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Résumé

L’imagerie hyperspectrale produit des images tridimensionnelles (2D+λ ) avec deux
dimensions spatiales et une dimension spectrale. Cependant, une observation di-
recte des images hyperspectrales n’est pas possible. Au lieu de cela, des instru-
ments hyperspectraux, qui s’appuient principalement sur des spectromètres disper-
sifs, sont conçus pour projeter l’image 2D+λ sur des detecteurs 2D (ou 1D), résul-
tant en un ensemble de mesures spectroscopiques 2D (ou 1D). Plusieurs techniques
d’acquisition d’images hyperspectrales sont adoptées. Parmi ces techniques, le spec-
tromètre à champs integrale (Integral Field Spectrometer: IFS) observe le champs
de vue de l’image 2D+λ selon plusieurs slits en parallèle, et la lumière de chaque
slit est dispersée et projetée sur des détecteurs 2D.

L’objet de cette thèse est la reconstruction de l’image hyperspectral à haute réso-
lution spatiale et spectrale, par inversion de mesures spectroscopiques 2D observées
par l’instrument IFS “Meduim Resolution Spectrometer: MRS” de l’instrument
“Mid-Infrared” embarqué à bord du téléscope spatial “James Webb”. Le prob-
lème de reconstruction est un problème “mal-posé” car les mesures souffrent de
plusieurs dégradations: (1) une dégradation spatiale introduite par la réponse de
l’optique qui dépend de la longueur d’onde, (2) une dégradation spectrale introduite
par la réponse de l’instrument de dispersion également dépendant de la longueur
d’onde, (3) l’instrument hyperspectral considère plusieurs observations avec dif-
férents champs de vues, (4) un échantillonnage spatial et spectral avec un pas
d’échantillonnage hétérogène, (5) un sous-échantillonnage spatial.

Pour traiter ces mesures, notre approche repose sur les problèmes inverses suiv-
ant deux étapes. Tout d’abord, nous concevons un modèle direct qui décrit le
comportement de l’instrument IFS et qui établit une relation entre les mesures et
l’image 2D+λ inconnue. Ensuite, ce modèle est utilisé pour la reconstruction en
s’appuyant sur l’approche des moindres carrés régularisées avec une régularisation
spatiale et spectrale convexe pour la préservation des contours. Nous utilisons les
approches semi quadratiques rapides pour résoudre le problème de reconstruction.
L’algorithme de reconstruction proposé inclut une fusion des mesures issues de dif-
férentes observations spatio-spectrales avec différents flous et pas d’échantillonnages,
une SR à partir des différents pointages de l’instrument pour compenser l’information
spatiale perdue au niveau du détecteur, et une déconvolution pour minimiser le flou.

Nous testons et validons l’algorithme de reconstruction proposé sur plusieurs im-
ages d’entrée synthétiques ayant des différentes distributions spatiales et spectrales.



4

Pour justifier le choix de la régularisation adoptée, nous comparons l’algorithme
proposé avec l’algorithme SR représentatif de l’état de l’art qui s’appelle le “Shift-
and-Add”, utilisé pour traiter les mesures du MRS. Cette technique combine toutes
les mesures issues de différentes observations et différents pointages de l’instrument
afin d’améliorer la résolution spatiale de l’image 2D+λ reconstruite. Cependant, le
“Shift-and-Add” ne prends pas en compte le flou spatial et spectral. Par conséquent,
l’algorithme est souvent suivi d’une étape de déconvolution qui prends en compte le
flou spatial. Nous choisissons la régularisation total variation (TV) qui s’applique
séparément à chaque image monochromatique sans tenir compte de la corrélation
entre les bandes spectrales. Finalement, nous comparons l’algorithme que nous
avons mis au point avec l’approche des moindres carrées avec une régularisation
quadratique l2.

On constate à partir des images reconstruites avec les différents algorithmes, que
l’algorithme “Shift-and-Add” suivi d’une régularisation spatiale TV ne parvient pas
à reconstruire les détails à petite échelle, et la régularisation quadratique introduit
des rebonds et empêche la préservation des contours. En revanche, la reconstruc-
tion grâce à l’algorithme que nous proposons montre une déconvolution nette et une
amélioration significative de la résolution spatiale et spectrale des images 3D recon-
struites par rapport aux algorithmes de l’état de l’art, notamment sur les bords.

Malgré l’amélioration de la résolution des images reconstruites, l’algorithme pro-
posé présente des limitations. Tout d’abord, le nombre d’inconnues que l’on cherche
à estimer est significativement grand, ce qui va augmenter le temps de calcul. De
plus, les mesures produites par le MRS ont souvent une information spectrale com-
plexe comme un continuum et une succession de raies spectrales ce qui nous force
à déterminer plusieurs hyperparametres spectraux augmentant la complexité de
l’algorithme.

Pour surmonter cela, nous proposons un autre algorithme de reconstruction en
supposant que l’image 2D+λ observée se trouve dans un sous-espace de faible di-
mension et peut être modélisée comme une combinaison linéaire de composantes
spectrales, supposées connues, pondérées par des coefficients de mélange inconnus.
Le problème de reconstruction se réduit à l’estimation des cartes d’abondances en
passant par un nouveau model direct qui inclut les composantes spectrales connues.
Pour résoudre le problème de reconstruction, nous nous appuyons sur l’algorithme
Majorize-Minimize Memory Gradient (3MG).

Nous testons l’algorithme proposé sur des simulations astrophysiques représen-
tant la région de photodissociation de la “barre d’Orion” ayant une information spec-
trale complexe (succession des raies). On montre encore une fois que l’algorithme
proposé fournit la meilleure reconstruction spatiale en termes de résolution et d’erreur
comparé aux algorithmes de l’état de l’art. En plus, l’information spectrale est bien
préservée car la résolution spectrale de l’image reconstruite est imposée par les com-
posantes spectrales connues.

En résumé, l’ensemble de nos travaux au cours de cette thèse nous a permis
en premier lieu de concevoir deux différent modèles directs pour l’instrument MRS
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à partir de deux modèles différents pour l’image d’entrée (modèle voxel et modèle
de mélange linéaire avec des composantes spectrales connues) qui produisent des
mesures projetées sur des detecteurs 2D en tenant compte les limitations spatio-
spectrales. Pour résoudre ce problème mal posé, nous avons proposé un algorithme
de “super-résolution” multi-images, basé sur l’approche des moindres carrés régular-
isés, avec une régularisation convexe préservant les bords qui permet des améliora-
tions spatiales via des observations multi-images et une déconvolution. L’algorithme
proposé est résolu via l’optimisation du gradient majorize-minimize memory (3MG)
et testé sur des images synthétiques 3D, mesurant dans la gamme infrarouge, donc
adapté au prochain instrument infrarouge à bord du James WebbSpace Telescope
(JWST).
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1.1 General context

With the expansion of the universe, the visible light emitted by celestial objects
is shifted to the infrared range through cosmological redshifting. Moreover, the
infrared spectral range contains numerous spectral features emitted by interstellar
dust and gas. Therefore, the infrared spectral range is increasingly observed by as-
trophysicists to address key questions such as the evolution of galaxies over time, the
formation of stars and planets, the chemical complexity of the interstellar medium,
etc. More and more complex instruments are put on board observatories operated
in space to avoid atmospheric infrared absorption. The goal is to provide spatial
and spectral information on the observed objects, and ideally, their hyperspectral
(HS) images.

In the remote sensing community, HS images are defined as 3-dimensional spatio-
spectral (2D+λ) images spanning two spatial dimensions (i, j) and a series of narrow
spectral bands l forming the third dimension. Unfortunately, the direct observation
of HS images is not straightforward because 3D detectors actually do not exist.
Instead, hyperspectral instruments, primarily relying on dispersive spectrometers,
are designed to project the HS input image onto 2D (sometimes 1D) detectors,
resulting in a set of 2D (or 1D) measurements with high spectral resolution. Hence,
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a processing step of these measurements is mandatory to reconstruct the HS input
images.

In most cases, the processing of high spectral measurements is challenging be-
cause of the spatial and spectral degradations during the acquisition process. For
instance, the optical components of the measuring instrument are limited by the
diffraction [Goodman 1996] and introduce wavelength-dependent spatial blurring to
the 2D+λ input images. Moreover, the wavelength dispersion system (i.e. prism,
diffraction grating, etc.) is not perfect and introduces spectral blurring, which is
also wavelength-dependent [Pérez 2004]. Finally, the pixel size of the HS input im-
ages is often smaller than the pixel size of the HS detectors, resulting in severe
limitations of the spatial resolution of the image, as in classic Super-Resolution
problems [Sung Cheol Park 2003].

In this thesis, we propose original reconstruction algorithms based on inverse
problem approaches [Idier 2001b] to estimate 2D+λ astronomical sky images from
a set of measurements with a high spectral resolution, degraded by an HS instru-
ment and projected onto 2D detectors. The reconstruction algorithms mainly in-
clude (1) a data fusion step that combines all 2D measurements to provide a 2D+λ

image, (2) a deconvolution step that minimizes the blurring and improves the con-
trast and sharpness of the reconstructed images [Idier 2001b], and (3) a multi-frame
Super-Resolution (SR) step [Sung Cheol Park 2003] to compensate for the spatial
information lost during the HS detector sampling. This work is part of long-term
collaborations between the “Laboratoire des Signaux et Systèmes” (L2S) and the “In-
stitut d’Astrophysique Spatiale” (IAS). These collaborations mainly concern the pro-
cessing of degraded measurements provided by various measuring instruments from
different space missions [Rodet 2009, Hadj-Youcef 2020, Orieux 2011, Orieux 2013].
In this thesis, we are particularly interested in the James Webb Space Telescope
(JWST)1 space mission.

The JWST, expected to be launched in October 2021, is the next space obser-
vatory of the National Aeronautics and Space Administration (NASA), in collab-
oration with the European Space Agency (ESA) and the Canadian Space Agency
(CSA). It will be the largest and most complex telescope ever sent to space with
a primary mirror of 6.5 meters in diameter (which is ∼ 10 times larger than for
the previous infrared space observatories, ISO and Spitzer). The JWST incorpo-
rates several instruments that provide a unique and unprecedented combination of
imagers and spectrometers, measuring a broad spectral window from the visible to
the infrared range. Among these instruments, we particularly mention the Mid-
InfraRed Instrument (MIRI). It contains an imager [Bouchet 2015], and an inte-
gral field spectrometer (IFS) [Vives 2008a], called Medium Resolution Spectroscopy
(MRS) [Wells 2015], both observing the same infrared range (between 4.9 and
28.3µm) but with very different spectral resolutions and spatial fields of view. The
imager provides good spatial information in terms of detector sampling and observed
field of view (74×113 arcseconds2), but the spectral resolution is limited (λ/∆λ ≈ 5)

1https://www.jwst.nasa.gov/
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because of the wavelength integration over broad spectral filters. On the other hand,
the MRS observes a relatively small field of view (up to 6.9 × 7.9 arcseconds2) and
provides measurements with insufficient spatial sampling but with high spectral
resolution (λ/∆λ ≈ 1500 − 3500). The 2D+λ image reconstruction of the multi-
spectral measurements provided by the broad-band imager, such as the imager of
JWST/MIRI has been treated in a previous work [Hadj-Youcef 2020]. In this the-
sis, we are interested in the processing of 2D measurements provided by integral
field spectrometer (IFS) instruments, such as the MRS of JWST/MIRI, in order to
reconstruct a 2D+λ image with a high spatial and spectral resolutions.

1.2 Contributions
The reconstruction of a 2D+λ input image x from degraded 2D spectral measure-
ments y with an inverse problem approach is treated following two main stages.
In the first stage, we develop an explicit forward model for the IFS instrument
that establishes a relationship between y and the unknown x. This model identi-
fies the response of each component of the acquisition instrument and allows the
extraction of an observation matrix H and its transpose Ht, used in the inverse
problem algorithm. The forward model is general but primarily adapted for the
MRS of JWST/MIRI. It involves relatively complex components and takes into ac-
count several effects, such as wavelength-dependent spatial and spectral blurring,
different observations with varying spatial and spectral field of views (FOV) coming
from different sources (spectral instruments, Integral Field Units, pointing of the
instrument), and finally projections onto different 2D detectors with heterogeneous
spatial and spectral sampling steps.

In the second stage, we propose a reconstruction algorithm that uses the devel-
oped forward model and the measurements y to estimate the unknown values of x.
The reconstruction problem, however, is ill-posed because of the ill-conditioning of
H. The proposed reconstruction is therefore based on the regularized least square
approaches. It consists of minimizing a cost function composed of (1) a data fi-
delity term that relies on the description of the forward model and (2) a spatial
and spectral regularization to ensure the stability of the solution. We particularly
propose a convex spatial and spectral regularization for edge-preserving and solve
the problem using a fast semi-quadratic algorithm based on Geman and Reynolds
formulation [Geman 1992] to estimate the solution.

In further work, we consider a new linear model for the 2D+λ input image x
while preserving its spatial and spectral distributions. More particularly, we assume
that x lives in a low dimensional subspace, and is represented by a small number of
spectral components s, assumed known, weighted by unknown mixing coefficients a.
Based on this input model, known as the Linear Mixing Model (LMM), we formulate
a new forward model that includes the known spectral components and relates
the measurements y to the unknown mixing coefficients a. The reconstruction
algorithm uses the new forward model to estimate the unknown mixing coefficients
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a from the measurements y. The new reconstruction algorithm requires only a
convex spatial edge-preserving regularization since the spectral resolution of the
reconstructed HS image is imposed by the known spectral components s. We finally
solve the problem using a high efficient optimization algorithm, which is the iterative
Majorize-Minimize Memory gradient (3MG) algorithm [Chouzenoux 2011].

To validate the proposed reconstruction algorithms for both input models, we
simulate high spectral measurements, using both forward models respectively, from
several synthetic hyperspectral inputs with different spatial and spectral distribu-
tions. The overall proposed algorithms for both the spatio-spectral and the linear
mixing object models show good performances and a significant increase of the spa-
tial and spectral resolution of the reconstructed 2D+λ image compared to other
reconstruction algorithms, particularly the classic l2 regularization [Tikhonov 1995]
and the shift-and-add algorithm [Hook 2000, Farsiu 2003] for multi-frame SR recon-
structions.

1.3 Outline of this thesis
The following chapters are organized as follows. Chapter 2 presents an overview of
the inverse problem framework as an ill-posed problem and discusses several meth-
ods and algorithms to solve the inverse problem and reconstruct 2D+λ HS images.
Chapter 3 describes the characteristics of the Integral Field Spectrometer (IFS)
instruments, in particular, the MRS of JWST/MIRI. Chapters 4 and 5 deal with
the reconstruction of a discrete 2D+λ input image from spatially and spectrally
degraded 2D spectral measurements using a spatio-spectral model and a linear mix-
ing model for the input, respectively. Finally, we provide a general conclusion and
perspectives in Chapter 6.

1.4 Publications
• R. Abi-rizk, F. Orieux and A. Abergel, "Reconstruction hyperspectrale à

haute résolution à partir de mesures de spectrometrie", 27eme Colloque GRETSI
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proximation," 2021 (submitted).
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In this thesis, we are interested in the inverse problem approach, mainly used to
reconstruct 2D+λ images from degraded measurements provided by astronomical
instruments. In the first section of this chapter, we provide a general paradigm
of the inverse problem approaches and address the related limitations, techniques,
and algorithms. The second section presents several works and methods to recon-
struct 2D+λ images with a high spatial and spectral resolution, particularly the
Hyperspectral (HS) images, using the inverse problem approaches.

2.1 Inverse problem framework
The inverse problem is the process of estimating and reconstructing an unknown
input object x ∈ RN from an output measurement y ∈ RM provided by an obser-
vation system (i.e. telescope, camera, microscope, etc). x and y are not necessarily
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limited to one dimension but can represent a two-dimensional image or a Hyper-
spectral image, denoted as vectors in this section. We denote H ∈ RM×N a linear
operator describing the response of the observation system and providing a rela-
tionship between the input x and the output y, shown in Fig. 2.1 and described
as

y = Hx+ ε (2.1)

where ε ∈ RM denotes a vector of errors. The model in Eq. (2.1) is called a
forward problem that describes the formation of the measurements. Generally, the
observation matrix H can be identified and modeled. Hence, the inverse problem
relies on estimating x from the known H and measurements y [Demoment 1989].
However, in some other cases, H is unknown or partially known and requires a
full or a partial estimation along with x. In these cases, the inverse problem is
approached in a blind [Almeida 2010] or semi-blind [Yu-Li You 1999] fashion.

 

Figure 2.1: A scheme of the inverse problem process.

2.1.1 Ill posed problem

Solving an inverse problem is challenging because it is generally “ill-posed”. Hadamard
[Hadamard 1902] imposed several mathematical properties that should be respected
to consider the inverse problem “well-posed”. These properties are (1) the exis-
tence of the solution, (2) the uniqueness of the solution, and (3) the stability of
the solution (the solution continuously depends on the measurements). If one or
more of these properties are violated, the reconstruction problem is considered “ill-
posed”. For instance, if the observation matrixH is square (M = N) and invertible
(KerH = {0}), a straightforward solution to the inverse problem might be consid-
ered as [Demoment 1989, Idier 2001b]

x̂ = H−1y (2.2)
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where x̂ denotes the estimated input (the solution of the inverse problem). In other
cases, Eq. (2.2) is inapplicable. Moreover, since the measurements y are subject to
errors introduced by the additional term ε, the solution of Eq. (2.2) is not expected
to be accurate. For these reasons, it is crucial to develop new alternative to the
direct inversion that can solve the inverse problems. These theories include, for
instance, the “generalized inversion” and the regularization [Idier 2001b].

A natural approach is the least square approach consisting of minimizing the
square of the distance between the observation vector y and the model output Hx
yielding to

x̂s minimize ‖y −Hx‖22 (2.3)

where x̂s is the solution of the following linear system

HtHx = Hty. (2.4)

In the discrete case, the linear operator generally lives in a finite-dimensional space.
Therefore, at least one minimizer x̂s exists and depends continuously on the mea-
surements (this condition is necessary but not sufficient) [Idier 2001b]. However, the
problem might remain ill-posed in the sense of Hadamard because the uniqueness
of the solution is not necessarily guaranteed (i.e. the problem is under-determined).
In that case, the “generalized inversion” might be considered by selecting the mini-
mizer x̂ ∈ x̂s with the minimal norm. The “generalized inversion” problem remains
in most cases ill-posed because the matrix HtH is ill-conditioned. In fact, HtH

might contain eigenvalues close to zero. Consequently, small perturbations in the
measurements y can result in high perturbations in x̂ [Idier 2001b] as illustrated in
Fig 2.2(c).

2.1.2 Regularized least square approaches
The regularization theory was established in general to correct the ill-conditioning
of the matrix HtH in Eq. (2.4) by enforcing one or multiple regularization terms
to estimate a stable solution x̂ close to x. We first define an objective (or cost)
function that denotes J as [Idier 2001b, Tikhonov 1995]

J (x) = ‖y −Hx‖22 + µR(x). (2.5)

The objective function J is composed of two terms. The first one is the data fidelity
term that measures the square of the distance between y and Hx, and the second
one is the added regularization term R, which enforces a priori knowledge of the
solution. The parameter µ is a regularization parameter that is set to find the
best compromise between the data fidelity term and the regularization term. This
parameter is highly sensitive to the modeling errors and noise in ε. The choice of the
regularization term R(x) strongly depends on the nature of the object. For instance,
a regularization term that enforces smoothness is considered if the distribution of
the input object is expected to be smooth or uniform, and a regularization term
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(a) (b)

(c) (d)

Figure 2.2: Ill conditioned inverse filter. (a): original 2D image of cameraman
from the Matlab Image processing Toolbox. (b): output image degraded by a
2D square convolution kernel, and corrupted with an additive white Gaussian
noise, (c): solution with an inverse filter, (d): regularized least square solution,
with an l2 regularization

that preserves sharp edges is considered if the object contains high discontinuities
we want to preserve. Next, we present the regularized least square approaches with
several regularization terms used to estimate x.
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2.1.2.1 Tikhonov regularization

The first proposed choice ofR(x) is the Tikhonov regularization (l2 norm) [Tikhonov 1995].
The associated objective function writes

Jl2(x) = ‖y −Hx‖22+µ‖V x‖2. (2.6)

with V a linear operator. Jl2 is quadratic since the data fidelity term and the
regularization term are both quadratics (see Fig. 2.3(a)). Moreover, Jl2 is strictly
convex with a unique global minimum if KerH

⋂
KerV = {0}. Therefore, the

unique solution x̂ of the inverse problem is obtained as the minimizer of the objective
function Jl2 with

x̂ = argmin
x
{J (x) = (HtH + µV tV )−1Hty}. (2.7)

Eq. (2.7) yields to an explicit closed-form expression of the minimizer x̂. In most
applications, V is a difference operator, hence, the l2 regularization enforces smooth-
ness to the solution by penalizing the difference between the elements of x (i.e. pixels
in the case of a 2D image). However, it introduces artifacts to the solution, particu-
larly around the high gradient values that will limit the ability to restore the sharp
edges (i.e. contours of images), as shown in (Fig. 2.2(d)). Therefore, non-quadratic
regularization terms, such as the total variation (TV) [Rudin 1992] and the half-
quadratic regularization [Idier 2001a, Charbonnier 1997], might be considered to
preserve the high gradient values of the estimated solution.

2.1.2.2 Total variation

The total variation (TV) [Rudin 1992], based on the l1-norm, is a regularization
approach that preserves the high gradient values of the input. The solution is
estimated by minimizing the following objective function, denoted Jl1

x̂ = argmin
x
{Jl1(x) = ‖y −Hx‖22+µ|∇x|1} (2.8)

where ∇x computes the first gradient of x. Unlike the quadratic objective function
in Eq. (2.7), |∇x|1 is not differentiable at zero, and the closed-form expression of the
minimizer x̂ is not explicit and cannot be directly calculated. Therefore, iterative
algorithms are used to estimate the solution. Such algorithms include the splitting
Bregman proposed in [Goldstein 2009] and the first-order primal-dual proposed in
[Chambolle 2011]. Moreover, the TV method introduces a cartoon-like effects.

2.1.2.3 Half quadratic regularization

Another family of regularization, known as the half-quadratic (HQ) [Idier 2001a],
is used to promote high gradient values to the solution. Unlike the previous regu-
larization, HQ promotes smoothness to the continuous regions of the solution while
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(a)

T

(b)

T

(c)

Figure 2.3: Different potential functions: (a) quadratic potential functionn (b)
convex l2l1 huber potential function, (c) non convex l2l0 Geman and McClure
function. The parameter T in (b) and (c) refers to the threshold. Below this
threshold, the functions have a quadratic behaviour, and above it is linear or
constant.

preventing excessive penalization of the high gradient values. We first introduce a
general form of the regularization term as

R(x) =

W∑

w=1

φ(vwx) (2.9)

with φ : R → R is a differentiable potential function. For instance, when φ(δ) =

‖δ‖2, R(x) = ‖V x‖2 , hence the quadratic regularization. We are particularly
interested in the convex potential functions φ(δ) used for edge-preserving. The
convex potential functions are (l2l1-norm) takes a quadratic behaviour below a fixed
threshold T and a linear behaviour above it to preserve the edges (Fig. 2.3(b)).
Among these l2l1 potential functions [Charbonnier 1997] we mention:

• The Huber potential function

φ(δ, T ) =

{
δ2, if |δ|≤ T
2T |δ|−T 2 otherwise.

(2.10)

• The Hyperbolic potential functions

φ(δ, T ) =

√
1 +

δ2

T 2
− 1. (2.11)

On the other hand, the non-convex potential functions (l2l0-norm ) takes a quadratic
behaviour below a fixed threshold T and a constant behaviour above it (Fig. 2.3(c)).
Typical example of l2l0 potentials is the Geman-McClure with

φ(δ, T ) =
δ2

2T 2 + δ2
. (2.12)

The regularized least square approaches with an edge-preserving regularization
relies on the optimization of a non-quadratic objective function, Jl2l1 , that writes

x̂ = argmin
x
Jl2l1(x) = ‖y −Hx‖22+µ

W∑

w=1

φ(vtwx). (2.13)
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where vw computes the first order difference between the elements of x and φ is a
convex potential function (i.e. Huber). Unfortunately, an explicit form of the min-
imizer x̂ of Jl2l1 is not available and cannot be directly calculated. The optimiza-
tion of a non-quadratic function with a convex regularization for edge-preserving in
Eq. (2.13) can be structured into a simpler problem by considering a half-quadratic
form. This new form consists of introducing to the convex potential function a set
of auxiliary variables b = (bw)w∈W [Idier 2001a]. φ can therefore be expressed as
a function of a quadratic surrogate function Q and a dual auxiliary function ψ(b),
related to φ (with respect to the auxiliary variable b) that writes

φ(b) = inf
b∈{0,b∞}

{Q(δ, b) + ψ(b)} , ∀δ ∈ R (2.14)

To address the half-quadratic reconstruction, we define a new augmented objective
function J ∗l2l1 as

J ∗l2l1(x, b) = ‖y −Hx‖2+µ
W∑

w=1

(
Q(vtwx, bw) + ψ(bw)

)
. (2.15)

The augmented objective function J ∗l2l1 includes a least-square term measuring the
fidelity to the data, a quadratic surrogate function Q expressing the difference be-
tween the elements (vtwx)w∈W (i.e. pixels of an image) and depends on (bw)w∈W
and an auxiliary function ψ that depends solely on (bw)w∈W . Moreover, the aug-
mented auxiliary variables (bw)w∈W are proportional to (vtwx)w∈W . The higher the
gradient, the higher the auxiliary variables.

