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Summary

There is a large interest in predicting the occurrence of high impact climate
events such as ENSO (El Nino Southern Oscillation) or rare events, for in-
stance heat waves. Those are prediction problems at the predictability margin
because the interesting time scale lies at the edge of the mixing time of the
system. This thesis aims at introducing the relevant quantity for these pre-
diction problems, the so-called committor function which is the probability
for an event to occur in the future, as a function of the current state of the
system. Computing the committor in a stochastic model for ENSO illustrates
that the transition to strong El Nino regimes can have either intrinsic prob-
abilistic predictability or unpredictability. The second goal is to illustrate
how to compute and validate the committor function from observations, by
discussing the analogue Markov chain which provides a way for learning ef-
fective dynamics from data. Starting from it, a new algorithm is developed,
with the scope of computing the committor function more precisely than the
other approaches, especially in case of lack of data. Moreover, it is shown, in
the context of two stochastic systems, that coupling the learning of the com-
mittor with a rare event algorithm improves the performance of the latter.
Finally, this methodology is applied to a climate data-set, generated from a
climate model, in order to study and predict the occurrence of extreme heat
waves. After checking the consistency of the statistical quantities computed
by the effective dynamics, a classifier based on the Markov chain is developed,
with the capability of classifying heat waves better than other methods.
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Chapter 1

Introduction

It is beyond doubt that probability and statistics are essential disciplines for
science. Indeed, as Poincaré said [Poincaré, 1905], ”science is built up of
facts, as a house is built of stones’, and since any data analysis has to be
performed using statistical tools, to underestimate their importance would
result in a procedural mistake from a scientific point of view. Of course, this
also applies to climate sciences, where probability and statistics are nowadays
widely used for predictions.

In this context, the adoption of a probabilistic approach has different
grounds according to the temporal and spatial scales of the phenomenon
under investigation.

For example, weather forecasts aim at accurately predicting the future
state of the atmosphere based on its current state. From a mathematical
point of view, weather forecasts consist in solving an initial value problem
(IVP). Indeed, given an initial condition z( representing the current state of
the atmosphere, the aim of weather forecasts is to predict the state of the
atmosphere at time ¢, that is 2, = ¢'x, where ¢! is the flow of the dynamical
system. However, in practice this is not feasible due to the chaotic behav-
ior of many dynamical systems. As it is well known, in a chaotic system
small differences in the initial conditions are exponentially amplified. This
phenomenon was already known to 19th century mathematicians such as
Poincaré and Hadamard, but it was Lorenz who first introduced the concept
of chaos in relation to climate in 1963 [Lorenz, 1963]. In a famous conference
held in 1972 provocatively titled ” Predictability: does the flap of a butterfly’s
wing in Brazil set off a tornado in Texas? [Lorenz, 1972], Lorenz explained
that starting from two almost indistinguishable initial conditions (the only



difference being the presence or absence of the flapping of a butterfly’s wings)
the state of the atmosphere can evolve into macroscopically different states
characterized by the presence or absence of a tornado. He therefore concluded
that the predictability of the atmosphere could not extend beyond a few days,
about two weeks, corresponding to the time it takes for undetectable errors
at the smallest scales of the flow to contaminate the large scales [Thompson,
1957, Novikov, 1959, Lorenz, 1969b]. It is worth noting that this limit to pre-
dictability occurs even if a perfect model is used for the prediction. In prac-
tice, however, the models available for predictions, although very accurate,
are not perfect. It should also be taken into account that often it is not possi-
ble to observe the initial state of the atmosphere with sufficient accuracy. Due
to these limitations, over the past 30 years, major weather forecasting centers
such as the National Oceanic and Atmospheric Administration (NOAA) and
the European Center for Medium-Range Weather Forecasts (ECMWF) have
put aside deterministic forecasts to move to probabilistic forecasts, obtained
by means of appropriate techniques such as the ensemble forecast [Kalnay,
2003, Van den Dool et al., 2007, Dijkstra, 2013]. This technique consists in
providing a set of predictions obtained by slightly changing both the initial
conditions and the parameters of the model. These predictions are then used
to estimate the probabilities of future states of the system. As an example,
consider the predictions of 24-hr total precipitation provided by the ECMWF
shown in Fig. 1.1. The two charts in Fig. 1.1 represent the probability that
the 24-hr total precipitation exceeds 1 mm for two different prediction lag
times. Both predictions start on 19/08/2021. The upper panel shows the
forecast for 20/08/2021, i.e. for a one day lag time. The lower panel refers
instead to a forecast for 08/27/2021, i.e. a lag time of 8 days. Comparing
the two images, it can be seen immediately that the uncertainty of the fore-
casts increases as the prediction lag time increases. And indeed, the forecast
for the following day is quite accurate, as evidenced by the fact that many
locations have a high or low probability that precipitation exceeds the 1 mm
threshold in the next twenty-four hours (light-blue and yellow regions, re-
spectively), while for few locations these forecasts are more uncertain (green
regions). In the case of the 8-day forecast, the situation changes completely.
It is no longer possible to accurately predict the locations where precipita-
tion will be most concentrated and therefore the uncertain forecast regions
are more extensive than in the previous case.

From a theoretical point of view, short-term forecasts such as weather
forecasts are types of deterministic forecasts where the use of probability is
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Figure 1.1: ECMWEF short term forecasts on 19/08/2021 of the 24-h accu-
mulated precipitation (from ECMWF SEAS5 website). Probability of 24-h
accumulated precipitation (rain and snow) exceeding 1 mm for different pre-
diction lag time. Upper panel: lag time 1 day. Bottom panel: lag time 8
days.



linked only to the lack of information about initial conditions and to the
unavailability of perfect models.

As already explained, deterministic predictions are valid up to a finite
time. For low dimensional dynamical systems, this time scale corresponds
to the so called Lyapunov time [Castiglione et al., 2008], while for the at-
mosphere it corresponds to the time necessary for errors at small scales to
become dominant. Beyond this horizon of predictability, the system behaves
in all respects as a stochastic process. Thus, while in short-term forecasts
the use of probability is due to our ignorance about the system, in the case of
medium-term or long-term forecasts, randomness becomes an intrinsic com-
ponent of the system.

Since climate is commonly defined as the weather averaged over a long
period, it can be inferred from the above discussion that climate deals with
the statistical properties of some stochastic process (z;),.,. Over very long
time scales, these properties will be independent from the initial condition.
This means that, from a mathematical perspective, the relevant concept for
climate is the invariant measure of the system. However, such a description
is valid only for time scales larger than the mixing time, which corresponds
to the time necessary for the system to forget the initial condition.

The situation is even more complex when it comes to medium-range fore-
casts, because in this case the interesting time scale lies between the de-
terministic predictability time and the mixing time of the system. This is
why in this manuscript such prediction problems will also be referred to as
prediction problems at the predictability margin. Prediction problems at the
predictability margin need the application of a probabilistic method, because,
as already mentioned, they cope with time scales beyond the deterministic
predictability horizon of the system (e.g. the Lyapunov time) but below its
mixing time. By contrast, at the predictability margin, predictions clearly
depend on the current state of the system. As an example, consider the
seasonal forecasts made by the ECMWF, in Fig. 1.2. It shows the probabil-
ity that the time averaged 2-meter temperature exceeds the median of the
seasonal average computed in the reference period 1993-2016, being the time
average intended over a 3 month period. The prediction of Fig. 1.2 starts
on 01/05/2021 and it refers to the time averaged temperature in summer
(time average over June-July-August), i.e. a prediction lag time of 1 month.
The important element to note is that this type of seasonal forecast only
makes sense from a probabilistic point of view because, as can be seen from
the chart in Fig. 1.2, the probability ranges between 0% and 100%, so that

4
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Figure 1.2: ECMWF seasonal forecast on 01/05/2021 of the 2-meter temper-
ature averaged over the summer season (June-July-August) (from ECMWF
SEAS5 website). The forecast is plotted in terms of probabilities of ex-
ceedance of the median of the seasonal average relative to the observed cli-
mate for 1993-2016.



making any kind of deterministic prediction would be impossible.

Prediction problems at the predictability margin represent the main topic
of this thesis. The fact that such problems require a probabilistic approach
is already known in the climate community [Wilks, 2011]. Indeed, major
weather forecasting centers such as NOAA and ECMWF already make use
of probabilistic predictions. Furthermore, systems like the weather@home
system [Massey et al., 2015] produce a huge amount of high resolution sim-
ulations of General Circulation Models in order to sample extreme events.
The original part of this work is therefore to introduce the appropriate math-
ematical formalism to deal with prediction problems at the predictability
margin. As a first step, the appropriate mathematical tool to study this
class of problems will be introduced. The relevant mathematical concept
is called the committor function. Broadly speaking, a committor function
is the probability for an event to occur in the future, as a function of the
current state of the system. For the ECMWF examples this would be the
maps (Fig. 1.1 and Fig. 1.2), for all the possible states of the atmosphere.
Committor functions have first been introduced in climate sciences in [Lu-
cente et al., 2019], and have been used to study sudden stratospheric warm-
ing [Finkel et al., 2020, Finkel et al., 2021] or to understand the flow of ocean
debris [Miron et al., 2021]. The interest of giving a name, the committor
function, to this otherwise very common and generic concept, is two-fold.
First, it allows us to study its mathematical properties and to relate them
to key concepts in dynamical systems, for instance the predictability margin.
Second, it comes with specific theoretical and computational approaches to
compute this important quantity, for instance transition path theory, see for
example [Vanden-Eijnden, 2006, Metzner et al., 2006, Metzner et al., 2009]
and references therein.

The previous discussion on predictability for climate dynamics is summa-
rized in the diagram of Fig. 1.3.

Once the appropriate mathematical tool for dealing with prediction prob-
lems at the predictability margin has been identified, it is natural to wonder
how to compute this quantity in practice. This task is extremely complex
and becomes even more difficult when extreme events such as heat waves,
cold spells or extreme precipitations are considered. By definition, these
events have a very low probability of occurring and may not even have been
observed in measurements made to date.

The reason for studying rare events is that they play a crucial role in many
physics, chemistry, and biology phenomena, for instance when they change

6
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Figure 1.3: Schematic illustration of the concept of predictability margin:
deterministic predictability is only possible until a finite time (e.g. the Lya-
punov time). The associated mathematical problem is an initial value prob-
lem (IVP). Long term statistical properties (beyond the mixing time) do not
depend on the initial condition, and the corresponding mathematical object
is the wnvariant measure. In the intermediate range of timescales, named
here as predictability margin, the appropriate mathematical concept is the
committor function, which encodes the probability of a given event to occur,
condition on the state of the climate system at the time of the prediction.

the system structure (multistability) or have a huge impact. The study of
rare high impact events, such as heat waves, is an important topic in climate
science also because the frequency of such events seems to increase due to
climate change [Stocker, 2014]. The relevant time scales for many of these
rare high impact events fall within the predictability margin and therefore the
appropriate mathematical concept to study them is the committor function.
Indeed, the committor encodes the probability that these events will occur
in the future and this information is crucial to mitigate the impact that rare
events have on human societies.

In principle, rare high impact climate events could be studied through
numerical simulations (this is the case for ECMWF forecasts) but often the
computational cost for collecting a large number of observations of a rare
event is prohibitive and therefore it is not possible to gather enough in-
formation. Over the past 70 years, many algorithms have been designed to
overcome this sampling problem [Kahn and Harris, 1951,Cérou et al., 2019b].
Recently this type of algorithm has been applied in climate science to study
extreme heat waves [Ragone et al., 2018, Ragone and Bouchet, 2021, Galfi and
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Figure 1.4: Sketch of a feedback control iterative procedure between the rare
event algorithm and the machine learning of an approximate optimal score
function. The learning of an approximation of the optimal score function
makes the algorithm more efficient, and the algorithm provides more data
for a better quality of the learning procedure.

Lucarini, 2021]. Rare events algorithms require the use of a score function to
iteratively force the system towards atypical configurations in order to sam-
ple events, which are difficult to observe with direct numerical simulations,
in an efficient way and at low computational cost. Unfortunately, it is well
known that the optimal score function is the committor function which is
exactly what needs to be computed.

It is therefore evident that it is necessary to find efficient algorithms for
computing the committor function even in the presence of a lack of data.
In fact, obtaining a first reliable approximation of the committor function is
useful not only for studying and predicting the occurrence of the phenomenon
under consideration, but it can be used as a score function in rare event
algorithms, improving the performance of the latter, allowing in addition to
increase the number of observations of the event. Then, the new observations
can be used to obtain a more precise estimate of the committor function.
The coupling between the data-driven method for estimating the committor
function and the rare event algorithms can be iterated until the estimate
of the committor function reaches the desired accuracy threshold. Such an
iterative scheme is illustrated in Fig. 1.4.

Thus, a relevant purpose of this thesis is to propose and analyze such an
algorithm. The method proposed here aims to learn effective dynamics based
on dynamical observations. It is a generalization of the analogue method
firstly proposed by Lorenz [Lorenz, 1969¢, Lorenz, 1969a]. This method has



already been used to build a stochastic weather generator [Yiou et al., 2013,
Yiou, 2014, Jézéquel et al., 2018, Yiou and Déandréis, 2019, Yiou and Jézéquel,
2020]. Therefore, the innovative part of this work consists in having used this
method to develop a new data-driven approach for computing committor
functions. Since this approach has also been successfully coupled to rare
event algorithms, this thesis also constitutes a first step in the development
of an iterative scheme for the computation of the committor function with
rare event algorithms.

To summarize, the original contributions of this thesis are the following:

e it aims at introducing the concept of committor function in climate
science,

e it proposes an innovative approach, based on analogue Markov chains,
for computing the committor function which, coupled with a rare event
algorithm, improves the performance of the latter,

e it applies the new methodology to climate data for studying and pre-
dicting extreme heat waves.

The present manuscript is structured as follows: the definition and math-
ematical properties of the committor function, as well as numerical methods
to compute it, approaches for the validation of its estimates and its relation
with prediction problems are illustrated in Chapter 2. Chapter 3 studies
the dynamics of a low-dimensional stochastic model proposed to explain the
decadal amplitude changes of El Nino Southern Oscillation, the Jin and Tim-
mermann model [Timmermann and Jin, 2002, Timmermann et al., 2003].
This model is not aimed at reproducing any precise properties of the real
El Nino Southern Oscillation. It is rather used as a paradigmatic example
to introduce the concept of a committor function in climate science, and to
study its main properties. This study leads to the definition of probabilis-
tic predictability and unpredictability, some concepts that should be useful
for other applications. This work with minor modifications, carried out in
collaboration with C. Herbert and F. Bouchet, has been submitted to the
”Journal of the Atmospheric Sciences” (JAS) [Lucente et al., 2021]. Chap-
ter 4 proposes a novel data-driven approach that efficiently estimates the
committor function starting from observed dynamics. The method combines
the use of the analogue Markov chain with a spectral characterization of the
committor, with the aim of providing an alternative approach for the com-
putation of the latter, which could be useful in the lack of data. In addition,

9



it is shown that such an approach can be paired with a rare event method
with two advantages: the computations can be performed with a minimal
prior knowledge and the results are more precise than those obtained with a
user-designed score function. A slightly modified version of this work, which
is the result of a collaboration with J. Rolland, C. Herbert and F. Bouchet,
has been submitted to the ”Journal of Statistical Mechanics: Theory and
Experiment” (J. Stat. Mech.). In Chapter 5, the new methodology for com-
puting committor functions is applied to a climate data-set, generated by a
climate model, to study and predict the occurrence of extreme heat waves.
Finally, Chapter 6 highlights the main conclusions of the work and illustrates
possible future developments.

10



Chapter 2

Committor Functions

2.1 Introduction

This chapter is for pedagogical purposes and aims at introducing, in a simple
way, the mathematical formalism of the committor function, necessary to
rigorously tackle the problems studied in the following chapters.

After being introduced in 1938 by Onsager [Onsager, 1938], the com-
mittor function has received particular attention, especially in the context
of molecular dynamics [E et al., 2005, Vanden-Eijnden, 2006, Metzner et al.,
2006, Bovier, 2006, Metzner, 2008, Metzner et al., 2009, Prinz et al., 2011,
Schiitte et al., 2011, Bowman et al., 2013, Schiitte and Sarich, 2015, Lopes
and Lelievre, 2019, Thiede et al., 2019]. More recently, the committor func-
tion has been introduced also in the context of climate sciences [Lucente
et al., 2019, Finkel et al., 2020, Miron et al., 2021, Finkel et al., 2021].

To understand the reason for this interest, it is good first of all to define
this mathematical concept. A committor function is the probability that
an event occurs before another one as a function of the current state of the
system. To be slightly more precise, consider two events w; and ws and
let X (t) be the variable describing the state of the system at time t. The
committor function for the two events w; and wy is defined as

q(z) = P(7u, () < 7u, (7)), (2.1)

where 7,(x) = inf{t : w happens | X (0) = z} is the smallest time at which
the event w happens.

Usually, in molecular dynamics the events represent two subsets A and
B of the phase space, and one is interested in computing the probability

11



2.1. INTRODUCTION

that one set (B) is reached before the other one (A). In climate instead, it
is more frequent that one is interested in computing the probability that a
given event, far from the typical conditions of the system, will occur within
a certain time. In this case, therefore, the committor function describes the
probability that the system reaches atypical states before relaxing towards
the typical stationary conditions. For example, consider the problem of pre-
dicting the probability of occurrence of a heat wave, which will be addressed
in Chapter 5. In this case the set B contains all the possible trajectories
in which a heat wave occurs, while the set A contains all the trajectories
for which this event does not occur. Then, the committor function is the
probability to reach B before A, as a function of the current state of the
atmosphere, temperature, soil moisture and so on.

Thus, the committor function is a fundamental tool for studying the
transitions between events. For example, in transition path theory [Vanden-
Eijnden, 2006, Metzner et al., 2006, Metzner, 2008, Metzner et al., 2009],
this function is a fundamental block for obtaining the statistics of reactive
trajectories (i.e. trajectories starting from A and arriving in B or vice versa).
It also plays a crucial role in the development of rare event algorithms, which
are algorithms designed for sampling rare events at low computational cost.
Indeed, these algorithms require to use a score function for forcing the system
towards atypical configurations and it is well known that the optimal score
function is the committor function (see for instance [Cérou and Guyader,
2007,Rolland and Simonnet, 2015, Lestang et al., 2018]). In climate sciences,
instead, it arouses interest as it allows the prediction problems to be treated
with a rigorous theoretical apparatus.

Given the importance of the committor function, over the years a theory
has been developed in the context of Markov processes. The purpose of this
chapter is therefore to introduce the fundamental concepts of the theory of
committor functions for Markov processes.

The structure of the chapter is the following: Sec. 2.2 introduces the con-
cept of committor function for a Markov chain. It begins by reviewing the
basic notions of Markov chains. Then, it gives the definition of the committor
function for a Markov chain and it shows that this function must satisfy a
system of linear equations. The committor function for a continuous Markov
process is discussed in Sec. 2.3. As for Sec. 2.2, also in Sec. 2.3 there is a
general introduction on Markov processes, where all the properties that are
necessary to define the committor function are stated. Then, the committor
function for this class of stochastic processes is discussed, and it is shown that
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the committor is defined by a partial differential equation with appropriate
boundary conditions. Sec. 2.4 explains how to compute the committor func-
tion numerically. Three different algorithms are described, highlighting their
strengths and weaknesses. Moreover, it is explained how to validate an esti-
mate of the committor function. For this purpose, two scores are introduced
(the Brier score and the logarithmic score) which quantify the accuracy of
the probabilistic predictions made using an approximation of the committor
function. Finally, Sec. 2.5 introduces the concept of time-dependent commit-
tor function. This mathematical object encodes the probability that an event
will happen in the future as a function of the initial conditions. Therefore,
it reveals itself as a fundamental tool in the study of prediction problems,
especially in the context of climate system where it often happens that it
is necessary to predict the future evolution of interesting observables. Thus,
Sec. 2.5 precisely defines this object and shows that for a wide class of observ-
ables, the time-dependent committor function is nothing but the cumulative
distribution function of the first hitting time of a given set C. Each of these
sections contains one or more examples, in which the theoretical concepts de-
fined in the section are applied. These examples are useful to better illustrate
the theoretical concepts and serve as a test bed to analyze some properties
of the committor function before moving on to the study of more realistic
and complex systems.

2.2 Committor Functions for a Markov chain

This section introduces the concept of committor function in the context of
simple stochastic processes, i.e. Markov chains. The section begins introduc-
ing the basic notions of Markov chains. In particular, it aims to introduce
the notions of Markov chain and its related transition matrix, the link be-
tween the transition matrix and the temporal evolution of probabilities and
observables, the concept of invariant distribution and the convergence of the
probabilities to this invariant distribution. Then, it provides the definition
of a committor function of a Markov chain and it shows that the commit-
tor function is the solution of an affine problem. Moreover, it is explained
that the committor function is a linear combination of the two leading eigen-
vectors of a suitable transition matrix and it is shown that this spectral
characterization provides an algorithm that efficiently estimates the commit-
tor. The section ends by discussing an application of the committor function
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in a gambling problem that can be modeled by means of Markov chains.

