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My gratitude extends to the ”École Normale Supérieure de Lyon” and, more
specifically, to the laboratoire de physique for giving me the opportunity to
carry out my studies in a welcoming and stimulating environment. My work
was funded through the ACADEMICS grant of IDEXLYON, project of the
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Summary

There is a large interest in predicting the occurrence of high impact climate
events such as ENSO (El Niño Southern Oscillation) or rare events, for in-
stance heat waves. Those are prediction problems at the predictability margin
because the interesting time scale lies at the edge of the mixing time of the
system. This thesis aims at introducing the relevant quantity for these pre-
diction problems, the so-called committor function which is the probability
for an event to occur in the future, as a function of the current state of the
system. Computing the committor in a stochastic model for ENSO illustrates
that the transition to strong El Niño regimes can have either intrinsic prob-
abilistic predictability or unpredictability. The second goal is to illustrate
how to compute and validate the committor function from observations, by
discussing the analogue Markov chain which provides a way for learning ef-
fective dynamics from data. Starting from it, a new algorithm is developed,
with the scope of computing the committor function more precisely than the
other approaches, especially in case of lack of data. Moreover, it is shown, in
the context of two stochastic systems, that coupling the learning of the com-
mittor with a rare event algorithm improves the performance of the latter.
Finally, this methodology is applied to a climate data-set, generated from a
climate model, in order to study and predict the occurrence of extreme heat
waves. After checking the consistency of the statistical quantities computed
by the effective dynamics, a classifier based on the Markov chain is developed,
with the capability of classifying heat waves better than other methods.
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Chapter 1

Introduction

It is beyond doubt that probability and statistics are essential disciplines for
science. Indeed, as Poincaré said [Poincaré, 1905], ”science is built up of
facts, as a house is built of stones”, and since any data analysis has to be
performed using statistical tools, to underestimate their importance would
result in a procedural mistake from a scientific point of view. Of course, this
also applies to climate sciences, where probability and statistics are nowadays
widely used for predictions.

In this context, the adoption of a probabilistic approach has different
grounds according to the temporal and spatial scales of the phenomenon
under investigation.

For example, weather forecasts aim at accurately predicting the future
state of the atmosphere based on its current state. From a mathematical
point of view, weather forecasts consist in solving an initial value problem
(IVP). Indeed, given an initial condition x0 representing the current state of
the atmosphere, the aim of weather forecasts is to predict the state of the
atmosphere at time t, that is xt = �tx0, where �

t is the flow of the dynamical
system. However, in practice this is not feasible due to the chaotic behav-
ior of many dynamical systems. As it is well known, in a chaotic system
small differences in the initial conditions are exponentially amplified. This
phenomenon was already known to 19th century mathematicians such as
Poincaré and Hadamard, but it was Lorenz who first introduced the concept
of chaos in relation to climate in 1963 [Lorenz, 1963]. In a famous conference
held in 1972 provocatively titled ”Predictability: does the flap of a butterfly’s
wing in Brazil set off a tornado in Texas?” [Lorenz, 1972], Lorenz explained
that starting from two almost indistinguishable initial conditions (the only
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difference being the presence or absence of the flapping of a butterfly’s wings)
the state of the atmosphere can evolve into macroscopically different states
characterized by the presence or absence of a tornado. He therefore concluded
that the predictability of the atmosphere could not extend beyond a few days,
about two weeks, corresponding to the time it takes for undetectable errors
at the smallest scales of the flow to contaminate the large scales [Thompson,
1957,Novikov, 1959,Lorenz, 1969b]. It is worth noting that this limit to pre-
dictability occurs even if a perfect model is used for the prediction. In prac-
tice, however, the models available for predictions, although very accurate,
are not perfect. It should also be taken into account that often it is not possi-
ble to observe the initial state of the atmosphere with sufficient accuracy. Due
to these limitations, over the past 30 years, major weather forecasting centers
such as the National Oceanic and Atmospheric Administration (NOAA) and
the European Center for Medium-Range Weather Forecasts (ECMWF) have
put aside deterministic forecasts to move to probabilistic forecasts, obtained
by means of appropriate techniques such as the ensemble forecast [Kalnay,
2003,Van den Dool et al., 2007,Dijkstra, 2013]. This technique consists in
providing a set of predictions obtained by slightly changing both the initial
conditions and the parameters of the model. These predictions are then used
to estimate the probabilities of future states of the system. As an example,
consider the predictions of 24-hr total precipitation provided by the ECMWF
shown in Fig. 1.1. The two charts in Fig. 1.1 represent the probability that
the 24-hr total precipitation exceeds 1 mm for two different prediction lag
times. Both predictions start on 19/08/2021. The upper panel shows the
forecast for 20/08/2021, i.e. for a one day lag time. The lower panel refers
instead to a forecast for 08/27/2021, i.e. a lag time of 8 days. Comparing
the two images, it can be seen immediately that the uncertainty of the fore-
casts increases as the prediction lag time increases. And indeed, the forecast
for the following day is quite accurate, as evidenced by the fact that many
locations have a high or low probability that precipitation exceeds the 1 mm
threshold in the next twenty-four hours (light-blue and yellow regions, re-
spectively), while for few locations these forecasts are more uncertain (green
regions). In the case of the 8-day forecast, the situation changes completely.
It is no longer possible to accurately predict the locations where precipita-
tion will be most concentrated and therefore the uncertain forecast regions
are more extensive than in the previous case.

From a theoretical point of view, short-term forecasts such as weather
forecasts are types of deterministic forecasts where the use of probability is
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linked only to the lack of information about initial conditions and to the
unavailability of perfect models.

As already explained, deterministic predictions are valid up to a finite
time. For low dimensional dynamical systems, this time scale corresponds
to the so called Lyapunov time [Castiglione et al., 2008], while for the at-
mosphere it corresponds to the time necessary for errors at small scales to
become dominant. Beyond this horizon of predictability, the system behaves
in all respects as a stochastic process. Thus, while in short-term forecasts
the use of probability is due to our ignorance about the system, in the case of
medium-term or long-term forecasts, randomness becomes an intrinsic com-
ponent of the system.

