Lattice-based cryptography aims at harnessing the security of cryptographic primitives in the conjectured hardness of well-identified and well-studied algorithmic problems involving Euclidean lattices. This approach leads to more efficient primitives, increased security (the most common lattice problems are conjectured quantum-hard), and improved cryptographic functionalities (fully homomorphic encryption, functional encryption, program obfuscation, etc). A less common but still recurring family of lattices are the so-called orthogonal lattices where the matrix is often sampled from a Gaussian distribution. In this thesis, we study the cryptographic aspects of orthogonal lattices. When lattices have turned into a major build block in designing cryptographic primitives, orthogonal lattices have been used in various constructions such as cryptographic multilinear maps, traitor-tracing schemes, and inner product functional encryption.

Firstly, we consider the successive minima and the smoothing parameter of random orthogonal lattices. The main motivation (and our result) is a generalization of the leftover hash lemma (LHL) to lattices and discrete Gaussian distributions. Our results improve the probabilistic upper bound on the smoothing parameter and give a probabilistic upper bound on the last minimum of the orthogonal lattice.

Next, we investigate broadcast encryption with anonymous revocation, in which ciphertexts do not reveal any information about which users have been revoked. The orthogonal lattices are involved in the security proofs of these protocols. We describe a generic transformation of linear functional encryption toward the broadcast systems supporting the trace and revoke with the novelty of achieving anonymity.

Finally, a fundamental problem related to lattices is the learning with errors (LWE) problem which is an amazingly versatile basis for cryptographic constructions. We introduce a new variant of LWE, called on the integers because it does not involve any modular reduction. We show that the new problem is at least as hard the standard problems over lattices.
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La cryptographie à base de réseaux euclidiens vise à faire reposer la sécurité des primitives cryptographiques sur la difficulté conjecturée de problèmes algorithmiques bien identifiés et bien étudiés impliquant les réseaux euclidiens. Cette approche conduit à des primitives plus efficaces, à une sécurité accrue (les problèmes de réseaux les plus courants sont conjecturés quantiquement difficiles) et à des fonctionnalités cryptographiques améliorées (chiffrement entièrement homomorphe, chiffrement fonctionnel, obscurcissement de programme, etc). Une famille de réseaux moins courante mais récurrente sont les réseaux dits orthogonaux où la matrice est souvent échantillonnée à partir d'une distribution gaussienne. Dans cette thèse, nous étudions certains aspects cryptographiques des réseaux orthogonaux. Lorsque les réseaux sont devenus un élément majeur de la conception de primitives cryptographiques, les réseaux orthogonaux ont été utilisés dans diverses constructions telles que les fonctions multilinéaires cryptographiques, les schémas de traçage des traîtres et le chiffrement fonctionnel pour le produit scalaire. Tout d'abord, nous considérons les minima successifs et le paramètre de lissage de réseaux orthogonaux aléatoires. La motivation principale (et notre résultat) est une généralisation du lemme des restes du hachage (LHL pour Left Over Hash Lemma) aux réseaux et aux distributions gaussiennes discrètes. Nos résultats améliorent la borne supérieure probabiliste sur le paramètre de lissage et donnent une borne supérieure probabiliste sur le plus grand minimum du réseau orthogonal.

Ensuite, nous étudions le chiffrement de diffusion avec révocation anonyme, dans lequel les chiffrés ne révèlent aucune information portant sur les utilisateurs qui ont été révoqués. Les réseaux orthogonaux sont impliqués dans les preuves de sécurité de ces protocoles. Nous décrivons une transformation générique du chiffrement fonctionnel linéaire vers des systèmes de diffusion supportant le traçage et la révocation, avec comme nouveauté l'obtention d'une propriété d'anonymat.

Enfin, un problème fondamental lié aux réseaux est l'apprentissage avec erreurs (LWE pour Learning With Errors) car il est une base polyvalente pour les constructions cryptographiques. Nous introduisons une nouvelle variante de LWE, dite sur les entiers car elle ne fait pas intervenir de réduction modulaire. Nous montrons que ce nouveau problème est au moins aussi difficile que des problèmes standard portant sur les réseaux euclidiens.
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Contexte

La cryptographie basée sur les réseaux euclidiens a été introduite par Ajtai [START_REF] Ajtai | Generating hard instances of lattice problems (extended abstract)[END_REF]. Elle fait reposer la sécurité des primitives cryptographiques sur la difficulté conjecturée de problèmes algorithmiques bien identifiés et bien étudiés impliquant des réseaux euclidiens [START_REF] Peikert | A decade of lattice cryptography[END_REF]. Elle a été beaucoup développée depuis ces dernières années, car les problèmes à base de réseaux euclidiens sont très prometteurs comme source de sécurité cryptographique, pour quand un ordinateur quantique sera construit. En effet, tous les protocoles utilisés aujourd'hui sur Internet (RSA, ECDSA,...) sont basés sur des problèmes faciles à résoudre si l'on dispose d'un ordinateur quantique. Il y a eu un certain nombre de propositions de schémas cryptographiques dont la sécurité repose de manière prouvée sur des problèmes difficiles portant sur les réseaux euclidiens de grande dimension. Ces problèmes devraient être exponentiellement difficiles à résoudre (la dimension du réseau), même avec des ordinateurs quantiques. Par exemple, le problème du vecteur le plus court (SVP pour Shortest Vector Problem, voir Figure 1) dans 2 est NPdifficile pour des réductions probabilistes [START_REF] Ajtai | The shortest vector problem in 2 is NP-hard for randomized reductions (extended abstract)[END_REF]. À part être présumée résistante aux ordinateurs quantiques, la cryptographie basée sur les réseaux conduit à des primitives plus efficaces, à une sécurité accrue et à des fonctionnalités cryptographiques améliorées (chiffrement entièrement homomorphe, chiffrement fonctionnel, obscurcissement du programme, etc).

Lemme des restes du hachage sur les réseaux. De nombreux schémas basés sur les réseaux nécessitent un échantillonnage à partir d'une distribution Gaussienne discrète. Il a été largement utilisé dans tous les aspects de la cryptographie basée sur les réseaux. De plus, D. Micciancio et O. Regev montrent dans [START_REF] Micciancio | Worst-case to average-case reductions based on Gaussian measures[END_REF] que les distributions Gaussiennes partagent de nombreuses propriétés intéressantes avec leurs contreparties continues, et démontrent leur utilité pour la cryptographie basée sur les réseaux.

Le lemme des restes du hachage (LHL pour Leftover Hash Lemma) est un outil très puissant. Son application la plus simple est la suivante : échantillonnons a 1 , . . . , a m uniformément dans Z q pour un entier q > 1; échantillonnons z 1 , . . . , z m petits entiers gaussiens. Alors, conditionnée aux a i , la valeur i a i z i mod q "ressemble" à un élément uniforme de Z q . Cette observation, due à [GPV08, Lemme 4.2], est une variation du lemme des restes du hachage [START_REF] Impagliazzo | Pseudo-random generation from one-way functions[END_REF], et sa preuve est basée sur le paramètre de lissage du réseau correspondant au noyau de la fonction z ∈ Z m → z, a mod q. Un tel résultat nous permet par exemple d'argumenter sur l'impossibilité de distinguer les clés publiques des éléments uniformes : dans [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], Regev utilise le LHL sur Z q , pour montrer que s i a i donne une clé publique uniforme, où les s i ∈ Z q sont la clé secrète.
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Figure 1 : Un exemple du problème du vecteur le plus court en 2 dimensions : donnons une base de réseau (les vecteurs noirs) comme entrée, la sortie est un vecteur le plus court (le vecteur rouge).

Plus généralement, le LHL conduit à des extracteurs d'aléa simples et efficaces, et peut être utilisé dans de nombreuses applications nécessitant un bon aléa. Il trouve donc de nombreuses applications en cryptographie : dérivation de clés, générateurs de nombres aléatoires, etc [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF][START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF]. La variante classique du LHL relie une distribution uniforme fixe sur un support fini à une autre distribution qui provient d'une construction cryptographique spécifique. Cependant, pour certaines primitives à base de réseaux euclidiens, nous ne pouvons pas utiliser directement le LHL. En effet, pour les constructions à base de réseaux, l'application du LHL peut être limitée pour deux raisons. La raison principale est que nous considérons des distributions dont le support est un réseau euclidien, qui est un domaine infini. De plus, un choix populaire de distribution à considérer est une distribution Gaussienne discrète, au lieu d'une distribution uniforme (qui n'existe pas sur le domaine infini). Par conséquent, il est important d'étendre le LHL à un tel cadre.

Une autre application simple du LHL est la construction d'un échantillonneur gaussien discret. Plus précisément, nous considérons l'échantillonneur suivant. Dans une phase hors ligne, pour m > n, nous échantillonnons l'ensemble de vecteurs courts x 1 , . . . , x m à partir d'un réseau L. Par la suite, dans la phase en ligne, l'échantillon génère z ∈ Z m selon une Gaussienne discrète et renvoie simplement m i=1 z i x i . Dans [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], les auteurs analysent la distribution de X t z où X est une matrice Gaussienne aléatoire dans Z m×n et z est un vecteur gaussien aléatoire dans Z m . Leurs résultat principal est le suivant : si X satisfait une certaine contrainte et si l'écart type de la distribution Gaussienne de z est suffisamment grand, alors la distribution de X t z est statistiquement proche de la distribution Gaussienne discrète avec une covariance appropriée (voir Figure 2). Par la suite, dans [AR16], D. Aggarwal et O. Regev améliorent le résultat principal de [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] pour certains jeux de paramètres. Dans les deux résultats, la borne de l'écart type de la distribution Gaussienne de z provient du paramètre de lissage de réseau orthogonal Λ ⊥ (X) qui est l'ensemble de tous les vecteurs v ∈ Z m qui appartien-
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Figure 2 : Lemme des restes du hachage sur les réseaux [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] : pour les paramètres appropriés, la distribution X t z conditionnée par X est proche d'une Gaussienne sur Z n . nent au noyau (gauche) de X. Le paramètre de lissage a été introduit dans [START_REF] Micciancio | Worst-case to average-case reductions based on Gaussian measures[END_REF]. Intuitivement, cela dit que lorsque l'écart type est suffisamment grand, alors les propriétés statistiques de la distribution Gaussienne discrète sur les réseaux sont très proches de celles de la distribution Gaussienne continue.

Ici, nous notons que le réseau Λ ⊥ (X) a pour dimension m -dim(Λ(X)), et une base peut être calculée en temps polynomial à partir de X. De façon intéressante, les liens entre dualité et orthogonalité permettent de prouver que le volume de Λ ⊥ (X) est égal au volume du réseau span(Λ(X)) ∩ Z m avec probabilité proche de 1 vis-àvis du choix de X [START_REF] Nguyen | La géométrie des nombres en cryptologie[END_REF]. Ainsi, si un réseau dans Z m consiste à faible dimension, son réseau orthogonal consiste à grande dimension avec un volume au plus égal : les minima successifs du réseau orthogonal sont susceptibles d'être beaucoup plus courts que ceux du réseau d'origine. En cryptographie, les réseaux orthogonaux sont d'abord apparus comme un outil cryptanalytique [START_REF] Nguyen | Merkle-Hellman revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations[END_REF][START_REF] Nguyen | The hardness of the hidden subset sum problem and its cryptographic implications[END_REF][START_REF] Van Dijk | Fully homomorphic encryption over the integers[END_REF]. Des années plus tard, lorsque les réseaux sont devenus un élément majeur de la conception de primitives cryptographiques, les réseaux orthogonaux ont été utilisés dans diverses constructions telles que de fonctions multilinéaires cryptographiques [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], de schémas de traçage de traîtres [START_REF] Ling | Hardness of k-LWE and applications in traitor tracing[END_REF] et de chiffrement fonctionnel pour le produit scalaire [START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF].

Systèmes de traçage et de révocation. Un type de protocole qui utilise les réseaux orthogonaux dans les preuves de sécurité est le chiffrement de diffusion qui est une primitive cryptographique fondamentale qui donne la possibilité d'envoyer un message sécurisé à n'importe quel ensemble cible choisi parmi les utilisateurs enregistrés. La variation la plus intéressante du chiffrement de diffusion s'appelle système de traçage-etrévocation [START_REF] Boneh | A fully collusion resistant broadcast, trace, and revoke system[END_REF] qui est un système de chiffrement multi-destinataires où un distributeur de contenu peut trouver des utilisateurs malveillants et peut révoquer leur capacité de déchiffrement (voir Figure 3). De manière informelle, un tel schéma de chiffrement à clé publique, permet à un expéditeur de chiffrer des données sous une clé publique pk et chaque utilisateur légitime peut utiliser sa clé secrète sk i pour déchiffrer les données. Un système de traçage des traîtres garantit que si une coalition d'utilisateurs (légitimes) mettent en commun leurs clés secrètes pour construire une boîte décodeur qui peut déchiffrer le texte chiffré, alors il existe un algorithme de traçage efficace pour trouver au moins un utilisateur coupable à condition que l'algorithme ait accès au décodeur. Par la suite, le distributeur de contenu peut utiliser la fonctionnalité de révocation pour interdire aux utilisateurs coupables d'accéder aux données à l'avenir. Un système de Solution entière courte (Short Integer Solution). Un problème moyen-cas proposé par Ajtai consiste à trouver une solution entière non nulle courte e ∈ Z m au système linéaire homogène A t e = 0 mod q pour A ∈ Z m×n q uniforme. Cela équivaut à trouver un vecteur court non nul dans Λ ⊥ q (A) (voir Figure 4). Ce problème est appelé solution eniètre courte (SIS pour Short Integer Solution). Il est la base de fonctions de hachage et résistantes aux collisions, de schémas d'identification, de signatures numériques, etc [GPV08, Lyu13, LS14, PR06, Pei15, LLLS13].

Apprentissage avec erreurs (Learning with errors). Un problème fondamental lié aux réseaux est le problème d'apprentissage avec erreurs (LWE pour Learning With Errors).

Le problème LWE est introduit par Regev [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Il consiste à récupérer un vecteur uniforme s ∈ Z n q , étant donné de nombreux échantillons de la forme (a, a, s +e), avec a uniforme dans Z n q et un bruit e échantillonné selon une distribution gaussienne sur Z q . Dans [Reg05], Regev a montré que pour des paramètres appropriés, ce problème est aussi difficile que des problèmes de réseau dans le pire des cas, et équivalent en temps polynomial à sa version de décision, qui demande de distinguer la distribution de l'échantillon LWE comme ci-dessus de la distribution uniforme sur (Z n q × Z q ). Nous présentons maintenant le chiffrement à clé publique utilisant LWE de [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Alice choisit une clé secrète s et une matrice aléatoire A ∈ Z m×n q . La clé publique d'Alice est

(A, b = As + e).
Elle est indiscernable d'une paire uniforme, sous l'hypothèse de difficulté de la version décisionnelle de LWE. Afin de chiffrer un message à Alice, Bob choisit un petit vecteur aléatoire r, et calcule le texte chiffré

u = A t r, u = b t r + µ • q 2 où
µ est le bit de message. Dit autrement, il envoie soit b t r pour µ = 0, soit quelque chose de très éloigné de b t r, pour µ = 1. Pour déchiffrer le message, Alice soustrait les informations en fonction de sa clé secrète s t u de u , qui est soit approximativement 0 soit approximativement q 2 , selon la valeur du bit de message µ.

De nombreuses variations du problème LWE ont été introduites, principalement dans le but d'améliorer l'efficacité de la cryptographie basée sur les réseaux. Par exemple, de nombreux articles ont été consacrés à l'analyse de LWE lorsque la clé secrète s, ou l'erreur e ou le vecteur a suivent une distribution qui est différente de celle considérée par [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], comme dans [MP13, BLP + 13, HM17]. Des extensions de LWE sur des anneaux plus généraux ont également été largement étudiées, en commençant par les introductions du problème Polynomial-LWE [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF] et du problème Ring-LWE [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF][START_REF] Rosca | On the Ring-LWE and Polynomial-LWE problems[END_REF].

Nos contributions

Dans cette thèse, nous nous concentrons sur les aspects cryptographiques des réseaux orthogonaux. Tout d'abord, nous considérons les minima successifs et le paramètre de lissage des réseaux orthogonaux aléatoires. Nous étudions ensuite le chiffrement de diffusion avec révocation anonyme. Enfin, nous introduisons une nouvelle variante du problème LWE sur les entiers, sans aucune réduction modulaire.

Nous notons que les résultats discutés ci-dessous ont été principalement tirés d'un article en préparation et des articles publiés suivants.

Le paramètre de lissage des réseaux orthogonaux aléatoires

Le paramètre de lissage du réseau Λ ⊥ (X) généré par une gaussienne discrète X ∈ Z m×n a déjà été considéré par Agrawal et al. dans [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]. La motivation principale (et notre résultat) est une généralisation du lemme des restes du hachage (LHL) aux réseaux et aux distributions gaussiennes discrètes. Notre premier résultat est une borne supérieure probabiliste améliorée sur le paramètre de lissage, par rapport aux travaux antérieurs [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] et [AR16]. Notre deuxième résultat améliore la borne supérieure probabiliste sur le (m -n)-ième minimum du réseau orthogonal Λ ⊥ (X). [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF] mais nous avons finalement trouvé une attaque contre ce schéma. Notre troisième contribution est d'étendre le chiffrement à 1 bit de la transformation générique au chiffrement à n bits. En introduisant le chiffrement fonctionnel par multiplication matricielle, qui effectue un nombre fixe d'appels parallèles sur des chiffrements fonctionnels avec le même caractère aléatoire, nous pouvons prouver la sécurité du schéma final avec une réduction serrée qui ne dépend pas de n, contrairement à ce que l'on obtient en utilisant l'argument hybride.

Chiffrement de traçage et révocation avec anonymat

Nouveau problème LWE sur les entiers

Nous introduisons une nouvelle variante du problème LWE sur les entiers, sans aucune réduction modulaire.

Concrètement, nous considérons deux problèmes : integer-SIS, et integer-LWE. Pour integer-SIS, la différence avec le problème SIS est que les entrées de la matrice A sont gaussiennes sur les entiers. Par la suite, à partir de l'observation que le problème integer-SIS est syntaxiquement équivalent à trouver un vecteur court non nul dans le réseau orthogonal, et inspiré par la dualité avec le problème de décodage à distance bornée (BDD pour Bounded Distance Decoding), nous définissons le problème de recherche, integer-LWE comme un BDD sur le réseau dual : il consiste à récupérer k à partir de (X, π ker(X) (k + e)), où X et k sont gaussiens sur Z m×n et Z m , respectivement, et e ∈ R m est gaussien avec un écart type nettement inférieur à 1. Nous proposons une réduction en temps polynomial quantique du problème integer-SIS au problème integer-LWE.

Organisation du manuscrit

Au chapitre 2, nous rappelons toutes les définitions importantes qui sont utilisées au long de cette thèse. Celles-ci incluent les définitions de base liées aux réseaux. Au chapitre 3, nous exposons notre résultat sur le paramètre de lissage du réseau orthogonal. Le chapitre 4 concerne un schéma de chiffrement de diffusion de traçage avec révocation anonyme. Au chapitre 5, nous introduisons le nouveau problème integer-LWE. Enfin, nous concluons cette thèse et présentons quelques pistes de travaux futurs dans le chapitre 6.

Chapter 1 Introduction

Background

Lattice-based cryptography was introduced by Ajtai in 1996 [START_REF] Ajtai | Generating hard instances of lattice problems (extended abstract)[END_REF]. It aims at harnessing the security of cryptographic primitives in the conjectured hardness of well-identified and well-studied algorithmic problems involving Euclidean lattices [START_REF] Peikert | A decade of lattice cryptography[END_REF]. It has been developed in recent years, as lattice-based problems are very promising as a source of cryptographic security, in the case when a quantum computer will be built. Indeed, all the protocols used today on the Internet (RSA, ECDSA,...) are based on problems that are easy to solve if one has a quantum computer. There have been a number of proposals of cryptographic schemes with security provably relying on hard problems over high-dimensional Euclidean lattices. Indeed, these problems are expected to be exponentially hard to solve (in the dimension of the lattice), even with quantum computers. For example, the shortest vector problem (SVP) (see Figure 1.1) in 2 is NP-hard for probabilistic reductions [START_REF] Ajtai | The shortest vector problem in 2 is NP-hard for randomized reductions (extended abstract)[END_REF]. In addition to being supposedly resistant to quantum computers, this approach leads to more efficient primitives, increased security, and improved cryptographic functionalities (fully homomorphic encryption, functional encryption, program obfuscation, etc).

Leftover Hash Lemma over lattices. Many lattice-based schemes require sampling from discrete Gaussian distributions. They have been used extensively in all aspects of lattice-based cryptography. Moreover, D. Micciancio and O. Regev show in [START_REF] Micciancio | Worst-case to average-case reductions based on Gaussian measures[END_REF] that Gaussian distributions share many nice properties with their continuous counterparts, and demonstrate their usefulness for lattice-based cryptography.

The leftover hash lemma (LHL) is a very powerful tool. Its simplest application is the following: sample a 1 , . . . , a m uniformly in Z q for some integer q > 1; sample z 1 , . . . , z m small Gaussian integers. Then, conditioned on the a i 's, the value i a i z i mod q "looks like" a uniform element of Z q . This observation, due to [GPV08, Lemma 4.2], is a variant of the leftover hash lemma [START_REF] Impagliazzo | Pseudo-random generation from one-way functions[END_REF], and its proof crucially relies on the smoothing parameter of the lattice corresponding to the kernel of the map z ∈ Z m → z, a mod q. Such a result enables us to argue about the indistinguishability of public keys from uniform elements. In [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], Regev uses LHL over Z q , to show that s i a i gives a uniform public key, where s i ∈ Z q are the secret key. More general, LHL leads to simple and efficient randomness extractors, and can be used in many applications requiring good randomness. It therefore finds numerous applications in cryptography: key derivation, random number generators, etc [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF][START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF].

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 1.
1: An example of shortest vector problem in 2 dimensions: given a lattice basis (the black vectors) as input, the output is a shortest vector in lattice (the red vector).

The classical statement of the LHL relates a fixed uniform distribution over a finite support to another distribution that comes from a specific cryptographic construction. However, for some lattice-based primitives, we cannot use the LHL directly. Indeed, for lattice-based constructions, the application of the LHL is limited for two reasons. The main reason is that we care about distributions whose support is a Euclidean lattice, which is an infinite domain. Moreover, a popular choice of a distribution to consider is a discrete Gaussian distribution, instead of a uniform one (which does not exist over an infinite domain). Hence, it is needed to extend LHL to such a setting.

Another application of LHL is an extremely simple discrete Gaussian sampler. Specifically, we consider the following sampler. In an offline phase, for m > n, we sample a set of short vectors x 1 , x 2 , . . . , x m from a lattice L. Then, in the online phase, the sample generates z ∈ Z m according to a discrete Gaussian and simply outputs m i=1 z i x i . In [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], the authors analyze the distribution of X t z where X is random Gaussian matrix in Z m×n and z is random Gaussian vector in Z m . Their main result is the following: if X satisfies a certain constraint and if the standard deviation of the distribution of z is large enough, then the distribution of X t z is statistically close to a discrete Gaussian distribution with appropriate covariance (see Figure 1.2). Then in [AR16], D. Aggarwal and O. Regev improve over the main result of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] for some parameter sets.

In both of the results, the bound on the standard deviation of the distribution of z comes from the so-called smoothing parameter of orthogonal lattice Λ ⊥ (X) which is a set of all vectors v ∈ Z m that belong to the (left) kernel of X. The smoothing parameter was introduced in [START_REF] Micciancio | Worst-case to average-case reductions based on Gaussian measures[END_REF]. Intuitively, it says that when the standard deviation is large enough, then the statistical properties of the discrete Gaussian distribution over lattices are very close to those of the continuous Gaussian distribution.

Here, we note that the lattice Λ ⊥ (X) has dimension m -dim(Λ(X)), and its basis can be computed in polynomial time from X. Interestingly, the links between duality and orthogonality enable us to prove that the volume of Λ ⊥ (X) is equal to the volume of the lattice span(Λ(X)) ∩ Z m with probability close to 1 over the choice of X [START_REF] Nguyen | La géométrie des nombres en cryptologie[END_REF].

X t z ← D Z m n m D Z n Figure 1.2:
The leftover hash lemma over lattices from [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]: with appropriate parameters, the distribution of X t z conditioned on X is close to Gaussian distribution over Z n . Figure 1.3: Illustration of a broadcast encryption in the Pay-TV application: the system has two malicious users who have the red key and the green key. They share their secret keys with the non-legitimate entity. The system can identify them, so that they can no longer access new content.