2.2.1 Markov chains

Let 2 be a countable set and { X, };cn a stochastic process that takes values
in 2. The process {X;}ien is said to be a Markov chain if the following
property (Markov property) holds [Norris et al., 1998, Shiryaev, 2004, Boffetta
and Vulpiani, 2012, Bowman et al., 2013]

[P(Xt = itht—l = it—l; e ,XO = Zo) = [P(Xt = it|Xt_1 = it—l)- (22)

The Markov property expresses the fact that the probability of the future
state of the system depends exclusively on the state of the system at the
previous time and is independent of past history. Thus, the main feature of
Markov processes is to have a finite memory of length one.

The conditional probabilities that appear in the right hand side of Eq. (2.2)
are usually represented by a stochastic matrix G(t), also known as transition
matrix. A matrix is called stochastic if

G,](t)zO Vi,j € Qand Vt € N,
» Gy(t)=1 VieQand VteN. (2.3)

JEQ

The first property states that the elements of a stochastic matrix must be
positive as they are probabilities. The second property asserts instead that
the sum of the transition probabilities from state i to all the possible states j
must be equal to one. Note that the convention G;;(t—1) = P(X; = j| X1 =
i) has been adopted and therefore G;;(t — 1) is the conditional probability of
going from state ¢ at time ¢ — 1 to state j at time .

The transition matrix G(t) is sometimes called generator since its action
on an observable f determines the time evolution of f. To be more precise, let
f(t) = (fi(t)) be a column vector that represents an observable of the system
at time t. To obtain the observable f(¢ + 1) at time ¢ + 1 it is sufficient to
apply the matrix G(t) to f(¢):

fE+1)=G{t+1)f(1). (2.4)

The evolution of probabilities is ruled by the adjoint operator of G(t),
denoted by GT(t) (G' is equivalent to G transposed as G has real positive
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elements). Let p(t) = (pi(t)) be a vector of probabilities, i.e. a column
vector where each component p;(t) is the probability that the system is in
state ¢ € Q at time ¢. The probability vector p(t + 1) = (p;(t + 1)) at time
t+ 1 is given by

p(t+1) =Gt + 1)p(t). (2.5)

From Eq. (2.4) and Eq. (2.5) it can be deduced that
t+1
flt+1) (HG )
t+1
p(t+1) (H G0 ) (2.6)

In general, the transition matrix G(¢) depends on time. If the con-
ditional probabilities P(X; = j|X;—; = i) do not depend on time ¢, i.e.
Gij(t) = G;;Vt € N, the Markov chain is said to be homogeneous. For an
homogeneous Markov chain Eq. (2.6) reads

ft+1) =G f(0),
p(t+1) = (G p(0), (2.7)

where G**! and (GT)t+1 are the matrices G and GT to the power t + 1.

For the study of the long-term properties of Markov chains it is useful
to introduce the notion of invariant distribution. A probability vector w is
called an invariant distribution if

w; 2 0Vi e Q,
ZiEQ Wi = 17
Glw = w.

From Eq. (2.3) it is easy to prove that each stochastic matrix G admits
a trivial eigenvector v = v;, v; = 1Vi € Q with eigenvalue 1'. This implies
that a solution to the problem Gfw = w always exists but the solution is not
always unique. The uniqueness of the invariant distribution can be proven

LA Perron-Frobenius theorem for positive operators that preserve probabilities states
that eingenvalue 1 is the largest eigenvalue.
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for a broad class of Markov chains, the so called ergodic chains [Norris et al.,
1998, Shiryaev, 2004, Boffetta and Vulpiani, 2012]. Let G be the transition
matrix of a Markov chain whose phase space € is finite. The Markov chain
is ergodic if

3t* such that Gi¥ > 0V, € €, (2.8)

where t* does not depend on i and j. Eq. (2.8) means that for any ¢ > ¢*
there is a non-null probability of finding the process X; in any state j € ()
regardless the initial state of the process X, = i.

For an ergodic chain, the eigenvector problem Gtw = w admits a unique
solution w =  that has the two properties m; > 0Vi € Q, > . om = 1.
Furthermore, it can be proven that the invariant distribution 7 is the limit
of Gt for t — 400, i.e.

m = lim GY,,
t—+00

(2.9)

which also implies that m; = lim;_ . p(t)* [Norris et al., 1998, Shiryaev,
2004].

Ergodic chains play a fundamental role in the theory of Markov chains
and their definition will be useful for proving the existence and uniqueness
of the committor function.

2.2.2 Committor functions: definition and equation

Let 2 and G be the state-space and the transition matrix of a Markov chain.
Let A be a subset of Q, A C €, and {X;}o<i<io0o a realization of the
dynamics. The first hitting time of the set A is defined as

T]A = inf{t: X; € A| X, = j}. (2.10)

Let A and B be two disjoint subsets of 2, i.e. A,B C Q and AN B = 0.
The committor function g; is defined as

g =P(rF < 7). (2.11)

Thus, the committor function ¢; encodes the probability that a trajectory
starting at Xy = j will reach the set B before reaching the set A.

2As a consequence of the Perron-Frobenius theorem it can be proven that the conver-
gence is exponentially fast, i.e. p(t) = 7 + O(e~t1°81*2D) where ), is the largest eigenvalue
in module except A\; = 1.
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An equation for ¢ is easily obtained with the following reasoning. Clearly
for j € Aor j € Bone has g = 0 or ¢; = 1, respectively. For any initial
state Xo = j ¢ AU B, after the first step three situations could arise: either
the Markov chain goes from state j to a state k € B and the event Tf < T]‘-A
occurs, or it goes to a state k € A and the event TJB < 7';4 does not occur, or it
reach a state k ¢ AUB and then the probability of the event 7']5 < 7';4 to occur
is qx. Therefore, the probability that a trajectory starting in state j will hit
the set B before A can be decomposed into the sum of two terms [Bowman
et al., 2013, Prinz et al., 2011, Metzner, 2008, Metzner et al., 2009, Bovier,
2006]:

q; = 0,ifj € A,
¢ =1,ifj € B, (2.12)
q; = ZkGB ij + Zk%AUB ijqk, lf] ¢ .A U B,

where the first term in the right hand side of the last equation in Eqs. (2.12)
accounts for the probabilities to have a transition from the state j to a state
k € B while the second term is related to the probability of visiting a state
k ¢ AU B before going to the set B.

For an ergodic Markov chain (Eq. (2.8)), it can be proven that the sys-
tem (2.12) admits a unique solution [Metzner, 2008, Metzner et al., 2009,
Bovier, 2006]. Therefore, for an ergodic chain the committor function can be
obtained by solving the linear system in Eq. (2.12).

There is a more elegant formulation of the committor problem which
shows that the committor function ¢ is actually an eigenvector of a suitable
transition matrix G, where the states corresponding to A and B are replaced
by two absorbing states, one for each set [Prinz et al., 2011].

Consider the modified Markov chain in which the states corresponding
to the set A (resp. B) are grouped together into a single absorbing state®
denoted by i4 (resp. ip). Let C(€2) be the cardinality of the state space and
C(A) (resp. C(B)) the cardinality of A (resp. B). The cardinality of the
modified state space €, i.e. the state space resulting from the aggregation

procedure, is C'(2) = C(2)—(C(A) — 1)—(C(B) — 1). The transition matrix

3An absorbing state k is a state from which no transitions to other states than k are
allowed. In terms of the transition matrix G, a state k is absorbing if Gy = 1 and G; = 0
for j # k.
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G of the modified Markov chain (defined on Q) is

inj - (5%4,]7
Gigj = i
GiiA = ZkEA le’ it 7£ 7;./47 iB7 (213)

\Gz] = ng if la] 7é Z.A7Z.B7

where 6; ; is the Kronecker delta. It is straightforward to find a relationship
between the committor function of the original Markov chain ¢ and that
of the modified process ¢. Indeed, for i ¢ AU B one has ¢; = §;, while
qx = gi, = 0 for k € Aand ¢, = g;, = 1 for k € B. The committor function
G is the solution of the affine problem

Ga "0 G =L (214)
q; = Zjeg Gijq; for i #ia, s,
that can be written more compactly as G§ = § with gi, = 0 and ¢;;, = 1.
Therefore § is an eigenvector of the matrix G with eigenvalue 1 which satisfies
the correct boundary conditions on 74 and iz.
The matrix GT has two trivial eigenvectors associated with the eigenvalue
1, which correspond to situations where the probability is concentrated on
state i4 or ig. Hence, G also possesses at least two eigenvector associated
with eigenvalue 1. It is not difficult to be convinced that if GG is ergodic then
G and G' have only two eigenvectors associated with the eigenvalue 1 (i.e.
A1 = 1 has multiplicity 2)*. Let v' and v? be two eigenvectors of G associated

4The ergodicity of G ensures that, for each pair of states i and j of the Markov chain
defined by G, there is a path connecting the two states ¢ and j. Hence, starting from a
generic state ¢ ¢ AU B it is always possible to reach the two sets A and B. Considering
the paths that connect a state i with a state j € B, it is clear that there are two types
of paths for going from ¢ to j: those that connect ¢ and j passing through the set A and
those that instead do not pass through A. In the Markov chain defined by G, the first
type of paths connects the state ¢ to the state i 4 while the second one connects i to ig.
Since the same reasoning can be applied for j € A, it follows that, in the Markov chain
defined by G, any initial state i is transported in i4 or in iz by the dynamics. Thus, the
Markov chain defined by G transports any initial probability distribution p either into a
probability distribution concentrated on i 4 or on ig or a combination of them. Therefore,
the dimension of the vector space associated to the eigenvalue of Gt (or equivalently of G)
A1 = 1 is equal to 2.
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with A\ =1, i.e.
Gol = Ul7
{é‘v2 2 (2.15)

Clearly, any linear combination v = av® + Sv? is again an eigenvector of G
associated with Ay = 1. The committor function ¢ is the only eigenvector
among v’s such that v;, = 0 and v;, = 1. Therefore one has

G = av' + B, (2.16)
where
X=—7 UZZA 1,2
V; Vi = ViV,
3= Uiy (2.17)

1,2 1,2 °

Eq. (2.16), together with the definitions of the coefficients & and 3 (Eq. (2.17))
provides a practical, fast and robust way, to compute the committor function
of a discrete time Markov chain.

2.2.3 Example: the Gambler’s ruin

A first example that shows the relevance of the committor function is the
problem of gambler’s ruin [Coolidge, 1909, Norris et al., 1998, Shiryaev, 2004,
Boffetta and Vulpiani, 2012, Slade, 2014]. Consider a man who starts playing
a betting game and whose starting capital is Xy = n. On each round, one
dollar is wagered and the player has a probability p of earning an additional
dollar and a probability ¢ = 1 — p of losing his stake. The gambler aims
to make a fortune of N dollars before he stops playing. However, during
the game the player may also run out of money and be unable to continue
betting. Hence, the game ends with either the gambler’s ruin or the gambler’s
win. The problem consists in finding the probability that the player wins by
starting with an initial capital X = n.

Such a problem can be solved by employing the formalism for the com-
mittor function of a Markov chain. Let us consider a Markov chain whose
states space Q2 = {0,1,--- , N} contains the possible amounts of money the
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player may own and whose transition matrix G is defined as

Goi = i,

Gni = 0N,

Gij = pdjip1+ (1 —p)dji1ifi 0, N,
Gi; = 0 otherwise,

(2.18)

where 0; ; is the Kronecker delta. By defining A = {0} and B = {N}, the
probability that the player succeeds is nothing but the committor function
for these two sets. In this particular case, Eq. (2.12) reads

¢ = pGit1 + (1 = p)gi—1,
q =0, (2.19)

gy = 1.

Performing the change of variables z; = ¢; — ¢;_1 leads to

1- 1-p\’
Zi+1 = —pZi = (—p> 21, (220)
p p

which implies that
1— 1-p i+1
—1_(p1;p> q if p# (1 —p),

(i+Dqifp=01-p)=05.

Ji+1 = (2.21)

Eq. (2.21) has been obtained considering z; = ¢; and ¢;41 = ¢1 + Z?;ll 2k
By imposing the condition ¢y = 1, the committor function turns out to be

Gn = 11:((11))N tp#{1-p), (2.22)
wifp=(1-p) =05,

where the two situations correspond to unfair (p # 1 — p) or fair (p =1 —p)
games.

For p = 0.5 (fair game) the player’s probability of winning grows linearly
with the starting capital Xy = n and therefore to have at least a 50% chance
of winning the starting capital must exceed half of the stake that the man
wants to earn. On the other side, in case of unfair game the committor
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101 —e— p=(1-p) =05
—o— p>0.5
—e— p<0.5
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Figure 2.1: Gambler’s probability of winning N = 100$ as a function of the
initial capital Xy = n$. The blue, orange and green curves indicate the case
of fair play (p = 0.5), unfair play in favor of the gambler (p = 0.51) or unfair
play against the player (p = 0.49), respectively.

function ¢ shows an exponential behavior. Therefore, small values of inequity
drastically increase (p > 0.5) or decrease (p < 0.5) the probability of win
leading to situations where win (p > 0.5) or ruin (p < 0.5) is practically
certain for many initial amounts.

Fig. 2.1 shows the probability that the player earns N = 100 dollars with-
out first getting ruined for either fair or unfair game. The odds of winning
a bet have been taken as p = 0.5, p = 0.51 and p = 0.49, respectively. Note
that although the inequities are very small the behavior of the committor is
completely different. To have a probability of winning equal to half, the man
has to start with 50 dollars if the game is fair, with an initial stake of less
than 20 dollars if the game is in his favor and an initial capital of about 80
dollars if the game is against him. In the three cases considered, if the player
decides to start the game with X, = 50 dollars, the chances of success are
equal to 50%, 85% and 10%, respectively.
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2.3 Committor functions for a continuous time
Markov process

This section deals with the committor function in the case of continuous time
Markov processes. The section begins by introducing the general concepts of
Markov processes, such as the propagator, the invariant distribution, and the
differential equations that these objects obey. In addition, the notions of sta-
tionarity, homogeneity and ergodicity of a Markov process will be introduced.
Then the concept of committor function is defined and it is proved that this
function is the solution of a partial differential equation with appropriate
boundary conditions. The section concludes by discussing two examples in
which the equations defining the committor can be solved analytically. These
two examples, which are the Wiener and Ornstein-Uhlenbeck processes, will
allow understanding the general properties of a committor function and will
be preparatory for the study of the committor in more complicated systems.

2.3.1 Markov processes

Let Q C RY be the phase space of the system and X (t) = (X;(¢), -+, Xn(t))
be a random variable which takes values in €. Let ¢, > t,_1 > --- > tj
be an ordered sequence of times and xg,--- ,z, the values assumed by the
process at these times, i.e. x; = X(t;) for i = 1,--- ,n. The process X(t)
is a Markov process if it has the following property [Arnold, 1974, Gardiner
et al., 1985, Van Kampen, 1992, Metzner, 2008, Boffetta and Vulpiani, 2012]:

[P(:Ena tn|$n—17 Zfn—l; cr 5 o, tO) = [P(:L'na tn|xn—17 Zfn—l)- (223)

The only differences between Eq. (2.23) and Eq. (2.2) are that the phase space
Q) of a continuous time Markov process does not need to be a countable set
and the time variable ¢ takes values in R and not in N. Thus, a Markov
process is a process such that the future is completely determined (in a
probabilistic sense) by the knowledge of the present state of the system. A
Markov process is completely determined by the knowledge of the initial
probability distribution p(zg,%y) and the propagator G(xy,ti|xg,to). These
objects can be two generic distributions and they only need to satisfy the
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following relationships

p(x1,t1) :/dyG(azl,tl\y,tO)p(y,tO), (2.24)
Q
G($2,t2|$0,t0):/d?JG(%,t2|y,t1)G(%t1|ﬂ70,t0)- (2.25)
Q

The relation (2.24) is valid for any stochastic process and it expresses the fact
that the one-point distribution p(x1,t;) can be obtained by marginalizing the
two-point distribution p(z1, t1; g, to) = G(21, t1]|zo, to)p(z0, to). The integral
equation (2.25) is known as the Chapman-Kolmogorov equation and is a
fundamental relation that the conditional probabilities of a Markov process
must satisfy. In fact, it can be proven that any two distributions that satisfy
Eqgs. (2.24),(2.25) define uniquely a Markov process [Gardiner et al., 1985,
Van Kampen, 1992].

By making very mild assumptions, the Chapman-Kolmogorov equation
can be reformulated into a differential equation for conditional probability.
It can be proven (see [Gardiner et al., 1985] for a detailed derivation) that
the evolution of G(z, 1]y, ty) is ruled by
OG(x,t1ly,to) al

E)tl N : 8951

+ / dz [W<$|Zat1>G<Z7tl|yat0) - W(Z|l’,t1)G(I’,t1‘y,t0)] )
Q

Ai(z, )G (2, 1]y, o) —

[\'JIH

(2.26)
where
L G(at+ Aty t)

W(zly,t) = lim A7 , (2:27)
1

Aat) = limg Jim - [ 02 G )G A1), (2.28)
1

Dij(x,t) = lli% Alir_rgo Kt/w e dz (z; — x:) (25 — x;)G(z, t + At|z, t). (2.29)

N
0
Z@— i (2, 0) G, tly, to) | +

Note that Eq. (2.26) deals with the time evolution of the propagator G(z, 1|y, to)

with respect to the final state z and therefore is known as forward differential
Chapman-Kolmogorov equation.
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Sometimes it is useful to study the temporal evolution of the propagator
G(z, 11|y, to) with respect to the initial variable. The equation describing this
time development is similar to Eq. (2.26) and can be expressed as

N N

IG (z, 1]y, to) ( 0G(x,t1|y,t0)) 1 ( 82G(a:,t1|y,t0))
et 523 | A Ay, to) U 00 2 Dii(y,t +
8t0 Zzl (y 0) ayz 2ZJ21 ](y 0) ayzay]

—i—/de(z\y,to) (G (z, 1]y, to) — Gz, t1]2,t0)],
Q
(2.30)

which is known as backward differential Chapman-Kolmogorov equation.
Having introduced the equations for the time evolution of the propagator
of a Markov process, it is time to mention some special classes of these
processes.
A Markov process is continuous (i.e. its sample paths are continuous
functions of time ¢t with probability one) if, Ve > 0, one has

lim dr G(x,t + At|z,t) = 0. (2.31)
At—0

|x—z|>€

This means that the requirement for a Markov process to be continuous is
that the probability to observe a finite displacement ¢ > 0 goes to 0 faster
than At as At — 0.

Another important property that a Markov process may have is the sta-
tionarity. A Markov process is said to be stationary if X (¢) and X (¢t + 1)
have the same statistics for any 7, or in an equivalent way if the joint
probabilities of the process are invariant under time translations. Hence,
since the Markov process is completely determined by the initial distribution
p(zo,to) and the propagator G(zy,t1|zg,ty) it means that p(zg,to) = ps(zo)
and G(x1,t1|xo,to) = G(x1,t1 — to|z0,0), i.e. the propagator only depends
on time difference 7 = t; — ty. If the initial distribution is not the stationary
one but the propagator depends only on the time differences, the process is
said to be homogeneous. For a homogeneous Markov process, the functions
W, A and D defined in Egs. (2.27),(2.28),(2.29) do not depend on time ¢.

As with Markov chains, ergodic processes play an important role in the
theory of stochastic processes. In general, a Markov process is said to be
ergodic if it is homogeneous and for any subset of the phase space C C (2,
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one has [Gardiner et al., 1985, Vulpiani et al., 2014]

lim % /0 dt1e(X (1)) = /C daps(), (2.32)

T—+o00

where p,(x) is the stationary distribution of the process and 1. the charac-
teristic function of the set C. A sufficient condition for Eq. (2.32) to be valid
is that

lim G(z,7ly,0) = ps(x). (2.33)

T—+00
Clearly, the stationary distribution ps(z) is a solution of the stationary for-
ward Chapman-Kolmogorov differential equation, i.e.

9 1L 9
2 )~ 52 g, Puleloo) +
n /Q dz [V (2]2)ps(2) — W (z|2)ps()] | (2.34)

(2.35)

Given the definition of continuous Markov process (Eq. (2.31)), it should
be noted that a Markov process is continuous if the quantity W(z|y,t)
(Eq. (2.27)) is identically zero, i.e. W (z|y,t) = 0. By taking W(z|y,t) =0
into Egs. (2.26),(2. 30) one obtains the so-called Kolmogorov equations

aG(xa tl ’ya tO o
8t1 Z 81’1

(x,t1)G(x, t1|y, to) — Z oz, D;; (z,t1) <$>t1|y,t0>] =

=£fw[ (x,t1]y, to), (2.36)

OG(x, t1|y, to) al ( 9G(z, t1|y,t0) 1 & ( aG(x,tlly,to))
it 1 AR Ai(y, to) 00 ) - (gt _
Otg ; (y:to) y 2 Z:: (8,10 y;0y;

= Ly [G(z, 11|y, t0)], (2.37)

where the forward and backward Kolomogorov operators are defined as

Lral) = £ Z o |0 01 3 3 o 1Dy <->]] ,
" (2.38)

N N 9

Loy () =—-L() =~ ZAi(x,t)a% () — % Z Dij(a;,t)%axj (). (2.39)
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Note that the backward Kolmogorov operator L, is the adjoint of the for-
ward operator Ly, except for a minus sign. Eq. (2.36) is also known as
Fokker-Planck equation and the operator £ as Fokker-Planck operator.

