N
N

N

HAL

open science

Unsupervised Pretraining of State Representations in a
Rewardless Environment
Astrid Merckling

» To cite this version:

Astrid Merckling. Unsupervised Pretraining of State Representations in a Rewardless Environment.
Machine Learning [cs.LG]. ISIR, Université Pierre et Marie Curie UMR CNRS 7222, 2021. English.

NNT: . tel-03562230

HAL Id: tel-03562230
https://theses.hal.science/tel-03562230
Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03562230
https://hal.archives-ouvertes.fr

Unsupervised Pretraining of State Representations
in a Rewardless Environment

by Astrid Merckling

advised by Pr. Stéphane Doncieux,
Dr. Nicolas Perrin-Gilbert and
Dr. Alexandre Coninx

Institute for Intelligent Systems and Robotics (ISIR)
CNRS, Sorbonne University, Paris
Ecole Doctorale Informatique, Télécommunications et Electronique de Paris
(EDITE)

PhD thesis in Computer Science and Robotics
Presented and publicly defended on September 22, 2021

In front of a jury composed of:

David Filliat Professor U2IS, ENSTA Paris (reviewer)
Alain Dutech Research Fellow LORIA, INRIA (reviewer)
Catherine Achard Professor Sorbonne Université (examiner)
Alban Laflaquiere Senior Researcher SoftBank Robotics Europe (examiner)
Stéphane Doncieux Professor ISIR, Sorbonne Université (advisor)
Nicolas Perrin-Gilbert CNRS Researcher ISIR, Sorbonne Université (co-advisor)
Alexandre Coninx Associate Professor ISIR, Sorbonne Université (co-advisor)

D SMART

Q SORBONNE
UNIVERSITE L ABESS

Astrid Merckling
Unsupervised Pretraining of State Representations in a Rewardless Environment
© 2021

ABSTRACT

This thesis builds on the deep learning techniques that have recently achieved
multiple successes for problems as diverse as the type of data used (images, text,
DNA, etc.) in large-scale settings (i.e. with large amount of high-dimensional
data) thanks to the computational improvements. Reinforcement learning (RL)
has leveraged these successes to continuous control tasks in environments that
are only partially known, i.e. without knowledge of the transition model, and
recently without knowledge of the underlying compact state space that Markov
decision processes (MDPs) usually provide. There are many improvements in
this last class of methods called end-to-end deep RL, but they still remain computa-
tionally and memory intensive.

In order to facilitate the applicability of RL algorithms to these large-scale
problems, this thesis builds on the burgeoning field of state representation learning
(SRL). From a global perspective, it takes advantage of the popularity for deep
unsupervised pretraining of input representations that offer improvements over
input embeddings learned from scratch. Its solution exploits the accumulated
experience of agents in the manner of transfer learning, i.e. where automatic
prediction for new tasks is performed on examples from a different training
distribution.

In this research, we have proposed two new SRL algorithms that address the
general question of how to learn state embeddings that improve the performance
of RL algorithms (i.e. a better convergence of the optimal policy in terms of
computational cost, sampling efficiency and final performance) in large-scale
settings and without access to the reward that is generally available. Each of
these algorithms respectively answers the question (i) How to represent states
so that an agent can perform tasks by imitation learning? (ii) How to represent
states so that an agent can predict its near future (the next state and the next
observation) by exploring the estimated uncertain unknown transitions?

Finally, this work is a way to improve all types of inputs for RL algorithms (not
just image observations) through state representations which verify good prop-
erties for the efficiency of bootstrapping and other automatic decision making
mechanisms also common to supervised learning.

Keywords

State Representation Learning, Pretraining, Exploration, Unsupervised Learning,
Deep Reinforcement Learning

iv

ACKNOWLEDGEMENTS

To my family, my supporters, my friends,

CONTENTS

ABSTRACT iv
1 INTRODUCTION 1
1.1 State Representation Learning 3

1.2 A Brief History of State Estimation 5

1.3 ThesisOutline 6
1.3.1 Summary. 7

2 DEEP REINFORCEMENT LEARNING BACKGROUND 8
2.1 Introduction 8
2.1.1 The Curse of Dimensionality 8

2.2 DeepLlearning 9
2.2.1 Deep Learning Training Problems 9

2.2.2 Deep Learning Approximators 15

2.3 Reinforcement Learning 19
2.3.1 Reinforcement Learning Formalism 19

2.3.2 Temporal-Difference Learning 25

2.3.3 PolicyGradient 28

3 STATE REPRESENTATIONS FOR REINFORCEMENT LEARNING 32
3.1 Introduction 32
3.1.1 Dimensionality Reduction 33

3.2 Scaling Reinforcement Learning Towards Robotics 36
3.2.1 Pros and Cons of End-to-End Deep Reinforcement Learning 37

3.2.2 Potential Solutions 41

3.3 SRL Formulations 45
3.3.1 SolutionCriteria. 46

3.3.2 Learning Heuristics 49

3.3.3 Exploration Strategies 52

3.4 Conclusion e 54

4 STATE REPRESENTATION LEARNING FROM DEMONSTRATION 55
4.1 Introduction e 56
4.2 RelatedWork 58
4.3 State Representation Learning from Demonstration 58
4.3.1 Demonstrations 58

4.3.2 Imitation Learning from Demonstrations 59

4.4 GoalReaching 60
4.4.1 ExperimentalSetup 61

Vi

CONTENTS

4.4.2 Resultsand Discussion 63
4.5 Ballistic Projectile Tracking 65
4.5.1 ExperimentalSetup 66
4.5.2 Resultsand Discussion 71
4.6 Conclusion e 73
EXPLORATORY STATE REPRESENTATION LEARNING 75
5.1 Introduction e 76
5.2 RelatedWork 77
5.3 Proposed Method: XSRL 78
5.3.1 State Transition Estimator 78
5.3.2 Discovery in the Face of Uncertainty 80
5.3.3 OptimizationProcess 84
5.4 ExperimentalSetup 88
5.4.1 Baselines 89
5.4.2 EnvironmentDetails 91
5.4.3 Implementation Details 93
5.5 ExperimentalResults 97
5.5.1 Evaluations of XSRL Representations and Exploration . . . 97
5.5.2 XSRL Representations Transfer 102
5.6 Discussion e e e 104
5.7 Conclusion 106
CONCLUSION 107
6.1 Conclusion 107
6.1.1 General Contributions 107
6.2 Discussion e 109
6.2.1 Generalization and State Representation Properties 110

BIBLIOGRAPHY 115

Vii

CONTENTS

viii

INTRODUCTION

Everything is number.

Pythagoras (570 BC — 495 BC)

The last decade has seen immense progress in machine learning to solve auto-
matic decision making tasks. Indeed, with their data-driven learning principle,
learning systems have taken advantage of huge datasets, computational hard-
ware/software improvements, to extract information from data and convert it
into numerical knowledge to perform automatic predictions. There are three
ways to optimize these learning algorithms, but they can help each other [Jordan
and Mitchell, 2015]. However, the difference between them is not as clear as it
tirst appears [Jordan and Rumelhart, 1992].

(1) Supervised learning is similar to function approximation problems, where
the training examples are input-output pairs (x, y). Supervised learning sys-
tems aim to learn a mapping between x and y, with the objective of minimizing
the expected prediction errors. x can be of different nature, ranging from low-
dimensional vectors to multidimensional inputs such as images, DNA sequences,
text, etc. [LeCun et al., 2015]. In particular, it is deep learning that has enabled
advances in so many diverse applications. Deep learning consists of multi-
layer networks that learn representations to extract features of increasing level
of abstraction as the layer approaches the output. Usually, machine learning
practitioners used to perform a feature extraction phase before the automatic
decision making task [Schmidhuber, 2015]. Today;, it is more popular to let deep
learning systems automatically learn their representations and make predictions.
Learning systems trained without pretraining are said to be end-to-end trainable.
In particular, they have led to major changes in the way data is analyzed in
computer vision [Krizhevsky et al., 2012].

(2) Reinforcement learning (RL) is akin to problems nested in the fields of
control theory and machine learning, which typically involve sequential decision
making. It is typically formalized as the optimal control of incompletely known
Markov decision processes (MDPs), where the training examples are obtained
sequentially through agent-environment interactions to cope with the unknown
transition model of MDPs [Sutton and Barto, 2018]. These training examples are
transitions which consist of an action performed by an agent and the resulting
new state and reward. A state determines what an agent knows about himself
(proprioception) and his environment (perception), and a reward is an evaluative
teedback provided by the environment. RL systems aim to learn a control strategy

INTRODUCTION

called optimal policy, which is trained to choose actions for any given state, with
the objective of maximizing the expected cumulative reward over time. They do
this by giving each action a correct credit for its contribution to the cumulative
rewards. Thus, unlike supervised systems, they automatically annotate the
training examples with intermediate feedbacks provided by the environment.

Traditionally, RL systems rely on specific low-dimensional states with Marko-
vian transitions to ensure full observability [Sutton and Barto, 2018]. In order
to make robotics increasingly autonomous, learning systems need to exploit
physical information from the real world using various sensors such as cameras.
However, such states may be difficult to obtain from raw sensory data, especially
without the assumption of the a priori knowledge of the ground truth state, and
that complex transitions with distractors are most often present in the environ-
ment. It is in this more realistic setting corresponding to one of the most popular
scaling, in which we place ourselves in this thesis [Li, 2018, Frangois-Lavet et al.,
2018]: simulation-based control tasks with continuous action spaces of up to ten
dimensions, and continuous observation spaces formed by camera images. As
with supervised learning, end-to-end deep learning has led to great progress in
adapting RL systems to such settings in order to represent the necessary state
properties in the intermediate layers [Barth-Maron et al., 2018, Kostrikov et al.,
2020]. These systems are known as end-to-end deep RL (DRL) and have had
great impact in early applications with image observations and discrete actions
[Mnih et al., 2015].

(3) Unsupervised learning tackles the problems of learning input embeddings
by leveraging unlabeled data. Specifically, unlike the previous two machine
learning paradigms, where systems learn representations for a specific automatic
decision task, in this paradigm systems learn representations without any super-
vision or reward [Ghahramani, 2003]. These systems generally make assumptions
about the structural properties of the data to better retrieve higher-level features.
For example, the assumption that the data lies in a manifold with small intrinsic
dimensionality is used by various dimension reduction methods such as PCA
(principal component analysis), manifold learning, or autoencoders that make
different assumptions about the underlying manifold (e.g. that it is a linear
subspace or a smooth nonlinear manifold) [Ghahramani, 2003].

From a general viewpoint, these three paradigms allow to train learning sys-
tems as: (1) to reproduce known knowledge (labeled training examples), (2)
to discover control strategies (optimal policies) with knowledge available only
through interaction (MDPs), (3) to discover previously unknown knowledge
from the data. While (1) and (2) are concerned with learning representations
for specific tasks of automatic prediction, (3) is concerned with learning useful
representations of the input which can be used advantageously by new learning
systems. In particular, this thesis will study approaches for pretraining state
estimators to generate inputs for RL algorithms. The idea of embedding is to
extract the a priori abstract and non-numerical concepts from data into numer-

INTRODUCTION

ical and actionable representations to provide better inputs for new learning
systems. To do this, embedding learning immerses data points in a numerical
space in order to retrieve them in a machine-readable language. This is what
mathematics for computer science allows from the start: privileging numbers as
inputs and outputs of algorithms, which motivates our study. Our intuition is
that high-dimensional observations of autonomous agents are not an issue per se
because their intrinsic degrees of freedom matter much more. Deep unsupervised
learning would help learn mappings that attempt to “iron” complex manifolds
of relevant information into low-dimensional embeddings [Ghahramani, 2003,
Van Der Maaten et al., 2009].

This thesis is part of the work on unsupervised input representation pre-
training, which can be exploited in transfer learning by new learning systems
trained on examples from another data distribution [Bengio, 2012]. These trans-
fer learning methods can leverage huge unlabeled raw datasets to efficiently
learn low-dimensional input embeddings, provided that the approximator class
matches the complexity of the problem and sufficient computational resources are
available during pretraining [Bengio et al., 2007]. In the literature, works to better
structure the inputs of learning systems by pretraining input embeddings have
been done for several reasons: simplicity, robustness, to overcome the curse of
dimensionality, to improve performance with fewer training examples [Hadsell
et al., 2006, Collobert et al., 2011, Le, 2013, Jonschkowski and Brock, 2015, Anselmi
et al., 2014].

For example, in natural language processing and robotics, the trend is to
represent more and more abstract concepts by numbers. On the one hand, in
language processing, the scientific explosion of word embedding pretraining
approaches popularized by word2vec [Mikolov et al., 2013] and all its variants
like GloVe ([Pennington et al., 2014]), BERT ([Devlin et al., 2018]), RoBERTa ([Liu
et al., 2019b]), FlauBert ([Le et al., 2019]), camemBERT ([Martin et al., 2019]),
have disrupted the previous word embeddings learned from scratch. Indeed,
these pretrained word embedding vectors offer better representations of words,
sentences, paragraphs, and documents, bringing tremendous progress in all kinds
of automatic prediction tasks such as translation, speech recognition, sentiment
analysis, document summarization, question answering, language generation,
etc. [Young et al., 2018].

On the other hand, in the same years, robotics has operated the same kind of
upheaval, where huge datasets consisting of the interaction experience between
agents and the environment are exploited to pretrain state embeddings. This is
the birth of a whole field of research corresponding to unsupervised pretraining
of state estimators popularized by Jonschkowski and Brock [2013] as state rep-
resentation learning (SRL) and all its variants like [Dwibedi et al., 2018, Ha and
Schmidhuber, 2018, de Bruin et al., 2018, Yarats et al., 2019, Sax et al., 2019], that
have disrupted previous input embeddings learned from scratch with end-to-end
DRL algorithms on various real and simulated robotic tasks.

STATE REPRESENTATION LEARNING

1.1 STATE REPRESENTATION LEARNING

This thesis will mainly consider SRL for state estimation in the rewardless robotic
context. The solution typically takes the form of a state-update function that
leverages the accumulated experience of multiple agents to estimate states whose
transitions are Markovian, and from which as much unnecessary information
is removed as possible. This is intended to make the states simpler and lower
dimensional than the observations, and more generally than the history of an
agent’s trajectory.

Transferring such state representations discovered from task-agnostic expe-
rience has many merits. First, it would allow robotics to break free from the
limitation of solving tasks known in advance, i.e. to be able to autonomously
handle unknown tasks. Second, it is an effective way to move beyond data-
hungry versions of end-to-end DRL algorithms [Glasmachers, 2017]. Third, it
would effectively train systems to cope with the intrinsic challenges of RL, such
as credit assignment due to long-horizon tasks, instability due to stochasticity,
the exploration/exploitation tradeoff, complex and unknown environment tran-
sitions, and the curse of dimensionality [Henderson et al., 2018, Li, 2018]. Finally,
it would be an attempt to recover the theoretically well-studied framework of RL
defined with states represented in a very relevant way [Sutton and Barto, 2018].

One of the main challenges in SRL, which arises in many unsupervised learning
systems, often more precisely referred to as self-supervised learning systems [Liu
et al., 2020], is the choice of a training objective. There are different ways to
approach the issue of providing additional information about the SRL solution
structure rather than simply using the supervision of a compression signal as
is the case with the autoencoder approach [Bourlard and Kamp, 1988]. This
can be addressed under the notion of multiple agents that leverage knowledge
gained from previous tasks, as it is the case with SRLfD (State Representation
Learning from Demonstration), one of the algorithms proposed in this thesis
that we present in Chapter 4. Or under the notion of predictability of the next
observations by learning a state transition estimator, as it is the case with XSRL
(eXploratory State Representation Learning), the other algorithm proposed in
this thesis that we present in Chapter 5.

Another main challenge, specific to the SRL framework, is the choice of a
task-agnostic exploration strategy (i.e. without extrinsic reward) for autonomous
agents to discover their environment [Sutton and Barto, 2018, Lesort et al., 2018].
The agents” experience consists of a collection of sequential agent-environment
interactions without extrinsic reward and with a non-stationary state distribution,
as the state estimator is trained continuously. While this exploration can be done
manually via demonstrations of various transitions, it is complicated to do so in
an unsupervised learning context, i.e. without the a priori knowledge of the task.
This thesis considers new ways to automate it. Such strategies are intensively
studied in the RL context to solve the exploration/exploitation tradeoff for learn-

A BRIEF HISTORY OF STATE ESTIMATION

ing an optimal policy with good generalization performance. In contrast, they
have not yet been well studied in the SRL context to learn a state representation
generalizable to unknown tasks. In other words, a good exploration strategy
in this context should take advantage of the training examples automatically
generated by agents and seek for new observations to maximize the generaliza-
tion likelihood of the learned representation. We propose two approaches, one
that generalizes to various tasks: SRLfD, and one that generalizes to complex
transitions and from which the model can improve: XSRL.

1.2 A BRIEF HISTORY OF STATE ESTIMATION

Understanding the current state of controlled systems is part of the requirement
to learn tasks, such as those of RL. In a context where the state is replaced by a
sensory measurement, RL can often be made more efficient by solving first a state
estimation problem [Tesauro, 1992, Bertsekas and Tsitsiklis, 1996]. One of the
first approaches was proposed by Kalman [1960b] that assumes knowledge of
the transition model which must be linear with respect to the state. However, it
has been adapted to the nonlinear context with the extended Kalman filter (EKF)
[Ljung, 1979]. A more recent type of technique dedicated to navigation tasks
is SLAM (Simultaneous Localization and Mapping [Bailey and Durrant-Whyte,
2006a,b]) which provides representations that contain the location and orientation
of an agent.

These traditional state estimation techniques have significantly increased the
autonomy and intelligence of robots. However, in their usual formulations, they
assume the a priori knowledge of the transition model, and the ground truth state
in order to define an observation model. Moreover, their state representations
focus on self-localization and ego-motion estimation, which may be insufficient
for complex tasks that require understanding more abstract concepts of the
environment. Moreover, these traditional methods require experts to tune their
parameters, which is difficult due to the “curse of manual tuning” [Cadena et al.,
2016]. As a collateral effect, they tend to be non-generalizable across tasks, as
cross-validation is not an option in an unsupervised learning context.

Feature engineering methods have relaxed the assumption of the a priori
knowledge of the transition model and the ground truth state by being solely task
specific. Among the most popular techniques are SIFT [Lowe, 1999] and SURF
[Bay et al., 2006]. However, it remains challenging to devise ad hoc methods that
extract higher-level and more abstract features, even when the task is known.
Moreover, in a context of ever-increasing automation, it is necessary to remove
the assumption of the a priori knowledge of the task and the environment. This
is where SRL comes in, automating the feature engineering process by leveraging
experiences discovered by agents to pretrain state estimators [Lesort et al., 2018].
Such pretrained state embeddings can represent numerically in vectors all the
concepts of the input, from the least to the most abstract. Thanks to the data-

THESIS OUTLINE

driven principle of machine learning, the designer remains outside the learning
loop, and thus the required expert knowledge only concerns the hyperparameters
of the SRL algorithms.

This thesis seeks to extend the capabilities of SRL to help scale DRL algorithms
to continuous control tasks with high-dimensional sensory observations. Al-
though end-to-end DRL has recently performed well on such tasks, it relies on
many computational resources [Barth-Maron et al., 2018]. This makes it impracti-
cal to apply DRL to such tasks with computational restrictions, as in real-world
robotics. SRL allows to improve the performance of DRL by providing it with
better inputs than the input embeddings learned from scratch with end-to-end
strategies. Specifically, this thesis addresses the problem of performing state
estimation in the manner of deep unsupervised pretraining of state representa-
tions without reward. These representations must verify certain properties to
allow for the correct application of bootstrapping and other decision making
mechanisms common to supervised learning, such as being low-dimensional
and guaranteeing the local consistency and topology (or connectivity) of the
environment [Penedones et al., 2018, Morik et al., 2019], which we will seek to
achieve through the models pretrained with the two SRL algorithms proposed in
this thesis.

1.3 THESIS OUTLINE

In Chapter 2, we provide the background necessary to understand the deep
unsupervised pretraining of state embeddings. This takes place in the context of
large-scale function approximation problems involved in popular applications
of DRL. Once we have a clear understanding of the curse of dimensionality
(Section 2.1) (which is ubiquitous in control systems with high-dimensional
continuous inputs), we explain the main components of a machine learning algo-
rithm, especially when deep learning techniques are used (Section 2.2). Finally,
we present RL and its extension to deep learning approximators, i.e. DRL algo-
rithms, with special attention to the one we use throughout our experiments —
SAC (Soft Actor-Critic [Haarnoja et al., 2018b]) — (Section 2.3).

In Chapter 3, we review the main approaches to state representation for the
popular large-scale control tasks studied in this thesis with RL that corresponds
to robotics in simulation with image observations and continuous actions. We
start by recalling works in representation learning with dimensionality reduction
to try to overcome the curse of dimensionality in such problems (Section 3.1).
We then discuss how end-to-end DRL scales up, but still with limitations (Sec-
tion 3.2). We then present an effective scaling alternative that is the unsupervised
state estimator pretraining known as — state representation learning (SRL). To
do so, we lay the foundations of its framework through three main elements:
solution criteria (Section 3.3.1), learning heuristics (Section 3.3.2), and exploration

THESIS OUTLINE

strategies (Section 3.3.3). In the next two chapters, we present two SRL methods
that propose a novelty in each of these elements.

In Chapter 4, we introduce the first approach called SRL{D (State Represen-
tation Learning from Demonstration). The learned state must here verify the
criterion that the agents” experience is represented in a way which abstracts the
concepts common to multiple tasks by guaranteeing the Markovianity of state
transitions. To this end, SRL{D follows the imitation learning objective of oracle
policies on various tasks as a learning heuristic. In this way, the exploration
strategy is realized by oracle policies whose diversity guarantees the one of
the experience. We evaluate the performance of our pretrained SRLfD models
on two control tasks: goal reaching and ballistic projectile tracking. We show
comparisons with classical Kalman filtering, popular end-to-end RL, and other
representation strategies. Some of the work in this chapter has been presented
previously in [Merckling et al., 2020], but it also contains new work in Section 4.5.

In Chapter 5, we introduce the second approach called XSRL (eXploratory State
Representation Learning). The learned state must here verify the criterion that
the agents’ experience is represented in a way which abstracts the concepts to the
next observation prediction task by guaranteeing the Markovianity of state tran-
sitions. To this end, XSRL follows the next observation prediction objective as a
learning heuristic. To ensure an effective exploration, the first training procedure
is coupled with a second procedure that trains discovery policies to maximize
intrinsic rewards formed by (i) prediction errors of an inverse model trained
concurrently in parallel, and (ii) k-step learning progress bonuses of the state
representation model. In this way, the trained policies tend to generate transi-
tions that are diverse in controllability and from which the state estimator can be
trained efficiently. We first measure the exploration performance of XSRL and
compare it to random exploration and entropy maximization strategy. We then
evaluate the performance of our pretrained XSRL models on new RL applications
which consist of three control tasks: maze navigation, pendulum swing up, and
sprint locomotion. We show comparisons with the state-of-the-art RAE (Reg-
ularized Autoencoder [Ghosh et al., 2019]) approach, and other representation
strategies.

1.3.1 Summary

The main chapters of this thesis can be summarized as follows.

¢ In Chapter 2, the elements to understand DRL and more globally the deep
learning techniques used in our research are presented.

* In Chapter 3, the embedding learning methods for DRL are reviewed by
developing those in the SRL domain through three major elements: solution
criteria, learning heuristics and exploration strategies.

THESIS OUTLINE

* In Chapter 4, we present a new SRL algorithm (SRLfD) for pretraining
state representations from imitation learning of multiple oracle policies
sufficiently diverse to provide effective exploration.

* In Chapter 5, we present another new SRL algorithm (XSRL) for pretraining
state representations from learning by next observation prediction of the
most diverse and learnable unknown transitions.

* In Chapter 6, we summarize the contributions and results of this thesis and
the questions they led us to ask.

DEEP REINFORCEMENT LEARNING BACKGROUND

The tool which serves as
intermediary between theory and
practice, between thought and
observation, is mathematics; it is
mathematics which builds the
linking bridges and gives the ever
more reliable forms.

David Hilbert, 1930 in The Mind of
the Mathematician (2007)

2.1 INTRODUCTION

During the last twenty years, the availability of large and high-dimensional data
has dramatically increased. This has raised new questions for data representation
in different mathematical domains, added to those already posed in the field of
traditional statistical data analysis. Donoho et al. [2000] characterized these new
large-scale data analysis problems with the curse of dimensionality and the blessings
of dimensionality. On the one hand, the curse of dimensionality is a central issue,
which largely challenges traditional mathematical theories. On the other hand,
the blessings of dimensionality are beneficial, they could explain in part the
surprising performance of deep learning techniques.

2.1.1 The Curse of Dimensionality

Bellman [1961] first coined the curse of dimensionality in optimal control problems
(or sequential decision problems) to describe the intractability of optimizations
involving exhaustive enumerations of high-dimensional spaces. For pedagogical
reasons, Bellman explains this problem with this simple illustrative example:
a 1/10 spacing grid on a D-dimensional unit cube has N = 10P points, which
grows exponentially with D. Specifically, this spacing grid may correspond to
a D-dimensional discretized state space. Thus, covering all state instances and
computing their evaluation simultaneously becomes intractable with the increase
of the state dimension, whether it is discrete or continuous. Bellman [1961] first
proposed to overcome this problem by using new exhaustive search strategies, in
particular with his own method: dynamic programming.

DEEP LEARNING

The curse of dimensionality appears in many areas of computer science, in
particular Donoho et al. [2000] identified: optimization, function approximation
and numerical integration. The main formulation of the curse of dimensionality
by Donoho et al. [2000] is as follows:

CURSE OF DIMENSIONALITY If we must approximatively optimize a func-
tion of D variables, assumed to be Lipschitz, then to have a tolerance error
0 < € < 1 on the approximation objective, we need order N. = (1/¢)P
evaluations on the discretized space.

In comparison to the previous illustration, the tolerance error € refers to the
spacing grid on the D-dimensional unit cube, while N, refers to the number
of points we need to enumerate all the configurations of this discretized space.
For example, to naively approximate a function with a tolerance error € ~ 1072,
in low-dimensionality regimes D = 1,2 or 3, the number of required samples
becomes unreasonably large with N, = 102, 10* or 10°. Therefore, in settings
with high-dimensional data, the number of training examples will never be large
enough to naively approximate a function with a neural network.

2.2 DEEP LEARNING

In what follows, we explain the main components used by deep learning tech-
niques. We first describe the optimization problem encountered by their training
procedure and the two main tools it uses: stochastic gradient descent and the
backpropagation algorithm. Next, we present the most basic deep learning ap-
proximators — feedforward neural networks — (abbreviated by FNNs), which have
given a very popular variant — convolutional neural networks — (abbreviated by
CNNs). Although this explanation of deep learning techniques is not exhaustive,
it may be sufficient to understand the pleasant end-to-end learning perspectives
they offer for scaling reinforcement learning algorithms towards robotics (see
Section 3.2).

2.2.1 Deep Learning Training Problems

Deep learning training problems correspond to optimization problems that are
solved by fitting a neural network parameters 6 (a.k.a. weights) to minimize an
objective function. An objective function is defined with a loss function ¢, which
in the case of regression can for example be the mean square error (MSE), i.e.
based on the Ly norm. It measures the difference between the output of the target
function f and that of the neural network fg (a.k.a. prediction), as follows:

U(fo(x),y) = I3 — ylI3 1)

where (x,y) corresponds to the input-output pair obtained with evaluation of
the unknown target function (f(x) = y). In practice, the objective function

10

DEEP LEARNING

corresponds to the empirical risk, which is computed on a finite training dataset
as follows:

N
Z fG Xn Yn 2)

where {(x;, yn) }1<n<n is a training dataset of cardinality N formed from different
input-output pairs. Due to the empirical nature of this objective function, training
a neural network is similar to an approximate optimization [Bottou and Bousquet,
2008].

Theoretically, an objective function corresponds to the expected risk on an un-
limited training dataset according to a data distribution Px: X — [0,1] (where
X C RP is the data space) from which input-output pairs (x, f(x)) are drawn, as
follows:

Lo(®) = [Px(x)((falx), () dx ®

However, the knowledge of Px and the computation of the full integral is impos-
sible in practice. This is why minimizing Eq. 3 is impractical in most problems.

Following Bottou and Bousquet [2008], we assume that the empirical risk £(6)
and the expected risk £ (0) have a global minimum at 6, and 0y respectively.
Moreover, Bottou and Bousquet [2008] let & be the practical solution of the
empirical risk given by an optimization algorithm. The quality of this solution
depends on the time budget Trhax needed to obtain a tolerance error et such
that:

E[£(8) — £(0.)] < er,,, (4)

Ideally, the solution 8 should yield a good generalization performance. This is
expressed by a low error rate of the objective function on the expectation of test
datasets (i.e. datasets not used in the optimization process). This is the main
goal of any statistical learning method: to approximate a target function using
a training dataset to ensure good generalization performance on new samples
drawn from the same data distribution. For the sake of clarity, we represent this
generalization performance with the expectation [E [L (@)} .

According to Bottou and Bousquet [2008], through the three different solutions
to an optimization problem, the generalization error obtained with a practical
solution can be decomposed as follows:

E [£(0)] = E[£(0)] + E[£(0.) — £(60)] +E[£(O)— £0.)] 6
5;;}7 gerst 5:;»

These three error terms allow to show different trade-offs between the choice
of the neural network architecture, the number of training examples N, and

the desired error rate of the optimization algorithm er__[Bottou and Bousquet,
2008].

11

DEEP LEARNING

Eapp is the approximation error that measures how well functions of the approx-
imator class can approximate the target function f. Since in practice f is most
often outside this class, the more complex the approximator class, the smaller the
term is according to the theoretical universal approximation results [Cybenko,
1989, Hornik et al., 1990, Pinkus, 1999].

Eest 1s the estimation error that measures the consequence of minimizing the
empirical risk instead of the expected risk. It reflects the generalization perfor-
mance influenced by the function class and the training dataset of cardinality
N. Since N is limited in practice, the dataset cannot cover the entire actual data
distribution. Furthermore, the number of samples required for a reasonable
function approximation increases with the class complexity of the approximator.
Thus, for these two reasons, the larger N and the simpler the approximator class,
the smaller the term.

Eopt 1s the optimization error that measures the consequence of a time-limited
optimization solution. It reflects the generalization performance influenced by N,
and the properties of the optimization algorithm (convergence speed and cost
per iteration). Because the optimization algorithm is time-limited in practice, the
more sample efficient and the lower the cost per iteration, the smaller the term.

The two terms Eapp and Eest constitute the approximation-estimation tradeoff
(a.k.a. bias-variance tradeoff) where high bias is similar to high approximation
error known as underfitting, and high variance is similar to high estimation error
known as overfitting. In our large-scale setting (i.e. high data dimensionality
D and high cardinality N) the generalization performance depends mainly on
the optimization algorithm properties and the time budget Timax. Bottou and
Bousquet [2008], Bottou et al. [2018], Hardt et al. [2016] theoretically analyze
the generalization performances of several optimization algorithms, however
they do not consider the regime of high-dimensional data. Their results prove
that stochastic gradient descent optimization algorithms compare favorably with
more sophisticated methods such as Newton’s algorithm. This is due to the fact
that the former has a cost per iteration independent of N, which is not the case
for the latter. Moreover, the computational system, which corresponds to the
computational hardware and software, determines the speed of the calculations.
Thus, the more sophisticated the computational system is, the faster the iterations
are executed.

Wang et al. [2020] propose a detailed survey on the different approaches to
scaling machine learning algorithms by the three possible ways mentioned above.
Indeed, the various works generally act on these three aspects to scale-up the
machine learning algorithms: (i) add hypotheses about the function class to
which the approximator belongs, (ii) improve the properties of the optimization
algorithm (i.e. the cost per iteration and the convergence time), (iii) improve the
resources deployed for numerical computations (in particular with the automatic
differentiation algorithms and the parallelization of calculations). All these

12

DEEP LEARNING

improvements have allowed the development of deep learning techniques in the
large-scale setting.

The first aspect — assumptions underlying the function class — makes it possible
to avoid the exponential increase in the number of parameters needed to approx-
imate high-dimensional target functions. In particular, deep neural networks
are able to reach approximation error rates with their number of parameters
that depends polynomially on the data dimensionality, whereas for their shallow
counterparts it depends exponentially (curse of dimensionality in the parameter
space of the approximator) [Cichocki et al., 2017]. This has the benefit of also
reducing the estimation error as overfitting is less of a problem with fewer pa-
rameters in the approximator (i.e. with a simpler approximator). In the rest of
this section, we will present the two components that improve deep learning
systems on the two other aspects.

2.2.1.1 Stochastic Gradient Descent

The second aspect — properties of optimization algorithms — makes it possible to
avoid the exponential increase in the number of calculations needed to approx-
imate high-dimensional target functions. In particular, the stochastic gradient
descent (an instance of stochastic optimization algorithms) can find solutions
with low estimation error rates without exploring the whole parameter space of
a neural network [Zhang et al., 2017a, Nguyen and Hein, 2018], thus reducing
the training time needed for convergence.

Historically, Robbins and Monro [1951] proposed the stochastic optimization,
which allows learning function approximators on large discrete training datasets,
by mixing statistics and optimization ideas. Robbins-Monro’s theorem shows
that the objective function no longer needs to be evaluated directly but only with
an unbiased estimate of its gradient with respect to the approximator parameters.
It can be seen as an incremental gradient descent algorithm. This eliminates the
cardinality dependency that is problematic in large cardinality regimes, as only
randomly picked mini-batches of data points are needed instead of the whole
dataset in each optimization iteration. One of the first successes brought by
this stochastic optimization to train neural networks was obtained with ADA-
LINE (Adaptive Linear Neuron [Widrow and Hoff, 1960]) to solve least-squares
problems. Years later, Lenet-5 introduced by LeCun et al. [1998] extended this
stochastic optimization to a convolutional neural network to solve document
recognition problems.

Nowadays, the stochastic optimization line of work still benefits from many
improvements thanks to the considerable interest of the machine learning com-
munity. Several scientific avenues have been taken, including optimization
algorithms that are faster than the stochastic gradient descent method, such as
the momentum method [Polyak, 1964, Sutskever et al., 2013], or an extended
version Adam [Kingma and Ba, 2014] which adapts the first momentum.

13

DEEP LEARNING

In a nutshell, the Robbins-Monro’s theorem allows to manipulate an objective
function corresponding to the empirical risk (£(0) was previously defined as a
large sum over an entire training dataset) without having to compute its values
and gradients with respect to the function approximator parameters. Indeed,
thanks to Robbins-Monro’s theorem, we can simply update the neural network
parameters 6 with an unbiased estimate of the true objective function’s gradient
(denoted VL£(0)) which is typically computed on a randomly sampled mini-
batch of data points. The iterative process of parameter adjustment is governed
by the following stochastic update rule:

1 B
Ori1 < Ok — Dy, A= B Y Vol(fo.(xi,) vi,) (6)
b=1

where k is an iteration index, i, ~ U (1, N) is a uniform index parsing the N-
cardinality training dataset in small subsamples of size B called mini-batches
(which are typically of size 32, 64, 128, 256 or 512, depending on storage capacity
and to each application we address). Let 0y be a set of neural network parameters
at the initial iteration, #; a learning rate and finally Ay an unbiased estimate of
the objective function’s gradient. Literally, Ay is an incremental progress, where
the learning rate controls how much parameters are changed by it. By the law
of large numbers, the stochastic gradient estimation should be close to the real
objective function’s gradient, i.e. Ay =~ VoL(6;), however with some random
fluctuations [Bottou and Bousquet, 2008].

Starting from 6y, the k-th iteration of the optimization algorithm uses the
forward-propagation and backpropagation (soon detailed in Section 2.2.1.2) to
compute Ay and update 0. This update (Eq. 6) moves the parameters in the
negative direction of Ay, therefore moving closer to a global/local minima. A
pass through the whole training dataset is called an epoch. After some epochs
(which is specific to each application we address), the neural network outputs
(a.k.a. predictions) must be close to the target function outputs, i.e. § ~ y.
This stochastic optimization algorithm is guaranteed to converge in supervised
learning problems given that Robbins-Monro’s conditions on the learning rate are
met, i.e. the learning rate is small 0 < 5 < 1, but does not decrease too quickly:

[e0]

iﬂk =co , Y () <co)

1

and with the assumption that the training examples are drawn in an i.i.d. man-
ner’.

