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Résumé

La cryptographie à base de réseaux euclidiens vise à faire reposer la sécurité des primi-
tives cryptographiques sur la difficulté conjecturée de problèmes algorithmiques bien
identifiés et bien étudiés impliquant les réseaux euclidiens. Cette approche conduit
à des primitives plus efficaces, à une sécurité accrue (les problèmes de réseaux les
plus courants sont conjecturés quantiquement difficiles) et à des fonctionnalités cryp-
tographiques améliorées (chiffrement entièrement homomorphe, chiffrement fonction-
nel, obscurcissement de programme, etc). Une famille de réseaux moins courante mais
récurrente sont les réseaux dits orthogonaux où la matrice est souvent échantillonnée
à partir d’une distribution gaussienne. Dans cette thèse, nous étudions certains as-
pects cryptographiques des réseaux orthogonaux. Lorsque les réseaux sont devenus un
élément majeur de la conception de primitives cryptographiques, les réseaux orthogo-
naux ont été utilisés dans diverses constructions telles que les fonctions multilinéaires
cryptographiques, les schémas de traçage des trâıtres et le chiffrement fonctionnel pour
le produit scalaire.

Tout d’abord, nous considérons les minima successifs et le paramètre de lissage de
réseaux orthogonaux aléatoires. La motivation principale (et notre résultat) est une
généralisation du lemme des restes du hachage (LHL pour Left Over Hash Lemma) aux
réseaux et aux distributions gaussiennes discrètes. Nos résultats améliorent la borne
supérieure probabiliste sur le paramètre de lissage et donnent une borne supérieure
probabiliste sur le plus grand minimum du réseau orthogonal.

Ensuite, nous étudions le chiffrement de diffusion avec révocation anonyme, dans
lequel les chiffrés ne révèlent aucune information portant sur les utilisateurs qui ont
été révoqués. Les réseaux orthogonaux sont impliqués dans les preuves de sécurité de
ces protocoles. Nous décrivons une transformation générique du chiffrement fonctionnel
linéaire vers des systèmes de diffusion supportant le traçage et la révocation, avec comme
nouveauté l’obtention d’une propriété d’anonymat.

Enfin, un problème fondamental lié aux réseaux est l’apprentissage avec erreurs
(LWE pour Learning With Errors) car il est une base polyvalente pour les construc-
tions cryptographiques. Nous introduisons une nouvelle variante de LWE, dite sur les
entiers car elle ne fait pas intervenir de réduction modulaire. Nous montrons que ce
nouveau problème est au moins aussi difficile que des problèmes standard portant sur
les réseaux euclidiens.
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Abstract

Lattice-based cryptography aims at harnessing the security of cryptographic primitives
in the conjectured hardness of well-identified and well-studied algorithmic problems in-
volving Euclidean lattices. This approach leads to more efficient primitives, increased
security (the most common lattice problems are conjectured quantum-hard), and im-
proved cryptographic functionalities (fully homomorphic encryption, functional encryp-
tion, program obfuscation, etc). A less common but still recurring family of lattices are
the so-called orthogonal lattices where the matrix is often sampled from a Gaussian
distribution. In this thesis, we study the cryptographic aspects of orthogonal lattices.
When lattices have turned into a major build block in designing cryptographic primi-
tives, orthogonal lattices have been used in various constructions such as cryptographic
multilinear maps, traitor-tracing schemes, and inner product functional encryption.

Firstly, we consider the successive minima and the smoothing parameter of ran-
dom orthogonal lattices. The main motivation (and our result) is a generalization of
the leftover hash lemma (LHL) to lattices and discrete Gaussian distributions. Our re-
sults improve the probabilistic upper bound on the smoothing parameter and give a
probabilistic upper bound on the last minimum of the orthogonal lattice.

Next, we investigate broadcast encryption with anonymous revocation, in which
ciphertexts do not reveal any information about which users have been revoked. The
orthogonal lattices are involved in the security proofs of these protocols. We describe
a generic transformation of linear functional encryption toward the broadcast systems
supporting the trace and revoke with the novelty of achieving anonymity.

Finally, a fundamental problem related to lattices is the learning with errors (LWE)
problem which is an amazingly versatile basis for cryptographic constructions. We in-
troduce a new variant of LWE, called on the integers because it does not involve any
modular reduction. We show that the new problem is at least as hard the standard
problems over lattices.
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5.2.3 Rényi divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Integer-SIS and Integer-LWE . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 SIS over the integers . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Search integer-LWE . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Hardness of search integer-LWE . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion and open problems 91
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibligraphy 101

List of abbreviations 102

List of figures 103

List of tables 104

6





CONTENTS CONTENTS

8



List of Symbols

N,Z,Q,R . . . . . . . . sets of natural, integer, rational, real numbers
Zq . . . . . . . . the ring of integers modulo q
Zn . . . . . . . . the set of integer vectors of dimension n

Zn
q . . . . . . . . the set of integer vectors modulo q of dimension n

Qn,Rn . . . . . . . . vector-spaces of dimension n

[n] . . . . . . . . the set {1, . . . , n}
[a, b] . . . . . . . . the set {a, . . . , b}

x . . . . . . . . column vector
xt . . . . . . . . row vector
ei . . . . . . . . canonical unit vectors of Zm

0m×n . . . . . . . . zero matrix of dimensions m× n
0m . . . . . . . . zero-vector of dimension m

1m . . . . . . . . vector with all m entries equal to 1
E⊥ . . . . . . . . the orthogonal of a vector space E
‖x‖ . . . . . . . . Euclidean norm of vector x
‖x‖∞ . . . . . . . . `∞-norm of x: maxi |xi|
In . . . . . . . . n× n identity matrix
X t . . . . . . . . the transpose of matrix X
X−1 . . . . . . . . the inverse of matrix X
lnx . . . . . . . . the natural logarithm with base e
log x . . . . . . . . the logarithm with base 2
x← D . . . . . . . . x is sampled from a probability distribution D

x← U(S) . . . . . . . . x is uniformly sampled from a finite measure set S
Span(W ) . . . . . . . . the real span of column vectors of W

We use the Landau notations O(·),Θ(·),Ω(·), ω(·), o(·).
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Résumé long en français

Contexte
La cryptographie basée sur les réseaux euclidiens a été introduite par Ajtai [Ajt96].
Elle fait reposer la sécurité des primitives cryptographiques sur la difficulté conjecturée
de problèmes algorithmiques bien identifiés et bien étudiés impliquant des réseaux eu-
clidiens [Pei15]. Elle a été beaucoup développée depuis ces dernières années, car les
problèmes à base de réseaux euclidiens sont très prometteurs comme source de sécurité
cryptographique, pour quand un ordinateur quantique sera construit. En effet, tous
les protocoles utilisés aujourd’hui sur Internet (RSA, ECDSA,...) sont basés sur des
problèmes faciles à résoudre si l’on dispose d’un ordinateur quantique. Il y a eu un
certain nombre de propositions de schémas cryptographiques dont la sécurité repose de
manière prouvée sur des problèmes difficiles portant sur les réseaux euclidiens de grande
dimension. Ces problèmes devraient être exponentiellement difficiles à résoudre (la di-
mension du réseau), même avec des ordinateurs quantiques. Par exemple, le problème du
vecteur le plus court (SVP pour Shortest Vector Problem, voir Figure 1) dans `2 est NP-
difficile pour des réductions probabilistes [Ajt98]. À part être présumée résistante aux
ordinateurs quantiques, la cryptographie basée sur les réseaux conduit à des primitives
plus efficaces, à une sécurité accrue et à des fonctionnalités cryptographiques améliorées
(chiffrement entièrement homomorphe, chiffrement fonctionnel, obscurcissement du pro-
gramme, etc).

Lemme des restes du hachage sur les réseaux. De nombreux schémas basés sur les
réseaux nécessitent un échantillonnage à partir d’une distribution Gaussienne discrète. Il
a été largement utilisé dans tous les aspects de la cryptographie basée sur les réseaux. De
plus, D. Micciancio et O. Regev montrent dans [MR04] que les distributions Gaussiennes
partagent de nombreuses propriétés intéressantes avec leurs contreparties continues, et
démontrent leur utilité pour la cryptographie basée sur les réseaux.

Le lemme des restes du hachage (LHL pour Leftover Hash Lemma) est un outil
très puissant. Son application la plus simple est la suivante : échantillonnons a1, . . . , am
uniformément dans Zq pour un entier q > 1; échantillonnons z1, . . . , zm petits entiers
gaussiens. Alors, conditionnée aux ai, la valeur

∑
i aizi mod q “ressemble” à un élément

uniforme de Zq. Cette observation, due à [GPV08, Lemme 4.2], est une variation du
lemme des restes du hachage [ILL89], et sa preuve est basée sur le paramètre de lis-
sage du réseau correspondant au noyau de la fonction z ∈ Zm 7→ 〈z, a〉 mod q. Un tel
résultat nous permet par exemple d’argumenter sur l’impossibilité de distinguer les clés
publiques des éléments uniformes : dans [Reg05], Regev utilise le LHL sur Zq, pour
montrer que

∑
siai donne une clé publique uniforme, où les si ∈ Zq sont la clé secrète.

11
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Figure 1 : Un exemple du problème du vecteur le plus court en 2 dimensions : donnons
une base de réseau (les vecteurs noirs) comme entrée, la sortie est un vecteur le plus
court (le vecteur rouge).

Plus généralement, le LHL conduit à des extracteurs d’aléa simples et efficaces, et peut
être utilisé dans de nombreuses applications nécessitant un bon aléa. Il trouve donc de
nombreuses applications en cryptographie : dérivation de clés, générateurs de nombres
aléatoires, etc [Reg05,GPV08].

La variante classique du LHL relie une distribution uniforme fixe sur un support fini
à une autre distribution qui provient d’une construction cryptographique spécifique.
Cependant, pour certaines primitives à base de réseaux euclidiens, nous ne pouvons
pas utiliser directement le LHL. En effet, pour les constructions à base de réseaux,
l’application du LHL peut être limitée pour deux raisons. La raison principale est que
nous considérons des distributions dont le support est un réseau euclidien, qui est un
domaine infini. De plus, un choix populaire de distribution à considérer est une distri-
bution Gaussienne discrète, au lieu d’une distribution uniforme (qui n’existe pas sur le
domaine infini). Par conséquent, il est important d’étendre le LHL à un tel cadre.

Une autre application simple du LHL est la construction d’un échantillonneur gaussi-
en discret. Plus précisément, nous considérons l’échantillonneur suivant. Dans une phase
hors ligne, pour m > n, nous échantillonnons l’ensemble de vecteurs courts x1, . . . ,xm
à partir d’un réseau L. Par la suite, dans la phase en ligne, l’échantillon génère z ∈ Zm

selon une Gaussienne discrète et renvoie simplement
∑m
i=1 zixi. Dans [AGHS13], les

auteurs analysent la distribution de X tz où X est une matrice Gaussienne aléatoire
dans Zm×n et z est un vecteur gaussien aléatoire dans Zm. Leurs résultat principal est
le suivant : si X satisfait une certaine contrainte et si l’écart type de la distribution
Gaussienne de z est suffisamment grand, alors la distribution de X tz est statistique-
ment proche de la distribution Gaussienne discrète avec une covariance appropriée (voir
Figure 2). Par la suite, dans [AR16], D. Aggarwal et O. Regev améliorent le résultat prin-
cipal de [AGHS13] pour certains jeux de paramètres. Dans les deux résultats, la borne
de l’écart type de la distribution Gaussienne de z provient du paramètre de lissage de
réseau orthogonal Λ⊥(X) qui est l’ensemble de tous les vecteurs v ∈ Zm qui appartien-

12
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X t
z← DZm

n

m

DZn

Figure 2 : Lemme des restes du hachage sur les réseaux [AGHS13] : pour les paramètres
appropriés, la distribution X tz conditionnée par X est proche d’une Gaussienne sur Zn.

nent au noyau (gauche) de X. Le paramètre de lissage a été introduit dans [MR04]. In-
tuitivement, cela dit que lorsque l’écart type est suffisamment grand, alors les propriétés
statistiques de la distribution Gaussienne discrète sur les réseaux sont très proches de
celles de la distribution Gaussienne continue.

Ici, nous notons que le réseau Λ⊥(X) a pour dimension m − dim(Λ(X)), et une
base peut être calculée en temps polynomial à partir de X. De façon intéressante, les
liens entre dualité et orthogonalité permettent de prouver que le volume de Λ⊥(X)
est égal au volume du réseau span(Λ(X)) ∩ Zm avec probabilité proche de 1 vis-à-
vis du choix de X [Ngu99]. Ainsi, si un réseau dans Zm consiste à faible dimension,
son réseau orthogonal consiste à grande dimension avec un volume au plus égal : les
minima successifs du réseau orthogonal sont susceptibles d’être beaucoup plus courts
que ceux du réseau d’origine. En cryptographie, les réseaux orthogonaux sont d’abord
apparus comme un outil cryptanalytique [NS97,NS99,DGHV10]. Des années plus tard,
lorsque les réseaux sont devenus un élément majeur de la conception de primitives
cryptographiques, les réseaux orthogonaux ont été utilisés dans diverses constructions
telles que de fonctions multilinéaires cryptographiques [AGHS13], de schémas de traçage
de trâıtres [LPSS17] et de chiffrement fonctionnel pour le produit scalaire [ALS16].

Systèmes de traçage et de révocation. Un type de protocole qui utilise les réseaux
orthogonaux dans les preuves de sécurité est le chiffrement de diffusion qui est une
primitive cryptographique fondamentale qui donne la possibilité d’envoyer un message
sécurisé à n’importe quel ensemble cible choisi parmi les utilisateurs enregistrés. La vari-
ation la plus intéressante du chiffrement de diffusion s’appelle système de traçage-et-
révocation [BW06] qui est un système de chiffrement multi-destinataires où un distribu-
teur de contenu peut trouver des utilisateurs malveillants et peut révoquer leur capacité
de déchiffrement (voir Figure 3). De manière informelle, un tel schéma de chiffrement à
clé publique, permet à un expéditeur de chiffrer des données sous une clé publique pk et
chaque utilisateur légitime peut utiliser sa clé secrète ski pour déchiffrer les données. Un
système de traçage des trâıtres garantit que si une coalition d’utilisateurs (légitimes)
mettent en commun leurs clés secrètes pour construire une bôıte décodeur qui peut
déchiffrer le texte chiffré, alors il existe un algorithme de traçage efficace pour trouver
au moins un utilisateur coupable à condition que l’algorithme ait accès au décodeur.
Par la suite, le distributeur de contenu peut utiliser la fonctionnalité de révocation pour
interdire aux utilisateurs coupables d’accéder aux données à l’avenir. Un système de

13
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Figure 3 : Illustration d’un chiffrement de diffusion dans l’application de Pay-TV : le
système a deux utilisateurs malveillants qui ont la clé rouge et la clé verte. Ils partagent
leurs clés secrètes avec l’entité non légitime. Le système peut les identifier, de sorte qu’ils
ne puissent plus accéder au nouveau contenu.

révocation garantit que si une coalition d’utilisateurs illégitimes mettent en commun
leurs clés secrètes, ils ne peuvent toujours pas déchiffrer le texte chiffré.

Nous décrivons maintenant le protocole qui est basé sur [ABP+17] pour voir com-
ment les réseaux orthogonaux aident pour cela. Dans un schéma de révocation, un util-
isateur id avec la clé secrète skid peut déchiffrer un texte chiffré ctR si l’utilisateur n’est
pas révoqué. Agrawal et al. dans [ABP+17] ont construit un schéma de révocation avec
traçabilité publique pour un nombre non borné d’utilisateur à partir du chiffrement
fonctionnel pour le produit scalaire. Dans un chiffrement fonctionnel pour le produit
scalaire [ABDCP15, ALS16], étant donné une clé secrète pour skx le vecteur de clé x
et un texte chiffré cty pour le vecteur chiffré y, le destinataire peut calculer le produit
scalaire des deux vecteurs impliqués, c’est-à-dire 〈x,y〉. Intuitivement, dans la construc-
tion de révocation d’Agrawal et al., chaque id est associé à un vecteur aléatoire xid et
en conséquence un ensemble R est associé à l’espace vectoriel parcouru par (xid)id∈R .
Pour créer un texte chiffré avec l’ensemble révoqué R, Agrawal et al. choisissent un
vecteur vR othrogonal à (xid)id∈R et définissent yR = m · vR comme vecteur de texte
chiffré. Notez que si id ∈ R, alors xid sera orthogonal à vR et ensuite à yR (c’est-à-dire
〈xid,yR〉 = 0). Dans le cas où id /∈ R, alors avec une forte probabilité 〈xid,vR〉 6= 0
agit comme un facteur d’aveuglement multiplicatif pour le message en clair m : on a
〈xid,yR〉 = m · 〈xid,vR〉. Maintenant, pendant le déchiffrement, le chiffrement fonc-
tionnel pour le produit scalaire calcule Res = 〈xid,vR〉 = m · 〈xid,vR〉 comme valeur
intermédiaire. Le destinataire, qui est doté de vR à côté du texte chiffré, recalcule le
facteur d’aveuglement 〈xid,vR〉 pour récupérer le message m.

Une question naturelle consiste à savoir si l’on peut concevoir un protocole où
l’utilisateur révoqué ne comprendra pas s’il a été révoqué. De plus, étant donné un
texte chiffré, aucun utilisateur légitime n’obtiendra d’informations sur les utilisateurs
qui ont été révoqués du déchiffrement du texte chiffré. Ce problème est appelé chiffre-

14
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At = 0 mod q

e

n

m

Figure 4 : Solution entière courte : donnons une matrice A ← U(Zm×n
q ) comme entrée,

l’objectif est de calculer un tel vecteur court e.

ment traçage et révocation avec anonymat.

Solution entière courte (Short Integer Solution). Un problème moyen-cas pro-
posé par Ajtai consiste à trouver une solution entière non nulle courte e ∈ Zm au
système linéaire homogène Ate = 0 mod q pour A ∈ Zm×n

q uniforme. Cela équivaut
à trouver un vecteur court non nul dans Λ⊥q (A) (voir Figure 4). Ce problème est ap-
pelé solution eniètre courte (SIS pour Short Integer Solution). Il est la base de fonc-
tions de hachage et résistantes aux collisions, de schémas d’identification, de signatures
numériques, etc [GPV08,Lyu13,LS14,PR06,Pei15,LLLS13].

Apprentissage avec erreurs (Learning with errors). Un problème fondamental
lié aux réseaux est le problème d’apprentissage avec erreurs (LWE pour Learning With
Errors). Le problème LWE est introduit par Regev [Reg05]. Il consiste à récupérer un
vecteur uniforme s ∈ Zn

q , étant donné de nombreux échantillons de la forme (a, 〈a, s〉+e),
avec a uniforme dans Zn

q et un bruit e échantillonné selon une distribution gaussienne
sur Zq. Dans [Reg05], Regev a montré que pour des paramètres appropriés, ce problème
est aussi difficile que des problèmes de réseau dans le pire des cas, et équivalent en
temps polynomial à sa version de décision, qui demande de distinguer la distribution de
l’échantillon LWE comme ci-dessus de la distribution uniforme sur (Zn

q × Zq).
Nous présentons maintenant le chiffrement à clé publique utilisant LWE de [Reg05].

Alice choisit une clé secrète s et une matrice aléatoire A ∈ Zm×n
q . La clé publique d’Alice

est

(A,b = As + e).

Elle est indiscernable d’une paire uniforme, sous l’hypothèse de difficulté de la version
décisionnelle de LWE. Afin de chiffrer un message à Alice, Bob choisit un petit vecteur
aléatoire r, et calcule le texte chiffré

u = Atr, u′ = btr + µ · dq
2
e

où µ est le bit de message. Dit autrement, il envoie soit btr pour µ = 0, soit quelque
chose de très éloigné de btr, pour µ = 1. Pour déchiffrer le message, Alice soustrait les
informations en fonction de sa clé secrète stu de u′, qui est soit approximativement 0
soit approximativement q

2 , selon la valeur du bit de message µ.
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De nombreuses variations du problème LWE ont été introduites, principalement dans
le but d’améliorer l’efficacité de la cryptographie basée sur les réseaux. Par exemple,
de nombreux articles ont été consacrés à l’analyse de LWE lorsque la clé secrète s,
ou l’erreur e ou le vecteur a suivent une distribution qui est différente de celle con-
sidérée par [Reg05], comme dans [MP13, BLP+13, HM17]. Des extensions de LWE sur
des anneaux plus généraux ont également été largement étudiées, en commençant par
les introductions du problème Polynomial-LWE [SSTX09] et du problème Ring-LWE
[LPR10,RSW18].

Nos contributions
Dans cette thèse, nous nous concentrons sur les aspects cryptographiques des réseaux
orthogonaux. Tout d’abord, nous considérons les minima successifs et le paramètre de lis-
sage des réseaux orthogonaux aléatoires. Nous étudions ensuite le chiffrement de diffusion
avec révocation anonyme. Enfin, nous introduisons une nouvelle variante du problème
LWE sur les entiers, sans aucune réduction modulaire.

Nous notons que les résultats discutés ci-dessous ont été principalement tirés d’un
article en préparation et des articles publiés suivants.

1. [KNSW20] E. Kirshanova, H. Nguyen, D. Stehlé, and A. Wallet. On the smoothing
parameter and last minimum of random orthogonal lattices. Designs, Codes and
Cryptography 2020.

2. [BMN+21] O. Blazy, S. Mukherjee, H. Nguyen, H. Phan and D. Stehlé. An Anony-
mous Trace-and-Revoke Broadcast Encryption Scheme. Accepté à Australasian
Conference on Information Security and Privacy 2021.

Le paramètre de lissage des réseaux orthogonaux aléatoires

Le paramètre de lissage du réseau Λ⊥(X) généré par une gaussienne discrète X ∈
Zm×n a déjà été considéré par Agrawal et al. dans [AGHS13]. La motivation principale
(et notre résultat) est une généralisation du lemme des restes du hachage (LHL) aux
réseaux et aux distributions gaussiennes discrètes. Notre premier résultat est une borne
supérieure probabiliste améliorée sur le paramètre de lissage, par rapport aux travaux
antérieurs [AGHS13] et [AR16]. Notre deuxième résultat améliore la borne supérieure
probabiliste sur le (m− n)−ième minimum du réseau orthogonal Λ⊥(X).

Chiffrement de traçage et révocation avec anonymat

Nous étudions le chiffrement de diffusion avec révocation anonyme. Notre contribution
est triple. Tout d’abord, nous développons une transformation générique du chiffrement
fonctionnel linéaire vers des systèmes de suivi et de révocation. Il s’inspire de la trans-
formation d’Agrawal et al. [ABP+17] avec la nouveauté d’atteindre l’anonymat. Notre
deuxième contribution est d’instancier le chiffrement fonctionnel linéaire sous-jacent à
partir d’hypothèses standards. Nous proposons une construction basée sur le problème
Diffie-Hellman décisionnel (DDH pour Decisional Diffie–Hellman) qui améliore con-
sidérablement les performances par rapport à la construction basée sur DDH d’Agrawal
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et al. Dans le ces de LWE, nous avons essayé d’instancier notre construction en nous
appuyant sur le schéma de Wang et al. [WFL19] mais nous avons finalement trouvé une
attaque contre ce schéma. Notre troisième contribution est d’étendre le chiffrement à 1
bit de la transformation générique au chiffrement à n bits. En introduisant le chiffre-
ment fonctionnel par multiplication matricielle, qui effectue un nombre fixe d’appels
parallèles sur des chiffrements fonctionnels avec le même caractère aléatoire, nous pou-
vons prouver la sécurité du schéma final avec une réduction serrée qui ne dépend pas
de n, contrairement à ce que l’on obtient en utilisant l’argument hybride.

Nouveau problème LWE sur les entiers

Nous introduisons une nouvelle variante du problème LWE sur les entiers, sans aucune
réduction modulaire.

Concrètement, nous considérons deux problèmes : integer-SIS, et integer-LWE. Pour
integer-SIS, la différence avec le problème SIS est que les entrées de la matrice A sont
gaussiennes sur les entiers. Par la suite, à partir de l’observation que le problème integer-
SIS est syntaxiquement équivalent à trouver un vecteur court non nul dans le réseau
orthogonal, et inspiré par la dualité avec le problème de décodage à distance bornée
(BDD pour Bounded Distance Decoding), nous définissons le problème de recherche,
integer-LWE comme un BDD sur le réseau dual : il consiste à récupérer k à partir
de (X, πker(X)(k + e)), où X et k sont gaussiens sur Zm×n et Zm, respectivement, et
e ∈ Rm est gaussien avec un écart type nettement inférieur à 1. Nous proposons une
réduction en temps polynomial quantique du problème integer-SIS au problème integer-
LWE.

Organisation du manuscrit
Au chapitre 2, nous rappelons toutes les définitions importantes qui sont utilisées au
long de cette thèse. Celles-ci incluent les définitions de base liées aux réseaux. Au
chapitre 3, nous exposons notre résultat sur le paramètre de lissage du réseau orthog-
onal. Le chapitre 4 concerne un schéma de chiffrement de diffusion de traçage avec
révocation anonyme. Au chapitre 5, nous introduisons le nouveau problème integer-
LWE. Enfin, nous concluons cette thèse et présentons quelques pistes de travaux futurs
dans le chapitre 6.
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Chapter 1

Introduction

1.1 Background
Lattice-based cryptography was introduced by Ajtai in 1996 [Ajt96]. It aims at harnessing
the security of cryptographic primitives in the conjectured hardness of well-identified
and well-studied algorithmic problems involving Euclidean lattices [Pei15]. It has been
developed in recent years, as lattice-based problems are very promising as a source of
cryptographic security, in the case when a quantum computer will be built. Indeed,
all the protocols used today on the Internet (RSA, ECDSA,...) are based on problems
that are easy to solve if one has a quantum computer. There have been a number of
proposals of cryptographic schemes with security provably relying on hard problems
over high-dimensional Euclidean lattices. Indeed, these problems are expected to be
exponentially hard to solve (in the dimension of the lattice), even with quantum com-
puters. For example, the shortest vector problem (SVP) (see Figure 1.1) in `2 is NP-hard
for probabilistic reductions [Ajt98]. In addition to being supposedly resistant to quan-
tum computers, this approach leads to more efficient primitives, increased security, and
improved cryptographic functionalities (fully homomorphic encryption, functional en-
cryption, program obfuscation, etc).

Leftover Hash Lemma over lattices. Many lattice-based schemes require sampling
from discrete Gaussian distributions. They have been used extensively in all aspects of
lattice-based cryptography. Moreover, D. Micciancio and O. Regev show in [MR04] that
Gaussian distributions share many nice properties with their continuous counterparts,
and demonstrate their usefulness for lattice-based cryptography.