A Markov process that satisfies Eqgs. (2.36),(2.37) is known as diffusion
process. A diffusion process can be described either through the Kolmogorov
equations for conditional probabilities (Egs. (2.36),(2.37)) or through suitable
stochastic differential equations that describe the temporal evolution of a
sample path. To be more precise, let X (¢) be a stochastic process which
evolves through the stochastic differential equation (Ito form)®

X(t) = a(X(t),t) + o(X(t), )E(t), (2.40)

where £(t) is a Gaussian white noise, i.e. (&(t)) = 0 and (§(£1)€;(t2)) =
9;;0(t1 —t2). It is possible to prove [Gardiner et al., 1985] that the propagator
of this process G(z,t|y,ty) satisfies a Fokker-Planck equation (Eq. (2.36))
with A(x,t) = a(z,t) and D(z,t) = o(x,t)ol (z,1).

In Egs. (2.38),(2.39) the two operator £ and L' have been introduced.
Similarly to the case of Markov chains, for a homogeneous diffusion process
X (t) one has that the Fokker-Planck operator £ describes the evolution
of the probability distributions while its adjoint operator £ describes the
evolution of the observables. Indeed, let p(z,ty) be the initial probability
distribution of the system. The probability distribution at time ¢ is given by
Eq. (2.24). Taking the time derivative of Eq. (2.24) leads to

Oup(,t) = / dyp(y, 10)DC (. tly. to) = / dyp(y, to) £ (G ty, to)] = L1 p(z, 1),

(2.41)
where in the last passage the linearity of £ has been used. By virtue of
Eq. (2.41) if the probability distribution p(z,t) converges to a stationary
distribution p(x) as t — +oo, the latter satisfies the stationary Fokker-
Planck equation, i.e.

Ll [ps(x)] = 0. (2.42)

Concerning the observables, let f(x,t) be a function defined as

flat) = / dyg(y)G (. t]z,0) = / dyg(n)Gy, 0z, ~1),  (2.43)

This thesis deals only with Ito stochastic differential equations.
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where the second equality is due to the homogeneity of the process. By
differentiating Eq. (2.43) with respect to time ¢ one obtains

O,f (1) = / dyg(y)AGy, O, —t) = / dyg(y)L (G, Oly, —1)] = LI (z.1)).

(2.44)

In the next subsection the committor function will be introduced and it

will be shown that it is the solution of a Dirichlet problem involving the
backward operator L.

2.3.2 Committor functions: definition and equation

Let X (t) be a homogeneous diffusion process which takes values in the phase
space ). The process evolves through a stochastic differential equation of
the form .

X(t) = a(X()) + o(X(1))S(1), (2.45)

where (1) is a Gaussian white noise.

Let C C Q a subset of the phase space. The first hitting time 7¢(x) is
defined as the smallest time for which X (¢) belongs to C, as a function of the
initial condition X (0) = z, i.e.

Te(z) = inf{t : X(¢) € C|X(0) = x}. (2.46)

Let A and B be two disjoint subsets of the phase space (2, i.e. A, B C 2
and AN B = (). The committor function ¢(z) for the sets A and B is
the probability that a trajectory starting at point x visits B first rather
than A first [Onsager, 1938, E et al., 2005, Vanden-Eijnden, 2006, Metzner
et al., 2006, Bovier, 2006, Metzner, 2008, Metzner et al., 2009, Prinz et al.,
2011,Schiitte et al., 2011,Bowman et al., 2013,Schiitte and Sarich, 2015,Lopes
and Lelievre, 2019, Thiede et al., 2019]:

q(z) = P(1g(z) < 7a(2)). (2.47)

As explained in Sec. 2.1 Eq. (2.47) is a general definition and is not restricted
exclusively to Markov processes but, in the case of Markov processes, the
committor function ¢(x) is also the solution of a Dirichlet problem involving
the adjoint of the Fokker-Planck operator [E et al., 2005, Metzner, 2008,
Thiede et al., 2019].
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To deal with the first hitting times problems, it is convenient to note
that the Fokker-Planck equation (Eq. (2.36)) can be written in the form of
a continuity equation

0G(z,t]y,0)
ot

where J;(z,tly,0) = A;(x,t)G(z, t|y,0) — %Z] % [D;j(x,t)G(x,t]y,0)].

In order to derive the differential equation that defines ¢(x), it is useful to
consider the set S = AU B as an absorbing set®. This means that the propa-
gator G(z,t|y,0) must satisfy a backward Kolmogorov equation (Eq. (2.37))
with the condition G(z,t|y,0) = 0 for y € S. If the process X (t) is ergodic,
it is certain that it will hit the frontier of S, denoted by 0S8, if it is observed
for a time long enough. However, the committor function is not the proba-
bility that the system hits & but the probability that it hits the part of S
corresponding to B.

Let z(z;b)|0S(b)| be the probability that the process hits S at point b,
where |0S(b)| denotes the area of the surface element at point b. Then, the
committor function is nothing but

o(z) = /8 db=(z )9S ). (2.49)

= LG (x,t]y,0)] = =V - J(z, t|y,0) (2.48)

The quantity z(z;b) can be expressed as a function of the current J(b, t|z,0)
as follows

+oo
(2 0)|S(b)| :/ dt J(b, t]z,0) - OS(b). (2.50)
0
By considering that W = LG(x,t|ly,0) one has
+oo “+o0o
/ dt 9,7 (b, |z, 0) - DS (b) = L [/ dt J(b, t]z,0) - aS(b)| =
0 0

= L[2(2:0)|0S(B)]] = —J(b,0]z,0) - OS(b) =0 if = #£b (251

Eq. (2.51) shows that z(z;b) is an element of the kernel of the operator £ for
x # b. Since L is a linear operator one obtains

L) = £ UaBdbz(x; b)|88(b)|] - /aBdbE[z(x;b)Hc“)S(bﬂ —0. (252)

6The derivation of the differential equation for the committor closely follows the deriva-
tion for the distribution of exit points in [Gardiner et al., 1985].
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Thus, it has been shown that the committor obeys to the equation L[g(z)] =
0 for ¢ S. To complete this equation, it is necessary to specify the proper
boundary conditions. Clearly, it is certain to exit from the point b if the
process starts from b, therefore z(b; b)|0S(b)| = 1. Furthermore, since all the
points of the set S are absorbing, for any point x € S such that x # b the
probability that the process will leave the region through b is equal to 0.
Therefore, one has that ¢(z) = 0 for 2 € A and ¢(x) = 1 for x € B. Putting
all together, one obtains that the committor function ¢(z) is the solution of
the Dirichlet problem

q(x) =0 if ze€ A,
q(z) =1 if z€ B, (2.53)
Llg(z)]=0 if ¢ AUB.

In the next subsection, two examples where the problem 2.53 can be
solved analytically will be considered.

2.3.3 Examples: Wiener and Ornstein-Uhlenbeck pro-
cesses

In this subsection the committor function is computed for two simply one-
dimensional Markov processes: the Wiener process and the Ornstein-Uhlenbeck
process.

A Wiener process X (t) = W(t) is defined by the formal equation

W (t) = V2DE(t), (2.54)

or, equivalently, its propagator G(z, t|y,0) obeys at the Fokker-Planck equa-
tion )
Da G(z,tly, 0)'
0x?

From a physical point of view, the Wiener process can be thought of as
a process that describes the position of a colloidal particle immersed in a
viscous fluid.

The phase space of the system () coincides with the real line, that is
2 = R. Consider the sets A = (—o0,a] and B = [b,+00) with a < b. The
committor function g(x) corresponds to the probability that the process W (t)
enters in B before entering in A knowing that W (0) = x. Since in this case

0,G(x, 1y, 0) = (2.55)
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the Fokker-Planck operator is self-adjoint, ¢(z) is the solution of the Dirichlet
problem

0%q(z)
D 52 0, ¢q(a)=0, ¢q(b) =1 (2.56)
The solutions of the partial differential equation D% = 0 are linear func-

tions of the form ¢(x) = ax 4+ 5. The two coefficient o and § are found by

imposing the boundary conditions g(a) = 0 and ¢(b) = 1, obtaining a = -

b—a
and # = —3%-. Hence, the committor function ¢(z) is
T —a
= . 2.57
ola) = 2= (2.57)

Eq. (2.57) shows that for the Wiener process the committor function grows
linearly from the value 0 in A to the value 1 in B. The growth is independent
on the diffusion coefficient D and the slope only depends on the length of
the interval. Furthermore, it can be seen that to have a probability greater
than 0.5 to reach first B rather than A, the process must start beyond the
middle of the range, i.e. x > “T*b Thus, this example is analogous of the fair
game in the gambler’s ruin problem (see the last expression in Eq. (2.22)),
where the odds of winning or losing a bet are equal. This is not surprising
since the Wiener process is exactly the generalization of the random walk in
a continuous space. To obtain the exponential solution equivalent to that of
Eq. (2.22), it is necessary to consider a drift term in Eq. (2.54). This means
to consider the process X (t) defined by

X(t) = p+ V2DE(t), (2.58)

which can be thought to describes the position of a colloidal particle immersed
in a viscous fluid and driven by a constant force p. For instance, it could
represent the position of a pollen grain in water subject to gravitational force.

Also in this case, the Fokker-Planck operator is self-adjoint and it is

equal to LT = —,ua% + Daa—;. Hence, the committor function is defined by
the Dirichlet problem
Oq(z) | ()
h—g TP =0, a(a)=0, q0)=1 (2.59)

whose solution is

(2.60)
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It can be noted that Eq. (2.60) reduces to Eq. (2.57) when & — 0. It means
that, when the drift term g is much smaller than the diffusion coefficient
D, the process X (t) roughly behaves like a Wiener process W (t¢) and the
committor function ¢(x) is almost linear. Instead, in the case |u| > D, the
committor function is almost constant except for a region of size % around
a or b, according to p > 0 or pu < 0, where ¢(z) changes abruptly from 0 to
L. In fact, if > 0 and p > D, q(x) ~ 1 for all = such that (x —a) > %. In
the opposite limit, i.e. when pu — —oo, one has that ¢(x) ~ 0 except for a
tiny region around b.

Fig. 2.2 shows the committor function ¢(z) for the three cases p = 0,
p > 0and p < 0. It can be noted that although the ratio £ is of order O(1),

1.09 — u=0
H_
— k=2
— H_
0.8 1 b
0.6
—_—
%
o
ey
0.4
0.2
0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

X

Figure 2.2: Committor function g(z) for the process defined by Eq. (2.58).
The sets A = (—o0, —1] and B = [1, +00) have been considered. The blue,
orange and green curves indicate the case of a pure diffusion (u = 0), positive
drift coeflicient (1 > 0) or negative drift coefficient (1 < 0), respectively.

the behavior of the committor is quite different from one case to another.
When p = 0 the committor function is linear, while for p # 0 it is an
exponential function. For g > 0, the particle is driven towards positive and
therefore, for many initial positions, it will be more likely to visit B first than
A. In the opposite case (1 < 0) the particle is driven towards the set A and
therefore the probability to reach B first is small except if the initial position
of the particle is chosen in the neighborhood of B. If the initial position of
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the particle is chosen to be the middle of the interval [a, b], the probabilities
to reach B before A are 50%, 85% and 10% for the three cases yu = 0, u = 2D
and p = —2D, respectively. The comparison between Fig. 2.2 and Fig. 2.1
and between the values of the committor in the middle point of the interval
further highlights the similarity between the two problems, showing that the
process X (t) (Eq. (2.58)) is the continuous equivalent of the Markov chain
considered in Sec. 2.2.3.

The second example that is considered is the Ornstein-Uhlenbeck pro-
cess. Historically, it was the first stochastic differential equation to appear in
physics, introduced in 1908 by the mathematician Paul Langevin to describe
the velocity of a Brownian particle. The stochastic differential equation that
describes this process is the following:

X(t) = —kX(t) + V2DE(t). (2.61)

In this equation the drift coefficient acts as a restoring force and tries to bring
the process towards its equilibrium position as long as £ > 0, while for £ < 0
the drift tends to force the system away from the equilibrium. For such a
process, the Dirichlet problem defining the committor (see Eq. (2.53)) takes
the form

dq(x) 9%q(x)
—hz ox +D 0x?

where the sets A = (—o0,a] and B = [b,4+00), with a < b, have been
considered. It is quite simple to show that the solution of Eq. (2.62) is given

by
) e ()
= L2 .
[ dyexp (£542)
Thus, the committor function depends on the parameter v = %. In the
limit v — 0, the process X (t) behaves roughly like a Wiener process and the
committor function becomes approximately linear. Instead, for |y| — +oo,
since the integrands of Eq. (2.63) are exponentials and therefore the integrals
are dominated by the maximum of the integrands over the interval [a, b], the
behavior of the committor strongly depends on the end points of the interval
la, b].
The committor function for the three cases v — —o0, v — +ooand v — 0
is shown in Fig. 2.3. It can be seen that for small values of v the committor is

=0, qg(a)=0, ¢q(b)=1, (2.62)

(2.63)
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Figure 2.3: Committor function ¢(z) for the Ornstein-Uhlenbeck process.
The sets A = (—o0, —1] and B = [1, +-00) have been considered. The blue,
orange and green curves indicate the three cases v < 0, v > 0 and v ~ 0,
respectively.

indistinguishable from a linear function. For v > 0, the committor function
assumes the value % almost everywhere, except for two small region of size %

around A or B where ¢(z) passes from 0 to % and from % to 1, respectively.
In the limit v — —o0, the committor function is equal to 0 in a wide interval
close to the region A and it is equal to 1 in the neighborhood of B, while it has
a sharp transition from 0 to 1 around the point x = 0, which corresponds to
the point where the integrand of Eq. (2.63) takes its maximal value. It should
also be noted that, for v > 0, ¢(x) is bigger than the linear committor for
x < 0 while it is smaller than the linear committor for > 0. For v < 0 the
opposite is true and the committor function is smaller than a linear function
for z < 0 and it is bigger for x > 0. This is consistent with the fact that for
k > 0 the system is attracted towards equilibrium while in the opposite case
the system is moved away from it.

To conclude this section, it is important to note that, for stochastic sys-
tems in one dimension of the form

X(t) = A(X (1) + V/2D(X (1)), (2.64)

the committor function of two sets A = (—o0,a] and B = [b, +00) always
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has an explicit formula, i.e.

xT

J.
Q(x) = ab
.

dy

()] .
dy [(y)] ™

where

¥(y) = exp [/y dm%} . (2.66)

2.4 Numerical computation of the committor

In the previous section the theory of the committor function for both Markov
chains and Markov processes has been introduced. This section, instead, will
be focused on presenting how to compute committor functions with numer-
ical methods. In particular, three methods will be introduced. The first
one, called direct estimation, consists in computing the committor from its
definition (Eq. (2.47)) by performing Monte Carlo experiments. The second
one, which is valid exclusively for ergodic dynamics, still aims to compute
the committor from its definition (Eq. (2.47)), but this is done by averaging
suitable functions over long trajectories. The third option, valid for diffusion
processes, consists in solving numerically the Dirichlet problem which defines
the committor (see Eq. (2.53)). Then, some machine learning methods that
estimate the committor function from observations are briefly mentioned.
Finally, it is explained how to validate an estimation of the committor func-
tion. To this purpose, two score functions are introduced: the Brier score
and the logarithmic score.

2.4.1 Direct estimation

The direct estimation consists in performing Monte Carlo experiments for
computing the committor function of a process X (t). Such a method is valid
for both deterministic and stochastic dynamics, since it only requires to be
able to generate N different realizations of the process with the same initial
condition.

To be more precise, suppose that one needs to compute the committor
function ¢(x) at point x for two sets A and B. To achieve this result, N
realizations of the process X (t) can be initialized at X(0) = x and then
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evolved through the dynamics until they reach A or B. Let Np(x) denote
the number of realizations that ends up in B. An estimation of the committor
q(z) is given by

_ Ng(z)

) = =22, (267)

which converges to the exact value in the limit N — +oc.

If one needs to compute the committor over the entire phase space €2, a
similar procedure can be employed. Indeed, let {C;}1<;<; be a partition of
the phase space Q, i.e. C;; NCj, = 0 for j; # jo and szlcj = Q. Then, for
each set C;, one can generate N different realizations of the process X (¢) with
initial condition X (0) = = € C;. Let Np(C;) be the number of trajectories
that reach the set B first, knowing that they start inside the set C;. The
committor function ¢(x), for any point z € C;, is

q(x) = M, (2.68)

N

which converges to the real committor when N — 400 and J — +o0.

While this procedure is conceptually simple, it has at least two draw-
backs. The first one is that this approach is feasible as long as one is able
to generate precise initial conditions. Although this can be done in numeri-
cal simulations, it may not be the case in real laboratory experiments. The
second drawback is related to its computational cost. In fact, since one has
to observe N different realizations of the process until they reach one of the
two sets, the time for a realization to reach the sets must be sufficiently
small. Furthermore, even if the time to hit the two sets is small enough, this
method is impractical for high dimensional systems, since the number J of
sets C; needed to partition the phase space {2 grows exponentially with the
dimension.

2.4.2 Committor computation based on a long trajec-
tory

For an ergodic process, being it deterministic or stochastic, the committor
function can be computed by using the information contained in one (or
more) long trajectory.
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Let 1,,.,, be the variable defined as

1 if 715 < 74,
Lpcr, = 2.69
BSTA {0 otherwise. ( )

From the definition of the committor (Eq. (2.47)) it can be seen that

q(z) = L, []]‘TB<TA] ) (2.70)

where E, [-] denotes the average over the stationary distribution of the process
conditioned to the constrain X (0) = x. Furthermore, it should be noted that
Eq. (2.47) can be rewritten as

P(ms < 74; X(0) = 2)

o) = P(rs < 7alX(0) = ) = e

(2.71)

where the numerator stands for the joint probability of observing 75 < 74
and X (0) = z, while the denominator is simply given by ps(z)dz. Therefore,
one has

ps(x)q(x)dr = P(mg < 74; X(0) =) = E[L,,<-,0(X(0) —x)].  (2.72)

By using the ergodicity for replacing the statistical average in Eq. (2.72) with
temporal averages one obtains

pu()ale) = I / CS(X(0) — )L (2.73)
while the stationary distribution is given by
1 /7
ps(z) = lim - i O(X(t) — ). (2.74)

By introducing a spatial and temporal discretization, Eqgs. (2.73),(2.74)
can be used to compute an estimation of the committor function [Lopes and
Lelievre, 2019, Lucente et al., 2019]. As in the previous section, let {C;}1<j<s
be a partition of the phase space Q. Let {X,}1<n<n, be a realization of the
process observed at discrete time t, = nAt with T'= N;At. The probability
for the system to be in the set C;, denoted by p(C;), is equal to

Nt
1
p(C;) = N, Z Ix,ec;, (2.75)
n=1
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while the probability that it is in the set C; and that it will visits the set B
before A, indicated by pg(C;) is simply given by

N¢

1
Nt Z :H-XnECj :H-TB(Xn)<TA(Xn)' (276)
n=1

ps(C;) =
Finally, by combining Eqgs. (2.75),(2.76) the committor function turns out to
be N
€)= p5(Ci) _ Donta Lxnee; LX) <ra(xn) 2.77)
’ p(CJ> Zivil :H-XnECj
Although both the direct estimation of the committor and the compu-
tation based on a long trajectory rely on Eq. (2.47), the latter should be
preferred since it uses all the informations that a trajectory carries with it.
However, as it will be seen in the next chapter, this method may suffer from
sampling issues. In fact, a finite trajectory cannot visit the entire phase space
Q). Therefore, meaningful results can be obtained only for the part of the
phase where the dynamics spends enough time.

2.4.3 Committor computation solving the Backward
equation

It has be seen in Sec. 2.3.2 that for a continuous Markov process (i.e. a dif-
fusion process) the committor function ¢(z) is the solution of a second order
partial differential equation (Eq. (2.53)). Hence, the committor function can
be computed by solving Eq. (2.53) numerically. This can be achieved by em-
ploying any integration scheme for partial differential equation, for instance
by employing the finite difference method which is illustrated here for one
dimensional dynamics.

The finite difference method aims to approximate the derivatives of a
function with finite difference equations [Smith et al., 1985]. To derive
this method, consider the Taylor expansions of the committor function ¢(x)
around the point x:

q(x + Az) = q(x) + a%(;)AI + %828q;f)Ax2 + O(Az?), (2.78)
q(x — Az) = q(x) — aqa(;)Ax %82;;;13)sz + O(Ax?). (2.79)
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By adding or subtracting Eqgs. (2.78),(2.79) one obtains

q(x) _ gle + Az) + q(x — Ax) — 2(x)

ox?2 Az? ’
dq(z) _ q(z+ Az) —q(z — Ax)
or 2Ax ' (2:80)

These two formula suggest that the Dirichlet problem (2.53) can be ap-
proximated by a system of linear equations. In fact, let A = (—o0,a] and
B = [b, +00) be the two sets for which the committor function needs to be
computed. It means that the set (AU B)° where L[g(z)] = 0 is equal to
the interval [a,b]. To obtain the system of linear equations, consider L + 1
points x; = a + [Ax, with x; = b, and let ¢; denotes the committor function
computed at point x = x;. Clearly, the boundary conditions for the Dirichlet
problem are go = 0 and ¢ = 1. Instead, for 1 <[ < L — 1 one has

Az 2 Ax?

where A; = A(x;) and D; = D(z;). By solving Eq. (2.81) one obtains an
estimation of the committor that converges to the real one when Az — 0.