Since the stochastic gradient descent has a low computational cost per itera-
tion, it can scale-up to high cardinality regimes. Specifically, stochastic gradient
descent uses a small batch of data points (i.e. a mini-batch) at each update and

is therefore more efficient in terms of memory and computational cost. This is

1 (ii.d. = independently and identically distributed)

14

DEEP LEARNING

in contrast to the vanilla gradient descent algorithm, which passes through the
entire training dataset at each update, and therefore has a computational cost per
iteration proportional to N.

Deep neural networks are characterized by nonlinearities that generally pro-
duce a non-convex objective function [Bengio et al., 2007]. Thus, the minimization
of this objective function is far from being a convex optimization problem, which
makes the theoretical analysis of its convergence properties more complex. In
particular, finding the global optimal solution is impossible under these condi-
tions. In other words, even if the Robbins-Monro conditions are verified, the
convergence of the stochastic gradient descent may not be guaranteed. Indeed,
the various theoretical results of the neural network approximation only guaran-
tee the existence of a global minimum with respect to the approximation error (i.e.
Eapp in Eq. 5) [Cybenko, 1989, Hornik et al., 1990, Pinkus, 1999]. Specifically, a
neural network with many parameters is more likely to suffer from the overfitting
problem, which can result in a practical solution belonging to one of many poor
local minima, i.e. with high estimation and optimization errors (Eest and Eopt in
Eq. 5) [Erhan et al., 2010, Li et al., 2018].

2.2.1.2 Backpropagation Algorithm

The third aspect — computational scalability — makes it possible to avoid the expo-
nential increase in the calculation time needed to approximate high-dimensional
target functions. In particular, the backpropagation algorithm (an instance of
automatic differentiation algorithms dedicated to neural networks) allows to
efficiently compute the derivatives of an objective function with respect to the
network parameters [Rumelhart et al., 1986]. This allows to reduce the training
time needed for convergence.

As it is not straightforward to compute derivatives of objective functions
with respect to the parameters of huge parametric approximators, many studies
have been conducted to devise automatic differentiation algorithms in machine
learning [Baydin et al., 2017]. The backpropagation is one of the best known
automatic differentiation algorithms today which allows to efficiently reduce
the derivative calculation cost. It was developed by Rumelhart et al. [1986]
for feedforward neural networks (FNNs) and extended to convolutional neural
networks (CNNs) by LeCun et al. [1989a]. Different libraries have efficiently
implemented the backpropagation algorithm by automatically parallelizing its
computations. Among the most popular ones that we used in this thesis are:
PyTorch [Paszke et al., 2017] and Tensorflow [Abadi et al., 2016]. These libraries
combined with the increase in computational hardware performance (especially
with the increase in the number of CPUs and the availability of GPUs in the case
of CNN’s) have largely contributed to the scaling of deep learning models.

The backpropagation process is preceded by a forward-propagation phase
which computes the neural network outputs. Then the backpropagation algo-
rithm computes with the chain rule recursively from the last to the first layer, the

15

DEEP LEARNING

partial derivatives of the objective function with respect to the neural network
parameters. In other words, the backpropagation algorithm is a reverse mode au-
tomatic differentiation which propagates the excess error by using the chain rule
iteratively. Specifically, it first computes the partial derivatives of the objective
function with respect to the last layer output:

aL(6) 3 ,,.
% —gﬁ(y,y) (8)

Thanks to the computation of the previous derivatives, it can then update the
parameters of the last layer’s weight matrix W(L):

9L(0) oL ay
oW(L) — 9y oW(L)

Then, the backpropagation iteratively computes for each layer two sets of deriva-
tives. The first set corresponds to the partial derivatives of £(0) with respect
to the input of the I-th hidden layer x(!). The chain rule computes them with
the already computed derivatives of the I + 1-th layer, which can be defined
recursively by letting x(*) = x as follows:

dL(0) 9L(8) ox(H+D)
ox()— ax(+1) gx()
The second set corresponds to the partial derivatives of £(6) with respect to the

I-th layer parameters W(), The chain rule computes them with the first set of
derivatives already computed, as follows:

©)

(10)

ax(.l)
vie [1,d71],vj e [1,d"] 8“23 = M((g) 0 b
awij E)x]- E)Wij

2L(6)
ox()

derivatives of the objective function in the inverse direction from the last layer
to the first layer. It can thus compute the derivatives of the objective function

0L (0
with respect to the parameters of each layer with the second set %((l)) Once the
backpropagation algorithm has computed an estimate of the objective function’s

gradient, all that remains is to let a stochastic optimization algorithm use these
partial derivatives in its update rule (Eq. 6) to minimize the objective function, as
explained earlier.

In other words, the backpropagation uses the first set to propagate the

2.2.2 Deep Learning Approximators

We now present two basic neural networks: feedforward neural networks (FNNs)
and convolutional neural networks (CNNs). They are presented in detail because
they are the main parametric approximators used in this thesis.

16

DEEP LEARNING

2.2.2.1 Feedfoward Neural Networks

Feedforward neural networks (FNNs) have undergone many extensions since
McCulloch and Pitts [1943] introduced them. From a high level viewpoint,
FNNs use compositions of simple nonlinear functions called layers to model an
unknown target function f as follows:

y = fo(x)
y = f(L) Of(L—l) o... of(l)(x)

where f() is the I-th fully-connected layer, o is the composition operator, L is
the number of layers (a.k.a. the depth of the network), of which the first L —1
are characterized as hidden layers®. A fully connected layer performs a matrix
multiplication between an input vector and a weight matrix. If it is a hidden
layer, it is followed by an element-wise monotonic increasing nonlinear function
independent of 6, which is an activation c: R — R. A popular choice for the
activation is the ReLU (Rectified Linear Unit) [Nair and Hinton, 2010] defined as:

(12)

o: x — max(x,0) (13)

Thus, each hidden layer performs a simple affine transform followed by a nonlin-
ear transform.

The output of a I-th hidden layer x(!) (a.k.a. features or neurons) can be defined
recursively by letting x(*) = x, where we deliberately omit the bias terms of the
affine transforms for clarity reasons:

x = g (W=D vl e 1,1 (14)

where vectors are denoted by lower case bold letters and are assumed to be
column vectors. A superscript T denotes the transpose of a matrix or vector, so
that x7 is a row vector. W(!) is the weight matrix associated to the I-th layer, the set
of neural network parameters contains all of them 6 = {W(l) } le[1,r]- Literally, in
each [-th hidden layer, the input vector x/~!) undergoes a matrix multiplication
with the weight matrix W() and an addition with the bias terms to define new
origins that we ignore here, and then passes in the activation ¢. Mathematically,
the weight matrix multiplication performed by the I-th hidden layer is defined

as:
40-1)
ﬂ”:{a(@“”wﬂ)} (15)
i=1 ke[1,dD]

where d(V) and d(/~1 are the dimensions of x() and x(~1) respectively. For

appropriate matrix multiplications, every weight matrix W) must have the same

2 Alayer is considered as hidden if it is not connected to the network output.

17

DEEP LEARNING

number of rows as the input vector dimension d(/~1), and the same number
of columns as the output vector dimension d(/). This entails that the weight
matrix depends on the number of neurons from the input and output of its layer:
w ¢]Rdﬂfl)xd(l).

The approximation of a predictor (in supervised learning problems) is of the

regression type. In this context, the output of the last hidden layer x(“~1) passes
through a last layer which is an affine transform without activation:
5\7 = W(L)Tx(L_l) (16)

where § = fg(x) is the last layer’s output, which is always a real number if the
target function is a value function (y € R) in the reinforcement learning context,
and may be any d-dimensional vector otherwise (y € RY).

2.2.2.2 Convolutional Neural Networks

Recent successes in machine learning are largely triggered by the emergence of
convolutional neural networks (CNNs). CNNs were introduced by LeCun et al.
[1989Db] as a special case of FNNs better adapted to tensor data, which continue
to benefit from numerous extensions since then. They allow to better bound the
approximator complexity with respect to the generalization performance with
structured inputs such as images [Poggio et al., 2017].

From a high level viewpoint, CNNs like FNNs use compositions of simple
nonlinear layers to approximate a target function f. A hidden convolutional layer
denoted) performs a convolution between filters and features of the previous
layer, followed by an activation. Thus, it looks like a hidden fully connected layer,
with the difference that it performs a special case of affine transform. Indeed,
the convolution can be considered as an instance of matrix multiplication which
requires vectorizing the input and reducing the filter to a second order tensor (i.e.
a matrix), making it a circulant matrix (with many null parameters), as explained
by Cichocki et al. [2017].

The output of a /-th hidden convolutional layer is a three-dimensional tensor

(UINFIONF10)
x() € R ¥4z %437 whose first two dimensions (dgl),dgl)) correspond respectively

to the spatial height and width of the neurons (a.k.a. feature maps), while the
(1)

third dimension d;’ corresponds to the number of channels. It can be defined

recursively by letting x(*) = x, where we again volontarily omit the bias terms of
the affine transforms for clarity reasons:

40D
x,(cl) =<0 Z xflil) * Wl(lk) (17)
ke[Ld]
-)
The four-dimensional filters W) & R©*@xd5 x4 assqciated to the I-th layer

o, 7

are shared across all spatial coordinates (1, v) by the convolution operator “x

18

DEEP LEARNING

(this is known as the weight-sharing property and results from the convolution
invariance to translation). The convolution operator has the advantage that the
spatial size w of its filters is independent of the neurons spatial dimensions, which
allows w to be small, typically 3 or 5 (but may vary). Indeed, the convolution “x”
between filters W and feature maps x is defined for any spatial coordinate (1, v)

as follows:

Wx(u,0) = Y x(sxu—dusxv—do)W(du,dov) (18)

1<du<w
1<dv<w

where s € Z is a stride to perform spatial subsampling. Any spatial coordinate
(u,v) in the output results from the convolution between the filter W and the
patch (a.k.a. receptive field) of the input defined as {x(u, v) }1 <4y go<w € R¥*.
This allows to associate a strong numerical value when the patch is positively
correlated with the filter. Literally in Eq. 17, the k-th feature map of the I-th
convolutional layer results from the the superposition of dglfl) convolutions
between the filters W(lk) and the input features maps x(! 1.

CNNss benefit from four main characteristics: compositionality, locality, weight-
sharing and subsampling. Compositionality is achieved with the stack of L — 1
hidden layers each composed of a linear (parametrized) and nonlinear (non-
parametrized) transforms. The subsequent neural network uses the composition
of a series of L — 1 nonlinear functions, known as a L-depth network.

Locality refers to the fact that a neuron in one layer is connected to only a small
number of neurons in the previous layer. On the contrary, FNNs do not have
this property as a neuron in one layer is connected to all neurons of the previous
layer (hence their name fully-connected layer). Eq. 18 clearly shows that CNNs are
like superpositions and compositions of a finite number of nonlinear local-variable
functions [Poggio et al., 2017].

Weight-sharing refers to the fact that the convolution is invariant to the transla-

tion operator 7 defined as:
Vz = (z1,22), Tzx=x(u—z1,0—2) (19)

Mathematically this implies that for every convolution of a filter W and an input
x we have:

W s (Tzx) = Tz (W % x) (20)

Specifically, any spatial coordinate (u, v) in the k-th channel of the output feature
maps shares the same filters W(lk), hence the weight-sharing property. From a

general viewpoint, filters W(lk) extract a type of feature independently of the

spatial coordinates.
Subsampling is achieved by reducing spatial patches to a single real value.
There are non-parametrized approaches that consist in taking the maximum

19

REINFORCEMENT LEARNING

or the average of the patches, and on the other side parametrized approaches
that are performed by convolutional layers with a stride greater than one. Non-
parametrized subsampling operators were used (a.k.a. pooling layers) in the first
CNN architectures proposed by LeCun et al. [1998] through LeNet-5, and ex-
tended by Ranzato et al. [2007] through LeNet-6. Spatial subsampling allows to
reduce spatial redundancies and to aggregate the information from previous fea-
ture maps (i.e. the responses of activated neurons). It is based on the assumption
that a small neighborhood around a spatial coordinate (u,v) in a feature map is
likely to contain the same information with possible distractors.

These subsampling operations tend to create a hierarchy of different abstrac-
tion levels among the neurons of the subsequent layers [Cohen et al., 2016].
Specifically, through the use of subsampling strategies, CNNs make an addi-
tional hierarchical assumption about the composition of local-variable functions.
Therefore, CNN approximators belong to a class of functions that have superpo-
sitions and compositions of a finite number of nonlinear hierarchical local-variable
functions. Poggio et al. [2017] equivalently formulated them as hierarchically local
compositional functions, which tend to be better in terms of generalization perfor-
mance than local-variable functions. Indeed, a line of work in the analysis of the
theoretical properties of function approximators tend to show that compositional
functions consisting of hierarchically organized local-variable functions are one
of the best regularity hypothesis to circumvent the curse of dimensionality in
large-scale function approximation problems [Cohen et al., 2016, Poggio et al.,
2017].

Locality and subsampling help reduce the network’s sensitivity to spatial
coordinates and resolutions of the sensory input. As a result, CNNs tend to
become translation invariance at the network level. These characteristics are
motivated by the fact that in natural images, the semantic meaning of patterns
often does not depend on their locations.

In the case of regression tasks (as also in the case of classification tasks), the
output of a last hidden convolutional layer denoted x(-~7) usually goes through
a series of p fully-connected layers to predict a vector output. To do this, the
input feature maps x(L~7) are vectorized before passing through the first matrix
multiplication x(L=P+1) = U(W(Z)TX(L””)). As usual, the last layer of this FNN
is an affine transform without activation, and § = fp(x) is the d-dimensional
network output.

2.3 REINFORCEMENT LEARNING

Dynamic programming introduced by Bellman [1961] is a first attempt to mitigate
the curse of dimensionality in optimal control problems (see Section 2.1.1). A
second major attempt is made by the field of reinforcement learning (RL) to scale
to a setting where knowledge of the transition model is incomplete [Bertsekas,
2019]. The RL domain has expanded considerably since its foundations were

20

REINFORCEMENT LEARNING

o Agent

policy: a; ~ m(-|s¢)

\

St Tt ag

1Tt
' St+1| Environment j<7
I

Figure 1. The agent-environment interaction loop for a RL algorithm, following Sutton and Barto
[2018]. At time step ¢, an agent receives a state s; and a reward r; from the environment based on
which the algorithm can update its policy. Once an agent performs an action a; sampled from the
policy, the environment provides him with the next state s;;; and the next reward r;;1.

comprehensively presented by Sutton and Barto [2018]. RL algorithms use a
combination of Bellman equations, which were originally used by dynamic
programming methods, and temporal-difference learning optimization. The
latter was originally developed for machine learning problems [Sutton, 1988].

2.3.1 Reinforcement Learning Formalism

The general optimal control problem addressed by RL has only incomplete
knowledge of the environment, which may also be stochastic. More precisely,
the transition probabilities are unknown. Thus, RL algorithms generate training
examples with agent-environment interaction loops as shown in Fig. 1. The goal
of RL is to maximize the expected future cumulative discounted rewards (i.e. the

expected return G;), that an agent receives by interacting with the environment.

To do this, a RL algorithm learns an optimal policy (denoted 77,) which predicts
actions that maximize the return.

2.3.1.1 Markov Decision Processes

The RL optimization process can be formally defined with Markov decision
processes (MDPs). An MDP is succinctly denoted as M = (S, A, P, R, v), whose
tive elements are defined in the following.

The state and action spaces = We consider only continuous states and actions in
this thesis, this is why we speak only of spaces and not of sets as would be the
case for discrete spaces. S C RS corresponds to the state space and A C R4
corresponds to the action space. A state s; € S gathers sufficient information
from the environment for an optimal policy to take a best action a; € A. It
includes proprioceptive information of the agent, such as the position of its
actuators and their velocities. In classical optimal control problems, the state
is available, whereas in the problems we study; it is not directly available. The
environment provides instead of states, observations (o; € O C RO where O is

21

REINFORCEMENT LEARNING

the observation space) which are most often visual sensory measurements. These
are high-dimensional observations (i.e. typically S; << O;) which generally
suffer from partial observability of the environment. This corresponds to a
state representation learning formalism which will be described thoroughly in
Chapter 3.

The starting state distribution In our experiments with a RL algorithm, we
use as a starting state distribution random starts. This corresponds to an agent
being randomly reseted each time an episode is completed. This is one of the
conditions for many convergence proofs of RL algorithms [Watkins and Dayan,
1992, Sutton and Barto, 2018]. We will use in Chapter 5 a different starting state
distribution with state representation learning experiments®.

The transition probability P is the transition probability function that maps a
pair of state-action at the current time step t to a state-reward distribution at the
next step t + 1. Following Sutton and Barto [2018] it is defined as:

P(s',r|s,a) £ P[s;y1 = 8,101 = r|sy = s,a; = a (21)

This equation is stationary, which means that the transition probability does not
depend on the time step t. P(s’,r|s, a) is the probability for the agent in state s to
move to the next state s’ after taking action a by obtaining reward r. Following
Sutton and Barto [2018], the state-transition function can be defined as a function
of P(s/,r|s,a):
P(s'|s,a) £ P[s;s1 = 8'[sy =s,a, = a] = Y P(s',r]s,a) (22)
reR

The reward function R predicts the next reward associated to an action and a
state:

R(s,a) £ E [r|ss =s,ar=a] =) r) P(s,r
reR s'eS

s,a) (23)

The reward is obtained indirectly from the environment (i.e. through agent-
environment interaction loops) as a privileged information because in most
robotic problems we do not have it. This the case for state representation learning
algorithms in a rewardless environment studied in this thesis.

The Markovian property In an MDP the transition probabilities have the
Markovian property. This is why the transition probability function depends only
on current state s; and action a;. Mathematically, this means that the transition
probabilities must verify the following relation:

P (st41,7e41|8t,ar) = P (Sp41, 70418t @, 8-1, 221, .., S0, 20) (24)

In the case of purely state representation learning experiments with our XSRL method in Chapter 5,
state estimators are learned from a task-agnostic exploration. In this context of pure exploration,
we use a constant state as the starting state distribution.

22

REINFORCEMENT LEARNING

To verify this property in a partially environment, a state must contain informa-
tion about current and past agent-environment interactions that can potentially
influence the future decision process [Sutton and Barto, 2018]. In particular, the
Markovian property applies only to the transition probability function and does
not apply directly to the state, otherwise the state could not memorize useful
experience to restore full observability of the environment.

Episodic MDPs In this thesis we only consider episodic MDPs, also known
as finite-horizon MDPs which involve a finite sequence of agent-environment
interaction loops. Each interaction is a tuple of the form (s, a¢, S¢11,7¢4+1). An
agent is reseted after a given number of time steps called horizon T. A full
interaction sequence constitutes a trajectory (a.k.a. episode or rollout) defined as:

T =S¢, a9, 1, S1, --., ar7-1, T, ST

The return The return is the future cumulative discounted rewards. In episodic
MDPs, the return corresponds to the sum of rewards obtained so far, discounted
by how far in the future they are obtained:

T
G&) 2 (25)
k=t+1
where 7 € [0, 1] is the discount factor. Literally the discount factor defines how
much preference is given to recent rewards over older ones. As we know, the RL
goal is to learn an optimal policy that maximizes the expected return, which can
be defined as:
J(m) 2 E [G|mr] =) un(s) Y m(als)R(s,a) (26)
s€S acA
where E [-|7t] is the expectation of a random variable conditionned by the policy
7t which the agent follows, and i is the stationary distribution under 7t (which
means that it does not depend on the time step t). Mathematically the optimal
policy is defined as follows:
. = arg max J(71) (27)

7T

Incomplete knowledge of the MDP Most of the problems addressed by RL
algorithms have incomplete knowledge of the MDP, typically the transition prob-
ability function is unknown. Being able to deal with optimal control problems
with different degrees of knowledge about the environment is one of the main
advantages RL has over its dynamic programming counterpart. From a general
viewpoint, these degrees of knowledge decompose as follows:

KNOWN TRANSITION MODEL Planning, dynamic programming, and RL (in
particular model-based) may be applicable. Dynamic programming meth-
ods compute optimal policies by planning through a transition model with
Bellman equations.

23

REINFORCEMENT LEARNING

UNKNOWN TRANSITION MODEL Planning with a learned model and RL
may be applicable. According to Moerland et al. [2020], model-based RL is
a combination of planning and learning. It uses a model of transition prob-
abilities which can be known or learned, combined with a learned value
function and/or policy. On the other hand, planning with a learned model
can also be performed as a different approach to model-based RL, as it only
learns a model of the transition probabilities and performs planning with it.
On another level, model-free RL methods learn a value function and/or a
policy solely from training examples obtained from the agent-environment
interaction loops, without learning a transition model.

2.3.1.2 Key Reinforcement Learning Components

Temporal-difference (TD) learning is the main strategy on which RL relies that
allows it to adapt when the transition model is unknown. TD learning is based
on computing a value function and/or a policy with samples of past interactions
iteratively. As we have seen previously, RL algorithms are distinguished by
whether or not they use a model. Thus, RL algorithms fall into two main cate-
gories: those that are model-based and those that are model-free. Another main
level on which RL algorithms differ is whether or not the policy can be trained
with samples obtained from other policies. If it is the case, it is an off-policy RL
method. Otherwise, it is an on-policy method.

Fig. 1 shows an agent-environment interaction loop from which a RL algorithm
learns an optimal policy to maximize the expected return over trajectories. To
interact with the environment, an agent executes an action a; sampled from
the current policy, then the environment returns a state s;; and a reward r;;
determined by the unknown transition probability function P(s’,r|s, a).

The policy and (action-)value functions The two main components of TD
learning are the policy and the value function. In this thesis, we only consider
stochastic policies defined as a mapping between the current state and a condi-
tional probability on the actions:

n(als) £ Pla; = als; = s] (28)

In order to estimate the expected return, RL algorithms learn value functions.
The value function estimates the expected return of an agent starting in state s
and then following 7t [Sutton and Barto, 2018]:

Vr(s) £ E[Gt|s; =s, 7] (29)

The value function predicts how good it is for an agent to be in a state and then
following the current policy. In a similar way, the action-value function estimates
the expected return of an agent starting in state s and taking an action a and then
following the current policy:

Qnr(s,a) £ E[G|st =s,a; = a, 71] (30)

24

REINFORCEMENT LEARNING

These two functions are used to compute the optimal policy. Indeed, the optimal
value functions must produce the maximum return as follows:

Vi(s) = mglen(s)

N (31)

Q.(s,a) = mngﬂ(s, a)
Bellman equations The return (Eq. 25) can be expressed recursively with the
equation G; = ryy1 + 7 Gs41, which is essential for the formulation of Bellman
equations as recursive formulations of the value functions. Bellman equations
were designed in the dynamic programming literature by Bellman et al. [1957],
and then popularized in the RL literature by Sutton and Barto [2018]. The Bellman
equation for the value function is:

V;T(S) = lE[Gt|st =S, 7'[]
= E[R(st, a;) + YGip1|st = s, 7]

= Y n(als)) P(s'|s,a) [R(s,a) + VE [Gii1|st+1 = 8, 7]]
acA s'eS (32)

— %n(a|s) ;SP(S/ s,a)[R(s,a) + YVx(s')]
=E[R(st,ar) + yVr(se11)|st = s, 7]

Recursivity is observed here because the value function of a state is expressed
with respect to the value function on the next state. Similarly the Bellman equation
for the action-value function is:

Qr(s,a) = E[Gi|st = s,a; = a, 71]
= E[R(st,at) + vGip1|st = s, a; = a, 71|

= Y P(s'|s,a) [R(s,a) + VE [Gyy1|si41 = 8, 7] | (33)
s'eS

= E[R(st,ar) + 7Vr(si1)|st = s,ar = a, 71]

Eq. 32 is verified only with the true value function V, and for Eq. 33 with the
true action-value function Q.

Bellman optimality equations Optimal value functions must satisfy the Bell-
man optimality equation which is for the value function [Sutton and Barto, 2018]:

Vi(s) = max Q. (s,a)

=max)_ P(s'ls,a) [R(s,a) +7Vi(s')] (34)
s'eS

= max[E [R(st, ar) + yVi(se41)|st = s,a; = a|

25

REINFORCEMENT LEARNING

and similarly for the action-value function:

Q.(s,a) =) _ P(s[s,a)[R(s,a) +’ym§xQ*(s',a')}
s'eS (35)
= E[R(s, a;) + v max Q*(st+1,at+1 st =s,a; = a]
1€
These equations allow dynamic programming methods to directly find an optimal
policy, which is in itself a planning problem. However, model-free RL algorithms
do not use a transition model and therefore estimate the expectation over the
next states thanks to samples of agent-environment interaction loops. Hence the
approximation of the true value function Vy, or of the true action-value function

Q.

2.3.2 Temporal-Difference Learning

Temporal-difference (TD) learning introduced by Sutton [1988] scales very well
in optimal control problems with an incomplete knowledge of the MDP, typically
with an unknown transition model (P(s’,7|s,a)). It consists in estimating the
expectations over the next states in Bellman equations thanks to interaction
samples. Specifically, it learns the value function from its own value function
estimates denoted at the k-th iteration V}, hence the bootstrapping. The update
rule consists therefore in bringing the current value function closer to the TD
target of the Bellman equation, which corresponds to ;1 + ’)’Vk(St+1). Thus the
update rule of the value function is as follows:

Vir1(st) < Vielst) — 1 (Vk(st) — (re1 + ’Yvk(stﬂ))) (36)

similarly the update rule of the action-value function is as follows:
Qks1(st,ar) < Qu(star) — 1k <Qk(5trat) — (r1 + 7@k(5t+1,at+1))> (37)

2.3.2.1 Q-Learning: Off-policy TD control

The Q-learning algorithm is a special case of off-policy and model-free TD learn-
ing method with tabular representations (a.k.a. look-up table representations),
i.e. with discrete and finite states and actions [Watkins, 1989, Watkins and Dayan,
1992]. With tabular state and action spaces, the action-value function estimation
Q of Eq. 37 must solve the Bellman equation of the following form:

Q(st,ar) = re41 +79Q (St+1/ at+1) (38)

In order to estimate the optimal action-value function Q., Q must be optimized
to verify the following Bellman optimality equation:

Qs (St, at) =711+ Y max Qs (St+1/ at+1) (39)

€

26

REINFORCEMENT LEARNING

In simple terms, to find the best action, the Q-learning algorithm must maximize
the expected return over the next actions a; 1, which is guaranteed by the optimal
action-value function Q.. The update rule of Q-learning is then as follows:

Qg+1(st,ar) « Qx(st, ar) — 1 (Qk(st, ar) — (res1 +y ma&Qk(sm,am)))
ar1
(40)

where 1,41 + 7 ma>§4 /Q\k(St+1, a; 1) is the TD target. Watkins and Dayan [1992]
1€

theoretically guarantee that Q-learning converges to the optimal action-value
function under mild conditions on the state and action spaces. In addition, all
actions and states must be infinitely sampled and the same Robbins-Monro’s
condition (see Eq. 7) on the learning rate must be satisfied. Once the system
has estimated the optimal value function, it can use it to approximate the cor-
responding optimal policy which takes actions that maximize Q. as follows:

7 (s¢) = arg max Qx (s¢, at) (41)
a;eA

2.3.2.2 Deep Q-Network (DQN)

We know from Section 2.1.1 that when the dimensionality of the state and/or
action spaces increase, the number of computations and the memory increase
exponentially: it is the curse of dimensionality. In particular, the table of an action-
value function cannot store all the state-action pairs. When states and actions
are too large to be represented in lookup tables, or when they are continuous, it
is necessary to be able to generalize across these large spaces. This is why RL
combines with function approximation, as well as the dynamic programming
that gave the field of approximate dynamic programming (ADP) its name.

The advantage of these approaches lies in the fact that the parameter set
(denoted 0) of an approximator is much smaller than the number of possible state-
action pairs. When function approximation is used, the value function and/or
the policy are approximated as parametric mappings. There are a wide variety
of approximators such as polynomials, wavelets, discretization-interpolation
approaches and neural networks [Sutton and Barto, 2018]. RL methods have gone
through a few iterations before they could scale to control tasks with continuous
state spaces of only a dozen dimensions. Tesauro [1992] proposed for the first
time to combine deep neural networks with TD learning [Sutton, 1988] using
the stochastic gradient descent algorithm [Robbins and Monro, 1951]. Since
stochastic gradient descent has a low computational cost per iteration, it allows
to scale-up RL algorithms to high cardinality regimes. Later, Riedmiller [2005]
applied this technique to Q-learning, followed by [Mnih et al., 2015] who used
CNNis to scale it to image observations, known as DQN (Deep Q-Network).

27

REINFORCEMENT LEARNING

RL algorithms that combine function approximation with bootstrapping and

off-policy generally suffer from instability and divergence convergence issues.

This problem is well known as the deadly triad [Sutton and Barto, 2018]. Of these
three, the function approximation is the most essential. Bootstrapping is useful
to increase computational and sample efficiencies. Indeed, Monte Carlo methods
that avoid bootstrapping require a lot of memory to store the complete episodes
before performing any iteration. According to Sutton and Barto [2018], a key
element to enable good bootstrapping is a good state representation. Indeed,
states must verify certain properties for TD learning to work on incomplete
episodes [Penedones et al., 2018]. Hence, the success of RL algorithms is related
to the quality of the state space.

Off-policy learning is a way to draw training examples from a much broader
distribution of the transition model underlying the environment rather than
being limited to the current policy. Specifically, instead of following a unique
distribution whose samples are necessarily correlated during the policy training
process, off-policy learning draws samples from a multitude of distributions.

In addition to the deadly triad, another problem concerns the failure of two of
the Robbins-Monro conditions for the stochastic gradient descent algorithm to
converge. The first condition that true target function predictions are available
is broken. This is why TD learning methods use their own target function
predictions (known as the TD targets) based on estimates of their current value
function, i.e. they bootstrap. The second condition that the training examples
are drawn in an i.i.d. manner? is broken. On the one hand, since the samples are
drawn successively in a same episode, the independent sampling property is not
verified. On the other hand, since the samples depend on the exploration policy
which changes during the learning process, the identical sampling property is
violated.

Mnih et al. [2015] tend to reduce bootstrapping and non-i.i.d. sampling with
two tricks. The first trick consists in bringing the training distribution closer to
the i.i.d. hypothesis thanks to the experience replay buffer technique introduced
by [Lin, 1992]. Indeed, a replay buffer stores the previous episodes in order to
randomly draw training examples. The second trick is to stabilize the target
function predictions by delaying updates of the target value function used in the
TD targets. To do this, the parameters of the target value function are obtained as
an exponentially moving average of the current value function parameters.

The main elements of DQN as well as other RL algorithms with neural network
approximators are as follows. As in the tabular case, the target function prediction
is formed by the TD target which corresponds to the right-hand side of the
Bellman optimality equation (Eq. 39), defined as follows:

Yyt =T1+Y magilQef (St+1,a441) (42)

a1

4 (iid. = independently and identically distributed)

28

REINFORCEMENT LEARNING

where 07 is the parameter set of the target value function. In order to optimize the
parameterized action-value function Qg, to approximate the optimal action-value
function, the DQN algorithm minimizes the following TD error:

0(Qo,(st,ar),yt) = (Qo,(st,ar) — yt)2 (43)

Here the update rule is transformed into a stochastic gradient descent update
rule to minimize the TD error:

1 B
Orp1 < Ok — 1B, D= B Y Vol(Qe,(si, a;,), vi,) (44)
b—1

where k is an iteration index, i, ~ Un(1, N) is a uniform index parsing the
N-cardinality training dataset® in small mini-batches of size B.

2.3.3 Policy Gradient

Pure TD learning algorithms follow the strategy to learn an (action-)value func-
tion to compute an optimal policy. Policy gradient algorithms instead directly
learn a parametrized optimal policy denoted 7rg(als). We know that the goal of
RL algorithms is to find an optimal policy which maximizes the expected return
(Eq. 26). In this context, the expected return corresponds to the objective function
which depends on the policy parameters 6 and is defined as:

](9) Gf|7‘(9 Z]lg Z 7Tg a|) (45)

seS acA

where g is the stationary distribution under 7y (which means that it does not
depend on the time step t). It can be estimated with the value function as:

~) 1o(s)Ve(s) (46)

seS

and similarly with the action-value function as:

~) 1o(s)) me(als)Qe(s a) (47)

seS acA

where Vy and Qg are respectively the value function and action-value function
under 77g. Policy gradient methods approximate an optimal policy directly by
gradient ascent on J(0). According to Sutton and Barto [2018], policy gradient
methods are supposed to better circumvent the curse of dimensionality because
they provide a better convergence stability. Indeed the probability of choosing an
action with the policy changes smoothly, whereas the action-value function may
change smoothly but cause irregular changes in the action probabilities. So policy
methods have stronger convergence guarantees than action-value methods.

5 The training dataset is embodied by a replay buffer.

29

REINFORCEMENT LEARNING

2.3.3.1 Policy Gradient Theorem

In order to compute the objective function gradient V] (0) it is necessary to
disambiguate its dependence on the action selection probabilities determined by
79, and on the stationary state distribution under the exploration policy pg(s)
(depending on 719). However, since the stationary state distribution is a function
of the transition model which is unknown, a policy gradient method must ignore
it in order to compute V] (0). The policy gradient theorem allows us to express
an estimate of VJ(6) without the dependence on the stationary state distribution
as follows [Sutton and Barto, 2018]:

Vo] (0 (Z uo(s) Y mo(als)Qe(s, a))

seS acA

o Y ue(s) Y Vomg(als)Qo(s, a)

seS acA

(48)

where the approximation made is proportional to the true V,J(6) and provided
that ug is the on-policy distribution under 7.

2.3.3.2 Soft Actor-Critic (SAC)

SAC (Soft Actor-Critic [Haarnoja et al., 2018b]) with automatic temperature
tuning is the algorithm we use in our experiments to evaluate the performance
from different types of state representation. It is according to Haarnoja et al.
[2018b] well suited for continuous optimal control problems, achieving state-of-
the-art performance and even better stability. This explains why we have chosen
this method rather than another one, namely DDPG [Lillicrap et al., 2015]. It
belongs to the off-policy actor-critic methods with maximum entropy, whose most
recent origin is soft Q-learning [Haarnoja et al., 2017]. An actor-critic method is a
policy gradient method which learns in addition to the policy an action-value
function.

SAC introduced by Haarnoja et al. [2018a] consists in adding an estimated
entropy of the policy conditioned on the state in the objective function. Moreover,
the coefficient that regulates this term called the temperature, is automatically ad-
justed in the SAC extension proposed by Haarnoja et al. [2018b]. This eliminates
the need to tune the temperature during training (as the policy improves) and
over different environments. This new objective function is intended to encourage
exploration, as it should make the policy as random as possible while successfully
completing the task. According to Haarnoja et al. [2018b], this should improve
convergence stability, hence their better results compared to other state-of-the-art
methods such as DDPG [Lillicrap et al., 2015].