From Eq.(2.14) and Eq.(2.15), the augmented objective function J ∗l2l1(x, b)

shares the same minimizer as Jl2l1(x) with

min
b
J ∗l2l1(x, b) = Jl2l1(x). (2.16)

Two different formulations of the half-quadratic regularization have been proposed
to solve Eq.(2.15). Geman and Reynolds (GR) [Geman 1992] were the first to pro-
pose a multiplicative form of the quadratic surrogate function Q, whereas Geman
and Yang (GY) [Geman 1995] proposed an additive form of this function a few
years later. Both formulations provide iterative optimization algorithms that bene-
fit from a global convergence. The augmented objective function with GR and GY
formulations respectively writes

J ∗GR(x, b) = ‖y −Hx‖2+µ
W∑

w=1

bw(vtwx)2 + ψ(bw), (2.17)

J ∗GY (x, b) = ‖y −Hx‖2+µ
W∑

w=1

(vtwx− bw)2 + ψ(bw). (2.18)
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Eq.(2.17) and Eq.(2.18) are solved by iteratively alternating two minimization
problems until convergence [Idier 2001a, Charbonnier 1997]

x̂(k) = arg min
x

J ∗l2l1
(
x, b(k−1)

)
(2.19)

b̂(k) = arg min
b
J ∗l2l1

(
x(k), b

)
(2.20)

Eq. (2.19) corresponds to the minimization for each iteration (k) of J ∗GR and J ∗GY
with respect to (w.r.t) x for a fixed b with [Idier 2001a]

x̂GR = arg min
x

{
‖y −Hx‖2+µ

2
xtV tBV x

}
, (2.21)

x̂GY = arg min
x

{
‖y −Hx‖2+µ

2
‖V x− b‖2

}
, (2.22)

where B = Diag(b) and V = [v1 . . .vW ]. Hence x̂GR and x̂GY are deduced by
solving the following linear systems respectively

AGR(x) = (Hty), (2.23)

AGY (x) = (Hty + µV tb), (2.24)

where the Normal matrices AGR = (HtH + µV tBV ) and AGY = (HtH +

µV tV ) are symmetric positive definite, hence, can be inverted if the conditions(
Ker{HtH}⋂Ker{V tBV }

)
= {0} and

(
Ker{HtH}⋂Ker{V tV }

)
= {0} are

respected for GR and GY formulations, respectively. Eq. (2.23) and (2.24) yields
to a closed-form expression of the minimizer x̂GR and x̂GY respectively. However,
computing the inverse of the normal matrices for each iteration (k) is untractable,
particularly for large-size problems since the sizes of these matrices are related to
the number of unknowns [Allain 2006].

In some cases, a numerical analysis might be considered to compute the exact
solution of the Normal equation in Eq. (2.23) and (2.24), depending on the structural
properties of the observation matrix H. For instance, when H has a Toeplitz or a
Toeplitz-block-Toeplitz structure (i.e. H is a convolution matrix), it can be, under
circular approximation assumption, diagonalized in the Fourier domain at a low
cost [Hunt 1971, Allain 2006]. In that case, computing the inverse of the Normal
matrixAGY can be efficiently done. Unfortunately, this is not the case forAGR since
it depends on the auxiliary variables b. Moreover, in more realistic problems,H does
not always benefit from such simple structures. Therefore, it is natural to propose
alternative methods that approach the resolution of the linear system but at a much
lower cost, such as iterative optimization algorithms [Shewchuk 1994, Nocedal 2006],
presented in the following section.

On the other hand, sovling Eq. (2.20) corresponds to the minimization of J ∗HQ
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w.r.t b for a fixed x yielding to

b̂GR = arg min
bw

{µ
2

∑

w∈W
bw(vtwx)2 + ψ(bw)

}
. (2.25)

b̂GY = arg min
bw

{µ
2

∑

w∈W
(vtwx− bw)2 + ψ(bw)

}
. (2.26)

The minimization problem in Eq. (2.25) and (2.26) for the GR and GY formulations,
respectively, can be achieved in parallel for each bw ∈ b. Moreover, bw are expressed
explicitly and does not require a known form of the function ψ since the infimum in
Eq. (2.14) is uniquely reached when

bGR =
φ′(vtwx)

2vtwx
(2.27)

bGY = vtwx− φ′(vtwx) (2.28)

with φ′ is the first order derivative of the convex (l2l1) potential function (i.e. Hu-
ber).

2.1.3 Gradient-based iterative optimization algorithms
As detailed in the previous sections, the inverse problem can be solved by minimizing
a regularized objective function J (x) that writes

J (x) = ‖y −Hx‖22+µ
W∑

w=1

φ(vwx) (2.29)

We consider the problem where φ : R → R is a differentiable and strictly con-
vex potential function. Thus, if

(
Ker{HtH}⋂Ker{V tV }

)
= {0}, the objec-

tive function J is also convex and the optimizer x̂ of the problem is global and
unique [Idier 2001b]. Minimizing Eq. (2.29) depends heavily on the structure of
J . For instance, when the regularization is quadratic, minimizing Eq. (2.29) with
respect to x yields to unique closed-form expression of x̂. However, solving the
problem is untractable, mainly when the unknown x is high-dimensional. When
a non-quadratic regularization is considered, no analytic form expression of x̂ is
available. In both cases, alternative methods such as iterative algorithms are ap-
proached to solve the problem. We are mainly interested in the family of iter-
ative algorithms that use the gradient of J , such as the gradient descent algo-
rithms [Shewchuk 1994, Nocedal 2006]. These algorithms do not compute exact
solution x̂ but rather approach sufficiently a local minimum that corresponds to a
global minimum when the function is convex.

Starting from an initial value x(0), the gradient descent algorithms generates a
sequence of iterates x(k) with k = {0 . . .K} converging towards the solution x̂ with

x(k+1) = x(k) + α(k)d(k). (2.30)
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d(k) is the descent direction that ensures the monotonic decrease of the objective
function

J (x(k+1)) < J (x(k)) (2.31)

and α(k) is the stepsize that describes how much the function decreases at each
iteration. The convergence of the iterative descent algorithms is ensured when the
objective function monotonically decreases between iterations and when the step
size value is well chosen. For a minimum value of α, the optimization algorithm
converges very slowly and might not reach convergence points if the number of
iterations chosen is not high enough. On the other hand, a large step size value
accelerates the algorithm but might lead to divergence. Finding the correct step
size value that ensures the convergence of the algorithm is called line search and can
be obtained by minimizing the following scalar function j(α) [Nocedal 2006]

j(α) = J
(
x(k) + α(k)d(k)

)
. (2.32)

Unfortunately, when J is a non-quadratic objective function, it is usually not easy
to define nor to implement a converging line search [Labat 2008, Chouzenoux 2011].
On the other hand, when the objective function is quadratic, it precludes an optimal
closed-form step-size.

We are particularly interested here in the iterative descent algorithms that mini-
mize a regularized non-quadratic objective function with a convex regularization for
edge-preserving. In section 2.1.2.3, we saw that no analytical form exists to solve the
problem. Therefore, the Half Quadratic (HQ) algorithms with GR [Geman 1992] or
GY [Geman 1995] formulations, used in section 2.1.2.3 were considered to provide a
simpler solution than a direct minimization of Eq. (2.29). HQ approaches consisted
on minimizing an augmented function J ∗(x, b) that depends on auxiliary variables
b. Thus, instead of using the line search strategy, the minimization of the problem
w.r.t x is quadratic and can be computed using the iterative optimization algorithms
with a pre-defined step size. The quadratic optimization problem amounts to solve
a large system of linear equations with [Shewchuk 1994]

Ax = ν (2.33)

with ν is a known vector, A is a square, positive definite matrix, for instance,
AGR and AGY defined in Eq. (2.23) and Eq. (2.24). In addition, x is the unknown
object. We present the most common descent direction algorithms in the field
of image processing to minimize quadratic functions, namely the steepest descent
algorithms and the conjugate gradient to solve (2.33) For a detailed discussion of
the iterative optimization algorithms for quadratic functions, we invite the readers
to consult [Shewchuk 1994, Nocedal 2006]

2.1.3.1 Gradient descent algorithm

The gradient descent optimization algorithm chooses as the direction the opposite
of the gradient, in which J decreases most quickly. Let J = ∇J denotes the first
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gradient of J , the chosen direction writes

d(k) = −J (k). (2.34)

The steepest descent algorithm is detailed in Algorithm 1. The simplicity of this

Algorithm 1: Steepest descent algorithm
Input: A, ν
Initialize: x̂(0) = arbitrary
while k 6 K

Direction of the steepest descent
d(k) = ν −Ax̂(k)

Closed form of the stepsize

α(k) =
dt(k)d(k)

dt(k)Ad(k)

Update x̂
x̂(k+1) = x̂(k) + α(k)d(k)

algorithm and the choice of the descent direction make the steepest descent practical.
Moreover, the step size α(k) is computed analytically. However, the convergence is
slow, and the algorithm requires many iterations to reach the convergence, yielding
an increase in the computational cost.

2.1.3.2 Linear Conjugate Gradient algorithms

At the iteration k, the steepest descent algorithm might take steps in the same
direction as the previous steps, mainly because d(k+1) depends only from the pre-
vious direction d(k) [Fletcher 1964, Shewchuk 1994]. The linear conjugate gradi-
ent algorithm ensures different directions between the iterations by considering A-
orthogonal descent directions d(0) . . .d(k−1) with

dt(i)Ad(j) = 0 for i 6= j. (2.35)

The set of d are computed ensuring that d(k+1) is a linear combination of J (k+1)

and {d(0) . . .d(k)} with

d(k)

{
−J (k) for k = 0

−J (k) + β(k)d(k−1) for k ≥ 1.
(2.36)

with J (k) is the first gradient of J at the iteration k and β a parameter ensuring the
conjugacy between d(k) and d(k−1). The conjugate gradient is initially developed to
minimize quadratic functions by choosing β(k) [Fletcher 1964]

β(k) =
J t(k)Jk

J t(k−1)J (k−1) (2.37)

The linear conjugate gradient method is given in algorithm. 2
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Algorithm 2: Linear Conjugate Gradient algorithm
Input: A, ν
Initialize: x̂(0) = arbitrary
J0 = Ax̂(0) − ν and d(0) = −J (0)

while k 6 K do:
Closed form of the stepsize

α(k) =
J t(k)J (k)

dt(k)Ad(k)

Update x̂
x̂(k+1) = x̂(k) + α(k)d(k)

Conjugate direction
J (k+1) = Ax̂(k+1)ν

β(k) =
J t(k+1)J (k+1)

J t(k)J (k)

d(k+1) = −J (k+1) + β(k)d(k)

2.1.4 Quadratic Majorize-Minimize approach
We showed in the previous section that the HQ approaches could be efficiently solved
using the iterative optimization algorithms with an analytic form of the step size. In
this section, we discuss a more generic approach to minimize a non-quadratic func-
tion with a convex regularization based on the Majorize-Minimize (MM) methods.
It consists of successively minimizing a quadratic surrogate function Q

(
x,x(k)

)

that majorizes J (x), writing [Allain 2006]

Q
(
x,x(k)

)
= J

(
x(k)

)
+∇J

(
x(k)

)t(
x−x(k)

)
+

1

2

(
x−x(k)

)t
A
(
x(k)

)(
x−x(k)

)
.

(2.38)

where ∇
(
J (x(k))

)
reads the gradient of J (x), and A(x) is a positive definite

operator. In addition, with the following assumptions (A1 and A2) for the scalar
function φ [Chouzenoux 2011]
A1

1. φ is C1 and coercive,

2. φ is L - Lipschitz,

A2

1. C1, even, coercive,

2. φ(
√·) is concave on R+,

3. and 0 < φ̇(u)/u < +∞, ∀u ∈ R.
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If the assumptions A1 with A = AGY or A2 with A = AGR holds, then Q
(
x,x(k)

)

is a convex majorizing quadratic approximation that is tangent to J (x) at x(k) [Allain 2006]
where 



Q
(
x,x(k)

)
≥ J (x).

Q
(
x(k),x(k)

)
= J

(
x(k)

)
.

(2.39)

The quadratic MM algorithms provide a new interpretation of the HQ approaches,
allowing the minimization of Eq. (2.29) based on the following iterative scheme
[Allain 2006, Chouzenoux 2011](see Fig. 2.4)

x(k+1) = x(k) + θ
(
x(k+1)
q − x(k)

)
(2.40)

where

(2.41)x(k+1)
q = arg min

x
Q
(
x,x(k)

)

= −A(xk)−1∇J(x)

Equation (2.41) yields to a closed form expression of x(k+1)
q . However, the algo-

rithm requires for each iteration k an inversion of the matrix A ∈ RN×N which is
computationally burden specially for a large N .

xkxk + 1

Q( , k)J( )

Figure 2.4: Approximation of a convex non-quadratic function J(α), with a
quadratic convex majorizing function Q(α, α(k)), tangent to J(α) at α(k).
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2.1.4.1 Majorize Minimize line search

Recently, the quadratic MM algorithms have been used in the line search procedure
to determine the α(k) in Eq. (2.30) on page 35. It amounts at solving the minimiza-
tion of a non quadratic function in the non-linear conjugate gradient space where
the descent direction d(k) is provided in Eq. (2.36) on page 37 and a conjugacy term
β can take one of the following forms [Labat 2008]

β
(k)
HS =

J t(k)
(
J (k) − J (k−1)

)

dt(k−1)
(
J (k) − J (k−1)

) Hestenes-Stiefel [Hestenes 1952]

β
(k)
PRP =

J t(k)
(
J (k) − J (k−1)

)

‖J (k−1)‖2 Polak-Ribière-Polyak [Polak 1969]

β
(k)
LS =

−J t(k)
(
J (k) − J (k−1)

)

dt(k−1)J (k−1) Liu-Storey [Liu 1991]

The quadratic function Q
(
x,x(k)

)
in Eq. (2.38) allows to define a quadratic

scalar function q
(
α, α(k)(n)

)
with n = [1, . . . , N ] majorizing the scalar function

j(α) defined in Eq. (2.32) on page 36 at the step size α(k)(n) writing [Labat 2008]

q
(
α, α(k)(n)

)
= j
(
α(k)(n)

)
+
(
α−α(k)(n)

)
j′
(
α(k)(n)

)
+

1

2
a(k)(n)

(
α−α(k)(n)

)2
(2.42)

where the scalar a(k)(n) writes

a(k)(n) = dt(k)A(k)(n)d(k) (2.43)

and with A(k)(n) = A
(
x(k) + α(k)(n)d(k)

)
. The line search procedure to estimate

α(k) consists of performing N ≥ 1 successive minimization of the scalar function q,
resulting a sequence [α(k)(0), . . . , α(k)(N)] that converges towards a global minimum
of q if Q is convex. Given the relaxed MM recurrence in Eq. (2.40) the produced
step-size values writes





α(k)(0) = 0

α
(k)(n+1)
q = arg minα q

(
α, α(k)(n)

)
n ∈ {0 . . . N − 1}

α(k)(n+1) = α(k)(n) + θ
(
α
(k)(n+1)
q − α(k)(n)

) (2.44)

with θ the relaxation parameter ∈ {0, 2} [Labat 2008]

2.1.4.2 Majorize Minimize multi-dimensional line search

[Chouzenoux 2011] proposed an accelerated optimization problem using subspace
optimization methods with a dimension larger than one. The iterative optimization
algorithm thus rewrites

x(k+1) = x(k) +α(k)D(k) (2.45)
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where D(k) is the Z−dimensional subspace. Several subspace algorithms have been
provided in [Chouzenoux 2011], particularly the memory gradient algorithms and
the Newton type subspace algorithms. In addition, α(k) is a step-size vector of size
Z where α(k) =

[
α
(k)
1 , . . . , α

(k)
Z

]
.

Following the same analogy as in Eq. (2.44) the Majorize-Minimize multi-dimensional
search produces a step size vector writing

α(k)(n+1) = α(k)(n) − θ
((
U (k)(n)

)−1
∇j
(
α(k)(n)

))
. (2.46)

where U (k)(n) = Dt(k)A(k)(n)D(k) is a Z × Z symmetric positive definite (SPD)
matrix and A(k)(n) = A

(
x(k) +D(k)α(k)(n)

)
.

[Chouzenoux 2011] showed that choosing a multi-dimensional subspace over the
non-linear Conjugate Gradient leads to a faster convergence minimization algo-
rithm. However, the complexity of the problem increases since it requires a multi-
dimensional step-size strategy to determine the vector α(k). The authors finally
concluded that for a subspace dimension Z = 2 and for N = 1 iteration shows the
best trade-off between the number of iteration k before convergence and the cost
per iteration.
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2.2 Inverse problem for Hyperspectral recon-
struction

We presented in the previous section a general overview of the inverse problem ap-
proaches. In particular, we provided reconstruction methods and algorithms based
on the minimization of a regularized objective function with various types of regu-
larization terms. This section presents several works and techniques related to the
reconstruction of a 2D+λ image using the inverse problem approaches. In particu-
lar, we focus on the reconstruction of 2D+λ images with a high spatial and spectral
resolution such as the Hyperspectral (HS) images, which is the main objective of
this thesis.

We start this section with a brief introduction to the HS images and their differ-
ent acquisition techniques, then we present works related to the HS reconstruction
for different applications.

2.2.1 Hyperspectral technology

Hyperspectral imaging (HSI) is a combination of imaging and spectroscopy that
provides high-resolution spectra for every spatial location of an observed field of
view (FOV). HSI products are 3-dimensional images holding two spatial dimensions
(i, j) and a series of narrow spectral bands forming the third dimension l. HSI
was initially implemented on airborne platforms for earth observations but recently
has been applied in numerous applications, including food quality control, medical
diagnosis, archeology, astrophysics, etc. [Khan 2018].

For astrophysical observations, HS instruments are usually placed at the focal
plane of ground-based or space-based telescopes in order to acquire, if possible,
spatially resolved spectra of objects. Among these instruments, to name a few, are
the Infrared Slit Spectrograph onboard the Spitzer space telescope [Houck 2004], the
Space Telescope Imaging Spectrograph on board the Hubble telescope [Woodgate 1998],
and lately, the Mid Resolution Spectrometer of the Mid Infrared Instrument onboard
the James Webb Space Telescope [Wells 2015]. The measured spectra for these in-
struments, which are working mainly in the infrared range, allow the remote analysis
of the surface and atmospheric composition of planets, the chemical composition of
extraterrestrial material, or the evolution of galaxies.

Direct observation of a HS image is not possible because the detectors are 1-
dimensional or 2-dimensional, but not 3-dimensional. Therefore, HS acquisition
techniques allowing to acquire 2D+λ images must be used. These techniques include
point scanning, line scanning, and integral field spectroscopy.

A. Point scanning: The very first used technique is called the point scanning
(whiskbroom)[Geladi 2007], and consists of scanning one spatial location at a time.
The light of the scanned position is diffracted using a dispersion instrument (prism,
diffraction gratings) and projected onto a linear sensor. By pointing the acquisition
instrument at successive positions in the two spatial dimensions, a 3D data cube can
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be built. This technique is not suitable to build hyperspectral images which cover
large FOV because successive pointing at each spatial position takes too long.

B. Line scanning: The line scanning technique (push broom) [Geladi 2007,
Arablouei 2016] consists on scanning a complete spatial line (or slit) along one spa-
tial axis. The light is dispersed on a 2D sensor holding one spatial dimension along
the slit and one spectral dimension. Then the pointing of the acquisition instru-
ment is progressively moved along the other spatial dimension (perpendicular to the
slit) to acquire a 3D hyperspectral image. Even though data acquisition using the
line scanning technique is faster than that of the point scanning technique, it still
requires multiple exposures, which takes time. The difference between the point
scanning and the line scanning techniques is illustrated in Fig. 2.5.

Figure 2.5: Principle of the Whiskbroom and Pushbroom techniques, edited
from [Halicek 2019]

C. Integral Field Spectroscopy: Unlike the Point scanning and Line scanning
methods, the integral field spectroscopy (IFS) [Vives 2008b] does not require any
scanning process. This technique consists of observing a FOV through several slits
in parallel via optical instruments such as a fiber array or an image slicer. The light
within each slit is diffracted and projected onto 2D detectors. Each pixel on the
detector corresponds to one spatial position and one wavelength. A hyperspectral
image can be build by assembling 2D measurements along the other spatial dimen-
sion. Fig. 2.6 illustrates in detail the concept of the hyperspectral acquisition with
an Integral field spectrometer.

In this work, we consider the integral field spectrometer that takes as input a
2D+λ image with a high spatial and spectral resolution, and produces a set of 2D
spectral measurements. However, a simple assembly of these measurements along
a third dimension, as suggested above, is not directly applicable since the measure-
ments are degraded by spatial and spectral optical responses (Point Spread Func-
tions: PSF), and also corrupted by noise. Another reconstruction approach must
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Figure 2.6: Principle of an integral field spectrometer, taken from
https://jwst-docs.stsci.edu/methods-and-roadmaps/jwst-integral-field-
spectroscopy
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be considered, in particular, inverse problem approaches based on the minimization
of a regularized objective function.

2.2.2 Spatio-spectral reconstruction

A 2D+λ image (i.e. RGB, Multispectral, Hyperspectral) is a series of 2D spatial
images stacked along the spectral dimension. We represent such images as x[i, j, l] ∈
RIJL with (i, j) denoting the spatial position and l the spectral band. Several
works found in the literature tackle the reconstruction of x[i, j, l] from degraded
measurements y[i′, j′, l′] ∈ RI′J ′L′ using inverse problem approaches. The proposed
reconstruction algorithms heavily depends on the forward model H ∈ RIJL×I′J ′L′

that relates y to the unknown x.
The first 2D+λ image reconstruction treated a deconvolution problem and consid-
ered that the forward model H is a spectral invariant convolution matrix. Con-
sequently, no cross-correlation exists between the spectral bands of y, and the re-
construction can be performed separately for each monochromatic image at a fixed
spectral band l [Hunt 1984, Galatsanos 1989]. However, treating separately the spa-
tial and spectral dimensions is too limiting in most applications and cannot be used
when the spectral correlation exists (H i,j,l1×i,j,l2 6= 0). A typical example of an
existing correlation between spectral bands is when H is a wavelength-dependent
convolution matrix. [Galatsanos 1991] addressed the reconstruction of an RGB im-
age while considering the spectral correlation between spectral bands. The proposed
reconstruction algorithm is based on a spatially adaptive regularized least square
approach that handles soft and sharp variations within a local spatial image. In
addition, the algorithm includes three regularizing operators to ensure a smooth
transition between spectral bands.
Other works proposed reconstruction algorithms for high-dimensional 2D+λ im-
ages with a large number of spectral bands, such as the hyperspectral (HS) images.
For instance, [Henrot 2011] solved a deconvolution problem to reconstruct a HS
image x by jointly processing the spatial and spectral information of y. The pro-
posed reconstruction relies on minimizing an objective function J that includes a
data fidelity term and quadratic spatial and spectral regularization and a positivity
constraint, yielding to a closed-form expression of the optimizer x̂. The authors
solved the problem in the Fourier domain to allow fast computations. An exten-
sion of [Henrot 2011] was proposed in [Henrot 2013] by considering a convex half
quadratic spatial regularization for edge-preserving. The optimizer x̂ is obtained
by combining the fast algorithm presented in [Henrot 2011] with the iterative half-
quadratic algorithm using Geman and Yang (GY) formulation [Geman 1995] and
detailed in section 2.1.2.3.

Other works used inverse problems for the reconstruction of astronomical HS im-
ages. For instance, [Bongard 2011] developed a forward model H based on an inte-
gral field spectrometer instrument to acquire astronomical measurements y[i′, j′, l′].
This model considers a spectrally invariant spatial PSF. They proposed a recon-



46 Chapter 2. Inverse Problems

struction method based on Tikhonov regularization with spectrally variable hyper-
parameters to prevent over regularizing large features or under regularizing small
features.

However, all the mentioned works considered that the forward model H is a
spectrally invariant convolution matrix, meaning that there is no cross-correlation
between the spectral channels.

The work proposed in [Bongard 2011] was later extended in [Soulez 2013] where
H accounts for a wavelength dependant spatial PSF, approximated with a linear
interpolation of weighted monochromatic PSFs. The authors provided a compari-
son between Tikhonov and spatial sparsity algorithms to reconstruct HS images for
the Multi-Unit Spectroscopic Explorer (MUSE)1. However, the proposed forward
model H for the IFS instrument is unsuitable for our application since it does not
consider a wavelength dependant spectral blurring coming from the response of the
wavelength dispersing system. In addition, the resulted measurements y[i′, j′, l′]
in [Bongard 2011] and [Soulez 2013] are 3D, sampled with uniform spatial and spec-
tral sampling steps that match the sampling steps of the input image x. Hence,
the proposed reconstruction algorithms cannot be applied for the measurements
provided by MRS of JWST/MIRI.

[Rodet 2008] proposed a forward model H for the infrared slit spectrograph on
board the Spitzer Space Telescope. The model takes into account a wavelength de-
pendant spatial and spectral blurring and results a set of 2D measurements yj′ [i′, l′]
from successive slit spectroscopy scans. Moreover, the uniform spatial and spectral
sampling of the measurements are larger than that of the input image x. The pro-
posed reconstruction is based on minimizing a regularized least square function with
a spatial and spectral quadratic regularization. The input image and the response
of the measuring instrument, originally modeled with continuous variables, are de-
composed over a family of Gaussian approximations to allow fast computations.
However, the spatial and spectral distribution of the measurements are uniformly
sampled.

In our work, we proposed a discrete forward model H for the IFS instrument of
JWST/MIRI that considers a wavelength-dependent spatial and spectral blurring
and results in a set of 2D measurements denoted yj′ [i′, l′], projected onto different
2D detectors with heterogeneous spatial and spectral sampling steps. We then use
the proposed H to solve an unconstrained minimization of a regularized objective
function with spatial and spectral convex regularization for edge-preserving (detailed
in Chapter 4). Our reconstruction algorithm mainly include a spatio-spectral de-
convolution step and a super-resolution (SR) step to enhance the spatial resolution
of the reconstructed x̂ (see section 2.2.4)

1https://www.eso.org/sci/facilities/develop/instruments/muse.html



2.2. Inverse problem for Hyperspectral reconstruction 47

2.2.3 Linear mixing model

The 2D+λ image x with a high spectral resolution, such as Hyperspectral images,
can be formulated as a Linear Mixing Model (LMM) with

x[i, j, l] =

M∑

m=1

am[i, j]× sm[l] (2.47)

where the spectral distribution at all the spatial locations of x is represented as a
linear combination of M spectral components sm[l], each weighted by mixing coef-
ficients am[i, j] with m = [1, . . . ,M ] [Keshava 2002]. The reconstruction of x[i, j, l]

from degraded measurements y[i′, j′, l′] with the LMM formulation corresponds to
the estimation of the spectral components s and the mixing coefficients a, known
as spectral unmixing.