Unlike the two methods described in the previous sections, such an ap-
proach can only be used for diffusion processes. In spite of this limitation, it
has the great advantage that its computational cost does not depend on the
intensity of the noise. Therefore, when transitions between sets A and B are
rare it is preferable to use this method since generating several trajectories
ending in A or B or a single trajectory long enough to cover a relevant por-
tion of the phase space can take a very long time and may not be feasible in
practice [Rolland and Simonnet, 2015].

Solving the problem (2.53) numerically is feasible as long as the system
under investigation has few degrees of freedom. When the dynamics takes
place in an high dimensional phase space 2 the number of linear equations
to be solved grows exponentially with the dimension, highlighting the impos-
sibility of finding a solution with finite computational resources.

—q_ 1 4 —2
AlCJHl Q-1 n leﬂ+1+q£ 1 q _0, (2.81)

2.4.4 Machine learning estimation

The style of this subsection slightly deviates from the style of the chapter.
In fact, the purpose here is to mention the possibility of estimating com-
mittor functions from observations. A rigorous treatment of the methods
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mentioned here is beyond the scope of this thesis. Nonetheless, it is impor-
tant to mention recent works which are somehow related to the topics of this
manuscript.

Many interesting methods have been or are currently being devised to
learn committor functions: based on direct machine learning [Pozun et al.,
2012], using a characterization of the committor function for diffusions as a
solution of a partial differential equation [Khoo et al., 2019, Li et al., 2019],
computing the committor function from a finite state Markov chain [Schiitte
et al., 1999, Prinz et al., 2011,Noé and Rosta, 2019, Tantet et al., 2015], pos-
sibly a Markov state model approximation of the dynamics [Ulam, 2004].
Recently a very interesting approach has been considered starting from a
Galerkin approximation of the dynamics generator, or the Koopman opera-
tor. Finite dimensional approximations of the dynamics generator have been
used to identify good reaction coordinates [Froyland et al., 2014, Bittracher
et al., 2018], or to evaluate eigenfunctions of the operator [Giannakis et al.,
2015, Giannakis, 2019, Williams et al., 2015, Mardt et al., 2018], sometimes
with climate applications [Giannakis et al., 2015, Giannakis, 2019]. Recently
such direct Galerkin approximation has been used to directly compute com-
mittor function, avoiding the burden of discretizing a high dimensional phase
space [Thiede et al., 2019, Strahan et al., 2021].

In Chapter 4 a new method for estimating committor functions from
dynamical observations will be developed.

2.4.5 Validation of a committor estimate

Having introduced several numerical methods to compute the committor
function of a system, it is natural to ask how to evaluate the quality of a
particular estimate. First of all, note that the committor function ¢(z) is
the probability of success of a spatially dependent Bernoulli trial where the
two possible outcomes are the occurrence of the event 7z(x) < 74(x) or
Ta(z) < 15(x) whose probabilities are ¢(z) and 1 — g(x), respectively. Thus,
the predictive problem to be faced consists in assigning a probability to two
mutually exclusive events. The two mutually exclusive events are the two
possible values assumed by the random variable 1, (;)<r,(») Which for brevity
will be denoted by y(z), i.e. Y(2) = Lrg(z)<ra(a)-

Therefore, the objective of estimating the committor function is to find
the best approximation of the joint probability P(z,y) of two events (x,y),
with z € 2 and y € {0,1}. Note that these random variables are not in-
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dependent. Indeed, it has been argued that the conditional distribution of
y with respect to z is Bernoulli with parameter ¢(z), where ¢ is the com-
mittor function. Thus, by assuming that the process is stationary (i.e. x is
distributed according the stationary distribution p,(x)), one has

P(a,y) = P(x)P(ylr) = ps(2) [g(2)0(y — 1) + (1 — q(2))o(y)],  (2.82)

where 4(+) is the Dirac delta function.

In this context, evaluating an estimate of the committor function requires
finding a way to quantify the discrepancy between the predictions made using
P(z,y) compared to those obtained using its approximation P(w,y). Since
usually the committor function is computed using realizations of the process
under investigation, or in any case, it is computed only in regions of the
phase space mostly visited by the dynamics, it can be assumed without losing
generality that also for the distribution f’(m, y) the variable x is distributed
according to the stationary distribution ps(z), i.e.

A

P(z,y) = P(2)P(yle) = ps(2) [a()0(y — 1) + (1 = 4(2))d(y)] . (2.83)

The score functions to be used, denoted by R(P, p), must have two funda-
mental properties. The first one is that R exhibits an extremant for P = P,
which is equivalent to requiring that % = 0 for P = P. The second fun-

damental property is that the function R has an empirical counterpart R
that can be computed from observations, since the true committor function
is often unknown in real problems.

The request for an empirical counterpart R is what distinguishes scores
from distances (or pseudo distances). In fact, one could try to use a distance
such as the L5* norm or a pseudo distance such as the Kullback-Leibler diver-
gence to compute the error of an estimate of the committor function. How-
ever, as will be well illustrated in the next two subsections, these distances
cannot be computed from the data. The quantities that can be calculated
instead are the scores associated with these two distances. The scores differ
from distances only by an additive constant. The diagram in Fig. 2.4, to-
gether with the discussions in the following sections help to better understand
this important concept.

Two score functions that are widely used in probabilistic forecasts, which
are related to the L5° norm and the Kullback-Leibler divergence, are the
Brier score and the logarithmic score.
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Kullback-Leibler
divergence
(Relative entropy)

+ additive constant

Distance Score
Estimation from observations: Not possible Possible
+ additive constant
Lé’f norm Brier Score

Logarithmic Score
(Cross entropy)

Figure 2.4: Diagram showing the relation between distances and scores. The
main difference is that the score can be computed from observations while an
estimate of the distance is accessible only when the true committor function
is known. Furthermore, each distance is associated with its score function
and they differ by an additive constant.

Brier score

Imagine to draw N points (X,,,y,) with n = 1,--- | N from the true prob-
ability distribution P(z,y). For simplicity, assume that each point X, = x
has been sampled N, times, i.e. there are N, different values for X,, denoted
by x,, with n, = 1,---,N,, and that for each point z,,, there is a number
N, of independent forecasting instances yy, (z,,) with n, = 1,---, N,. Thus,
the total number of points N will be N = N, N,,.

Consider an estimate P(z, ) of the true distribution P(z, ), which differs
from P(x,y) only by the dependence of y on z as expressed in Eq. (2.83). The
Brier score quantifies the difference between p(x y) and P(z,y) by averaging
the stochastic variable (y(x) — ¢(z)) over P(x,y), i.e.

B = Ep [(y() — ()] = / dady Pz, ) (y(z) — d(x)).  (2.84)

In its original formulation, proposed by Brier in 1950 [Brier, 1950], this
score was designed to quantify the quality of a probabilistic prediction of a
single event (i.e. not space-dependent) for a class of n independent forecast-
ing instances. With the notation introduced above, this means considering
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as a score the quantity B, (x) defined as

B (1) = 1 S (d(x) ~ o, ()" (2.85)

Y ny=1

The space-dependent Brier score By, () is thus a random variable, with val-
ues between 0 and 1. The random variable (¢(z) —yn, (x))? can only assumes
two values: (G(x) — 1)® with probability ¢(z) and ¢(z)*> with probability
1 — q(x). Therefore, the average value of By, (z) is

E [By, (2)] = (1—d(2))a(0)+d(2)(1—q(x)) = a(z)(1—q())+(d(x) —g(x))*.
(2.86)
Eq. (2.86) shows that the average space-dependent Brier score E [B N, (a:ﬂ can
be decomposed into the sum of two positive terms. The first term represents
the variance of a Bernoulli trial with parameter ¢(x) and it is related with
the intrinsic stochasticity of the forecast itself. Indeed, since the variable
y is stochastic, there will always be an uncertainty in its prediction. This
uncertainty is as great as ¢(z) is close to the value 0.5 and it vanishes only
for g(x) = 0 or ¢(z) = 1. The second term, instead, measures how different
are the actual committor ¢(z) and its approximation ¢(z). Such a term is
always positive (since it is a square difference) and is equal to 0 if and only if
G(z) = q(z). From these considerations it is therefore clear that the smaller
the score, the more accurate the estimate of the committor function is.
In the limit N, — 400, according to the law of large numbers one has

Niiinoo By, (z) = E [By,(2)] . (2.87)

So far, exclusively how to quantify the quality of the estimate of the
committor at a given point x has been discussed. To take into account also
the contributions deriving from other regions of the phase space it is sufficient
to add the contributions coming from different points:

1 1 . 1 .
By =Y > (@) =y, ()’ = = D (A(Xa) —ya)* (288)
N, N, N &
By considering the limits N, — +o00 and N, — 400 (or equivalently the
limit N — 400) into Eq. (2.88) one obtains
lim lim By =Ep[(y(x) —q(x))] = B*. (2.89)

Ng—r00 Ny—00
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Eq. (2.89) shows that By is the empirical version of B, that is By = B**.
Furthermore, by using Eq. (2.86), it easy to see that

S+l Val—q)

where || f ||7 = L5 (f) = [ da f*(2)ps(x).

The second term in the right hand-side of Eq. (2.90) depends only on the
true committor ¢(z) and therefore it is constant if one imagines the Brier
score as a function of ¢(z). Thus, in all cases in which the real committor
function is known, the difference of ¢(z) from ¢(z) can be studied using the
weighted norm L5°, since it is the only non-constant term in Eq. (2.90).

Therefore, it has been shown that the Brier score can be used for assessing
the quality of an estimate of the committor function. In fact, it satisfies the
two basic requirements for a score function and it has a simple expression
which involves the L5® distance. The major limitation, as noted in [Benedetti,
2010], is that it is not appropriate for dealing with rare (or frequent) events.
In fact, consider a state x for which the committor function is relatively small,
for example g(z) = 1073. Also suppose that two estimates of the committor
function ¢'(x) = 0 and ¢*(x) = 1073 are available. These two approximations

lead to the two values E [B}Vy (x)] =107 and E [B?Vy(x)} = (1-107%)1073.
Thus, by using the real committor function the score is reduced by only 0.1%
showing that it is very unfair in evaluating forecasts of rare events.

B =[lqg—q

(2.90)

2
ps?

Logarithmic score

The logarithmic score is nowadays widely used both for the validation of
probabilistic predictions and in the field of machine learning. From the point
of view of information theory, this can be understood given its relationship
to relative entropy.

The relative entropy, also known as Kullback-Leibler divergence, was in-
troduced by Kullback and Leibler in 1951 [Kullback and Leibler, 1951] as a
measure to quantify how different two distributions are.

Let P(z,y) and P(x,y) be two distributions, then the relative entropy is
defined as [Kullback and Leibler, 1951, Kullback, 1997]

S(P(e.9) 1P (o 0) = [ dadyPla.y)log ﬁgz; (2.91)
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and it measures the information lost when P(:E,y) is used to approximate
P(z,y). .

By inserting the expressions (2.82),(2.83) for P(x,y) and P(z,y) into
Eq. (2.91), one obtains

S(P(x,y)“p(l'vy)) = /da:dyP(:)s,y) log}?L’Zi

P(z,
) a1 ()
= [ deote)[aoon 55 + 1~ ateon =5
= C(q) + Const(q) = S*, (2.92)

C(q) = —/dwp( )a(z)log (¢(z)) + (1 — gq(x))log (1 — 4(x))],  (2.93)
and

Const(q) = /dxp(fv)[Q(if) log (q(x)) + (1 — q(x))log (1 — g(x))].  (2.94)

Note that S”s and C(q) are well defined if and only if ¢(x) =0 = ¢(z) =0
and ¢(x) = 1 = ¢(x) = 1. Furthermore, it easy to verify that

argmin{S”} = argmin{C(¢)} = ¢. (2.95)
q q

Eq. (2.92) shows that the relative entropy S* is the sum of two terms.
The term Const(q) is minus the spatial average over the stationary distribu-
tion of the entropy of a spatial dependent Bernoulli trial with parameter ¢(z),
which is consistent with the interpretation of the committor given above. It
does not depend on ¢ and corresponds to an additive constant in the equation
for SPs. The other term is the cross entropy (or logarithmic score) between
P(z,y) and P(x,y) and it is related with the mutual information between
the two probability distributions. It should be noted that the logarithmic
score C(q) contains all the dependence of S?* on ¢ and therefore minimize

SPs is equivalent to minimize C(q).
To be a useful score function, the corresponding empirical score must
exist. Unfortunately, the quantity S”* can be computed only when the true
committor is known due to the term Const(q) in Eq. (2.92). Nevertheless,
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it is possible to provide an empirical version of the logarithmic score C(q),
denoted by C(§). In fact, consider again N points (Xn,yn) withn=1,--- /N
drawn from the true distribution P(x,y). Let Cn(G) be the empirical score
defined as

Cn(@) =~ D log (40X0)) + (1 = ) og (1 = 4(X,))] =

= [0, — ) log (d(0) + (1~ ) o (1 — )]
"~ (2.96)
When N — +o0 one has
i, 5y 32006 = aun = et
Jim =SS~ a)(1 -y = @)1 —al@), (297
which imply that 3
lim Cy(q) = C(q). (2.98)

N—+4o00

It has therefore been shown that the logarithmic score C'(§) can be used
as a score function as it has an empirical version that can be computed from
data and it is also minimal for § = ¢. Furthermore, since C(q) is well defined
for g(z)! = 0 (g(x)! = 1) unless g(x) = 0 (¢(z) = 1), the logarithmic score
tends to discourage trivial assignments such as ¢(xz) = 0 (¢(z) = 1), thus
behaving better than the Brier score in evaluating the predictions of rare (or
frequent) events [Benedetti, 2010].

2.5 Time dependent committor functions

So far, the problem of computing the probability that a process enters a
certain region of the phase space before another region has been considered.
This section is devoted to discuss a slightly different problem which can
nevertheless be addressed using the same formalism introduced previously.
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The problem to be taken in this section is strictly related to prediction
problems. Indeed, it often happens that it is necessary to compute the prob-
ability that an observable O of the system exceeds a given threshold ¢ within
a time 7. For instance, O could be the average temperature of a country
and one may be interested in computing the probability to have an extreme
hot day in the incoming few weeks.

Although it may appear that these prediction problems have nothing to
do with committor functions, in this section it will be shown that these
probabilities are committor functions of an auxiliary process. Furthermore,
it will be explained that in the case in which the observable O does not
explicitly depend on time, there is a relationship between the probability of
exceeding the threshold and the first hitting time of a region of the phase
space. The section concludes by discussing this prediction problem in the
context of a two-dimensional Wiener process.

2.5.1 Definition and equation for time dependent com-
mittor

Let X (¢) be a stochastic or deterministic dynamical system and let O (X (t), t)
be an observable of the system, i.e. a function O : [0, +00) X 2 — R. Then,
suppose that one is interested in computing the probability q(z,to; ¢, T) that
O (X (t),t) exceeds a threshold ¢ within the time interval [ty, to+ 7], knowing
that the process starts at X (0) = z, i.e.:

to<t<to+T

q(z,to; ¢, T) =P < max [0 (X(t),t)] > ¢|X(0) = x) : (2.99)

As previously mentioned ¢(z,tp;(,7T) is nothing but a committor function
for an auxiliary process Y [Lestang et al., 2018]. In fact, consider the process
Y(t) = [0 (X(t),t),t] and let A and B be two subsets of the phase space of
Y. The definitions of the two sets are

A={y=[zto+T]: 2 <}, (2.100)

B={y=lzt]:2>Cand t € [ty,to + T]}. (2.101)
Fig. 2.5 shows a schematic illustration of the phase space of Y (¢) and it
could be useful to visualize the two sets A and B.

For the process Y (t) one can define the committor function as G(y) =
P (5(y) < 74(y)). Furthermore, by noting that Y (0) cannot be arbitrary
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L+T 1

Figure 2.5: Schematic illustration of the phase space of the process Y (t)
together with the two sets A and B. The green line represents a trajectory

for which 75 < 74 while the red line corresponds to a trajectory that reaches
the set A before than B.

but is related to X(0) = x through the relation Y (0) = [O (z,0),0], it
can be argued that conditioning a probability with respect to Y (0) = y is
equivalent to conditioning it with respect to the value X (0) = z”. Therefore
one has that G(y) = G(x,0) = P (r5(z) < 74(x)). In addition, it should be
noted that

P (togr%%i@ O (X(t),t)] > ¢|X(0) = x) =P (r5(z) < Ta(x)), (2.102)
which is equivalent to say that q(z,to; ¢, T) = G(y).

Therefore, it has been shown that the quantity ¢(x,to;(,T) is a com-
mittor function and can be computed by using the methods introduced in
Sec. 2.4.1,2.4.2.

So far, no assumptions have been made about the observable O. Among
the various observables, two classes are of particular interest:

"This statement is true as long as the inverse function of O exists at time ¢ = 0.
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1. instantaneous observables O (X (t)) which are functions that do not
depend explicitly on time,

2. time averaged observables O (X (t),t) =
is time independent.

1
T

Note that the observables which belong to these classes are invariant under
the transformation ¢ — ¢ + 7 provided that the process X(t) is a station-
ary process. This invariance is important as it allows the introduction of
an integral equation for g(x,to;(,T). Indeed, consider a stationary Markov
process X (t) and an observable which belongs to one of the two classes. Let
G(y,t|z,0) denote the propagator of the process. Then, it can be noted that
the probability that the observable O exceeds the threshold (, knowing the
initial condition X (0) = x, is equal to the sum over all possibles intermediate
states X (tp) = y of the probabilities that O exceeds the threshold ¢ when
the process starts at X (¢y) = y times the propagator G(y, to|x,0), i.e.

W%MQT%j/@W< max KNX®JH>QXUw=y)GmmMﬁ)

to<t<to+T
(2.103)
By using the invariance under the transformation t — t 4 7, one can write

0<t<T

P (togrgg” [0 (X(1), )] > (| X(to) = y) =P (max [0(X(1),1)] > ¢|X(0) =y

P( i KNX@JH>QX@®=y>=ﬂ%&QT> (2.104)

to<t<to+T

By combining Eqs. (2.103),(2.104) one obtains

q@WQﬂz/@dﬁMﬂﬁ@M%% (2.105)

which shows that exists a relationship between the time-dependent commit-
tor function at two different times.

In the next subsection, it will be shown that for instantaneous observables
the time dependent committor function ¢(x, 0; ¢, T') is the solution of a partial
differential equation analogous to Eq. (2.53) and moreover that it is related
with the cumulative distribution of first hitting times of the process X (t).
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2.5.2 Relation with cumulative distribution of first hit-

ting time

Let X (t) be an homogeneous continuous Markov process and O (X (t)) be an
observable which depends on time only through the stochastic process X (t).
Since O (X (t)) is time independent, one can define a subset C C € which
contains all the points  such that O(z) > ¢, i.e. C = {z: O(x) > (}.

Hence, the time-dependent committor function ¢(x,0;{,T) is the proba-
bility that the first hitting time 7¢(z) of set C is smaller than 7"

q(x,0;¢,T) =P(re(x) < T). (2.106)

Following the same reasoning that in Sec. 2.3.2 led to the Dirichlet problem
for the committor function, it is possible to prove that ¢(z,0;(,T") satisfies
the following partial differential equation

dq(x,0;¢,T)
oT

with the boundary condition ¢(x,0;¢(,T) =1 if x € C.

Thus, two other methods have been provided for computing ¢(z,0;(,T):
the first one consists in solving Eq. (2.107) analytically or numerically, while
the second one aims to compute ¢(z,0;,T) by integrating up to time 7'
the first hitting time distribution of the set C. Once ¢(z,0;(,T) have been
computed, it is possible to obtain ¢(z,ty; (,T) by means of Eq. (2.105).

= —L[q(x,0;¢,T)], (2.107)

2.5.3 Example: Wiener process

The aim of this section is to apply the formalism of the time-dependent
committor function for computing the probability that a Brownian particle
leaves a planar domain through a line within a certain time 7. Consider a
Brownian particle which moves on a planar surface whose position is denoted

by X (t) = (W,(t), W,(t)). The equation of motion are

W,(t) = V2D&, (t),
W,(t) = V2DE,(t). (2.108)

Consider the line x = a with a = 1, and imagine having to compute the
probability that the particle leaves the phase space passing through the line
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within a time 7" = 10. Such a problem can be solved with the formalism
previously introduced by considering the observable O (X (t),t) = W,(t) and
the threshold ¢ = a.

First, note that although the system lies in a two-dimensional space,
the two components are independent of each other. Therefore, the time-
dependent committor function will only depend on the x—component of the
initial condition. Moreover, due to the independence of the two components,
also the propagator can GG be written as the product of a propagator for
the y—component and a propagator for the z—component and the absorbing
boundary conditions will be imposed only for the x—component propagator.

