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Summary

There is a large interest in predicting the occurrence of high impact climate events such as ENSO (El Niño Southern Oscillation) or rare events, for instance heat waves. Those are prediction problems at the predictability margin because the interesting time scale lies at the edge of the mixing time of the system. This thesis aims at introducing the relevant quantity for these prediction problems, the so-called committor function which is the probability for an event to occur in the future, as a function of the current state of the system. Computing the committor in a stochastic model for ENSO illustrates that the transition to strong El Niño regimes can have either intrinsic probabilistic predictability or unpredictability. The second goal is to illustrate how to compute and validate the committor function from observations, by discussing the analogue Markov chain which provides a way for learning effective dynamics from data. Starting from it, a new algorithm is developed, with the scope of computing the committor function more precisely than the other approaches, especially in case of lack of data. Moreover, it is shown, in the context of two stochastic systems, that coupling the learning of the committor with a rare event algorithm improves the performance of the latter. Finally, this methodology is applied to a climate data-set, generated from a climate model, in order to study and predict the occurrence of extreme heat waves. After checking the consistency of the statistical quantities computed by the effective dynamics, a classifier based on the Markov chain is developed, with the capability of classifying heat waves better than other methods.

iii Chapter 1

Introduction

It is beyond doubt that probability and statistics are essential disciplines for science. Indeed, as Poincaré said [Poincaré, 1905], "science is built up of facts, as a house is built of stones", and since any data analysis has to be performed using statistical tools, to underestimate their importance would result in a procedural mistake from a scientific point of view. Of course, this also applies to climate sciences, where probability and statistics are nowadays widely used for predictions.

In this context, the adoption of a probabilistic approach has different grounds according to the temporal and spatial scales of the phenomenon under investigation.

For example, weather forecasts aim at accurately predicting the future state of the atmosphere based on its current state. From a mathematical point of view, weather forecasts consist in solving an initial value problem (IVP). Indeed, given an initial condition x 0 representing the current state of the atmosphere, the aim of weather forecasts is to predict the state of the atmosphere at time t,thatisx t = t x 0 ,where t is the flow of the dynamical system. However, in practice this is not feasible due to the chaotic behavior of many dynamical systems. As it is well known, in a chaotic system small differences in the initial conditions are exponentially amplified. This phenomenon was already known to 19th century mathematicians such as Poincaré and Hadamard, but it was Lorenz who first introduced the concept of chaos in relation to climate in 1963 [Lorenz, 1963]. In a famous conference held in 1972 provocatively titled "Predictability: does the flap of a butterfly's wing in Brazil set off a tornado in Texas?" [ Lorenz, 1972], Lorenz explained that starting from two almost indistinguishable initial conditions (the only 1 difference being the presence or absence of the flapping of a butterfly's wings) the state of the atmosphere can evolve into macroscopically different states characterized by the presence or absence of a tornado. He therefore concluded that the predictability of the atmosphere could not extend beyond a few days, about two weeks, corresponding to the time it takes for undetectable errors at the smallest scales of the flow to contaminate the large scales [Thompson, 1957,Novikov, 1959[START_REF] Lorenz | The predictability of a flow which possesses many scales of motion[END_REF]. It is worth noting that this limit to predictability occurs even if a perfect model is used for the prediction. In practice, however, the models available for predictions, although very accurate, are not perfect. It should also be taken into account that often it is not possible to observe the initial state of the atmosphere with sufficient accuracy. Due to these limitations, over the past 30 years, major weather forecasting centers such as the National Oceanic and Atmospheric Administration (NOAA) and the European Center for Medium-Range Weather Forecasts (ECMWF) have put aside deterministic forecasts to move to probabilistic forecasts, obtained by means of appropriate techniques such as the ensemble forecast [Kalnay, 2003, Van den Do ol et al., 2007, Dijkstra, 2013]. This technique consists in providing a set of predictions obtained by slightly changing both the initial conditions and the parameters of the model. These predictions are then used to estimate the probabilities of future states of the system. As an example, consider the predictions of 24-hr total precipitation provided by the ECMWF shown in Fig. 1.1. The two charts in Fig. 1.1 represent the probability that the 24-hr total precipitation exceeds 1 mm for two different prediction lag times. Both predictions start on 19/08/2021. The upper panel shows the forecast for 20/08/2021, i.e. for a one day lag time. The lower panel refers instead to a forecast for 08/27/2021, i.e. a lag time of 8 days. Comparing the two images, it can be seen immediately that the uncertainty of the forecasts increases as the prediction lag time increases. And indeed, the forecast for the following day is quite accurate, as evidenced by the fact that many locations have a high or low probability that precipitation exceeds the 1 mm threshold in the next twenty-four hours (light-blue and yellow regions, respectively), while for few locations these forecasts are more uncertain (green regions). In the case of the 8-day forecast, the situation changes completely. It is no longer possible to accurately predict the locations where precipitation will be most concentrated and therefore the uncertain forecast regions are more extensive than in the previous case.

From a theoretical p oint of view, short-term forecasts such as weather forecasts are types of deterministic forecasts where the use of probability is linked only to the lack of information about initial conditions and to the unavailability of perfect models.

As already explained, deterministic predictions are valid up to a finite time. For low dimensional dynamical systems, this time scale corresponds to the so called Lyapunov time [START_REF] Castiglione | Chaos and coarse graining in statistical mechanics[END_REF], while for the atmosphere it corresponds to the time necessary for errors at small scales to become dominant. Beyond this horizon of predictability, the system behaves in all respects as a stochastic process. Thus, while in short-term forecasts the use of probability is due to our ignorance about the system, in the case of medium-term or long-term forecasts, randomness becomes an intrinsic component of the system.

Since climate is commonly defined as the weather averaged over a long period, it can be inferred from the above discussion that climate deals with the statistical properties of some stochastic process (x t ) t>0 .O v e rv e r yl o n g time scales, these properties will be independent from the initial condition. This means that, from a mathematical perspective, the relevant concept for climate is the invariant measure of the system. However, such a description is valid only for time scales larger than the mixing time, which corresponds to the time necessary for the system to forget the initial condition.

The situation is even more complex when it comes to medium-range forecasts, because in this case the interesting time scale lies between the deterministic predictability time and the mixing time of the system. This is why in this manuscript such prediction problems will also be referred to as prediction problems at the predictability margin. Prediction problems at the predictability margin need the application of a probabilistic method, because, as already mentioned, they cope with time scales beyond the deterministic predictability horizon of the system (e.g. the Lyapunov time) but below its mixing time. By contrast, at the predictability margin, predictions clearly depend on the current state of the system. As an example, consider the seasonal forecasts made by the ECMWF, in Fig. 1.2.I ts h o w st h ep r o b a b i lity that the time averaged 2-meter temperature exceeds the median of the seasonal average computed in the reference period 1993-2016, being the time average intended over a 3 month period. The prediction of Fig. 1.2 starts on 01/05/2021 and it refers to the time averaged temperature in summer (time average over June-July-August), i.e. a prediction lag time of 1 month. The important element to note is that this type of seasonal forecast only makes sense from a probabilistic point of view because, as can be seen from the chart in Fig. 1.2, the probability ranges between 0% and 100%, so that making any kind of deterministic prediction would be impossible.

Prediction problems at the predictability margin represent the main topic of this thesis. The fact that such problems require a probabilistic approach is already known in the climate community [Wilks, 2011]. Indeed, major weather forecasting centers such as NOAA and ECMWF already make use of probabilistic predictions. Furthermore, systems like the weather@home system [START_REF] Massey | weather@ home?development and validation of a very large ensemble modelling system for probabilistic event attribution[END_REF]p r o d u c eah u g ea m o u n to fh i g hr e s o l u t i o ns i mulations of General Circulation Models in order to sample extreme events. The original part of this work is therefore to introduce the appropriate mathematical formalism to deal with prediction problems at the predictability margin. As a first step, the appropriate mathematical tool to study this class of problems will be introduced. The relevant mathematical concept is called the committor function.B r o a d l ys p e a k i n g ,ac o m m i t t o rf u n c t i o n is the probability for an event to occur in the future, as a function of the current state of the system. For the ECMWF examples this would be the maps (Fig. 1.1 and Fig. 1.2), for all the possible states of the atmosphere. Committor functions have first been introduced in climate sciences in [START_REF] Lucente | Machine learning of committor functions for predicting high impact climate events[END_REF], and have been used to study sudden stratospheric warming [START_REF] Finkel | Path properties of atmospheric transitions: illustration with a low-order sudden stratospheric warming model[END_REF],Finkel et al., 2021]ortounderstandtheflo wofocean debris [START_REF] Miron | Transition paths of marine debris and the stability of the garbage patches[END_REF]. The interest of giving a name, the committor function, to this otherwise very common and generic concept, is two-fold. First, it allows us to study its mathematical properties and to relate them to key concepts in dynamical systems, for instance the predictability margin. Second, it comes with specific theoretical and computational approaches to compute this important quantity, for instance transition path theory, see for example [Vanden-Eijnden, 2006, Metzner et al., 2006, Metzner et al., 2009] and references therein.

The previous discussion on predictability for climate dynamics is summarized in the diagram of Fig. 1.3. Once the appropriate mathematical tool for dealing with prediction problems at the predictability margin has been identified, it is natural to wonder how to compute this quantity in practice. This task is extremely complex and becomes even more difficult when extreme events such as heat waves, cold spells or extreme precipitations are considered. By definition, these events have a very low probability of occurring and may not even have been observed in measurements made to date.

The reason for studying rare events is that they play a crucial role in many physics, chemistry, and biology phenomena, for instance when they change deterministic predictability is only possible until a finite time (e.g. the Lyapunov time). The associated mathematical problem is an initial value problem (IVP). Long term statistical properties (beyond the mixing time) do not depend on the initial condition, and the corresponding mathematical object is the invariant measure. In the intermediate range of timescales, named here as predictability margin, the appropriate mathematical concept is the committor function,w h i c he n c od e st h ep r o b a b i l i t yo fag i v e ne v e n tt ooc c u r , condition on the state of the climate system at the time of the prediction.

the system structure (multistability) or have a huge impact. The study of rare high impact events, such as heat waves, is an important topic in climate science also because the frequency of such events seems to increase due to climate change [Stocker, 2014]. The relevant time scales for many of these rare high impact events fall within the predictability margin and therefore the appropriate mathematical concept to study them is the committor function. Indeed, the committor encodes the probability that these events will occur in the future and this information is crucial to mitigate the impact that rare events have on human societies. In principle, rare high impact climate events could be studied through numerical simulations (this is the case for ECMWF forecasts) but often the computational cost for collecting a large number of observations of a rare event is prohibitive and therefore it is not possible to gather enough information. Over the past 70 years, many algorithms have been designed to overcome this sampling problem [Kahn andHarris, 1951,Cérou et al., 2019b]. Recently this type of algorithm has been applied in climate science to study extreme heat waves [Ragone et al., 2018,Ragone andBouchet, 2021,Galfi and already been used to build a stochastic weather generator [START_REF] Yiou | Ensemble reconstruction of the atmospheric column from surface pressure using analogues[END_REF], Yiou, 2014,Jézéquel et al., 2018,Yiou and Déandréis, 2019[START_REF] Yiou | Simulation of extreme heat waves with empirical importance sampling[END_REF]. Therefore, the innovative part of this work consists in having used this method to develop a new data-driven approach for computing committor functions. Since this approach has also been successfully coupled to rare event algorithms, this thesis also constitutes a first step in the development of an iterative scheme for the computation of the committor function with rare event algorithms.

To summarize, the original contributions of this thesis are the following:

• it aims at introducing the concept of committor function in climate science,

• it proposes an innovative approach, based on analogue Markov chains, for computing the committor function which, coupled with a rare event algorithm, improves the performance of the latter,

• it applies the new methodology to climate data for studying and predicting extreme heat waves.

The present manuscript is structured as follows: the definition and mathematical properties of the committor function, as well as numerical methods to compute it, approaches for the validation of its estimates and its relation with prediction problems are illustrated in Chapter 2.C h a p t e r 3 studies the dynamics of a low-dimensional stochastic model proposed to explain the decadal amplitude changes of El Niño Southern Oscillation, the Jin and Timmermann model [Timmermann andJin, 2002, Timmermann et al., 2003]. This model is not aimed at reproducing any precise properties of the real El Niño Southern Oscillation. It is rather used as a paradigmatic example to introduce the concept of a committor function in climate science, and to study its main properties. This study leads to the definition of probabilistic predictability and unpredictability, some concepts that should be useful for other applications. This work with minor modifications, carried out in collaboration with C. Herbert and F. Bouchet, has been submitted to the "Journal of the Atmospheric Sciences" (JAS) [START_REF] Lucente | Committor functions for climate phenomena at the predictability margin: The example of el niño southern oscillation in the jin and timmerman model[END_REF]. Chapter 4 proposes a novel data-driven approach that efficiently estimates the committor function starting from observed dynamics. The method combines the use of the analogue Markov chain with a spectral characterization of the committor, with the aim of providing an alternative approach for the computation of the latter, which could be useful in the lack of data. In addition, it is shown that such an approach can be paired with a rare event method with two advantages: the computations can be performed with a minimal prior knowledge and the results are more precise than those obtained with a user-designed score function. A slightly modified version of this work, which is the result of a collaboration with J. Rolland, C. Herbert and F. Bouchet, has been submitted to the "Journal of Statistical Mechanics: Theory and Experiment" (J. Stat. Mech.). In Chapter 5,t h en e wm e t h od o l o g yf o rc o mputing committor functions is applied to a climate data-set, generated by a climate model, to study and predict the occurrence of extreme heat waves. Finally, Chapter 6 highlights the main conclusions of the work and illustrates possible future developments.

Chapter 2

Committor Functions

Introduction

This chapter is for pedagogical purposes and aims at introducing, in a simple way, the mathematical formalism of the committor function, necessary to rigorously tackle the problems studied in the following chapters.

After being introduced in 1938 by Onsager [Onsager, 1938], the committor function has received particular attention, especially in the context of molecular dynamics [Ee ta l . ,2 0 0 5 , Vanden-Eijnden, 2006, Metzner et al., 2006, Bovier, 2006, Metzner, 2008, Metzner et al., 2009, Prinz et al., 2011, Schütte et al., 2011, Bowman et al., 2013, Schütte and Sarich, 2015, Lopes and Lelièvre, 2019, Thiede et al., 2019]. More recently, the committor function has been introduced also in the context of climate sciences [START_REF] Lucente | Machine learning of committor functions for predicting high impact climate events[END_REF], Finkel et al., 2020, Miron et al., 2021, Finkel et al., 2021].

To understand the reason for this interest, it is go o d first of all to define this mathematical concept. A committor function is the probability that an event occurs before another one as a function of the current state of the system. To be slightly more precise, consider two events w 1 and w 2 and let X(t) be the variable describing the state of the system at time t.T h e committor function for the two events w 1 and w 2 is defined as q(x)=P(⌧ w 1 (x) <⌧ w 2 (x)),

(2.1)

where ⌧ w (x)=i n f{t : w happens |X(0) = x} is the smallest time at which the event w happens. Usually, in molecular dynamics the events represent two subsets A and B of the phase space, and one is interested in computing the probability

INTRODUCTION that one set (B)i sr e a c h e db e f o r et h eo t h e ro n e( A).

In climate instead, it is more frequent that one is interested in computing the probability that a given event, far from the typical conditions of the system, will occur within ac e r t a i nt i m e . I nt h i sc a s e ,t h e r e f o r e ,t h ec o m m i t t o rf u n c t i o nd e s c r i b e st h e probability that the system reaches atypical states before relaxing towards the typical stationary conditions. For example, consider the problem of predicting the probability of occurrence of a heat wave, which will be addressed in Chapter 5.I n t h i s c a s e t h e s e t B contains all the possible trajectories in which a heat wave occurs, while the set A contains all the trajectories for which this event does not occur. Then, the committor function is the probability to reach B before A,a saf u n c t i o no ft h ec u r r e n ts t a t eo ft h e atmosphere, temperature, soil moisture and so on.

Thus, the committor function is a fundamental tool for studying the transitions between events. For example, in transition path theory [Vanden-Eijnden, 2006, Metzner et al., 2006, Metzner, 2008, Metzner et al., 2009], this function is a fundamental block for obtaining the statistics of reactive trajectories (i.e. trajectories starting from A and arriving in B or vice versa). It also plays a crucial role in the development of rare event algorithms, which are algorithms designed for sampling rare events at low computational cost. Indeed, these algorithms require to use a score function for forcing the system towards atypical configurations and it is well known that the optimal score function is the committor function (see for instance [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF],Rolland and Simonnet, 2015,Lestang et al., 2018]). In climate sciences, instead, it arouses interest as it allows the prediction problems to be treated with a rigorous theoretical apparatus.

Given the importance of the committor function, over the years a theory has been developed in the context of Markov processes. The purpose of this chapter is therefore to introduce the fundamental concepts of the theory of committor functions for Markov processes.

The structure of the chapter is the following: Sec. 2.2 introduces the concept of committor function for a Markov chain. It begins by reviewing the basic notions of Markov chains. Then, it gives the definition of the committor function for a Markov chain and it shows that this function must satisfy a system of linear equations. The committor function for a continuous Markov process is discussed in Sec. 2.3. As for Sec. 2.2, also in Sec. 2.3 there is a general introduction on Markov processes, where all the properties that are necessary to define the committor function are stated. Then, the committor function for this class of stochastic processes is discussed, and it is shown that the committor is defined by a partial differential equation with appropriate boundary conditions. Sec. 2.4 explains how to compute the committor function numerically. Three different algorithms are described, highlighting their strengths and weaknesses. Moreover, it is explained how to validate an estimate of the committor function. For this purpose, two scores are introduced (the Brier score and the logarithmic score) which quantify the accuracy of the probabilistic predictions made using an approximation of the committor function. Finally, Sec. 2.5 introduces the concept of time-dependent committor function. This mathematical object encodes the probability that an event will happen in the future as a function of the initial conditions. Therefore, it reveals itself as a fundamental tool in the study of prediction problems, especially in the context of climate system where it often happens that it is necessary to predict the future evolution of interesting observables. Thus, Sec. 2.5 precisely defines this object and shows that for a wide class of observables, the time-dependent committor function is nothing but the cumulative distribution function of the first hitting time of a given set C.E a c ho ft h e s e sections contains one or more examples, in which the theoretical concepts defined in the section are applied. These examples are useful to better illustrate the theoretical concepts and serve as a test bed to analyze some properties of the committor function before moving on to the study of more realistic and complex systems.

Committor Functions for a Markov chain

This section introduces the concept of committor function in the context of simple stochastic processes, i.e. Markov chains. The section begins introducing the basic notions of Markov chains. In particular, it aims to introduce the notions of Markov chain and its related transition matrix, the link between the transition matrix and the temporal evolution of probabilities and observables, the concept of invariant distribution and the convergence of the probabilities to this invariant distribution. Then, it provides the definition of a committor function of a Markov chain and it shows that the committor function is the solution of an affine problem. Moreover, it is explained that the committor function is a linear combination of the two leading eigenvectors of a suitable transition matrix and it is shown that this spectral characterization provides an algorithm that efficiently estimates the committor. The section ends by discussing an application of the committor function

COMMITTOR FUNCTIONS FOR A MARKOV CHAIN

in a gambling problem that can be modeled by means of Markov chains.

Markov chains

Let Ω be a countable set and {X t } t2N a stochastic process that takes values in Ω. The process {X t } t2N is said to be a Markov chain if the following property (Markov property) holds [START_REF] Norris | Markov chains[END_REF],Shiryaev, 2004,Boffetta and Vulpiani, 2012, Bowman et al., 2013]

P(X t = i t |X t 1 = i t 1 ; ...; X 0 = i 0 )=P(X t = i t |X t 1 = i t 1 ).
(2.

2)

The Markov property expresses the fact that the probability of the future state of the system depends exclusively on the state of the system at the previous time and is independent of past history. Thus, the main feature of Markov processes is to have a finite memory of length one.

The conditional probabilities that appear in the right hand side of Eq. (2.2) are usually represented by a stochastic matrix G(t), also known as transition matrix. A matrix is called stochastic if

G ij (t) 0 8 i, j 2 Ωa n d8 t 2 N, X j2Ω G ij (t)=1 8 i 2 Ωa n d8 t 2 N.
(2.

3)

The first property states that the elements of a stochastic matrix must be positive as they are probabilities. The second property asserts instead that the sum of the transition probabilities from state i to all the possible states j must be equal to one. Note that the convention G ij (t 1) = P(X t = j|X t 1 = i)hasbeenadoptedandthereforeG ij (t 1) is the conditional probability of going from state i at time t 1t os t a t ej at time t.

The transition matrix G(t)i ss o m e t i m e sc a l l e dgenerator since its action on an observable f determines the time evolution of f .T ob em o r ep r e c i s e ,l e t f (t)=(f i (t)) be a column vector that represents an observable of the system at time t.T oo b t a i nt h eo b s e r v a b l ef (t +1) at time t +1 it is sufficient to apply the matrix G(t)t of (t):

f (t +1)=G(t +1)f (t).
(2.4)

The evolution of probabilities is ruled by the adjoint operator of G(t), denoted by G † (t)( G † is equivalent to G transposed as G has real positive 2.2. COMMITTOR FUNCTIONS FOR A MARKOV CHAIN elements). Let p(t)=( p i (t)) be a vector of probabilities, i.e. a column vector where each component p i (t)i st h ep r o b a b i l i t yt h a tt h es y s t e mi si n state i 2 Ωa tt i m et.T h ep r o b a b i l i t yv e c t o rp(t +1)=(p i (t +1)) at time t +1 is given by p(t +1)=G † (t +1)p(t).

(2.5)

From Eq. (2.4)a n dE q .( 2.5) it can be deduced that 

f (t +1)= t+1 Y t=1 G( t) ! f (0), p(t +1)= t+1 Y t=1 G † ( t) ! p(0). ( 2 
f (t +1)=G t+1 f (0), p(t +1)= G † t+1 p(0), (2.7)
where G t+1 and G † t+1 are the matrices G and G † to the power t +1.

For the study of the long-term prop erties of Markov chains it is useful to introduce the notion of invariant distribution. A probability vector w is called an invariant distribution if 8 > < > :

w i 0 8 i 2 Ω, P i2Ω w i =1, G † w = w.
From Eq. (2.3) it is easy to prove that each stochastic matrix G admits at r i v i a le i g e n v e c t o rv = v i , v i =18i 2 Ωw i t he i g e n v a l u e1 1 .T h i si m p l i e s that a solution to the problem G † w = w always exists but the solution is not always unique. The uniqueness of the invariant distribution can be proven for a broad class of Markov chains, the so called ergodic chains [START_REF] Norris | Markov chains[END_REF], Shiryaev, 2004, Boffetta and Vulpiani, 2012]. Let G be the transition matrix of a Markov chain whose phase space Ω is finite. The Markov chain is ergodic if

9t ? such that G t? ij > 0 8 i, j 2 Ω, (2.8)
where t ? does not depend on i and j.E q .( 2.8)m e a n st h a tf o ra n yt>t ? there is a non-null probability of finding the process X t in any state j 2 Ω regardless the initial state of the process X 0 = i.

For an ergo dic chain, the eigenvector problem G † w = w admits a unique solution w = ⇡ that has the two properties ⇡ i 0 8 i 2 Ω, P i2Ω ⇡ i =1 . Furthermore, it can b e proven that the invariant distribution ⇡ is the limit of G t for t ! +1,i . e . [START_REF] Norris | Markov chains[END_REF], Shiryaev, 2004]. Ergodic chains play a fundamental role in the theory of Markov chains and their definition will be useful for proving the existence and uniqueness of the committor function.

⇡ i =l i m t!+1 G t ji , (2.9) which also implies that ⇡ i =l i m t!+1 p(t) 2 [

Committor functions: definition and equation

Let Ω and G be the state-space and the transition matrix of a Markov chain.

Let A be a subset of Ω, A⇢Ω, and {X t } 0t+1 a realization of the dynamics. The first hitting time of the set A is defined as

⌧ A j =inf{t : X t 2A|X 0 = j}.
(2.10)

Let A and B be two disjoint subsets of Ω, i.e. A, B⇢Ωa n dA\B= ;. The committor function q j is defined as

q j = P(⌧ B j <⌧ A j ).
(2.11) Thus, the committor function q j encodes the probability that a trajectory starting at X 0 = j will reach the set B before reaching the set A.

COMMITTOR FUNCTIONS FOR A MARKOV CHAIN

An equation for q is easily obtained with the following reasoning. Clearly for j 2Aor j 2Bone has q j =0o rq j =1 ,r e s p e c t i v e l y . F o ra n yi n i t i a l state X 0 = j/ 2A[B,a f t e rt h efi r s ts t e pt h r e es i t u a t i o n sc o u l da r i s e : e i t h e r the Markov chain goes from state j to a state k 2Band the event ⌧ B j <⌧ A j occurs, or it goes to a state k 2Aand the event ⌧ B j <⌧ A j does not occur, or it reach a state k/ 2A[Band then the probability of the event ⌧ B j <⌧ A j to occur is q k . Therefore, the probability that a trajectory starting in state j will hit the set B before A can be decomposed into the sum of two terms [START_REF] Bowman | An introduction to Markov state models and their application to long timescale molecular simulation[END_REF], Prinz et al., 2011, Metzner, 2008, Metzner et al., 2009, Bovier, 2006]: 8 > < > :

q j =0, if j 2A, q j =1, if j 2B, q j = P k2B G jk + P k/ 2A[B G jk q k , if j/ 2A[B,
(2.12)

where the first term in the right hand side of the last equation in Eqs. (2.12) accounts for the probabilities to have a transition from the state j to a state k 2Bwhile the second term is related to the probability of visiting a state k/ 2A[Bbefore going to the set B.

For an ergo dic Markov chain (Eq. (2.8)), it can be proven that the system (2.12)a d m i t sau n i q u es o l u t i o n [ Metzner, 2008, Metzner et al., 2009, Bovier, 2006]. Therefore, for an ergodic chain the committor function can be obtained by solving the linear system in Eq. (2.12).

There is a more elegant formulation of the committor problem which shows that the committor function q is actually an eigenvector of a suitable transition matrix G,wherethestatescorrespondingtoA and B are replaced by two absorbing states, one for each set [START_REF] Prinz | Efficient computation, sensitivity, and error analysis of committor probabilities for complex dynamical processes[END_REF].

Consider the modified Markov chain in which the states corresponding to the set A (resp. B)a r eg r o u p e dt o g e t h e ri n t oas i n g l ea b s o r b i n gs t a t e3 denoted by i A (resp. i B ). Let C(Ω) be the cardinality of the state space and C(A)( r e s p . C(B)) the cardinality of A (resp. B). The cardinality of the modified state space Ω, i.e. the state space resulting from the aggregation procedure, is (2.13) where i,j is the Kronecker delta. It is straightforward to find a relationship between the committor function of the original Markov chain q and that of the modified process q.I n d e e d , f o r i/ 2A[Bone has q i =q i ,w h i l e q k = q i A =0fork 2Aand q k = q i B =1fork 2B.T h ec o m m i t t o rf u n c t i o n q is the solution of the affine problem

C( Ω) = C(Ω) (C(A) 1) (C(B) 1). The transition matrix 2.2. COMMITTOR FUNCTIONS FOR A MARKOV CHAIN G of the modified Markov chain (defined on Ω) is 8 > > > > > > < > > > > > > : Gi A j = i A ,j , Gi B j = i B j , Gii A = P k2A G ik if i 6 = i A ,i B , Gii B = P k2B G ik if i 6 = i A ,i B , Gij = G ij if i, j 6 = i A ,i B ,
( qi A =0 and qi B =1, qi = P j2 Ω Gij qj for i 6 = i A ,i B , (2.14) 
that can be written more compactly as Gq =q with q i A =0a n dq i B =1 . Therefore q is an eigenvector of the matrix G with eigenvalue 1 which satisfies the correct boundary conditions on i A and i B .

The matrix G † has two trivial eigenvectors associated with the eigenvalue 1, which correspond to situations where the probability is concentrated on state i A or i B . Hence, G also possesses at least two eigenvector associated with eigenvalue 1. It is not difficult to be convinced that if G is ergodic then G and G † have only two eigenvectors associated with the eigenvalue 1 (i.e. 1 =1hasm ultiplicit y2) 4 .L e tv 1 and v 2 be two eigenvectors of G associated 4 The ergodicity of G ensures that, for each pair of states i and j of the Markov chain defined by G, there is a path connecting the two states i and j. Hence, starting from a generic state i/ 2A[Bit is always possible to reach the two sets A and B. Considering the paths that connect a state i with a state j 2B , it is clear that there are two types of paths for going from i to j: those that connect i and j passing through the set A and those that instead do not pass through A. In the Markov chain defined by G,t h efi r s t type of paths connects the state i to the state i A while the second one connects i to i B . Since the same reasoning can be applied for j 2A , it follows that, in the Markov chain defined by G, any initial state i is transported in i A or in i B by the dynamics. Thus, the Markov chain defined by G transports any initial probability distribution p either into a probability distribution concentrated on i A or on i B or a combination of them. Therefore, the dimension of the vector space associated to the eigenvalue of G † (or equivalently of G)

λ 1 = 1 is equal to 2.
with 1 =1,i.e.

(

Gv 1 = v 1 , Gv 2 = v 2 .
(2.15)

Clearly, any linear combination

v = ↵v 1 + v 2 is again an eigenvector of G associated with 1 =1 . T h ec o m m i t t o rf u n c t i o nq is the only eigenvector among v's such that v i A =0andv i B =1. Thereforeonehas q =↵v 1 + ¯ v 2 , (2.16) where ↵ = v 2 i A v 1 i A v 2 i B v 1 i B v 2 i A , ¯ = v 1 i A v 1 i A v 2 i B v 1 i B v 2 i A .
(2.17)

Eq. (2.16), together with the definitions of the coefficients ↵ and ¯ (Eq. (2.17)) provides a practical, fast and robust way, to compute the committor function of a discrete time Markov chain.

Example: the Gambler's ruin

A first example that shows the relevance of the committor function is the problem of gambler's ruin [Coolidge, 1909,Norris et al., 1998,Shiryaev, 2004, Boffetta and Vulpiani, 2012,Slade, 2014]. Consider a man who starts playing ab e t t i n gg a m ea n dw h o s es t a r t i n gc a p i t a li sX 0 = n.O ne a c hr o u n d ,o n e dollar is wagered and the player has a probability p of earning an additional dollar and a probability q =1 p of losing his stake. The gambler aims to make a fortune of N dollars before he stops playing. However, during the game the player may also run out of money and be unable to continue betting. Hence, the game ends with either the gambler's ruin or the gambler's win. The problem consists in finding the probability that the player wins by starting with an initial capital X 0 = n. Such a problem can be solved by employing the formalism for the committor function of a Markov chain. Let us consider a Markov chain whose states space Ω = {0, 1, ••• ,N} contains the possible amounts of money the 2.2. COMMITTOR FUNCTIONS FOR A MARKOV CHAIN player may own and whose transition matrix G is defined as (2.18) where i,j is the Kronecker delta. By defining A = {0} and B = {N },t h e probability that the player succeeds is nothing but the committor function for these two sets. In this particular case, Eq. (2.12)r e a d s 8 > < > :

8 > > > < > > > : G 0i = i,0 , G Ni = i,N , G ij = p j,i+1 +(1 p) j,i 1 if i 6 =0,N , G ij =0otherwise,
q i = pq i+1 +(1 p)q i 1 , q 0 =0, q N =1. (2.19)
Performing the change of variables z i = q i q i 1 leads to

z i+1 = 1 p p z i = ✓ 1 p p ◆ i z 1 , (2.20) 
which implies that

q i+1 = 8 < : 1 ( 1 p p ) i+1 1 ( 1 p p ) q 1 if p 6 =(1 p) , (i +1)q 1 if p =(1 p)=0.5 .
(2.21)

Eq. (2.21)h a sb e e no b t a i n e dc o n s i d e r i n gz 1 = q 1 and q i+1 = q 1 + P i+1 k=1 z k . By imposing the condition q N = 1, the committor function turns out to be

q n = 8 < : 1 ( 1 p p ) n 1 ( 1 p p ) N if p 6 =(1 p) , n N if p =(1 p)=0.5 , (2.22)
where the two situations correspond to unfair (p 6 =1 p)o rf a i r( p =1 p) games. For p =0.5( f a i rg a m e )t h ep l a y e r ' sp r o b a b i l i t yo fw i n n i n gg r o w sl i n e a r l y with the starting capital X 0 = n and therefore to have at least a 50% chance of winning the starting capital must exceed half of the stake that the man wants to earn. On the other side, in case of unfair game the committor
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Committor functions for a continuous time Markov process

This section deals with the committor function in the case of continuous time Markov processes. The section begins by introducing the general concepts of Markov processes, such as the propagator, the invariant distribution, and the differential equations that these objects obey. In addition, the notions of stationarity, homogeneity and ergodicity of a Markov process will be introduced.