The LMM formulation is excessively treated for the reconstruction of HS images.
For instance, the reconstruction of x using the inverse problem approaches can be
computationally a burden because of the large number of spectral bands. How-
ever, the spectral distribution between the spatial pixels is often highly correlated
at all wavelengths. Consequently, the pixels of x can be assumed to live in a low
dimensional linear subspace where M � L (L the number of the spectral bands)
leading to a reduction of the unknown variables to estimate [P Nascimento 2007,
Bioucas-Dias 2012]. The dimension reduction technique can be achieved using sev-
eral source separation algorithms that explore a low-rank approximation of the HS
images. Such algorithms include the Non-Negative Matrix Factorization (NMF) [Lee 1999],
the Independent Component Analysis (ICA) [Hyvarinen 1999], the Principal Com-
ponent Analysis (PCA), [Jolliffe 2016], etc.

Several works assume that the spectral components are known a priori from
source separation algorithms [Hadj-Youcef 2020] or learned from existing spectral
libraries [Zhao 2013]. Thus, the reconstruction problem relies on the estimation of
the mixing coefficients a that can be achieved using the regularized least square
approaches writing

â = arg min
a

{
‖y −Hx‖2+µR(a)

}
. (2.48)

For instance, [Song 2019] proposed a joint unmixing-deconvolution algorithm based
on the Tikhonov least square approach with a non-negative constraint to estimate
a from shift-invariant blurred measurements. [Hadj-Youcef 2020] considered a low-
rank approximation for the input x and estimated the mixing coefficients a from low
spectral resolution measurements y, blurred with a wavelength dependant spatial
PSF. The problem in Eq. (2.48) is solved in the Fourier domain for fast compu-
tations while enforcing a convex regularization for edge-preserving. [Zhao 2013]
assumed that the spectral components s have been extracted from a spectral library
and estimated the mixing coefficients a using the Total variation and sparsity regu-
larization terms to handle the spectral dependant spatial blur. [Chouzenoux 2014]
used primal-dual interior-point optimization to solve constrained least square ap-
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proaches and estimate mixing coefficient estimations. The algorithm is suitable for
parallel GPU implementations, allowing a reduction in computational costs.

Other works are interested in the physical meaning of the spectral components
s to identify materials within the observed Field Of View (FOV). For instance, in
earth observations, the spectral components are pure spectra called endmembers,
and the mixing coefficients are called abundance. Different endmember extraction
algorithms are addressed in the literature, depending on the mixture level of the
endmembers within a pixel. Among these categories, we mention the geometrical
and statistical approaches [Bioucas-Dias 2012, Keshava 2002]. Algorithms based on
geometrical approaches benefit from the existence of a pure pixel per endmember.
When this assumption is missing, minimum volume algorithms can be used to fit
the measurements in the “minimum volume simplex”. On the other hand, algo-
rithms based on statistical approaches are employed when the spectral components
are highly mixed within a pixel [Henrot 2014a]. In addition, to preserve the physi-
cal meaning of the endmembers, several constraints are usually imposed during the
estimation of a, in particular, the non-negativity constraint (ANC) and the sum-
to-one constraint (ASC). For instance, [Henrot 2014a] considered the unsupervised
deblurring-unmixing problem and showed that for the geometrical endmembers ex-
traction algorithms, it is better to perform deconvolution step before unmixing and
not the opposite. [Berné 2007] identified the spectral signatures of small interstellar
dust particles from measurements acquired by infrared spectrograph onboard spitzer.
The authors provided a comparison between two spectral unmixing algorithms; the
non-negative matrix factorization (NMF) algorithm [Lee 1999] and fast, indepen-
dent component analysis (ICA) algorithm [Hyvarinen 1999]. [Dobigeon 2009] pro-
posed a Bayesian method and a Markov chain Monte Carlo (MCMC) algorithm to
jointly estimate s and a while considering the sum-to-one and the non-negativity
constraint.

In this thesis, we assume that the 2D+λ input image x lives in a low dimensional
subspace and can be expressed as a linear combination of M spectral components
s, assumed known, weighted by unknown mixing coefficients a. We are only inter-
ested in the subspace approximation and not in exploring the physical meaning of
s. Consequently, the reconstruction of x relies on the estimation of a, based on
the minimization of an unconstrained regularized objective function with a convex
regularization for edge-preserving.

2.2.4 Spatial Resolution Enhancement

In most applications, the spatial resolution of the measurements is limited be-
cause of the sub-sampling at the focal plane of the detector. Thus, obtaining high
spatial resolution images remains a challenge due to the limited size and num-
ber of the detectors’ pixels. Since reducing the pixel size is expensive (if not
impossible) and reduces the amount of the captured light, post-processing tech-
niques are necessary to enhance the spatial resolution of hyperspectral measurements
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y [Sung Cheol Park 2003].
In the discrete case, the pixel size of the observed 2D+λ input image x[i, j, l]

is usually smaller than that of the detectors. Therefore, we consider in this section
that the input x[i, j, l] is represented on a high-resolution (HR) grid while the output
are 3D hyperspectral measurements y[i′, j′, l′] represented on a low-resolution (LR)
one.

Interpolation methods (e.g., linear, cubic, etc.) can be used for increasing the
size of the LR y to match that of x. However, these methods do not compensate
for the loss of information since it does not improve spatial resolution.
Alternative methods must be considered, such as the multi-frame Super-Resolution
[Sung Cheol Park 2003, Akgun 2005, Zhang 2012] and the data fusion with an aux-
iliary image [Guilloteau 2020, Wei 2016] to compensate the loss of information and
enhance the spatial resolution of the reconstructed object x̂.

2.2.4.1 Multi-frame Super resolution

This technique reconstructs HR object x̂[i, j, l] from several number P of shifted
and aliased LR measurements yp[i′, j′, l′] with p = [1, . . . , P ]. Each of the LR mea-
surements provides new information lost due to the sub-sampling and contributes
to the resolution enhancement. This new information is only useful if the LR mea-
surements are shifted with subpixel steps. [Sung Cheol Park 2003] provides a de-
tailed overview of the multi-frame super-resolution (SR) algorithms that were first
applied to monochromatic images. For instance, the shift-and-add algorithm is
commonly used for SR reconstruction [Fruchter 2002, Farsiu 2003], consisting of
aligning all the observed measurements before co-adding the results to provide a
single HR reconstructed object x̂[i, j, l] with an enhanced spatial resolution. A de-
convolution step often follows this technique to remove the blurring effects. The
shift-and-add can be extended to deal with a 3D spatio-spectral reconstruction.
However, the downfall of this method is that the deconvolution step is treated sep-
arately for each spectral band and does not consider the cross-correlation between
the bands. [Buttingsrud 2006] proposed a multi-frame super-resolution algorithm
for HSI based on the maximum entropy method. Other works consider that the
spectral bands at each object’s pixel live in a low dimensional subspace. This di-
mensional reduction is beneficial because it reduces the number of unknowns and
allows fast computations, as discussed in section 2.2.3. Moreover, these works as-
sumed that the spectral components are known and proposed methods to estimate
the mixing coefficients. For instance, [Zhang 2012] addressed the multi-frame HS
image reconstruction from shift invariant spatial blurred and spatially sub-sampled
measurements y[i′, j′, l] in the principle components analysis (PCA) transform do-
main. The authors divided the principal components into three categories, where
they used the first few components to estimate the motion and to reconstruct the
input object using the maximum a posteriori (MAP) algorithm. [Akgun 2005] pro-
posed a complex forward model that depends on the known spectral components
to produce blurred, sampled and aliased measurements. The SR multi-frame recon-
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struction algorithm is based on the projection onto convex sets (POCS) [Stark 1989]
to estimate the mixing coefficients a. However, the work proposed in [Akgun 2005]
is unsuitable for our application because the forwards model does not account for
a wavelength-dependant spatial and spectral blurring. In addition the spatial sam-
pling of the measurements are uniform across the measured spectral bands.

2.2.4.2 Fusion with auxiliary Images

The multi-frame SR reconstruction often requires many observations to compen-
sate for the spatial information lost at the focal plane of the detector, leading to
high computational costs. In addition, the measuring instrument may not enable
multiple observations of the same input in real-life applications. Therefore, an-
other spatial enhancement technique can be considered as an alternative, consisting
of fusing low spatial resolution (LR) HS measurements with a high spatial resolu-
tion (HR) auxiliary images observing the same input scene, such as Panchromatic
(PAN) or Multi-spectral (MS) [Yokoya 2017]. The most widespread fusion tech-
nique is the pan-sharpening that fuses HS measurements with HR panchromatic
images (monochromatic image with high spatial resolution). This method consists
of extracting the spatial structure information from the PAN image and inject it
into an interpolated version of the LR measurements [Vivone 2014]. Pan-sharpening
provides a fast fusion technique with an accurate spatial enhancement but does not
consider the spectral correlation between the spectral bands.

Other works considered the fusion between LR HS measurements with an HR
MS measurements (HS-MS fusion), both measuring the same spectral range but with
different spectral resolutions 2. For instance [Yokoya 2012] proposed a coupled non-
negative matrix factorization (CNMF) that performs an alternate spectral unmixing
for HS and MS measurements using the NMF technique [Lee 1999]. The 2D+λ

reconstructed image is obtained by extracting the HR mixing coefficients from the
MS measurements and the HR spectral components from the HS measurements.
However, this method does not fully exploit the spatial and spectral details provided
by HS and MS, respectively.

HS-MS fusion has also been addressed in the inverse problems framework [Guilloteau 2020,
Simões 2014, Wei 2015]. The fusion process is based on minimizing an objective
function associated with two data fitting terms for HS and MS and a regularization
term describing the a priori information we have on the 2D+λ input image. Most
of the fusion procedures applied with the inverse problem assume that the input x
lives in a low-dimensional subspace. In addition, these works usually assume that
the instrument response spatially blurs the HS and MS measurements. For instance,
[Simões 2014] used a TV regularization for blind MS-HS fusion, in which the spatial
and spectral responses are estimated from the observed measurements. [Wei 2015]
promoted sparse regularization by representing the input object as a combination

2The spectral resolution of the HS measurements is higher than that of the MS mea-
surements
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of dictionary atoms learned from the observed measurements.
However, these works assumed that the spatial blur is a spectrally-invariant. [Guilloteau 2020]
considered a wavelength-dependent spatial blurring and proposed a regularized least
square algorithm with a quadratic regularization. The problem was computed in the
frequency domain to handle the high dimensionality of astrophysical measurements.

The related works presented in this section considered 3D measurements y[i′, j′, l′]
where a spectral distribution is associated with a 2D spatial position. These mea-
surements are, in most cases, spatially blurred and spatially sampled with a regular
sampling step across the spectral bands.
In this thesis, we are interested in the reconstruction of a 2D+λ input image x[i, j, l]

from a set j′ of astronomical 2D measurements y′j [i
′, l′] that are degraded with a

wavelength-dependant spatio-spectral blurring and sampled onto different detectors
with heterogeneous spatial and spectral sampling steps. Since the spatial sampling
is insufficient at all wavelengths, we consider the dithering method to compensate
the loss of spatial information. This technique consists of observing different FOV
of the same scene by slightly shifting the pointing of the measuring instrument,
yielding to a multi-frame super-resolution problem (see section 2.2.4.1).
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3.1 Introduction
In the previous chapter, we discussed several works handling the reconstruction
of hyperspectral (HS) images with inverse problem approaches. These reconstruc-
tion techniques rely on an observation matrix H or a forward model that math-
ematically describes the response of the measuring system and establishes a rela-
tionship between an HS input image x and the simulated measurements y. Our
work falls within this framework, where we seek to reconstruct an HS image from a
set of measurements with a high spectral resolution provided by an Integral Field
Spectrometer instrument, in particular, the Mid-Resolution Spectroscopy (MRS)
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of the Mid-Infrared Instrument (MIRI) on board the James Webb Space Telescope
(JWST) [Wells 2015]. The MRS instrument involves a series of complex components
with a wavelength dependent spatial and spectral blurring and spatial sub-sampling.

In this chapter, we detail the MRS instrument by addressing the related op-
tical behaviour and issues and by identifying the response of its components. We
also provide characteristics specific to this instrument such as the wavelength cov-
erage, the observed Field of Views, and the spectral resolving power. The work
provided in this chapter is crucial for developing an explicit forward model used in
the reconstruction process that accounts for the MRS limitations.

In the following, we first give a general presentation of the JWST and provide
details about its optical system. We then describe the MRS instrument which mainly
relies on several integral field spectrometers (IFS), each measuring a fraction of the
spectral range of the instrument.

3.2 James Webb Space Telescope
The JamesWebb Space Telescope (JWST) [Mather 2004, Gardner 2009](see fig. 3.1),
which is scheduled to be launched in October 2021, is the next space observatory
succeeding the Hubble Space Telescope (HST) [Lallo 2012]. It is expected to make
breakthrough discoveries in astrophysics and to resolve several important questions
concerning the formation of stars and planets, the first light of the universe, or
the birth of galaxies. The JWST project is an international collaboration between
the National Aeronautics and Space Administration (NASA), the European Space
Agency (ESA), and the Canadian Space Agency(CSA).
While the HST contains a monolithic primary mirror of 2.4m in diameter, the JWST
will include the biggest primary mirror ever launched to space, measuring 6.5m in
diameter. This mirror will allow unprecedented sensitivity, due to the large number
of collected photons, and angular resolution. Moreover, the JWST will measure a
broad spectral range, between 0.6 and 28.3µm, extending into the mid-infrared. It
will allow the observation of faint or distant objects that HST failed to observe. The
JWST includes a set of four scientific instruments mounted on the focal plane of
the telescope. These instruments will observe specific spectral ranges with varying
FOV (see fig. 3.2). They offer a unique combination of observation modes, such as
coronagraphy, imaging, and spectroscopy. These instruments are:

• NIRSpec: Near-Infrared Spectrograph (0.6− 5µm),

• NIRCam: Near-Infrared Camera (0.6− 5µm),

• NIRISS: Near-Infrared Imager and Slitless Spectrograph (0.6− 5µm),

• MIRI: Mid-Infrared Instrument (4.9− 28.3µm).

The Mid-Infrared Instrument (MIRI) offers a unique combination of imaging and
spectroscopy facilities through its imager (MIRIM) [Bouchet 2015] and its mid-
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Figure 3.1: The James Webb Space Telescope [Mather 2004]

resolution spectroscopy (MRS) [Wells 2015], respectively. Both instruments ob-
serves the same infrared range (between 4.9 and 28.3µm) but with different spec-
tral resolutions and distinct spatial fields of view. MIRIM provides Multispectral
(MS) measurements with a good spatial information in terms of detector sampling
and observed field of view,(74 × 113 arcseconds2) but with a limited spectral res-
olution (λ/∆λ ≈ 5) because of the wavelength integration over broad spectral fil-
ters. On the other hand, the MRS observes a relatively small field of view (up
to 6.9× 7.9 arcseconds2 ) and provides measurements with insufficient spatial sam-
pling but with high spectral resolution (λ/∆λ ≈ 1500 − 3500). In this work, we
are interested in processing infrared 2D measurements provided by the integral field
spectrometer (IFS) instrument (such as the MRS) to reconstruct a 2D+λ image
with high resolution.

3.3 Optical System for JWST
The JWST incorporates an all-reflective optical system. It focuses the light received
from the observed spatio-spectral object on the focal plane, where the scientific
instruments are mounted. This optical system includes the primary mirror made by
18 hexagonal segments aligned to form one mirror of 6.5m in diameter. Increasing
the aperture of the telescope allows the collection of more photons and a better
detection of faint astronomical objects. Due to the diffraction, the angular resolution
of the optical system heavily depends on the diameter of the aperture function with:

θ ≈ λ

D
(3.1)
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Figure 3.2: The JWST focal plane layout
(https://www.cosmos.esa.int/web/jwst-nirspec/home-old)

where D is the diameter of the telescope and λ the wavelength (see Fig. 3.3).
Accurate knowledge of the response of the optical system, also known as the

point spread function (PSF), is crucial in many applications for data analysis, such as
PSF-fitting to measure the flux of point-sources, or deconvolution. The PSF strongly
depends on the shape and the size of the aperture function of the primary mirror,
denotedA(x, y). Since in astrophysics very distant objects are observed, the PSF can
be calculated using the Franhaufer approximation. In that case the intensity of the
PSF is simply the square module of the Fourier transform of A(x, y) [Goodman 1996]

PSF = ‖FT {A(x, y)}‖2 (3.2)

The PSF shape depends on the complexity of the primary mirror. For instance,
the Spitzer Space telescope [Houck 2004] included a monolithic primary mirror with
a circular aperture function. Therefore, an accurate analytical form of the PSF,
known as the Airy function [Goodman 1996], could be used. On the other hand,
the mirror of the JWST is not monolithic, but composed of 18 hexagonal segments.
An analytical form of the PSF can not be accurately provided with the Franhaufer
approximation mainly because of the gaps between the segments [Elliott 2005].
In [Makidon 2007], different numerical tools to compute the JWST PSF are pre-
sented.

In this work, the monochromatic PSFs of the JWST are simulated with the
official webbPSF tool [Perrin 2012, Perrin 2014] developed by the Space Telescope
Science Institute (STScI). This simulator is not a full optical model but rather a
tool that transforms optical path difference (OPD) maps into PSFs adapted for
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Figure 3.3: Illustration of the optical path of the observed light source.

the JWST. It computes for any JWST instrument realistic PSFs with requested
properties, such as the pixel size of the detector, the PSF image size, the rotation,
the spectral filters, etc.

Using the WebbPSF simulator, we have computed monochromatic PSFs as a
function of the wavelengths. We illustrate in Fig. 3.4 six monochromatic PSFs
ranging from 4.8 to 28µm, corresponding to the spectral range observed by the
MRS instrument. All PSFs are normalized to one and shown in logarithmic scales.
We see that the complex shape of the PSFs due to the segmented and hexagonal
shape of the primary mirror. Moreover, the PSF widens with increasing wavelengths:
it is spectrally non-stationary.

3.4 MIRI Medium Resolution Spectroscopy

The Mid-Resolution Spectrometer (MRS) of the Mid-Infrared Instrument(MIRI) is
an Integral Field Spectrometer (IFS) that observes a specific infrared range of the
light collected by the optical system within a finite Field Of View (FOV). All details
of the MRS instrument are provided in [Wells 2015]. Here, we are interested in the
optical issues related to the instrument rather than its mechanical layout.
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λ = 5µm λ = 9µm λ = 13µm

λ = 17µm λ = 21µm λ = 26µm

Figure 3.4: Monochromatic PSFs of the JWST at six different wavelengths
computed with the WebbPSF simulator (logarithmic scales).

3.4.1 Spectral coverage

The MRS covers a wide spectral range, between 4.9µm and 28.3µm with a spec-
tral resolving power 1 ranging between 1500 and 3000. Four spectral channels are
required to cover the complete spectral range, each including an Integral Field Unit
(IFU) and a diffraction grating for the light dispersion. These channels are ob-
served simultaneously, with co-aligned FOV of different sizes, from 3.2 × 3.7 up to
6.9 × 7.9 arcsec2 as reported in Table 3.1 and shown in Figure. 3.5. 2 The spec-
tral bands of the channels were chosen such that λlong/λshort = (28.3/5)1/4 = 1.54,
where λshort and λlong are the shortest and longest wavelengths of operation for each
channel respectively.

The MRS uses two detectors, the first one for the two short-wavelength channels
(Channels 1-2 ) and the second one for the two long-wavelength channels (Channels
3-4 ). Each detector provides a spectral coverage slightly larger than one-third the
full spectral range of each channel. Therefore, three successive exposures within
three spectral sub-bands are required to provide full spectral coverage. Note that
there is a spectral overlap of typically 10−15% between adjacent sub-bands (see also

1The spectral resolving power R is equal to λ / ∆λ, where λ is a monochromatic wave-
length and ∆λ the Full Width at Half Maximum of the spectral resolution

2The observed FOVs are rotated among them. However in the following chapters, the
rotations will not be taken into account because it introduces non-linearity to the system.
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Figure 3.5: Figure showing the co-aligned spatial FOV of the four MRS
spectral channels. Edited from: https://jwst-docs.stsci.edu/mid-infrared-
instrument/miri-instrumentation/miri-mrs-field-and-coordinates
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Fig. 3.6). Table 3.1 gives the spectral range for each spectral channel and sub-band,
the different sizes of the observed FOV for each channel, measured in arcsec, and
the spectral resolving power for each sub-band.

Figure 3.6: wavelength bands response for the MRS instrument.
(image credit : https://jwst-docs.stsci.edu/mid-infrared-instrument/miri-
observing-modes/miri-medium-resolution-spectroscopy

3.4.2 Integral field units
Each spectral channel incorporates an Integral Field Spectrometer (IFS) to effi-
ciently produce spatial maps of spectroscopic measurements. The four IFS for the
MRS instrument comprise an integral field unit (IFU) and a diffraction grating.
The IFUs observe a rectangular FOV through several slits in parallel, shown in
Figure 3.7, where each slit is reformatted and rearranged at the input of the spec-
trometer. The number and size of the slits are determined by the design of the
IFU for each channel. The width of the slits defines the spectrometer entrance slit.
Moreover, the detector pixel size changes across channels (all number are given in
Tab. 3.2). We can note that, for channels 1-3, the slit width is less than two pixels,
which means that these three channels are undersampled spectrally.

3.4.3 Spectrometer
The optics of spectrometers generally contains at least two lenses (or mirrors): (1) a
collimating lens (or mirror) to obtain a parallel light beam, and (2) a focusing lens
(or mirror) that projects the image of the input slit dispersed by the grating onto
the detector. Between these two lenses (or mirrors), a diffraction grating is placed.
The light entering the grating is dispersed at wavelength-dependent angles and then
arrives on the detector at wavelength-dependent spatial positions (see Fig. 3.8).

Ideally, the image on the detector plane for a monochromatic (at a wavelength
λ) and punctual source looks like a Dirac. But this is not the case because of the
diffraction. For a monochromatic point source at wavelength λ, the response of an
ideal grating (or the spectral PSF), denoted hr, depends on the angle of incidence
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Channel name FOV Sub-band name Resolving Power
Spectral range (arcsec) Spectral range (λ/∆λ)

(µm) (µm)

Channel 1
3.2× 3.7

Short (A)
3, 320− 3, 710

4.88− 7.52

4.88− 5.75

3, 190− 3, 750
Medium (B)

3, 100− 3, 610

5.63− 6.63

Long (C)
6.41− 7.52

Channel 2
4× 4.8

Short (A)
2, 990− 3, 110

7.48− 11.75

7.48− 8.76

2, 750− 3, 170
Medium (B)

2, 860− 3, 330

8.71− 10.23

Long (C)
10.02− 11.75

Channel 3
5.5× 6.2

Short (A)
2, 530− 2, 880

11.52− 18.08

11.52− 13.49

1, 790− 2, 640
Medium (B)

1, 980− 2, 790

13.36− 15.65

Long (C)
15.43− 18.08

Channel 4
6.9× 7.9

Short (A)
1, 460− 1, 930

17.65− 28.34

17.65− 20.94

1, 680− 1, 770
Medium (B)

1, 630− 1, 330

20.41− 24.22

Long (C)
23.88− 28.34

Table 3.1: Properties of the different spectral channels and sub-bands of the
MRS instrument.
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Figure 3.7: Figure showing the IFU for channels 1 and 3 (left image) and
channels 2 and 4 (right image). Edited from: https://jwst-docs.stsci.edu/mid-
infrared-instrument/miri-instrumentation/miri-mrs-field-and-coordinates

Channel name FOV Slit number Slit width Pixel size
Spectral range (arcsec) (arcsec) (arcsec)

(µm)

Channel 1
3.2× 3.7 21 0.176 0.196

4.88− 7.52

Channel 2
4× 4.8 17 0.277 0.196

7.48− 11.75

Channel 3
5.5× 6.2 16 0.387 0.245

11.52− 18.08

Channel 4
6.9× 7.9 12 0.645 0.273

17.65− 28.34

Table 3.2: Slit number, slit size and pixel size of the different spectral channels
of the MRS instrument.
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θβ and the output angle θ (that depends linearly on λ) shown in Fig. 3.8. It can be
expressed as [Pérez 2004]):

hr(θ, θβ, λ) = B sinc2
(
πL

(
sin(θ)− sin(θβ)

λ
− m

a

))
. (3.3)

We consider here a calibrated instrument where the angle of incidence θβ can be
related to β, the spatial position of the source in the input slit. Given the small size
of the slit width, the variations of β are relatively small. Consequently, using the
small angle hypothesis, sin(θβ) in Eq. (3.3) can be approximated to β, and sin(θ)

to the position of the output on the detector, denoted λ′. Moreover, L refers to
the width of the grating instrument, and a to the grid step (the distance between
two successive grooves). The response of the gratings is centered on m/a, where m
denotes the order of the diffraction. For the MRS instrument, the spectral channels
enable the use of diffraction gratings in first order (m = 1).

We show in Fig. 3.9(a) spectral PSFs for three monochromatic point sources at
wavelengths λ = 10, 15 and 25µm located at the same spatial position β inside the
slit. First, we see that the PSFs peak at the input wavelenght λ. Moreover, the
PSFs becomes broader with the increasing wavelengths. Hence, the output of the
spectrometer is spectrally non-stationary.

In Fig. 3.9(b), we illustrate the influence of the spatial position β inside the slit
(in arcseconds) on the spatial position λ′ of the PSF onto the detector array. We
see that identical punctual sources, placed at different spatial positions β inside the
slit, are spectrally separated on the detector plane.