Let G, (W,(t)|W,(0)) and G, (W, (t)|[W,(0)) be the propagators of the two
components. Then, the total propagator G which satisfies the right boundary
conditions is [Redner, 2001]

G(X(1),t]X(0),0) = Go (W (1) W (0)) Gy (W, (£)[W,,(0)),
L e (Wf) - Wy<0>>2)

vVAar Dt 4Dt ’

G (W, (£)| W, (0)) = —— [exp < (Wa(t) = W2 (0)) ) . ((Wm ~ (20— W,(0))) )} |

VirDt 4Dt 4Dt
(2.109)

G, (W, ()| W,(0)) =

Then, the probability that the first hitting time of the set C = {(z,y) :
x > a} is smaller than 7' is equal to

P(re(z) < T) =1— /CG(X(T),T\X(O) = (2,y),0) = 1 —erf (%) ,

(2.110)

where erf(-) denotes the error function.
Since O is an instantaneous observable, the time-dependent committor
function is equal to the probability that the first hitting time of the set
C is smaller than 7. Thus, one has that ¢(z,0;a,7) = P(re(z) < T) =

1 — erf ( a4_;T>. Clearly, ¢(x,0;a,T) — 0 if T" — 0 because if the particle

does not have enough time it will not leave the domain. In the opposite
limit, i.e. when 7' — +o00, ¢(z,0;a,T) — 1 given that sooner or later the
particle will reach the threshold a. The same considerations hold for the
diffusion coefficient D. Indeed, when D > 1 the particle is much more likely
to leave the domain within time 7" than in the case D ~ (. Considering the
dependence of ¢(z,0;a,T) on x, one has that if x is close to a then ¢(x,0; a, T')
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is close to 1, while for x < a the time-dependent committor is equal to 0.
Note that the passage from ¢ ~ 0 to ¢ ~ 1 takes place in a region that is
smaller the smaller the term 4DT is.

Fig. 2.6 shows the time-dependent committor function ¢(z,y,0;a,T) for
the two dimensional Wiener process. The diffusion coefficient has been taken
equal to D = 1072, In the left panel it is shown the theoretical committor
while the right panel shows the same quantity computed from an ensemble
of long trajectories, as described in Sec. 2.4.2. It can be seen from Fig. 2.6a
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0.8 0.8
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(a) Theoretical committor. (b) Commiittor computed from an ensem-

ble of long trajectories.

Figure 2.6: Time-dependent committor function ¢(z,y,0;a,T) for the two
dimensional Wiener process. Left panel: theoretical result for the committor
(Eq. (2.110)). Right panel: committor function ¢(x,y, 0; a,T') computed from
numerical simulations.

that as expected the time-dependent committor function ¢(z,y,0;a,T) does
not depend on y. Furthermore, ¢(z,y,0;a,T) is equal to 0 almost every-
where except for a region of size~ O(1) close to the threshold a. In addition,
the growth of ¢(z,y,0;a,T) is faster the closer = is to a. By comparing
Fig. 2.6a and Fig. 2.6b, it can be seen that the committor function estimated
through numerical simulations reproduces the theoretical results quite accu-
rately. This confirms that the numerical methods introduced in Sec. 2.4 can
be used in this type of prediction problems, showing once again the generality
of the concept of committor function.
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Chapter 3

Committor Functions for
Climate Phenomena at the
Predictability Margin: The
example of ENSO in the Jin
and Timmermann model

In this chapter, the methods introduced in Chapter 2 are applied for studying
the committor function of the Jin and Timmerman model of El-Nino. In this
context, it is shown that the ability to predict the probability of occurrence
of the event of interest may differ strongly depending on the initial state.
The main result is the new distinction between intrinsic probabilistic pre-
dictability (when the committor function is smooth and probability can be
computed which does not depend sensitively on the initial condition) and in-
trinsic probabilistic unpredictability (when the committor function depends
sensitively on the initial condition).

The content of this chapter is intended to be a paper manuscript and has
been submitted to the ” Journal of the Atmospheric Sciences” (JAS) [Lucente
et al., 2021]. For this reason, the chapter is self-consistent and can be read
independently from the rest of the thesis. Therefore, some of the previously
described ideas, especially those discussed in the introductory chapter, are
discussed again. The reader who is reading the thesis manuscript entirely
can therefore skip the introduction of this chapter and start reading from
Sec. 3.2.
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3.1 Introduction

It has long become clear that statistics and probability are the natural lan-
guages for climate: for given boundary conditions, there is a typical state
(or several, in case of bimodality), the climatology, and fluctuations around
typical conditions, referred to as climate variability, involving various time
and space scales. At first sight, this kind of description may seem orthogo-
nal to the problem of weather forecasting, which consists in predicting the
exact state of the atmosphere at a given future time. However, notwithstand-
ing the use of probabilities in numerical weather forecasting for uncertainty
quantification, these two approaches meet in several areas of current climate
research [Kalnay, 2003, Dijkstra, 2013, Ragone et al., 2018]. For instance, we
are often interested in predicting the occurrence of specific fluctuations of
the climate system, be it a given mode of climate variability, such as the El
Ninio Southern Oscillation (ENSO) [Philander, 1990], regime changes [Tantet
et al., 2015], or rare events such as heat waves [Ragone et al., 2018|, sudden
stratospheric warming, cold spells, extreme precipitations, or any other event
of importance. All these events have a probability of occurring any given year,
i.e. with respect to climatological conditions, but one may also be interested
in their probability of occurrence conditioned on the state of the climate sys-
tem at the time of the prediction. For instance, given the global impact of
events like ENSO, much efforts have focused on developing methods to fore-
cast it several months in advance [Latif et al., 1994, Clarke, 2008, Chekroun
et al., 2011, Ludescher et al., 2014, Feng and Dijkstra, 2017, Nooteboom et al.,
2018]. Similarly, one may want to estimate the probability of occurrence of
a summer drought based on soil moisture in the spring, the probability of
occurrence of a heat wave a few weeks in advance, based on the observed
atmospheric circulation, or the probability of an extreme hurricane season,
based on sea surface temperature. Such forecasts are extremely challenging,
but would be rewarded with proportionally large benefits, given the socio-
economic impact of these events at the local and global scales, especially in
a climate change context [AghaKouchak et al., 2012, Coumou and Rahm-
storf, 2012, Field et al., 2012, Herring et al., 2014]. While it is not clear that
this may be reliably achieved for all the above examples, due to their dif-
ferent physical nature, conceptually all these events fall in the same class of
prediction problems. The goal of this paper is to discuss the mathematical
structure of such climate prediction problems.

Indeed, the mathematical structure of weather forecasting is quite clear:
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it consists in solving an initial value problem (IVP). Given an initial con-
dition zy belonging to an appropriate phase space, we are interested in
computing the trajectory z; = ¢'zg, where ¢' is the flow of the dynam-
ical system, encapsulating the evolution equations. For many dynamical
systems, this description only holds for a finite time in practice, due to sen-
sitive dependence on initial conditions. This limitation was already known
from mathematicians in the 19th century, such as Poincaré and Hadamard.
For low-dimensional chaotic dynamical systems, this time scale, up to which
deterministic forecasts are relevant, corresponds the the Lyapunov time [Cas-
tiglione et al., 2008]. In the atmosphere, the predictability horizon, about
two weeks in practice, corresponds to the time it takes for undetectable errors
at the smallest scales of the flow to contaminate the large scales [Thompson,
1957, Novikov, 1959, Lorenz, 1969b]. Early numerical weather prediction at-
tempts fell short of this predictability horizon, both due to model errors
and sparsely constrained initial conditions. As models improved and ob-
servational data became much denser, owing in particular to the advent of
satellite observations, performance rose and skillfull forecasts are now close
to the theoretical barrier [Bauer et al., 2015]. Beyond this limit, the dynam-
ics becomes effectively stochastic. Notwithstanding the fact that the relevant
phase space may be different for climate dynamics over geological time scales,
climate therefore corresponds to the statistical properties of some stochastic
process (z;),.,. Over very long times, we expect those statistical properties
to be independent of the initial condition. In other words, the mathematical
concept relevant for climate is the invariant measure of the system. For lack
of better techniques, in practice we still compute these properties by aver-
aging over long times and over realizations using ensembles of trajectories
obtained by numerical integration of climate models. In any case, the invari-
ant measure only describes the system for times larger than the mizing time,
after which the initial condition is forgotten. However, in the applications
cited above, the time scale of interest is the intermediate case for which a
deterministic forecast is not relevant, but for which some information, more
precise than the climate average, might be predicted. We call this range of
time scales the predictability margin.

Prediction problems at the predictability margin are of a probabilistic
nature, because they are concerned with time scales beyond the determinis-
tic predictability horizon of the system (e.g. the Lyapunov time). However,
we stress that the Lyapunov time scale, a global quantity, is clearly not the
relevant dynamical quantity for this predictability problem. By contrast, at
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Figure 3.1: Schematic illustrating the concept of predictability margin: deter-
ministic predictability is only possible until a finite time (e.g. the Lyapunov
time). The associated mathematical problem is an initial value problem
(IVP). Long term statistical properties (beyond the mixing time) do not de-
pend on the initial condition, and the corresponding mathematical object is
the invariant measure. In the intermediate range of timescales, which we call
the predictability margin here, the appropriate mathematical concept is the
commuttor function, which encodes the probability of a given event to occur,
condition on the state of the climate system at the time of the prediction.

the predictability margin, the predictability clearly depends on the current
state of the system. Then, the question is: what is the relevant mathe-
matical concept for prediction problems at the predictability margin? The
relevant mathematical concept is called the committor function [E et al.,
2005, Vanden-Eijnden, 2006]. This is a very generic concept: a committor
function is the probability for an event to occur in the future, as a function
of the current state of the system. Committor functions have first been in-
troduced in climate sciences in [Lucente et al., 2019], and has been used to
study sudden stratospheric warming [Finkel et al., 2020, Finkel et al., 2021]
or to understand the flow of ocean debris [Miron et al., 2021]. The interest
of putting a name, the committor function, to this otherwise very common
and generic concept, is two-fold. First it allows to study its mathematical
properties and to related them to key concepts in dynamical systems, for
instance the predictability margin, as we do in the present work. Second,
it comes with specific theoretical and computational approaches to compute
this important quantity, for instance transition path theory, see for exam-
ple [Vanden-Eijnden, 2006, Metzner et al., 2006, Metzner et al., 2009] and
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references therein. In atmosphere dynamics, a very interesting use of smart
ways of estimating the committor function for a simplified model of sudden
stratospheric warming is provided by [Finkel et al., 2021].

Many problems in medium-range forecasting fall within the predictabil-
ity margin range; to illustrate the interest of committor functions, we will
select only one exemple of application, the problem of ENSO prediction, us-
ing a very simple model. While, as mentioned above, many studies strive
to predict the occurrence of El Nino a few months in advance, we shall ad-
dress here a slightly different problem, focusing on predicting strong El Nino
events on longer time scales. This is also a relevant question from the point
of view of climate dynamics; while strong El Nino events have been observed
almost periodically since the 1950s, with a return time around 15-20 years,
historical data and paleoclimatic proxies indicate that ENSO may exhibit
high variability over centennial timescales [Cobb et al., 2003, Khider et al.,
2011, McGregor et al., 2013] and beyond [Rickaby and Halloran, 2005, Fe-
dorov et al., 2006, Cobb et al., 2013]. We study the dynamics of a low-
dimensional stochastic model proposed to explain the decadal amplitude
changes of ENSO, the Jin and Timmermann model [Timmermann and Jin,
2002, Timmermann et al., 2003]. This model is not aimed at reproducing any
precise properties of the real El Nino Southern Oscillation. It is rather used
as a paradigm example to introduce the concept of a committor function,
and to study its main properties. This will lead us to define probabilistic
predictability and unpredictability, some concepts that should be useful for
other applications.

We show that probabilistic prediction at the predictability margin de-
pends on the initial state, and that probabilistic predictability is encapsulated
in the committor function. This property is analogous to classical, determin-
istic predictability, which is known to depend on the state of the system:
some circulation patterns, such as the positive phase of the North Atlantic
Oscillation (NAO), lead to improved predictability. However, we stress that
deterministic and probabilistic predictability are different concepts: proba-
bilistic predictability means that the probability of the event does not depend
sensitively on the initial conditions. This corresponds to a region of phase
space where the committor function has gentle variations with the initial
conditions. In these areas, the event occurs with a probability p that can
be easily determined in practice because of these gentle variations. On the
contrary, probabilistic unpredictability corresponds to regions of the phase
space with a rough committor function. In these regions, the occurence of the
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event is also probabilistic. But the probability itself has very rapid variations
with the initial conditions, which make the prediction highly dependent on
the level of precision with which the initial condition is known. The existence
of such features, and especially the new and most interesting probabilistically
predictable region, should be generic for most prediction problems in climate
dynamics.

This paper also discusses relations between qualitative properties of the
committor function, finite time Lyapunov exponents, and the stability prop-
erties of trajectories with respect to noise perturbations. It also discuss
methodological aspects for a data-based approach for the computation of
committor functions.

The dynamics of the Jin and Timmerman model, when perturbed by a
weak noise, is characterized by rare transitions between a limit cycle and a
strange attractor [Roberts et al., 2016, Guckenheimer et al., 2017]. Based on
large deviation theory, and with generic hypothesis, the average transition
time [E[7.] to see such transitions is expected to change following an Arrhe-
nius law: E[7.] =, Aexp (AV/c?), where o is the noise amplitude. Using

numerical simulations, we demonstrate that the Jin and Timmerman transi-
tion times do not follow the expected Arrhenius law for a very large range of
small noise amplitudes. We conjecture that this very interesting phenomenon
might be the first observed counterexample to the expected generic result,
for deterministic dynamics perturbed by weak noises. We argue that this is
related to the intricated entanglement between the basins of attraction of the
limit cycle and the strange attractor.

The paper is organized as follows: in Sec. 3.2 we define the Jin and
Timmermann model [Timmermann and Jin, 2002, Timmermann et al., 2003].
In this model, the occurrences of strong ENSO events correspond to noise-
induced transitions between a strange attractor and a limit cycle [Roberts
et al., 2016, Guckenheimer et al., 2017]. We study in Sec. 3.3 the statistics
of such transitions, and we show that they do not obey an Arrhenius law.
Finally, in Sec. 3.4 we introduce the committor function, we compute it
for the Jin-Timmerman model, and characterize the regions of the phase
space with qualitatively different predictability properties. In the regime of
intermediate noise amplitude, at the predictability margin, we delineate four
regions (see Fig. 3.7): two regions of deterministic predictability (where the
event occurs with probability 0 or 1), one probabilistically predictable region
(where a value of the probability 0 < ¢ < 1 can clearly be predicted with very
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mild dependence with respect to initial condition), and finally a region which
is unpredictable in practice, because the strong dependence with respect to
the initial condition prevents any precise prediction, either deterministic or
probabilistic.

3.2 The Jin and Timmermann model

El Nino Southern Oscillation (ENSO) is one of the most important mode
of climate variability at the interannual time scales [Philander, 1990]. El
Nino events consist in an increase of the Sea Surface Temperature in the
eastern equatorial Pacific Ocean, leading at the local scale to reduced ther-
mocline depth, reduced upwelling and reduced nutrient supply, thereby af-
fecting marine life. Such events are correlated with a reorganization of the
Walker circulation in the atmosphere, known as the Southern Oscillation.
The global phenomenon, referred to as ENSO, has major impacts all over
the world. However, the nonlinear coupled atmosphere-ocean dynamics of
ENSO makes it very difficult to predict [McPhaden et al., 2015]. Models of
various complexities have been constructed to capture the dynamics of El
Nino at different levels of realism [Clarke, 2008, Sarachik and Cane, 2010].
In order to introduce and illustrate the concept of committor function in the
simplest possible framework, we shall consider here one of the most ideal-
ized models, consisting of a low-dimensional stochastic process. This simple
dynamical model, introduced by [Jin, 1997a, Jin, 1997b], accounts for the
recharge-discharge mechanism which is at the basis of ENSO. This model
was later extended by [Timmermann et al., 2003] and was related to the
decadal amplitude changes of ENSO [Timmermann and Jin, 2002]. The
model describes the evolution of three variables:

1. T}, the Sea Surface Temperature in the western equatorial Pacific Ocean,
2. Ty, the Sea Surface Temperature in the eastern equatorial Pacific Ocean,
3. hq, the thermocline depth anomaly in the western Pacific.

Assuming a thermal relaxation towards a radiative-convective temperature
T, the equations of motion can be written as [Timmermann and Jin, 2002,
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Timmermann et al., 2003]:

aT
S = —ally = T) — efr(1 - on) (Ty — Th).
t
oT:
a_; = —Q{(TQ — Tr) + gﬁ’?’(l — Jnt)(TQ - Tsub)7
ohy |
E =T (_hl — §bLT> N (3]-)

where € and ( represent the strength of the zonal and vertical advection, Ty,
denotes the temperature being upwelled into the mixed layer, 7 represents
the zonal wind stress, L denotes the basin width, b captures the efficiency
of wind stress in driving thermocline tilt, 1/« measures a typical thermal
damping timescale and 1/r is the dynamical adjustment timescale of the
thermocline depth. The term 7, in the equations for temperatures is a Gaus-
sian white noise with unit variance and the level of stochasticity is controlled
by the noise amplitude . This term takes into account the fluctuating com-
ponent of wind stress. In the last equation the noise has not be considered
because wave processes are filtered out in the thermocline equations of the
model [Timmermann et al., 2003].
The expressions of Ty, and 7 are

Tr+Tro TT—TTO H—i-hg-Zo
tanh | —
. T ™ ( h* ’

-1 (3.2)

8

where T, is a reference temperature, hs is the thermocline departure from its
reference value H, zy represents the depth at which ( takes its characteristic
value, h* measures the sharpness of the thermocline. The relation between
the eastern and western thermocline depth anomalies is

hy = hy + bLT. (3.3)

In order to study the dynamical behavior of the system it is useful to
perform a change of variables from physical to dimensionless ones [Roberts
et al., 2016]. So, we define

Tsub =

T, - T T -1,
Tr = =
TO Y y TO Y
h1+H—ZO ~ t
g=——"2 | t=_
h* t*
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where Ty = % and t* = ﬁﬁ*

tions (3.1) read

After the change of variables, the equa-

&= pd(x* — ax) + x[v +y + c — ctanh (z + 2)] — Dy(z,y, 2)n;,
y=—pd(a* +ay) + Dy(w,y, 2)m,

z:d@—z—g), (3.4)

where

Da(a,,2) = [(1+ p6)a® + 2y + cx(1 — tanh (z + 2))]o,
Dy(z,y, 2) = pdz’a,

and the new control parameters 9, p, ¢, k, and a are defined as follows:

rbL eh*p
0= 7, p=—"
(Bh* rbL
abL T, -1, H— 2z
a=—, c= ———, k= )
eSh* 2T, h*

The deterministic version (o = 0) of equations (3.4) was widely studied in
literature. For some parameter values, the system has only one attractor, a
periodic orbit. Figure 3.2-b illustrates such a periodic orbit, with the param-
eter values [, p, ¢, k,a] = [0.2625,0.3224,2.3952, 0.4032, 6.8927] and dimen-
sional normalization constants [Tp,t*, h*| = [2.8182°C, 104.9819 days, 62 m].
[Roberts et al., 2016] also analyzed the mechanism through which this limit
cycle arises. [Roberts et al., 2016] defined strong El-Nino events for this model
as periods in this limit cycle for which the temperature is large. Figure 3.2
shows a qualitative comparison of the eastern Pacific sea surface temperature
anomaly for this limit cycle with the El-Nifnio3 index. Both the measurements
and the model display positive temperature anomaly excursions with a return
time of approximately 15 years.

Varying the parameter d, a strange attractor emerges through a period
doubling cascade, as shown by [Guckenheimer et al., 2017]. Moreover, [Guck-
enheimer et al., 2017] show that for some parameter values the limit cycle and
the strange attractor coexist. Following [Guckenheimer et al., 2017], we use
the parameter values [0, p, ¢, k, a] = [0.225423,0.3224,2.3952, 0.4032, 7.3939]
all along this paper. While [Guckenheimer et al., 2017] considered only the
deterministic model (¢ = 0), we also consider later on the stochastic model
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Figure 3.2: Top plot: observed sea surface temperature anomalies over the
last decades, spatially averaged over the Nino-3 region. Bottom: eastern
Pacific sea surface temperature anomalies simulated with the deterministic
Jin and Timmermann model.
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(0 #0). For o = 0, the strange attractor and the limit cycles are shown in
Fig. 3.3. They are intertwined in a complex way.

For this dynamics, we define a strong El-Nino event as any situation when
x becomes larger than the threshold x. = —1. As can be seen from Fig. 3.3,
this only happens in the limit cycle, and not in the strange attractor. Note

Figure 3.3: The two intertwined attractors of the Jin-Timmermann model
(limit cycle in blue and strange attractor in red).

that with this choice of parameters, the return period of strong El Nino
events on the limit cycle is around 50 years (the time unit is t* = 105 days
and the period is 186 non-dimensional time units), rather than 15 for the
parameters studied by [Roberts et al., 2016].