Since climate is commonly defined as the weather averaged over a long
period, it can be inferred from the above discussion that climate deals with
the statistical properties of some stochastic process (xt)t>0. Over very long
time scales, these properties will be independent from the initial condition.
This means that, from a mathematical perspective, the relevant concept for
climate is the invariant measure of the system. However, such a description
is valid only for time scales larger than the mixing time, which corresponds
to the time necessary for the system to forget the initial condition.

The situation is even more complex when it comes to medium-range fore-
casts, because in this case the interesting time scale lies between the de-
terministic predictability time and the mixing time of the system. This is
why in this manuscript such prediction problems will also be referred to as
prediction problems at the predictability margin. Prediction problems at the
predictability margin need the application of a probabilistic method, because,
as already mentioned, they cope with time scales beyond the deterministic
predictability horizon of the system (e.g. the Lyapunov time) but below its
mixing time. By contrast, at the predictability margin, predictions clearly
depend on the current state of the system. As an example, consider the
seasonal forecasts made by the ECMWF, in Fig. 1.2. It shows the probabil-
ity that the time averaged 2-meter temperature exceeds the median of the
seasonal average computed in the reference period 1993-2016, being the time
average intended over a 3 month period. The prediction of Fig. 1.2 starts
on 01/05/2021 and it refers to the time averaged temperature in summer
(time average over June-July-August), i.e. a prediction lag time of 1 month.
The important element to note is that this type of seasonal forecast only
makes sense from a probabilistic point of view because, as can be seen from
the chart in Fig. 1.2, the probability ranges between 0% and 100%, so that
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making any kind of deterministic prediction would be impossible.
Prediction problems at the predictability margin represent the main topic

of this thesis. The fact that such problems require a probabilistic approach
is already known in the climate community [Wilks, 2011]. Indeed, major
weather forecasting centers such as NOAA and ECMWF already make use
of probabilistic predictions. Furthermore, systems like the weather@home
system [Massey et al., 2015] produce a huge amount of high resolution sim-
ulations of General Circulation Models in order to sample extreme events.
The original part of this work is therefore to introduce the appropriate math-
ematical formalism to deal with prediction problems at the predictability
margin. As a first step, the appropriate mathematical tool to study this
class of problems will be introduced. The relevant mathematical concept
is called the committor function. Broadly speaking, a committor function
is the probability for an event to occur in the future, as a function of the
current state of the system. For the ECMWF examples this would be the
maps (Fig. 1.1 and Fig. 1.2), for all the possible states of the atmosphere.
Committor functions have first been introduced in climate sciences in [Lu-
cente et al., 2019], and have been used to study sudden stratospheric warm-
ing [Finkel et al., 2020,Finkel et al., 2021] or to understand the flow of ocean
debris [Miron et al., 2021]. The interest of giving a name, the committor
function, to this otherwise very common and generic concept, is two-fold.
First, it allows us to study its mathematical properties and to relate them
to key concepts in dynamical systems, for instance the predictability margin.
Second, it comes with specific theoretical and computational approaches to
compute this important quantity, for instance transition path theory, see for
example [Vanden-Eijnden, 2006,Metzner et al., 2006,Metzner et al., 2009]
and references therein.

The previous discussion on predictability for climate dynamics is summa-
rized in the diagram of Fig. 1.3.

Once the appropriate mathematical tool for dealing with prediction prob-
lems at the predictability margin has been identified, it is natural to wonder
how to compute this quantity in practice. This task is extremely complex
and becomes even more difficult when extreme events such as heat waves,
cold spells or extreme precipitations are considered. By definition, these
events have a very low probability of occurring and may not even have been
observed in measurements made to date.

The reason for studying rare events is that they play a crucial role in many
physics, chemistry, and biology phenomena, for instance when they change
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Figure 1.3: Schematic illustration of the concept of predictability margin:
deterministic predictability is only possible until a finite time (e.g. the Lya-
punov time). The associated mathematical problem is an initial value prob-
lem (IVP). Long term statistical properties (beyond the mixing time) do not
depend on the initial condition, and the corresponding mathematical object
is the invariant measure. In the intermediate range of timescales, named
here as predictability margin, the appropriate mathematical concept is the
committor function, which encodes the probability of a given event to occur,
condition on the state of the climate system at the time of the prediction.

the system structure (multistability) or have a huge impact. The study of
rare high impact events, such as heat waves, is an important topic in climate
science also because the frequency of such events seems to increase due to
climate change [Stocker, 2014]. The relevant time scales for many of these
rare high impact events fall within the predictability margin and therefore the
appropriate mathematical concept to study them is the committor function.
Indeed, the committor encodes the probability that these events will occur
in the future and this information is crucial to mitigate the impact that rare
events have on human societies.

In principle, rare high impact climate events could be studied through
numerical simulations (this is the case for ECMWF forecasts) but often the
computational cost for collecting a large number of observations of a rare
event is prohibitive and therefore it is not possible to gather enough in-
formation. Over the past 70 years, many algorithms have been designed to
overcome this sampling problem [Kahn and Harris, 1951,Cérou et al., 2019b].
Recently this type of algorithm has been applied in climate science to study
extreme heat waves [Ragone et al., 2018,Ragone and Bouchet, 2021,Galfi and
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already been used to build a stochastic weather generator [Yiou et al., 2013,
Yiou, 2014,Jézéquel et al., 2018,Yiou and Déandréis, 2019,Yiou and Jézéquel,
2020]. Therefore, the innovative part of this work consists in having used this
method to develop a new data-driven approach for computing committor
functions. Since this approach has also been successfully coupled to rare
event algorithms, this thesis also constitutes a first step in the development
of an iterative scheme for the computation of the committor function with
rare event algorithms.