3.4.4 Detector

The detector is a device that converts for each pixel the incident photons into elec-
trons. The MRS instrument contains two 1024 × 1024 detectors for the spectral
channels (1-2) and (3-4), respectively. The diffracted light within each slit is pro-
jected onto 2D detectors, spanning a spatial dimension along one axis and a spectral
dimension along the other (Fig. 3.10 (Middle)). The resulting spectral image on the
detectors is not straightforward to analyze. The flux measured in each pixel is
associated with one spectral wavelength and one spatial location. Therefore, a re-
construction process is imposed, allowing to reconstruct 3D cubes from a set of 2D
measurements (Fig. 3.10 (Right)).
Before applying the 3D reconstruction procedure, a calibration step is required to
convert the measurements from instrumental to spatial and spectral physical units.
It is also necessary to correct the instrumental artefacts and distortions [Wells 2015,
Labiano 2016]. For instance, the MRS calibration includes, to name a few, a flat-field
correction to cancel the artefacts caused by sensitivity variations between pixels, a
stray-light correction to remove unwanted light originated from the MRS compo-
nents due to their own heat, and a fringe correction caused by interference effects
in the detector. A calibration pipeline is being developed and tested by the Space
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Figure 3.8: Illustration of the optical scheme for a spectrometer. It includes
a collimating lens (or mirror), a diffraction gratings and a focusing lens (or
mirror). A light source, placed inside the input slit at spatial position β, is
spectrally diffracted then projected onto the detector array at a wavelength-
dependent position.
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Figure 3.9: Cuts across monochromatic punctual sources, diffracted and pro-
jected onto a detector array, (a) for three monochromatic point sources at
λ = 10, 15, and 20µm entering the input slit with the same spatial position
β, and (b) for two identical punctual monochromatic sources at λ = 15µm,
but placed at different β (in arcseconds).

Telescope Science Institute (STScI) 3 to calibrate the measurements acquired by the

3https://jwst-pipeline.readthedocs.io/en/latest/jwst/introduction.html
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Figure 3.10: (Left): FOV observed through several slits coming from different
channels. (Middle): Measurements from each spatio-spectral selection
projected onto 2D detectors. (Right) Post-processed 3D data-cube from 2D
measurements.
https://jwst-docs.stsci.edu/mid-infrared-instrument/miri-observing-
modes/miri-medium-resolution-spectroscopy)

JWST instruments, including the MRS [Labiano 2016, Bushouse 2015].

3.4.5 Dithering

Ideal sampling of the image by the detector should provide at least 2 pixels across
the full width at half maximum (FWHM) of the PSF, which is not the case for the
MRS instrument. Fig. 3.11 shows the Full Width at Half Maximum (FWHM) of
a point source as a function of the wavelength (solid black line). The dashed line
denotes the ideal sampling, which is half of the FWHM. In addition, the colored
solid and dashed lines for each channel denote the actual sampling of the MRS along
and across the slits, respectively. This figure shows that the spatial sampling of the
image by the detectors is insufficient at all wavelength values, particularly at the
shortest wavelengths within each channel. Therefore, the dithering method is wildly
exploited for astrophysical observations to compensate for the loss of information
and improve the spatial sampling [Hook 2000]. This method slightly shifts the
telescope pointings between exposures following a specific pattern. We have seen
that the MRS instrument holds four spectral channels, each with different slit width
and pixel size. Since all the four channels are observed simultaneously, the dithering
pattern which is selected4 is necessarily the same for all channels.

3.5 Conclusion
The MRS instrument onboard the JWST observes a 2D+λ sky image denoted x
measuring the infrared range and produces a set of measurements y projected onto

4https://jwst-docs.stsci.edu/mid-infrared-instrument/miri-operations/miri-
dithering/miri-mrs-dithering



66 Chapter 3. Mid-Infrared Resolution characteristics

Figure 3.11: MRS spatial resolution as a function of wavelength,
taken from https://jwst-docs.stsci.edu/mid-infrared-instrument/miri-
operations/miri-dithering/miri-mrs-dithering.

2D detectors. These measurements, however, are spatially and spectrally modi-
fied and degraded by the complex components of the instruments presented in this
chapter. We particularly account for the following optical issues:

1. The optical system of the telescope projects the collected infrared light on the
focal plane of the telescope where the MRS instrument is mounted. However,
the optical system is limited by the diffraction [Goodman 1996], as shown in
Section 3.3, and introduces a wavelength dependent spatial blurring to the
focused sky images. The response of the optical system, or spatial PSF, can
be numerically provided with the WebbPSF simulator [Perrin 2014].

2. The MRS observes different parts of the diffracted object. In particular, the
spectral range is observed by different spectral channels, and the spatial field
of view related to each channel is observed through several slits in parallel
(IFU) as shown in Section 3.4. The characteristics of the channels and IFU
are known [Wells 2015] and reported in Tables 3.1 and 3.2.

3. The wavelength dispersing instrument, which is made of diffraction gratings
for the MRS case, is not perfect and introduces a spectral blurring to the
diffracted light inside each slit that depends on the wavelength as shown
in Figure 3.9. The response of the grating, or the spectral PSF, can be
mathematically modeled and provided in Eq. (3.3).

4. The output of the spectrometer is finally sampled onto 2D detectors with dif-
ferent pixel sizes depending on the channels as reported in Table 3.2. More-
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over, the sampling of the image by the detector is insufficient at all wave-
lengths, as shown in Fig. 3.11. To enhance the spatial resolution lost at the
detector, the JWST enables a dithering mode with a pattern shared between
all the channels, leading to multi-frame observations.

The spatially and spectrally blurred, truncated and spatially sub-sampled measure-
ments y are not straightforward to analyze, therefore, we rely on the inverse prob-
lems approaches to reconstruct the unknown input x. In the following chapters, we
develop a forward model for the IFS, particularly adapted to the MRS, that links
the input x to the measurements y while accounting for the identified instruments
limitations and modifications. This forward model is used during the reconstruc-
tion process, which mainly includes (1) a data-fusion step that merges the different
2D measurements into a composite 2D+λcube, a (2) deblurring step to invert the
effect of the spatial and spectral blurring, and (3) a multi-frame Super-Resolution
step [Sung Cheol Park 2003] to enhance the spatial resolution of the reconstructed
x.
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4.1 Introduction

A hyperspectral (HS) image is a 2D+λ image, with two spatial dimensions (i, j)

and one spectral dimension l. However, and as discussed in chapter 2, direct obser-
vation of 3D images is not possible because the detectors are 2D. Several techniques
are adopted to acquire 3D images, particularly using Integral Field Spectrometers
(IFS) [Vives 2008b]. They observe a spatial field of view (FOV) through several
slits in parallel via optical instruments, such as a fiber array or an image slicer.
The light within each slit is diffracted and projected onto 2D detectors (one spatial
dimension and one spectral dimension). However, the analysis of the measurements
is not straightforward and requires a stage of reconstruction.

This chapter addresses the reconstruction of a discrete 2D+λ image with a
high spatial and spectral resolution from a set of 2D measurements with high spec-
tral resolution. Several challenges arise during the reconstruction process since
the spatial and spectral responses of the acquisition system significantly degrade
the measurements. First, because of the diffraction phenomenon [Goodman 1996],
the optics introduce a spatial blurring that depends on the wavelength. Con-
cretely, the input is more blurred at higher wavelengths. Second, the light disper-
sion, done with prisms or gratings, introduces a spectral blurring also wavelength-
dependent [Pérez 2004]. Finally, the signal at the output of the dispersion system
is sampled onto different detectors with varying spatial sampling steps. However,
this sampling can be insufficient at all wavelengths, leading to a loss of spatial in-
formation. A “dithering” method [Fruchter 2002, Hook 2000] is then adopted to
compensate the loss of information, consisting of observing different FOV of the
same object by slightly shifting the pointing of the measuring instrument. The
multi-frame measurements resulted from multiple pointing lead to a super-resolution
(SR) problem [Sung Cheol Park 2003].

Several SR reconstruction algorithms have been proposed to restore the original
2D+λ image. The state-of-art algorithm for SR reconstruction is based on the
shift and addition (S&A) method [Farsiu 2003, Hook 2000]. It combines all the 2D
measurements from the different pointings (after correcting the detector effects) to
enhance the spatial resolution of the reconstructed object. This method provides
fast algorithms but does not account for spatial and spectral blurring. For short-
wavelength observations, applying the S&A algorithm can be sufficient since the
blurring is not important. However, we are considering instruments with broad
spectral range in the long wavelengths, and the blurring effects are significant (and
also the under-sampling). Thus, the S&A method can be followed by a deblurring
step, for instance total variation (TV) [Chambolle 2011]. However, for hyperspectral
images this additional step is not optimal since it is applied separately for each
spectral band, without considering any correlation between bands.

Our proposed approach relies on an explicit forward model which describes the
IFS instrument. It provides a mathematical relationship between the unknown
2D+λ input image and a set of blurred, truncated, and sampled 2D multi-frame
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measurements with heterogeneous sampling steps. The reconstruction algorithm
is based on the regularized least square method [Demoment 1989]. It consists of
optimizing a criterion composed of a data fidelity term that models the instru-
ment effects using the developed forward model and a convex regularization term
that preserves the edges by preventing excessive penalization of high spatial gradi-
ents [Idier 2001a]. Our forward model is primarily developed for the Mid Resolution
Spectrometer of the Mid Infrared Instrument on board the James Webb space tele-
scope (JWST) [Wells 2015], detailed in chapter 3.

This chapter is organized as follows. First, we present a new explicit forward
model for the IFS instrument that produces a set of blurred, truncated, and aliased
2D multi-frame measurements given a 2D+λ image. Second, from the developed for-
ward model and the 2D measurements, we formulate two reconstruction algorithms
(the state-of-art and the proposed) to estimate the unknown 2D+λ input. Further-
more, we test the forward and reconstruction algorithms on two sets of synthetic
inputs with various spatial and spectral distributions. To highlight the importance
of the convex edge-preserving regularization choice, we also compare the reconstruc-
tion algorithm to the classic l2 regularization algorithm [Tikhonov 1995]. Finally,
we examine the influence of the noise level on the performance of the reconstruction
algorithms.

4.2 Forward model
The forward model takes as input a discrete 2D+λ hyperspectral image denoted by
a vector x[i, j, l] ∈ RI×J×L, where (i, j) ∈ [1, . . . , I] × [1, . . . , J ] are the spatial di-
mensions and l ∈ [1, . . . , L] the spectral dimension. The input is uniformly sampled
with (Ti, Tj) the spatial steps, and Tl the spectral step.

4.2.1 Spatial filtering
The optical system collects the light of the 2D+λ input and focuses sky images
on the focal plane where the IFS instrument is mounted. However, because of the
diffraction phenomenon [Goodman 1996], the focused images are spatially blurred.
The response of the optical system, also known as the spatial point spread function
(PSF), is spectrally non-invariant since it varies linearly with the wavelength. On
the other hand, the PSF at all wavelengths is assumed to be spatially stationary.
Therefore, the spatial filtering writes as a 2D spatial convolution that depends on the
wavelength between the original 2D+λ image and a discrete PSF h, also sampled
with a step size (Ti, Tj). Thus, the focused sky image writes

xopt[i, j, l] =
∑

i′,j′
x[i′, j′, l]h[i− i′, j − j′, l]. (4.1)

We illustrate in Fig. 4.1 the effect of this spatial filtering for three synthetic monochro-
matic images as original input at wavelengths 5µm, 15µm and 25µm, respectively.
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The monochromatic PSFs in the figure are specific to the JWST and simulated with
the official WebbPSF tool [Perrin 2014]. However, other forms of PSFs can be con-
sidered. The spatial convolution between the input objects and its corresponding
PSF results in blurred images, with more blur as the wavelength increases.

For fast computation, the spatial convolution is calculated using the discrete
Fourier transform (DFT) [Hunt 1971]. However, the forward model include spatially
truncated observations (see section 4.2.2), since the field of view (FOV) observed
by the IFS instrument is smaller than that of the original input, as illustrated in
Fig. 4.2 (left). Therefore, working in the Fourier space does not introduce any
periodic pattern that may affect the results.

 

5 μm 15 μm       25 μm  

  * 

  = 

Figure 4.1: Illustration of the spatial filtering: (Top) Three monochromatic
synthetic images at wavelength 5, 15 and 25µm. (Middle) Three monochro-
matic PSFs simulated with the WebbPSF simulator at the same wavelengths.
(Bottom) Filtered images.

4.2.2 Spatio-spectral Field of View
Different regions of the focused sky object xopt are observed with (1) various spatial
and spectral fields of views (FOV) and (2) various pointing of the same instrument.
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First, xopt is spectrally divided into distinct channels c ∈ [1, . . . , C]. Each
channel possesses its physical properties, spectral range, spatial FOV, and sampling
step size. In other words, each channel is perceived as an independent instrument
with specific characteristics. In Fig. 4.2(middle), we illustrate the spectral separation
of xopt into four distinct channels with four different FOV. Moreover, the integral
field unit (IFU) observes the rectangular FOV through several independent slits in
parallel, as illustrated in Fig. 4.2(right). The size and number of slits depend on
the selected channel. The spectral selection into distinct channels and the spatial
selection into slits with distinct widths and lengths are modeled by multiplying xopt
by channel windows:

{
wc[i, j, l] 6= 0 ∀(i, j, l) ∈ (Ic,Jc,Lc)
wc[i, j, l] = 0 otherwise,

(4.2)

where (Ic,Jc,Lc) are convex subsets of [1, . . . , I]× [1, . . . , J ]× [1, . . . , L]. We have
considered the simple case, where the spatial window size (∆i,c,∆j,c), specific for
each channel, is assumed to be a multiple of the sampling step size of the observed
object : (∆i,c,∆j,c) = (ncTi,mcTj), with (nc,mc) ∈ N2.

Second, the forward model allows the dithering mode, which is observing differ-
ent spatial FOV of the same object by slightly shifting the pointing of the measuring
instrument. The spatial shifts, indexed by p, are shared between all channels. The
pointing positions (∆i,p,∆j,p) are considered as multiples of the step sizes of the
original object: (∆i,p,∆j,p) = (ipTi, jpTj), with (ip, jp) ∈ N2.

Finally, the spatio-spectral FOV selection for a particular pointing writes as a
windowing:

xc,p[i, j, l] = xopt[i, j, l]×wc[i− ip, j − jp, l], (4.3)

where c and p denotes the selected channel and spatial shift, respectively.

4.2.3 Spectral blurring

For each spatio-spectral cube xc,p the light is redirected towards the entrance of the
dispersion instrument (here a grating), which disperses it into a series of monochro-
matic light projected onto a 2D detector.

Assuming that the instrument is calibrated, the diffraction gratings assimilate
to each wavelength input λ = lTl a spatial position λ′ = l′Tl′ on the detector (in
wavelength unit) with Tl′ the step size. However, in a more accurate model, the
diffraction gratings are not perfect and introduce spectral blurring. We need to
model the response of the diffraction system, also known as the spectral PSF.

For a monochromatic punctual source entering the grating at the wavelength lTl
from the particular channel c and the pointing p, the spectral response writes [Pérez 2004]:

hc,j,p(l
′, l) ∝ sinc2

(
πW

(
l′Tl′ − b× qj,p

lTl
− 1

))
. (4.4)
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1 2 3 4

j

i

l

IFU
Spatio-spectral

selection

Figure 4.2: Spatio-spectral selection: (Left) Focused object on the focal plane.
The red rectangular frame represents the largest FOV observed by the in-
strument. (Middle) Spatio-spectral selection of the object into four distinct
spectral channels with distinct FOV. (Right) Spatial FOV of the fourth chan-
nel: it observes through four slits in parallel (the other channels have different
number of slits with different sizes).

where qj,p ∈ [−∆j,c/2,∆j,c/2] is the relative spatial position of the input source,
determined by the position j and pointing p within each spatial window (c, p). This
response is independent from the other spatial position, indexed by i.

Several particularities of the spectral PSF are inferred from Eq. (4.4) that we
take into account in this work (they are also illustrated in Fig. 4.3) :

1. The spatial position of λ′ = l′T ′l′ at the detector depends on the input wave-
length λ = lTl.

2. The PSF is spectrally not stationary, since it becomes broader with the in-
crease of λ.

3. The relative spatial position of the input source qj,p influences the spatial
position of the projected light by introducing shifts to its maximum. The
parameter b is a scale factor that converts the spatial position into wavelength.

Moreover, the spectral PSF also depends on W , a parameter related to the
length of the grating. It controls the width of the spectral PSF. Thus, it is linked
to the usually known spectral resolution R = λ/∆λ where ∆λ refers to the full
width at half maximum (FWHM) of the spectral PSF for a wavelength λ = lTl for
a particular channel c1. ∆λ is obtained using the known form of the FWHM of the
spectral PSF in Eq. (4.4) with

∆λ ≈ 2 ∗ 1.4λ/πW (4.5)

which gives
W = 2.8R/π. (4.6)

1For the MRS case, the spectral resolution for every spectral channel is given in chapter 3.
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Figure 4.3: (Left) Spectral dependence of the grating response,(Right) influ-
ence of the spatial position j of the input source, qj,p for a particular pointing
p, on the position of the diffracted light.

Finally, the grating is a non stationary linear system that projects the dispersed
light of a particular spatio-spectral selection xc,p[i, j, l] on the detector with

gc,p[i, j, l
′] =

∑

l∈Lc
xc,p[i, j, l] hc,j,p[l

′, l] (4.7)

where l′ ∈ L′c refers to the wavelength sampled on detector. hc,j [l′, l], is the discrete
form of the spectral PSF introduced in Eq. (4.4). Note that our model is not limited
to this specific spectral response and can easily be replaced by another. Moreover,
since the grating is a non stationary system, Eq. (4.7) is not a spectral convolution.

4.2.4 Spatial Sampling
The 3D cubes gc,p[i, j, l′], spatially and spectrally blurred by the responses of the
acquisition system, are not directly observed since the detectors are 2D. They are
spatially sampled along both the j-axis and the i-axis, with sampling steps depending
on the channel.

First, the nature of the spectral response in Eq. (4.7) imposes that all wave-
lengths at all spatial positions inside Jc,p contribute to the output of the gratings.
Since the system is linear, these contributions are summed on the detector. There-
fore, the sampling of gc,p[i, j, l′] along the j-axis is imposed by the j-width of the
window wc, variable across channels.

On the other hand, the sampling of gc,p[i, j, l′] along the i-axis is imposed by
the detector step size, most often larger than Ti (sampling step of the input along
the i-axis), and which depends on the channel. Here, since we are working in the
discrete case, we suppose that the step size of the detector for each channel c is a
multiple of Ti, that is Ti′ = dcTi, with dc ∈ N.

The projection of the 3D spatio-spectral selections onto 2D detectors is illus-
trated in Fig. 4.4. The light at wavelength indexed by l ∈ Lc within each selection c
is dispersed and sampled on the detector, at wavelength indexed by l′. In addition,
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the spatial position along the j-axis with j ∈ Jc are summed at the detector along
the dispersion axis (indexed by l′) writing

g′c,p[i, l
′] =

∑

j∈Jc,p
gc,p[i, j, l

′] (4.8)

Because of this summation, the projected output of a 3D selection becomes 2D (spa-
tial dimension along the i-axis and a spectral dimension along the l′ axis, influenced
by l ∈ Lc and j ∈ Jc). Finally, the spatial positions along the i-axis are sampled
along the other axis of the detector and indexed by i′.

Since the step size of the detector and the j-width of the window wc are larger
than the step size of the input, the projected measurements are under-sampled and
aliased. This loss of spatial resolution motivates the use of different pointing (ip, jp)
of the instrument. Finally, the 2D measurements yc,p for a particular channel c and
pointing p writes

yc,p[i
′, l′] =

(i′+1)dc∑

i=i′dc

g′c,p[i, l
′], with i ∈ Ic,p (4.9)

where i′ and l′ denotes the spatial and spectral index respectively on the 2D detector.
In practice, the summation over i is computed by convolution with a square impulse
response of size dc followed by sub-sampling every dc elements.
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Figure 4.4: Diffracted and projected measurements onto 2D detectors
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4.2.5 Complete model
To conclude, we developed a linear but non-stationary forward model that repro-
duces multi-frame 2D measurements yc,p by accounting for the response of the mea-
suring instrument. We will see in the next section that it is adapted to the inversion
algorithm and allows the extraction of an observation matrix H and its transpose
Ht. The full model then writes:

yc,p[i
′, l′] =

∑

i,j

∑

l∈Lc

(
x[i, j, l] ∗

i,j
h[i, j, l]

)
wc[i − ip, j − jp, l] × hc,j,p[l′, l]. (4.10)

Our model can be summarized as

yc,p = Hc,px = Σi,j,lRc,j,pWc,pCx. (4.11)

Here C computes the spatial convolution at each wavelength, Wc,p denotes the
windowing, Rc,j,p is a multiplication operator for the spectral blurring and Σi,j,l is a
summation on i, j and l to model the spatial and spectral integration on the detector.
Then, the concatenated measurements give y = Hx with yt = [yt0,0, . . . ,y

t
C,P ] and

Ht = [Ht
0,0, . . . ,H

t
C,P ] the full data model. The adjoint (transpose) operator then

writes
ec,p = Ht

c,pyc,p = CtW t
c,pR

tΣt
i,j,lyc,p (4.12)

with Σt
i,j,l a duplication operator, R a multiplication with a flipped response, W t

c,p

a zero filling operator and Ct a convolution with flipped response. This model is
relatively complex and accounts for several effects:

• 2D spatial convolutions that depend on the wavelengths described in Eq. (4.1).

• Spatio-spectral windowing that takes into account different spatial pointing
and different spatio-spectral FOV described in Eq. (4.3).

• Non-stationary spectral blurring with varying grating parameters described
in Eq. (4.7).

• the spatial and spectral sampling, with steps specific for each detector and
different from the input sky’s sampling steps, described in Eq. (4.10).

• Multi-frame observations, with subpixel shifts leading to a Super-Resolution
problem.

4.3 Reconstruction
We present in this section two SR algorithms to reconstruct the unknown 2D+λ

input image x from a set of blurred, truncated, and aliased 2D multi-frame measure-
ments yc,p. The first is the state-of-art algorithm, which is a fast multi-frame SR re-
construction algorithm based on the shift and addition (S&A) method [Farsiu 2003,
Hook 2000]. The second is the proposed algorithm, based on the regularized least
square approaches with a convex edge-preserving regularization [Allain 2006].
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4.3.1 State-of-art algorithm
Since the unknown input x[i, j, l] is 3D and the acquired measurements yc,p[i′, l′]
are 2D, a post-processing technique is required. First, for a fixed pointing p, this
technique combines the spatio-spectral information of the measurements acquired
from the different selections c, to produce a composite 3D data cube. It is illustrated
in Fig. 4.5. The left image shows the spatial FOV observed through the IFU for each
spectral channel 2. The center figure shows the 2D raw measurements acquired from
the different channels and projected onto different detectors. Finally, the right image
shows the reconstructed 3D data cube, where a spatio-spectral FOV is associated
with each channel.

Figure 4.5: (Left): FOV observed through several slits coming from dif-
ferent channels. (Middle): Measurements from each spatio-spectral selec-
tion projected onto 2D detectors. (Right) Post-processed 3D data-cube
from 2D measurements. Taken from https://jwst-docs.stsci.edu/mid-infrared-
instrument/miri-observing-modes/miri-medium-resolution-spectroscopy.

The different pointings p of the instrument allow multi-frame observations of the
same scene, with subpixel shifts. By combining all these observations, the spatial
resolution lost because of the detector integration can be compensated. This combi-
nation is achieved using the shift and add method (S&A) [Farsiu 2003, Hook 2000],
which is shifting yc,p[i′, j′] for every observation to align them and then co-add the
results. Mathematically, this method yields to the minimization of a least-square
criterion [Demoment 1989] with

x̂SAc,p = arg min
x
‖y − Sx‖2 (4.13)

= (StS)−1
∑

i

Stc,pyc,p. (4.14)

S is a sub-sampling matrix, equivalent to the model developed in Section 4.2, but
where the spatial and spectral PSF are a Dirac, and the spectral upsampling is
not considered. In that case, Stc,p is the spatial upsampling matrix for a particular

2The different channels are in different colors. In this work, we do not take into account
the rotation of the spatial FOVs between channels
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channel c and pointing p, and (StS)−1 is a diagonal normalization matrix that
counts the number of time a pixel is measured. This method provides a fast and
non-iterative algorithm. However, non-stationary spatial and spectral blurring are
not taken into account. Moreover, the shift-and-add algorithm is applied separately
for each channel since they have different characteristics.

4.3.2 Proposed algorithm
We propose a new SR algorithm to reconstruct the 2D+λ input image. Our ap-
proach relies on the full-forward model, developed in Eq. (4.10), that considers
non-stationary spatial and spectral blurring, different observations from multiple
sources, and different spatial sampling. The reconstruction with the Least-Square
approach presented in the previous sub-section suffers from ill-conditioning, mainly
because of the blurring effects [Idier 2001b]. Therefore, we base our approach on the
regularized least square method, that relies on the optimization of a cost function
composed of a data fitting term and a regularization term R(x) with

x̂ = arg min
x

‖y −Hx‖2+R(x). (4.15)

As discussed in Chapter 2, different regularization have been proposed in the litera-
ture. The l2 regularization [Tikhonov 1995] enforces smoothness to the solution and
provides fast reconstruction algorithms but fails to preserve high gradient values,
and also introduces ringing artifacts to the solution. To overcome these limita-
tions, non-quadratic regularizations are used such as Total variation (TV) regu-
larization [Rudin 1992] or dictionary based approaches with sparsity [Zhao 2011].
However, these methods introduce cartoon-like effects to the solution. On the
other hand, half-quadratic approaches (i.e. l2/l1-norm, [Idier 2001a, Geman 1992,
Geman 1995]) promotes smoothness to the solution while preserving high gradi-
ent values (i.e. contours and edges). This is why we have decided to use such
approaches.

The optimised cost function, denoted x̂hq, is expressed as

x̂hq = arg min
x
‖y −Hx‖2+µspat

∑

u∈U
φ(vtux) + µspec

∑

w∈W
φ(vtwx). (4.16)

vu is the first order difference operator between two pixels in row and columns along
the spatial dimension, and vw the first order difference operator along the spectral di-
mension. µspat and µspec denote the regularization parameters used as a trade off for
spatial smoothness between pixels and spectral smoothness between wavelengths, re-
spectively. Finally φ denotes a convex potential function. Several options of convex
potential functions for half-quadratic regularization are found [Charbonnier 1997].
We choose in this work the Huber function with:

φ(δ, T ) =

{
δ2, if |δ|≤ T .
2T |δ|−T 2 otherwise, T ∈ R+.