The leftover hash lemma (LHL) is a very powerful tool. Its simplest application is the
following: sample a1, . . . , am uniformly in Zq for some integer q > 1; sample z1, . . . , zm
small Gaussian integers. Then, conditioned on the ai’s, the value

∑
i aizi mod q “looks

like” a uniform element of Zq. This observation, due to [GPV08, Lemma 4.2], is a variant
of the leftover hash lemma [ILL89], and its proof crucially relies on the smoothing
parameter of the lattice corresponding to the kernel of the map z ∈ Zm 7→ 〈z, a〉 mod q.
Such a result enables us to argue about the indistinguishability of public keys from
uniform elements. In [Reg05], Regev uses LHL over Zq, to show that

∑
siai gives a

uniform public key, where si ∈ Zq are the secret key. More general, LHL leads to simple
and efficient randomness extractors, and can be used in many applications requiring good
randomness. It therefore finds numerous applications in cryptography: key derivation,
random number generators, etc [Reg05,GPV08].
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Figure 1.1: An example of shortest vector problem in 2 dimensions: given a lattice basis
(the black vectors) as input, the output is a shortest vector in lattice (the red vector).

The classical statement of the LHL relates a fixed uniform distribution over a finite
support to another distribution that comes from a specific cryptographic construction.
However, for some lattice-based primitives, we cannot use the LHL directly. Indeed, for
lattice-based constructions, the application of the LHL is limited for two reasons. The
main reason is that we care about distributions whose support is a Euclidean lattice,
which is an infinite domain. Moreover, a popular choice of a distribution to consider is
a discrete Gaussian distribution, instead of a uniform one (which does not exist over an
infinite domain). Hence, it is needed to extend LHL to such a setting.

Another application of LHL is an extremely simple discrete Gaussian sampler. Specif-
ically, we consider the following sampler. In an offline phase, for m > n, we sample a
set of short vectors x1,x2, . . . ,xm from a lattice L. Then, in the online phase, the sam-
ple generates z ∈ Zm according to a discrete Gaussian and simply outputs

∑m
i=1 zixi.

In [AGHS13], the authors analyze the distribution of X tz where X is random Gaussian
matrix in Zm×n and z is random Gaussian vector in Zm. Their main result is the follow-
ing: ifX satisfies a certain constraint and if the standard deviation of the distribution of z
is large enough, then the distribution of X tz is statistically close to a discrete Gaussian
distribution with appropriate covariance (see Figure 1.2). Then in [AR16], D. Aggarwal
and O. Regev improve over the main result of [AGHS13] for some parameter sets.

In both of the results, the bound on the standard deviation of the distribution of z
comes from the so-called smoothing parameter of orthogonal lattice Λ⊥(X) which is a
set of all vectors v ∈ Zm that belong to the (left) kernel of X. The smoothing parameter
was introduced in [MR04]. Intuitively, it says that when the standard deviation is large
enough, then the statistical properties of the discrete Gaussian distribution over lattices
are very close to those of the continuous Gaussian distribution.

Here, we note that the lattice Λ⊥(X) has dimension m − dim(Λ(X)), and its basis
can be computed in polynomial time from X. Interestingly, the links between duality
and orthogonality enable us to prove that the volume of Λ⊥(X) is equal to the volume
of the lattice span(Λ(X))∩Zm with probability close to 1 over the choice of X [Ngu99].
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X t
z← DZm

n

m

DZn

Figure 1.2: The leftover hash lemma over lattices from [AGHS13]: with appropriate
parameters, the distribution of X tz conditioned on X is close to Gaussian distribution
over Zn.

Figure 1.3: Illustration of a broadcast encryption in the Pay-TV application: the system
has two malicious users who have the red key and the green key. They share their secret
keys with the non-legitimate entity. The system can identify them, so that they can no
longer access new content.

Thus, if a lattice in Zm is low-dimensional, its orthogonal lattice is high-dimensional
with volume at most equal: the successive minima of the orthogonal lattice are likely to
be much shorter than the ones of the original lattice.

In cryptography, orthogonal lattices first appeared as a cryptanalytic tool in at-
tacking several cryptographic constructions [NS97, NS99, DGHV10]. Years later, when
lattices have turned into a major building block in designing cryptographic primitives,
orthogonal lattices have been used in various constructions such as cryptographic mul-
tilinear maps [AGHS13], traitor-tracing schemes [LPSS17] and inner product functional
encryption [ALS16].

Trace-and-revoke systems. A protocol that uses the orthogonal lattices in the se-
curity proofs is the so-called broadcast encryption. It is a fundamental cryptographic
primitive that gives the ability to send a secure message to any chosen target set among
registered users. An interesting variant of broadcast encryption is called trace-and-revoke
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system [BW06]. It is a multi-recipient encryption system where a content distributor can
find malicious users and can revoke their decryption capability (see Figure 1.3). Such
a public-key encryption scheme, informally speaking, allows a sender to encrypt data
under a public key pk and each legitimate user can use their secret key ski to decrypt the
data. A traitor tracing system guarantees that if a coalition of (legitimate) users pool
their secret keys to construct a decoder box that can decrypt the ciphertext, then there
is an efficient trace algorithm to find at least one guilty user provided the algorithm is
given access to the decoder. Then the content distributor can use the revocation func-
tionality to prohibit the guilty users from accessing the data in the future. A revocation
system ensures that if a coalition of illegitimate users pools their secret keys, they still
cannot decrypt the ciphertext.

We now describe the protocol which is based on [ABP+17] to see how the orthogonal
lattices work for it. In a revocation scheme, a user id with the secret key skid can decrypt
a ciphertext ctR if the user is not revoked. Agrawal et al. in [ABP+17] constructed a
revocation scheme with public traceability for an unbounded number of users from inner
product functional encryption. In an inner product functional encryption [ABDCP15,
ALS16], given a secret key skx for a key vector x and a ciphertext cty for a vector y,
the decryptor can compute the inner product of the two vectors involved, i.e., 〈x,y〉.
Intuitively, in the revocation construction by Agrawal et al., each id is associated with
a random vector xid and correspondingly a set R is associated with the vector space
spanned by (xid)id∈R . To create a ciphertext with the revoked set R, Agrawal et al.
choose a vector vR othrogonal to (xid)id∈R and define yR = m · vR as the ciphertext
vector. Observe that if id ∈ R, then xid will be orthogonal to vR and subsequently
to yR (i.e., 〈xid,yR〉 = 0). In case id /∈ R, with high probability 〈xid,vR〉 6= 0 which
acts as a multiplicative blinding factor for the plaintext message m as 〈xid,yR〉 = m ·
〈xid,vR〉. Now, during decryption, the inner product functional encryption computes
Res = 〈xid,vR〉 = m · 〈xid,vR〉 as an intermediate step. The decryptor, who is provided
with vR alongside the ciphertext, recomputes the blinding factor 〈xid,vR〉 to recover the
message m.

A natural question is whether one can devise a protocol where the revoked user will
not make out if it has been revoked. Moreover, given a ciphertext, no legitimate user
will get any information about the users who have been revoked from decrypting the
ciphertext. This problem is called trace and revoke scheme with anonymity.

Short integer solution. An average-case problem proposed by Ajtai [Ajt96] consists
in finding a short non-zero integer solution e ∈ Zm to the homogeneous linear system
Ate = 0 mod q for a uniformly random A ∈ Zm×n

q This is equivalent to finding a short
nonzero vector in Λ⊥q (A) (see Figure 1.4). This problem is called short integer solution
(SIS). It is a foundation for collision-resistant hash functions, identification schemes,
digital signatures, etc [GPV08,Lyu13,LS14,PR06,Pei15,LLLS13].

Learning with errors. Another fundamental problem related to lattices is the learning
with errors (LWE) problem. The LWE problem is introduced by Regev [Reg05]. It is
the problem of recovering uniformly random vector s ∈ Zn

q given many samples of the
form (a, 〈a, s〉 + e), with a uniform in Zn

q , noise e sampled according to a Gaussian
distribution over Zq. In [Reg05], Regev showed that for appropriate parameters, this
problem is as hard as worst-case lattice problems and polynomial-time equivalent to its
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At = 0 mod q

e

n

m

Figure 1.4: The short integer solution: given matrix A← U(Zm×n
q ) as input, the goal is

to compute such a short vector e.

decision version, which asks to distinguish the distribution of a LWE sample as above
from the uniform distribution over (Zn

q × Zq).
We now present a public key encryption using LWE. Alice chooses a secret key s and

a random matrix A ∈ Zm×n
q . Alice’s public key is

(A,b = As + e).

It is indistinguishable from a uniform pair under the decision LWE assumption. In order
to encrypt a message to Alice, Bob chooses a random small vector r, and computes the
ciphertext

u = Atr, u′ = btr + µ · dq
2
e

where µ is the message bit. Essentially, he sends either btr for µ = 0, or something very
far from btr, for µ = 1. To decrypt the message, Alice subtracts information depending
on her secret key stu from u′, which is either approximately 0 or approximately q

2 ,
depending on the value of the message bit µ.

Many variants of the LWE problem have been introduced, mostly with the goal of
improving the efficiency of lattice-based cryptography. For example, many papers have
been devoted to the analysis of LWE when the secret key s, or the error e follow a
distribution which is different from that considered by [Reg05], as in [MP13, BLP+13,
HM17]. Extensions of LWE over more general rings have also been broadly studied,
starting with the introductions of the Polynomial-LWE problem [SSTX09] and of the
Ring-LWE problem [LPR10,RSW18].

1.2 Our contributions
In this thesis, we focus on the cryptographic aspects of orthogonal lattices. First, we
consider the successive minima and the smoothing parameter of random orthogonal
lattices. We then investigate broadcast encryption with anonymous revocation. Lastly,
we introduce a new variant of the LWE problem over the integers without any modular
reduction.

We note that the results discussed below have been mainly taken from an article in
preparation and from the following published articles.
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1. [KNSW20] E. Kirshanova, H. Nguyen, D. Stehlé, and A. Wallet. On the smoothing
parameter and last minimum of random orthogonal lattices. Designs, Codes and
Cryptography 2020.

2. [BMN+21] O. Blazy, S. Mukherjee, H. Nguyen, H. Phan and D. Stehlé. An Anony-
mous Trace-and-Revoke Broadcast Encryption Scheme. Accepted to Australasian
Conference on Information Security and Privacy 2021.

1.2.1 The smoothing parameter of random orthogonal lattices

The smoothing parameter of Λ⊥(X) generated by a discrete Gaussian X ∈ Zm×n was
already considered by Agrawal et al. in [AGHS13]. Their main motivation (and result)
was a generalization of the leftover hash lemma (LHL) to lattices and discrete Gaussian
distributions. Our first result is an improved probabilistic upper bound on the smooth-
ing parameter, compared to prior works in [AGHS13] and [AR16]. Our second result
improves the probabilistic upper bound on the (m− n)−th minimum of the orthogonal
lattice Λ⊥(X).

1.2.2 Trace and Revoke scheme with anonymity

We investigate broadcast encryption with anonymous revocation. Our contribution is
threefold. First, we develop a generic transformation of linear functional encryption to-
ward trace-and-revoke systems. It is inspired by the transformation by Agrawal et al.
[ABP+17] with the novelty of achieving anonymity. Our second contribution is to instan-
tiate the underlying linear functional encryption from standard assumptions. We propose
a DDH-based construction which significantly improves the performance compared to
the decisional Diffie–Hellman (DDH)-based construction of Agrawal et al. In the case of
LWE, we tried to instantiate our construction by relying on the scheme from Wang et
al. [WFL19] but we finally found an attack on this scheme. Our third contribution is
to extend the 1−bit encryption from the generic transformation to n−bit encryption.
By introducing matrix multiplication functional encryption, which essentially performs
a fixed number of parallel calls on functional encryptions with the same randomness, we
can prove the security of the final scheme with a tight reduction that does not depend
on n, in contrast to what we obtain by employing the hybrid argument.

1.2.3 New LWE problem over the integers

We introduce a new variant of the LWE problem over the integers, without any modular
reduction.

Concretely, we consider two problems: integer-SIS, and integer-LWE. For integer-SIS,
the difference from the standard SIS problem is that the entries of A are Gaussian over
the integers. Then from the observation that the integer-SIS problem is syntactically
equivalent to finding a nonzero short vector in the orthogonal lattice, and inspired by
the duality with the bounded distance decoding problem (BDD), we define the search
integer-LWE problem as a BDD problem on the dual lattice: it consists in recovering k
from (X, πker(X)(k + e)), where X and k are Gaussian over Zm×n and Zm, respectively,
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e ∈ Rm is Gaussian with standard deviation significantly below 1 and πker(X)(k+e) is the
orthogonal projection of (k + e) onto ker(X). We propose a quantum polynomial-time
reduction from the integer-SIS problem to the search integer-LWE problem.

1.3 Organization of this thesis
In Chapter 2, we recall all necessary definitions that are used throughout this thesis.
These include the basic definitions related to lattices. In Chapter 3, we expose our result
on the smoothing parameter of the orthogonal lattice. Chapter 4 is about an anonymous
trace-and-revoke broadcast encryption scheme. In Chapter 5, we introduce the new LWE
problem over integers. Finally, we conclude this thesis and present some directions for
future works in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we first give some basic definitions and results on lattices that will be
used throughout the thesis. These include the basic notations and properties of lattices,
discrete Gaussian distributions over lattices, and the smoothing parameter.

2.1 Lattices
A lattice is a discrete additive subgroup of Rm, for some integer m ­ 1. A set of linearly
independent vectors B = {b1, . . . ,bd} ⊂ Rm that generates a lattice via integer linear
combinations is called a basis, and we write the lattice generated by B as

L(B) :=
{
Bz =

∑
i∈[d]

zibi : z ∈ Zd
}
.

The rank of this lattice is d and its embedding dimension is m. We define the determinant
of L as det(L) :=

√
det(BtB). For a rank-d matrix B ∈ Rm×d, there exist orthogonal

matrices U, V and a diagonal matrix Σ = Diag(σ1, . . . , σd) ∈ Rm×d such that B = UΣV t

and σ1 ­ · · · ­ σd > 0. From this decomposition, we see that det(L(B)) =
∏
i∈[1,d] |σi|.

When d = m, we say that the lattice has full rank. Understanding geometric prop-
erties of high-dimensional lattices is a central topic in various areas of mathematics and
computer science [NV09]. Among the most important invariants of a lattice are its so-
called successive minima λ1(Λ), . . . , λd(Λ). More precisely, for i ∈ [d], the i-th successive
minimum λi(L) is defined as

λi(L) := inf{r : dim(Span(L ∩ B(r))) ­ i},

where B(r) denotes the closed zero-centered Euclidean ball of radius r. We use the
notation λ∞i (L) when we consider the infinity norm.

Any lattice L ⊆ Rm has a dual lattice L?. It consists of all the vectors in Span(L)
that are orthogonal to L modulo 1, namely:

L? := {y ∈ Span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}.

Note that L?? = L.
Several families of lattices are considered in this work.

Definition 2.1. Let m > n ­ 1 and q ­ 2 be integers. Let X ∈ Zn×m.
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1. The orthogonal lattice Λ⊥(X) is the integral lattice whose vectors are orthogonal
to the rows of X, i.e.,

Λ⊥(X) := {v ∈ Zm : Xv = 0}.

2. The lattice Λq(X) ⊆ Zm is the full-rank lattice spanned by the rows of X and the
vectors qei, i.e.,

Λq(X) := {X tz + qy : z ∈ Zn,y ∈ Zm}.

3. The lattice Λ⊥q (X) ⊆ Rm is the dual of Λq(X) scaled up by a factor of q, i.e.,

Λ⊥q (X) := {v ∈ Rm : ∀u ∈ Λq(X), 〈v,u〉 ∈ qZ}.

We note that if X is of full row rank (over the integers), then Λ⊥(X) has rank m−n.

Definition 2.2 (Orthogonal projection). Let L be a lattice and E ⊆ Rm be a vector
subspace. The orthogonal projection of L onto E is:

π(L,E) = {v1 ∈ E : ∃ v2 ∈ E⊥,v1 + v2 ∈ L}.

Note that π(L,E) is a finitely generated additive subgroup in Rm, but not necessarily a
lattice. The next lemma is standard (see, e.g., [CSV13, Lemma 3.4]).

Lemma 2.3. Let E ⊆ Rm be a vector space. For any lattice L ∈ Rm such that π(L?, E)
is a lattice, we have

L ∩ E =
(
π(L?, E)

)
?.

Lemma 2.4. Let X ∈ Zn×m and Λ⊥(X)? be the dual lattice of Λ⊥(X). We have

Λ⊥(X)? = (Zm +X tRn) ∩ ker(X).

Proof. Any r ∈ π(Zm, ker(X)) can be written as r = k − X t(XX t)−1Xk, for some
k ∈ Zm. It follows that π(Zm, ker(X)) ⊆ 1

det(XXt) · Z
m, hence π(Zm, ker(X)) is a lattice.

Now, we apply Lemma 2.3 with L = Zm and E = ker(X) to obtain

Λ⊥(X)? = (Zm ∩ ker(X))? = π(Zm, ker(X)) = (Zm +X tRn) ∩ ker(X).

In the last equation, we use the fact that (ker(X))⊥ = X tRn.

2.2 Lattice Gaussian distributions and the smooth-
ing parameter

For a rank-n matrix S ∈ Rm×n and vector c ∈ Rn, the Gaussian function on Rn centered
at c with covariance matrix StS is defined as:

∀x ∈ Rn, ρS,c(x) = exp(−π(x− c)t(StS)−1(x− c)).
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Given a rank-d lattice L ⊂ Rm, the discrete Gaussian distribution with support L,
covariance parameter S and shift c is defined as:

∀x ∈ L,DL,S,c(x) =
ρS,c(x)
ρS,c(L)

,

where ρS,c(L) =
∑
x∈L ρS,c(x). When S = sIn for some real s > 0, we write ρs,c, resp.

DL,s,c, the associated (spherical) function, resp. distribution, and we omit the subscript
c when it is 0.

We will make use of the following tail bound for discrete Gaussians [Ban93]. This
precise formulation is borrowed from [DRN14, Lemma 2.13].

Lemma 2.5. For any rank-d lattice L, s > 0 and t ­ 1, we have

Pr
v←DL,s

‖v‖ > s · t
√
d

2π

 ¬ exp
(
−d

2
(t− 1)2

)
.

We will use the following consequence of the Poisson summation formula:

ρS(Λ) = det(Λ?) ·
√

det(StS) · ρS(StS)−1(Λ?),

for any rank-d lattice Λ and any matrix S ∈ Rm×n of rank n. The definition of the
smoothing parameter is motivated by the Poisson summation formula. Given ε > 0 and
a lattice L, the smoothing parameter ηε(L) is defined as the smallest real s > 0 such
that ρ1/s(L? \ {0}) ¬ ε. Introduced by Micciancio and Regev in 2004, the smoothing
parameter has been used as a central tool in reductions between lattice problems [MR04]
and in lattice-based cryptography. Also, the notion of smoothing parameter can be found
in communication theory under the name ‘flatness factor’ [Bel11].
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Chapter 3

On the smoothing parameter and
last minimum of random
orthogonal lattices

This chapter is based on a joint work with E. Kirshanova, D. Stehlé, and A. Wallet. It
was published in Designs, Codes and Cryptography [KNSW20].

3.1 Introduction
In this work, we consider the successive minima and the smoothing parameter of random
orthogonal lattices. For X ∈ Zn×m with m > n, the orthogonal lattice Λ⊥(X) is a set of
all vectors v ∈ Zm that belong to the (right) kernel of X.

Given X ∈ Zn×m, one can find a basis of Λ⊥(X) by a Hermite Normal Form com-
putation (see, e.g., [HMM98]). Concretely: let U ∈ Zm×m be a unimodular transforma-
tion that brings X into HNF, i.e., X · U = XHNF; if X is of full row-rank n, the last
m − n columns of XHNF are zero vectors; viewing U as a block matrix U = [U1|U2] for
U2 ∈ Zm×(m−n) of rank m − n, one can show that the columns of U2 form a basis of
Λ⊥(X). Similarly, Nguyen and Stern [NS97] show how to obtain a short basis of Λ⊥(X)
by LLL-reducing [LLL82] the lattice spanned by the columns of [cX t|Im]t with some
sufficiently large scalar c.

We study the (m− n)-th minimum and the smoothing parameter of the orthogonal
rank-(m − n) lattice Λ⊥(X), where each entry of X is independently and identically
distributed according to an integer Gaussian distribution. In particular, we obtain prob-
abilistic upper bounds on ηε(Λ⊥(X)) and λm−n(Λ⊥(X)).

Prior results. With a motivation stemming from a cryptographic multilinear map
construction [GGH13], Agrawal, Gentry, Halevi and Sahai in [AGHS13] considered the
following variation: instead of starting from the finite set Z/qZ, they consider a ma-
trix X ∈ Zn×m with entries sampled from an integer Gaussian distribution and focus
on the closeness between the distribution of the vector Xz and a discrete Gaussian dis-
tribution, for an appropriately chosen Gaussian multiplier z and conditioned over X.
The main novelty was to replace the finite support Z/qZ by the infinite support Z. This
question can be answered by considering the smoothing parameter of the lattice Λ⊥(X).
Let us denote by DZn,S the n-dimensional zero-centered discrete Gaussian distribution
over Zn with parameter a full column-rank matrix S with n columns (the probability of
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a vector k ∈ Zn is proportional to exp(−π‖kt(StS)−1k‖)) and by DZn,s the case when
S = sIn. The following probabilistic bound is proved in [AGHS13]:

ηε(Λ⊥(X)) ¬ O(mn
√

ln(m/ε)),

where X ← (DZn,s)m, s > ηε(Zn) and m = Ω(n ln(ns))12. This statement holds with
probability ­ 1 − 2−Ω(n) over the choice of X. They obtain a LHL over lattices as
a direct consequence of this result: for parameters satisfying the same conditions and
if the above smoothing parameter bound holds, the statistical distance3 between the
distributions Xz (conditioned on X) and DZm,s′Xt is at most ε, when z is sampled from
DZm,s′ for s′ ­ ηε(Λ⊥(X)).

Our objective here is to obtain a sufficient condition on s′ which is as mild as possible.
Note that improving the upper bound on ηε(Λ⊥(X)) directly leads to a milder condition
on s′.

Following [AGHS13], Aggarwal and Regev [AR16] gave another bound on the smooth-
ing parameter of Λ⊥(X). Namely, they showed that

ηε(Λ⊥(X)) ¬ O

(
ns ·

√
ln(ns) · ln(m) · ln(m/ε)

)
,

with probability ­ 1 − 2−Ω(n) over the choice of X ← (DZn,s)m. The bound holds for
s > ηε(Zn) and m = Ω(n ln(ns)). The bound of [AR16] is lower for large m and small s,
while the result of [AGHS13] is preferable for large s and small m.

Our results. Our first result is an improved upper bound on ηε(Λ⊥(X)).

Theorem 3.1. Let n be an integer growing to infinity, ε > 0, s ­ Ω(
√
n) and m =

Ω(n ln s). Then, we have

Pr
X←(DZn,s)m

[
ηε(Λ⊥(X)) ¬ O

(√
(n+ lnm) · ln(m/ε)

)]
­ 1− 2−Ω(n).

Moreover, for any ε ¬ e−(m−n),

Pr
X←(DZn,s)m

[
ηε(Λ⊥(X)) ¬ O

(√
ln(1/ε)

)]
­ 1− 2−Ω(n).

Note that the second probabilistic upper bound is lower than the first, but is not
applicable for every ε > 0. It holds for ε ¬ e−(m−n), and, for larger values of ε, only
the first bound applies. The reason why there are two possibilities for the upper bound
stems from the two uncomparable relations between the smoothing parameter and the
first minimum of the dual lattice Λ⊥(X)? for the Euclidean and infinity norms (see
Lemmas 3.5 and 3.6).

A proof for this theorem can be found in Section 3.3. Our result improves over
both bounds of [AGHS13] and [AR16] when s = Ω(

√
n) and m is sufficiently large. In

1Note that an equivalent description of the distribution for X would be X ← (DZ,s)n×m. Our choice
follows prior works.

2We recall that ηε(Zn) = O(
√

ln(n/ε)) (see Section 3.2).
3The statistical distance between two distributions X and Y is half their `1-distance, i.e., ∆(X,Y ) :=

1
2 ‖X − Y ‖1 = 1

2

∑
ω∈Ω |X(ω)− Y (ω)|.
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particular, the minimum of our two upper bounds is smaller by an Ω(
√
n) factor for the

above ranges of m and s, is independent of s and depends at most logarithmically in m.
However, our result requires s = Ω(

√
n) (which is a consequence of our proof technique,

in particular, Lemma 3.16), so for small values of s, the prior results of [AGHS13]
and [AR16] remain the best known upper bounds on ηε(Λ⊥(X)). As an immediate
corollary to Theorem 3.1, we obtain a tighter version the leftover hash lemma over
lattices (see Corollary 3.12). We summarise our results and compare them with previous
works in Table 3.1.

For applications, it is useful to keep in mind the following parameter set with re-
spect to n: ε = 2−Θ(n), s = nΘ(1) and m = Θ(n lnn). For these parameters, Theo-
rem 3.1 yields ηε(Λ⊥(X)) ¬ Õ(n) with probability ­ 1− 2−Ω(n). For the same parame-
ters, the probabilistic bounds from [AGHS13] and [AR16] are ηε(Λ⊥(X)) ¬ Õ(n3) and
ηε(Λ⊥(X)) ¬ Õ(n3/2s), respectively.

Agrawal et al. [AGHS13] Aggarwal-Regev [AR16] [KNSW20]

s Ω(ηε(Zn)) Ω(ηε(Zn)) Ω(
√
n)

m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s)

ηε(Λ⊥(X)) O
(
mn

√
ln m

ε

)
O
(
ns
√

ln(ns) ln(m) ln m
ε

) O
(√

(n+ lnm) · ln m
ε

)
or O

(√
ln 1

ε

)
Table 3.1: Probabilistic upper bounds on ηε(Λ⊥(X)) for X ← (DZn,s)m together with
requirements on s and m needed for the bounds to hold. The two cases in the last table
entry depend on the range of ε, see Theorem 3.1.

.

Our second main result is an upper bound on the (m − n)-th minimum of the
orthogonal lattice Λ⊥(X). Note that we could use our result of Theorem 3.1 to obtain an
upper bound on λm−n(Λ⊥(X)) via the relation λm−n(Λ) ¬

√
m− n · ηε(Λ), which holds

for any rank-(m−n) lattice Λ and any ε ∈ (0, 1/2)) (see Lemma 3.7). Below we state the
result, which gives a better bound for a large set of parameters. In particular, for many
ranges of s and m, it improves over the bound λm−n(Λ⊥(X)) ¬ O(ns

√
ln(m) ln(ns))

from [AR16], and the bound λm−n(Λ⊥(X)) ¬ O(mn) from [AGHS13].

Theorem 3.2. Let n be an integer growing to infinity, s ­ Ω(
√
n) and m satisfying

m = Ω(n ln s) and m ¬ 2n/2. Then, we have

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ¬ O(n ln s)

]
­ 1− 2−Ω(n).