To summarize, the original contributions of this thesis are the following:

• it aims at introducing the concept of committor function in climate
science,

• it proposes an innovative approach, based on analogue Markov chains,
for computing the committor function which, coupled with a rare event
algorithm, improves the performance of the latter,

• it applies the new methodology to climate data for studying and pre-
dicting extreme heat waves.

The present manuscript is structured as follows: the definition and math-
ematical properties of the committor function, as well as numerical methods
to compute it, approaches for the validation of its estimates and its relation
with prediction problems are illustrated in Chapter 2. Chapter 3 studies
the dynamics of a low-dimensional stochastic model proposed to explain the
decadal amplitude changes of El Niño Southern Oscillation, the Jin and Tim-
mermann model [Timmermann and Jin, 2002, Timmermann et al., 2003].
This model is not aimed at reproducing any precise properties of the real
El Niño Southern Oscillation. It is rather used as a paradigmatic example
to introduce the concept of a committor function in climate science, and to
study its main properties. This study leads to the definition of probabilis-
tic predictability and unpredictability, some concepts that should be useful
for other applications. This work with minor modifications, carried out in
collaboration with C. Herbert and F. Bouchet, has been submitted to the
”Journal of the Atmospheric Sciences” (JAS) [Lucente et al., 2021]. Chap-
ter 4 proposes a novel data-driven approach that efficiently estimates the
committor function starting from observed dynamics. The method combines
the use of the analogue Markov chain with a spectral characterization of the
committor, with the aim of providing an alternative approach for the com-
putation of the latter, which could be useful in the lack of data. In addition,
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it is shown that such an approach can be paired with a rare event method
with two advantages: the computations can be performed with a minimal
prior knowledge and the results are more precise than those obtained with a
user-designed score function. A slightly modified version of this work, which
is the result of a collaboration with J. Rolland, C. Herbert and F. Bouchet,
has been submitted to the ”Journal of Statistical Mechanics: Theory and
Experiment” (J. Stat. Mech.). In Chapter 5, the new methodology for com-
puting committor functions is applied to a climate data-set, generated by a
climate model, to study and predict the occurrence of extreme heat waves.
Finally, Chapter 6 highlights the main conclusions of the work and illustrates
possible future developments.
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Chapter 2

Committor Functions

2.1 Introduction

This chapter is for pedagogical purposes and aims at introducing, in a simple
way, the mathematical formalism of the committor function, necessary to
rigorously tackle the problems studied in the following chapters.

After being introduced in 1938 by Onsager [Onsager, 1938], the com-
mittor function has received particular attention, especially in the context
of molecular dynamics [E et al., 2005,Vanden-Eijnden, 2006,Metzner et al.,
2006, Bovier, 2006, Metzner, 2008, Metzner et al., 2009, Prinz et al., 2011,
Schütte et al., 2011, Bowman et al., 2013, Schütte and Sarich, 2015, Lopes
and Lelièvre, 2019,Thiede et al., 2019]. More recently, the committor func-
tion has been introduced also in the context of climate sciences [Lucente
et al., 2019,Finkel et al., 2020,Miron et al., 2021,Finkel et al., 2021].

To understand the reason for this interest, it is good first of all to define
this mathematical concept. A committor function is the probability that
an event occurs before another one as a function of the current state of the
system. To be slightly more precise, consider two events w1 and w2 and
let X(t) be the variable describing the state of the system at time t. The
committor function for the two events w1 and w2 is defined as

q(x) = P(⌧w1(x) < ⌧w2(x)), (2.1)

where ⌧w(x) = inf{t : w happens |X(0) = x} is the smallest time at which
the event w happens.

Usually, in molecular dynamics the events represent two subsets A and
B of the phase space, and one is interested in computing the probability
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2.1. INTRODUCTION

that one set (B) is reached before the other one (A). In climate instead, it
is more frequent that one is interested in computing the probability that a
given event, far from the typical conditions of the system, will occur within
a certain time. In this case, therefore, the committor function describes the
probability that the system reaches atypical states before relaxing towards
the typical stationary conditions. For example, consider the problem of pre-
dicting the probability of occurrence of a heat wave, which will be addressed
in Chapter 5. In this case the set B contains all the possible trajectories
in which a heat wave occurs, while the set A contains all the trajectories
for which this event does not occur. Then, the committor function is the
probability to reach B before A, as a function of the current state of the
atmosphere, temperature, soil moisture and so on.

Thus, the committor function is a fundamental tool for studying the
transitions between events. For example, in transition path theory [Vanden-
Eijnden, 2006, Metzner et al., 2006, Metzner, 2008, Metzner et al., 2009],
this function is a fundamental block for obtaining the statistics of reactive
trajectories (i.e. trajectories starting from A and arriving in B or vice versa).
It also plays a crucial role in the development of rare event algorithms, which
are algorithms designed for sampling rare events at low computational cost.
Indeed, these algorithms require to use a score function for forcing the system
towards atypical configurations and it is well known that the optimal score
function is the committor function (see for instance [Cérou and Guyader,
2007,Rolland and Simonnet, 2015,Lestang et al., 2018]). In climate sciences,
instead, it arouses interest as it allows the prediction problems to be treated
with a rigorous theoretical apparatus.

Given the importance of the committor function, over the years a theory
has been developed in the context of Markov processes. The purpose of this
chapter is therefore to introduce the fundamental concepts of the theory of
committor functions for Markov processes.