The goal of SAC is to maximize the following objective function:

=Y mo(s)) mo(als) [R(s,a) + at (me(-]s))] (49)

seS acA

30

REINFORCEMENT LEARNING

where « is the temperature, and H is the entropy measure which is defined as:

H(me(:[s)) = — Z 1g(s) Z mtp(als)log(rtg(als)) (50)

seS acA

Haarnoja et al. [2018a] propose to restrict the policy to a Gaussian distribution.
To do this, a network predicts a mean vector p; and the diagonal covariance
elements of a covariance matrix X allowing to parameterize the policy as:

m(aslse) = N (pr(si), Zn(st)) (51)

where 6 = {0,,0x}. Haarnoja et al. [2018a] use the reparametrization trick
[Kingma and Welling, 2014] to sample actions from the policy (i.e. a] ~ 7(at|s¢))
in order to keep all its parameters differentiable as follows:

af £ pin(s) + e X Zn(s) , e~ N (04, La,) (52)

In order to maximize J(6), Haarnoja et al. [2018a] propose to minimize the
Kullback-Leibler divergence between the policy and the exponential soft action-
value function (ignoring the normalization term which is independent of the policy
parameters) expressed as:

J=(8) £ Die. (o (-[se) [exp (2 Qust,-)))

i (at|st)
& Esiopg |1 53
2ty log <exp(%Qw(St, at)))] Y
o IE:?%% [alog (7me(at[st)) — Qu (st at)]

The estimated gradient of this objective function V] (6) and the update rule for
the stochastic gradient descent are then defined as follows:

1

B
estimated gradient: (Ay); = B Y Vglalog(m(aj,ls;,)) — Quw(si,, ai,)]
b=1

update rule: 6,1 < 0 — 7k (Ax)k
(54)

where k is an iteration index, i, ~ Un(1, N) is a uniform index parsing the N-
cardinality training dataset in small mini-batches of size B. SAC such as DQN,
builds its training dataset with a replay buffer.

Then Haarnoja et al. [2018a] learn a soft action-value function Q,, parameterized
by w to verify the following soft Bellman optimality equation:

Qu(st,ar) = ryg1 + YBspi~pg [Qs(St41,ar41) — alog(7e(ar1[se41))] (55)

a4 1~7g

Qu is trained to minimize the following TD error:

Jo(w) 2 Esiopp [Qu (st ar) — Qu(st, ar)]? (56)

ar~7tg

31

REINFORCEMENT LEARNING

The estimated gradient of this objective function V,Jo(w) and the update rule
for the stochastic gradient descent are defined as follows:

: : 1$
estimated gradient: (Ag)x = B Y Vi (Qul(si, a,) — y,-b)2 57)
b=1

update rule: wyi1 < wi — y(AQ)k

where y;, = 1i, 41+ 7 [Quw- (8i,+1,ai,+1) — alog(7e(aj,+1si,+1))] and w™ is the
parameter set of the target action-value function which is obtained as an expo-
nentially moving average of the soft action-value function parameters (in order
to mitigate bootstrapping), as with DQN [Mnih et al., 2015].

To automatically tune the temperature, Haarnoja et al. [2018b] propose to ap-
proximate the policy with a constraint optimization. It is formed by a minimum
policy entropy threshold denoted H such that H (7e(-|s)) > . They use the
Lagrangian to transpose this constrained optimization into the previously pre-
sented policy and soft actor-critic optimizations, with an additional optimization
process for the dual variable (i.e. the temperature). This third optimization must
minimize the following objective function:

]zx (Dét) e]EathB [—(xtlog(ne(at\st)) — Oéﬂ:q (58)
The estimated gradient of this objective function V], (a;) and the update rule

for the stochastic gradient descent are defined as follows:

B
estimated gradient: (A,), = zxk% Y Vo[—log(me(ay,lsi,)) — H] 59)
b=1

update rule: a1 < 0 — 17x(An)k

32

STATE REPRESENTATIONS FOR REINFORCEMENT
LEARNING

Well-connected representations let
you turn ideas around in your mind,
to envision things from many
perspectives until you find one that
works for you. And that’s what we
mean by thinking!

Marvin Minsky in Will Robots
Inherit the Earth?, 1994

3.1 INTRODUCTION

The challenge of representing high-dimensional data occupies a key place in
machine learning. Finding representations boils down to finding patterns in
these data. It is an essential prerequisite for any of the machine learning systems
we envision. On the one hand, proper representations do not require much
further processing and simple decision mechanisms are sufficient to achieve good
results. On the other hand, poor representations require additional task-specific
knowledge to achieve good results.

Knowing how to represent data is an essential skill that helps solving many
mathematical and engineering problems. Traditionally, researchers seperate fea-
ture extraction and automatic decision making tasks into two distinct problems
[Schmidhuber, 2015]. In particular, in reinforcement learning (RL) when only a
sensory measurement is available instead of a state, it is recommended to first
solve a state estimation problem which could correspond to a feature extraction
problem. A proper feature extractor involves discovering patterns and relation-
ships within data in order to communicate them as meaningful representations
to help future learning systems. Indeed, systems must be able to interpret and
analyze data in order to make useful predictions. Different representations from
the same data can convey different information. Thus, a conceptor has to devise
an appropriate representation for each automatic decision making task under
consideration. In general, this means reducing the data dimensionality by fo-
cusing on useful information and neglecting unnecessary information (such as
distractors) with respect to the task at hand, and of course reducing redundancy.

33

INTRODUCTION

The current century is undoubtedly one in which data plays a key role in
mathematical discoveries [Donoho et al., 2000, Bottou, 2015]. This is due to the
easier collection of data in large quantities, which gives rise to the large-scale
context. The major change due to the large-scale setting, is however not based on
the increase of data cardinality N, but on the increase of data dimensionality D.
In traditional data analysis settings, the input variables are carefully designed by
human experts, resulting in reasonable D values. Instead, in the large-scale set-
tings observations come from various sensors (e.g. visual sensors, motor sensors,
contact sensors, radar sensors), and thus are composed of many more variables,
hence the increase of data dimensionality. In addition, these variables are usually
corrupted by noise from various error sources. This is why in large-scale settings
it is much more complex to circumvent the curse of dimensionality which leads
to unbounded computational and storage complexity (see Section 2.1.1). The
general strategy is to apply dimensionality reduction techniques which involve
transforming observations into smaller representations to reduce redundancy
and noise in sensory measurements.

Moving from traditional statistical methods to sophisticated learning methods,
the machine learning literature tends to show that deep neural networks are
very efficient for dimensionality reduction [Bengio et al., 2007, Ur Rehman et al.,
2016]. These techniques are either applied to reduce observation dimension
immediately or are customized to solve specific problems. The latter approach
allows a context-aware analysis of data stream in the learning pipelines. In the
particular case of RL systems, this amounts to extract features from the agent’s
observation in order to approximate a value function and/or a policy. Specifically,
it must extract features based on the transition probabilities of the environment
through agent-environment interaction loops.

3.1.1 Dimensionality Reduction

Representation learning is a long-standing problem in machine learning which is
one of the main goal of unsupervised learning [Bengio et al., 2013a, LeCun et al.,
2015]. Dimensionality reduction is the process of mapping a high-dimensional
data space to a new low-dimensional space acting as an embedding. This space
can also be called depending on the context, code space, feature space, bottleneck, or
state space. Many RL approaches use data compression-decompression techniques
to perform dimensionality reduction [Schmidhuber, 2015]. Indeed, this unsuper-
vised learning approach extracts features from data with greater relevance and
autonomy than feature engineering approaches that require task-specific knowl-
edge [Kober et al., 2013]. These dimensionality reduction techniques may be
integrated into a RL system to improve its computational speed and performance
[Bohmer et al., 2015, Schmidhuber, 2015].

A fundamental hypothesis of machine learning is that data distributions live
in a lower d-dimensional manifold than the much higher D-dimensional data

34

INTRODUCTION 35

space (i.e. d << D) [Cayton, 2005, Bishop, 2006, Bengio et al., 2007, Murphy,
2012]. A classical pedagogical example consists in the i.i.d.! uniform sampling of
each pixel of an image: it inevitably produces meaningless images. In fact, even
complex data such as images lie on a manifold of lower intrinsic dimensional-
ity than their dimensionality (which is the number of pixels multiplied by the
number of channels). All dimensionality reduction methods are based on this
low-dimensional manifold hypothesis for data.

One of the first methods proposed was PCA (Principal Component Analysis
[Pearson, 1901]). This method finds a linear projection of the data space to a
lower-dimensional space corresponding to the data compression. This projec-
tion is such that it minimizes the quadratic reconstruction error between the
decompressed code and the original data. Moreover, this projection transforms
correlated observations into linearly uncorrelated representations. Indeed, the
tirst dimension of the code space, called the first principal component, captures
the maximum variance of the data. This is followed by the other principal compo-
nents, each capturing the maximum variance uncorrelated with all the previous
components. This technique was successfully used as a state embedding strategy
for RL systems. For example Curran et al. [2016] has used PCA to reduce a visual
data space from many demonstrations to extract a low-dimensional state space.

However, feature extraction techniques based on data covariance (such as
PCA or factor analysis) do not necessarily produce useful features on a dataset
obtained from transitions of a control system, as they may lose their physical
meaning [Rao, 1999]. Indeed, the most important features in this case are clearly
those that correlate with the changes between transitions, which generally do
not coincide with the directions of greatest variation in the dataset. In particular,
PCA and factor analysis are more adapted to non-time series data.

The hypothesis that data points lie on manifolds of low intrinsic dimension
embedded in the high-dimensional data space is at the basis of the manifold
learning approaches that have attracted the attention of many machine learning
researchers [Narayanan and Mitter, 2010, Bengio et al., 2013b, Chui and Mhaskar,
2018]. The machine learning literature tends to prove that it is generally impos-
sible to find a linear mapping between high-dimensional data and manifolds
[Bengio et al., 2007, 2013b]. This is why researchers propose nonlinear methods
to retrieve subtle information from the data stream to find a low-dimensional
representation of the data.

The PCA traditional method was then extended in two nonlinear versions: (i)
the kernel PCA [Scholkopf et al., 1998] which models a projection with kernel
evaluations in a Reproducing Kernel Hilbert Space (RKHS), (ii) the autoencoder
[Bourlard and Kamp, 1988, Kramer, 1991, Vincent et al., 2010] which models
the projection by two neural networks for compression and decompression.
An encoder is the part of the autoencoder which compresses the data, and the
decoder is the part that decompresses it so as to minimize the reconstruction

1 iid. = independently and identically distributed

INTRODUCTION

objective. We believe the principle on which deep learning systems are able to
solve this problem of reorganizing manifold information is based on the blessings
of dimensionality [Donoho et al., 2000] and the blessing of compositionnality [Poggio
and Liao, 2018].

Autoencoders have proven to be one of the most efficient techniques for com-
pressing data [Vincent et al., 2010]. We recall that data compression is a special
case of dimensionality reduction where the original data can be reconstructed
from the code space without too many information loss. In the RL context, au-
toencoders can be used as a state estimator in a rewardless environment. For
example, Lange and Riedmiller [2010] first applied this approach to NFQ (neural
titted Q-learning algorithm [Riedmiller, 2005]). [Lange and Riedmiller, 2010] is
one of the first approaches to solve a deep RL problem from visual observations
with a state representation learning strategy. This illustrates the difference in per-
formance gain that is achieved by reducing dimensionality and better structuring
information from data in a pretraining phase to later solve RL tasks, whereas
learning in an end-to-end fashion is much more computationally inefficient. In-
deed, applying directly deep RL algorithms to visual data streams is only possible
since the breakthrough of convolutional neural networks [Mnih et al., 2013, 2015].

GANSs (Generative Adversarial Networks [Goodfellow et al., 2014]) consist
of a minimax game between a generator neural network on the one hand, and
a discriminator (a.k.a. critic) neural network on the other hand, in order to
generate data (from noise variables following some prior distribution) that the
discriminator must not distinguish from the real data. This extended in multiple
variants like AAE (Adversarial Autoencoders [Makhzani et al., 2015]), InfoGAN
(Information maximizing Generative Adversarial Networks [Chen et al., 2016]),
ALI (Adversarially Learned Inference [Dumoulin et al., 2017]), and BiGAN (Bidi-
rectional Generative Adversarial Network [Donahue et al., 2017]). These four
methods transform an autoencoder into a generative model, which means that
they also learn an encoder and a decoder that map data to code space and vice
versa. This compression approach may help reduce data dimensionality in the RL
context. For example Shelhamer et al. [2017] use BIGAN to learn state estimators.

As confirmed by previous works, such dimensionality reduction methods to
build a state estimator may help RL systems [Lange and Riedmiller, 2010, Lange
et al., 2012]. However, dimensionality reduction performed with observation re-
construction, may not match the space where the actual RL is performed [Bohmer
et al., 2015, Shelhamer et al., 2017]. Indeed, the training process does not take into
account the physical world information (specifically the transition probabilities),
useful for an agent’s control. For example, these methods remove redundant
information, but can also lose nonredundant information from environment tran-
sitions as empirically confirmed by many authors [Watter et al., 2015, Bohmer
et al., 2015, Lesort et al., 2018, de Bruin et al., 2018]. Specifically, the informa-
tion lost during data compression could have been useful to approximate target
functions such as (action-)value functions and/or a policy. As a consequence,

36

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

these classical dimensionality reduction methods tend to perform poorly with
RL systems in practice.

Another dimensionality reduction approach is SFA (Slow Feature Analysis
[Wiskott and Sejnowski, 2002]), which is as the compression-decompression
approach an unsupervised learning technique. In addition to the low-intrinsic
dimensionality hypothesis of a manifold, it makes the slowness hypothesis.
Specifically it decomposes data with respect to different time scales. In other
words, it amounts to making temporally close data samples similar in the learned
state space. This approach is efficient to learn state representations from high-
dimensional sensory data for RL, as proved by these extensions of the original SFA
technique [Wiskott and Sejnowski, 2002]: IncSFA (Incremental SFA Kompella
et al. [2011a]), H-IncSFA (Hierarchical IncSFA Legenstein et al. [2010]), and
AutoIncSFA by (Autoencoder IncSFA Kompella et al. [2011b]). AutoIncSFA
proposes a combination of the best of the autoencoder and IncSFA by training an
IncSFA on top of the compressed data to extract abstract spatio-temporal features
for state estimation.

3.2 SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

Our goal is to show that end-to-end deep RL (DRL) has limitations for large-scale
tasks studied in this thesis, i.e. with a continuous action space and a high-
dimensional observation space?. Although the assertion that this end-to-end
strategy is unsuitable remains unproven, in this thesis we study an alternative
to solve such control tasks — state representation learning (SRL). SRL is a way to
simplify end-to-end DRL optimization problems, by first solving the problem
of learning state representations in a rewardless environment, which we will
explain in Section 3.3.

The unsupervised representation learning techniques presented in Section 3.1.1,
based on dimensionality reduction, correspond to the first SRL methods. They
were essential for the early applications of RL in robotics [Lange and Riedmiller,
2010, Legenstein et al., 2010] by bypassing the curse of dimensionality. However,
these applications used toy control tasks, for example a pixelized grid-world
(with 30 x 30 images) [Lange and Riedmiller, 2010], a visual slot car racer task
(with 52 x 80 images) [Lange et al., 2012], and a “Morris water maze task” (with
155 x 155 images) [Legenstein et al., 2010]. In general, it is not the image input
dimensions which make the task difficult (e.g. the images have 155 x 155 dimen-
sions for the task studied by Legenstein et al. [2010]), but the intrinsic dimensions
of the manifolds underlying the data space, and also the dimension of the contin-
uous action space. Although these previous methods of dimensionality reduction
have allowed to gain in autonomy with respect to traditional feature engineering

2 In this thesis we focus on control tasks with image observations which are predominant in the
literature, however other sensory observations may be used.

37

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

techniques, they are still limited in terms of generalization capacity [Jaderberg
et al., 2017, Shelhamer et al., 2017].

It is therefore necessary to further improve the performance of SRL methods
in order to apply them to large-scale control tasks®. The ubiquitous strategy for
this is to take advantage of recent advances in deep learning to approximate
high-dimensional target functions. Thanks to the data-driven principle on which
the Machine learning is based, deep learning techniques can take full advantage
of many computational improvements to remove the human expert from the loop
of the problem solving process. Indeed, the human work required to implement
algorithms with deep learning is typically reduced to the design of different
modules in a neural network model, as well as their architectures and other
training hyperparameters (see Section 2.2).

The ability to perform both representation learning while solving an automatic
decision making task belongs to the popular end-to-end training trend. It has
been popularized by Krizhevsky et al. [2012] for image classification, and has
subsequently been widely studied across all the machine learning domains: from
image detection [Szegedy et al., 2015], image representation [Zhang et al., 2017b],
image generation [Goodfellow et al., 2014], image deblurring [Eboli et al., 2020],
etc. [Jordan and Mitchell, 2015]. On the control theory side, Mnih et al. [2013]
popularized the combination of DRL techniques with end-to-end training, giving
rise to many new DRL algorithms until today [Kostrikov et al., 2020].

3.2.1 Pros and Cons of End-to-End Deep Reinforcement Learning

In what follows, we outline the pros and cons of end-to-end DRL. This list
is certainly not exhaustive, and is intended to provide an overview of how
we perceive this approach to solve the large-scale tasks studied in this thesis.
However, it is not our intention to judge it on the basis of arguments that weigh
more on one side than the other. The objective is to explain the reason that
pushes us with large-scale tasks, to use an approach opposite to that of end-to-
end training. This approach, chosen as the object of study for this thesis, is the
one proposed by state representation learning (SRL), which generally uses deep
learning techniques in order to automate the feature engineering process just
like the end-to-end approach. In contrast, SRL differs by the fact that it uses an
independent training from the control task and without reward.

3.2.1.1 Pros of End-to-End Deep Reinforcement Learning

The first merit is based on the capacity of deep learning systems to approximate
high-dimensional functions [Glasmachers, 2017]. This is mainly possible thanks

In this thesis we study the most common scaling of RL algorithms. It concerns control tasks in
simulation with continuous action spaces with no more than ten dimensions, and continuous
observation spaces formed by visual sensory measurements of thousands of dimensions.

38

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

to their capacity to compactly retrieve the hidden variables underlying the obser-
vations as explained by Bengio et al. [2007]. End-to-end DRL uses this capacity to
simultaneously represent data and approximate a value function and/or a policy.
In particular, their models are composed of different modules, with a main one
serving as the state representation module, and one or two others to approximate
a value function and/or a policy. Traditionally, an input processing module was
designed using state estimation techniques such as the Kalman filter [Kalman,
1960b] or SLAM techniques [Bailey and Durrant-Whyte, 2006a,b] which require
expert-based knowledge, or using feature engineering methods such as SIFT
[Lowe, 1999] or SURF [Bay et al., 2006] which require task-specific knowledge.
This module was then used to train the rest of a RL model to solve an automatic
decision making task. Thus, in end-to-end DRL systems, deep learning eliminates
the tedious phase of the task-specific feature engineering process, in a manner
suitable to the RL context [Kober et al., 2013, Arulkumaran et al., 2017].

The second merit stems from the previous one, which is the fact that end-to-
end training of a whole model tends towards a sole goal [Silver et al., 2021]. In
other words, the formulation of this problem fits harmoniously with the data-
driven learning principle on which the Machine learning is based [Glasmachers,
2017]. Specifically, the optimization problem is only based on the maximization
of rewards. According to the hypothesis of Silver et al. [2021], this is enough for
agents to achieve knowledge, learning, perception, etc. However, this remains a
controversial point as it has not yet been possible to realize such applications.

Due to the merits listed first by Glasmachers [2017], the end-to-end training
approach has gained popularity in the RL community to solve large-scale control
tasks (especially image-based). These merits were first reflected with discrete-
action tasks on the ALE benchmark (Arcade Learning Environment [Bellemare
etal., 2013]) with the DON (Deep Q-Network [Mnih et al., 2013]) algorithm. These
end-to-end approaches have particularly benefited from stochastic optimization
techniques specific to supervised learning, as explained in Section 2.3.2.2. DQN
is a pillar in the RL field, as it is the first DRL algorithm to be able to approximate
a value function directly from the visual sensory flow of an agent.

However, the end-to-end approach took several years before it could be applied
on continuous control tasks from visual inputs. These tasks correspond to those
studied in this thesis. Moreover, while the first methods of end-to-end DRL in
continuous robotics often apply to manipulation tasks [Levine et al., 2016, 2018],
we focus on different tasks of varying difficulty in terms of partial observability
and controllability. It is only a few years later that Tassa et al. [2018] propose the
tirst benchmark of such control tasks, called DeepMind Control Suite (DMCon-
trol), on the MuJoCo physic simulator [Todorov et al., 2012]. The observation
space in each environment can correspond to the output of a camera tracking the
robot; or the traditional low-dimensional (dozens of dimensions) ground truth
state composed of the angular positions and velocities of the robot’s articulations
(or joints) and some of his cartesian coordinates.

39

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

Prior to the DMControl benchmark, Brockman et al. [2016] proposed the Ope-
nAI Gym benchmark including most of the DMControl tasks (also on the MuJoCo
simulator) and other tasks. However, it only provides by default compact vector
observations. This implies that the majority of works evaluated on this bench-
mark do not fit into the large-scale setting studied in this thesis [Duan et al,,
2016, Schulman et al., 2017]. On the other side, despite their low-dimensional
observation spaces, these MuJoCo benchmark tasks are particularly complex to
solve since the dimensions of the action spaces and the degrees of freedom of
robots are relatively high. This explains, why it is so difficult for deep learning
systems to approximate a value function and/or a policy, even with compact
vector observations. In order to solve these complex tasks, the DRL community
has proposed many new algorithms [Lillicrap et al., 2015, Barth-Maron et al., 2018,
Haarnoja et al., 2018b]. Some of these algorithmic enhancements for RL have led
to promising performance when the camera is used in place of the ground truth
state on DMControl benchmark tasks [Tassa et al., 2018], especially with D4PG
(Distributed Distributional Deep Deterministic Policy Gradient [Barth-Maron
et al., 2018]).

3.2.1.2 Cons of End-to-End Deep Reinforcement Learning

In what follows, we present the limitations of end-to-end DRL, which have been
pointed out in particular by Glasmachers [2017], Stoica et al. [2017], Stinderhauf
et al. [2018].

The first limitation concerns the learning signal used to jointly train modules
with different roles in a DRL model. According to Glasmachers [2017], training
a module with an inappropriate learning signal may hinder the overall model
training. This is particularly the case when a module dealing with visual inputs
(called state representation module) is trained with very different modules re-
sponsible for approximating a value function and/or a policy, based on rewards.
Indeed, rewards may be sparse, contain little information, and be delayed (the
longer the horizon of the task, the more it is delayed).

The second limitation is that end-to-end training of a DRL model cannot
explicitly take advantage of the role the conceptor has assigned to each of its
modules [Glasmachers, 2017]. Indeed, the conceptor of a RL model, generally
chooses one module to process the visual inputs (often a CNN), and one or
two modules to approximate a value function and/or a policy (often a MLP).
According to Glasmachers [2017], this can affect the success of the optimization
problem, as the modules may interact with each other in a noxious way. This is
particularly the case when the state embedding module has overfitted on the first
training observations. Indeed, deep neural networks are particularly prone to
be attracted to poor local optima due to their non-convexity [Erhan et al., 2010].
Therefore, the more modules there are, the more likely it is that a module will get
stuck in one of them and thus hinder the training of the rest of the model.

40

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS 41

The third limitation is the instability and slow convergence of their optimiza-
tion problems. Instability is mainly caused by non-convex objective functions
due to the nature of deep neural networks [Bengio et al., 2007]. As a consequence,
the landscape of the objective function is full of many local optima, most of which
have poor generalization performance. Thus, in spite of the efficiency of the
stochastic gradient descent to find a solution that can generalize to a large dataset,
it may quickly get stuck in one of these poor local minima. In other words, the
neural network risks overfitting on the first training examples [Erhan et al., 2010].
Slow convergence is mainly caused by ill-conditioning due to rank-deficient
Jacobians* of deep neural networks [Saarinen et al., 1993]. This makes them data
intensive, i.e. they have a low sample efficiency.

The fourth limitation, is the lack of interpretability of the modular functioning
of their models on control tasks, even if the overall functioning remains mys-
terious because of black box neural networks [Busoniu et al., 2018, Li, 2018].
Furthermore, according to Busoniu et al. [2018], when learning end-to-end a
value function, it encodes the whole transition model underlying the environ-
ment without discovering its parameters. The lack of interpretability to the point
that even the role of each module is imprecise, makes end-to-end DRL models
difficult to apply in the real world [Stoica et al., 2017] where systems must comply
with very strict safety regulations if there is a risk to humans. However, this is
impossible in the current state of our means to interpret DRL systems, as well
as to explain their decisions (which is well explained by Stoica et al. [2017], who
propose a view of systems challenges for artificial intelligence).

The first three limitations of end-to-end DRL algorithms listed above, tend to
make the convergence of an optimization algorithm slow and unstable. Even
in spite of efforts to circumvent the curse of dimensionality by reducing the
dimension through the state embedding (for example, Tassa et al. [2018] use an
output dimension of 50 for all their DMControl benchmark tasks), training simul-
taneously multiple modules may fail. Indeed, since these optimization problems
are subject to overfitting and slow convergence, it seems more challenging to
circumvent the curse of dimensionality in this context. Moreover, they are all
the more complex the higher the dimension of the actions, and the longer the
horizon of the task.

To address these problems, works in end-to-end DRL have recently taken
advantage of data augmentation techniques commonly used in computer vision
tasks, which act as regularizers [Laskin et al., 2020, Kostrikov et al., 2020]. Laskin
et al. [2020] use a simple data augmentation technique which is random image
translations (and random amplitude scaling), without modifying the DRL algo-
rithms (which are SAC [Haarnoja et al., 2018b] and PPO [Schulman et al., 2017]).
In contrast, Kostrikov et al. [2020] use random cropping (among others) and reg-
ularized Q-functions with consequent modifications to the SAC algorithm. These
two end-to-end DRL algorithms are evaluated on the DMControl benchmark

4 A Jacobian is rank-deficient as soon as it has two almost linearly dependent columns.

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

tasks [Tassa et al., 2018] from images, and achieve the same performances as
when ground truth states are used.

However, these successful performances remain inefficient in terms of sample
efficiency as pointed out in particular by Srinivas et al. [2020]. Therefore, we
need to develop other alternatives to end-to-end DRL approaches if we are to
extend RL algorithms to real-world control tasks, such as robotics. Indeed, the
conditions in robotics are different because of the limited availability of data. It is
therefore necessary to find solutions to the convergence issues (i.e. unstable and
slow) encountered by RL algorithms.

The limitations of end-to-end DRL are still little studied in the literature.
Among these rare studies, that of Glasmachers [2017] has made it possible to
show, through a detailed empirical analysis, the limitations listed above. In order
to highlight only the complexity of end-to-end training and not the complexity of
the task, they used toy tasks in their experiments, in the contexts of supervised
learning and RL. Their studies focus in particular on the phenomena of depen-
dencies between modules (like representation learning and memory formation)
of a deep learning system during their joint training. Their results tend to show
that these phenomena are one of the main causes of the poor performance of
these approaches. Indeed, the joint end-to-end training of several modules can
often collapse. In addition, they achieve better performance with modules that
are properly pretrained individually and then frozen to train the rest of models.
Although these results are by no means conclusive, they do suggest that training
models consisting of several modules (as with the end-to-end DRL strategy) may
benefit from pretraining one or more of their modules.

3.2.2 Potential Solutions

We have previously reviewed four main limitations of end-to-end DRL. The main
objective of this section, is to introduce solutions to this end-to-end approach, in
order to scale RL algorithms to continuous control tasks with high-dimensional
sensory inputs. Although there are many domains that propose solutions to this
approach, we focus on those that deal with improving the state representation
process. In this category there are two mains strategies. The first is known as RL
with auxiliary tasks which are specific to train state embeddings. However, it still
trains the model in an end-to-end manner, including the module(s) of the value
function and/or the policy, unlike the second approach. The second constitutes
our field of study, — state representation learning (SRL) —, which solves the state
representation problem independently of the RL problem, i.e. in the manner of
an unsupervised state embedding pretraining without reward for RL.

42

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

3.2.2.1 Reinforcement Learning with Auxiliary Tasks

RL with auxiliary tasks, which aim at improving the state representation pro-
cess, can be divided into two main categories. The first is placed under the
perspective of learning the dynamics in a compact latent space, with in particular
model-based RL algorithms. Here, the auxiliary tasks train a transition model
simultaneously with a state embedding. The second is placed under the perspec-
tive of model-free RL. Here, the auxiliary tasks focus on the state representation
training from which the value function and/or the policy of the model-free RL
algorithm are learned.

We now review some of the works from the perspective of model-free RL. Their
auxiliary tasks are often borrowed from the self-supervised techniques used in
unsupervised learning, without necessarily being related to the control task. This
is particularly the case for auxiliary tasks based on constrative learning [Dwibedi
et al., 2018, Srinivas et al., 2020]. Other auxiliary tasks are more related to the
control. This is particularly the case for those based on dynamic constraints,
for example by minimizing the errors of an inverse model in the state space
[Shelhamer et al., 2017, Hansen et al., 2020]. Similarly, Munk et al. [2016] do so
with a forward model, in which the state and reward must be predicted with
respect to the previous action and observation. Finally, Jaderberg et al. [2017]
introduce as an auxiliary task, the maximization of a pseudo-reward function.
Generally in these works, there are various auxiliary objective functions to be
minimized within a single training, in addition to the one related to the RL
optimization. Moreover, the observation reconstruction auxiliary tasks were
reported as less efficient than the other auxiliary self-supervised tasks in the
following works [Jaderberg et al., 2017, Shelhamer et al., 2017, de Bruin et al.,
2018].

Now we review some of the most promising works from the perspective of
model-based RL. PlaNet [Hafner et al., 2018] is one of the leading approaches that
has scaled-up model-based RL on the DMControl benchmark from images [Tassa
et al., 2018]. They use a stochastic (or deterministic) transition model that uses a
learned compact latent space. This compact latent space is learned in the manner
of an autoencoder with dimensionality reduction. Thus, the transition model
can predict many future sequences in parallel thanks to its memory efficiency.
Numerous works have been inspired by it until today to obtain better results
on DMControl tasks from images [Hafner et al., 2019, Lee et al., 2019, Sekar
et al., 2020]. The advantage of these methods with two of the previous strategy
[Srinivas et al., 2020, Hansen et al., 2020], is that they work even on partially
observable tasks, as is the case with those of the DMControl benchmark.

Since [Hafner et al., 2018, 2019, Lee et al., 2019, Srinivas et al., 2020] evaluate
their methods on the same DMControl benchmark tasks and use the same model-
free RL algorithm with continuous actions — SAC (Soft Actor-Critic [Haarnoja
et al., 2018b]) — we try to see how each ranks. First, we observe from the results
obtained in these four works that the performance obtained with SAC using

43

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

their methods is better than that obtained with the classical end-to-end approach
without auxiliary tasks. In addition, they are all superior to those obtained
with autoencoder reconstruction techniques (i.e. AE and variants such as VAE
[Kingma and Welling, 2014]). However, in the results of SLAC [Lee et al., 2019]
and CURL [Srinivas et al., 2020] the performance of PlaNet [Hafner et al., 2018] is
inferior to the autoencoder compression technique. In addition, the performance
of SLAC slightly outperforms that of DrQ [Kostrikov et al., 2020]°. Finally, CURL
has better performances than SLAC and Dreamer [Hafner et al., 2019]. At the
end of this analysis of the results obtained in the literature, it would seem that,
approaches with auxiliary tasks performed according to contrastive learning
methods are promising in order to optimize state representation models for RL
algorithms.

The above empirical results show that, some of the limitations of the end-to-end
approach can be overcome by carefully selected auxiliary tasks. Specifically, they
are intended to replace the poor learning signal of RL based on rewards, to better
train state embeddings. Indeed, these approaches combine various auxiliary
objectives, which only concern the state representation module, typically in order
to avoid slow convergence and especially to bypass poor local optima [Jaderberg
et al., 2017, Hafner et al., 2018].

Furthermore, this improvement on the optimization of the state representation
learning, combined to the dimensionality reduction, helps the optimization of RL
to bypass the curse of dimensionality. For example, Srinivas et al. [2020] use a
state representation dimension of 50 on all DMControl benchmark tasks [Tassa
et al., 2018]. This is why these approaches tend to improve the optimization of
end-to-end DRL algorithms, and thus to obtain better performance on control
tasks. However, these methods are too computationally intensive to be easily
applicable (especially in our hardware setting). In addition, they can suffer from
sample inefficiency as shown in the results of Shelhamer et al. [2017], where
optimization iterations of the order 107 are required for a policy to converge. This
is mainly due to the non-stationary distribution that the state representations
follow. Indeed, during the state embedding training, the RL inputs evolve, thus
breaking the identically distributed Robbins-Monro condition for the stochastic
gradient descent to converge (see Section 2.2.1.1).

3.2.2.2 State Representation Learning (SRL)

SRL is a domain of machine learning, recently considered as such by Jonschkowski
and Brock [2013], for the first time reviewed by Bohmer et al. [2015], and pop-
ularized in contexts different from that of state estimator pretraining by Lesort
et al. [2018]. In this thesis, we restrict the study of SRL to the context of state
estimator pretraining in an environment without reward for future unknown

SLAC [Kostrikov et al., 2020], previously presented with the classical end-to-end approaches in
Section 3.2.1.2, does not use an auxiliary task strategy to help the state representation learning
process, unlike the methods proposed in this section.

44

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

RL applications. In other words, to a context that explicitly decomposes the
two sub-problems that end-to-end DRL algorithms are confronted with: state
representation learning and learning a control task. On the contrary, the strategy
with auxiliary tasks solves these two different optimization problems jointly
[Shelhamer et al., 2017]. Thus, SRL removes the challenging twofold training
procedure of a state representation module with the rest of the model, i.e. the
value function and/or the policy module(s) [Glasmachers, 2017].

The first limitation which is overcome is that the state representation module is
trained with an appropriate learning signal instead of the extrinsic reward signal
returned by the environment. Indeed, the latter tends towards the unique goal of
solving a control task. However, although a reward signal is most often sparse
and delayed, it can sometimes help eliminate unnecessary information, as is the
case with the previously discussed strategy of using auxiliary tasks or with the
SRL strategy in a context with rewards [Jonschkowski and Brock, 2015, Lesort
et al., 2017].

The second limitation of not exploiting the compositionality principle is totally
bypassed thanks to the SRL pretraining strategy. Indeed, as the state represen-
tation module respects its assigned role, the rest of the modules related to RL
can also respect their roles, which is to approximate the value function and/or
the policy. The effectiveness of this compositional learning paradigm is widely
recognized for scaling machine learning algorithms to increasingly complex tasks,
especially in RL [Bottou and Bousquet, 2018, Lake and Baroni, 2018, Glasmachers,
2017, Stoica et al., 2017, Stinderhauf et al., 2018]. In particular, they support the
idea that it is more efficient to focus an optimization on the approximation of
the value function and/or the policy than on a more complex problem involving
representation learning. This idea is based according to Glasmachers [2017] on
the principle of “divide and conquer”, and according to Stinderhauf et al. [2018]
on the principle of “complex problems should be solved by decomposition and
re-composition”.

The third limitation SRL tends to overcome is the convergence issues due to
non-convex and ill-conditioned optimization process. Although the SRL does
not solve them completely, it tends to improve their convergence thanks to a
simplification of the patterns present in the state representations. According to
Glasmachers [2017], non-convexity causes stochastic gradient descent to most
often converge to poor local optima; ill-conditioning causes stochastic gradient
descent to converge slowly. Independently and properly pretrained modules
(which should be the case with SRL solutions), will generally improve the training
of the rest of a RL model on a new control task [Erhan et al., 2010, Glasmachers,
2017]. Numerous works have tried to understand the reasons for the efficiency
of pretraining on deep learning models [Erhan et al., 2010, Yosinski et al., 2014,
Glasmachers, 2017, Liu et al., 2019a]. Liu et al. [2019a] propose a theoretical and
empirical analysis to clarify how stochastic gradient descent can escape poor
local optima. These improvements would be due, according to them, mainly to

45

SCALING REINFORCEMENT LEARNING TOWARDS ROBOTICS

the fact that partial derivatives are removed in the pretrained parameters, which
stabilizes the magnitude of the estimated gradient of the objective function, and
thus improves the objective function landscape. However, it is not yet clear, how
effective pretraining is for DRL models, but promising results with other pre-
training than SRL have already been achieved. In particular, as mentioned earlier
in this section, Glasmachers [2017] have empirically analyzed that pretraining
one of the modules of a deep learning model (in supervised and RL contexts)
makes the stochastic gradient descent converge faster to better local optima.