Thus, if a lattice in Z m is low-dimensional, its orthogonal lattice is high-dimensional with volume at most equal: the successive minima of the orthogonal lattice are likely to be much shorter than the ones of the original lattice.

In cryptography, orthogonal lattices first appeared as a cryptanalytic tool in attacking several cryptographic constructions [NS97, NS99, DGHV10]. Years later, when lattices have turned into a major building block in designing cryptographic primitives, orthogonal lattices have been used in various constructions such as cryptographic multilinear maps [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], traitor-tracing schemes [START_REF] Ling | Hardness of k-LWE and applications in traitor tracing[END_REF] and inner product functional encryption [START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF].

Trace-and-revoke systems. A protocol that uses the orthogonal lattices in the security proofs is the so-called broadcast encryption. It is a fundamental cryptographic primitive that gives the ability to send a secure message to any chosen target set among registered users. An interesting variant of broadcast encryption is called trace-and-revoke system [START_REF] Boneh | A fully collusion resistant broadcast, trace, and revoke system[END_REF]. It is a multi-recipient encryption system where a content distributor can find malicious users and can revoke their decryption capability (see Figure 1.3). Such a public-key encryption scheme, informally speaking, allows a sender to encrypt data under a public key pk and each legitimate user can use their secret key sk i to decrypt the data. A traitor tracing system guarantees that if a coalition of (legitimate) users pool their secret keys to construct a decoder box that can decrypt the ciphertext, then there is an efficient trace algorithm to find at least one guilty user provided the algorithm is given access to the decoder. Then the content distributor can use the revocation functionality to prohibit the guilty users from accessing the data in the future. A revocation system ensures that if a coalition of illegitimate users pools their secret keys, they still cannot decrypt the ciphertext.

We now describe the protocol which is based on [ABP + 17] to see how the orthogonal lattices work for it. In a revocation scheme, a user id with the secret key sk id can decrypt a ciphertext ct R if the user is not revoked. Agrawal et al. in [ABP + 17] constructed a revocation scheme with public traceability for an unbounded number of users from inner product functional encryption. In an inner product functional encryption [START_REF] Abdalla | Simple functional encryption schemes for inner products[END_REF][START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF], given a secret key sk x for a key vector x and a ciphertext ct y for a vector y, the decryptor can compute the inner product of the two vectors involved, i.e., x, y . Intuitively, in the revocation construction by Agrawal et al., each id is associated with a random vector x id and correspondingly a set R is associated with the vector space spanned by (x id ) id∈R . To create a ciphertext with the revoked set R, Agrawal et al. choose a vector v R othrogonal to (x id ) id∈R and define y R = m • v R as the ciphertext vector. Observe that if id ∈ R, then x id will be orthogonal to v R and subsequently to y R (i.e., x id , y R = 0). In case id / ∈ R, with high probability x id , v R = 0 which acts as a multiplicative blinding factor for the plaintext message m as x id , y R = m • x id , v R . Now, during decryption, the inner product functional encryption computes Res = x id , v R = m • x id , v R as an intermediate step. The decryptor, who is provided with v R alongside the ciphertext, recomputes the blinding factor x id , v R to recover the message m.

A natural question is whether one can devise a protocol where the revoked user will not make out if it has been revoked. Moreover, given a ciphertext, no legitimate user will get any information about the users who have been revoked from decrypting the ciphertext. This problem is called trace and revoke scheme with anonymity. Ajtai [Ajt96] consists in finding a short non-zero integer solution e ∈ Z m to the homogeneous linear system A t e = 0 mod q for a uniformly random A ∈ Z m×n q This is equivalent to finding a short nonzero vector in Λ ⊥ q (A) (see Figure 1.4). This problem is called short integer solution (SIS). It is a foundation for collision-resistant hash functions, identification schemes, digital signatures, etc [GPV08, Lyu13, LS14, PR06, Pei15, LLLS13].

Short integer solution. An average-case problem proposed by

Learning with errors.

Another fundamental problem related to lattices is the learning with errors (LWE) problem. The LWE problem is introduced by Regev [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. It is the problem of recovering uniformly random vector s ∈ Z n q given many samples of the form (a, a, s + e), with a uniform in Z n q , noise e sampled according to a Gaussian distribution over Z q . In [Reg05], Regev showed that for appropriate parameters, this problem is as hard as worst-case lattice problems and polynomial-time equivalent to its ) as input, the goal is to compute such a short vector e. decision version, which asks to distinguish the distribution of a LWE sample as above from the uniform distribution over (Z n q × Z q ). We now present a public key encryption using LWE. Alice chooses a secret key s and a random matrix A ∈ Z m×n q . Alice's public key is

(A, b = As + e).
It is indistinguishable from a uniform pair under the decision LWE assumption. In order to encrypt a message to Alice, Bob chooses a random small vector r, and computes the ciphertext

u = A t r, u = b t r + µ •
q 2 where µ is the message bit. Essentially, he sends either b t r for µ = 0, or something very far from b t r, for µ = 1. To decrypt the message, Alice subtracts information depending on her secret key s t u from u , which is either approximately 0 or approximately q 2 , depending on the value of the message bit µ.

Many variants of the LWE problem have been introduced, mostly with the goal of improving the efficiency of lattice-based cryptography. For example, many papers have been devoted to the analysis of LWE when the secret key s, or the error e follow a distribution which is different from that considered by [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], as in [MP13, BLP + 13, HM17]. Extensions of LWE over more general rings have also been broadly studied, starting with the introductions of the Polynomial-LWE problem [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF] and of the Ring-LWE problem [START_REF] Lyubashevsky | On ideal lattices and learning with errors over rings[END_REF][START_REF] Rosca | On the Ring-LWE and Polynomial-LWE problems[END_REF].

Our contributions

In this thesis, we focus on the cryptographic aspects of orthogonal lattices. First, we consider the successive minima and the smoothing parameter of random orthogonal lattices. We then investigate broadcast encryption with anonymous revocation. Lastly, we introduce a new variant of the LWE problem over the integers without any modular reduction.

We note that the results discussed below have been mainly taken from an article in preparation and from the following published articles. 

The smoothing parameter of random orthogonal lattices

The smoothing parameter of Λ ⊥ (X) generated by a discrete Gaussian X ∈ Z m×n was already considered by Agrawal et al. in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]. Their main motivation (and result) was a generalization of the leftover hash lemma (LHL) to lattices and discrete Gaussian distributions. Our first result is an improved probabilistic upper bound on the smoothing parameter, compared to prior works in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] and [AR16]. Our second result improves the probabilistic upper bound on the (m -n)-th minimum of the orthogonal lattice Λ ⊥ (X).

Trace and Revoke scheme with anonymity

We investigate broadcast encryption with anonymous revocation. Our contribution is threefold. First, we develop a generic transformation of linear functional encryption toward trace-and-revoke systems. It is inspired by the transformation by Agrawal et al.

[ABP + 17] with the novelty of achieving anonymity. Our second contribution is to instantiate the underlying linear functional encryption from standard assumptions. We propose a DDH-based construction which significantly improves the performance compared to the decisional Diffie-Hellman (DDH)-based construction of Agrawal et al. In the case of LWE, we tried to instantiate our construction by relying on the scheme from Wang et al. [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF] but we finally found an attack on this scheme. Our third contribution is to extend the 1-bit encryption from the generic transformation to n-bit encryption. By introducing matrix multiplication functional encryption, which essentially performs a fixed number of parallel calls on functional encryptions with the same randomness, we can prove the security of the final scheme with a tight reduction that does not depend on n, in contrast to what we obtain by employing the hybrid argument.

New LWE problem over the integers

We introduce a new variant of the LWE problem over the integers, without any modular reduction.

Concretely, we consider two problems: integer-SIS, and integer-LWE. For integer-SIS, the difference from the standard SIS problem is that the entries of A are Gaussian over the integers. Then from the observation that the integer-SIS problem is syntactically equivalent to finding a nonzero short vector in the orthogonal lattice, and inspired by the duality with the bounded distance decoding problem (BDD), we define the search integer-LWE problem as a BDD problem on the dual lattice: it consists in recovering k from (X, π ker(X) (k + e)), where X and k are Gaussian over Z m×n and Z m , respectively, e ∈ R m is Gaussian with standard deviation significantly below 1 and π ker(X) (k+e) is the orthogonal projection of (k + e) onto ker(X). We propose a quantum polynomial-time reduction from the integer-SIS problem to the search integer-LWE problem.

Organization of this thesis

In Chapter 2, we recall all necessary definitions that are used throughout this thesis. These include the basic definitions related to lattices. In Chapter 3, we expose our result on the smoothing parameter of the orthogonal lattice. Chapter 4 is about an anonymous trace-and-revoke broadcast encryption scheme. In Chapter 5, we introduce the new LWE problem over integers. Finally, we conclude this thesis and present some directions for future works in Chapter 6.

Chapter 2 Preliminaries

In this chapter, we first give some basic definitions and results on lattices that will be used throughout the thesis. These include the basic notations and properties of lattices, discrete Gaussian distributions over lattices, and the smoothing parameter.

Lattices

A lattice is a discrete additive subgroup of R m , for some integer m 1. A set of linearly independent vectors B = {b 1 , . . . , b d } ⊂ R m that generates a lattice via integer linear combinations is called a basis, and we write the lattice generated by B as

L(B) := Bz = i∈[d] z i b i : z ∈ Z d .
The rank of this lattice is d and its embedding dimension is m. We define the determinant of L as det(L) := det(B t B). For a rank-d matrix B ∈ R m×d , there exist orthogonal matrices U, V and a diagonal matrix Σ = Diag(σ 1 , . . . , σ d ) ∈ R m×d such that B = U ΣV t and σ 1 • • • σ d > 0. From this decomposition, we see that det(L(B)) = i∈ [1,d] 

|σ i |.
When d = m, we say that the lattice has full rank. Understanding geometric properties of high-dimensional lattices is a central topic in various areas of mathematics and computer science [START_REF] Nguyen | The LLL Algorithm: Survey and Applications[END_REF]. Among the most important invariants of a lattice are its socalled successive minima λ 1 (Λ), . . . , λ d (Λ). More precisely, for i ∈ [d], the i-th successive minimum λ i (L) is defined as

λ i (L) := inf{r : dim(Span(L ∩ B(r))) i},
where B(r) denotes the closed zero-centered Euclidean ball of radius r. We use the notation λ ∞ i (L) when we consider the infinity norm. Any lattice L ⊆ R m has a dual lattice L . It consists of all the vectors in Span(L) that are orthogonal to L modulo 1, namely:

L := {y ∈ Span(L) : ∀ x ∈ L, x, y ∈ Z}. Note that L = L.
Several families of lattices are considered in this work.

Definition 2.1. Let m > n 1 and q 2 be integers. Let X ∈ Z n×m .

1. The orthogonal lattice Λ ⊥ (X) is the integral lattice whose vectors are orthogonal to the rows of X, i.e., Λ ⊥ (X) := {v ∈ Z m : Xv = 0}.

2. The lattice Λ q (X) ⊆ Z m is the full-rank lattice spanned by the rows of X and the vectors qe i , i.e., Λ q (X) := {X t z + qy : z ∈ Z n , y ∈ Z m }.

3. The lattice Λ ⊥ q (X) ⊆ R m is the dual of Λ q (X) scaled up by a factor of q, i.e.,

Λ ⊥ q (X) := {v ∈ R m : ∀ u ∈ Λ q (X), v, u ∈ qZ}.
We note that if X is of full row rank (over the integers), then Λ ⊥ (X) has rank m -n.

Definition 2.2 (Orthogonal projection). Let L be a lattice and E ⊆ R m be a vector subspace. The orthogonal projection of L onto E is:

π(L, E) = {v 1 ∈ E : ∃ v 2 ∈ E ⊥ , v 1 + v 2 ∈ L}.
Note that π(L, E) is a finitely generated additive subgroup in R m , but not necessarily a lattice. The next lemma is standard (see, e.g., [CSV13, Lemma 3.4]).

Lemma 2.3. Let E ⊆ R m be a vector space. For any lattice L ∈ R m such that π(L , E) is a lattice, we have

L ∩ E = π(L , E) .
Lemma 2.4. Let X ∈ Z n×m and Λ ⊥ (X) be the dual lattice of Λ ⊥ (X). We have

Λ ⊥ (X) = (Z m + X t R n ) ∩ ker(X).
Proof. Any r ∈ π(Z m , ker(X)) can be written as

r = k -X t (XX t ) -1 Xk, for some k ∈ Z m . It follows that π(Z m , ker(X)) ⊆ 1 det(XX t ) • Z m , hence π(Z m , ker(X)
) is a lattice. Now, we apply Lemma 2.3 with L = Z m and E = ker(X) to obtain

Λ ⊥ (X) = (Z m ∩ ker(X)) = π(Z m , ker(X)) = (Z m + X t R n ) ∩ ker(X).
In the last equation, we use the fact that (ker(X)) ⊥ = X t R n .

Lattice Gaussian distributions and the smoothing parameter

For a rank-n matrix S ∈ R m×n and vector c ∈ R n , the Gaussian function on R n centered at c with covariance matrix S t S is defined as:

∀ x ∈ R n , ρ S,c (x) = exp(-π(x -c) t (S t S) -1 (x -c)).
Given a rank-d lattice L ⊂ R m , the discrete Gaussian distribution with support L, covariance parameter S and shift c is defined as:

∀ x ∈ L, D L,S,c (x) = ρ S,c (x) ρ S,c (L) ,
where ρ S,c (L) = x∈L ρ S,c (x). When S = sI n for some real s > 0, we write ρ s,c , resp. D L,s,c , the associated (spherical) function, resp. distribution, and we omit the subscript c when it is 0.

We will make use of the following tail bound for discrete Gaussians [Ban93]. This precise formulation is borrowed from [DRN14, Lemma 2.13].

Lemma 2.5. For any rank-d lattice L, s > 0 and t 1, we have

Pr v←D L,s   v > s • t d 2π   exp - d 2 (t -1) 2 .
We will use the following consequence of the Poisson summation formula:

ρ S (Λ) = det(Λ ) • det(S t S) • ρ S(S t S) -1 (Λ ),
for any rank-d lattice Λ and any matrix S ∈ R m×n of rank n. The definition of the smoothing parameter is motivated by the Poisson summation formula. Given ε > 0 and a lattice L, the smoothing parameter η ε (L) is defined as the smallest real s > 0 such that ρ 1/s (L \ {0}) ε. Introduced by Micciancio and Regev in 2004, the smoothing parameter has been used as a central tool in reductions between lattice problems [START_REF] Micciancio | Worst-case to average-case reductions based on Gaussian measures[END_REF] and in lattice-based cryptography. Also, the notion of smoothing parameter can be found in communication theory under the name 'flatness factor' [START_REF] Belfiore | Lattice codes for the compute-and-forward protocol: The flatness factor[END_REF]. 

Introduction

In this work, we consider the successive minima and the smoothing parameter of random orthogonal lattices. For X ∈ Z n×m with m > n, the orthogonal lattice Λ ⊥ (X) is a set of all vectors v ∈ Z m that belong to the (right) kernel of X.

Given X ∈ Z n×m , one can find a basis of Λ ⊥ (X) by a Hermite Normal Form computation (see, e.g., [START_REF] Havas | Extended GCD and Hermite normal form algorithms via lattice basis reduction[END_REF]). Concretely: let U ∈ Z m×m be a unimodular transformation that brings X into HNF, i.e., X • U = X HNF ; if X is of full row-rank n, the last m -n columns of X HNF are zero vectors; viewing U as a block matrix U = [U 1 |U 2 ] for U 2 ∈ Z m×(m-n) of rank m -n, one can show that the columns of U 2 form a basis of Λ ⊥ (X). Similarly, Nguyen and Stern [START_REF] Nguyen | Merkle-Hellman revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations[END_REF] show how to obtain a short basis of Λ ⊥ (X) by LLL-reducing [START_REF] Arjen | Factoring polynomials with rational coefficients[END_REF] the lattice spanned by the columns of [cX t |I m ] t with some sufficiently large scalar c.

We study the (m -n)-th minimum and the smoothing parameter of the orthogonal rank-(m -n) lattice Λ ⊥ (X), where each entry of X is independently and identically distributed according to an integer Gaussian distribution. In particular, we obtain probabilistic upper bounds on η ε (Λ ⊥ (X)) and λ m-n (Λ ⊥ (X)).

Prior results. With a motivation stemming from a cryptographic multilinear map construction [START_REF] Garg | Candidate multilinear maps from ideal lattices[END_REF], Agrawal, Gentry, Halevi and Sahai in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] considered the following variation: instead of starting from the finite set Z/qZ, they consider a matrix X ∈ Z n×m with entries sampled from an integer Gaussian distribution and focus on the closeness between the distribution of the vector Xz and a discrete Gaussian distribution, for an appropriately chosen Gaussian multiplier z and conditioned over X. The main novelty was to replace the finite support Z/qZ by the infinite support Z. This question can be answered by considering the smoothing parameter of the lattice Λ ⊥ (X). Let us denote by D Z n ,S the n-dimensional zero-centered discrete Gaussian distribution over Z n with parameter a full column-rank matrix S with n columns (the probability of a vector k ∈ Z n is proportional to exp(-π k t (S t S) -1 k )) and by D Z n ,s the case when S = sI n . The following probabilistic bound is proved in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]:

η ε (Λ ⊥ (X)) O(mn ln(m/ε)),
where X ← (D Z n ,s ) m , s > η ε (Z n ) and m = Ω(n ln(ns)) 12 . This statement holds with probability 1 -2 -Ω(n) over the choice of X. They obtain a LHL over lattices as a direct consequence of this result: for parameters satisfying the same conditions and if the above smoothing parameter bound holds, the statistical distance 3 between the distributions Xz (conditioned on X) and D Z m ,s X t is at most ε, when z is sampled from D Z m ,s for s η ε (Λ ⊥ (X)). Our objective here is to obtain a sufficient condition on s which is as mild as possible. Note that improving the upper bound on η ε (Λ ⊥ (X)) directly leads to a milder condition on s .

Following [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], Aggarwal and Regev [AR16] gave another bound on the smoothing parameter of Λ ⊥ (X). Namely, they showed that

η ε (Λ ⊥ (X)) O ns • ln(ns) • ln(m) • ln(m/ε) , with probability 1 -2 -Ω(n) over the choice of X ← (D Z n ,s ) m .
The bound holds for s > η ε (Z n ) and m = Ω(n ln(ns)). The bound of [AR16] is lower for large m and small s, while the result of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] is preferable for large s and small m.

Our results. Our first result is an improved upper bound on η ε (Λ ⊥ (X)).

Theorem 3.1. Let n be an integer growing to infinity, ε > 0, s Ω( √ n) and m = Ω(n ln s). Then, we have

Pr X←(D Z n ,s ) m η ε (Λ ⊥ (X)) O (n + ln m) • ln(m/ε) 1 -2 -Ω(n) .
Moreover, for any ε e -(m-n) ,

Pr X←(D Z n ,s ) m η ε (Λ ⊥ (X)) O ln(1/ε) 1 -2 -Ω(n) .
Note that the second probabilistic upper bound is lower than the first, but is not applicable for every ε > 0. It holds for ε e -(m-n) , and, for larger values of ε, only the first bound applies. The reason why there are two possibilities for the upper bound stems from the two uncomparable relations between the smoothing parameter and the first minimum of the dual lattice Λ ⊥ (X) for the Euclidean and infinity norms (see Lemmas 3.5 and 3.6).

A proof for this theorem can be found in Section 3.3. Our result improves over both bounds of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] and [AR16] when s = Ω( √ n) and m is sufficiently large. In particular, the minimum of our two upper bounds is smaller by an Ω( √ n) factor for the above ranges of m and s, is independent of s and depends at most logarithmically in m. However, our result requires s = Ω( √ n) (which is a consequence of our proof technique, in particular, Lemma 3.16), so for small values of s, the prior results of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] and [AR16] remain the best known upper bounds on η ε (Λ ⊥ (X)). As an immediate corollary to Theorem 3.1, we obtain a tighter version the leftover hash lemma over lattices (see Corollary 3.12). We summarise our results and compare them with previous works in Table 3.1.

For applications, it is useful to keep in mind the following parameter set with respect to n: ε = 2 -Θ(n) , s = n Θ(1) and m = Θ(n ln n). For these parameters, Theorem 3.1 yields η ε (Λ ⊥ (X)) O(n) with probability 1 -2 -Ω(n) . For the same parameters, the probabilistic bounds from [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] and

[AR16] are η ε (Λ ⊥ (X)) O(n 3 ) and η ε (Λ ⊥ (X)) O(n 3/2 s), respectively. Agrawal et al. [AGHS13] Aggarwal-Regev [AR16] [KNSW20] s Ω(η ε (Z n )) Ω(η ε (Z n )) Ω( √ n) m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s) η ε (Λ ⊥ (X)) O mn ln m ε O ns ln(ns) ln(m) ln m ε O (n + ln m) • ln m ε or O ln 1 ε Table 3.1: Probabilistic upper bounds on η ε (Λ ⊥ (X)) for X ← (D Z n ,s
) m together with requirements on s and m needed for the bounds to hold. The two cases in the last table entry depend on the range of ε, see Theorem 3.1. .

Our second main result is an upper bound on the (m -n)-th minimum of the orthogonal lattice Λ ⊥ (X). Note that we could use our result of Theorem 3.1 to obtain an upper bound on

λ m-n (Λ ⊥ (X)) via the relation λ m-n (Λ) √ m -n • η ε (Λ)
, which holds for any rank-(m-n) lattice Λ and any ε ∈ (0, 1/2)) (see Lemma 3.7). Below we state the result, which gives a better bound for a large set of parameters. In particular, for many ranges of s and m, it improves over the bound λ m-n (Λ ⊥ (X))

O(ns ln(m) ln(ns)) from [AR16], and the bound

λ m-n (Λ ⊥ (X)) O(mn) from [AGHS13].
Theorem 3.2. Let n be an integer growing to infinity, s Ω( √ n) and m satisfying m = Ω(n ln s) and m 2 n/2 . Then, we have

Pr X←(D Z n ,s ) m λ m-n (Λ ⊥ (X)) O(n ln s) 1 -2 -Ω(n) .
This theorem is proven in Section 3.4. An interesting fact to be noticed from this result is that, with overwhelming probability, the lattice Λ ⊥ (X) contains (m-n) linearly independent vectors whose norms do not depend on m -a parameter which can be as large as 2 n/2 . On the other hand, our statement holds even when taking m as small as Θ(n • ln s). We summarise our results and compare them with previous works in Table 3.2.

Agrawal et al. [AGHS13] Aggarwal-Regev

[AR16] [KNSW20] s Ω(η ε (Z n )) Ω(η ε (Z n )) Ω( √ n) m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s) and 2 n/2 λ m-n (Λ ⊥ (X)) O(mn) O ns ln(ns) ln(m) O(n ln s) Table 3.2: Probabilistic upper bounds on λ m-n (Λ ⊥ (X)) for X ← (D Z n ,s
) m together with requirements on s and m needed for the bounds to hold. .

Techniques

The bound on the smoothing parameter is obtained via a chain of relations between successive minima of different lattices and the smoothing parameter of Λ ⊥ (X). Wellknown transference relations between the smoothing parameter of a lattice and the first minimum of its dual lead us to study λ 1 (Λ ⊥ (X) ). Namely, in order to obtain our result on η ε (Λ ⊥ (X)), we bound λ 1 (Λ ⊥ (X) ) from below in both Euclidean and infinity norms.

To obtain these lower bounds, we consider the lattice Λ q (X) ⊆ Z m -the full-rank lattice spanned by the rows of X and qZ m (in other words, we consider the so-called Construction A lattice of X, see [CS93, Chapter 5]). Following [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], our objective is to obtain a probabilistic lower bound on the norms of vectors from Λ q (X)\X t Z n . Note that this implies a probabilistic lower bound on λ n+1 (Λ q (X)), as the vector space X t Q n has dimension at most n.

At the heart of both proofs, ours and the one from [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], is a counting argument that allows to bound the norms of lattice vectors of the form X t z mod q ∈ Λ q (X)\X t •Z n . The counting argument is divided into several cases depending on the norm of z. One source of improvement in our result is a more fine-grained division of these cases as well as a tighter treatment of interchange between different norms.