This theorem is proven in Section 3.4. An interesting fact to be noticed from this
result is that, with overwhelming probability, the lattice Λ⊥(X) contains (m−n) linearly
independent vectors whose norms do not depend on m — a parameter which can be
as large as 2n/2. On the other hand, our statement holds even when taking m as small
as Θ(n · ln s). We summarise our results and compare them with previous works in
Table 3.2.
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Agrawal et al. [AGHS13] Aggarwal-Regev [AR16] [KNSW20]

s Ω(ηε(Zn)) Ω(ηε(Zn)) Ω(
√
n)

m Ω(n ln(ns)) Ω(n ln(ns)) Ω(n ln s) and ¬ 2n/2

λm−n(Λ⊥(X)) O(mn) O
(
ns
√

ln(ns) ln(m)
)

O(n ln s)

Table 3.2: Probabilistic upper bounds on λm−n(Λ⊥(X)) for X ← (DZn,s)m together with
requirements on s and m needed for the bounds to hold.

.

3.1.1 Techniques

The bound on the smoothing parameter is obtained via a chain of relations between
successive minima of different lattices and the smoothing parameter of Λ⊥(X). Well-
known transference relations between the smoothing parameter of a lattice and the first
minimum of its dual lead us to study λ1(Λ⊥(X)?). Namely, in order to obtain our result
on ηε(Λ⊥(X)), we bound λ1(Λ⊥(X)?) from below in both Euclidean and infinity norms.

To obtain these lower bounds, we consider the lattice Λq(X) ⊆ Zm – the full-rank
lattice spanned by the rows of X and qZm (in other words, we consider the so-called
Construction A lattice of X, see [CS93, Chapter 5]). Following [AGHS13], our objective
is to obtain a probabilistic lower bound on the norms of vectors from Λq(X)\X tZn. Note
that this implies a probabilistic lower bound on λn+1(Λq(X)), as the vector space X tQn

has dimension at most n.
At the heart of both proofs, ours and the one from [AGHS13], is a counting argument

that allows to bound the norms of lattice vectors of the form X tz mod q ∈ Λq(X)\X t·Zn.
The counting argument is divided into several cases depending on the norm of z. One
source of improvement in our result is a more fine-grained division of these cases as well
as a tighter treatment of interchange between different norms.

Once we have a lower bound on the norms of vectors from Λq(X) \X tZn, we relate
the smallest norm of such vectors to λ1(Λ⊥(X)?). This is where our approach differs
most from [AGHS13]. The intuition behind the relation is the following: observe that
for a sufficiently large q, the lattice 1

q
Λq(X) can be thought of as an approximation to

Λ⊥(X)?, in the sense that any u ∈ Λ⊥(X)? can be expressed as a vector in 1
q
Λq(X) plus

a small element in the row-span of X. Our lower bound on norms of vectors in Λq(X) \
X t ·Zn and a Gaussian tail bound give a lower bound on λ1(Λ⊥(X)?). This is in contrast
to [AGHS13], which at this step invokes Banaszczyk’s transference theorem [Ban93] in
order to relate λn+1(Λq(X)) and λm−n(Λq(X)?). Then, using the inclusion Λ⊥(X) ⊆
1
q
Λq(X)?, Agrawal et al. obtain their lower bound on λ1(Λ⊥(X)?).

Summing up the above description, we:

1. obtain a (probabilistic) lower bound on ‖b‖ for b ∈ Λq(X) \X tZn, improving the
result of [AGHS13] by an Ω(n) factor (see Theorem 3.13);

2. relate the shortest norm of b ∈ Λq(X)\X tZn with λ1(Λ⊥(X)?) (see Lemma 3.18);

3. apply known relations (Lemma 3.5 or Lemma 3.6, depending on the norm) between
the first minimum of Λ⊥(X)? and ηε(Λ⊥(X)).
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X1 X2 · · ·

m

V1 0 0 U1 0

0 V2 0 −U2 U2

0 0 . . . 0 −U3

m′ − n

m− n

=
0

Figure 3.1: Technique used in bounding λm−n(Λ⊥(X)). For each i, the matrix Vi ∈
Zm′×m′−n consists of m′ − n short linearly independent vectors orthogonal to Xi, the
matrix consisting of the first m′ columns of X. The vectors making up Vi are chosen so
that they reach the first (m′−n) successive minima of Λ⊥(Xi). Another n

(
m
m′
−1

)
short

orthogonal to X vectors are obtained using matrices Ui ∈ Zm′×n that satisfy XiUi = In
and whose columns have small norms.

Our second result, stated in Theorem 3.2, gives an upper bound on the (m− n)-th
minimum of Λ⊥(X). The main ingredient in the proof is an observation that we can
subdivide, column-wise, a ‘wide’ matrix X ∈ Zn×m (here m is potentially much larger
than n) into m

m′
smaller matrices Xi ∈ Zn×m′ , and obtain short vectors in each Λ⊥(Xi),

which are also short vectors in Λ⊥(X). (For the sake of simplicity, we assume here that
m′ divides m.)

As a first step, we obtain an upper bound on λm′−n(Λ⊥(Xi)) for all i. Such an
upper bound on λm′−n(Λ⊥(Xi)) is a corollary of our lower bound on λn+1(Λq(X)) and
Banaszczyk’s transference theorem [Ban93]. Thus, we obtain m

m′
(m′−n) relatively short

vectors of dimension m′. Note that each such vector can be ‘padded’ with enough 0’s in a
way that the resulting m-dimensional vector belongs to Λ⊥(X). The latter is illustrated
in Figure 3.1 as follows: the columns of each matrix Vi are linearly independent vectors
reaching the minima of Λ⊥(Xi), the columns containing them in the center matrix in
Figure 3.1 are short linearly independent vectors in Λ⊥(X).

The second step consists in obtaining n
(
m
m′
−1

)
additional short vectors (linearly in-

dependent with the previous ones), by applying a result due Aggarwal and Regev [AR16],
which gives a probabilistic upper bound on the norm of the columns of a matrix
U ∈ Zm×n such that XU = In. Hence, for each Xi, there exist Ui ∈ Zm′×n such that
XiUi = In. Stacking the pairs (Ui,−Ui+1) as illustrated in Figure 3.1, we obtain the
missing short vectors from Λ⊥(X).

3.1.2 Open problems

Our upper bound the last minimum of the lattice Λ⊥(X) improves the prior ones,
but may not be the tightest possible. In fact, we suspect it is not sharp. The Gaussian
matrix X ← (DZn,s)m has rank n with overwhelming probability (see Lemma 3.9 below).
Using the fact that det(Λ⊥(X)) ¬ det(X tZn) (see, e.g., [Ngu99, p. 30]) and Minkowski’s
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theorem, we have ∏
i∈[m−n]

λi(Λ⊥(X)) ¬
√
m− nm−n · det(X tZn).

Then, by applying a Gaussian tail bound, all the columns of X t have norms ¬ s
√
m

with overwhelming probability. If we assume that the successive minima are essentially
the same, we obtain from Hadamard’s inequality that

∀i ¬ m− n, λi(Λ⊥(X)) ¬
√
m− n · (s

√
m)

n
m−n .

Consider now m = Θ(n lnn) and s ¬ poly(n), and assume the above inequality is
essentially tight. Then it suggests that the minimum λm−n(Λ⊥(X)) should be Θ̃(

√
n).

However, Theorem 3.2 only states that λm−n(Λ⊥(X)) ¬ Õ(n). This gap possibly stems
from our counting arguments in Lemma 3.15 and Lemma 3.17. Indeed, we impose there
that all points in an n-dimensional cube satisfy some property with a success probability
that is exponentially close to 1. It could be the case that by weakening our constraints
on the probabilities, e.g., by asking for a failure at most n−ω(1), we could achieve sharper
estimations for smaller parameters. However, it does not seem straightforward, because
we also rely on union bounds over sets of exponential sizes.

On the other hand, for exponentially small ε, we also expect the smoothing parameter
to be essentially the same as the minima. This would heuristically give ηε(Λ⊥(X)) =
Θ̃(
√
n) when m = Θ(n lnn) and s ¬ poly(n). Theorem 3.1 provides a Õ(

√
n) bound for

these parameters.

3.2 Preliminaries
For an integer q > 2, we use [v]q to denote the modular reduction of all the entries
of v into the interval [− q

2 ,
q
2). The kernel of a matrix X ∈ Rn×m seen as linear maps

is denoted ker(X). For a vector subspace V ⊆ Rd and a vector x ∈ Rd, we let π(x, V )
denote the orthogonal projection of x onto V . For two distributions D,D′ over a common
support Ω, their statistical distance is defined as ∆(D,D′) = 1

2

∑
ω∈Ω |D(ω) − D′(ω)|.

First, we need the following version of Hoeffding’s inequality.

Lemma 3.3 (Hoeffding’s inequality). Let X1, . . . , Xm be independent random variables
such that 0 ¬ Xi ¬ 1 for all i. Let Sm = X1 + · · ·+Xm. Then for any t > 0, we have

Pr
[
|Sm − E[Sm]| ­ t

]
¬ 2 exp

(
− 2t2/m

)
.

The following is a transference theorem as it allows to link the minima of a given
lattice to those of its dual.

Theorem 3.4 ([Ban93]). For any rank-d lattice L ⊆ Rm, and for all i ∈ [d], we have

1 ¬ λi(L) · λd−i+1(L?) ¬ d.
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3.2.1 Bounds of the smoothing parameter

We recall below standard upper bounds on this parameter, involving lattice minima.

Lemma 3.5 ([Pei08, Lemma 3.5]). For any rank-d lattice L and ε > 0, we have

ηε(L) ¬

√
ln(2d(1 + 1

ε
))/π

λ∞1 (L?)
.

Lemma 3.6 ([PRS17, Lemma 2.6], [Ban93, Lemma 1.5]). For any rank-d lattice L and
ε ∈ (0, e−d], we have

ηε(L) ¬

√
ln(1

ε
)

λ1(L?)
.

First, Lemma 3.5 and Lemma 3.6 differ in terms of the norm considered for the first
minimum of the dual lattice. Second, these lemmas give different smoothing parameter
bounds for different ε-regimes: depending on the smallness of ε, one of the lemmas may
give a tighter statement than the other. In particular, in our results, we will obtain a
probabilistic lower bound on λ1(L?) for a rank-d orthogonal lattice L that is larger than
a lower bound on λ∞1 (L?) by a factor quasi-linear in

√
d. It follows that for small ε (e.g.,

ε = 2−o(d)), Lemma 3.6 is preferable to Lemma 3.5. When ε is large, Lemma 3.6 may
not be applicable, whereas Lemma 3.5 still provides a bound.

The smoothing parameter of a lattice can alternatively be bounded using the last
minimum of the (primal) lattice.

Lemma 3.7 ([APS18, Lemma 2.13] and [MR04, Lemma 3.3]). For any rank-d lattice
L and ε ∈ (0, 1/2), we have

λd(L)√
d
¬ ηε(L) ¬ λd(L) ·

√
ln
(

2d
(

1 +
1
ε

))
/π.

3.2.2 Properties of smoothed Gaussians

The first lemma states that the Gaussian mass of a subset of a lattice L does not differ
too much from the Gaussian mass of a small shift of it.

Lemma 3.8 ([AGHS13, Lemma 6]). Fix a rank-d lattice L ⊆ Rd, ε ∈ (0, 1), c > 2, and
s ­ (1 + c)ηε(L). Then, for any subset T ⊆ L and for any v ∈ L, we have

DL,s(T )−DL,s(T − v) ¬ erf(p(1 + 4/c)/2)
erf(2p)

· 1 + ε

1− ε
,

where p = ‖v‖
√
π

s
, and erf(·) is the error function.

The following lemma implies that an integral lattice, generated by the columns sam-
pled from a discrete Gaussian distribution over Zn, spans all of Zn with overwhelming
probability, if the standard deviation of this distribution is sufficiently large. It also
provides information on the matrix that maps X to the canonical basis of Zn.
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Lemma 3.9 (Adapted from [AR16, Lemma 4.2]). Let n ­ 100 and ε ∈ (0, 1
1000). Further,

let s,m be such that s ­ 9ηε(Zn), m ­ 44n ln(ns).Then, we have

Pr
X←(DZn,s)m

[
∃U ∈ Zm×n:XU = In and max

i
‖ui‖ ¬ 2

√
44n ln(sn)

]
­ 1− 2−n,

where the ui’s are the columns of U .

We now state the leftover hash lemma involving Gaussians over infinite domains, the
topic of study of [AGHS13].

Lemma 3.10 ([AGHS13, Lemma 10]). Let m > n ­ 1 be integers and ε ∈ (0, 1/3). Let
X ∈ Zn×m such that the columns of X span all of Zn. If s′ ­ ηε(Λ⊥(X)), then we have

∆(X ·DZm,s′ , DZm,s′Xt) ¬ 2ε.

3.3 Smoothing parameter of the orthogonal lattice
This section is devoted to proving our first main result: a tighter upper bound on the
smoothing parameter of Λ⊥(X), where the columns of X ∈ Zn×m are chosen from the
discrete Gaussian DZn,s. In the rest of this chapter, we view all other parameters as
functions of n. We stress that Theorem 3.11 below differs from Theorem 3.1 in that the
asymptotic notations are made explicit by specifying the constants. In this section and
the next, we keep these constants explicit. We do not claim that they are optimal in
some sense: we provide them to help the reader follow the proofs.

Theorem 3.11. Let n ­ 60, ε > 0, s ­ 20
√
n, and m ­ 1355n ln s. Then, we have

Pr
X←(DZn,s)m

[
ηε(Λ⊥(X)) ¬ 77

√
(n+ lnm) · ln(2m/ε)

]
­ 1− 2−Ω(n).

For any ε ¬ e−(m−n), we also have

Pr
X←(DZn,s)m

[
ηε(Λ⊥(X)) ¬ 96

√
ln(1/ε)

]
­ 1− 2−Ω(n).

We now give an informal description of the proof strategy. The first part of the
proof is similar to the proof presented in [AGHS13]: we first embed the lattice X tZn

into a full rank q-ary lattice Λq(X) by “adding” all the vectors qei to X tZn (where the
ei’s are the canonical basis vectors). If q is set sufficiently large, then the short vectors
in Λq(X) should come only from the rows of X (with overwhelming probability) and
thus be common to the short vectors of X tZn. Starting from this intuition, the authors
of [AGHS13] provide a lower bound on the norms of the vectors not belonging to the
row span of X. We improve their bound by an Ω(n) factor by using tighter arguments
on several estimations during the proof. This lower bound also gives a lower bound on
λn+1(Λq(X)) since X tQn spans an vector space of dimension at most n. We also observe
that a lower bound on the infinity norms of vectors in Λq(X) \ X tZn can be derived
from the proof, without relying on a loose norm equivalence.

The second part of the proof differs from the one of [AGHS13]: we observe that we
can directly relate the (n + 1)-th minimum of Λq(X) to the first minimum of Λ⊥(X)?.

38



This avoids relying twice on a transference argument, as in [AGHS13], which allows us
to save another Ω(

√
n) factor. The final result on the smoothing parameter is then a

consequence of Lemmas 3.5 and 3.6.
As a direct corollary of Theorem 3.11, we obtain the following leftover hash lemma

over lattices.

Corollary 3.12. Let n ­ 100, ε ∈
(
0, 1

1000

)
, s ­ 20

√
n and m > 1355n ln s. Let

s′ ­ 77
√

(n+ lnm) · ln(2m/ε). Then, we have

Pr
X←(DZn,s)m

[
∆(X ·DZm,s′ , DZm,s′Xt) ¬ 2ε

]
­ 1− 2−Ω(n).

If moreover ε ¬ e−(m−n), then the same result holds with s′ ­ 96
√

ln(1/ε).

Proof. Using Lemma 3.9 with the parameters as in the statement, the columns of X span
Zn with probability 1− 2−Ω(n). Now, from Theorem 3.11, these parameters also ensure
that with probability at least 1− 2−Ω(n), we have ηε(Λ⊥(X)) ¬ s′. Finally, Lemma 3.10
states that when the columns of X span Zn and s′ is chosen such that ηε(Λ⊥(X)) ¬ s′,
we have ∆(X ·DZm,s′ , DZm,s′Xt) ¬ 2ε.

3.3.1 Short vectors in the Construction A lattice of a Gaussian
matrix

This section deals with short vectors in Λq(X) \ X tZn. More precisely, we prove the
following theorems.

Theorem 3.13. Let n ­ 60, q ­ 2, m ­ 335n ln q be integers, and s ­ 20
√
n. Then,

we have
Pr

X←(DZn,s)m

[
∃b ∈ Λq(X) \X tZn : ‖b‖ < q

48

]
¬ 2−Ω(n).

As the vector spaceX tQn has dimension at most n, the above also gives a lower bound
to λn+1(Λq(X)). We are also able to obtain a similar statement for the infinity norm.
This result does not follow from just using the equivalence of norms and Theorem 3.13.

Theorem 3.14. Let n ­ 7, q ­ 2, m ­ 20n ln q be integers, and s ­ 20
√
n. Then, we

have

Pr
X←(DZn,s)m

[
∃b ∈ Λq(X) \X tZn : ‖b‖∞ <

q

48
√
n+ lnm

]
¬ 2−Ω(n).

For the sake of readability, we split the proofs into several lemmas. The theorems
follow from these lemmas and their proofs are given at the end of this subsection. We
now give an overview of the proofs of the lemmas.

Recall that Λq(X) is a lattice spanned by the rows of X and the vectors qei.In
particular, it contains the integer span of the rows of X, which is of dimension at
most n. The purpose of the following lemmas is to prove that every vector in Λq(X)
that is not in the linear span of the rows of X, is of Euclidean norm Ω(q). In order to
show this, we look at the vectors of the form [X tz]q ∈ Λq(X) \X tZn for z ∈ Zn. This is
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indeed enough as any vector in Λq(X) can be written X tz+qy for some z ∈ Zn∩[− q
2 ,

q
2)n

and y ∈ Zm. To obtain a lower bound on the norms of such vectors, we divide the proof
into two cases depending on the norm of z.

In the first lemma, we prove for a “short” z that, with all but probability 2−Ω(n),
the vector [X tz]q belongs to the row-span of X. This part of our proof differs from the
one of [AGHS13] as we bypass norm equivalence between Euclidean and infinity norms.
The second lemma deals with the other ranges of z: we obtain a lower bound on the
entries of [X tz]q by first proving a probabilistic lower bound on [〈x , z〉]q taken over a
Gaussian vector x. For a “large” z, the proof is identical to the proof of [AGHS13]. This
is detailed in the proof of Lemma 3.16. Finally, we extend this argument from a vector
x to a matrix X using Hoeffding’s inequality. This part of the proof is also new.

Lemma 3.15. Let m,n, q ­ 2 be integers. Then we have

Pr
[
∃ z ∈ Zn with ‖z‖ < q

4s
√
n+ lnm

: [X tz]q ∈ Λq(X) \X tZn
]
¬ 2−n,

where the probability is taken over X ← (DZn,s)m.

Proof. Each row xi is distributed as DZn,s. Let t =
√

2π(1 + (lnm)/n) + 1. Lemma 2.5

gives that PrX [‖xi‖ > st
√
n/2π] ¬ 2−n/m. When this does not occur, we have, for any

integer vector z with ‖z‖ ¬ q
4s
√
n+lnm

¬ q
√

2π
2st
√
n
:

|〈z,xi〉| ¬ ‖z‖ · ‖xi‖ <
q

2
.

The result follows by union bound over i ∈ [m].

We now consider longer z’s. We show that the probability that their inner product
with a Gaussian vector is quite smaller than q is bounded away from 1 by a constant.

Lemma 3.16. Let m,n ­ 7 and q ­ 2 be integers and s ­ 20
√
n. For any z ∈

Zn ∩ [− q
2 ,

q
2)n such that ‖z‖ ­ q

4s
√
n+lnm

, we have

Pr
x←DZn,s

[
|[〈x, z〉]q| <

q

48
√
n+ lnm

]
¬ 0.95.

We first outline the main ideas of the proof. For a fixed z, our concern is the vectors
x ∈ Zn whose inner-products with z are “small” when reduced modulo q: they lead to
vectors in the lattice X tZn that are shorter than what we would expect. Thus, we shall
call them “Badz” vectors. Then we show that a suitably chosen translation maps any
“Badz” vector x to a “Goodz” vector x′, such that the inner-product between x′ and
z is “large”. This proof technique is borrowed from [AGHS13]; however, we refine it by
splitting the ranges of ‖z‖ further and finding a better translation map for medium ‖z‖.
In either case, the translation vectors turn out to be short enough to argue that the
probabilities of sampling a “Badz” x and a “Goodz” x are relatively close. From there,
we readily obtain an upper bound on the probability that x is “Badz”. Below we quantify
the terms “large” and “short”, “Badz” and “Goodz”, and provide formal arguments.
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Proof. Fix a z as in the statement and define the set of “Badz” vectors as

Badz :=
{

x ∈ Zn : |[〈z,x〉]q| <
q

48
√
n+ lnm

}
.

We also define Goodz = Zn \ Badz, i.e., vectors outside the set Badz will be considered
as “good”.
Case 1: “Medium” z, i.e., q

4s
√
n+lnm

¬ ‖z‖ < q
2s .

We let µ = d s
6
√
n
e. If x ∈ Badz, then we can obtain a Goodz vector using the injective

map
Badz −→ Goodz

x 7−→ x + µ
⌈

2z
√
n

‖z‖

⌉
,

where the ceiling is taken coordinate-wise. Now, we show that the map indeed sends
Badz to Goodz. First, we note that 〈z, d2z

√
n/‖z‖e〉 ­ 0, because a and dae have the

same sign for any a ∈ R. Also, by the choice of µ, we have

0 ¬ µ
〈
z,
⌈

2z
√
n

‖z‖

⌉ 〉
¬ µ

∑
i∈[n]

(
|zi| ·

2|zi|
√
n

‖z‖
+ |zi|

)

¬ 2
s

6
√
n

(2‖z‖
√
n+ ‖z‖

√
n)

<
q

2
,

where for the second inequality we use the fact that s > 6
√
n, and, for the last inequality,

the fact that ‖z‖ < q
2s . Combining this with the fact that |[a + b]q| ­ |[a]q| − |[b]q| for

all a, b ∈ R, we obtain for x ∈ Badz that∣∣∣∣∣∣
[〈

z,x + µ

⌈
2z
√
n

‖z‖

⌉ 〉]
q

∣∣∣∣∣∣ ­ µ
〈
z,
⌈

2z
√
n

‖z‖

⌉ 〉
− |[〈z,x〉]q|.

Since ‖z‖ ­ q
4s
√
n+lnm

and |[〈z,x〉]q| ¬ q
48
√
n+lnm

, we have

µ
〈
z,
⌈

2z
√
n

‖z‖

⌉ 〉
− |[〈z,x〉]q| ­ µ

∑
i∈[n]

(
|zi| ·

2|zi|
√
n

‖z‖
− |zi|

)
− q

48
√
n+ lnm

­ s

6
√
n

(2‖z‖
√
n− ‖z‖

√
n)− q

48
√
n+ lnm

­ q

48
√
n+ lnm

.

This implies that x + µ
⌈

2z
√
n

‖z‖

⌉
∈ Goodz.

Now, we want to apply Lemma 3.8 with v = µd2z
√
n/‖z‖e. For this, we bound ‖v‖

from above. Using that dae2 ¬ (|a|+ 1)2 for any a ∈ R, we have∥∥∥∥∥
⌈

2z
√
n

‖z‖

⌉∥∥∥∥∥
2

¬
∑
i∈[n]

(
2
√
n|zi|
‖z‖

+ 1
)2

=

∥∥∥∥∥2
√
n|z|
‖z‖

+ 1n

∥∥∥∥∥
2

,
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where |z| = (|z1|, . . . , |zn|). This gives us

‖v‖ = µ

∥∥∥∥∥
⌈

2z
√
n

‖z‖

⌉∥∥∥∥∥ ¬ µ

(∥∥∥∥∥2
√
n|z|
‖z‖

∥∥∥∥∥+ ‖1n‖
)

¬ 2s
6
√
n
· 3
√
n = s.

Now, we apply Lemma 3.8 with parameters L = Zn, ε = 1/1000, c = 14, v =
µd2z

√
n/‖z‖e and p = ‖v‖

√
π/s ¬

√
π. The assumption of Lemma 3.8 is indeed satisfied

for these parameters. This gives that

Pr
x

[x ∈ Badz]− Pr
x

[x ∈ Goodz] ¬
erf(p(1 + 4

c
)/2)

erf(2p)
· 1 + ε

1− ε
¬ 0.9.

Since we always have that

Pr
x

[x ∈ Badz] + Pr
x

[x ∈ Goodz] = 1,

it holds that
Pr
x

[x ∈ Badz] ¬
1 + 0.9

2
.

We conclude that

Pr
x

[
|[〈x, z〉]q| <

q

48
√
n+ lnm

]
¬ 0.95.

Case 2: “Long” z, i.e., z ∈ Zn ∩ [− q
2 ,

q
2)n and ‖z‖ ­ q

2s .
This part of the proof is the same as in [AGHS13, Lemma 11]. We reproduce it for the
sake of completeness. Consider a “long” z, i.e., ‖z‖ ­ q

2s , which implies ‖z‖∞ ­ q
2s
√
n
.

We modify the mapping defined in Case 1 from Badz to Goodz vectors by letting µ :=
min{dse, b q

2‖z‖∞ c} and defining:

Badz → Goodz
x 7→ x + µeimax ,

where imax is the index of a largest entry in z (in absolute value).
We now prove that the map indeed sends Badz to Goodz. We have µ‖z‖∞ ¬

q
2‖z‖∞‖z‖∞ ¬

q
2 . Therefore, it holds that

|[〈z,x + µeimax〉]q| = |[〈z,x〉 ± µ‖z‖∞]q| ­ µ‖z‖∞ − |[〈z,x〉]q|.

First, assume that µ = dse. Using the facts that ‖z‖∞ > q
2s
√
n

and |[〈z,x〉]q| < q
48
√
n+lnm

for x ∈ Badz, we obtain

µ‖z‖∞ − |[〈z,x〉]q| > s
q

2s
√
n
− q

48
√
n+ lnm

>
q

48
√
n+ lnm

.

Now, assume that µ =
⌊

q
2‖z‖∞

⌋
. If ‖z‖∞ ¬ q

6 , then we have µ =
⌊

q
2‖z‖∞

⌋
­ q

2‖z‖∞ − 1 ­
q

2‖z‖∞ −
q

6‖z‖∞ > q
6‖z‖∞ , otherwise if q

6 < ‖z‖∞ ¬
q
2 , then µ =

⌊
q

2‖z‖∞

⌋
­ 1 ­ q

6‖z‖∞ . Hence
µ ­ q

6‖z‖∞ in this case. For x ∈ Badz, it implies that

µ‖z‖∞ − |[〈z,x〉]q| >
q

6‖z‖∞
· ‖z‖∞ −

q

48
√
n+ lnm

>
q

48
√
n+ lnm

.

