtained from
experiments, show significant advantages, with respect to goodput, loss ratio and overhead, in using
rate-based approaches. IDC-CoAP provides lower overhead than MBC-CoAP and better goodput in
scenarios where the residual bandwidth is not high variable, while MBC-CoAP is resilient against high
variability of residual bandwidth and provides better goodput results than other algorithms. However,
the linear approach of IDC-CoAP is less complex than MBC-CoAP and uses less instructions. In addi-
tion to the proposed algorithms, we have also explored and implemented different approaches that can

be used as a guideline for further developments.
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Conclusions and Future work

7.1 Conclusion

Since the design of the Constrained Application Protocol (CoAP), several research works have tried to
improve its performance and increase its widespread usage in different IoT fields. In terms of efficiency,
congestion control algorithms are particularly important in this protocol since they affect its reliability,
energy consumption, and rate performance.

In this thesis, we developed novel models to represent the performance of CoAP under the Bernoulli
loss model, the Simple Gilbert and Gilbert-Elliot loss models. We showed how to compute several
performance metrics and validated these models via simulations in realistic network environments. The
models are used to study precisely the performance of CoAP. The first observation that is brought up
after this study is the importance of reducing the retransmission timeout in CoAP. Additionally, the
performance analysis sheds light on the inadequacy of the backoff procedure in CoAP. In fact, it shows
the necessity for replacing the default backoft procedure by a rate-based congestion control mechanism
to improve bandwidth utilization, while maintaining simplicity.

Most previous works have followed the backoff-based approach for congestion control. However, we
showed in this thesis that a rate-based approach is much more appropriate in most network scenarios.
Indeed, the non fine-grained nature of the backoff-based procedure does not allow for precise control;

this is true even when several backoff factors and weights are used. Thus, to be concretely efficient,
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the proposed rate-based control must be both simple and well adapted to IoT networks and to devices
that employ the CoAP protocol. Our two rate-based protocols IDC-CoAP and MBC-CoAP are able
to leverage the available bandwidth in the network and thus reduce message losses and unnecessary
retransmissions, which are very harmful to IoT constrained devices.

On the one hand, the design concept of MBC-CoAP allows to increase and reduce the sending rate to
estimate the bandwidth accurately. However, this design concept imposes complexity when attempt-
ing to obtain and maintain the measurements. Also, another challenge is choosing the measurement
window size m. When m is small, the sending rate converges fast and this is useful if the bandwidth
is not variable. However, if the bandwidth is variable, then the value of m should be high to maximize
the goodput. Now, how can one determine the variability of the bandwidth in the network? Equiva-
lently, how should one set the measurement window size m? The answer to both questions is not clear
because the status of the constrained networks is usually unpredictable.

On the other hand, IDC-CoAP design is simpler but the parameters should be well chosen to achieve
a good tradeoft between goodput and loss ratio. Also, IDC-CoAP will be slow in convergence and the
goodput is reduced when the decremental weights are small. Unfortunately, the risk of choosing high
values of decremental weights is packet losses. In order to overcome this problem, we have developed
a formula to generate the incremental and decremental weights of IDC-CoAP to meet a given per-
formance objective. The parameters that we have selected achieved a good tradeoff between different
performance metrics in the majority of the tested network scenarios. Our results, obtained from sim-
ulation and from the Cooja/Contiki environment, show that the more the available bandwidth or the
network dynamics, the higher the gain in all performance metrics.