Then the concept of committor function is defined and it is proved that this function is the solution of a partial differential equation with appropriate boundary conditions. The section concludes by discussing two examples in which the equations defining the committor can be solved analytically. These two examples, which are the Wiener and Ornstein-Uhlenbeck processes, will allow understanding the general properties of a committor function and will be preparatory for the study of the committor in more complicated systems.

Markov processes

Let Ω ⇢ R N be the phase space of the system and

X(t)=(X 1 (t), ••• ,X N (t))
be a random variable which takes values in Ω. Let t n >t n 1 > ••• >t 0 be an ordered sequence of times and x 0 , ••• ,x n the values assumed by the process at these times, i.e.

x i = X(t i )f o ri =1 , ••• ,n.T h ep r o c e s sX(t)
is a Markov process if it has the following property [Arnold, 1974, Gardiner et al., 1985, Van Kamp en, 1992, Metzner, 2008, Boffetta and Vulpiani, 2012]: [Gardiner et al., 1985, Van Kamp en, 1992]. By making very mild assumptions, the Chapman-Kolmogorov equation can be reformulated into a differential equation for conditional probability. It can be proven (see [Gardiner et al., 1985]f o rad e t a i l e dd e r i v a t i o n )t h a t the evolution of G(x, t 1 |y, t 0 )i sr u l e db y @G(x, t 1 |y, t 0 

P(x n ,t n |x n 1 ,t n 1 ; ••• ; x 0 ,t 0 )=P(x n ,t n |x n 1 ,t n 1
) @t 1 = N X i=1 @ @x i " A i (x, t 1 )G(x, t 1 |y, t 0 ) 1 2 N X j=1 @ @x j D ij (x, t 1 )G(x,
A i (x, t)=lim ✏!0 lim ∆t!0 1 ∆t Z |x z|<✏ dz (z i x i )G(z, t +∆t|x, t),
(2.28)

D ij (x, t)=lim ✏!0 lim ∆t!0 1 ∆t Z |x z|<✏ dz (z i x i )(z j x j )G(z, t +∆t|x, t). (2.29)
Note that Eq. (2.26)dealswiththetimeevolutionofthepropagatorG(x, t 1 |y, t 0 ) with respect to the final state x and therefore is known as forward differential Chapman-Kolmogorov equation.
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Sometimes it is useful to study the temporal evolution of the propagator G(x, t 1 |y, t 0 )withrespecttotheinitialv ariable. Theequationdescribingthis time development is similar to Eq. (2.26)a n dc a nbee x p r e s s e da s

@G(x, t 1 |y, t 0 ) @t 0 = N X i=1 ✓ A i (y, t 0 ) @G(x, t 1 |y, t 0 ) @y i ◆ 1 2 N X i,j=1 ✓ D ij (y, t 0 ) @ 2 G(x, t 1 |y, t 0 ) @y i @y j ◆ + + Z Ω dzW(z|y, t 0 )[G(x, t 1 |y, t 0 ) G(x, t 1 |z, t 0 )] ,
(2.30) which is known as backward differential Chapman-Kolmogorov equation.

Having introduced the equations for the time evolution of the propagator of a Markov process, it is time to mention some special classes of these processes.

A Markov process is continuous (i.e. its sample paths are continuous functions of time t with probability one) if, 8✏>0, one has

lim ∆t!0 Z |x z|>✏ dxG(x, t +∆t|z, t)=0.
(2.31)

This means that the requirement for a Markov process to be continuous is that the probability to observe a finite displacement ✏>0g o e st o0f a s t e r than ∆t as ∆t ! 0.

Another important property that a Markov process may have is the stationarity. A Markov process is said to be stationary if X(t)a n dX(t + ⌧ ) have the same statistics for any ⌧ ,o ri na ne q u i v a l e n tw a yi ft h ej o i n t probabilities of the process are invariant under time translations. Hence, since the Markov process is completely determined by the initial distribution p(x 0 ,t 0 )a n dt h ep r o p a g a t o rG(x 1 ,t 1 |x 0 ,t 0 )i tm e a n st h a tp(x 0 ,t 0 )=⇢ s (x 0 ) and G(x 1 ,t 1 |x 0 ,t 0 )=G(x 1 ,t 1 t 0 |x 0 , 0), i.e. the propagator only depends on time difference ⌧ = t 1 t 0 . If the initial distribution is not the stationary one but the propagator depends only on the time differences, the process is said to be homogeneous. For a homogeneous Markov process, the functions W , A and D defined in Eqs. (2.27),(2.28),(2.29)d on o td e pe n do nt i m et.

As with Markov chains, ergodic processes play an important role in the theory of stochastic processes. In general, a Markov process is said to be ergodic if it is homogeneous and for any subset of the phase space C⇢Ω,
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one has [Gardiner et al., 1985, Vulpiani et al., 2014] lim 

T !+1 1 T Z T 0 dt1 C (X(t)) = Z C dx⇢ s (x), ( 2 
@ @x i " A i (x)⇢ s (x) 1 2 N X j=1 @ @x j D ij (x)⇢ s (x) # + + Z Ω dz [W (x|z)⇢ s (z) W (z|x)⇢ s (x)] , (2.34) 
@G(x, t 1 |y, t 0 ) @t 1 = N X i=1 @ @x i " A i (x, t 1 )G(x, t 1 |y, t 0 ) 1 2 N X j=1 @ @x j D ij (x, t 1 )G(x, t 1 |y, t 0 ) # = = L fw [G(x, t 1 |y, t 0 )], (2.36) @G(x, t 1 |y, t 0 ) @t 0 = N X i=1 ✓ A i (y, t 0 ) @G(x, t 1 |y, t 0 ) @y i ◆ 1 2 N X i,j=1 ✓ D ij (y, t 0 ) @ 2 G(x, t 1 |y, t 0 ) @y i @y j ◆ = = L bw [G(x, t 1 |y, t 0 )],
(2.37)

where the forward and backward Kolomogorov operators are defined as [Gardiner et al., 1985]thatthepropagator of this process G(x, t|y, t 0 )s a t i s fi e saF o k k e r -P l a n c ke q u a t i o n( E q .( 2.36)) with A(x, t) ⌘ a(x, t)a n dD(x, t)= (x, t) T (x, t).

L fw (•):=L † (•)= N X i=1 @ @x i " [A i (x, t)(•)] 1 2 N X j=1 @ @x j [D ij (x, t)(•)] # , (2.38) L bw (•)= L (•)= N X i=1 A i (x, t) @ @x i (•) 1 2 N X i,j=1 D ij (x, t) @ 2 @x i @x j (•) . (2.
In Eqs. (2.38),(2.39)t h et w oo p e r a t o rL and L † have been introduced. Similarly to the case of Markov chains, for a homogeneous diffusion process X(t)o n eh a st h a tt h eF o k k e r -P l a n c ko p e r a t o rL † describes the evolution of the probability distributions while its adjoint operator L describes the evolution of the observables. Indeed, let p(x, t 0 )b et h ei n i t i a lp r o b a b i l i t y distribution of the system. The probability distribution at time t is given by Eq. (2.24). Taking the time derivative of Eq. (2.24)l e a d st o

@ t p(x, t)= Z Ω dyp(y, t 0 )@ t G(x, t|y, t 0 )= Z Ω dyp(y, t 0 )L † [G(x, t|y, t 0 )] = L † [p(x, t)],
(2.41) where in the last passage the linearity of L † has been used. By virtue of Eq. (2.41)i ft h ep r o b a b i l i t yd i s t r i b u t i o np(x, t)c o n v e r g e st oas t a t i o n a r y distribution ⇢ s (x)a st ! +1,t h el a t t e rs a t i s fi e st h es t a t i o n a r yF o k k e r -Planck equation, i.e.

L † [⇢ s (x)] = 0.

(2.42)

Concerning the observables, let f (x, t)beaf u n c t i o nd e fi n e da s

f (x, t)= Z Ω dyg(y)G(y, t|x, 0) = Z Ω dyg(y)G(y, 0|x, t),
(2.43)
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where the second equality is due to the homogeneity of the process. By differentiating Eq. (2.43) with respect to time t one obtains

@ t f (x, t)= Z Ω dyg(y)@ t G(y, 0|x, t)= Z Ω dyg(y)L [G(x, 0|y, t)] = L[f (x, t)].
(2.44) In the next subsection the committor function will be introduced and it will be shown that it is the solution of a Dirichlet problem involving the backward operator L.

Committor functions: definition and equation

Let X(t)beahomogeneousdiffusionprocesswhic htak esv aluesinthephase space Ω. The process evolves through a stochastic differential equation of the form

Ẋ(t)=a(X(t)) + (X(t))⇠(t), (2.45) 
where ⇠(t)i saG a u s s i a nw h i t en o i s e . Let C⇢Ωas u b s e to ft h ep h a s es p a c e . T h efi r s th i t t i n gt i m e⌧ C (x)i s defined as the smallest time for which X(t)belongstoC,asafunctionofthe initial condition X(0) = x,i . e .

⌧ C (x)=inf{t : X(t) 2C|X(0) = x}.
(2.46)

Let A and B be two disjoint subsets of the phase space Ω, i.e. A, B⇢Ω and A\B = ;.T h e c o m m i t t o r f u n c t i o n q(x)f o rt h es e t sA and B is the probability that a trajectory starting at point x visits B first rather than A first [Onsager, 1938, Ee ta l . ,2 0 0 5 , Vanden-Eijnden, 2006, Metzner et al., 2006, Bovier, 2006, Metzner, 2008, Metzner et al., 2009, Prinz et al., 2011,Schütte et al., 2011,Bowman et al., 2013,Schütte and Sarich, 2015,Lopes and Lelièvre, 2019, Thiede et al., 2019]:

q(x)=P(⌧ B (x) <⌧ A (x)).
(2.47)

As explained in Sec. 2.1 Eq. (2.47)isageneraldefinitionandisnotrestricted exclusively to Markov processes but, in the case of Markov processes, the committor function q(x)i sa l s ot h es o l u t i o no faD i r i c h l e tp r o b l e mi n v o l v i n g the adjoint of the Fokker-Planck operator [Ee ta l . ,2 0 0 5 , Metzner, 2008, Thiede et al., 2019].
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To deal with the first hitting times problems, it is convenient to note that the Fokker-Planck equation (Eq. (2.36)) can be written in the form of ac o n t i n u i t ye q u a t i o n @G(x, t|y, 0)

@t = L † [G(x, t|y, 0)] = r • J(x, t|y, 0) (2.48)
where

J i (x, t|y, 0) = A i (x, t)G(x, t|y, 0) 1 2 P j @ @x j [D ij (x, t)G(x, t|y, 0)].
In order to derive the differential equation that defines q(x), it is useful to consider the set S = A[B as an absorbing set6 .T h i sm e a n st h a tt h ep r o p agator G(x, t|y, 0) must satisfy a backward Kolmogorov equation (Eq. (2.37)) with the condition G(x, t|y, 0) = 0 for y 2S.I ft h ep r o c e s sX(t)i se r g o d i c , it is certain that it will hit the frontier of S,d e n o t e db y@S,i fi ti so b s e r v e d for a time long enough. However, the committor function is not the probability that the system hits S but the probability that it hits the part of S corresponding to B.

Let z(x; b)|@S(b)| be the probability that the process hits S at point b, where |@S(b)| denotes the area of the surface element at point b.T h e n ,t h e committor function is nothing but

q(x)= Z @B dbz(x; b)|@S(b)|.
(2.49)

The quantity z(x; b) can be expressed as a function of the current J(b, t|x, 0) as follows

z(x; b)|@S(b)| = Z +1 0 dtJ(b, t|x, 0) • @S(b).
(2.50)

By considering that @G(x,t|y,0) @t = LG(x, t|y, 0) one has

Z +1 0 dt@ t J(b, t|x, 0) • @S(b)=L Z +1 0 dtJ(b, t|x, 0) • @S(b) = = L [z(x; b)|@S(b)|]= J(b, 0|x, 0) • @S(b)=0 if x 6 = b.
(2.51)

Eq. (2.51)sho wsthatz(x; b) is an element of the kernel of the operator L for x 6 = b.S i n c eL is a linear operator one obtains

L[q(x)] = L Z @B dbz(x; b)|@S(b)| = Z @B db L[z(x; b)]|@S(b)| =0. (2.52)
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Thus, it has been shown that the committor obeys to the equation L[q(x)] = 0f o rx/ 2S. To complete this equation, it is necessary to specify the proper boundary conditions. Clearly, it is certain to exit from the point b if the process starts from b,t h e r e f o r ez(b; b)|@S(b)| =1. F urthermore,sinceallthe points of the set S are absorbing, for any point x 2Ssuch that x 6 = b the probability that the process will leave the region through b is equal to 0. Therefore, one has that q(x)=0forx 2Aand q(x)=1forx 2B.P u t t i n g all together, one obtains that the committor function q(x)i st h es o l u t i o no f the Dirichlet problem 8 > < > :

q(x)=0 if x 2A, q(x)=1 if x 2B, L[q(x)] = 0 if x/ 2A[B.
(2.53)

In the next subsection, two examples where the problem 2.53 can be solved analytically will be considered.

Examples: Wiener and Ornstein-Uhlenbeck processes

In this subsection the committor function is computed for two simply onedimensional Markov processes: the Wiener process and the Ornstein-Uhlenbeck process.

A Wiener process X(t) ⌘ W (t)i sd e fi n e db yt h ef o r m a le q u a t i o n (2.54) or, equivalently, its propagator G(x, t|y, 0) obeys at the Fokker-Planck equation The phase space of the system Ω coincides with the real line, that is Ω ⌘ R.C o n s i d e rt h es e t sA =( 1,a]a n dB =[ b, +1)w i t ha<b .T h e committor function q(x) corresponds to the probability that the process W (t) enters in B before entering in A knowing that W (0) = x.S i n c ei nt h i sc a s e 29

Ẇ (t)= p 2D⇠(t),
@ t G(x, t|y, 0) = D @ 2 G(x, t|y, 0) @x 2 . ( 2 
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the Fokker-Planck operator is self-adjoint, q(x)isthesolutionoftheDirichlet problem D @ 2 q(x) @x 2 =0,q (a)=0,q (b)=1.

(2.56)

The solutions of the partial differential equation D @ 2 q(x) @x 2 =0arelinearfunctions of the form q(x)=↵x + .T h et w oc o e ffi c i e n t↵ and are found by imposing the boundary conditions q(a)=0andq(b)=1,obtaining↵ = 1 b a and = a b a . Hence, the committor function q(x)i s

q(x)=
x a b a .

(2.57)

Eq. (2.57) shows that for the Wiener process the committor function grows linearly from the value 0 in A to the value 1 in B.T h eg r o w t hi si n d e p e n d e n t on the diffusion coefficient D and the slope only depends on the length of the interval. Furthermore, it can be seen that to have a probability greater than 0.5t or e a c hfi r s tB rather than A,t h ep r o c e s sm u s ts t a r tb e y o n dt h e middle of the range, i.e. x> a+b 2 .T h u s ,t h i se x a m p l ei sa n a l o g o u so ft h ef a i r game in the gambler's ruin problem (see the last expression in Eq. (2.22)), where the odds of winning or losing a bet are equal. This is not surprising since the Wiener process is exactly the generalization of the random walk in ac o n t i n u o u ss p a c e . T oo b t a i nt h ee x po n e n t i a ls o l u t i o ne q u i v a l e n tt ot h a to f Eq. (2.22), it is necessary to consider a drift term in Eq. (2.54). This means to consider the process X(t)d e fi n e db y Ẋ(t)=µ + p 2D⇠(t), (2.58) which can be thought to describes the position of a colloidal particle immersed in a viscous fluid and driven by a constant force µ.F o ri n s t a n c e ,i tc o u l d represent the position of a pollen grain in water subject to gravitational force. Also in this case, the Fokker-Planck operator is self-adjoint and it is equal to L † = µ @ @x + D @ 2 @x 2 . Hence, the committor function is defined by the Dirichlet problem µ @q(x) @x + D @ 2 q(x) @x 2 =0,q (a)=0,q (b)=1, (2.59) whose solution is

q(x)= 1 exp µ D (x a) 1 exp µ D (b a)
.

(2.60) the particle is chosen to be the middle of the interval [a, b], the probabilities to reach B before A are 50%, 85% and 10% for the three cases µ =0,µ =2D and µ = 2D, respectively. The comparison between Fig. 2.2 and Fig. 2.1 and between the values of the committor in the middle point of the interval further highlights the similarity between the two problems, showing that the process X(t)( E q .( 2.58)) is the continuous equivalent of the Markov chain considered in Sec. 2.2.3.

The second example that is considered is the Ornstein-Uhlenbeck process. Historically, it was the first stochastic differential equation to appear in physics, introduced in 1908 by the mathematician Paul Langevin to describe the velocity of a Brownian particle. The stochastic differential equation that describes this process is the following:

Ẋ(t)= kX(t)+ p 2D⇠(t).
(2.61)

In this equation the drift coefficient acts as a restoring force and tries to bring the process towards its equilibrium position as long as k>0, while for k<0 the drift tends to force the system away from the equilibrium. For such a process, the Dirichlet problem defining the committor (see Eq. (2.53)) takes the form kx @q(x) @x + D @ 2 q(x) @x 2 =0,q (a)=0,q (b)=1, (2.62)

where the sets A =( 1,a]a n dB =[ b, +1), with a<b ,h a v eb e e n considered. It is quite simple to show that the solution of Eq. (2.62)i sg i v e n by

q(x)= R x a dy exp k 2D y 2 R b a dy exp k 2D y 2 .
(2.63) Thus, the committor function depends on the parameter = k 2D .I nt h e limit ! 0, the process X(t) behaves roughly like a Wiener process and the committor function becomes approximately linear. Instead, for | |!+1, since the integrands of Eq. (2.63)areexponentialsandthereforetheintegrals are dominated by the maximum of the integrands over the interval [a, b], the behavior of the committor strongly depends on the end points of the interval [a, b].

The committor function for the three cases ! 1, ! +1 and ! 0 is shown in Fig. 2.3.I tc a nb es e e nt h a tf o rs m a l lv a l u e so f the committor is 2.4. NUMERICAL COMPUTATION OF THE COMMITTOR has an explicit formula, i.e. (2.66)

q(x)= R x a dy [ (y)] 1 R b a dy [ (y)] 1 , ( 2 

Numerical computation of the committor

In the previous section the theory of the committor function for both Markov chains and Markov processes has been introduced. This section, instead, will be focused on presenting how to compute committor functions with numerical methods. In particular, three methods will be introduced. The first one, called direct estimation, consists in computing the committor from its definition (Eq. (2.47)) by performing Monte Carlo experiments. The second one, which is valid exclusively for ergodic dynamics, still aims to compute the committor from its definition (Eq. (2.47)), but this is done by averaging suitable functions over long trajectories. The third option, valid for diffusion processes, consists in solving numerically the Dirichlet problem which defines the committor (see Eq. (2.53)). Then, some machine learning methods that estimate the committor function from observations are briefly mentioned. Finally, it is explained how to validate an estimation of the committor function. To this purpose, two score functions are introduced: the Brier score and the logarithmic score.

Direct estimation

The direct estimation consists in performing Monte Carlo experiments for computing the committor function of a process X(t). Such a method is valid for both deterministic and stochastic dynamics, since it only requires to be able to generate N different realizations of the process with the same initial condition.

To b e more precise, supp ose that one needs to compute the committor function q(x)a tp o i n tx for two sets A and B.T oa c h i e v et h i sr e s u l t ,N realizations of the process X(t)c a nb ei n i t i a l i z e da tX(0) = x and then 2.4. NUMERICAL COMPUTATION OF THE COMMITTOR evolved through the dynamics until they reach A or B.L e tN B (x) denote the number of realizations that ends up in B. An estimation of the committor q(x)i sg i v e nb y q(x)= N B (x) N , (2.67) which converges to the exact value in the limit N ! +1.

If one needs to compute the committor over the entire phase space Ω, a similar procedure can be employed. Indeed, let {C j } 1jJ be a partition of the phase space Ω, i.e. C j 1 \C j 2 = ; for j 1 6 = j 2 and [ J j=1 C j =Ω . T h e n ,f o r each set C j ,onecangenerateN different realizations of the process X(t)with initial condition X(0) = x 2C j .L e tN B (C j )b et h en u m b e ro ft r a j e c t o r i e s that reach the set B first, knowing that they start inside the set C j .T h e committor function q(x), for any point x 2C j ,i s

q(x)= N B (C j ) N , (2.68) 
which converges to the real committor when N ! +1 and J ! +1. While this procedure is conceptually simple, it has at least two drawbacks. The first one is that this approach is feasible as long as one is able to generate precise initial conditions. Although this can be done in numerical simulations, it may not be the case in real laboratory experiments. The second drawback is related to its computational cost. In fact, since one has to observe N different realizations of the process until they reach one of the two sets, the time for a realization to reach the sets must be sufficiently small. Furthermore, even if the time to hit the two sets is small enough, this method is impractical for high dimensional systems, since the number J of sets C j needed to partition the phase space Ω grows exponentially with the dimension.

Committor computation based on a long trajectory

For an ergo dic pro cess, b eing it deterministic or sto chastic, the committor function can be computed by using the information contained in one (or more) long trajectory.
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Let 1 ⌧ B <⌧ A be the variable defined as

1 ⌧ B <⌧ A = ( 1i f⌧ B <⌧ A , 0o t h e r w i s e .
(2.69)

From the definition of the committor (Eq. ( 2.47)) it can be seen that

q(x)=E x [1 ⌧ B <⌧ A ] ,
(2.70)

where E x [•]denotestheaverageoverthestationarydistributionoftheprocess conditioned to the constrain X(0) = x.F u r t h e r m o r e ,i ts h o u l db en o t e dt h a t Eq. (2.47)c a nber e w r i t t e na s

q(x)=P(⌧ B <⌧ A |X(0) = x)= P(⌧ B <⌧ A ; X(0) = x) P(X(0) = x) , (2.71)
where the numerator stands for the joint probability of observing ⌧ B <⌧ A and X(0) = x,whilethedenominatorissimplygiv enb y⇢ s (x)dx.T h e r e f o r e , one has

⇢ s (x)q(x)dx = P(⌧ B <⌧ A ; X(0) = x)=E [1 ⌧ B <⌧ A (X(0) x)] .
(2.72) By using the ergodicity for replacing the statistical average in Eq. (2.72)with temporal averages one obtains

⇢ s (x)q(x)= lim T !+1 1 T Z T 0 (X(t) x)1 ⌧ B <⌧ A , (2.73)
while the stationary distribution is given by

⇢ s (x)= lim T !+1 1 T Z T 0 (X(t) x).
(2.74)

By introducing a spatial and temporal discretization, Eqs. (2.73),(2.74) can be used to compute an estimation of the committor function [Lopes andLelièvre, 2019,Lucente et al., 2019]. As in the previous section, let {C j } 1jJ be a partition of the phase space Ω. Let {X n } 1nNt be a realization of the process observed at discrete time t n = n∆t with T = N t ∆t. The probability for the system to be in the set C j ,d e n o t e db yp(C j ), is equal to

p(C j )= 1 N t Nt X n=1 1 Xn2C j , (2.75)
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while the probability that it is in the set C j and that it will visits the set B before A,i n d i c a t e db yp B (C j )i ss i m p l yg i v e nb y

p B (C j )= 1 N t Nt X n=1 1 Xn2C j 1 ⌧ B (Xn)<⌧ A (Xn) .
(2.76)

Finally, by combining Eqs. (2.75),(2.76)thecommittorfunctionturnsoutto be

q(C j )= p B (C j ) p(C j ) = P Nt n=1 1 Xn2C j 1 ⌧ B (Xn)<⌧ A (Xn) P Nt n=1 1 Xn2C j .
(2.77)

Although both the direct estimation of the committor and the computation based on a long trajectory rely on Eq. (2.47), the latter should be preferred since it uses all the informations that a trajectory carries with it. However, as it will be seen in the next chapter, this method may suffer from sampling issues. In fact, a finite trajectory cannot visit the entire phase space Ω. Therefore, meaningful results can be obtained only for the part of the phase where the dynamics spends enough time.

Committor computation solving the Backward equation

It has be seen in Sec. 2.3.2 that for a continuous Markov process (i.e. a diffusion process) the committor function q(x)i st h es o l u t i o no fas e c o n do r d e r partial differential equation (Eq. (2.53)). Hence, the committor function can be computed by solving Eq. (2.53)n umerically . Thiscanbeac hiev edb yemploying any integration scheme for partial differential equation, for instance by employing the finite difference method which is illustrated here for one dimensional dynamics.

The finite difference method aims to approximate the derivatives of a function with finite difference equations [START_REF] Smith | Numerical solution of partial differential equations: finite difference meth[END_REF]. To derive this method, consider the Taylor expansions of the committor function q(x) around the point x: q(x +∆x)=q(x)+ @q(x) @x ∆x + 1 2 

@ 2 q(x) @x 2 ∆x 2 + O(∆x 3 ), (2.78) q(x ∆x)=q(x) @q(x) @x ∆x + 1 2 @ 2 q(x) @x 2 ∆x 2 + O(∆x 3 ). ( 2 
@ 2 q(x) @x 2 ' q(x +∆x)+q(x ∆x) 2q(x) ∆x 2 , @q(x) @x ' q(x +∆x) q(x ∆x) 2∆x . ( 2 
q 0 =0andq L =1. Instead,for1 l  L 1o n eh a s A l q l+1 q l 1 ∆x + 1 2 D l q l+1 + q l 1 2q l ∆x 2 =0, (2.81) 
where

A l = A(x l )a n dD l = D(x l )
. By solving Eq. (2.81)o n eo b t a i n sa n estimation of the committor that converges to the real one when ∆x ! 0. Unlike the two methods described in the previous sections, such an approach can only be used for diffusion processes. In spite of this limitation, it has the great advantage that its computational cost does not depend on the intensity of the noise. Therefore, when transitions between sets A and B are rare it is preferable to use this method since generating several trajectories ending in A or B or a single trajectory long enough to cover a relevant portion of the phase space can take a very long time and may not be feasible in practice [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF].

Solving the problem (2.53) numerically is feasible as long as the system under investigation has few degrees of freedom. When the dynamics takes place in an high dimensional phase space Ω the number of linear equations to be solved grows exponentially with the dimension, highlighting the impossibility of finding a solution with finite computational resources.

Machine learning estimation

The style of this subsection slightly deviates from the style of the chapter. In fact, the purpose here is to mention the possibility of estimating committor functions from observations. A rigorous treatment of the methods 2.4. NUMERICAL COMPUTATION OF THE COMMITTOR mentioned here is beyond the scope of this thesis. Nonetheless, it is important to mention recent works which are somehow related to the topics of this manuscript.

Many interesting methods have been or are currently being devised to learn committor functions: based on direct machine learning [START_REF] Pozun | Optimizing transition states via kernel-based machine learning[END_REF], using a characterization of the committor function for diffusions as a solution of a partial differential equation [START_REF] Khoo | Solving for highdimensional committor functions using artificial neural networks[END_REF], Li et al., 2019], computing the committor function from a finite state Markov chain [START_REF] Schütte | A direct approach to conformational dynamics based on hybrid monte carlo[END_REF], Prinz et al., 2011, Noé and Rosta, 2019, Tantet et al., 2015], possibly a Markov state model approximation of the dynamics [Ulam, 2004]. Recently a very interesting approach has been considered starting from a Galerkin approximation of the dynamics generator, or the Koopman operator. Finite dimensional approximations of the dynamics generator have been used to identify good reaction coordinates [START_REF] Froyland | A computational method to extract macroscopic variables and their dynamics in multiscale systems[END_REF], Bittracher et al., 2018], or to evaluate eigenfunctions of the operator [START_REF] Giannakis | Spatiotemporal feature extraction with data-driven koopman operators[END_REF], Giannakis, 2019, Williams et al., 2015, Mardt et al., 2018], sometimes with climate applications [START_REF] Giannakis | Spatiotemporal feature extraction with data-driven koopman operators[END_REF], Giannakis, 2019]. Recently such direct Galerkin approximation has been used to directly compute committor function, avoiding the burden of discretizing a high dimensional phase space [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF], Strahan et al., 2021].

In Chapter 4 an e wm e t h o df o re s t i m a t i n gc o m m i t t o rf u n c t i o n sf r o m dynamical observations will be developed.

Validation of a committor estimate

Having introduced several numerical methods to compute the committor function of a system, it is natural to ask how to evaluate the quality of a particular estimate. First of all, note that the committor function q(x)i s the probability of success of a spatially dependent Bernoulli trial where the two possible outcomes are the occurrence of the event

⌧ B (x) <⌧ A (x)o r ⌧ A (x)  ⌧ B (x)w h o s ep r o b a b i l i t i
e sa r eq(x)a n d1 q(x), respectively. Thus, the predictive problem to be faced consists in assigning a probability to two mutually exclusive events. The two mutually exclusive events are the two possible values assumed by the random variable 1 ⌧ B (x)<⌧ A (x) which for brevity will be denoted by y(x), i.e. y(x)

⌘ 1 ⌧ B (x)<⌧ A (x) .
Therefore, the objective of estimating the committor function is to find the best approximation of the joint probability P (x, y)o ft w oe v e n t s( x, y), with x 2 Ωa n dy 2{ 0, 1}. Note that these random variables are not in-2.4. NUMERICAL COMPUTATION OF THE COMMITTOR dependent. Indeed, it has been argued that the conditional distribution of y with respect to x is Bernoulli with parameter q(x), where q is the committor function. Thus, by assuming that the process is stationary (i.e. x is distributed according the stationary distribution ⇢ s (x)), one has

P (x, y)=P (x)P (y|x)=⇢ s (x)[q(x) (y 1) + (1 q(x)) (y)] ,
(2.82)

where (•) is the Dirac delta function.

In this context, evaluating an estimate of the committor function requires finding a way to quantify the discrepancy between the predictions made using P (x, y)c o m p a r e dt ot h o s eo b t a i n e du s i n gi t sa p p r o x i m a t i o n P (x, y). Since usually the committor function is computed using realizations of the process under investigation, or in any case, it is computed only in regions of the phase space mostly visited by the dynamics, it can be assumed without losing generality that also for the distribution P (x, y)t h ev a r i a b l ex is distributed according to the stationary distribution ⇢ s (x), i.e.

P (x, y)

= P (x) P (y|x)=⇢ s (x)[q(x) (y 1) + (1 q(x)) (y)] .
(2.83)

The score functions to be used, denoted by R(P, P ), must have two fundamental properties. The first one is that R exhibits an extremant for P = P , which is equivalent to requiring that @R @ P =0f o r P = P .T h es e c o n df u ndamental property is that the function R has an empirical counterpart R that can be computed from observations, since the true committor function is often unknown in real problems.

The request for an empirical counterpart R is what distinguishes scores from distances (or pseudo distances). In fact, one could try to use a distance such as the L ⇢s 2 norm or a pseudo distance such as the Kullback-Leibler divergence to compute the error of an estimate of the committor function. However, as will be well illustrated in the next two subsections, these distances cannot be computed from the data. The quantities that can be calculated instead are the scores associated with these two distances. The scores differ from distances only by an additive constant. The diagram in Fig. 2.4,t ogether with the discussions in the following sections help to better understand this important concept.

Two score functions that are widely used in probabilistic forecasts, which are related to the L ⇢s 2 norm and the Kullback-Leibler divergence, are the Brier score and the logarithmic score. 

(x)= 1 N y Ny X ny=1 (q(x) y ny (x)) 2 , (2.85)
The space-dependent Brier score B Ny (x)isth usarandomv ariable,withv alues between 0 and 1. The random variable (q(x) y ny (x)) 2 can only assumes two values: (q(x) 1) 2 with probability q(x)a n dq(x) 2 with probability 1 q(x). Therefore, the average value of B Ny (x)i s

E ⇥ B Ny (x) ⇤ =(1 q(x)) 2 q(x)+q(x) 2 (1 q(x)) = q(x)(1 q(x))+(q(x) q(x)) 2 . (2.86) Eq. (2.86)showsthattheaveragespace-dependentBrierscoreE ⇥ B Ny (x)
⇤ can be decomposed into the sum of two positive terms. The first term represents the variance of a Bernoulli trial with parameter q(x)a n di ti sr e l a t e dw i t h the intrinsic stochasticity of the forecast itself. Indeed, since the variable y is stochastic, there will always be an uncertainty in its prediction. This uncertainty is as great as q(x)i sc l o s et ot h ev a l u e0 .5a n di tv a n i s h e so n l y for q(x)=0o rq(x)=1 . T h es e c o n dt e r m ,i n s t e a d ,m e a s u r e sh o wd i ff e r e n t are the actual committor q(x)a n di t sa p p r o x i m a t i o nq(x). Such a term is always positive (since it is a square difference) and is equal to 0 if and only if q(x)=q(x). From these considerations it is therefore clear that the smaller the score, the more accurate the estimate of the committor function is.