Once we have a lower bound on the norms of vectors from Λ q (X) \ X t Z n , we relate the smallest norm of such vectors to λ 1 (Λ ⊥ (X) ). This is where our approach differs most from [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]. The intuition behind the relation is the following: observe that for a sufficiently large q, the lattice 1 q Λ q (X) can be thought of as an approximation to Λ ⊥ (X) , in the sense that any u ∈ Λ ⊥ (X) can be expressed as a vector in 1 q Λ q (X) plus a small element in the row-span of X. Our lower bound on norms of vectors in Λ q (X) \ X t • Z n and a Gaussian tail bound give a lower bound on λ 1 (Λ ⊥ (X) ). This is in contrast to [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], which at this step invokes Banaszczyk's transference theorem [Ban93] in order to relate λ n+1 (Λ q (X)) and λ m-n (Λ q (X) ). Then, using the inclusion Λ ⊥ (X) ⊆ 1 q Λ q (X) , Agrawal et al. obtain their lower bound on λ 1 (Λ ⊥ (X) ).

Summing up the above description, we:

1. obtain a (probabilistic) lower bound on b for b ∈ Λ q (X) \ X t Z n , improving the result of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] by an Ω(n) factor (see Theorem 3.13);

2. relate the shortest norm of b ∈ Λ q (X) \ X t Z n with λ 1 (Λ ⊥ (X) ) (see Lemma 3.18); 3. apply known relations (Lemma 3.5 or Lemma 3.6, depending on the norm) between the first minimum of Λ ⊥ (X) and η ε (Λ ⊥ (X)).

X 1 X 2 • • • m V 1 0 0 U 1 0 0 V 2 0 -U 2 U 2 0 0 . . . 0 -U 3 m -n m -n = 0 Figure 3.1: Technique used in bounding λ m-n (Λ ⊥ (X)).
For each i, the matrix V i ∈ Z m ×m -n consists of m -n short linearly independent vectors orthogonal to X i , the matrix consisting of the first m columns of X. The vectors making up V i are chosen so that they reach the first (m -n) successive minima of Λ ⊥ (X i ). Another n m m -1 short orthogonal to X vectors are obtained using matrices U i ∈ Z m ×n that satisfy X i U i = I n and whose columns have small norms.

Our second result, stated in Theorem 3.2, gives an upper bound on the (m -n)-th minimum of Λ ⊥ (X). The main ingredient in the proof is an observation that we can subdivide, column-wise, a 'wide' matrix X ∈ Z n×m (here m is potentially much larger than n) into m m smaller matrices X i ∈ Z n×m , and obtain short vectors in each Λ ⊥ (X i ), which are also short vectors in Λ ⊥ (X). (For the sake of simplicity, we assume here that m divides m.)

As a first step, we obtain an upper bound on λ m -n (Λ ⊥ (X i )) for all i. Such an upper bound on λ m -n (Λ ⊥ (X i )) is a corollary of our lower bound on λ n+1 (Λ q (X)) and Banaszczyk's transference theorem [Ban93]. Thus, we obtain m m (m -n) relatively short vectors of dimension m . Note that each such vector can be 'padded' with enough 0's in a way that the resulting m-dimensional vector belongs to Λ ⊥ (X). The latter is illustrated in Figure 3.1 as follows: the columns of each matrix V i are linearly independent vectors reaching the minima of Λ ⊥ (X i ), the columns containing them in the center matrix in Figure 3.1 are short linearly independent vectors in Λ ⊥ (X).

The second step consists in obtaining n m m -1 additional short vectors (linearly independent with the previous ones), by applying a result due Aggarwal and Regev [AR16], which gives a probabilistic upper bound on the norm of the columns of a matrix U ∈ Z m×n such that XU = I n . Hence, for each X i , there exist 3.1, we obtain the missing short vectors from Λ ⊥ (X).

U i ∈ Z m ×n such that X i U i = I n . Stacking the pairs (U i , -U i+1 ) as illustrated in Figure

Open problems

Our upper bound the last minimum of the lattice Λ ⊥ (X) improves the prior ones, but may not be the tightest possible. In fact, we suspect it is not sharp. The Gaussian matrix X ← (D Z n ,s ) m has rank n with overwhelming probability (see Lemma 3.9 below). Using the fact that det(Λ ⊥ (X)) det(X t Z n ) (see, e.g., [START_REF] Nguyen | La géométrie des nombres en cryptologie[END_REF]p. 30]) and Minkowski's theorem, we have

i∈[m-n] λ i (Λ ⊥ (X)) √ m -n m-n • det(X t Z n ).
Then, by applying a Gaussian tail bound, all the columns of X t have norms s √ m with overwhelming probability. If we assume that the successive minima are essentially the same, we obtain from Hadamard's inequality that

∀i m -n, λ i (Λ ⊥ (X)) √ m -n • (s √ m) n m-n .
Consider now m = Θ(n ln n) and s poly(n), and assume the above inequality is essentially tight. Then it suggests that the minimum λ m-n (Λ ⊥ (X)) should be Θ( √ n). However, Theorem 3.2 only states that λ m-n (Λ ⊥ (X)) O(n). This gap possibly stems from our counting arguments in Lemma 3.15 and Lemma 3.17. Indeed, we impose there that all points in an n-dimensional cube satisfy some property with a success probability that is exponentially close to 1. It could be the case that by weakening our constraints on the probabilities, e.g., by asking for a failure at most n -ω(1) , we could achieve sharper estimations for smaller parameters. However, it does not seem straightforward, because we also rely on union bounds over sets of exponential sizes.

On the other hand, for exponentially small ε, we also expect the smoothing parameter to be essentially the same as the minima. This would heuristically give

η ε (Λ ⊥ (X)) = Θ( √ n) when m = Θ(n ln n) and s poly(n). Theorem 3.1 provides a O( √ n)
bound for these parameters.

Preliminaries

For an integer q > 2, we use [v] q to denote the modular reduction of all the entries of v into the interval [-q 2 , q 2 ). The kernel of a matrix X ∈ R n×m seen as linear maps is denoted ker(X). For a vector subspace V ⊆ R d and a vector x ∈ R d , we let π(x, V ) denote the orthogonal projection of x onto V . For two distributions D, D over a common support Ω, their statistical distance is defined as ∆

(D, D ) = 1 2 ω∈Ω |D(ω) -D (ω)|.
First, we need the following version of Hoeffding's inequality. Lemma 3.3 (Hoeffding's inequality). Let X 1 , . . . , X m be independent random variables such that 0

X i 1 for all i. Let S m = X 1 + • • • + X m . Then for any t > 0, we have Pr |S m -E[S m ]| t 2 exp -2t 2 /m .
The following is a transference theorem as it allows to link the minima of a given lattice to those of its dual.

Theorem 3.4 ([Ban93]

). For any rank-d lattice L ⊆ R m , and for all i ∈ [d], we have

1 λ i (L) • λ d-i+1 (L ) d.

Bounds of the smoothing parameter

We recall below standard upper bounds on this parameter, involving lattice minima. Lemma 3.5 ([Pei08, Lemma 3.5]). For any rank-d lattice L and ε > 0, we have

η ε (L) ln(2d(1 + 1 ε ))/π λ ∞ 1 (L )
.

Lemma 3.6 ([PRS17, Lemma 2.6], [Ban93, Lemma 1.5]). For any rank-d lattice L and ε ∈ (0, e -d ], we have

η ε (L) ln( 1 ε ) λ 1 (L )
.

First, Lemma 3.5 and Lemma 3.6 differ in terms of the norm considered for the first minimum of the dual lattice. Second, these lemmas give different smoothing parameter bounds for different ε-regimes: depending on the smallness of ε, one of the lemmas may give a tighter statement than the other. In particular, in our results, we will obtain a probabilistic lower bound on λ 1 (L ) for a rank-d orthogonal lattice L that is larger than a lower bound on λ ∞ 1 (L ) by a factor quasi-linear in √ d. It follows that for small ε (e.g., ε = 2 -o(d) ), Lemma 3.6 is preferable to Lemma 3.5. When ε is large, Lemma 3.6 may not be applicable, whereas Lemma 3.5 still provides a bound.

The smoothing parameter of a lattice can alternatively be bounded using the last minimum of the (primal) lattice. Lemma 3.7 ([APS18, Lemma 2.13] and [MR04, Lemma 3.3]). For any rank-d lattice L and ε ∈ (0, 1/2), we have

λ d (L) √ d η ε (L) λ d (L) • ln 2d 1 + 1 ε /π.

Properties of smoothed Gaussians

The first lemma states that the Gaussian mass of a subset of a lattice L does not differ too much from the Gaussian mass of a small shift of it.

Lemma 3.8 ([AGHS13, Lemma 6]). Fix a rank-d lattice L ⊆ R d , ε ∈ (0, 1), c > 2, and s (1 + c)η ε (L).
Then, for any subset T ⊆ L and for any v ∈ L, we have

D L,s (T ) -D L,s (T -v) erf(p(1 + 4/c)/2) erf(2p) • 1 + ε 1 -ε , where p = v √ π s
, and erf(•) is the error function.

The following lemma implies that an integral lattice, generated by the columns sampled from a discrete Gaussian distribution over Z n , spans all of Z n with overwhelming probability, if the standard deviation of this distribution is sufficiently large. It also provides information on the matrix that maps X to the canonical basis of Z n . Lemma 3.9 (Adapted from [AR16, Lemma 4.2]). Let n 100 and ε ∈ (0, 1 1000 ). Further, let s, m be such that s 9η ε (Z n ), m 44n ln(ns).Then, we have

Pr X←(D Z n ,s ) m ∃U ∈ Z m×n : XU = I n and max i u i 2 44n ln(sn) 1 -2 -n ,
where the u i 's are the columns of U .

We now state the leftover hash lemma involving Gaussians over infinite domains, the topic of study of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF].

Lemma 3.10 ([AGHS13, Lemma 10]). Let m > n 1 be integers and ε

∈ (0, 1/3). Let X ∈ Z n×m such that the columns of X span all of Z n . If s η ε (Λ ⊥ (X)), then we have ∆(X • D Z m ,s , D Z m ,s X t ) 2ε.

Smoothing parameter of the orthogonal lattice

This section is devoted to proving our first main result: a tighter upper bound on the smoothing parameter of Λ ⊥ (X), where the columns of X ∈ Z n×m are chosen from the discrete Gaussian D Z n ,s . In the rest of this chapter, we view all other parameters as functions of n. We stress that Theorem 3.11 below differs from Theorem 3.1 in that the asymptotic notations are made explicit by specifying the constants. In this section and the next, we keep these constants explicit. We do not claim that they are optimal in some sense: we provide them to help the reader follow the proofs.

Theorem 3.11. Let n 60, ε > 0, s 20 √ n, and m 1355n ln s. Then, we have

Pr X←(D Z n ,s ) m η ε (Λ ⊥ (X)) 77 (n + ln m) • ln(2m/ε) 1 -2 -Ω(n) .
For any ε e -(m-n) , we also have

Pr X←(D Z n ,s ) m η ε (Λ ⊥ (X)) 96 ln(1/ε) 1 -2 -Ω(n) .
We now give an informal description of the proof strategy. The first part of the proof is similar to the proof presented in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]: we first embed the lattice X t Z n into a full rank q-ary lattice Λ q (X) by "adding" all the vectors qe i to X t Z n (where the e i 's are the canonical basis vectors). If q is set sufficiently large, then the short vectors in Λ q (X) should come only from the rows of X (with overwhelming probability) and thus be common to the short vectors of X t Z n . Starting from this intuition, the authors of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] provide a lower bound on the norms of the vectors not belonging to the row span of X. We improve their bound by an Ω(n) factor by using tighter arguments on several estimations during the proof. This lower bound also gives a lower bound on λ n+1 (Λ q (X)) since X t Q n spans an vector space of dimension at most n. We also observe that a lower bound on the infinity norms of vectors in Λ q (X) \ X t Z n can be derived from the proof, without relying on a loose norm equivalence.

The second part of the proof differs from the one of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]: we observe that we can directly relate the (n + 1)-th minimum of Λ q (X) to the first minimum of Λ ⊥ (X) . This avoids relying twice on a transference argument, as in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF], which allows us to save another Ω( √ n) factor. The final result on the smoothing parameter is then a consequence of Lemmas 3.5 and 3.6.

As a direct corollary of Theorem 3.11, we obtain the following leftover hash lemma over lattices.

Corollary 3.12. Let n 100, ε ∈ 0, 1 1000 , s 20 √ n and m > 1355n ln s. Let s 77 (n + ln m) • ln(2m/ε). Then, we have

Pr X←(D Z n ,s ) m ∆(X • D Z m ,s , D Z m ,s X t ) 2ε 1 -2 -Ω(n) .
If moreover ε e -(m-n) , then the same result holds with s 96 ln(1/ε).

Proof. Using Lemma 3.9 with the parameters as in the statement, the columns of X span Z n with probability 1 -2 -Ω(n) . Now, from Theorem 3.11, these parameters also ensure that with probability at least 1 -2 -Ω(n) , we have η ε (Λ ⊥ (X)) s . Finally, Lemma 3.10 states that when the columns of X span Z n and s is chosen such that

η ε (Λ ⊥ (X)) s , we have ∆(X • D Z m ,s , D Z m ,s X t ) 2ε.

Short vectors in the Construction A lattice of a Gaussian matrix

This section deals with short vectors in Λ q (X) \ X t Z n . More precisely, we prove the following theorems.

Theorem 3.13. Let n 60, q 2, m 335n ln q be integers, and s 20 √ n. Then, we have

Pr X←(D Z n ,s ) m ∃b ∈ Λ q (X) \ X t Z n : b < q 48 2 -Ω(n) .
As the vector space X t Q n has dimension at most n, the above also gives a lower bound to λ n+1 (Λ q (X)). We are also able to obtain a similar statement for the infinity norm. This result does not follow from just using the equivalence of norms and Theorem 3.13. Theorem 3.14. Let n 7, q 2, m 20n ln q be integers, and s 20 √ n. Then, we have

Pr X←(D Z n ,s ) m ∃b ∈ Λ q (X) \ X t Z n : b ∞ < q 48 √ n + ln m 2 -Ω(n) .
For the sake of readability, we split the proofs into several lemmas. The theorems follow from these lemmas and their proofs are given at the end of this subsection. We now give an overview of the proofs of the lemmas.

Recall that Λ q (X) is a lattice spanned by the rows of X and the vectors qe i .In particular, it contains the integer span of the rows of X, which is of dimension at most n. The purpose of the following lemmas is to prove that every vector in Λ q (X) that is not in the linear span of the rows of X, is of Euclidean norm Ω(q). In order to show this, we look at the vectors of the form [X t z] q ∈ Λ q (X) \ X t Z n for z ∈ Z n . This is indeed enough as any vector in Λ q (X) can be written X t z+qy for some z ∈ Z n ∩[-q 2 , q 2 ) n and y ∈ Z m . To obtain a lower bound on the norms of such vectors, we divide the proof into two cases depending on the norm of z.

In the first lemma, we prove for a "short" z that, with all but probability 2 -Ω(n) , the vector [X t z] q belongs to the row-span of X. This part of our proof differs from the one of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] as we bypass norm equivalence between Euclidean and infinity norms. The second lemma deals with the other ranges of z: we obtain a lower bound on the entries of [X t z] q by first proving a probabilistic lower bound on [ x , z ] q taken over a Gaussian vector x. For a "large" z, the proof is identical to the proof of [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]. This is detailed in the proof of Lemma 3.16. Finally, we extend this argument from a vector x to a matrix X using Hoeffding's inequality. This part of the proof is also new. Lemma 3.15. Let m, n, q 2 be integers. Then we have

Pr ∃ z ∈ Z n with z < q 4s √ n + ln m : [X t z] q ∈ Λ q (X) \ X t Z n 2 -n ,
where the probability is taken over

X ← (D Z n ,s ) m . Proof. Each row x i is distributed as D Z n ,s . Let t = 2π(1 + (ln m)/n) + 1. Lemma 2.5
gives that Pr X [ x i > st n/2π] 2 -n /m. When this does not occur, we have, for any integer vector z with z

q 4s √ n+ln m q √ 2π 2st √ n : | z, x i | z • x i < q 2 .
The result follows by union bound over i ∈ [m].

We now consider longer z's. We show that the probability that their inner product with a Gaussian vector is quite smaller than q is bounded away from 1 by a constant. Lemma 3.16. Let m, n 7 and q 2 be integers and s

20 √ n. For any z ∈ Z n ∩ [-q 2 , q 2 ) n such that z q 4s √ n+ln m , we have Pr x←D Z n ,s |[ x, z ] q | < q 48 √ n + ln m 0.95.
We first outline the main ideas of the proof. For a fixed z, our concern is the vectors x ∈ Z n whose inner-products with z are "small" when reduced modulo q: they lead to vectors in the lattice X t Z n that are shorter than what we would expect. Thus, we shall call them "Bad z " vectors. Then we show that a suitably chosen translation maps any "Bad z " vector x to a "Good z " vector x , such that the inner-product between x and z is "large". This proof technique is borrowed from [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]; however, we refine it by splitting the ranges of z further and finding a better translation map for medium z . In either case, the translation vectors turn out to be short enough to argue that the probabilities of sampling a "Bad z " x and a "Good z " x are relatively close. From there, we readily obtain an upper bound on the probability that x is "Bad z ". Below we quantify the terms "large" and "short", "Bad z " and "Good z ", and provide formal arguments.

Proof. Fix a z as in the statement and define the set of "Bad z " vectors as

Bad z := x ∈ Z n : |[ z, x ] q | < q 48 √ n + ln m .
We also define Good z = Z n \ Bad z , i.e., vectors outside the set Bad z will be considered as "good". Case 1: "Medium" z, i.e.,

q 4s √ n+ln m z < q 2s . We let µ = s 6 √ n . If x ∈ Bad z , then we can obtain a Good z vector using the injective map Bad z -→ Good z x -→ x + µ 2z √ n z
, where the ceiling is taken coordinate-wise. Now, we show that the map indeed sends Bad z to Good z . First, we note that z, 2z √ n/ z 0, because a and a have the same sign for any a ∈ R. Also, by the choice of µ, we have

0 µ z, 2z √ n z µ i∈[n] |z i | • 2|z i | √ n z + |z i | 2 s 6 √ n (2 z √ n + z √ n) < q 2 ,
where for the second inequality we use the fact that s > 6 √ n, and, for the last inequality, the fact that z < q 2s . Combining this with the fact that

|[a + b] q | |[a] q | -|[b] q | for all a, b ∈ R, we obtain for x ∈ Bad z that z, x + µ 2z √ n z q µ z, 2z √ n z -|[ z, x ] q |. Since z q 4s √ n+ln m and |[ z, x ] q | q 48 √ n+ln m , we have µ z, 2z √ n z -|[ z, x ] q | µ i∈[n] |z i | • 2|z i | √ n z -|z i | - q 48 √ n + ln m s 6 √ n (2 z √ n -z √ n) - q 48 √ n + ln m q 48 √ n + ln m .
This implies that x + µ 2z √ n z ∈ Good z . Now, we want to apply Lemma 3.8 with v = µ 2z √ n/ z . For this, we bound v from above. Using that a 2 (|a| + 1) 2 for any a ∈ R, we have

2z √ n z 2 i∈[n] 2 √ n|z i | z + 1 2 = 2 √ n|z| z + 1 n 2 , where |z| = (|z 1 |, . . . , |z n |). This gives us v = µ 2z √ n z µ 2 √ n|z| z + 1 n 2s 6 √ n • 3 √ n = s.
Now, we apply Lemma 3.8 with parameters

L = Z n , ε = 1/1000, c = 14, v = µ 2z √ n/ z and p = v √ π/s √ π.
The assumption of Lemma 3.8 is indeed satisfied for these parameters. This gives that

Pr x [x ∈ Bad z ] -Pr x [x ∈ Good z ] erf(p(1 + 4 c )/2) erf(2p) • 1 + ε 1 -ε 0.9.
Since we always have that

Pr x [x ∈ Bad z ] + Pr x [x ∈ Good z ] = 1, it holds that Pr x [x ∈ Bad z ] 1 + 0.9 2 .
We conclude that

Pr x |[ x, z ] q | < q 48 √ n + ln m 0.95.
Case 2: "Long" z, i.e., z ∈ Z n ∩ [-q 2 , q 2 ) n and z q 2s . This part of the proof is the same as in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF]Lemma 11]. We reproduce it for the sake of completeness. Consider a "long" z, i.e., z q 2s , which implies z ∞ q 2s √ n . We modify the mapping defined in Case 1 from Bad z to Good z vectors by letting µ := min{ s , q 2 z ∞ } and defining:

Bad z → Good z x → x + µe imax ,
where i max is the index of a largest entry in z (in absolute value). We now prove that the map indeed sends Bad z to Good z . We have

µ z ∞ q 2 z ∞ z ∞ q 2 . Therefore, it holds that |[ z, x + µe imax ] q | = |[ z, x ± µ z ∞ ] q | µ z ∞ -|[ z, x ] q |. First, assume that µ = s . Using the facts that z ∞ > q 2s √ n and |[ z, x ] q | < q 48 √ n+ln m for x ∈ Bad z , we obtain µ z ∞ -|[ z, x ] q | > s q 2s √ n - q 48 √ n + ln m > q 48 √ n + ln m . Now, assume that µ = q 2 z ∞ . If z ∞ q 6 , then we have µ = q 2 z ∞ q 2 z ∞ -1 q 2 z ∞ -q 6 z ∞ > q 6 z ∞ , otherwise if q 6 < z ∞ q 2 , then µ = q 2 z ∞ 1 q 6 z ∞ . Hence µ q 6 z ∞ in this case. For x ∈ Bad z , it implies that µ z ∞ -|[ z, x ] q | > q 6 z ∞ • z ∞ - q 48 √ n + ln m > q 48 √ n + ln m .
In both cases, we have

|[ z, x + µe imax ] q | > q 48
√ n+ln m . We apply Lemma 3.8 with parameters L = Z n , ε = 1/1000, c = 35, and v = µe imax . The assumption of Lemma 3.8 is indeed satisfied for these parameters. Note that v = µ < s + 1, and

p := v √ π s < s+1 s √ π < 20 √ n+1 20 √ n √ π < 1.02 √ π.
Similarly to the previous case it follows that Pr x [x ∈ Bad z ] -Pr x [x ∈ Good z ] 0.9. Hence, we obtain Pr x [x ∈ Bad] 0.95. Using Lemma 3.16 and Hoeffding's bound, we can now show that with overwhelming probability over the choice of X, there are more than n+ln m entries of [X t z] q that have magnitude larger than q 48 √ n+ln m for any not too short z ∈ Z n ∩ [-q 2 , q 2 ) n . This implies the following result.

Lemma 3.17. Let n 60, q 2, m 335n ln q be integers, and s 20 √ n.Then, we have

Pr ∀ z ∈ Z n ∩ [- q 2 , q 2 ) n with z q 4s √ n + ln m : [X t z] q q 48 > 1 -2 • 2 -0.001m ,
where the probability is taken over X ← (D Z n ,s ) m .

Proof. Fix z with z q 4s √ n+ln m . For i ∈ [m], consider independent binary random variables Y i , defined over the choice of the columns x i of X:

   Y i = 1 if |[ x i , z ] q | q 48 √ n+ln m , Y i = 0 otherwise.
From Lemma 3.16, it follows that Pr X [Y i = 1] 0.05. Therefore by linearity of expectation, we have E i Y i 0.05m. Using Hoeffding's bound (Lemma 3.3) with t = 0.05m -(n + ln m), we obtain

Pr | i Y i -E[ i Y i ]| 0.05m -(n + ln m) 2 exp -2 (0.05m -(n + ln m)) 2 m .
Hence, for m 200(n + ln m) (which is implied by the condition m 335n ln q), we have

Pr X i Y i < n + ln m Pr X 0.05m - i Y i 0.05m -(n + ln m) 2 exp -2 (0.05m -(n + ln m)) 2 m 2 exp(-0.004m).
The inequality above holds for any z ∈ Z n ∩ [-q 2 , q 2 ) n with z q 4s √ n+ln m . Using the lower bound on m, m 335n ln q, we conclude that

Pr ∃ z ∈ Z n ∩ [- q 2 , q 2 ) n with z q 4s √ n + ln m : i Y i < n + ln m < 2q n • e -0.004m < 2 • e -0.001m .
Since i Y i n + ln m implies that [X t z] q q 48 , the result follows. We are now in a position to prove our first main results.