For o = 0, when the parameter a is time periodic rather than constant,
mimicking a seasonal forcing, [Guckenheimer et al., 2017] observed transi-
tions between the strange attractor and the limit cycle. In the following we
consider a constant a, and rather study noise induced transitions between
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these two attractors, for o # 0.

We now discuss qualitatively the effect of the noise level o. For small
o > 0, the dynamics can switch from one regime close to the strange attractor
to another regime close to the limit cycle. This is evident by looking at
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Figure 3.4: Time series of the variable x for o = 0.00005. The dynamics
exhibits a switching between a regime close to the strange attractor (bounded
regions around z = —2.5) and a limit cycle regime.

Fig. 3.4, where the time evolution of the variable x for o = 5- 107" is shown.
As can be seen, the system switches between epochs where the variable x is
bounded around the value z = —2.5 (strange attractor regime) and epochs
where there are large oscillations with a period around 50 years (limit cycle
regime). Strictly speaking, for o # 0, there is not anymore two attractors.
However, as illustrated in Fig. 3.4, for small enough o, the trace of the two
deterministic attractors is clearly visible. For small o, we will thus continue
to discuss the strange attractor and the limit cycle, for simplicity. Strong
El-Nino events occur only during the limit cycle regime. In the next section,
we will study transitions from the strange attractor regime to the limit cycle
regime (or equivalently to the strong El Nino regime).

The frequency of transitions from the strange attractor to the strong El-
Nino regime increases as the amplitude of the noise increases. For large values
of o, the dynamics is completely dominated by the noise and the distinction
between the two attractors becomes meaningless.
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3.3 Statistics of the first exit times for tran-
sitions to strong El Nino regimes

As discussed in the previous section, we define strong El Nino events as
periods of time when x. > —1, which occur along the limit cycle. In this
section, we study transitions from the strange attractor regime to the strong
El Nino regime, and how their statistics change when the noise amplitude o
is varied.

We consider X (t) = (z(t),y(t), z(t)) solutions to the stochastic Jin and
Timmerman model (3.4). We define first exit times from a point x to the
strong El Nino regime as

Te(x) = inf{t > 0: z(t) > z. | X(0) = x}. (3.5)

The random variable 7.(x) depends both on the realization of the noise and
on the initial condition x. The statistics are understood as averages over
both the noise realization and the invariant measure of x over the strange
attractor of the deterministic system (o = 0), the so called SRB measure.
For instance the mean first exit time E[7.] is defined as

Elr) = [ dx psnn (0l )] (3.6)

where E,ps¢[-] is the expectation with respect to the noise realization and
dx psgrp(x) is the SRB measure.

The SRB measure is defined through time averages of the deterministic
dynamics (¢ = 0). In practice, we thus compute a very long trajectory of
the deterministic dynamics. We then choose a set of 1000 initial conditions x
taken randomly among all the points of this deterministic trajectory. Then,
for any fixed value of ¢ > 0, for any initial condition x, we compute the
first-passage time 7, for several noise realizations.

In Fig. 3.5, we show the probability density function p(7.) of 7, based on
this ensemble. The probability density function is close to an exponential:
p(7.) = Ae™*7. The parameter \ is then equal to the inverse of the mean
first exit time: A~ = E[7.].

Because typically 7.(x) is much larger than the relaxation time to the
strange attractor, one might expect that for most of the points of the strange
attractor the dependence of 7.(x) on x is practically irrelevant. Indeed, we
have verified numerically that except for a small region around the transition
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Figure 3.5: Logarithm of the Probability Density Function of the first exit
time between the strange attractor and the limit cycle for 0 = 5 x 107° sam-
pled by direct integration (red) of the stochastic differential equation (3.4),
and the exponential distribution p(7.) = Ae ™™ with A™! = [E[r.] (green).
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paths, the statistics are independent from the initial condition, up to numer-
ical accuracy. Hence we have E[7.] ~ Egrp[7e(X)] =~ Enpise[7e(X)] for generic
points x close to the strange attractors.

As illustrated in Fig. 3.5, the mean first exit time E[r.] is of the order
of 1,000 in non-dimensional time units. The measured value is 7. = 1,039.
As 7. is much larger than the mixing time of the SRB measure, of order
1, then it is natural to expect that the first exit times should be random
and distributed, with a very good approximation, according to a Poisson
statistics. The observed exponential distribution is consistent with such a
Poison statistics. Similar exponential distributions for first exit times were
observed for the deterministic dynamics with periodic modulation of the a
coefficient [Guckenheimer et al., 2017].

We now study how the mean first exit time E[7.] varies when the noise
amplitude o is changed. One generally expects an Arrhenius law:

AV

[E[Tc] a:O Aeo? . (3.7)
Arrhenius laws where first derived by Kramers for gradient dynamics forced
by white noise x = —dV/dx + v/207(t), where AV (the potential barrier) is
the difference of potential between the original attractor and the saddle-point
separating the basins of attraction of the two attractors (see for example the
textbook by [Gardiner et al., 1985]). The Jin and Timmermann model is how-
ever not a gradient dynamics, and the function V' is not explicit. For such non
gradient systems, the exponential factors of the Arrhenius law can be justified
through a Laplace principle for a path integral representation of the transi-
tion probabilities, or asymptotic studies of Fokker-Planck operators [Graham,
1987], or through large deviation theory [Freidlin and Wentzell, 2012]. The
function V' is then called the quasipotential, which can be computed through
a variational problem, or computing viscosity solutions of a Hamilton-Jacobi
equation. The sub-exponential prefactor A in Eq. (3.7) can be computed
through Eyring-Kramers formulas, derived either for gradient [Bovier et al.,
2004] or non-gradient dynamics [Bouchet and Reygner, 2016, for transitions
from a point attractor and through a point saddle. Many generalizations ex-
ist, for instance for periodically modulated systems [Dykman and Ryvkine,
2005] or systems approaching a bifurcation [Herbert and Bouchet, 2017]. In
large dimensional systems related to climate dynamics, effective Arrhenius
laws have been observed numerically, for instance in transitions in beta-plane
turbulence [Bouchet et al., 2019] or in a simplified climate model with ice-
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albedo feedback [Lucarini and Bodai, 2019).

When one studies a transition from a strange attractor rather than a
point attractor, or when the saddle set between the two basins of attraction
is a not a simple saddle point, then no theorem exists to put the Arrhenius
law (3.7) on firm mathematical ground. However it has been argued for a
long time [Graham, 1987], that if a finite distance d > 0 exists between the
strange attractor and the saddle set, then there is a non-zero quasipotential
difference AV > 0, and an Arrhenius law should generically be expected.

In Fig. 3.6, we show the mean first exit time E[7.] as a function of the noise
amplitude o. It ranges from transition times of about 25 years (7' = 100 in

10% 4
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1024

10-% 10-4 1073
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Figure 3.6: Mean first exit time E[7.] for the transition from the strange
attractor regime to the strong Nifio event regime, as a function of the noise
amplitude o, in log-log coordinates. In the limit of small noise amplitude
o < 107, E[r.] seems to be closer to a power-law o~ (green line) than to
the standard Arrhenius law.

non-dimensional time units, for the strongest values of the noise amplitude)
to several millenia (about 3000 years for 7" = 10000 in non-dimensional units
for weak noise). Fig. 3.6 clearly shows that the mean exit time from the
strange attractor to the regime of strong Nino events does not follow an
Arrhenius law of the form (3.7). The mean exit time seems much closer to a
power law E[7.] oc 071

In order to check the numerical robustness of our result, we computed
E[r.] using two different schemes of integration, and we checked numerical

convergence with respect to the time step At in the integration schemes. The
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first integration scheme is the fourth order Runge Kutta method to which
a zero mean gaussian white noise is added. The variance of the noise is
proportional to the integration time step At. In this way we have a precision
of At* for the deterministic part while we make an error of order VAt for
the statistics. The second integration scheme is the stochastic Runge Kutta
method which has an error of order At for a stochastic dynamics [Roberts,
2012].

Let us note that many other behaviors than exponential ones have been
observed for mean exit times. For instance a power-law has been observed
for flow reversals in numerical simulations of inviscid turbulent flows [Shukla
et al., 2016]. However for this last example, as the dynamics is not a de-
terministic system with attractors perturbed by weak noise, it was not clear
why one should have expected an Arrhenius law in the first place.

We observe a breakdown of the Arrhenius law for the Jin and Timmer-
mann model which is a deterministic system with attractors perturbed by
weak noise. This is striking. Indeed we stress again that if a finite distance
d > 0 exists between the strange attractor and the saddle set, then there is a
non-zero quasipotential difference AV > 0, and an Arrhenius law should be
expected. The distance d might be expected to be generically strictly larger
than 0.

We see two possible heuristic explanations for this interesting breakdown.
The first explanation might be that a finite distance d > 0 and a quasipo-
tential barrier AV > 0 between the strange attractors and the basin of
attraction limit cycle do actually exist, but they are extremely small. Then
the explanation of the observed breakdown in Fig. 3.6 would be that we have
not studied small enough values of . We note however that we computed
first exit times of order E[7.] = 5.10° for values of o as small as 1075. If this
first explanation is valid, this means that the Arrhenius law is practically
irrelevant even if it might be mathematically correct.

The second possible explanation might be that there exists no finite dis-
tance between the strange attractor and a possible fractal boundary between
the basins of attractions. Then for any small values d and v, there always
exist points in the strange attractor and in the boundary of the basin of
attraction at a distance smaller than d and a quasipotential differences AV
smaller than v. Many phenomenologies could then be imagined, for instance
with a distribution of a large number of transition paths, possibly infinite,
leading to a power law or an effective behavior of the first exit times described
by any function. Those conjectures are not based on any mathematical re-
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sults yet. However the possibility of a breakdown of the Arrhenius law is
a very interesting problem, that should be studied further either through
theory and mathematics, or through numerical simulations.

3.4 Committor function of the Jin and Tim-
merman model

In Sec. 3.3, we have shown that, in the stochastic Jin and Timmerman model,
transitions between the strange attractor regime and the strong El-Nino
regime occur at random times, in the limit of small noise ¢ — 0. In this
section, we focus on the associated prediction problem: What is the proba-
bility that a strong El Nino event occurs within a given timeframe, given the
state of the system at the time of prediction? We will address this question
for any finite value of the noise amplitude o.

We consider solutions X(t) = (x(t),y(t), 2(t)) of the stochastic Jin an
Timmerman model (3.4). We remind the reader that we identify a strong El
Nino with an event when z > —1. For a solution X(¢) that starts from x,
that is X(0) = x, we want to predict the probability ¢(x) that a strong El
Nino event occurs within a fixed time 7'. This is

q(x) =P (max xz(t) > —1| X(0) = X) . (3.8)

0<t<T

Recalling the definition of the first passage time to a strong El Nino regime,
Eq. (3.5),
T.(x) =inf{t > 0: 2(t) > —1 | X(0) = x}, (3.9)

we note that ¢(x) = P[r.(x) < T] is the cumulative distribution function
(CDF) of the first-passage time. We now define committor functions and
explain that ¢ is a committor function.

Committor functions. For a Markov stochastic process {Y(¢)} which
takes values in I', we define the first hitting time of the set C' as 7¢(y) =
inf{t : Y(t) € C | Y(0) = y}. For two disjoint subsets A, B C I, the
committor function G(y) is defined as the probability to hit the set B before
hitting the set A:

q(y) = P(re(y) < 7a(y))- (3.10)
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Considering the auxiliary process {Y (¢)}, with Y (¢) = (X(¢), ), and the
two sets

A={y=(x,t) | > —1and t € [0,7]} and
B={y=(xT);z<-1}, (3.11)

we see that ¢(x) = ¢(x,0). Hence ¢, in Eq. (3.8) is a committor function.
For an ergodic process, replacing statistical averages by temporal averages
in (3.10), and using y = (x,t), we have
t

o1
p(x)q(x) = lim — dt’ o (X —x) Lrp<rats

t—oo t 0

t
and p(x) = lim E dt’§ (Xy — x), (3.12)
t—oo 0
where p(x) is the stationary distribution function of X, ¢ is a Dirac delta
function, and 1{;,<,,} takes value 1 if 7 < 74 and 0 otherwise. The formulas
(3.12) can be used to estimate ¢(x) from an observed trajectory {X(¢)} of the
dynamical system. For the sake of completeness, it should be said that when
the dynamics is a stochastic differential equation, the committor function
q(x) is the solution of the Dirichlet problem [E et al., 2005, Thiede et al.,
2019].

To illustrate the concept of predictability margin introduced in Sec. 3.1,
we choose the value T=200 in non-dimensional time units, which is slightly
larger than the period of the limit cycle (the “natural” periodicity of strong
El-Nifio events which is 186), and of the order of the Lyapunov time. This
choice guarantees that for the deterministic dynamics, o = 0, each trajec-
tory starting in one point of the limit cycle almost certainly will reach the
threshold z, = —1.

3.4.1 Description of the committor function: deter-
ministic and probabilistic predictability

Figure 3.7 shows the committor function ¢(x), for different values of 0. As
q is a function of 3 variables (z,v, z), we have chosen to represent cuts of
q in different planes. We will discuss in detail the cut of ¢ along the plane
x = —2.831 (Fig. 3.7) and also cuts along the planes y = —1.1580 and
z = 1.3409 (Fig. 3.8 and Fig. 3.9, respectively). To compute the committor
function ¢(x) on the different planes we adopted the following strategy:
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Figure 3.7: Color plot of the committor function ¢(z,y, z) in the plane x =
—2.8310, for three values of the noise amplitude, o = 0 (left, deterministic),
0.00005 (middle) and 0.001 (right). Regions with uniform ¢ = 0 or 1 values
correspond to deterministic predictability, smooth regions with 0 < ¢ < 1
to probabilistic predictability, and regions with sensitive dependence on intial
conditions to unpredictable parts of phase space.

1. Discretize the plane into K = L x L cells Cy.

2. For each cell Cy, generate N = 1000 trajectories starting from a point
X € Cy.

3. Count the number of trajectories Ny that reach the threshold z. before
time T'.

Ny

4. Estimate ¢(x) for x € C as ¢(x) = F

This method is less efficient, from a computational point of view, than the
one based on Eq. (3.12). In fact, in the former we only use the information
carried by the initial condition while in the latter we use the information
carried by a much more significant part of the trajectory. The committor
function computed from long trajectories using Eq. (3.12) will be discussed
in Sec. 3.4 3.4.3.

Committor Function for the deterministic dynamics (0 = 0)

In the deterministic case (o = 0, Fig. 3.7a), as the future is completely deter-
mined by the initial condition, ¢ can only take values 0 or 1. On Fig. 3.7a, we
can distinguish three regions corresponding to two very different situations.
First, two regions correspond to uniform values of the committor function:
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in the yellow area ¢ = 1, when trajectories reach the threshold within a time
T, corresponding to large values of z; in a thick purple band ¢ = 0, when
no trajectory reaches the threshold. In those two regions, the occurrence
of strong El-Nino events is easily predicted. Everywhere else, we see very
fine filaments of alternating yellow and purple values. In this third region,
because of the sensitive dependence on the initial conditions, a small but
finite initial perturbation, of the order of 1% of the values of x or y, leads to
a different outcome. In this region, the occurrence of strong El-Nino events is
very difficult to predict. A precise definition of this third area is not intrinsic,
it depends on the actual precision with which the values of z and y can be
measured. However the distinction between areas with easy predictability
and areas with difficult predictability, might be crucial at a practical level.

One might ask what relationship exists between the regions outlined
above and the basins of attraction of the system. However, this relation-
ship is less trivial than one might expect. Although some regions reflect the
structure of the basins of attraction, this is not true in general. In fact, there
are points in the basin of attraction of the strange attractor which pass the
threshold before reaching the strange attractor, as well as points in the basin
of attraction of the limit cycle which do not reach the threshold within the
time T.

Committor Function for ¢ # 0

Figures 3.7b and 3.7c show the committor function in the case where a fi-
nite noise amplitude o # 0 is considered. As can be seen by comparing
Figs. 3.7a, 3.7b and 3.7c, adding a small noise blurs the visible structures of
the deterministic case. For larger noise values (0 = 1073), Fig. 3.7c shows
that the committor function looks smooth nearly everywhere (mathemati-
cally it is smooth everywhere, smooth here is used qualitatively and means
with mild variations). This means that the deterministic predictability is
lost for most initial conditions as (0 < ¢ < 1). Then one cannot expect to
predict the outcome in the way of a deterministic forecast. However, the
occurrence of strong El-Nino events is probabilistically predictable: the value
of the probability can be determined in practice with an excellent precision
as it changes very slowly when one changes the initial conditions. It can also
be seen on the figure that the occurrence of strong El-nino events is frequent
(¢ > 0.6 almost everywhere). This is an indication that for such a value of o
we are in the noise-dominated regime.
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The most interesting case is probably the one with the intermediate noise
amplitude o = 0.00005. In Fig. 3.7b, we delineate 4 regions: first, two re-
gions of perfect (deterministic) predictability, where the event will occur with
probability very close to 1 (region 1) or to 0 (region 2). Second, there ex-
ists a probabilistically predictable region (region 3) with good (probabilistic)
predictability properties, where a value 0 < ¢ < 1 can clearly be predicted
with very mild dependence with respect to the initial conditions. Finally, the
region 4, which is unpredictable in practice. In this region, the strong depen-
dence with respect to the initial condition prevents any practical prediction,
either deterministic or probabilistic, of the precise value of ¢. While regions
1, 2 and 4 are reminiscent of their deterministic counterparts (Fig. 3.7a),
region 3 is not. Instead, the behavior in this region is similar to the strong
noise case shown in Fig. 3.7c. It is a region where the stochasticity is large
enough to smooth out the deterministic values of ¢q. The fact that it occurs
even at very low noise amplitude is probably related to extremely unstable
parts of the phase space, for instance for trajectories passing close to unstable
fixed points or orbits. The existence of such features, and especially the new
and most interesting probabilistically predictable region (region 3), should be
generic for most prediction problems in climate dynamics.

-25 -20 -15 X . -3, X -25 -20 -15
X X

(a) o = 0.00005 (b) o = 0.001

Figure 3.8: Color plot of the committor function ¢(z,y, z) in the plane y =
—1.1580, for o = 0.00005 (left) and 0.001 (right).
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Figure 3.9: Color plot of the committor function ¢(x,y, z) in the plane z =
1.3409, for o = 0.00005 (left) 0.001 (right).

3.4.2 Dynamical characterization of the probabilisti-
cally predictable region

In order to understand the reason for which the probabilistically predictable
region arises, it can be useful to introduce a quantity which characterizes
sensitivity to small perturbations. This quantity is the largest finite time
Lyapunov exponent and it is a measure of the sensitivity to initial conditions
for the deterministic system. Let us consider two trajectories of the deter-
ministic system (o = 0) with initial conditions x and x + dx and let A(¢) be
the value of the euclidean distance between the two trajectories at time t.
The largest Lyapunov exponent Ay is defined as

_ 1 A(t)
Ap=1 1 -1 —= . 1
L= 0 A(éﬁgo ;08 <A(0)) (3:13)

Since we are dealing with predictions with a time horizon T', we believe it is
more appropriate to define a finite-time version of A;. Hence, we compute the
largest finite time Lyapunov exponent Ay as A\p = % log (%). Note that the
initial perturbations have to be considered small but finite as we have taken x
and x + 0x into the same cell C;,. Positive values of A\; mean that the distance
between the trajectories grows exponentially. This quantity is shown for the
Jin-Timmerman model in the x = —2.831 plane in Fig. 3.10. Comparing

this figure with Fig. 3.7a is enlightening: the regions of perfect predictability
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Aulx,y, 2)

Figure 3.10: Color plot of the maximum finite time Lyapunov exponent A,
as a function of the initial condition (z,y, z) in the plane x = —2.831.

(1 and 2) are associated to values of Ay which are either negative or close
to 0. Moreover, \; < 0 for almost all regions for which the deterministic
committor is equal to 1 (see the two thick yellow bands at the bottom left of
Fig.3.7a). From this description, it seems that A, is not the correct quantity
to explain the emergence of the probabilistically predictable region. However,
from a careful analysis of Fig. 3.10 it can be noted that there is a region, close
to the left boundary of region 2, for which the values of A;, are positive also
for points x such that ¢(x) = 1. It means that this region is quite unstable
with respect to small initial perturbations. Since this region belongs to the
probabilistically predictable region, it is reasonable to say that the appearance
of region 3 is related with this instability. In fact, although the instability
region is a subset of the probabilistically predictable region, it should be noted
that for o # 0 the system is perturbed at any time. The ensemble of these
small perturbations gives rise to a finite perturbation which could explain
the growth of the region of instability.

To reinforce this conjecture, we compute the averaged value of the eu-
clidean distance between two different trajectories x;(f) and x3(t), with
the same initial conditions but different realisations of the noise:(dpax) =
(maxeor ||x1(t) — x2()[|?). Figure 3.11 shows (dax) as a function of the
initial condition in the plane z = —2.831 for ¢ = 0.00005: it can be seen
that the typical values of d,. are larger in the probabilistically predictable
region than in other regions. This means that trajectories starting in this
region are more sensitive to noise induced perturbations than trajectories
starting in different regions of phase space. Therefore, the emergence of the
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<dmax(x,y,2)>

y

Figure 3.11: Color plot of the average value of the maximum distance (dpax)
as a function of the initial condition (z,y, z) in the plane z = —2.831, com-
puted for o = 0.00005.

probabilistically predictable region is qualitatively associated to an instability
present in the deterministic system which is accentuated as the amplitude of
the perturbations increases.