In the limit N y ! +1,a c c o r d i n gt ot h el a wo fl a r g en u m be r so n eh a s lim

Ny!1 B Ny (x)=E ⇥ B Ny (x) ⇤ .
(2.87)

So far, exclusively how to quantify the quality of the estimate of the committor at a given point x has been discussed. To take into account also the contributions deriving from other regions of the phase space it is sufficient to add the contributions coming from different points:

B N = 1 N x Nx X nx=1 1 N y Ny X ny=1 (q(x nx ) y ny (x nx )) 2 = 1 N N X n=1 (q(X n ) y n ) 2 . (2.88)
By considering the limits N x ! +1 and N y ! +1 (or equivalently the limit N ! +1)i n t oE q .( 2.88)o n eo b t a i n s lim

Nx!1 lim Ny!1 B N = E P [(y(x) q(x))] = B ⇢s .
(2.89)
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Eq. (2.89)s h o w st h a tB N is the empirical version of B ⇢s ,t h a ti sB N = B⇢s . Furthermore, by using Eq. ( 2.86), it easy to see that

B ⇢s =k q q k 2 ⇢s + k p q(1 q) k 2 ⇢s , (2.90)
where

k f k 2 ⇢s = L ⇢s 2 (f )= R dxf 2 (x)⇢ s (x).
The second term in the right hand-side of Eq. (2.90)dependsonlyonthe true committor q(x)a n dt h e r e f o r ei ti sc o n s t a n ti fo n ei m a g i n e st h eB r i e r score as a function of q(x). Thus, in all cases in which the real committor function is known, the difference of q(x)f r o mq(x)c a nb es t u d i e du s i n gt h e weighted norm L ⇢s 2 ,s i n c ei ti st h eo n l yn o n -c o n s t a n tt e r mi nE q .( 2.90). Therefore, it has been shown that the Brier score can be used for assessing the quality of an estimate of the committor function. In fact, it satisfies the two basic requirements for a score function and it has a simple expression which involves the L ⇢s 2 distance. The major limitation, as noted in [Benedetti, 2010], is that it is not appropriate for dealing with rare (or frequent) events. In fact, consider a state x for which the committor function is relatively small, for example q(x)=10 3 . Also suppose that two estimates of the committor function q1 (x) = 0 and q2 (x)=10 3 are available. These two approximations lead to the two values

E h B 1 Ny (x) i =10 3 and E h B 2 
Ny (x) i =(1 10 3 )10 3 . Thus, by using the real committor function the score is reduced by only 0.1% showing that it is very unfair in evaluating forecasts of rare events.

Logarithmic score

The logarithmic score is nowadays widely used both for the validation of probabilistic predictions and in the field of machine learning. From the point of view of information theory, this can be understood given its relationship to relative entropy.

The relative entropy, also known as Kullback-Leibler divergence, was introduced by Kullback and[START_REF] Kullback | [END_REF][START_REF] Kullback | [END_REF]a sa measure to quantify how different two distributions are.

Let P (x, y)a n d P (x, y)bet w od i s t r i b u t i o n s ,t h e nt h er e l a t i v ee n t r o p yi s defined as [Kullback andLeibler, 1951, Kullback, 1997] 

S(P (x, y)|| P (x, y)) = Z dxdyP (x,
S(P (x, y)|| P (x, y)) = Z dxdyP (x, y)log P (x, y) P (x, y) = Z dx⇢(x)  q(x)log q(x) q(x) +(1 q(x)) log 1 q(x) 1 q(x) = C(q)+Const(q)=S ⇢s , (2.92)
where

C(q)= Z dx⇢(x)[q(x)log(q(x)) + (1 q(x)) log (1 q(x))],
(2.93)

and

Const(q)= Z dx⇢(x)[q(x)log(q(x)) + (1 q(x)) log (1 q(x))]. (2.94)
Note that S ⇢s and C(q)a r ew e l ld e fi n e di fa n do n l yi fq(x)=0) q(x)=0 and q(x)=1) q(x)=1. F urthermore,iteasytov erifythat argmin q {S ⇢s } =argmin q {C(q)} = q.

(2.95)

Eq. (2.92)s h o w st h a tt h er e l a t i v ee n t r o p yS ⇢s is the sum of two terms. The term Const(q) is minus the spatial average over the stationary distribution of the entropy of a spatial dependent Bernoulli trial with parameter q(x), which is consistent with the interpretation of the committor given above. It does not depend on q and corresponds to an additive constant in the equation for S ⇢s .T h eo t h e rt e r mi st h ec r o s se n t r o p y( o rl o g a r i t h m i cs c o r e )b e t w e e n P (x, y)a n d P (x, y)a n di ti sr e l a t e dw i t ht h em u t u a li n f o r m a t i o nb e t w e e n the two probability distributions. It should be noted that the logarithmic score C(q)c o n t a i n sa l lt h ed e p e n d e n c eo fS ⇢s on q and therefore minimize S ⇢s is equivalent to minimize C(q).

To be a useful score function, the corresponding empirical score must exist. Unfortunately, the quantity S ⇢s can be computed only when the true committor is known due to the term Const(q)i nE q .( 2.92). Nevertheless, it is possible to provide an empirical version of the logarithmic score C(q), denoted by C(q). In fact, consider again N points (X n ,y n )withn =1, ••• ,N drawn from the true distribution P (x, y). Let CN (q)b et h ee m p i r i c a ls c o r e defined as

CN (q)= 1 N N X n=1 [y n log (q(X n )) + (1 y n )log(1 q(X n ))] = = 1 N N X n=1 Z dx (X n x)[y n log (q(x)) + (1 y n )log(1 q(x))] .
(2.96)

When N ! +1 one has lim N !+1 1 N N X n=1 (X n x)y n = ⇢ s (x)q(x), lim N !+1 1 N N X n=1 (X n x)(1 y n )=⇢ s (x)(1 q(x)), (2.97) 
which imply that lim N !+1 CN (q)=C(q).

(2.98)

It has therefore been shown that the logarithmic score C(q)c a nb eu s e d as a score function as it has an empirical version that can be computed from data and it is also minimal for q = q.F u r t h e r m o r e ,s i n c eC(q)isw elldefined for q(x)! = 0 (q(x)! = 1) unless q(x)=0( q(x)=1 ) ,t h el o g a r i t h m i cs c o r e tends to discourage trivial assignments such as q(x)=0( q(x)=1 ) ,t h u s behaving better than the Brier score in evaluating the predictions of rare (or frequent) events [Benedetti, 2010].

Time dependent committor functions

So far, the problem of computing the probability that a process enters a certain region of the phase space before another region has been considered. This section is devoted to discuss a slightly different problem which can nevertheless be addressed using the same formalism introduced previously.

The problem to be taken in this section is strictly related to prediction problems. Indeed, it often happens that it is necessary to compute the probability that an observable O of the system exceeds a given threshold ⇣ within at i m eT .F o ri n s t a n c e ,O could be the average temperature of a country and one may be interested in computing the probability to have an extreme hot day in the incoming few weeks.

Although it may appear that these prediction problems have nothing to do with committor functions, in this section it will be shown that these probabilities are committor functions of an auxiliary process. Furthermore, it will be explained that in the case in which the observable O does not explicitly depend on time, there is a relationship between the probability of exceeding the threshold and the first hitting time of a region of the phase space. The section concludes by discussing this prediction problem in the context of a two-dimensional Wiener process.

Definition and equation for time dependent committor

Let X(t)beastochasticordeterministicdynamicalsystemandletO (X(t),t) be an observable of the system, i.e. a function O :[0, +1) ⇥ Ω ! R.T h e n , suppose that one is interested in computing the probability q(x, t 0 ; ⇣,T)that O (X(t),t)exceedsathreshold⇣ within the time interval [t 0 ,t 0 + T ], knowing that the process starts at X(0) = x,i . e . :

q(x, t 0 ; ⇣,T)=P

✓ max t 0 tt 0 +T [O (X(t),t)] >⇣|X(0) = x ◆ .
(2.99)

As previously mentioned q(x, t 0 ; ⇣,T)i sn o t h i n gb u tac o m m i t t o rf u n c t i o n for an auxiliary process Y [START_REF] Lestang | Computing return times or return periods with rare event algorithms[END_REF]. In fact, consider the process

Y (t)=[O (X(t),t)
,t]a n dl e tA and B be two subsets of the phase space of Y .T h ed e fi n i t i o n so ft h et w os e t sa r e

A = {y =[z, t 0 + T ]:z  ⇣}, (2.100) B = {y =[z, t]:z>⇣and t 2 [t 0 ,t 0 + T ]}.
(2.101) Fig. 2.5 shows a schematic illustration of the phase space of Y (t)a n di t could be useful to visualize the two sets A and B.

For the pro cess Y (t)o n ec a nd e fi n et h ec o m m i t t o rf u n c t i o na sq(y)= P (⌧ B (y) <⌧ A (y)). Furthermore, by noting that Y (0) cannot be arbitrary 1. instantaneous observables O (X(t)) which are functions that do not depend explicitly on time,

2. time averaged observables O (X(t),t)= 1 T R t+ T t dth(X(t))
where h (X(t)) is time independent.

Note that the observables which belong to these classes are invariant under the transformation t ! t + ⌧ provided that the process X(t)i sas t a t i o nary process. This invariance is important as it allows the introduction of an integral equation for q(x, t 0 ; ⇣,T). Indeed, consider a stationary Markov process X(t)a n da no b s e r v a b l ew h i c hbe l o n g st oo n eo ft h et w oc l a s s e s . L e t G(y, t|x, 0) denote the propagator of the process. Then, it can be noted that the probability that the observable O exceeds the threshold ⇣,k n o w i n gt h e initial condition X(0) = x,isequaltothesumo v erallpossiblesin termediate states X(t 0 )=y of the probabilities that O exceeds the threshold ⇣ when the process starts at X(t 0 )=y times the propagator G(y, t 0 |x, 0), i.e. q(x, t 0 ; ⇣,T)=

Z dy P ✓ max t 0 tt 0 +T [O (X(t),t)] >⇣|X(t 0 )=y ◆ G(y, t 0 |x, 0).
(2.103) By using the invariance under the transformation t ! t + ⌧ ,o n ec a nw r i t e P ✓ max

t 0 tt 0 +T [O (X(t),t)] >⇣|X(t 0 )=y ◆ = P ✓ max 0tT [O (X(t),t)] >⇣|X(0) = y ◆ =) P ✓ max t 0 tt 0 +T [O (X(t),t)] >⇣|X(t 0 )=y ◆ = q(y, 0; ⇣,T). (2.104) By combining Eqs. (2.103),(2.104)o n eo b t a i n s q(x, t 0 ; ⇣,T)= Z dyq(y, 0; ⇣,T)G(y, t 0 |x, 0), (2.105)
which shows that exists a relationship between the time-dependent committor function at two different times.

In the next subsection, it will be shown that for instantaneous observables the time dependent committor function q(x, 0; ⇣,T)isthesolutionofapartial differential equation analogous to Eq. (2.53)a n dm o r e o v e rt h a ti ti sr e l a t e d with the cumulative distribution of first hitting times of the process X(t).

Relation with cumulative distribution of first hitting time

Let X(t) be an homogeneous continuous Markov process and O (X(t)) be an observable which depends on time only through the stochastic process X(t).

Since O (X(t)) is time independent, one can define a subset C⇢Ωw h i c h contains all the points x such that O(x) >⇣,i . e . C = {x : O(x) >⇣}.

Hence, the time-dependent committor function q(x, 0; ⇣,T)i st h ep r o b ability that the first hitting time ⌧ C (x)o fs e tC is smaller than T :

q(x, 0; ⇣,T)=P(⌧ C (x) <T).
(2.106)

Following the same reasoning that in Sec. 2.3.2 led to the Dirichlet problem for the committor function, it is possible to prove that q(x, 0; ⇣,T)s a t i s fi e s the following partial differential equation

@q(x, 0; ⇣,T) @T = L[q(x, 0; ⇣,T)], (2.107) 
with the boundary condition q(x, 0; ⇣,T)=1ifx 2C. Thus, two other methods have been provided for computing q(x, 0; ⇣,T): the first one consists in solving Eq. (2.107)analyticallyorn umerically ,while the second one aims to compute q(x, 0; ⇣,T)b yi n t e g r a t i n gu pt ot i m eT the first hitting time distribution of the set C.O n c eq(x, 0; ⇣,T)h a v eb e e n computed, it is possible to obtain q(x, t 0 ; ⇣,T)b ym e a n so fE q .( 2.105).

Example: Wiener process

The aim of this section is to apply the formalism of the time-dependent committor function for computing the probability that a Brownian particle leaves a planar domain through a line within a certain time T .C o n s i d e ra Brownian particle which moves on a planar surface whose position is denoted by

X(t)=(W x (t),W y (t)). The equation of motion are Ẇx (t)= p 2D⇠ x (t), Ẇy (t)= p 2D⇠ y (t).
(2.108)

Consider the line x = a with a =1 ,a n di m a g i n eh a v i n gt oc o m p u t et h e probability that the particle leaves the phase space passing through the line within a time T =1 0 . S u c hap r o b l e mc a nb es o l v e dw i t ht h ef o r m a l i s m previously introduced by considering the observable O (X(t),t)=W x (t)and the threshold ⇣ = a.

First, note that although the system lies in a two-dimensional space, the two components are independent of each other. Therefore, the timedependent committor function will only depend on the x component of the initial condition. Moreover, due to the independence of the two components, also the propagator can G be written as the product of a propagator for the y component and a propagator for the x component and the absorbing boundary conditions will be imposed only for the x component propagator.

Let G x (W x (t)|W x (0)) and G y (W y (t)|W y (0)) be the propagators of the two components. Then, the total propagator G which satisfies the right boundary conditions is [Redner, 2001] G(X(t),t|X(0

), 0) = G x (W x (t)|W x (0))G y (W y (t)|W y (0)), G y (W y (t)|W y (0)) = 1 p 4⇡Dt exp ✓ (W y (t) W y (0)) 2 4Dt ◆ , G x (W x (t)|W x (0)) = 1 p 4⇡Dt  exp ✓ (W x (t) W x (0)) 2 4Dt ◆ exp ✓ (W x (t) (2a W x (0))) 2 4Dt
◆ .

(2.109)

Then, the probability that the first hitting time of the set C = {(x, y): x>a} is smaller than T is equal to

P(⌧ C (x) <T)=1 Z C G(X(T ),T|X(0) = (x, y), 0) = 1 erf ✓ a x p 4DT ◆ ,
(2.110) where erf(•)d e n o t e st h ee r r o rf u n c t i o n .

Since O is an instantaneous observable, the time-dependent committor function is equal to the probability that the first hitting time of the set C is smaller than T .T h u s , o n e h a s t h a t q(x, 0; a, T

)=P(⌧ C (x) <T )= 1 erf ⇣ a x p 4DT ⌘ .
C l e a r l y ,q(x, 0; a, T ) ! 0i fT ! 0b e c a u s ei ft h ep a r t i c l e does not have enough time it will not leave the domain. In the opposite limit, i.e. when T ! +1, q(x, 0; a, T ) ! 1g i v e nt h a ts o o n e ro rl a t e rt h e particle will reach the threshold a.T h e s a m e c o n s i d e r a t i o n s h o l d f o r t h e diffusion coefficient D.I n d e e d ,w h e nD 1theparticleism uc hmorelik ely to leave the domain within time T than in the case D ⇠ 0. Considering the dependence of q(x, 0; a, T )onx,onehasthatifx is close to a then q(x, 0; a, T ) Chapter 3

Committor Functions for Climate Phenomena at the Predictability Margin: The example of ENSO in the Jin and Timmermann model

In this chapter, the methods introduced in Chapter 2 are applied for studying the committor function of the Jin and Timmerman model of El-Niño. In this context, it is shown that the ability to predict the probability of occurrence of the event of interest may differ strongly depending on the initial state. The main result is the new distinction between intrinsic probabilistic predictability (when the committor function is smooth and probability can be computed which does not depend sensitively on the initial condition) and intrinsic probabilistic unpredictability (when the committor function depends sensitively on the initial condition).

The content of this chapter is intended to be a paper manuscript and has been submitted to the "Journal of the Atmospheric Sciences" (JAS) [START_REF] Lucente | Committor functions for climate phenomena at the predictability margin: The example of el niño southern oscillation in the jin and timmerman model[END_REF]. For this reason, the chapter is self-consistent and can be read independently from the rest of the thesis. Therefore, some of the previously described ideas, especially those discussed in the introductory chapter, are discussed again. The reader who is reading the thesis manuscript entirely can therefore skip the introduction of this chapter and start reading from Sec. 3.2.
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Introduction

It has long become clear that statistics and probability are the natural languages for climate: for given boundary conditions, there is a typical state (or several, in case of bimodality), the climatology, and fluctuations around typical conditions, referred to as climate variability,i n v o l v i n gv a r i o u st i m e and space scales. At first sight, this kind of description may seem orthogonal to the problem of weather forecasting, which consists in predicting the exact state of the atmosphere at a given future time. However, notwithstanding the use of probabilities in numerical weather forecasting for uncertainty quantification, these two approaches meet in several areas of current climate research [Kalnay, 2003, Dijkstra, 2013, Ragone et al., 2018]. For instance, we are often interested in predicting the occurrence of specific fluctuations of the climate system, be it a given mode of climate variability, such as the El Niño Southern Oscillation (ENSO) [Philander, 1990], regime changes [START_REF] Tantet | An early warning indicator for atmospheric blocking events using transfer operators[END_REF], or rare events such as heat waves [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF], sudden stratospheric warming, cold spells, extreme precipitations, or any other event of importance. All these events have a probability of occurring any given year, i.e. with respect to climatological conditions, but one may also be interested in their probability of occurrence conditioned on the state of the climate system at the time of the prediction. For instance, given the global impact of events like ENSO, much efforts have focused on developing methods to forecast it several months in advance [START_REF] Latif | A review of ENSO prediction studies[END_REF], Clarke, 2008, Chekroun et al., 2011,Ludescher et al., 2014,Feng and Dijkstra, 2017,Nooteboom et al., 2018]. Similarly, one may want to estimate the probability of occurrence of a summer drought based on soil moisture in the spring, the probability of occurrence of a heat wave a few weeks in advance, based on the observed atmospheric circulation, or the probability of an extreme hurricane season, based on sea surface temperature. Such forecasts are extremely challenging, but would be rewarded with proportionally large benefits, given the socioeconomic impact of these events at the local and global scales, especially in ac l i m a t ec h a n g ec o n t e x t [ AghaKouchak et al., 2012, Coumou and Rahmstorf, 2012, Field et al., 2012, Herring et al., 2014]. While it is not clear that this may be reliably achieved for all the above examples, due to their different physical nature, conceptually all these events fall in the same class of prediction problems. The goal of this paper is to discuss the mathematical structure of such climate prediction problems.

Indeed, the mathematical structure of weather forecasting is quite clear:
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it consists in solving an initial value problem (IVP). Given an initial condition x 0 belonging to an appropriate phase space, we are interested in computing the trajectory x t = t x 0 ,w h e r e t is the flow of the dynamical system, encapsulating the evolution equations. For many dynamical systems, this description only holds for a finite time in practice, due to sensitive dependence on initial conditions. This limitation was already known from mathematicians in the 19th century, such as Poincaré and Hadamard.

For low-dimensional chaotic dynamical systems, this time scale, up to which deterministic forecasts are relevant, corresponds the the Lyapunov time [START_REF] Castiglione | Chaos and coarse graining in statistical mechanics[END_REF]. In the atmosphere, the predictability horizon, about two weeks in practice, corresponds to the time it takes for undetectable errors at the smallest scales of the flow to contaminate the large scales [Thompson, 1957, Novikov, 1959[START_REF] Lorenz | The predictability of a flow which possesses many scales of motion[END_REF]. Early numerical weather prediction attempts fell short of this predictability horizon, both due to model errors and sparsely constrained initial conditions. As models improved and observational data became much denser, owing in particular to the advent of satellite observations, performance rose and skillfull forecasts are now close to the theoretical barrier [START_REF] Bauer | The quiet revolution of numerical weather prediction[END_REF]. Beyond this limit, the dynamics becomes effectively stochastic. Notwithstanding the fact that the relevant phase space may be different for climate dynamics over geological time scales, climate therefore corresponds to the statistical properties of some stochastic process (x t ) t>0 .O v e rv e r yl o n gt i m e s ,w ee x p e c tt h o s es t a t i s t i c a lp r o p e r t i e s to be independent of the initial condition. In other words, the mathematical concept relevant for climate is the invariant measure of the system. For lack of better techniques, in practice we still compute these properties by averaging over long times and over realizations using ensembles of trajectories obtained by numerical integration of climate models. In any case, the invariant measure only describes the system for times larger than the mixing time, after which the initial condition is forgotten. However, in the applications cited above, the time scale of interest is the intermediate case for which a deterministic forecast is not relevant, but for which some information, more precise than the climate average, might be predicted. We call this range of time scales the predictability margin. Prediction problems at the predictability margin are of a probabilistic nature, because they are concerned with time scales beyond the deterministic predictability horizon of the system (e.g. the Lyapunov time). However, we stress that the Lyapunov time scale, a global quantity, is clearly not the relevant dynamical quantity for this predictability problem. By contrast, at the predictability margin, the predictability clearly depends on the current state of the system. Then, the question is: what is the relevant mathematical concept for prediction problems at the predictability margin? The relevant mathematical concept is called the committor function [Ee ta l . , 2005, Vanden-Eijnden, 2006]. This is a very generic concept: a committor function is the probability for an event to occur in the future, as a function of the current state of the system. Committor functions have first been introduced in climate sciences in [START_REF] Lucente | Machine learning of committor functions for predicting high impact climate events[END_REF], and has been used to study sudden stratospheric warming [START_REF] Finkel | Path properties of atmospheric transitions: illustration with a low-order sudden stratospheric warming model[END_REF], Finkel et al., 2021] or to understand the flow of ocean debris [START_REF] Miron | Transition paths of marine debris and the stability of the garbage patches[END_REF]. The interest of putting a name, the committor function, to this otherwise very common and generic concept, is two-fold. First it allows to study its mathematical properties and to related them to key concepts in dynamical systems, for instance the predictability margin, as we do in the present work. Second, it comes with specific theoretical and computational approaches to compute this important quantity, for instance transition path theory, see for example [Vanden-Eijnden, 2006, Metzner et al., 2006, Metzner et al., 2009]a n d 3.1. INTRODUCTION references therein. In atmosphere dynamics, a very interesting use of smart ways of estimating the committor function for a simplified model of sudden stratospheric warming is provided by [START_REF] Finkel | Learning forecasts of rare stratospheric transitions from short simulations[END_REF]. Many problems in medium-range forecasting fall within the predictability margin range; to illustrate the interest of committor functions, we will select only one exemple of application, the problem of ENSO prediction, using a very simple model. While, as mentioned above, many studies strive to predict the occurrence of El Niño a few months in advance, we shall address here a slightly different problem, focusing on predicting strong El Niño events on longer time scales. This is also a relevant question from the point of view of climate dynamics; while strong El Niño events have been observed almost periodically since the 1950s, with a return time around 15-20 years, historical data and paleoclimatic proxies indicate that ENSO may exhibit high variability over centennial timescales [START_REF] Cobb | El Niño/Southern Oscillation and tropical Pacific climate during the last millennium[END_REF], Khider et al., 2011, McGregor et al., 2013]a n db e y o n d [ Rickaby and Halloran, 2005, Fedorov et al., 2006, Cobb et al., 2013]. We study the dynamics of a lowdimensional stochastic model proposed to explain the decadal amplitude changes of ENSO, the Jin and Timmermann model [Timmermann andJin, 2002,Timmermann et al., 2003]. This model is not aimed at reproducing any precise properties of the real El Niño Southern Oscillation. It is rather used as a paradigm example to introduce the concept of a committor function, and to study its main properties. This will lead us to define probabilistic predictability and unpredictability, some concepts that should be useful for other applications.

We show that probabilistic prediction at the predictability margin depends on the initial state, and that probabilistic predictability is encapsulated in the committor function. This property is analogous to classical, deterministic predictability, which is known to depend on the state of the system: some circulation patterns, such as the positive phase of the North Atlantic Oscillation (NAO), lead to improved predictability. However, we stress that deterministic and probabilistic predictability are different concepts: probabilistic predictability means that the probability of the event does not depend sensitively on the initial conditions. This corresponds to a region of phase space where the committor function has gentle variations with the initial conditions. In these areas, the event occurs with a probability p that can be easily determined in practice because of these gentle variations. On the contrary, probabilistic unpredictability corresponds to regions of the phase space with a rough committor function. In these regions, the occurence of the 3.1. INTRODUCTION event is also probabilistic. But the probability itself has very rapid variations with the initial conditions, which make the prediction highly dependent on the level of precision with which the initial condition is known. The existence of such features, and especially the new and most interesting probabilistically predictable region, should be generic for most prediction problems in climate dynamics.

This paper also discusses relations between qualitative properties of the committor function, finite time Lyapunov exponents, and the stability properties of trajectories with respect to noise perturbations. It also discuss methodological aspects for a data-based approach for the computation of committor functions.

The dynamics of the Jin and Timmerman model, when perturbed by a weak noise, is characterized by rare transitions between a limit cycle and a strange attractor [START_REF] Roberts | Mixed-mode oscillations of El Niño-Southern Oscillation[END_REF], Guckenheimer et al., 2017]. Based on large deviation theory, and with generic hypothesis, the average transition time E[⌧ c ] to see such transitions is expected to change following an Arrhenius law:

E[⌧ c ] ⇣ !0
A exp (∆V/ 2 ), where is the noise amplitude. Using numerical simulations, we demonstrate that the Jin and Timmerman transition times do not follow the expected Arrhenius law for a very large range of small noise amplitudes. We conjecture that this very interesting phenomenon might be the first observed counterexample to the expected generic result, for deterministic dynamics perturbed by weak noises. We argue that this is related to the intricated entanglement between the basins of attraction of the limit cycle and the strange attractor.

The paper is organized as follows: in Sec. 3.2 we define the Jin and Timmermann model [Timmermann andJin, 2002,Timmermann et al., 2003]. In this model, the occurrences of strong ENSO events correspond to noiseinduced transitions between a strange attractor and a limit cycle [START_REF] Roberts | Mixed-mode oscillations of El Niño-Southern Oscillation[END_REF], Guckenheimer et al., 2017]. We study in Sec. 3.3 the statistics of such transitions, and we show that they do not obey an Arrhenius law. Finally, in Sec. 3.4 we introduce the committor function, we compute it for the Jin-Timmerman model, and characterize the regions of the phase space with qualitatively different predictability properties. In the regime of intermediate noise amplitude, at the predictability margin, we delineate four regions (see Fig. 3.7): two regions of deterministic predictability (where the event occurs with probability 0 or 1), one probabilistically predictable region (where a value of the probability 0 <q<1canclearlybepredictedwithvery 57 3.2. THE JIN AND TIMMERMANN MODEL mild dependence with respect to initial condition), and finally a region which is unpredictable in practice, because the strong dependence with respect to the initial condition prevents any precise prediction, either deterministic or probabilistic.

The Jin and Timmermann model

El Niño Southern Oscillation (ENSO) is one of the most important mode of climate variability at the interannual time scales [Philander, 1990]. El Niño events consist in an increase of the Sea Surface Temperature in the eastern equatorial Pacific Ocean, leading at the local scale to reduced thermocline depth, reduced upwelling and reduced nutrient supply, thereby affecting marine life. Such events are correlated with a reorganization of the Walker circulation in the atmosphere, known as the Southern Oscillation. The global phenomenon, referred to as ENSO, has major impacts all over the world. However, the nonlinear coupled atmosphere-ocean dynamics of ENSO makes it very difficult to predict [START_REF] Mcphaden | The curious case of the el niño that never happened: a perspective from 40 years of progress in climate research and forecasting[END_REF]. Models of various complexities have been constructed to capture the dynamics of El Niño at different levels of realism [Clarke, 2008, Sarachik andCane, 2010]. In order to introduce and illustrate the concept of committor function in the simplest possible framework, we shall consider here one of the most idealized models, consisting of a low-dimensional stochastic process. This simple dynamical model, introduced by [Jin, 1997a, Jin, 1997b], accounts for the recharge-discharge mechanism which is at the basis of ENSO. This model was later extended by [START_REF] Timmermann | A nonlinear theory for El Niño bursting[END_REF]a n dw a sr e l a t e dt ot h e decadal amplitude changes of ENSO [START_REF] Timmermann | A nonlinear mechanism for decadal El Niño amplitude changes[END_REF]. The model describes the evolution of three variables:

1. T 1 ,theSeaSurfaceT emperatureinthewesternequatorialPacificOcean, 2. T 2 ,theSeaSurfaceT emperatureintheeasternequatorialPacificOcean, 3. h 1 ,t h et h e r m oc l i n ed e p t ha n o m a l yi nt h ew e s t e r nP a c i fi c .

Assuming a thermal relaxation towards a radiative-convective temperature T r ,t h ee q u a t i o n so fm o t i o nc a nb ew r i t t e na s [ Timmermann and Jin, 2002, 58 3.2. THE JIN AND TIMMERMANN MODEL [START_REF] Timmermann | A nonlinear theory for El Niño bursting[END_REF]:

@T 1 @t = ↵(T 1 T r ) ✏ ⌧ (1 ⌘ t )(T 2 T 1 ), @T 2 @t = ↵(T 2 T r )+⇣ ⌧(1 ⌘ t )(T 2 T sub ), @h 1 @t = r ✓ h 1 1 2 bL⌧ ◆ , (3.1) 
where ✏ and ⇣ represent the strength of the zonal and vertical advection, T sub denotes the temperature being upwelled into the mixed layer, ⌧ represents the zonal wind stress, L denotes the basin width, b captures the efficiency of wind stress in driving thermocline tilt, 1/↵ measures a typical thermal damping timescale and 1/r is the dynamical adjustment timescale of the thermocline depth. The term ⌘ t in the equations for temperatures is a Gaussian white noise with unit variance and the level of stochasticity is controlled by the noise amplitude . This term takes into account the fluctuating component of wind stress. In the last equation the noise has not be considered because wave processes are filtered out in the thermocline equations of the model [START_REF] Timmermann | A nonlinear theory for El Niño bursting[END_REF].

The expressions of T sub and ⌧ are

T sub = T r + T r 0 2 + T r T r 0 2 tanh ✓ H + h 2 z 0 h ⇤ ◆ , ⌧ = µ(T 2 T 1 ) , (3.2)
where T r 0 is a reference temperature, h 2 is the thermocline departure from its reference value H, z 0 represents the depth at which ⇣ takes its characteristic value, h ⇤ measures the sharpness of the thermocline. The relation between the eastern and western thermocline depth anomalies is

h 2 = h 1 + bL⌧. (3.3)
In order to study the dynamical behavior of the system it is useful to perform a change of variables from physical to dimensionless ones [START_REF] Roberts | Mixed-mode oscillations of El Niño-Southern Oscillation[END_REF]. So, we define

x = T 2 T 1 T 0 ,y = T 1 T r T 0 , z = h 1 + H z 0 h ⇤ , t = t t ⇤ ,
where T 0 = h ⇤ bLµ and t ⇤ = bL ⇣h ⇤ . After the change of variables, the equa-

tions (3.1)r e a d ẋ = ⇢ (x 2 ax)+x[x + y + c c tanh (x + z)] D x (x, y, z)⌘ t , ẏ = ⇢ (x 2 + ay)+D y (x, y, z)⌘ t , ż = ⇣ k z x 2 ⌘ , (3.4) 
where

D x (x, y, z)=[(1+⇢ )x 2 + xy + cx(1 tanh (x + z))] , D y (x, y, z)=⇢ x 2 ,
and the new control parameters , ⇢, c, k,a n da are defined as follows:

= rbL ⇣ h ⇤ ,⇢ = ✏h ⇤ rbL , a = ↵bL ✏ h ⇤ ,c = T r T r 0 2T 0 ,k = H z 0 h ⇤ .
The deterministic version ( =0)ofequations(3.4)waswidelystudiedin literature. For some parameter values, the system has only one attractor, a periodic orbit. [ [START_REF] Roberts | Mixed-mode oscillations of El Niño-Southern Oscillation[END_REF]a l s oa n a l y z e dt h em e c h a n i s mt h r o u g hw h i c ht h i sl i m i t cycle arises. [START_REF] Roberts | Mixed-mode oscillations of El Niño-Southern Oscillation[END_REF] defined strong El-Niño events for this model as periods in this limit cycle for which the temperature is large. Figure 3.2 shows a qualitative comparison of the eastern Pacific sea surface temperature anomaly for this limit cycle with the El-Niño3 index. Both the measurements and the model display positive temperature anomaly excursions with a return time of approximately 15 years.