Finally, the fourth merit concerns more the deployability of DRL algorithms, in
particular their interpretability to some extent (indeed, the features of learned
representations are not necessarily interpretable, although more and more tools
exist to try to make sense of extracted features). Thanks to the compositionality
principle guaranteed by SRL, it is possible to interpret the role of each neural
network module. Furthermore, according to Busoniu et al. [2018], a better under-
standing of the representation learning process can help interpret a learned value
function and/or policy. However, due to the nonlinear nature of deep neural
networks, we still cannot fully understand their workings. The deep learning
community has tried to alleviate this problem over the last decade with deep
neural network interpretability algorithms [Zeiler and Fergus, 2014, Yosinski
et al., 2015, Karpathy et al., 2015, Li et al., 2015, Olah et al., 2017, Nguyen et al.,
2017, Samek et al., 2017]. In simple terms, these consist of identifying the input
properties of the network that are responsible for a particular output. For ex-
ample, Karpathy et al. [2015], Zeiler and Fergus [2014] use statistical analysis of
unit activations, and ablation studies where specific units are disconnected or
deactivated.

Thus, SRL methods can overcome three additional limitations of end-to-end
DRL compared to approaches with auxiliary tasks. However, we do not pretend
to know the relationship of these improvement factors to the problem of DRL
optimization. We only know that its success seems to be related to the input
dimensions, the training signal quality of each module, the stability at the mod-
ular interaction level, the stability and convergence speed of the optimization
algorithm, and for security reasons to the interpretability at the modular function-
ing of its model (while the interpretability at the global functioning still remains
impractical).

We now present our general SRL framework, to build on it in the remainder
of this chapter and manuscript. This framework is restricted to unsupervised
pretraining of state representations without reward, to later solve an unknown
control task with a RL algorithm. As a result, many other domains beyond
this framework will not be studied in this thesis. Below, we describe the three
mains elements of this framework, which are common to many works in the SRL
literature:

SOLUTION CRITERIA The solution criteria concern the a priori knowledge
about the solution, which is necessary by the fact that SRL problems are

46

SRL FORMULATIONS

ill-posed® because they can have multiple solutions. They are based on the
physical world properties the SRL solution should verify, and are surveyed
in Section 3.3.1.

LEARNING HEURISTICS Learning heuristics translate the criteria on the SRL
solution into mathematical language (more specifically the optimization
language). They take the form of objective functions that provide learning
signals and must be designed appropriately for each method. As this
is a SRL framework without extrinsic reward”, these heuristics must be
reward agnostic. They will be reviewed through the different main SRL
formulations from the literature in Section 3.3.2.

EXPLORATION STRATEGIES Exploration strategies train discovery policies
which must be task-agnostic, and are typically optimized based on self-
calculated rewards called intrinsic rewards [Burda et al., 2018]. Without
proper exploration, learned representations would only have a very limited
range of validity and usefulness. The few approaches currently used will
be discussed in Section 3.3.3.

3.3 SRL FORMULATIONS

In this thesis, we study state representation learning (SRL) as a deep unsupervised
pretraining of state representations without reward. As explained previously, this
is what makes it possible to train RL models by overcoming the four limitations
of the end-to-end approach listed in Section 3.2.1.2: (i) the poor learning signal of
temporal-difference optimization (consequently the non-optimal dimensionality
reduction), (i) the lack of guarantee that the roles assigned to the modules
are respected, (iii) the instabilities and slow convergence of their optimization
problems, (iv) the lack of interpretability on the modular functioning of their
models.

The general problem of SRL is to retrieve from sensory observations® compact
representations about the agent’s proprioceptive information which generally
also require knowledge of the environment’s properties (related to perception).
In our setting, an agent receives an observation denoted o; € O C R, where
generally o; will be an image with O, the number of pixels. Unlike the RL context,
here the extrinsic reward signal r; € R is inaccessible. A SRL method learns a
state estimator similar to a mapping ¢ which outputs state vectors belonging to a
state embedding denoted S C R%?. Such a mapping typically updates the state

A problem is ill-posed if it does not satisfy one of the three Hadamard criteria [Hadamard, 1902]:
(i) a solution exists, (ii) the solution is unique, (iii) the solution depends continuously on the initial
conditions (especially the data).

Extrinsic rewards are obtained indirectly from the environment (by an agent-environment inter-
action loop) as privileged information, because in real robotic settings we do not have it.

This thesis focuses on visual sensory observations, given its predominance in the literature.
However, SRL problems can be applied to other sensory observation types.

47

SRL FORMULATIONS

estimation s; € S as new information is received, from the current observation o;
and/or the past observation o;_1, possibly from the past action a; ; € A C R4
and the previous state s;_; as follows:

St = §0(0t, O¢—1,at-1, St—l) (60)

End-to-end DRL algorithms build an input embedding from scratch which
is a kind of ¢, at the same time that they learn an automatic decision making
task. In contrast, SRL problems are ill-posed (as explained in Section 3.2.2.2)
and estimate ¢ based on learning heuristics that restrict the class of admissible
solutions, to mitigate the ill-posedness. The main learning heuristics used in
the SRL literature will be examined in Section 3.3.2. In general, they correspond
to unsupervised/self-supervised tasks, which allow training ¢ in a similar way
to supervised learning. Therefore, they have the advantage of fitting into the
classical framework of approximation theory (we have detailed this framework
in the context of deep learning for supervised problems in Section 2.2).

3.3.1 Solution Criteria

In what follows, we review recently proposed criteria for devising learning
heuristics to deal with the ill-posedness of SRL problems, i.e. by formulating
the SRL optimization problem. In other words, here we explain what the SRL
criteria represent in order to understand what the corresponding SRL solutions
mean and how they are modeled from data. These criteria have in common that
they translate a priori knowledge of the physical world in order to guarantee the
physical plausibility of the SRL solution. Indeed, purely mathematical criteria
cannot be used to mitigate the ill-posedness of the SRL problem. More precisely,
they rely on a physical analysis of a robot interacting with the physical world.
The first criterion on the solution to the SRL problem is that it must retrieve,
in a compact representation, the agent’s degrees of freedom in space and time
[Jonschkowski and Brock, 2013, Bohmer et al., 2015, Lesort et al., 2018]. We draw
a parallel between this criterion and the hypothesis of the broader problems of
representation learning. It is the hypothesis that there are multiple manifolds
underlying the observation space, which justifies dimensionality reduction. This
capacity to retrieve the manifold information in a compact way;, is the most fun-
damental, as it facilitates RL algorithms to overcome the curse of dimensionality.
The second criterion is that the SRL solution must model the local consistency
and topology (or connectivity) of the environment [Jonschkowski and Brock,
2015, Lesort et al., 2017, Morik et al., 2019]. While the former concerns the
transition model (i.e. how an agent transitions from one state to another), the
latter concerns agent-independent information. Both must be retrieved by the
state embedding in order to provide complete observability of the environment.
In particular, the knowledge of topology is necessary to determine whether a
point is more or less accessible depending on where the agent is located. This

48

SRL FORMULATIONS

criterion is one of the most difficult to satisfy because of its abstract and subjective
nature, which can therefore only be obtained qualitatively (e.g. topologically).
With this knowledge of local consistency and topology, the temporal-difference
optimization on which RL algorithms are based could effectively project into
future time steps (by bootstrapping).

As a pedagogical example, consider a navigation task to be learned with a RL
algorithm, in an environment with walls, and where the observation space is a
first-person perspective camera. In this case, a state estimator obtained with a
SRL formulation should retrieve the spatial proximity of the different camera
poses and taking into account the environment’s topology. In other words, the
camera poses on either side of a wall must be separated in the learned state
embedding, although they are spatially close. If the state estimator does respect
this criterion, the RL policy could learn to go around the wall so that an agent
reaches a goal behind the wall. The reason for the effectiveness of such a state
embedding according to Bohmer et al. [2013] would come from the fact that
unlike the Euclidean metric defined with the observation space of first-person
perspective images, the metric defined with the state embedding would have
distances consistent with the amount of time steps away from them.

The third criterion is that the SRL solution must ignore the distractor source
of information, and to retrieve the two information sources relevant to the au-
tomatic decision making process’ (i.e. policy) [Jonschkowski and Brock, 2015,
Jonschkowski et al., 2017]. The distractor source of information generally cor-
responds to elements that are beyond the agent’s control and that do not affect
him. The first source of relevant information is the controllable one, which cor-
responds to elements that can be controlled by an agent. The second one is the
non-controllable source of information, it corresponds to the elements that an
agent cannot control but that can affect him.

The fourth criterion that the SRL solution must verify is that the state transition
(defined by the right term in Eq. 61) is Markovian [Sutton and Barto, 2018].
Indeed, RL algorithms are generally defined in the formalism of Markov decision
processes (MDPs). An MDP is composed of a reward signal relative to the
control task (which is ignored) in addition to a state space S (to which the ¢
outputs belong), an action space A, and a Markovian state transition p(s;1|s¢, at)
(which is unknown in the regular RL context, for more details see Section 2.3.1.1).
Formulated mathematically, for the state transition to be Markovian, it must
verify the following equation:

P (st+1lst,ar) = P (S¢t1|st, ¢, 8¢-1,a4-1,--.,80,a0) (61)

for all s;11,s: € S and a; € A. It differs from the Markovianity equation of the
classical MDP formalism (see Eq. 24) since the reward is not available. For this

In a control task it may be necessary to detect elements inside the distractor source of informa-
tion. In this case, the corresponding information can be concatenated later to the learned state
representation.

49

SRL FORMULATIONS

reason, the SRL solution (i.e. ¢) must guarantee the Markovianity of the state
transition, so that it can be used as a state estimator in a RL model. In simple terms,
this means that the current state must retrieve the necessary information about
the past agent-environment interactions, so that the policy has no ambiguity on
the actions to predict. Therefore, in a general partial observability context, state
representations must be non-Markovian in order to be able to retrieve useful past
information for a policy. However, the Markovian property is regularly used on
the learned state representations as a shortcut [Bohmer et al., 2015, Jonschkowski
and Brock, 2015]. Indeed, the SRL works in the literature often assume that the
environments are totally observable [Lesort et al., 2018]. Therefore, to guarantee
the Markovianity of the state transition in this context, it is sufficient to assume
state representations are Markovian.

The fifth and last criterion is proposed as a potential avenue for the design of
future SRL algorithms. This concerns the nature of the SRL solution itself, which
we limit here for the sake of clarity, to a mapping of the observation space to a
state space. In particular, this criterion could concern a well-chosen regularity
imposed on this mapping. We suppose that this can favor the existence and the
uniqueness of the solution. In other words, it can help mitigate the ill-posedness
of the SRL problem. For example, we could choose to impose the L-Lipschitz
continuity property on the mapping, which should therefore verify the following
equation, for any consecutive observations 0,1, 0¢ € O:

l9(0r41) — @(01)[| < Lllosr1 — o (62)

Literally, this means that state variations must be bounded by observation varia-
tions, which is a stronger regularity than continuity.

This fifth criterion corresponds to regularization properties on the SRL so-
lutions which may help to filter out distractors. Indeed, when a continuity
constraint such as Lipschitz is used on ¢, it allows to control output (state) vari-
ations with respect to input (observation) variations. This is why a distractor
which disturbs observation variations will necessarily disturb less or not at all
state variations. Looking in this direction is in our opinion promising, and we
could benefit from techniques already developed in deep learning to implement
the Lipshitz property on neural networks [Mescheder et al., 2018, Miyato et al.,
2018].

As mentioned earlier, learning heuristics correspond to unsupervised/self-
supervised tasks that formulate the SRL problem into a better-posed mapping
approximation problem. Before to review them in Section 3.3.2, we roughly
explain how to choose an approximator class which is the most compatible with
this mapping. Indeed, it would be inefficient to learn a mapping if the chosen
approximator could only give a poor state estimation. Moreover, as explained
with the first criterion, the SRL solution must retrieve information about the
agent’s degrees of freedom in space and time in a compact way. This seems
to be linked to the hypothesis that observations are located on a manifold of

50

SRL FORMULATIONS

intrinsic dimensionality lower than that of the observation space, due to strong
correlations between the observation dimensions [Cayton, 2005, Bishop, 2006].
As the solution of such a mapping is generally nonlinear, the approximators
must be nonlinear, hence the use of deep learning techniques [Bengio et al.,
2007, 2013b]. Indeed, they are very effective in the context of learning compact
representations of manifolds underlying the observation space, as proved by the
literature reviewed in Section 3.1.1. For these reasons, deep neural networks are
generally used to model the SRL solution via learning heuristics.

3.3.2 Learning Heuristics

We have previously listed some criteria that SRL solutions should meet. They are
usually used to carefully devise learning heuristics. These heuristics mitigate the
ill-posedness of the SRL problem by formulating it through self-supervised tasks.
There are four main families of learning heuristics: (i) observation reconstruction,
(ii) near-future prediction, (iii) state-based constraints, (iv) and constrastive pre-
diction. The first family has already been reviewed in Section 3.1.1, and belongs
to the more general domain of representation learning with dimensionality re-
duction. This section therefore reviews the other three families known in the SRL
literature.

3.3.2.1 SRL with Transition Estimation

Most of the SRL solution criteria can be formulated via a near-future prediction
objective. Specifically, it consists in a self-supervised task of next state prediction.
It is based on the principle that, consecutive state vectors must verify roughly the
Markovian transition equation (see Eq. 61). Mathematically, Eq. 61 implies that a
SRL solution ¢, estimates states so that their transitions are Markovian. Literally,
this forces ¢ to retrieve the information of the physical world necessary to predict
the next state from the current action and state. There are similarities between this
approach and learning a transition model (i.e. model-based RL), which is why
some approaches combine learning a model and a representation [Schrittwieser
et al., 2019, Hafner et al., 2018, 2019]. However, in representation learning the
prediction objective can be combined with other objectives, which shows that
prediction is here not an end but the mean to construct a representation with
relevant properties.

In this approach, some works sometimes assume that the transition model in
the estimated state space is linear [Watter et al., 2015, van Hoof et al., 2016]. This
allows to force the transition model to approximate affine dynamics, which in
their view is appropriate for control. However, the majority of these approaches
learn complex nonlinear transition models [Assael et al., 2015, Wahlstrom et al.,
2015].

51

SRL FORMULATIONS

The above works formulate the SRL problem, with two main distinct learning
heuristics. The first one consists of an observation compression objective, which
allows to train a state estimator in the manner of an autoencoder, where ¢ consists
of an encoder. That is, they use a reconstruction loss between the state and the
current observation, which may have the drawbacks of the approaches previously
examined in Section 3.1.1 [Jaderberg et al., 2017, Shelhamer et al., 2017]. This
learning signal is as follows:

ID (¢(0r)) — o113 (63)

where ¢ denotes the encoder which outputs the state s;, and D denotes the
decoder which reconstructs the observation 6;.

The second one consists of the near-future prediction objective (mentioned
above), which trains a state transition model from the ¢ outputs. Thus, ¢ is
constrained to estimate states so that, their transitions are Markovian, i.e. they
verify Eq. 61. The corresponding learning signal must roughly follow this loss
function:

|1 F (s, 1) — se)3 (64)

where ¢ is a state estimator which predicts the “real” state s; and next state s, 1,
and F is a forward model which predicts the next state §;.

In a simple way, these approaches minimize errors from an observation recon-
struction objective, and a near-future state prediction objective. These models
are typically used to solve long temporal predictions in a compact state space.
In contrast to these approaches, Ha and Schmidhuber [2018] distinctly train an
autoencoder (in particular a VAE [Kingma and Welling, 2014]) in a first phase,
and then a state transition in a second phase. All these methods allow to guaran-
tee the spatial and temporal coherence of the physical world information within
the compact outputs of . However, their limitation is that they build ¢ with a
reconstruction heuristic on the observation space. This implies that ¢ outputs
keep information from the images that may not be useful and thus impede di-
mension reduction. The next SRL formulation, takes this weakness into account
by relying solely on dynamic criteria of the physical world.

3.3.2.2 SRL with Dynamic Constraints

The solution criteria may be formulated with constraints directly on the state
space. One popular formulation of this strategy, is the combination of a slowness
and diversity constraints on the learned states [Jonschkowski and Brock, 2013,
2015, de Bruin et al., 2018]. The slowness constraint is typically translated into
mathematical language with the following loss function:

lIst+1 — sell3 (65)

52

10

SRL FORMULATIONS

and for the diversity, with the following loss function:
e—”st/—StH% (66)

where (s;41, st) are consecutive states while (sy/, s;) are temporally distant states
predicted by a state estimator ¢. The slowness constraint is based on the as-
sumption that states should not change quickly [Wiskott and Sejnowski, 2002].
However, this formulation on the one hand cannot take into account information
about a fast-moving agent, and on the other hand, cannot filter out slow distrac-
tors. Furthermore, this constraint has a trivial solution which corresponds to a
constant state, and therefore does not allow to retrieve relevant information. This
is why another diversity constraint accompanies it, in order to move the states
away as a function of the number of time steps, as shown by Eq. 66. However this
formulation can cause issues if the agent remains stationary for a while. Below is
a strategy to remedy this.

One way to improve the retrieval of the two relevant information sources (see
Section 3.3.1), is to use other constraints based on the trainings of forward /inverse
models [de Bruin et al., 2018, Raffin et al., 2019]. The loss function to train an

inverse model can be expressed mathematically as follows '°:

IZ(st41,80) — arll3 (67)
and the one to train a forward model is:

17 (ar, 5¢) — 8141113 (68)

where 7 is an inverse model which predicts the executed action &; from the state
s and the next state sy 1 predicted by a state estimator ¢. It allows to retrieve the
controllable information of the physical world by an agent. F is a forward model
which predicts the next state §;;1. It allows to retrieve the (non-)controllable
information source of an agent (and which can affect him). Moreover, these
learning heuristics make it possible to ignore the distractor source of information.

Other constraints have been formulated by Jonschkowski and Brock [2015].
In addition to the constraints of slowness and diversity, they propose two other
main constraints. A first one is the proportionality constraint, which is based on
the principle that, the information retrieved by ¢ must change proportionally to
the action’s magnitude. A second one is the repeatability constraint, which is
based on the principle that, the information retrieved by ¢ must change in the
same way when the actions and the state vectors are similar. Jonschkowski et al.
[2017] extend these robotic priors in the context of acceleration-dependent control
tasks with a speed estimated from state changes. Subsequently, Lesort et al.
[2017] study the applicability of these robotic priors to simulators in the physical
world. However, they obtain unstable results, usually lacking local consistency

For simplicity, we only give examples with the L, norm, but other distances may be more relevant
in special cases.

53

SRL FORMULATIONS

with respect to different locations in the environment (see Section 3.3.1). That
is, similar trajectories are removed by ¢. To counter this problem, they have
introduced the reference point prior, which allows different trajectories belonging
to a same region to be brought closer together. There seems to be a parallel with
clustering, which for example, must bring together pairs of distinct points that
belong to the same semantics. A limitation of these methods, is that they assume
total observability of the environments. To remedy this, Morik et al. [2019] extend
[Lesort et al., 2017] (i.e. with the reference point prior) on partially observable
environments. To do so, they adapt robotic priors with LSTMs networks to
manage partial observability.

Although these works propose promising heuristics due to their originality and
their physical interpretability, they have not yet been validated on DMControl
benchmark tasks [Tassa et al., 2018], or with other continuous control tasks with
image inputs, studied in particular in this thesis.

3.3.2.3 SRL with Constrastive Learning

A last heuristic family to formulate the SRL problem, is to use discriminatory
tasks. Discriminatory tasks are originally formulated under the supervised
learning paradigm [Le-Khac et al., 2020, Jaiswal et al., 2021]. In contrast, in the
SRL context these tasks must be carefully chosen in such a way as to meet the SRL
solution criteria. This is the case with the works by Sermanet et al. [2018], Dwibedi
et al. [2018], which use time as a supervision signal to learn the structure present
in the videos, and build a robust viewpoint-invariant visual mapping. Dwibedi
et al. [2018] has extended [Sermanet et al., 2018] to take speed into account. This
work builds on the discriminative loss proposed by Sohn [2016]. However, these
methods require a sufficiently large number of labeled demonstrations, which is
costly in terms of the conceptor’s time.

A class of discriminative methods recently proposed, called contrastive learn-
ing, is based on a self-supervised task formulation directly on the state space
[Le-Khac et al., 2020]. This removes the need to generate labeled demonstra-
tions. One of the most popular, CPC (Contrastive Predictive Coding [Oord et al.,
2018]), maximizes mutual information between more or less spatially distant
states with InfoNCE (Noise-Contrastive Estimation [Gutmann and Hyvaérinen,
2010]). These constraints imposed by contrastive learning, make it possible to
force similarity between pairs of similar points within a mini batch, and to force
diversity between other points. More specifically, the state space is learned by
maximizing mutual information between similar points in a mini-batch, and
minimizing mutual information with respect to others.

These techniques have been used massively in computer vision [Chen et al.,
2020, He et al., 2020], and have also allowed to formulate SRL problems [Stooke
et al., 2020, Zhan et al., 2020]. However, these constraints are based solely on the
slowness and spatial proximity principle [Anand et al., 2019]. They may therefore
in some cases, not be able to retrieve the controllable but fast information source,

54

SRL FORMULATIONS

and retrieve on the contrary the slow distractor information source. Just as it is
the case with formulations based on the combination of a slowness and diversity
constraints presented earlier.

3.3.3 Exploration Strategies

This section succinctly examines a currently little-studied issue in the SRL field:
exploration strategies. It is almost absent in the field of supervised learning and
unsupervised learning which generally is not applied directly to controlled sys-
tems. In contrast, SRL must generate its training data itself via agent-environment
interactions. In the absence of reward, the agent should seek for a large diversity
of observations, as it is the only way for the learned representation to be useful
for various tasks. It is therefore useful to devise an exploration strategy, which
in the rewardless context may correspond to learning a task-agnostic discovery
policy. However, although such a discovery policy is crucial to solve the SRL
problem, to our knowledge to date there are no studies on its development, as
also noticed by Sutton and Barto [2018], Lesort et al. [2018].

First, let us distinguish what an effective exploration strategy is in the SRL con-
text versus the RL context. In the RL context, it solves the exploration/exploitation
tradeoff to find a policy with good generalization performance. In the SRL frame-
work, it solves the underfitting / overfitting tradeoff (presented in Section 2.2.1),
also known as the bias/variance tradeoff from the statistical viewpoint [Lawrence
et al.,, 1998]. While the latter tradeoff is intensively studied in the supervised
learning context [Caruana, 1995], it is beginning to receive more and more atten-
tion in the RL context [Zhang et al., 2018]. However, it has not yet been studied
in the SRL context. In our view, the difference is that in this context there may be
several objective functions against which this trade-off (i.e. the generalization
error of approximation versus estimation) can be estimated.

Hence, unlike typical unsupervised learning methods, SRL can leverage its
application to controlled systems to perform exploration that addresses the
underfitting /overfitting tradeoff. This is one of the core elements that allow
these transfer learning methods to outperform more traditional task-specific ap-
proaches. In particular, by solving this tradeoff, exploration can help optimization
algorithms circumvent the overfitting danger without resorting to other explicit
(e.g. weight decay with ¢, or /1 norms or a decreasing learning rate) or implicit
(dropout or early stopping) regularization techniques. Thus, SRL exploration acts
as a regularizer that avoids overfitting even when the pretraining time is small
and the networks are overparameterized, whereas most unsupervised learning
approaches avoid overfitting by increasing the dataset, or reducing the network
complexity, or by using regularization techniques [Bengio, 2012]. Moreover, this
is essential to make SRL algorithms sample efficient and thus reduce the pretrain-
ing time. In other words, an exploration strategy must allow a SRL algorithm to
converge faster and better than if it were a random exploration.

55

CONCLUSION

The strategies proposed so far in the literature are based on random policies
or demonstrations. The previously cited works that use a random exploration
are for example [Watter et al., 2015, van Hoof et al., 2016, Jonschkowski and
Brock, 2015, Yarats et al., 2019], and (expert) demonstrations are for example
[Sermanet et al., 2018, Dwibedi et al., 2018, Stooke et al., 2020, Zhan et al., 2020].
The latter allows to have a training dataset that is sufficiently representative of
the environment. This exploration strategy is used by our SRLfD pretraining
approach proposed in Chapter 4. Therefore, it seems necessary to address the
following question for future SRL development: How to develop an exploration
strategy consistent with the SRL problem?

To develop such an exploration strategy, it should rely on the learning heuris-
tics on which the SRL method is formulated. Furthermore, it should observe
transitions from which the SRL model can learn the most, i.e. transitions which
are complex with respect to the learning heuristics. For SRL methods based
on a near-future prediction objective, an appropriate exploration strategy may
be to observe as many diverse transitions as possible with respect to their con-
trollability. Indeed, in this context, to efficiently train a state estimator it is not
sufficient for the agent to seek for a large diversity of observations because, for
example, first-person perspective images have a metric (distance defined with the
L, norm) that varies greatly when the orientation changes from one transition to
another. Moreover, since the prediction objective adequate to construct represen-
tations with relevant properties may not be adequate to promote such efficient
exploration, a controllability criterion on environment transitions can therefore
be specially constructed to allow the training of discovery policies for the most
diverse transitions. XSRL presented in Chapter 5 proposes such an exploration
strategy.

We believe that the development of exploration strategies can lead to new
SRL algorithms that perform better in terms of generalization, and thus better
scaling-up RL algorithms to complex control tasks.

3.4 CONCLUSION

In this section, we have presented the SRL problem studied in this thesis. It
can be broken down into three main elements: (i) solution criteria, (ii) learning
heuristics, (iii) exploration strategies. We have detailed the specificity of these
generally ill-posed problems, and how to solve them with a priori knowledge
of the physical world related to the control of an agent. This allowed us to list
the specific criteria that a SRL solution (i.e. the mapping denoted ¢ between the
observation space and a state space) should verify. We then reviewed four major
families of learning heuristics used in the SRL literature that meet some of the
listed criteria. Finally, we discussed the currently used exploration strategies and
how new ones could be designed given the learning heuristics.

56

CONCLUSION

The next two chapters each propose a novel SRL method. Each one has a
learning heuristic belonging to a different class. For SRLfD presented in Chapter 4,
it belongs to the dynamic constraints class. It is the loss of multi-task imitation
learning. We will see that it allows us to take advantage of knowledge from other
tasks. For XSRL presented in Chapter 5, it belongs to the transition estimation
class. It is the prediction loss of the next observation. We will see that it takes
advantage of the task-agnostic interaction between an agent and its environment.
These two methods allow us to model state embeddings verifying our criteria
since they reduce the dimension of the observations performing well on new
tasks with an RL algorithm.

57

STATE REPRESENTATION LEARNING FROM
DEMONSTRATION

The object of pure physics is the
unfolding of the laws of the
intelligible world; the object of pure
mathematics that of unfolding the
laws of human intelligence.

James Joseph Sylvester

ABSTRACT

Robots could learn their own state and world representation from perception and
experience without supervision. This desirable goal is the main focus of our field
of interest, state representation learning (SRL). Indeed, a compact representation
of such a state is beneficial to help robots grasp onto their environment for inter-
acting. The properties of this representation have a strong impact on the adaptive
capability of the agent. In this chapter we present an approach based on imitation
learning. The idea is to train several policies that share the same representation to
reproduce various demonstrations. To do so, we use a multi-head neural network
with a shared state representation feeding a task-specific agent. If the imitation
tasks are diverse, the trained representation will eventually contain the informa-
tion necessary for all tasks, while discarding irrelevant information. As such, it
will potentially become a compact state representation useful for new tasks. We
call this approach SRLD (State Representation Learning from Demonstration).
Our experiments confirm that when a controller takes SRLfD-based representa-
tions as input, it can achieve better performance than with other representation
strategies and promote more efficient reinforcement learning (RL) than with an
end-to-end RL strategy.

KEYWORDS

State Representation Learning, Pretraining, Learning from Demonstration, Unsu-
pervised Learning, Deep Reinforcement Learning

58

INTRODUCTION

4.1 INTRODUCTION

Recent reinforcement learning (RL) achievements might be attributed to a com-
bination of (i) a dramatic increase of computational power, (ii) the remarkable
rise of deep neural networks in many machine learning fields including robotics,
which take advantage of the simple idea that training with quantity and diversity
helps. The core idea of this work consists of leveraging task-agnostic knowledge
learned from several task-specific agents performing various instances of a task.

Learning is supposed to provide animals and robots with the ability to adapt to
their environment. RL algorithms define a theoretical framework that is efficient
on robots [Kober et al., 2013] and can explain observed animal behaviors [Schultz
et al., 1997]. These algorithms build policies that associate an action to a state
to maximize a reward. The state determines what an agent knows about itself
and its environment. A large state space — raw sensor values, for instance —
may contain the relevant information but would require a too large exploration
to build an efficient policy. Well-thought feature engineering can often solve
this issue and make the difference between the failure or success of a learning
process. In their review of representation learning, Bengio et al. [2013a] formulate
the hypothesis that the most relevant pieces of information contained in the
data can be more or less entangled and hidden in different representations. If
a representation is adequate, functions that map inputs to desired outputs are
somewhat less complex and thus easier to construct via learning. However, a
frequent issue is that these adequate representations may be task-specific and
difficult to design, and this is true in particular when the raw data consists of
images, i.e. 2D arrays of pixels. One of the objectives of deep learning methods is
to automatize feature engineering to make learning algorithms effective even on
raw data. By composing multiple nonlinear transformations, the neural networks
on which these methods rely are capable of progressively creating more abstract
and useful representations of the data in their successive layers.

The intuition behind our work is that many tasks operated in the same envi-
ronment share some common knowledge about that environment. This is why
learning all these tasks with a shared representation at the same time is beneficial.
The literature in imitation learning [Pastor et al., 2009, Kober et al., 2012] has
shown that demonstrations can be very valuable to learn new policies. To the
best of our knowledge, no previous work has focused on constructing reusable
state representations from raw inputs solely from demonstrations, therefore, here
we investigate the potential of this approach for SRL.

In this chapter, we are interested in solving continuous control tasks via RL or
supervised learning, using state estimates as inputs, without having access to any
other sensor, which means in particular that the robot configuration, which we
will call ground truth representation, is unknown. We assume that at all times the
consecutive high-dimensional observations (0;_1, 0¢) contain enough information
to know the ground truth state q; and that the controller/predictor only needs

59

INTRODUCTION

consecutive
inputs

consecutive
inputs

“unknown”
representation

(a) Preliminary (b) Pretraining (c) Transfer learning
phase phase phase

Figure 2. SRLfD (State Representation Learning from Demonstration) consists of three phases.
(a) Preliminary phase: for K different tasks, we assume to have access to oracle policies (7t¥)
that solve each task, and compute their outputs with an “unknown” state representation. (b)
Pretraining phase: learning of one shared representation function ¢ with imitation learning of K
specific heads ¢ by observing 7% from high-dimensional observations. Each head ¢* defines
a sub-network that contains the parameters 6, of ¢ and the parameters 0, of . The set of

all network’s parameters is 6 = {6, O/ Bk }. () Transfer learning phase: the pretrained
network ¢ provides representations to learn an unseen decision making task ¢"".

to rely on this representation to choose actions. Intuitively, q; could probably be
a much better input for a RL algorithm than the raw images, but without prior
knowledge, it is not easy to get q; from (0;_1,0¢). In robotics, SRL [Lesort et al.,
2018] aims at constructing a mapping from high-dimensional observations to
lower-dimensional representations which, similarly to q;, can be advantageously
used instead of (0;_1,0;) to form the inputs of a policy.

Our proposed experimental setup consists in three different phases:

1. Preliminary phase (Fig. 2(a)): we have K controllers called oracle policies
7* each solving a different task. For example, we could define them in
laboratory conditions with better sensors (e.g. motion capture), the goal
being to reproduce them with a different perception (e.g. images) where in
this setting, building a representation extracted from the raw inputs makes
sense. For the sake of the experiments, we used almost fake tasks.

2. Pretraining phase (Fig. 2(b)): we derive a state representation that can be
relied on to reproduce any of these oracle policies. We do so via imitation
learning on a multi-head neural network consisting of a first part that
outputs a common state representation s; = [¢(0;_1), ¢(0¢)] used as input
to K heads ¢* trained to predict actions a* executed by the oracle policies

¥ from the previous phase.

3. Transfer learning phase (Fig. 2(c)): we use the previously trained represen-
tation s; as input to a new learning process "V in the same environment.

This method, which we call SRLfD (State Representation Learning from Demon-
stration), is presented in more detail in Section 4.3, after an overview of the
existing related work in Section 4.2. We show that using SRLfD learned represen-
tations instead of raw images can significantly accelerate RL (using the popular

60

RELATED WORK

SAC algorithm [Haarnoja et al., 2018a]). When the state representation is chosen
to be low-dimensional, the speed up brought by our method is greater than the
one resulting from state representations obtained with deep autoencoders, or
with principal component analysis (PCA).

4.2 RELATED WORK

Learning state representations from demonstrations of multiple policies solving
different tasks instances, as we propose, has some similarities with multi-task
and transfer learning [Taylor and Stone, 2009]. Multi-task learning aims to learn
several similar but distinct tasks simultaneously to accelerate the training or
improve the generalization performance of the learned policies, while transfer
learning strives to exploit the knowledge of how to solve a given task to then
improve the learning of a second task. Not all multi-task and transfer learning
works rely on explicitly building a common representation, but some do, either
by using a shared representation during multiple task learning [Pinto and Gupta,
2017] or by distilling a generic representation from task-specific features [Rusu
et al., 2015]. The common representation can then be used to learn new tasks.
However, all these techniques rely on the end-to-end RL approach, which is less
sample-efficient than the self-supervised learning approach followed by SRLfD.

In another perspective, the learning from demonstration literature typically
focuses on learning from a few examples and generalizing from those demon-
strations, for example by learning a parameterized policy using control-theoretic
methods [Pastor et al., 2009] or RL-based approaches [Kober et al., 2012]. Al-
though those methods typically assume prior knowledge of a compact represen-
tation of the robot and environment, some of them directly learn and generalize
from visual input [Finn et al., 2017] and do learn a state representation. However,
the goal is not to reuse that representation to learn new skills but to produce
end-to-end visuomotor policies generalizing the demonstrated behaviors in a
given task space. Several works have also proposed using demonstrations to
improve regular deep RL techniques [Vecerik et al., 2017, Nair et al., 2018], but
the goal is mostly to improve exploration in environments with sparse rewards.
Those works do not directly address the problem of state representation learning.

4.3 STATE REPRESENTATION LEARNING FROM DEMONSTRATION
4.3.1 Demonstrations

Let us clarify the hierarchy of the objects that we manipulate and introduce
our notations. This work focuses on simultaneously learning K different tasks'

Roughly, different tasks refer to goals of different natures, while different instances of a task refer
to a difference of parameters in the task. For example, reaching various locations with a robotic
arm is considered as different instances of the same reaching task.

61

STATE REPRESENTATION LEARNING FROM DEMONSTRATION

sharing a common state representation function ¢ and with K task-specific heads
for decision (¢!, ¢?, ..., ¥X) (see Fig. 2(b)). For each k-task, the algorithm has seen
demonstrations in a form of paths Pk, Pé‘, een, PI’§ from an initial random position
to the same goal corresponding to the k-task generated by running the oracle
policy 7% obtained in the preliminary phase (see Fig. 2(a)). Specifically, during

a path Pk an agent is shown a demonstration (or data point) of (olt(f 1 o’t('p , alt(’p)

from which it can build its own world-specific representation. Here, olt{f ; and

k,p
0,

k,p
a;

are consecutive high-dimensional observations (a.k.a. measurements), and
is a real-valued vector corresponding to the action executed right after the

k,p

observation 0,” was generated.

4.3.2 Imitation Learning from Demonstrations

Following the architecture described in Fig. 2(b), we use a state representation
neural network ¢ that maps high-dimensional observations olt{’p to a smaller
real-valued vector go(oltc’p). This network ¢ is applied to consecutive observations

(olt{f7 17 o’;’p) to form the state representation s’f’p , as follows:
kp _ k,p k,p
sy = [p(0,"}), p(0;")] (69)

This state representation s];’p is sent to the ¢* network, where ¢* is one of the K

independent heads of our neural network architecture. ¢!, ¥?, ..., X are head
networks with similar structure but different parameters, each one corresponding
to a k-task. Each head has continuous outputs with the same number of dimen-
sions as the action space of the robot. We denote by tpk(sltc’p) the output of the

k-th head of the network on the input (o’tcf7 1r oltc’p). We train the global network
to imitate all the oracle policies via supervised learning. Specifically, our goal is

to minimize the quantities: ||{*(sf’p) — a’f’p |3 that measure how well the oracle
policies are imitated. The optimization problem we want to solve is thus the
minimization of the following objective function:

1 Lk kp kp 2
£(0) = 57 2 2 ' (") — a2 (70)

for k € [1,K], and where 8 = {6, O, - -, BIPK} as explained in Fig. 2(b). We give
an equal importance to all oracle policies by uniformly sampling k € [1, K], and
performing a training step on £(6) to adjust 6. Algo. 1 describes this procedure.