Proof of Theorem 3.13. The choice of parameters allows us to use both Lemma 3.15 and Lemma 3.17. Their combination tells us that, with all but probability 2 -Ω(n) over the choice of X, there does not exist any vector z ∈ Z n ∩ [-q 2 , q 2 ) n for which [X t z] q / ∈ X t Z n and [X t z] q < q 48 . This gives the first result. Proof of Theorem 3.14. We show that if

v ∈ Λ q (X) \ X t Z n , then v ∞ q 48 √ n+ln m
with overwhelming probability. For z ∈ Z n ∩ [-q 2 , q 2 ) n and z q 4s √ n+ln m , we have from Lemma 3.16 that Pr

x [|[ x, z ] q | < q 48 √ n+ln m ] 0.95. It follows that Pr X [X t z] q ∞ < q 48 √ n + ln m 0.95 m e -0.05m .
By the union bound, we obtain

Pr X ∃ z : [X t z] q ∞ < q 48 √ n + ln m q n • e -0.05m = 2 -Ω(n) .
Combining the above with Lemma 3.15, we conclude that with all but probability 2 -Ω(n) over the choice of X, there does not exist any vector z ∈ Z n ∩ [-q 2 , q 2 ) n for which [X t z] q / ∈ X t Z n and [X t z] q ∞ < q 48 √ n+ln m . This completes the proof.

Using the dual of Λ ⊥ (X)

We want to find an upper bound on the smoothing parameter of Λ ⊥ (X). Using Lemma 3.5, such a bound comes from a lower bound on the minimum of the dual lattice of Λ ⊥ (X). We now relate the (n + 1)-th minimum of the lattice Λ q (X) and the norms of the shortest vectors in Λ ⊥ (X) . For the proof below, it is useful to recall that Λ ⊥ (X) = (Z m + X t R n ) ∩ ker(X), as showed in Lemma 2.4.

Lemma 3.18. Let n 60 and s 20 √ n. Let q and m be integers satisfying m 335n ln q and that q 96sn √ m We have

Pr X←(D Z n ,s ) m λ ∞ 1 (Λ ⊥ (X) ) 1 96 √ n + ln m 1 -2 -Ω(n) , Pr X←(D Z n ,s ) m λ 1 (Λ ⊥ (X) ) 1 96 1 -2 -Ω(n) .
Proof. Let u be any vector in Λ ⊥ (X) . From Lemma 2.4, we can write u = k + X t y, for some k ∈ Z m and y ∈ R n . Let z ∈ R n with z ∞ < 1 q such that y = y + z and y ∈ 1 q Z n . Thus, we can write u = v + X t z, where v = k + X t y ∈ 1 q Λ q (X).

Assume now that u is a non-zero vector of Λ ⊥ (X) . We show by contradiction that v cannot be in the row-span of X. Assume on the contrary that v ∈ X t Q n . Then, on the one hand, this implies that u ∈ X t R n = (ker X) ⊥ . On the other hand, we have u ∈ ker X by definition of Λ ⊥ (X) . Then we must have u = 0 m , which contradicts the choice of u as a non-zero vector of Λ ⊥ (X) . In particular, from Theorems 3.13 and 3.14,we see that v ∞ 1 48 √ n+ln m and v 1 48 with probability at least 1 -2 -Ω(n) . Now, we let u be such that u ∞ = λ ∞ 1 (Λ ⊥ (X) ) and we compare it to v ∞ , for v defined as above. Applying Lemma 2.5 with t = √ 2π, we obtain that with probability greater than 1 -2 -n , the rows of X t have Euclidean norms smaller than s

√ n. It follows that X t z ∞ max( x i ) • z sn q . By the triangular inequality, we have v ∞ u ∞ + X t z ∞ , from which we deduce that u ∞ v ∞ - sn q
with all but probability at most 2 -n . We then deduce using Theorem 3.14 and the assumptions on m and q that v ∞ -sn q

1 48 √ n + ln m - sn q 1 96 √ n + ln m ,
also with probability greater than 1 -2 -Ω(n) . Let now u be such that u = λ 1 (Λ ⊥ (X) ), and v be as defined above. By norm equivalence, we have

X t z √ m X t z ∞ sn √ m q
except with probability at most 2 -n . As above, we deduce that u vsn √ m q . Using Theorem 3.13 and the second assumption on q, we obtain

v - sn √ m q 1 48 - sn √ m q 1 96 ,
except with probability at most 2 -Ω(n) .

Finally, we complete the proof of our first main result.

Proof (Theorem 3.11). Let q = 96sn √ m . With this choice, it turns out that any m satisfying m 1355n ln s also satisfies m 335n ln(97sn √ m). By Lemmas 3.5 and 3.18,we obtain that, with all but probability 2 -Ω(n) ,

η ε (Λ ⊥ (X)) ln (2(m -n)(1 + 1 ε ))/π λ ∞ 1 (Λ ⊥ (X) ) 96 (n + ln m) • ln (2(m -n)(1 + 1 ε )) π .
Alternatively, for any ε 2 -(m-n) , we can use Lemmas 3.6 and 3.18 to obtain that (with all but probability 2 -Ω(n) )

η ε (Λ ⊥ (X)) ln(1/ε) λ 1 (Λ ⊥ (X) ) 96 ln(1/ε).
This completes the proof.

Last minimum of Λ ⊥ (X)

In this section we present our second result: an upper bound on the (m-n)-th minimum of the orthogonal lattice Λ ⊥ (X).

The question of finding an upper bound on λ m-n (Λ ⊥ (X)) was addressed in [AGHS13] and later in [AR16], with the aim of obtaining an upper bound on the smoothing parameter of Λ ⊥ (X). In particular, Agrawal et al. in [START_REF] Agrawal | Discrete Gaussian leftover hash lemma over infinite domains[END_REF] first give a lower bound on λ n+1 (Λ q (X)), then use Banaszczyk's theorem (Theorem 3.4) to obtain an upper bound on λ m-n (Λ ⊥ q (X)). Finally, they argue that this is also an upper bound on λ m-n (Λ ⊥ (X)). Aggarwal and Regev in [AR16] present a more direct approach to bound λ m-n (Λ ⊥ (X)). In all cases, these bounds on the last minimum of Λ ⊥ (X) were used as a way to bound its smoothing parameter (our approach in Section 3.3 is in some sense more direct).

We shall need the following lemma, obtained by combining Theorem 3.13 with Theorem 3.4. Lemma 3.19. Let n 60, s 20 √ n and m 1400n ln s.Then, we have:

Pr X←(D Z n ,s ) m λ m-n (Λ ⊥ (X)) 48m 1 -2 -Ω(n) .
Proof. Let q be the smallest prime such that q 96sm 3/2 . By [START_REF] Heath-Brown | The number of primes in a short interval[END_REF], there exists a prime in the range (96sm 3/2 , 192sm 3/2 ), hence we have q < 192sm 3/2 . 4 We apply Theorem 3.13 to conclude that λ n+1 (Λ q (X)) q 48 with overwhelming probability. From Theorem 3.4 with i = n + 1, it follows that λ m-n (Λ ⊥ q (X)) 48m. This implies that Λ ⊥ q (X) contains m -n linearly independent vectors v 1 , . . . ,

v m-n such that v 1 v 2 • • • v m-n 48m.
As q is prime, we have that Xv j = 0 mod q for all j ∈ [m -n] (see the discussion after Definition 2.1). Now, we show that v j ∈ Λ ⊥ (X) for all j ∈ [m -n], i.e., that Xv j = 0 over the integers. Thanks to Lemma 2.5 with t = √ 2π, the rows of X have norms bounded by s √ m with probability greater than 1 -2 -Ω(n) . Therefore, for any j ∈ [m -n], we have

X • v j ∞ = max i | x i , v j | max i x i • v j 48sm 3 2
with overwhelming probability. Our choice of q implies that X • v j ∞ < q/2, hence the equality X • v j = 0 holds over Z. The result follows. here

We now consider the case of a wide matrix X, i.e. with very large m. We split it into t matrices of smaller dimensions n × m i for i ∈ [t], where m i is independent of m and is large enough to satisfy the conditions of Lemma 3.19. For simplicity, one could think of m i 's being all equal assuming that m is divisible by m i . In general, we may not be able to divide m into large enough and equal pieces. This is why our X i 's may have different numbers of columns. Using Lemma 3.19, we show that every orthogonal lattice defined by such small matrices has m i -n linearly independent vectors of norm at most 48m i . By padding these vectors with zeros appropriately (see Figure 3.1), we thus find i∈[t] (m i -n) short and linearly independent vectors in Λ ⊥ (X). To show that there are,

n m 1 m 2 X 1 X 2 V 1 0 U 1 0 V 2 -U 2 m 1 + m 2 -n m 1 + m 2 • = 0 m 1 + m 2 -n Figure 3.2: Given a wide matrix X = (X 1 |X 2 ) ∈ Z n×(m 1 +m 2 ) , we first obtain m 1 + m 2 -n linearly independent short vectors in Λ ⊥ ((X 1 |X 2 )). These correspond to the columns (V 1 t |0) t and (0|V 2 t ) t .
The n other missing short vectors are obtained via stacking U i matrices satisfying X i U i = I n , as depicted. in fact, more short vectors in this lattice, we apply Lemma 3.9. We can "stack" the U -matrices from this lemma (see Figure 3.1) to obtain other short vectors orthogonal to X. Thus, in total we obtain m -n short linearly independent vectors in Λ ⊥ (X) whose norms can be bounded independently from m. Theorem 3.20. Let n 100 and s 20 √ n. Let m such that 2801n ln s m 2 n/2 .Then, we have

Pr X←(D Z n ,s ) m λ m-n (Λ ⊥ (X)) O (n ln(ns)) 1 -2 -Ω(n) .
The "O(•)" constant can be worked out from the proof. Concretely, the term O(n ln(ns)) may be replaced by 134400n ln(ns).

Proof. We divide our wide matrix X into smaller matrices with appropriate numbers of columns. For m 2801n ln s, we can divide the matrix X into at least two blocks of at least m = 1400n ln s columns.

We start by splitting X into t smaller matrices

X i ∈ Z n×m i such that m i ∈ [m , 2m ] for all i ∈ [t]. We look at X as a block-matrix X = [X 1 |X 2 | . . . |X t ], where X i ← (D Z n ,s ) m i for all i ∈ [t]. We apply Lemma 3.19 to each block X i . The lattice Λ ⊥ (X i ) has m i -n linearly independent vectors v i 1 , . . . , v i m i -n such that v i 1 v i 2 . . . v i m i -n 48m i 96m ,
with probability 1 -2 -Ω(n) . It follows that we have i∈[t] (m i -n) = m -tn linearly independent vectors in Λ ⊥ (X) of the form:

v i j = [0 m 1 +•••+m i-1 v i j 0 m i+1 +•••+mt ] t , for j ∈ [m i -n] and i ∈ [t].
Our goal is to have more (m -n, to be precise) short linearly independent vectors in Λ ⊥ (X). Let i ∈ [t]. By Lemma 3.9, with probability greater than 1 -2 -n , there exists a matrix U i ∈ Z m i ×n such that X i U i = I n with columns of norms 2 44n ln(ns). When this event occurs, we have Let i ∈ [t]. By Lemma 3.9, with probability greater than 1 -2 -n , there exists a matrix U i ∈ Z m i ×n such that X i U i = I n with columns of norms 2 44n ln(ns). When this event occurs, we have

X i • [V i |U i ] = [0 n×(m i -n) |I n ],
where n) by assumption on m), we can write:

V i is the m i × (m i -n) matrix whose columns are vi 1 , vi 2 • • • , vi m i -n . With probability 1 -t2 -n (which is 1 -2 -Ω(
X 1 X 2 X 3 . . . X t •            V 1 0 0 . . . 0 U 1 0 . . . 0 0 V 2 0 . . . 0 -U 2 U 2 . . . 0 0 0 V 3 . . . 0 0 -U 3 . . . 0 . . . . . . . . . 0 0 0 . . . V t 0 0 . . . -U t            = 0 m×(m-n) .
Now, we argue that the columns of the matrix built from the U i 's and V i 's are linearly independent. First, for each i, the columns of [V i |U i ] are linearly independent since they satisfy

X i • [V i |U i ] = [0 m 1 -n |I m 1 ],
and since the columns of V i are linearly independent. This implies that for every i, the "block row" [0| . . .

|0|V i |0| . . . |0| -U i | .
. .] has rank exactly m i . If one re-orders the block columns appropriately, the matrix has a "block triangular" shape. Its rank is m 1 + . . .

+ m t-1 + m t -n = m -n.
Overall, we obtain m -n linearly independent vectors in Λ ⊥ (X), with norms O(n ln(ns)), with probability 1 -2 -Ω(n) . here 

Introduction

Trace-and-revoke systems, introduced in [NP01,NNL01] has been studied extensively in many works, including [DF03, KHL03, BW06, NWZ16, ABP + 17].

Anonymity of receivers is important in numerous real-life applications and has been considered in multiple works, such as [BBW06, LPQ12, FP12, LG18, DPY20]. The standard notion of anonymity requires that the adversary cannot distinguish between ciphertexts of two targeted sets of its choice, even if it can corrupt any user in the intersection of these two sets or outside of the two sets. Unfortunately, it turned out to be extremely difficult to achieve this anonymity level in the general case without any restriction on the size of the target set. The state of the art constructions by Barth et al. [START_REF] Barth | Privacy in encrypted content distribution using private broadcast encryption[END_REF] and Libert et al. [START_REF] Libert | Anonymous broadcast encryption: Adaptive security and efficient constructions in the standard model[END_REF] start from a public-key encryption and result in schemes with ciphertext size which is N times larger, where N denotes the total number of users. Moreover, Kiayias and Samari [START_REF] Kiayias | Lower bounds for private broadcast encryption[END_REF] proved lower bounds in the general case that the ciphertext size has to be linear in N .

For revoke systems, the efficiency is often negatively correlated to the upper bound on the number of revoked users. One of the most important applications of broadcast encryption is Pay-TV and it can typically be in the form of a revoke system: the service broadcasts to all users except the revoked users who were detected as traitors or who unsubscribed from the system. The state of the art revoke systems [NP01,NNL01,BW06, ABP + 17] have compact ciphertext sizes that grow as O(r) where r is the bound of the revoked users and which is not dependent on the number of users. None of these schemes is anonymous. An attempt was made to consider outsider adversaries, who can only corrupt users outside of the two targeted sets. In this limited setting, Fazio and Perera [START_REF] Fazio | Outsider-anonymous broadcast encryption with sublinear ciphertexts[END_REF] showed that one can get key and ciphertext sizes that are sublinear in the number of users. We observe totally different situations for getting anonymity in broadcast encryption and in revoke systems: in broadcast encryption, optimal solutions exist [AY20] but one cannot get the anonymity with sublinear ciphertext size in the total number of users; in revoke systems, no impossibility result has been settled and it does not exclude the possibility to get an anonymous schemes which is as efficient as non-anonymous ones, namely ciphertext size is O(r), independent from the number of users. In this paper, we show that we can design anonymous schemes with O(r) ciphertext size. Moreover, we also handle traceability to achieve anonymous trace-and-revoke systems.

Contributions

Our primary contribution is to develop the first symmetric-key trace-and-revoke scheme with traceability and anonymous revocation. We give two constructions of trace-andrevoke schemes, namely TR 0 and TR 1 from so-called linear functional encryptions. The former TR 0 is generically constructed from inner product functional encryption (IPFE) and encrypts single bit messages. Similarly, TR 1 is constructed from matrix multiplication functional encryption (MMFE) to support n-bit messages. Interestingly, unlike [ABP + 17], our DDH instantiations do not require discrete-log evaluation for ciphertext decryption.

Our second contribution is to propose efficient constructions. We give an efficient construction of MMFE in the prime-order groups and prove that our MMFE construction is indeed tightly secure under the standard matDH assumption. Then we present IPFE construction and its security proof follow from those of MMFE. This construction can be seen as tweaking Tomida's tightly secure IPFE for the symmetric-key settings [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF]. However, we note that our security argument is somewhat different from Tomida's. On top of that, our tightly secure MMFE is more efficient than applying [Tom19] naively.

Our third contribution is a cryptanalysis on the LWE-based IPFE construction of [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]. This justifies our choice of LWE-based IPFE to instantiate TR 0 . Anonymous Revocation. Before describing our results, we discuss the notion of anonymous revocation in trace-and-revoke schemes. The Enc algorithm of any trace-andrevoke scheme takes a message m and a revoked user set description R and computes a ciphertext that can only be decrypted by users outside R. The anonymity property intuitively means that no information on R should be inferred from the ciphertext. A typical multi-challenge security model is defined by polynomially many challenge phases where the adversary adaptively produces (m (t) , R

(t) 0 , R (t)
1 ) on the t-th phase and gets an encryption of (m (t) , R (t) β ) for the same β ← {0, 1} throughout the phases. However, this security model is quite strong and there are practical scenarios that do not require such stronger definition. For example, a typical trace-and-revoke scheme revokes more and more users over time. If a revoked user wants to get access to the system again, it has to contact the broadcaster, which can give the user a new key. In such a scenario, the revoked user set increases with time, such that R (t-1) ⊆ R (t) for any timestamp t > 1. We model this scenario by introducing the restriction that, for any t, if the adversary produces the challenge (m (t) , R

(t) 0 , R (t) 1 ), then R (t-1) 0 ⊆ R (t) 0 and R (t-1) 1 ⊆ R (t)
1 , and call the resulting security property multi-challenge monotonic anonymity mIND-ID-CPA. Although this setting may suffice in many cases, this multichallenge security model puts an additional restriction on the adversary that the challenge revocation sets must be related in a particular manner. This raises the following question: if we restrict ourselves to the single-challenge security model, can we get rid of such restriction on the monotonicity of challenge queries? We define another model for anonymity security that allows polynomially many ciphertext queries (m (t) , R (t) ) and a single anonymity query (m, R 0 , R 1 ) along with adaptively chosen key extraction queries. Note that, the revocation sets R (t) in the ciphertext queries can be adaptively chosen, having no relation with the challenge revocation sets R 0 and R 1 . That being said, we still had to impose a different restriction on the adversary on the post-challenge key queries. We present this model in Section 4.2.2.2 and show that our construction is secure in this model. We note that this is stronger than "insider anonymous" security where the post-challenge key queries are made only on users in R 0 ∩ R 1 .

Technical Overview

We start with a basic description of the trace-and-revoke scheme by Agrawal et al.

[ABP + 17] (in the bounded collusion model). Each user id in this scheme is associated with a vector x id and, correspondingly, a set R is associated with X R , the vector space spanned by (x id ) id∈R . Then, the predicate 'id / ∈ R' can be emulated by testing if ' x id , v R = 0' for v R orthogonal to X R . Using this relation, one encrypts a message m by encrypting m • v R using an IPFE. An IPFE key for x id is used to evaluate id / ∈ R in the encrypted domain. We now describe the decryption algorithm of [ABP + 17] to clarify that this construction does not achieve anonymity of the revocation set. Decryption takes a ciphertext ct for (m, R) and a secret key sk for id and runs IPFE decryption to obtain an intermediate Res = x id , m • v R . The correctness then follows from the fact that decryption can compute x id , v R and divide Res by it to retrieve m. This is the reason why the description of R is provided as part of the ciphertext. Thus, the Agrawal et al. scheme does not achieve revocation set hiding.

Our constructions build on [ABP + 17], but avoid the above difficulty by exploiting the fact that if we consider the message to be single bit (i.e., m ∈ {0, 1}), we have the following four cases:

• m = 0, id ∈ R: The value of x id , y R = m • x id , v R is zero.
• m = 1, id ∈ R: Same as above where the value of x id , y R = m • x id , v R is zero; therefore, when id ∈ R, the message m is hidden.

• m = 0, id / ∈ R: The value of x id , y R = m • x id , y R is again zero. • m = 1, id / ∈ R: The value of x id , y R = m • x id , v R is non-zero.
The above list of cases shows that a secret key for x id decrypts an IPFE ciphertext for m • v R and retrieves m ∈ {0, 1} correctly if id / ∈ R. Note that the decryption algorithm no longer requires the description of the revoked set R. Based on this observation, our constructions translate (m, R) into a vector m • v R where v R is a random vector orthogonal to X R and id to a non-zero vector x id . The monotonic anonymity (in the mIND-ID-CPA security model discussed above) then follows from the fact that the underlying IPFE hides the plaintext vector (here m • v R ). For an n-bit message space, we can run independent and parallel executions of the IPFE that allow bit-by-bit retrieval of the message encrypted. We propose a more efficient alternative, namely, matrix multiplication functional encryption (MMFE). Our generic transformation above ensures that any efficient instantiation of MMFE will result in efficient trace-and-revoke scheme. We discuss constructions of MMFE in both the group-based settings and in the lattice-based settings. We further show that our group-based construction of MMFE is tightly secure under standard assumptions. For lattice-based setting, we suggest use of [ABP + 17] as we could mount a concrete attack on the state-of-the-art [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF] rendering it insecure. Lastly, we note that tracing is performed in a similar fashion to [ABP + 17].

An attack on the Wang et al. IPFE.

Here, we show that the IPFE construction by Wang et al. can be broken for the parameters chosen in [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]. Our attack can be thwarted by increasing the parameters, but then the scheme does not enjoy great efficiency compared to the one from [ABP + 17]. Here, we give the overview on LWE-based IPFE from [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]. The dimension n of the LWE secrets is proportional to the security parameter λ, the parameters , m, p, q are polynomial in n. The master secret key is Z, uniform over {0, . . . , p -1} ×m . The public key is of the form pk = (A ∈ Z m×n q , T = ZA ∈ Z ×n q ). The secret key for the vector x ∈ Z p is sk x = x t • Z. The ciphertext for a vector y ∈ Z p is of the form (c 0 ≈ As, c 1 ≈ T s + p k-1 • y). The authors state that under the LWE assumption, this IPFE is adaptively secure for chosen message distributions, assuming that the secret key queries are linearly independent. We will give an algorithm that can recover the master key from the public key and ciphertexts (i.e., recover z from X t and X t z, where z ← {0, . . . , p -1} and X ∈ {0, . . . , p -1} ×( -1) is chosen by the adversary). We remark that z belongs to a coset of the lattice orthogonal of X defined by t. The crux of the attack is that for parameters as above, the minimum of this lattice is larger than z . This means that we have a Bounded Distance Decoding problem instance in a lattice of dimension 1. Finally, we also explain why our attack does not extend to the schemes from [ALS16, ABP + 17].

Organization of this chapter. In Section 4.2, we present some important definitions. In Section 4.3, we present black-box transformations to convert linear functional encryptions into trace-and-revoke systems with traceability and anonymity of revocation. Before we present group-based MMFE construction, in Section 4.4, we show an attack of a recent LWE-based IPFE construction [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]. Then, in Section 4.5, we present a construction of MMFE in the prime-order groups.

Definitions and Preliminaries

For any two sets S and R, we define S∆R = (S \ R) ∪ (R \ S). For a dictionary D = (k, v k ) k , D.vals() gives the set {v k : k ∈ D}. For a vector space V over a field K, the corresponding orthogonal space is denoted by V ⊥ . For a distribution D, we write x ← D to say that x is sampled from D. The ppt abbreviation stands for probabilistic polynomial time. We denote G gen (1 λ , p) → (g, G) such that G is a cyclic group of prime order p and g generates G.

For A = (a ij ) ∈ Z β×α p we denote [A] = (g a ij ) ∈ Z β×α p . For m, k ∈ N for m > k, we use M ← D k [m, k]
to get a full rank matrix M ∈ Z m×k where the first k rows are linearly independent.

Linear Functional Encryption

A functional encryption scheme [START_REF] Boneh | Functional encryption: Definitions and challenges[END_REF] allows a user, having a secret key sk f corresponding to a function f , to evaluate f (z) securely given a ciphertext ct z for a plaintext z. The inner product function, being one of the simplest functionalities, has received a tremendous amount of exposure [ALS16, AGRW17, ACF + 18, CLT18, Tom19]. We here define an extended version for IPFE in symmetric-key settings called Matrix Multiplication Functional Encryption (MMFE). Informally speaking, having a secret key sk x for x ∈ Z p , given a ciphertext ct M for for M ∈ Z n× p , MMFE outputs a binary vector of length n where the i th component indicates if M i x = 0 for i ∈ [n] in terms of a predicate f : Z p → {0, 1}.