(4.17)
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Nevertheless, other convex potential function for edge-preserving can be easily con-
sidered such as Hyperbolic function. The Huber potential is convex and continu-
ously differentiable. It takes a quadratic behavior below the threshold T to pro-
mote denoising and smoothness, and a linear behavior above the threshold for edge-
preserving purposes.

Two different formulations of the half quadratic regularization are proposed by
Geman and Reynolds (GR) [Geman 1992], and Geman and Yang (GY) [Geman 1995]
respectively to solve (4.16). Both formulations provide iterative optimization algo-
rithms that benefit from global convergence. The GY formulation provides over-
all more efficient algorithms when the Hessian matrix (related to the observation
matrix H) can be inverted at a low cost [Allain 2006]. In our case, the fast inver-
sion is not applicable because the forward model is already computationally burden.
Therefore, we adopt the half-quadratic formulation proposed by (GR) [Geman 1992]
which provides more robust algorithms. It consists of introducing to the cost func-
tion multiplicative spatial and spectral auxiliary variables bspat = (bu)u∈U and
bspec = (bw)w∈W . Consequently, the half-quadratic function φ is expressed as the
minimum of a quadratic function and a dual auxiliary function ψ(b), related to φ
(with respect to the auxiliary variable b) writing

φ(b) = inf
b∈{0,b∞}

{
1

2
bδ2 + ψ(b)

}
, ∀δ ∈ R. (4.18)

The spatial and spectral auxiliary variables bspat and bspec are proportional to the
spatial and spectral gradients of x, respectively. The higher the gradient, the higher
the auxiliary variables. To address the half quadratic strategy proposed by Geman
and Reynolds [Geman 1992], we define an augmented cost function J ∗ using the
quadratic surrogate function and the auxiliary variables as

J ∗(x, bspat, bspec) = ‖y −Hx‖2+µspat
2

∑

u∈U

[
bu(vtux)2 + ψspat(bu)

]

+
µspec

2

∑

w∈W

[
bw(vtwx)2 + ψspec(bw)

]
(4.19)

where the augmented cost function J ∗(x, bspat, bspec) shares the same minimizer as
J (x) with

min
bspat,bspec

J ∗(x, bspat, bspec) = J (x). (4.20)

Consequently, the half quadratic solution is solved by minimizing J ∗. The lat-
ter combines three terms which are (1) a least square term measuring the fidelity
to the data, (2) two quadratic terms expressing the difference between the spa-
tial pixels and spectral wavelengths and which depend on the spatial and spectral
auxiliary terms respectively, and (3) spatial and spectral auxiliary functions that
only depends on the auxiliary variables. The minimization of the cost function
in Eq. (4.20) is solved by iteratively alternating two minimization problems until
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convergence [Charbonnier 1997].

x̂
(k)
hq = argmin

x
J ∗(x, b(k−1)spat , b

(k−1)
spec ), (4.21)

b̂
(k)
spat, b

(k)
spec = argmin

bspat,bspec

J ∗(x(k), b̂spat, bspec). (4.22)

Eq. (4.21) corresponds to the minimization of J ∗ with respect to (w.r.t) x,
yielding to

x̂hq = arg min
x
‖y −Hx‖2+µspat

2
xtV t

spatBspatVspatx+

µspec
2
xtV t

specBspecVspecx (4.23)

where Bspat = Diag(bspat) and Bspec = Diag(bspec).
Moreover, Vspat = [v1 . . .vU ]t, and Vspec = [v1 . . .vW ]t. Therefore, the solution x̂hq
is deduced by solving the following linear system

(HtH + µspatV
t
spatBspatVspat + µspecV

t
specBspecVspec)x = Hty. (4.24)

Eq. (4.24) yields to a closed form expression of the minimizer x̂hq. However, solv-
ing the problem is untractable because the complete model H is computationally
burden. Therefore, the algorithm is solved iteratively using the conjugate gradient
algorithm (Algorithm 2) described in section 2.1.3.

Eq. (4.22) corresponds to the minimization of J ∗ w.r.t bspat and bspec with

b̂spat, b̂spec = arg min
bw,bu

µspat
2

∑

u∈U
bu(vtux)2 + ψspat(bu)+

µspec
2

∑

w∈W
bw(vtwx)2 + ψspec(bw). (4.25)

The minimization problem in Eq. (4.25) can be achieved in parallel. In addition,
bu and bw are expressed explicitly and does not require a known form of ψspat and
ψspec since the infimum of the Eq. 4.18 is uniquely reached when [Idier 2001a]

b̂u =
φ′(vtux)

2vtux
, (4.26)

and similarly for the spectral dimension

b̂w =
φ′(vtwx)

2vtwx
, (4.27)

where b̂spat = (b̂u)u∈U and b̂spec = (b̂w)w∈W and φ′ is the first Huber derivative.
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4.4 Simulation and Results

4.4.1 Description of the spatio-spectral input images

The forward model described in section 4.2 is general but primarily developed
for the Mid Resolution Spectrometer of the Mid Infrared Instrument onboard the
JWST [Wells 2015], detailed in Chapter 3. It is used to reproduce multi-frame 2D
measurements for a given 2D+λ input image. The forward model and the proposed
reconstruction algorithm have been tested on two synthetic objects with complex
spatial and spectral distributions.

The first object, denoted obj1, contains a spatial distribution with sharp edges,
illustrated in Fig. 4.6. It is uniformly sampled on a spatial grid with a step size of
Ti = Tj = 0.1 arcsec and a size of I×J = 120×120 pixels. The spectral distribution
of this object is provided by [Berné 2007] and has been computed from astrophysical
measurements. The spectral dimension counts 3500 pixels, uniformly sampled from
4.82 to 28.5µm with a step size Tl = 3 10−3 µm. To certify the performance of the
reconstruction algorithm, we also test it on another synthetic object called “Urban”3,
denoted obj2. Compared to obj1, the spatial distribution of obj2 is more complex
and includes small scale details with more discontinuities, illustrated in Fig. 4.7.
The spatial size and sampling are similar to obj1, and the spectral dimension counts
2000 pixels uniformly sampled from 7.42 to 18µm with a step size Tl = 5 10−3 µm.

Ch. Spectral range
(µm)

FOV
(pixels)

Slit width
(arcsec) Slit number Ti′

(arcsec)
Tl′
(µm) I′ pixels L′ pixels R

1 4.9 – 7.7 34× 42 2× Tj 21 2× Ti 4 10−3 17 750 867
2 7.4 – 11.7 42× 51 3× Tj 17 2× Ti 6 10−3 21 750 760
3 11.5 – 18.1 57× 64 4× Tj 16 3× Ti 9 10−3 19 750 596
4 17.7 – 28.5 72× 72 5× Tj 12 3× Ti 1.6 10−2 24 750 410

Table 4.1: Characteristics specific to the four spectral channels of the IFS
instrument considered in this work.

4.4.2 Simulation of 2D multi-frame measurements

The developed forward model imposes several spectral and spatial FOV selections.
Therefore, obj1 is divided into four distinct spectral channels (Channels 1 to 4). Each
channel ensures a unique spectral coverage, spatial FOV, slit width imposed by the
j-width of the window wc, and slit number (see Table. 4.1). On the other hand, obj2
is divided into two distinct spectral channels that correspond to the second and third
channels. Finally, to allow multi-frame observations, the acquisition system provides
multiple observations of the same object, with a dithering pattern of 8 pointing
directions.

3taken from http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 4.6: (Top): illustration of a monochromatic image at λ = 14µm for
obj1. (Left): the spatial distribution of the central row (red line) of the
monochromatic image. (Right): Spectral distribution located at the center
of the monochromatic image.
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Figure 4.7: (Top): illustration of a monochromatic image at λ = 14µm for
obj2. (Left): the spatial distribution of the central row (red line) of the
monochromatic image. (Right): Spectral distribution located at the center
of the monochromatic image.
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Figure 4.8: (Left): 12 adjacent spatio-spectral cubes xc[i, j, l] for a particular
pointing p, belonging the fourth channel of obj1. (Right): Blurred, diffracted
and sampled 2D measurements yc[i′, l′].

For a particular pointing p, the light inside each spatio-spectral selection xc[i, j, l]
is diffracted and projected onto 2D detectors, resulting in 2D measurements yc[i′, l′].
In addition, the spectral resolution R and the spatial and spectral sampling of the
measurements changes depending on the selected channel. The step size of the
detector imposes the spatial sampling of the measurements Ti′ . Moreover, the MRS
instrument has large detectors. Thus, to reduce the computational cost of the
problem, we assume here that the spectral sampling of the measurements Tl′ =

4× TMRS
l′ and R = RMRS/4 where TMRS

l′ and RMRS are the spectral sampling and
the spectral resolution of the actual MRS instrument (see [Wells 2015]). Table 4.1
provides the spectral resolution R, the spatial sampling Ti′ and the spectral sampling
Tl′ considered in the work, along with the size in pixels of the acquired measurements
(I ′, L′) for each channel.

Finally, the measurements calculated with Eq. (4.10) are corrupted with an
additive zero-mean white Gaussian noise with an SNR of 30 dB, computed as

SNRc (dB) = 10× log10
‖yc‖22
Nc × σ2n

. (4.28)

Nc is the total pixel number of the output for a particular channel, and σn the
standard deviation of the noise.

We show in Fig. 4.8 a set of noisy, blurred and sampled 2D measurements, for
obj1. These measurements belong to the fourth spectral channel for a fixed pointing
p. Similarly, we show in Fig. 4.9 the acquired measurements form the third channel
of obj2.

Given the measurements, our proposed SR reconstruction algorithm, developed
in section 4.3.2, is applied to estimate the unknown 2D+λ input image. To comple-
ment our results, we compare our algorithm to the shift-and-add (S&A) algorithm,
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Figure 4.9: (Left): 16 adjacent spatio-spectral cubes xc[i, j, l] for a particular
pointing p, belonging the third channel of obj2. (Right): Blurred, diffracted
and sampled 2D measurements yc[i′, l′].

detailed in section 4.3.1. However, as the latter does not consider the blurring ef-
fects, we enforce a Total variation (TV) regularization after the S&A step, that
performs spatial deconvolution separately for each wavelength writing

x̂l
′
SA = arg min

x
‖y −H l′xl

′‖22+µ|∇xl
′ |1. (4.29)

H l′ is a monochromatic spatial PSF at wavelength l′ and ∇xl′ computes the first-
order difference of the image. We rely on the primal dual Chambolle-Pock algo-
rithm [Chambolle 2011] to solve Eq. (4.29). Unlike our proposed method, the S&A
algorithm followed by TV deconvolution at each wavelength does not allow data
fusion. Finally, we compare our algorithm to the classical l2 regularization to show-
case the importance of the convex edge-preserving regularization choice, particularly
around sharp edges, with

x̂q = arg min
x
‖y −Hx‖2+µspat‖Vux‖2+µspec‖Vwx‖2 . (4.30)

Since the unknown input is a high-dimensional image, Eq. (4.30) is solved iteratively
using the conjugate gradient optimization algorithm (Algorithm 2), provided in
section 2.1.3.

All the reconstruction algorithms are implemented in python with numpy tool-
box and computed with a single CPU at 5GHz with 32 GB of memory, and tested
with a number of iteration sufficient enough to ensure a convergence towards the
solution, reported in Table 4.24

4For the proposed algorithm with half quadratic approaches, the global number of iter-
ations corresponds to the number of iterations for the conjugate gradient algorithm used
to estimate x̂k

hq in Eq. (4.24) at the iteration k × the total number of iterations k.
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Size Algorithm
Number of Time
iterations [minutes]

Obj1 120× 120× 3500 Proposed 20× 20 94

l2 400 75

S&A + TV 400
52.5

(0.015 per λ)

Obj2 120× 120× 2000 Proposed 20× 20 50

l2 400 40

S&A + TV 400
30

(0.015 per λ)

Table 4.2: Number of iterations and computational time of the iterative re-
construction algorithms.

4.4.3 Results and Discussion
Estimating the 2D+λ image x[i, j, l] relies on the totality of the blurred, sampled,
and noisy measurements y. We compare in the following the reconstructed spatial
and spectral distributions obtained with the different reconstruction methods. We
also display the normalised least square error, computed between the original x[i, j, l]

and the estimated x̂[i, j, l] object, for a particular wavelength, with

Error = ‖xl[i, j]− x̂l[i, j]‖2/‖xl[i, j]‖2 (4.31)

Spatial distribution: Comparisons between the original and the reconstructed
2D+λ images are shown for obj1 at 6.5 ,9, 14 and 21 µm in Figs. 4.10, 4.11 and 4.14,
and for obj2 at 9 and 14 µm in Figs. 4.12 and 4.13, using the S&A, proposed, TV
and l2 algorithms.

For both objects, the proposed algorithm shows a good reconstruction with the
smallest error values at all wavelengths. The spatial dynamic is fully restored, and
the spatial resolution significantly improved.

The S&A algorithm succeeds at reconstructing large-scale patterns, but, due to
blurring and noise, it fails to completely reconstruct small-scale structures, particu-
larly for obj2 as illustrated in Fig. 4.12. We also notice in Figs. 4.10 and 4.12 that
the images reconstructed for both objects with the S&A algorithm are significantly
more blurred at long wavelength than the small wavelength, and the errors higher.
Such results are expected since the width of the spatial PSF increases linearly with
the wavelength.

To highlight the importance of the convex edge-preserving regularization, we
compare in Fig. 4.11 and 4.13 the spatial reconstruction with our algorithm to the
S&A + TV algorithm (Eq. 4.29) and with the classic l2 algorithm (Eq. 4.30). The
S&A + TV shows better qualitative results with minor errors than the simple S&A
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algorithm. However, this method does not outperform the proposed algorithm for
both objects. For instance, at λ = 9µm, enforcing a TV regularization allows
denoising and good restoration of the edge, but becomes less efficient at long wave-
lengths since the blur is important. In addition, the spatial reconstruction is not
performed jointly for all spectral bands but separately. We also show the spatial
reconstruction using the l2 algorithm, which is performed jointly for all spectral
bands and channels. It outperforms the S&A + TV algorithm, especially at long
wavelengths, but not our algorithm since it fails to preserve the edges, as illustrated
for obj1 in Fig. 4.11 where the reconstructed edges are smoothed and present ringing
artifacts.

Finally, to better showcase the performance of all algorithms on the recon-
structed images, particularly around the edges, we show in Fig. 4.14 a plot of the
spatial distribution at the central row of the reconstructed obj1, at λ = 6.5 and
14µm. The reconstruction with the proposed algorithm is the only one which re-
stores the edges and the spatial dynamic at both wavelengths. Whereas the S&A
algorithm fails to restore the edges because of the blurring. With the additional
TV regularization, the edges are more preserved, particularly at small wavelengths
but the spatial dynamic is not properly restored . On the other hand, the l2 reg-
ularization succeeds in recovering the spatial dynamic, but with ringing artifacts,
especially around the edges.

Spectral distribution: We display in Fig. 4.15 and 4.16 the original spectral
distribution x, the S&A solution x̂S&A, and the half-quadratic solution x̂hq, for two
selected pixels indicated in the legend for obj1 and obj2, respectively.

In Fig. 4.15 (left), the spectral distribution of the reconstructed 2D+λ image
for obj1 with both algorithms fits the original spectral distribution over the whole
measured range (from 4.75 to 28.5µm) because the chosen spatial position corre-
sponds to a smooth region. Whereas in Fig. 4.15 (right), the spatial position is
chosen in a region with high gradients. Here the spectral reconstruction using the
proposed algorithm is significantly improved compared to the spectral reconstruc-
tion using the S&A algorithm. In fact, because of spatial filtering, different spectra
from different neighboring spatial positions are mixed within a pixel. Since the S&A
algorithm does not consider deconvolution, the spectral reconstruction cannot per-
fectly match the original spectral distribution. This problem is better illustrated in
Figure 4.16 for the spectral reconstruction of obj2 since the spatial distribution of
the latter contains small-scale details with different spectral distributions between
neighboring pixels. We show in Figure 4.16 (left) a spectral reconstruction for a
spatial position located in a smooth region. The spectral reconstruction with the
S&A algorithm is highly contaminated by the noise and fails to match the original
distribution perfectly, however, the layout of the distribution is preserved. On the
other hand, Figure 4.16 (right) shows that the spectral reconstruction with the S&A
algorithm, at a spatial position located at high gradients, fails to preserve the layout
of the original distribution since the spectra are highly mixed within a pixel. We
also see that the proposed algorithm allows denoising.
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Figure 4.10: Spatial reconstruction for Obj1 at 30dB: [1st row] Original images
at 6.5, 9, 14 and 21 µm. [2nd row] Reconstruction with S&A. [3rd row] Pro-
posed restoration. [4th row] Residuals between the proposed reconstruction
and the original image.
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Figure 4.11: Spatial reconstruction for Obj1 at 30dB: [1st row] Reconstruction
with the proposed algorithm at 6.5, 9, 14 and 21 µm. [2nd row] Reconstruction
with TV regularization. [3rd row] Reconstruction with l2 regularization.
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Figure 4.12: Spatial reconstruction for Obj2 at 30dB: [1st row] Original images
at 9 and 14 µm. [2nd row] Reconstruction with S&A. [3rd row] Proposed
restoration. [4th row] Residuals between the proposed reconstruction and the
original image.
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Figure 4.13: Spatial reconstruction for Obj2 at 30dB: [1st row] Reconstruction
with the proposed algorithm at 9, and 14 µm. [2nd row] Reconstruction with
TV regularization. [3rd row] Reconstruction with l2 regularization.
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Figure 4.14: Spatial reconstruction of the central row for obj1 at λ = 6.5µm
(left) and λ = 14µm (right). The top panels show a comparison between
the original spatial distribution and the reconstructed spatial distribution via
the proposed and the S&A algorithm. The bottom panels show a compar-
ison of the reconstructed spatial distribution with the proposed, TV and l2
algorithms.
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Figure 4.15: Comparison of the spectral reconstruction for obj1 with the S&A
and proposed algorithms for the spatial position (60,60) located in a smooth
region (left) and the spatial position (55,30) located in a region presenting
high gradients (right).

8 10 12 14 16 18
[ m]

240

280

320

360

400 Original
Proposed
S&A

(a) Pixel (50,75)

8 10 12 14 16 18
[ m]

75

125

175

225

275
Original
Proposed
S&A

(b) Pixel (70,75)

Figure 4.16: Comparison of the spectral reconstruction for obj2 with the S&A
and proposed algorithms for the spatial position (50,75) located in a smooth
region (left) and the spatial position (70,75) located in a region presenting
high gradients (right).
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4.4.4 Influence of the Regularization Parameters
Several parameters must be tuned to ensure the best reconstruction of the unknown
2D+λ image using the regularized least square approaches. The proposed algorithm
is based on convex spatial and spectral regularization terms for edge-preserving (see
4.3.2). Consequently, we must determine four different parameters, which are the
spatial and spectral regularization parameters µspat and µspec, and the spatial and
spectral thresholds Tspat and Tspec that ensure denoising without excessive penal-
ization of high gradient values of the solution.

We adopt a supervised strategy by testing different combinations of these pa-
rameters in a determined range, and keep the combination that minimizes at best
the normalised least square error between the original and the estimated objects
with

Error =
‖x− x̂‖2
‖x‖2 . (4.32)

This approach is time-consuming, mainly because of the large number of hyper-
parameters that needs to be tuned and also because the forward model is already
computationally expensive. Therefore, we use high performance computing (HPC)
resources from the “Mésocentre” computing center of CentraleSupélec and École
Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France 5.

We display in Fig. 4.17 (top) the computed errors after running the proposed
reconstruction algorithm several times with different values of µspat and Tspat for a
fixed µspec and Tspec, and then the other way around. This process was repeated two
times to ensure a good convergence towards the correct combination of parameters.
The hyper-parameters for obj1 are finally set to µspat = 0.5, Tspat = 0.0005 and
µspec = Tspec = 0.1, which correspond to the values minimizing the computed error
(red circles on the top panels in Fig. 4.17). The reconstruction with the classical
l2 regularization requires two hyper-parameters to be tuned, and we have obtained
µspat = 0.001 and µspec = 0.5, as shown in Fig. 4.17 (bottom).

The same tuning process is used for obj2 to determine the hyper-parameters,
with µspat = 0.001, Tspat = 20, µspec = 0.5, Tspec = 25 for the proposed algorithm,
and with µspat = 0.001 and µspec = 0.5, as shown in Fig. 4.18

4.4.5 Source separation
In hyperspectral images, the spectral distribution between spatial pixels is often
highly correlated at all wavelengths. Consequently, the HS image can be represented
by a Linear Mixing Model (LMM) [Keshava 2002] with

x[i, j, l] =
M∑

m=1

am[i, j]× sm[l]. (4.33)

For all spatial coordinates (i, j), the object writes as a linear combination of M
spectral components sm where M � L. This dimension reduction is used for

5http://mesocentre.centralesupelec.fr
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Figure 4.17: Influence of the hyper-parameters on the proposed algorithm
(top images) and on the l2 algorithm (bottom image) for obj1.
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Figure 4.18: Influence of the hyper-parameters on the proposed algorithm
(top figure) and on the l2 algorithm (bottom image) for obj2
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a wide range of applications [Bioucas-Dias 2012] and can be achieved using sev-
eral source separation techniques, in particular the principle components analysis
(PCA) [Zhang 2012] and the non-negative matrix factorization [Lee 1999] that forces
a non-negative constraint to the spectral components and the mixing coefficients.

As mentioned earlier, the non-stationary blurring, introduced by the spatial
PSF, leads to mixed spectra within a spatial pixel. This section seeks to show-
case the effect of this blurring on the M extracted spectral components. Obj2 is a
perfect candidate for such analysis since it contains small spatial details with dif-
ferent spectral distributions. Hence, we perform a PCA and NMF on the original
obj2 and the estimated ˆobj2 using the S&A and the proposed algorithms. The first
three spectral components which are extracted with PCA and NMF algorithms are
shown in Fig. 4.19 and Fig. 4.20, respectively. We see with both source separa-
tion techniques that the proposed algorithm provides the most accurate spectral
components compared to the original ones, mainly because our algorithm performs
spectral unmixing via deconvolution and super-resolution. On the other hand, the
S&A algorithm provides spectral components that does not match the original ones.
Such results could be predicted because the spectral distribution of reconstructed
object is highly mixed, mainly in high gradient regions. Finally, we also show in
Fig. 4.19 and Fig. 4.20 the spectral components extracted from xopt, that is the
output of the forward model considering only the spatial filtering to visualize the
effect of only the spatial blurring on the extracted components. We see that these
extracted components are more accurate than those provided from the result of the
S&A algorithm, since the spatial sampling of the former matches that of the input
image. However, we can clearly visualize the inaccuracy of the extracted compo-
nents compared to the original ones and the importance of the deconvolution step
during the reconstruction process.

4.4.6 Influence of the noise

The measurements are corrupted with an additive white Gaussian noise. Through
the whole reconstruction analysis in the previous sections, the SNR was fixed to
30 dB. However, we are interested in examining the influence of additive noise on
the performance of the reconstruction algorithms. Therefore, we add different noise
levels to the measurements acquired from the third channel of obj1 (see Table 3.1) by
changing the SNR, and we test for each case the proposed, S&A and l2 reconstruction
algorithms.

We display in Fig. 4.21 the normalized least square error between the original
object and the estimated object with the mentioned algorithms. The performance
of all algorithms strongly depends on the noise level, with the error decreasing
dramatically as the SNR increases (particularly for the S&A algorithm since it
does not perform denoising). In any case, whatever the value of the SNR, the
proposed algorithm always provides the smallest errors compared to the l2 and
S&A algorithms.
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Figure 4.19: Spectral components resulted from a PCA applied on the original
object, the spatially blurred object and the reconstructed object with S&A
and the proposed algorithm for obj2
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Figure 4.20: Spectral components resulted from a NMF applied on the original
object, the spatially blurred object and the reconstructed object with S&A
and the proposed algorithm for obj2
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4.4.7 Conclusion
This chapter presents a super-resolution (SR) reconstruction of a 2D+λ image from
a set of 2D measurements that are spatially and spectrally degraded. The proposed
approach relies on developing an explicit forward model of an IFS instrument, char-
acterizing a relationship between the 3D input and the 2D measurements. This
complex forward model takes into account (1) wavelength-dependent spatial and
spectral blurring, (2) different observations coming from multiple sources with dif-
ferent spatial fields of view and spectral windows, and different pointings of the
instrument, and (3) irregular spatial sampling at the detector. This model is pri-
marily developed to simulate measurements for the Mid-Resolution Spectrometer of
the Mid-Infrared Instrument on board the JWST. The proposed reconstruction al-
gorithm is based on the regularized least square approaches with convex spatial and
spectral half-quadratic regularizations in order to preserve high spatial and spectral
gradients.

We have validated the performance of the proposed algorithm using two syn-
thetic objects with complex spatial and spectral distributions. It shows a significant
increase in the spatial and spectral resolution of the reconstructed object compared
to other reconstruction algorithms, particularly the shift and add algorithm (S&A)
followed by a TV deconvolution step and the classical l2 algorithm. Even though
our algorithm is computationally the most expensive, it outperformed the other re-
construction algorithms and provided the best qualitative results with an error less
than 1.5% for obj1 and 2.5% for obj2 for an SNR = 30 dB at all wavelengths.

However, the proposed reconstruction algorithm presents limitations. First, the
reconstructed HS images, measuring a broad spectral range in the infrared, are com-
posed of several thousand spectral bands. Therefore, the number of unknowns to
estimate is relatively significant, leading to an increase in the computational com-
plexity of the reconstruction algorithm. Moreover, the proposed algorithm requires
the determination of four hyperparameters (two for spatial and spectral regular-
izations and two thresholds for edge-preserving) to ensure the best reconstruction
of the 3D object, which is a long process regarding the computational costs. Fi-
nally, the spectral information, particularly for astronomical observations, is very
complex and also contains spectral rays, which can require, in some cases, different
hyper-parameters for different types of spectral information.