Varying the parameter ,as t r a n g ea t t r a c t o re m e r g e st h r o u g hap e r i o d doubling cascade, as shown by [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF]. Moreover, [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF]showthatforsomeparametervaluesthelimitcycleand the strange attractor coexist. Following [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF], we use the parameter values [ , ⇢, c, k, a]= [ 0 .225423, 0.3224, 2.3952, 0.4032, 7.3939] all along this paper. While [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF]c o n s i d e r e do n l yt h e deterministic model ( = 0), we also consider later on the stochastic model

Statistics of the first exit times for transitions to strong El Niño regimes

As discussed in the previous section, we define strong El Niño events as periods of time when x c > 1, which occur along the limit cycle. In this section, we study transitions from the strange attractor regime to the strong El Niño regime, and how their statistics change when the noise amplitude is varied.

We consider X(t)=( x(t),y(t),z(t)) solutions to the stochastic Jin and Timmerman model (3.4). We define first exit times from a point x to the strong El Niño regime as

⌧ c (x)=inf{t>0:x(t) >x c | X(0) = x}.
(3.5)

The random variable ⌧ c (x) depends both on the realization of the noise and on the initial condition x.T h e s t a t i s t i c s a r e u n d e r s t o o d a s a v e r a g e s o v e r both the noise realization and the invariant measure of x over the strange attractor of the deterministic system ( = 0), the so called SRB measure.

For instance the mean first exit time E[⌧ c ]i sd e fi n e da s

E[⌧ c ]= Z dx ⇢ SRB (x)E noise [⌧ c (x)]. (3.6)
where E noise [•] is the expectation with respect to the noise realization and dx ⇢ SRB (x)i st h eS R Bm e a s u r e .

The SRB measure is defined through time averages of the deterministic dynamics ( =0 ) . I np r a c t i c e ,w et h u sc o m p u t eav e r yl o n gt r a j e c t o r yo f the deterministic dynamics. We then choose a set of 1000 initial conditions x taken randomly among all the points of this deterministic trajectory. Then, for any fixed value of >0, for any initial condition x,w ec o m p u t et h e first-passage time ⌧ c for several noise realizations.

In Fig. 3.5,w es h o wt h ep r o b a b i l i t yd e n s i t yf u n c t i o np(⌧ c )o f⌧ c based on this ensemble. The probability density function is close to an exponential: p(⌧ c )= e ⌧c .T h ep a r a m e t e r is then equal to the inverse of the mean first exit time:

1 = E[⌧ c ]. Because typically ⌧ c (x)i sm u c hl a r g e rt h a nt h er e l a x a t i o nt i m et ot h e strange attractor, one might expect that for most of the points of the strange attractor the dependence of ⌧ c (x)o nx is practically irrelevant. Indeed, we have verified numerically that except for a small region around the transition TO STRONG EL NI ÑO REGIMES paths, the statistics are independent from the initial condition, up to numerical accuracy. Hence we have

E[⌧ c ] ' E SRB [⌧ c (x)] ' E noise [⌧ c (x)]
for generic points x close to the strange attractors.

As illustrated in Fig. 3.5,t h em e a nfi r s te x i tt i m eE[⌧ c ]i so ft h eo r d e r of 1,000 in non-dimensional time units. The measured value is ⌧ c =1 , 039. As ⌧ c is much larger than the mixing time of the SRB measure, of order 1, then it is natural to expect that the first exit times should be random and distributed, with a very good approximation, according to a Poisson statistics. The observed exponential distribution is consistent with such a Poison statistics. Similar exponential distributions for first exit times were observed for the deterministic dynamics with periodic modulation of the a coefficient [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF].

We now study how the mean first exit time E[⌧ c ]v a r i e sw h e nt h en o i s e amplitude is changed. One generally expects an Arrhenius law:

E[⌧ c ] ⇠ !0 Ae ∆V 2 .
(3.7)

Arrhenius laws where first derived by Kramers for gradient dynamics forced by white noise ẋ = dV/dx + p

STATISTICS OF THE FIRST EXIT TIMES FOR TRANSITIONS TO STRONG EL NI ÑO REGIMES

first integration scheme is the fourth order Runge Kutta method to which az e r om e a ng a u s s i a nw h i t en o i s ei sa d d e d . T h ev a r i a n c eo ft h en o i s ei s proportional to the integration time step ∆t.I nt h i sw a yw eh a v eap r e c i s i o n of ∆t 4 for the deterministic part while we make an error of order p ∆t for the statistics. The second integration scheme is the stochastic Runge Kutta method which has an error of order ∆t for a stochastic dynamics [Roberts, 2012].

Let us note that many other behaviors than exponential ones have been observed for mean exit times. For instance a power-law has been observed for flow reversals in numerical simulations of inviscid turbulent flows [START_REF] Shukla | Statistical theory of reversals in two-dimensional confined turbulent flows[END_REF]. However for this last example, as the dynamics is not a deterministic system with attractors perturbed by weak noise, it was not clear why one should have expected an Arrhenius law in the first place.

We observe a breakdown of the Arrhenius law for the Jin and Timmermann model which is a deterministic system with attractors perturbed by weak noise. This is striking. Indeed we stress again that if a finite distance d>0existsbet w eenthestrangeattractorandthesaddleset,thenthereisa non-zero quasipotential difference ∆V>0, and an Arrhenius law should be expected. The distance d might be expected to be generically strictly larger than 0.

We see two possible heuristic explanations for this interesting breakdown. The first explanation might be that a finite distance d>0a n daq u a s i p otential barrier ∆V>0b e t w e e nt h es t r a n g ea t t r a c t o r sa n dt h eb a s i no f attraction limit cycle do actually exist, but they are extremely small. Then the explanation of the observed breakdown in Fig. 3.6 would be that we have not studied small enough values of . We note however that we computed first exit times of order E[⌧ c ]=5.10 5 for values of as small as 10 6 .I ft h i s first explanation is valid, this means that the Arrhenius law is practically irrelevant even if it might be mathematically correct.

The second possible explanation might be that there exists no finite distance between the strange attractor and a possible fractal boundary between the basins of attractions. Then for any small values d and v,t h e r ea l w a y s exist points in the strange attractor and in the boundary of the basin of attraction at a distance smaller than d and a quasipotential differences ∆V smaller than v.M a n yp h e n o m e n o l o g i e sc o u l dt h e nb ei m a g i n e d ,f o ri n s t a n c e with a distribution of a large number of transition paths, possibly infinite, leading to a power law or an effective behavior of the first exit times described by any function. Those conjectures are not based on any mathematical re-
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sults yet. However the possibility of a breakdown of the Arrhenius law is av e r yi n t e r e s t i n gp r o b l e m ,t h a ts h o u l db es t u d i e df u r t h e re i t h e rt h r o u g h theory and mathematics, or through numerical simulations.

Committor function of the Jin and Timmerman model

In Sec. 3.3, we have shown that, in the stochastic Jin and Timmerman model, transitions between the strange attractor regime and the strong El-Niño regime occur at random times, in the limit of small noise ! 0. In this section, we focus on the associated prediction problem: What is the probability that a strong El Niño event occurs within a given timeframe, given the state of the system at the time of prediction? We will address this question for any finite value of the noise amplitude .

We consider solutions X(t)=( x(t),y(t),z(t)) of the stochastic Jin an Timmerman model (3.4). We remind the reader that we identify a strong El Niño with an event when x> 1. For a solution X(t)t h a ts t a r t sf r o mx, that is X(0) = x,w ew a n tt op r e d i c tt h ep r o b a b i l i t yq(x)t h a tas t r o n gE l Niño event occurs within a fixed time T .T h i si s

q(x)=P ✓ max 0tT x(t) > 1 | X(0) = x ◆ . (3.8)
Recalling the definition of the first passage time to a strong El Niño regime, Eq. (3.5),

⌧ c (x)=inf{t>0:x(t) > 1 | X(0) = x}, (3.9) 
we note that q(x)=P[⌧ c (x) <T ] is the cumulative distribution function (CDF) of the first-passage time. We now define committor functions and explain that q is a committor function.

Committor functions. For a Markov sto chastic pro cess {Y(t)} which takes values in Γ, we define the first hitting time of the set C as ⌧ C (y)= inf{t : Y(t) 2 C | Y(0) = y}.F o r t w o d i s j o i n t s u b s e t s A, B ⇢ Γ, the committor function q(y) is defined as the probability to hit the set B before hitting the set A: q(y)=P(⌧ B (y) <⌧ A (y)).

(3.10)

Considering the auxiliary process {Y(t)},w i t hY(t)=(X(t),t), and the two sets (3.11) we see that q(x)=q(x, 0). Hence q,i nE q .( 3.8)i sac o m m i t t o rf u n c t i o n .

A = {y =(x,t) | x> 1a n dt 2 [0,T]} and B = {y =(x,T); x  1},
For an ergo dic pro cess, replacing statistical averages by temp oral averages in (3.10), and using y =(x,t), we have

⇢(x)q(x)= lim t!1 1 t Z t 0 dt 0 (X t 0 x)1 {⌧ B ⌧ A } , and ⇢(x)= lim t!1 1 t Z t 0 dt 0 (X t 0 x) ,
(3.12)

where ⇢(x) is the stationary distribution function of X, is a Dirac delta function, and 1 {⌧ B ⌧ A } takes value 1 if ⌧ B  ⌧ A and 0 otherwise. The formulas (3.12)canbeusedtoestimateq(x)fromanobservedtrajectory{X(t)} of the dynamical system. For the sake of completeness, it should be said that when the dynamics is a stochastic differential equation, the committor function q(x)i st h es o l u t i o no ft h eD i r i c h l e tp r o b l e m[ Ee ta l . ,2 0 0 5 , [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF].

To illustrate the concept of predictability margin introduced in Sec. 3.1, we choose the value T =200 in non-dimensional time units, which is slightly larger than the period of the limit cycle (the "natural" periodicity of strong El-Niño events which is 186), and of the order of the Lyapunov time. This choice guarantees that for the deterministic dynamics, =0 ,e a c ht r a j e ctory starting in one point of the limit cycle almost certainly will reach the threshold x c = 1.

Description of the committor function: deterministic and probabilistic predictability

Figure 3.7 shows the committor function q(x), for different values of . As q is a function of 3 variables (x, y, z), we have chosen to represent cuts of q in different planes. We will discuss in detail the cut of q along the plane x = 2.831 (Fig. 3.7)a n da l s oc u t sa l o n gt h ep l a n e sy = 1.1580 and z =1 .3409 (Fig. 3.8 and Fig. 3.9,r e s p e c t i v e l y ) . T oc o m p u t et h ec o m m i t t o r function q(x)o nt h ed i ff e r e n tp l a n e sw ea d o p t e dt h ef o l l o w i n gs t r a t e g y :
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in the yellow area q =1,whentrajectoriesreac hthethresholdwithinatime T ,c o r r e s p o n d i n gt ol a r g ev a l u e so fz;i nat h i c kp u r p l eb a n dq =0 ,w h e n no trajectory reaches the threshold. In those two regions, the occurrence of strong El-Niño events is easily predicted. Everywhere else, we see very fine filaments of alternating yellow and purple values. In this third region, because of the sensitive dependence on the initial conditions, a small but finite initial perturbation, of the order of 1% of the values of x or y,leadsto a different outcome. In this region, the occurrence of strong El-Niño events is very difficult to predict. A precise definition of this third area is not intrinsic, it depends on the actual precision with which the values of x and y can be measured. However the distinction between areas with easy predictability and areas with difficult predictability, might be crucial at a practical level.

One might ask what relationship exists between the regions outlined above and the basins of attraction of the system. However, this relationship is less trivial than one might expect. Although some regions reflect the structure of the basins of attraction, this is not true in general. In fact, there are points in the basin of attraction of the strange attractor which pass the threshold before reaching the strange attractor, as well as points in the basin of attraction of the limit cycle which do not reach the threshold within the time T.

Committor Function for 6 =0 Figures 3.7b and 3.7c show the committor function in the case where a finite noise amplitude 6 = 0 is considered. As can be seen by comparing Figs. 3.7a, 3.7b and 3.7c,a d d i n gas m a l ln o i s eb l u r st h ev i s i b l es t r u c t u r e so f the deterministic case. For larger noise values ( =1 0 3 ), Fig. 3.7c shows that the committor function looks smooth nearly everywhere (mathematically it is smooth everywhere, smooth here is used qualitatively and means with mild variations). This means that the deterministic predictability is lost for most initial conditions as (0 <q<1). Then one cannot expect to predict the outcome in the way of a deterministic forecast. However, the occurrence of strong El-Niño events is probabilistically predictable:t h ev a l u e of the probability can be determined in practice with an excellent precision as it changes very slowly when one changes the initial conditions. It can also be seen on the figure that the occurrence of strong El-nino events is frequent (q>0.6a l m o s te v e r y w h e r e ) . T h i si sa ni n d i c a t i o nt h a tf o rs u c hav a l u eo f we are in the noise-dominated regime.

CONCLUSION

Conclusion

In this paper, we have introduced a mathematical concept, the committor function, encoding the probability that an event occurs within a given time, conditioned on the state of the system at the time of prediction. We believe it is an appropriate concept for many prediction problems in climate science in arangeoftimescaleswhic hw ecallthepredictability margin.I tc o r r e s p o n d s to timescales for which a deterministic description of the system is no longer relevant, because of the sensitive dependence to initial conditions, but for which more precise probabilistic predictions than the climatological one can be made, because the system has not yet forgotten completely the initial condition.

In the context of a simple, low-dimensional stochastic model, the Jin-Timmerman model, in a regime of coexistence of a limit cycle and a strange attractor found by [START_REF] Guckenheimer | Un) predictability of strong El Niño events[END_REF], we have shown that noise could induce transitions between the two attractors. These transitions correspond to regime shifts regarding the occurrence of strong El Niño events, which are periodic in the limit cycle, with a return time close to 15 years, and which do not occur at all in the strange attractor (in the deterministic case). In the stochastic case, the occurrence of strong El Niño events therefore becomes random, and the waiting times follow a Poisson statistics.

In this example, we have shown that the probability of occurrence of strong El Niño events had different predictability properties depending on the state of the system at the time of prediction. The most important result is that there exist regions of probabilistic predictability,w h e r et h ee v e n t has a finite probability of occurring 0 <q<1, and this probability does not depend sensitively on the initial state, and regions of probabilistic unpredictability where the probability changes a lot if one changes by a small and finite amount the initial condition. We expect the existence of this dichotomy between probabilistically predictable and probabilistically unpredictable regions to be a generic feature for climate prediction problems at the predictability margin. We stress that this notion depends on the precision with which the initial condition can be assessed.

We have also discussed the metho dological asp ects for computing the committor functions. For our example, a small stochastic perturbation of ac h a o t i cd e t e r m i n i s t i cs y s t e m ,w eh a v ec o m p u t e dt h ec o m m i t t o rf u n c t i o n using two approaches. First, by direct sampling of ensembles of initial conditions close to any point in phase space, and second, through a data based 3.5. CONCLUSION approach using observed trajectories. As soon as the number of degrees of freedom increases, the first method will become impossible to use in practice, because of the numerical cost. The second method may sometimes be associated with sampling issues, as one can get meaningful results only for the parts of the phase space that have been visited many times. Another method mentioned in Sec. 3.4,w o u l db et os o l v eab a c k w a r dK o l m o g o r o ve q u a t i o n . This method is impractical for systems with more than a few degrees of freedom. To be able to sample efficiently committor functions in large dimensions, more efficient data-based methods will be necessary, relying either on classical statistical methods or machine learning methods [START_REF] Lucente | Machine learning of committor functions for predicting high impact climate events[END_REF]. The development of such methods shall be a prerequisite for studying climate prediction problems using more realistic models.

Chapter 4

Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain

In the previous chapters, the committor function was introduced and it was computed for a low-dimensional model for El-Niño showing that the ability to predict the probability of occurrence of extreme events strongly depends on the initial condition. The purpose of this chapter is to propose a new approach, based on the analogue Markov chain, for data-based learning of committor functions. It will be shown that such learned approximate committor functions are extremely efficient scoring functions when used with the Adaptive Multilevel Splitting algorithm. This approach is illustrated in the context of two stochastic systems: a gradient dynamics in a three-well potential and the Charney-DeVore model, which is a paradigmatic toy model of multistability for atmosphere dynamics. For these two dynamics, it is shown that observing few transitions is enough to have a very efficient databased scoring function for the rare event algorithm. The main advantages of this new approach are that rare events can be simulated with minimal prior knowledge, and results are much more accurate than those obtained with a user-designed scoring function.

This chapter is the result of a collaboration with J. Rolland, C. Herbert and F. Bouchet and has been submitted to the "Journal of Statistical Mechanics: Theory and Experiment" (J. Stat. Mech.). Therefore, this chapter 4.1. INTRODUCTION is self-consistent can be read independently from the rest of the thesis. The reader is advised that the notation of this chapter is slightly different from the rest of the manuscript. This choice was made to make the notation consistent with the one known in the rare event algorithm literature. Here, an arbitrary subset of phase space is called D instead of C,andthefirsthittime is called T instead of ⌧ , which is used to indicated the duration of reactive trajectories. Many of the topics discussed in the opening sections of this chapter have already been covered in previous chapters. In order to avoid redundancies, the reader of the manuscript can start reading this chapter from Sec. 4.3.

Introduction

Rare events are often extremely important, either because they have a huge impact, for instance climate extremes [START_REF] Seneviratne | Weather and climate extreme events in a changing climate[END_REF], or because they change completely the structure of the system and shape its history over long times, for instance the dynamics of metastability [Farkas, 1927]a n d multistability phenomena [Eyring, 1935, Kramers, 1940]. Such rare events are so important in many physics, chemistry, and biology applications that specific tools have been developed to study them, by the statistical mechanics and applied mathematics community: theoretical approaches and dedicated computation algorithms.

In this paper, we are mainly interested in computational approaches for rare events. A key difficulty in numerical computation is that these rare events can be so rare that simulating them directly might be prohibitively expensive. Since the 50' [START_REF] Kahn | Estimation of particle transmission by random sampling[END_REF], rare event algorithms and simulations [Bucklew, 2013]t h a ta i ma tr e d u c i n gt h ec o m p u t a t i o n a l cost have been devised. They have been used to address many problems in statistical physics, for instance studying percolation [START_REF] Adams | Harmonic measure for percolation and ising clusters including rare events[END_REF], liquids physics [START_REF] Allen | Computer simulation of liquids[END_REF], Lyapunov exponents [START_REF] Tailleur | Probing rare physical trajectories with lyapunov weighted dynamics[END_REF], dynamical phase transitions [Pérez-Espigares and Hurtado, 2019], first order phase transitions [START_REF] Rolland | Computing transition rates for the 1-d stochastic ginzburg-landau-allencahn equation for finite-amplitude noise with a rare event algorithm[END_REF], just to cite a few examples among many others. Chemical physics, biochemistry and the study of biomolecules has inspired many new technics, see for example [START_REF] Bolhuis | Transition path sampling: Throwing rop es over rough mountain passes, in the dark[END_REF], Noé et al., 2009, Metzner et al., 2009, Hartmann et al., 2014]. Recent uses in biology models [START_REF] Donovan | Unbiased rare event sampling in spatial stochastic systems biology models 190 BIBLIOGRAPHY using a weighted ensemble of trajectories[END_REF]a n de c o l o g yh a sa l s ot o be noticed.

INTRODUCTION

Recently, rare events have been studied in far from equilibrium systems and non-equilibrium steady states, where one starts from dynamics without detailed balance. Rare event technics have then been extended to scientific fields so far unexpected, with complex dynamics. For instance in study of multistability on turbulence [Laurie and Bouchet, 2015, Bouchet et al., 2019], study of intermittency in turbulence models [START_REF] Grafke | Instanton filtering for the stochastic burgers equation[END_REF],Grafke et al., 2015, Ebener et al., 2019], transitions to turbulence in pipe and Couette flows [Rolland, 2018, Rolland, 2021, Nemoto and Alexakis, 2018], rogue waves [START_REF] Dematteis | Rogue waves and large deviations in deep sea[END_REF], atmosphere dynamics [START_REF] Bouchet | Rare event algorithm links transitions in turbulent flows with activated nucleations[END_REF],Simonnet et al., 2021], climate dynamics [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF], Webb er et al., 2019,Ragone and Bouchet, 2020,Plotkin et al., 2019,Finkel et al., 2021,Finkel et al., 2020], astronomy [Woillez andBouchet, 2020, Abbot et al., 2021], among many other examples.

For such non-equilibrium problems, without detailed balances, one can use either computations related to minimum action methods, possibly related to large deviation theory (see for instance [START_REF] Grafke | Numerical computation of rare events via large deviation theory[END_REF]), or the vast family of splitting algorithms or cloning algorithms [START_REF] Kahn | Estimation of particle transmission by random sampling[END_REF][START_REF] Del Moral | Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications[END_REF], Cérou and Guyader, 2007]. However, for many applications, for instance in turbulence, climate, atmosphere dynamics or astronomy, the system is either deterministic, or may be stochastic, but one has not access to a precise noise statistics, or rare events are not produced directly by the model noise but rather by internal fluctuations. In all these cases, any method that rely on an a-priori given bare action is not appropriated. Then the only possible choices, for rare event algorithms, are splitting algorithms. Those algorithms have indeed been empirically shown to work well for some classes of deterministic chaotic dynamical system [Wouters andBouchet, 2016, Ragone et al., 2018]. An alternative route for studying rare events, without rare event algorithms, would be to use methods that require only short off equilibrium simulations, for instance through resimulating and milestoning [START_REF] Noé | Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations[END_REF]Venturoli, 2009]o rc o a r s e graining of a reduced space of collective variables [START_REF] Finkel | Learning forecasts of rare stratospheric transitions from short simulations[END_REF], Finkel et al., 2020]. Such approaches might be very relevant, however only when the system is simple enough or when one knows sufficiently well the system to define a-priori relevant collective variables.

The main aim of this paper is to develop the methodology of splitting algorithms such that they might actually be used, practically, for genuinely complex dynamics. The general principle of splitting algorithms is to perform ensemble simulations, select trajectories prone to produce extremes, 4.1. INTRODUCTION discard other less interesting ones, and resimulate from the interesting ones. The effectiveness of these algorithms strongly relies on the quality of the score function which is used for the selection stage. For complex dynamics, in cases when the dynamics is simple enough or the phenomenology of the dynamics is well understood to devise good score functions, splitting algorithms are wonderful tools. For instance, they were used to compute rare event probabilities, which were totally unreachable with direct numerical simulations, for stochastic partial differential equation [START_REF] Rolland | Computing transition rates for the 1-d stochastic ginzburg-landau-allencahn equation for finite-amplitude noise with a rare event algorithm[END_REF], atmosphere turbulent flows [START_REF] Bouchet | Rare event algorithm links transitions in turbulent flows with activated nucleations[END_REF],Simonnet et al., 2021], or full complexity climate models [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF]. However, without a good score function, splitting algorithms might completely fail. If the score function is not too bad, but not very good, splitting algorithms happen to actually produce efficiently rare events, but might suffer from the phenomenon of apparent biases for the estimation of probabilities [START_REF] Glasserman | A large deviations p ersp ective on the efficiency of multilevel splitting[END_REF], Bréhier et al., 2016a]. The aim of this work is to propose a new methodology to solve these problems and to be able to use splitting algorithms in very complex dynamics without a-priori knowledge or understanding of a simple effective description of the dynamics.

For many splitting algorithms, there exists a mathematical characterization of an optimal score function: a score function which minimizes the algorithm variance for the computation of the rare event probability and will be very efficient in practice. For instance, for the Adaptive Multilevel Splitting (AMS) [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF], to be used in this article, the committor function is the optimal score function [Cérou et al., 2019a]. T h e committor function is the probability that a trajectory visits a region B of the phase space before another region A, as a function of the initial condition [Onsager, 1938]. IfB is the set of rare events of interest, the committor function is then a probabilistic measure of the progress towards the rare event. The committor function is also a central object of transition path theory [Ee ta l . ,2 0 0 5 , [START_REF] Weinan | Towards a theory of transition paths[END_REF], Vanden-Eijnden et al., 2010, Metzner et al., 2006]. A key difficulty is that this optimal score function, the committor function, is actually the rare event probability conditioned on the state of the system. It contains the information one wishes to compute. One has thus no easy access to it.

For similar problems, when one would need to know an approximation of a function to efficiently compute this function itself, it is very natural to consider an iterative procedure: a feedback control between the efficient algorithm to produce the data and the learning of the function itself. The 4.1. INTRODUCTION used to identify good reaction coordinates [START_REF] Froyland | A computational method to extract macroscopic variables and their dynamics in multiscale systems[END_REF], Bittracher et al., 2018], or to evaluate eigenfunctions of the operator [START_REF] Giannakis | Spatiotemporal feature extraction with data-driven koopman operators[END_REF], Giannakis, 2019, Williams et al., 2015, Mardt et al., 2018], sometimes with climate applications [START_REF] Giannakis | Spatiotemporal feature extraction with data-driven koopman operators[END_REF], Giannakis, 2019]. Recently such direct Galerkin approximation has been used to directly compute committor function, avoiding the burden of discretizing a high dimensional phase space [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF],Strahan et al., 2021]. Several computation of committor functions have been performed with applications in either geophysical fluid dynamics or climate applications [START_REF] Finkel | Learning forecasts of rare stratospheric transitions from short simulations[END_REF], Miron et al., 2021,Finkel et al., 2020,Lucente et al., 2019,Lucente et al., 2021], using either direct or involved approaches.

The aim of this paper is to test the coupling of data-based learning of approximate score functions with rare event algorithm, in the spirit of figure 4.1. As we are specifically interested in complex dynamics, the learning strategy needs to have the potentiality to scale well in very large dimensions. Moreover, it should be suited for any dynamics, including chaotic deterministic systems or dynamics for which the noise is irrelevant for the process of interest. It also needs to be not too greedy in terms of dataset length. Among all the possible approaches for learning committor functions, the ones based on approximation of the dynamics generator seem to be best suited [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF], Strahan et al., 2021].

In this paper we propose a new method based on an approximation of the dynamics generator. For this purpose, we consider a slightly modified version of the analogue method, firstly proposed by Lorenz [Lorenz, 1969c,Lorenz, 1969a]. The idea behind the analogue method can be summed up by Maxwell's sentence [START_REF] Garnett | The Life of James Clerk Maxwell, with a Selection from His Correspondence and Occasional Writings and a Sketch of His Contributions to Science[END_REF]]" From like antecedents follow like consequents". This approach is nowadays used to build stochastic weather generators [Yiou, 2014, Yiou andDéandréis, 2019]. A key remark is that the analogue method defines a Markov chain which an approximation of the dynamics generator of the original dynamics. Then a learned approximate committor function can be computed using classical methods for computing Markov chain committor functions. This new way to compute committor function, based on the analogue Markov chain, is an alternative path that leads to dynamic based estimates of the committor function. We show in this paper that this method is actually very simple, robust, and efficient. We show that the learned committor function, based on the analogue Markov chain, is more precise and efficient than the classical K-nearest neighbors regression, which computes the committor by averaging 4.2. THE COMMITTOR FUNCTION the observations of K nearby points.

After having put forward and tested this committor function computation using the analogue Markov chain, we couple it to the Adaptive Multilevel Splitting (AMS) [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF]: we directly use the data-based approximate committor function as a score function for the algorithm. We make a precise study that shows that for large enough data sets, the performance of the AMS algorithm is greatly improved. We get rid of the apparent bias phenomena and can compute rare events without a-priori knowledge of the dynamics.

To summarize the previous discussion, the purpose of this work is twofold. On the one hand, we introduce a data-driven approach which can be used to compute the committor function, and which exploits the dynamical information provided by the observed dynamics. On the other hand, we show how it is possible to use this method to build a learned score function for efficient rare event algorithms. We illustrate our approach for two dynamics. First as t o c h a s t i cg r a d i e n td y n a m i c si nat h r e e -w e l lp o t e n t i a l ,i nd i m e n s i o nt w o . Then we study the Charney-DeVore model, which is a paradigmatic toy model of multistability for atmosphere flows [START_REF] Charney | Multiple flow equilibria in the atmosphere and blocking[END_REF], with six variables. For these two dynamics, we show that having observed a few transitions is enough to have a very efficient data-based score function for the rare event algorithm.

The paper is organized as follows. In Sec. 4.2., we define and discuss the mathematical properties of the committor function, we explain a direct sampling strategy, and define the Brier score which quantifies the quality of an approximate committor function. Sec. 4.3 is devoted to the analogue method and how it can be used to obtain a dynamics-bases estimate of the committor function. Finally, in Sec 4.4 we introduce the AMS rare events algorithm, we use it with a score functions which is the learned analogie Markov chain committor function, and we discuss the improvements given by this approach. To give a more precise definition, we consider a discrete time sto chastic process on a phase space X .Ag i v e nr e a l i z a t i o no ft h ep r o c e s sw i l lb en o t e d as {X n } 1nNt ,w i t hX n 2X.T h efirst hitting time T D (x)o fas e tD⇢X is defined as

The committor function

Definition of the committor function for a Markov process

T D (x)=inf{n : X n 2D|X 0 = x}. (4.1)
The committor function q(x)i st h ep r o b a b i l i t yt h a tt h efi r s th i t t i n gt i m eo f as e tB be smaller than the first hitting time of set A,a saf u n c t i o no ft h e initial condition, i.e.

q(x)=P[T B (x) <T A (x)]. (4.2)
This definition immediately generalizes for continuous time Markov processes.

If the dynamics is a stochastic differential equation, q(x) is the solution of the Dirichlet problem [Ee ta l . ,2 0 0 5 , [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF]:

Lq(x)=0withq(x)=0if x 2Aand q(x)=1if x 2B, (4.3) 88 4.2. THE COMMITTOR FUNCTION
with L the adjoint of the Fokker-Planck operator:

L = X i a i (x) @ @x i (•)+ X ij D ij (x) @ 2 @x i @x j (•), (4.4)
where a is the drift coefficient and D the diffusion coefficient. One way to compute a committor function is to solve this partial differential equation.

In practice, such a computation is impossible, using standard techniques as soon as the system has more than a few degrees of freedom. This equation can be used for computing approximate solutions, using machine learning, for systems of dimension of the order of magnitude of ten [START_REF] Khoo | Solving for highdimensional committor functions using artificial neural networks[END_REF], Li et al., 2019].

Direct sampling of the commitor function

In this section we consider data-based methods for the computation of a committor function. The data consist of sets of trajectories of the stochastic process. The simplest method is to directly use the definition (4.2). In practice, to compute the function at point x, we initialize an ensemble of N trajectories in X 0 = x and evolve them until they reach A or B.L e tN B be the number of trajectories that have reached B.T h e n ,t h ev a l u eo ft h e committor function at point x can be estimated as

q(x)= N B N . (4.5)
Like the Dirichlet problem (4.3), this method can only be applied if the equations of motion are known, and it is inapplicable for high dimensional systems, as it requires simulating many trajectories for each point of phase space where we want to compute the committor function. The numerical burden thus increases exponentially with the dimension of the system. For an ergodic process, the committor function q(x)a n dt h es t a t i o n a r y distribution function ⇢(x)canbecomputedfromanobservedtrajectory{X n } from the formulas

⇢(x)q(x)= lim Nt!1 1 N t Nt X n=0 (X n x)1 {T B (Xn)T A (Xn)} and ⇢(x)= lim Nt!1 1 N t Nt X n=0 (X n x) , (4.6)
where is a Dirac delta function, and 1 {T B (Xn)T A (Xn)} takes value 1 if the trajectory visits set B before set A starting from X n , and 0 otherwise. Numerically, q(x)c a nb ec o m p u t e df r o m( 4.6)a f t e rs p a t i a la n dt e m p o r a ld i scretization of the process (see for instance [START_REF] Lucente | Machine learning of committor functions for predicting high impact climate events[END_REF], Lopes and Lelièvre, 2019, Lucente et al., 2021]). Unlike the previous methods, this approach is applicable even if we do not know the equations of motion. Its numerical cost does not depend on the dimension of phase space, but it only provides estimates of the committor function on points which neighborhood was visited many times by the observed trajectory.