The structure of the chapter is the following: Sec. 2.2 introduces the con-
cept of committor function for a Markov chain. It begins by reviewing the
basic notions of Markov chains. Then, it gives the definition of the committor
function for a Markov chain and it shows that this function must satisfy a
system of linear equations. The committor function for a continuous Markov
process is discussed in Sec. 2.3. As for Sec. 2.2, also in Sec. 2.3 there is a
general introduction on Markov processes, where all the properties that are
necessary to define the committor function are stated. Then, the committor
function for this class of stochastic processes is discussed, and it is shown that
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2.2. COMMITTOR FUNCTIONS FOR A MARKOV CHAIN

the committor is defined by a partial differential equation with appropriate
boundary conditions. Sec. 2.4 explains how to compute the committor func-
tion numerically. Three different algorithms are described, highlighting their
strengths and weaknesses. Moreover, it is explained how to validate an esti-
mate of the committor function. For this purpose, two scores are introduced
(the Brier score and the logarithmic score) which quantify the accuracy of
the probabilistic predictions made using an approximation of the committor
function. Finally, Sec. 2.5 introduces the concept of time-dependent commit-
tor function. This mathematical object encodes the probability that an event
will happen in the future as a function of the initial conditions. Therefore,
it reveals itself as a fundamental tool in the study of prediction problems,
especially in the context of climate system where it often happens that it
is necessary to predict the future evolution of interesting observables. Thus,
Sec. 2.5 precisely defines this object and shows that for a wide class of observ-
ables, the time-dependent committor function is nothing but the cumulative
distribution function of the first hitting time of a given set C. Each of these
sections contains one or more examples, in which the theoretical concepts de-
fined in the section are applied. These examples are useful to better illustrate
the theoretical concepts and serve as a test bed to analyze some properties
of the committor function before moving on to the study of more realistic
and complex systems.

2.2 Committor Functions for a Markov chain

This section introduces the concept of committor function in the context of
simple stochastic processes, i.e. Markov chains. The section begins introduc-
ing the basic notions of Markov chains. In particular, it aims to introduce
the notions of Markov chain and its related transition matrix, the link be-
tween the transition matrix and the temporal evolution of probabilities and
observables, the concept of invariant distribution and the convergence of the
probabilities to this invariant distribution. Then, it provides the definition
of a committor function of a Markov chain and it shows that the commit-
tor function is the solution of an affine problem. Moreover, it is explained
that the committor function is a linear combination of the two leading eigen-
vectors of a suitable transition matrix and it is shown that this spectral
characterization provides an algorithm that efficiently estimates the commit-
tor. The section ends by discussing an application of the committor function
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in a gambling problem that can be modeled by means of Markov chains.

2.2.1 Markov chains

Let Ω be a countable set and {Xt}t2N a stochastic process that takes values
in Ω. The process {Xt}t2N is said to be a Markov chain if the following
property (Markov property) holds [Norris et al., 1998,Shiryaev, 2004,Boffetta
and Vulpiani, 2012,Bowman et al., 2013]

P(Xt = it|Xt�1 = it�1; . . . ;X0 = i0) = P(Xt = it|Xt�1 = it�1). (2.2)

The Markov property expresses the fact that the probability of the future
state of the system depends exclusively on the state of the system at the
previous time and is independent of past history. Thus, the main feature of
Markov processes is to have a finite memory of length one.

The conditional probabilities that appear in the right hand side of Eq. (2.2)
are usually represented by a stochastic matrix G(t), also known as transition
matrix. A matrix is called stochastic if

Gij(t) � 0 8 i, j 2 Ω and 8 t 2 N,
X

j2Ω

Gij(t) = 1 8 i 2 Ω and 8 t 2 N. (2.3)

The first property states that the elements of a stochastic matrix must be
positive as they are probabilities. The second property asserts instead that
the sum of the transition probabilities from state i to all the possible states j
must be equal to one. Note that the convention Gij(t�1) = P(Xt = j|Xt�1 =
i) has been adopted and therefore Gij(t� 1) is the conditional probability of
going from state i at time t� 1 to state j at time t.

The transition matrix G(t) is sometimes called generator since its action
on an observable f determines the time evolution of f . To be more precise, let
f(t) = (fi(t)) be a column vector that represents an observable of the system
at time t. To obtain the observable f(t + 1) at time t + 1 it is sufficient to
apply the matrix G(t) to f(t):

f(t+ 1) = G(t+ 1)f(t). (2.4)

The evolution of probabilities is ruled by the adjoint operator of G(t),
denoted by G†(t) (G† is equivalent to G transposed as G has real positive
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elements). Let p(t) = (pi(t)) be a vector of probabilities, i.e. a column
vector where each component pi(t) is the probability that the system is in
state i 2 Ω at time t. The probability vector p(t + 1) = (pi(t+ 1)) at time
t+ 1 is given by

p(t+ 1) = G†(t+ 1)p(t). (2.5)

From Eq. (2.4) and Eq. (2.5) it can be deduced that

f(t+ 1) =

 

t+1
Y

t̃=1

G(t̃)

!

f(0),

p(t+ 1) =

 

t+1
Y

t̃=1

G†(t̃)

!

p(0). (2.6)

In general, the transition matrix G(t) depends on time. If the con-
ditional probabilities P(Xt = j|Xt�1 = i) do not depend on time t, i.e.
Gij(t) = Gij 8 t 2 N, the Markov chain is said to be homogeneous. For an
homogeneous Markov chain Eq. (2.6) reads

f(t+ 1) = Gt+1f(0),

p(t+ 1) =
�

G†
�t+1

p(0), (2.7)

where Gt+1 and
�

G†
�t+1

are the matrices G and G† to the power t+ 1.
For the study of the long-term properties of Markov chains it is useful

to introduce the notion of invariant distribution. A probability vector w is
called an invariant distribution if

8

>

<

>

:

wi � 0 8 i 2 Ω,
P

i2Ω wi = 1,

G†w = w.