42



In both cases, we have |[〈z,x + µeimax〉]q| > q
48
√
n+lnm

.

We apply Lemma 3.8 with parameters L = Zn, ε = 1/1000, c = 35, and v =
µeimax . The assumption of Lemma 3.8 is indeed satisfied for these parameters. Note that
‖v‖ = µ < s + 1, and p := ‖v‖

√
π

s
< s+1

s

√
π < 20

√
n+1

20
√
n

√
π < 1.02

√
π. Similarly to the

previous case it follows that Prx[x ∈ Badz] − Prx[x ∈ Goodz] ¬ 0.9. Hence, we obtain
Prx[x ∈ Bad] ¬ 0.95.

Using Lemma 3.16 and Hoeffding’s bound, we can now show that with overwhelming
probability over the choice of X, there are more than n+lnm entries of [X tz]q that have
magnitude larger than q

48
√
n+lnm

for any not too short z ∈ Zn ∩ [− q
2 ,

q
2)n. This implies

the following result.

Lemma 3.17. Let n ­ 60, q ­ 2, m ­ 335n ln q be integers, and s ­ 20
√
n.Then, we

have

Pr
[
∀ z ∈ Zn ∩ [−q

2
,
q

2
)n with ‖z‖ ­ q

4s
√
n+ lnm

: ‖[X tz]q‖ ­
q

48

]
> 1− 2 · 2−0.001m,

where the probability is taken over X ← (DZn,s)m.

Proof. Fix z with ‖z‖ ­ q
4s
√
n+lnm

. For i ∈ [m], consider independent binary random
variables Yi, defined over the choice of the columns xi of X:Yi = 1 if |[〈xi, z〉]q| ­ q

48
√
n+lnm

,

Yi = 0 otherwise.

From Lemma 3.16, it follows that PrX [Yi = 1] ­ 0.05. Therefore by linearity of ex-
pectation, we have E

[∑
i Yi
]
­ 0.05m. Using Hoeffding’s bound (Lemma 3.3) with

t = 0.05m− (n+ lnm), we obtain

Pr
[
|
∑
i

Yi − E[
∑
i

Yi]| ­ 0.05m− (n+ lnm)
]

¬ 2 exp
(
− 2

(0.05m− (n+ lnm))2

m

)
.

Hence, for m ­ 200(n + lnm) (which is implied by the condition m ­ 335n ln q), we
have

Pr
X

[∑
i

Yi < n+ lnm
]
¬ Pr

X

[
0.05m−

∑
i

Yi ­ 0.05m− (n+ lnm)
]

¬ 2 exp
(
−2

(0.05m− (n+ lnm))2

m

)
¬ 2 exp(−0.004m).

The inequality above holds for any z ∈ Zn ∩ [− q
2 ,

q
2)n with ‖z‖ ­ q

4s
√
n+lnm

. Using the
lower bound on m, m ­ 335n ln q, we conclude that

Pr
[
∃ z ∈ Zn ∩ [−q

2
,
q

2
)n with ‖z‖ ­ q

4s
√
n+ lnm

:
∑
i

Yi < n+ lnm
]
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< 2qn · e−0.004m

< 2 · e−0.001m.

Since
∑
i Yi ­ n+ lnm implies that ‖[X tz]q‖ ­ q

48 , the result follows.

We are now in a position to prove our first main results.

Proof of Theorem 3.13. The choice of parameters allows us to use both Lemma 3.15 and
Lemma 3.17. Their combination tells us that, with all but probability 2−Ω(n) over the
choice of X, there does not exist any vector z ∈ Zn ∩ [− q

2 ,
q
2)n for which [X tz]q /∈ X tZn

and ‖[X tz]q‖ < q
48 . This gives the first result.

Proof of Theorem 3.14. We show that if v ∈ Λq(X) \ X tZn, then ‖v‖∞ ­ q
48
√
n+lnm

with overwhelming probability. For z ∈ Zn∩ [− q
2 ,

q
2)n and ‖z‖ ­ q

4s
√
n+lnm

, we have from
Lemma 3.16 that Prx[|[〈x, z〉]q| < q

48
√
n+lnm

] ¬ 0.95. It follows that

Pr
X

[
‖[X tz]q‖∞ <

q

48
√
n+ lnm

]
¬ 0.95m ¬ e−0.05m.

By the union bound, we obtain

Pr
X

[
∃ z : ‖[X tz]q‖∞ <

q

48
√
n+ lnm

]
¬ qn · e−0.05m = 2−Ω(n).

Combining the above with Lemma 3.15, we conclude that with all but probability 2−Ω(n)

over the choice of X, there does not exist any vector z ∈ Zn ∩ [− q
2 ,

q
2)n for which

[X tz]q /∈ X tZn and ‖[X tz]q‖∞ < q
48
√
n+lnm

. This completes the proof.

3.3.2 Using the dual of Λ⊥(X)

We want to find an upper bound on the smoothing parameter of Λ⊥(X). Using Lemma
3.5, such a bound comes from a lower bound on the minimum of the dual lattice of
Λ⊥(X). We now relate the (n + 1)-th minimum of the lattice Λq(X) and the norms of
the shortest vectors in Λ⊥(X)?. For the proof below, it is useful to recall that Λ⊥(X)? =
(Zm +X tRn) ∩ ker(X), as showed in Lemma 2.4.

Lemma 3.18. Let n ­ 60 and s ­ 20
√
n. Let q and m be integers satisfying m ­

335n ln q and that q ­ 96sn
√
m We have

Pr
X←(DZn,s)m

[
λ∞1 (Λ⊥(X)?) ­ 1

96
√
n+ lnm

]
­ 1− 2−Ω(n),

Pr
X←(DZn,s)m

[
λ1(Λ⊥(X)?) ­ 1

96

]
­ 1− 2−Ω(n).

Proof. Let u be any vector in Λ⊥(X)?. From Lemma 2.4, we can write u = k + X ty,
for some k ∈ Zm and y ∈ Rn. Let z ∈ Rn with ‖z‖∞ < 1

q
such that y = y′ + z and

y′ ∈ 1
q
Zn. Thus, we can write u = v +X tz, where v = k +X ty′ ∈ 1

q
Λq(X).
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Assume now that u is a non-zero vector of Λ⊥(X)?. We show by contradiction that
v cannot be in the row-span of X. Assume on the contrary that v ∈ X tQn. Then, on the
one hand, this implies that u ∈ X tRn = (kerX)⊥. On the other hand, we have u ∈ kerX
by definition of Λ⊥(X)?. Then we must have u = 0m, which contradicts the choice of u
as a non-zero vector of Λ⊥(X)?. In particular, from Theorems 3.13 and 3.14,we see that
‖v‖∞ ­ 1

48
√
n+lnm

and ‖v‖ ­ 1
48 with probability at least 1− 2−Ω(n).

Now, we let u be such that ‖u‖∞ = λ∞1 (Λ⊥(X)?) and we compare it to ‖v‖∞, for v
defined as above. Applying Lemma 2.5 with t =

√
2π, we obtain that with probability

greater than 1− 2−n, the rows of X t have Euclidean norms smaller than s
√
n. It follows

that ‖X tz‖∞ ¬ max(‖xi‖) · ‖z‖ ¬ sn
q

. By the triangular inequality, we have ‖v‖∞ ¬
‖u‖∞ + ‖X tz‖∞, from which we deduce that

‖u‖∞ ­ ‖v‖∞ −
sn

q

with all but probability at most 2−n. We then deduce using Theorem 3.14 and the
assumptions on m and q that

‖v‖∞ −
sn

q
­ 1

48
√
n+ lnm

− sn

q
­ 1

96
√
n+ lnm

,

also with probability greater than 1− 2−Ω(n).
Let now u be such that ‖u‖ = λ1(Λ⊥(X)?), and v be as defined above. By norm

equivalence, we have ‖X tz‖ ¬
√
m‖X tz‖∞ ¬ sn

√
m

q
except with probability at most

2−n. As above, we deduce that ‖u‖ ­ ‖v‖ − sn
√
m

q
. Using Theorem 3.13 and the second

assumption on q, we obtain

‖v‖ − sn
√
m

q
­ 1

48
− sn

√
m

q
­ 1

96
,

except with probability at most 2−Ω(n).

Finally, we complete the proof of our first main result.

Proof (Theorem 3.11). Let q = d96sn
√
me. With this choice, it turns out that any m

satisfyingm ­ 1355n ln s also satisfiesm ­ 335n ln(97sn
√
m). By Lemmas 3.5 and 3.18,we

obtain that, with all but probability 2−Ω(n),

ηε(Λ⊥(X)) ¬

√
ln (2(m− n)(1 + 1

ε
))/π

λ∞1 (Λ⊥(X)?)
¬ 96

√
(n+ lnm) ·

ln (2(m− n)(1 + 1
ε
))

π
.

Alternatively, for any ε ¬ 2−(m−n), we can use Lemmas 3.6 and 3.18 to obtain that
(with all but probability 2−Ω(n))

ηε(Λ⊥(X)) ¬

√
ln(1/ε)

λ1(Λ⊥(X)?)
¬ 96

√
ln(1/ε).

This completes the proof.
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3.4 Last minimum of Λ⊥(X)
In this section we present our second result: an upper bound on the (m−n)-th minimum
of the orthogonal lattice Λ⊥(X).

The question of finding an upper bound on λm−n(Λ⊥(X)) was addressed in [AGHS13]
and later in [AR16], with the aim of obtaining an upper bound on the smoothing pa-
rameter of Λ⊥(X). In particular, Agrawal et al. in [AGHS13] first give a lower bound on
λn+1(Λq(X)), then use Banaszczyk’s theorem (Theorem 3.4) to obtain an upper bound
on λm−n(Λ⊥q (X)). Finally, they argue that this is also an upper bound on λm−n(Λ⊥(X)).
Aggarwal and Regev in [AR16] present a more direct approach to bound λm−n(Λ⊥(X)).
In all cases, these bounds on the last minimum of Λ⊥(X) were used as a way to bound
its smoothing parameter (our approach in Section 3.3 is in some sense more direct).

We shall need the following lemma, obtained by combining Theorem 3.13 with The-
orem 3.4.

Lemma 3.19. Let n ­ 60, s ­ 20
√
n and m ­ 1400n ln s.Then, we have:

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ¬ 48m

]
­ 1− 2−Ω(n).

Proof. Let q be the smallest prime such that q ­ 96sm3/2. By [HB88], there exists
a prime in the range (96sm3/2, 192sm3/2), hence we have q < 192sm3/2.4 We apply
Theorem 3.13 to conclude that λn+1(Λq(X)) ­ q

48 with overwhelming probability. From
Theorem 3.4 with i = n + 1, it follows that λm−n(Λ⊥q (X)) ¬ 48m. This implies that
Λ⊥q (X) contains m − n linearly independent vectors v1, . . . ,vm−n such that ‖v1‖ ¬
‖v2‖ ¬ · · · ¬ ‖vm−n‖ ¬ 48m. As q is prime, we have that Xvj = 0 mod q for all j ∈
[m− n] (see the discussion after Definition 2.1).

Now, we show that vj ∈ Λ⊥(X) for all j ∈ [m − n], i.e., that Xvj = 0 over the
integers. Thanks to Lemma 2.5 with t =

√
2π, the rows of X have norms bounded by

s
√
m with probability greater than 1− 2−Ω(n). Therefore, for any j ∈ [m− n], we have

‖X · vj‖∞ = max
i
|〈xi,vj〉| ¬ max

i
‖xi‖ · ‖vj‖ ¬ 48sm

3
2

with overwhelming probability. Our choice of q implies that ‖X ·vj‖∞ < q/2, hence the
equality X · vj = 0 holds over Z. The result follows. here

We now consider the case of a wide matrix X, i.e. with very large m. We split it
into t matrices of smaller dimensions n ×mi for i ∈ [t], where mi is independent of m
and is large enough to satisfy the conditions of Lemma 3.19. For simplicity, one could
think of mi’s being all equal assuming that m is divisible by mi. In general, we may not
be able to divide m into large enough and equal pieces. This is why our Xi’s may have
different numbers of columns. Using Lemma 3.19, we show that every orthogonal lattice
defined by such small matrices has mi−n linearly independent vectors of norm at most
48mi. By padding these vectors with zeros appropriately (see Figure 3.1), we thus find∑
i∈[t](mi−n) short and linearly independent vectors in Λ⊥(X). To show that there are,

4In fact, the following stronger result is proved in [HB88]: the number of primes in the interval
(x− xα, x) is at least xα

log x for α < 7/12. To simplify our statements, we use a looser bound.
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n

m1 m2

X1 X2 V1 0 U1

0 V2 −U2

m1 +m2 − n

m1 +m2

· =

0

m1 +m2 − n

Figure 3.2: Given a wide matrix X = (X1|X2) ∈ Zn×(m1+m2), we first obtain m1 +m2−n
linearly independent short vectors in Λ⊥((X1|X2)). These correspond to the columns
(V1
t|0)t and (0|V2

t)t. The n other missing short vectors are obtained via stacking Ui
matrices satisfying XiUi = In, as depicted.

in fact, more short vectors in this lattice, we apply Lemma 3.9. We can “stack” the
U -matrices from this lemma (see Figure 3.1) to obtain other short vectors orthogonal to
X. Thus, in total we obtain m− n short linearly independent vectors in Λ⊥(X) whose
norms can be bounded independently from m.

Theorem 3.20. Let n ­ 100 and s ­ 20
√
n. Let m such that 2801n ln s ¬ m ¬

2n/2.Then, we have

Pr
X←(DZn,s)m

[
λm−n(Λ⊥(X)) ¬ O (n ln(ns))

]
­ 1− 2−Ω(n).

The “O(·)” constant can be worked out from the proof. Concretely, the term O(n ln(ns))
may be replaced by 134400n ln(ns).

Proof. We divide our wide matrix X into smaller matrices with appropriate numbers of
columns. For m ­ 2801n ln s, we can divide the matrix X into at least two blocks of at
least m′ = d1400n ln se columns.

We start by splitting X into t smaller matrices Xi ∈ Zn×mi such that mi ∈ [m′, 2m′]
for all i ∈ [t]. We look at X as a block-matrix X = [X1|X2| . . . |Xt], where Xi ←
(DZn,s)mi for all i ∈ [t]. We apply Lemma 3.19 to each block Xi. The lattice Λ⊥(Xi) has
mi − n linearly independent vectors vi1, . . . ,v

i
mi−n such that

‖vi1‖ ¬ ‖vi2‖ ¬ . . . ¬ ‖vimi−n‖ ¬ 48mi ¬ 96m′,

with probability 1 − 2−Ω(n). It follows that we have
∑
i∈[t](mi − n) = m − tn linearly

independent vectors in Λ⊥(X) of the form:

vij = [0m1+···+mi−1‖vij‖0mi+1+···+mt ]
t,

for j ∈ [mi−n] and i ∈ [t]. Our goal is to have more (m−n, to be precise) short linearly
independent vectors in Λ⊥(X).

Let i ∈ [t]. By Lemma 3.9, with probability greater than 1 − 2−n, there exists a
matrix Ui ∈ Zmi×n such that XiUi = In with columns of norms ¬ 2

√
44n ln(ns). When

this event occurs, we have Let i ∈ [t]. By Lemma 3.9, with probability greater than
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1 − 2−n, there exists a matrix Ui ∈ Zmi×n such that XiUi = In with columns of norms
¬ 2

√
44n ln(ns). When this event occurs, we have

Xi · [Vi|Ui] = [0n×(mi−n)|In],

where Vi is the mi × (mi − n) matrix whose columns are v̄i1, v̄
i
2 · · · , v̄imi−n.

With probability ­ 1 − t2−n (which is ­ 1 − 2−Ω(n) by assumption on m), we can
write:

[
X1 X2 X3 . . . Xt

]
·



V1 0 0 . . . 0 U1 0 . . . 0
0 V2 0 . . . 0 −U2 U2 . . . 0
0 0 V3 . . . 0 0 −U3 . . . 0
... . . . . . .

0 0 0 . . . Vt 0 0 . . . −Ut


= 0m×(m−n).

Now, we argue that the columns of the matrix built from the Ui’s and Vi’s are linearly
independent. First, for each i, the columns of [Vi|Ui] are linearly independent since they
satisfy Xi · [Vi|Ui] = [0m1−n|Im1 ], and since the columns of Vi are linearly independent.
This implies that for every i, the “block row” [0| . . . |0|Vi|0| . . . |0| − Ui| . . .] has rank
exactly mi. If one re-orders the block columns appropriately, the matrix has a “block
triangular” shape. Its rank is m1 + . . .+mt−1 +mt − n = m− n.

Overall, we obtain m − n linearly independent vectors in Λ⊥(X), with norms ¬
O(n ln(ns)), with probability ­ 1− 2−Ω(n). here
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Chapter 4

An Anonymous Trace-and-Revoke
Broadcast Encryption Scheme

This chapter is based on a joint work with O. Blazy, S. Mukherjee, H. Phan and
D. Stehlé. It was accepted in ACISP 2021 [BMN+21].

4.1 Introduction
Trace-and-revoke systems, introduced in [NP01,NNL01] has been studied extensively in
many works, including [DF03,KHL03,BW06,NWZ16,ABP+17].

Anonymity of receivers is important in numerous real-life applications and has been
considered in multiple works, such as [BBW06,LPQ12,FP12,LG18,DPY20]. The stan-
dard notion of anonymity requires that the adversary cannot distinguish between cipher-
texts of two targeted sets of its choice, even if it can corrupt any user in the intersection
of these two sets or outside of the two sets. Unfortunately, it turned out to be extremely
difficult to achieve this anonymity level in the general case without any restriction on
the size of the target set. The state of the art constructions by Barth et al. [BBW06]
and Libert et al. [LPQ12] start from a public-key encryption and result in schemes with
ciphertext size which is N times larger, where N denotes the total number of users.
Moreover, Kiayias and Samari [KS12] proved lower bounds in the general case that the
ciphertext size has to be linear in N .

For revoke systems, the efficiency is often negatively correlated to the upper bound
on the number of revoked users. One of the most important applications of broadcast
encryption is Pay-TV and it can typically be in the form of a revoke system: the service
broadcasts to all users except the revoked users who were detected as traitors or who
unsubscribed from the system. The state of the art revoke systems [NP01,NNL01,BW06,
ABP+17] have compact ciphertext sizes that grow as O(r) where r is the bound of
the revoked users and which is not dependent on the number of users. None of these
schemes is anonymous. An attempt was made to consider outsider adversaries, who can
only corrupt users outside of the two targeted sets. In this limited setting, Fazio and
Perera [FP12] showed that one can get key and ciphertext sizes that are sublinear in
the number of users. We observe totally different situations for getting anonymity in
broadcast encryption and in revoke systems: in broadcast encryption, optimal solutions
exist [AY20] but one cannot get the anonymity with sublinear ciphertext size in the total
number of users; in revoke systems, no impossibility result has been settled and it does
not exclude the possibility to get an anonymous schemes which is as efficient as non-
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anonymous ones, namely ciphertext size is O(r), independent from the number of users.
In this paper, we show that we can design anonymous schemes with O(r) ciphertext size.
Moreover, we also handle traceability to achieve anonymous trace-and-revoke systems.

4.1.1 Contributions

Our primary contribution is to develop the first symmetric-key trace-and-revoke scheme
with traceability and anonymous revocation. We give two constructions of trace-and-
revoke schemes, namely TR0 and TR1 from so-called linear functional encryptions.
The former TR0 is generically constructed from inner product functional encryption
(IPFE) and encrypts single bit messages. Similarly, TR1 is constructed from matrix
multiplication functional encryption (MMFE) to support n-bit messages. Interestingly,
unlike [ABP+17], our DDH instantiations do not require discrete-log evaluation for ci-
phertext decryption.

Our second contribution is to propose efficient constructions. We give an efficient con-
struction of MMFE in the prime-order groups and prove that our MMFE construction
is indeed tightly secure under the standard matDH assumption. Then we present IPFE
construction and its security proof follow from those of MMFE. This construction can be
seen as tweaking Tomida’s tightly secure IPFE for the symmetric-key settings [Tom19].
However, we note that our security argument is somewhat different from Tomida’s. On
top of that, our tightly secure MMFE is more efficient than applying [Tom19] naively.

Our third contribution is a cryptanalysis on the LWE-based IPFE construction
of [WFL19]. This justifies our choice of LWE-based IPFE to instantiate TR0.

Anonymous Revocation. Before describing our results, we discuss the notion of
anonymous revocation in trace-and-revoke schemes. The Enc algorithm of any trace-and-
revoke scheme takes a message m and a revoked user set description R and computes
a ciphertext that can only be decrypted by users outside R. The anonymity property
intuitively means that no information on R should be inferred from the ciphertext. A
typical multi-challenge security model is defined by polynomially many challenge phases
where the adversary adaptively produces (m(t),R

(t)
0 ,R

(t)
1 ) on the t-th phase and gets an

encryption of (m(t),R
(t)
β ) for the same β ← {0, 1} throughout the phases.

However, this security model is quite strong and there are practical scenarios that
do not require such stronger definition. For example, a typical trace-and-revoke scheme
revokes more and more users over time. If a revoked user wants to get access to the
system again, it has to contact the broadcaster, which can give the user a new key.
In such a scenario, the revoked user set increases with time, such that R(t−1) ⊆ R(t)

for any timestamp t > 1. We model this scenario by introducing the restriction that,
for any t, if the adversary produces the challenge (m(t),R

(t)
0 ,R

(t)
1 ), then R

(t−1)
0 ⊆ R

(t)
0

and R
(t−1)
1 ⊆ R

(t)
1 , and call the resulting security property multi-challenge monotonic

anonymity mIND-ID-CPA. Although this setting may suffice in many cases, this multi-
challenge security model puts an additional restriction on the adversary that the chal-
lenge revocation sets must be related in a particular manner. This raises the following
question: if we restrict ourselves to the single-challenge security model, can we get rid
of such restriction on the monotonicity of challenge queries? We define another model
for anonymity security that allows polynomially many ciphertext queries (m(t),R(t))
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and a single anonymity query (m,R0,R1) along with adaptively chosen key extraction
queries. Note that, the revocation sets R(t) in the ciphertext queries can be adaptively
chosen, having no relation with the challenge revocation sets R0 and R1. That being
said, we still had to impose a different restriction on the adversary on the post-challenge
key queries. We present this model in Section 4.2.2.2 and show that our construction is
secure in this model. We note that this is stronger than “insider anonymous” security
where the post-challenge key queries are made only on users in R0 ∩R1.

4.1.2 Technical Overview

We start with a basic description of the trace-and-revoke scheme by Agrawal et al.
[ABP+17] (in the bounded collusion model). Each user id in this scheme is associ-
ated with a vector xid and, correspondingly, a set R is associated with XR , the vector
space spanned by (xid)id∈R . Then, the predicate ‘id /∈ R’ can be emulated by testing if
‘〈xid,vR〉 = 0’ for vR orthogonal to XR . Using this relation, one encrypts a message m
by encrypting m · vR using an IPFE. An IPFE key for xid is used to evaluate id /∈ R in
the encrypted domain. We now describe the decryption algorithm of [ABP+17] to clar-
ify that this construction does not achieve anonymity of the revocation set. Decryption
takes a ciphertext ct for (m,R) and a secret key sk for id and runs IPFE decryption to
obtain an intermediate Res = 〈xid,m · vR〉. The correctness then follows from the fact
that decryption can compute 〈xid,vR〉 and divide Res by it to retrieve m. This is the
reason why the description of R is provided as part of the ciphertext. Thus, the Agrawal
et al. scheme does not achieve revocation set hiding.

Our constructions build on [ABP+17], but avoid the above difficulty by exploiting
the fact that if we consider the message to be single bit (i.e., m ∈ {0, 1}), we have the
following four cases:

• m = 0, id ∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is zero.

• m = 1, id ∈ R: Same as above where the value of 〈xid,yR〉 = m · 〈xid,vR〉 is zero;
therefore, when id ∈ R, the message m is hidden.

• m = 0, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,yR〉 is again zero.

• m = 1, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is non-zero.

The above list of cases shows that a secret key for xid decrypts an IPFE ciphertext
for m · vR and retrieves m ∈ {0, 1} correctly if id /∈ R. Note that the decryption algo-
rithm no longer requires the description of the revoked set R. Based on this observation,
our constructions translate (m,R) into a vector m · vR where vR is a random vector
orthogonal to XR and id to a non-zero vector xid. The monotonic anonymity (in the
mIND-ID-CPA security model discussed above) then follows from the fact that the un-
derlying IPFE hides the plaintext vector (here m · vR). For an n-bit message space, we
can run independent and parallel executions of the IPFE that allow bit-by-bit retrieval
of the message encrypted. We propose a more efficient alternative, namely, matrix multi-
plication functional encryption (MMFE). Our generic transformation above ensures that
any efficient instantiation of MMFE will result in efficient trace-and-revoke scheme. We
discuss constructions of MMFE in both the group-based settings and in the lattice-based
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settings. We further show that our group-based construction of MMFE is tightly secure
under standard assumptions. For lattice-based setting, we suggest use of [ABP+17] as
we could mount a concrete attack on the state-of-the-art [WFL19] rendering it insecure.
Lastly, we note that tracing is performed in a similar fashion to [ABP+17].

An attack on the Wang et al. IPFE. Here, we show that the IPFE construction
by Wang et al. can be broken for the parameters chosen in [WFL19]. Our attack can
be thwarted by increasing the parameters, but then the scheme does not enjoy great
efficiency compared to the one from [ABP+17]. Here, we give the overview on LWE-based
IPFE from [WFL19]. The dimension n of the LWE secrets is proportional to the security
parameter λ, the parameters `,m, p, q are polynomial in n. The master secret key is Z,
uniform over {0, . . . , p − 1}`×m. The public key is of the form pk = (A ∈ Zm×n

q , T =
ZA ∈ Z`×n

q ). The secret key for the vector x ∈ Z`
p is skx = xt · Z. The ciphertext for a

vector y ∈ Z`
p is of the form (c0 ≈ As, c1 ≈ T s + pk−1 ·y). The authors state that under

the LWE assumption, this IPFE is adaptively secure for chosen message distributions,
assuming that the secret key queries are linearly independent. We will give an algorithm
that can recover the master key from the public key and ciphertexts (i.e., recover z
from X t and X tz, where z ← {0, . . . , p − 1}` and X ∈ {0, . . . , p − 1}`×(`−1) is chosen
by the adversary). We remark that z belongs to a coset of the lattice orthogonal of X
defined by t. The crux of the attack is that for parameters as above, the minimum of
this lattice is larger than ‖z‖. This means that we have a Bounded Distance Decoding
problem instance in a lattice of dimension 1. Finally, we also explain why our attack
does not extend to the schemes from [ALS16,ABP+17].