Estimating the committor function for any point of the phase space

In Sec. 4.2.2,w eh a v ep r e s e n t e dad i r e c ts a m p l i n gm e t h o dt oe s t i m a t et h e committor function based on data. However, it provides values only on the set of points that was visited along the trajectory. This is also true for the other data-based method that we will present in Sec. 4.3,t h eanalogue method. For applications, we may need to estimate the value of the committor function for points which were not in the learning dataset. This may be the case simply for graphical representations of the committor function along a line or on a plane in phase space (e.g. Sec. 4.3.3). Even more importantly, to use the estimated committor function as a score function with the AMS algorithm (Sec. 4.4), we need to be able to compute it for arbitrary points in phase space.

To do so, we will use a nearest neighbor method [Altman, 1992]. Let us denote {X n } 1nNp 2 R D the learning dataset, for which we have an estimate of the committor q(X n ). For any point y 2 R D ,w es e a r c ht h e nearest neighbors (using the Euclidean distance d(y, x) 2 = P D i=1 (y i x i ) 2 ), corresponding to indices n j 2 J1,nK in our dataset, for 1  j  .W et h e n perform a weighted average of the corresponding values of the committor:

q(y)= P  j=1 w j q(X n j ) P  j=1 w j . (4.7)
The weights w j can be chosen uniform: w j =1( l i k ei nS e c .4. ,w h e r e!>0i sak e r n e lw i d t h( l i k ei n Sec. 4.4), depending on the application.

Estimation of the quality of an approximate committor function: the Brier score

In this section we address the issue of how to quantify the quality of an estimate of the committor function. In what follows, the true committor function is denoted by q while q stands for our estimate. As the committor function is the probability of a binary variable, it is natural to look for a score for a forecast of a binary variable. We also require that this score can be computed directly from observations. The Brier score is a natural candidate.

We first consider Y a random variable with binary outcomes, Y 2{0, 1}, and a Bernoulli distribution: P[Y =1 ]=q and P[Y =0 ]=1 q.W el o o k for an estimator that quantifies the value of an estimation q of q.

One of the simpler quantities having the required properties was proposed in 1950 by Brier [Brier, 1950]. We consider a {Y n } 1nN , N independent realizations of the variable Y .T h eB r i e rs c o r ei sd e fi n e da s

B N = 1 N N X n=1 (q Y n ) 2 , (4.8)
The Brier score is thus a random variable, with values between 0 and 1. The random variable (q Y n ) 2 takes value (1 q) 2 with probability q and value q2 with probability (1 q). Then the average value of B N (x)i s E(B N )=(1 q) 2 q +q 2 (1 q)=q(1 q)+(q q) 2 .

(4.9)

The expectation of the Brier score B N (x)i st h e r e f o r et h es u mo ft w ot e r m s . The first one, q(1 q)i sr e l a t e dt ot h es t oc h a s t i cn a t u r eo ft h ef o r e c a s ta n d is independent of q,w h i l et h es e c o n do n e ,( q q) 2 ,i sr e l a t e dt ot h ee r r o r made in the estimation of q.T h ec l o s e ri st h ef o r e c a s tq to the real value q, the lower is the Brier score. The Brier score has a fixed lower bound q(1 q). We see that the Brier score is merely a quadratic measure of the error (the second term) plus a constant term (the lower bound). However, while the computation of the quadratic error requires the knowledge of the truth q,the computation of the Brier score does not require the knowledge of q.I nt h e limit N !1, we have an ergodic average and lim N !1 B N = E(B N ).

We now extend naturally the definition of the Brier score to the case of Markov processes and committor functions. We consider a set of events {(X n ,Y n )} 1nN ,whereX n are points in the phase space distributed according to the invariant measure ⇢ of the Markov process, E [( (X n x)] = ⇢(x), and Y n are binary variables which takes the value 1 with probability q (X n ) and value 0 with probability 1 q (X n ). For instance, the couples (X n ,Y n ) can be sampled along one or several trajectories of the Markov chain, where X n are the states of the Markov chain and Y n is equal to zero if the first hitting time of B after n is smaller than the first hitting time of A after n.

We want to estimate the quality of an approximation q of the committor function q.T h e nt h ec o m m i t t o rf u n c t i o nB r i e rs c o r ei sd e fi n e da s

BT N = 1 N N X n=1 [q (X n ) Y n ] 2 , (4.10)
Extending directly the previous computations, and assuming ergodicity, we have

E(BT N )= lim N !1 BT N = kq qk 2 ⇢ + p q(1 q) 2 ⇢ , (4.11) 
where

kf k 2 ⇢ = R D f 2 (x)⇢(x)
dx is L 2 norm weighted according to the invariant measure. Then the committor Brier score is kq qk 2 ⇢ ,t h ew e i g h t e dL 2 norm of the difference q q,u pt ot h ec o n s t a n tt e r m p q(1 q) 2 ⇢

. While the weighted L 2 norm cannot be computed without the knowledge of q and ⇢,the Brier score can be directly computed from the data by the ergodic average (4.10).

The analogue Markov chain

In this section we introduce the analogue method in one of its current versions [Yiou, 2014, Lguensat et al., 2017, Yiou and Déandréis, 2019[START_REF] Platzer | Using local dynamics to explain analog forecasting of chaotic systems[END_REF], Platzer et al., 2021a]. It provides a way to build effective dynamics from the data that can be reused to generate new trajectories of the system under consideration at a lower computational cost. Although more precise definitions will be given throughout the section, we think that briefly illustrating the analogue method in its original form proposed by Lorenz [Lorenz, 1969c, Lorenz, 1969a]i n1 9 6 9i sb o t hc o n c e p t u a l l ya n dh i storically instructive. Furthermore, this can be seen as a particular case of the method we will present in which only K =1analogueisconsidered.
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In a nutshell, the idea is the following. Suppose we have access to a time series of observations that we will denote by {X n } 1nNt ,a tt i m e st n = n t where t is the sampling time step. Starting from a state x at time t,w e want to predict a possible dynamical evolution at a time t + l t.W es e a r c h among the available data {X n } 1nNt the closest to x,i.eananalogue,whic h will be denoted by X n? : This method was intended by Lorenz as a deterministic prediction. In the following we are rather interested by stochastic predictions, either because the actual dynamics itself is stochastic, or because we understand the analogue method as an approximate effective description of a chaotic dynamics. For stochastic prediction, we will use K analogues rather than a single one.

X n? =argmin {Xn} {d(x,X n )}, ( 4 

Definition of the analogue Markov chain

Let {X(t)} 0t+1 be a dynamical process that takes values in the phase space X⇢R D .T h en a t u r eo ft h ep r o c e s s ,i . e .w h e t h e ri ti sd e t e r m i n i s t i co r stochastic, Markovian or not, is irrelevant to the discussion. Suppose that ar e a l i z a t i o no ft h i sp r o c e s si so b s e r v e da tr e g u l a rt i m ei n t e r v a l s t during at o t a lt i m eT = N t t and let {X n } 1nNt denote this sampled trajectory made up of N t points. Each point X n is in R D ,w h e r eD is the dimension of the phase space.

We will build a Markov chain that is a data-based approximation of the initial process, based on a generalization of the Lorenz analogue method. We now define possible transitions starting from an observed state X n .R a t h e r than considering just a single nearest neighbor of X n in the observed data, we will use the K nearest neighbors, where K is a positive number. Those K nearest neighbors are denoted { X(k) n } 1kK . After identifying analogues { X(k) n }, we suppose that we can have a transition between the state X n and all the possible images of this set of points. These images will be denoted by { X(k) n+1 } 1kK and the probability to have a transition between X n and
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for 1  k  K.W es t r e s st h a tT is not the transition matrix of the Markov chain, to be described latter. T is rather a matrix of indices of the states. Since we cannot associate any transition to the end-point X Nt ,t h i spo i n t will be excluded from the possible candidates for the analogues of each point. To summarize, each entry of T can take values between 1 and N t 1, i.e. T nj 2 J1,N t 1K for all n, j such that 1  n  N t and 1  j  K.

To generate a synthetic tra jectory, we can pro ceed as follows. We start with a state s 0 2 J1,N t K.T h e n ,w eg e n e r a t ear a n d o mi n t e g e rk distributed uniformly in the interval [1,K]a n dt h en e ws t a t ew i l lbes 1 = T s 0 k +1. This procedure is iterated to build the entire trajectory. Through this method we build a Markov chain whose states are {X n } 1nNt ,i . e .t h el e a r n i n gd a t a s e t .

We now describ e the transition matrix G 2M Nt (R). The elements G nj of G are the probability to observe a transition from the state n to the state j.T h e ya r eg i v e nb y

( G nj = 1 K if 9 k ? 2 J1,KK : j = T nk? +1, G nj =0otherwise. (4.14)
G is an approximation of the propagator P(X j |X n )o ft h er e a ld y n a m i c s .

Given an observable at time t,r e p r e s e n t e db yac o l u m nv e c t o rf (t)= f i (t), the observable at time t +1 is obtained by applying the operator G to f (t), i.e.

f (t +1)=Gf (t). (4.15)

Therefore, G plays the same role as the generator of a continuous stochastic process.

Concerning the temporal evolution of probabilities there are two possibilities:

• consider probabilities as row vectors ⇡ and let G act to the right, i.e ⇡(t +1)=⇡(t)G;

• consider column vectors ⇡ and let them evolve by applying the adjoint operator G † ,i . e . ⇡(t +1)=G † ⇡(t).

In this paper, the second choice has been adopted to emphasize the analogy with continuous stochastic processes.

To initialize a trajectory at a point x that does not belong to the dataset, we search the K nearest neighbors of x among the available data and we 4.3. THE ANALOGUE MARKOV CHAIN approximation of the the committor function of the initial dynamics at point X i : q(X i ).

For simplicity, we use the same notation for the vector q (associated to the Markov chain) and the function q (associated to the initial dynamics), although they are actually different. In the limit of a large dataset, when the Markov chain fits perfectly the real dynamics, we have asymptotically q i ! q(X i ).

From the definition q i = P(T B (i) <T A (i)), we have q i A =0a n dq i B =1 . Moreover it is a classical result that Gq = q [START_REF] Schütte | A direct approach to conformational dynamics based on hybrid monte carlo[END_REF],Prinz et al., 2011, Noé and Rosta, 2019, Tantet et al., 2015]. This is a simple consequence of the estimation of q at two successive steps of the Markov chain. The affine problem Gq = q with q i A =0 and q i B =1 (4.17)

then characterizes the committor function, if we assume that G is ergodic. Following Ref. [START_REF] Prinz | Efficient computation, sensitivity, and error analysis of committor probabilities for complex dynamical processes[END_REF], we note that 1 is the largest eigenvalue of G (a consequence of the Perron-Frobenius theorem for positive operators that preserve probability). Moreover G † has two trivial eigenstates with eigenvalue 1, corresponding to situations where the full probability vector is concentrated on state i A or i B , respectively. As a consequence, G has also two eigenstates with eigenvalue 1. If we assume G is ergodic, then the number of eigenstates of G is exactly 2.

This gives a simple algorithm to compute q.W efi r s tc o m p u t ev 1 and v 2 the two leading eigenvectors of G with any standard algorithm. Then q is al i n e a rc o m b i n a t i o no fv 1 and v 2 : q = ↵v 1 + v 2 ,w h e r e↵ and can be computed from the two conditions q i A =0andq i B =1.

If the initial dynamics is indeed ergodic, we expect that for large enough dataset the Markov chain G will also be ergodic for most of the realizations. However, this might not be the case for some realizations. Such situations could lead to an incorrect computation of q as the solution of equation (4.17) is then not unique. In practice we check a posteriori (after running the algorithm) whether q i 2 [0, 1] for all i,w h i c hi san e c e s s a r yc o n d i t i o nf o r q i to be a probability. Sometimes, for some realizations of the sampling of the analogue Markov chain, rarely and even more rarely for large datasets, q takes values outside the interval [0, 1]. We interpret these cases as a sign of breaking of ergodicity. We then exclude these rare realizations, with possible ergodicity breaking of the Markov chain, from the results.

Applications

In this section, we estimate the committor function using the analogue method for two different models: Sec. 4.3.3 deals with a system of dimension 2 while Sec. 4.3.3 concerns a model with 6 degrees of freedom. For each system, we compare the estimated committor to the true committor, and we analyze the behavior of the error as the quantity of data upon which the analogue Markov chain relies varies. Finally, we compare the results of the analogue method with those obtained by the direct method, based on the same amount of data.

Model with two degrees of freedom

Let us consider a non-trivial 2-dimensional dynamics [Bréhier et al., 2016a]. The model is defined by the following stochastic differential equation:

ẋ = rV (x)+ p 2✏Ξ(t), (4.18) 
where x =(x, y), Ξ =(⇠ x ,⇠ y )isat w odimensionalgaussianwhitenoisewith ) 2 + e (x 1) 2 ⌘ .

h⇠ i i =0,h⇠ i (t)⇠ j (t 0 )i = ij (t t 0 ), and the potential V (x)i s V (x, y)=0.2x 4 +0.2 ✓ y 1 3 ◆ 4 +3e x 2 ⇣ e (y 1 3 ) 2 e (y 5 3 ) 2 ⌘ 5e y 2 ⇣ e (x+1
(4.19) The stationary distribution of the system is (4.20) where

⇢ s (x)=Z 1 e V (x) ✏ ,
Z = R dx e V (x)
✏ . Figure 4.4 shows both the potential V (x)( 4.4a)a n dt h es t a t i o n a r yd i stribution ⇢ s (x)f o r✏ =0 .5( 4.4b). As can be seen in Fig. 4.4a, V (x)h a s two global minima close to the points x 1 =( 1, 0) and x 2 =( 1 , 0), one local minimum close to the point x m =( 0 , 1.5) and a saddle point close to x s =( 0 , 0.5) -there are also two saddle points separating the global minima from the local minimum, approximately located at ( 0.6, 1.0) and (0.6, 1.0). By comparing the panels 4.4a and 4.4b, it can be noted that small values of the invariant distribution correspond to large values of the potential and vice versa. In particular, Fig. 4.4b shows that ⇢ s (x)h a sg l o b a lo rl o c a l maxima at x 1 , x 2 ,a n dx m .
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adistanceandanumberofnearestneighborsK.B e c a u s ew ew a n tt om e a s u r e the quality of our estimator q(x), by comparing it to the reference committor q(x), as the quantity of available data varies, we generate three trajectories (using the real dynamics) of different length. Rather than fixing the length of the trajectory, we integrate each trajectory until a fixed number of transitions (1, 2 and 20) between sets A and B are observed. We then construct three analogue Markov chains using each of these trajectories as learning dataset and compute the corresponding committor function. For these computations, we have used the Euclidian distance and K =1 5 0a n a l o g u e s . T h ee s t i m a t e of the committor function for the three choices of learning dataset are shown in Figs. 4.6a,4.6b,4.6c. Note that the method presented in Sec. 4.3.2 yields an estimate of the committor function only at the points included in the learning dataset. To represent the contour levels in Figs. 4.6a, 4.6b and 4.6c, we extend our estimate of the committor function to the whole region of interest by using a k-nearest neighbor regression method, as explained in Sec. 4.2.3.T oa v o i di n t r o d u c i n ga d d i t i o n a lp a r a m e t e r s ,w ec h o o s eu n i f o r m weights w j =1f o ra l lt h en e a r e s tn e i g h bo ra n dw eu s et h es a m en u m be ro f neighbors as for constructing the analogue Markov chain k = K =150.

In addition to the reference committor, we also want to compare the committor estimator based on the analogue method to a direct sampling estimate with the same amount of data. To do so, we also compute the committor function using Eq. (4.6)f o rt h es a m et h r e et r a j e c t o r i e sa sa b o v e . I np r a ctice, because the exact same points are never visited twice, this amounts to assigning value 1 to a point in the trajectory if set B is visited before A in the rest of the trajectory, and value 0 otherwise. Again, this provides an estimate of the committor function only at points included in the learning dataset and we extend it to the region of interest with the same k-nearest neighbor method as above. This alternative estimator for the committor function, which we refer to as the direct method, is shown in Figs. 4.6d,4.6e,and 4.6f.

Several conclusions can be drawn by comparing qualitatively the committor estimates shown in Fig. 4.6 with the reference committor shown in Fig. 4.5. First of all, note that a single reactive trajectory does not contain enough information to capture the structure of the committor function (Figs. 4.6a,4.6d). The committor estimates start to be qualitatively acceptable when two reactive trajectories are used (Figs. 4.6b,4.6e). This is due to the fact that our data set includes the two types of transition paths between A and B (the one that passes through the saddle point x s and the one that stable results. A simple interpretation is that when there is not enough data, the analogue Markov chain is not a good enough approximation of the real dynamics to provide any benefit to estimate the committor function. However, it becomes the case as the amount of data increases, and the analogue method outperforms the direct method as soon as the learning dataset contains at least 4 transitions. When the data contains at least 4 transitions, the error with the analogue method is two to three times smaller than the error with the direct method.

The Charney-DeVore model

We now apply the analogue metho d to compute a committor function for a more complex dynamics, the Charney-DeVore model [START_REF] Charney | Multiple flow equilibria in the atmosphere and blocking[END_REF]. It is a simple toy model of atmospheric dynamics in the Northern Atlantic region, represented as a 2D channel with differential rotation. It is not intended to be realistic. Actually, the kind of multistability observed in this model is not observed in real atmosphere dynamics. The interest of this model is more methodological.

This model was introduced with the aim of proving that the combination of topography and barotropic instabilities can lead to different atmospheric flow regimes. The model is obtained by expanding the quasi-geostrophic stream function (z, y, t)( z corresponds to the longitude and y to the latitude) on the basis { nm (z, y)} with (4.22) and truncating the series to retain only the first six terms. After the following change of variables [De Swart, 1989], 

0m = p 2cos ⇣ my b ⌘ , nm = p 2exp(inz)sin ⇣ my b ⌘ ,
x 1 = 1 b 01 ,x 4 = 1 b 02 , ( 
x 3 C(x 1 x ? 1 )+ p 2✏⇠ 1 , ẋ2 = (↵ 1 x 1 1 )x 3 Cx 2 1 x 4 x 6 + p 2✏⇠ 2 , ẋ3 =(↵ 1 x 1 1 )x 2 1 x 1 Cx 3 + 1 x 4 x 5 + p 2✏⇠ 3 , ẋ4 =˜ 2 x 6 C(x 4 x ? 4 )+⌘(x 2 x 6 x 3 x 5 )+ p 2✏⇠ 4 , ẋ5 = (↵ 2 x 1 2 )x 6 Cx 5 2 x 3 x 4 + p 2✏⇠ 5 , ẋ6 =(↵ 2 x 1 2 )x 5 2 x 4 Cx 6 + 2 x 2 x 4 + p 2✏⇠ 6 , (4.26)
where a Gaussian white noise ξ(t)h a sb e e na d d e dw i t ha na r b i t r a r ya mplitude controlled by the parameter ✏. All the components of the noise are independent and delta-correlated in time: h⇠ i (t)⇠ j (t 0 )i = ij (t t 0 ). The parameters in (4.26)a r ed e fi n e da sf o l l o w s

↵ m = 8 p 2 ⇡ m 2 4m 2 1 b 2 + m 2 1 b 2 + m 2 , ˜ m = 4m 4m 2 1 p 2b ⇡ , (4.27) m = b 2 b 2 + m 2 ,⌘ = 16 p 2 5⇡ , (4.28) m = 64 p 2 15⇡ b 2 m 2 +1 b 2 + m 2 , m = 4m 3 4m 2 1 p 2b ⇡(b 2 + m 2 )
. (4.29)

There are 7 free parameters in this model: b, , , C, x ? 1 ,x ? 4 ,a n dt h en o i s e amplitude ✏.F o r✏ =0,themainfeatureofthesystemisthecoexistenceof multiple equilibrium states, in particular the existence of blocked flow and zonal flow regimes. The number and stability of these equilibrium states depend on the choice of the system parameters [De Swart, 1989, Crommelin et al., 2004]. We adopt the same choice made by T. Grafke et al. [START_REF] Grafke | Long term effects of small random perturbations on dynamical systems: Theoretical and computational tools[END_REF][START_REF] Grafke | [END_REF], that is {b, ,,C,x ? 1 ,x ? 4 } = {0.5, 1, 1.25, 0.1, 4.5, 1.8}.C r o m m e l i net al. show that for these parameter values the system has two stable equilibrium points [START_REF] Crommelin | A mechanism for atmospheric regime behavior[END_REF]: one corresponding to a zonal regime and the other to a blocked one. Figure 4.8 shows the convergence of the system towards the two equilibrium states as well as the corresponding stream function for the deterministic model (✏ =0 ) . T h ep a n e l s4.8a and 4.8b show clearly that, for this choice of parameters, the system exhibits multistability, and that the time it takes to reach the stationary regimes is of order O(10). The two equilibria correspond to a zonal state, with almost horizontal streamlines

Using the learned committor function in

Adaptive Multilevel Splitting

In Sec. 4.3,w ee s t i m a t e dt h ec o m m i t t o rf u n c t i o nw i t ht h ea n a l o g u em e t h od .

We will now illustrate how this approximated committor can be used in a rare event simulation, using the Adaptive Multilevel Splitting (AMS) algorithm. This algorithm relies on a function used to select the trajectories leading to the rarest events, called the score function.T h ec o m m i t t o rf u n c t i o ni sk n o w n to be the optimal score function, but it is generally not known exactly. We will show that using the estimated committor as a score function has two advantages. First, it provides a version of AMS where the user does not need to explicitly prescribe the score function. This is very useful in practice when we have little knowledge of the dynamics beyond the presence of the two attractors A and B.I n a d d i t i o n ,i t c a n i m p r o v e t h e p r e c i s i o n o f t h e quantities computed with AMS, compared to user defined score functions. Indeed, it approximates the true committor, which leads to minimal errors on estimates. On other hand, user defined score functions, with analytical formulas, have no reason to be good approximations of the true committor in general.

The Adaptive Multilevel Splitting algorithm and the quality of score functions

Adaptive Multilevel Splitting is a splitting method designed to estimate the probability of rare events, inspired by the pioneering works of [START_REF] Kahn | Estimation of particle transmission by random sampling[END_REF]andRosen bluthandRosen bluth [START_REF] Rosenbluth | Monte carlo calculation of the average extension of molecular chains[END_REF]. It has been proposed by [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF], as an improvement over Multilevel Splitting (see Ref. [START_REF] Glasserman | A large deviations p ersp ective on the efficiency of multilevel splitting[END_REF]f o ri n s t a n c e ) . M a n yv a r i a n t sh a v eb e e nd e v e l o p e ds i n c e , and the algorithm has been applied in a variety of contexts [Rolland, 2018, Bouchet et al., 2019, Lopes and Lelièvre, 2019, Lestang et al., 2020]. The description of the algorithm given here follows the presentation of Lestang et al. [START_REF] Lestang | Computing return times or return periods with rare event algorithms[END_REF]. See the review article by Cérou, Guyader & Rousset [START_REF] Cérou | Adaptive multilevel splitting: Historical perspective and recent results[END_REF]f o rar e c e n to v e r v i e wo ft h em e t h o da n di t s applications.

For definiteness, we consider a continuous time Markov pro cess X t in the phase space X .L e tu sd e fi n et w or e g i o n sA and B in phase space. We again 4.4. USING THE LEARNED COMMITTOR FUNCTION IN ADAPTIVE MULTILEVEL SPLITTING seek to estimate the probability ↵ = P[T B <T A ], where T D =inf{t>0,X t 2 D with X 0 2C}is the first hitting time of the set D,s t a r t i n gf r o mas e tC. The set C encloses the set A.W ea l s ow i s ht oc o m p u t et h ec o r r e s p o n d i n g realizations of the dynamics.

The AMS algorithm computes these quantities iteratively. For this matter, the algorithm uses a score function ,( s o m e t i m e st e r m e dreaction coordinate)am a pf r o mt h ep h a s es p a c eX to R.I d e a l l y ,t h es c o r ef u n c t i o n is bounded from below by 0 and from above by 1, vanishes identically on A and is identically equal to 1 on B.O u ra i mi st oc o m p a r et h ee ffi c i e n c yo f different score functions.

In order to run the algorithm, we first need to sample initial conditions according to the invariant measure restricted to the set C.I np r a c t i c e ,w e sample these initial conditions on C by sampling long trajectories in the bassin of attraction of A.T h e nt h ea l g o r i t h mi si n i t i a l i z e db ys a m p l i n gN independent trajectories, with initial conditions on the set C and run until they reach either the set A or the set B.L e tu sd e n o t eb y{x (0) n (t)} 1nN the initial ensemble of trajectories, where the subscript denotes the index of the trajectory in the ensemble and the superscript denotes the iteration of the algorithm. We associate a weight w 0 =1tothosetrajectories.

At each iteration j 1, we apply the following selection and mutation steps, which are schematically illustrated in Fig. 4.12:

• We compute the score of each trajectory in the ensemble at iteration j 1:

Φ (j) n =sup t (t, x (j 1) n (t)).
• We determine the tra jectories which have the lowest score:

Φ ? j = min 1nN Φ (j)
n and we set n ? j,1 ,...,n ? j,`j the indices such that Φ

(j) n ? j,1 = ••• =Φ (j) n ? j,`j =Φ ? j .
O n ec a nh a v e`j > 1i ns o m ei t e r a t i o n s . I f`j = N and not all the trajectories have reached B,t h ea l g o r i t h ms t o p s : i t leads to an extinction.

• We mutate each tra jectory x (j 1) n ? j,`( 1  ` `j): for each of them, we choose a trajectory x (j 1) n `(n `6 = n j,1 ,...n j,`j )d r a w nr a n d o m l ya m o n g the N `j remaining trajectories. We determine the smallest time t such that (t, x (j 1) n `(t)) > Φ ? j ,denotedb yt j,`. T h en e wt r a j e c t o r yx

(j) n ? j,ì
s set by copying the trajectory x

(j 1)
n `from t 0 to t j,`, a n ds i m u l a t i n g 3 1 2 1': 1 branched on 2 [Simonnet, 2016]), in order to compute trajectories going from set A to set B.T r a j e c t o r y1( d a s h e dl i n e ) has the smallest excursion out of A as measured by the score function Φ.

B x A Φ 3 Φ 2 Φ 1 Observable :Φ : R d → R Φ 1 < Φ 2 < Φ 3 N =3clones
It is removed and branched on another trajectory (in that case trajectory 2, leading to the purple line). In the successive iteration, trajectory 2 has the smallest score function and is branched on trajectory 3 (leading to the red line).
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the trajectory with a new independent realisation of the noise, starting from time t j,`, u n t i li th i t se i t h e rt h es e tA or the set B.

• Tra jectories with higher scores are not mo dified at this step:

x (j) n = x (j 1) n
for n 6 = n ? j,1 ,...,n ? j,`.

• We compute the weight of iteration j:

w j = ⇣ 1 `j N ⌘ w j 1 .
The algorithm is iterated until all the trajectories reach the set B.T h e number of iterations J is a random number. This leads to an estimator ↵ for the transition probability ↵:

↵ = w J = J Y j=0 ✓ 1 `j N ◆ . (4.33)
This estimator is a random variable, with one value obtained for each realization of the algorithm. We perform M independent realizations of the algorithm and compute the statistics of ↵:t h ee m p i r i c a la v e r a g ea n dv a r i a n c e of ↵.

The mathematical properties of this estimator have been extensively studied [START_REF] Cérou | Adaptive multilevel splitting for rare event analysis[END_REF], Guyader et al., 2011, Rolland and Simonnet, 2015, Bréhier, 2015, Bréhier et al., 2015, Bréhier et al., 2016a[START_REF] Bréhier | Central limit theorem for adaptive multilevel splitting estimators in an idealized setting[END_REF], Simonnet, 2016]. The key property is that, for any N and score function ,itisanun biasedestimator [Bréhier et al., 2016a[START_REF] Bréhier | Central limit theorem for adaptive multilevel splitting estimators in an idealized setting[END_REF] with a finite variance. The variance ↵ (N ) depends on N and on the score function. The optimal score function, with the lowest variance, is the committor function.

More precise results exist asymptotically for large N .I ti st h e np r o v e n [ Cérou et al., 2019a]t h a tt h ev a r i a n c es c a l e sl i k e

1 p N asymptotically ↵ (N ) ⇠ N !1 G( ) p N .M o r e o v e

r , w h e n t h e s c o r e f u n c t i o n i s t h e c o m m i t t o r f u n c t i o n , G is minimal, and the variance scales like the ideal variance

id = ↵ p | log(↵)| p N . (4.34)
In many cases, an asymptotic scaling is observed in practice when the number of clones is larger than 100 (see for instance Ref. [Rolland, 2018], Fig. 14 (c)).
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and Simonnet, 2015].

To have an unbiased estimate of ↵ and ⌧ and validate the output of AMS computations, we perform a large number of Direct Numerical Simulations (DNS) of reactive trajectories. These DNS start like AMS computations with initial conditions on C, we let them evolve until they reach either A or B. The proportion of DNS that reach B before A yields a direct estimate of ↵. We also p erform an estimate of ⌧ by averaging the duration trajectories that reach B before A.

The estimate of a quantity by AMS is deemed to be precise enough when the 95% confidence intervals of this estimate performed by AMS and by DNS overlap [Bréhier et al., 2016a]. These confidence intervals are constructed by noting that we look at the sum of independent random variables of finite variance. They therefore follow a central limit theorem and the sample mean of ↵ has a gaussian distribution. The confidence interval is then given by h↵i M ± 1.96 ↵ (N, M), with the empirical variance ↵ (N, M). Similar confidence intervals are constructed for ↵ and ⌧ for both AMS and DNS results.

The learned committor function

Our goal is to investigate the performance of a score function relying on a data-based estimate of the committor function, using the analogue method presented in Sec. 4.3. As mentioned above, this method only provides an estimate on the points initially present in the dataset. To extend the score function to the whole phase space, we proceed as explained in Sec. 4.2.3,with an e a r e s t -n e i g h b o rm e t h o du s i n ga ne x p o n e n t i a lk e r n e lw i t hw i d t h! =0 .1. Here, a small number of neighbors  =10isusedforefficien tcomputationsof the score function. Indeed, for each computation, a search through neighbors must be performed. For a given training dataset, this method defines a score function, which we shall denote dat .

The use of a kernel is justified by the need to avoid regions of constant score function. Indeed, when R D is divided in finite subvolumes, many points y have the same neighbours {x j } 1j and thus would have the same score function if uniform weights were used. On the other hand, the kernel ensures ad e p e n d e n c eo ny even within such regions. In other words, the kernel ensures that sets of constant dat are hypersurfaces and not hypervolumes and that much fewer y have the same values of Φ at each stage of the algorithm. Practice shows that this leads to more efficient branching by limiting the number of clones suppressed at each stage of the algorithm and the risk of We will test the use of the analogue based estimate of the committor as a score function for the AMS computations for the two systems presented in Sec. 4.3.3:t h e2 Dt h r e e -w e l ls y s t e m( S e c .4.4.3)a n dt h eC h a r n e y -D e V o r e model (Sec. 4.4.4). The test of the learned committor function will be twofold. First, we will consider a score function learned on a dataset displaying a large number of transitions and study the quality of the result as af u n c t i o no ft h ec l o n en u m b e rN .T h i sw i l la l l o wu st od i s c u s st h ep h enomenon of apparent bias and how the learned committor function deals with it. The second aim will be to study the required size of the dataset to have good results with the AMS algorithm. This question is critical for complex systems for which data will be scarce because of computation costs. To address this question, we will then perform AMS computations with a fixed large number of clones N = 1000 and datasets of increasing size (measured in number of recorded transitions).

AMS study for the two dimensional three well model

In this subsection, we work on the dynamics of the two-dimensional threewell model presented in Sec. 4.3.3 (Eq. (4.18)). The sets A and B as well as the noise variance ✏ are defined as in Sec. 4.3.3.

Efficiency of the AMS algorithm with the learned committor function for large N for the three-well model

We first study the efficiency of the AMS algorithm when using the learned approximate committor funciton dat as a score function, when the number of clones is increased with a fixed data set length.