The network of SRLD is trained to reproduce the demonstrations, but without
direct access to the ground truth representation of the robot. Each imitation
can only be successful if the required information about the robot configuration

is extracted by the state representation [qo(olt(fJ 1) q)(olt(’p)]. However, a single
task may not require the knowledge of the full robot state. Hence, we cannot

62

GOAL REACHING

Algorithm 1 SRLfD algorithm

1: Input: A set of instances of tasks Tk k € [1,K], and for each of them a set of
paths PX, p € [1, P] of maximum length T.

2: Initialization: A randomly initialized neural network following the architec-
ture described in Fig. 2(b) with parameters 6 = {64,, 9¢1, e, BIPK }.

3: while 0 has not converged do

4: Pick uniformly a k-task
5. Predict current state representations with Eq. 69:
k, k, k,
s’ = [9(0;%)), 9(0,")]
6: Compute £(6) with Eq. 70:

1 & ko kp kp2
L == Y v"(s,") —a, "Il
PTp:lt:l

7. Perform a training step on £(6) w.r.t.
8: end while

be sure that reproducing only one instance of a task would yield a good state
representation. By learning a common representation for various instances of
tasks, we increase the probability that the learned representation is general and
complete. It can then be used as a convenient input for new learning tasks,
especially for a RL system.

4.4 GOAL REACHING

In this section, we study a transfer learning phase (see Fig. 2(c)) corresponding
to a RL optimization problem to solve a torque-controlled reaching task with
image observations. This is a challenging problem despite the simplicity of
the task. Indeed, when high-dimensional observations are mapped to a lower-
dimensional space before feeding a RL system, a lot of information is compacted
and valuable information for control may be lost. The purpose is to verify
that state representations learned with SRL{D are useful representations for
RL algorithms. In this thesis, we only conduct experimental validations, but
a fundamental question that we will not answer is at stake: what constitutes
a good representation for state-of-the-art deep RL algorithms? Should it be as
compact and as disentangled as possible, or on the contrary, can redundancy
of information or correlations be useful in the context of deep RL? A definitive
answer seems beyond the current mathematical understanding of deep RL.

We consider a simulated 2D robotic arm with 2 torque-controlled joints, as
shown in Fig. 3. We use the environment Reacher adapted from the OpenAl
Gym [Brockman et al., 2016] benchmark to PyBullet [Coumans et al., 2018]. An

63

GOAL REACHING

virtual environment 3x64x64 observation adding noise & distractor

~

I l
2 degrees-of-freedom reward zone a ball with a random
torque-controlled arm initial position and speed

Figure 3. The Reacher environment, with a reward of 1 when the end-effector reaches a position
close to the goal, and 0 otherwise. For more challenging inputs (on the right), we add Gaussian
noise with zero mean and standard deviation 10, and a ball distractor is added in the environment
with random initial position and velocity.

instance of this continuous control task is parameterized by the position of a goal
that the end-effector of the robot must reach within some margin of error (and in
limited time). We use as raw inputs RGB images of 64 x64 pixels. As the heart
of our work concerns state estimation, we have focused on making perception
challenging, by adding in some cases randomly moving distractor and Gaussian
noise, as shown in Fig. 3. We believe that the complexity of the control part
(i.e. the complexity of the tasks) is less important to validate our method, as it
depends more on the performance of the RL algorithm. To solve even just the
simple reaching task, the configuration of the robot arm is required and needs to
be extracted from images for the RL algorithm to converge. Indeed our results
show that this is the case when SRL{D learned representations are used as inputs
of SAC [Haarnoja et al., 2018a].

4.4.1 Experimental Setup

Baseline Methods = We compare state representations obtained with our method
(SRLD) to five other representation strategies:

* Ground truth: as mentioned in Section 4.4.1, what we call ground truth
representation of the robot configuration is represented as a vector of size
four: the two torques angles and velocities.

* Principal Component Analysis (PCA) [Jolliffe, 2011]: we perform PCA on
the demonstration data, and the 8 or 24 most significant dimensions are
kept, thus reducing observations to a compact vector that accounts for a
large part of the input variability.

64

GOAL REACHING

* Autoencoder-based representation [Hinton and Salakhutdinov, 2006]: ¢
is replaced by an encoder learned with an autoencoder. The latent space
representation of the autoencoder (of size 8 or 24) is trained with the same
demonstrations (but ignoring the actions) as in the SRLD training.

* Random network representation [Gaier and Ha, 2019]: we use the same
neural network structure for ¢ as with SRLfD, but instead of training its pa-
rameters, they are simply fixed to random values sampled from a Gaussian
distribution of zero mean and standard deviation 0.02.

e Raw pixels: the policy network is modified to receive directly (0;_1,0¢) in
input, with the same dimensionality reduction after ¢ as other methods, but
all of its parameters are trained simultaneously in the manner of end-to-end
RL.

The representations obtained with these methods use the same demonstration
data as SRLfD method, and share the same neural network structure for ¢ or
replace it (with ground truth and PCA) in the architecture of Fig. 2(c) whose
output size is 8 or 242,

Generating Demonstrations For simplicity, the preliminary phase of training
K oracle policies 7t* (see Fig. 2(a)) is done by running the SAC [Haarnoja et al.,
2018a] RL algorithm. Here, the “unknown” representations used as inputs are the
ground truth representations. SAC also exploits the cartesian cordinates of the
goal position®. It returns a parameterized policy capable of producing reaching
trajectories to any goal position.

For the pretraining phase of SRLfD (see Fig. 2(b)), the previously learned
parameterized policy generates K = 16 oracle policies 77¥ (which represent
different instances of the reaching task), with each of them 238 paths for training
and 60 paths for validation of maximal length T = 50, computed from various
initial positions. We then simultaneously train all the heads for computational
efficiency. Specifically, for each optimization iteration, we uniformly sample for
every head ¢* a mini-batch of 64 demonstrations from the P paths corresponding
to the k-task.

Implementation Details For SRLfD network architecture (adapted from the
one used in [Mnih et al., 2013]), ¢ (see Fig. 2) sends its 3 x 64 x 64 input to a
succession of three convolutional layers. The first one convolves 32 8x8 filters
with stride four. The second layer convolves 64 4 x4 filters with stride two. The
third hidden layer convolves 32 3 x3 filters with stride one. It ends with a fully

The number of 24 dimensions has been selected empirically (not very large but leading to good
RL results).

The purpose of our method is to generate state representations from (possibly noisy) inputs
that are hard to exploit (such as raw images), so only the preliminary phase has access to the
“unknown” representation.

65

GOAL REACHING

connected layer with half as many output units as the chosen state representation
dimension (because state representations have the form [¢(0;_1), ¢(0;)]). The
heads 1" take as input the state representation and are composed of three fully
connected layers, the two first ones of size 256 and the last one of size two, which
corresponds to the size of the action vectors (one torque per joint).

For SAC network architecture we choose a policy network that has the same
structure as the heads ¢* used for imitation learning, also identical to the orig-
inal SAC implementation [Haarnoja et al., 2018a], and use the other default
hyperparameters.

The Rectified linear units (ReLU) is used for the activation functions between
hidden layers. We use ADAM [Kingma and Ba, 2014] with a learning rate of 1074
to train the neural network @, and 1073 to train all the heads ¢* and the policy
network.

4.4.2 Results and Discussion

In this section, we report our results with the quantitative evaluation of SRLfD
when a goal reaching task is used in the transfer learning phase (see Fig. 2(c)).
Specifically, we evaluate the transferability of SRLfD learned state representations
used as inputs for a RL algorithm (SAC [Haarnoja et al., 2018a]) to solve a new
instance of the reaching task chosen randomly, and compare the success rates
to the ones obtained with state representations originating from other methods.
The performance of a policy is measured as the probability to reach the goal
from a random initial configuration in 50 time steps or less. We expect that
better representations yield faster learning progress and better convergence (on
average).

Table 1 displays the success rates corresponding to the end of the learning
curves of Fig. 4 obtained with SAC and different state representations in four
different contexts: with a representation of either 16 or 48 dimensions (except for
the ground truth representation, of size 4), and on “clean” i.e. raw observations
(in the middle of Fig. 3) or observations with noise and a randomly moving
ball distractor (on the right of Fig. 3). As expected, the best results are obtained
with the ground truth representation, but we see that out of the five other state
representations, only SRLfD, PCA, and VAE representations can be successfully
used by SAC to solve reaching tasks when noise and a distractor are added to the
inputs. SAC fails to train efficiently (in an end-to-end manner) the large neural
network that takes raw pixels in input, whether its representation is of size 16
or 48. Using fixed random parameters for the first part of its network (random
network representation) is not a viable option either.

The results show that with fewer dimensions our method (SRLfD) leads to bet-
ter RL performances than with observation compression methods (PCA and VAE).
We assume that the information from the robotic arm can be filtered through
the small size of the bottleneck due to the observation reconstruction objective

66

GOAL REACHING

| raw observations | observations with noise and distractor |
1.01
0.81
o]
13 1Y
2 0.6 8
0 w
& &
s 0.44 s
£ £
0.2
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training steps (x1e5) training steps (x1e5)
—— SAC+ground truth (dim 4) —— SAC+VAE (dim 16) —— SAC+ground truth (dim 4) —— SAC+VAE (dim 16)
—— SAC+SRLfD (dim 16) —— SAC+random network (dim 16) |||—— SAC+SRLfD (dim 16) —— SAC+random network (dim 16)
—— SAC+PCA (dim 16) —— SAC+raw pixels (dim 16) —— SAC+PCA (dim 16) —— SAC+raw pixels (dim 16)
1.0 1
0.81
o]
13 1Y
2 0.6 8
n w
& &
s 0.41 s
£ £
0.2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
training steps (x1e5) training steps (x1e5)
—— SAC+ground truth (dim 4) —— SAC+VAE (dim 48) —— SAC+ground truth (dim 4) —— SAC+VAE (dim 48)
—— SAC+SRLfD (dim 48) —— SAC+random network (dim 48) || |—— SAC+SRLfD (dim 48) —— SAC+random network (dim 48)
—— SAC+PCA (dim 48) —— SAC+raw pixels (dim 48) —— SAC+PCA (dim 48) —— SAC+raw pixels (dim 48)

Figure 4. Learning curves of the episode returns averaged over 50 episodes (mean in lines and
half standard deviation in shaded areas over 8 runs; the higher the better) with SAC algorithm
with a random position of the goal for each run, based on various state representations. The
indicated dimensions for SRLfD, PCA, VAE, random network and raw pixels correspond to the
size of the state representation [¢(0;_1), ¢(0¢)]. The use of our SRLfD state representation (red)
in SAC outperforms all the other baselines, except the case in which SAC is given a direct access
to the ground truth representation.

(and dramatically more on the challenging observations). This explains why
PCA and VAE tend to require additional dimensions than the minimal number
of dimensions of our robotic task (four dimensions: the two torques angles and
velocities). This clearly shows that with a carefully chosen unsupervised learning
objective, such as the one used for SRLfD, it is possible to compact into a minimal
number of dimensions only the information necessary for robotic control.

Another surprising observation is that PCA outperforms VAE in our results.
By design, VAE is trained to encode and decode with as few errors as possible,
and it can generally do this better than PCA by exploiting the nonlinearities of
neural networks. Moreover, as first explained by Bourlard and Kamp [1988],
Kramer [1991], the autoencoder is an extension of PCA that transforms correlated
observations into nonlinearly uncorrelated representations. However, it is not
clear that such uncorrelated input variables lead to better RL performances. This
is because when data are obtained with transitions from a control system, the
most important variables are those correlated with changes between transitions,
which generally do not coincide with the directions of greatest variation in the
data.

67

BALLISTIC PROJECTILE TRACKING

Table 1. Mean episode returns (mean =+ standard deviation over 8 runs; the higher the better)
corresponding to the end of the curves in Fig. 4.

Method Mean score
Raw observations | With noise and distractor

SAC+SRL{D (dim 48) 0.992 4+ 0.0080 0.928 + 0.029
SAC+SRLED (dim 16) 0.980 + 0.022 0.833 +0.082
SAC+PCA (dim 48) 0.908 4 0.072 0.725£+0.10
SAC+PCA (dim 16) 0.832 £0.13 0.591 +0.18
SAC+VAE (dim 48) 0.749 + 0.27 0.650 £0.13
SAC+VAE (dim 16) 0.574 £0.16 0.448 +£0.18
SAC+raw pixels (dim 48) 0.365 + 0.39 0.106 £+ 0.063
SAC+raw pixels (dim 16) 0.118 £0.13 0.149+0.14
SAC+random network (dim 48) 0.552 +£0.21 0.143+0.14

SAC+random network (dim 16) 0.239 +0.13 0.0863 + 0.037

SAC+ground truth (dim 4) 0.995 + 0.0054 0.995 + 0.0054

4.5 BALLISTIC PROJECTILE TRACKING

In this section, we study a transfer learning phase (see Fig. 2(c)) corresponding
to a simple supervised learning system to solve a ballistic projectile tracking
task. Specifically, it consists in training a tracker from learned representations to
predict the next projectile position. This task has the advantage of not needing K
oracle policies 7t* in a preliminary phase (Fig. 2(a)). Instead, we derive 7t* directly
from the ballistic trajectory equations (Eq. 82). This enables us to easily perform
the experimental study of the main hyperparameters of our SRLfD method: the
state dimension S; and the number of oracle policies K. This also allows us
to conduct a comparative quantitative evaluation against other representation
strategies. Furthermore, we study the possibility of using a recursive loop for the
state update instead of the state concatenation. Thus, SRL{D can handle partial
observability by aggregating information that may not be estimable from a single
observation. In particular, to solve a simple projectile tracking task, projectile ve-
locity information is required and must be extracted from past measurements for
the supervised learning algorithm to converge. Mathematically, the observation
(i.e. measurement) o; is concatenated to the previous state estimate s;_; to form
the input of SRLfD model ¢ which estimates the current state as follows:

st = ¢ ([or,5-1]) (71)

where sg ~ N (0g,,0.02 x Lg,). Literally, this recursive loop conditions the
current state estimate on all previous states.

An instance of this projectile tracking task is parameterized by the initial
velocity and angle of the projectile. Specifically, a tracker receives as input the

68

BALLISTIC PROJECTILE TRACKING 69

state estimated by ¢, and must predict the projectile’s next position 6;,; as
follows:

" (@ ([or,8¢-1])) = 6411 (72)

A tracker is then trained by supervised learning to minimize this objective func-
tion:

1 P T nw
= o7 Z L1y (g ([ofs{1])) — ol (73)

where the notations correspond to those defined in Section 4.3.1.

4.5.1 Experimental Setup

Baseline Methods We compare the state representations learned with SRL{D
to five other representation strategies:

* the ground truth is a vector of size 4 formed from the 2D cartesian positions
and velocities of the projectile: (xt, yt, Uy, Vyt);

* the position corresponds to the 2D cartesian coordinates of the projectile:
(xt/ yt);

* arandom network representation with the same ¢ architecture and state
recursive loop which is not trained*;

* an end-to-end representation learning strategy, i.e. it builds its state estimate
with the same ¢ architecture and state recursive loop, while solving the
tracking task;

a Kalman filter estimated from positions with unknown initial cartesian
velocities of the projectile.

The Kalman filter designed by Kalman [1960b] is a classical method for state
estimation in state-linear control problems, where the ground truth state is not
directly observable, but sensor measurements are observed instead. Kalman
et al. [1960] create a mathematical framework for the control theory of the LQR
(Linear-Quadratic-Regulator) problem and create for this purpose the notions
of controllability and observability refined later in [Kalman, 1960a]. Witsenhausen
[1971] conducted one of the first attempts to survey the literature on the sep-
aration of state estimation and control. In particular, this led to the two-step
procedure, composed of the resolution of Kalman filtering and then of LOR,

4 As in the previous reaching task, for random network representation the parameters of ¢ are
simply fixed to random values sampled from a Gaussian distribution of zero mean and standard
deviation 0.02.

BALLISTIC PROJECTILE TRACKING

known as LQG (Linear-Quadratic-Gaussian). However, the Kalman filter is also
commonly used in recent RL applications [Ng et al., 2003, 2006, Abbeel et al.,
2007, Abbeel, 2008].

The Kalman filter has then undergone many extensions including the popular
extended Kalman filter (EKF) which can handle nonlinear transition models
[Ljung, 1979]. However, a major drawback of these classical state estimation
methods is that they require knowledge of the transition model. This constraint
has been relaxed by feature engineering (like SIFT [Lowe, 1999] and SURF [Bay
et al., 2006]) techniques which require knowledge of the subsequent task [Kober
et al., 2013]. Indeed, good hand-crafted features are task-specific and therefore
costly in human expertise. These drawbacks were then overcome by SRL methods
popularized by Jonschkowski and Brock [2013], which benefit from the autonomy
of machine learning and the generalization power of deep learning techniques.

Kalman filter = We briefly describe below the operations of the Kalman filter, the
reader willing a complete presentation can refer to [Bertsekas, 2005]. The equa-
tions for updating the positions (xt,y;) and velocities (vy t, vy +) of the projectile
are related to their previous values, to the acceleration due to the gravitational
force (g), and to the time elapsed between each update (At), as follows:

Xt = Xp-1+ Uy 10t
1
=y 1At — Zg(At)?
Yt = Y1+ 0y 28() (74)
Oxt = Uxt—1
Uyt = Vyt-1 — gAt
The ground truth state is defined as s; = [xt, yt, vy, vy¢] € R Thus, the update

procedure of the transition model is described with a single linear equation as
follows:

st = As;—1 + Buy1 +wy g

10 At 0 0
01 0 At (an? (75)
A=loo1 ol 7 BT 5| r W NOQ
00 0 1 At

where Q is the process noise covariance matrix and wy is the process noise assumed
to be white (i.e. normally, independently and identically distributed at each time
step).

The observation of this transition model is the projectile position defined as
or =[x, Y] € R? which is obtained from the ground truth state in the following
way:

1000

o = Hs; +v; , H =
0100

) , v ~ N (0,R) (76)

70

BALLISTIC PROJECTILE TRACKING

where R is the measurement noise covariance matrix (a.k.a. sensor noise covariance
matrix) and v; is the measurement noise also assumed to be white. R and Q are
ignored in our experiments for simplicity.

The aim of the Kalman filter is to solve the problem of estimating the ground
truth state s € R*. To do this, the Kalman filter assumes to know A, Q, R and H.
In this experiment, we assume there is no noise in the sensory inputs (i.e. R has
only zero values), and no uncertainty in the transition model (i.e. Q has only zero
values). Moreover, in this projectile tracking task, there is no control vector (a; =
0), because as the force exerted by gravitation is constant, it can be incorporated
in the matrix A. The state of the Kalman filter is initialized with the initial
measurement (i.e. the initial 2D cartesian position of the projectile) and zeros
instead of the true initial velocities of the projectile. In order to let the Kalman
tilter fix the initial velocities of the projectile and to ensure its convergence, we
initialize the diagonal coordinates corresponding to the velocities of the state
covariance matrix (denoted P) to 100.

The Kalman filter follows a twofold procedure: (i) a prediction step which uses
knowledge of the transition model, (ii) an update step which combines the model
and the measurement knowing that both may be imperfect. The equations of
the prediction step consists in the prediction of the state estimate Eq. 77, and the
prediction of the state covariance estimate Eq. 78.

§; = Aét_l + But_1 (77)
P, = AP, ;AT +Q (78)

This corresponds to a priori estimates.

The equations in the update step first update the Kalman gain matrix Eq. 79,
then update the state estimate by incorporating the measurement and the a priori
state estimate Eq. 80, and similarly update the state covariance matrix Eq. 81.

K, = P; H'[HP; H' + R] ' (79)
§t = ét_ + Kt (Ot — Hgt_) (80)
P, = (Id — K;H)P; (81)

Therefore, at each iteration, the Kalman filter predicts the next a priori state
estimate which is then used to update the next state estimate which corresponds
to an a posteriori estimate. This implies that the Kalman filter is a recursive linear
state estimation, whereas SRLfD is a recursive nonlinear state estimation (thanks
to the state recursive loop). In particular, while SRLfD may use a linear network
¢ for simple tasks, it may still take advantage of nonlinear approximations such
as multilayer perceptrons defining its ¢* heads, such as in this ballistic projectile
tracking task.

Generating Demonstrations The projectile tracking task does not require in
its preliminary phase K oracle policies 7t*. It is the ballistic trajectory equations

71

BALLISTIC PROJECTILE TRACKING

= = =

o N p

1 1 1
x

(0]
1

ordinate (meters)

o4 - x ¥ ¥y

15 20 25 30 35 40
abscissa (meters)

0 5 10

Figure 5. Predictions (crosses) with a tracker trained from SRLfD representations, over
7 trajectories with zero initial coordinate (i.e. xp = 0 and yp = 0), initial angles ag €
{25, 30, 35,40,45,50,55} (in degrees), and initial velocity 20 (in meter per second), composed of
12 projectile position measurements (points).

(Eq. 82) that allow us to define these oracle policies 77*. As we ignore all forces
except the gravitational one, the trajectory of the projectile corresponds to a
ballistic trajectory. The temporal equations of the ballistic trajectory are defined
with the force of gravity ¢ = 9.81 m/s?, the initial angle of launch of the projectile
o, and its initial velocity vy as well as its initial y-coordinate yy, as follows:

(82)
vy (t) = v cos (ap)
vy (t) = —gt +vgsin (ag)
The total horizontal distance xmax covered until the projectile falls back to the
ground is given by:

Xmax = % COS &g (vo sin g + \/(UO sinag)? + Zgyo) (83)

This allows us to calculate the corresponding time of flight #yax:

Xmax (84)
0Up COS X

tmax -

These equations provide an oracle policy parameterized by vy and «p, which can
generate ballistic trajectories at any initial ordinate yo. Each generated trajectory
is of fixed length T = 12 which corresponds to 10 demonstration samples (as the

72

BALLISTIC PROJECTILE TRACKING

tirst two are used during initialization) of the form (o];’p , af’p) where the actions
altc’p correspond to the next positions of the projectile, i.e. altc’p = o];fl. To do this,

we define for each trajectory the time between each update At, as follows:

. fmax
At = T (85)

where tmay is defined in Eq. 84.

For the pretraining phase of SRL{D (see Fig. 2(b)), each oracle policy 7% has a
fixed initial velocity and angle (vf, af), and generate P ballistic trajectories with
different random initial ordinates such that yo € [0, 30]. We uniformly pick K’
tasks (such that K’ < K) to simultaneously train the corresponding heads y* for
computational efficiency. Each of them is trained on demonstrations sequentially
generated from P = % different paths where B is a desired batch size for training
¢. This way, every optimization iteration to train ¢ is performed on a fixed
number B of demonstrations, independently of the total number of tasks K. We
use B = 256 and K’ = min(K, 6) in our experiments. For the tracker training, the
batch size is also 256, which implies P = 256.

For the SRLD training validation, we measure the average of tracking predic-
tion errors over all oracle policies on initial ordinates defined as v € {0,10,20,30}
(in meters). For the tracker training validation, we measure the average of track-
ing prediction errors on fixed trajectories with the same initial velocity vy = 20
and the initial angles defined as wy € {25, 30, 35,40, 45,50,55} (in degrees) and
on initial ordinates defined as yo € {0, 10,20,30} (in meters). Fig. 5 shows some
qualitative results of this validation with a tracker trained from 4-dimensional
SRLfD representations with 6 oracle policies.

Implementation Details ¢ is a linear neural network of input dimension
(2 + ;) and output dimension S;. When not specified, the default number of
oracle policies K is 6. We used a state recursive loop to remove the state concate-
nation. For the random network and the end-to-end baselines, the networks have
the same structure as for ¢, where in the former the parameters are kept fixed,
while in the latter ¢ is trained jointly with the tracker ¥"¢¥. The heads y* and
the tracker ¢V are one-hidden neural networks, with the hidden one of size 32
and the last one of size two, which corresponds to the size of the action vectors
(i.e. the next projectile positions). The previous nonlinear networks are necessary
because At changes on all ballistic trajectories, so unlike the Kalman filter which
knows this value, for the tracker and SRLfD heads they must relate the input to
the output nonlinearly.

We use ADAM [Kingma and Ba, 2014] with a learning rate of 10~ to train
@, the heads 1pk, and the tracker ¥"*"V. For the SRLfD and tracker trainings,
we use early stopping of patience 40 epochs. In one epoch 10 000 iterations
are performed, ¢ (during SRL{D training) or ¢"*" (during tracker training) see
exactly 1 000256 different trajectories composed of 10 demonstrations (i.e. data

73

BALLISTIC PROJECTILE TRACKING

1072

5.10;)2 ; - i i i ;

(==}
no

=)

—

ot
e~

tracking error
o
—
tracking error

no

® 4\)’%\\ %\\\’e‘ 1 1
o

» & oY (o0 1 2
Qo™ @ SRS
o number of oracle policies (K) with SRLfD
(@) (b)
1072
3 3]
3 £ 27
o0 g
k= &0
I L o
+ 1 g 1+
- =
0t — Beomaa
O -+
| | | |
. | | | | | | | | |
I A A S P 4 5 6 7 8 10 12 14 20
(& (& (& (& state dimension (S;) with SRLfD

(© (d)

Figure 6. Mean tracking errors over last 5 epochs (average on 10 runs; the lower the better)
obtained from five representation strategies with different hyperparameters for SRL{D. (a) Five
representation strategies of size 4. (b) SRL{D representations of size 4 with different number of
oracle policies K. (c) Representation strategies of size 4 and lower. (d) SRLfD representations
with 6 oracle policies of varying sizes S;.

points or samples). The Leaky Rectified Linear Unit (Leaky ReLU) is used for the
activation function [Xu et al., 2015].

4.5.2 Results and Discussion

We learned the projectile tracking task from six representation strategies. Fig. 6(a)
shows the boxplot of the average tracking errors obtained with all different strate-
gies of the same size 4. Our SRL{D outperforms the end-to-end representation,
confirming the empowerment provided by “divide and conquer” techniques
[Dasgupta et al., 2008]. Ground truth representations outperform our method be-
cause they know the complete projectile configuration. With a random network,
the supervised learning system fails to track the projectile, implying that state
representation learning is required in the context of recursive state estimation.
Regarding the Kalman filter, it uses the knowledge of the real transition model
in order to provide a complete recursive state estimation. It is therefore not

74

BALLISTIC PROJECTILE TRACKING

surprising that it achieves the same performance as the ground truth baseline.
Unlike this classical method, SRLfD does not use the a priori knowledge of the
tracking task but only that available in the oracle policies. The performance
obtained with the SRLfD representations in this comparative evaluation shows
that they extract the position and velocity of the projectile. In other words, there
is enough diversity in the oracle policies to be imitated by SRLfD network heads,
so that their joint state space is close to the real state that makes the system
fully observable. The comparative quantitative evaluation presented by Fig. 6(b)
confirms this hypothesis since the performance obtained with the size 4 SRL{D
representations increases with the number of oracle policies used during the
pretraining phase of SRLfD.

Table 2 displays the average tracking errors displayed in Fig. 6, with the
mean and standard deviation for better insight. Fig. 6(c) shows that as the
state dimension decreases, the information lost by SRLfD significantly degrades
the performance of the trained trackers, while for a size of 2, it is still better
than the position baseline. On the other hand, Fig. 6(d) shows that as the state
dimension increases, the performance of the trained trackers improves until it
even outperforms ground truth starting at 6 dimensions (see Table 2). Although
these results may be surprising, one can assume that adding redundancy to the
representations makes them easier to build (since the dimension of the ground
truth vector is 4). Indeed, larger state embeddings could be more regular and thus
be build with simpler neural networks which are less subject to the overfitting
problem. However, the question of what is an ideal representation for deep
learning algorithms is far from being answered. Recently works have started to
investigate this question [Ota et al., 2020, 2021], but the search for a definitive
answer leads far beyond the scope of this thesis.

75

CONCLUSION

Table 2. Tracking errors corresponding to Fig. 6 (mean £ standard deviation on 10 runs; the
lower the better): (a) obtained with the five baselines, (b) obtained with SRLfD representations of
size 4 with different number of oracle policies K, (c) obtained with SRL{D representations with 6
oracle policies of varying sizes S;.

(@)

Method Tracking error (x1073)
Ground truth (dim 4) 7.97 +1.64
Kalman filter (dim 4) 8.14+0.6
Position (dim 2) 3000+ 26.9
End-to-end (dim 4) 224 +13.7
Random network (dim 4) 130 £ 74.5
(b) (©
K | Tracking error (x1073) S; | Tracking error (x1073)
1 31.54+19.7 2 2200+ 175
2 314 +16.1 3 147 + 60.4
4 263+ 164 4 17.1+7.46
6 17.1+7.46 5 9.37 +4.56
8 18.4 +16.8 6 521 £1.78
7 3.61+1.37
8 2.414+0.733
10 2.16 £0.574
12 1.83 £ 0.686
14 144 4+0.44
20 1.38 +0.432

4.6 CONCLUSION

We presented a method (SRLfD) for learning state representations from demon-
strations, more specifically from runs of oracle policies on different instances of
a task. Our results indicate that the learned state representations can advanta-
geously replace raw sensory inputs to learn policies on new task instances via
regular RL. By simultaneously learning an end-to-end technique for several tasks
sharing common useful knowledge, SRLfD forces the state representation to be
general, provided that the tasks are diverse. Moreover, since the representation
is trained together with heads that imitate the oracle policies, we believe that it
is more appropriate for control than other types of representations (for instance
ones that primarily aim at enabling a good reconstruction of the raw inputs).
Our experimental results tend to confirm this belief, as SRLfD state representa-

76

CONCLUSION 77

tions were exploited more effectively by the SAC RL algorithm and a supervised
learning system, than several other types of state representations.

EXPLORATORY STATE REPRESENTATION LEARNING

To know what you know and what
you do not know, that is true
knowledge.

Confucius

ABSTRACT

Not having access to compact and meaningful representations is known to signif-
icantly increase the complexity of reinforcement learning (RL). For this reason,
it can be useful to perform state representation learning (SRL) before tackling
RL tasks. However, obtaining a good state representation can only be done if a
large diversity of transitions is observed, which can require a difficult exploration,
especially if the environment is initially reward-free. To solve the problems of
exploration and SRL in parallel, we propose a new approach called XSRL (eX-
ploratory State Representation Learning). On one hand, it jointly learns compact
state representations and a state transition estimator which is used to remove
unexploitable information from the representations. On the other hand, it contin-
uously trains an inverse model, and adds to the prediction error of this model a
k-step learning progress bonus to form the maximization objective of a discovery
policy. This results in a policy that seeks complex transitions from which the
trained models can effectively learn. Our experimental results show that the
approach leads to efficient exploration in challenging environments with image
observations, and to state representations that significantly accelerate learning in
RL tasks.

KEYWORDS

State Representation Learning, Pretraining, Exploration, Unsupervised Learning,
Deep Reinforcement Learning

78

INTRODUCTION

5.1 INTRODUCTION

Recent improvements in computational power and deep learning techniques
have been combined with reinforcement learning (RL) to create deep RL (DRL)
algorithms capable of solving complex control tasks with continuous state and
action spaces [Li, 2018]. These improvements have popularized end-to-end DRL
techniques, which involve letting deep learning systems automatically learn their
representations and make predictions simultaneously (i.e. without performing
a feature extraction as a preliminary phase). However, despite its simplicity of
design, this end-to-end approach has four main limitations discussed in Sec-
tion 3.2.1. In the context studied during this thesis of continuous control tasks
with visual observations, we reviewed methods that have improved on these
end-to-end techniques, but they face a significant computational challenge. In
Section 3.2.2 we presented two other alternatives to the end-to-end approach that
focus on the state representation learning process of which state representation
learning (SRL) is one.

We propose here a new SRL method that tends to circumvent the four main
limitations of end-to-end DRL, namely (i) it removes the typically long horizon
related to the control task to focus only on representation learning with dimen-
sionality reduction; (ii) it guarantees the compositionality principle since the
roles assigned to the modules are respected; (iii) it improves sample efficiency
and convergence stability; (iv) it improves interpretability at the modular level.
As explained in Section 3.3, this is possible by performing unsupervised state
embedding pretraining from agents’ experiences which contain knowledge about
themselves (proprioceptive information) and the environment properties (re-
lated to perception) common to different unknown tasks. In other words, this
knowledge is task-independent information about the agent-environment, such
as the agent’s configuration, the transition model of the environment (i.e. local
consistency), and its structure (i.e. topology) [Morik et al., 2019] (for more details
see Section 3.3.1).

For state representations to be good as inputs to an unseen RL task, a SRL
training must observe a large diversity of transitions. Since it is often impossible
to randomly explore all environment transitions, we optimize discovery policies.
A standard RL policy is trained to associate an action to a state to maximize a
reward. In a pure exploration context, a policy optimization can only use intrinsic
rewards which estimate a degree of uncertainty about the trained models [Bubeck
et al., 2009]. Our exploration strategy is one that explores the most diverse and
learnable unknown transitions. However, previous strategies that also focus on
such exploration belong to the context of model-based RL with planning [Shyam
et al., 2019, Sekar et al., 2020], without aiming at learning an intermediate state.
Instead, we propose a novel exploration strategy to learn a state embedding
model, called XSRL (eXploratory State Representation Learning), which has the
advantage of being computationally lighter.

79

RELATED WORK

XSRL consists of a twofold training procedure. In the first training proce-
dure, XSRL learns state representations whose transitions are Markovian while
advantageously reducing the image observation dimensions by filtering out
unexploitable information with respect to the objective of the next observation
prediction. In the second training procedure, XSRL learns discovery policies
which draw actions considered as uncertain by an inverse model, and from
which the state transition estimator can learn the most. Finally, in order to cope
with the two sources of non-stationarity due to evolving state representations and
inverse model predictions, we train two discovery policies in parallel and, given
their mutual performance, reset one of them after a given number of training
steps (as explained in Section 5.3.2.1). We use an online training with a set of
agents, each half of whom follows one of the two policies.

Contributions In this chapter, we propose a new SRL algorithm — XSRL (eX-
ploratory State Representation Learning) — whose main contributions can be
summarized as follows. First, we introduce a novel SRL architecture which
learns a state transition estimator (denoted ¢ and composed of three different
modules: «, B and) through the self-supervised next observation prediction
objective to provide a recursive state estimation. The recursion allows the state
representation to memorize information about past time steps in order to verify
Markovian transitions, so as to restore full observability to environments whose
real state has been replaced by image observations (Section 5.3.1). Second, XSRL
provides a consistent exploration strategy in a rewardless environment, which
is novel compared to other pure exploration strategies (Section 5.3.2). Third, we
demonstrate the validity of XSRL representations as well as its discovery policies
through quantitative and qualitative evaluations on three different environments
(Section 5.5.1). Finally, we show improvements over other representation strate-
gies through a comparative quantitative evaluation on unseen control tasks with
a popular RL algorithm (SAC [Haarnoja et al., 2018b]) (Section 5.5.2).