In the following chapter, we present a new linear model of the 2D+λ input. In
particular, we assume that x lives in a low dimensional subspace, and represented as
a linear combination of a small number of spectral components s, assumed known,
and with unknown mixing coefficient a. In that case, the number of the values
to be estimated significantly decreases, and the proposed reconstruction algorithm
requires only the determination of two spatial hyper-parameters. A spectral regu-
larization is not required since the known spectral components impose the spectral
resolution.
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5.1 Introduction

In this work, we address the reconstruction problem of a 2D+λ image with high spa-
tial and spectral resolutions from a set of 2D infrared measurements with high spec-
tral resolution provided by the Integral Field Spectroscopy (IFS) of JWST/MIRI
(see Chapter 3). In Chapter 4, we developed a forward model establishing a rela-
tionship between the unknown 2D+λ input image x and the set of 2D degraded
measurements y and then used it for the reconstruction of x.

In this chapter, we consider another linear model for the input image x, assuming
that the latter lives in a low dimensional subspace and can be expressed as a Linear
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Mixing Model (LMM) writing

x[i, j, l] =
M∑

m=1

am[i, j] × sm[l] (5.1)

where for each spatial location (i, j), the spectral distribution of the 2D+λ input
image is a linear combination of M spectral components sm, each weighted by a
mixing coefficient am. Choosing a LMM model for the input preserves the spatial
and spectral distribution of x. In addition, the number of the unknown that we want
to estimate is reduced since we consider a low-rank approximation where M � L

(L denotes the number of the spectral bands). We also assume that sm are known
a priori, for instance, extracted from source separation algorithms such as the prin-
cipal components analysis (PCA) [Jolliffe 2016], non-negative matrix factorization
(NMF) [Lee 1999] and independent components analysis (ICA) [Hyvarinen 1999],
or from existing spectral libraries [Zhao 2013]. Hence, the reconstruction of x relies
on estimating the unknown mixing coefficients a. Consequently, sm in Eq. (5.1)
can be included in the IFS forward model developed in Chapter 4 and provided in
Eq. (4.10) on page 77. This combination between the LMM model of the input and
the IFS forward model yields a new spectral dependent linear forward model that
relates y to the unknown a.

We propose a reconstruction method for the unknown a that uses the new
spectral dependent forward model and relies on minimizing a regularized objective
function with a convex spatial regularization for edge-preserving. Unlike the spatio-
spectral reconstruction of x directly from the measurements y (see Chapter 4), the
proposed reconstruction here is limited to the spatial estimation of a and requires
only a spatial regularization. Consequently, the final reconstructed 3D image x̂ is a
linear combination of the estimated coefficients â and the known s, where the latter
imposes the spectral resolution of x̂.

We also relied in Chapter 4 on the fast half-quadratic algorithms with the Ge-
man and Reynolds [Geman 1992] formulation to solve the reconstruction problem
of x. However, the computational cost of the reconstruction is significant since
the forward model is already a computational burden. We rely in this Chapter on
a more efficient optimization algorithm based on the Majorize-Minimize step and
the subspace optimization [Chouzenoux 2011], in particular, the Majorize-Minimize
Memory Gradient (3mg) [Chouzenoux 2011] 1.

This Chapter is organized following two main sections. In the first section, we
explicitly include a publication submitted in “IEEE Transactions on Computational
Imaging”. It provides a detailed mathematical description of the new spectral de-
pendent forward model and the proposed reconstruction algorithm. Since the new
forward model depends on the IFS forward model provided in Chapter 4, the latter
is also explicitly detailed in this publication. The performance of the reconstruc-
tion algorithm is validated using two synthetic 3D images with complex spatial and
spectral distributions in the infrared range.

1 code available online https://github.com/forieux/qmm/
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In the second section, we use a synthetic 2D+λ image to provide a compar-
ison between the spatio-spectral reconstruction algorithm of x directly from the
measurements y (Chapter 4) and the reconstruction of x as a linear combination
of the estimated mixing coefficients â and the known s. We use quality met-
rics such as the peak signal-to-noise ratio (PSNR), the Structural Similarity Index
(SSIM) [Zhou Wang 2004], and the Spectral Angular Mapper (SAM) [Chein-I Chang 2000]
to qualitatively compare the reconstructed spatial and spectral distributions with
both reconstruction algorithms.
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Super-Resolution Hyperspectral Reconstruction with
Majorization-Minimization Algorithm and

Low-Rank Approximation
Ralph Abi-Rizk, François Orieux and Alain Abergel

Abstract—Hyperspectral imaging (HSI) is extensively used in
various applications. However, direct observation of these 3D
spatio-spectral images is not possible since the real measurements
are 2D. Moreover, the measurements suffer from spatial and
spectral limitations, such as wavelength-dependent spatial and
spectral blurring, projection onto multiple 2D detectors with
different spatial sampling steps, spectral coverage, and spatial
fields of view.

We develop an explicit forward model based on the integral
field spectroscopy that establishes a relationship between multiple
HSI observations, assumed living in a low-dimensional sub-
space with known spectral components, and the measurements
projected onto different 2D detectors while considering the
spatio-spectral limitations. To address this ill-posed problem,
we propose a multi-frame “Super-Resolution” algorithm, based
on the regularized least square approach, with a convex edge-
preserving regularization that allows spatial enhancements via
multi-frame observations and deconvolution while preventing
spectral distortions thanks to the known spectral components.
The proposed algorithm is solved via the majorize-minimize
memory gradient (3MG) optimization and tested on synthetic 3D
input images, measuring in the Infra-Red range, hence, suitable
for the upcoming Infrared Instrument onboard the James Webb
Space Telescope (JWST). We show that the reconstruction with
the proposed algorithm shows good performance compared to
the state-of-art algorithm.

Index Terms—Inverse Problems - Super Resolution - Hyper-
spectral Imaging - Deconvolution - Spectral unmixing

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) simultaneously col-
lects high-resolution spectra at different spatial loca-

tions. It is wildly used for remote sensing applications in
numerous domains such as in astrophysics [1], fluorescence
microscopy [2], military [3], medical diagnosis [4], and others.
HSI products are 3-dimensional (3D) images (i, j, l) where
(i, j) are the two spatial dimensions and l the spectral dimen-
sion. Unfortunately, direct observations of hyperspectral (HS)
images are not straightforward because 3D detectors do not
exist. Instead, HS instruments, primarily relying on dispersive
spectrometers, are designed to acquire measurements projected
onto 2D detectors. In particular, HS instruments based on
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Integral-Field Spectrometers (IFS) [5] simultaneously observe
the field of view (FOV) of the 3D input image through
several thin slits in parallel. The dispersed wavelength from
each slit is then projected onto 2D detectors, spanning a
spatial dimension along one axis and a spectral dimension
along the other axis. Consequently, a reconstruction stage is
required to estimate the 3D input image from the collected 2D
measurements. Although having a high spectral resolution, the
2D measurements suffer from spatial and spectral limitations
during the acquisition process, such as blurring, sampling,
and noise. First, because of the diffraction [6], the optical
response known as the Point Spread function (PSF) introduces
a wavelength-dependent spatial blurring. Second, the response
of the dispersing system introduces a spectral blurring, which
is also wavelength-dependent [7]. Finally, the spatial sampling
on the detector is often insufficient at all wavelengths. To
enhance the spatial resolution lost at the detector, a “dithering”
method is considered [8], [9], consisting of observing the
same scene multiple times by slightly shifting the measuring
instrument. The resulted multi-frame measurements lead to a
Super Resolution (SR) problem [10].

Several multi-frame SR algorithms have been addressed
to reconstruct a discrete 3D input image from a set of
measurements degraded by the HS instrument. The state-of-
art approach for multi-frame SR 3D reconstruction is based
on the shift and addition (S&A) method [8], [11]. It consists
of merging the overall sampled and aliased measurements to
provide a single reconstructed 3D image with an enhanced
spatial resolution. Even though the S&A provides fast and non-
iterative algorithms, it does not consider spatial and spectral
blurring. Hence, it can be followed by a deblurring step, such
as a Total Variation (TV) regularization [12]. This technique
is efficient for reconstructing monochromatic images, but not
for HS images since the deblurring step treats the spatial
and spectral dimensions separately without considering the
correlations between spectral bands.

Multi-frame SR reconstruction algorithms for HS images
have also been treated as an inverse problem allowing a joint
process of the spatial and spectral information from all the
measurements. Such approaches rely on an explicit forward
model that considers the limitations of the HS instrument
and some additional priors about the 3D input image [13],
[14]. Moreover, most of these approaches assume a low-
rank structure, where the input is represented with a small
number of spectral components. For instance, [13] developed
a forward model that simulates optically blurred, sampled,
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and aliased HS multi-frame measurements. They proposed
a SR reconstruction algorithm based on the projection onto
convex sets (POCS) method [15] that relies on the forward
model to restore the observed HS image, approximated in
the low-dimensional subspace. [14] handled the multi-frame
SR reconstruction in the principal component analysis (PCA)
domain. They used the first few principal components [16] to
estimate motion and to reconstruct the 3D input image via the
maximum a posteriori (MAP) [17]. However, these works do
not consider wavelength-dependent spatial blurring.

Another solution for the spatial resolution enhancement is
to perform a fusion of spatially sampled HS measurements
with an auxiliary image of the same scene with high spatial
resolution, if available, such as panchromatic (PAN) [18], or
multispectral (MS) [1]. In particular, the HS-MS fusion has
been excessively addressed in the inverse problem frame-
work [1], [19], [20]. It relies on minimizing an objective
function associated with two data fitting terms for HS and
MS, respectively, and some priors about the 3D input image.
[1] proposed an HS-MS fusion method while accounting for
wavelength-dependent spatial blur. They provide fast algo-
rithms in the Fourier domain while assuming a low-rank
structure of the astronomical input image. However, the works
proposed in [1], [13], [14] consider 3D measurements with
a uniform spatial and spectral sampling steps, and without
accounting for a wavelength-dependent spectral PSF.

We present in this work a complex forward model based on
an IFS dedicated to astronomical observations in the infrared
spectral range. It takes as input a 3D spatio-spectral image with
a high resolution, approximated in a low-rank subspace, and
simulates a set of multi-frame measurements projected onto
different 2D detectors of different characteristics. The pro-
posed model allows different input observations from different
instruments like IFS and different pointings with the same
instrument to perform multi-frame measurements. Moreover, it
considers wavelength-dependent spatial and spectral blurring,
as well as heterogeneous spatial and spectral sampling on the
detectors. The proposed reconstruction method relies on the
forward model and is based on the regularized least square
approaches with convex edge-preserving regularization [21].
To solve the inversion problem, we choose the iterative
Majorize-Minimize Memory Gradient (3MG) optimization al-
gorithm [22] tested on two synthetic 3D input images with
different spatial and spectral distributions. The results show
significant improvement of the spatial and spectral resolutions
comparing to the shift-and-add (S&A) algorithm [8], [11]
followed by a spatial total variation (TV) regularization for
each wavelength [12], and the classic l2 regularization [23].

The paper is organized as follows. Section II discusses
the proposed methodology, first for the instrument model
developed for the IFS (Section II-A), and second for the
forward model based on the linear mixing model (LMM) [24]
(Section II-B). The SR multi-frame reconstruction algorithm
is presented in Section III. In Section IV, we present the
reconstruction results with the proposed algorithm and provide
a comparison with other reconstruction algorithms. Finally, a
conclusion is provided in Section V.

II. FORWARD MODEL FOR HETEROGENOUS
HYPERSPECTRAL DATA FUSION

A. Observation Model

This section presents a new observation model of IFS
instrument for spectral data fusion. It considers a series of
components that modify and degrade the observed 3D input
image (HS image) resulting in a set of blurred, truncated, and
aliased 2D multi-frame measurements.

The original discretized input image is denoted x[i, j, l],
with two spatial dimensions (i, j) ∈ [1, . . . , I] × [1, . . . , J ]
denoting the pixel index, and one spectral dimension l ∈
[1, . . . , L]. It is supposed uniformly sampled with spatial steps
(Ti, Tj), and spectral step Tl.

1) Spatial Filtering: Because of the diffraction phe-
nomenon [6], the observed 3D input is spatially blurred by
the response of the optical system, also known as the point
spread function (PSF). The PSF, denoted h, is spectrally
non-invariant, with an increasing blur as the wavelength in-
creases. We suppose that the monochromatic PSF is known
from simulations [25], calibration, or previous data processing
steps. The PSF is assumed to be spatially stationary at all
wavelengths. Thus, the spatial filtering is carried out by a 2D
spatial convolution between the 3D input image and a discrete
wavelength-dependent PSF, sampled with the same sampling
step of the input, (Ti, Tj), writing

xopt[i, j, l] =
∑

i′,j′

x[i′, j′, l]h[i− i′, j − j′, l]. (1)

We will see in the next section that the model includes
spatially truncated observation, since the field of view of the
IFS instrument is smaller than that of the 3D input image.
Consequently, the spatial convolution is calculated using the
spatial discrete Fourier transform for fast computation [26]
without introducing periodic patterns to the blurred image.

2) Spatio-Spectral Field of View: We consider the spectral
data fusion problem where the diffracted 3D image x̂opt is
observed with (1) various spatial and spectral fields of view
and (2) various pointings of the instrument.

First, the observations are grouped by spectral channels
c ∈ [1, . . . , C] with distinct physical properties. Each channel
can possess different FOV, spectral range, and sampling step
size. In addition, the IFS observes simultaneously the rectan-
gular FOV of each channel through several slits in parallel.
The number and size of the slits depend on the selected
channel c. The spectral selection into channels and the spatial
selection into slits with various widths and lengths result from
a multiplication between xopt and the channel windows wc

that writes

wc[i, j, l] 6= 0, ∀(i, j, l) ∈ (Ic,Jc,Lc), (2)

with (Ic,Jc,Lc) a rectangular subset of [1, . . . , I] ×
[1, . . . , J ] × [1, . . . , L], and 0 otherwise. This hypothesis im-
plies that all window sizes (∆i,c,∆j,c) are multiple of the step
size of the 3D input image x: (∆i,c,∆j,c) = (ncTi,mcTj),
with (nc,mc) ∈ N2. This is an approximation, minored if the
steps are small.
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Second, like in Multi-Frame Super-Resolution, observations
can have different pointings (spatial shifts or dithering), in-
dexed by p. These pointings can be shared between channels.
We also consider that the pointing positions (∆i,p,∆j,p)
are multiple of the sampling steps of x: (∆i,p,∆j,p) =
(ipTi, jpTj), with (ip, jp) ∈ N2.

Finally, the spatio-spectral field of view for a particular
pointing writes

xc,p[i, j, l] = x[i, j, l]×wc[i− ip, j − jp, l]. (3)

3) Spectral Blurring: The spatio-spectral cubes xc,p[i, j, l]
are projected onto 2D detectors, through diffraction gratings
for instance. For a monochromatic punctual source entering the
grating at the wavelength λ = lTl from the particular channel
c and the pointing p, the spectral response writes [7]

hc,j,p(l′, l) ∝ sinc2
(
πW

(
l′Tl′ − qj,p

lTl
− 1

))
, (4)

where λ′ = l′Tl′ is the spatial position on the detector
(in wavelength unit) with a sampling step Tl′ and qj,p ∈
[−∆j,c/2,∆j,c/2] is the relative spatial position of the input
source 1 determined by the spatial position j and the pointing
p.

This spectral response is independent of the other spatial
position indexed by i. Moreover, several particularities of the
spectral response or, more generally the dispersion system,
are inferred from Eq. (4). First, as illustrated in Fig. 1, the
spatial position on the detector λ′ = l′Tl′ of the spectral
response depends on the wavelength input λ = lTl. Second,
the spectral response is not stationary and becomes broader
with the increase of the wavelength. Finally, the relative spatial
position qj,p alters the spatial position of the spectral response
on the detector by shifting its maximum.

10 12 14 16 18 20 22
′ ( m)

= 10 m
= 15 m
= 20 m

Fig. 1. The spatial position (λ′ = l′T ′l ) of the response on the detector
depends on the input wavelength (λ = lTl)

Eq. (4) depends also from the parameter W . It defines the
width of the spectral response, which controls the spectral
resolution. Assuming that the instrument is calibrated with
a known spectral resolution R = λ/∆λ, with ∆λ the full
width at half maximum (FWHM), basic calculus leads to
W ≈ 2.8R/π.

Finally, the grating is a non-stationary linear system. After
discretization of the response, all individual sources xc,p[i, j, l]
contribute on the detector resulting in an output gc,p of the
dispersing system that writes

gc,p[i, j, l′] =
∑

l∈Lc

xc,p[i, j, l]hc,j,p[l′, l] (5)

1determined by the absolute position j and the pointing p.

with l′ ∈ L′c the wavelength index sampled on the detector and
hc,j,p[l′, l] obtained from Eq. 4. Nevertheless, other models or
calibrated measures than Eq. 4 may be used.

The model in Eq. (5) is not a convolution since it does
not impose stationarity. Consequently, homogeneous spectral
sampling is not required and can vary across the channels c.
The spectral resolution of the output is therefore fixed by the
spectral response and the sampled wavelength l′.

4) Detector Integration: The 3D spatially and spectrally
blurred cube gc,p[i, j, l′] depends on the spatial index j
whereas detectors are 2D. Since the system is linear, all
the contribution of sources within the spatial window Jc,p,
determined by the channel c and pointing p, are summed on the
detector. Consequently, without dithering and super-resolution,
the j-width of the window wc fix the spatial resolution along
the j-axis of the measurements.

Moreover, the spatial sampling step Ti along the i-axis of
the object g is different and smaller than the sampling step of
the detector. Therefore, for all pointings p, we consider that
the spatial sampling step Ti′ of the detectors for each channel
c is a multiple dc ∈ N of Ti with Ti′ = dcTi, as in the
classical image Super-Resolution [10]. Consequently, the 2D
measurement yc,p for a channel c and a pointing p writes

yc,p[i′, l′] =

(i′+1)dc∑

i=i′dc

∑

j∈Jc,p

gc,p[i, j, l′], with i ∈ Ic,p, (6)

where i′ and l′ are the spatial and spectral indexes on the 2D
detector, respectively. In practice, the summation along the i-
axis is computed as a convolution between g and a square
impulse response of size dc, followed by subsampling every
dc elements.

To conclude, we developed a non-stationary but linear
forward model involving relatively complex components that
writes

yc,p[i′, l′] =
∑

i,j

∑

l∈Lc

(
x[i, j, l] ∗

i,j
h[i, j, l]

)

wc[i− ip, j − jp, l]× hc,j,p[l′, l], (7)

and accounts for several effects:
• 2D spatial convolutions with spectrally varying PSF de-

scribed in Eq. (1) to model the optics,
• spatio-spectral windowing defined in Eq. (3) that models

different spatial pointing, and different spatio-spectral
selections,

• spectral blurring with a non-stationary response described
in Eq. (5),

• and spatial and spectral sampling with specific steps for
each detector which are larger than the sampling steps of
the 3D input, described in Eq. (6).

The next section presents the combination of this observation
model with a subspace representation of the 3D input image.

B. LMM forward model

1) Linear Mixing Model: Without additional information,
the reconstruction of x corresponds to the estimation of
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each voxel x[i, j, l] from the set of measurements {yc,p}
for all channels c and all pointings p. However, the spectral
information contained in the 3D input images can be complex,
with spectral rays, non-monochromatic spectral features and
continuum. Moreover, this spectral information is generally
highly correlated between spatial pixels over the whole mea-
sured spectral range. Thererfore, dimension reduction methods
such as Principal Component Analysis (PCA) [16] or Non-
negative Matrix Factorization (NMF) [27] can be very efficient
on 3D images with high spectral resolution such as HS images.

Here we propose to write the unknown 3D image x using
a Linear Mixing Model writing

x[i, j, l] =
M∑

m=1

am[i, j]× sm[l] (8)

where the spectral distribution at each spatial position (i, j) is
a linear combination of M spectral components sm, known
a priori or learned from the measurements, and unknown
proportions am. For our purposes, this is a subspace approx-
imation as the number of spectral components M is much
lower than the number of spectral bands L, as observed
with dimension reduction methods 2. For earth observation
with segmentation problems, the spectral components sm are
pure spectra called end-members, and the am coefficients are
called abundances [24]. In that case, additional constraints are
usually imposed on am such as the non-negativity and sum-
to-one constraints. This is not our case since we are only
interested in the subspace approximation to reconstruct the
original unknown 3D image x, and not in the physical meaning
of the spectral components sm.

The linear mixing model preserves the spatial and spectral
distributions of the 3D input image and has many advantages
• The subspace approximation significantly reduces the

number of unknowns that we want to estimate.
• As a consequence it is expected to increase the Signal-

to-Noise (SNR) ratio on the reconstructed object.
• The reconstruction problem is limited to the estimation

of the mixing coefficients am, which requires only a
spatial regularization to enhance the spatial resolution of
the estimated 3D image.

• As the reconstruction of x is a linear combination of
the estimated am and the known sm, the final spectral
resolution of the reconstructed object is the spectral
resolution of the spectral components sm,

• the spectral information is fully given regardless of the
channel characteristics, while the spatio-spectral recon-
struction of x directly from the measurements, without
considering the mixing model, cannot exploit the com-
plete spectral information at all spatial positions since the
observation model (see section II-A2) considers different
FOV depending on the channel.

• The estimated unknowns am depends solely on the
spatial information. Hence, all spectral related terms (that
depends on l and l′) can be pre-computed.

2If M � L, the reconstruction problem with an overcomplete dictionary
is considered, leading to variable selection methods, often done with sparsity,
outside the scope of this work.

2) Final Forward Model: By combining the linear mixing
model in Eq. (8) with the observation model in Eq. (7) we
obtain

yc,p[i′, l′] =
∑

i,j

∑

l∈Lc

([
M∑

m=1

am[i, j]sm[l]

]
∗
i,j
h[i, j, l]

)

wc[i− ip, j − jp, l]× hc,j,p[l′, l]. (9)

The above equation can be directly used to compute the
forward output. However, since we want to estimate the mixing
coefficients am and not the full 3D input image x, the known
spectral components sm can be included in the observation
model. Consequently, a new spectral dependent forward model
is formulated that directly links the mixing coefficients to the
measurements. For that purpose, all spectral operations related
to l and l′ can be combined and pre-computed.

First a spatial PSF cube that depends on m is computed for
each spectral component with hm[i, j, l] = sm[l]h[i, j, l]. The
model then writes

yc,p[i′, l′] =
∑

i,j

∑

l∈Lc

(
M∑

m=1

am[i, j] ∗
i,j
hm[i, j, l]

)

wc[i− ip, j − jp, l]× hc,j,p[l′, l]. (10)

Second, the spectral blurring of sm introduced by the spectral
response hc,j,p in Eq. (4) can be pre-computed with

hm,c,j,p[i, j, l′] =
∑

l∈Lc

sm[l]h[i, j, l]wc[l]hc,j,p[l′, l] (11)

where hm,c,j,p[i, j, l′] is a spatio-spectral PSF cube that de-
pends on the spectral template number m, the spectral window
Lc, and relative position j within the spatial window Jc,p (as
described by Eq. (4)). Finally, the forward model writes

yc,p[i′, l′] =
∑

i

∑

j∈Jc,p

wc[i− ip, j − jp]

(
M∑

m=1

am[i, j] ∗
i,j
hm,c,j,p[i, j, l′]

)
. (12)

Compared to Eq. (9), the final forward model is relatively
simplified with the following steps:
• First, the 2D mixing coefficients am are convoluted by

a collection of 2D+λ PSF hm,c,j,p that depends on the
spectral component number m, the channel c, and the
relative spatial position within the channel (j, p).

• After summation on m, the cube is spatially windowed
for each pointing p.

• Then, the high-resolution window is spatially detector
integrated (subsampled), resulting in 2D measurements
yc,p with a low spatial resolution.

3) Matrix Formulation: The model in Eq. (12) is linear
and represents the overall multi-frame 2D measurements yc,p
in terms of the unknown mixing coefficients a

yc,p = Hc,pa = Σi,jWcΣmCm,c,j,pa (13)

where C is a convolution operator, Σm a summation on the
spectral template number m,Wc a windowing or raw selection
and Σi,j a sum on i, j to model detector integration.
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Consequently, the adjoint operator writes

ec,p = Ht
c,pyc,p = Ct

m,c,j,pΣ
t
mW

t
cΣ

t
i,jyc,p (14)

where Σt is a duplication operator, W t
c a zero filling operator

and Ct
m,c,j,p a convolution with flipped response.

The overall measurements writes

y = Ha = [Ht
0,0, . . . ,H

t
C,P ]ta (15)

and the full-adjoint operator writes

e =
∑

c,p

Ht
c,pyc,p = Hty (16)

which is the sum of all retro-propagated measurements.
The next section describes the proposed reconstruction

formalized as an inverse problem approach with efficient
Quadratic Majorize-Minimize algorithm [22], [28].

III. INVERSE PROBLEM

Our proposed new forward model combines multiple ob-
servations with a full complex linear model y = Ha. The
operator H takes into account (1) spectral-dependent spatial
blurring, (2) multiple channel observations with different fields
of view, (3) spectral blurring, and (4) heterogeneous spatial and
spectral samplings. Therefore, the reconstruction of the mixing
coefficient a is an ill-posed inverse problem that includes data
fusion, deconvolution, and multi-frame super-resolution steps.

A. Proposed reconstruction

We propose a new multi-frame SR algorithm that relies on
the complete forward model in Eq. (12), with a reconstruction
solution defined as the minimizer of an objective function
combining a data fidelity term and a regularization term
expressed as

â = arg min
a

(
‖y −Ha‖2+R(a)

)
. (17)

Many regularization methods and algorithms have been pro-
posed in the literature. For instance, l2 regularization [23]
is the seminal approach with fast algorithms but fails to
preserve the high gradient values of the solution. The Total
Variation (TV) regularization [12] or dictionary-based ap-
proaches with sparsity constraints [29] have been broadly used
but can introduce cartoon-like effects and provide relatively
slow algorithms. More recently, prior learning from data with
machine learning approaches [30] have been widely explored
but require a lot of measurements to be competitive.