The time series which is used to compute this score function has N p =1.4• 10 5 datapoints (effectively 1400 time units long) and displays 21 transitions. The results for the AMS algorithm with this score function will be compared to either DNS computations, or to AMS computations with two explicitly user defined score functions:

lin (x)= x+1 2 and norm (x)= p (x+1) 2 + 1 2 y 2 2 .
The performances of these score functions have been studied in detail in the literature [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF].

In Fig. 4.13 (a), we first show the transition probability h↵i M as a function 
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with ↵ (N, M)=1 .25 ± 0.02. The best results are obtained for the learned committor function, with ↵ (N, M)=1 .12 ± 0.2. This again indicates that the computations performed using the learned committor function are the most precise, in that they come with the smallest statistical error, which is 10% larger than the smallest error possible.

All things considered, we conclude that if we use a large dataset to learn an estimate committor function with the analogue Markov chain, and use it as a score function for AMS, the estimates of transition properties show no apparent biases and converge to their true value when the number of clones is increased. The better precision of the results with the learned score function is also clearly visible for the lower statistical error measured by the empirical variance of the algorithm. This better precision is seen as soon as the number of clones N is of the order of 100 and the 95% confidence interval is reached for N of the order of a few hundreds.

Efficiency of the AMS algorithm with the learned committor function as a function of the dataset length for the three-well model In Sec. 4.4.3,w eu s e dal a r g ed a t a s e tw i t h2 1t r a n s i t i o n st oa c c u r a t e l ye s t imate the committor, before using it as a score function for the AMS. Compared to analytically defined score functions, this suppressed the apparent bias phenomenon and reduced the statistical error.

However, for many complex systems with very costly computations, it might not always be affordable to use a long dataset to learn the committor function. Moreover, in the initial stage of the study, one need to work with short datasets. Hence, we now study how the results of AMS computations using the learned committor function depend upon the size of the learning dataset, in the regime of short datasets, for the 2D three-well model.

For this matter, we sample tra jectories of increasing length that contain an increasing number of transitions, from 1 to 21. For each number of transitions, we sample seven independent trajectories. For each of these datasets, we estimate the committor with the analogue method (Sec. 4.3)a n du s ei t as a score function in AMS computations with N =1000clones. Fig. 4.14 (a,b) show the transition probability ↵ and the average length of reactive trajectories ⌧ as a function of the number of sampled transitions in the dataset. For each realization of the dataset which is used to learn the score function, we represent the best estimate and the 95% intervals of confidence, as different points. However, all the points are essentially For each plot the black curve is the reference one, either the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with respectively the learned committor function (green), the linear score function (blue) and the quadratic score function (red). The red and blue curves are constant values (they do not depend on the data set length) for comparison. The learned committor function gives much better results than the user defined score functions, even for very small datasets. With datasets containing only a few transitions, two to five, the results are already excellent. However, for such small datasets, the quality of the score function varies much from one realization to another.
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superimposed: all the realizations of the score functions lead to the same results. We note that even if we use a short dataset to learn the committor function, the estimates are very precise: the intervals of confidence of the AMS algorithm and the DNS estimates overlap for all our datasets lengths, except for the shortest dataset (only one transition) for ⌧ .I n p a r t i c u l a r , they are always significantly more accurate than the estimates performed with the user defined score functions, as a consequence of the apparent bias phenomenon. This is confirmed in Fig. 4.14 (c) by considering ,therescaledv arianceof the estimate of ↵. In this plot, for each dataset length, we have computed the empirical average and variance of the rescaled variances estimated with the different realizations of the score function. This first shows that the rescaled variance decreases as the number of transitions contained in the dataset increases, from 1.6 when the dataset contains only two transitions to almost 1.1 when the dataset contains 8 transitions or more. This indicates with datasets with 8 transitions or more, the statistical error is systematically reduced when using the learned score function is learned rather than user defined score functions.

We also note that the fluctuations of the variance b etween different dataset realizations decreases as the number of transitions contained in the dataset increases. If the dataset is short, no more than 6 transitions, one can obtain ascorefunctionthatleadstobetterorworseresultsthananalyticallydefined score functions with comparable probability. With a dataset with 3 transitions or more, the statistical error is most of time reduced when the score function is learned from datasets, compared to the case with user defined score functions.

Finally, we stress that for very short dataset, with only a few transitions, even if the variance on the estimate of ↵ is of the same order for both user defined and learned score function, the systematic apparent bias is much smaller with the learned committor function.

Application to the Charney-DeVore model

We now perform the same tests for AMS computations using the learned committor function in the Charney-DeVore model (Eq. (4.26)). We use the same parameters and definition of the sets A and B as in Sec 4.3.3,describing transitions between zonal and blocked flows. For each plot the black curve is the reference one, either the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with the learned committor function (green) and the linear score function (blue). The learned committor function gives excellent results, similar to the linear one for the weak apparent bias of the transition probability (a), and much better than the linear one for the variance and the length of reactive trajectories (b and c).

Efficiency of the AMS algorithm with the learned committor function for large N for the Charney-DeVore model

We pro ceed as in Sec. 4.4.3:w efi r s tl e a r nt h ec o m m i t t o rf u n c t i o n dat (Sec. 4.4.2)f r o mal o n gt r aj e c t o r y ,c o n t a i n i n g3 .4 • 10 4 data points and displaying 38 transitions. The perfomances will be compared to DNS results and to a simple linear score function

x 1 = x 1 x 1,Z
x 1,B x 1,Z with x 1,Z =4 .308 and x 1,B =0.709 (see Figs. 4.8a and 4.8b).

We first show the estimate of the transition probability ↵ as a function of the number of clones used in AMS in Fig. 4.15 (a). For all three estimates, the 95% intervals of confidence are fairly large: 2% of the best estimate. All three intervals overlap if more than 100 clones are used in AMS computations. Based on this observable alone, both score functions give comparable results, and we cannot conclude on whether one is better than the other.

We then show the estimate of the average length of reactive trajectories as a function of the number of clones used in AMS computations in Fig. 4.15 (b). The two AMS estimates h⌧ i M decrease with N towards an asymptotic value.
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With the learned committor function dat ,t h e9 5 %c o n fi d e n c ei n t e r v a l so f the AMS and DNS estimates overlap if N 250. This never happens for the linear score function x 1 .

Finally, Fig. 4.15 (c) shows the rescaled variance of the AMS estimator of ↵ as a function of the number of clones. Both are compared to the reference value 1. The learned committor function significantly reduces the statistical error, compared to the linear score function.

We conclude that using the learned committor function computed from alongdatasetleadstomorepreciseresultsthanusingtheuserdefinedscore function x 1 ,e s p e c i a l l yf o rt h es t a t i s t i c a le r r o ra n df o rt h ee s t i m a t eo ft h e duration of reactive trajectories. We note that AMS computations yield estimates close to the asymptotic value if N 1000.

Efficiency of the AMS algorithm with the learned committor function as a function of the dataset length for the Charney-DeVore model As we did with the 2D three-well model (Sec. 4.4.3), we now wish to determine the amount of data necessary to learn a committor function leading to good AMS estimates. Again, we sample longer and longer trajectories, containing from 1 to 99 transitions. From each of these datasets we learn a committor function and use it in AMS computations using N =1 0 0 0c l o n e s . F o re a c h dataset length, we perform an average over independent realizations of the score function.

We first consider the transition probability ↵ (Fig. 4.16 (a)) and the average length of the reactive trajectories ⌧ (Fig. 4.16 (b)) as a function of the number of recorded transitions. We note that as soon as there are more than five recorded transitions in the dataset, using the AMS with the learned committor, the 95% intervals of confidence of ↵ and ⌧ overlap with the DNS estimate. This indicates that the learned committor function is relevant for much smaller datasets than used in Sec. 4.4.4.T h er e s u l t si m p r o v ew i t ht h e size of the dataset.

We now examine the rescaled variance of the AMS estimate of the transition probability ↵, using the learned committor function (Fig. 4.16 (c)). We note that if there are very few transitions recorded in the dataset, the variance can be larger than the one obtained using the linear score function. However, the statistical error quickly decreases for larger datasets: it is reduced by about 20% compared to the linear score function when the dataset 

Conclusion

In this paper, we have proposed a data-driven approach for the computation of the committor function. This approach relies on the analogue method to define effective dynamics starting only from observations. We have shown that this defined a Markov chain on the observed states of the dynamics, which approximates the true propagator. This allows a spectral characterization of the committor function. Computing the committor function this way gives remarkably smooth and robust results for the committor function.

We have highlighted by means of two examples that it is p ossible to obtain fairly precise estimates of the committor function, even in cases where few observations are available. In addition, we have pointed out that these approximations are more precise than those provided by a naiver data-driven approach and that increasing the number of data results in a faster reduction of the error. These improvements are because that the analogue Markov chain is a dynamical approach, which uses all the information contained in the trajectories, while this is not the case for the direct approach, which treats all the points of the same reactive trajectory equally. We also stress that the analogue Markov chain approach can be used using any trajectories of any length, not necessarily distributed according to the invariant measure of the dynamics.

Finally, we provided evidence of the advantage of coupling the analogue method with a rare event algorithm. Indeed, learned committor with the analogue Markov chain can be used as a score function performing better than user defined score functions. This means that it is possible to develop an almost-fully automatic algorithm that requires very little knowledge and understanding of the system under consideration. The quality of the results suggest that better understanding can be obtained a-posteriori.

Although the learned committor function based on the analogue Markov chain, and its coupling with rare event algorithms, have revealed several very interesting advantages, some limitations might arise especially when one faces high-dimensional systems. We have tested the approach for a fairly complex dynamics with 6 degrees of freedom. It still has to be tested for more complex dynamics. For systems in high dimensions, the choice of the distance for the analogue method might be a critical issue.

CONCLUSION

Another interesting question would be to compare the quality of the estimation of the committor function using the analogue Markov chain, with other methods. It would be interesting to compare it other methods based using dynamical information, sometimes more complicated, for instance the direct Galerkin approximation [START_REF] Thiede | Galerkin approximation of dynamical quantities using trajectory data[END_REF], Strahan et al., 2021] method. It would also be interesting to compare it to direct approaches using machine learning.

Chapter 5

Predicting extreme events using the analogue method: the heat-wave case

Introduction: heat waves and committor functions

Often rare events, for instance extreme heat waves or cold spells, have a huge impact on socio-economic systems [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF], Field et al., 2012,AghaKouchak et al., 2012,Herring et al., 2014,Coumou and Rahmstorf, 2012, Ragone and Bouchet, 2021]. Therefore, one of the major challenges nowadays is to accurately describe their dynamics and find effective ways to forecast the probability of occurrence of such events. The greatest difficulty in studying these events lies in the lack of observations. For example, consider the case of heat waves. These events happen every year in different parts of the world and have been observed in the past. The impact, amplitude and duration of these events vary widely depending on the region in which they occur, the period and many other factors. The most extreme events have a return time (the average time between two occurrences of the event) of the order of hundreds or thousands of years [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF]Bouchet, 2021]. It is therefore not possible to rely on historical data because such events may have never been observed due to the many factors that contribute to their occurrence. Difficulties in analyzing these events also arise using climate models because of their huge computational costs.

This study focuses on extremes of long lasting summer heat waves. Although various definitions can be given, roughly speaking a heatwave is an extended period of hot weather relative to the expected conditions of the area at that time of year. As an example the France region has been considered.

According to existing phenomenological theory1 [Perkins, 2015, Horton et al., 2016], the principal causes of heat waves include large-scale atmospheric circulation patterns [START_REF] Cassou | Tropical atlantic influence on europ ean heat waves[END_REF], Della-Marta et al., 2007, Jézéquel et al., 2018] and lack of rainfall and soil moisture [START_REF] Vautard | Summertime european heat and drought waves induced by 204 BIBLIOGRAPHY wintertime mediterranean rainfall deficit[END_REF], Zampieri et al., 2009, D'Andrea et al., 2016]. Although these are recognized as the main causes, it is extremely complex to establish causal relationships between them [START_REF] Horton | A review of recent advances in research on extreme heat events[END_REF]a n dt h e i ri n fl u e n c ev a r i e si n importance depending on the geographical region [START_REF] Stefanon | Heatwave classification over europe and the mediterranean region[END_REF]. For instance, it is well established that long-lasting heat waves in extratropical regions are related to persistent weather regimes and blocking events [START_REF] Lau | The 2010 pakistan flood and russian heat wave: Teleconnection of hydrometeorological extremes[END_REF], Hoskins and Woollings, 2015, Horton et al., 2016, Kornhuber et al., 2019, Ragone and Bouchet, 2021].

Therefore, studying extreme heat waves concerns the study of the nonlinear and turbulent dynamics of the atmosphere. Two key variables are the temperature and pressure fields, although it is important to note that relative humidity can also play a role. Surface temperature and pressure fields at a certain height of the vertical coordinate are usually considered. The most convenient vertical coordinate is the geopotential height. The geopotential Φ( , ✓, z) is the gravitational potential energy per unit mass at latitude , longitude ✓,a n de l e v a t i o nz,

Φ( , ✓, z)= Z z 0 dz 0 g( , ✓, z), (5.1) 
where g( , ✓, z)isthegravityacceleration. ThegeopotentialheightZ( , ✓, z) is the geopotential normalized to the standard gravity at mean sea level g 0 =9.80665 ms 2 ,i . e .

Z( , ✓, z)= Φ( , ✓, z) g 0 .

(5.2)

Instead of using the pressure fields at a certain value of the geopotential height, it is possible to look at the value of the geopotential height on a sur-FUNCTIONS face defined by a fixed pressure. Indeed, the geopotential height on a surface defined by a fixed pressure behaves as a streamfunction for the geostrophic wind vector and it is often used to visualize the state of the atmospheric circulation since it highlights regions of low pressure (cyclonic anomalies typically associated with bad weather) and high-pressure regions (anticyclonic anomalies typically associated with fair weather). The geopotential height is important in the study of heat waves as these are typically associated with persistent anticyclonic anomalies [START_REF] Ragone | Computation of extreme heat waves in climate models using a large deviation algorithm[END_REF]. As an example, consider the map of temperature at 850 hPa (colors) and geopotential height at 500 hPa (contours) in Fig. 5.1. As can be seen, the geopotential height gives indications on atmospheric circulation. Indeed, the two predominant features are the jet streams of the two hemispheres. Furthermore, it can be noted that the regions where the temperature is high (low) are associated with high (low) values of the geopotential height.

In this study, a specific criterion for selecting heat waves has been chosen. It consists of extremes of time averaged surface temperature fluctuations (anomalies) defined as

A(t)= 1 T Z t+T t 1 |D| Z D (T s E c [T s ]) (r,t 0 )drdt 0 , (5.3) 
where D is a specific region of the globe, |D| represents the area of the region and E c [•] denotes the climatological average, i.e. an average over time made for any given location r and intra-year time t that preserves the intra-year seasonal effect. The integrand of Eq. ( 5.3)isthesurfacetemperatureanomaly field and will be indicated by T a s (r,t)=(T s E c [T s ]) (r,t). Throughout the study, heat waves of duration T =1 5d a y sw i l lb ea n a l y z e d . I ts h o u l db e underlined that extremes of temperature anomalies rather than extremes of absolute temperature are considered. This definition emphasizes dynamical characteristics, which are thought to be described reasonably well on a seasonal time scale, rather than physical impacts which are often related to the absolute temperature. However, it can be expected that those events have the same dynamical characteristics, at least for the most important aspects.

Considering that the predictability horizon of the atmosphere is about two weeks, it is easy to be convinced that the problem of predicting heat waves a few days in advance falls into the class of prediction problems at the predictability margin. Therefore, even in this case, the appropriate mathematical tool to deal with this problem is the committor function. FUNCTIONS and consequently are used to generate synthetic trajectories only in that season. The latter, instead, are developed using yearly trajectories. Within the class of annual Markov chains, a further distinction can be made between time-periodic or homogeneous Markov chains depending on whether the transition matrix depends on time or not. Then, Markov chains are used to generate synthetic trajectories. From these synthetic trajectories, some stationary properties of the chains, such as the distribution of the time averaged temperature A (Eq. ( 5.3)), the return times, and the probability distribution of the days visited by the trajectories, are computed. In addition, these quantities are compared to the ones computed from the real dynamics (where the term real refers here to climate model outputs). These consistency checks show that the type of Markov chain suitable for reproducing heat wave statistics depends on which variables are used as states of the chain. The section ends by showing that the analogue method allows the observation of events whose return time is much longer than the length of the trajectory used for building the analogue Markov chain. This result proves the ability of the analogue method to generate realistic trajectories useful for studying extreme events. Sec. 5.3 deals with the computation of the committor function using the analogue method. The committor function is computed by employing seasonal Markov chains. Indeed, as it will be better explained throughout the chapter, the committor function only depends on short trajectory statistics (since it is a function of the initial condition) and it is therefore not too much sensitive to the choice of the type of the analogue Markov chain. The predictive skills of the committor are evaluated by building a classifier (the analogue based classifier) that predicts the occurrence or not of a heat wave according to the current state of the system. Then, the classifier is used to assess the impact of some parameters, such as the coarse-graining time, the spatial domain on which analogues are computed and the combination of different physical quantities, on the predictability of extreme events. The section concludes by showing a comparison between the analogue based classifier and a classifier based on the committor function computed with a more naive approach (k-Nearest Neighbors regressor) highlighting that the analogue method provides more accurate predictions. Due to lack of time, a systematic study was not carried out in this section. Therefore most of the results obtained here must be thought of as insights rather than assertions.

THE ANALOGUE METHOD FOR HEAT WAVES

from the interplay of processes taking place on different time scales, the time scale gap does not exist for the climate model. In order to cope with this issue and to make the application of the analogue method meaningful, it could be useful to introduce a temporal coarse graining for the variables used to describe the system. To explain the reasoning behind it, it is better to first define a coarse grained variable. Let F(r,t 0 )bethev alueofageneric field at point r 2 R 2 at time t 0 . One can introduce the coarse grained field F(r,t 0 ) where the coarse graining is done in time with a coarse graining duration equal to ⌧ c :

F(r,t 0 )= 1 ⌧ c Z t 0 + ⌧c 2 t 0 ⌧c 2
dt F(r,t).

(5.5)

The typical correlation time ⌧ corr of the relevant variables for heat waves, such as temperature or geopotential height, is of the order of a few days in PLASIM. Considering a coarse graining time of the same order of the correlation time, i.e. ⌧ c ⇠ ⌧ corr ,a n dl o o k i n ga tt h es y s t e mo nt i m es c a l e s of the same order, one has that F(r,t 0 + ⌧ c ) is correlated with F(r,t 0 )b u t much less with F(r,t 0 ⌧ c ). This justifies the choice of adopting a Markovian description, i.e. the analogue method, of the system.

In what follows it will be described how to adapt the analogue method to study heat waves. Since the development of the analogue Markov chain has already been explained in Sec. 4.3.1, the following discussion focuses solely on how to select analogues.

The state of the system will be defined by a vector X t = ⇣ F1 (r,t), 

d l (X 1 ,X 2 )= Z dr I X i=1 ( Fi (r,t 1 ) Fi (r,t 2 )) 2 2 Fi (r) 1 2
.

(5.7)

where the integral is to be intended on a region of space D. Another possibility is to use a Euclidean distance normalized to the average variance, i.e.

d g (X 1 ,X 2 )= Z dr I X i=1 ( Fi (r,t 1 ) Fi (r,t 2 )) 2 Σ 2 Fi 1 2 , ( 5.8) 
where

Σ 2 Fi = 1 |D| Z D dr 2 
Fi (r).

(5.9)

An alternative approach is to use the Mahalanobis distance d M (•), which is

d M (X 1 ,X 2 )= Z dr 1 dr 2 I X i=1 ( Fi (r 1 ,t 1 ) Fi (r 1 ,t 2 ))Cov 1 Fi (r 1 , r 2 )( Fi (r 2 ,t 1 ) Fi (r 2 ,t 2 )) 1 2 
.

(5.10) A priori, it is not obvious which is the most appropriate distance to use: the Mahalanobis distance is the most discriminative criterion but its computational cost is quite high because it requires to compute the product between large matrices. For this reason, the Euclidean distances have been preferred and the choice between the local and the global version depends on the spatial homogeneity of fields' fluctuations.

The last ingredient for the development of the analogue Markov chain is the choice of its time unit ⌧ M . Note that the unit time of the Markov chain ⌧ M and the coarse graining time ⌧ c are different objects. Indeed, the former represents the lag time between a state s 0 and its evolution s 1 while the latter is the duration of the time averages that define the coarse grained variables. Although they are different concepts, it this chapter, unless differently stated, ⌧ M = ⌧ c will be considered.

In the following, several implementation of analogue Markov chains will be defined, analyzing the consistency of synthetic data with respect to the real ones.
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Seasonal analogue Markov chains

For the construction of this typ e of analogue Markov chains only the data corresponding to a given season (e.g. summer) are considered. This implies that instead of having 10 independent realizations each 100 years long, there will be 1000 independent realizations each 90 days long. Recalling the terminology of Sec. 4.3.1,t h ed a t a -s e tw i l lb ei n d i c a t e dw i t h{X n } 1nNt with N t = 90000. Unlike Sec. 4.3.1 where the data-set consisted of a single trajectory and the time step of the Markov chain coincided with the sampling time, here the data-set is composed of multiple trajectories and the time step of the Markov chain ⌧ M is not equal to the sampling time ⌧ c .T h e r e f o r e ,i n s t e a do f excluding only the final point of the trajectory from the possible candidates for the analogues, the last ⌧ M points of each trajectory will be excluded as it is not possible to associate any transition from them. To be more precise, using ⌧ c =5 ,f o re a c hp o i n tX n the analogues are searched between June 1 and August 25 of each year. Keeping these small changes in mind, the rest of the procedure is equivalent to that already described in Sec. 4.3.1.T h eK best analogues will be stored in a matrix T of size N t ⇥ K,w h e r eK is the analogue number and N t the data-set length. The matrix T is a matrix of indices, i.e. the n-th row of T contains the indices of the K analogues of the point X n . Note that the index n of each point X n is nothing more than the time at which X n was observed. As shown in Sec. 4.3.1,f r o mt h em a t r i xT it is possible to derive the transition matrix of the analogue Markov chain G (Eq. (4.14)).

The synthetic trajectories can be built by applying the same procedure as in Sec. 4.3.1.G i v e na ni n i t i a ls t a t eo ft h eM a r k o vc h a i ns 0 ,ar a n d o m number k distributed uniformly in the interval [1,K]i sg e n e r a t e d . T h e ns 1 , the evolved state from s 0 ,w i l lb es 1 = T s 0 k + ⌧ M .O n c ea g a i n ,n o t et h a t ⌧ M can be added to the elements of the matrix T as the latter represent the times at which the corresponding states were observed. Therefore the state corresponding to s 1 (X s 1 )i st h es t a t et h a tc o m e s⌧ M days after the state corresponding to T s 0 k (X T s 0 k ). The entire synthetic trajectory is obtained by iterating the previous step.

Annual homogeneous analogue Markov chains

Since seasonal analogue Markov chains are learned using only the data corresponding to a single season, they can only be used to generate synthetic trajectories in that season. Instead, the aim of this section is to introduce a type of analogue Markov chains that can be used to generate annual trajectories. In this way, generating a very long synthetic trajectory corresponds to simulating the dynamics of the system over several years. This type of Markov chain is built using all the 10 batches. Therefore, the data-set is {X n } 1nNt with N t =1 0⇥ (100 ⇥ 360 (⌧ c 1)). At this point, it should be noted that due to the strong seasonal cycle only fields in the same season share similar dynamics. Therefore, the analogues of a point X are searched not in the whole data-set but in a time window of two months centered on the day corresponding to the state X.T ob ec l e a r e r ,t h e analogues of June 1st will be searched among the fields corresponding to the period May 1st -July 1st of all available years.

As in the previous case, attention must be paid to the end points of the trajectories. Therefore, considering that each batch loses the last ⌧c 1 2 days of December of year 100 due to temporal coarse-graining, the last ⌧ M + ⌧c 1

Annual time-periodic analogue Markov chains

This section aims to illustrate how to develop annual analogue Markov chains whose dynamics have the same periodicity as the climate model data.

As for the annual homogeneous Markov chains, the data-set considered for the development of the annual time-periodic Markov chains consists in 10 trajectories each long 100 years, i.e. {X n } 1nNt with N t =1 0⇥ (100 ⇥ 360 (⌧ c 1)). The final points of the trajectories are also treated computed by searching the best K analogues of s 1 in a period of two months centered around c1 . In this example, it corresponds to search analogues in the period between December 6th and February 6th. The Iteration of this scheme leads to the generation of a synthetic trajectory.

Applying this procedure, the set of K analogues of a state X changes as the Markov chain calendar date c changes. Thus, analogues can be stored in M =3 6 0( o n ef o re a c hd a yo ft h ey e a r ){T (m)} 1mM matrices of size N t ⇥ K.T oe a c ho ft h e s eM matrices it is possible to associate a transition matrix G(m)m a k i n gt h eM a r k o vc h a i npe r i od i ci nt i m e .

Consistency of synthetic data: return time plot and time averaged temperature statistics

In this section the consistency of the statistics of the synthetic data compared to the real ones will be analyzed. Synthetic data refers to data produced using the dynamics of the Markov chain, while real data refers to the data generated by the climate model (PLASIM). Since the ultimate interest is to estimate committor functions for heat waves, it is useful to check how similar the distribution of the time averaged temperature A(t)( E q .( 5.3)) computed with the analogue Markov chain is to the real one. For an heat wave duration T = n⌧ c , A(t)c a nb ee x p r e s s e di nt e r mo ft h ec o a r s e -g r a i n e d surface temperature anomalies field T a s (r,t), i.e.

A(t)= 1 T Z t+T t dt 0 1 |D| Z D dr(T s E c [T s ])(r,t 0 )= 1 n n X i=1 1 |D| Z D dr T a s (r,t 0 i )
(5.11) where t 0 i = t +(i 1 2 )⌧ c .E q .( 5.11)meansthatA(t) is obtained by adding the surface temperature anomalies averaged over the region D over n consecutive states of the Markov chain (remember ⌧ c = ⌧ M ). In what follows a duration T =15da ysisconsidered(15 day heat waves).

The test can be formalized as follows. Let ⇢ A (A)b et h er e a le m p i r i c a l distribution of A(t) in summer, i.e. ⇢ A (A)= 1 t P t (A A(t)), and let ⇢A (A) be the distribution obtained with the analogue Markov chain. One has that ⇢A (5.12) where P(A|s 0 = l) ⌘ ⇢(l) A (A)represen tstheconditionalprobabilit yofobserving the value A knowing the initial state s 0 ,w h i l e⇡ l is the probability of 5.2. THE ANALOGUE METHOD FOR HEAT WAVES sponding to one of the first 5 days of June can only evolve towards states corresponding to days following June 5 (i.e. from June 6 onwards). Vice versa, a state s corresponding to the last 5 days of August cannot move forward more than 5 days and, on average, it evolves towards states corresponding to previous days.

(A)= X l2{Summer} ⇡ l P(A|s 0 = l):= X l2{Summer} ⇡ l ⇢(l) A (A),
One may wonder whether the systematic drift is exclusively due to the seasonal Markov chain approximation or if there are other sources such as the type of data used for the construction of the Markov chain. Therefore, an analogue Markov chain is built on the coarse-grained geopotential height at 500 mb anomaly field Za (r,t)=

⇣

Z E c h Zi⌘ (r,t) in the North-Atlantic region (80 W 30 E,30 N 70 N). The analogues are searched by employing the Euclidean distance normalized to the average variance (Eq. (5.8)). Fig. 5.5 shows the invariant distribution of calendar days for this Markov chain. It can be noted that when only 5 analogues are considered (see Fig. 5.5a), the systematic drift is present, although it is less pronounced than in the previous case. However, as the number of analogues K increases, this problem tends to disappear and the distribution comes closer and closer to a uniform one (see Figs. 5.5b,5.5c). It means that the systematic drift is affected by the type of data used for the construction of the chain. Although the drift is present in both cases analyzed, it is much less pronounced when the Markov chain is built on geopotential height anomalies. Indeed, the ratio between the maximum and the minimum of the distribution is of order O(1) when the Markov chain is built on geopotential height anomalies while it is of order O(10) or more when the geopotential height (which has a strong seasonal cycle) is considered. Thus, it can be drown the conclusion that the seasonal Markov chain can be built only on variables whose seasonal cycle has been removed.

Having explained, at least partially, the reason for the systematic drift of the calendar day, one might ask whether the seasonal Markov chain built on geopotential height anomalies is able to reproduce the distribution of A(t). The distributions of A(t)f o rd i ff e r e n tn u m b e r so fa n a l o g u e sa r es h o w ni n Fig. 5.6. It can be seen from the figure that although there is no perfect agreement, the discrepancies between the distributions are not too marked. However, by comparing Figs. 5.6a,5.6b,5.6c it can be noted that the distribution of A(t)m a t c h e st h er e a lo n el e s sa n dl e s sa st h en u m be ro fa n a l o g u e s K increases. Fig. 5.7 shows how the first two moments of the distribution vary as the number of analogues increases. It can be seen in Fig. 5.7a that a
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Consistency of return time plot

In the previous section, the consistency of typical fluctuations has been studied by analyzing the mean and the variance of the probability distribution of the time averaged temperature A computed by employing the analogue Markov chains. This section, instead, focuses on rare fluctuations. In particular, it aims to check the consistency between the return time plot computed from synthetic trajectories and the return time plot obtained from the real dynamics. Since the Markov chains that best reproduce the statistics of A are the seasonal analogue Markov chain built on the geopotential height anomaly field Za (r,t) in the North-Atlantic region and the annual timeperiodic Markov chain built on the geopotential height field Z(r,t)i nt h e North-Atlantic region, these are the only chains considered in this section.

The return time of a heat wave of amplitude a is defined as the average time that elapses between the observation of two independent events with amplitude greater than a.I th a sb e e nc h o s e nt oa n a l y z et h er e t u r nt i m e s of summer maximum of the time averaged temperature A(t). The summer maximum a i of the i-th summer is defined as

a i := max t2summer (i) {A(t)} , (5.15) 
where i =1 , ••• ,M,a n dM =1 0 0 0i st h en u m be ro fs u m m e r si nt h ed a t aset. Note that with this definition one has 1 summer maximum per year. This choice is motivated by the fact that, in this way, independent events are analyzed, since the maximum of A(t)inonesummerisindependen tfrom that of another summer.

For estimating the return time plot, the sequence of summer maxima {a i } 1iM has to be sorted in decreasing order. Let {ã i } 1iM be the ordered sequence. Finally, at each threshold ãi it is possible to associate a return time r(ã i )= M m years.

(5.16)

The quantity r(a), known as return time or return period, is the average time between the occurrence of two heat waves with amplitude greater than a.A t the same time, the r-year return level (or threshold) a r can be defined as the value a r such that a heat wave of amplitude greater than a r is observed every r years on average. Fig. 5.14 shows the comparison between the return time plot computed from the analogue Markov chains and the one computed using the real dy-time-periodic chain is slightly greater than that of the seasonal chain.

These results show once again that the analogue method is capable of reproducing the statistics of A with a relatively good accuracy. Indeed, the return level can be estimated by using the analogue Markov chain with an error of about 10% for the seasonal analogue Markov chain or smaller (about 5%) for the annual time periodic Markov chain. It should be noted that the errors reported here refer to the errors in the estimation of the return levels for fixed return times. However, one might be interested in estimating the return times error for a given return level. In this case, it can be seen from Figs. 5.14a,5.14b that the errors in the estimation of the return times at certain return levels are much greater when the return times are estimated through the seasonal analogue Markov chain with respect to the case when the time-periodic analogue Markov chain is used. Therefore, it can be concluded that the time-periodic analogue Markov chain has to be preferred for the study of rare stationary fluctuations of the time averaged temperature A. Anyway, the analogue method is a promising tool for the study of extreme heat waves.

Extending return time plots

In the previous section it has been seen that the analogue method is able to reproduce some statistics of the original system (consistency checks). In particular, it has been shown that, under suitable conditions, it is possible to reproduce the probability distribution of A and the return time plot with an error of about 10% (when seasonal summer Markov chain was used) or about 5% (when the time-periodic analogue Markov chain was used).

The aim of this section is to understand whether it is possible to extend the return time plot for return times larger than the data-set length by using the analogue Markov chains beyond consistency. The idea is therefore to learn the dynamics of the Markov chain on a portion of the data and to use this analogue Markov chain to generate many synthetic summers. These synthetic summers are then used to estimate the return time plot. More precisely, the aim is to develop analogue Markov chains by using 100-year of the data for predicting return times plot up to 900 years. For this purpose, the Markov chains defined on the same variables used in the previous subsection have been considered. The only difference is that, in this case, instead of looking for analogues over all 1000 years available, they are sought in the first 100 years. Then, 10 synthetic trajectories of length 900 years have been
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greater than a starting from the state s 0 = s,o n eh a s

q 0 (s; a)= Z +1 a dA⇢ (s) A (A)= 1 K n Z +1 a dA K n X k=1 (A A s k )= N a (s) K n , (5.17)
where N a (s)denotesthen um beroftrajectoriesthatstartats 0 =0andha v e A>a.