3.4.3 Committor function computed from long trajec-
tories

In this section we discuss the committor function computed from an ensem-
ble of long trajectories by means of Eq. (3.12). The motivation is that the
very precise strategy adopted in Sec. 3.43.4.1 is unlikely to be adapted for
real-world problems as well, because it requires a dynamical model and has a
very large computational cost. Indeed, it requires to sample an ensemble of
trajectories for every point in the phase space. For a data-based approach,
it is usually possible to observe only the evolution of a trajectory (or of an
ensemble of trajectories) over a very long time. However, individual trajecto-
ries, regardless of their length, do not fill the whole phase space. Indeed, they
usually concentrate on the region where the invariant measure of the stochas-
tic system is concentrated. Hence, the strategy adopted in Sec. 3.43.4.1 is
appropriate for computing the committor function in an arbitrary plane while
the use of Eq. (3.12) allows the computation of the committor function in
the region where the invariant measure is concentrated.

The committor function computed using Eq. (3.12) is shown in Fig. 3.12,
for the same three values of the noise amplitude as in Sec. 3.43.4.1. For this
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Figure 3.12: Color map of the committor function ¢(z, y, z) in correspondence
to the most visited region of phase space, for o = 0 (left, deterministic),
0.00005 (middle) and 0.001 (right).

figure, we used 10 000 trajectories of length 7 = 10* (nondimensional time
units) initialized in the strange attractor. Note that 7 is 10 times bigger
than the first exit time E|r.| for o = 0.00005 and 100 times greater than
E[r.] for 0 = 0.001 (see Fig. 3.6). This guarantees that the trajectories will
be distributed according to the invariant measure of the system.

As already mentioned, Fig. 3.12 shows that the trajectories do not cover
all the phase space but they are concentrated in a certain region. Further-
more, we can see that it is more appropriate to call it a manifold rather than
a region. In fact, if it were an object of dimension 3, its intersection with
a plane should define an area on that plane. Instead, it appears that the
intersections between the object and planes are lines rather than areas. This
is illustrated in Fig. 3.13 which shows an intersection between the object in
Fig. 3.12b and the plane x = —2.831 (the same plane as in Fig. 3.7). This
leads us to conclude that the trajectories are distributed over a manifold of
dimension smaller than 3.

The comparison between Fig. 3.13 and Fig. 3.7b allows us to make another
important remark on the committor function on the manifold. As can be seen
in Fig. 3.13, the committor function takes values between 0 and 1 at the two
ends of the line. For the rest, the line is made up of segments on which ¢ takes
the values 0 or 1. It is straightforward to recognize that the two ends of the
line belong to the probabilistically predictable region while the central part
of the line belongs to region 4. This highlights that the committor function
computed from long trajectories provides useful information for many of the
states of the system, that is, for all typical states. However, for atypical
conditions where we have little or no information, using ¢ to make predictions
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Figure 3.13: Color plot of the committor function for ¢ = 0.00005 at the
intersection of the manifold with the plane r = —2.831.

can lead to erroneous results.

Having made these necessary considerations, we can continue the de-
scription of the committor computed from long trajectories. By comparing
Fig. 3.12 with Fig. 3.3 we can immediately identify the strange attractor
in the manifold on which the committor function is represented. The limit
cycle is more difficult to visualize but its presence can be deduced from the
spiral behavior present in the region inside the strange attractor and from
the shape of the manifold boundaries that follow the shape of the limit cycle
in Fig. 3.3.

The qualitative structure of the committor function on the manifold is
similar to the one observed on plane cuts: in the deterministic case, we ob-
serve regions of perfect predictability, and regions where the sensitivity to
initial conditions make it unpredictable in practice. When the noise is suf-
ficiently strong, regions of probabilistic predictability appear, where a finite
value of the probability of a strong El Nino event 0 < ¢ < 1 depends only
mildly on the initial conditions (Fig. 3.12¢). It can be noted, however, that
the intermediate case, analogous to Fig. 3.7b, with coexistence of a region
of deterministic predictability, a region of probabilistic predictability, and an
unpredictable region, is more difficult to observe in this visualization.

Finally, we underline that the region of unpredictability, made by thin
filaments where the committor is a highly fluctuating function, emphasizes
again how the two attractors are intertwined in a complex way.
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3.5 Conclusion

In this paper, we have introduced a mathematical concept, the committor
function, encoding the probability that an event occurs within a given time,
conditioned on the state of the system at the time of prediction. We believe it
is an appropriate concept for many prediction problems in climate science in
a range of time scales which we call the predictability margin. It corresponds
to timescales for which a deterministic description of the system is no longer
relevant, because of the sensitive dependence to initial conditions, but for
which more precise probabilistic predictions than the climatological one can
be made, because the system has not yet forgotten completely the initial
condition.

In the context of a simple, low-dimensional stochastic model, the Jin-
Timmerman model, in a regime of coexistence of a limit cycle and a strange
attractor found by [Guckenheimer et al., 2017], we have shown that noise
could induce transitions between the two attractors. These transitions cor-
respond to regime shifts regarding the occurrence of strong El Nino events,
which are periodic in the limit cycle, with a return time close to 15 years,
and which do not occur at all in the strange attractor (in the determinis-
tic case). In the stochastic case, the occurrence of strong El Nifio events
therefore becomes random, and the waiting times follow a Poisson statistics.

In this example, we have shown that the probability of occurrence of
strong El Nino events had different predictability properties depending on
the state of the system at the time of prediction. The most important re-
sult is that there exist regions of probabilistic predictability, where the event
has a finite probability of occurring 0 < ¢ < 1, and this probability does
not depend sensitively on the initial state, and regions of probabilistic un-
predictability where the probability changes a lot if one changes by a small
and finite amount the initial condition. We expect the existence of this
dichotomy between probabilistically predictable and probabilistically unpre-
dictable regions to be a generic feature for climate prediction problems at the
predictability margin. We stress that this notion depends on the precision
with which the initial condition can be assessed.

We have also discussed the methodological aspects for computing the
committor functions. For our example, a small stochastic perturbation of
a chaotic deterministic system, we have computed the committor function
using two approaches. First, by direct sampling of ensembles of initial con-
ditions close to any point in phase space, and second, through a data based
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approach using observed trajectories. As soon as the number of degrees of
freedom increases, the first method will become impossible to use in practice,
because of the numerical cost. The second method may sometimes be asso-
ciated with sampling issues, as one can get meaningful results only for the
parts of the phase space that have been visited many times. Another method
mentioned in Sec. 3.4, would be to solve a backward Kolmogorov equation.
This method is impractical for systems with more than a few degrees of
freedom. To be able to sample efficiently committor functions in large di-
mensions, more efficient data-based methods will be necessary, relying either
on classical statistical methods or machine learning methods [Lucente et al.,
2019]. The development of such methods shall be a prerequisite for studying
climate prediction problems using more realistic models.
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Chapter 4

Coupling rare event algorithms
with data-based learned
committor functions using the
analogue Markov chain

In the previous chapters, the committor function was introduced and it was
computed for a low-dimensional model for El-Nino showing that the ability
to predict the probability of occurrence of extreme events strongly depends
on the initial condition. The purpose of this chapter is to propose a new
approach, based on the analogue Markov chain, for data-based learning of
committor functions. It will be shown that such learned approximate com-
mittor functions are extremely efficient scoring functions when used with the
Adaptive Multilevel Splitting algorithm. This approach is illustrated in the
context of two stochastic systems: a gradient dynamics in a three-well po-
tential and the Charney-DeVore model, which is a paradigmatic toy model
of multistability for atmosphere dynamics. For these two dynamics, it is
shown that observing few transitions is enough to have a very efficient data-
based scoring function for the rare event algorithm. The main advantages of
this new approach are that rare events can be simulated with minimal prior
knowledge, and results are much more accurate than those obtained with a
user-designed scoring function.

This chapter is the result of a collaboration with J. Rolland, C. Herbert
and F. Bouchet and has been submitted to the ”Journal of Statistical Me-
chanics: Theory and Experiment” (J. Stat. Mech.). Therefore, this chapter
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is self-consistent can be read independently from the rest of the thesis. The
reader is advised that the notation of this chapter is slightly different from
the rest of the manuscript. This choice was made to make the notation con-
sistent with the one known in the rare event algorithm literature. Here, an
arbitrary subset of phase space is called D instead of C',; and the first hit time
is called T instead of 7, which is used to indicated the duration of reactive
trajectories. Many of the topics discussed in the opening sections of this
chapter have already been covered in previous chapters. In order to avoid
redundancies, the reader of the manuscript can start reading this chapter
from Sec. 4.3.

4.1 Introduction

Rare events are often extremely important, either because they have a huge
impact, for instance climate extremes [Seneviratne et al., 2021], or because
they change completely the structure of the system and shape its history over
long times, for instance the dynamics of metastability [Farkas, 1927] and
multistability phenomena [Eyring, 1935, Kramers, 1940]. Such rare events
are so important in many physics, chemistry, and biology applications that
specific tools have been developed to study them, by the statistical mechanics
and applied mathematics community: theoretical approaches and dedicated
computation algorithms.

In this paper, we are mainly interested in computational approaches for
rare events. A key difficulty in numerical computation is that these rare
events can be so rare that simulating them directly might be prohibitively
expensive. Since the 50’ [Kahn and Harris, 1951], rare event algorithms
and simulations [Bucklew, 2013] that aim at reducing the computational
cost have been devised. They have been used to address many problems
in statistical physics, for instance studying percolation [Adams et al., 2008],
liquids physics [Allen and Tildesley, 2017], Lyapunov exponents [Tailleur and
Kurchan, 2007], dynamical phase transitions [Pérez-Espigares and Hurtado,
2019], first order phase transitions [Rolland et al., 2016], just to cite a few
examples among many others. Chemical physics, biochemistry and the study
of biomolecules has inspired many new technics, see for example [Bolhuis
et al., 2002, Noé et al., 2009, Metzner et al., 2009, Hartmann et al., 2014].
Recent uses in biology models [Donovan et al., 2016] and ecology has also to
be noticed.
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Recently, rare events have been studied in far from equilibrium systems
and non-equilibrium steady states, where one starts from dynamics without
detailed balance. Rare event technics have then been extended to scien-
tific fields so far unexpected, with complex dynamics. For instance in study
of multistability on turbulence [Laurie and Bouchet, 2015, Bouchet et al.,
2019, study of intermittency in turbulence models [Grafke et al., 2013, Grafke
et al., 2015, Ebener et al., 2019], transitions to turbulence in pipe and Cou-
ette flows [Rolland, 2018, Rolland, 2021, Nemoto and Alexakis, 2018], rogue
waves [Dematteis et al., 2018], atmosphere dynamics [Bouchet et al., 2019, Si-
monnet et al., 2021], climate dynamics [Ragone et al., 2018, Webber et al.,
2019,Ragone and Bouchet, 2020, Plotkin et al., 2019, Finkel et al., 2021, Finkel
et al., 2020], astronomy [Woillez and Bouchet, 2020, Abbot et al., 2021],
among many other examples.

For such non-equilibrium problems, without detailed balances, one can
use either computations related to minimum action methods, possibly re-
lated to large deviation theory (see for instance [Grafke and Vanden-Eijnden,
2019]), or the vast family of splitting algorithms or cloning algorithms [Kahn
and Harris, 1951, Del Moral, 2012, Cérou and Guyader, 2007]. However, for
many applications, for instance in turbulence, climate, atmosphere dynamics
or astronomy, the system is either deterministic, or may be stochastic, but
one has not access to a precise noise statistics, or rare events are not produced
directly by the model noise but rather by internal fluctuations. In all these
cases, any method that rely on an a-priori given bare action is not appropri-
ated. Then the only possible choices, for rare event algorithms, are splitting
algorithms. Those algorithms have indeed been empirically shown to work
well for some classes of deterministic chaotic dynamical system [Wouters and
Bouchet, 2016, Ragone et al., 2018]. An alternative route for studying rare
events, without rare event algorithms, would be to use methods that require
only short off equilibrium simulations, for instance through resimulating and
milestoning [Noé et al., 2009, Vanden-Eijnden and Venturoli, 2009] or coarse
graining of a reduced space of collective variables [Finkel et al., 2021, Finkel
et al., 2020]. Such approaches might be very relevant, however only when
the system is simple enough or when one knows sufficiently well the system
to define a-priori relevant collective variables.

The main aim of this paper is to develop the methodology of splitting
algorithms such that they might actually be used, practically, for genuinely
complex dynamics. The general principle of splitting algorithms is to per-
form ensemble simulations, select trajectories prone to produce extremes,
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discard other less interesting ones, and resimulate from the interesting ones.
The effectiveness of these algorithms strongly relies on the quality of the score
function which is used for the selection stage. For complex dynamics, in cases
when the dynamics is simple enough or the phenomenology of the dynamics
is well understood to devise good score functions, splitting algorithms are
wonderful tools. For instance, they were used to compute rare event prob-
abilities, which were totally unreachable with direct numerical simulations,
for stochastic partial differential equation [Rolland et al., 2016], atmosphere
turbulent flows [Bouchet et al., 2019,Simonnet et al., 2021], or full complexity
climate models [Ragone et al., 2018]. However, without a good score func-
tion, splitting algorithms might completely fail. If the score function is not
too bad, but not very good, splitting algorithms happen to actually produce
efficiently rare events, but might suffer from the phenomenon of apparent
biases for the estimation of probabilities [Glasserman et al., 1998, Bréhier
et al., 2016a]. The aim of this work is to propose a new methodology to solve
these problems and to be able to use splitting algorithms in very complex
dynamics without a-priori knowledge or understanding of a simple effective
description of the dynamics.

For many splitting algorithms, there exists a mathematical characteri-
zation of an optimal score function: a score function which minimizes the
algorithm variance for the computation of the rare event probability and
will be very efficient in practice. For instance, for the Adaptive Multilevel
Splitting (AMS) [Cérou and Guyader, 2007], to be used in this article, the
committor function is the optimal score function [Cérou et al., 2019a] . The
committor function is the probability that a trajectory visits a region B of
the phase space before another region A, as a function of the initial condi-
tion [Onsager, 1938] . If B is the set of rare events of interest, the committor
function is then a probabilistic measure of the progress towards the rare
event. The committor function is also a central object of transition path
theory [E et al., 2005, Weinan and Vanden-Eijnden, 2006, Vanden-Eijnden
et al., 2010, Metzner et al., 2006]. A key difficulty is that this optimal score
function, the committor function, is actually the rare event probability con-
ditioned on the state of the system. It contains the information one wishes
to compute. One has thus no easy access to it.

For similar problems, when one would need to know an approximation
of a function to efficiently compute this function itself, it is very natural
to consider an iterative procedure: a feedback control between the efficient
algorithm to produce the data and the learning of the function itself. The
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Figure 4.1: Sketch of a feedback control iterative procedure between the rare
event algorithm and the machine learning of an approximate optimal score
function. The learning of an approximation of the optimal score function
makes the algorithm more efficient, and the algorithm provides more data
for a better quality of the learning procedure.

learning of an approximation of the optimal score function makes the al-
gorithm more efficient, and the algorithm provides more data for a better
quality of the learning procedure. This is for instance the idea behind the
Wang and Landau algorithm [Wang and Landau, 2001], in multicanonical
methods for equilibrium statistical mechanics, or the idea at the base of
adaptive importance sampling [Bugallo et al., 2017]. This feedback iterative
procedure is illustrated by figure 4.1. We have already implemented such
a feedback iterative procedure for the Giardina-Kurchan cloning algorithm,
a specific example of a splitting algorithm [Nemoto et al., 2016]. However,
the learning step in this example was extremely simple as the function to be
learned was a function over a one-dimensional space. We want to extend this
approach to more complex dynamics.

Many interesting methods have been or are currently being devised to
learn committor functions: based on direct machine learning [Pozun et al.,
2012], using a characterization of the committor function for diffusions as a
solution of a partial differential equation [Khoo et al., 2019, Li et al., 2019],
computing the committor function from a finite state Markov chain [Schiitte
et al., 1999, Prinz et al., 2011,Noé and Rosta, 2019, Tantet et al., 2015], pos-
sibly a Markov state model approximation of the dynamics [Ulam, 2004].
Recently a very interesting approach has been considered starting from a
Galerkin approximation of the dynamics generator, or the Koopman opera-
tor. Finite dimensional approximations of the dynamics generator have been
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used to identify good reaction coordinates [Froyland et al., 2014, Bittracher
et al., 2018], or to evaluate eigenfunctions of the operator [Giannakis et al.,
2015, Giannakis, 2019, Williams et al., 2015, Mardt et al., 2018], sometimes
with climate applications [Giannakis et al., 2015, Giannakis, 2019]. Recently
such direct Galerkin approximation has been used to directly compute com-
mittor function, avoiding the burden of discretizing a high dimensional phase
space [Thiede et al., 2019, Strahan et al., 2021]. Several computation of com-
mittor functions have been performed with applications in either geophysi-
cal fluid dynamics or climate applications [Finkel et al., 2021, Miron et al.,
2021,Finkel et al., 2020, Lucente et al., 2019, Lucente et al., 2021], using either
direct or involved approaches.

The aim of this paper is to test the coupling of data-based learning of
approximate score functions with rare event algorithm, in the spirit of fig-
ure 4.1. As we are specifically interested in complex dynamics, the learning
strategy needs to have the potentiality to scale well in very large dimensions.
Moreover, it should be suited for any dynamics, including chaotic determin-
istic systems or dynamics for which the noise is irrelevant for the process of
interest. It also needs to be not too greedy in terms of dataset length. Among
all the possible approaches for learning committor functions, the ones based
on approximation of the dynamics generator seem to be best suited [Thiede
et al., 2019, Strahan et al., 2021].

In this paper we propose a new method based on an approximation of
the dynamics generator. For this purpose, we consider a slightly modi-
fied version of the analogue method, firstly proposed by Lorenz [Lorenz,
1969c¢, Lorenz, 1969a]. The idea behind the analogue method can be summed
up by Maxwell’s sentence [Garnett and Campbell, 1882] ” From like an-
tecedents follow like consequents”. This approach is nowadays used to build
stochastic weather generators [Yiou, 2014, Yiou and Déandréis, 2019]. A
key remark is that the analogue method defines a Markov chain which an
approximation of the dynamics generator of the original dynamics. Then
a learned approximate committor function can be computed using classical
methods for computing Markov chain committor functions. This new way
to compute committor function, based on the analogue Markov chain, is an
alternative path that leads to dynamic based estimates of the committor
function. We show in this paper that this method is actually very simple,
robust, and efficient. We show that the learned committor function, based
on the analogue Markov chain, is more precise and efficient than the classical
K-nearest neighbors regression, which computes the committor by averaging

86



4.2. THE COMMITTOR FUNCTION

the observations of K nearby points.

After having put forward and tested this committor function computation
using the analogue Markov chain, we couple it to the Adaptive Multilevel
Splitting (AMS) [Cérou and Guyader, 2007]: we directly use the data-based
approximate committor function as a score function for the algorithm. We
make a precise study that shows that for large enough data sets, the perfor-
mance of the AMS algorithm is greatly improved. We get rid of the apparent
bias phenomena and can compute rare events without a-priori knowledge of
the dynamics.

To summarize the previous discussion, the purpose of this work is twofold.
On the one hand, we introduce a data-driven approach which can be used to
compute the committor function, and which exploits the dynamical informa-
tion provided by the observed dynamics. On the other hand, we show how
it is possible to use this method to build a learned score function for efficient
rare event algorithms. We illustrate our approach for two dynamics. First
a stochastic gradient dynamics in a three-well potential, in dimension two.
Then we study the Charney-DeVore model, which is a paradigmatic toy
model of multistability for atmosphere flows [Charney and DeVore, 1979,
with six variables. For these two dynamics, we show that having observed a
few transitions is enough to have a very efficient data-based score function
for the rare event algorithm.

The paper is organized as follows. In Sec. 4.2.;, we define and discuss
the mathematical properties of the committor function, we explain a direct
sampling strategy, and define the Brier score which quantifies the quality
of an approximate committor function. Sec. 4.3 is devoted to the analogue
method and how it can be used to obtain a dynamics-bases estimate of the
committor function. Finally, in Sec 4.4 we introduce the AMS rare events
algorithm, we use it with a score functions which is the learned analogie
Markov chain committor function, and we discuss the improvements given
by this approach.

4.2 The committor function
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reactive trajectory

Figure 4.2: An example of first passage trajectory from A to B is shown.
The transition path, also called reactive trajectory, is highlighted in red.

4.2.1 Definition of the committor function for a Markov
process

For a Markov process, a committor function [E et al., 2005, Weinan and
Vanden-Eijnden, 2006, Vanden-Eijnden et al., 2010,Metzner et al., 2006] is the
probability to hit a set B of the phase space before another set A, conditioned
on the knowledge of the initial condition. With adapted definitions of the
sets A and B, it can be the probability of transition between metastable
states [Lopes and Lelievre, 2019], see Fig. 4.2, or to the probability that an
event occurs within a given timeframe [Lestang et al., 2018, Lucente et al.,
2021].