Organization of this chapter. In Section 4.2, we present some important definitions.
In Section 4.3, we present black-box transformations to convert linear functional en-
cryptions into trace-and-revoke systems with traceability and anonymity of revocation.
Before we present group-based MMFE construction, in Section 4.4, we show an attack
of a recent LWE-based IPFE construction [WFL19]. Then, in Section 4.5, we present a
construction of MMFE in the prime-order groups.

4.2 Definitions and Preliminaries
For any two sets S and R, we define S∆R = (S \ R) ∪ (R \ S). For a dictionary
D = (k, vk)k, D.vals() gives the set {vk : k ∈ D}. For a vector space V over a field K,
the corresponding orthogonal space is denoted by V ⊥. For a distribution D, we write
x ← D to say that x is sampled from D. The ppt abbreviation stands for probabilistic
polynomial time. We denote Ggen(1λ, p) → (g,G) such that G is a cyclic group of prime
order p and g generates G. For A = (aij) ∈ Zβ×α

p we denote [A] = (gaij) ∈ Zβ×α
p . For

m, k ∈ N for m > k, we use M ← Dk[m, k] to get a full rank matrix M ∈ Zm×k where
the first k rows are linearly independent.

4.2.1 Linear Functional Encryption

A functional encryption scheme [BSW11] allows a user, having a secret key skf corre-
sponding to a function f , to evaluate f(z) securely given a ciphertext ctz for a plain-
text z. The inner product function, being one of the simplest functionalities, has received
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a tremendous amount of exposure [ALS16,AGRW17,ACF+18,CLT18,Tom19]. We here
define an extended version for IPFE in symmetric-key settings called Matrix Multipli-
cation Functional Encryption (MMFE). Informally speaking, having a secret key skx for
x ∈ Z`

p, given a ciphertext ctM for for M ∈ Zn×`
p , MMFE outputs a binary vector of

length n where the ith component indicates if Mix = 0 for i ∈ [n] in terms of a predicate
f : Zp → {0, 1}.

We consider inner product functional encryption (IPFE) over Zp in the symmetric-
key settings 1 for a prime integer p ­ 2. Unlike existing IPFE definitions in [ALS16,
ABP+17, ACF+18], the IPFE .Dec algorithm here retrieves an injective function of the
inner product value. In particular, it may not be the inner product value itself. More
precisely, the IPFE .Dec algorithm takes as input a ciphertext ct that encrypts y ∈ Z`

p

and a secret key skx with respect to x ∈ Z`
p, and outputs f(〈x,y〉).

4.2.1.1 Inner Product Functional Encryption.

Definition 4.1. An inner product functional encryption (IPFE) over Zp with respect to
an injective map f is a tuple IPFE = (IPFE .Setup, IPFE .KeyGen, IPFE .Enc, IPFE .Dec)
of four ppt algorithms.

• IPFE .Setup(1λ, 1`, p) takes as input the security parameter λ and the dimension
of vectors `. It outputs the public parameters pp and the master secret key msk.
The public parameters pp contain the description of the injective function f .

• IPFE .KeyGen(pp,msk,x) takes as input the public parameters pp, the master secret
key msk and a vector x ∈ Z`

p and outputs a secret key skx.

• IPFE .Enc(pp,msk,y) takes as input the public parameters pp, the master secret
key msk and a vector y ∈ Z`

p and outputs a ciphertext ct.

• IPFE .Dec(pp, skx, ct) takes as input the public parameters pp, the secret key of a
user skx and a ciphertext cty, and outputs f(〈x,y〉).

The correctness requirement is that, with overwhelming probability over the ran-
domness used by the algorithms, for (pp,msk)← IPFE .Setup(1λ, 1`, p), for all x,y ∈ Z`

p,
for skx ← IPFE .KeyGen(pp,msk,x) and ct← IPFE .Enc(pp,msk,y):

IPFE .Dec (pp, skx, ct) = f(〈x,y〉).

Security. The security (IND-CPA) of symmetric-key IPFE is modeled as the following
security game played between a challenger and an adversary A. This security model is
reminiscent of that of [SSW09].

• The challenger runs (pp,msk) ← Setup(1λ, 1`, p), keeps msk secret and gives the
public parameters pp to the adversary A. The challenger further samples β ←
{0, 1}.

1We define IPFE in the symmetric-key settings as a stepping stone to construct trace-and-revoke in
the symmetric-key settings.
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• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two vectors y(0),y(1) ∈ Z`
p, and the

challenger responds with ct(β) ← Enc(pp, msk,y(β)).

2. Secret key query: The adversary sends a vector x ∈ Z`
p, and the challenger

responds with skx ← KeyGen(pp,msk,x).

These queries can be made under the restriction that for all ciphertext query
(y(0),y(1)) and all secret key query x, we must have f(〈x,y(0)〉) = f(〈x,y(1)〉).

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the
challenger. The adversary wins this game if β = β′.

The advantage of the adversary is defined as AdvIND-CPA
FE,A = |Pr[β = β′] − 1/2|. A

symmetric-key IPFE scheme IPFE is said secure if AdvIND-CPA
FE,A is negligible for all ppt

adversary A.

4.2.1.2 Matrix Multiplication Functional Encryption.

We now define matrix multiplication functional encryption (MMFE) over Zp for a prime
integer p ­ 2. MMFE, as the name suggests, decrypts a ciphertext for a matrixM ∈ Zn×`

p

with a key skx made of x ∈ Z`
p revealing only Mx and nothing else. Due to its similarity

with the definition of IPFE, MMFE can be achieved from available IPFE. In particular,
one can use n-many instances of IPFE to encrypt n vectors (y1, . . . ,yn) independently
and the Dec algorithm basically computes 〈yi,x〉 for each i ∈ [1, n] individually. How-
ever, such a trivial construction suffers from a degradation proportional to n. This gets
worse in case of multi-challenge security.

We give a definition and propose a concrete construction with tight security in this
work. A similar primitive was already introduced for predicate encryption to allow de-
cryption based on subspace membership relation (Mx = 0 or not) in [BRS13]. Looking
ahead, we present a symmetric-key MMFE definition here to construct symmetric-key
trace-and-revoke scheme TR1 for arbitrary n-bit messages in Section 4.3.2.

Definition 4.2. A matrix multiplication functional encryption scheme MMFE over Zp

with respect to an injective function f is a tuple of four ppt algorithms with the following
specifications:

• MMFE .Setup(1λ, 1`, 1n, p) takes as input the security parameter λ and the dimen-
sions (n, `) of matrices. It outputs the public parameters pp and the master secret
key msk. Similarly to IPFE , the public parameters pp contain the description of
an injective function f .

• MMFE .KeyGen(pp,msk,x) takes as input the public parameters pp, the master
secret key msk and a vector x ∈ Z`

p and outputs a secret key skx.

• MMFE .Enc(pp,msk,M) takes as input the public parameters pp, the master secret
key msk and a matrix M ∈ Zn×`

p and outputs a ciphertext ct.
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• MMFE .Dec(pp, skx, ct) takes as input the public parameters pp, the secret key of a
user skx and a ciphertext ct, and outputs (f(M1x), . . . , f(Mnx)) where Mi is the
ith row of M .

The correctness requirement is that, with overwhelming probability over the random-
ness used by the algorithms, for (pp,msk) ← MMFE .Setup(1λ, 1`, 1n, p), for all x ∈ Z`

p

and M ∈ Zn×`
p , for skx ← MMFE .KeyGen(pp,msk,x) and ct← MMFE .Enc(pp,msk,M):

MMFE .Dec (pp, skx, ct) = (f(M1x), . . . , f(Mnx)) .

Security. Full security (IND-CPA) of symmetric-key matrix multiplication functional
encryption is modeled as the following security game played between a challenger and
an adversary A.

• The challenger runs (pp,msk) ← Setup(1λ, 1`, 1n, p), keeps msk secret and gives
the public parameters pp to the adversary A. The challenger further samples
β ← {0, 1}.

• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two matrices M (0),M (1) ∈ Zn×`
p ,

and the challenger responds with ct(β) ← Enc(pp,msk,M (β)).

2. Secret key query: The adversary sends a vector x ∈ Z`
p, and the challenger

responds with skx ← KeyGen(pp,msk,x).

These queries can be made under the restriction that for all ciphertext query
(M (0),M (1)) and all secret key query x, we must have f(M (0)x) = f(M (1)x).

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the
challenger. The adversary wins this game if β = β′.

The advantage of the adversary is defined as AdvIND-CPA
MMFE ,A = |Pr[β = β′] − 1/2|. A

symmetric-key inner matrix multiplication functional encryption scheme MMFE is said
secure if AdvIND-CPA

MMFE ,A is negligible for all ppt adversary A.

4.2.1.3 Mathematical Tools and Hardness Assumptions

We assume Ggen to be the group generator that generates the prime order group de-
scription. Precisely, Ggen(1λ, p) → (g,G) such that G is a cyclic group of prime order
p and g generates G. We follow the notation of [EHK+17] to denote ga by [a] for any
a ∈ Zp and for A = (aij) ∈ Zβ×α

p we denote

[A] =


ga11 . . . ga1α

... . . . ...
gaβ1 . . . gaβα

 ∈ Gβ×α.

Definition 4.3. Let m, k ∈ N, such that m > k. We call Dk[m, k] a matrix distribution
if it outputs matrices in Zm×k

p of full rank k in polynomial time (w.l.o.g. we assume the
first k rows of M ← Dk[m, k] form an invertible matrix). We write Dk = Dk[k + 1, k].

55



Definition 4.4. For all adversary A, the advantage function is defined as following

AdvDk-matDH
A (λ) = |Pr[A([U ] , [Ux]) = 1]− Pr[A([U ] , [z]) = 1]|

where U ← Dk, x ← Zk
p and z ← Zk+1

p . The Dk-matDH assumption states that
AdvDk-matDH

A (λ) is negligible in λ for all ppt adversary A.

Definition 4.5. For all adversary A, the advantage function is defined as following

Advn-Dk-matDH
A (λ) = |Pr[A([U ] , [UX]) = 1]− Pr[A([U ] , [Z]) = 1]|

where U ← Dk, X ← Zk×n
p and Z ← Z(k+1)×n

p . The n-fold Dk-matDH assumption (i.e.
n-Dk-matDH) states that Advn-Dk-matDH

A (λ) is negligible in λ for all ppt adversary A.

Now, [EHK+17] showed that Advn-Dk-matDH(λ) ¬ AdvDk-matDH(λ) for any fixed value
n that is polynomial in λ.

Definition 4.6. For all adversary A, the advantage function is defined as following

AdvD2k,k-matDH
A (λ) = |Pr[A([V ] , [V y]) = 1]− Pr[A([V ] , [z]) = 1]|

where V ← D2k,k, y ← Zk
p and z ← Z2k

p . The D2k,k-matDH assumption states that

AdvD2k,k-matDH
A (λ) is negligible in λ for all ppt adversary A. [EHK+17] showed that given

a Dk-matDH problem instance, one can create a D2k,k-matDH problem instance with the
degradation of k i.e.

AdvD2k,k-matDH(λ) ¬ k · AdvDk-matDH(λ) (4.1)

Definition 4.7. For all adversary A, the advantage function is defined as following

AdvDk-matDH′
A (λ) = |Pr[A([S] ,

[
u>S

]
) = 1]− Pr[A([S] ,

[
z>
]
) = 1]|

where S ← Zk×m
p , u← Zk

p and z← Zm
p for a fixed value m that is polynomial in λ. The

Dk-matDH′ assumption states that AdvDk-matDH′
A (λ) is negligible in λ for all ppt adversary

A.

Tomida [Tom19] showed that given a Dk-matDH′ problem instance, one can cre-
ate a m-fold Dk-matDH problem instance without any degradation i.e. the advan-
tage AdvDk-matDH′(λ) ¬ Advm-Dk-matDH(λ). Due to the relation between Dk-matDH and
m-Dk-matDH mentioned above, AdvDk-matDH′(λ) ¬ AdvDk-matDH(λ).We consider inner
product functional encryption (IPFE) over Zp in the symmetric-key settings 2 for a
prime integer p ­ 2. Unlike existing IPFE definitions in [ALS16,ABP+17,ACF+18], the
IPFE .Dec algorithm here retrieves an injective function of the inner product value. In
particular, it may not be the inner product value itself. More precisely, the IPFE .Dec
algorithm takes as input a ciphertext ct that encrypts y ∈ Z`

p and a secret key skx with
respect to x ∈ Z`

p, and outputs f(〈x,y〉).
2We define IPFE in the symmetric-key settings as a stepping stone to construct trace-and-revoke in

the symmetric-key settings.
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4.2.2 Trace-and-Revoke Systems

A symmetric key traitor tracing encryption scheme is a multi-recipient encryption sys-
tem in which a broadcasting office has the master secret key for encryption and there are
many users with decryption capabilities, each having its own secret key. Additionally,
the encryption scheme provides a feature to let the broadcaster identify at least one user
from a coalition T of malicious users (traitors) that built an unauthorized decryption
device D. The following is the blackbox confirmation model [BF99], in which an efficient
tracing algorithm Trace is given oracle access to D, which we denote by OD. The ora-
cle OD takes as input any message-ciphertext pair (m,C) and returns 1 if D(C) = m
and 0 otherwise. Given as input a set S of suspected users containing T, the Trace
algorithm should disclose the identity of at least one user from the set T. For security,
a traitor coalition should not be able to design a useful box that escapes tracing, i.e.,
such that the Trace algorithm replies ⊥ or frames an innocent user in S \T.

Following [ABP+17], the probability of decryption of decoder D, can be estimated
by repeatedly querying the oracle OD with plaintext-ciphertext pairs. Therefore, we
assume the decryption device D correctly decrypts a properly generated ciphertext with
significant probability. The following is a description of D, reproduced from [ABP+17]
and modified for the symmetric-key setting. Let R be any set of revoked users, of size¬ r.
Let the message m be sampled uniformly at random from the message space M and
let CR be the output of the encryption algorithm Enc using the master secret key msk
and R as the set of revoked users. With CR as input, the device D is assumed to
output m with probability significantly more than 1/|M |:

Pr
m← U(M)

CR ← Enc(msk, pp,R,m)

[
OD(CR ,m) = 1

]
­ 1
|M |

+
1
λc
, (4.2)

for some constant c > 0.
We let the identity space ID and the message space M be implicit arguments to the

setup algorithm below. We let the secret key space K, the ciphertext space C (along with
ID and M) and the descriptions of mathematical tools that are used be part of the public
parameters output by the setup algorithm. We adapt the definition from [ABP+17] to
the symmetric-key setting.

Definition 4.8. A dynamic trace-and-revoke scheme TR in the black-box confirmation
model is a tuple TR = (Setup,KeyGen,Enc,Dec,Trace) of five ppt algorithms with the
following specifications.

• Setup(1λ, 1r, 1t) takes as input the security parameter λ, the bound t on the size
of traitor coalitions and the bound r on the number of revoked users. It out-
puts (msk, pp, dir) containing the master secret key msk, the public parameters pp
and the initially empty user directory dir. Here, unlike [ABP+17], dir is kept secret.

• KeyGen(pp,msk, dir, id) takes as input the public parameters pp, the master se-
cret msk, the user directory dir and an identity id ∈ ID of a user. It outputs the
corresponding secret key skid and some information uid for the given identity id. It
also updates dir to include uid.
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• Enc(pp,msk, dir,R,m) takes as input the public parameters pp, the master se-
cret msk, the user directory dir, a set R of size ¬ r which contains the uid of
each revoked user in dir, and a plaintext message m ∈ M . It outputs a cipher-
text CR ∈ C.

• Dec(pp, skid, CR) takes as input the public parameters pp, a secret key skid of a
user with identity id and a ciphertext CR ∈ C. It outputs a plaintext m′ ∈M .

• Trace(pp,msk, dir,R,S,OD) is a tracing algorithm in the black-box confirmation
model that takes as input the public parameters pp, the master secret key msk, the
user directory dir, a set R of ¬ r revoked users, a set S of ¬ t suspect users, and
has black-box access to the pirate decoder D through the oracle OD. It outputs
an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the ran-
domness used by the algorithms, for (pp,msk, dir) ← Setup(1λ, 1r, 1t), for any set R of
¬ r revoked users:

∀m ∈M, ∀id ∈ ID \R : Dec(pp, skid,Enc(pp,msk, dir,R,m)) = m.

In this work, we consider three security properties for a trace-and-revoke scheme:
message hiding, revocation set hiding, and traceability.

4.2.2.1 Message Hiding.

The IND-CPA security of a trace-and-revoke scheme TR is defined based on the following
game. Informally speaking, neither a system outsider nor a revoked user must be able
to get any information about the encrypted message.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameters pp
to the adversary A. The adversary may ask the challenger to add polynomially
many users in the system (these user addition queries can be adaptive and take
place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to r secret key queries and a single challenge
ciphertext query, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given the challenge ciphertext query (m0,m1,R) with R ⊂ ID of size ¬ r, the
challenger samples β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,R,mβ)
to A.

These queries are subject to the restriction that every queried id belongs to R.

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the
challenger. The adversary wins this game if β = β′.
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The advantage of the adversary A is defined as

AdvIND-CPA
TR,A = |Pr[β = β′]− 1/2|.

A trace-and-revoke scheme TR is said to be IND-CPA secure if AdvIND-CPA
TR,A is negligible

for all ppt adversary A.

4.2.2.2 Revocation Set Hiding.

The anonymity of a trace-and-revoke scheme TR captures the idea of hiding the re-
vocation set in the ciphertext: if tth challenge ciphertext is created for one of the two
adversarially chosen revoked sets (R(t)

0 ,R
(t)
1 ) on the tth challenge phase, then the adver-

sary cannot distinguish if R(t)
0 or R

(t)
1 was used for the encryption for all of t.

As we already have mentioned in the Introduction, we aim for a multi-challenge
security settings that properly emulates the following scenario: A typical trace-and-
revoke scheme traces and revokes more and more users over the time. In such a scenario,
each new ciphertext is created for growing revoked user sets. We call this setting as
monotonic anonymity security model (mIND-ID-CPA) and define it as following.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameter pp
to the adversary A. The adversary may ask the challenger to add polynomially
many users in the system (these user addition queries can be adaptive and take
place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to (r + t) secret key queries and polyno-
mially many anonymity challenge queries, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given a challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of size ¬ r,
the challenger samples β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,Rβ,m)
to A.

These queries are subject to the restriction that for every queried id, either id ∈
R0∩R1 or id ∈ ID\ (R0∪R1). Among all the key queries that have been made, at
most t of them could be satisfying id ∈ ID\ (R0∪R1) and at most r of them could
be satisfying id ∈ R0 ∩ R1. The challenge anonymity queries also have a natural
restriction that R

(i)
0 ⊆ R

(j)
0 and R

(i)
1 ⊆ R

(j)
1 for all i ¬ j where the tth challenge

anonymity query was made on (m(t),R
(t)
0 ,R

(t)
1 ).

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the
challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as

AdvmIND-ID-CPA
TR,A = |Pr[β = β′]− 1/2|.

A trace-and-revoke scheme TR is said to be mIND-ID-CPA secure if AdvmIND-ID-CPA
TR,A is

negligible for all ppt adversary A.
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In the Introduction, we informally discussed different practical scenarios involving
the anonymity of revocation set. The anonymity security model in Section 4.2.2.2 is
a multi-challenge security model and captures the security requirements of a typical
broadcasting agency. However, the security definition is restrictive in principle as all the
revoked sets in anonymity challenge queries are related. In this section, we first give
a single-challenge security definition (IND-ID-CPA) for revocation set hiding. Being a
single-challenge security definition for symmetric-key settings, this new security defini-
tion (IND-ID-CPA) for revocation set hiding supports multiple ciphertext queries along
with multiple secret key queries and a single challenge anonymity query.

The positive side of IND-ID-CPA is that in the security proof, we no longer put
any restriction on the revoked sets R across multiple ciphertext queries and challenge
anonymity query. However, we still need to impose some new security restrictions on
the adversary here in terms of post-challenge secret key queries. Precisely, we define
IND-ID∗-CPA security that allows all pre-challenge queries (both key and ciphertext)
and all post-challenge ciphertext queries (satisfying the natural restriction). However,
for post-challenge secret key queries, IND-ID∗-CPA imposes a new restriction. In the
literature, similar restriction has already been put like “outsider corruption” in [FP12].
However, unlike [FP12] we can still support “insider corruption” (i.e. post-challenge key
queried on id ∈ R0 ∩R1) completely and “outsider corruption” (i.e. post-challenge key
queried on id ∈ ID \ (R0 ∪ R1)) with some restriction. The restriction is a bit unusual
in the sense, the adversary is not allowed to make post-challenge secret key queries on
id ∈ ID \ (R0 ∪R1) for an id that was a part of pre-challenge ciphertext query but was
not queried for secret key in the pre-challenge query phase. But, this is all we require to
argue our construction TR0 is secure. Here, note that, TR0 being a trace-and-revoke
scheme with unbounded users, the set ID\(R0∪R1) is sufficiently big and the adversary
is restricted from making query on a small subset.

4.2.3 Security Definition

We first define the IND-ID-CPA security model and then weaken it to define IND-ID∗-CPA
security. The IND-ID-CPA security of a trace-and-revoke scheme TR is defined based on
the following game.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameter pp
to the adversary A. The adversary may ask the challenger to add polynomially
many users in the system (these user addition queries can be adaptive and take
place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to (r + t) secret key queries, polynomially
many ciphertext queries and a single anonymity challenge query, of the following
form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given a ciphertext query (m,R) with R ⊂ ID of size ¬ r, the challenger
provides C ← Enc(pp,msk, dir,R,m) to A.
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∗ Given the challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of size ¬
r, the challenger samples β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,Rβ,m)
to A.

These queries are subject to the restriction that for every queried id, either id ∈
R0 ∩R1 or id ∈ ID \ (R0 ∪R1). Among all the key queries that have been made,
at most t of them could be satisfying id ∈ ID \ (R0 ∪ R1) and at most r of them
could be satisfying id ∈ R0 ∩R1.

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the
challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as AdvIND-ID-CPA
TR,A = |Pr[β = β′]− 1/2|.

We then weaken the security model a small amount to define IND-ID∗-CPA security,
which does not allow post-challenge secret key queries on id ∈ ID \ (R0 ∪R1) for an id
that was a part of pre-challenge ciphertext query but was not queried for secret key in
the pre-challenge query phase. A trace-and-revoke scheme TR is said to be IND-ID∗-CPA
secure if the advantage AdvIND-ID∗-CPA

TR,A is negligible for all ppt adversary A.

4.2.3.1 Traceability.

The notion of traceability considers a suspected set S of users who might have produced
the pirate decoder D. Then the tracing algorithm Trace outputs an id ∈ S \ T where
T is the set of traitors who are already detected. This requirement is formalized using
the following game, denoted by AD-TT, between an adversary A and a challenger. We
reproduce the security model from [ABP+17] for sake of completeness.3More precisely,
the authors of [ABP+17] achieved public-traceability : for this purpose, the public-key Enc
algorithm was used to construct so-called probe ciphertexts to query OD and identify
a traitor. Our trace-and-revoke scheme relies on a symmetric key Enc algorithm, and
hence tracing relies on the master secret key msk (in particular, tracing is not public).

• The challenger runs Setup(1λ, 1r, 1t) and gives pp to A. The adversary may ask
the challenger to add polynomially many users in the system (these user addition
queries can be adaptive and take place at any time in the game). The challenger
updates dir accordingly.

• Adversary A makes adaptive traitor key queries on at most t distinct users. For
every id queried, the challenger checks to find uid ← dir[id]. If available, records id
in T and returns skid. Otherwise, adds uid to dir[id], records id in T and returns
skid ← KeyGen(pp,msk, id).

• Adversary A sends an adaptively chosen revocation set R ⊂ ID of size ¬ r and
gets back all the secret keys {skid ← KeyGen(pp,msk, id)}id∈R .

3Recently, a more general model of pirate, called pirate distinguisher, have been introduced and
considered in [NWZ16, GKW18]. However, as proven in [DPY20], in the bit-encryption setting, such
a notion of pirate distinguisher is equivalent to the pirate decoder. In this section, we consider bit-
encryption and in the next section about multi-bit encryption, the tracing is reduced to the tracing in
the bit-encryption sub schemes. Therefore, we keep using the definition from [ABP+17] (adapted to
the symmetric-key setting).
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• Adversary A then produces a pirate decoder D and gives the challenger its access
in terms of an oracle OD. A also produces a suspect set S of size ¬ t containing
T and sends it to the challenger.

• The challenger then runs Trace(pp,msk, dir,R,S,OD). The adversary wins if both
of the following hold:

∗ Equation (4.2) is satisfied for the set of revoked users R chosen by the ad-
versary (i.e., decoder D is useful),

∗ the execution of Trace outputs ⊥ or outputs an id ∈ S \ T with probability
­ 1/λc.

We define the tracing advantage AdvAD-TT
TR,A as the probability of A’s win. A trace-and-

revoke scheme TR is said to be AD-TT secure if the advantage AdvAD-TT
TR,A is negligible

for all ppt adversary A.

4.3 Trace-and-Revoke from Linear Functional En-
cryption

In this section, we construct a trace-and-revoke system from a linear functional encryp-
tion scheme that achieves traceability and anonymous revocation. This is achieved in
two steps. First, a trace-and-revoke system for single-bit messages is constructed from
inner product functional encryption. Then we extend such a trace-and-revoke system to
support arbitrary fixed length strings.

We first define a generic transformation similar to the one of [ABP+17], which con-
verts an IND-CPA secure inner product functional encryption scheme IPFE into a trace-
and-revoke system TR0 for the restricted message space M = {0, 1} that enjoys anony-
mous revocation. Note that this transformation converts an IND-CPA secure IPFE in
the bounded collusion model to a trace-and-revoke system TR0 that supports an expo-
nential number of users like [ABP+17]. Then we provide another generic transformation
that converts an IND-CPA secure matrix multiplication functional encryption scheme
MMFE into a trace-and-revoke system TR1 for the message space M = {0, 1}n for
n as large as poly(λ). This transformation also ensures that TR1 achieves anonymous
revocation along with supporting an exponential number of users.

As, our primary contribution in this chapter, is to introduce trace-and-revoke schemes
with anonymous revocation, our presentation mainly focuses on the construction and the
anonymity security of TR0 and TR1. Nevertheless, in Section 4.3.1, we have provided
a complete description of the TR0 that includes an explicit description of the Trace
function. For the sake of simplicity, we however have presented the general trace-and-
revoke systems TR1 in Section 4.3.2 without a Trace. Note that, TR1 can use the Trace
algorithm of TR0.