Once the committor function is computed at ⌧ =0 ,i ti se a s yt oo b t a i n the function at any time ⌧ = m⌧ M .I n d e e d ,i ti ss u ffi c i e n tt om u l t i p l yq 0 (s; a) by the power m of the transition matrix G,i . e . q ⌧ (s; a)= X s 0 G m ss 0 q 0 (s 0 ; a).

(5.18)

This formula is the discrete version of Eq. (2.105). It only says that the probability of observing a heat wave of duration T after ⌧ days, knowing the state of the system s at the current time, is given by the sum over all states s 0 of the probability of having a heat wave knowing the state s 0 times the probability of going from s to s 0 in ⌧ days.

In the following, three different thresholds will be considered a 5 =3.08 K,a 2.5 = 3.7K,a 1.25 =4.23 K which correspond to the 5%, 2.5% and 1.25% most extreme events of the time averaged temperature A or alternatively to events beyond the 95, 97.5a n d9 8 .75 percentile.

Committor validation

To asses the quality of the estimates of the committor function, it is relevant to adopt a cross validation approach. Depending on the task one wants to focus on different score can be employed. In Sec. 2.4.5 two scores (the Brier score and the logarithmic score) for evaluating probabilistic predictability have been introduced. However, it has been explained that the Brier score is not appropriate for dealing with extreme events since it requires a huge number of test observations. Therefore, the Brier score can not be used in this context and the logarithmic score should be used. This applies to the task of carrying out probabilistic forecasts.

However, another interesting task is to build a quantifier, that is an object that, knowing the probability of occurrence of an event, predicts its occurrence or not. Such a quantifier can be very useful in decision-making
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processes, where one needs to choose the most appropriate way to act. Furthermore, the performance of this object can be used to validate the estimate of the probability of occurrence of the event, that is, the estimate of the committor function.

Although both of these tasks are interesting, in what follows only the task of building a quantifier will be analyzed. Building a quantifier is equivalent to developing a classifier based on the committor function. It should be noted that predicting the occurrence of a heat wave through a classifier is equivalent to make a deterministic prediction. Although in this thesis it has been explained that it would be more appropriate to deal with probabilistic predictions, it has been chosen to use deterministic predictions mainly to compare the analogue method with a deep learning approach [START_REF] Jacques-Dumas | Deep learning based extreme heatwave forecast[END_REF]. For lack of time it was not possible to study both deterministic and probabilistic predictions and therefore the validation of probabilistic predictions will be the subject of a future study. Thus, in the next subsection it will explained how to build a classifier based on the analogue method and how to test the performance of this classifier.

Classifier based on the analogue method

This section explains how to build a classifier based on the analogue method for predicting the occurrence of extreme heat waves. The advantage to develop a classifier based on the analogue method is that this classifier uses all the information contained in the dynamics. Ac l a s s i fi e rc a nb et h o u g h ta sad e t e r m i n i s t i cf u n c t i o nC :Ω!{ 0, 1} where Ω is the phase-space of the system. Such a function takes a point x 2 Ω as input and return a binary output o 2{0, 1} that represents the class of the input (occurrence or not of the event). Over the years, different methods have been developed to accomplish this task, ranging from the simplest k-Nearest Neighbors and logistic regression, to more sophisticated methods such as random forests, vector support machines, and neural networks [MacKay and Mac Kay, 2003, Bishop, 2006, Theodoridis, 2015]. Unfortunately, all of these approaches face various difficulties with unbalanced data (i.e. the two classes are not equally populated) and therefore ad hoc modifications (such as undersampling or oversampling techniques) are required to obtain reasonable results [Krawczyk, 2016, Johnson and Khoshgoftaar, 2020, Jacques-Dumas et al., 2021].

In this section, an alternative approach is proposed which consists in
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coarse graining time, the size of the domain or the combination of different variables have on the quality of these predictions will be analyzed. Finally, ac o m p a r i s o nb e t w e e nt h ea n a l o g u eb a s e dc l a s s i fi e ra n do n eb a s e do nt h e committor function estimated with the k-Nearest Neighbors regressor will be performed.

Before starting to illustrate the results, it is convenient to briefly discuss the choice of the variables used for the predictions. Many of the analysis performed later will be done using the surface temperature anomaly field instead of the geopotential height anomaly field. This might seem contrary to what was stated in the introduction (Sec. 5.1)andwiththeanalysismade in the previous section, where it was stated that the geopotential height is a key variable in the dynamics of heat waves. Although the importance of the geopotential height remains unquestionable, the ability of analogue Markov chains built on this variable to correctly predict the transient statistic of 15day heat waves appeared limited, probably due to the lack of data. Therefore, it was decided to use the temperature anomaly field. From a physical point of view, this corresponds to trying to make predictions by exploiting the persistence of the temperature field.

Impact of temporal coarse-graining

The goal of this subsection is to answer the question: does the use of temporal coarse-graining improve the prediction skills of the classifier? For this purpose, two analogue Markov chains were constructed using two different variables, namely the surface temperature anomalies T a s (r,t) on the North Atlantic region (80 W 30 E,30 N 70 N), and the surface temperature anomalies averaged over France T a F (t). For each of these variables, three coarse-graining times were used, namely ⌧ c =1, 3, 5d a y s .

It is important to note that, for prediction lag time ⌧ =0 ,t h ec o a r s e graining procedure always improves the quality of the forecasts. Indeed, the amounts of information about temperature at the beginning of the heat waves grows when the coarse graining time increases. However, this is only valid for a prediction lag time ⌧ =0 . F o r⌧>0, there are no information about the temperature at the beginning of the heat wave and therefore it is not obvious to determine whether the coarse graining procedure improves or not the predictive skills of the analogue based classifier. Fig. 5.17 shows the MCC obtained for the three classes of events as a function of the prediction lag time ⌧ , for different coarse-graining times. The
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analogue Markov chain is built on a simple scalar, the predictive abilities of the classifier are quite impressive. For all classes, it is possible to predict the occurrence of heat waves up to 15 days in advance (except for ⌧ c =1where forecasts are possible up to 9 or 12 days in advance for classes corresponding to 1.25% and 2.5% more extreme events, respectively). The important thing to underline is that, once more, increasing the coarse-graining time leads to an increase in the predictive skills of the classifier.

Considering all the analysis shown it can be said that this property is valid in general, regardless of the variables used to construct the analogue Markov chain, although a clear motivation is missing. It could be hypothesized that this is due to a combination of two factors: the first is that the time averages eliminate statistical fluctuations from the variables while the second is that the evolution of these variables at time scales of the order of ⌧ c becomes more and more Markovian as ⌧ c grows, improving the agreement between the real dynamics and its approximation with a Markov chain. However, further verifications are necessary in order to confirm these hypotheses.

Impact of domain size: spatial coarse graining

The main question to be answered in this subsection is the following: does the domain on which the analogues are computed have an impact on the predictive capabilities of the classifier? To answer this question, it has been chosen to build 3 different analogue based classifiers using the surface temperature anomalies T a s (r,t) on 3 different regions, namely the Northern Hemisphere (180 W 180 E,30 N 90 N), the North-Atlantic region (80 W 30 E,30 N 70 N) and the France region (3 W 5 E,42 N 50 N). The coarse-graining time was taken equal to 3 days. Fig. 5.19 shows a snapshot of T a s (r,t) in the Northern-Hemisphere where the other two regions are highlighted by a black or red box respectively.

The results of the experiments performed using the three variables are shown in Fig. 5.20 where the dashed lines correspond to the Northern Hemisphere, the solid lines to the France region and the dash-dotted lines corresponds to the North-Atlantic region. Since the curves corresponding to the North-Atlantic region have been extensively discussed in the previous subsection, only those corresponding to the other two regions will be described.

Considering the Northern Hemisphere it can be seen that for the class of most extreme events the predictions are possible only at time ⌧ =0a n d 5.4. CONCLUSIONS AND PERSPECTIVES better (not shown) and contribute to the high value of the MCC.

All things considered, the analysis carried out in this subsection has shown that using a few very informative variables leads to good predictions. This further strengthens the statement made earlier on the need to find a compromise between the number of variables to use and the information these variables carry. Indeed, too many variables prevent a good computation of the analogues but, at the same time, as shown in this section, it is useful to combine the information coming from different variables.

Comparison between classifiers

To conclude the study of the analogue based classifier, it is shown that such a classifier performs better than one based on the committor function computed with a simpler approach, namely the k-Nearest Neighbors regressor. It was decided to perform this analysis using the low-dimensional system of the previous subsection. The reason for this choice lies on the one hand in the fact that it is one of the systems that provided the best forecasts, on the other hand because it is known that the k-Nearest Neighbors regressor performs better for low-dimensional systems.

The results obtained with the two classifiers are shown in Fig. 5.25,where the solid lines correspond to the analogue based classifier while the dashdotted lines to the classifier based on the k-Nearest Neighbors regressor. From the figure it can be seen that the analogue based classifier outperforms the one based on the committor function estimated with the k-Nearest Neighbors method, although the latter shows good predictive abilities. Indeed, it should be noted that the curve of the MCC corresponding to the most extreme events class estimated from the analogue based classifier is almost always above the MCC corresponding to the less extreme events class estimated with the other method. This analysis is a further confirmation of the utility of the analogue method for estimating committor functions and predicting extreme events probabilities in climate systems.

Conclusions and perspectives

In this chapter the analogue method has been applied for studying seasonal extreme climate events, e.g. summer heat waves over France.

Ah e a tw a v eo fd u r a t i o nT and amplitude a has been defined as an event such that the temporal average over period T of the surface temperature anomalies, averaged over the region of interest D,i se q u a lt oa. In addition, the concept of a committor function for such events has been introduced. The committor encodes the probability that a heat wave of duration T and amplitude greater than a will occur after ⌧ days, as a function of the current state of the system.

In order to study these phenomena, several analogue Markov chain have been developed. For each type of Markov chain, consistency checks were performed to ensure that the Markov chain approximation was able to correctly reproduce the stationary statistical properties of the events under investigation. These tests have shown that Markov chains learned on seasonal climate data provide meaningful results if the data does not exhibit a seasonal cycle while they fail in the other cases. It has also been shown that the use of data with a seasonal cycle is possible provided that annual time-periodic Markov chains are used. It can therefore be concluded that analogue Markov chains work quite well in the study of statistically stationary statistics of heat waves. Indeed, they reproduce well the distribution of the time averaged temperature A,a l t h o u g har e d u c t i o no ft h ev a r i a n c eo fa b o u t2 5 35% (seasonal analogue Markov chains) or about 15 35% (annual time-period analogue Markov chains) is observed. Furthermore, they allows the computation of return times plots and estimate the return levels with an error of about 10% (seasonal analogue Markov chains) or about 5% (annual time-period analogue Markov chains).

The first remarkable result is to have shown that by using the learned dynamics, it is possible to extend the return times plot for return times larger than the data-set length. Indeed, it has been shown that by using 100-year of data it is possible to compute return times up to 900 years, i.e. return times 10 times bigger than the data-set length. This implies that the analogue method offers the possibility to compute return times at a much lower computational cost than traditional methods that solve a set of partial differential equations. In addition, it allows the collection of a much greater number of extreme events than those present in the data-set on which the dynamics is learned, opening up the possibility of carrying out significant statistical analysis.

After testing the usefulness of the analogue method, the analogue Markov chains have been used to compute the committor function. It has been explained that the choice of the type of analogue Markov chain does not affect much the computation of the committor and therefore it has been decided 5.4. CONCLUSIONS AND PERSPECTIVES to carry out the study using seasonal Markov chains. An analogue Markov chain based classifier has been built to assess the predictive informations encoded in the committor. The analogue based classifier is a tool that takes system variables as input and from these it asserts whether ⌧ days later there will be a heat wave or not.

The analogue based classifier has been used to evaluate the impact of several parameters on the forecast of heat waves. It turns out that a temporal coarse-graining improves the performance of the classifier, likely because the coarse-graining procedure makes the temporal correlations less important and consequently the approximation of the dynamics with a Markov chain more realistic. Also the spatial domain on which analogues are computed affects the quality of the prediction. It has been shown that the smaller the domain the higher the performance of the classifier is. This is most likely due to the difficulty in finding good analogues in high-dimensional systems, especially using Euclidean distance as a similarity criterion, and therefore reducing the size of the system improves the quality of the analogues themselves. However, it has been noted that this is true as long as the fields in the smaller region contain sufficiently accurate information. For example, it has been shown that the analogue based classifier built on the surface temperature anomalies of France produces more accurate predictions than those obtained by building the classifier only on the average of these anomalies. This suggests that a compromise needs to be found between the dimension of the variables used as predictors and the information they hold. It has therefore been shown that spatial coarse-graining improves predictive abilities as it reduces the size of variables without discarding their information. To further strengthen the discussion b etween predictor dimensions and information in them it has been shown that an analogue based classifier built on only three very informative scalars, i.e. the surface temperature anomalies, the geopotential height anomalies and the soil moisture anomalies averaged over France, lead to excellent predictions. Finally, it has been shown that the analogue based classifier outperforms a more naive approach, that is a classifier based on the committor function estimated by a k-Nearest Neighbors regressor.

This work is conceived as a first step in understanding the analogue method applied to high-dimensional dynamical systems, such as the climate dynamics. Therefore, various modifications are possible to improve the coherence of the synthetic data produced by the analogue Markov chains, the quality of the estimation of the committor function and the predictive skills Chapter 6

Conclusions

This work was aimed at predicting the probability of climate extremes from dynamics and observations. More specifically, the work focused on the study of prediction problems at the predictability margin. These prediction problems are inherently probabilistic because the time scales on which they occur lie beyond the deterministic predictability time of the atmosphere, but it is nevertheless possible to make statistically significant predictions, depending on the current state of the system.

It has been explained that the mathematical object for dealing with prediction problems at the predictability margin is the committor function which encodes the probability that a given event occurs in the future as a function of the current state of the system.

In the first part of this thesis (Chapter 3), the committor function was studied in the context of a simple low-dimensional model proposed to explain the decadal amplitude changes of ENSO. Although this study was performed on a toy model for El-Niño, it allowed us to draw general conclusions valid for climate prediction problems. Based on the observation that the ability to predict the probability of occurrence of an event strongly differs depending on the initial state, a distinction can be traced between intrinsic probabilistic predictability (when the committor function is smooth and the probabilities do not depend sensitively from the initial conditions) and intrinsic probabilistic unpredictability (when the committor function depends sensitively on the initial conditions). This dichotomy between probabilistically predictable and unpredictable regions is expected to be a generic feature of prediction problems at the predictability margin. Therefore, it becomes crucial to develop a method that accurately estimates the committor function, especially in high dimensional systems.

Estimating the committor function in high dimensional systems is an extremely complex task. Furthermore, when attention is paid to rare events, the problem of lack of observations also arises. To cope with the lack of data, rare event algorithms have been developed over the years, such as the family of splitting or cloning algorithms. To be efficient, those algorithms need to use a smart score functions during the selection stage and the optimal score functions are the committor functions. Since the committor function is precisely the object to be computed, it seems natural to consider an iterative approach where an algorithm is used to learn an estimate of the committor which is then used in the rare event algorithm to increase the number of samples improving the estimate of the committor function itself.

This iterative approach was developed in Chapter 4.Ad a t a -d r i v e na pproach for estimating committor functions has been adopted. This approach relies on the analogue method used to define effective dynamics starting from dynamical observations only. It has been shown that this matches with the introduction of a Markov chain on the data so that its transition matrix approximates the true propagator of the system. Then, an estimate of the committor function has been obtained by employing classical methods for computing Markov chain committor functions, resulting in simple, robust, and efficient method. By means of two example, it has been established that the committor function can be accurately estimated from few observations. These approximations are more precise than those provided by a more naive data-driven approach and they converge faster to the exact committor when the number of observations increase. It was also pointed out that these improvements are due to the fact that the analogue method exploits all the dynamic information contained in a trajectory, while the direct approach treats the points of the same reactive trajectory equally. Finally, it has been proven that such learned approximate committor functions are extremely efficient score functions, when used with the Adaptive Multilevel Splitting algorithm. In this way, the rare events can be simulated with a minimal prior knowledge on the system and the results are much more precise than those obtained with a user-designed score function.

Finally, in Chapter 5 the analogue method has been applied to a complex climate data set in order to predict the probability of occurrence of heat waves. To this purpose, several types of analogue Markov chain have been introduced. It has been explained that it is possible to develop meaningful analogue Markov chains on seasonal data when the data do not exhibit a strong seasonal cycle. In addition, it was explained that annual time-periodic analogue Markov chains should be considered when dealing with data that has a seasonal cycle. By using the dynamics introduced with the analogue Markov chains it was possible to extend the return time plot by an order of magnitude. Such a result is remarkable as it opens up the possibility of studying rare events by collecting a greater number of observations than traditional methods at lower computational cost. Then, the analogue Markov chain was used to compute the committor function. Starting from the latter, an analogue based classifier was developed with the aim of predicting the occurrence of heat waves several days ahead. The analogue based classifier was employed to assess the impact that different parameters, such as the coarse graining time and the spatial domain on which analogues are computed, have on the heat waves forecast. The main result is to have shown that there is an e e df o rac o m p r o m i s eb e t w e e nt h ea m o u n to fi n f o r m a t i o nu s e df o rt h e prediction and the complexity of the effective dynamics introduced by the analogue Markov chain. Indeed, learning an analogue Markov chain on high dimensional data results in a poor estimate of the true propagator. At the same time, increasing the information available, especially if it comes from different variables, can greatly improve the performance of the classifier. Finally, it has been demonstrated that the analogue based classifier performs better than a classifier based on the committor function computed using a simpler approach.

Future developments are possible on several fronts. First of all, the study of the prediction of heat waves will be completed by analyzing and validating the probabilistic predictions that can be obtained by estimating the committor function through the analogue method. Then, regarding the analogue method, it is possible to develop analogue Markov chains where the probabilities of choosing one of the K analogues are not uniform but are rather state dependent, for instance taking into account the distances of X n to its analogues. Furthermore, analogues could be selected by employing distances different from Euclidean ones or even by applying machine learning or other techniques to identify similarities between data. These modifications could be particularly relevant in the case of high dimensional systems because they could greatly improve the accuracy of the effective dynamics introduced by the analogue Markov chain. It would also be interesting to compare this method with other methods based on the use of dynamic information such as the Galerkin direct approximation method or with direct approaches that use machine learning. Regarding the coupling of the analogue method with rare event algorithms, it would be useful to complete the study of the iterative procedure explained in Chapter 4.I n d e e d ,i th a sb e e ns h o w nt h a tt h e analogue method can provide an excellent score function for rare event algorithms, while it has not been tested whether the use of the data generated by these algorithms improves the approximation of the committor function itself or not. Finally, in light of the increasingly frequent catastrophic events occurring around the world, it would be very important to couple the analogue method and rare event algorithms to deepen the understanding of the dynamics and occurrence of rare or high impact climate events. Indeed, the committor function estimated through analogue Markov chains may prove to be a much more efficient score function for the rare event algorithms applied to climatic dynamics than the score functions used nowadays. This could therefore lead to the development of very efficient algorithms both as regards their computational cost and as regards the accuracy of the extreme trajectories produced by the rare event algorithms.
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 1 Figure1.3: Schematic illustration of the concept of predictability margin: deterministic predictability is only possible until a finite time (e.g. the Lyapunov time). The associated mathematical problem is an initial value problem (IVP). Long term statistical properties (beyond the mixing time) do not depend on the initial condition, and the corresponding mathematical object is the invariant measure. In the intermediate range of timescales, named here as predictability margin, the appropriate mathematical concept is the committor function,w h i c he n c od e st h ep r o b a b i l i t yo fag i v e ne v e n tt ooc c u r , condition on the state of the climate system at the time of the prediction.

  .6) In general, the transition matrix G(t)d e p e n d so nt i m e . I ft h ec o nditional probabilities P(X t = j|X t 1 = i)d on o td e p e n do nt i m et,i . e . G ij (t)=G ij 8 t 2 N,t h eM a r k o vc h a i ni ss a i dt ob eh o m o g e n e o u s . F o ra n homogeneous Markov chain Eq. (2.6)r e a d s

  .55) From a physical point of view, the Wiener process can be thought of as ap r o c e s st h a td e s c r i b e st h ep o s i t i o no fac o l l o i d a lp a r t i c l ei m m e r s e di na viscous fluid.

  .80) These two formula suggest that the Dirichlet problem (2.53)c a nb ea pproximated by a system of linear equations. In fact, let A =( 1,a]a n d B =[ b, +1)b et h et w os e t sf o rw h i c ht h ec o m m i t t o rf u n c t i o nn e e d st ob e computed. It means that the set (A[B) c where L[q(x)] = 0 is equal to the interval [a, b]. To obtain the system of linear equations, consider L +1 points x l = a + l∆x,w i t hx L = b,a n dl e tq l denotes the committor function computed at point x = x l .C l e a r l y ,t h eb o u n d a r yc o n d i t i o n sf o rt h eD i r i c h l e t problem are
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 3 Figure3.1: Schematic illustrating the concept of predictability margin:d e t e rministic predictability is only possible until a finite time (e.g. the Lyapunov time). The associated mathematical problem is an initial value problem (IVP). Long term statistical properties (beyond the mixing time) do not depend on the initial condition, and the corresponding mathematical object is the invariant measure.I nt h ei n t e r m e d i a t er a n g eo ft i m e s c a l e s ,w h i c hw ec a l l the predictability margin here, the appropriate mathematical concept is the committor function,w h i c he n c od e st h ep r o b a b i l i t yo fag i v e ne v e n tt ooc c u r , condition on the state of the climate system at the time of the prediction.

  Figure 3.2-b illustrates such a periodic orbit, with the parameter values [ , ⇢, c, k, a]=[ 0 .2625, 0.3224, 2.3952, 0.4032, 6.8927] and dimensional normalization constants [T 0 ,t ⇤ ,h ⇤ ]=[ 2 .8182 C, 104.9819 days, 62 m].

  Figure 4.2: An example of first passage trajectory from A to B is shown. The transition path, also called reactive trajectory, is highlighted in red.

For a

  Markov pro cess, a committor function [Ee ta l . ,2 0 0 5 ,[START_REF] Weinan | Towards a theory of transition paths[END_REF],Vanden-Eijnden et al., 2010,Metzner et al., 2006]isthe probability to hit a set B of the phase space before another set A,conditioned on the knowledge of the initial condition. With adapted definitions of the sets A and B,i tc a nb et h ep r o b a b i l i t yo ft r a n s i t i o nb e t w e e nm e t a s t a b l e states[START_REF] Lopes | Analysis of the adaptive multilevel splitting method on the isomerization of alanine dipeptide[END_REF], see Fig.4.2,o rt ot h ep r o b a b i l i t yt h a ta n event occurs within a given timeframe[START_REF] Lestang | Computing return times or return periods with rare event algorithms[END_REF], Lucente et al., 2021].

  3.3)o rg i v e n by a kernel, such as w j = e d(y,Xn j ) 2 ! 2
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 4 Figure 4.12: Sketch illustrating two iterations of AMS in a simplified example with 3 clones (Figure originally made for Ref.[Simonnet, 2016]), in order to compute trajectories going from set A to set B.T r a j e c t o r y1( d a s h e dl i n e ) has the smallest excursion out of A as measured by the score function Φ.It is removed and branched on another trajectory (in that case trajectory 2, leading to the purple line). In the successive iteration, trajectory 2 has the smallest score function and is branched on trajectory 3 (leading to the red line).
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 4 Figure 4.13: Efficiency of the AMS algorithm with the learned committor function for fixed and large dataset, for the three-well problem. Comparison of the estimated (a) Transition probability h↵i,( b )D u r a t i o no fr e a c t i v e trajectories h⌧ i,a n d( c )R e s c a l e dv a r i a n c e ,a saf u n c t i o no ft h en u m b e r of clones N . For each plot the black curve is the reference: either the DNS (a) and (b), or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with respectively the learned committor function (green), the linear score function (blue) and the quadratic score function (red). The red and blue curves clearly illustrate the apparent bias phenomenon. The learned committor function gives excellent results, suppressing the apparent bias and giving smaller, close to optimal, empirical variance.

Figure 4 .

 4 Figure 4.14: Efficiency of the AMS algorithm with the learned committor function, as a function of the dataset length, for the three-well problem. Comparison of the estimated (a) Transition probability h↵i,( b )D u r a t i o no f reactive trajectories h⌧ i,a n d( c )R e s c a l e dv a r i a n c e ,f o re a c hc a s ea v e r a g e d over independent realizations of the score function.For each plot the black curve is the reference one, either the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with respectively the learned committor function (green), the linear score function (blue) and the quadratic score function (red). The red and blue curves are constant values (they do not depend on the data set length) for comparison. The learned committor function gives much better results than the user defined score functions, even for very small datasets. With datasets containing only a few transitions, two to five, the results are already excellent. However, for such small datasets, the quality of the score function varies much from one realization to another.

Figure 4

 4 Figure 4.15: Efficiency of the AMS algorithm with the learned committor function for large dataset as a function of the clone number N ,f o rt h e Charney-DeVore model. Comparison of the estimated (a) Transition probability h↵i,(b)Durationofreactiv etrajectoriesh⌧ i,and(c)Rescaledv ariance. For each plot the black curve is the reference one, either the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with the learned committor function (green) and the linear score function (blue). The learned committor function gives excellent results, similar to the linear one for the weak apparent bias of the transition probability (a), and much better than the linear one for the variance and the length of reactive trajectories (b and c).

Figure 4

 4 Figure 4.16: Efficiency of the AMS algorithm with the learned committor function as a function of the dataset length (measured in number of transitions), for the Charney-DeVore model. Comparison of the estimated (a) Transition probability h↵i,( b )D u r a t i o no fr e a c t i v et r aj e c t o r i e sh⌧ i,a n d( c ) Rescaled variance .F o re a c hp l o tt h eb l a c kc u r v ei st h er e f e r e n c eo n e ,e i t h e r the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the 95% confidence interval for the DNS. The color curves have been computed using the AMS, with the learned committor function (green) and the linear score function (blue). For dataset as short as 5 transitions the AMS algorithm with the learned committor function leads to results as precise as the DNS, and more precise than the linear score function, for both the rescaled variance and trajectory duration. Having few transitions in the dataset leads to variability in the quality of the score function.
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  ••• , FI (r,t) ⌘ where I is the number of variables considered. To identify the analogues of ap o i n tX,ad i s t a n c ed(•)m u s tb ed e fi n e d . Ag o o dc h o i c ew o u l db et ou s e a Euclidean distance normalized to the local variance of the fields. The distance will be labeled with d l where l stands for local.T ob em o r ep r e c i s e ,l e t
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	and X 2 ⌘ X t 2 =	⇣	F1 (r,t 2 ), ••• , FI (r,t 2 )	⌘	is defined as
	2 Fi	(r)bet h el oc a lv a r i a n c eo ft h efi e l d Fi (r,t), i.e.
				2 Fi (r)=E t [ F2 i (r,t)] E t [ Fi (r,t)] 2 .	(5.6)
	where E t [•]i st h ee x p e c t a t i o nv a l u eo v e rt i m e( w h i c hw i l lb ea p p r o x i m a t e d
	by time average over all time steps). Note that E t [•] 6 = E c [•]s i n c eE t [•]d o e s not preserve intra-year seasonal effect.
		Then, the distance d l between two points X 1 ⌘ X t 1 =	⇣	F1 (r,t 1 ), ••• , FI (r,t 1 )	⌘
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A Perron-Frobenius theorem for positive operators that preserve probabilities states that eingenvalue 1 is the largest eigenvalue.

As a consequence of the Perron-Frobenius theorem it can be proven that the convergence is exponentially fast, i.e. p(t)=π + O(e -t log |λ2|) where λ 2 is the largest eigenvalue in module except λ 1 = 1.

An absorbing state k is a state from which no transitions to other states than k are allowed. In terms of the transition matrix G, a state k is absorbing if G kk = 1 and G kj =0 for j 6 = k.

This thesis deals only with Ito stochastic differential equations.

The derivation of the differential equation for the committor closely follows the derivation for the distribution of exit points in[Gardiner et al., 1985].

⌘(t), where ∆V (the potential barrier )i s the difference of potential between the original attractor and the saddle-point separating the basins of attraction of the two attractors (see for example the textbook by[Gardiner et al., 1985]). The Jin and Timmermann model is however not a gradient dynamics, and the function V is not explicit. For such non gradient systems, the exponential factors of the Arrhenius law can be justified through a Laplace principle for a path integral representation of the transition probabilities, or asymptotic studies of Fokker-Planck operators[Graham, 1987], or through large deviation theory[START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]. The function V is then called the quasipotential, which can be computed through a variational problem, or computing viscosity solutions of a Hamilton-Jacobi equation. The sub-exponential prefactor A in Eq. (3.7)c a nb ec o m p u t e d through Eyring-Kramers formulas, derived either for gradient[START_REF] Bovier | Metastability in reversible diffusion processes i. sharp asymptotics for capcities and exit times[END_REF]ornon-gradien tdynamics[START_REF] Bouchet | Generalisation of the Eyring-Kramers Transition Rate Formula to Irreversible Diffusion Processes[END_REF], for transitions from a point attractor and through a point saddle. Many generalizations exist, for instance for periodically modulated systems[START_REF] Dykman | Activated escape of periodically modulated systems[END_REF]]o rs y s t e m sa p p r o a c h i n gab i f u r c a t i o n[ Herbert and Bouchet, 2017]. In large dimensional systems related to climate dynamics, effective Arrhenius laws have been observed numerically, for instance in transitions in beta-plane turbulence[START_REF] Bouchet | Rare event algorithm links transitions in turbulent flows with activated nucleations[END_REF]o ri nas i m p l i fi e dc l i m a t em o d e lw i t hi c e -

The term phenomenological theory is used here to indicate a theory based on the observations of a certain phenomenon and which therefore does not derive from first principles.

December days of year 100 of each batch are excluded from the set in which analogues are searched. To clarify, with ⌧ c = ⌧ M =5da ys,theda ysfollo wing December 23 of year 100 of each batch can not be the analogues of any state.Once the matrix T and the corresponding transition matrix G have been learned, they can be used to generate synthetic trajectories in the same manner as for the seasonal Markov chain.Since the analogues of each point X depend exclusively on the calendar day of X,t h e yd on o te v o l v eo v e rt i m ea st h et i m eo ft h eM a r k o vc h a i n moves forward. Therefore, the transition matrix G is time independent. Recalling the terminology of Sec. 2.2,i tm e a n st h a tt h i sa n n u a la n a l o g u e Markov chain is homogeneous. This also implies that these Markov chains do not have seasonality or, more precisely, they have a random seasonality in the sense that the duration of the seasons and the duration of the year are random variables.
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select as initial condition one of these points with a probability 1 K .T h i s corresponds to the association of a probability vector p(x)=p i (x)t ot h e point x defined as

(4.16)

Note that, for simplicity, in equations (4.14)a n d( 4.16)w eh a v ea s s u m e d that each of the K analogues are chosen with uniform probabilities. We could generalize this choice using analogue dependent weights, for instance computed according to the distances of X n to its analogues.

Computing the committor function from the analogue Markov chain

Using the analogue Markov chain defined in the previous section, we can compute the committor function q for this Markov chain. A first approach would be to generate trajectories of this Markov chain, and to directly sample the committor function through a Monte Carlo estimation as described in Sec. 4.2. However, we propose a more efficient computation which consists in solving a linear equation that characterizes the committor function of a Markov chain. Solving this linear equation is more precise than the direct approach, as we obtain the exact committor function up to numerical accuracy, without sampling errors. This linear equation will be solved by estimating the leading eigenmodes of a spectral problem, following the algorithm proposed in Ref. [START_REF] Prinz | Efficient computation, sensitivity, and error analysis of committor probabilities for complex dynamical processes[END_REF]. Our paper is the first application of this idea to the analogue Markov chain. We start from the Markov chain transition matrix G.W ec o n s i d e rt w os e t s A⇢X and B⇢X,a n dw ew i l lc o m p u t et h ec o m m i t t o rf u n c t i o nq which is the probability to reach B before A.F o rs i m p l i c i t y ,w eg r o u pt o g e t h e ra l lt h e states that belong to A (resp. B)i n t oas i n g l es t a t ew i t hi n d e xi A (resp i B ). We then define an auxiliary pro cess where A and B are absorbing states: no transition out of these states is allowed. The corresponding modified transition matrix is G,with Gi A i A =1andforallj 6 = i A , Gi A j =0, Gi B i B =1 and for all j 6 = i B , Gi B j = 0, while for i 6 = i A ,i6 = i B , Gii A = P k:X k 2A G ik and Gii B = P k:X k 2B G ik ,a n df o ra l lo t h e rt r a n s i t i o n s Gij = G ij . For the Markov chain G,thecommittorfunctionisacolumnvectorq = q i where q i is the value at the committor function at the state i. q i is an (Fig. 4.8c)a n dablocked state, with strong cyclonic and anticyclonic structures (Fig. 4.8d). In the zonal regime the flow is characterized by a strong eastward jet u z / @ y (z, y, t). Instead, in the blocked state there is no jet, the flow meanders strongly across the domain and it is characterized by the presence of vorticity.