We consider inner product functional encryption (IPFE) over Z p in the symmetrickey settings1 for a prime integer p 2. Unlike existing IPFE definitions in [ALS16, ABP + 17, ACF + 18], the IPFE.Dec algorithm here retrieves an injective function of the inner product value. In particular, it may not be the inner product value itself. More precisely, the IPFE.Dec algorithm takes as input a ciphertext ct that encrypts y ∈ Z p and a secret key sk x with respect to x ∈ Z p , and outputs f ( x, y ).

Inner Product Functional Encryption.

Definition 4.1. An inner product functional encryption (IPFE) over Z p with respect to an injective map f is a tuple IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) of four ppt algorithms.

• IPFE.Setup(1 λ , 1 , p) takes as input the security parameter λ and the dimension of vectors . It outputs the public parameters pp and the master secret key msk.

The public parameters pp contain the description of the injective function f .

• IPFE.KeyGen(pp, msk, x) takes as input the public parameters pp, the master secret key msk and a vector x ∈ Z p and outputs a secret key sk x .

• IPFE.Enc(pp, msk, y) takes as input the public parameters pp, the master secret key msk and a vector y ∈ Z p and outputs a ciphertext ct.

• IPFE.Dec(pp, sk x , ct) takes as input the public parameters pp, the secret key of a user sk x and a ciphertext ct y , and outputs f ( x, y ).

The correctness requirement is that, with overwhelming probability over the randomness used by the algorithms, for (pp, msk) ← IPFE.Setup(1 λ , 1 , p), for all x, y ∈ Z p , for sk x ← IPFE.KeyGen(pp, msk, x) and ct ← IPFE.Enc(pp, msk, y):

IPFE.Dec (pp, sk x , ct) = f ( x, y ).
Security. The security (IND-CPA) of symmetric-key IPFE is modeled as the following security game played between a challenger and an adversary A. This security model is reminiscent of that of [START_REF] Shen | Predicate privacy in encryption systems[END_REF].

• The challenger runs (pp, msk) ← Setup(1 λ , 1 , p), keeps msk secret and gives the public parameters pp to the adversary A. The challenger further samples β ← {0, 1}.

• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two vectors y (0) , y (1) ∈ Z p , and the challenger responds with ct (β) ← Enc(pp, msk, y (β) ).

Secret key query:

The adversary sends a vector x ∈ Z p , and the challenger responds with sk x ← KeyGen(pp, msk, x).

These queries can be made under the restriction that for all ciphertext query (y (0) , y (1) ) and all secret key query x, we must have f ( x, y (0) ) = f ( x, y (1) ).

• Finally, the adversary returns its guess β ∈ {0, 1} for the bit β chosen by the challenger. The adversary wins this game if β = β .

The advantage of the adversary is defined as Adv

IND-CPA FE,A = | Pr[β = β ] -1/2|. A symmetric-key IPFE scheme IPFE is said secure if Adv IND-CPA FE,A
is negligible for all ppt adversary A.

Matrix Multiplication Functional Encryption.

We now define matrix multiplication functional encryption (MMFE) over Z p for a prime integer p 2. MMFE, as the name suggests, decrypts a ciphertext for a matrix M ∈ Z n× p with a key sk x made of x ∈ Z p revealing only M x and nothing else. Due to its similarity with the definition of IPFE, MMFE can be achieved from available IPFE. In particular, one can use n-many instances of IPFE to encrypt n vectors (y 1 , . . . , y n ) independently and the Dec algorithm basically computes y i , x for each i ∈ [1, n] individually. However, such a trivial construction suffers from a degradation proportional to n. This gets worse in case of multi-challenge security.

We give a definition and propose a concrete construction with tight security in this work. A similar primitive was already introduced for predicate encryption to allow decryption based on subspace membership relation (M x = 0 or not) in [START_REF] Boneh | Function-private subspace-membership encryption and its applications[END_REF]. Looking ahead, we present a symmetric-key MMFE definition here to construct symmetric-key trace-and-revoke scheme TR 1 for arbitrary n-bit messages in Section 4.3.2. Definition 4.2. A matrix multiplication functional encryption scheme MMFE over Z p with respect to an injective function f is a tuple of four ppt algorithms with the following specifications:

• MMFE.Setup(1 λ , 1 , 1 n , p) takes as input the security parameter λ and the dimensions (n, ) of matrices. It outputs the public parameters pp and the master secret key msk. Similarly to IPFE, the public parameters pp contain the description of an injective function f .

• MMFE.KeyGen(pp, msk, x) takes as input the public parameters pp, the master secret key msk and a vector x ∈ Z p and outputs a secret key sk x .

• MMFE.Enc(pp, msk, M ) takes as input the public parameters pp, the master secret key msk and a matrix M ∈ Z n× p and outputs a ciphertext ct.

• MMFE.Dec(pp, sk x , ct) takes as input the public parameters pp, the secret key of a user sk x and a ciphertext ct, and outputs (f (M 1 x), . . . , f (M n x)) where M i is the i th row of M .

The correctness requirement is that, with overwhelming probability over the randomness used by the algorithms, for (pp, msk) ← MMFE.Setup(1 λ , 1 , 1 n , p), for all x ∈ Z p and M ∈ Z n× p , for sk x ← MMFE.KeyGen(pp, msk, x) and ct ← MMFE.Enc(pp, msk, M ):

MMFE.Dec (pp, sk x , ct) = (f (M 1 x), . . . , f (M n x)) .
Security. Full security (IND-CPA) of symmetric-key matrix multiplication functional encryption is modeled as the following security game played between a challenger and an adversary A.

• The challenger runs (pp, msk) ← Setup(1 λ , 1 , 1 n , p), keeps msk secret and gives the public parameters pp to the adversary A. The challenger further samples β ← {0, 1}.

• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two matrices M (0) , M (1) ∈ Z n× p , and the challenger responds with ct (β) ← Enc(pp, msk, M (β) ).

Secret key query:

The adversary sends a vector x ∈ Z p , and the challenger responds with sk x ← KeyGen(pp, msk, x).

These queries can be made under the restriction that for all ciphertext query (M (0) , M (1) ) and all secret key query x, we must have f (M (0) x) = f (M (1) x).

• Finally, the adversary returns its guess β ∈ {0, 1} for the bit β chosen by the challenger. The adversary wins this game if β = β .

The advantage of the adversary is defined as Adv IND-CPA MMFE,A = | Pr[β = β ] -1/2|. A symmetric-key inner matrix multiplication functional encryption scheme MMFE is said secure if Adv IND-CPA MMFE,A is negligible for all ppt adversary A.

Mathematical Tools and Hardness Assumptions

We assume G gen to be the group generator that generates the prime order group description. Precisely, G gen (1 λ , p) → (g, G) such that G is a cyclic group of prime order p and g generates G. We follow the notation of 

D k = D k [k + 1, k].

Trace-and-Revoke Systems

A symmetric key traitor tracing encryption scheme is a multi-recipient encryption system in which a broadcasting office has the master secret key for encryption and there are many users with decryption capabilities, each having its own secret key. Additionally, the encryption scheme provides a feature to let the broadcaster identify at least one user from a coalition T of malicious users (traitors) that built an unauthorized decryption device D. The following is the blackbox confirmation model [START_REF] Boneh | An efficient public key traitor tracing scheme[END_REF], in which an efficient tracing algorithm Trace is given oracle access to D, which we denote by O D . The oracle O D takes as input any message-ciphertext pair (m, C) and returns 1 if D(C) = m and 0 otherwise. Given as input a set S of suspected users containing T, the Trace algorithm should disclose the identity of at least one user from the set T. For security, a traitor coalition should not be able to design a useful box that escapes tracing, i.e., such that the Trace algorithm replies ⊥ or frames an innocent user in S \ T.

Following [ABP + 17], the probability of decryption of decoder D, can be estimated by repeatedly querying the oracle O D with plaintext-ciphertext pairs. Therefore, we assume the decryption device D correctly decrypts a properly generated ciphertext with significant probability. The following is a description of D, reproduced from [ABP + 17] and modified for the symmetric-key setting. Let R be any set of revoked users, of size r. Let the message m be sampled uniformly at random from the message space M and let C R be the output of the encryption algorithm Enc using the master secret key msk and R as the set of revoked users. With C R as input, the device D is assumed to output m with probability significantly more than 1/|M |:

Pr m ← U (M ) C R ← Enc(msk, pp, R, m) O D (C R , m) = 1 1 |M | + 1 λ c , (4.2)
for some constant c > 0.

We let the identity space ID and the message space M be implicit arguments to the setup algorithm below. We let the secret key space K, the ciphertext space C (along with ID and M ) and the descriptions of mathematical tools that are used be part of the public parameters output by the setup algorithm. We adapt the definition from [ABP + 17] to the symmetric-key setting. Definition 4.8. A dynamic trace-and-revoke scheme TR in the black-box confirmation model is a tuple TR = (Setup, KeyGen, Enc, Dec, Trace) of five ppt algorithms with the following specifications.

• Setup(1 λ , 1 r , 1 t ) takes as input the security parameter λ, the bound t on the size of traitor coalitions and the bound r on the number of revoked users. It outputs (msk, pp, dir) containing the master secret key msk, the public parameters pp and the initially empty user directory dir. Here, unlike [ABP + 17], dir is kept secret.

• KeyGen(pp, msk, dir, id) takes as input the public parameters pp, the master secret msk, the user directory dir and an identity id ∈ ID of a user. It outputs the corresponding secret key sk id and some information u id for the given identity id. It also updates dir to include u id .

• Enc(pp, msk, dir, R, m) takes as input the public parameters pp, the master secret msk, the user directory dir, a set R of size r which contains the u id of each revoked user in dir, and a plaintext message m ∈ M . It outputs a ciphertext C R ∈ C.

• Dec(pp, sk id , C R ) takes as input the public parameters pp, a secret key sk id of a user with identity id and a ciphertext C R ∈ C. It outputs a plaintext m ∈ M .

• Trace(pp, msk, dir, R, S, O D ) is a tracing algorithm in the black-box confirmation model that takes as input the public parameters pp, the master secret key msk, the user directory dir, a set R of r revoked users, a set S of t suspect users, and has black-box access to the pirate decoder D through the oracle O D . It outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the randomness used by the algorithms, for (pp, msk, dir) ← Setup(1 λ , 1 r , 1 t ), for any set R of r revoked users:

∀m ∈ M, ∀id ∈ ID \ R : Dec(pp, sk id , Enc(pp, msk, dir, R, m)) = m.
In this work, we consider three security properties for a trace-and-revoke scheme: message hiding, revocation set hiding, and traceability.

Message Hiding.

The IND-CPA security of a trace-and-revoke scheme TR is defined based on the following game. Informally speaking, neither a system outsider nor a revoked user must be able to get any information about the encrypted message.

• The challenger runs Setup(1 λ , 1 r , 1 t ) and gives the produced public parameters pp to the adversary A. The adversary may ask the challenger to add polynomially many users in the system (these user addition queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to r secret key queries and a single challenge ciphertext query, of the following form: * Given a key generation query id, the challenger provides the corresponding sk id to A. * Given the challenge ciphertext query (m 0 , m 1 , R) with R ⊂ ID of size r, the challenger samples β ← {0, 1} and provides C (β) ← Enc(pp, msk, dir, R, m β ) to A.

These queries are subject to the restriction that every queried id belongs to R.

• Finally, the adversary returns its guess β ∈ {0, 1} for the bit β chosen by the challenger. The adversary wins this game if β = β .

The advantage of the adversary A is defined as

Adv IND-CPA TR,A = | Pr[β = β ] -1/2|.
A trace-and-revoke scheme TR is said to be

IND-CPA secure if Adv IND-CPA TR,A
is negligible for all ppt adversary A.

Revocation Set Hiding.

The anonymity of a trace-and-revoke scheme TR captures the idea of hiding the revocation set in the ciphertext: if t th challenge ciphertext is created for one of the two adversarially chosen revoked sets (R

(t) 0 , R (t)
1 ) on the t th challenge phase, then the adver-

sary cannot distinguish if R (t) 0 or R (t)
1 was used for the encryption for all of t. As we already have mentioned in the Introduction, we aim for a multi-challenge security settings that properly emulates the following scenario: A typical trace-andrevoke scheme traces and revokes more and more users over the time. In such a scenario, each new ciphertext is created for growing revoked user sets. We call this setting as monotonic anonymity security model (mIND-ID-CPA) and define it as following.

• The challenger runs Setup(1 λ , 1 r , 1 t ) and gives the produced public parameter pp to the adversary A. The adversary may ask the challenger to add polynomially many users in the system (these user addition queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to (r + t) secret key queries and polynomially many anonymity challenge queries, of the following form: * Given a key generation query id, the challenger provides the corresponding sk id to A. * Given a challenge anonymity query (m, R 0 , R 1 ) with R 0 , R 1 ⊂ ID of size r, the challenger samples β ← {0, 1} and provides C (β) ← Enc(pp, msk, dir, R β , m) to A.

These queries are subject to the restriction that for every queried id,

either id ∈ R 0 ∩ R 1 or id ∈ ID \ (R 0 ∪ R 1
). Among all the key queries that have been made, at most t of them could be satisfying id ∈ ID \ (R 0 ∪ R 1 ) and at most r of them could be satisfying id ∈ R 0 ∩ R 1 . The challenge anonymity queries also have a natural restriction that R

(i) 0 ⊆ R (j) 0 and R (i) 1 ⊆ R (j)
1 for all i j where the t th challenge anonymity query was made on (m (t) , R

(t) 0 , R (t) 1 ).
• Finally, the adversary returns its guess β ∈ {0, 1} for the bit β chosen by the challenger. The adversary wins this game if β = β .

The advantage of the adversary A is defined as

Adv mIND-ID-CPA TR,A = | Pr[β = β ] -1/2|.
A trace-and-revoke scheme TR is said to be mIND-ID-CPA secure if Adv mIND-ID-CPA TR,A is negligible for all ppt adversary A.

In the Introduction, we informally discussed different practical scenarios involving the anonymity of revocation set. The anonymity security model in Section 4.2.2.2 is a multi-challenge security model and captures the security requirements of a typical broadcasting agency. However, the security definition is restrictive in principle as all the revoked sets in anonymity challenge queries are related. In this section, we first give a single-challenge security definition (IND-ID-CPA) for revocation set hiding. Being a single-challenge security definition for symmetric-key settings, this new security definition (IND-ID-CPA) for revocation set hiding supports multiple ciphertext queries along with multiple secret key queries and a single challenge anonymity query.

The positive side of IND-ID-CPA is that in the security proof, we no longer put any restriction on the revoked sets R across multiple ciphertext queries and challenge anonymity query. However, we still need to impose some new security restrictions on the adversary here in terms of post-challenge secret key queries. Precisely, we define IND-ID * -CPA security that allows all pre-challenge queries (both key and ciphertext) and all post-challenge ciphertext queries (satisfying the natural restriction). However, for post-challenge secret key queries, IND-ID * -CPA imposes a new restriction. In the literature, similar restriction has already been put like "outsider corruption" in [START_REF] Fazio | Outsider-anonymous broadcast encryption with sublinear ciphertexts[END_REF]. However, unlike [START_REF] Fazio | Outsider-anonymous broadcast encryption with sublinear ciphertexts[END_REF] we can still support "insider corruption" (i.e. post-challenge key queried on id ∈ R 0 ∩ R 1 ) completely and "outsider corruption" (i.e. post-challenge key queried on id ∈ ID \ (R 0 ∪ R 1 )) with some restriction. The restriction is a bit unusual in the sense, the adversary is not allowed to make post-challenge secret key queries on id ∈ ID \ (R 0 ∪ R 1 ) for an id that was a part of pre-challenge ciphertext query but was not queried for secret key in the pre-challenge query phase. But, this is all we require to argue our construction TR 0 is secure. Here, note that, TR 0 being a trace-and-revoke scheme with unbounded users, the set ID \ (R 0 ∪ R 1 ) is sufficiently big and the adversary is restricted from making query on a small subset.

Security Definition

We first define the IND-ID-CPA security model and then weaken it to define IND-ID * -CPA security. The IND-ID-CPA security of a trace-and-revoke scheme TR is defined based on the following game.

• The challenger runs Setup(1 λ , 1 r , 1 t ) and gives the produced public parameter pp to the adversary A. The adversary may ask the challenger to add polynomially many users in the system (these user addition queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to (r + t) secret key queries, polynomially many ciphertext queries and a single anonymity challenge query, of the following form: * Given a key generation query id, the challenger provides the corresponding sk id to A. * Given a ciphertext query (m, R) with R ⊂ ID of size r, the challenger provides C ← Enc(pp, msk, dir, R, m) to A. * Given the challenge anonymity query (m, R 0 , R 1 ) with R 0 , R 1 ⊂ ID of size r, the challenger samples β ← {0, 1} and provides C (β) ← Enc(pp, msk, dir, R β , m) to A.

These queries are subject to the restriction that for every queried id,

either id ∈ R 0 ∩ R 1 or id ∈ ID \ (R 0 ∪ R 1
). Among all the key queries that have been made, at most t of them could be satisfying id ∈ ID \ (R 0 ∪ R 1 ) and at most r of them could be satisfying id ∈ R 0 ∩ R 1 .

• Finally, the adversary returns its guess β ∈ {0, 1} for the bit β chosen by the challenger. The adversary wins this game if β = β .

The advantage of the adversary A is defined as Adv IND-ID-CPA

TR,A = | Pr[β = β ] -1/2|.
We then weaken the security model a small amount to define IND-ID * -CPA security, which does not allow post-challenge secret key queries on id ∈ ID \ (R 0 ∪ R 1 ) for an id that was a part of pre-challenge ciphertext query but was not queried for secret key in the pre-challenge query phase. A trace-and-revoke scheme TR is said to be IND-ID * -CPA secure if the advantage Adv IND-ID * -CPA TR,A is negligible for all ppt adversary A.

Traceability.

The notion of traceability considers a suspected set S of users who might have produced the pirate decoder D. Then the tracing algorithm Trace outputs an id ∈ S \ T where T is the set of traitors who are already detected. This requirement is formalized using the following game, denoted by AD-TT, between an adversary A and a challenger. We reproduce the security model from [ABP + 17] for sake of completeness.3 More precisely, the authors of [ABP + 17] achieved public-traceability: for this purpose, the public-key Enc algorithm was used to construct so-called probe ciphertexts to query O D and identify a traitor. Our trace-and-revoke scheme relies on a symmetric key Enc algorithm, and hence tracing relies on the master secret key msk (in particular, tracing is not public).

• The challenger runs Setup(1 λ , 1 r , 1 t ) and gives pp to A. The adversary may ask the challenger to add polynomially many users in the system (these user addition queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• Adversary A makes adaptive traitor key queries on at most t distinct users. For every id queried, the challenger checks to find u id ← dir[id]. If available, records id in T and returns sk id . Otherwise, adds u id to dir[id], records id in T and returns sk id ← KeyGen(pp, msk, id).

• Adversary A sends an adaptively chosen revocation set R ⊂ ID of size r and gets back all the secret keys {sk id ← KeyGen(pp, msk, id)} id∈R .

• Adversary A then produces a pirate decoder D and gives the challenger its access in terms of an oracle O D . A also produces a suspect set S of size t containing T and sends it to the challenger.

• The challenger then runs Trace(pp, msk, dir, R, S, O D ). The adversary wins if both of the following hold: * Equation (4.2) is satisfied for the set of revoked users R chosen by the adversary (i.e., decoder D is useful), * the execution of Trace outputs ⊥ or outputs an id ∈ S \ T with probability 1/λ c .

We define the tracing advantage Adv AD-TT TR,A as the probability of A's win. A trace-andrevoke scheme TR is said to be AD-TT secure if the advantage Adv AD-TT TR,A is negligible for all ppt adversary A.

Trace-and-Revoke from Linear Functional Encryption

In this section, we construct a trace-and-revoke system from a linear functional encryption scheme that achieves traceability and anonymous revocation. This is achieved in two steps. First, a trace-and-revoke system for single-bit messages is constructed from inner product functional encryption. Then we extend such a trace-and-revoke system to support arbitrary fixed length strings. We first define a generic transformation similar to the one of [ABP + 17], which converts an IND-CPA secure inner product functional encryption scheme IPFE into a traceand-revoke system TR 0 for the restricted message space M = {0, 1} that enjoys anonymous revocation. Note that this transformation converts an IND-CPA secure IPFE in the bounded collusion model to a trace-and-revoke system TR 0 that supports an exponential number of users like [ABP + 17]. Then we provide another generic transformation that converts an IND-CPA secure matrix multiplication functional encryption scheme MMFE into a trace-and-revoke system TR 1 for the message space M = {0, 1} n for n as large as poly(λ). This transformation also ensures that TR 1 achieves anonymous revocation along with supporting an exponential number of users.

As, our primary contribution in this chapter, is to introduce trace-and-revoke schemes with anonymous revocation, our presentation mainly focuses on the construction and the anonymity security of TR 0 and TR 1 . Nevertheless, in Section 4.3.1, we have provided a complete description of the TR 0 that includes an explicit description of the Trace function. For the sake of simplicity, we however have presented the general trace-andrevoke systems TR 1 in Section 4.3.2 without a Trace. Note that, TR 1 can use the Trace algorithm of TR 0 .

Trace-and-Revoke for Single Bit Messages

We construct a trace-and-revoke scheme TR 0 following the specifications of Definition 4.8 for the message space M = {0, 1}. TR 0 relies on a user directory dir which contains the identities of all the users that have been assigned keys in the system. This user directory is initially empty. Unlike [ABP + 17], we assume that dir can only be accessed by the central authority, which is the sender as well as the key generator. TR 0 relies on an inner product functional encryption scheme IPFE for the -dimensional vector space on Z p , where the value is a function of r and t. Recall that, in a typical trace-and-revoke scheme, the bound on the number of revoked users r and the bound on the number of suspected users (traitors) t are given as the system parameters. The description of IPFE comes with an injective map f whose description is included in the public parameters pp. To define the trace-and-revoke scheme TR 0 , we define a special element in the range of the map elem * = f (0). Concretely, in case of a group-based construction of IPFE, we take the exponentiation map f : x → [x] and have elem * = [0]. In case of a lattice-based construction, we take the identity map f : x → x and have elem * = 0.

1. Setup(1 λ , 1 r , 1 t ). Upon input the security parameter λ, the bound t on the number of the suspected users, and the bound r on the number of revoked users, set p = λ ω(1) and proceed as follows:

(a) Let (pp, msk) ← IPFE.Setup(1 λ , 1 , p), where we set = 2r + t + 1. The key space K and ciphertext space C are the IPFE key space and ciphertext space, respectively.

(b) Create an empty directory dir.

(c) Output the public parameter pp, master secret key msk and the (empty) user directory dir.

2. KeyGen(pp, msk, dir, id). Upon input the public parameters pp, the master secret key msk, the user directory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample x id ← Z p . The pair u id = (id, x id ) is then appended to the user directory dir.

(b) Let (sk id , x id ) ← IPFE.KeyGen(pp, msk, x id ).

(c) Output (sk id , x id ).

3. Enc(pp, msk, dir, R, m). Upon input the public parameters pp, the master secret key msk, the user directory dir, a set of revoked users R of size r and a plaintext message m ∈ M = {0, 1}, proceed as follows:

(a) Sample v R ← X ⊥ R where X R = {x id : id ∈ R}. (b) Compute y R = m • v R . (c) Output C R = IPFE.Enc(pp, msk, y R ).
4. Dec(pp, (sk id , x id ), C R ). Upon input the public parameters pp, the secret key sk id for user id and a ciphertext C R , proceed as follows:

(a) Compute Res = IPFE.Dec(pp, (sk id , x id ), C R ).

(b) If Res = elem * , then output 0. Otherwise output 1.

5. Trace(pp, msk, dir, R, S, O D ). Upon input the master secret key msk, the user directory dir, a revoked set of users R, a suspect set of users S and given access to the oracle O D , proceed as follows:

(a) Suppose the users in the suspect set S can distinguish between the messages m = 0 and m = 1 except with negligible probability provided these users can access the oracle

O D . 4 (b) Set S 1 = {id 1 , id 2 , . . .} = S \ R. (c) Sample v R ← X ⊥ R where X R = {x id : id ∈ R}. (d) For all i = 1, 2, . . . , t, • If i = 1, set v S i = 0. If S i = ∅, set v S i = (m -m) • v R . • Otherwise, sample v S i ← X ⊥ R∪S i ∩ X ⊥ S 1 \S i + (m -m) • v R where X R∪S i = {x id : id ∈ R ∪ S i } and X S 1 \S i = {x id : id ∈ S 1 \ S i }. • Construct y i = v S i + m • v R ;
• Provide the oracle O D with (C S i , m) as input and get a binary value b i as output. Suppose the probability of b i = 1 is p i . • The probe ciphertext is C S i = IPFE.Enc(pp, msk, y i ); We note that, the decryption result of the probe ciphertext

C S i is m if id ∈ S i and m if id ∈ S \ S i . • If i > 1 and |p i -p i-1 | is non-negligible,
-Output id i-1 as the traitor identity and abort; -If S i = φ, output ⊥ and abort. Otherwise, set S i+1 = S i \ {id i }.