To give a more precise definition, we consider a discrete time stochastic
process on a phase space X'. A given realization of the process will be noted
as {Xn} cpen,s With X, € X' The first hitting time Tp(x) of a set D C X
is defined as

Tp(x) =inf{n : X,, € D|X, = x}. (4.1)
The committor function ¢(x) is the probability that the first hitting time of
a set B be smaller than the first hitting time of set A, as a function of the
initial condition, i.e.

q(x) = P[Ts(x) < Ta(x)]. (4.2)

This definition immediately generalizes for continuous time Markov pro-
cesses.

If the dynamics is a stochastic differential equation, ¢(x) is the solution
of the Dirichlet problem [E et al., 2005, Thiede et al., 2019]:

Lq(x) =0 with q(x) =0if x € Aand q(x) =1 if x € B, (4.3)
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with £ the adjoint of the Fokker-Planck operator:
92

L= Zal Z X) 5 a%() (4.4)

where a is the drift coefficient and D the diffusion coefficient. One way to
compute a committor function is to solve this partial differential equation.
In practice, such a computation is impossible, using standard techniques as
soon as the system has more than a few degrees of freedom. This equation
can be used for computing approximate solutions, using machine learning, for
systems of dimension of the order of magnitude of ten [Khoo et al., 2019, Li
et al., 2019].

4.2.2 Direct sampling of the commitor function

In this section we consider data-based methods for the computation of a
committor function. The data consist of sets of trajectories of the stochastic
process. The simplest method is to directly use the definition (4.2). In
practice, to compute the function at point x, we initialize an ensemble of N
trajectories in Xy = x and evolve them until they reach A or B. Let Nz
be the number of trajectories that have reached B. Then, the value of the
committor function at point x can be estimated as
Np
q(x) = N
Like the Dirichlet problem (4.3), this method can only be applied if the
equations of motion are known, and it is inapplicable for high dimensional
systems, as it requires simulating many trajectories for each point of phase
space where we want to compute the committor function. The numerical
burden thus increases exponentially with the dimension of the system.
For an ergodic process, the committor function ¢(x) and the stationary
distribution function p(x) can be computed from an observed trajectory {X,, }
from the formulas

(4.5)

Ny
1
pix)q(x) = lim —- 7; 0 (X = %) Lms(x) <14 (%)) and
1 &
p(x) = Nltgnoo N nz:% 0 (X, —x), (4.6)
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where 0 is a Dirac delta function, and 1{r,(x,)<r.(x,)} takes value 1 if the
trajectory visits set B before set A starting from X,,, and 0 otherwise. Nu-
merically, ¢(x) can be computed from (4.6) after spatial and temporal dis-
cretization of the process (see for instance [Lucente et al., 2019, Lopes and
Lelievre, 2019, Lucente et al., 2021]). Unlike the previous methods, this ap-
proach is applicable even if we do not know the equations of motion. Its
numerical cost does not depend on the dimension of phase space, but it only
provides estimates of the committor function on points which neighborhood
was visited many times by the observed trajectory.

4.2.3 Estimating the committor function for any point
of the phase space

In Sec. 4.2.2, we have presented a direct sampling method to estimate the
committor function based on data. However, it provides values only on the
set of points that was visited along the trajectory. This is also true for
the other data-based method that we will present in Sec. 4.3, the analogue
method. For applications, we may need to estimate the value of the committor
function for points which were not in the learning dataset. This may be the
case simply for graphical representations of the committor function along a
line or on a plane in phase space (e.g. Sec. 4.3.3). Even more importantly,
to use the estimated committor function as a score function with the AMS
algorithm (Sec. 4.4), we need to be able to compute it for arbitrary points in
phase space.

To do so, we will use a nearest neighbor method [Altman, 1992]. Let
us denote {X,},., oy € RP the learning dataset, for which we have an
estimate of the committor ¢(X,). For any point y € RP, we search the &
nearest neighbors (using the Euclidean distance d(y,x)* = Zfil (i — 2:)°),
corresponding to indices n; € [1,n] in our dataset, for 1 < j < k. We then
perform a weighted average of the corresponding values of the committor:

Z;:l w]qA(Xn])
Z;:l wj

The weights w; can be chosen uniform: w; = 1 (like in Sec. 4.3.3) or given
d()’yxn'>2
by a kernel, such as w; = e~ o , where w > 0 is a kernel width (like in

Sec. 4.4), depending on the application.

q(y) =

(4.7)
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4.2.4 Estimation of the quality of an approximate com-
mittor function: the Brier score

In this section we address the issue of how to quantify the quality of an
estimate of the committor function. In what follows, the true committor
function is denoted by ¢ while ¢ stands for our estimate. As the committor
function is the probability of a binary variable, it is natural to look for a score
for a forecast of a binary variable. We also require that this score can be
computed directly from observations. The Brier score is a natural candidate.

We first consider Y a random variable with binary outcomes, Y € {0, 1},
and a Bernoulli distribution: P[Y = 1] = ¢ and P[Y = 0] = 1 — ¢. We look
for an estimator that quantifies the value of an estimation ¢ of q.

One of the simpler quantities having the required properties was proposed
in 1950 by Brier [Brier, 1950]. We consider a {Y,}1<n<n, IV independent
realizations of the variable Y. The Brier score is defined as

N
1 R 9
By ==Y (i—Ya)?, 48
N Nn:1<q ) (4.8)

The Brier score is thus a random variable, with values between 0 and 1.
The random variable (§—Y,,)? takes value (1 — ¢)? with probability ¢ and
value ¢? with probability (1 — ¢). Then the average value of By(x) is

E(By)=(1-d)’q+¢(1—q)=q(l —q)+ (4 —q)". (4.9)

The expectation of the Brier score By(x) is therefore the sum of two terms.
The first one, ¢(1 — ¢) is related to the stochastic nature of the forecast and
is independent of ¢, while the second one, (¢ — q)2, is related to the error
made in the estimation of q. The closer is the forecast ¢ to the real value ¢,
the lower is the Brier score. The Brier score has a fixed lower bound ¢(1—¢q).
We see that the Brier score is merely a quadratic measure of the error (the
second term) plus a constant term (the lower bound). However, while the
computation of the quadratic error requires the knowledge of the truth ¢, the
computation of the Brier score does not require the knowledge of ¢q. In the
limit N — oo, we have an ergodic average and limy_,o, By = E(By).

We now extend naturally the definition of the Brier score to the case
of Markov processes and committor functions. We consider a set of events
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{(Xy, Yy) h<n<n, where X,, are points in the phase space distributed accord-
ing to the invariant measure p of the Markov process, E [(§ (X,, — x)] = p(x),
and Y,, are binary variables which takes the value 1 with probability ¢ (X,,)
and value 0 with probability 1 — ¢ (X,,). For instance, the couples (X,,,Y})
can be sampled along one or several trajectories of the Markov chain, where
X,, are the states of the Markov chain and Y,, is equal to zero if the first
hitting time of B after n is smaller than the first hitting time of A after n.

We want to estimate the quality of an approximation ¢ of the committor
function ¢. Then the committor function Brier score is defined as

BTy =Y 0(X,) - Vil (1.10)

n=1

Extending directly the previous computations, and assuming ergodicity, we
have

E(BTy) = lim BTy = lg - dl; + |[V/a(l = )]

where || f||2 = [}, f3(x)p(x) dx is L? norm weighted according to the invariant

2
, (4.11)
P

measure. Then the committor Brier score is ||q — cj||i, the weighted L? norm

2
of the difference ¢ — ¢, up to the constant term H\/q(l — q)H . While the
p

weighted L? norm cannot be computed without the knowledge of ¢ and p, the
Brier score can be directly computed from the data by the ergodic average
(4.10).

4.3 The analogue Markov chain

In this section we introduce the analogue method in one of its current ver-
sions [Yiou, 2014, Lguensat et al., 2017, Yiou and Déandréis, 2019, Platzer
et al., 2021b, Platzer et al., 2021a]. It provides a way to build effective dy-
namics from the data that can be reused to generate new trajectories of
the system under consideration at a lower computational cost. Although
more precise definitions will be given throughout the section, we think that
briefly illustrating the analogue method in its original form proposed by
Lorenz [Lorenz, 1969c, Lorenz, 1969a] in 1969 is both conceptually and his-
torically instructive. Furthermore, this can be seen as a particular case of
the method we will present in which only K = 1 analogue is considered.
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In a nutshell, the idea is the following. Suppose we have access to a time
series of observations that we will denote by {X,},_,y,, at times ¢, = ndt
where 0t is the sampling time step. Starting from a state x at time ¢, we
want to predict a possible dynamical evolution at a time t 4 [§t. We search
among the available data { X, }1<,<n, the closest to x, i.e an analogue, which
will be denoted by X,,,:

X,, = argmin{d(x, X,)}, (4.12)
{Xn}

where d(+) is a distance. After identifying the best analogue X, , the predic-
tion of x(t + At), denoted x(t + (dt), will be

X(t+ A = X, 1. (4.13)

This method was intended by Lorenz as a deterministic prediction. In the
following we are rather interested by stochastic predictions, either because the
actual dynamics itself is stochastic, or because we understand the analogue
method as an approximate effective description of a chaotic dynamics. For
stochastic prediction, we will use K analogues rather than a single one.

4.3.1 Definition of the analogue Markov chain

Let {X(#)}<i< 0o b€ a dynamical process that takes values in the phase
space X C RP”. The nature of the process, i.e. whether it is deterministic or
stochastic, Markovian or not, is irrelevant to the discussion. Suppose that
a realization of this process is observed at regular time intervals 6t during
a total time 7 = N;dt and let {X,}, ..y, denote this sampled trajectory
made up of N, points. Each point X,, is in RP, where D is the dimension of
the phase space.

We will build a Markov chain that is a data-based approximation of the
initial process, based on a generalization of the Lorenz analogue method. We
now define possible transitions starting from an observed state X,,. Rather
than considering just a single nearest neighbor of X, in the observed data,
we will use the K nearest neighbors, where K is a positive number. Those
K nearest neighbors are denoted {X}zk)}l <p<f- After identifying analogues

{X,Sk)}, we suppose that we can have a transition between the state X,, and
all the possible images of this set of points. These images will be denoted
by {X,(l]i)l}1 <p<g and the probability to have a transition between X, and
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1

X,(fgl is set to 7. An illustration of the analogue Markov chain is shown in

Fig. 4.3.

Figure 4.3: Schematic of the analogue method. On the left-hand side of the
figure a point X, surrounded by its analogues {XT(LI“)} is shown (here K = 4).
On the right-hand side the observed images {)A(ffﬁl}l <r<x Of the analogues
one time step forward are shown. The transitions observed in the the data
are represent by black lines which link the analogues with their corresponding
images. Red lines are associated to the possible transitions from the state
X, of the analogue Markov chain.

With this definition, we see that K is both the number of analogues
and the number of possible transitions from any state of the Markov chain.
One needs K to be large enough to properly approximate all the possible
transitions from a given state. At the same time, the larger K, the further
the analogue, and the larger the error incurred by using a point further from
X,,. The optimal value of K will be a tradeoff between these two effects, as
a balance between precision and complexity. In practice, K will be chosen
empirically, for instance using cross validation.

The selection of neighbors is subordinated to the choice of a distance.
The best distance most probably depends on the system under investigation.
Distances will be specified on a case-by-case basis.

The analogue Markov chain is a Markov chain on the finite set of N,
observations. In practice, we introduce a matrix with integer entries, T €
My, k(N). Each row n € [1, N;] of T contains the indices of the K nearest

neighbors of the point X,,, i.e. the indices ny,...,ng such that xXP = X,
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for 1 <k < K. We stress that T is not the transition matrix of the Markov
chain, to be described latter. T is rather a matrix of indices of the states.

Since we cannot associate any transition to the end-point Xy, , this point
will be excluded from the possible candidates for the analogues of each point.
To summarize, each entry of 7 can take values between 1 and N; — 1, i.e.
Tnj € [1, Ny — 1] for all n, j such that 1 <n < N, and 1 < j < K.

To generate a synthetic trajectory, we can proceed as follows. We start
with a state sg € [1, V;]. Then, we generate a random integer k distributed
uniformly in the interval [1, K| and the new state will be s; = Ty + 1. This
procedure is iterated to build the entire trajectory. Through this method we
build a Markov chain whose states are { X, },_,<,, i-e. the learning dataset.

We now describe the transition matrix G € My, (R). The elements G,,;
of G are the probability to observe a transition from the state n to the state
j. They are given by
{an:%ifﬂk*'e [LK]: j=To +1, (414

Grn; = 0 otherwise.

G is an approximation of the propagator P(X;|X,,) of the real dynamics.
Given an observable at time ¢, represented by a column vector f(t) =
fi(t), the observable at time t 4 1 is obtained by applying the operator G to
f(t), ie.
ft+1)=Gf(t). (4.15)

Therefore, GG plays the same role as the generator of a continuous stochastic
process.

Concerning the temporal evolution of probabilities there are two possi-
bilities:

e consider probabilities as row vectors m and let G act to the right, i.e

m(t+1)=7(t)G;

e consider column vectors 7 and let them evolve by applying the adjoint
operator G, i.e. w(t +1) = Gir(t).

In this paper, the second choice has been adopted to emphasize the analogy
with continuous stochastic processes.

To initialize a trajectory at a point x that does not belong to the dataset,
we search the K nearest neighbors of x among the available data and we
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select as initial condition one of these points with a probability % This
corresponds to the association of a probability vector p(x) = p;(x) to the
point x defined as
pi(x) = % if X; is an analogue of x , (4.16)
pi(x) = 0 otherwise. '

Note that, for simplicity, in equations (4.14) and (4.16) we have assumed
that each of the K analogues are chosen with uniform probabilities. We
could generalize this choice using analogue dependent weights, for instance
computed according to the distances of X, to its analogues.

4.3.2 Computing the committor function from the ana-
logue Markov chain

Using the analogue Markov chain defined in the previous section, we can
compute the committor function g for this Markov chain. A first approach
would be to generate trajectories of this Markov chain, and to directly sam-
ple the committor function through a Monte Carlo estimation as described
in Sec. 4.2. However, we propose a more efficient computation which consists
in solving a linear equation that characterizes the committor function of a
Markov chain. Solving this linear equation is more precise than the direct ap-
proach, as we obtain the exact committor function up to numerical accuracy,
without sampling errors. This linear equation will be solved by estimating
the leading eigenmodes of a spectral problem, following the algorithm pro-
posed in Ref. [Prinz et al., 2011]. Our paper is the first application of this
idea to the analogue Markov chain.

We start from the Markov chain transition matrix G. We consider two sets
AC X and B C X, and we will compute the committor function ¢ which is
the probability to reach B before A. For simplicity, we group together all the
states that belong to A (resp. B) into a single state with index i4 (resp ig).
We then define an auxiliary process where A and B are absorbing states:
no transition out of these states is allowed. The corresponding modified
transition matrix is G, with éuu = 1 and for all j # i4, Gw =0, éiBiB =1
and for all j # ig, éigj = 0, while for i # iy4, i # ig, éiu = Zk:XkeA Gi
and éiig = Zk:XkeB G, and for all other transitions éij =Gy

For the Markov chain G, the committor function is a column vector ¢ = g
where ¢; is the value at the committor function at the state ¢. ¢; is an
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approximation of the the committor function of the initial dynamics at point
X q(X;).

For simplicity, we use the same notation for the vector ¢ (associated to
the Markov chain) and the function ¢ (associated to the initial dynamics),
although they are actually different. In the limit of a large dataset, when
the Markov chain fits perfectly the real dynamics, we have asymptotically

q; — Q(Xi)-

From the definition ¢; = P(13(7) < Ta(7)), we have ¢;, = 0 and ¢;, = 1.
Moreover it is a classical result that Gg = ¢ [Schiitte et al., 1999, Prinz et al.,
2011,Noé and Rosta, 2019, Tantet et al., 2015]. This is a simple consequence
of the estimation of ¢ at two successive steps of the Markov chain. The affine
problem

Gg=q with ¢,=0 and ¢,=1 (4.17)

then characterizes the committor function, if we assume that G is ergodic.

Following Ref. [Prinz et al., 2011], we note that 1 is the largest eigenvalue
of G (a consequence of the Perron-Frobenius theorem for positive operators
that preserve probability). Moreover G' has two trivial eigenstates with
eigenvalue 1, corresponding to situations where the full probability vector is
concentrated on state i 4 or ig, respectively. As a consequence, G has also two
eigenstates with eigenvalue 1. If we assume G is ergodic, then the number of
cigenstates of G is exactly 2.

This gives a simple algorithm to compute q. We first compute v; and vy
the two leading eigenvectors of G with any standard algorithm. Then ¢ is
a linear combination of v; and vy: ¢ = awv; + [vs, where o and [ can be
computed from the two conditions ¢;, = 0 and ¢;,, = 1.

If the initial dynamics is indeed ergodic, we expect that for large enough
dataset the Markov chain G will also be ergodic for most of the realizations.
However, this might not be the case for some realizations. Such situations
could lead to an incorrect computation of ¢ as the solution of equation (4.17)
is then not unique. In practice we check a posteriori (after running the
algorithm) whether ¢; € [0,1] for all ¢, which is a necessary condition for
¢; to be a probability. Sometimes, for some realizations of the sampling of
the analogue Markov chain, rarely and even more rarely for large datasets, ¢
takes values outside the interval [0, 1]. We interpret these cases as a sign of
breaking of ergodicity. We then exclude these rare realizations, with possible
ergodicity breaking of the Markov chain, from the results.
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4.3.3 Applications

In this section, we estimate the committor function using the analogue method
for two different models: Sec. 4.3.3 deals with a system of dimension 2 while
Sec. 4.3.3 concerns a model with 6 degrees of freedom. For each system, we
compare the estimated committor to the true committor, and we analyze
the behavior of the error as the quantity of data upon which the analogue
Markov chain relies varies. Finally, we compare the results of the analogue
method with those obtained by the direct method, based on the same amount
of data.

Model with two degrees of freedom

Let us consider a non-trivial 2-dimensional dynamics [Bréhier et al., 2016a].
The model is defined by the following stochastic differential equation:

% = —VV(x) + V2eE(t), (4.18)

where x = (z,y), E = (&,&,) is a two dimensional gaussian white noise with
’)

(&) =0, (&()&;(t')) = 0;;0(t —t'), and the potential V(x) is

0\ 2 1)2 2 2
Viz,y) = 0.2x4+0.2(y — g) +3e™ " (ef(yfg) ) )—5e_y (e(z+1)2 + e(m_1)2> :
(4.19)
The stationary distribution of the system is

_V()

ps(x) =Z e, (4.20)
where Z = fdxe_v(ex>.

Figure 4.4 shows both the potential V' (x) (4.4a) and the stationary dis-
tribution ps(x) for € = 0.5 (4.4b). As can be seen in Fig. 4.4a, V(x) has
two global minima close to the points x; = (—1,0) and x2 = (1,0), one
local minimum close to the point x,, = (0,1.5) and a saddle point close
to x5 = (0, —0.5) — there are also two saddle points separating the global
minima from the local minimum, approximately located at (—0.6,1.0) and
(0.6,1.0). By comparing the panels 4.4a and 4.4b, it can be noted that small
values of the invariant distribution correspond to large values of the potential
and vice versa. In particular, Fig. 4.4b shows that ps(x) has global or local
maxima at xq, Xo, and X,,.
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(a) Potential V(x). (b) Stationary distribution ps(x).

Figure 4.4: Color maps of the potential V(x) (panel (a), left), defined
by (4.19), and of the stationary distribution ps(x) (panel (b), right), de-
fined by (4.20), for € = 0.5.

Let us consider the two sets A = {x: \/(x —x1)? < 0.05} and B = {x:
(x —x2)? < 0.05}. Note that these sets are defined to include the two

maxima of the invariant distribution, where the dynamics spends most of
the time. For € = 0.5, the relaxation time 7, inside A or B is of order O(1),
while the average waiting time 7, to observe a transition between these two
sets is of order O(10?).

We will now compute the committor function ¢(x) = P[Ts(x) < Ts(x)]
for this system. First, we compute a reference committor function in the
region [—1, 1] x [—1, 2] by direct sampling (as explained in Sec. 4.2.2), using
a large amount of data: for each point on a 250 x 250 grid in this region, we
sample 10 000 trajectories until they reach A or B and compute the value
of the committor at that point using Eq. (4.5). This reference committor
function is shown in Fig. 4.5. One can note that in a region around the set A
the committor function is close to 0, while in the proximity of B it is mostly
equal to 1; for y ~ —0.5 and moving along the = direction ¢(x) changes
abruptly through the saddle point x,. On the contrary, around the relative
minimum point X, the committor function is mostly constant, with a value
around 0.5, which corresponds to the probability to reach either of the two
minima starting from this point.

Now we estimate the committor function using the method presented in
Sec. 4.3.2. To do so, we need to generate some learning dataset and to choose
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Figure 4.5: Committor function ¢(x) for the 2D gradient system (4.18), com-
puted using the real dynamics. The region z € [—1,1], y € [—1,2] is divided
into N, = L x L cells (L = 250) and, for each cell, N = 10000 Monte Carlo
experiments are performed.
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