Another important aspect of our congestion control protocols is that, depending on the application,
they can be tuned to optimize further the performance. We have shown in chapter 6 that a good com-
bination of IDC-CoAP parameters is: incremental weight ¢w = 1.5, decremental weight dw = 0.01
and fast decremental weight fw = 0.5. For instance, in IoT health-monitoring applications, some
information should be delivered with high reliability (such as the body temperature or the heart rate).
In this case, the CoAP sending rate can be reduced conservatively to avoid losses. In particular, a higher
incremental weight 22 must be chosen. On the other hand, in a weather sensing application for exam-
ple, a packet loss is less damaging because the next packet has an updated data of the weather. In this
case, a lower value of incremental weight 7w can be selected to increase the sending rate. Besides, if
sensors are using wired power supplies, increasing the sending rate allows more data to be collected.
Finally, since CoAP can be used also for file transfer, incorporating an effective rate-based control in it

is beneficial.
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7.2 Puture Work

7.2.1  CoAP Evaluation

An important future work would be developing mathematical models, similar to the ones presented
in this thesis, for IDC-CoAP and MBC-CoAP to complete their study from an analytical perspective.
In this thesis, the developed models for CoAP evaluation assume that the bandwidth is one packet per
RT'T, the acknowledgement (ACK) of each packet is either received by the sender or not, and a backoff
mechanism is involved when the ACK is not received. However, IDC-CoAP and MBC-CoAP assume
that the bandwidth is variable and the sending rate is adapted according to the available bandwidth.
Therefore, future work should take into account this behavior of MBC-CoAP and IDC-CoAP, which is
different from the backoft-based approach. Besides, it would be interesting to include in the model other
factors such as the impact of fragmentation. This may be done by modifying the loss probabilities of the
Gilbert-Elliott model, which in turn can be obtained through measurements. Furthermore, other states
can be added to our Markov chain to consider different packet sizes that would experience different loss
ratios.

Another important future work is to compare our new CoAP protocols with other protocols that use
Transmission Control Protocol (TCP) as a transport protocol, such as the Message Queue Telemetry
Transport (MQTT). MQTT is an important application layer protocol designed for communications
in IoT networks. It uses a topic-based publish/subscribe architecture, where reliability of messages is
provided by three levels of Quality of Service (QoS). MQTT relies on TCP, and its reliance on this type
of connection increases the overhead and thus the total packet size. Therefore, while MQTT can offer
high reliability, it canlead to aharmful increase in power consumption [ 47]. Previous works have shown
that it is appropriate to use MQTT in some specific IoT applications. Hence, performing an in-depth
and relative analysis between our proposed CoAP protocols and protocols like MQTT is necessary to

gain insight into their strengths and limitations, according to the application at hand.

7.2.2 Congestion Control mechanism

The results of this thesis prove that there is no congestion control mechanism that is optimal in all
performance metrics and for all network scenarios. Our new proposals, IDC-CoAP and MBC-CoAP,
perform better than other algorithms suggested by the literature in the majority of the considered cases.

There is no doubt that finding solutions that lead to better performance with less complexity is a
difficult task. Indeed, one must take into account several aspects, such as (i) the capacity of the con-
strained devices, (ii) the traffic load on each node in the IoT network, and (iii) the ability to strike a
balance between latency and reliability. In this thesis, we have presented different approaches to solve

this problem. The first goal of our work is to keep the algorithms simple while achieving better perfor-
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Figure 7.1: MBC-CoAP and IDC-CoAP: Future improvements

mance. In our future work, we aim to improve our proposed congestion control mechanism to provide
even higher performance while maintaining simplicity. In particular, our objective is to estimate the
bandwidth more precisely in order to improve goodput and reduce losses.

Fig. 7.1 presents the behavior of the instantaneous sending rate achieved by IDC-CoAP and MBC-
CoAP algorithms in presence of a variable residual bandwidth. These graphs were introduced in details
in Chapter 6. As can be seen from figures 7.1a and 7.1b, there is still room for improvement. Particu-
larly, in Fig. 7.1a, we highlight points where the algorithm can better leverage the available bandwidth:
at z-point 50000, the sending rate converges slowly although the bandwidth opens up. We see simi-
lar behavior at z-points 15000 and 120000. This takes place due to the gradual reduction in spacing
via the decremental weight. In these instances, the available bandwidth is wasted and thus the good-
put is reduced. Hence, one possible limitation of IDC-CoAP is that after 2 or more successive packet
losses, its sending rate does not grow fast. Also, in Fig. 7.1b, the pacing cycle can be manipulated to
engender additional gain of the goodput while minimizing packet losses, to achieve battery-life saving
in constrained devices.