We state the following theorems essential for the correctness. Theorem 4.9. Assume that p = λ ω(1) . Then, for every set R of revoked users of size r, every id / ∈ R and every m ∈ M = {0, 1}, we have

Dec(pp, (sk id , x id ), Enc(pp, msk, dir, R, m)) = m,
with probability 1 -λ -ω(1) .

Proof. As x id is uniform in Z p , p = λ ω(1) and > r, we have that x id , v R = 0, with overwhelming probability. The execution of Dec(pp, (sk id , x id ), C R ), with C R = Enc(pp, msk, dir, R, m), on Step (a) computes (with overwhelming probability):

Dec(pp, (sk id , x id ), C R ) = f ( x id , y R ) = f (m • x id , v R )
by the correctness of IPFE where f is the deterministic function included in pp. Now, observe that, if m = 0, then f ( x id , y R ) = f (0) = elem * . In this case, Dec outputs 0. On the other hand, if m = 1, then f ( x id , y R ) = f ( x id , v R ) = elem * (since x id , v R = 0 and f is injective). In this case, Dec outputs 1. Thus, for both values of m, Dec retrieves the correct value of m with overwhelming probability. * It sends y 0 = m 0 • v R and y 1 = m 1 • v R to the IPFE challenger. The latter encrypts y β as ct (β) ← IPFE.Enc(pp, msk, y β ) and outputs ct (β) . * It forwards the received ciphertext to A TR 0 as its challenge C (β) .

• Finally, the A TR 0 adversary outputs its guess β ∈ {0, 1} and A IPFE also outputs β as its own guess of β.

Note that adversary A IPFE behaves as an IND-CPA challenger in the view of A TR 0 . Further, it is a valid adversary against IPFE as y 0 , x id = y 1 , x id = 0 for every vector x id queried to the IPFE challenger (i.e., each id ∈ R). The advantage of A IPFE is exactly the same as the advantage of A TR 0 . Theorem 4.12. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing up to (t + r) key extraction queries, then TR 0 is mIND-ID-CPA secure.

Proof. Given an mIND-ID-CPA adversary A TR 0 , we produce A IPFE that breaks the IND-CPA security of IPFE.

• A IPFE first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE.Setup(1 λ , 1 ) algorithm) and relays it to A TR 0 . The IPFE challenger, at this point, samples β ← {0, 1}. On A TR 0 's request, A IPFE creates dir with polynomially many id without the corresponding x id .

• Recall that, A TR 0 can make multiple secret key queries on id ∈ ID and multiple challenge ciphertext queries on (m, R 0 , R 1 ). To accommodate such queries, A IPFE first defines a set of vector {x i } 1 i N = {x 1 , . . . , x t+2r } where x i ← Z p . This set is used to answer to secret key queries.

-For every secret key query on id,

* If id ∈ dir, A IPFE sets x = dir[id].
* Otherwise, A IPFE samples a vector x ← {x i } 1 i N and sets dir[id] = x. * A IPFE then sends x to the IPFE challenger. The latter returns sk x id , which A IPFE forwards to A TR 0 as sk id .

-For every challenge anonymity query on (m, R 0 , R 1 ),

* For every id ∈ R 0 ∪ R 1 , if id / ∈ dir, A IPFE samples a vector x ← {x i } 1 i N without repetition and sets dir[id] = x. * A IPFE defines R = R 0 ∩ R 1 . * Then A IPFE defines three matrices: 1. Z = Matrix({x i } 1 i N \ Z) where Z = {x id : id ∈ R}. 2. X 0 = Matrix(X 0 ) where X 0 = {x id : id ∈ R 0 }. 3. X 1 = Matrix(X 1 ) where X 1 = {x id : id ∈ R 1 }. * It samples   v R 0 v R 1   ← V ⊥ where V =     Z -Z X 0 0 0 X 1     . (4.3) * It sends y R 0 = m • v R 0 and y R 1 = m • v R 1 to the IPFE challenger encrypts y R β as ct (β) ← IPFE.
Enc(pp, msk, y R β ) and outputs ct (β) . * A IPFE then forwards the received ciphertext to A TR 0 as its challenge C (β) .

• At the end of the game, A TR 0 returns β as its guess of β which A IPFE forwards to the IPFE challenger as its answer.

From Eq. (4.3),

Z(v R 0 -v R 1 ) = 0, X 0 v R 0 = 0 and X 1 v R 1 = 0. As y Ru ∈ Span(v Ru ) for u ∈ {0, 1}, Z(y R 1 -y R 0 ) = 0 and X 0 y R 0 = X 1 y R 1 = 0.
We now show that A IPFE is a valid challenger against A TR 0 in the mIND-ID-CPA security model. For that we show, for every i th key query on id i and j th challenge ciphertext query on (m (j) , R

(j) 0 , R (j)
1 ) from A TR 0 , A IPFE can forward corresponding vectors to the IPFE challenger. Due to the natural restriction, note that, id i ∈ (R

(j) 0 ∩ R (j) 1 ) (ID \ (R (j) 0 ∪ R (j) 1 )) for all i ∈ [1, t + r -1] and all j ∈ [1, r].
For all queried id i , if one of the following two holds.

• id i ∈ (R (j) 0 ∩ R (j) 1 ): This means, id i / ∈ (R (t) 0 ∆R (t)
1 ) for all t ∈ [1, j -1] due to the natural restriction. The corresponding x id i ∈ {x i } 1 i N ∩ R(j) and by our reduction, the x id i vector is included in the definition of X (j) 0 and X (j) 1 . From Eq. (4.3) above, we see that

X (j) 0 y (j) R 0 = X (j) 1 y (j)
R 1 = 0. Thus, A IPFE can forward this to the IPFE challenger for key query.

• id i ∈ ID \ (R (j) 0 ∪ R (j)
1 ): Observe that, the corresponding x id i ∈ {x i } 1 i N \ R(j) and such x id i is included in the definition of Z (j) . From Eq. (4.3) above, we see that

Z (j) y (j) R 0 = Z (j) y (j) R 1 = 0 (w.h.p. as y (j) R 0 , y (j)
R 1 are sampled randomly). Thus, A IPFE can forward this to the IPFE challenger for key query.

Next, note that, for every query on id i from A TR 0 , the adversary A IPFE returns a distinct random vector x id i from {x i } 1 i N that were sampled at the starting of the reduction. The crucial point here is A IPFE faces at most (t + 2r) many distinct identities id, hence {x i } 1 i N is sufficient to assign the corresponding x id . Moreover, A TR 0 gets encryption of either y R 0 or y R 1 where both the vectors are randomly sampled. Thus, from the point of view of A TR 0 , Zy R b is a random vector. Thus, A IPFE behaves as a valid mIND-ID-CPA challenger to A TR 0 .

As we have seen above, for every x id i and (y

(j) R 0 , y (j) 
R 1 ) the adversary A IPFE gives to the IPFE challenger, x id i , y (j)

R 0 = x id i , y (j)
R 1 holds. Thus, A IPFE behaves as a valid IND-CPA adversary to the IPFE challenger.

If A TR 0 can distinguish between any R Proof. Given an AD-TT adversary A TR 0 , we have to produce A IPFE that breaks the IND-CPA security of IPFE. A IPFE first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE.Setup(1 λ , 1 ) algorithm) and relays it to A TR 0 . On A TR 0 's request, A IPFE creates dir with polynomially many id without the corresponding x id . The IPFE challenger, being a symmetric key primitive, provides A IPFE polynomially many accesses to the encryption oracle O ct (•) and to the key generation oracle O sk (•).

A TR 0 adaptively chooses id ∈ ID, A IPFE assigns a random x id to dir[id] and makes query to O sk on x id . The response it gets is forwarded to A TR 0 as the secret key sk id . A can make at most t many such queries and these queries are collected as a set T.

A TR 0 then adaptively chooses R ⊂ ID such that |R| r. For every id ∈ R, A IPFE assigns a x id and makes query to O sk on x id , the response it gets is forwarded to A TR 0 as the secret key sk id .

Finally, A produces a pirate decoder O D and a suspected list of traitors S that includes the traitor set T where |S| t. Next, A IPFE runs Trace on S and R given access to O ct and O D . Precisely, for all i ∈ [1, |S|], A IPFE computes v S i and asks O ct to get the so-called probe-ciphertext C S i . Finally, Trace outputs either ⊥ or some id ∈ S. More specifically, the winning condition of AD-TT security model tells that Trace outputs either ⊥ or some id ∈ S \ T with probability 1/λ c for some constant c > 0.

In case, Trace outputs ⊥, A IPFE outputs a random bit. Otherwise, we assume id to be id i-1 for which Trace aborted on the i th round for some i < t. Then, by the description of Trace, Here, we first show that A IPFE is a valid adversary in the IND-CPA security model. In other words, we show that for all secret key queries on id ∈ R ∪ T, y 0 , x id = y 1 , x id . This can be seen from the following:

|p i -p i-1 | is non-negligible. At this point A IPFE retrieves v S i-1 and v S i to define y 0 = v S i-1 + m • v R and y 1 = v S i + m • v R
1. id ∈ R: y 0 , x id = y 1 , x id = 0. 2. id ∈ T ∩ S i-1 : y 0 , x id = y 1 , x id = m • v R , x id . 3. id ∈ T ∩ (S 1 \ S i-1 ): y 0 , x id = y 1 , x id = m • v R , x id .
Now, we show that A IPFE wins with probability given Trace didn't output ⊥.

If β = 0. C (β) is an encryption of y 0 that encoded v S i-1 . The description of the Trace tells that v S i-1 , x id i-1 = 0. Thus, given O D one views C (β) as an encryption of β) , m) gives β = 1 with very high probability.

y 0 = m • v R . In this case, O D (C (
If β = 1. C (β) is an encryption of y 1 that encoded v S i . The description of the Trace tells that v S i ,

x id i-1 = (m -m) • v R , x id i-1 . Thus, given O D one views C (β) as an encryption of y 1 = (m -m) • v R + m • v R = m • v R . In this case, O D (C (β) , m)
gives β = 0 with very high probability due to the so-called usefulness of O D .

Thus, when A TR 0 gives β , A IPFE just forwards (1 -β ) as its guess of β. Now, we prove that the probability that Trace outputs ⊥ is negligible. We mention, [ABP + 17, Lemma 17] already have made this argument. However, for completeness, we overview the argument here. From Theorem 4.10, we see that O D distinguishes between m = 0 and m = 1 with probability 2/λ c for some constant c > 0. The description of Trace tells that i∈ [1,t] (p i -p i-1 ) 2/λ c that is non-negligible. Then, by triangle inequality, there exists an i such that |p i -p i-1 | is non-negligible. Thus, Trace outputs id i-1 with non-negligible probability and aborts. Therefore, the probability that Trace continues t many iterations and outputs ⊥ is negligible. Before we give the proof, we informally discuss the necessity of such unusual restriction of IND-ID * -CPA security. Note that, in TR 0 , for every id we assign a uniformly random vector x id . However, being a symmetric-key trace-and-revoke, we define such an assignment on the fly when an id is referred for the first time. Thus, in the post-challenge phase, we can say for all id in pre-challenge ciphertext queries, a corresponding x id vector has already been assigned. With overwhelming probability, such x id / ∈ RowSpan(Z) (see Eq. (4.4).) This then creates a distributional problem while simulation. To avoid such scenario, we impose the restriction only on post-challenge "outsider corruption" queries not to include id for which (id, x id ) relation has been fixed but has not been queried for key extraction. We now give a formal proof of the theorem.

Proof. Let A TR 0 be a ppt adversary that breaks the IND-ID * -CPA security of TR 0 . Note that A TR 0 is allowed to corrupt at most t legitimate users and the ciphertext is created considering at most r revoked users. We construct a ppt adversary A IPFE that breaks the IND-CPA security of the underlying IPFE.

• It first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE.Setup(1 λ , 1 ) algorithm) and relays it to A TR 0 . On A TR 0 's request, the adversary A IPFE creates dir with polynomially many (id, x id ) pairs for x id ← Z p . It then sets up two empty dictionaries Q sk = {} and Q ct = {}. Informally speaking, Q sk contains all id for which key query have been/could be made and Q ct contains all id on which key query has not yet been made.

• When A IPFE receives a pre-challenge secret key query for id ∈ ID from A TR 0 , it proceeds as follows:

* If id ∈ Q ct , it updates Q sk [id] = Q ct [id] and removes the id entry from Q ct . * If id / ∈ Q sk , it samples x id ← Z p and sets Q sk [id] = x id . * If id ∈ Q sk , it sets x id = Q sk [id]
. * It then sends x id to the IPFE challenger. The latter returns sk x id , which A IPFE forwards to A TR 0 as sk id .

• When A IPFE receives a ciphertext query on (m, R), it proceeds as follows: * For all id ∈ R \ ((R ∩ Q sk .vals()) ∪ (R ∩ Q ct .vals())), it samples x id ← Z p and then adds

Q ct [id] = x id . * It samples v R ← X ⊥ where X = {x id : id ∈ R} ⊆ Q sk .vals() ∪ Q ct .vals(). * It sends y = m • v R to the IPFE challenger.
The latter returns ct y , which A IPFE forwards to A TR 0 as the ciphertext response ct R .

• When A IPFE receives A TR 0 's challenge query on (m, R 0 , R 1 ), it proceeds as follows:

1. First, it sets

Q idR = {id : id ∈ Q ct \ (R 0 ∪ R 1 )}. 2. Then it defines R0 = R 0 \ R 1 , R = R 0 ∩ R 1 and R1 = R 1 \ R 0 . 3. For all id ∈ R \ Q sk , -If id / ∈ Q ct , it samples x id ← Z p and updates Q sk [id] = x id . -Otherwise, it updates Q sk [id] = Q ct [id] and removes the id entry from Q ct . 4. Then it defines Z = Matrix((Q sk .vals() \ R) T ) where T = {x id ← Z p } is of size t -|(Q sk .vals() \ R)|. 5. For all id ∈ ( R0 \ Q ct .vals()) ∪ ( R1 \ Q ct .vals()), it samples x id ← Z p and updates Q sk [id] = x id . 6. It sets X 0 = Matrix({x id : id ∈ R 0 ∩ (Q sk .vals() ∪ Q ct .vals())}) and X 1 = Matrix({x id : id ∈ R 1 ∩ (Q sk .vals() ∪ Q ct .vals())}). 7. It samples   v R 0 v R 1   ← V ⊥ for V =     Z -Z X 0 0 0 X 1     . (4.4) 8. It sends y R 0 = m • v R 0 and y R 1 = m • v R 1
to the IPFE challenger who samples β ← {0, 1} and encrypts y R β as ct (β) ← IPFE.Enc(pp, msk, y R β ) and outputs ct (β) . 9. A IPFE then forwards the received ciphertext to A TR 0 as its challenge C (β) .

• A TR 0 can make queries for secret key on id ∈ ID and for ciphertext queries on R. * For all post-challenge key queries on id, A IPFE does the following:

1. If id ∈ R 0 ∩ R 1 , it retrieves x id = Q sk [id]. 2. If id / ∈ R 0 ∪ R 1 , if id / ∈ Q sk , it samples x id ← RowSpan(Z) and sets Q sk [id] = x id .
3. It then sends x id to the challenger who returns sk x id which A IPFE forwards to A TR 0 as sk id . * For all ciphertext queries on (m, R), A IPFE does the following:

1. For all id ∈ R \ ((R ∩ Q sk .vals()) ∪ (R ∩ Q ct .vals())), it samples x id ← Z p and then adds Q ct [id] = x id . 2. It samples v R ← X ⊥ where X = {x id : id ∈ R}.
3. Sends y = m • v R to the challenger who returns ct y which A IPFE forwards to A TR 0 as the ciphertext response ct R .

• Finally, adversary A TR 0 outputs its guess β ∈ {0, 1} and A IPFE also outputs β as its own guess of β.

From Eq. (4.4),

Z(v R 0 -v R 1 ) = 0, X 0 v R 0 = 0 and X 1 v R 1 = 0. As y R j ∈ Span(v R j ) for j ∈ {0, 1}, Z(y R 1 -y R 0 ) = 0 and X 0 y R 0 = X 1 y R 1 = 0.
As a result, for any x id ∈ RowSpan(Z), x id (y R 1 -y R 0 ) = 0. Thus, A IPFE behaves as a valid adversary in the mIND-ID-CPA security model.

Firstly, note that, A TR 0 gets encryption of either y R 0 or y R 1 where both the vectors are randomly sampled. Thus, from the point of view of A TR 0 , Zy R b is a random vector. Then, we show that A TR 0 sees x id purely random even though x id is sampled randomly from RowSpan(Z). This follows from the fact that A TR 0 has access to all purely random vectors x id ← Z p for id ∈ R. Thus, from the point of view of A TR 0 , it has access to | R| basis vectors of Z p and the space Z p is left with entropy of ( -| R|) basis vectors where -| R| > t. As A TR 0 gets at most t samples of x id ← RowSpan(Z), it sees x id identically distributed to vectors chosen uniformly random from Z p . The ciphertext and the secret keys are already properly distributed since A IPFE has forwarded the reply of IPFE challenger. This shows that A IPFE behaves as a valid challenger in the IND-ID * -CPA security model.

If A TR 0 can distinguish between R 0 and R 1 , A IPFE can distinguish between y R 0 and y R 1 . Thus, the advantage of A IPFE is exactly the same as the advantage of A TR 0 .

Efficient Trace-and-Revoke for Bit Strings

We present a trace-and-revoke scheme TR 1 for M = {0, 1} n that does not run parallel independent n executions of TR 0 . However, we note that, we omit the description of Trace here as it follows from the Trace algorithm of TR 0 . This scheme again assumes the existence of a user directory dir which is initialized to be empty, contains the identities of the users that have been assigned keys in the system. We assume that dir can only be modified by the central authority who is the sender as well as the key generator. Here, we assume existence of an efficient matrix multiplication functional encryption MMFE that encrypts matrices of n × dimension. The intuitive idea here is that, we utilize n copies of inner product of dimensional vectors as a linear system of equations M x where M ∈ Z n× p and x ∈ Z p . Each of the rows of M is used to encrypt each message bit.

1. Setup(1 λ , 1 n , 1 r , 1 t ). Upon input the security parameter λ, the message bit-length n, the bound t on the number of the suspected users and the bound r on the number of revoked users, set p = λ ω(1) and proceed as follows:

(a) Let (pp, msk) ← MMFE.Setup(1 λ , 1 , 1 n , p), where we set = 2r + t + n + 1.

(b) Output the public parameter pp, master secret key msk and an empty user directory dir.

2. KeyGen(pp, msk, dir, id). Upon input the public parameters pp, the master secret key msk, the user directory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample x id ← Z p . The pair u id = (id, x id ) is then appended to the user directory dir.

(b) Let (x id , sk id ) ← MMFE.KeyGen(pp, msk, x id ) ∈ MMFE.K.

(c) Output sk id .

3. Enc(pp, msk, dir, R, m). Upon input the public parameter pp, the master secret key msk, the user directory dir, a set of revoked users R of size r and a plaintext messages m ∈ M = {0, 1} n , proceed as follows:

(a) Sample v R,1 , . . . , v R,n ← X ⊥ R where X R = {x id ∈ Z p : id ∈ R}. (b) Compute y R,i = m i • v R,i for i ∈ [1, n]. (c) Define a matrix M R = (y R,1 , . . . , y R,n ) . (d) Output C R = MMFE.Enc(pp, msk, M R ).
4. Dec(pp, (x id , sk id ), C R ). Upon input the public parameters pp, the secret key sk id for user id and a ciphertext C R considering the revoked set R, proceed as follows:

(a) Compute t = MMFE.Dec(pp, (x id , sk id ), C R ).

(b) Output m = (m 1 , . . . , m n ) ∈ {0, 1} n where for all i ∈ [1, n], m i = 0 if t i = elem * ; else m i = 1.

Correctness.

The correctness basically follows from the correctness of TR 0 above. The main difference is that, functionally, Enc of TR 1 is some-what n many copies of Enc of TR 0 . Thus, Dec must concatenate all the bits to get back the message. Therefore, TR 1 is correct if Dec of TR 1 retrieves all the bits m i correctly. Now, if ∃i ∈ [1, n], such that Dec of TR 1 didn't compute m i correctly, this can be extended to an attack on the correctness of Dec of TR 0 . This basically ensures the correctness of TR 1 .

Security

Now, we prove the general revocation scheme TR 1 to be anonymous secure revocation scheme.

Theorem 4.15. If MMFE is an IND-CPA secure matrix multiplication functional encryption scheme, then TR 1 is IND-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 4.11. However, the primary difference being the ciphertext generation on a challenge (m 0 , m 1 , R). In particular, A MMFE finds solution of X • V = 0 such that V is a full-rank matrix in Z ×n p . Precisely, V = v R,1 . . . v R,n . Then A MMFE constructs the challenge as M 0 and M 1 where M b = (y R,b,1 , . . . , y R,b,n ) such that y R,b,j = m b,j • v R,j . The rest follows naturally.

Theorem 4.16. If MMFE is an IND-CPA secure matrix-multiplication functional encryption scheme allowing at most (t + r -1) key extraction queries, then TR 1 is mIND-ID-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 4.12. The difference is again how we handle ciphertext generation. For, ciphertext query on (m, R), A MMFE finds solution of X • V = 0 such that V is a full-rank matrix in Z ×n p . Precisely, V = v R,1 . . . v R,n . Then we construct the ciphertext query to the MMFE challenger as M where M = (y R,1 , . . . , y R,n ) such that y R,j = m j • v R,j . For the challenge query on (m, R 0 , R 1 ), A MMFE finds non-trivial solution of the following equations where both 

V R 0 , V R 1 are full-rank matrices from Z ×n p .     Z -Z X 0 0 0 X 1     •   V R 0 V R 1   =     0 0 0     (4.5) where V R b = v R b ,1 . . . v R b ,n for b ∈ {0, 1}. Then A MMFE constructs the challenge as M 0 and M 1 where M b = (y R b ,1 , . . . , y R b ,n ) such that y R b ,j = m j • v R b ,

Cryptanalysis of the Wang et al. IPFE Construction

As we mention above, the schemes from Section 4.3 can be instantiated with the LWEbased IPFE scheme from [ABP + 17]. Note that the latter does not enjoy IND-CPA security, but it was showed to enjoy a weaker security property that still suffices for the trace-and-revoke scheme from [ABP + 17]. That weaker security property restricts the number of key requests to be significantly smaller than the dimension of the vector space, and imposes that the vectors of the key queries are uniformly sampled. This relaxation of IND-CPA security also suffices for our adaptation from Section 4.3.. IPFE scheme from [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF], note that the LWE-based IPFE scheme from [WFL19] is also claimed to enjoy a security property that is stronger than IND-CPA security (which the authors leverage to obtain a decentralized Attribute-Based Encryption scheme). In fact, as we will show below, this scheme can be broken for the parameters suggested in [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]. Before showing an attack, we first recall the definition. Definition 4.17. The bounded distance decoding problem BDD γ is as follows: given a basis B of an n-rank lattice L, t ∈ R n , and real d λ 1 2 such that dist(t, L) d, find the unique v ∈ L closest to t. Note that this is equivalent to finding e ∈ t + L such that e d.

We now describe here a simplified version of the security property that this scheme aims to achieve, and the corresponding simplified version of the scheme (this corresponds to setting k = 1 in the definition from [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF]; our attack readily extends to k 1). In the challenge phase, the adversary sends to the challenger descriptions of two distributions D 0 and D 1 over plaintext vectors. The challenger chooses β ← {0, 1} and samples y ← D β ; it encrypts it under the public key pk and the resulting ciphertext Enc pk (y) is given to the adversary. The adversary can adaptively make key queries x, before or after the challenge phase. The security property, called adaptive security for chosen message distributions, requires that the adversary cannot guess β correctly, as long as the distributions D 0 and D 1 remain indistinguishable given the replies to the key queries.

We review their construction based on LWE.