In this work, the major degradation effects of the forward
model are the spectral-dependent spatial and spectral blurring.
However, by choosing a linear mixing model with known
spectral components s, our reconstruction algorithm does
not require spectral regularization. On the other hand, the
spatial blurring is significant, especially at long wavelengths.
Therefore, we propose a convex spatial regularization for edge-
preserving. The objective function, denoted J(a), writes

J(a) = ‖y −Ha‖2+µ
∑

c∈C
φc(v

t
ca) (18)

where vc are first order differences in the two spatial dimen-
sions, µ is the spatial regularization parameter, and φc is a
strictly differentiable convex potential. However, an explicit
form of the minimizer â of J(a) is not available and cannot be
directly calculated. In addition, the forward model is already
computationally burden. Therefore, we must rely on highly
effective optimization algorithms, as described in section III-C.

B. Half-Quadratic Algorithm

The objective function J(a) is an instance of the more
general criterion [21], [31] with:

J(a) =
∑

q

µqΨq(Vqaq − ωq) (19)

where a is the unknown, Vq is a linear operator, ωq is a data
fixed vector, µq are scalar hyper-parameters, and Ψq(u) =∑

c φq(uc).
In addition, we suppose the following assumptions for the

scalar function φ [22]:
1) C1, even, coercive,
2) φ(

√·) is concave on R+,
3) and 0 < φ̇(u)/u < +∞, ∀u ∈ R.

This objective function structure is chosen to allow efficient
algorithms that use majorization with quadratic surrogate
functions which write Q [32]

Q
(
a,ak

)
= J

(
ak
)

+∇J
(
ak
)t (
a− ak

)
+

1

2

(
a− ak

)
A(k)

(
a− ak

)
(20)

where
A(k) =

∑

q

µqVT
q diag(bkq )Vq

and

bkq =
φ̇(Vqx

k − ωq)

Vqxk − ωq
. (21)

Lemma 3.1: [32] Let J be the objective function defined
in Eq. (19) and ak ∈ RN . If the assumption holds, then the
quadratic surrogate function Q in (20) is a tangent majorant
for J at ak, for all a ∈ RN ,

{
Q(a,ak) ≥ J(a),

Q(ak,ak) = J(ak).
(22)

The proposed criterion in Eq. (18) is an instance of Eq. (19)
with q = {1, 2}, µ1 = 1, Ψ1(·) = ‖·‖2, ω1 = y,
V1 = H , V2 = V = [v1, . . . ,vC ]t. In previous work [33],
we considered the half quadratic (HQ) strategy proposed by
Geman and Reynolds (GR) [31] that defined an augmented
objective function J∗(a, b), by using the quadratic surrogate
function on all space RN and the auxiliary variable b as

(23)J∗(a, b) = ‖y −Ha‖2 +
µ

2

∑

c∈C
bc(d

t
ca)2 + ψ(bc)

where the function ψ is related to φ through convex duality.
The augmented objective function J∗(a, b) shares the same

minimizer J(a) with

min
b
J∗(a, b) = J(a).
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The minimization of J∗(a, b) is quadratic with respect to
(w.r.t) a, and independent and explicit for each bc [21]. HQ
algorithm relies therefore on a two stages alternating the
minimization process until convergence

{
ak = arg mina J

∗(a, bk−1),

bk = arg minb J
∗(ak−1, b).

(24)

However the minimization w.r.t a involves solving the follow-
ing linear system

(HtH + µV t diag(b)V )a = Hty (25)

which cannot be explicitly obtained and must be approximated
iteratively. The conjugate gradient optimization algorithms are
wildly used, ensuring a convergence towards the solution [32].
However, in our case, the computational cost remains impor-
tant since our forward model is computationally burden. We
therefore choose to adopt recent and efficient algorithms based
on Majorize-Minimize step strategy and subspace optimiza-
tion [22], [34].

C. Subspace Optimization With Majorize-Minimize Step

Since the criterion in Eq. (18) is differentiable (and convex
if φ is convex), the optimization can be done with Non-Linear
Conjugate Gradient [35], or more efficiently with subspace
optimization methods. In the latter case, the iterative algorithm
writes:

a(k+1) = a(k) + α(k)g(k) +

Z∑

z=1

β(k,z)d(k−z) (26)

where g(k) = ∇J(a(k)) is the gradient of J(a(k)) at the
iteration k, d(k−z) are the previous descent directions, and
α(k) and β(k,z) are scalars.

We particularly rely on the Majorize-Minimize Memory
Gradient (3MG) algorithm [22] that exploits the structure of
the criterion in Eq (18) to compute both the steps α and
the conjugacy parameter β(z) via the Quadratic Majorize-
Minimize strategy. Therefore, Eq. (26) can be rewritten as

a(k+1) = a(k) +D(k)α(k) (27)

where D(k) is the subspace of dimension Z and α(k) a
vector of steps of size Z. Therefore, contrary to the traditional
line search strategy, finding the steps can be done with the
Quadratic Majorize-Minimize strategy in this subspace leading
to an explicit formula of α(k) with

α(k) = −U (k)−1∇J (k)
(
a(k)

)
(28)

with U (k) = D(k)tA(k)D(k) a Z × Z matrix. In our
experience, we choose Z = 2, that is a subspace of size
2 where search direction consists of the gradient and the
previous search D(k−1)α(k−1). Note that this strategy leads
to an efficient algorithm with guaranteed convergence, and we
refer to [22] for more details.

IV. EXPERIMENTAL RESULTS

This section tests the proposed reconstruction algorithm on
two synthetic 3D spatio-spectral images with various spatial
and spectral distributions. The developed forward model is
general but primarily adapted for the Medium-Resolution
Spectrometer of the Mid Infrared Instrument (MIRI/MRS)
onboard the James Webb Space Telescope (JWST), measuring
in the infrared spectral range, from 4.9 and 28.3µm [36].

We compare the proposed algorithm to the state-of-
art, which is the shift-and-add (S&A) reconstruction algo-
rithm [37], [8] followed by a TV regularization. First, the S&A
method shifts the overall measurements yc,p[i′, l′] from all
channels c and pointings p in order to align them (after a pre-
processing step of the raw data). The results are then co-added,
resulting in a reconstructed hyperspectral image with enhanced
spatial resolution. This method corresponds to minimizing a
least square criterion with

J(x) = ‖y − Sx‖2 (29)

with yt = [yt
0,0, . . . ,y

t
C,P ] and St = [St

0,0, . . . ,S
t
C,P ]. Sc,p

is a sampling and summation matrix that models detector
sampling but neglect blurring. The solution then writes

xS&A = (StS)−1
∑

c,p

St
c,pyc,p (30)

where St
c,p is an upsampling matrix, and (StS)−1 is a

diagonal normalization matrix that counts the number of times
a pixel is measured.

Since the S&A algorithm does not account for the blurring,
it is usually followed by a deconvolution step. In this work,
we chose a TV regularization for spatial deconvolution at each
wavelength l′, implemented with the primal-dual Chambolle-
Pock algorithm [38] writing

x̂l′
S&A = arg min

x

(
‖y −H l′xl′‖22+µ|∇xl′ |1

)
(31)

where H l′ is a spatial convolution operator for the wavelength
l′ and ∇xl′ is the first-order difference of the spatial image
for the same wavelength. This method does not allow data
fusion since the spatial information is treated separately for
every wavelength.

Moreover, to highlight the importance of the edge-
preserving regularization choice (see section III-A), especially
for 3D input images with sharp edges, our algorithm is also
compared to the classic l2 regularization [23]

âq = arg min
a

(
‖y −Ha‖2+µ‖V a‖2

)
(32)

solved via the conjugate-gradient optimization algorithm [39].

A. Setup of the experiment

We denote Obj1 the first 3D input image, representing a
synthetic object for which the results are easily interpretable.
Obj1 lives in a low-dimensional space, and expressed as
a linear combination of M = 3 spectral components sm
computed from astrophysical measurements [40]; weighted by
mixing coefficients am with sharp edges (see figure 3).
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The second 3D input image, Obj2, represents an astrophys-
ical simulation of the photodissociation region located in the
“Orion bar” [41]. It is made of M = 4 complex spectral
distributions, containing sharp spectral lines and continuum
emission, each weighted by their corresponding mixing coef-
ficient am which presents structures in a wide range of spatial
scales (see figure 4).

Both input images are represented on a 3D cartesian grid
with I × J = 120 × 120 pixels with a spatial sampling step
of Ti = Tj = 0.1 arcseconds. The spectral dimension for
both input images measures the infrared range from 4.85µm
to 28.5µm. Obj1 counts L = 3500 wavelengths uniformly
sampled with a step Tl = 6.7 10−3 µm, whereas, Obj2 counts
L = 3551 wavelengths non-uniformly sampled with a step Tl
varying from 2.4 10−3 to 1.4 10−2 µm.

The spectral dimension is divided by the HS instrument into
four distinct spectral channels, with different spectral range,
FOV, slit width and number (see table I). The optical com-
ponent of the HS instrument is limited by the diffraction [6]
with a PSF assumed known. The analytic form of the PSF for
a monochromatic wavelength λ can be theoretically obtained
from the Fourier transform of the aperture function of the
telescope. The PSF width depends on the wavelength, and its
FWHM is ' λ/D (radians), with D referring to the diameter
of the telescope aperture. However, for the JWST, there is
no exact analytical description of the aperture function. Thus,
the PSF is numerically computed using the WebbPSF [25]
package, developed by the Space Telescope Science Institute
(STScI). Fig. IV-A shows three monochromatic PSF at 5, 15,
and 25µm in logarithmic scales. It highlights the importance
of considering a wavelength-dependent PSF in our model,
especially since the FWHM of the PSF increases by a factor
of 5 between the shortest and longest wavelength.

To allow multi-frame measurements, the forward model
considers multiple observations of the same 3D input image,
with a dithering pattern of 8 pointing directions. For a par-
ticular pointing, the light inside each spatio-spectral selection
xc is dispersed and projected onto 2D detectors with different
spectral resolution R, and different spatial and spectral step
sizes depending on the channel. The spatial step size of the
measurements Ti′ is fixed by the spatial sampling of the de-
tector. Given the large size of the MRS detectors, we consider
in this work that the spectral step size of the measurements is
Tl′ = 4×TMRS

l′ and the spectral resolution is R = RMRS/4, in
order to reduce the computational cost of the problem, where
TMRS
l′ and RMRS are the spectral sampling of the detector

and the spectral resolution of the actual MRS instrument,
respectively, provided in [36]. The values of Ti′ , Tl′ , and
R, along with the dimension in pixels of the measurements
(I ′, L′) are given in Table I. The 2D measurements are finally
corrupted with an additive zero-mean white Gaussian noise
and with SNR = 30 dB.

The algorithms are implemented in Python with the Numpy
library and Q-MM 3toolbox [28] for Quadratic Majorization-
Minimization, with a single CPU at 5GHz with 32 GB of
memory.

3https://github.com/forieux/qmm/
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Fig. 2. PSF at different wavelengths of JWST/MIRI (logarithmic scale)
simulated with the WebbPSF package [25]

Spectral components
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Original mixing coefficients
 a1 a2  a3
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Fig. 3. Spectral components and mixing coefficients for Obj1

B. Estimation results for âm

The estimation of the mixing coefficients âm depends on
the overall blurred, sampled, and noisy measurements y. Fig. 5
shows the reconstruction of the mixing coefficients for Obj1
and Obj2. The red frames in Fig. 5 represent the largest
observed FOV, corresponding to the Channel 4 (see Tab. I).
We are interested in reconstructing âm inside this FOV even
if for the other channels (or wavelengths), no measurements
has been made. We test our reconstruction algorithm with
a sufficient number of iterations (see Table II) to ensure
convergence towards the solution âm. The reconstruction of
am for Obj2 is computationally more expensive than that for
Obj1, since Obj2 has one more spectral component.

Our proposed algorithm is based on minimizing the regular-
ized objective function in Eq. (18) with a convex regularization
function φ for edge-preserving. We particularly focus on the
Huber potential function [21] with

φ(δ, T ) =

{
δ2, if |δ|≤ T .
2T |δ|−T 2 otherwise, T ∈ R+.

(33)

The Huber function is continuously differentiable with a
quadratic form below a fixed threshold T to promote smooth-
ness to the solution, and a linear form above T to preserve
the high gradient values. Consequently, two regularization
parameters µ and T must be tuned to ensure the best recon-
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Ch. Spectral range
(µm)

FOV
(pixels)

Slit width
(arcsec) Slit number Ti′

(arcsec)
Tl′

(µm) I′ pixels L′ pixels R

1 4.9 – 7.7 34× 42 2× Tj 21 2× Ti 4 10−3 17 750 867
2 7.4 – 11.7 42× 51 3× Tj 17 2× Ti 6 10−3 21 750 760
3 11.5 – 18.1 57× 64 4× Tj 16 3× Ti 9 10−3 19 750 596
4 17.7 – 28.5 72× 72 5× Tj 12 3× Ti 1.6 10−2 24 750 410

TABLE I
CHARACTERISTICS SPECIFIC TO THE FOUR SPECTRAL CHANNELS OF THE IFS INSTRUMENT CONSIDERED IN THIS WORK.

Spectral components

5 10 15 20 25
[ m]

0.0
0.2
0.4
0.6
0.8
1.0 s1 [m]

s2 [m]
s3 [m]
s4 [m]

Original mixing coefficients
 a1 a2

2.5 5.0 7.5
×10 1

0.0 2.6 5.3 8.0
×10 1

 a3  a4

2 4 6
×10 1

2.5 3.7 5.0
×10 1

Fig. 4. Spectral components and mixing coefficients for Obj2

struction. Their values are reported in Table II. In practise we
have minimized the normalised least square error between the
original am mixing coefficient and the estimated ones âm for
both objects

Error(µ, T ) = ‖am − âm(µ, T )‖2/‖am‖2. (34)

The spatial distribution differs between am for Obj2, particu-
larly between am=2 which contains sharp edges and am 6=2

which are smoother. Therefore, we have used one set of
parameters (µ, T ) for m = 2, and an other one for m 6= 2
(see Table II).

The comparison between figures 3-4 and figure 5 shows
that the reconstructed mixing coefficients âm for both ob-
jects are unmixed and deconvoluted while preventing noise
amplification without excessive penalization of sharp edges.
The normalized least square error are as small as 0.039% and

Iterations Runtime [s]
µ Tper iteration

Obj1 455 7.8 18 0.025

Obj2 633 10.6
0.005 (m 6= 2) 1.5 (m 6= 2)
0.0005 (m = 2) 0.001 (m = 2)

TABLE II
ITERATION NUMBERS AND HYPERPARAMETER VALUES FOR BOTH INPUT

OBJECTS

0.327%, for Obj1 and Obj2, respectively.

 a1  a2  a3

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

 a1  a2

2.5 5.0 7.5
×10 1

0.0 2.6 5.3 8.0
×10 1

 a3  a4

2 4 6
×10 1

2.5 3.7 5.0
×10 1

Fig. 5. Estimated mixing coefficients âm for Obj1 (top) and Obj2 (bottom)

C. Hyperspectral Reconstruction

In this section, we compare the original and the recon-
structed 3D images with the proposed and state-of-the-art
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algorithms. The reconstructed HS image are obtained from the
estimated mixing coefficients âm using Eq. (8). In addition to
the l2 reconstruction, the proposed results are compared to the
“Shift and Add” algorithm (S&A) Eq. (30) followed by a TV
deconvolution using Eq. (31).

We first showcase in Fig. 6 the spectral distribution at the
center of the FOV of the original and the reconstructed images
computed with the S&A and the proposed algorithms. Qual-
itatively the spectral distribution of the reconstructed image
with the proposed algorithm matches the original spectral
distribution over the whole measured range. On the other
hand, the S&A algorithm fails to fully reconstruct the spectral
distribution, particularly the spectral lines in Obj2, which
appears broader and less intense than the original ones. Such
results are expected since the S&A algorithm does not consider
the spectral blurring initially introduced by the wavelength
dispersion system.

Fig. 9 illustrates the spatial distribution of the reconstructed
3D image of Obj1 for three monochromatic images at λ = 6.5,
14 and 21 µm, respectively, belonging to channels 1, 3, and
4. The loss of spatial information caused by the detector inte-
gration is compensated in the multi-frame SR reconstruction
using the S&A algorithm. However, since this method does
not consider spectral variations of the PSF, the reconstructed
images are blurred, especially at long wavelengths. We pro-
ceed by applying a TV deconvolution for each monochromatic
image. This added step allows better preservation of sharp
edges and smaller errors but fails to restore spatial details
at small scale since the regularization is applied separately
for each monochromatic image and does not account for the
correlations between spectral bands. On the other hand, the
proposed algorithm shows a good performance with smaller
error values for all monochromatic images. The improvement
of spatial resolution is striking, and the spatial dynamic
range appears fully reconstructed. Moreover, the edges in the
image are well preserved, whereas the l2 approach introduces
smoothing and ringing artifacts.

Fig. 10 shows the spatial distribution of the reconstructed
HS image for Obj2, for three monochromatic images at
λ = 6.5 µm which belongs to a continuum, and at λ = 17
and 18.7 µm corresponding to two different spectral lines.
As mentioned earlier, the reconstructed spectral lines with the
S&A algorithm are spectrally broaden because the spectral
response in not taken into account. Hence, for a fair com-
parison between the algorithms, we have spectrally integrated
the reconstructed HS image with the S&A algorithm over the
broad reconstructed spectral line, then we proceed with the
TV deconvolution for the integrated images. Our proposed
algorithm shows the best qualitative reconstructions with the
lowest errors for all monochromatic images. The l2 approach
gives good results with comparable errors for the smooth
images but fails to preserve the sharp edges, particularly at
λ = 18.7 µm as illustrated in Fig. 7. Analogously to Obj1,
the S&A and TV algorithms fail to fully reconstruct small-
scale spatial details.
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Fig. 6. Spectral distribution of the reconstructed HS image with the proposed
and S&A algorithms, at the central spatial position (60,60) for Obj1 (Top),
Obj2 (Middle: note that the three spectral distributions are shifted for clarity).
The bottom panel presents a zoom on a spectral line for Obj2 .

Fig. 7. Zoom on sharp edges for Obj2 at 18.7µm: [Left] Original, [center]
proposed, [right] l2 approach.

D. Quality Metrics

To better evaluate the spatial and spectral performances
of the reconstruction algorithms, we use three quantitative
measurements:

1) the Spectral Angular Mapper (SAM) [42] measuring the
spectral distortion, in radians, of the mth pixel

SAM(m) = arccos

(
< xm, x̂m >

‖xm‖2‖x̂i‖m

)
. (35)

where xm and x̂m are the spectral vector of the mth

spatial location (m ∈ [0, . . . , I] × [0, . . . , J ]) of the
original and reconstructed 3D images, respectively. The
further the SAM value is from 0, the greater the spectral
distortion.

2) the peak signal-to-noise ratio (PSNR)

PSNR(l) = 10 log10

(
max(x)l

‖xl − x̂l‖2
)
. (36)
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Fig. 8. Global SAM(a), SSIM(b), and PSNR(c) for obj1 and obj2

PSNR(l) denotes the PSNR of the spatial image at the
lth spectral band of x and x̂.

3) the Structural Similarity Index (SSIM) [43], computed
for each lth spectral band, whose value varies between
0 and 1. The higher the value, the better the similarity.

The global SAM is computed by averaging over the whole
image, while the global PSNR and SSIM are computed by
averaging all spectral bands.

We illustrate in Fig. 8, the average SAM, SSIM, and PSNR
for Obj1 and Obj2. The proposed algorithm shows the best
spectral reconstruction with the lowest distortion for both
objects. The spectral distortion is very high for Obj2 and the
S&A algorithm, due to the presence of sharp spectral lines
which are hardly recovered by this algorithm. Moreover, our
algorithm shows the best similarity index, especially for Obj1.
Overall, the proposed algorithm shows the best spatio-spectral
reconstruction for both scenes, with the highest average PSNR
values.

V. CONCLUSION

We present in this work a new model for hyperspectral data
fusion based on low-rank approximation and a new efficient
Super-Resolution algorithm for hyperspetral reconstruction
based on Quadratic Majorization-Minimization optimization
algorithm.

The first contribution is to develop an explicit forward
model based on IFS instruments. This model takes as input a
high spatio-spectral resolution image, approximated on a low-
rank subspace, and acquire a set of 2D measurements with a
high spectral resolution, projected onto different detectors with
different characteristics. The complex forward model takes
into account (1) different observations of the same scene with
sub-pixel shifts, (2) wavelength-dependent spatial and spectral
PSFs, (3) different spectral channels and IFUs, observing the
input with different spectral ranges and different numbers of
slits of different sizes, and finally (4) heterogeneous spatio-
spectral samplings.
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Fig. 9. Spatial reconstruction for Obj1: [1st row] Original images at
6.5, 14, and 21 µm. [2nd row] S&A. [3rd row] TV restoration. [4th row]
Reconstruction with l2. [5th row] proposed.

The second contribution is a fusion of the multi-frame
blurred and sampled 2D measurements, acquired from dif-
ferent spectral channels, in order to restore the single HSI
observed input. The algorithm is based on the regularized least
square approach with convex edge-preserving regularization,
and solved via the iterative Majorize-Minimize Memory Gra-
dient (3MG) [22] optimization algorithm, with freely provided
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Fig. 10. Spatial reconstruction for Obj2: [1st row] Original images at 6.5, 17,
and 18.7 µm. [2nd row] Reconstruction with S&A. [3rd row] TV restoration.
[4th row] l2 approach. [5th row] proposed.

code4.
Our method allows joint spectral unmixing and spatial and

spectral enhancements. The spectral components, known a
priori, serve as a spectral regularization to our approach and
prevent spectral distortion, whereas the multi-frame observa-
tions and the enforced spatial regularization allow restoring
the original spatial distribution without excessive penalization

4http://github.com/forieux/qmm

of high gradient values.
Our work is validated with relative error below 1% over

the whole reconstructed HS images for an SNR = 30 dB. Our
algorithm outperformed qualitatively and quantitatively the l2
approach, as well as the standard S&A and TV deconvolution
algorithms.

Several perspectives can be considered. First, the spatial and
spectral resolutions of the reconstructed 3D image can be en-
hanced by performing a fusion between the IFS measurements
with high spectral but low spatial resolution, considered in this
work, and multispectral measurements with high spatial but
low spectral resolution, observing the same scene. The fusion
problem can be solved in the inverse problem framework [1].
In addition, the spectral components of the LMM are, in many
applications, not provided a priori and must be extracted or
learned directly from the measurements along with the mixing
coefficients [44]. In a wider perspective, we also would like to
estimate the hyperparameters jointly with the 3D input image
instead of being fixed by hand. The problem can be formulated
in the Bayesian framework where the solution is deduced from
a posteriori law for the unknown hyperparameters and the 3D
input image [45].
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and multispectral image fusion under spectrally varying spatial blurs –
application to high dimensional infrared astronomical imaging,” IEEE
Transactions on Computational Imaging, vol. 6, pp. 1362–1374, 2020.

[2] J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot
imaging spectrometer (latis) for hyperspectral fluorescence microscopy,”
Biomed. Opt. Express, vol. 8, no. 3, pp. 1950–1964, Mar
2017. [Online]. Available: http://www.osapublishing.org/boe/abstract.
cfm?URI=boe-s8-s3-s1950

[3] M. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral imaging for
military and security applications: Combining myriad processing and
sensing techniques,” IEEE Geoscience and Remote Sensing Magazine,
vol. 7, no. 2, pp. 101–117, 2019.

[4] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal
of Biomedical Optics, vol. 19, no. 1, pp. 1 – 24, 2014. [Online].
Available: https://doi.org/10.1117/1.JBO.19.1.010901

[5] S. Vives, E. Prieto, Y. Salaun, and P. Godefroy, “New technological
developments in integral field spectroscopy,” in Advanced Optical
and Mechanical Technologies in Telescopes and Instrumentation,
E. Atad-Ettedgui and D. Lemke, Eds., vol. 7018, International Society
for Optics and Photonics. SPIE, 2008, pp. 959 – 968. [Online].
Available: https://doi.org/10.1117/12.789576

[6] J. W. Goodman, Introduction to Fourier Optics McGraw-Hill Series
in Electrical and Computer Engineering, 1996, vol. 8, no. 5.
[Online]. Available: http://stacks.iop.org/1355-s5111/8/i=5/a=014?key=
crossref.ad20ea108e8f625cb0486bf680f74198
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5.3 Comparison between 3D reconstructions di-
rectly from measurements and via mixture
coefficient estimation

We have developed in this thesis two different forward models for the same IFS in-
strument but with different linear models for the 2D+λ input image. In Chapter 4,
the developed forward model was used to reconstruct the spatial and spectral distri-
bution of x directly from the measurements y. We refer to this reconstruction in this
section as the spatio-spectral reconstruction. In this Chapter, we choose the LMM
model for x with known spectral components s, and developed a spectral-dependent
forward model used to estimate the mixing coefficients a. Consequently, the full re-
constructed 3D image x̂ results from

∑M
m=1 âmsm. We refer to this reconstruction as

the LMM reconstruction. The spatio-spectral and LMM reconstructions are based
on minimizing a regularized objective function for edge-preserving, but are solved
with different algorithms. For the spatio-spectral reconstruction, we used the fast
half-quadratic approaches based on Geman and Reynolds formulation [Geman 1992],
and for the LMM reconstruction, we used the Majorize-Minimize Memory Gradient
algorithm [Chouzenoux 2011].

This section compares the reconstructed spatial and spectral distributions for
Obj1 with the two proposed reconstructed algorithms and analyzes the produced
results.