From Eq. (2.3) it is easy to prove that each stochastic matrix G admits
a trivial eigenvector v = vi, vi = 1 8i 2 Ω with eigenvalue 11. This implies
that a solution to the problem G†w = w always exists but the solution is not
always unique. The uniqueness of the invariant distribution can be proven

1A Perron-Frobenius theorem for positive operators that preserve probabilities states
that eingenvalue 1 is the largest eigenvalue.
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for a broad class of Markov chains, the so called ergodic chains [Norris et al.,
1998, Shiryaev, 2004, Boffetta and Vulpiani, 2012]. Let G be the transition
matrix of a Markov chain whose phase space Ω is finite. The Markov chain
is ergodic if

9t? such that Gt?
ij > 0 8 i, j 2 Ω, (2.8)

where t? does not depend on i and j. Eq. (2.8) means that for any t > t?

there is a non-null probability of finding the process Xt in any state j 2 Ω

regardless the initial state of the process X0 = i.
For an ergodic chain, the eigenvector problem G†w = w admits a unique

solution w = ⇡ that has the two properties ⇡i � 0 8 i 2 Ω,
P

i2Ω ⇡i = 1.
Furthermore, it can be proven that the invariant distribution ⇡ is the limit
of Gt for t ! +1, i.e.

⇡i = lim
t!+1

Gt
ji, (2.9)

which also implies that ⇡i = limt!+1 p(t)2 [Norris et al., 1998, Shiryaev,
2004].

Ergodic chains play a fundamental role in the theory of Markov chains
and their definition will be useful for proving the existence and uniqueness
of the committor function.

2.2.2 Committor functions: definition and equation

Let Ω and G be the state-space and the transition matrix of a Markov chain.
Let A be a subset of Ω, A ⇢ Ω, and {Xt}0t+1 a realization of the

dynamics. The first hitting time of the set A is defined as

⌧Aj = inf{t : Xt 2 A|X0 = j}. (2.10)

Let A and B be two disjoint subsets of Ω, i.e. A,B ⇢ Ω and A \ B = ;.
The committor function qj is defined as

qj = P(⌧Bj < ⌧Aj ). (2.11)

Thus, the committor function qj encodes the probability that a trajectory
starting at X0 = j will reach the set B before reaching the set A.

2As a consequence of the Perron-Frobenius theorem it can be proven that the conver-
gence is exponentially fast, i.e. p(t) = π+O(e−t log |λ2|) where λ2 is the largest eigenvalue
in module except λ1 = 1.
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An equation for q is easily obtained with the following reasoning. Clearly
for j 2 A or j 2 B one has qj = 0 or qj = 1, respectively. For any initial
state X0 = j /2 A [ B, after the first step three situations could arise: either
the Markov chain goes from state j to a state k 2 B and the event ⌧Bj < ⌧Aj
occurs, or it goes to a state k 2 A and the event ⌧Bj < ⌧Aj does not occur, or it
reach a state k /2 A[B and then the probability of the event ⌧Bj < ⌧Aj to occur
is qk. Therefore, the probability that a trajectory starting in state j will hit
the set B before A can be decomposed into the sum of two terms [Bowman
et al., 2013, Prinz et al., 2011,Metzner, 2008,Metzner et al., 2009, Bovier,
2006]:

8

>

<

>

:

qj = 0, if j 2 A,

qj = 1, if j 2 B,

qj =
P

k2B Gjk +
P

k/2A[B Gjkqk, if j /2 A [ B,

(2.12)

where the first term in the right hand side of the last equation in Eqs. (2.12)
accounts for the probabilities to have a transition from the state j to a state
k 2 B while the second term is related to the probability of visiting a state
k /2 A [ B before going to the set B.

For an ergodic Markov chain (Eq. (2.8)), it can be proven that the sys-
tem (2.12) admits a unique solution [Metzner, 2008, Metzner et al., 2009,
Bovier, 2006]. Therefore, for an ergodic chain the committor function can be
obtained by solving the linear system in Eq. (2.12).

There is a more elegant formulation of the committor problem which
shows that the committor function q is actually an eigenvector of a suitable
transition matrix G̃, where the states corresponding to A and B are replaced
by two absorbing states, one for each set [Prinz et al., 2011].

Consider the modified Markov chain in which the states corresponding
to the set A (resp. B) are grouped together into a single absorbing state3

denoted by iA (resp. iB). Let C(Ω) be the cardinality of the state space and
C(A) (resp. C(B)) the cardinality of A (resp. B). The cardinality of the
modified state space Ω̃, i.e. the state space resulting from the aggregation
procedure, is C(Ω̃) = C(Ω)�(C(A)� 1)�(C(B)� 1). The transition matrix

3An absorbing state k is a state from which no transitions to other states than k are
allowed. In terms of the transition matrix G, a state k is absorbing if Gkk = 1 and Gkj = 0
for j 6= k.
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G̃ of the modified Markov chain (defined on Ω̃) is

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

G̃iAj = �iA,j,

G̃iBj = �iBj,

G̃iiA =
P

k2A Gik if i 6= iA, iB,

G̃iiB =
P

k2B Gik if i 6= iA, iB,

G̃ij = Gij if i, j 6= iA, iB,

(2.13)

where �i,j is the Kronecker delta. It is straightforward to find a relationship
between the committor function of the original Markov chain q and that
of the modified process q̃. Indeed, for i /2 A [ B one has qi = q̃i, while
qk = qiA = 0 for k 2 A and qk = qiB = 1 for k 2 B. The committor function
q̃ is the solution of the affine problem

(

q̃iA = 0 and q̃iB = 1,

q̃i =
P

j2Ω̃ G̃ij q̃j for i 6= iA, iB,
(2.14)

that can be written more compactly as G̃q̃ = q̃ with qiA = 0 and qiB = 1.
Therefore q̃ is an eigenvector of the matrix G̃ with eigenvalue 1 which satisfies
the correct boundary conditions on iA and iB.