• IPFE.Setup(1 n , 1 , p). Set integers m, q = p e for some integer e, and reals α, α ∈ (0, 1). Sample A ← Z m×n q , Z ← {0, . . . , p -1} ×m ,5 compute T = ZA ∈ Z ×n q , define msk := Z and pk := (A, T ).

• IPFE.KeyGen(msk, x). Given x ∈ Z p , set z x = x t Z ∈ Z m (interpreting each coordinate of x as an integer in {0, . . . , p -1}), and output sk x = z x .

• IPFE.Enc(pk, y). To encrypt a vector y ∈ Z p , sample s ← Z n q , e 0 ← D Z m ,αq , e 1 ← D Z ,α q and compute

c 0 = As + e 0 ∈ Z m q , c 1 = T s + e 1 + p e-1 • y ∈ Z q .
Then, return the ciphertext C = (c 0 , c 1 ).

• IPFE.Dec(sk, C). Given C = (c 0 , c 1 ) and secret key sk x = z x , compute µ = x, c 1 -z x , c 0 mod q, and output the value µ ∈ Z p that minimize |µ -p e-1 µ|.

In [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF], the dimensions n is proportional to the security parameter λ, the parameters , m, p, q, 1/α, 1/α are polynomial in n, and e is a constant. In [WFL19, Theorem 3.5], the authors state that under the LWE assumption, the above functional encryption for inner products is adaptively secure for chosen message distributions, assuming that the secret key queries corresponding are linearly independent. Below, we describe a cryptanalysis of the scheme above with the specified parameters. We then explain why this attack does not apply to the schemes from [START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF] and [ABP + 17].

We show that even for with challenge vectors rather than distributions, key queries allow to recover the master secret key msk. Concretely, we can recover Z from X t and X t Z, where Z ← {0, . . . , p -1} ×m and X ∈ {0, . . . , p -1} ×( -1) is chosen by the adversary. We let our adversary sample X ← {0, . . . , p -1} ×( -1) (recall that the multiplication X t Z is over Z). The fact that X has only -1 columns means that we can find distinct challenge plaintexts (which are elements of Z p ) so that the columns of X are valid key queries.

It suffices to show how the adversary can recover the first column z of Z from X t z, as it can proceed similarly for all columns of Z. Given t = X t z and X, we know that z belongs to a coset of the lattice Λ ⊥ (X) defined by t.

Let us now study the lattice Λ ⊥ (X). As X ← {0, . . . , p -1} ×( -1) , its columns are expected to be linearly independent with overwhelming probability and det(XZ -1 ) is expected to grow as p Ω( ) . These properties would be easier to prove if the entries of X were Gaussian with standard deviation p, but it can be experimentally checked that this behavior also holds for this distribution. We also expect the lattice XZ -1 to be primitive, i.e., that X t Z = Z -1 . By [Ngu99, p. 30], we hence have that det(Λ ⊥ (X)) = det(XZ -1 ). As X is full column-rank, we known that dim(Λ ⊥ (X)) = 1, and hence we expect that λ 1 (Λ ⊥ (X)) = p Ω( ) . Finally, note that the orthogonal lattice can be efficiently computed, by using a Hermite Normal Form algorithm. Now, recall that we want to recover z from a known coset of Λ ⊥ (X). As z √ p, by the above analysis of Λ ⊥ (X), we expect to have

z < λ 1 (Λ ⊥ (X))/2.
This implies that z is uniquely determined from the coset. Moreover, this is a Bounded Distance Decoding problem instance in a lattice of dimension 1, which can be solved efficiently. Concretely, if Λ ⊥ (X) = bZ and we are given b and kb+z, we can recover k = kb + z, b / b 2 and hence z.

Remarks. Our proof shows that the scheme from [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF] is not secure with the specified parameters. We explain here why the above attack does not work for the [START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF] and [ABP + 17] schemes. First, in the mod-p scheme from [ALS16, Section 4.1], the authors take z from a discrete Gaussian distribution with a large standard deviation. With the parameters specified in [ALS16], we then have that z is significantly larger than λ 1 (Λ ⊥ (X)). This implies that there is a large amount of entropy left in z given t = X t z. Also, this attack does not work for the [START_REF] Agrawal | Fully secure functional encryption for inner products, from standard assumptions[END_REF] scheme over Z, because in that case, the matrix X and hence the lattice Λ ⊥ (X) are not random at all. Indeed, the kernel lattice is forced to be (y 0 -y 1 )Z , where y 0 and y 1 are the challenge vectors. By assumption on the scheme, these challenge vectors are small. Put differently, in that setting, if we first do ( -1) random queries, there does not exist y 0 -y 1 = 0 short anymore that allows us to create a non-trivial challenge phase. Finally, the attack does not work for the [ABP + 17] scheme variant, because in that case, the matrix X has much fewer columns than rows. This increases the dimension of Λ ⊥ (X) enough to make λ 1 (Λ ⊥ (X)) much smaller, and in particular smaller than z .

Linear Functional Encryptions in Prime-Order Groups

As outlined in 4.3, our trace-and-revoke schemes are instantiated using different linear functional encryption schemes. In this section, we give a construction of MMFE in the symmetric-key setting. For n = 1, the MMFE construction reduces to IPFE. Due to space restraint, we omit the description of IPFE and present the MMFE below. The point of interest being, the Dec in our MMFE (and in our IPFE) does not compute the discrete log.

We propose a construction of matrix multiplication functional encryption (MMFE) from D k -matDH. Since, the complete matrix M = (y 1 , . . . , y n ) is available to Enc at once, our construction can reuse the randomness for all y i ∈ Z p . This also allows the proof to be tightly reduced to D k -matDH. For this, we require n matrices W 1 , . . . , W n unlike IPFE from D k -matDH that required only one. We emphasize that, similar to IPFE above, MMFE also does not need to evaluate discrete logarithm algorithm.

• Setup(1 λ , 1 , 1 n , p). Run (g, G) ← G gen (1 λ , p). Sample A ← D k and W 1 , . . . , W n ← Z ×k n p . Define msk = (W 1 , . . . , W n ) and pp = ([1]). • KeyGen(pp, msk, x ∈ Z p ). Set sk x ← (x W 1 , . . . , x W n , x).
• Enc(pp, msk, M = (y 1 , . . . , y n ) ∈ Z n× p ) proceeds as follows to encrypt the given vectors y 1 , . . . ,

y n ∈ Z p . Sample s ← Z k n p . Set ct M ← ([s] , [y 1 + W 1 s] , . . . , [y n + W n s]). • Dec(pp, sk x , ct M ). Parse ct M = ([c 0 ] , [c 1 ] , . . . , [c n ]). Return t = (t 1 , . . . , t n ) where t i = x c i • [sk x • c 0 ] -1 .
The correctness is easy to verify. We show a rough comparison of our scheme with [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF] if their scheme was used for symmetric key settings directly. 4.1 shows that the symmetric key variant resulted from hiding the public key of [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF] has bigger public parameters and bigger ciphertext i.e. contain more group elements than our scheme. On the other hand, our secret key contains more elements from Z p . Both the schemes are proven secure under same assumption D k -matDH with constant degradation. We further compare the result for the SXDH based instances which shows that their scheme outputs ciphertext that is 1.5 times bigger than us.

|pp| |sk| |ct| Degradation Assumption [Tom19] (k 3 (k + 1) 2 + k 2 2 )G (k + 1)k Z p n((k + 1)k + )G 4 D k -matDH (2 2 + 2 )G 2 Z p 3n G 4 SXDH [BMN + 21] 1G k n 2 Z p k n + nG (k + 1) D k -matDH 1G n 2 Z p 2n G 2 SXDH Table 4
.1: Comparison of naive application of [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF] with our construction in symmetric-key settings.

Security. Next, we argue the security of MMFE in the IND-CPA security model. Our construction is basically a modification of [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF] for symmetric-key settings. This improves upon the performance in terms of ciphertext size and removes the usage of public parameters completely. Note that, this modification required us to argue the security proof in a different manner. Although the overall proof strategy stayed moreor-less the same, our proof presents a completely new proof for an essential lemma. We state the security theorem next.

Theorem 4.18. For any adversary A of the construction MMFE in the IND-CPA security model that makes at most q sk secret key queries (for q sk < ) and q ct challenge ciphertext queries in an interleaved manner, there exists adversary AC such that,

Adv IND-CPA MMFE,A (λ) (k + 1) • Adv D k -matDH AC (λ).
Proof. The proof is done by defining a hybrid argument of a sequence of games that begins with the real protocol (called Game 0 ) and ends with a so-called final game (called Game 3 ) where the adversary has no advantage at all. During the sequence, we use X i to denote the event that the adversary has won Game i .

• Game 0 . This is the real game. All secret key queries on x ∈ Z p are responded as the real game. For all j th (such that j ∈ [1, q ct ]) ciphertext query on two matrices

M (0) j , M (1) j ∈ Z n× p , for β ← {0, 1} the challenge ciphertext returned is ct (β) ← MMFE.Enc(pp, msk, M (β) j ).
More precisely, the j th ciphertext query is responded as,

s j ← Z k n p , [c j,0 ] = [s j ] , [c j,i ] = y (β) j,i + W i s j for j ∈ [1, q ct ]
. At the end, A outputs β ∈ {0, 1} and wins the game if β = β .

• Game 1 . The response of the challenge queries are defined as following. For j th ciphertext query is made on (M 

j,n ) for b ∈ {0, 1}, s j ← Z k n p , [c j,0 ] = [s j ] , [c j,i ] =   y (β) j,i + W i s j + ι∈[1,φ i (j)] u v j,i,ι • z ψ i (ι),i   where u ← Z k p , z j,i = y (1) j,i -y (0) j,i , φ i (j) = Rank(z 1,i || . . . ||z j,i ), ψ i (j) = min(φ -1 i (j)), and v j,i,1 , . . . , v j,i, ← Z k p where i ∈ [1, n] and j ∈ [1, q ct ]. In Lemma 4.19, we show that | Pr[X 1 ] -Pr[X 0 ]| Adv D 2k,k -matDH (λ).
• Game 2 . The response of the challenge queries are defined as following. For j th ciphertext query is made on (M

(0) j , M (1) j ) where M (b) j = (y (b) j,1 , . . . , y (b) j,n ) for b ∈ {0, 1}, s j ← Z k n p , [c j,0 ] = [s j ] , [c j,i ] =   y (β) j,i + W i s j + ι∈[1,φ i (j)] v j,i,ι • z ψ i (ι),i  
where z j,i = y

(1)

j,i -y (0) j,i , φ i (j) = Rank(z 1,i || . . . ||z j,i ), ψ i (j) = min(φ -1 i (j)), and v j,i,1 , . . . , v j,i, ← Z p where i ∈ [1, n] and j ∈ [1, q ct ]. In Lemma 4.20, we show that | Pr[X 2 ] -Pr[X 1 ]| Adv D k -matDH (λ). ∈ 1 q n • 1 -2 -Ω(n) , 1 • ρ σ X (x) ρ σ X (qZ n ) (from Lemma 5.4 with ε = 2 -Ω(n) ) ∈ 1 -2 -Ω(n) , 1 + 2 -Ω(n) • ρ σ X (x) ρ σ X (Z n ) .
The last equation follows from the fact that ρ σ

X (Z n )/ρ σ X (qZ n ) ∈ [1 -2 -Ω(n) , 1 + 2 -Ω(n) ] • q n ,
using the Poisson summation formula and the fact that σ X η 2 -Ω(n) (qZ n ). It follows that the distribution of x is within 2 -Ω(n) statistical distance to D Z n ,σ X . Therefore, the distribution of matrix X is within 2 -Ω(n) statistical distance to D Z m×n ,σ X .

From the above, we obtain that the integer-SIS m,σ X ,β oracle succeeds with probability 1 -2 -Ω(n) if X was sampled from D Z m×n ,σ X . Assume that it does succeed, and let e be its output: we have that X t e = 0 and 0 < e β. As X = A + Y, we have A t e = -Y t e. Using the fact that Y ∈ qZ m×n , we deduce that A t e = 0 mod q. This completes the proof.

Search integer-LWE

We now define the integer-LWE distribution, and the search integer-LWE problem.

Definition 5.15. Let m > n 1, be integers, σ X , σ k > 0 and α ∈ (0, 1). The integer-LWE m,σ X ,σ k ,α distribution is obtained as follows: sample X ← D Z m×n ,σ X , k ← D Z m ,σ k and e ← D R m ,α ; output (X, b = π ker(X) (k + e)).

We observe that the integer-SIS problem is syntactically equivalent to finding a short nonzero vector in the orthogonal lattice. Inspired by the duality with the Bounded Distance Decoding problem (BDD), we define the search integer-LWE problem as a BDD problem instance on the dual lattice. Definition 5.16. Let n be going to infinity, and m > n, σ X , σ k > 0, α ∈ (0, 1) be functions of n. The search integer-LWE m,σ X ,σ k ,α problem is as follows: given a pair (X, b) from the integer-LWE distribution, output k.

Hardness of search integer-LWE

Below, we show that an efficient algorithm solving search integer-LWE m,σ X ,σ k ,α with some non-negligible probability may be used by a quantum machine to efficiently solve integer-SIS m,σ X , √ m-n/α with non-negligible probability, when σ k = Ω(σ X √ mn). An important property of the reduction is that the matrix underlying the integer-SIS and integer-LWE instances is preserved.

Theorem 5.17. Let n 60, σ X m √ n , σ k (C + 1) √ 2π ln 2σ X √ mn, where C is as in Lemma 5.9, and α < 0.001/ max( √ m -n, n(n + ln m)). Suppose that there exists an algorithm that solves search integer-LWE m,σ X ,σ k ,α in time T and with probability δ. Then there exists a quantum algorithm that solves integer-SIS m,σ X , √ m-n/α in time poly(T, n) and with probability Ω(δ 4 ) -2 -Ω(n) .

For efficiency purposes, one would be interested in using a rather small m. For security purposes, one is rather interested in larger values of α. For example, the assumptions of the theorem allow to set m = Θ(n log n), σ X between Θ( √ n log n) and any poly(n), and α as large as Θ(1/ √ n log n). The proof of Theorem 5.17 is adapted from the SIS to LWE quantum reduction from [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF], relying on Regev's quantum reduction from Gaussian sampling to the Bounded Distance Decoding (BDD) problem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. It starts with the observation that integer-LWE is a BDD instance, for the lattice π ker(X) (Z m ). Conveniently, Regev's reduction maps the BDD lattice to its dual, and the dual of π ker(X) (Z m ) is ker(X) (with overwhelming probability over the choice of X, by Lemma 5.7). This implies that solving the BDD instances corresponding to integer-LWE should allow to obtain short non-zero vectors in ker(X) and hence solve integer-SIS.

In [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF], the authors showed that Regev's reduction can be exploited even if the success probability of the BDD oracle is only non-negligible (as opposed to Regev's proof that requires a success probability that is close to 1). This is convenient to our setup, as an adversary may solve integer-LWE with small probability only. From a technical perspective, this BDD correctness requirement weakening due to [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF] assumes that the BDD oracle is Strongly Solution Independent (SSI), which means that the success probability of the oracle when given t = b + e as input is independent of the lattice vector b: when given b + e and b + e as inputs, its success probability should be identical. In the case of [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF], an SSI BDD oracle is built by re-randomizing the input to the provided LWE oracle: the LWE lattice can be viewed as defined modulo q, and a given b + e can be mapped to b + e by obliviously adding to it a uniformly chosen element of L/qL where L is the LWE lattice.

In the case of integer-LWE, such a strong self-reducibility seems difficult to achieve, as we are interested in lattice vectors b of small Euclidean norms. We re-randomize a given b + e by adding a Gaussian lattice vector to it. We can show that if the success probability of integer-LWE for a Gaussian lattice vector is bounded from below by a non-negligible quantity, then the re-randomization above provides a BDD algorithm whose success probability is non-negligibly bounded from below for any lattice vector of sufficiently small norm. This is formalized by the notion of Weakly Solution Independence (WSI) of the BDD solver, introduced in Definition 5.19. Conveniently, a WSI BDD solver suffices for the technique from [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF] to apply. The WSI property is obtained by using the boundedness of the Rényi divergence between a Gaussian distribution and the same distribution shifted by a short vector.

We now proceed to proving Theorem 5.17. Motivated by the interpretation of integer-LWE as a Bounded Distance Decoding problem, we first introduce a variant of the latter in which the lattice vector is assumed to be of bounded norm. Weak solution independence is a property of a BDD oracle that states that its success probability does not significantly depend on the choice of the lattice vector b.

Proof. Our reduction takes as input X ∈ Z m×n and a variant BBD η,D R m ,α instance t = b + e where b ∈ Λ ⊥ (X) and e ← D R m ,α . Algorithm C proceeds as follows:

1. Call algorithm B from Lemma 5.20 on input (X, t), and let v ∈ Z m denote its output;

2. Return b = π ker(X) (v ).

Let X ⊆ Z m×n be as in Lemma 5.20. Define X by restricting X to the set of those X's in X such that σ 1 (X) Cσ X √ m, for C as in Lemma 5.9. By Lemma 5.9, we have D Z m×n ,σ X (X ) δ/2 -2 -Ω(n) .

We now prove correctness of algorithm C. Let X ∈ X and b ∈ Λ ⊥ (X) with b σ X √ mn. From Lemma 5.7, we can write b = v + Xr for some v ∈ Z m and r ∈ R n such that r ∞ 1/2. By the triangular inequality and the definition of X , we have:

v b + Xr σ X √ mn + Cσ X √ m • r σ k / √ 2π ln 2.
From Lemma 5.20, algorithm B outputs v = v with probability δ 2 /8.

The next lemma states that if there exists a WSI algorithm that solves variant BDD η,D R m ,α for some lattice L, then there exists a WSI algorithm that solves BDD η,D L/R,α for L, when R is sufficiently large. Its adaptation from [SSTX09] is direct.

Lemma 5.22 (Adapted from [SSTX09, Lemma 8]). Let L be an n-rank lattice, B a basis of L and η, α > 0. Suppose that there exists a WSI algorithm with parameter δ that solves BDD η,D R n ,α for lattice L in time T . Then there exists an R, whose bitlength is polynomial in T, n, | log α|, and the bit-size of B, and a WSI algorithm with parameter δ -2 -n that solves BDD η,D L/R,α in time polynomial in T, n, | log α| and the bit-size of B.

We now adapt the BDD to Gaussian sampling reduction from [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF]. The weakening from the SSI property of the BDD oracle to the WSI property resides in an upper bound on the Euclidean norms of the vectors on which the BDD oracle is called. From the proof of [SSTX09, Lemma 9], it can be observed that the BDD oracle is called on vectors of the form t = e mod L, where e is a BDD error term. One can write t = b + e with b n • max i b i , where (b i ) i is the given basis of L. These are the vectors of L for which the WSI property should hold.

Lemma 5.23 (Adapted from [SSTX09, Lemma 9]). Let L be an n-rank lattice, B be a basis of L, R > 2 2n •λ n (L), η n• B and α λ 1 (L)/(2 √ 2n). Assume that there exists a WSI algorithm with parameter δ that solved BDD η,D L/R,α for L, in time T . Then there exists a quantum algorithm which outputs a vector u ∈ L whose distribution is within statistical distance 1 -δ 2 /2 + O(δ 4 ) + 2 Ω(-n) of D L ,1/(2α) . It finishes in time polynomial in T + log R.

We observe that the lemma above also works for lattices that are not of full rank. We now conclude this section with a proof for Theorem 5.17.

Theorem 5.17. Using Lemma 5.21, there exists a set X ⊆ Z m×n with D Z m×n ,σ X (X ) δ/2 -2 -Ω(n) and a WSI algorithm C with parameter δ 2 /8, that solves BDD σ X √ mn,D R m ,α in L = Λ ⊥ (X) in time T + poly(n), for all X ∈ X . By using Lemma 5.22, we obtain a WSI algorithm C with parameter δ 2 /8 -2 -n that solves BDD σ X √ mn,D L/R,α in time polynomial in T, n, | log α| (with L = Λ ⊥ (X) , and for all X ∈ X ).

We now would like to apply Lemma 5.23 to algorithm C . We first check that its assumptions are satisfied. Note that the projections of the canonical vectors of Z m orthogonally to ker(X) provide a generating set of vectors of π ker(X) (Z m ) of norms 1. By Lemma 5.1, we can hence efficiently obtain a basis B of π ker(X) (Z m ) such that B √ m -n. By assumption on σ X , the inequality σ X √ mn (m -n) √ m -n holds. From the second statement in Lemma 5.8, we have that λ 1 (Λ ⊥ (X) )

1/96 holds with probability 1 -2 -Ω(n) over choice of X. Thanks to the assumption on α, we obtain that α λ 1 (Λ ⊥ (X) ) 2 √ 2(m-n) for a set X ⊆ Z m×n of X's such that D Z m×n ,σ X (X ) δ/2-2 -Ω(n) .

For later use, we assume that for an X ∈ X , both lower bounds from Lemma 5.8 hold.

Suppose that X ∈ X . Lemma 5.23 applied to L = Λ ⊥ (X) allows us to quantumly obtain a vector u ∈ Λ ⊥ (X) whose distribution is within statistical distance 1 -Ω(δ 4 ) + 2 -Ω(n) from D Λ ⊥ (X),1/(2α) . By the Gaussian tail bound (Lemma 5.6), the vector u has norm √ m -n/α with probability Ω(δ 4 ) -2 -Ω(n) . We now show that u is non-zero with sufficiently high probability. By definition of X , we have λ ∞ 1 (Λ ⊥ (X) ) 1/(96 √ n + ln m) for all X ∈ X . The assumption on α ensures that the hypothesis of Lemma 5.5 holds. Using the latter lemma gives that u is non-zero with probability Ω(δ 4 ) -2 -Ω(n) . This completes the proof.

Chapter 6 Conclusion and open problems

In this chapter, we will give a short conclusion of this thesis. Then we will present some open problems that are related to the works.

Conclusion

In this thesis, we have studied some cryptographic aspects of orthogonal lattice. The ultimate objective is to understand this family of lattices sufficiently well to simplify and optimize lattice-based cryptography. In some cases, the disclosed properties lead to efficient cryptanalytic algorithms, hence invalidating candidate constructions; in other cases, they help improving security proofs, hence increasing confidence in other constructions; and they also help to show relationships between different cryptographic constructions or suggest other cryptographic designs.

We first studied the most important parameter of the orthogonal lattice, the smoothing parameter. When orthogonal lattices are used in various constructions such as cryptographic multilinear maps, traitor-tracing schemes, and inner product functional encryption, improving the smoothing parameter bound implies improving the algorithm efficiency. Our other result gives a bound of the (m -n)-th minimum of the orthogonal lattice. This parameter is also very useful in cryptanalytic algorithms.

We then studied the uses of the orthogonal lattices in revoke and traitor-tracing schemes. Starting from inner product functional encryption (IPFE), we construct a Figure 6.1: Cryptographic aspects of orthogonal lattices. trace-and-revoke system from [ABP + 17] with the novelty of achieving anonymity. And we further show that our group-based construction is tightly secure under standard assumptions. For the lattice-based setting, we suggest using the scheme of [ABP + 17] as we could mount a concrete attack on the state-of-the-art [START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF], rendering it insecure. Our attack comes from the following observation: if a vector z belongs to a coset of the orthogonal lattice of X and the minimum of this lattice is larger than z then we have a bounded distance decoding (BDD) instance in a lattice of dimension 1. It follows that we can find z efficiently.

Finally, we studied variants of two well-known lattice problems without any modular reduction, namely integer-SIS and integer-LWE, and put forward a reduction from one to another. First, we gave a reduction from BDD for specific lattices to integer-LWE using Rényi divergence. Then we proposed a quantum reduction from integer-SIS to BDD for those specific lattices.

Open problems

In light of the foregoing, we aim to present some open problems for future works.

Open problem 1. What is decision integer-LWE?

In our intuition, the decision integer-LWE m,σ X ,σ k ,α is as follows: given as input a pair (X, b), decide, with non-negligible advantage, whether it was sampled from the integer-LWE m,σ X ,σ k ,α distribution or whether it was sampled from D Z m×n ,σ X × π ker(X) (D R m , √ σ 2 k +α 2 ) . Our definition comes from the fact that the integer-LWE m,σ X ,σ k ,α distribution is statistically close to D Z m×n ,σ X × π ker(X) (D R m , √ σ 2 k +α 2 ) where α is big enough. We will investigate it, in an effort to prove its hardness.

Open problem 2. How to construct cryptographic primitives based on the hardness of integer-LWE?

We give two suggestions to build the schemes which are based on the hardness of integer-LWE.