5.2 RELATED WORK

Several other SRL algorithms with a near-future prediction objective have been
proposed recently [Watter et al., 2015, Assael et al., 2015, Wahlstrom et al., 2015,
van Hoof et al., 2016], and reviewed in Section 3.3.2.1. However, they separately
learn state representations with the reconstruction objective on observations,
and train a forward model on the learned states. The forward model forces
the representations to retrieve information to make their transitions Markovian.
The main limitation of these approaches is the inefficiency of the reconstruction
objective, which forces the representations to contain unnecessary information
from the observations. Because of this limitation, many empirical results in
the literature show a poor generalization performance of this representation
strategy to RL systems [Bohmer et al., 2015, Jaderberg et al., 2017, Shelhamer

80

PROPOSED METHOD: XSRL

et al., 2017, de Bruin et al., 2018]. Instead, XSRL jointly learns a state transition
estimator with a next observation predictor with the next observation prediction
objective. On the one hand, this forces the learned state representations to retrieve
information and memorize it through the recursive loop in order to restore
the observability of the environment (in this work, the partial observability
is due to image observations) and to verify the Markovian property. On the
other hand, this forces the learned state representations to filter out unnecessary
information, in particular information about distractors (i.e. elements which are
not controllable or do not affect an agent).

The XSRL exploration strategy is inspired by the line of work that maximizes
intrinsic rewards corresponding to prediction errors of a trained forward model,
which is a form of dynamics-based curiosity [Hester and Stone, 2012, Pathak
etal., 2017, Burda et al., 2018]. These strategies are often used by model-free RL
algorithms such as ICM [Pathak et al., 2017], which combine intrinsic rewards
with extrinsic rewards to solve the complex exploration/exploitation tradeoff.
Instead, XSRL applies to rewardless environments in the SRL context, i.e. it fo-
cuses only on the complex non-stationary training of state representation models.
In addition, XSRL differs in two other ways: (i) while ICM is applied to discrete
actions, XSRL is applied to continuous actions, (ii) while ICM uses prediction
errors of a trained forward model, XSRL uses those of an inverse model because
they only depend on the controllability properties (see Eq. 5.3.2.2).

While the previous prediction errors of an inverse model give an uncertainty
estimation of actions with respect to their controllability, k-step learning progress
bonuses of the transition model (¢) give an uncertainty estimation of actions
with respect to their learnability. Learning progress estimation was initially
proposed in the field of developmental robotics [Oudeyer et al., 2007]. Lopes
et al. [2012] initiated the estimation of learning progress bonuses to solve the
exploitation/exploration tradeoff in the model-based RL domain with finite
MDPs. Achiam and Sastry [2017] have scaled this approach to continuous MDPs,
however it remains limited to compact observations of several dozen dimensions.
We now scale the work of Achiam and Sastry [2017] to image observations and in
the SRL context. Thus, XSRL trains discovery policies to also maximize k-step
learning progress bonuses of ¢ to favor learnable unknown transitions. This way,
the XSRL exploration strategy exploits learnable unknown transitions with a high
controllability diversity criterion.

5.3 PROPOSED METHOD: XSRL
5.3.1 State Transition Estimator
The goal of SRL is to transform high-dimensional observations into machine-

readable compact representations which retrieve information about an agent and
the environment and disentangle their degrees of freedom [Lesort et al., 2018].

81

PROPOSED METHOD: XSRL

To do this, we make the assumption with XSRL that a good state representation
must contain the information needed to predict the next observation from the
previous time step.

Our state transition estimator ¢ consists of two neural network parts («, 8), and
a common network head <. While « is a convolutional neural network (CNN) to
process image observations, f is a multilayer perceptron (MLP) to process the
concatenated action and state vectors. Finally, the common network head vy is a
MLP to process the concatenated output vectors of the two first network parts to
estimate next state vectors (s¢11).

According to the graph in Fig. 7(a), from current observation o;, previous
action a; and state s;, information is compactly merged into a next state s;;
through the intermediate functions («, B,). Because of the recursive loop on the
state representation, ¢ bootstraps from an initial state drawn from a Gaussian
distribution of mean zero and standard deviation 0.02. Putting all the functions
together, we get the following definition of ¢ predictions:

ser1 =7 ([w(or), B ([st a])])

si+1 = @([or, 8¢, a¢]) (86)

where we abbreviate the state transition estimator network («, 8, v) by ¢ and their
parameters are concatenated into the following parameter set 8, = {0,063, 0, }.
The implementation details of the whole neural network are displayed in Table 6.

@ is trained jointly with a next observation predictor w thanks to the next
observation prediction objective. w is a CNN with transposed convolution layers!
to deterministically predict from the outputs of ¢ (i.e. s;11) the next observations
as follows w(s;41) = 644+1. This yields the following prediction error:

16441 — 011113 (87)

All the parameters of w are gathered in a single parameter set 6,,. The corre-
sponding training process will be described with the complete XSRL training
process in Section 5.3.3.

Thanks to this joint training of ¢ and w, XSRL builds compact state represen-
tations which contain the information needed to predict the next observations,
which is deterministic and simple enough to be modeled. In the context where
the robot’s state space follows Markovian transitions but is unknown and only
image observations are available, the environment becomes partially observable,
which may be due to perceptual aliasing or dynamic transitions. We therefore
force ¢ to memorize in the state representations (through the recursive loop) the
information of past time steps in order to restore the Markovian property of the
learned state transitions.

Indeed, to predict the next observation with w, the next state representation
st+1 = @([0s, st, a;]) must contain the information of past and current time steps.

1 We used the 2D transposed convolution operator provided by PyTorch.

82

PROPOSED METHOD: XSRL

As this information cannot only be retrieved from o; and a;, some of it must be
memorized in s; through the state recursive loop. In this way, the state representa-
tions learned by XSRL form Markovian transitions that translate mathematically
as follows:

P (st+1lst,ar) = P (S¢r1|st ¢, 8t-1,a4-1,--.,80,a0) (88)

for all states sy, 1,8t € S C RS and actions a; € A C R4, In particular, this
forces state representations to verify the local consistency and often the topology
(or connectivity) of the environment, since otherwise they would not be able to
restore the observability [Morik et al., 2019].

The local consistency of an environment is related to the transition model,
i.e. the way an agent transitions from one state to another, but without the
reward information. In order for the state representations to verify this property
in environments with acceleration, it is necessary for them to be linked to the
environment dynamics. For example, a state representation of a torque-controlled
robot requires to verify this property to retrieve his velocities and positions, which
are necessary to predict the next observation.

Alternatively, the topology of an environment corresponds to its structure, i.e.
properties independent of an agent. For example, a state representation of a
navigator robot (like the one in TurtleBot Maze) requires to verify in addition
to the local consistency this property to retrieve his orientation and position.
Indeed, to localize an agent with perceptual aliasing, the state representation
must memorize the environment structure independently of the agent and so
invariant with respect to his orientation and position as noticed previously by
Bohmer et al. [2013].

Another advantage of XSRL state representations is that they remove unnec-
essary information for predicting next observations so as to preserve useful
information to predict the change produced by an action in the next observa-
tion. This has two main merits: (i) XSRL can effectively cope with dimensionality
reduction, (ii) aleatoric uncertainty such as random noise or other random distrac-
tors will be removed by state representations, which is key to the success of XSRL
pure exploration strategy. As shown by Burda et al. [2018], policies learned with
a dynamics-based curiosity tend to be attracted by aleatoric uncertainty related
to the environment transitions. Our results in Section 5.5.1 will show that XSRL
trained discovery policies are not attracted to such transitions in TurtleBot Maze
environment where one of the walls has a randomly sampled color at each time
step.

5.3.2 Discovery in the Face of Uncertainty

5.3.2.1 Quver-Commitment

A problem that arises in pure exploration with dynamics-based curiosity is the
non-stationarity of intrinsic rewards. Specifically, as in other dynamics-based

83

PROPOSED METHOD: XSRL

@ tramning 7 traming

aj ~m(-|st)

16441 — 0r41]13

l[st+1 — SZ+1H§

Ul sttt

(=]
R
+
—-
temporal recursion

(@

Figure 7. (a) XSRL learning process of state representations by jointly training a state transition
estimator ¢ formed by («, B, 7) and a head w with the next observation prediction objective,
where actions are sampled from one of the two discovery policies 771 and 717 (each policy is used
on half of the agents in an online manner, as explained in Section 5.3.3). (b) XSRL learning process
of a discovery policy by minimizing £(6,) which is related to the intrinsic rewards (for clarity
reasons, 7t represents either 711 or 7). Intrinsic rewards are formed of two main terms. (i) L.
prediction errors of an inverse model Z (also used in £(87)); (ii) 7''B: k-step learning progress
bonuses of ¢ where the parameters of ¢’ formed by («/, p/, 7') are delayed by k training steps
and kept fixed.

curiosity explorations from image observations, two sources of non-stationarity
emerge [Burda et al., 2018]: (i) the model trained concurrently with discovery
policies improves during training and its prediction errors minimize on visited
transitions, (ii) the state representations evolve during ¢ training. Such a non-
stationary training signal tends to attract policies in poor local optima. Indeed,
when transitions maximizing intrinsic rewards are sufficiently visited, they be-
come known and the policy generally cannot escape from this solution stuck
in a poor local optima. Shyam et al. [2019] have popularized this problem as
“over-commitment”. The latter proposed to circumvent it by training from scratch
a new policy. This is what we propose to do with XSRL by training two discovery
policies in parallel called 711 and 7, and every Tyeget iterations reset the policy
with the lowest cumulative intrinsic rewards without the entropy term.

5.3.2.2 Intrinsic Rewards

The intrinsic rewards to be maximized by XSRL discovery policies are a combi-
nation of the following terms: (i) prediction errors of an inverse model which
should be maximized on transitions which are complex with respect to their con-
trollability, (ii) k-step learning progress bonuses of the state transition estimator

84

PROPOSED METHOD: XSRL

(¢) which should be maximized on transitions with high learnability with respect
to the next observation prediction, (iii) a policy entropy estimation to ensure
convergence stability. Fig. 7(b) shows the graph corresponding to the calculation
of the two main terms (i) and (ii).

Inverse model While previous dynamics-based curiosity methods [Pathak
etal., 2017, Burda et al., 2018] typically use a forward model to indirectly estimate
an action uncertainty, we use an inverse model. Pathak et al. [2017] train an
inverse model to learn state representations (without the goal to transfer them
to new learning tasks). Prediction errors of a forward model on such represen-
tations would depend only on the elements controllable by an agent. Instead,
we train a state transition model with a next observation predictor to learn state
representations (with the goal to transfer them to new learning tasks). Prediction
errors of a forward model on such representations would depend on what affect
the camera due to the next observation prediction objective. For example, large
variations in pose or illumination would be considered difficult to predict. Thus,
maximizing prediction errors of a forward model from XSRL learned represen-
tations would favor actions that cause large observation changes which are not
useful to discover the environment. Alternatively, prediction errors of an inverse
model are only related to the difficulty of the state transitions. In summary, with
XSRL learned representations, while prediction errors of a forward model de-
pend on visibility properties, those of an inverse model depend on controllability
properties. It is this controllability diversity criterion that motivated us to train
an inverse model to indirectly estimate an action uncertainty.

An inverse model, takes as input a pair of consecutive states (s, s+ 1) to predict
the action &; = Z(s;41, s¢) executed by an agent to obtain the next state s;;1. The
prediction errors to be maximized by the discovery policies and minimized by
the inverse model are calculated as follows:

~ A 2
r*(ayaf) = [l — af'|; (89)

where the action af* is sampled from 711 and 71, equally because half of the set of
agents is associated with one of them. The training process of an inverse model
is detailed later in Section 5.3.3.

Learning progress bonuses To ensure that actions considered uncertain by the
inverse model (given the state representations learned by ¢) lead to learnable
unknown transitions, we use k-step learning progress bonuses of ¢. This is a
way to approximate the amplitude change in the parameter space produced by
k training steps [Achiam and Sastry, 2017]. The larger this measure is on a new
transition, the more ¢ and w can reduce the prediction error of the corresponding
next observation and thus generalize better. Maximizing these bonuses allows,
during XSRL training, to progressively increase the complexity of the observed
transitions, thus ensuring that some unknown transitions, too complex to be

85

PROPOSED METHOD: XSRL

learned with the current ¢ solution, are not favored until other easier transitions
are observed. In other words, it ensures that the difficulty of transitions with
respect to controllability intersects with their learnability by ¢. Furthermore, once
the inverse model has converged, these bonuses will complete the convergence
of ¢ by increasing the diversity of transitions with respect to the next observation
prediction objective. For example, if at new transitions there is deterministically
predictable information, these bonuses allow visiting them to further improve
the generalization performance of the model ¢.

We adapted the k-step learning progress bonus proposed by Achiam and Sastry
[2017] into the deterministic setting of our state transition model ¢. To do so, we
introduce ¢’ formed by («/, B/, 7') with parameters delayed by k iterations and
kept frozen. The k-step learning progress bonuses of ¢ to be maximized by the
two discovery policies result in:

P (or,s1,a7) = [lg([or, s af) — ¢/ ([on, 51,25 0)
where the action af’ is sampled from the discovery policy 711 or 71, that an agent
follows.

Policy entropy estimation For better convergence stability, discovery policies
must maximize in addition to intrinsic rewards their entropy estimation. Fol-
lowing Haarnoja et al. [2018b], we use an automatic weight tuning of this term
wy (a.k.a. temperature). This technique uses an optimization algorithm of the
gradient descent type to automatically adjust this hyperparameter with respect
to the difference between the estimated entropy and a target value H to match as
follows:

oy [H((1s0)) — A o1

As in the original implementation of the automatic tuning of the entropy term
weight, the target entropy to match H is equal to minus the action dimension
— Ay, see [Haarnoja et al., 2018b] for more details.

5.3.2.3 Discovery Policies

Now that we have detailed the three terms for computing intrinsic rewards, we
explain how we train discovery policies to maximize them. In this work, we
study environments with continuous action spaces. The general approach to
learn a policy in this case is to model it as a multivariate Gaussian distribution
with a diagonal covariance matrix from states to actions [Haarnoja et al., 2018b].
To do this, we use a neural network with a first common part, then one head
1 with parameters 0, to predict a mean vector, and a second head ¥, with
parameters Oy to predict the diagonal covariance elements of a covariance matrix.
The outputs of these two heads, which have the same dimensions as the action

86

PROPOSED METHOD: XSRL

space, allow us to parameterize a policy, so that it follows a Gaussian distribution
defined as:

7t(-|st) & N (pr(st), Zn(st)) (92)

All parameters of a discovery policy are gathered in a single parameter set
0, = {60, 0z }. The reparametrization trick [Kingma and Welling, 2014] is used
to sample an action from a policy (i.e. aj ~ 7(-|s¢)) to keep all its parameters
differentiable:

af = Pr(s)) + € xZn(st) , er~N (OAd’IAd) (93)

The two discovery policies (711 and 71;) can be optimized directly from the in-
trinsic reward gradients. Indeed, intrinsic rewards are computed with prediction
errors of an inverse model, k-step learning progress bonuses of ¢, and a policy en-
tropy estimation, all of which use actions sampled from 7ty or 7r>. Thus, intrinsic
reward gradients can be used to train discovery policies in a supervised learning
manner, as was done previously by Pathak et al. [2019]. Thus, our discovery
policy training strategy is based on minimizing the following loss function:

— (erI(ét, al) + wippr™"" (o, 8¢, af) + wyH (7T(|St))> (94)

Minimizing this loss function, which amounts to maximize the intrinsic rewards,
allows a gradient descent type of optimization. The corresponding training
process is described in the next section.

The fact that we minimize a deterministic loss does not mean that there is no
probabilistic interpretation. Indeed as explained previously, sources of prediction
errors of an inverse model may be related to action uncertainty dependent on
the controllability of learned state transitions; k-step learning progress bonuses
of ¢ may be related to action uncertainty dependent on the learnability of state
transitions. Furthermore, the estimated entropy of a policy is related to action
uncertainty with respect to learned state representations. Thus, our two discovery
policies learn a probability over the action space that tends to sample actions
which maximize these uncertainties.

5.3.3 Optimization Process

Let us define the notations for the training examples we manipulate in our online
training procedure. There is an even number B > 2 of agents in parallel, where
b € [1,B], and each of them is initialized in the same fixed configuration so
that an effective exploration is required to visit the most diverse transitions of
the environment. At time step ¢, a training example for (¢, w) is an element of
the form (01&)1' o, s art)), composed respectively of the next observation
and current observation, a state representation estimated at previous time step

(i.e. t —1), and an action sampled from one of the two discovery policies as

87

PROPOSED METHOD: XSRL

am® ~ (. |s§b)) (following the sampling process defined in Eq. 93). Specifically,
each half of the set of B agents follows one of the two policies (711 and 717). A
state transition estimator ¢ composed of three modules («, B, 7y) estimates from

the triplet input (ogb), sgb), af (b)) the next state 55?1' from which w predicts the

()

next observation 6, ;.

The optimization problem to simultaneously train ¢ and w, is the minimization
of the following objective function (based on the next observation prediction
error of Eq. 86):

1 B
£(00,00) = 5 Y- llwo(si) — o} 1 95)
b=1

After each b-agent has executed the action af) the backpropagation computes
the partial derivatives of this objective function with respect to the parameter
sets 0, and 0, in order to perform a training step.

5.3.3.1 Different Update Interval

The inverse model and the two discovery policies are trained in parallel to the
above training. Instead of performing a training step after every agent performs
an action, it is performed after a chosen update interval (T). Since the policy
optimization is much more sensible to the i.i.d. hypothesis, we use the largest
possible sampling period k for these two types of optimization (k also corresponds
to the number of training steps whose the parameters of ¢’ are delayed). To do
this, we specify an update interval T, € Z" which is the number of time steps
before a training step is performed on the parameters of the inverse model and
the parameters of the two discovery policies. Then, given a chosen batch size
Br € Z* and the number B of agents running in parallel, a batch of training
examples is formed of L%j samplings. Then, to maximize the independence
between each of these samplings, we define a sampling period to be k = LT,%EJ .
The optimization problem to train the inverse model is the minimization of the
following objective function (based on the action prediction error of Eq. 89):

L)1 B
1 BZ Z i
L(61) = By =0 b=1 HI(SE?lfki 'St(li)ki) - affki(b) Hz oo

The backpropagation computes the partial derivatives of this objective function
with respect only to the parameter set 07.

88

PROPOSED METHOD: XSRL

The optimization problem to train the two discovery policies is the minimiza-
tion of the following objective function (based on the loss of Eq. 94):

i Iian () gr ()
L(0;) = B, Z — |wzr (& al)
i=0 b=1
b) (b
+wrppr™™ (o E)kifsgjki’ affki(b)) - wﬂlog(aﬁki(b))
(97)

where the parameter set 07 is frozen, and that of ¢’ is updated every k iterations
with that of ¢ and kept frozen. More specifically, the backpropagation computes
the partial derivatives of this objective function with respect to the parameter set
of one of the two discovery policies (i.e. 8, or 8r,). This objective function is low
where the inverse model fails to predict actions, and learning progress bonuses
are large.

Finally, to automatically tune the temperature wy;, we minimize the following
objective function:

1 Tnj B () B
Llwy) = 5- Z g w | —log(af ") — 7| (98)

As explained in Section 5.3.2.1, we choose to simultaneously train two discov-
ery policies to mitigate the “over-commitment” [Shyam et al., 2019]. Specifically,
our XSRL algorithm (as displayed in Algo. 2) resets the policy with the lowest
intrinsic rewards without the entropy term as follows:

(b) LPB((b) () _x (b))

wrrt (8 /af—ki(b)) + WLpBr (O ks S kir Af—ki
accumulated over Tyeget time steps (defined in Table 6). It is also a way to re-
explore already learned transitions by performing suboptimal actions. Indeed, a
policy trained from scratch must go through all types of transitions again. This
ensures a better diversity of transitions visited throughout the XSRL training
procedure and thus mitigates the overfitting peculiar to deep neural networks.

In summary, our XSRL algorithm described in Algo. 2, performs four types of
optimization: (i) of a state transition estimator with Eq. 95, (ii) of an inverse model
with Eq. 96, (iii) of two distinct discovery policies with Eq. 97, (iv) of an automatic
temperature tuning with Eq. 98. This XSRL training procedure is repeated until
the convergence of the parameters updated with the next observation prediction
objective (i.e. 8, and 60,,). See Table 6 for more details on the hyperparameters of
our XSRL implementation.

Fig. 8 shows the two phases of XSRL considered in this work. (a): the twofold
training procedure that XSRL follows in order to provide good state representa-
tions to solve unseen control tasks. (b): shows the deployment of such a solution
¢ to predict state representations for an unseen RL task. In particular, we no

89

PROPOSED METHOD: XSRL

Algorithm 2 XSRL algorithm

1:

2:

3:
4.

10:

11:

Initialization: Prepare an even number B > 2 of agents, reset to the same
fixed starting state in an instance of the same environment env(b), the first g
agents will be associated with 771, and the other % agents will be associated
with 7. Choose for the inverse model and discovery policies an update
interval T, € Z™", a batch size B; € Z* and compute the sampling period as
k = LTB%TBJ; choose the reset interval Tyeget; choose intrinsic reward weight
terms: wz, wypp; choose the entropy target ‘H for the automatic tuning of the
temperature (i.e. wy).

At each reset of a b-th agent: randomly initialize the state séb) from a
Gaussian distribution of mean zero and standard deviation 0.02.

Randomly initialize: a state representation transition network ¢ formed
by («, B,) following the architecture described in Fig. 7A with parame-
ters 0, = {04, 60p,0,} and use these parameters to initialize ¢’ formed by
(«/, B/, 7'); a next observation predictor network w with parameters 6,; an
inverse model 7 with parameters 07; two distinct discovery policies 711 and
71 with parameters 0, and 0, respectively.

Output: A task-independent state transition estimator ¢ formed of three
modules («, B, 7y) to predict compact state representations.
while (6, 0.,) have not converged do

Sample actions from each of the discovery policies (7711 and 712) on half of
the B agents as:

b b b b b
A" = pia(s”) e x Zals)”) e N (04,10)
Perform the action with every agent: 053)1 « env(®) (a7 (b))
Predict next state representations for all B agents:

05— (tel®, B (. 57)]

Compute L(6,, 0,) from Eq. 95.

Perform a training step on [,(Gq,, 0,) w.r.t. 6y and 0.

every T iterations do
Compute L£(67) with Eq. 96 and perfom a training step w.r.t. 07.
Compute £(0;,) with Eq. 97 and perfom a training step w.r.t. 0.
Compute £(0,,) with Eq. 97 and perfom a training step w.r.t. 6.
Compute L(wy,) with Eq. 98 and perform a training step w.r.t. wy,.
Update the parameters of ¢’ with those of ¢ and keep them frozen.

every Tyeget iterations do
Reset one of the two discovery policies with the lowest intrin-

sic reward without the entropy term (ie. wzrf (4l ki(b) af’ . (b)) +

7 Ct—ki
wy pprTB (ot(li)k o sl@k Lal ki(b))) accumulated over Tyeget time steps.

end while

90

PROPOSED METHOD: XSRL

@ pretraining with XSRL ¢ transfer to RL

N
atw—>[Environment VOt —>{ Env1ronment o
Or— V
” training: Oy
a; ¥ g: P so~N(0s,,002x1s,)
o N
minimize £ (099., 0w)
/
S t—i—llst——l"”st— a; ©
al 1, T2 trainings: St41-->St
minimize £(01), C(Om), E(Om)
o 7'(1¢7'(2 o G
Discovery policies Y
ay, | agty ~ mi(-|se41) ait1 RL policy Tl
a;ty ~ mo([se+1) a;41 ~ mRL("[S¢41)
() (b)

Figure 8. (a) Schematic representation of the XSRL twofold training procedure to provide compact
state representations by jointly training a state transition estimator ¢ with a next observation
predictor w, guided by two discovery policies 7711 and 7, (for clarity reasons, in the exponents
of sampled actions 7t represents either 711 or 717) in an online manner with several agents in
parallel (the first half of the agents following 717 and the other 715). Here s;11 = ¢ ([0, s¢, a¢]),
and sj ., = ¢'([oy,st,a]) where ¢’ is the same network of ¢ whose parameters are delayed by
k iterations and kept frozen. (b) A schematic illustration of the transfer of the pretrained state
representation model (¢) to an unknown RL task.

longer use discovery policies, an inverse model, and a k-step delayed model ¢/, all
corresponding to the exploration strategy of XSRL. We also discard the network
head w related to the self-supervised next observation prediction objective.

91

EXPERIMENTAL SETUP

5.4 EXPERIMENTAL SETUP

This section describes a systematic evaluation of all criteria that our XSRL al-
gorithm must verify. XSRL must learn state representations which (i) retrieve
information (possibly by memorizing through past time steps) to garantee that
their transitions are Markovian, (ii) filter unnecessary information. Furthermore,
XSRL must learn discovery policies which (iii) guide agents quickly through most
diverse transitions while avoiding unlearnable ones. Finally, after XSRL pretrain-
ing, the state transition estimator ¢ must (iv) provide advantageous inputs to
solve unseen control tasks.

We evaluate the criterion (i) with the average of the next observation prediction
errors on a training dataset and a test dataset. While the former is formed from
samples generated during the training process, the latter is carefully designed for
each environment, as described in Section 5.4.2.6. The lower this error measure
is, the more the state transitions verify the Markovian property, because the next
observation prediction depends only on the previous time step (as explained in
Section 5.3.1). Furthermore, we measure the quantitative performance obtained
by RAE (Regularized Autoencoder [Ghosh et al., 2019]) with the average of
observation reconstruction errors to give a quantitative comparison with a state-
of-the-art algorithm. However, since it is more complicated to predict the next
observation than to reconstruct it, it is expected that the latter will perform better.

We evaluate the criterion (ii) of state representations and the criterion (iii)
of discovery policies by training XSRL in our TurtleBot Maze environment by
injecting aleatoric uncertainty into its transitions. To do this, we randomly sample
at every time step a color for the small vertical wall in the lower branch of the
maze, just in front of the initial state location of the robot, as shown in the top row
of Fig. 11. We obtain a quantitative evaluation of our results with the same error
measure as before, while also qualitatively evaluating our results by observing
that XSRL does not attempt to predict the random wall color.

In addition to verify the criterion (iii), we perform other exploration evalu-
ations during the state embedding pretraining of XSRL. First qualitatively by
visualizing the coverage performance of XSRL discovery policies, then quanti-
tatively by counting the average number of training steps before one of the 32
agents reaches the other end of the maze. Furthermore, since ||o;1 — ;11| is
a useful prediction error measure to quantitatively evaluate the generalization
performance of w which is directly related to the performance of discovery poli-
cies, a high error measure will indicate that the XSRL exploration strategy is not
efficient enough. To complete the evaluation of the discovery policy criterion, we
also compare with two XSRL ablations:

* XSRL-MaxEnt: trains a policy to maximize its entropy estimation;

* XSRL-random: uses a random policy which samples actions uniformly
from the action space.

92

EXPERIMENTAL SETUP

Here, XSRL-random is expected to give minimal performance, while XSRL-
MaxEnt should be worse than XSRL, as it only depends on the policy distribution.
We evaluate the criterion (iv) with the transfer of XSRL ¢ solution to unseen
RL tasks. During RL training, the environment provides an agent with extrinsic
rewards to train an optimal policy, while ¢ provides compact observations as
shown in Fig. 8(b). To rigorously conduct this evaluation, we use a popular RL
algorithm with continuous actions — SAC (Soft Actor-Critic) [Haarnoja et al.,
2018b] — on each of the tasks in the three environments shown in Fig. 9. These
continuous control tasks (presented in detail in Section 5.4.2), are challenging
because of their high-dimensional observation spaces consisting of a camera.
In order to obtain a quantitative evaluation of our results, we compare the
performance between other representation strategies detailed below.

5.4.1 Baselines

We compare the performances of XSRL representations on unseen RL tasks to
the following five baselines: ground truth, open-loop, position, RAE, random
network.

Of all these baselines, only RAE (Regularized Autoencoder [Ghosh et al., 2019])
is a state-of-the-art SRL method. We train it using the same three rewardless envi-
ronments with fixed state initializations as for XSRL described in Section 5.4.2.4.
However, since it has no associated exploration strategy to generate observations,
we use either a random policy as previously done by Yarats et al. [2019], or an
effective exploration (indicated by the suffix -explor). In TurtleBot Maze, this
effective exploration corresponds to a random policy with 50 time steps and
random initialization, while in the two torque-controlled environments, it has
0.5 probability to take a random action and otherwise to take an action sampled
from an optimal policy pretrained in the RL context (i.e. where extrinsic rewards
are available) with SAC from the ground truth representations.

RAE is a deterministic alternative to the variational autoencoder (VAE) [Kingma
and Welling, 2014], which preserves the regularizing effect of the latter. To the
best of our knowledge, we do not know of any other method than RAE, be-
longing to the SRL context, that achieves state-of-the-art performance on the
torque-controlled tasks of the DeepMind Control Suite (DMControl) benchmark
[Tassa et al., 2018] with visual observations considered in this work. Specifically,
on the DMControl benchmark, Yarats et al. [2019] obtain results where RAE
perfoms as well as PlaNet [Hafner et al., 2018] with the SAC algorithm [Haarnoja
et al., 2018b].

We also use a random network representation where, instead of training a
network, its parameters are simply fixed to random values sampled from a
Gaussian distribution of mean zero and standard deviation 0.02. This strategy
without any training was popularized for classification tasks by Jarrett et al.
[2009] and then for RL task by Gaier and Ha [2019].

93

EXPERIMENTAL SETUP

We use only in the InvertedPendulum environment, the position baseline
which corresponds to position measurements without velocities. The absence of
velocities allows us to show the relevance of such dynamic information to solve
the swing up task. Comparison with its performance would show that XSRL
extracts this information from the observation information of consecutive time
steps (by memorizing through the recursive loop) and thus transmits it to the RL
system.

Finally, we use a ground truth baseline, which is a state directly extracted from
the environment dynamics (see Section 5.4.2 for details in each environment),
and an open-loop baseline, where the state is defined as the time step of an
agent. The ground truth baseline is expected to constitute an upper bound on RL
performance. The open-loop baseline serves as a sanity check. Indeed, the perfor-
mance of SAC with this baseline on the three tasks allows us to validate whether
these tasks really require closed-loop policy optimization. That is, whether it is
necessary to use the agent’s perception and proprioceptive information to solve
the task, or whether open-loop policy learning strategies may be sufficient. In
particular, this gives the minimum performance to beat to show the relevance of
different state representation strategies.

We justify the absence of state-of-the-art end-to-end RL baselines such as [Lee
et al., 2019, Kostrikov et al., 2020, Laskin et al., 2020, Srinivas et al., 2020], despite
their open source implementations, by their too high computational complexity
which is impractical in our hardware setting and limited computational time.

5.4.2 Environment Details

We perform our experiments on the three environments presented in Fig. 9 which
are all partially observable due to image observations. InvertedPendulum and
HalfCheetah belong to the MuJoCo torque-controlled benchmark [Todorov et al.,
2012], implemented on PyBullet [Coumans and Bai, 2016-2019] (an open source
library unlike MuJoCo). However, the MuJoCo benchmark was initially used
from compact states directly provided by the simulator [Todorov et al., 2012].
In particular, while InvertedPendulum is easiest to control with a single torque,
HalfCheetah, with its six torques, requires a state-of-the-art RL algorithm to solve
its locomotion task even with compact states [Lillicrap et al., 2015].

We use the same number of action repetition as most works [Hafner et al., 2018,
Yarats et al., 2019] (see Table 4). In many RL applications, the action is repeated
several times to reduce the task horizon and make the control dynamics more
stable. When the action is repeated, the number of observed time steps is reduced.
For example with an action repetition of four, an episode of 1,000 total time steps
is reduced to 250 observed time steps.

94

EXPERIMENTAL SETUP 95

e

\

(a) (b) ©

Figure 9. High-rendered images of the three continous control environments in PyBullet
[Coumans and Bai, 2016-2019]. (a) The novel TurtleBot Maze environment proposed in this
work, where the observation space corresponds to a first-person perspective camera, used to
quantify XSRL exploration performance, and to provide a goal reaching task with navigation. (b)
The InvertedPendulum environment provides a swing up task. (c¢) The HalfCheetah environment
provides a locomotion task. (b), (c) are two popular torque-controlled benchmark environments
where the observation space corresponds to the camera tracking an agent, as in the DMControl
benchmark [Tassa et al., 2018].

5.4.2.1 TurtleBot Maze

We have implemented this environment as a U-shaped maze with the TurtleBot
robot from PyBullet [Coumans and Bai, 2016-2019], inspired by Ant Maze from
OpenAl Gym [Brockman et al., 2016] used by Shyam et al. [2019]. The two-
dimensional action applies a velocity to each of the left and right wheels of
the robot. The three-dimensional ground truth state is formed by the cartesian
coordinates in x and y axis of the robot, and the angle of his orientation. In
this environment, the task consists in a goal reaching task with sparse rewards
and a long horizon?. Thus, it is a challenge for a RL algorithm to address the
exploration/exploitation tradeoff. Specifically, this task provides a RL algorithm
with a sparse reward of +1 each time the robot reaches the goal, a reward of -1
each time he touches a wall, and 0 otherwise, within a maximum of 100 time
steps before the robot and the goal are randomly reinitialized. In addition, this
task provides a RL algorithm with the position of the goal, which is concatenated
to the state representation. Indeed, since the goal position is task-dependent, it
cannot be learned by state representations in a rewardless SRL context.

5.4.2.2 InvertedPendulum

The InvertedPendulum is attached to a pivot point on a cart sliding on a ramp.
The one-dimensional action applies a force to the cart, which is limited to linear
movement on the ramp. The five-dimensional ground truth state is formed by
the x-axis position and velocity of the cart, the angular position in Cartesian space
(i.e. cosine and sine of the angle) and angular velocity of the pendulum. In this

2 In TurtleBot Maze, an agent must perform 47 actions of maximum amplitude to cross the maze.

EXPERIMENTAL SETUP

environment, the task consists in a swing up task where the pendulum must
swing up several times before balancing upward. Specifically, this task provides
a RL algorithm with a reward for keeping the pendulum up vertically, within a
maximum of 1,000 time steps before the pendulum is reset to a random state.

5.4.2.3 HalfCheetah

The HalfCheetah is composed of eight rigid links, the torso and the back, and two
legs each composed of three rigid and controllable links. The six-dimensional
action applies torques to each of the six joints of the two legs. The 17-dimensional
ground truth state is formed by the angular positions and velocities of the six
joints, as well as agent cartesian position. In this environment, the task consists
in a locomotion task where an agent must run to progress as far as possible.
Specifically, this task provides a RL algorithm with a reward for moving the robot
as fast as possible, in a maximum of 1,000 time steps and with a constraint that
resets it to a random state as soon as it gets too close to the ground (which is not
applied during XSRL and RAE trainings).

5.4.2.4 Rewardless Environments

We detail some of the differences in the three environments used without reward
in the SRL context and the three tasks described above used in the RL context. In
the SRL context (i.e. during XSRL and RAE pretraining), an agent is reset after
a longer horizon, and is initialized to a fixed state. For the TurtleBot Maze the
horizon is 500 time steps, hence the need of an effective exploration to reach the
other end of the maze, which is at the opposite of the fixed initial state. For the
other two torque-controlled environments (InvertedPendulum and HalfCheetah),
the horizon is 2,000 time steps (so 500 after repeating the action four times). The
remaining common hyperparameters of the three environments for the SRL and
RL contexts are displayed in Table 4.

5.4.2.5 Image Preprocessing

The image preprocessing performed in these environments follows basically
the same state-of-the-art approaches. Specifically, we divide the camera images
by 255 to normalize them to [0,1]. Then we downscale the image size to 3 x
64 x 64 pixels just like [Lillicrap et al., 2015, Sekar et al., 2020]. When the action
repeat is one, an observation corresponds to the image o; = I;. When it is
four, an observation corresponds to the stack of the three consecutive images
or = [Iy_p, Iy 1, Iy] of size 9 x 64 x 64, just like [Lillicrap et al., 2015, Yarats et al.,
2019], where t’ corresponds to a time scale four times smaller than that of ¢ (i.e.
t' = 4 x t). For our XSRL method, this concatenation of images obtained by
repeating the last action three times allows not to loose all the information on
these time steps. Moreover, the estimation of the state at each time step where the

96

EXPERIMENTAL SETUP

action is repeated is far too computationally intensive to be feasible. Thus, this
concatenation of images solves the trade-off between computational complexity
and information loss. In practice for XSRL, ¢ uses o; to predict s, 1, from which
w predicts the next observation 6;;. In practice, RAE encodes o; into s; and
decodes it into 0;.