4.3.1 Trace-and-Revoke for Single Bit Messages

We construct a trace-and-revoke scheme TR0 following the specifications of Defini-
tion 4.8 for the message space M = {0, 1}. TR0 relies on a user directory dir which
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contains the identities of all the users that have been assigned keys in the system. This
user directory is initially empty. Unlike [ABP+17], we assume that dir can only be ac-
cessed by the central authority, which is the sender as well as the key generator. TR0

relies on an inner product functional encryption scheme IPFE for the `-dimensional vec-
tor space on Zp, where the value ` is a function of r and t. Recall that, in a typical
trace-and-revoke scheme, the bound on the number of revoked users r and the bound
on the number of suspected users (traitors) t are given as the system parameters. The
description of IPFE comes with an injective map f whose description is included in the
public parameters pp. To define the trace-and-revoke scheme TR0, we define a special
element in the range of the map elem∗ = f(0). Concretely, in case of a group-based
construction of IPFE , we take the exponentiation map f : x 7→ [x] and have elem∗ = [0].
In case of a lattice-based construction, we take the identity map f : x 7→ x and have
elem∗ = 0.

1. Setup(1λ, 1r, 1t). Upon input the security parameter λ, the bound t on the number
of the suspected users, and the bound r on the number of revoked users, set p =
λω(1) and proceed as follows:

(a) Let (pp,msk) ← IPFE .Setup(1λ, 1`, p), where we set ` = 2r + t + 1. The key
space K and ciphertext space C are the IPFE key space and ciphertext space,
respectively.

(b) Create an empty directory dir.

(c) Output the public parameter pp, master secret key msk and the (empty) user
directory dir.

2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master secret
key msk, the user directory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ← Z`
p. The pair uid = (id,xid) is then appended to the user

directory dir.

(b) Let (skid,xid)← IPFE .KeyGen(pp,msk,xid).

(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameters pp, the master secret
key msk, the user directory dir, a set of revoked users R of size ¬ r and a plaintext
message m ∈M = {0, 1}, proceed as follows:

(a) Sample vR ← X⊥R where XR = {xid : id ∈ R}.
(b) Compute yR = m · vR .

(c) Output CR = IPFE .Enc(pp,msk,yR).

4. Dec(pp, (skid,xid), CR). Upon input the public parameters pp, the secret key skid
for user id and a ciphertext CR , proceed as follows:

(a) Compute Res = IPFE .Dec(pp, (skid,xid), CR).

(b) If Res = elem∗, then output 0. Otherwise output 1.
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5. Trace(pp,msk, dir,R,S,OD). Upon input the master secret key msk, the user di-
rectory dir, a revoked set of users R, a suspect set of users S and given access to
the oracle OD, proceed as follows:

(a) Suppose the users in the suspect set S can distinguish between the messages
m = 0 and m′ = 1 except with negligible probability provided these users
can access the oracle OD.4

(b) Set S1 = {id1, id2, . . .} = S \R.

(c) Sample vR ← X⊥R where XR = {xid : id ∈ R}.
(d) For all i = 1, 2, . . . , t,

• If i = 1, set vSi = 0. If Si = ∅, set vSi = (m′ −m) · vR .

• Otherwise, sample vSi ← X⊥R∪Si ∩
(
X⊥S1\Si + (m′ −m) · vR

)
where XR∪Si

= {xid : id ∈ R ∪ Si} and XS1\Si = {xid : id ∈ S1 \ Si}.
• Construct yi = vSi +m · vR ;
• Provide the oracle OD with (CSi ,m) as input and get a binary value bi

as output. Suppose the probability of bi = 1 is pi.
• The probe ciphertext is CSi = IPFE .Enc(pp,msk,yi); We note that, the

decryption result of the probe ciphertext CSi is m if id ∈ Si and m′ if
id ∈ S \ Si.

• If i > 1 and |pi − pi−1| is non-negligible,
– Output idi−1 as the traitor identity and abort;
– If Si = φ, output ⊥ and abort. Otherwise, set Si+1 = Si \ {idi}.

We state the following theorems essential for the correctness.

Theorem 4.9. Assume that p = λω(1). Then, for every set R of revoked users of size¬ r,
every id /∈ R and every m ∈M = {0, 1}, we have

Dec(pp, (skid,xid),Enc(pp,msk, dir,R,m)) = m,

with probability ­ 1− λ−ω(1).

Proof. As xid is uniform in Z`
p, p = λω(1) and ` > r, we have that 〈xid,vR〉 6= 0,

with overwhelming probability. The execution of Dec(pp, (skid,xid), CR), with CR =
Enc(pp,msk, dir,R,m), on Step (a) computes (with overwhelming probability):

Dec(pp, (skid,xid), CR) = f(〈xid,yR〉) = f(m · 〈xid,vR〉)

by the correctness of IPFE where f is the deterministic function included in pp.
Now, observe that, if m = 0, then f(〈xid,yR〉) = f(0) = elem∗. In this case, Dec

outputs 0. On the other hand, if m = 1, then f(〈xid,yR〉) = f(〈xid,vR〉) 6= elem∗ (since
〈xid,vR〉 6= 0 and f is injective). In this case, Dec outputs 1. Thus, for both values of
m, Dec retrieves the correct value of m with overwhelming probability.

4Note that [ABP+17] used Hoeffding’s inequality to ensure that one can efficiently find such distin-
guishable m and m′. In our case, it is simpler, as M = {0, 1}.
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Theorem 4.10. Let R be arbitrary of size ¬ r and assume Eq. (4.2) holds for OD

and R. Then we have:∣∣∣∣∣ Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1]− Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1]

∣∣∣∣∣ ­ 2
λc
,

with probability ­ 1− λ−ω(1) and for some constant c > 0.

Proof. By Eq. (4.2), we have

Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1] ­ 1
2

+
1
λc
, Pr

C←Enc(pp,msk,dir,R,1)
[OD(C, 1) = 1] ­ 1

2
+

1
λc
.

The latter means that if m′ = 1 is encrypted as C, then OD(C, 1) outputs 1 with
probability non-negligibly better than a random choice. Taking the complement, we
obtain that

Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1] <
1
2
− 1
λc
.

The result follows naturally.

Security.

We prove that the base scheme TR0 enjoys message hiding, revocation set hiding and
traceability. restriction. The proof of the IND-CPA security and the AD-TT security are
done in a manner similar to the IND-CPA security proof and the AD-TT security proof
of [ABP+17].

Theorem 4.11. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to r key extraction queries, then TR0 is IND-CPA secure.

Proof. Let ATR0 be a ppt adversary that breaks the IND-CPA security of TR0. We
construct a ppt adversary AIPFE that breaks the IND-CPA security of the underlying
IPFE :

• It first obtains the public parameter pp output by the IPFE challenger (which runs
the IPFE .Setup(1λ, 1`) algorithm) and relays it to ATR0 . On ATR0 ’s request, the
adversary AIPFE creates dir with polynomially many (id,xid) pairs for xid ← Z`

p.
The IPFE challenger samples β ← {0, 1}.

• The adversary ATR0 can make multiple secret key queries on id ∈ ID and multiple
challenge ciphertext queries on (m0,m1,R).

– For every secret key query on id,

∗ AIPFE retrieves xid = dir[id].
∗ AIPFE then sends xid to the IPFE challenger. The latter returns skxid ,

which AIPFE forwards to ATR0 as skid.

– For every challenge anonymity query on (m0,m1,R),

∗ It samples vR ← X⊥ where X = {xid ∈ Z`
p : id ∈ R}.
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∗ It sends y0 = m0 ·vR and y1 = m1 ·vR to the IPFE challenger. The latter
encrypts yβ as ct(β) ← IPFE .Enc(pp, msk,yβ) and outputs ct(β).
∗ It forwards the received ciphertext to ATR0 as its challenge C(β).

• Finally, the ATR0 adversary outputs its guess β′ ∈ {0, 1} and AIPFE also outputs β′

as its own guess of β.

Note that adversary AIPFE behaves as an IND-CPA challenger in the view of ATR0 .
Further, it is a valid adversary against IPFE as 〈y0,xid〉 = 〈y1,xid〉 = 0 for every vector
xid queried to the IPFE challenger (i.e., each id ∈ R). The advantage of AIPFE is exactly
the same as the advantage of ATR0 .

Theorem 4.12. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to (t+ r) key extraction queries, then TR0 is mIND-ID-CPA secure.

Proof. Given an mIND-ID-CPA adversary ATR0 , we produce AIPFE that breaks the
IND-CPA security of IPFE .

• AIPFE first obtains the public parameter pp output by the IPFE challenger (who
runs the IPFE .Setup(1λ, 1`) algorithm) and relays it to ATR0 . The IPFE challenger,
at this point, samples β ← {0, 1}. On ATR0 ’s request, AIPFE creates dir with
polynomially many id without the corresponding xid.

• Recall that, ATR0 can make multiple secret key queries on id ∈ ID and multiple
challenge ciphertext queries on (m,R0,R1). To accommodate such queries, AIPFE

first defines a set of vector {xi}1¬i¬N = {x1, . . . ,xt+2r} where xi ← Z`
p. This set

is used to answer to secret key queries.

– For every secret key query on id,

∗ If id ∈ dir, AIPFE sets x = dir[id].
∗ Otherwise, AIPFE samples a vector x← {xi}1¬i¬N and sets dir[id] = x.
∗ AIPFE then sends x to the IPFE challenger. The latter returns skxid , which
AIPFE forwards to ATR0 as skid.

– For every challenge anonymity query on (m,R0,R1),

∗ For every id ∈ R0∪R1, if id /∈ dir, AIPFE samples a vector x← {xi}1¬i¬N
without repetition and sets dir[id] = x.

∗ AIPFE defines R̂ = R0 ∩R1.
∗ Then AIPFE defines three matrices:

1. Z = Matrix({xi}1¬i¬N \ Z) where Z = {xid : id ∈ R̂}.
2. X0 = Matrix(X0) where X0 = {xid : id ∈ R0}.
3. X1 = Matrix(X1) where X1 = {xid : id ∈ R1}.

∗ It samples

vR0

vR1

← V ⊥ where

V =


Z −Z
X0 0
0 X1

. (4.3)
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∗ It sends yR0 = m ·vR0 and yR1 = m ·vR1 to the IPFE challenger encrypts
yRβ as ct(β) ← IPFE .Enc(pp,msk,yRβ) and outputs ct(β).

∗ AIPFE then forwards the received ciphertext to ATR0 as its challenge
C(β).

• At the end of the game, ATR0 returns β′ as its guess of β which AIPFE forwards
to the IPFE challenger as its answer.

From Eq. (4.3), Z(vR0 − vR1) = 0, X0vR0 = 0 and X1vR1 = 0. As yRu ∈ Span(vRu)
for u ∈ {0, 1}, Z(yR1 − yR0) = 0 and X0yR0 = X1yR1 = 0.

We now show that AIPFE is a valid challenger against ATR0 in the mIND-ID-CPA
security model. For that we show, for every ith key query on idi and jth challenge cipher-
text query on (m(j),R

(j)
0 ,R

(j)
1 ) from ATR0 , AIPFE can forward corresponding vectors to

the IPFE challenger. Due to the natural restriction, note that, idi ∈ (R(j)
0 ∩R

(j)
1 )t (ID \

(R(j)
0 ∪R

(j)
1 )) for all i ∈ [1, t+ r − 1] and all j ∈ [1, r].

For all queried idi, if one of the following two holds.

• idi ∈ (R(j)
0 ∩ R

(j)
1 ): This means, idi /∈ (R(t)

0 ∆R
(t)
1 ) for all t ∈ [1, j − 1] due to

the natural restriction. The corresponding xidi ∈ {xi}1¬i¬N ∩ R̂(j) and by our
reduction, the xidi vector is included in the definition of X(j)

0 and X
(j)
1 . From

Eq. (4.3) above, we see that X(j)
0 y(j)

R0
= X

(j)
1 y(j)

R1
= 0. Thus, AIPFE can forward this

to the IPFE challenger for key query.

• idi ∈ ID\(R(j)
0 ∪R

(j)
1 ): Observe that, the corresponding xidi ∈ {xi}1¬i¬N \R̂(j) and

such xidi is included in the definition of Z(j). From Eq. (4.3) above, we see that
Z(j)y(j)

R0
= Z(j)y(j)

R1
6= 0 (w.h.p. as y(j)

R0
,y(j)

R1
are sampled randomly). Thus, AIPFE

can forward this to the IPFE challenger for key query.

Next, note that, for every query on idi from ATR0 , the adversary AIPFE returns a
distinct random vector xidi from {xi}1¬i¬N that were sampled at the starting of the
reduction. The crucial point here is AIPFE faces at most (t+ 2r) many distinct identities
id, hence {xi}1¬i¬N is sufficient to assign the corresponding xid. Moreover, ATR0 gets
encryption of either yR0 or yR1 where both the vectors are randomly sampled. Thus,
from the point of view of ATR0 , ZyRb is a random vector. Thus, AIPFE behaves as a
valid mIND-ID-CPA challenger to ATR0 .

As we have seen above, for every xidi and (y(j)
R0
,y(j)

R1
) the adversary AIPFE gives to the

IPFE challenger, 〈xidi ,y
(j)
R0
〉 = 〈xidi ,y

(j)
R1
〉 holds. Thus, AIPFE behaves as a valid IND-CPA

adversary to the IPFE challenger.
If ATR0 can distinguish between any R

(j)
0 and R

(j)
1 , AIPFE can distinguish between

corresponding y(j)
R0

and y(j)
R1

. Thus, the advantage of AIPFE is exactly the same as the
advantage of ATR0 .

Theorem 4.13. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing (r + t) queries, then TR0 is AD-TT secure.

Proof. Given an AD-TT adversary ATR0 , we have to produce AIPFE that breaks the
IND-CPA security of IPFE . AIPFE first obtains the public parameter pp output by the
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IPFE challenger (who runs the IPFE .Setup(1λ, 1`) algorithm) and relays it to ATR0 . On
ATR0 ’s request, AIPFE creates dir with polynomially many id without the corresponding
xid. The IPFE challenger, being a symmetric key primitive, provides AIPFE polynomially
many accesses to the encryption oracle Oct(·) and to the key generation oracle Osk(·).

ATR0 adaptively chooses id ∈ ID, AIPFE assigns a random xid to dir[id] and makes
query to Osk on xid. The response it gets is forwarded to ATR0 as the secret key skid. A
can make at most t many such queries and these queries are collected as a set T.

ATR0 then adaptively chooses R ⊂ ID such that |R| ¬ r. For every id ∈ R, AIPFE

assigns a xid and makes query to Osk on xid, the response it gets is forwarded to ATR0

as the secret key skid.
Finally, A produces a pirate decoder OD and a suspected list of traitors S that

includes the traitor set T where |S| ¬ t. Next, AIPFE runs Trace on S and R given
access to Oct and OD. Precisely, for all i ∈ [1, |S|], AIPFE computes vSi and asks Oct to
get the so-called probe-ciphertext CSi . Finally, Trace outputs either ⊥ or some id ∈ S.
More specifically, the winning condition of AD-TT security model tells that Trace outputs
either ⊥ or some id ∈ S \T with probability ­ 1/λc for some constant c > 0.

In case, Trace outputs ⊥, AIPFE outputs a random bit. Otherwise, we assume id to be
idi−1 for which Trace aborted on the ith round for some i < t. Then, by the description
of Trace, |pi − pi−1| is non-negligible. At this point AIPFE retrieves vSi−1 and vSi to
define y0 = vSi−1 +m · vR and y1 = vSi +m · vR and makes challenge ciphertext query
to the IPFE challenger where Si = Si−1 \ {idi−1}. The IPFE challenger responds with
C(β) ← Enc(pp,msk,yβ) for β ← {0, 1}. AIPFE runs β′ ← OD(C(β),m) and outputs
(1− β′).

Here, we first show that AIPFE is a valid adversary in the IND-CPA security model. In
other words, we show that for all secret key queries on id ∈ R ∪T, 〈y0,xid〉 = 〈y1,xid〉.
This can be seen from the following:

1. id ∈ R: 〈y0,xid〉 = 〈y1,xid〉 = 0.

2. id ∈ T ∩ Si−1: 〈y0,xid〉 = 〈y1,xid〉 = m · 〈vR ,xid〉.

3. id ∈ T ∩ (S1 \ Si−1): 〈y0,xid〉 = 〈y1,xid〉 = m′ · 〈vR ,xid〉.

Now, we show that AIPFE wins with probability given Trace didn’t output ⊥.

If β = 0. C(β) is an encryption of y0 that encoded vSi−1 . The description of the Trace
tells that 〈vSi−1 ,xidi−1〉 = 0. Thus, given OD one views C(β) as an encryption of
y0 = m · vR . In this case, OD(C(β),m) gives β′ = 1 with very high probability.

If β = 1. C(β) is an encryption of y1 that encoded vSi . The description of the Trace
tells that 〈vSi ,xidi−1〉 = (m′ −m) · 〈vR ,xidi−1〉. Thus, given OD one views C(β) as
an encryption of y1 = (m′−m) · vR +m · vR = m′ · vR . In this case, OD(C(β),m)
gives β′ = 0 with very high probability due to the so-called usefulness of OD.

Thus, when ATR0 gives β′, AIPFE just forwards (1− β′) as its guess of β.
Now, we prove that the probability that Trace outputs ⊥ is negligible. We mention,

[ABP+17, Lemma 17] already have made this argument. However, for completeness, we
overview the argument here. From Theorem 4.10, we see that OD distinguishes between
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m = 0 and m′ = 1 with probability ­ 2/λc for some constant c > 0. The description

of Trace tells that

∣∣∣∣∣ ∑i∈[1,t]
(pi − pi−1)

∣∣∣∣∣ ­ 2/λc that is non-negligible. Then, by triangle

inequality, there exists an i such that |pi − pi−1| is non-negligible. Thus, Trace outputs
idi−1 with non-negligible probability and aborts. Therefore, the probability that Trace
continues t many iterations and outputs ⊥ is negligible.

Theorem 4.14. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to (t + r − 1) key extraction queries, then TR0 is IND-ID∗-CPA
secure.

Before we give the proof, we informally discuss the necessity of such unusual restric-
tion of IND-ID∗-CPA security. Note that, in TR0, for every id we assign a uniformly
random vector xid. However, being a symmetric-key trace-and-revoke, we define such an
assignment on the fly when an id is referred for the first time. Thus, in the post-challenge
phase, we can say for all id in pre-challenge ciphertext queries, a corresponding xid vector
has already been assigned. With overwhelming probability, such xid /∈ RowSpan(Z) (see
Eq. (4.4).) This then creates a distributional problem while simulation. To avoid such
scenario, we impose the restriction only on post-challenge “outsider corruption” queries
not to include id for which (id,xid) relation has been fixed but has not been queried for
key extraction. We now give a formal proof of the theorem.

Proof. Let ATR0 be a ppt adversary that breaks the IND-ID∗-CPA security of TR0. Note
that ATR0 is allowed to corrupt at most t legitimate users and the ciphertext is created
considering at most r revoked users. We construct a ppt adversary AIPFE that breaks
the IND-CPA security of the underlying IPFE .

• It first obtains the public parameter pp output by the IPFE challenger (who runs
the IPFE .Setup(1λ, 1`) algorithm) and relays it to ATR0 . On ATR0 ’s request, the
adversary AIPFE creates dir with polynomially many (id,xid) pairs for xid ← Z`

p. It
then sets up two empty dictionaries Qsk = {} and Qct = {}. Informally speaking,
Qsk contains all id for which key query have been/could be made and Qct contains
all id on which key query has not yet been made.

• When AIPFE receives a pre-challenge secret key query for id ∈ ID from ATR0 , it
proceeds as follows:

∗ If id ∈ Qct, it updates Qsk[id] = Qct[id] and removes the id entry from Qct.

∗ If id /∈ Qsk, it samples xid ← Z`
p and sets Qsk[id] = xid.

∗ If id ∈ Qsk, it sets xid = Qsk[id].

∗ It then sends xid to the IPFE challenger. The latter returns skxid , which AIPFE

forwards to ATR0 as skid.

• When AIPFE receives a ciphertext query on (m,R), it proceeds as follows:

∗ For all id ∈ R \ ((R ∩Qsk.vals())∪ (R ∩Qct.vals())), it samples xid ← Z`
p and

then adds Qct[id] = xid.
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∗ It samples vR ← X⊥ where X = {xid : id ∈ R} ⊆ Qsk.vals() ∪Qct.vals().
∗ It sends y = m · vR to the IPFE challenger. The latter returns cty, which
AIPFE forwards to ATR0 as the ciphertext response ctR .

• When AIPFE receives ATR0 ’s challenge query on (m,R0,R1), it proceeds as follows:

1. First, it sets QidR = {id : id ∈ Qct \ (R0 ∪R1)}.
2. Then it defines R̂0 = R0 \R1, R̂ = R0 ∩R1 and R̂1 = R1 \R0.

3. For all id ∈ R̂ \Qsk,
– If id /∈ Qct, it samples xid ← Z`

p and updates Qsk[id] = xid.
– Otherwise, it updates Qsk[id] = Qct[id] and removes the id entry from Qct.

4. Then it defines Z = Matrix((Qsk.vals() \ R̂) t T ) where T = {xid ← Z`
p} is of

size t− |(Qsk.vals() \ R̂)|.
5. For all id ∈ (R̂0 \ Qct.vals()) ∪ (R̂1 \ Qct.vals()), it samples xid ← Z`

p and
updates Qsk[id] = xid.

6. It sets X0 = Matrix({xid : id ∈ R0 ∩ (Qsk.vals() ∪ Qct.vals())}) and X1 =
Matrix({xid : id ∈ R1 ∩ (Qsk.vals() ∪Qct.vals())}).

7. It samples

vR0

vR1

← V ⊥ for

V =


Z −Z
X0 0
0 X1

. (4.4)

8. It sends yR0 = m ·vR0 and yR1 = m ·vR1 to the IPFE challenger who samples
β ← {0, 1} and encrypts yRβ as ct(β) ← IPFE .Enc(pp,msk,yRβ) and outputs
ct(β).

9. AIPFE then forwards the received ciphertext to ATR0 as its challenge C(β).

• ATR0 can make queries for secret key on id ∈ ID and for ciphertext queries on R.

∗ For all post-challenge key queries on id, AIPFE does the following:

1. If id ∈ R0 ∩R1, it retrieves xid = Qsk[id].
2. If id /∈ R0 ∪ R1, if id /∈ Qsk, it samples xid ← RowSpan(Z) and sets
Qsk[id] = xid.

3. It then sends xid to the challenger who returns skxid which AIPFE forwards
to ATR0 as skid.

∗ For all ciphertext queries on (m,R), AIPFE does the following:

1. For all id ∈ R \ ((R ∩Qsk.vals())∪ (R ∩Qct.vals())), it samples xid ← Z`
p

and then adds Qct[id] = xid.
2. It samples vR ← X⊥ where X = {xid : id ∈ R}.
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3. Sends y = m ·vR to the challenger who returns cty which AIPFE forwards
to ATR0 as the ciphertext response ctR .

• Finally, adversary ATR0 outputs its guess β′ ∈ {0, 1} and AIPFE also outputs β′

as its own guess of β.

From Eq. (4.4), Z(vR0 − vR1) = 0, X0vR0 = 0 and X1vR1 = 0. As yRj ∈ Span(vRj)
for j ∈ {0, 1}, Z(yR1 − yR0) = 0 and X0yR0 = X1yR1 = 0. As a result, for any
xid ∈ RowSpan(Z), x>id(yR1 − yR0) = 0. Thus, AIPFE behaves as a valid adversary in the
mIND-ID-CPA security model.

Firstly, note that, ATR0 gets encryption of either yR0 or yR1 where both the vectors
are randomly sampled. Thus, from the point of view of ATR0 , ZyRb is a random vector.
Then, we show that ATR0 sees xid purely random even though xid is sampled randomly
from RowSpan(Z). This follows from the fact that ATR0 has access to all purely random
vectors xid ← Z`

p for id ∈ R̂. Thus, from the point of view of ATR0 , it has access to
|R̂| basis vectors of Z`

p and the space Z`
p is left with entropy of (` − |R̂|) basis vectors

where ` − |R̂| > t. As ATR0 gets at most t samples of xid ← RowSpan(Z), it sees xid
identically distributed to vectors chosen uniformly random from Z`

p. The ciphertext and
the secret keys are already properly distributed since AIPFE has forwarded the reply of
IPFE challenger. This shows that AIPFE behaves as a valid challenger in the IND-ID∗-CPA
security model.

If ATR0 can distinguish between R0 and R1, AIPFE can distinguish between yR0 and
yR1 . Thus, the advantage of AIPFE is exactly the same as the advantage of ATR0 .

4.3.2 Efficient Trace-and-Revoke for Bit Strings

We present a trace-and-revoke scheme TR1 for M = {0, 1}n that does not run parallel
independent n executions of TR0. However, we note that, we omit the description of
Trace here as it follows from the Trace algorithm of TR0. This scheme again assumes the
existence of a user directory dir which is initialized to be empty, contains the identities
of the users that have been assigned keys in the system. We assume that dir can only be
modified by the central authority who is the sender as well as the key generator. Here,
we assume existence of an efficient matrix multiplication functional encryption MMFE
that encrypts matrices of n × ` dimension. The intuitive idea here is that, we utilize
n copies of inner product of ` dimensional vectors as a linear system of equations Mx
where M ∈ Zn×`

p and x ∈ Z`
p. Each of the rows of M is used to encrypt each message

bit.

1. Setup(1λ, 1n, 1r, 1t). Upon input the security parameter λ, the message bit-length
n, the bound t on the number of the suspected users and the bound r on the
number of revoked users, set p = λω(1) and proceed as follows:

(a) Let (pp,msk)← MMFE .Setup(1λ, 1`, 1n, p), where we set ` = 2r + t+ n+ 1.

(b) Output the public parameter pp, master secret key msk and an empty user
directory dir.
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2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master secret
key msk, the user directory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ← Z`
p. The pair uid = (id,xid) is then appended to the user

directory dir.

(b) Let (xid, skid)← MMFE .KeyGen(pp,msk,xid) ∈ MMFE .K.

(c) Output skid.

3. Enc(pp,msk, dir,R,m). Upon input the public parameter pp, the master secret key
msk, the user directory dir, a set of revoked users R of size ¬ r and a plaintext
messages m ∈M = {0, 1}n, proceed as follows:

(a) Sample vR,1, . . . ,vR,n ← X⊥R where XR = {xid ∈ Z`
p : id ∈ R}.

(b) Compute yR,i = mi · vR,i for i ∈ [1, n].

(c) Define a matrix MR = (yR,1, . . . ,yR,n)>.

(d) Output CR = MMFE .Enc(pp,msk,MR).

4. Dec(pp, (xid, skid), CR). Upon input the public parameters pp, the secret key skid
for user id and a ciphertext CR considering the revoked set R, proceed as follows:

(a) Compute t = MMFE .Dec(pp, (xid, skid), CR).

(b) Output m′ = (m′1, . . . ,m
′
n) ∈ {0, 1}n where for all i ∈ [1, n], m′i = 0 if

ti = elem∗; else m′i = 1.

Correctness.