For ✏ 6 =0 ,t h es y s t e mc a ns w i t c hs p o n t a n e o u s l yf r o mo n er e g i m et ot h e other, under the influence of noise. To study the noise-induced transitions between the zonal and blocked states, we have to define the corresponding regions of the phase space. Let x Z eq and x B eq be the equilibrium points corresponding to zonal and blocked flow, respectively. Given two radii r B ,r Z > 0, we define the sets

eq k<r B } .

(4.30)

In the rest of this section, we consider r Z =0 .8, r B =0 .3a n d✏ =0 .02. For such parameters, the average time b etween two transitions is of order O(10 3 ). Let us now discuss the committor function q(x)=P(T B (x) <T A (x)) of the system. First of all, it should be noted that a direct computation of q(x)i nt h ew h o l ep h a s es p a c ei sn o tf e a s i b l e . I n d e e d ,s u c hac a l c u l a t i o n would require discretizing the six-dimensional phase space and to simulate as e to fN trajectories for each point of the domain until they reach either A or B.I f 1 0 0 p o i n t s a l o n g e a c h d i r e c t i o n w e r e t o b e t a k e n , t h e n N ⇥ 10 12 trajectories would have to be simulated. Considering a time of one millisecond to simulate N trajectories, the computation of q(x)w o u l ds t i l l take T q =1 0 9 s ⇡ 11574 days. Therefore, the reference committor q(x)i s computed on a limited number of points N p distributed according to the invariant measure. Since the invariant distribution of the system is not known, the points N p are sampled at regular time intervals over a very long trajectory. To be more specific, we consider a trajectory 10 7 time units long and we sample the N p points at intervals t =10 3 time units. In this way, we ensure the statistical independence of the points and furthermore, by construction, their distribution will coincide with the invariant distribution of the system in the limit N p ! +1.T h e n ,t h ec o m m i t o rf u n c t i o no nt h o s ep o i n t sc a nb e computed by running N Montecarlo experiments for each of them.

After computing q(x)a l o n gat r aj e c t o r yi nt h es i x -d i m e n s i o n a ls p a c e ,i t
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different size to build the analogue Markov chain used to estimate the committor. The size of these datasets is measured by the number n =2 ,5 , 10, 15 of transitions between A and B. As previously, we select K =1 5 0 analogues using the Euclidean distance. We represent the conditional distributions ⇣ A (q|x 1 )f o rt h ee s t i m a t e so ft h ec o m m i t t o ru s i n g2a n d1 5r e a c t i v e trajectories in Fig. 4.10. By comparing Fig. 4.9 and Fig. 4.10,i tc a nb e noted that the conditional distributions ⇣ A (q|x 1 )p r o v i d e db yt h ea n a l o g u e method have the same qualitative structure as the conditional distribution of the reference committor, with values concentrated close to 0 and 1 in the vicinity of sets A and B, and a sharp transition region in between. However, the distributions are much more concentrated around the two set A and B than the reference one. This is probably because the phase space has not been explored sufficiently and therefore the analogues of points lying outside the hyperballs defining the sets are instead inside A and B.S i m i l a r l y ,t h e transition region is narrower. The estimates obtained with the two datasets of different lengths are qualitatively very similar (see Figs. 4.10a and 4.10b), even if the distribution using 15 reactive trajectories (Fig. 4.10b)e x h i b i t s slightly more spread close to attractor B and a seemingly broader transition region.

We now compare the p erformances of the two data-based metho ds (the analogue method and the direct estimator) as the amount of data varies using the same procedure as in Sec. 4.3.3.T h ee r r o ra s s o c i a t e dt oa ne s t i m a t eo ft h e committor is given by the non-constant term of the Brier score (Eq. (4.11)), i.e.

where q is the true committor, q its approximation and ⇢ s is the invariant measure. Note that here, we are directly comparing the committor functions q and not the distributions ⇣(q|x 1 ).

For each dataset size, we repeat the computation 10 times using different realizations of the trajectory. The best estimate of the error is computed as the empirical average over those realizations and the error bar corresponds to the standard deviation computed over the different experiments. These results are shown, as a function of the size of the dataset upon which the analogue Markov chain is built, in Fig. 4.11. The estimates of the committor function provided by the analogue method are more precise than those ob-ADAPTIVE MULTILEVEL SPLITTING The computation of the empirical variance of ↵,g i v e nb y ↵ (N, M)= r

,anditscomparisontotheidealv ariance id has often been used as an a posteriori test of the quality of the score function and how close it is to the committor [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF], Bréhier and Lelièvre, 2019, Rolland et al., 2016].

Although the estimator is actually unbiased (E[↵]=↵), in numerical uses of AMS, it is often observed that ↵ underestimates ↵ in the large majority of the M realizations of the algorithm. These underestimates are such that the average h↵i M = 1 M P M m=1 ↵m over M realizations is most of the time strictly smaller than ↵ although the average is ↵ (E[h↵i M ]=↵). This phenomenon is called an apparent bias. We note that a similar observation is made in the context of fixed Multilevel Splitting [START_REF] Glasserman | A large deviations p ersp ective on the efficiency of multilevel splitting[END_REF]] and Importance Sampling [START_REF] Devetsikiotis | Statistical optimization of dynamic importance sampling parameters for efficient simulation of communication networks[END_REF]. In these contexts, it can be demonstrated that 1 M P M m=1 ↵m underestimates ↵ with a probability that goes to 1 as parameters like ✏,w h i c hc o n t r o lt h er a r e n e s so ft h ee v e n t ,g ot o zero [START_REF] Glasserman | A large deviations p ersp ective on the efficiency of multilevel splitting[END_REF]]. This happens if the score function yielding the levels of Multilevel Splitting is not adapted. As a consequence, the observed sample mean of ↵ will be strictly smaller than ↵ unless an out of reach number of realizations of AMS is performed. It has been conjectured [Bréhier et al., 2016a]t h a tt h eo b s e r v e da p p a r e n tb i a sp h e n o m e n o nc o u l db ee x p l a i n e df o r the AMS by analogy with the studies for fixed multilevel splitting.

The apparent bias, measured through the difference ↵ h↵i M ,d e c r e a s e s like 1

N as the number of clones N is increased. However,it has been observed that for some cases, the apparent bias seems to reach a plateau for extremely large values of N [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF]. We will see similar behavior in the following. In these situations, it is observed that this apparent bias is minimal when the score function is the committor function [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF]. As this apparent bias is a very important practical problem, we will use use the magnitude of this apparent bias as a measure of the quality of the score function.

We have seen that the committor function is the b est score function for the AMS algorithm, and explained that the computation of the empirical variance and of the apparent bias are two ways to quantify the quality of a score function. We can also test the AMS computations by comparing the computation of other observables. For instance, we will compute the transition path duration, denoted ⌧ .T h i sp h y s i c a lq u a n t i t yh a sp r o v e nt ob eag o o d indicator of whether AMS was correctly sampling transition paths [Rolland 4.4

. USING THE LEARNED COMMITTOR FUNCTION IN ADAPTIVE MULTILEVEL SPLITTING

of the number of clones N used in AMS computations, using the three score functions dat , lin and norm , and computed by means of DNS. Error bars show the 95% interval of confidence. One can first note that for the AMS computations, h↵i M (N )i sw i t h i n1 %o fi t sa s y m p t o t i cv a l u ei ft h en u m b e r of clones used is larger than N = 100. As noted in Sec 4.4.1 h↵i M grows with N toward this asymptotic value. The confidence intervals of the probability, for AMS and DNS computations, do not overlap when we use the norm score function norm :t h ea s y m p t o t i cv a l u eo fh↵i M overestimates ↵. With the linear score function lin ,theasymptoticvalueofh↵i M in turn underestimates ↵:t h i si sap o s s i b l ec o n s e q u e n c eo ft h ea p p a r e n tb i a sp h e n o m e n o n [ Bréhier et al., 2016a]. These results are in agreement with previous studies [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF], which have related these biases to errors in the relative sampling of transition paths. For instance, the linear score function selects preferentially trajectories going through the bottom channel (where paths remain around y ' 0a n dw h e r et h e yc r o s st h eh i g h e s tp o t e n t i a ld i ff e r e n c e , see Fig. 4.4a and Ref. [START_REF] Rolland | Statistical behaviour of adaptive multilevel splitting algorithms in simple models[END_REF], Fig. 7)a)), leading to the bias. By contrast, if the learned committor function dat is used, the confidence intervals overlap as soon as N 250, thus indicating that no bias can be detected in this estimate of ↵.

The results for ⌧ ,t h ea v e r a g el e n g t ho fr e a c t i v et r aj e c t o r i e s ,a r eq u a l i t atively similar: Fig. 4.13 (b) shows h⌧ i M as a function of the number of clones used in AMS for the three score functions, compared to a reference DNS calculation. Error bars are again given by the 95% confidence interval. We first note that for the data-based and linear score functions h⌧ i M converges toward its asymptotic value to within 1% for N 250; for the norm score function it is within that interval for all values of N .T h e9 5 %c o n fi d e n c e interval of the AMS estimate with learned committor function and of DNS overlap if more than 1000 clones are used (a larger number than for the transition probability ↵;n o t eh o w e v e rt h a tt h ec o n fi d e n c ei n t e r v a l sa r en a r r o w e r for ⌧ than for ↵). On the other hand, both the linear and the norm score functions lead to overestimates of ⌧ .

Finally, in Fig. 4.13 (c), we consider the rescaled variance ↵ (N, M)/ id (N ) of the estimator of ↵ as a function of the clone number N . Here the absolute reference is the unit value, obtained for the optimal score function, the exact committor. We first note that for all score functions, the rescaled variance reaches a plateau if the number of clones is larger than N =1 0 0 . T h e value of this plateau is largest when we use the linear score function, with ↵ (N, M)=1.4 ± 0.02. It is somewhat smaller for the norm score function, FUNCTIONS

The committor function q ⌧ (x; a)i st h ep r o b a b i l i t yt h a tah e a tw a v e so f amplitude greater than a will occur in ⌧ days as a function of the current state of the system x,i . e . q ⌧ (x; a)=P(A(t 0 + ⌧ ) >a|X(t 0 )=x).

(5.4)

The state variable x can be the set of all the variables that describe the system (temperature, pressure, soil moisture, wind velocity and so on) or a part of them (for instance temperature and geopotential height). Since at the predictability margin the system behaves like a stochastic process, the committor function q ⌧ (x; a)t a k e sv a l u e si nt h ei n t e r v a l[ 0, 1]. In Sec. 2.5.1 it was shown that the probability defined in Eq. ( 5.4)i sac o m m i t t o rf u n c t i o n for the auxiliary process

where O (X(t),t)i st h et i m e averaged surface temperature fluctuation A(t).

The computation of the committor starting from observations (being they real measurements or climate model outputs) is a complex task, especially for very extreme events (i.e. for large values of a), given the large dimensionality of the system and the scarcity of recorded events. However, it is crucial to access the information q ⌧ (x; a)c o n t a i n s . I nf a c t ,k n o w i n gh o wl i k e l yi ti s that, starting from the state x,ah e a tw a v ew i l lo c c u ri nt h en e x t⌧ days could help to make informed decisions in order to mitigate the impact of such an event on societies. Furthermore, by studying the dependence of q ⌧ (x; a) on the different variables that define the state of the system x,i ti s possible, on the one hand, to identify more or less informative variables for the prediction of heat waves, and, on the other hand, to recognize recurrent dynamical patterns (such as teleconnection patterns). Finally, as explained in Chapter 4, q ⌧ (x; a)c a nb eu s e dt od r i v er a r ee v e n t sa l g o r i t h m s ,m a k i n g available a larger collection of observations and helping the understanding of such events.

The aim of this study is to introduce the analogue Markov chain for the computation of extreme events probabilities, and in particular the probabilities of occurrence of heat waves.

The structure of the chapter is the following: Sec. 5.2 introduces the analogue method in the context of climate dynamics and explains how to build several types of analogue Markov chains. These different types of Markov chains are characterized by different properties. The first distinction is made between seasonal and annual Markov chains. The former are developed by considering dynamical observations related to a single season (e.g. summer)

The analogue method for heat waves

In Sec. 4.3,t h ea n a l o g u em e t h o dh a sb e e ni n t r o d u c e dd e m o n s t r a t i n gi t s usefulness in computing committor functions. Given the success in lowdimensional stochastic dynamics, the purpose of this section is to illustrate its application to the study of heat waves. This is an extremely complex topic, especially regarding the occurrence of the more severe ones due to the difficulty in collecting sufficient statistics. Clearly, the statistics of the dynamics introduced by the analogue method converge to the real statistics when infinite data-set are considered, also keeping constant the number of analogues K. However, in the case under investigation, the data-set is too short and the convergence has to be studied empirically.

The use of analogues of atmospheric circulation for weather forecasting dates back to the second half of the 20th century with the pioneering works of Lorenz [Lorenz, 1969a, Lorenz, 1969c]. Over the years, forecasts based on analogues have been set aside due to the difficulty of finding good analogues within a limited number of observations [ Van den Do ol et al., 2007]. However, slightly modified versions of this method have sparked new interest in recent years, especially regarding the development of stochastic weather generators [START_REF] Yiou | Ensemble reconstruction of the atmospheric column from surface pressure using analogues[END_REF], Yiou, 2014, Jézéquel et al., 2018, Yiou and Déandréis, 2019[START_REF] Yiou | Simulation of extreme heat waves with empirical importance sampling[END_REF]. Following the ideas developed in these works, the analogue method can therefore be used to generate synthetic time series at low computational cost, thus allowing to overcome the lack of observations.

The dynamics that will be examined is deterministic as it is generated by a climate model (PLASIM). PLASIM is a general circulation model that aims at solving the fluid mechanics equations for the atmosphere [START_REF] Fraedrich | The planet simulator: Towards a user friendly model[END_REF], Lunkeit et al., 2011]. At first glance, the use of a stochastic generator to learn deterministic dynamics may seem inappropriate but this choice is more reasonable than one might think. In fact, it is true that PLASIM is a deterministic climate model, but it is chaotic and, like all climate models, it features the evolution of thousands of variables which evolve on very different time scales. A well established result for dynamical systems with multiple time scales is that, if there is a gap between the time scales (i.e. slow variables evolve on much larger time scales than fast variables) and the dynamics of fast variables is mixing (i.e. the system looses the memory of its initial condition after a certain time), the dynamics of slow variables can be described by a system of Markovian stochastic equations [Kifer, 1992, Kifer, 2004, Givon et al., 2004[START_REF] Melbourne | A note on diffusion limits of chaotic skew-product flows[END_REF]. However, since heat waves originate

Stationary vs time periodic analogue Markov chains

The main novelty between the systems studied in the previous chapter and the climate model analyzed here is the presence of a seasonal cycle in climate data. Hence, in the present case, several analogue Markov chains can be developed: they can be built on a seasonal (e.g. summer) or annual dataset. In the latter case, it is possible to make a further distinction between homogeneous analogue Markov chains (the transition matrix does not depend on time) or time-periodic analogue Markov chains (the transition matrix depends on time and has an annual periodicity).

Before illustrating how to develop the three Markov chains it might be convenient to briefly describe the data-set. It consists of 10 independent realizations of the climate dynamics produced by PLASIM. Each realization (also called batch) is 100 years long with outputs provided every 3 hours. Thus, each batch consists of time series (one for each model variable) of N b =1 0 0⇥ 360 ⇥ 8=2 8 8 0 0 0t i m es t e p s( e a c hm o n t hi s3 0d a y sl o n g ) . Although the temporal coarse-graining procedure reduce the number of time steps to Ñb = N b ⌧ c ⇥ 8, the search for analogues in a data-set made up of Ñb points is extremely slow. Therefore, it was chosen to use a sampling time ⌧ s = 1 day to further reduce the size of the data-set. Note that three different times are relevant to define the analogue Markov chain, namely ⌧ c , ⌧ M and ⌧ s .T h ec o a r s eg r a i n i n gt i m e⌧ c represents the duration of the time averages that define the coarse grained variables. The Markov chain time step ⌧ M is the lag time between two consecutive states of the Markov chain. Finally, the sampling time ⌧ s represents the lag time between two observations in the data-set, i.e. the sampling time of the climate model. Although these three times differ from each other, throughout the chapter ⌧ M = ⌧ c is considered, unless otherwise stated. By adopting ⌧ s =1d a y ,t h en u m b e ro fp o i n t si ne a c hb a t c hb e c o m e s Nb =100⇥ 360 (⌧ c 1). To be more explicit, using ⌧ c =5da yseac hbatc h will contain variables defined between January 3 of year 1 and December 28 of year 100. Thus, the total number of points in the data-set is N t = 10 ⇥ Nb ' 360000.

Having defined the data organization, it can be explained how to build the different types of analogue Markov chains.

THE ANALOGUE METHOD FOR HEAT WAVES

as before, that is the last ⌧ M + ⌧c 1 2 December days of the last year of the trajectory are not considered as possible analogues.

The main difference with respect to how the annual homogeneous Markov chain is defined is that, in this case, a fundamental role is played by the calendar date of the Markov chain. The calendar date of the Markov chain, denoted by c, indicates the day of the year which corresponds to a given time t of the Markov chain. Therefore, c is a number which takes values between 1a n d3 6 0c o r r e s p o n d i n gt oad a yo ft h ey e a r( r e m e m b e rt h a te a c hy e a ri n PLASIM is 360 days long). The time of the Markov chain t keeps track of the time that flows in the synthetic dynamics and, at each time step, it increases by ⌧ M .T h er e l a t i o nb e t w e e n t and c is c =( t mod 360), where mod indicates the modulo operation.

In order to develop a Markov chain whose transition matrix is timeperiodic, the procedure for selecting the analogues differs from the one employed in the development of the annual homogeneous Markov chain. Indeed, in this case, the analogues of a state X are chosen in a time window of two months centered around the Markov chain calendar date c and not on the date corresponding to the state itself.

An example can help to better understand the concept and it also illustrates how synthetic trajectories are generated in this case. Let c denotes the calendar date of a state X in the data-set, i.e. c represents the day at which X was observed. Consider ⌧ c = ⌧ M =5d a y sa n ds u p p o s eo n ew a n t s to generate a synthetic trajectory starting on January 1st. This means that the Markov chain calendar date is c0 =1(sinceitisthefirstda yofthey ear). Also the Markov chain time t0 is equal to 1. Let s 0 be the initial state of the Markov chain corresponding to a point X and let c be the real calendar date of X.I th a sb e e ne x p l a i n e dt h a t ,f o rd e v e l o p i n gt h ea n n u a la n a l o g u et i m eperiodic Markov chain, the analogues have to be sought in a time window of two months centered around the Markov chain calendar date c.T h i sm e a n s that, in this example, regardless of the value assumed by c (i.e. regardless of the day to which X corresponds), the analogues of X must be searched for in the period from December 1st to February 1st, i.e. in a time window of two months centered around c0 =1 . L e tT s 0 ( t0 )i n d i c a t e st h es e to fK analogues of X at time t0 = 1 (i.e. January 1st). To evolve s 0 , an analogue k has to be selected from T s 0 ( t0 ). Then s 1 ,t h ee v o l v e ds t a t ef r o ms 0 ,w i l l be s 1 = T s 0 k ( t0 )+⌧ M .A tt h es a m et i m e ,t h eM a r k o vc h a i nc a l e n d a rd a t e c and the Markov chain time must also be updated, i.e. t1 = t0 + ⌧ M and c1 =( t1 mod 360). Then, the set of K analogues of s 1 ,denotedb yT s 1 ( t1 ), is being in the state l (i.e. the stationary distribution of the Markov chain). Since A is defined using n consecutive states of a realization of the Markov chain (see Eq. (5.11)), for any initial condition s 0 = l, A can assume at most K n different values, denoted by A l k ,f o rk =1 , ••• ,K n .F u r t h e r m o r e , each of the K n realizations is equally probable. Therefore, the conditional probability P(A|s 0 = l)c a nbee x p r e s s e da s

(5.13) Combining (5.12)a n d( 5.13), one has

(5.14)

Hence, the first consistency check consists in comparing ⇢ A (A)a n d⇢ A (A). From a practical p oint of view, ⇢A (A) can be estimated on a very long synthetic trajectory.

In the following, the distributions resulting from different Markov chains will be considered. In each of the tests performed, a coarse-graining time ⌧ c =5da ysw asconsidered.

Consistency of time averaged temperature statistics: seasonal Markov chains

The first consistency test was performed on a seasonal summer (JJA) Markov chain built on the coarse-grained field of the geopotential height at 500 mb Z(r,t) defined in the North-Atlantic region (80 W 30 E,30 N 70 N), i.e. X = Z. The choice to use the geopotential height at 500 mb in the North-Atlantic region is due to the fact that, as explained in Sec. 5.1,t h e occurrence of heat waves is linked to persistent anticyclonic anomalies and the atmospheric circulation of this region is the one that most influences the occurrence of extreme heat waves over France.

In this case, the analogues are computed by employing the Euclidean distance normalized to the average variance (Eq. (5.8)). The distributions of A(t)fortheMarkovchainscomputedoververylongtrajectoriesareshownin Fig. 5.2 for different numbers of analogues K.I tc a nb es e e nt h a t ,r e g a r d l e s s of the number of analogues employed, the distribution obtained by using the

Consistency of time averaged temperature statistics: annual homogenous Markov chains

As mentioned earlier, seasonal Markov chains, because of the systematic drift, are not appropriate for dealing with the evolution of variables that have a seasonal cycle. This is the conceptual reason that leads to the introduction of annual Markov chains, which might not suffer from this problem. It is therefore important to understand if with such a chain it is possible to better reproduce the statistic of A(t). Therefore, in this subsection the statistics of A on long synthetic trajectories generated by a homogeneous annual Markov chain are analyzed. The chain has been built on the coarsegrained geopotential height at 500 mb Z(r,t) in the North-Atlantic region (80 W 30 E,30 N 70 N) and the analogues have been selected by employing the Euclidean distance normalized to the average variance (Eq. (5.8)).

Before analyzing the distributions of A as the number of analogues varies, it may be interesting to study the behavior of the stationary distributions of calendar days. They are shown in Fig. 5.8 for different numbers of analogues K. As can be seen from the figure, the distribution shows two peaks. The first one is in winter while the second one is in summer. Furthermore, by comparing Figs. 5.8a,5.8b,5.8c,i tc a nb en o t e dt h a tt h eh e i g h to ft h ep e a k s increases as the number of analogues increases. The explanation of these two peaks is linked to the presence of the seasonal cycle. In fact, winter and summer correspond respectively to the minimum and maximum of the seasonal cycle with a slowing down of the seasonal variations, and therefore it is easier to find analogues in these periods. This implies that a synthetic trajectory spends more time in states corresponding to these seasons. This also suggests that there may be problems in computing the distribution of A in the summer period. Indeed, the slowdown of the dynamics could make the duration of the year a random variable, preventing a good computation of the distribution of A.T h e d i s t r i b u t i o n s o f A for different number of analogues are shown in Fig. 5.9.I tc a nb es e e nf r o mt h efi g u r et h a t ,r e g a r d l e s s of the number of analogues considered, the Markov chain completely fails to reproduce the real distribution. Furthermore, by increasing the number of analogues the discrepancies are further accentuated. This is even more evident by looking at Fig. 5.10 which shows the first two moments of the distribution. Concerning the mean (Fig. 5.10a), this is not very far from the true value when only 5 analogues are considered. However, as the number of analogues increases, it grows further and further away from the real value.

COMMITTOR ESTIMATION THROUGH THE ANALOGUE METHOD

difficult to observe in climate models given their rarity. Moreover, given the low computational cost, it also allows to collect a statistics sufficient to make robust analysis, or in any case more robust than those possible only with direct simulations. It is worth stressing once again that to study the return times of heat waves it is preferable to use time-periodic analogue Markov chains.

In this section (Sec. 5.2)t h es t a t i s t i c a l l ys t a t i o n a r ys t a t i s t i c so f1 5 -d a y heat waves were studied. The next section will instead focus on the transient statistics of these events, that is, the statistic computed on short trajectories.

Committor estimation through the analogue method

The tests performed in the previous section have proved the usefulness of the analogue method in the study of statistically stationary statistics of 15day heat waves. Therefore, in this section the method is used in order to compute the committor function. According to the definition Eq. ( 5.4), the committor function q ⌧ (x; a)i st h ep r o b a b i l i t yt h a tah e a tw a v e so fd u r a t i o n T and amplitude greater than a will occur after ⌧ days knowing that x is the state of the system at current time. In the context of analogue Markov chains, the state x corresponds to a state s of the chain. As in the previous section, 15-day heat waves are studied. Before defining the committor function for Markov chains, it is important to note that this function only depends on the short trajectory statistic. Indeed, since q ⌧ (x; a)i sap r o b a b i l i t yc o n d i t i o n e do nt h ec u r r e n ts t a t eo f the system, it only depends on the statistic of trajectory of length T + ⌧ . Therefore, there is not much difference between the committor computed by means of seasonal or time-periodic chains. Furthermore, the latter chains only add unnecessary complications as the committor function becomes a function not only of the initial state but also of the initial time. To avoid these further complications, exclusively the committor function estimated through the seasonal Markov chain will be discussed.

In Sec. 5.2.2 the quantity ⇢(s) A (A)hasbeenin troduced(Eq.(5.13)), which corresponds to the probability of having a heat waves of amplitude A and duration T knowing the initial state s of the system. Since for ⌧ =0thecommittor q 0 (s; a)istheprobabilit yofobse rvingahe atw a v ewithanamplitude METHOD matrix formed by TN, FP, FN, TN) and is not sensitive to the choice of the class of positive events (as opposed to what happens with accuracy or F1 score) [Chicco, 2017, Chicco andJurman, 2020]. Although the case where the MCC takes one of the values { 1, 0, 1} is easily interpretable, the same is not valid for intermediate values. Hence, for a deeper understanding of the performance of the classifier it is useful to consider also the true positive rate (TPR)a n dt h ef a l s ed e t e c t i o nr a t e( FDR)

which measure the fraction of positive events correctly classified and the fraction of negative events erroneously classified as positive, respectively. The analogue based classifier only depends on two hyperparameters (K and q). The selection of these two parameters, which will be defined as the learning process, is based on the Monte Carlo cross-validation method [START_REF] Dubitzky | Fundamentals of data mining in genomics and proteomics[END_REF], Kuhn et al., 2013].

The learning process is performed as follows. Among the 1000 available trajectories, 100 are selected randomly. The set of 100 trajectories is denoted by H val while the set of the remaining 900 trajectories is indicated by H learn . The analogue Markov chain is built on the set H learn .T h e n , b y v a r y i n g the number of analogues K,t h ec o m m i t t o rf u n c t i o nq K (x, ⌧ )f o rx 2H val is computed. The subscript K is added to underline the dependence of q on the number of analogues considered. Finally, for each value of K and for each example x in the validation set H val ,as e to fb i n a r yo u t p u to K (x;q(⌧ )) is computed. These outputs give rise to a set of MCC values denoted by MCC(K, q(⌧ )). By repeating this procedure R =2 0t i m e s ,t h ea v e r a g e values hMCC(K, q(⌧ ))i = 1 R P R r=1 MCC r (K, q(⌧ )) can be obtained and from these the optimal parameters (K ? , q? (⌧ )) can be inferred, i.e.

(K ? , q? (⌧ )) = argmax{hMCC(K, q(⌧ ))i)}.

(5.21)

Once the optimal hyperparameters have been learned, the performance of the classifier is tested by generating additional R =20testsetsH test and evaluating the average value of the MCC for K = K ? and q(⌧ )=q ? (⌧ ).

In the following subsections the results of the predictions of the occurrence of heat waves, by increasing intensity of these events (5%, 2.5% and 1.25% most extreme events corresponding to events beyond the 95, 97.5a n d9 8 .75 percentile), are illustrated. Furthermore, the impact of quantities such as the METHOD for subsequent times the classifier does not perform better than a random choice (remember that a prediction is considered to be significant if the MCC > 0.1). The situation does not improve much for the intermediate class, where predictions are significant up to 6 days in advance. Regarding the 5% class of most extreme events, a significant fraction of heat waves can be predicted up to 12 days in advance. Despite this, considering the values assumed by the MCC,i tc a nb es t a t e dt h a tt h ea n a l o g u eb a s e dc l a s s i fi e r built using the temperature anomalies over such a large region does not provide accurate forecasts. The situation changes drastically when considering the small French region. In this case, for all three classes it is possible to make predictions up to 15 days in advance. In addition, it can be noted that for ⌧ =0t h eMCC assumes rather high values, thus highlighting how the persistence of heat waves can be used to make predictions. It is also important to note that the predictions provided by the classifier built on this small region are better than those obtained with the larger regions.

This analysis suggests that better predictions are obtained by reducing the region over which the analogues are computed. This is not surprising, as Euclidean distance is known to become a poor similarity criterion in high dimensions. It would therefore be tempting to say that the smaller the region, the better the prediction. However, comparing the solid blue curve of Fig. 5.20 and the solid orange curve of Fig. 5.18 it can be seen that the predictions made using the French region are better than those obtained based on the average temperature over France. It means that a compromise must be found between the information a variable carries with it and the dimension of the variable itself. To put it another way, a tradeoff between the complexity of the dynamics of the Markov chain and the information available is needed.

An interesting way to reduce the dimension of the system without losing too much information is to perform spatial coarse-graining. It is therefore important to know if this spatial coarse-graining can actually improve the predictive skills of the classifier. To achieve this results, it has been chosen to repeat the experiments by employing the Northern Hemisphere and its spatial coarse-grained counterpart. The spatial coarse-grained adopted here consists in an average over 6 = 3 ⇥ 2g r i dp o i n t so ft h eo r i g i n a lfi e l dc o r r e s p o n d i n g approximately to an average over 8.4 and 5.6 for longitude and latitude respectively. Two snapshots of the original field at the resolution provided by the climate model and its spatial coarse-grained counterpart are illustrated in Fig. 5.21.

CONCLUSIONS AND PERSPECTIVES

of the analogue based classifier. For instance, following [Yiou, 2014, Jézéquel et al., 2018, Yiou and Déandréis, 2019[START_REF] Yiou | Simulation of extreme heat waves with empirical importance sampling[END_REF], one could build analogue Markov chain where the where the probabilities of choosing one of the K analogues are not uniform as in this study but they are rather state dependent, for instance taking into account the distances of X n to its analogues. Another improvement may consist in employing non-Euclidean distances as similarity criterion for the selection of analogues in order to take into account the spatial structure (i.e. spatial correlations) of the data. While both of these procedures can prove to be excellent ways to improve the performance of the analogue method by producing more accurate statistics and estimating the committor function more precisely, they can suffer from al a c ko fg e n e r a l i t y . L a c ko fg e n e r a l i t yi si n t e n d e da sas t r o n gd e p e n d e n c e on the data-set under investigation, thus making difficult to apply the same methodology to problems in different fields without having to perform long computations to recalibrate this tool. A more interesting modification of the algorithm proposed here would be to exploit the power of machine learning to perform a dimensional reduction of the system and to learn analogues in this reduced space. This can be done by employing autoencoders, as shown for example in [Kingma andWelling, 2013,Pulgar et al., 2018]. Furthermore, the dimensional reduction can be done keeping in mind that the ultimate goal is to estimate the probability of certain extreme events, and therefore extracting only the information relevant to the computation of such probabilities [START_REF] Snoek | Nonparametric guidance of autoencoder representations using label information[END_REF], Banijamali and Ghodsi, 2016, Banijamali et al., 2018, Du et al., 2019]. This would allow to obtain a highly generalizable algorithm as it would be able to learn that contain most of the information useful for the computation of the committor function.