5.4.2.6 Test Datasets

For quantitative performance evaluation of our XSRL algorithm, we use an error
measure of the next observation prediction, and for the state-of-the-art RAE
baseline, we use an error measure of the next observation reconstruction. To
perform those evaluations, we need an appropriate test dataset for each of the
three environments described above. To do this, we carefully collected a wide
variety of 400 transitions formed of observation-action pairs into a dataset. We
generated them in two different ways. In the case of TurtleBot maze, we hand-
designed expert trajectories that follow the U-shape of the maze. In the case of
InvertedPendulum and HalfCheetah, we executed a policy learned by SAC from
the ground truth baseline.

5.4.3 Implementation Details

We now detail the implementation of the training procedures for XSRL and SAC.
Our implementation uses the deep learning library PyTorch [Paszke et al., 2017].
The hyperparameter details for XSRL are displayed in Table 6, and for SAC, when
different from the original implementation of Haarnoja et al. [2018b] in Table 5.
Preliminary experiments showed that the hyperparameters w7 and wy pp (to solve
the tradeoff during discovery policy training between maximizing the prediction
error of an inverse model and maximizing the k-step learning progress bonus of
@) had little impact on final performance.

For a fair comparison with RAE baseline, the same architecture as a (a convo-
lutional neural network) and w (a transposed convolutional neural network) is
used for the encoder and decoder respectively. Similarly, for the random network
baseline, the same architecture as « is used to produce state representations but its
randomly initialized parameters remain fixed. We choose as state dimensions for
the TurtleBot Maze and InvertedPendulum environments 20 and for HalfCheetah
30 which correspond to heuristically chosen values, i.e. not very large but leading
to good RL results.

We use the same architecture for the policy (a.k.a. actor model) and the action-
value function (a.k.a. critic model) of the SAC algorithm as for the discovery
policies, the inverse model and <y of our XSRL algorithm. As detailed in Table 6,
our three-hidden layer architecture is different from the two-hidden layer ar-
chitecture typically used in these same environments with image observations
[Yarats et al., 2019, Hansen et al., 2020]. This deeper network architecture allows

97

EXPERIMENTAL SETUP

us to reduce the total number of parameters and thus the computational com-
plexity. As Yarats et al. [2019], we use double Q-learning [Van Hasselt et al., 2015]
for the critic model.

The Leaky Rectified Linear Unit (Leaky ReLU) is used for the activation func-
tions between hidden layers, which removes the vanishing gradients encountered
with the ReLU and improves the convergence speed and stability (which we
observed empirically on preliminary experiments); see [Xu et al., 2015] for details.

In our RL experiments, the SAC algorithm is only used to test the generalization
of the XSRL state representation to unseen control tasks. This implies that we
keep the parameters of ¢ fixed. Due to memory constraints, for all experiments,
we use a reduced buffer capacity unlike work comparable to ours: 100,000 instead
of 1,000,000 with [Yarats et al., 2019].

5.4.3.1 Hardware Details

All our experiments are performed on three computers, each containing 40 cores
and a Titan xp GPU provided by Nvidia.

Table 4. Hyperparameters used in the PyBullet environments [Coumans and Bai, 2016-2019].

Hyperparameter Value

Image rendering size 3 x96 x 96

Image size after downscaling 3 x 64 x 64

Action repeat 1 TurtleBot Maze
4 otherwise

Table 5. Hyperparameters used for SAC (Soft Actor-Critic [Haarnoja et al., 2018b]) experiments.

Hyperparameter Value

Episode length of the environments 100 TurtleBot Maze
1,000 otherwise

Discount facor y 0.99

Replay buffer capacity 100,000

Optimizer Adam [Kingma and Ba, 2014]

Batch size 256

Critic target update frequency 2

Actor update frequency 2

Learning rate for the critic model 5e-4

Learning rate for the actor model 5e-4

Learning rate for the automatic temperature tuning 5e-4
Entropy target H — Ay
Hidden units of critic/actor models 128,512, 128

98

EXPERIMENTAL SETUP

Table 6. Hyperparameters used for XSRL experiments.

Hyperparameter

Value

Episode length for all the environments 500

(after action repeat)
State dimension S,

« output dimension

B output dimension

Intrinsic reward weight terms
Optimizer

Batch size B for o, B, v, w
Batch size B,; for Z and 7t
Update interval T, for Z and 7
Reset interval Tyeget
Learning rate for «, 8, v, w
Learning rate for 7 and 7
Learning rate for wy,

Entropy target H

Hidden units of Z, 7T, ¢y
Hidden units of 8

Hidden units of a, w:

20 TurtleBot Maze; InvertedPendulum
30 HalfCheetah

30

(Sq+ Ag)

wr = 0.5, wLPB — 1

Adam [Kingma and Ba, 2014]
32

128

512

4,096 for both discovery policies
le-4

le-4

le-4

— Ay

128, 512, 128

128, 512, 32

CNN (strides and filters):

u (2,32),(2,64), (2,128), (2, 256)
MLP hidden units: 1024, 256, 32
MLP hidden units: 32, 256, 1024
w

transposed CNN (strides and filters):
(1,256), (2,128), (2, 64), (2, 32)

99

EXPERIMENTAL RESULTS

5.5 EXPERIMENTAL RESULTS

5.5.1 Ewvaluations of XSRL Representations and Exploration

TurtleBot Maze InvertedPendulum HalfCheetah

50 5 30 ;
10 ; 4 E —_— .
5 2 Z 20
30 23 :
520 m—— 52 2 10
10 e 1
0 ‘2\{) Q)l 600 0‘\ \loi ?é) 0 SY\IX) i \(I)\‘ ?\P:E 0 $§§’xl\) e‘[‘\)\cl)‘ “P:E
“}%w* & @t RN RS
1 Q\\)’) & ?’
Q
Q)
(a) TurtleBot Maze (b) InvertedPendulum (c) HalfCheetah
(Train) (Train) (Train)
200 10 e 50
——
v 150 i o 8 o 40 ——
a Z 6 — Z 30
£ 100 2 e £ _—
:§ = § 4 § 20
v S0 — RS) 10
0 —— 0 . — . 0 . — .
&Q\t@@\@\@:\é&e . ?‘@ 7@?«“: R R ‘JL%Y\;:P&‘&C‘S\’\O\ AP
¥ o -
$C§‘ %Q‘ JF
«L,%Q\
(d) TurtleBot Maze (e) InvertedPendulum (f) HalfCheetah
(Test) (Test) (Test)

Figure 10. Error measure results (the lower the better) obtained on a training dataset (top
row) and a test dataset (bottom row) (which is defined for each environment in Section 5.4.2.6),
averaged over last 20 epochs across 5 runs (with a random seed). This measure corresponds to the
prediction of 0441 with XSRL, and to the reconstruction of o;,1 with RAE. XSRL (w/ distractor)
is performed in TurtleBot Maze with a randomly sampled wall color.

In this section, we show the results of our quantitative and qualitative evalua-
tions to validate whether XSRL verify criteria (i), (ii), and (iii) which we defined
in Section 5.4.

Fig. 10 reports the results of the error measure obtained on a training dataset
and a test dataset (defined in Section 5.4.2.6) on each of the three environments.
This error measure corresponds to the prediction error of the next observation for
XSRL and the two ablations (XSRL-random and XSRL-MaxEnt); it corresponds
to the reconstruction error of the next observation for RAE [Ghosh et al., 2019]

100

EXPERIMENTAL RESULTS

(following a random exploration) and RAE-explor (following an effective ex-
ploration, as explained in Section 5.4.1). We observe on the two environments,
TurtleBot Maze and HalfCheetah, that the error measure for XSRL is higher than
that for RAE and RAE-explor on both training and test datasets. This does not
correspond to a poor exploration performance of XSRL but to the objective func-
tion which is more complicated than RAE. Indeed, all information in the next
observation that cannot be predicted from the current time step is ignored as it is
the case for random distractors or too complex information from the transition
model, which tends to increase the prediction error. Furthermore, the qualitative
results in Fig. 11 show that XSRL is able to predict very well what is relevant
to predict the next observation, but ignores less useful /redundant information.
For example, in TurtleBot Maze it predicts the walls very well, but not the exact
checkerboard pattern on the floor (see Fig. 11(i)).

These results therefore imply that representations learned by XSRL guarantee
Markovian transitions which is criterion (i). In other words, the representations
learned by XSRL succeed in retrieving information that allows the prediction of
the next observation from the current time step. First, on the InvertedPendulum
and HalfCheetah environments, since they are torque-controlled robots, the
learned representations must retrieve the angular positions and velocities (which
requires that the state representations memorize the information of the previous
time step through the recursive loop) of their joints so that w can predict next
observations. Second, on the TurtleBot Maze environment, the observation space
is a first-person perspective camera, which constitutes a particularly complex
partial observability setting. This complexity is amplified because the walls
of the maze, as shown in Fig. 9(a) have only three colors for a total of eight
walls. Therefore, when an agent is facing one of them, he cannot know his exact
configuration (i.e. his position and orientation) or even which wall it is. This
phenomenon is known as perceptual aliasing [Cadena et al., 2016]. Thus, for
XSRL representations to allow w to predict next observations, they must contain
the robot’s current configuration, which is only possible if they also verify the
consistency and topology of the environment. The latter can be possible thanks
to the recursive loop on state representations, which allows to memorize the
information from the previous time steps (as explained in Section 5.3.1).

In TurtleBot Maze with a distractor represented by a randomly sampled wall
color, the gray wall predicted by w in Fig. 11(j) shows that this random color is
ignored by ¢. This confirms that XSRL learns state representations which filter
out stochastic information and more generally unnecessary information from
observations, which is the criterion (ii). This also explains that the higher error
measure results for XSRL are only related to unexploitable information with
respect to its prediction objective.

We evaluated XSRL discovery policies through a comparative visualization of
maze coverage displayed in Fig. 12, accompanied by a quantitative evaluation of
maze exploration presented in Fig. 13. We observe in Fig. 12 that on a trajectory

101

EXPERIMENTAL RESULTS

Ot41 Oy
v < <
=T |
constant initial state of the robot randomly sampled wall color
locations of (a) and (e) locations of (b) and (f)
| ’_I:
o; (observation): —L—'
used in input of ¢ — . ,J/}/
(a) (b) | () ‘ (d)
[[
O +1 1 bl

(next observation):

target of w = ,.,f—.i

(e) ® (® (b

Or11:
prediction of w

@) ®))

Figure 11. One of the most complex transitions in each of the test datasets (defined in Sec-
tion 5.4.2.6) of environment from left to right: TurtleBot Maze, TurtleBot Maze w/ distractor,
InvertedPendulum and HalfCheetah. The top line shows: (left) the locations of (a) and (e); (right)
the locations of (b) and (f). In the bottom line, (i)-(I) show the corresponding o;; predictions with
XSRL. In (j) XSRL ignores the random wall color because it predicts a neutral gray color instead.
For InvertedPendulum and HalfCheetah environments, as the action is repeated four times, o;
corresponds to the three consecutive images Iy, Iy_1, 1] (as explained in Section 5.4.2.5).

of 1,000 time steps, XSRL exploration reaches the farthest transitions much faster
than XSRL-MaxEnt, while XSRL-random almost never does. Moreover, the
trajectories generated by XSRL and XSRL-MaxEnt policies shown in Fig. 12 are
not attracted to transitions with the distractor related to randomly sampled wall
color near which the agent is initialized.

Fig. 13 shows that XSRL policies accelerate the probability that agents reach
the other end of the maze in 500 time steps during pretraining. Specifically,
with XSRL-random, agents can almost never reach the other end of the maze in
only 500 time steps. Unlike the previous one, the exploration with XSRL and
XSRL-MaxEnt use the visited state as input, which could lead an agent to always
prefer transitions with a distractor (as analyzed by Burda et al. [2018]). However,

102

exploration in TurtleBot Maze with ...

XSRL

EXPERIMENTAL RESULTS

(a) 200 steps

(b) 300 steps

(c) 400 steps
XSRL-MaxEnt

(d) 500 steps

(e) 1,000 steps

-

ML AN

A

5
HEA AN

A \Aw\@/\?

(f) 200 steps

(g) 300 steps

(h) 400 steps
XSRL-random

(i) 500 steps

(j) 1,000 steps

i, £ W&%y m&/ﬁ' AFRESRS ng

(k) 200 steps (1) 300 steps (m) 400 steps (n) 500 steps (0) 1,000 steps
XSRL (w/ distractor)
(p) 200 steps (q) 300 steps (r) 400 steps (s) 500 steps (t) 1,000 steps
XSRL-MaxEnt (w/ distractor)

Pl R | v TR a5 ‘~

H_H_H__H _—F
rwiridionsd® || i || e || Brmindgond® || mrdgiome
(u) 200 steps (v) 300 steps (w) 400 steps (x) 500 steps (y) 1,000 steps
Figure 12. Visualization of the TurtleBot Maze exploration, where the color spectrum of the

robot’s position goes from purple (start of the episode) to yellow (end of the episode). The
results obtained in the regular TurtleBot Maze environment correspond to: (a)-(e) XSRL, (f)-(j)
XSRL-MaxEnt, (k)-(0) XSRL-random. The results obtained in TurtleBot Maze with a randomly
sampled wall color correspond to: (p)-(t) XSRL, (w)-(y) XSRL-MaxEnt.

we observe no difference in performance with a distractor in TurtleBot Maze,

which also confirms criterion (ii). Moreover, with and without a distractor, XSRL

exploration reaches the end of the maze almost twice as fast as with XSRL-MaxEnt.

These results thus confirm that XSRL discovery policies are successful in guiding
agents quickly to diverse and learnable transitions, which is criterion (iii).

103

EXPERIMENTAL RESULTS 104

4xted
23
-) Method training steps
=]
4 XSRL 3,261+ 1,889
£ XSRL-MaxEnt 6,593 + 5,281
i XSRL 2,458 + 1,744
%Q\\) (@0 C&OQ &ot\ 600 (w/ distractor)
*f»%% @\\\" \\\Sf» XSRL-MaxEnt 6,129 + 5,804
% \{(&S) (w/ distractor)
«@‘k XSRL-random | 26,095 =+ 24,144
(a) TurtleBot Maze (b) (¢)

Figure 13. (a) Shows the top view of the TurtleBot Maze where the robot’s position corresponds
to the constant initial state. (b), (c) Number of training steps before an agent crosses the dotted
red line during XSRL training (mean =+ standard deviation over 10 runs; the lower the better).
Our XSRL exploration strategy outperforms XSRL-MaxEnt, while XSRL-random provides an
upper bound.

Given the previous qualitative and quantitative results, we interpret the per-
formances of the exporation with XSRL and XSRL-MaxEnt as follows: XSRL
discovery policies allow to visit the farthest transitions quickly because they tend
to produce larger k-step learning progress bonuses of ¢. They also visit more
transitions that cause directional changes because they tend to produce larger
prediction errors of a trained inverse model. On the contrary, XSRL-MaxEnt
policies follow various paths without preferring the transitions farthest from the
constant initial state (i.e. to the other end of the maze), even though the prediction
errors of the next observation on these transitions are larger.

The video available here https://youtu.be/IbGa-TC7wek, shows a compara-
tive evaluation between XSRL exploration (left) and random exploration (right)
in each of the three environments. It highlights that discovery policies learned
by XSRL allow: in TurtleBot Maze to quickly visit transitions far from the initial
state position (as shown in the previous results); in InvertedPendulum to move
the pendulum upwards while it is initialized downwards with zero velocity; in
HalfCheetah to keep the robot constantly moving. We can see that for random
exploration: in TurtleBot Maze the robot moves little away from its initial state;
in InvertedPendulum the pendulum is never upwards; in HalfCheetah it is com-
plicated for the robot to stay constantly in motion since it ends up stuck in a lying
position.

In addition to these qualitative and quantitative comparisons, the better per-
formance of XSRL exploration is also confirmed by the quantitative evaluation
of the prediction error measure displayed in Fig. 10. This measure reaches its
lowest value with XSRL exploration, followed by XSRL-MaxEnt and finally
XSRL-random which is by far the worst strategy.

https://youtu.be/IbGa-TC7wek

EXPERIMENTAL RESULTS

Apart from the comparative study of our XSRL exploration, we observe that
an effective exploration improves the generalization performance of RAE mod-
els. Indeed, the quantitative evaluation of the observation reconstruction (see
Fig. 10) shows a smaller error on the test dataset with RAE-explor (which is
trained with an efficient exploration as explained in Section 5.4.1) than with RAE.
Thus, training on diverse transitions improves the generalization performance of
observation reconstruction with RAE.

Qualitative and quantitative performance differences with respect to explo-
ration strategies show the advantage of visiting quickly diverse transitions during
state embedding pretraining to obtain better generalization performance over
new transitions. However, as we see below, it is only with the XSRL prediction
error measure that this generalization performance is sure to translate into good
transfer performance with a new RL task.

5.5.2 XSRL Representations Transfer

1.0
0.8
2 o6
o
Q
“ 04
c
©
iy & 02
0.0
T T T T T T T T T T T T T _0'2 H T T T T T T T T
0.2 04 06 08 1.0 1.2 1.4 16 1.8 2.0 2.2 24 26 0 1 2 3 4 5 6 7 8
training steps (x1e6) training steps (x1e5)
—— SAC+ground truth (dim 3) —— SAC+RAE (dim 20) —— SAC+ground truth (dim 5) —— SAC+random network (dim 20)
—— SAC+XSRL (dim 20) —— SAC+random network (dim 20) —— SAC+XSRL (dim 20) —— SAC+position (dim 3)
—— SAC+XSRL (w/ distractor) —— SAC+open-loop (dim 1) —— SAC+RAE-explor (dim 20) —— SAC+open-loop (dim 1)
—— SAC+RAE-explor (dim 20) —— SAC+RAE (dim 20)

(a) TurtleBot Maze (b) InvertedPendulum

1.01

0.0

00 02 04 06 08 1.0 12 14 16 18 2.0
training steps (x1e6)

—— SAC+ground truth (dim 18) —— SAC+RAE (dim 30)
—— SAC+XSRL (dim 30) —— SAC+random network (dim 30)
—— SAC+RAE-explor (dim 30) —— SAC+open-loop (dim 1)

(c) HalfCheetah

Figure 14. Learning curves of the episode returns averaged over 10 episodes (mean in lines and
standard deviation in shaded areas over 10 runs; the higher the better) of SAC with different
state representation strategies on three different continuous control tasks. The XSRL pretrained
representations are the only one to perform well in three of the environments, while ground
truth and open-loop provide an upper and lower bound respectively. A video showing the
corresponding optimal policies can be found at https://youtu.be/XpRcU751-1Q.

105

https://youtu.be/XpRcU75i-iQ

EXPERIMENTAL RESULTS 106

In this section, we show quantitative evaluations to validate whether state esti-
mators pretrained with our algorithm (XSRL) provide advantageous inputs to RL
systems for solving three unseen control tasks (which is an instance of criterion
(iv) defined in Section 5.4). In particular, we use the deep RL algorithm SAC
(Soft Actor-Critic) [Haarnoja et al., 2018b] which has shown promising results
on the standard continuous control tasks InvertedPendulum and HalfCheetah.
Throughout these experiments, all parameters of the pretrained state embeddings
(with XSRL and RAE) are kept fixed: only the actor and critic neural networks of
SAC are trained. We performed 10 runs with a random seed just like [Henderson
et al.,, 2018, Yarats et al., 2019], resulting in 10 different trained policies for each
of the representation strategies. For each state embedding pretraining approach
(XSRL and RAE) and for the random network, we used 5 different models trained
with a random seed, from which 2 SAC runs with a random seed are executed.
In addition, unlike ground truth, open-loop and position baselines, they trans-
form visual observations into compact state representations of 20 dimensions for
TurtleBot Maze and InvertedPendulum, and 30 dimensions® for HalfCheetah.

Fig. 14 shows the learning curves of the episode returns averaged over 10
episodes across 10 runs. After training, we measured the episode returns aver-
aged over 100 episodes for the 10 trained policies, which are displayed in Table 7.
For clarity, we normalized all episode returns between the average SAC+ground
truth performance and that of SAC+open-loop, except for the task with Turtle-
Bot Maze as this is evaluated with the probability to reach the goal (from a
random initial configuration) in 100 time steps or less. Indeed, SAC+ground
truth is an upper bound because it has easy access to the agent’s proprioceptive
information, and SAC+open-loop is a lower bound because it corresponds to a
blind agent. These results show that only XSRL state representations perform
well in all three RL problems, unlike the other state representation baselines.

Fig. 14(b) shows that the position baseline does not allow SAC to learn a good
policy on the InvertedPendulum task. This confirms that InvertedPendulum
and HalfCheetah tasks require information from the positions and velocities of
the agent’s joints to verify Markovian state transitions which are only related
to the local consistency of the environment. On InvertedPendulum, SAC+XSRL
and SAC+RAE-explor reach same performance as SAC+ground truth, SAC+RAE
follows right after, and even lower follows SAC+random network which reaches
a mean score of 0.74. On HalfCheetah, we obtain in decreasing order of perfor-
mance: SAC+RAE-explor, SAC+RAE, SAC+XSRL, SAC+random network. While
the first three performances are similar with a score of about 0.85, SAC+random
network is well below with about 0.3.

In TurtleBot Maze, none of the state representation strategies other than XSRL
were successful on the navigation task. Specifically, SAC+XSRL reaches the same

3 The numbers of 20 and 30 dimensions were empirically selected to account for the trade-off
between sample efficiency and final performance (i.e. between computation time and the optimal
policy performance).

DISCUSSION

Table 7. Episode returns after convergence of the curves in Fig. 14 averaged over 100 episodes
(mean = standard deviation over 10 runs; the higher the better).

Mean score TurtleBot Maze | InvertedPendulum | HalfCheetah
SAC+XSRL 0.98 £+ 0.02 1+0 0.82 +£0.03
SAC+RAE-explor 0.34 +0.04 0.99+0 0.87 4+ 0.09
SAC+RAE 0.34 +0.06 0.93 +£0.03 0.85 + 0.08
SAC+random network 0.27+0.1 0.74 +0.02 0.31 +0.05
SAC+ground truth 0.98 £0.02 1£0 1£0.1
SAC+open-loop 0.04 +£0.03 0+0.06 0+0

performance as SAC+ground truth; SAC+RAE-explor and SAC+RAE reach the
same score of 0.34, while SAC+random network is just below with a score of 0.27
but has much slower convergence. This shows that only the XSRL representa-
tions verify the local consistency and topology of the environment to retrieve the
orientation and position of an agent. As explained earlier in Section 5.3, these
properties of the representations are required to make state transitions Marko-
vian due to perceptual aliasing [Cadena et al., 2016]. Furthermore, as shown by
Fig. 14(a), the performance of SAC+XSRL is the same in TurtleBot Maze with
a distractor. This confirms that by memorizing the information useful for pre-
dicting the next observation and filtering out all the other information, the XSRL
representations contain the information in a way that can control the robot.

According to these results, it is more difficult to learn state embeddings that
encode the environment properties independent of an agent (i.e. topology) than
those that depend on him (i.e. local consistency). Overall, these quantitative eval-
uations show that pretrained state estimators with XSRL provide advantageous
inputs to solve unseen control tasks with SAC algorithm, which is an instance of
criterion (iv).

5.6 DISCUSSION

Experimental results show that the proposed XSRL algorithm builds state repre-
sentations that are the only ones to perform well on the three unseen RL tasks.
We see the link between the generalization performance of XSRL with respect to
the next observation prediction (see Table 10) and the transfer performance of its
pretrained state estimator (¢) to a new RL system (see Table 7). More specifically,
the good prediction performance on a test dataset of state embeddings pretrained
with XSRL guarantees their good transfer performance to new RL tasks.

As we have seen, the generalization performance on the test dataset strongly
depends on the exploration efficiency (see Fig. 10), which is better with XSRL
than with its two ablations. Moreover, our exploration allows agents to reach
transitions far away from their initial states and much faster than the policy en-
tropy maximization and random strategies (see Fig. 13). Hence the link between
fast exploration of various transitions and good generalization.

107

DISCUSSION 108

However, the strategy of maximizing the policy entropy works well for learning
policies with extrinsic rewards in the RL context. In particular, Eysenbach and
Levine [2021] show in a navigation task with obstacles that it allows to increase
the exploration diversity of an agent and thus to more efficiently bypass obstacles
than with a random exploration where he would remain blocked.

In contrast to XSRL, our results showed that the good reconstruction perfor-
mance of state embeddings pretrained with RAE did not always guarantee good
transfer to RL tasks. Specifically, no matter how much RAE models minimize
the reconstruction error on the test dataset of TurtleBot Maze, RL systems will
perform poorly with inputs from this type of representation.

Finally, we analyze the results of SAC+XSRL across the three different continu-
ous control tasks. While in TurtleBot Maze and InvertedPendulum SAC+XSRL
obtains performances equal to those of SAC+ground truth, in HalfCheetah its
performance is lower (0.82) and close to SAC+RAE (0.85). Moreover, this poorer
performance is accompanied by a failure during the pretrainings of XSRL models,
since they obtain abnormally high prediction errors on the training datasets.
Indeed, comparing this prediction performance on the most similar environment
InvertedPendulum (because it does not present perceptual aliasing) we have
in Table 10: 4.2 on InvertedPendulum, 27.6 on HalfCheetah. Furthermore, as
we have already discussed, XSRL exploration allows in HalfCheetah to keep
the robot in constant motion, whereas random exploration cannot because the
robot quickly gets stuck in a lying position*. Therefore, the lower performance
of SAC+XSRL in the HalfCheetah task is likely due to poor modeling of the
transition model, as the result of the next observation prediction in Fig. 11(1)
tends to confirm. Indeed, it shows that there are errors in the next observation
prediction related to the positions of the robot joints, which proves that the state
transition estimator has not been well modeled. This could be explained by the
high complexity of the transitions generated by HalfCheetah using a torque con-
trol. Moreover, due to the high number of degrees of freedom (six), the properties
of its dynamics are much more unstable than those of InvertedPendulum (only
two degrees of freedom), and far more than those of TurtleBot Maze, the latter
using a velocity control.

While there are sources of prediction errors that ¢ fails to reduce, ¢ forces com-
pact state representations to discard information related to aleatoric uncertainty
(as we explained in Section 5.3.1). Achieving robustness to random distractors is
a common goal of the state estimation techniques initiated by Kalman [1960b].
However, some random distractors can sometimes be useful in specific control
tasks. For example, in a task where an agent must follow a behavior only when
a lamp that randomly changes color is green. Since this information is random,
it will be unpredictable to XSRL and thus filtered by its state representations.
To deploy the state transition estimator to this specific task, it is therefore nec-
essary to concatenate to output of ¢ a vector representing the color of the lamp

4 See the video available at https://youtu.be/IbGa-TC7wek

https://youtu.be/IbGa-TC7wek

CONCLUSION

(either handcrafted or learned) so that a RL algorithm can properly exploit this
information.

Overall, experimental results have highlighted the main advantage of XSRL
in learning state embeddings which are able to verify both the local consistency
of the environment and its topology. While the state-of-the-art RAE method
succeeds perfectly in encoding the former, it fails completely in encoding the
latter, as shown by the RL results with the TurtleBot Maze task (see Table 7). By
evaluating XSRL with one transfer scenario where it outperforms a state-of-the-
art method, and with another scenario where XSRL comes on par with it, we
follow the experimental recommendations of Henderson et al. [2018] to prove
that our new XSRL method matters for RL transfer scenarios.

5.7 CONCLUSION

We have presented a SRL algorithm (XSRL) for pretraining state representations
from next observation prediction errors by extending the understudied discovery
faculty we realized with a new exploration strategy, that trains discovery policies
to sample the most diverse and learnable unknown transitions. Our experiments
show that XSRL exploration provides fast maze traversal compared to traditional
random policy and policy entropy maximization strategies. Moreover, our com-
parative evaluation on unseen RL tasks confirmed the transfer efficiency of the
pretrained XSRL models. One of the most striking results is the superiority of
XSRL representations over autoencoder ones, which is obviously due to better
representational properties since the underlying data manifold (i.e. agent and
environment degrees of freedom) is constrained to follow Markovian transitions
with respect to the prediction objective. Furthermore, these results illustrate the
importance of the overlooked discovery faculty and suggest that an exploration
strategy in the SRL framework can lead to better state representation pretraining
approaches.

109

CONCLUSION

6.1 CONCLUSION

The initial goal of this thesis is to propose new pretraining approaches of state
representations without a priori knowledge of the task, the ground truth state
of the controlled system, or the environment. In this way, we can apply them in
any rewardless environment in order to solve unknown tasks with reinforcement
learning (RL). To this end, we have studied these approaches in the setting
of controlled systems defined by a simulated environment with continuous
actions and raw sensory observations. In this setting, we have extended the
major impetus of state representation learning (SRL) literature through a yet
understudied axis: discovery.

6.1.1 General Contributions

With our goal of unsupervised learning and discovery of an a priori unknown
environment in mind, we devised two new state estimation methods for transfer
to a wide range of new control tasks. Both methods use a different discovery
strategy by leveraging on agents experience.

In Chapter 4, we introduced SRLfD (State Representation Learning from
Demonstration) which leverages experience from several expert controllers solv-
ing various tasks. These are oracle policies assumed to be learned from sensors in
a laboratory setting (e.g. with motion capture) in order to generate agents experi-
ence through multiple demonstration trajectories. The main idea is to learn a state
embedding from more realistic observations (in particular images) by imitation
learning of multiple oracle policies solving a different task. Here the discovery
to solve the underfitting/overfitting tradeoff generalizes in the task space in the
batch setting (i.e. with a limited dataset). Therefore, training and validation tasks
are used here, whereas in supervised learning, training and validation labeled data
points are normally used. In the same way that in supervised learning a large
and varied labeled dataset improves the generalization performance on a task,
here a large and varied set of tasks improves the generalization performance of
state representations across multiple tasks. In this way, SRL{D is intertwined
with the meta-learning idea which learns to generalize across tasks rather than
through task-specific training examples [Hospedales et al., 2020]. However, in the
context of inaccessible ground truth states, these approaches typically learn input
embeddings in an end-to-end deep RL (DRL) approach like Parisotto et al. [2015].
Instead, our idea is that, in this context, it is much easier to learn state embeddings

110

CONCLUSION

in a self-supervised learning manner. We conducted a comparative evaluation
of classical methods such as Kalman filtering, where tracker learning systems
show better performance using SRLfD representations which were pretrained
across several instances of the same tracking task. Furthermore, our results show
the superiority of pretrained SRLfD models over the end-to-end approach in
two different settings of compact state inaccessibility. In the first large-scale goal
reaching task, because it is more difficult for an end-to-end DRL system to learn
from scratch input embeddings that retrieve the two torque-controlled positions
and velocities of the robotic arm from visual observations. In the second ballistic
projectile tracking task, because it is more difficult for a tracking learning system
to learn from scratch input embeddings that retrieve the velocity of the projectile
from its position measurements.

In Chapter 5, we introduced XSRL (eXploratory State Representation Learn-
ing) which leverages experience from discovery policies exploring unknown
transitions. The main idea is to learn a state embedding with a twofold training
procedure. In the first one, the representation model is trained as a state transition
estimator simultaneously with a next observation predictor. In the second one
concerns the exploration to solve the underfitting/overfitting tradeoff. To this
end, we chose here to generalize in the space of environment transitions in the
online setting (i.e. with an unlimited dataset if we assume an unlimited pretrain-
ing time). This involves training discovery policies to maximize self-computed
rewards from different degrees of uncertainty: (i) with prediction errors of an
inverse model (related to action uncertainty dependent on the controllability
of learned state transitions), (ii) with k-step learning progress bonuses of the
representation model (related to action uncertainty dependent on the learnabil-
ity of state transitions). These rewards are used to train policies by supervised
learning, whereas in other works on exploration they are typically maximized by
RL [Burda et al., 2018]. Just as in RL, a large number of varied control strategies
improves the generalization performance of learned policies, here a large number
of diverse transitions improves the transferability of learned state models to
unseen tasks. Moreover, in the context of inaccessible compact states, the pro-
posed exploration strategies typically follow an end-to-end DRL approach (where
input embeddings are learned from scratch) like [Sekar et al., 2020]. Instead, our
idea is that in this context it is much more efficient to pretrain unsupervised
state representations using our discovery policies. We performed a comparative
evaluation of exploration strategies with the random strategy and the policy
entropy maximization ones, among which the XSRL exploration strategy shows
better performance in exploring diverse transitions much faster. Furthermore,
our results show the superiority of the pretrained XSRL models over the state-
of-the-art RAE (Regularized Autoencoder [Ghosh et al., 2019]) approach in a
navigation task with partial observability. Indeed, it is more difficult for RAE to
learn representations that retrieve the position and orientation of the robot in a
U-shaped maze from a first-person camera.

111

DISCUSSION

We have seen through these two methods new ways to take advantage of
the SRL framework. First, thanks to its unsupervised learning approach to
exploit huge datasets in the context of a simulated environment without reward.
Second, thanks to its applicability to controlled systems to develop the discovery
faculty which is still little studied in this context. In particular, both SRLfD and
XSRL benefit from an exploration strategy that automatically generates training
examples to solve the underfitting /overfitting tradeoff. In doing so, the training
procedure circumvents the usual assumption that the training data distribution
is close to the test distribution in order to generalize to multiple tasks [Marcus,
2018]. Ouwur results showed that solving the underfitting/overfitting tradeoff
with respect to each of the two learning heuristics in our method during state
representation pretraining corresponded to good transfer performance on the
unknown control tasks. Overall, our experiments have shown that these “divide
and conquer” transfer learning techniques exhibit clear advantages over more
traditional task-specific approaches, such as the end-to-end DRL algorithms that
learn input embeddings from scratch, whether in terms of computational cost,
sampling efficiency or final performance.

6.2 DISCUSSION

State Representation Learning Evaluation The SRL problem is inherently ill-
posed because it has no unique solution. Thus, without a unique objective,
it is very difficult to evaluate the performance of SRL algorithms. The most
widely used evaluation measure is the performance obtained with pretrained
SRL models on various RL applications [Lesort et al., 2018]. To perform such a
rigorous evaluation protocol, we used the recommandations of Henderson et al.
[2018]. However, as previously observed by Lesort et al. [2018], such evaluations
are time consuming and may not be applicable to real-world applications. This is
one of the reasons why we limited the number of representation baselines we used
in our comparative evaluations, especially those of state representations learned
from scratch with end-to-end DRL, as they belong to much more computationally
and memory intensive learning regimes. For our XSRL method, we also evaluated
the performance as it is typically done in the supervised learning paradigm,
i.e. with respect to the error measure used in the objective function on a test
dataset. We showed a correlation between this error measure and that of RL
applications using XSRL pretrained models. In contrast, autoencoder pretrained
representations did not yield such a correlation, showing the inefficiency of the
observation reconstruction objective in learning state representations for control
tasks. In addition to this error measure, physics-based measures could be used
for future evaluations in a context without knowledge of the ground truth state.
For example, the physical priors proposed by Jonschkowski and Brock [2015]
may be adapted into evaluation measures to analyze which physical properties
are learned by state representations.

112

DISCUSSION

Simulation to Reality Representation Transfer ~We have studied one phase of
transfer learning: pretraining state representations in a simulated environment
without reward for unknown tasks. Extending our SRL methods to real-world
control applications would give impetus to the main goal of this thesis: pre-
training state representations for controlled systems to give them the ability to
autonomously learn new tasks with RL algorithms in particular. However, the
cost of data acquisition is high in the real world robotics, so the data-intensive
unsupervised learning paradigm may not work in this setting. Thus, in order to
properly train our two SRL algorithms, we need to pretrain the state models in a
simulation where data can be generated indefinitely. Hence, in order to adapt the
pretrained representations to better grasp the real-world information, another
transfer learning phase is required. To do this, we could extend previous work
that bridges the gap between simulation and reality [Tercan et al., 2018].