The correctness basically follows from the correctness of TR0 above. The main difference
is that, functionally, Enc of TR1 is some-what n many copies of Enc of TR0. Thus, Dec
must concatenate all the bits to get back the message. Therefore, TR1 is correct if Dec
of TR1 retrieves all the bits mi correctly. Now, if ∃i ∈ [1, n], such that Dec of TR1

didn’t compute mi correctly, this can be extended to an attack on the correctness of
Dec of TR0. This basically ensures the correctness of TR1.

Security

Now, we prove the general revocation scheme TR1 to be anonymous secure revocation
scheme.

Theorem 4.15. If MMFE is an IND-CPA secure matrix multiplication functional en-
cryption scheme, then TR1 is IND-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 4.11. However, the
primary difference being the ciphertext generation on a challenge (m0,m1,R). In par-
ticular, AMMFE finds solution of X · V = 0 such that V is a full-rank matrix in Z`×n

p .
Precisely, V =

(
vR,1 . . . vR,n

)
. Then AMMFE constructs the challenge as M0 and M1

where Mb = (yR,b,1, . . . ,yR,b,n)> such that yR,b,j = mb,j · vR,j. The rest follows natu-
rally.
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Theorem 4.16. If MMFE is an IND-CPA secure matrix-multiplication functional en-
cryption scheme allowing at most (t + r − 1) key extraction queries, then TR1 is
mIND-ID-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 4.12. The difference
is again how we handle ciphertext generation. For, ciphertext query on (m,R), AMMFE

finds solution of X · V = 0 such that V is a full-rank matrix in Z`×n
p . Precisely, V =(

vR,1 . . . vR,n

)
. Then we construct the ciphertext query to the MMFE challenger as

M where M = (yR,1, . . . ,yR,n)> such that yR,j = mj · vR,j. For the challenge query
on (m,R0,R1), AMMFE finds non-trivial solution of the following equations where both
VR0 , VR1 are full-rank matrices from Z`×n

p .
Z −Z
X0 0
0 X1

 ·
VR0

VR1

 =


0
0
0

 (4.5)

where VRb =
(
vRb,1 . . . vRb,n

)
for b ∈ {0, 1}. Then AMMFE constructs the challenge as

M0 and M1 where Mb = (yRb,1, . . . ,yRb,n)> such that yRb,j = mj · vRb,j. The rest of the
argument follows naturally.

Construction TR0 and TR1. Note that, available IPFE schemes [ALS16, ABP+17]
suffice to construct of TR0 and TR1. In particular, withholding the public keys of
available IPFE schemes, one can get symmetric-key IPFE schemes and use them to
construct TR0. Furthermore, TR1 can be constructed from running n independent
instances of any symmetric-key IPFE scheme. We in fact use this technique to construct
TR0 and TR1 in the lattice-based settings withholding the public key of Agrawal et
al.’s IPFE [ABP+17]. In the group-based settings, however, we can achieve more efficient
constructions than naively hiding the public key of the public-key IPFE. In Section 4.5,
we propose new constructions of symmetric-key IPFE and symmetric-key MMFE in the
prime-order groups.

4.4 Cryptanalysis of the Wang et al. IPFE Con-
struction

As we mention above, the schemes from Section 4.3 can be instantiated with the LWE-
based IPFE scheme from [ABP+17]. Note that the latter does not enjoy IND-CPA se-
curity, but it was showed to enjoy a weaker security property that still suffices for the
trace-and-revoke scheme from [ABP+17]. That weaker security property restricts the
number of key requests to be significantly smaller than the dimension of the vector
space, and imposes that the vectors of the key queries are uniformly sampled. This
relaxation of IND-CPA security also suffices for our adaptation from Section 4.3..

IPFE scheme from [WFL19], note that the LWE-based IPFE scheme from [WFL19] is
also claimed to enjoy a security property that is stronger than IND-CPA security (which
the authors leverage to obtain a decentralized Attribute-Based Encryption scheme). In
fact, as we will show below, this scheme can be broken for the parameters suggested
in [WFL19]. Before showing an attack, we first recall the definition.
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Definition 4.17. The bounded distance decoding problem BDDγ is as follows: given a
basis B of an n-rank lattice L, t ∈ Rn, and real d ¬ λ1

2 such that dist(t, L) ¬ d, find the
unique v ∈ L closest to t. Note that this is equivalent to finding e ∈ t + L such that
‖e‖ ¬ d.

We now describe here a simplified version of the security property that this scheme
aims to achieve, and the corresponding simplified version of the scheme (this corre-
sponds to setting k = 1 in the definition from [WFL19]; our attack readily extends to
k ­ 1). In the challenge phase, the adversary sends to the challenger descriptions of
two distributions D0 and D1 over plaintext vectors. The challenger chooses β ← {0, 1}
and samples y ← Dβ; it encrypts it under the public key pk and the resulting cipher-
text Encpk(y) is given to the adversary. The adversary can adaptively make key queries x,
before or after the challenge phase. The security property, called adaptive security for
chosen message distributions, requires that the adversary cannot guess β correctly, as
long as the distributions D0 and D1 remain indistinguishable given the replies to the
key queries.

We review their construction based on LWE.

• IPFE .Setup(1n, 1`, p). Set integers m, q = pe for some integer e, and reals α, α′ ∈
(0, 1). Sample A ← Zm×n

q , Z ← {0, . . . , p − 1}`×m,5 compute T = ZA ∈ Z`×n
q ,

define
msk := Z and pk := (A, T ).

• IPFE .KeyGen(msk,x). Given x ∈ Z`
p, set zx = xtZ ∈ Zm (interpreting each coor-

dinate of x as an integer in {0, . . . , p− 1}), and output skx = zx.

• IPFE .Enc(pk,y). To encrypt a vector y ∈ Z`
p, sample s ← Zn

q , e0 ← DZm,αq,
e1 ← DZ`,α′q and compute

c0 = As + e0 ∈ Zm
q , c1 = T s + e1 + pe−1 · y ∈ Z`

q.

Then, return the ciphertext C = (c0, c1).

• IPFE .Dec(sk, C). Given C = (c0, c1) and secret key skx = zx, compute µ′ =
〈x, c1〉 − 〈zx, c0〉 mod q, and output the value µ ∈ Zp that minimize |µ′ − pe−1µ|.

In [WFL19], the dimensions n is proportional to the security parameter λ, the pa-
rameters `,m, p, q, 1/α, 1/α′ are polynomial in n, and e is a constant. In [WFL19, The-
orem 3.5], the authors state that under the LWE assumption, the above functional
encryption for inner products is adaptively secure for chosen message distributions, as-
suming that the secret key queries corresponding are linearly independent.
Below, we describe a cryptanalysis of the scheme above with the specified parame-
ters. We then explain why this attack does not apply to the schemes from [ALS16]
and [ABP+17].

5In [WFL19], the notation Z`×mp is used instead of {0, . . . , p−1}`×m. We stress that it should indeed
be interpreted as {0, 1, . . . , p− 1}`×m. In particular, the operation xtZ in the IPFE .KeyGen algorithm
is over Z and not modulo p, as otherwise decryption correctness would not hold.
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We show that even for with challenge vectors rather than distributions, key queries
allow to recover the master secret key msk. Concretely, we can recover Z from X t

and X tZ, where Z ← {0, . . . , p − 1}`×m and X ∈ {0, . . . , p − 1}`×(`−1) is chosen by
the adversary. We let our adversary sample X ← {0, . . . , p − 1}`×(`−1) (recall that the
multiplication X tZ is over Z). The fact that X has only ` − 1 columns means that we
can find distinct challenge plaintexts (which are elements of Z`

p) so that the columns
of X are valid key queries.

It suffices to show how the adversary can recover the first column z of Z from X tz,
as it can proceed similarly for all columns of Z. Given t = X tz and X, we know that z
belongs to a coset of the lattice Λ⊥(X) defined by t.

Let us now study the lattice Λ⊥(X). As X ← {0, . . . , p − 1}`×(`−1), its columns are
expected to be linearly independent with overwhelming probability and det(XZ`−1) is
expected to grow as pΩ(`). These properties would be easier to prove if the entries of X
were Gaussian with standard deviation p, but it can be experimentally checked that this
behavior also holds for this distribution. We also expect the latticeXZ`−1 to be primitive,
i.e., that X tZ` = Z`−1. By [Ngu99, p. 30], we hence have that det(Λ⊥(X)) = det(XZ`−1).
As X is full column-rank, we known that dim(Λ⊥(X)) = 1, and hence we expect that
λ1(Λ⊥(X)) = pΩ(`). Finally, note that the orthogonal lattice can be efficiently computed,
by using a Hermite Normal Form algorithm.

Now, recall that we want to recover z from a known coset of Λ⊥(X). As ‖z‖ ¬
√
`p,

by the above analysis of Λ⊥(X), we expect to have

‖z‖ < λ1(Λ⊥(X))/2.

This implies that z is uniquely determined from the coset. Moreover, this is a Bounded
Distance Decoding problem instance in a lattice of dimension 1, which can be solved
efficiently. Concretely, if Λ⊥(X) = bZ and we are given b and kb+z, we can recover k =
b〈kb + z,b〉/‖b‖2e and hence z.

Remarks. Our proof shows that the scheme from [WFL19] is not secure with the spec-
ified parameters. We explain here why the above attack does not work for the [ALS16]
and [ABP+17] schemes. First, in the mod-p scheme from [ALS16, Section 4.1], the
authors take z from a discrete Gaussian distribution with a large standard devia-
tion. With the parameters specified in [ALS16], we then have that ‖z‖ is significantly
larger than λ1(Λ⊥(X)). This implies that there is a large amount of entropy left in z
given t = X tz. Also, this attack does not work for the [ALS16] scheme over Z, because
in that case, the matrix X and hence the lattice Λ⊥(X) are not random at all. Indeed,
the kernel lattice is forced to be (y0 − y1)Z`, where y0 and y1 are the challenge vec-
tors. By assumption on the scheme, these challenge vectors are small. Put differently,
in that setting, if we first do (` − 1) random queries, there does not exist y0 − y1 6= 0
short anymore that allows us to create a non-trivial challenge phase. Finally, the attack
does not work for the [ABP+17] scheme variant, because in that case, the matrix X
has much fewer columns than rows. This increases the dimension of Λ⊥(X) enough to
make λ1(Λ⊥(X)) much smaller, and in particular smaller than ‖z‖.
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4.5 Linear Functional Encryptions in Prime-Order
Groups

As outlined in 4.3, our trace-and-revoke schemes are instantiated using different linear
functional encryption schemes. In this section, we give a construction of MMFE in the
symmetric-key setting. For n = 1, the MMFE construction reduces to IPFE . Due to
space restraint, we omit the description of IPFE and present the MMFE below. The
point of interest being, the Dec in our MMFE (and in our IPFE) does not compute the
discrete log.

We propose a construction of matrix multiplication functional encryption (MMFE)
from Dk-matDH. Since, the complete matrix M = (y1, . . . ,yn)> is available to Enc at
once, our construction can reuse the randomness for all yi ∈ Z`

p. This also allows the
proof to be tightly reduced to Dk-matDH. For this, we require n matrices W1, . . . ,Wn

unlike IPFE from Dk-matDH that required only one. We emphasize that, similar to IPFE
above, MMFE also does not need to evaluate discrete logarithm algorithm.

• Setup(1λ, 1`, 1n, p). Run (g,G)← Ggen(1λ, p). Sample A← Dk and W1, . . . , Wn ←
Z`×k`n
p . Define msk = (W1, . . . ,Wn) and pp = ([1]).

• KeyGen(pp,msk,x ∈ Z`
p). Set skx ← (x>W1, . . . ,x>Wn,x).

• Enc(pp,msk,M = (y1, . . . ,yn)> ∈ Zn×`
p ) proceeds as follows to encrypt the given

vectors y1, . . . ,yn ∈ Z`
p. Sample s← Zk`n

p . Set ctM ← ([s] , [y1 +W1s] , . . . , [yn +Wns]).

• Dec(pp, skx, ctM). Parse ctM = ([c0] , [c1] , . . . , [cn]). Return t = (t1, . . . , tn) where
ti =

[
x>ci

]
· [skx · c0]−1.

The correctness is easy to verify.
We show a rough comparison of our scheme with [Tom19] if their scheme was used for

symmetric key settings directly. 4.1 shows that the symmetric key variant resulted from
hiding the public key of [Tom19] has bigger public parameters and bigger ciphertext i.e.
contain more group elements than our scheme. On the other hand, our secret key contains
more elements from Zp. Both the schemes are proven secure under same assumption
Dk-matDH with constant degradation. We further compare the result for the SXDH
based instances which shows that their scheme outputs ciphertext that is 1.5 times
bigger than us.

|pp| |sk| |ct| Degradation Assumption

[Tom19]
(k3(k + 1)`2 + k2`2)G (k + 1)k` Zp n((k + 1)k`+ `)G 4 Dk-matDH

(2`2 + `2)G 2` Zp 3n` G 4 SXDH

[BMN+21]
1G k`n2 Zp k`n+ `nG (k + 1) Dk-matDH
1G n2` Zp 2n` G 2 SXDH

Table 4.1: Comparison of naive application of [Tom19] with our construction in
symmetric-key settings.
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Security. Next, we argue the security of MMFE in the IND-CPA security model. Our
construction is basically a modification of [Tom19] for symmetric-key settings. This
improves upon the performance in terms of ciphertext size and removes the usage of
public parameters completely. Note that, this modification required us to argue the
security proof in a different manner. Although the overall proof strategy stayed more-
or-less the same, our proof presents a completely new proof for an essential lemma. We
state the security theorem next.

Theorem 4.18. For any adversary A of the construction MMFE in the IND-CPA se-
curity model that makes at most qsk secret key queries (for qsk < `) and qct challenge
ciphertext queries in an interleaved manner, there exists adversary AC such that,

AdvIND-CPA
MMFE ,A(λ) ¬ (k + 1) · AdvDk-matDH

AC (λ).

Proof. The proof is done by defining a hybrid argument of a sequence of games that
begins with the real protocol (called Game0) and ends with a so-called final game (called
Game3) where the adversary has no advantage at all. During the sequence, we use Xi

to denote the event that the adversary has won Gamei.

• Game0. This is the real game. All secret key queries on x ∈ Z`
p are responded

as the real game. For all jth (such that j ∈ [1, qct]) ciphertext query on two
matrices M (0)

j ,M
(1)
j ∈ Zn×`

p , for β ← {0, 1} the challenge ciphertext returned
is ct(β) ← MMFE .Enc(pp,msk,M (β)

j ). More precisely, the jth ciphertext query is
responded as,

sj ← Zk`n
p , [cj,0] = [sj] , [cj,i] =

[
y(β)
j,i +Wisj

]
for j ∈ [1, qct]. At the end, A outputs β′ ∈ {0, 1} and wins the game if β = β′.

• Game1. The response of the challenge queries are defined as following. For jth

ciphertext query is made on (M (0)
j ,M

(1)
j ) where M (b)

j = (y(b)
j,1, . . . ,y

(b)
j,n)> for b ∈

{0, 1},

sj ← Zk`n
p , [cj,0] = [sj] , [cj,i] =

y(β)
j,i +Wisj +

∑
ι∈[1,φi(j)]

u>vj,i,ι · zψi(ι),i


where u← Zk

p, zj,i = y(1)
j,i − y(0)

j,i , φi(j) = Rank(z1,i|| . . . ||zj,i), ψi(j) = min(φ−1
i (j)),

and vj,i,1, . . . ,vj,i,` ← Zk
p where i ∈ [1, n] and j ∈ [1, qct]. In Lemma 4.19, we show

that |Pr[X1]− Pr[X0]| ¬ AdvD2k,k-matDH(λ).

• Game2. The response of the challenge queries are defined as following. For jth

ciphertext query is made on (M (0)
j ,M

(1)
j ) where M (b)

j = (y(b)
j,1, . . . ,y

(b)
j,n)> for b ∈

{0, 1},

sj ← Zk`n
p , [cj,0] = [sj] , [cj,i] =

y(β)
j,i +Wisj +

∑
ι∈[1,φi(j)]

vj,i,ι · zψi(ι),i


where zj,i = y(1)

j,i − y(0)
j,i , φi(j) = Rank(z1,i|| . . . ||zj,i), ψi(j) = min(φ−1

i (j)), and
vj,i,1, . . . , vj,i,` ← Zp where i ∈ [1, n] and j ∈ [1, qct]. In Lemma 4.20, we show that
|Pr[X2]− Pr[X1]|¬AdvDk-matDH′(λ).
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• Game3. Finally, we show that, the injected entropy is sufficient to hide β in the
returned ciphertexts completely. This is because, for any j ∈ [1, qct] and i ∈ [1, n],∑
ι∈[1,φi(j)]

vj,i,ιzψi(ι),i is basically a random vector in the span of {zψi(ι),i}ι∈[1,φi(j)].

Furthermore, by the definition of φ and ψ, {zψi(ι),i}ι∈[1,φi(j)] are the basis and
therefore each zj,i ∈ Span({zψi(ι),i}ι∈[1,φi(j)]). Then,

y(β)
j,i +Wisj +

∑
ι∈[1,φi(j)]

vj,i,ιzψi(ι),i = βzj,i + y(0)
j,i +Wisj +

∑
ι∈[1,φi(j)]

vj,i,ιzψi(ι),i

≡ y(0)
j,i +Wisj +

∑
ι∈[1,φi(j)]

vj,i,ιzψi(ι),i

As the ciphertext distribution stays the same as in Game2, Pr[X3] = Pr[X2].

Furthermore, [cj,i] =
[
y(β)
j,i +Wisj +

∑
ι∈[1,φi(j)]

vj,i,ιzψi(ι),i

]
hides β completely for all

j ∈ [1, qct] and i ∈ [1, n]. Thus Pr[X3] = 1/2.

To summarise,

AdvIND-CPA
MMFE ,A(λ) ¬ |1/2− Pr[X0]|

¬ |Pr[X3]− Pr[X2]|+ |Pr[X2]− Pr[X1]|+ |Pr[X1]− Pr[X0]|
¬ 0 + AdvD2k,k-matDH(λ) + AdvDk-matDH′(λ)

¬ k · AdvDk-matDH(λ) + AdvDk-matDH(λ) ¬ (k + 1) · AdvDk-matDH(λ)

.

Lemma 4.19. For any efficient adversary A that makes at most qsk secret key queries
and at most qct ciphertext queries, there exists a algorithm AB such that |Pr[X1] −
Pr[X0]| ¬ AdvD2k,k-matDH

AB (λ).

Proof. To simulate the game, we use a D2k,k-matDH (as described in Definition 4.6)

problem instance ([A] , [t]) where t =

 Auw
Adw + δδδ

 for w ∈ Zk
p where δδδ = 0 or chosen

uniformly random vector from Zk
p. In fact, we use random self-reducibility property to

define qctn` many problem instances ([A] , [tj,i,ι]) for j ∈ [1, qct], i ∈ [1, n] and ι ∈ [1, `].
We use such problem instances to sample the W1, . . . ,Wn. First, we set

sj = (tj,1,1, . . . , tj,1,`, . . . , tj,n,1, . . . , tj,n,`)>.

For all i ∈ [1, n], we then sample

Wi = W̃i +
∑

ι∈[1,φi(q)]

zψi(ι),iu
>T

[
0k×k(`(i−1)+(ι−1))||Ik||0k×k((`−ι)+`(n−i))

]

where W̃i ← Z`×k`n
p , u← Zk

p, T = Ad ·(Au)−1 and zj,i = y(1)
j,i − y(0)

j,i where i ∈ [1, n] and
j ∈ [1, qct] for jth ciphertext query is made on (M (0)

j ,M
(1)
j ) where M b

j = (ybj,1, . . . ,y
b
j,n)>

for b ∈ {0, 1}.
For all j ∈ [1, qsk], the jth secret key query on xj, we respond sk = (x>j W̃1, . . . ,x>j W̃i).

Given jth ciphertext query on (M (0)
j ,M

(1)
j ) for j ∈ [1, qct], we respond ([cj,0] , . . . , [cj,n])
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where cj,0 = sj and for all i ∈ [1, n], cj,i = ybj,i + W̃isj +
∑

ι∈[1,φi(j)]
zψi(ι),iu

>tj,i,ι where

φi(j) = Rank(z1,i|| . . . ||zj,i) and ψi(j) = min(φ−1
i (j)). Firstly, observe that, the ci-

phertext generation uses z1,1, . . . , z1,n, . . . , zj,1, . . . , zj,n where zι,i = y(1)
ι,i − y(0)

ι,i where
i ∈ [1, n] and ι ∈ [1, j] i.e. each jth ciphertext is defined using already queried matrices
(M (0)

1 ,M
(1)
1 ), . . . , (M (0)

j ,M
(1)
j ). Moreover, x>Wi = x>W̃i for all i ∈ [1, n] as x>zj,i = 0

for all j ∈ [1, q] and therefore the secret keys are simulated properly. We now show that
the ciphertexts are also simulated properly.

Wisj = W̃isj +
∑

ι∈[1,φi(q)]

zψi(ι),iu
>T

[
0k×k(`(i−1)+(ι−1))||Ik||0k×k((`−ι)+`(n−i))

]
·
[
tj,1,1 · · · tj,1,` · · · tj,n,1 · · · tj,n,`

]>
= W̃isj +

∑
ι∈[1,φi(j)]

zψi(ι),iu
>T tj,i,ι

= W̃isj +
∑

ι∈[1,φi(j)]

zψi(ι),iu
> · (Ad(Au)−1) · (Auwj,i,ι)

= W̃isj +
∑

ι∈[1,φi(j)]

zψi(ι),iu
> · (Adwj,i,ι)

ApproxW̃isj +
∑

ι∈[1,φi(j)]

zψi(ι),iu
>tj,i,ι

Now, it is clear that if t ∈ Span(A), the simulation is identical to Game0 as tj,i,ι =
Adwj,i,ι for j ∈ [1, qct], i ∈ [1, n] and ι ∈ [1, `]. Otherwise, the simulation is identical to
Game1.

Lemma 4.20. For any efficient adversary A that makes at most qsk secret key queries
and at most qct ciphertext queries, there exists a ppt algorithm B such that |Pr[X2] −
Pr[X1]| ¬ AdvDk-matDH′

AB (λ).

Proof. Here, B gets an Dk-matDH′ problem instance ([T ] ,
[
v(δ)

]
) for δ ← {0, 1} where

T ∈ Zk×m
p , v(0) = A>T and v(1) ← Z1×m

p (as described in Definition 4.7) where
A ← Zk

p. Note that here we set m = qctn` and implicitly set u as A and set T =[
t1,1,1 . . . tqct,n,`

]
.

Given the problem instance, B chooses W1, . . . ,Wn ← Z`×k`n
p to define msk. Since,

B knows msk completely, it can respond to the secret key queries on its own. On jth

ciphertext query (M (0)
j ,M

(1)
j ), B samples sj ← Zk`n

p and defines the ciphertext as fol-
lowing:

cj,0 = [sj] , cj,i =

Wisj +
∑

ι∈[1,φi(j)]

zψi(ι),iv
(δ)
j,i,ι + y(β)

j,i


for all i ∈ [1, n] where φ and ψ are defined as in the previous game. It is clear that the
simulation is distributionally consistent. Precisely, if

[
v(0)

]
is provided, the simulation is

identical to Game1. Otherwise, the simulation is identical to Game2. If A distinguishes
between Game1 and Game2, B can distinguish between

[
v(0)

]
and

[
v(1)

]
.
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Chapter 5

A new integer-LWE problem

This chapter is based on a joint work with E. Kirshanova, D. Stehlé. This paper is in
preparation.

5.1 Introduction
The integer Learning with Errors. The integer learning with errors (ILWE), intro-
duced by Bootle et al [BDE+18], has computations without modular reduction. They
consider the problem of finding a vector s ∈ Zn given polynomially many samples of the
form (a, 〈a, s〉 + e) ∈ (Zn × Z). Then the problem becomes easy to solve, under mild
conditions on the distributions of a, s and e.

Our integer Learning with Errors. We introduce a new variant of the LWE prob-
lem over the integers, without any modulus q, denoted by integer LWEm,σX ,σk,α. More
precisely, it consists in recovering k from

(
X, πker(X)

(
k + e

))
, where X ← DZm×n,σX ,

k ← DZm,σk and the error e is taken from continuous Gaussian with standard devia-
tion α.

Our contribution. In this chapter, we define the new integer-LWE. More precisely,
we consider two problems: integer-SIS, and search integer-LWE. Then we obtain the
following results.

• The lattices that underlie our new definitions of SIS and LWE stem from a ma-
trix X ∈ Zm×n whose entries are Gaussian over the integers: the integer-SIS prob-
lem translates to the one of finding short vectors in the orthogonal (m − n) di-
mensional lattice Λ⊥(X) ⊂ Zm. In Section 5.3, we exhibit the reduction from hard
lattice problem (SIS modulo q) to integer-SIS .

• We then introduce the integer-LWE definition in Section 5.3, and propose a quan-
tum polynomial-time reduction from integer-SIS to the search integer-LWE in
Section 5.4.

5.2 Preliminaries

For an ordered set B = {bi}i∈[n] of linearly independent vectors in Rn, we let B̃ denote
its Gram-Schmidt orthogonalization. The norm of a matrix is the Euclidean norm of its
longest column: ‖X‖ = maxi ‖xi‖.
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For a vector subspace V ⊆ Rm and a vector x ∈ Rm, we let π(x, V ) denote the
projection of x onto V . The kernel of a matrix X ∈ Rm×n is denoted ker(X).

The statistical distance between two distributions D,D′ over a common support X
is defined as ∆(D,D′) = 1

2

∑
x∈X |D(x)−D′(x)|.

The following lemma states that any full-rank set of vectors in a lattice can be
efficiently converted to a basis of the lattice without increasing the norms of the Gram-
Schmidt vectors. It is folklore and we borrow the statement from [MG02].

Lemma 5.1 ([MG02, Lemma 7.1]). There is a deterministic polynomial-time algorithm
that, given an arbitrary basis B of an n-dimensional lattice L and a full-rank set of
lattice vectors S ∈ L, outputs a basis T of L such that ‖T̃‖ ¬ ‖S̃‖ and ‖T‖ ¬

√
n · ‖S‖.

We recall the definition of the Bounded Distance Decoding problem.

Definition 5.2. The Bounded Distance Decoding BDDd problem is as follows: given a
lattice L, a bound d, and a coset e + L where ‖e‖ ¬ d, output e.

In [GPV08], Gentry et al. showed how to use an arbitrary basis B to sample efficiently
from the discrete Gaussian distribution DL,s,c, for any s sufficiently greater than ‖B̃‖.

Lemma 5.3 (Adapted from [BLP+13, Lemma 2.3]). There is a probabilistic polynomial-
time algorithm that, given a basis B of a rank-n lattice L = L(B), c ∈ Span(L) and an
parameter s > 0 satisfying

√
ln(2n+ 4)/π · ‖B̃‖ ¬ s, outputs a sample from DL,s,c.

5.2.1 The smoothing parameter

The following lemma states that the discrete Gaussian function is essentially invariant
under shifts, if the standard deviation is sufficiently large.