Spatial distribution: Comparison between the original and the reconstructed
images are shown at 6.5, 14, and 21µm in Fig. 5.1. Overall, both algorithms show
a good spatial reconstruction with relatively small errors. The spatial dynamic
for both reconstructions is fully restored, and the spatial resolution is improved
while preserving the edges. However, the spatial distributions with the LMM re-
construction have smaller errors than with the spatio-spectral reconstruction for all
wavelengths. Firstly, the subspace approximation of the 2D+λ input reduces the
number of unknowns that we estimate, leading to an increase in the signal-to-noise
ratio (SNR) on the reconstructed 2D+λ image. In addition, the LMM reconstruc-
tion only requires a spatial reconstruction to enhance the spatial resolution of the
reconstructed mixing coefficients â, whereas the spatio-spectral reconstruction is
done at every wavelength yielding to larger errors in the reconstructed spatial dis-
tribution, especially at longer wavelengths where the blurring is more significant.
To better showcase the performance of the two reconstruction algorithms, we show
in Fig. 5.2 a plot of the spatial distribution at the central row of the reconstructed
Obj1, at 6.5, 9, 14, and 21µm. We can see that both of the proposed algorithms
perfectly reconstruct the spatial distribution, particularly around edges, except for
at 21µm where the LMM reconstruction allows a better performance around the
edges. Finally, as mentioned in paragraph IV-B of section 5.2, the FOV of the
estimated â corresponds to the largest FOV observed by the IFS despite the spectral
channel. Consequently, the reconstructed x̂ with the LMM have the same FOV at
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all wavelengths. This is not the case for the reconstructed x̂ with the spatio-spectral
reconstruction, since the corresponding FOV changes according to the channel (as
shown in the middle panel of Fig. 5.2).
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Figure 5.1: Spatial reconstruction for Obj1 at 30dB: [1st row] Original images
x at 6.5, 14 and 21 µm. [2nd row] Spatio-spectral reconstruction of x with
spatial and spectral regularization for edge-preserving. [3rd row] Reconstruc-
tion of x as a linear combination of the estimated a and the known s.
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Figure 5.2: Spatial reconstructions of the central row for obj1 at λ =

6.5, 9, 14, and 21µm, with the spatio-spectral reconstruction algorithm and
the reconstruction as a linear combination of the estimated a and the known
s.

Spectral distribution: We display in Fig. 5.3 the spectral distributions of the
original x, the reconstructed x̂ with the spatio-spectral reconstruction and the LMM
reconstruction. In Fig. 5.3 (Top panel: left), the spectral distribution of the recon-
structed x̂ with both algorithms fits the original spectral distribution over the whole
measured range (from 4.75 to 28.5µm) because the spatial position corresponds to
a smooth region. In Fig. 5.3 (Top panel: right), the spatial position is chosen in a
region with a high gradient. The spectral distribution of the spatio-spectral recon-
struction fits perfectly the original spectral distribution at small wavelengths but
fails to perfectly match the original distribution at long wavelengths because the
spectral distribution are highly mixed within a spatial location; however, the layout
of the spectral distribution and the edges are preserved.
The two spatial locations in the top panel of Fig. 5.3 are observed by all spectral
channels. In the bottom panel, we compare the spectral distribution for a spatial
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location observed only with channel 42. Of course, the spatio-spectral reconstruc-
tion does not provide spectral information outside the spectral range of Channel
4. In contrast, the spectral distribution with the LMM reconstruction is entirely
given regardless of the spatial position and the observed spectral channels since the
spectral components s are known and covers the whole measured spectral range.

To quantify the spatial and spectral performances of the reconstructed algo-
rithms, we use the averaged SAM, PSNR, and SSIM, detailed in paragraph IV-D of
section 5.2. The values of these quality metrics are reported in Table 5.1. First, both
reconstruction algorithms show a good spectral distribution with SAM values very
close to 0. The LMM reconstruction shows the lowest SAM value, which is expected
since the spectral resolution of x̂ is imposed by the known s. Moreover, the LMM
reconstruction have the best SSIM values since it provides a better spatial quality
than the spatio-spectral reconstruction. Overall, the LMM reconstruction shows the
best spatio-spectral reconstruction for Obj1, with the highest PSNR value.

x̂
∑

m âmsm

PSNR 45.5 61.5

SSIM 0.97 0.99

SAM 1e−2 5e−4

Table 5.1: Global PSNR, SSIM and SAM for the reconstructed obj1 with the
spatio-spectral reconstruction algorithm of x and the reconstruction algorithm
of x as a linear combination of the estimated a and the known s.

5.4 Conclusion
We present a new forward model for the IFS instrument of JWST/MIRI that is
based on the low-rank approximation of the 2D+λ input image, with known spec-
tral components s. This new forward model was used for the reconstruction of the
unknown mixing coefficients a using the Quadratic Majorize-Minimize (Q-MM)3

optimization algorithms [Chouzenoux 2011]. This work is the subject of a publi-
cation submitted in “IEEE Transactions on Computational Imaging” and explicitly
integrated into the first section of this chapter.

In the second section of this chapter, we use 2D+λ synthetic image to val-
idate the performance of the spatio-spectral reconstruction algorithm proposed in
Chapter 4 used to reconstruct x directly from the measurements y and the LMM re-
construction algorithm, where the reconstructed x̂ results from

∑M
m=1 âmsm. Both

reconstruction algorithms significantly enhance the spatial and spectral resolutions
of x̂, but the LMM reconstruction algorithm shows overall a better spatio-spectral

2see the channel description in Table 1 from the previous section
3code available online at http://github.com/forieux/qmm
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Figure 5.3: Comparison of the spectral reconstruction for obj1 with the spatio-
spectral reconstruction algorithm of x and the reconstruction algorithm of x as
a linear combination of the estimated a and the known s for a spatial position
located in a smooth region (Top panel: left), a spatial position located in a
region presenting high gradients (Top panel: right), and a spatial position
observed only with the spectral channel 4 (Bottom panel).

reconstruction and provide the best qualitative results with a normalized least square
error less than 2.1 10−2 %. In addition, the spectral information with the LMM re-
construction is entirely given regardless of the characteristics of the channels. In
contrast, the spatio-spectral reconstruction directly from the measurements y does
not provide a full spectral reconstruction, particularly for spatial locations not ob-
served by all spectral channels. However, the spectral components s are, in many
cases, not provided a priori and must be estimated before or jointly with the esti-
mation of the mixing coefficients.



Chapter 6

General Conclusion

6.1 Summary of the contributions
This thesis deals with reconstructing a discrete 2D+λ image (hyperspectral image)
with a high spatial and spectral resolutions from a set of blurred, truncated, and
aliased 2D measurements using inverse problem approaches. The measurements are
acquired from an HS imaging system based on Integral Field Spectrometers (IFS).
In particular, we are interested in the Mid-Resolution Spectrometer of the Mid-
Infrared Instrument (MIRI) onboard the James Webb Space Telescope (JWST).
The telescope and the instrument involve complex components that spatially and
spectrally modify and degrades the measurements. In Chapter 3 we have studied
the characteristics and identify the responses of these components, which is a crucial
step to build the forward model to be used for the reconstruction process.

First, the JWST incorporates an all-reflective system that focuses the light of
the 2D+λ input image on a focal plane. Because of the diffraction, the response of
the optical system (or spatial PSF) introduces a spatial blurring to the focused sky
images that depend on the wavelength. However, accurate knowledge of the PSF
is not always ensured, particularly for the JWST, because of the complex shape
of its mirror. Therefore, we use the official WebbPSF simulator developed by the
Space Telescope Science Institute (STScI) to simulate the wavelength-dependent
PSFs numerically.

Moreover, the MRS instrument measures an extensive infrared range (4.9 -
28.3µm) observed from different spectral channels to allow a full wavelength cover-
age on multiple detectors with a high spectral resolution (ranging from 1500-3000).
Each channel incorporates an Integral Field Unit (IFU) that observes a Field of
View (FOV) through several slits in parallel, with a variable number and size of
the slits across spectral channels. The light inside each spatio-spectral selection is
dispersed with a diffraction grating that introduces a wavelength-dependent spectral
blurring with a known PSF form, then projected and sampled onto 2D detectors
with heterogeneous spatial and spectral step sizes depending on the channel. Since
the spatial sampling is insufficient at all wavelengths, the telescope allows a dither-
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ing mode consisting of slightly shifting of the telescope pointing between exposures
following a specific pattern, leading to a multi-frame Super Resolution problem.

In chapter 4, we have tackled the reconstruction of a discrete 2D+λ image by
jointly processing the overall set of degraded 2D multi-frame measurements observed
from different selections (spectral channels and IFU) and pointings of the instru-
ment. The reconstruction process is based on the inverse problem approaches and
relies on two major stages. The first stage in the conception of a forward model de-
pends on the discrete object model. The forward model is a series of mathematical
operators modeling the response of the IFS instrument. It allows the extraction of
an observation matrix H that establishes a relationship between the measurements
y and the unknown input x, and its transpose Ht, both used in the reconstruc-
tion algorithm. In the second stage, we propose a reconstruction algorithm based
on the regularized least square methods where the solution is the minimizer of a
mixed criterion composed of a data fidelity term and some prior knowledge about
the unknown input. However, the reconstruction problem is ill-posed because the
matrix HtH is ill-conditioned mainly from blurring. To correct the ill-posedness,
we use convex spatial and spectral regularization terms for edge-preserving. Finally,
since a closed-form expression of the minimizer is not explicit, we rely on the fast
half-quadratic approaches based on Geman and Reynolds formulation to estimate
the solution.

We have tested the reconstruction algorithm on two synthetic HS input im-
ages with various spatial and spectral distributions. To showcase the importance of
edge-preserving regularization, particularly around spatial edges, we compare our
algorithm with state-of-art algorithms such as the classic l2 regularization and the
shift-and-add (S&A) algorithm. Since the latter does not consider the blurring, we
also compare the proposed algorithm with the S&A followed by spatial TV decon-
volution for each spectral band. Even though the proposed algorithm is computa-
tionally more complex among the reconstruction algorithms, it allows a significant
increase in the spatial and spectral resolutions and provides the best qualitative re-
sults, with the smallest error between the original and reconstructed 2D+λ images
for both synthetic images. We have also studied the dependence of our results on
the signal-to-noise ratio (SNR) of the simulated measurements. Finally, we have
extended our comparison by applying source separation techniques such as princi-
pal component analysis and non-negative matrix factorization to the original and
reconstructed images with the proposed and S&A algorithms. The goal is to evi-
dence the importance of deconvolution and the Super-Resolution on the extracted
spectral components. We observe that the spectral components extracted from the
reconstructed input image with the proposed algorithm match the original spectral
components, which is not the case of the non-deconvoluted spectral components
provided by the S&A algorithm.

The proposed algorithm described in chapter 4, however, presents some limita-
tions that are mainly related to the spatio-spectral object model. First, the forward
model involves complex components and is computationally burdensome. Second,
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the reconstructed HS images, measuring a broad infrared range, are composed of
several thousand spectral bands. Therefore, the number of unknowns to estimate
is relatively significant, leading to an increase in the computational complexity of
the reconstruction algorithm. In addition, our algorithm requires the determina-
tion of four hyperparameters (spatial and spectral regularization parameters and
edge-preserving thresholds), which is a long process regarding the computational
cost. Finally, the spectral distributions, particularly for astronomical observations,
usually include spectral rays, spectral features, and a continuum requiring different
spectral regularization parameters and thresholds for the different types of spectral
information.

Chapter 5 considers a new discrete linear model for the HS input image x, al-
lowing to overcome the limitations of the algorithm proposed in Chapter 4. In
particular, we assume that x lives in a low dimensional subspace and can be repre-
sented by a small number of spectral components s, assumed known, each weighted
by an unknown mixing coefficient a. This representation preserves the spatial and
spectral distributions of x.

The proposed reconstruction algorithm is based on the regularized least square
approaches with a convex spatial regularization for edge-preserving. The problem is
solved with a highly effective optimization algorithm called the Majorize-Minimize
step strategy and subspace optimization. We show on simulations that the pro-
posed algorithm shows a significant increase in spatial resolution, especially around
the edges. Moreover, the reconstruction algorithm allows the preservation of the
spectral distribution, particularly the spectral rays, thanks to the known spectral
components. Finally, we evaluate the spatial and spectral performances of the re-
constructed image x̂ with the proposed l2 and the S&A algorithms. We observe that
x̂ with our algorithm shows the least spectral distortion (SAM), the least spatial
degradation of structural information (SSIM), and the highest PSNR.

6.2 Perspectives
The contributions presented in this thesis allow several improvements and open
perspectives for future work.

1) The forward models provided in Chapters 4 and 5, modeling the responses
of the MRS instrument (detailed in Chapter 3), is used to simulate the 2D multi-
frame measurements. However, other simulators have been developed mainly for
the MRS instrument. In particular, a publicly available Python package called
“MIRISim” [Klaassen 2020], developed by the MIRI instrument team provides on-
orbit performance of the MRS instrument and allows accurate representation of
the measurements. Therefore, it is necessary to evaluate the performance of our
reconstruction algorithms (that depends on our forward models) on measurements
simulated with “MIRISim”. In addition, it will also be necessary to evaluate the per-
formance of our reconstruction algorithms on real data that should be transmitted
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by the JWST from six months after launch.

2) Our reconstruction algorithm includes a multi-frame Super-Resolution step
from multiple pointing of the MRS to enhance the spatial resolution of the re-
constructed 3D image. Another solution for spatial resolution enhancement is to
perform a fusion process between two sets of measurements of the same scene with
complementary information [Guilloteau 2020]. We are thinking of the measure-
ments provided by the MRS instrument [Wells 2015] with high spectral resolution
(hyperspectral data with λ/∆λ ≈ 1500 − 3500) but limited spatial resolution due
to spatial undersampling and small field of view (up to 6.9 × 7.9 arcseconds2), and
measurements provided by the imager of the MIRI instrument [Bouchet 2015] with
high spatial resolution and extended field of view (74×113 arcseconds2) but limited
spectral resolution (multispectral data with λ/∆λ ≈ 5). Both instruments cover
the same spectral range from 4.89 to 27.8µm. The fusion process can be formulated
as an inverse problem where the reconstructed 2D+λ image x̂ is the minimizer of
an objective function J associated with two data fitting terms for the hyperspectral
(HS) and for the multispectral (MS) measurements, respectively, writing

x̂ = arg min
x
‖yHS −HHSx‖2+‖yMS −HMSx‖2+µR(x) (6.1)

where yHS and yMS denotes the hyperspectral and multispectral measurements,
respectively, HHS and HMS the corresponding forward models, and finally R(x)

the regularization term.
It would also be interesting to test the fusion process between two HS measure-
ments observing the same scene and acquired from different instruments, such as the
MRS instrument of JWST/MIRI and the infrared spectrometer (IRS) of the Spitzer
telescope 1. While the JWST includes a segmented hexagonal mirror of 6.5m in
diameter, the Spitzer telescope includes a monolithic circular mirror of 0.83m in
diameter. Consequently, the different HS measurements are spatially blurred with
very different PSFs. In addition, the IRS and MRS instruments cover different spec-
tral ranges with varying fields of view, spatial and spectral resolutions. Finally, the
IRS and MRS instruments use different acquisition techniques to produce HS mea-
surements. The MRS is an IFS instrument that observes the FOV through several
slits in parallel, whereas the IRS acquires the measurements via successive spatial
scanning by changing the telescope pointing.

3) The estimation of the unknown input x can be also done in the Bayesian
framework instead of the deterministic framework [Idier 2001b]. The reconstructed
x̂ from the measurements y can be inferred through its posterior distribution P (x|y).
Given the measurements y, P (x|y) can be derived from the likelihood function
P (y|x) and a prior distribution P (x) using the Bayes theorem that writes

P (x|y) =
P (y|x)P (x)

P (y)
(6.2)

1https://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/
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with P (y) the marginal law for the measurements.
From Eq. (6.2), several estimators can be used to estimate x that requires the
definition of the likelihood function and the prior distribution. The most common
estimators are the maximum a posteriori probability (MAP) that leads to numerical
optimization problems and the minimum mean square error (MMSE) that leads to
a numerical integration problem.

The solution of the inverse problem depends on the estimation of hyperparam-
eters that find a trade-off between the given measurements and the information
provided by the a priori term. In the deterministic framework, we fixed the values
of the hyperparameters manually by keeping the set that minimizes at best the er-
ror between the reconstructed and the original input image. However, the latter is
not provided in many real life applications. Thus, we can rely on the unsupervised
bayesian approaches where the hyperparameters can be considered nuisance param-
eters, estimated jointly with x, which is a challenging problem [Dobigeon 2009].

4) The reconstruction of x considered in this thesis aims at solving a large system
of linear equations that writes

Ax = b (6.3)

where b is a known vector and A ∈ RN×N is a square and positive definite matrix
that writes

A = HtH + µV tBV (6.4)

with H denoting the IFS forward model, V a linear operator and B an identity
matrix or a diagonal matrix. Since the problem is high dimensional, direct inversion
of the matrix A is computationally complex and untractable.

In Chapter 5 we reconstructed a 3D spatio-spectral input using iterative algo-
rithms, such as the efficient optimization algorithm based on the Majorize-Minimize
step and subspace approximation. In addition, we assumed a low-rank approxima-
tion for the 3D input to reduce the number of the estimated unknowns. However,
the reconstruction problem remains computationally complex because of the com-
plexity of the IFS forward model. Moreover, the reconstruction problem cannot be
considered in the Fourier domain because of the heterogeneous spatial and spectral
samplings and the spatio-spectral selections (like IFU and spectral channels). Other
numerical options might be considered to accelerate the reconstruction process, in
particular, preconditioning [Shewchuk 1994].

Preconditioning is a numerical solving method that reduces the condition num-
ber of the reconstruction problem and accelerates the rate of convergence of the itera-
tive optimization algorithm. It consists of introducing a preconditionerM ∈ RN×N
of the matrix A such that M−1A has a smaller condition number than A. Hence
the problem at Eq. 6.3 rewrites

M−1Ax = M−1b (6.5)

Ideally,M−1 = A. However, this case is not possible since inverting the matrix A is
untractable. The preconditioner main objective is to approach A withM such that
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the matrix M can be easily inverted with a low computational cost. For instance,
we can consider that the matrix M writes

M = H
′tH

′
+ µDtID (6.6)

where I is an identity matrix and the matrix H ′ accounts only for the wavelength
dependant spatial blurring and neglecting the other modifications and degradation
of the original IFS forward modelH. The matrixM is, in that case, a block Toeplitz
matrix and can be efficiently inverted in the Fourier domain [Hadj-Youcef 2020].

5) In Chapter 5, we assumed a low-rank approximation where the 3D input
image x is formulated as a linear combination of spectral components s, weighted
by mixing coefficients a. We also assumed that s are already known, and the
inversion problem consisted of enhancing the spatial resolution of the reconstructed
x̂ by estimating a. However, the spectral components s, in most cases, are not
known a priori and must be estimated from the measurements y.

Different algorithms for extracting the spectral components can be found in
the literature [Henrot 2014b, Bioucas-Dias 2012]. In addition, estimating s can be
achieved separately from the estimation of a or jointly.

The blind unmixing problem (estimation of both a and s) is challenging because
the spatial and spectral distributions of the measurements are severely degraded,
particularly from the wavelength-dependent blur. Consequently, the estimation s
before the reconstruction of a can be inaccurate since the spectral distribution is
highly mixed because of the blurring.

Therefore, a joint deconvolution and unmixing can be used to solve the prob-
lem [Henrot 2014b].

In addition, in our work, we were only interested in using the LMM for subspace
approximation and not in the physical meaning of the spectral components s. How-
ever, the latter can be important in several applications, particularly to identify the
chemical components of the observed scene. In that case, the mixing coefficients
should satisfy the non-negativity constraint and the sum-to-one constraint. Thus,
the estimation of a corresponds to solving constrained least squares approach that
writes

â = arg min
a
‖y −H

M∑

m=1

amsm‖2+R(a)

subject to a > 0 and
M∑

m=1

am = 1 (6.7)

6) We can also test and validate the efficiency of our reconstruction algorithm
on a synthetic 3D image expressed in a low-dimensional subspace, with at least one
mixing coefficient that has a punctual point source as spatial distribution. This
reconstruction can be very challenging since the spatial distribution of the measure-
ments y can be lost because of the severe spatial blurring and detector integration.
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Titre: Reconstruction hyperspectrale haute résolution par inversion de mesures spectroscopiques
à integrale de champ. Application au spectromètre infrarouge MIRI-MRS du télescope spatial
James webb.

Mots clés: Problème inverse, Super-Résolution, Image Hyperspectrale, Déconvolution, Spectroscopie.

Résumé: Cette thèse traite des approches de
type problème inverse pour reconstruire une image
3D spatio-spectrale (2D+λ) à partir d’un ensemble
de mesures infrarouges 2D fournies par l’instrument
“Integral Field Spectrometer” (IFS) (Mid-Resolution
Spectrometer: MRS) de l’instrument “Mid-Infrared”
à bord du “James Webb Space Telescope” (JWST).
Plusieurs difficultés se posent lors de la reconstruc-
tion car l’instrument IFS contient des composantes
complexes qui dégradent et modifient les mesures:
(1) les réponses des composantes ne sont pas par-
faites et introduisent un flou spatial et spectral aux
mesures qui dépendent de la longueur d’onde, (2)
l’instrument considère plusieurs observations avec
plusieurs champs de vue (comme les canaux spec-
traux et les fentes parallèles), (3) les sorties de
l’instrument sont projetées sur plusieurs détecteurs
2D et échantillonnées avec des pas d’échantillonnage
hétérogènes.

La reconstruction d’image 2D+λ est un prob-
lème mal posé principalement en raison du flou
spatio-spectral et de l’échantillonnage spatial insuff-
isant. Pour compenser la perte d’informations spa-
tiales, le MRS permet des observations multiples
de la même scène d’entrée en décalant le pointage
du télescope, conduisant à un problème de Super-
Résolution (SR).

Nous proposons un algorithme de reconstruc-
tion qui traite conjointement les informations spa-
tiales et spectrales des mesures 2D suivant deux
étapes. Tout d’abord, nous concevons un mod-
èle direct qui décrit la réponse des composantes
de l’instrument IFS comme une série d’opérateurs
mathématiques et qui établit une relation entre les
mesures et l’image 2D+λ d’entrée qu’on cherche
à reconstruire. Ensuite, le modèle direct est util-

isé pour reconstruire l’image 2D+λ en s’appuyant
sur l’approche des moindres carrés régularisée avec
une régularisation convexe pour la préservation des
contours. Nous nous appuyons sur les approches
semi quadratiques rapides basées sur la formula-
tion de Geman et Reynolds pour résoudre le prob-
lème. L’algorithme de reconstruction proposé per-
met une fusion des mesures issues de différentes ob-
servations spatio-spectrales avec différents flous et
différents échantillonnages, une SR à partir des dif-
férents pointages de l’instrument, et une déconvolu-
tion pour minimiser le flou.

Un autre modèle direct pour le même instrument
est également développé dans notre travail, en sup-
posant que l’image 2D+λ d’entrée vit dans un sous-
espace de faible dimension et peut être modélisée
comme une combinaison linéaire de composantes
spectrales, supposées connues, pondérées par des co-
efficients de mélange inconnus. Nous nous appuyons
ensuite sur l’algorithme d’optimisation Majorize-
Minimize Memory Gradient (3MG) pour estimer les
coefficients de mélange inconnus. L’approximation
par sous-espace réduit le nombre d’inconnues. Par
conséquent, le rapport signal sur bruit augmente.
De plus, le modèle de mélange de source avec des
composantes spectrales connues permet de conserver
l’information spectrale complexe de l’image 2D+λ

reconstruite.
La reconstruction proposée est testée sur

plusieurs images 2D+λ synthétiques ayant des dif-
férentes distributions spatiales et spectrales. Notre
reconstruction montre une déconvolution nette et
une amélioration significative des résolutions spa-
tiales et spectrales des images 2D+λ reconstruites
par rapport aux algorithmes de l’état de l’art, no-
tamment autour des bords.



Title: High-resolution hyperspectral reconstruction by inversion of integral field spectroscopy
measurements. Application to the MIRI-MRS infrared spectrometer of the James Webb Space
Telescope

Keywords: Inverse problem, Super-Resolution, Hyperspectral images, Deconvolution, Spectroscopy.

Abstract: This thesis deals with inverse prob-
lem approaches to reconstruct a 3D spatio-spectral
(2D+λ) image from a set of 2D infrared measure-
ments provided by the Integral Field Spectrome-
ter (IFS) instrument (Mid-Resolution Spectrometer:
MRS) of the Mid-Infrared Instrument on board the
James Webb Space Telescope. The reconstruction is
challenging because the IFS involves complex com-
ponents that degrade the measurements: (1) the re-
sponses of the components are not perfect and intro-
duce a wavelength-dependant spatial and spectral
blurring, (2) the instrument considers several obser-
vations of the input with several spatial and spectral
fields of views, (3) the output measurements are pro-
jected onto multiple 2D detectors and sampled with
heterogeneous step sizes.

The 2D+λ image reconstruction is an ill-posed
problem mainly due to spatio-spectral blurring and
insufficient spatial sampling. To compensate for the
loss of spatial information, the MRS allows multi-
ple observations of the same scene by shifting the
telescope pointing, leading to a multi-frame Super-
Resolution (SR) problem.

We propose a SR reconstruction algorithm that
jointly processes the spatial and spectral informa-
tion of the degraded 2D measurements following
two main steps. First, we design a forward model
that describes the response of the IFS instrument as
a series of mathematical operators and establishes
a relationship between the measurements and the
unknown 2D+λ input image. Next, the forward
model is used to reconstruct the unknown input.

The reconstruction is based on the regularized least
square approach with a convex regularization for
edge-preserving. We rely on the fast half-quadratic
approaches based on Geman and Reynolds formu-
lation to solve the problem. The proposed algo-
rithm enables fusion of measurements from different
spatio-spectral observations with different blur and
different sampling, a multi-frame Super-Resolution
from the different pointing of the instrument, and a
deconvolution to minimize the blurring.

Another forward model for the same instru-
ment is also developed in our work, by assuming
that the 2D+λ input image lives in a low dimen-
sional subspace and can be modeled as linear mix-
ing model (LMM), which is linear combination of
spectral components, assumed known, weighted by
unknown mixing coefficients. We then rely on the
Majorize-Minimize Memory Gradient (3MG) opti-
mization algorithm to estimate the unknown mixing
coefficients. The subspace approximation reduces
the number of the unknowns. Consequently, the
signal-to-noise ratio is increased. In addition, the
LMM formulation with known spectral components
allows to preserve the complex spectral information
of the reconstructed 2D+λ image.

The proposed reconstruction is tested on sev-
eral synthetic HS images with different spatial and
spectral distributions. Our algorithm shows a clear
deconvolution and a significant improvement of the
spatial and spectral resolution of the reconstructed
2D+λ images compared to the state-of-art algo-
rithms, particularly around the edges.
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