The matrix G̃† has two trivial eigenvectors associated with the eigenvalue
1, which correspond to situations where the probability is concentrated on
state iA or iB. Hence, G̃ also possesses at least two eigenvector associated
with eigenvalue 1. It is not difficult to be convinced that if G is ergodic then
G̃ and G̃† have only two eigenvectors associated with the eigenvalue 1 (i.e.
�1 = 1 has multiplicity 2)4. Let v1 and v2 be two eigenvectors of G̃ associated

4The ergodicity of G ensures that, for each pair of states i and j of the Markov chain
defined by G, there is a path connecting the two states i and j. Hence, starting from a
generic state i /2 A [ B it is always possible to reach the two sets A and B. Considering
the paths that connect a state i with a state j 2 B, it is clear that there are two types
of paths for going from i to j: those that connect i and j passing through the set A and
those that instead do not pass through A. In the Markov chain defined by G̃, the first
type of paths connects the state i to the state iA while the second one connects i to iB.
Since the same reasoning can be applied for j 2 A, it follows that, in the Markov chain
defined by G̃, any initial state i is transported in iA or in iB by the dynamics. Thus, the
Markov chain defined by G̃ transports any initial probability distribution p either into a
probability distribution concentrated on iA or on iB or a combination of them. Therefore,
the dimension of the vector space associated to the eigenvalue of G̃† (or equivalently of G̃)
λ1 = 1 is equal to 2.
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with �1 = 1, i.e.
(

G̃v1 = v1,

G̃v2 = v2.
(2.15)

Clearly, any linear combination v = ↵v1 + �v2 is again an eigenvector of G̃
associated with �1 = 1. The committor function q̃ is the only eigenvector
among v’s such that viA = 0 and viB = 1. Therefore one has

q̃ = ↵̄v1 + �̄v2, (2.16)

where

↵̄ = � v2iA
v1iAv

2
iB
� v1iBv

2
iA

,

�̄ =
v1iA

v1iAv
2
iB
� v1iBv

2
iA

. (2.17)

Eq. (2.16), together with the definitions of the coefficients ↵̄ and �̄ (Eq. (2.17))
provides a practical, fast and robust way, to compute the committor function
of a discrete time Markov chain.

2.2.3 Example: the Gambler’s ruin

A first example that shows the relevance of the committor function is the
problem of gambler’s ruin [Coolidge, 1909,Norris et al., 1998,Shiryaev, 2004,
Boffetta and Vulpiani, 2012,Slade, 2014]. Consider a man who starts playing
a betting game and whose starting capital is X0 = n. On each round, one
dollar is wagered and the player has a probability p of earning an additional
dollar and a probability q = 1 � p of losing his stake. The gambler aims
to make a fortune of N dollars before he stops playing. However, during
the game the player may also run out of money and be unable to continue
betting. Hence, the game ends with either the gambler’s ruin or the gambler’s
win. The problem consists in finding the probability that the player wins by
starting with an initial capital X0 = n.

Such a problem can be solved by employing the formalism for the com-
mittor function of a Markov chain. Let us consider a Markov chain whose
states space Ω = {0, 1, · · · , N} contains the possible amounts of money the
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player may own and whose transition matrix G is defined as

8

>

>

>

<

>

>

>

:

G0i = �i,0 ,

GNi = �i,N ,

Gij = p�j,i+1 + (1� p) �j,i�1 if i 6= 0, N ,

Gij = 0 otherwise ,

(2.18)

where �i,j is the Kronecker delta. By defining A = {0} and B = {N}, the
probability that the player succeeds is nothing but the committor function
for these two sets. In this particular case, Eq. (2.12) reads

8

>

<

>

:

qi = pqi+1 + (1� p)qi�1 ,

q0 = 0 ,

qN = 1 .

(2.19)

Performing the change of variables zi = qi � qi�1 leads to

zi+1 =
1� p

p
zi =

✓

1� p

p

◆i

z1, (2.20)

which implies that

qi+1 =

8

<

:

1�( 1�p
p )

i+1

1�( 1�p
p )

q1 if p 6= (1� p) ,

(i+ 1)q1 if p = (1� p) = 0.5 .
(2.21)

Eq. (2.21) has been obtained considering z1 = q1 and qi+1 = q1 +
Pi+1

k=1 zk.
By imposing the condition qN = 1, the committor function turns out to be

qn =

8

<

:

1�( 1�p
p )

n

1�( 1�p
p )

N if p 6= (1� p) ,

n
N

if p = (1� p) = 0.5 ,
(2.22)

where the two situations correspond to unfair (p 6= 1� p) or fair (p = 1� p)
games.

For p = 0.5 (fair game) the player’s probability of winning grows linearly
with the starting capital X0 = n and therefore to have at least a 50% chance
of winning the starting capital must exceed half of the stake that the man
wants to earn. On the other side, in case of unfair game the committor
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2.3 Committor functions for a continuous time

Markov process

This section deals with the committor function in the case of continuous time
Markov processes. The section begins by introducing the general concepts of
Markov processes, such as the propagator, the invariant distribution, and the
differential equations that these objects obey. In addition, the notions of sta-
tionarity, homogeneity and ergodicity of a Markov process will be introduced.
Then the concept of committor function is defined and it is proved that this
function is the solution of a partial differential equation with appropriate
boundary conditions. The section concludes by discussing two examples in
which the equations defining the committor can be solved analytically. These
two examples, which are the Wiener and Ornstein-Uhlenbeck processes, will
allow understanding the general properties of a committor function and will
be preparatory for the study of the committor in more complicated systems.