Since our results show that MBC-CoAP has robust stability and convergence properties, another
future work aims to further reduce its complexity so that it can be incorporated in tiny IoT devices.
Other approaches for congestion control may be adopted, but the addition of instructions will increase
the overall complexity. While this problem has been explored in this thesis, better solutions can be
sought after. On the other hand, we already started implementing MBC-CoAP in Cooja/Contiki. In
fact, integrating MBC-CoAP in constrained IoT devices is one of the recent challenges we encoun-
tered. The initial results show that MBC-CoAP performs better than other algorithms on some nodes
in our network topology but has negative impact on the performance of other nodes. Our first obser-
vation regarding this negative impact is due to MBC-CoAP’s inability to converge quickly with sudden
bandwidth changes. We think that tuning the measurement window size m will improve the overall

performance of the algorithm on all the nodes. This is an area to be explored.
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Chapter 6 was concluded by introducing new approaches — considered as open research problems —
which are mainly IDC-CoAP with probing and ID C-CoAP with exponential growth. In the former, we
followed the Additive Increase Multiplicative Decrease approach with probing of the bandwidth. In the
latter, we considered exponential increase to increment the sending rate. Firstly, we did not consider
reducing the number of instructions. Secondly, and in some cases, the sending rate exceeded the resid-
ual bandwidth due to the exponential growth; more induced packet losses is the consequence. Also,
packet retransmissions are increased which is a waste of significant energy. Hence, another important
future work is to consider tuning the parameters of these algorithms. More importantly, a reduction
in these algorithms’ complexity while maintaining a good tradeoff between performance metrics is a
must. Another important area to study is the dynamic update of the proposed algorithms’ parameters
according to the network’s state. One way to accomplish this is by computing the loss probability p of
the network periodically and update the parameters accordingly. This is an area of more research.

In addition to tuning the parameters of the previous algorithms and updating them dynamically,
we may adopt a hybrid protocol that switches between the Additive Increase Multiplicative Decrease
approach and the exponential growth-based approach, depending on the network’s state of congestion.
For instance, in Chapter 6, we have seen that some proposals for IDC-CoAP perform well in cases
where bandwidth variation is not high. Therefore, switching between different approaches according
to bandwidth variability will be considered as well.

Finally, we state that loss is sometimes the result of the algorithm’s ‘aggressiveness’. Asa protocol gets
more aggressive (e.g., by using a fast decremental weight to increase the sending rate), it creates more
loss and thus, needs to send at a lower rate. However, a less aggressive algorithm is less responsive to
the available bandwidth (e.g., one that employs a slow decremental weight to reduce the sending rate).
Therefore, we can see that there are many facets to the problem, requiring more research efforts. We
believe that fast convergence to efficiency requires a mechanism that detects the availability of unused
bandwidth, which is an active research area. In general, we foresee that advances in this field will greatly

benefit the congestion control research.
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Expressions of A" elements: Cayley-Hamilton

theorem

Through Cayley-Hamilton theorem, we found the following terms of Artl = [ ¢
c

b
] as follows:
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Afr+1

Expressions of elements:

Diagonalization/similarity

We provide in this section an alternative method to compute a, b, ¢ and d using diagonalization and

similarity transformation.
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which is formed by eigen vectors. Then:
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However,
p(L=h)M = (1 =q)(1=h)]=p(L =h) A2 = (L= q)(1 = h)] =p(1 = h) (A1 — Ao) =1

Substituting for p(1 — h) = m, we obtain:
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Simplifying further, we obtain:
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Simplifying using the fact that
M= (=) =h)l[Ae = (1= q)(1 = )] = —pq(1 = h)(1 — k)

We found the same expressions for a, b, c and d of A" ™! calculated using Cayley-Hamilton theorem

in Appendix A.
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