1. Can we construct an encryption scheme whose security is based on the hardness of the decision integer-LWE problem like [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]?

2. Can we construct an encryption scheme whose security is based on the hardness of the search integer-LWE problem like [START_REF] Stehlé | Efficient public key encryption based on ideal lattices[END_REF]?

Open problem 3. What are the variants of integer-LWE? In our work, the defining matrix X is sampled from a Gaussian distribution, leading to another family of random lattices. In efficient cryptographic constructions, the above matrix X is often randomly conditioned on a specific matrix structure, typically made of blocks that are Toeplitz matrices. In this case, the resulting lattices are algebraically richer than arbitrary lattices: they typically enjoy a module structure over an order of a number field. Other families of algebraic lattices arise in some cryptographic schemes or their proofs, such as the log-unit lattice [START_REF] Cramer | Recovering short generators of principal ideals in cyclotomic rings[END_REF] and the Schnorr-Adleman factoring lattice [START_REF] Ajtai | The shortest vector problem in 2 is NP-hard for randomized reductions (extended abstract)[END_REF][START_REF] Schnorr | Factoring integers and computing discrete logarithms via diophantine approximation[END_REF]. Following our work on integer-LWE, I want to study a ring variant of integer-LWE and a modulo variant of integer-LWE.
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 34 Figure 3 : Illustration d'un chiffrement de diffusion dans l'application de Pay-TV : le système a deux utilisateurs malveillants qui ont la clé rouge et la clé verte. Ils partagent leurs clés secrètes avec l'entité non légitime. Le système peut les identifier, de sorte qu'ils ne puissent plus accéder au nouveau contenu.

  Nous étudions le chiffrement de diffusion avec révocation anonyme. Notre contribution est triple. Tout d'abord, nous développons une transformation générique du chiffrement fonctionnel linéaire vers des systèmes de suivi et de révocation. Il s'inspire de la transformation d'Agrawal et al. [ABP + 17] avec la nouveauté d'atteindre l'anonymat. Notre deuxième contribution est d'instancier le chiffrement fonctionnel linéaire sous-jacent à partir d'hypothèses standards. Nous proposons une construction basée sur le problème Diffie-Hellman décisionnel (DDH pour Decisional Diffie-Hellman) qui améliore considérablement les performances par rapport à la construction basée sur DDH d'Agrawal CONTENTS CONTENTS et al. Dans le ces de LWE, nous avons essayé d'instancier notre construction en nous appuyant sur le schéma de Wang et al.
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  parameter and last minimum of random orthogonal lattices This chapter is based on a joint work with E. Kirshanova, D. Stehlé, and A. Wallet. It was published in Designs, Codes and Cryptography [KNSW20].

  -and-Revoke Broadcast Encryption Scheme This chapter is based on a joint work with O. Blazy, S. Mukherjee, H. Phan and D. Stehlé. It was accepted in ACISP 2021 [BMN + 21].

  Thus, the advantage of A IPFE is exactly the same as the advantage of A TR 0 . Theorem 4.13. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing (r + t) queries, then TR 0 is AD-TT secure.

  and makes challenge ciphertext query to the IPFE challenger whereS i = S i-1 \ {id i-1 }. The IPFE challenger responds with C (β) ← Enc(pp, msk, y β ) for β ← {0, 1}. A IPFE runs β ← O D (C (β) , m) and outputs (1 -β ).

Theorem 4. 14 .

 14 If IPFE is an IND-CPA secure inner product functional encryption scheme allowing up to (t + r -1) key extraction queries, then TR 0 is IND-ID * -CPA secure.

Definition 5. 18 .

 18 The variant Bounded Distance Decoding BDD η,χ with parameters a distribution χ and a real η > 0 is as follows: given as inputs a lattice L and a vector t = b + e where b ∈ L such that b η, and e is distributed according to χ, the goal is to find b.

  

  (S) . . . . . . . . x is uniformly sampled from a finite measure set S Span(W ) . . . . . . . . the real span of column vectors of W

	We use the Landau notations O(•), Θ(•), Ω(•), ω(•), o(•).

R n . . . . . . . . vector-spaces of dimension n [n] . . . . . . . . the set {1, . . . , n} [a, b] . . . . . . . . the set {a, . . . , b} x . . . . . . . . column vector x t . . . . . . . . row vector e i . . . . . . . . canonical unit vectors of Z m 0 m×n . . . . . . . . zero matrix of dimensions m × n 0 m . . . . . . . . zero-vector of dimension m 1 m . . . . . . . . vector with all m entries equal to 1 E ⊥ . . . . . . . . the orthogonal of a vector space E x . . . . . . . . Euclidean norm of vector x x ∞ . . . . . . . . ∞ -norm of x: max i |x i | I n . . . . . . . . n × n identity matrix X t . . . . . . . . the transpose of matrix X X -1 . . . . . . . . the inverse of matrix X ln x . . . . . . . . the natural logarithm with base e log x . . . . . . . . the logarithm with base 2 x ← D . . . . . . . . x is sampled from a probability distribution D x ← U

  [EHK + 17] to denote g a by [a] for any a ∈ Z p and for A = (a ij ) ∈ Z β×α

	p	we denote		
			g a 11 . . . g a 1α		
	[A] =	   	. . . g a β1 . . . g a βα . . . . . .	   	∈ G β×α .

Definition 4.3. Let m, k ∈ N, such that m > k. We call D k [m, k] a matrix distribution if it outputs matrices in Z m×k p of full rank k in polynomial time (w.l.o.g. we assume the first k rows of M ← D k [m, k] form an invertible matrix). We write

Note that an equivalent description of the distribution for X would be X ← (D Z,s ) n×m . Our choice follows prior works.

We recall that η ε (Z n ) = O( ln(n/ε)) (see Section

3.2).3 The statistical distance between two distributions X and Y is half their 1 -distance, i.e., ∆(X, Y ) :=1 2 X -Y 1 = 1 2 ω∈Ω |X(ω) -Y (ω)|.

In fact, the following stronger result is proved in[START_REF] Heath-Brown | The number of primes in a short interval[END_REF]: the number of primes in the interval (x -x α , x) is at least x α log x for α < 7/12. To simplify our statements, we use a looser bound.

We define IPFE in the symmetric-key settings as a stepping stone to construct trace-and-revoke in the symmetric-key settings.

We define IPFE in the symmetric-key settings as a stepping stone to construct trace-and-revoke in the symmetric-key settings.

Recently, a more general model of pirate, called pirate distinguisher, have been introduced and considered in[START_REF] Nishimaki | Anonymous traitor tracing: How to embed arbitrary information in a key[END_REF] GKW18]. However, as proven in[START_REF] Thanh Do | A concise bounded anonymous broadcast yielding combinatorial trace-and-revoke schemes[END_REF], in the bit-encryption setting, such a notion of pirate distinguisher is equivalent to the pirate decoder. In this section, we consider bitencryption and in the next section about multi-bit encryption, the tracing is reduced to the tracing in the bit-encryption sub schemes. Therefore, we keep using the definition from [ABP + 17] (adapted to the symmetric-key setting).

Note that [ABP + 17] used Hoeffding's inequality to ensure that one can efficiently find such distinguishable m and m . In our case, it is simpler, as M = {0, 1}.

In[START_REF] Wang | FE for inner products and its application to decentralized ABE[END_REF], the notation Z ×m p is used instead of {0, . . . , p -1} ×m . We stress that it should indeed be interpreted as {0, 1, . . . , p -1} ×m . In particular, the operation x t Z in the IPFE.KeyGen algorithm is over Z and not modulo p, as otherwise decryption correctness would not hold.

Definition 4.4. For all adversary A, the advantage function is defined as following

where U ← D k , x ← Z k p and z ← Z k+1 p . The D k -matDH assumption states that Adv D k -matDH A (λ) is negligible in λ for all ppt adversary A. Definition 4.5. For all adversary A, the advantage function is defined as following Now, [EHK + 17] showed that Adv n-D k -matDH (λ) Adv D k -matDH (λ) for any fixed value n that is polynomial in λ. Definition 4.6. For all adversary A, the advantage function is defined as following Tomida [START_REF] Tomida | Tightly secure inner product functional encryption: Multiinput and function-hiding constructions[END_REF] showed that given a D k -matDH problem instance, one can create a m-fold D k -matDH problem instance without any degradation i.e. the advantage Adv D k -matDH (λ)

Adv m-D k -matDH (λ). Due to the relation between D k -matDH and m-D k -matDH mentioned above, Adv D k -matDH (λ)

Adv D k -matDH (λ).We consider inner product functional encryption (IPFE) over Z p in the symmetric-key settings 2 for a prime integer p 2. Unlike existing IPFE definitions in [ALS16,ABP + 17,ACF + 18], the IPFE.Dec algorithm here retrieves an injective function of the inner product value. In particular, it may not be the inner product value itself. More precisely, the IPFE.Dec algorithm takes as input a ciphertext ct that encrypts y ∈ Z p and a secret key sk x with respect to x ∈ Z p , and outputs f ( x, y ). Theorem 4.10. Let R be arbitrary of size r and assume Eq. (4.2) holds for O D and R. Then we have:

with probability 1 -λ -ω(1) and for some constant c > 0.

Proof. By Eq. (4.2), we have Pr

The latter means that if m = 1 is encrypted as C, then O D (C, 1) outputs 1 with probability non-negligibly better than a random choice. Taking the complement, we obtain that Pr

The result follows naturally.

Security.

We prove that the base scheme TR 0 enjoys message hiding, revocation set hiding and traceability. restriction Proof. Let A TR 0 be a ppt adversary that breaks the IND-CPA security of TR 0 . We construct a ppt adversary A IPFE that breaks the IND-CPA security of the underlying IPFE:

• It first obtains the public parameter pp output by the IPFE challenger (which runs the IPFE.Setup(1 λ , 1 ) algorithm) and relays it to A TR 0 . On A TR 0 's request, the adversary A IPFE creates dir with polynomially many (id, x id ) pairs for x id ← Z p . The IPFE challenger samples β ← {0, 1}.

• The adversary A TR 0 can make multiple secret key queries on id ∈ ID and multiple challenge ciphertext queries on (m 0 , m 1 , R).

-For every secret key query on id, * A IPFE retrieves x id = dir[id]. * A IPFE then sends x id to the IPFE challenger. The latter returns sk x id , which A IPFE forwards to A TR 0 as sk id .

-For every challenge anonymity query on (m 0 , m 1 , R), * It samples v R ← X ⊥ where X = {x id ∈ Z p : id ∈ R}.

• Game 3 . Finally, we show that, the injected entropy is sufficient to hide β in the returned ciphertexts completely. This is because, for any j ∈ [1, q ct ] and i ∈ [1, n],

v j,i,ι z ψ i (ι),i is basically a random vector in the span of

Furthermore, by the definition of φ and ψ, {z ψ i (ι),i } ι∈[1,φ i (j)] are the basis and therefore each z j,i ∈ Span({z

). Then,

As the ciphertext distribution stays the same as in Game 2 , Pr[

Furthermore, [c j,i ] = y (β)

To summarise,

. Lemma 4.19. For any efficient adversary A that makes at most q sk secret key queries and at most q ct ciphertext queries, there exists a algorithm AB such that |Pr

Proof. To simulate the game, we use a D 2k,k -matDH (as described in Definition 4.6)

where δ δ δ = 0 or chosen uniformly random vector from Z k p . In fact, we use random self-reducibility property to define q ct n many problem instances (

We use such problem instances to sample the W 1 , . . . , W n . First, we set

For all i ∈ [1, n], we then sample

where

For all j ∈ [1, q sk ], the j th secret key query on x j , we respond sk = (x j W 1 , . . . , x j W i ). Given j th ciphertext query on (M

where c j,0 = s j and for all

z ψ i (ι),i u t j,i,ι where

. Firstly, observe that, the ciphertext generation uses z 1,1 , . . . , z 1,n , . . . , z j,1 , . . . , z j,n where z ι,i = y (1)

ι,i where i ∈ [1, n] and ι ∈ [1, j] i.e. each j th ciphertext is defined using already queried matrices (M

as x z j,i = 0 for all j ∈ [1, q] and therefore the secret keys are simulated properly. We now show that the ciphertexts are also simulated properly.

Otherwise, the simulation is identical to Game 1 . Lemma 4.20. For any efficient adversary A that makes at most q sk secret key queries and at most q ct ciphertext queries, there exists a ppt algorithm B such that

Proof. Here, B gets an D k -matDH problem instance ([T ] , v (δ) ) for δ ← {0, 1} where T ∈ Z k×m p , v (0) = A T and v (1) ← Z 1×m p (as described in Definition 4.7) where A ← Z k p . Note that here we set m = q ct n and implicitly set u as A and set

Given the problem instance, B chooses W 1 , . . . , W n ← Z ×k n p to define msk. Since, B knows msk completely, it can respond to the secret key queries on its own. On j th ciphertext query (M

and defines the ciphertext as following:

where φ and ψ are defined as in the previous game. It is clear that the simulation is distributionally consistent. Precisely, if v (0) is provided, the simulation is identical to Game 1 . Otherwise, the simulation is identical to Game 2 . If A distinguishes between Game 1 and Game 2 , B can distinguish between v (0) and v (1) .

Chapter 5

A new integer-LWE problem

This chapter is based on a joint work with E. Kirshanova, D. Stehlé. This paper is in preparation.

Introduction

The integer Learning with Errors. The integer learning with errors (ILWE), introduced by Bootle et al [BDE + 18], has computations without modular reduction. They consider the problem of finding a vector s ∈ Z n given polynomially many samples of the form (a, a, s + e) ∈ (Z n × Z). Then the problem becomes easy to solve, under mild conditions on the distributions of a, s and e.

Our integer Learning with Errors. We introduce a new variant of the LWE problem over the integers, without any modulus q, denoted by integer LWE m,σ X ,σ k ,α . More precisely, it consists in recovering k from X, π ker(X) k + e , where X ← D Z m×n ,σ X , k ← D Z m ,σ k and the error e is taken from continuous Gaussian with standard deviation α.

Our contribution. In this chapter, we define the new integer-LWE. More precisely, we consider two problems: integer-SIS, and search integer-LWE. Then we obtain the following results.

• The lattices that underlie our new definitions of SIS and LWE stem from a matrix X ∈ Z m×n whose entries are Gaussian over the integers: the integer-SIS problem translates to the one of finding short vectors in the orthogonal (m -n) dimensional lattice Λ ⊥ (X) ⊂ Z m . In Section 5.3, we exhibit the reduction from hard lattice problem (SIS modulo q) to integer-SIS .

• We then introduce the integer-LWE definition in Section 5.3, and propose a quantum polynomial-time reduction from integer-SIS to the search integer-LWE in Section 5.4.

Preliminaries

For an ordered set B = {b i } i∈[n] of linearly independent vectors in R n , we let B denote its Gram-Schmidt orthogonalization. The norm of a matrix is the Euclidean norm of its longest column: X = max i x i .

For a vector subspace V ⊆ R m and a vector x ∈ R m , we let π(x, V ) denote the projection of x onto V . The kernel of a matrix X ∈ R m×n is denoted ker(X).

The statistical distance between two distributions D, D over a common support X is defined as ∆(D,

The following lemma states that any full-rank set of vectors in a lattice can be efficiently converted to a basis of the lattice without increasing the norms of the Gram-Schmidt vectors. It is folklore and we borrow the statement from [START_REF] Micciancio | Complexity of Lattice Problems: a cryptographic perspective[END_REF]. 

The smoothing parameter

The following lemma states that the discrete Gaussian function is essentially invariant under shifts, if the standard deviation is sufficiently large.

Lemma 5.4 ([MR04, Lemma 4.4]). For any lattice L ⊆ R m , c ∈ R m , ε ∈ (0, 1), and s η ε (L), we have

The following result implies that a lattice Gaussian distribution has high minentropy.

Lemma 5.5 ([PR06, Lemma 2.11]). For any rank-n lattice L, x ∈ L, ε ∈ (0, 1/3), and s η ε (L), we have

The next lemma is borrowed from [DRN14, Lemma 2.13] and [MR04, Lemma 4.4].

Lemma 5.6. For any lattice L ⊆ R m , c ∈ R m , ε ∈ (0, 1/3), and s η ε (L), we have Pr

The lattice Λ ⊥ (X) and its dual

We recall some lemmas which will be used in this chapter. All of them are from Chapter 3. The following lemma makes explicit the dual of the Λ ⊥ (X) lattice. The result is well-known and can be found, for example, in [START_REF] Kirshanova | On the smoothing parameter and last minimum of random orthogonal lattices[END_REF].

Lemma 5.7. Let X ∈ Z n×m and Λ ⊥ (X) be the dual lattice of Λ ⊥ (X). We have

Let b be a vector in Λ ⊥ (X) . From the lemma above, we can write b = v + Xr for some v ∈ Z m and r ∈ R n . As X is integral, we can always assume that r ∞ 1/2 (by rounding its coefficients to the nearest integers and updating v accordingly).

The following result gives a probabilistic lower bound for the first minimum of the dual of Λ ⊥ (X).

Lemma 5.8 ([KNSW20, Lemma 14]). Let n 60, σ X 20 √ n and m 1355n ln σ X . Then we have Pr

The following lemma is central to proving the previous results, and we will also use it directly. It gives an upper bound and a lower bound on the singular values of a random Gaussian matrix X. Lemma 5.9 (Adapted from [AGHS13, Lemma 8]). There exists a universal constant C > 1 such that for any m 2n, ε > 0 and σ X 2Cη ε (Z m ), we have

Rényi divergence

Let P and Q be two discrete distributions such that Supp(P ) ⊆ Supp(Q) over a countable domain. The Rényi divergence of P and Q (of order 2) is defined by

The following lemma gives an upper bound on the Rényi divergence for two discrete Gaussians that differ by a shift.

Lemma 5.10 ([LSS14, Lemma 4.2]). For any n-rank lattice L ⊆ R n , set P = D L,s,u and Q = D L,s,v for some u, v ∈ L and s > 0. Then we have

In our reductions the following lemma will be applied to bound from below the success probability of an algorithm. The reader can find a proof in, e.g., [LSS14, Lemma 4.1].

Lemma 5.11. Let P, Q be two distributions with Supp(P ) ⊆ Supp(Q) and E ⊆ Supp(Q) be an arbitrary event. Then we have P (E) Q(E) 2 /R(P Q).

.

Integer-SIS and Integer-LWE

In this section, we introduce and study the hardness of a new version of the Short Integer Solution (SIS) problem. We call this version integer-SIS as it does not require any modulus q. We also define the integer-LWE distribution and the main computational problems associated with it.

SIS over the integers

First, we recall the "standard" SIS problem introduced by Ajtai in [START_REF] Ajtai | The shortest vector problem in 2 is NP-hard for randomized reductions (extended abstract)[END_REF]. Several standard worst-case problems over Euclidean lattices reduce to SIS (see, e.g., [Ajt98, MR04, GPV08]). Definition 5.12. Let m > n, q 2, β > 0 be functions of n. The small integer solution problem SIS m,q,β (in the 2 norm) is as follows: given an integer q, a matrix A ← U (Z m×n q ), and a real β > 0, find a nonzero integer vector e ∈ Z m such that A t e = 0 mod q and e < β.

We now define the integer-SIS problem. The main difference with the above "standard" SIS is in the distribution of the matrix A: instead of being uniform modulo q, the entries of A are now Gaussian over the integers. Similarly, the success condition does not involve any reduction modulo an integer q. Definition 5.13. Let m > n, σ X > 0, β > 0 be functions of n. The small integer solution problem over the integers integer-SIS m,σ X ,β (in the 2 norm) is as follows: given a matrix X ← D Z m×n ,σ X , and a real β > 0, find a nonzero integer vector e ∈ Z m such that X t e = 0 and e < β.

Our main result in this section is a reduction from SIS m,q,β to integer-SIS m,σ X ,β .

Theorem 5.14. Let n < m < n O(1) , q 2 and β > 0 be functions of n. There is a probabilistic polynomial-time reduction from SIS m,q,β to integer-SIS m,σ X ,β , for any σ X Ω(q √ n).

Proof. Let A = (a 1 . . . a m ) be an SIS m,q,β instance. The reduction proceeds as follows:

1. For i m, sample y i ← D qZ n ,σ X ,-a i (here, the vector a i is seen as a vector with entries in {0, . . . , q -1}); define Y = (y 1 . . . y m ) and set

2. Call the integer-SIS m,σ X ,β oracle with input X; let e be its output.

Return e.

By Lemma 5.3 with parameter σ X Ω(q √ n), there exists a probabilistic polynomialtime algorithm to sample y i from D qZ m×n ,σ X ,-a i . This implies that the reduction can be run in probabilistic polynomial-time. We now prove its correctness.

We first consider the distribution D of the first row x of X (note that the rows are independent and identically distributed). From x = a + y, we have that the support of D is Z n . Further, for x ∈ Z n , we have:

Definition 5.19. Let L be an n-rank lattice, χ be a distribution, and η, δ > 0. A randomized algorithm A solving BDD η,χ is said to be weakly solution-independent (WSI) with parameter δ, if for all b ∈ L with b η, the probability over the randomness of A and of e ← χ that A returns b when given t = b + e as input, is bounded from below by δ.

The following lemma assumes the existence of an integer-LWE solver for random choices of X and k, and extracts from it an integer-LWE solver that succeeds for all X's in a given set and for all k of sufficiently small norm. We use the notation integer-LWE m,X,v,α for fixed X and v. Lemma 5.20. Let m > n 1, σ X , σ k > 0 and α ∈ (0, 1). Assume that there exists an algorithm A that solves search integer-LWE m,σ X ,σ k ,α in time T and with probability δ > 0. Then there is a set X ⊆ Z m×n with D Z m×n ,σ X (X) δ/2 and an algorithm B such that for any v ∈ Z m satisfying v σ k / √ 2π ln 2 and any X ∈ X, algorithm B solves search integer-LWE m,X,v,α , in time T + poly(n) and with probability δ 2 /8. Proof. As A solves search integer-LWE with probability δ over the random choice of X, k, e, there exists a set X of X's with D Z m×n ,σ X (X) δ/2 such that for all X ∈ X we have that A solves search integer-LWE with probability δ/2 (over its internal randomness and the random choices of k and e). We will restrict the analysis of algorithm B below to any fixed X ∈ X.

Given as input (X, b = π ker(X) (v+e)) with v σ k / √ 2π ln 2, algorithm B proceeds as follows:

2. Call algorithm A on (X, π ker(X) (b + k)), and let k denote its output;

Return kk.

Note first that if A succeeds then so does B, because π ker(X) (b+k) = π ker(X) ((v+k)+ e). We now show that for all X ∈ X, for all v with v σ k / √ 2π ln 2, algorithm A succeeds with sufficiently large probability. As k is distributed according to D Z m ,σ k and v ∈ Z m , the vector v + k is distributed according to D Z m ,σ k ,v . By Lemma 5.10, we have that

By Lemma 5.11 and the definition of X, Algorithm A succeeds with probability (δ/2) 2 /2. This completes the proof.

We now obtain a WSI BDD oracle from the above integer-LWE solver for arbitrary k.

Lemma 5.21. Let m > n 1, σ X 1, α ∈ (0, 1) and σ k (C + 1) √ 2π ln 2σ X √ mn, where C is as in Lemma 5.9. Assume that there exists an algorithm A that solves search integer-LWE m,σ X ,σ k ,α in time T and probability δ > 0. Then there is a set X ⊆ Z m×n with D Z m×n ,σ X (X ) δ/2 -2 -Ω(n) and a WSI algorithm C with parameter δ 2 /8, that solves BDD σ X √ mn,D R m ,α in L = Λ ⊥ (X) in time T + poly(n), for all X ∈ X .

Open problem 4. How to recover the encryption randomness?

Here we want to recover the encryption randomness when decrypting in latticebased encryption schemes. In Regev's encryption scheme [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] (and the NIST proposals [CJL + 16]), the decryption algorithms allow to recover the inner product between the secret key vector and a noise vector. But it does not allow the recovery of the noise vector itself. J. Deneuville et al. have a heuristic way to do this in [START_REF] Deneuville | Ouroboros-e: An efficient lattice-based key-exchange protocol[END_REF]. In [START_REF] Hofheinz | A modular analysis of the Fujisaki-Okamoto transformation[END_REF], this is useful to obtain a tightly secure upgrade from CPA to CCA security in the quantum random oracle model. We will investigate the problem of the recovery of the noise vector, in an effort to improve it and to make it to be more rigorous. 
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