2.3.1 Markov processes

Let Ω ⇢ R
N be the phase space of the system and X(t) = (X1(t), · · · , XN(t))

be a random variable which takes values in Ω. Let tn > tn�1 > · · · > t0
be an ordered sequence of times and x0, · · · , xn the values assumed by the
process at these times, i.e. xi = X(ti) for i = 1, · · · , n. The process X(t)
is a Markov process if it has the following property [Arnold, 1974,Gardiner
et al., 1985,Van Kampen, 1992,Metzner, 2008,Boffetta and Vulpiani, 2012]:

P(xn, tn|xn�1, tn�1; · · · ; x0, t0) = P(xn, tn|xn�1, tn�1). (2.23)

The only differences between Eq. (2.23) and Eq. (2.2) are that the phase space
Ω of a continuous time Markov process does not need to be a countable set
and the time variable t takes values in R and not in N. Thus, a Markov
process is a process such that the future is completely determined (in a
probabilistic sense) by the knowledge of the present state of the system. A
Markov process is completely determined by the knowledge of the initial
probability distribution p(x0, t0) and the propagator G(x1, t1|x0, t0). These
objects can be two generic distributions and they only need to satisfy the
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following relationships

p(x1, t1) =

Z

Ω

dy G(x1, t1|y, t0)p(y, t0), (2.24)

G(x2, t2|x0, t0) =

Z

Ω

dy G(x2, t2|y, t1)G(y, t1|x0, t0). (2.25)

The relation (2.24) is valid for any stochastic process and it expresses the fact
that the one-point distribution p(x1, t1) can be obtained by marginalizing the
two-point distribution p(x1, t1; x0, t0) = G(x1, t1|x0, t0)p(x0, t0). The integral
equation (2.25) is known as the Chapman-Kolmogorov equation and is a
fundamental relation that the conditional probabilities of a Markov process
must satisfy. In fact, it can be proven that any two distributions that satisfy
Eqs. (2.24),(2.25) define uniquely a Markov process [Gardiner et al., 1985,
Van Kampen, 1992].

By making very mild assumptions, the Chapman-Kolmogorov equation
can be reformulated into a differential equation for conditional probability.
It can be proven (see [Gardiner et al., 1985] for a detailed derivation) that
the evolution of G(x, t1|y, t0) is ruled by

@G(x, t1|y, t0)

@t1
=�

N
X

i=1

@

@xi

"

Ai(x, t1)G(x, t1|y, t0)�
1

2

N
X

j=1

@

@xj

Dij(x, t1)G(x, t1|y, t0)

#

+

+

Z

Ω

dz [W (x|z, t1)G(z, t1|y, t0)�W (z|x, t1)G(x, t1|y, t0)] ,

(2.26)

where

W (x|y, t) = lim
∆t!0

G(x, t+∆t|y, t)

∆t
, (2.27)

Ai(x, t) = lim
✏!0

lim
∆t!0

1

∆t

Z

|x�z|<✏

dz (zi � xi)G(z, t+∆t|x, t), (2.28)

Dij(x, t) = lim
✏!0

lim
∆t!0

1

∆t

Z

|x�z|<✏

dz (zi � xi)(zj � xj)G(z, t+∆t|x, t). (2.29)

Note that Eq. (2.26) deals with the time evolution of the propagatorG(x, t1|y, t0)
with respect to the final state x and therefore is known as forward differential
Chapman-Kolmogorov equation.
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Sometimes it is useful to study the temporal evolution of the propagator
G(x, t1|y, t0) with respect to the initial variable. The equation describing this
time development is similar to Eq. (2.26) and can be expressed as

@G(x, t1|y, t0)

@t0
=�

N
X

i=1

✓

Ai(y, t0)
@G(x, t1|y, t0)

@yi

◆

� 1

2

N
X

i,j=1

✓

Dij(y, t0)
@2G(x, t1|y, t0)

@yi@yj

◆

+

+

Z

Ω

dzW (z|y, t0) [G(x, t1|y, t0)�G(x, t1|z, t0)] ,

(2.30)

which is known as backward differential Chapman-Kolmogorov equation.
Having introduced the equations for the time evolution of the propagator

of a Markov process, it is time to mention some special classes of these
processes.

A Markov process is continuous (i.e. its sample paths are continuous
functions of time t with probability one) if, 8✏ > 0, one has

lim
∆t!0

Z

|x�z|>✏

dxG(x, t+∆t|z, t) = 0. (2.31)

This means that the requirement for a Markov process to be continuous is
that the probability to observe a finite displacement ✏ > 0 goes to 0 faster
than ∆t as ∆t ! 0.

Another important property that a Markov process may have is the sta-
tionarity. A Markov process is said to be stationary if X(t) and X(t + ⌧)
have the same statistics for any ⌧ , or in an equivalent way if the joint
probabilities of the process are invariant under time translations. Hence,
since the Markov process is completely determined by the initial distribution
p(x0, t0) and the propagator G(x1, t1|x0, t0) it means that p(x0, t0) = ⇢s(x0)
and G(x1, t1|x0, t0) = G(x1, t1 � t0|x0, 0), i.e. the propagator only depends
on time difference ⌧ = t1 � t0. If the initial distribution is not the stationary
one but the propagator depends only on the time differences, the process is
said to be homogeneous. For a homogeneous Markov process, the functions
W , A and D defined in Eqs. (2.27),(2.28),(2.29) do not depend on time t.

As with Markov chains, ergodic processes play an important role in the
theory of stochastic processes. In general, a Markov process is said to be
ergodic if it is homogeneous and for any subset of the phase space C ⇢ Ω,
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one has [Gardiner et al., 1985,Vulpiani et al., 2014]

lim
T!+1

1

T

Z T

0

dt1C(X(t)) =

Z

C

dx⇢s(x), (2.32)

where ⇢s(x) is the stationary distribution of the process and 1C the charac-
teristic function of the set C. A sufficient condition for Eq. (2.32) to be valid
is that

lim
⌧!+1

G(x, ⌧ |y, 0) = ⇢s(x). (2.33)

Clearly, the stationary distribution ⇢s(x) is a solution of the stationary for-
ward Chapman-Kolmogorov differential equation, i.e.