Lemma 5.4 ([MR04, Lemma 4.4]). For any lattice L ⊆ Rm, c ∈ Rm, ε ∈ (0, 1), and
s ­ ηε(L), we have

ρs,c(L) ∈
[1− ε

1 + ε
, 1
]
· ρs(L).

The following result implies that a lattice Gaussian distribution has high min-
entropy.

Lemma 5.5 ([PR06, Lemma 2.11]). For any rank-n lattice L, x ∈ L, ε ∈ (0, 1/3), and
s ­ ηε(L), we have

DL,s(x) ¬ 1− ε
1 + ε

· 2−n

The next lemma is borrowed from [DRN14, Lemma 2.13] and [MR04, Lemma 4.4].

Lemma 5.6. For any lattice L ⊆ Rm, c ∈ Rm, ε ∈ (0, 1/3), and s ­ ηε(L), we have

Pr
v←DL+c,s

[
‖v‖ > s · t

√
m

2π

]
¬ exp

(
−m

2
(t− 1)2

)
.
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5.2.2 The lattice Λ⊥(X) and its dual

We recall some lemmas which will be used in this chapter. All of them are from Chap-
ter 3. The following lemma makes explicit the dual of the Λ⊥(X) lattice. The result is
well-known and can be found, for example, in [KNSW20].

Lemma 5.7. Let X ∈ Zn×m and Λ⊥(X)? be the dual lattice of Λ⊥(X). We have

Λ⊥(X)? =
(
Zm +X tRn

)
∩ ker(X) = π

(
Zm, ker(X)

)
.

Let b be a vector in Λ⊥(X)?. From the lemma above, we can write b = v +Xr for
some v ∈ Zm and r ∈ Rn. As X is integral, we can always assume that ‖r‖∞ ¬ 1/2 (by
rounding its coefficients to the nearest integers and updating v accordingly).

The following result gives a probabilistic lower bound for the first minimum of the
dual of Λ⊥(X).

Lemma 5.8 ([KNSW20, Lemma 14]). Let n ­ 60, σX ­ 20
√
n and m ­ 1355n lnσX .

Then we have

Pr
X←

(
DZm×n,σX

)

[
λ∞1 (Λ⊥(X)?) ­ 1

96
√
n+ lnm

]
­ 1− 2−Ω(n),

Pr
X←

(
DZm×n,σX

)

[
λ1(Λ⊥(X)?) ­ 1

96

]
­ 1− 2−Ω(n).

The following lemma is central to proving the previous results, and we will also use it
directly. It gives an upper bound and a lower bound on the singular values of a random
Gaussian matrix X.

Lemma 5.9 (Adapted from [AGHS13, Lemma 8]). There exists a universal constant C >
1 such that for any m ­ 2n, ε > 0 and σX ­ 2Cηε(Zm), we have

Pr
X←DZm×n,σX

[
σX
√

2πm
C

¬ σn(X) ¬ σ1(X) ¬ σXC
√

2πm
]
­ 1−

(
4mε+ 2−Ω(n)

)
.

5.2.3 Rényi divergence

Let P and Q be two discrete distributions such that Supp(P ) ⊆ Supp(Q) over a count-
able domain. The Rényi divergence of P and Q (of order 2) is defined by R(P‖Q) =
Σx∈MP (x)2/Q(x). The following lemma gives an upper bound on the Rényi divergence
for two discrete Gaussians that differ by a shift.

Lemma 5.10 ([LSS14, Lemma 4.2]). For any n-rank lattice L ⊆ Rn, set P = DL,s,u

and Q = DL,s,v for some u,v ∈ L and s > 0. Then we have

R(P‖Q) ¬ exp(2π‖u− v‖2/s2).

In our reductions the following lemma will be applied to bound from below the suc-
cess probability of an algorithm. The reader can find a proof in, e.g., [LSS14, Lemma 4.1].

Lemma 5.11. Let P,Q be two distributions with Supp(P ) ⊆ Supp(Q) and E ⊆
Supp(Q) be an arbitrary event. Then we have P (E) ­ Q(E)2/R(P‖Q).

.
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5.3 Integer-SIS and Integer-LWE
In this section, we introduce and study the hardness of a new version of the Short
Integer Solution (SIS) problem. We call this version integer-SIS as it does not require
any modulus q. We also define the integer-LWE distribution and the main computational
problems associated with it.

5.3.1 SIS over the integers

First, we recall the “standard” SIS problem introduced by Ajtai in [Ajt98]. Several
standard worst-case problems over Euclidean lattices reduce to SIS (see, e.g., [Ajt98,
MR04,GPV08]).

Definition 5.12. Let m > n, q ­ 2, β > 0 be functions of n. The small integer solution
problem SISm,q,β (in the `2 norm) is as follows: given an integer q, a matrix A ←
U(Zm×n

q ), and a real β > 0, find a nonzero integer vector e ∈ Zm such that Ate =
0 mod q and ‖e‖ < β.

We now define the integer-SIS problem. The main difference with the above “stan-
dard” SIS is in the distribution of the matrix A: instead of being uniform modulo q, the
entries of A are now Gaussian over the integers. Similarly, the success condition does
not involve any reduction modulo an integer q.

Definition 5.13. Let m > n, σX > 0, β > 0 be functions of n. The small integer
solution problem over the integers integer-SISm,σX ,β (in the `2 norm) is as follows: given
a matrix X ← DZm×n,σX , and a real β > 0, find a nonzero integer vector e ∈ Zm such
that X te = 0 and ‖e‖ < β.

Our main result in this section is a reduction from SISm,q,β to integer-SISm,σX ,β.

Theorem 5.14. Let n < m < nO(1), q ­ 2 and β > 0 be functions of n. There is a
probabilistic polynomial-time reduction from SISm,q,β to integer-SISm,σX ,β, for any σX ­
Ω(q
√
n).

Proof. Let A = (a1‖ . . . ‖am) be an SISm,q,β instance. The reduction proceeds as follows:

1. For i ¬ m, sample yi ← DqZn,σX ,−ai (here, the vector ai is seen as a vector with
entries in {0, . . . , q − 1}); define Y = (y1‖ . . . ‖ym) and set X = A+ Y ∈ Zm×n.

2. Call the integer-SISm,σX ,β oracle with input X; let e be its output.

3. Return e.

By Lemma 5.3 with parameter σX ­ Ω(q
√
n), there exists a probabilistic polynomial-

time algorithm to sample yi from DqZm×n,σX ,−ai . This implies that the reduction can be
run in probabilistic polynomial-time. We now prove its correctness.

We first consider the distribution D of the first row x of X (note that the rows are
independent and identically distributed). From x = a + y, we have that the support
of D is Zn. Further, for x ∈ Zn, we have:

Pr
a,y

[x] = Pr
a←U(Znq )

[a] · ρσX ,−a(x− a)
ρσX ,−a(qZn)
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∈ 1
qn
·
[
1− 2−Ω(n), 1

]
· ρσX (x)
ρσX (qZn)

(from Lemma 5.4 with ε = 2−Ω(n))

∈
[
1− 2−Ω(n), 1 + 2−Ω(n)

]
· ρσX (x)
ρσX (Zn)

.

The last equation follows from the fact that ρσX (Zn)/ρσX (qZn) ∈ [1−2−Ω(n), 1+2−Ω(n)] ·
qn, using the Poisson summation formula and the fact that σX ­ η2−Ω(n)(qZn). It follows
that the distribution of x is within 2−Ω(n) statistical distance to DZn,σX . Therefore, the
distribution of matrix X is within 2−Ω(n) statistical distance to DZm×n,σX .

From the above, we obtain that the integer-SISm,σX ,β oracle succeeds with proba-
bility 1 − 2−Ω(n) if X was sampled from DZm×n,σX . Assume that it does succeed, and
let e be its output: we have that X te = 0 and 0 < ‖e‖ ¬ β. As X = A + Y, we have
Ate = −Y te. Using the fact that Y ∈ qZm×n, we deduce that Ate = 0 mod q. This
completes the proof.

5.3.2 Search integer-LWE

We now define the integer-LWE distribution, and the search integer-LWE problem.

Definition 5.15. Let m > n ­ 1, be integers, σX , σk > 0 and α ∈ (0, 1). The integer-
LWEm,σX ,σk,α distribution is obtained as follows: sample X ← DZm×n,σX , k ← DZm,σk

and e← DRm,α; output (X,b = πker(X)(k + e)).

We observe that the integer-SIS problem is syntactically equivalent to finding a short
nonzero vector in the orthogonal lattice. Inspired by the duality with the Bounded
Distance Decoding problem (BDD), we define the search integer-LWE problem as a
BDD problem instance on the dual lattice.

Definition 5.16. Let n be going to infinity, and m > n, σX , σk > 0, α ∈ (0, 1) be
functions of n. The search integer-LWEm,σX ,σk,α problem is as follows: given a pair (X,b)
from the integer-LWE distribution, output k.

5.4 Hardness of search integer-LWE
Below, we show that an efficient algorithm solving search integer-LWEm,σX ,σk,α with
some non-negligible probability may be used by a quantum machine to efficiently solve
integer-SISm,σX ,

√
m−n/α with non-negligible probability, when σk = Ω(σX

√
mn). An im-

portant property of the reduction is that the matrix underlying the integer-SIS and
integer-LWE instances is preserved.

Theorem 5.17. Let n ­ 60, σX ­ m√
n
, σk ­ (C + 1)

√
2π ln 2σX

√
mn, where C is as

in Lemma 5.9, and α < 0.001/max(
√
m− n,

√
n(n+ lnm)). Suppose that there exists

an algorithm that solves search integer-LWEm,σX ,σk,α in time T and with probability ­
δ. Then there exists a quantum algorithm that solves integer-SISm,σX ,

√
m−n/α in time

poly(T, n) and with probability Ω(δ4)− 2−Ω(n).
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For efficiency purposes, one would be interested in using a rather small m. For secu-
rity purposes, one is rather interested in larger values of α. For example, the assumptions
of the theorem allow to set m = Θ(n log n), σX between Θ(

√
n log n) and any poly(n),

and α as large as Θ(1/
√
n log n).

The proof of Theorem 5.17 is adapted from the SIS to LWE quantum reduction
from [SSTX09], relying on Regev’s quantum reduction from Gaussian sampling to the
Bounded Distance Decoding (BDD) problem [Reg05]. It starts with the observation
that integer-LWE is a BDD instance, for the lattice πker(X)(Zm). Conveniently, Regev’s
reduction maps the BDD lattice to its dual, and the dual of πker(X)(Zm) is ker(X) (with
overwhelming probability over the choice of X, by Lemma 5.7). This implies that solving
the BDD instances corresponding to integer-LWE should allow to obtain short non-zero
vectors in ker(X) and hence solve integer-SIS.

In [SSTX09], the authors showed that Regev’s reduction can be exploited even if the
success probability of the BDD oracle is only non-negligible (as opposed to Regev’s proof
that requires a success probability that is close to 1). This is convenient to our setup,
as an adversary may solve integer-LWE with small probability only. From a technical
perspective, this BDD correctness requirement weakening due to [SSTX09] assumes that
the BDD oracle is Strongly Solution Independent (SSI), which means that the success
probability of the oracle when given t = b + e as input is independent of the lattice
vector b: when given b + e and b′ + e as inputs, its success probability should be
identical. In the case of [SSTX09], an SSI BDD oracle is built by re-randomizing the
input to the provided LWE oracle: the LWE lattice can be viewed as defined modulo q,
and a given b+e can be mapped to b′+e by obliviously adding to it a uniformly chosen
element of L/qL where L is the LWE lattice.

In the case of integer-LWE, such a strong self-reducibility seems difficult to achieve,
as we are interested in lattice vectors b of small Euclidean norms. We re-randomize a
given b + e by adding a Gaussian lattice vector to it. We can show that if the suc-
cess probability of integer-LWE for a Gaussian lattice vector is bounded from below by
a non-negligible quantity, then the re-randomization above provides a BDD algorithm
whose success probability is non-negligibly bounded from below for any lattice vector
of sufficiently small norm. This is formalized by the notion of Weakly Solution Indepen-
dence (WSI) of the BDD solver, introduced in Definition 5.19. Conveniently, a WSI BDD
solver suffices for the technique from [SSTX09] to apply. The WSI property is obtained
by using the boundedness of the Rényi divergence between a Gaussian distribution and
the same distribution shifted by a short vector.

We now proceed to proving Theorem 5.17. Motivated by the interpretation of integer-
LWE as a Bounded Distance Decoding problem, we first introduce a variant of the latter
in which the lattice vector is assumed to be of bounded norm.

Definition 5.18. The variant Bounded Distance Decoding BDDη,χ with parameters
a distribution χ and a real η > 0 is as follows: given as inputs a lattice L and a
vector t = b + e where b ∈ L such that ‖b‖ ¬ η, and e is distributed according to χ,
the goal is to find b.

Weak solution independence is a property of a BDD oracle that states that its success
probability does not significantly depend on the choice of the lattice vector b.
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Definition 5.19. Let L be an n-rank lattice, χ be a distribution, and η, δ > 0. A
randomized algorithm A solving BDDη,χ is said to be weakly solution-independent
(WSI) with parameter δ, if for all b ∈ L with ‖b‖ ¬ η, the probability over the
randomness of A and of e ← χ that A returns b when given t = b + e as input, is
bounded from below by δ.

The following lemma assumes the existence of an integer-LWE solver for random
choices of X and k, and extracts from it an integer-LWE solver that succeeds for all
X’s in a given set and for all k of sufficiently small norm. We use the notation integer-
LWEm,X,v,α for fixed X and v.

Lemma 5.20. Let m > n ­ 1, σX , σk > 0 and α ∈ (0, 1). Assume that there exists an
algorithm A that solves search integer-LWEm,σX ,σk,α in time T and with probability δ >
0. Then there is a set X ⊆ Zm×n with DZm×n,σX (X) ­ δ/2 and an algorithm B such
that for any v ∈ Zm satisfying ‖v‖ ¬ σk/

√
2π ln 2 and any X ∈X, algorithm B solves

search integer-LWEm,X,v,α, in time T + poly(n) and with probability ­ δ2/8.

Proof. As A solves search integer-LWE with probability δ over the random choice
of X,k, e, there exists a set X of X’s with DZm×n,σX (X) ­ δ/2 such that for all X ∈X

we have that A solves search integer-LWE with probability ­ δ/2 (over its internal ran-
domness and the random choices of k and e). We will restrict the analysis of algorithm B

below to any fixed X ∈X.
Given as input (X,b = πker(X)(v+e)) with ‖v‖ ¬ σk/

√
2π ln 2, algorithm B proceeds

as follows:

1. Sample k← DZm,σk ;

2. Call algorithm A on (X, πker(X)(b + k)), and let k′ denote its output;

3. Return k′ − k.

Note first that if A succeeds then so does B, because πker(X)(b+k) = πker(X)((v+k)+
e). We now show that for all X ∈ X, for all v with ‖v‖ ¬ σk/

√
2π ln 2, algorithm A

succeeds with sufficiently large probability. As k is distributed according to DZm,σk

and v ∈ Zm, the vector v + k is distributed according to DZm,σk,v. By Lemma 5.10, we
have that

R
(
DZm,σk,v‖DZm,σk

)
¬ exp

(
2π
‖v‖2

σ2
k

)
.

By Lemma 5.11 and the definition of X, Algorithm A succeeds with probability ­
(δ/2)2/2. This completes the proof.

We now obtain a WSI BDD oracle from the above integer-LWE solver for arbitrary k.

Lemma 5.21. Let m > n ­ 1, σX ­ 1, α ∈ (0, 1) and σk ­ (C + 1)
√

2π ln 2σX
√
mn,

where C is as in Lemma 5.9. Assume that there exists an algorithm A that solves search
integer-LWEm,σX ,σk,α in time T and probability δ > 0. Then there is a set X′ ⊆ Zm×n

with DZm×n,σX (X′) ­ δ/2 − 2−Ω(n) and a WSI algorithm C with parameter δ2/8, that
solves BDDσX

√
mn,DRm,α

in L = Λ⊥(X)? in time T + poly(n), for all X ∈X′.
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Proof. Our reduction takes as input X ∈ Zm×n and a variant BBDη,DRm,α
instance t =

b + e where b ∈ Λ⊥(X)? and e← DRm,α. Algorithm C proceeds as follows:

1. Call algorithm B from Lemma 5.20 on input (X, t), and let v′ ∈ Zm denote its
output;

2. Return b = πker(X)(v′).

Let X ⊆ Zm×n be as in Lemma 5.20. Define X′ by restricting X to the set of
those X’s in X such that σ1(X) ¬ CσX

√
m, for C as in Lemma 5.9. By Lemma 5.9, we

have DZm×n,σX (X′) ­ δ/2− 2−Ω(n).
We now prove correctness of algorithm C. Let X ∈X′ and b ∈ Λ⊥(X)? with ‖b‖ ¬

σX
√
mn. From Lemma 5.7, we can write b = v +Xr for some v ∈ Zm and r ∈ Rn such

that ‖r‖∞ ¬ 1/2. By the triangular inequality and the definition of X′, we have:

‖v‖ ¬ ‖b‖+ ‖Xr‖ ¬ σX
√
mn+ CσX

√
m · ‖r‖ ¬ σk/

√
2π ln 2.

From Lemma 5.20, algorithm B outputs v′ = v with probability ­ δ2/8.

The next lemma states that if there exists a WSI algorithm that solves variant
BDDη,DRm,α

for some lattice L, then there exists a WSI algorithm that solves BDDη,DL/R,α

for L, when R is sufficiently large. Its adaptation from [SSTX09] is direct.

Lemma 5.22 (Adapted from [SSTX09, Lemma 8]). Let L be an n-rank lattice, B a
basis of L and η, α > 0. Suppose that there exists a WSI algorithm with parameter δ
that solves BDDη,DRn,α

for lattice L in time T . Then there exists an R, whose bit-
length is polynomial in T, n, | logα|, and the bit-size of B, and a WSI algorithm with
parameter ­ δ−2−n that solves BDDη,DL/R,α in time polynomial in T, n, | logα| and the
bit-size of B.

We now adapt the BDD to Gaussian sampling reduction from [SSTX09]. The weak-
ening from the SSI property of the BDD oracle to the WSI property resides in an upper
bound on the Euclidean norms of the vectors on which the BDD oracle is called. From
the proof of [SSTX09, Lemma 9], it can be observed that the BDD oracle is called on
vectors of the form t = e mod L, where e is a BDD error term. One can write t = b + e
with ‖b‖ ¬ n ·maxi ‖bi‖, where (bi)i is the given basis of L. These are the vectors of L
for which the WSI property should hold.

Lemma 5.23 (Adapted from [SSTX09, Lemma 9]). Let L be an n-rank lattice, B be a
basis of L, R > 22n ·λn(L), η ­ n ·‖B‖ and α ¬ λ1(L)/(2

√
2n). Assume that there exists

a WSI algorithm with parameter δ that solved BDDη,DL/R,α for L, in time T . Then there
exists a quantum algorithm which outputs a vector u ∈ L? whose distribution is within
statistical distance 1− δ2/2 +O(δ4) + 2Ω(−n) of DL?,1/(2α). It finishes in time polynomial
in T + logR.

We observe that the lemma above also works for lattices that are not of full rank.
We now conclude this section with a proof for Theorem 5.17.
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Theorem 5.17. Using Lemma 5.21, there exists a set X′ ⊆ Zm×n with DZm×n,σX (X′) ­
δ/2− 2−Ω(n) and a WSI algorithm C with parameter δ2/8, that solves BDDσX

√
mn,DRm,α

in L = Λ⊥(X)? in time T + poly(n), for all X ∈ X′. By using Lemma 5.22, we obtain
a WSI algorithm C′ with parameter δ2/8 − 2−n that solves BDDσX

√
mn,DL/R,α

in time
polynomial in T, n, | logα| (with L = Λ⊥(X)?, and for all X ∈X′).

We now would like to apply Lemma 5.23 to algorithm C′. We first check that its
assumptions are satisfied. Note that the projections of the canonical vectors of Zm or-
thogonally to ker(X) provide a generating set of vectors of πker(X)(Zm) of norms ¬ 1.
By Lemma 5.1, we can hence efficiently obtain a basis B of πker(X)(Zm) such that ‖B‖ ¬√
m− n. By assumption on σX , the inequality σX

√
mn ­ (m− n)

√
m− n holds. From

the second statement in Lemma 5.8, we have that λ1(Λ⊥(X)?) ­ 1/96 holds with
probability 1 − 2−Ω(n) over choice of X. Thanks to the assumption on α, we obtain
that α ¬ λ1(Λ⊥(X)?)

2
√

2(m−n)
for a set X′′ ⊆ Zm×n of X’s such that DZm×n,σX (X′′) ­ δ/2−2−Ω(n).

For later use, we assume that for an X ∈X′′, both lower bounds from Lemma 5.8 hold.
Suppose that X ∈ X′′. Lemma 5.23 applied to L = Λ⊥(X)? allows us to quan-

tumly obtain a vector u ∈ Λ⊥(X) whose distribution is within statistical distance
1 − Ω(δ4) + 2−Ω(n) from DΛ⊥(X),1/(2α). By the Gaussian tail bound (Lemma 5.6), the
vector u has norm ¬

√
m− n/α with probability Ω(δ4)−2−Ω(n). We now show that u is

non-zero with sufficiently high probability. By definition of X′′, we have λ∞1 (Λ⊥(X)?) ­
1/(96

√
n+ lnm) for all X ∈ X′′. The assumption on α ensures that the hypothesis

of Lemma 5.5 holds. Using the latter lemma gives that u is non-zero with probability
Ω(δ4)− 2−Ω(n). This completes the proof.
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Chapter 6

Conclusion and open problems

In this chapter, we will give a short conclusion of this thesis. Then we will present some
open problems that are related to the works.

6.1 Conclusion
In this thesis, we have studied some cryptographic aspects of orthogonal lattice. The
ultimate objective is to understand this family of lattices sufficiently well to simplify
and optimize lattice-based cryptography. In some cases, the disclosed properties lead to
efficient cryptanalytic algorithms, hence invalidating candidate constructions; in other
cases, they help improving security proofs, hence increasing confidence in other con-
structions; and they also help to show relationships between different cryptographic
constructions or suggest other cryptographic designs.

We first studied the most important parameter of the orthogonal lattice, the smooth-
ing parameter. When orthogonal lattices are used in various constructions such as cryp-
tographic multilinear maps, traitor-tracing schemes, and inner product functional en-
cryption, improving the smoothing parameter bound implies improving the algorithm
efficiency. Our other result gives a bound of the (m− n)-th minimum of the orthogonal
lattice. This parameter is also very useful in cryptanalytic algorithms.

We then studied the uses of the orthogonal lattices in revoke and traitor-tracing
schemes. Starting from inner product functional encryption (IPFE), we construct a

Figure 6.1: Cryptographic aspects of orthogonal lattices.
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trace-and-revoke system from [ABP+17] with the novelty of achieving anonymity. And
we further show that our group-based construction is tightly secure under standard
assumptions. For the lattice-based setting, we suggest using the scheme of [ABP+17] as
we could mount a concrete attack on the state-of-the-art [WFL19], rendering it insecure.
Our attack comes from the following observation: if a vector z belongs to a coset of the
orthogonal lattice of X and the minimum of this lattice is larger than ‖z‖ then we have
a bounded distance decoding (BDD) instance in a lattice of dimension 1. It follows that
we can find z efficiently.

Finally, we studied variants of two well-known lattice problems without any modular
reduction, namely integer-SIS and integer-LWE, and put forward a reduction from one
to another. First, we gave a reduction from BDD for specific lattices to integer-LWE
using Rényi divergence. Then we proposed a quantum reduction from integer-SIS to
BDD for those specific lattices.

6.2 Open problems
In light of the foregoing, we aim to present some open problems for future works.

Open problem 1. What is decision integer-LWE?
In our intuition, the decision integer-LWEm,σX ,σk,α is as follows: given as input

a pair (X,b), decide, with non-negligible advantage, whether it was sampled from
the integer-LWEm,σX ,σk,α distribution or whether it was sampled from

(
DZm×n,σX ×

πker(X)(DRm,
√
σ2
k
+α2)

)
. Our definition comes from the fact that the integer-LWEm,σX ,σk,α

distribution is statistically close to
(
DZm×n,σX × πker(X)(DRm,

√
σ2
k
+α2)

)
where α is big

enough. We will investigate it, in an effort to prove its hardness.

Open problem 2. How to construct cryptographic primitives based on the hardness
of integer-LWE?

We give two suggestions to build the schemes which are based on the hardness of
integer-LWE.

1. Can we construct an encryption scheme whose security is based on the hardness
of the decision integer-LWE problem like [Reg05]?

2. Can we construct an encryption scheme whose security is based on the hardness
of the search integer-LWE problem like [SSTX09]?

Open problem 3. What are the variants of integer-LWE?
In our work, the defining matrix X is sampled from a Gaussian distribution, leading

to another family of random lattices. In efficient cryptographic constructions, the above
matrix X is often randomly conditioned on a specific matrix structure, typically made
of blocks that are Toeplitz matrices. In this case, the resulting lattices are algebraically
richer than arbitrary lattices: they typically enjoy a module structure over an order of a
number field. Other families of algebraic lattices arise in some cryptographic schemes or
their proofs, such as the log-unit lattice [CDPR16] and the Schnorr-Adleman factoring
lattice [Ajt98,Sch91]. Following our work on integer-LWE, I want to study a ring variant
of integer-LWE and a modulo variant of integer-LWE.
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Open problem 4. How to recover the encryption randomness?
Here we want to recover the encryption randomness when decrypting in lattice-

based encryption schemes. In Regev’s encryption scheme [Reg05] (and the NIST pro-
posals [CJL+16]), the decryption algorithms allow to recover the inner product between
the secret key vector and a noise vector. But it does not allow the recovery of the
noise vector itself. J. Deneuville et al. have a heuristic way to do this in [DGGJ18].
In [HHK17], this is useful to obtain a tightly secure upgrade from CPA to CCA security
in the quantum random oracle model. We will investigate the problem of the recovery
of the noise vector, in an effort to improve it and to make it to be more rigorous.
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On the smoothing parameter and last minimum of random orthogonal lat-
tices. Designs, Codes and Cryptography, pages 1–20, 2020. 16, 24, 31, 33,
34, 83

[KS12] Aggelos Kiayias and Katerina Samari. Lower bounds for private broadcast
encryption. In Information Hiding, volume 7692 of LNCS, pages 176–190.
Springer, 2012. 49

[LG18] Jiangtao Li and Junqing Gong. Improved anonymous broadcast encryp-
tions - tight security and shorter ciphertext. In Bart Preneel and Fred-
erik Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 497–515.
Springer, Heidelberg, July 2018. 49

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring poly-
nomials with rational coefficients. Math. Ann., 261:515–534, 1982. 31

[LLLS13] Fabien Laguillaumie, Adeline Langlois, Benôıt Libert, and Damien Stehlé.
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