Continual Representation Learning Our work has similarities to that of con-
tinual learning (a.k.a. lifelong learning) [Caselles-Dupré et al., 2018]. However,
this field focuses on sequential learning of different tasks in a typically changing
environment [Lesort et al., 2020]. In contrast, SRL focuses on better structuring
state representations for new learning tasks. Nevertheless, the SRL framework
studied in this thesis could provide an effective way to address the complex
phenomenon of catastrophic forgetting peculiar to this field, i.e. which experi-
ence from the previous task should be memorized. Indeed, sequential training
of a state embedding to continuously adapt to a changing environment is an
effective way to memorize useful concepts from the raw data, independent of the
current task, which should help the controlled system make action predictions.
More precisely, thanks to this memorization of states, catastrophic forgetting
would only concern control strategies to be retained in order to combine them for
learning more difficult tasks.

6.2.1 Generalization and State Representation Properties

The generalization performance of the state representations clearly depends on
the pretraining time and available data, the complexity of the environment and
the robot (i.e. the controlled system), the exploration strategy, and the properties
of state representations discussed below: their ability to be usable by machines,
their ability to capture the physical properties of the controlled system, and their
size.

Machine Interpretable Representations This thesis has shown that SRL pre-
training methods can retrieve the manifold underlying agents experience into
a machine-readable vector (i.e. a state representation) to provide better inputs
to new learning systems than raw data. Throughout our various results, we
have acknowledged that numerical representations interpretable by machines

113

DISCUSSION

are different from visual observations interpretable by humans. Indeed, while
humans can easily retrieve from the perception of raw images the underlying
degrees of freedom of a controlled system, machines need a powerful mathe-
matical tool in order to translate images into numerically usable inputs in the
form of a multidimensional vector which, conversely, would be unreadable for
humans. Among the most important properties for the representations to be
machine interpretable are obviously the compactness property to mitigate the
curse of dimensionality, independence from a specific task, the possibility to
achieve better results than with end-to-end trained input embeddings, and to
discard distractors [Locatello et al., 2018, Lesort et al., 2018]. Our empirical results
give us promising hope in the direction of SRL and deep learning to provide such
representations. As proven by our various experiments, SRLfD and XSRL meth-
ods learn state estimation models which retrieve the low-level and high-level
concepts corresponding to physical properties. This amounts to converting the a
priori non-numerical abstract concepts of the raw data into machine-interpretable
numerical representations. More generally, unsupervised deep learning provides
us with an effective mathematical tool to automatically learn input embeddings
from huge datasets. The deep network we used was introduced by LeCun et al.
[1995]. The effectiveness of this not very recent mathematical tool comes from
the fact that it allows learning systems to rely on the global structure of the
manifold underlying the data rather than just the local properties of the data as it
is the case for more traditional embedding learning methods [Bengio et al., 2007].
This is why our SRL methods can so effectively represent manifold information
(i.e. the intrinsic degrees of freedom) in state embeddings. Furthermore, our
experiments have shown that random networks do not extract interpretable
representations for new learning systems, which confirms that constraints must
be imposed on the manifold by a training procedure. More precisely, a proper
information arrangement in the state representations is a necessary condition for
their generalization to new tasks.

Physical Representations We have seen through our results that theoretically
inspired methods such as the variational autoencoder [Kingma and Ba, 2014] and
others [Higgins et al., 2017, Ghosh et al., 2019] have not pretrained interpretable
state representations for RL systems. We believe that notions such as disentan-
glement, on which these approaches are based, may be too general to pretrain
good state representations [Bengio, 2012]. While disentanglement is necessary to
retrieve the manifold underlying the data in a low-dimensional embedding, SRL
algorithms clearly need more constraints on the manifold structure to learn state
representations that contain physical properties [de Bruin et al., 2018].

We believe that research efforts to push creativity towards designing new
learning heuristics based on physical principles may lead to new promising SRL
methods for enabling machines to leverage huge datasets to retrieve abstract
concepts in their own numerical representations. In this regard, we follow the

114

DISCUSSION

recommendation to privilege creativity over theory proposed in the presentation
talk of Bottou and Bousquet [2018] at the 2018 NeurIPS Test of Time award for
the winning paper [Bottou and Bousquet, 2008]. Imitating expert behaviors as
with SRLfD, or predicting pixel changes in the next observation as with XSRL,
are two new examples of learning objectives that intuitively let learning sys-
tems build representations which verify physical laws. Furthermore, both our
methods constrain the state representation to guarantee Markovian transitions
with respect to their learning heuristics so that the state representations retrieve
more abstract physical concepts, such as the structure of the environment or its
topology, while discarding unnecessary information to effectively reduce data
dimensions. In particular, such pretrained state representations in environments
where an observation is not sufficient to determine the actual state, i.e. where
the partially observable Markov decision process (POMDP) holds, have clear
advantages over state embeddings trained from scratch for RL algorithms. In-
deed, in our context a policy does not need to depend on previous time steps
to predict actions, making the exploration/exploitation tradeoff easier to solve
in order to learn a policy with good generalization performance. Another form
of knowledge on the controlled system different from physical knowledge that
we have not studied in this thesis are the causal relationships that would allow
representations to better retrieve logical concepts for example [Pearl, 2009, Lake
et al., 2016, Peters et al., 2017].

State Dimension In this thesis, we have carefully selected the hyperparameters
of neural networks, one of the most crucial of which is the dimension of the state
representation. Choosing them carefully may be sufficient to generalize a SRL
algorithm to different applications. Indeed, XSRL worked well with the same
hyperparameters in different large-scale controlled systems (i.e. with visual
observations and continuous actions in simulated environments). However, it
may be useful to define in advance the dimension of the state representation
without having to resort to a cross-validation, thus consolidating the goal of this
thesis in a context where not only the task of interest is unknown but also the
environment.

Ideally, the optimal number of dimensions in the state vector should allow the
learned embedding to extract the degrees of freedom of the controlled system,
while retaining past information to have Markovian transitions. Thus in theory,
the state vector requires at least the number of degrees of freedom plus additional
dimensions to retain information from past interactions when partial observ-
ability holds. Since in the simplest context of a fully observable environment,
an agent’s past experience is not useful, the state vector should have the same
number of dimensions as the number of degrees of freedom. Therefore, we can
assume that there exists a class of state representation mappings whose output
is in bijection with the degrees of freedom. If this bijection exists, then we can

115

DISCUSSION

arbitrarily approximate such a mapping with a neural network according to the
universal approximation theorem [Cybenko, 1989].

However, we observed empirical contradictions, that it is not bad to have more
dimensions than the number of degrees of freedom. We studied this phenomenon
with SRLfD, as we did not have enough computational time during the XSRL
experiments. In the ballistic projectile tracking task, the ground truth state corre-
sponds to a 4D vector composed of the 2D cartesian positions and velocities of a
projectile. Our results showed that this task performs better with ground truth
than with pretrained 4D SRLfD representations from position measurements,
while it becomes better with at least six dimensions in the representations. In
the RL application of the goal reaching task, the ground truth state corresponds
to a 4D vector composed of the two torque angles and velocities of a robotic
arm. Our results showed that at least 16 dimensions in the pretrained SRLfD
representations are required for success in this application. These results show
that the theoretical minimum dimension was not a sufficient condition for good
generalization performance of state representations on new learning tasks. In-
stead, an optimal state dimension of the representation would be slightly larger
than the theoretical minimum, in order to resolve the tradeoff between the curse
of dimensionality and the generalization performance. We acknowledge that
analyzing this optimal dimension to resolve the tradeoff between the curse of
dimensionality and the generalization performance of state representations is
challenging and requires further work.

Our hypothesis is that even if, according to the universal approximation theo-
rem [Cybenko, 1989], there exists a neural network to learn a mapping between
the observation and the state representation that is in bijection with the degrees of
freedom of the controlled system, in practice it may be too complex and require
too many parameters hence the risk of overfitting. In other words, this mapping
may exist but is not smooth enough to be well approximated, i.e. without any
continuity with respect to derivatives of different orders [Pinkus, 1999]. It is
obviously easier to have the smoothness property in higher dimension if we
want to verify the injectivity property between the learned representation and
the degrees of freedom.

For example, what would be a good representation of angle 67 It is expected
that a representation in the form (cos(6), sin(6)) would be simpler to learn than
a direct representation of 6 given the discontinuities it contains in —7, 7r. This
means that by adding a dimension, it is not an additional information that has
been added, but that the representation has been improved because it is now
more regular. Thus, there may exist simpler mappings of the data to a larger state
vector which is in injection with the degrees of freedom. In other words, using a
redundant state vector (i.e. with more dimensions than the ground truth state),
allows us to learn a state estimation model with a less complex deep network,
thus effectively overcoming the overfitting problem.

116

DISCUSSION

While we thought, as did the literature [Lesort et al., 2018, Nuzzo, 2020],
that learning a lower-dimensional state representation would circumvent the
overfitting problem, we were wrong. These misconceptions have their origin in
the confusion between the number of parameters in the hidden layers of a deep
network with those in the state representation. Many works have studied the
underfitting / overfitting tradeoff in terms of the former in order to analyze its
impact on the generalization capacity of deep networks [Maennel et al., 2018,
Volhejn and Lampert, 2021]. On the contrary, to our knowledge, none has studied
this tradeoff with respect to the dimension of the neural network output.

We have assumed that a state estimation model benefits from having more
dimensions in its output, but we could conversely assume that a RL system
benefits from having more dimensions in its input. Again, we have not yet found
any work in the DRL literature that studies the influence of the generalization
performance of a policy with respect to the dimension of a pretrained state
representation. We also believe here that a few more dimensions in the input
representation would simplify the mapping to be learned between state and
action, and thus more easily resolve the exploration/exploitation tradeoff to learn
a policy that generalizes better. More literally, we believe that the dimensionality
of the state representations should be large enough to give flexibility to a SRL
algorithm at pretraining time, and to a RL algorithm at policy learning time.

From a broader viewpoint in the field of learning low-dimensional input em-
beddings for controlled systems, we have found that much more research effort is
devoted to end-to-end DRL applications where agents autonomously strive to dis-
cover an optimal policy by solving the difficult exploration/exploitation tradeoff.
In this thesis, we have studied unsupervised pretraining of state representations
where agents autonomously strive to discover an optimal state estimator by
solving the difficult underfitting / overfitting tradeoff.

117

BIBLIOGRAPHY

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

P. Abbeel. Apprenticeship learning and reinforcement learning with application to
robotic control. Stanford University, 2008.

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement
learning to aerobatic helicopter flight. Advances in neural information processing
systems, 19:1, 2007.

J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforce-
ment learning. arXiv preprint arXiv:1703.01732,2017.

A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. C6té, and R. D. Hjelm. Unsuper-
vised state representation learning in atari. In Advances in Neural Information
Processing Systems, pages 8766-8779, 2019.

E. Anselmi,]J. Z. Leibo, L. Rosasco,]. Mutch, A. Tacchetti, and T. Poggio. Unsuper-
vised learning of invariant representations with low sample complexity: the
magic of sensory cortex or a new framework for machine learning? 2014.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief
survey of deep reinforcement learning. CoRR, abs/1708.05866, 2017. URL
http://arxiv.org/abs/1708.05866.

J.-A. M. Assael, N. Wahlstrom, T. B. Schon, and M. P. Deisenroth. Data-efficient
learning of feedback policies from image pixels using deep dynamical models.
arXiv preprint arXiv:1510.02173, 2015.

T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam):
Part i. IEEE robotics & automation magazine, 13(2):108-117, 2006a.

T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam):
Part ii. IEEE robotics & automation magazine, 13(3):108-117, 2006b.

G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Muldal,
N. Heess, and T. Lillicrap. Distributed distributional deterministic policy
gradients. arXiv preprint arXiv:1804.08617, 2018.

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404—417. Springer, 2006.

118

http://arxiv.org/abs/1708.05866

BIBLIOGRAPHY

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: a survey. The Journal of Machine Learning
Research, 18(1):5595-5637, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253-279, 2013.

R. Bellman. Adaptive Control Processes - A Guided Tour, volume 2045 of Princeton
Legacy Library. Princeton University Press, 1961. ISBN 978-1-4008-7466-8. doi:
10.1515/9781400874668. URL https://doi.org/10.1515/9781400874668.

R. E. Bellman et al. Dynamic programming. Cambridge Studies in Speech Science
and Communication. Princeton University Press, Princeton, 1957.

Y. Bengio. Deep learning of representations for unsupervised and transfer learn-
ing. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
pages 17-36, 2012.

Y. Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-scale
kernel machines, 34(5):1-41, 2007.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798-1828, 2013a.

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representa-
tions. In International conference on machine learning, pages 552-560, 2013b.

D. P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. Athena
Scientific, 2005. ISBN 1886529264. URL https://www.worldcat.org/oclc/
314894080.

D. P. Bertsekas. Reinforcement learning and optimal control. Athena Scientific
Belmont, MA, 2019.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

W. Bohmer, S. Griinewilder, Y. Shen, M. Musial, and K. Obermayer. Construction
of approximation spaces for reinforcement learning. The Journal of Machine
Learning Research, 14(1):2067-2118, 2013.

W. Bohmer, J. T. Springenberg, J. Boedecker, M. Riedmiller, and K. Obermayer.
Autonomous learning of state representations for control: An emerging field
aims to autonomously learn state representations for reinforcement learning

119

https://doi.org/10.1515/9781400874668
https://www.worldcat.org/oclc/314894080
https://www.worldcat.org/oclc/314894080

BIBLIOGRAPHY

agents from their real-world sensor observations. KI-Kiinstliche Intelligenz, 29
(4):353-362, 2015.

L. Bottou. How big data changes statistical machine learning. In 2015 IEEE
International Conference on Big Data (Big Data), pages 1-1. IEEE, 2015.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in
neural information processing systems, pages 161-168, 2008.

L. Bottou and O. Bousquet. Neurips - test of time award. https://www.facebook.
com/watch/live/?v=271569366878864&ref=watch_permalink, 2018.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223-311, 2018.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, 59(4-5):291-294, 1988.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits
problems. In International conference on Algorithmic learning theory, pages 23-37.
Springer, 2009.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-
scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

L. Busoniu, T. de Bruin, D. Toli¢, J. Kober, and I. Palunko. Reinforcement learning
for control: Performance, stability, and deep approximators. Annual Reviews in
Control, 2018.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, 1. Reid,
and J. J. Leonard. Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32
(6):1309-1332, 2016.

R. Caruana. Learning many related tasks at the same time with backpropagation.
In Advances in neural information processing systems, pages 657—-664, 1995.

H. Caselles-Dupré, M. Garcia-Ortiz, and D. Filliat. Continual state representation
learning for reinforcement learning using generative replay. arXiv preprint
arXiv:1810.03880, 2018.

L. Cayton. Algorithms for manifold learning. Univ. of California at San Diego Tech.
Rep, 12(1-17):1, 2005.

120

https://www.facebook.com/watch/live/?v=271569366878864&ref=watch_permalink
https://www.facebook.com/watch/live/?v=271569366878864&ref=watch_permalink

BIBLIOGRAPHY

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for
contrastive learning of visual representations. CoRR, abs/2002.05709, 2020.
URL https://arxiv.org/abs/2002.05709.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan:
Interpretable representation learning by information maximizing generative

adversarial nets. In Advances in neural information processing systems, pages
2172-2180, 2016.

C. K. Chui and H. N. Mhaskar. Deep nets for local manifold learning. Frontiers in
Applied Mathematics and Statistics, 4:12, 2018.

A. Cichocki, A. H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and
D. P. Mandic. Tensor networks for dimensionality reduction and large-scale
optimization: Part 2 applications and future perspectives. Found. Trends Mach.
Learn., 9(6):431-673, 2017. doi: 10.1561/2200000067. URL https://doi.org/
10.1561/2200000067.

N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning;
A tensor analysis. In Conference on learning theory, pages 698-728, 2016.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of machine learning
research, 12(ARTICLE):2493-2537, 2011.

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org, 2016-2019.

E. Coumans, Y. Bai, and J. Hsu. Pybullet physics engine, 2018.

W. Curran, T. Brys, D. Aha, M. Taylor, and W. D. Smart. Dimensionality reduced
reinforcement learning for assistive robots. In Proc. of Artificial Intelligence for
Human-Robot Interaction at AAAI Fall Symposium Series, 2016.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303-314, 1989.

S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill
Higher Education New York, 2008.

T. de Bruin, J. Kober, K. Tuyls, and R. Babuska. Integrating state representation
learning into deep reinforcement learning. IEEE Robotics and Automation Letters,
3(3):1394-1401, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

121

https://arxiv.org/abs/2002.05709
https://doi.org/10.1561/2200000067
https://doi.org/10.1561/2200000067
http://pybullet.org

BIBLIOGRAPHY

J. Donahue, P. Krdhenbiihl, and T. Darrell. Adversarial feature learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=BJtNZAFgg.

D. L. Donoho et al. High-dimensional data analysis: The curses and blessings of
dimensionality. AMS math challenges lecture, 1(2000):32, 2000.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on
Machine Learning, pages 1329-1338, 2016.

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro,
and A. C. Courville. Adversarially learned inference. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=B1E1R4cgg.

D. Dwibedi,]J. Tompson, C. Lynch, and P. Sermanet. Learning actionable repre-
sentations from visual observations. In 2018 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), pages 1577-1584. IEEE, 2018.

T. Eboli, J. Sun, and J. Ponce. End-to-end interpretable learning of non-blind
image deblurring. arXiv preprint arXiv:2007.01769, 2020.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsupervised
pre-training help deep learning? In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 201-208, 2010.

B. Eysenbach and S. Levine. Maximum entropy 1l (provably) solves some robust
rl problems. https://arxiv.org/pdf/2103.06257.pdf, 2021.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation
learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An
introduction to deep reinforcement learning. CoRR, abs/1811.12560, 2018. URL
http://arxiv.org/abs/1811.12560.

A. Gaier and D. Ha. Weight agnostic neural networks. In Advances in Neural
Information Processing Systems, pages 5364-5378, 2019.

Z. Ghahramani. Unsupervised learning. In Summer School on Machine Learning,
pages 72-112. Springer, 2003.

P. Ghosh, M. S. Sajjadi, A. Vergari, M. Black, and B. Scholkopf. From variational
to deterministic autoencoders. arXiv preprint arXiv:1903.12436, 2019.

122

https://openreview.net/forum?id=BJtNZAFgg
https://openreview.net/forum?id=B1ElR4cgg
https://openreview.net/forum?id=B1ElR4cgg
https://arxiv.org/pdf/2103.06257.pdf
http://arxiv.org/abs/1811.12560

BIBLIOGRAPHY

T. Glasmachers. Limits of end-to-end learning. In M. Zhang and Y. Noh, editors,
Proceedings of The 9th Asian Conference on Machine Learning, ACML 2017, Seoul,
Korea, November 15-17, 2017, volume 77 of Proceedings of Machine Learning
Research, pages 17-32. PMLR, 2017. URL http://proceedings.mlr.press/
v77/glasmachersi7a.html.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672-2680, 2014.

M. Gutmann and A. Hyvérinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages 297-304,
2010.

D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep
energy-based policies. arXiv preprint arXiv:1702.08165, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018a.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications.
CoRR, abs/1812.05905, 2018b. URL http://arxiv.org/abs/1812.05905.

J. Hadamard. Sur les problemes aux dérivées partielles et leur signification
physique. Princeton university bulletin, pages 49-52, 1902.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pages 1735-1742. IEEE, 2006.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learn-
ing latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

N. Hansen, Y. Sun, P. Abbeel, A. A. Efros, L. Pinto, and X. Wang. Self-supervised
policy adaptation during deployment. CoRR, abs/2007.04309, 2020. URL
https://arxiv.org/abs/2007.04309.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning,
pages 1225-1234. PMLR, 2016.

123

http://proceedings.mlr.press/v77/glasmachers17a.html
http://proceedings.mlr.press/v77/glasmachers17a.html
http://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2007.04309

BIBLIOGRAPHY

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsuper-
vised visual representation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9729-9738, 2020.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep re-
inforcement learning that matters. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

T. Hester and P. Stone. Intrinsically motivated model learning for a developing
curious agent. In 2012 IEEE international conference on development and learning
and epigenetic robotics (ICDL), pages 1-6. IEEE, 2012.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on Learning Representations,
2017.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504-507, 2006.

K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks.
Neural networks, 3(5):551-560, 1990.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=SJ6yPD5xg.

A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon. A survey on
contrastive self-supervised learning. Technologies, 9(1):2, 2021.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In 2009 IEEE 12th international confer-
ence on computer vision, pages 2146-2153. IEEE, 2009.

I. Jolliffe. Principal component analysis. In International encyclopedia of statistical
science, pages 1094-1096. Springer, 2011.

R. Jonschkowski and O. Brock. Learning task-specific state representations by
maximizing slowness and predictability. In 6th international workshop on evolu-
tionary and reinforcement learning for autonomous robot systems (ERLARS), 2013.

124

https://openreview.net/forum?id=SJ6yPD5xg

BIBLIOGRAPHY

R. Jonschkowski and O. Brock. Learning state representations with robotic priors.
Autonomous Robots, 39(3):407—-428, 2015.

R. Jonschkowski, R. Hafner, J. Scholz, and M. Riedmiller. Pves: Position-velocity
encoders for unsupervised learning of structured state representations. arXiv
preprint arXiv:1705.09805, 2017.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255-260, 2015.

M. I Jordan and D. E. Rumelhart. Forward models: Supervised learning with a
distal teacher. Cognitive science, 16(3):307-354, 1992.

R. E. Kalman. On the general theory of control systems. In Proceedings First
International Conference on Automatic Control, Moscow, USSR, pages 481-492,
1960a.

R. E. Kalman. A new approach to linear filtering and prediction problems. 1960b.

R. E. Kalman et al. Contributions to the theory of optimal control. Bol. soc. mat.
mexicana, 5(2):102-119, 1960.

A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Y. Bengio and
Y. LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
URL http://arxiv.org/abs/1312.6114.

J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning to adjust
parametrized motor primitives to new situations. Autonomous Robots, 33(4):
361-379, 2012.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238-1274, 2013.

V. R. Kompella, M. D. Luciw, and J. Schmidhuber. Incremental slow feature
analysis: Adaptive and episodic learning from high-dimensional input streams.
CoRR, abs/1112.2113, 2011a. URL http://arxiv.org/abs/1112.2113.

V. R. Kompella, L. Pape, J. Masci, M. Frank, and J. Schmidhuber. Autoincsfa
and vision-based developmental learning for humanoid robots. In 2011 11th
IEEE-RAS International Conference on Humanoid Robots, pages 622—629. IEEE,
2011b.

125

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1112.2113

BIBLIOGRAPHY

I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need:
Regularizing deep reinforcement learning from pixels. CoRR, abs/2004.13649,
2020. URL https://arxiv.org/abs/2004.13649.

M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233-243, 1991.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

B. Lake and M. Baroni. Still not systematic after all these years: On the composi-
tional skills of sequence-to-sequence recurrent networks. 2018.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40, 2016.

S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In The 2010 International Joint Conference on Neural Networks (I[CNN),
pages 1-8. IEEE, 2010.

S. Lange, M. Riedmiller, and A. Voigtldander. Autonomous reinforcement learning
on raw visual input data in a real world application. In The 2012 international
joint conference on neural networks (IJCNN), pages 1-8. IEEE, 2012.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement
learning with augmented data. CoRR, abs/2004.14990, 2020. URL https:
//arxiv.org/abs/2004.14990.

S. Lawrence, C. L. Giles, and A. C. Tsoi. What size neural network gives optimal
generalization? convergence properties of backpropagation. Technical report,
1998.

H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux, A. Allauzen,
B. Crabbé, L. Besacier, and D. Schwab. Flaubert: Unsupervised language
model pre-training for french. arXiv preprint arXiv:1912.05372, 2019.

Q. V. Le. Building high-level features using large scale unsupervised learning. In
2013 IEEE international conference on acoustics, speech and signal processing, pages
8595-8598. IEEE, 2013.

P. H. Le-Khac, G. Healy, and A. F. Smeaton. Contrastive representation learning;:
A framework and review. IEEE Access, 2020.

Y. LeCun, B. Boser,]J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989a.

126

https://arxiv.org/abs/2004.13649
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2004.14990

BIBLIOGRAPHY

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.

Y. LeCun et al. Generalization and network design strategies. Connectionism in
perspective, 19:143-155, 1989b.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint
arXiv:1907.00953, 2019.

R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement learning on slow
features of high-dimensional input streams. PLoS computational biology, 6(8),
2010.

T. Lesort, M. Seurin, X. Li, N. D. Rodriguez, and D. Filliat. Unsupervised state
representation learning with robotic priors: a robustness benchmark. arXiv
preprint arXiv:1709.05185, 2017.

T. Lesort, N. Diaz-Rodriguez,].-F. Goudou, and D. Filliat. State representation
learning for control: An overview. Neural Networks, 108:379-392, 2018.

T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Diaz-Rodriguez.
Continual learning for robotics: Definition, framework, learning strategies,
opportunities and challenges. Information Fusion, 58:52-68, 2020.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep vi-
suomotor policies. The Journal of Machine Learning Research, 17(1):1334-1373,
2016.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data
collection. The International Journal of Robotics Research, 37(4-5):421-436, 2018.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, pages
6389-6399, 2018.

J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding neural
models in nlp. arXiv preprint arXiv:1506.01066, 2015.

Y. Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018. URL http:
//arxiv.org/abs/1810.06339.

127

http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339

BIBLIOGRAPHY

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Machine learning, 8(3-4):293-321, 1992.

H. Liu, M. Long, . Wang, and M. L. Jordan. Towards understanding the transfer-
ability of deep representations. arXiv preprint arXiv:1909.12031, 2019a.

X. Liu, FE. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang, and J. Tang. Self-supervised
learning: Generative or contrastive. arXiv preprint arXiv:2006.08218, 1(2), 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

L. Ljung. Asymptotic behavior of the extended kalman filter as a parameter
estimator for linear systems. IEEE Transactions on Automatic Control, 24(1):
36-50, 1979.

E. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Scholkopf, and O. Bachem. Chal-
lenging common assumptions in the unsupervised learning of disentangled
representations. arXiv preprint arXiv:1811.12359, 2018.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer. Exploration in model-based
reinforcement learning by empirically estimating learning progress. In Advances
in neural information processing systems, pages 206-214, 2012.

D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the seventh IEEE international conference on computer vision, volume 2, pages
1150-1157. Ieee, 1999.

H. Maennel, O. Bousquet, and S. Gelly. Gradient descent quantizes relu network
features. arXiv preprint arXiv:1803.08367, 2018.

A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015. URL http://arxiv.org/abs/1511.05644.

G. Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631,
2018.

L. Martin, B. Muller, P. J. O. Suérez, Y. Dupont, L. Romary, E.V.dela Clergerie,
D. Seddah, and B. Sagot. Camembert: a tasty french language model. arXiv
preprint arXiv:1911.03894, 2019.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

128

http://arxiv.org/abs/1511.05644

BIBLIOGRAPHY

A. Merckling, A. Coninx, L. Cressot, S. Doncieux, and N. Perrin. State repre-
sentation learning from demonstration. In International Conference on Machine
Learning, Optimization, and Data Science, pages 304-315. Springer, 2020.

L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans do
actually converge? arXiv preprint arXiv:1801.04406, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602,2013. URL http://arxiv.org/abs/1312.5602.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement
learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

M. Morik, D. Rastogi, R. Jonschkowski, and O. Brock. State representation
learning with robotic priors for partially observable environments. In IROS,
pages 6693-6699, 2019.

J. Munk, J. Kober, and R. Babuska. Learning state representation for deep actor-
critic control. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages
4667-4673. IEEE, 2016.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6292-6299.
IEEE, 2018.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807-814, 2010.

H. Narayanan and S. Mitter. Sample complexity of testing the manifold hy-
pothesis. In Advances in neural information processing systems, pages 1786-1794,
2010.

A. Y. Ng, H. J. Kim, M. I Jordan, S. Sastry, and S. Ballianda. Autonomous
helicopter flight via reinforcement learning. In NIPS, volume 16. Citeseer, 2003.

129

http://arxiv.org/abs/1312.5602

BIBLIOGRAPHY

A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang. Autonomous inverted helicopter flight via reinforcement learning. In
Experimental robotics IX, pages 363-372. Springer, 2006.

A. Nguyen,]. Clune, Y. Bengio, A. Dosovitskiy, and]J. Yosinski. Plug & play
generative networks: Conditional iterative generation of images in latent space.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4467-4477,2017.

Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep cnns.
In International conference on machine learning, pages 3730-3739. PMLR, 2018.

F. Nuzzo. Unsupervised state representation pretraining in reinforcement learn-
ing applied to atari games, 2020.

C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2017.
https:/ /distill.pub /2017 /feature-visualization.

A.v.d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

K. Ota, T. Oiki, D. K. Jha, T. Mariyama, and D. Nikovski. Can increasing in-
put dimensionality improve deep reinforcement learning? arXiv preprint
arXiv:2003.01629, 2020.

K. Ota, D. K. Jha, and A. Kanezaki. Training larger networks for deep reinforce-
ment learning. arXiv preprint arXiv:2102.07920, 2021.

P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE transactions on evolutionary computation,
11(2):265-286, 2007.

E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of
motor skills by learning from demonstration. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 763-768. IEEE, 2009.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning
(ICML), volume 2017, 2017.

D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagree-
ment. arXiv preprint arXiv:1906.04161, 2019.

130

BIBLIOGRAPHY

J. Pearl. Causality. Cambridge university press, 2009.

K. Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2
(11):559-572, 1901.

H. Penedones, D. Vincent, H. Maennel, S. Gelly, T. Mann, and A. Barreto. Tempo-
ral difference learning with neural networks-study of the leakage propagation
problem. arXiv preprint arXiv:1807.03064, 2018.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMINLP), pages 1532-1543, 2014.

J. Peters, D. Janzing, and B. Scholkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

A. Pinkus. Approximation theory of the mlp model in neural networks. Acta
numerica, 8(1):143-195, 1999.

L. Pinto and A. Gupta. Learning to push by grasping: Using multiple tasks for
effective learning. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 2161-2168. IEEE, 2017.

T. Poggio and Q. Liao. Theory i: Deep networks and the curse of dimensionality.
Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(6), 2018.

T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: a review.
International Journal of Automation and Computing, 14(5):503-519, 2017.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

A. Raffin, A. Hill, K. R. Traoré, T. Lesort, N. Diaz-Rodriguez, and D. Filliat.
Decoupling feature extraction from policy learning: assessing benefits of state
representation learning in goal based robotics. arXiv preprint arXiv:1901.08651,
2019.

M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun. Efficient learning of sparse
representations with an energy-based model. In Advances in neural information
processing systems, pages 1137-1144, 2007.

R. P. Rao. An optimal estimation approach to visual perception and learning.
Vision research, 39(11):1963-1989, 1999.

M. Riedmiller. Neural fitted q iteration—first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine
Learning, pages 317-328. Springer, 2005.

131

BIBLIOGRAPHY

H. Robbins and S. Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

A. A.Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy distillation. arXiv
preprint arXiv:1511.06295, 2015.

S. Saarinen, R. Bramley, and G. Cybenko. Ill-conditioning in neural network
training problems. SIAM Journal on Scientific Computing, 14(3):693-714, 1993.

W. Samek, T. Wiegand, and K.-R. Miiller. Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models. arXiv
preprint arXiv:1708.08296, 2017.

A.Sax, J. O. Zhang, B. Emi, A. Zamir, S. Savarese, L. Guibas, and J. Malik. Learn-
ing to navigate using mid-level visual priors. arXiv preprint arXiv:1912.11121,
2019.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85-117, 2015.

B. Scholkopf, A. Smola, and K.-R. Miiller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299-1319, 1998.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. P. Lillicrap, and D. Silver.
Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593-1599, 1997.

R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning
to explore via self-supervised world models. arXiv preprint arXiv:2005.05960,
2020.

P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and
G. Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages
1134-1141. IEEE, 2018.

132

http://arxiv.org/abs/1911.08265

BIBLIOGRAPHY

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307,
2017.

P. Shyam, W. Jaskowski, and F. Gomez. Model-based active exploration. In
International Conference on Machine Learning, pages 5779-5788. PMLR, 2019.

D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial
Intelligence, page 103535, 2021.

K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. In
Advances in neural information processing systems, pages 1857-1865, 2016.

A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised rep-
resentations for reinforcement learning. CoRR, abs/2004.04136, 2020. URL
https://arxiv.org/abs/2004.04136.

I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney, R. Katz, A. D. Joseph,
M. Jordan, J. M. Hellerstein, J. E. Gonzalez, et al. A berkeley view of systems
challenges for ai. arXiv preprint arXiv:1712.05855, 2017.

A. Stooke, K. Lee, P. Abbeel, and M. Laskin. Decoupling representation
learning from reinforcement learning. https://openreview.net/forum?id=
_SKUm2AJpvN, 2020.

N. Stinderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford, et al. The limits and potentials of deep
learning for robotics. The International Journal of Robotics Research, 37(4-5):
405-420, 2018.

L. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine
learning, pages 1139-1147, 2013.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9-44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1-9, 2015.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Ab-
dolmaleki, J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

133

https://arxiv.org/abs/2004.04136
https://openreview.net/forum?id=_SKUm2AJpvN
https://openreview.net/forum?id=_SKUm2AJpvN

BIBLIOGRAPHY

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(Jul):1633-1685, 2009.

H. Tercan, A. Guajardo, J. Heinisch, T. Thiele, C. Hopmann, and T. Meisen.
Transfer-learning: Bridging the gap between real and simulation data for
machine learning in injection molding. Procedia Cirp, 72:185-190, 2018.

G. Tesauro. Practical issues in temporal difference learning. In Advances in neural
information processing systems, pages 259-266, 1992.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RS] International
Conference on, pages 5026-5033. IEEE, 2012.

M. H. Ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah, and S. U.
Khan. Big data reduction methods: a survey. Data Science and Engineering, 1(4):
265-284, 2016.

L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality reduction:
a comparative. | Mach Learn Res, 10(66-71):13, 2009.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
g-learning. arXiv preprint arXiv:1509.06461, 2015.

H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters. Stable reinforce-
ment learning with autoencoders for tactile and visual data. In Intelligent Robots
and Systems (IROS), 2016 IEEE/RS] International Conference on, pages 3928-3934.
IEEE, 2016.

M. Vecerik, T. Hester, J. Scholz, E. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl,
T. Lampe, and M. Riedmiller. Leveraging demonstrations for deep rein-
forcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of Machine Learning Research, 11(Dec):
3371-3408, 2010.

V. Volhejn and C. Lampert. Does sgd implicitly optimize for smoothness? Pattern
Recognition, 12544:246, 2021.

N. Wahlstrém, T. B. Schon, and M. P. Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

M. Wang, W. Fu, X. He, S. Hao, and X. Wu. A survey on large-scale machine
learning. IEEE Transactions on Knowledge and Data Engineering, 2020.

134

BIBLIOGRAPHY

C.J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.
C.]J. C. H. Watkins. Learning from delayed rewards. 1989.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In Advances
in neural information processing systems, pages 2746-2754, 2015.

B. Widrow and M. E. Hoff. Adaptive switching circuits. Technical report, Stanford
Univ Ca Stanford Electronics Labs, 1960.

L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4):715-770, 2002.

H. S. Witsenhausen. Separation of estimation and control for discrete time
systems. Proceedings of the IEEE, 59(11):1557-1566, 1971.

B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving
sample efficiency in model-free reinforcement learning from images. CoRR,
abs/1910.01741, 2019. URL http://arxiv.org/abs/1910.01741.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features
in deep neural networks? In Advances in neural information processing systems,
pages 3320-3328, 2014.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning
based natural language processing. ieece Computational intelligenCe magazine, 13
(3):55-75, 2018.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818-833. Springer, 2014.

A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin. A framework for efficient
robotic manipulation. arXiv preprint arXiv:2012.07975, 2020.

A. Zhang, N. Ballas, and J. Pineau. A dissection of overfitting and generalization
in continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017a.

R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1058-1067, 2017b.

135

http://arxiv.org/abs/1910.01741

	Cover Page
	Dedication
	Abstract
	Contents

	Introduction
	Deep Reinforcement Learning Background
	State Representations for Reinforcement Learning
	State Representation Learning from Demonstration
	Exploratory State Representation Learning
	Conclusion
	Bibliography