0 =�
N
X

i=1

@

@xi

"

Ai(x)⇢s(x)�
1

2

N
X

j=1

@

@xj

Dij(x)⇢s(x)

#

+

+

Z

Ω

dz [W (x|z)⇢s(z)�W (z|x)⇢s(x)] , (2.34)

(2.35)

Given the definition of continuous Markov process (Eq. (2.31)), it should
be noted that a Markov process is continuous if the quantity W (x|y, t)
(Eq. (2.27)) is identically zero, i.e. W (x|y, t) ⌘ 0. By taking W (x|y, t) ⌘ 0
into Eqs. (2.26),(2.30) one obtains the so-called Kolmogorov equations

@G(x, t1|y, t0)

@t1
=�

N
X

i=1

@

@xi

"

Ai(x, t1)G(x, t1|y, t0)�
1

2

N
X

j=1

@

@xj

Dij(x, t1)G(x, t1|y, t0)

#

=

= Lfw[G(x, t1|y, t0)], (2.36)

@G(x, t1|y, t0)

@t0
=�

N
X

i=1

✓

Ai(y, t0)
@G(x, t1|y, t0)

@yi

◆

� 1

2

N
X

i,j=1

✓

Dij(y, t0)
@2G(x, t1|y, t0)

@yi@yj

◆

=

= Lbw[G(x, t1|y, t0)], (2.37)

where the forward and backward Kolomogorov operators are defined as

Lfw(·) := L†(·) = �
N
X

i=1

@

@xi

"

[Ai(x, t) (·)]�
1

2

N
X

j=1

@

@xj

[Dij(x, t) (·)]

#

,

(2.38)

Lbw (·) = �L (·) = �
N
X

i=1

Ai(x, t)
@

@xi

(·)� 1

2

N
X

i,j=1

Dij(x, t)
@2

@xi@xj

(·) . (2.39)
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Note that the backward Kolmogorov operator Lbw is the adjoint of the for-
ward operator Lfw, except for a minus sign. Eq. (2.36) is also known as
Fokker-Planck equation and the operator L† as Fokker-Planck operator.

A Markov process that satisfies Eqs. (2.36),(2.37) is known as diffusion
process. A diffusion process can be described either through the Kolmogorov
equations for conditional probabilities (Eqs. (2.36),(2.37)) or through suitable
stochastic differential equations that describe the temporal evolution of a
sample path. To be more precise, let X(t) be a stochastic process which
evolves through the stochastic differential equation (Ito form)5

Ẋ(t) = a(X(t), t) + �(X(t), t)⇠(t), (2.40)

where ⇠(t) is a Gaussian white noise, i.e. h⇠i(t)i = 0 and h⇠i(t1)⇠j(t2)i =
�ij�(t1�t2). It is possible to prove [Gardiner et al., 1985] that the propagator
of this process G(x, t|y, t0) satisfies a Fokker-Planck equation (Eq. (2.36))
with A(x, t) ⌘ a(x, t) and D(x, t) = �(x, t)�T (x, t).

In Eqs. (2.38),(2.39) the two operator L and L† have been introduced.
Similarly to the case of Markov chains, for a homogeneous diffusion process
X(t) one has that the Fokker-Planck operator L† describes the evolution
of the probability distributions while its adjoint operator L describes the
evolution of the observables. Indeed, let p(x, t0) be the initial probability
distribution of the system. The probability distribution at time t is given by
Eq. (2.24). Taking the time derivative of Eq. (2.24) leads to

@tp(x, t) =

Z

Ω

dyp(y, t0)@tG(x, t|y, t0) =

Z

Ω

dyp(y, t0)L
† [G(x, t|y, t0)] = L†[p(x, t)],

(2.41)
where in the last passage the linearity of L† has been used. By virtue of
Eq. (2.41) if the probability distribution p(x, t) converges to a stationary
distribution ⇢s(x) as t ! +1, the latter satisfies the stationary Fokker-
Planck equation, i.e.

L†[⇢s(x)] = 0. (2.42)

Concerning the observables, let f(x, t) be a function defined as

f(x, t) =

Z

Ω

dyg(y)G(y, t|x, 0) =

Z

Ω

dyg(y)G(y, 0|x,�t), (2.43)

5This thesis deals only with Ito stochastic differential equations.
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where the second equality is due to the homogeneity of the process. By
differentiating Eq. (2.43) with respect to time t one obtains

@tf(x, t) =

Z

Ω

dyg(y)@tG(y, 0|x,�t) =

Z

Ω

dyg(y)L [G(x, 0|y,�t)] = L[f(x, t)].

(2.44)
In the next subsection the committor function will be introduced and it

will be shown that it is the solution of a Dirichlet problem involving the
backward operator L.

2.3.2 Committor functions: definition and equation

Let X(t) be a homogeneous diffusion process which takes values in the phase
space Ω. The process evolves through a stochastic differential equation of
the form

Ẋ(t) = a(X(t)) + �(X(t))⇠(t), (2.45)

where ⇠(t) is a Gaussian white noise.
Let C ⇢ Ω a subset of the phase space. The first hitting time ⌧C(x) is

defined as the smallest time for which X(t) belongs to C, as a function of the
initial condition X(0) = x, i.e.

⌧C(x) = inf{t : X(t) 2 C|X(0) = x}. (2.46)

Let A and B be two disjoint subsets of the phase space Ω, i.e. A,B ⇢ Ω

and A \ B = ;. The committor function q(x) for the sets A and B is
the probability that a trajectory starting at point x visits B first rather
than A first [Onsager, 1938, E et al., 2005, Vanden-Eijnden, 2006,Metzner
et al., 2006, Bovier, 2006,Metzner, 2008,Metzner et al., 2009, Prinz et al.,
2011,Schütte et al., 2011,Bowman et al., 2013,Schütte and Sarich, 2015,Lopes
and Lelièvre, 2019,Thiede et al., 2019]:

q(x) = P(⌧B(x) < ⌧A(x)). (2.47)

As explained in Sec. 2.1 Eq. (2.47) is a general definition and is not restricted
exclusively to Markov processes but, in the case of Markov processes, the
committor function q(x) is also the solution of a Dirichlet problem involving
the adjoint of the Fokker-Planck operator [E et al., 2005, Metzner, 2008,
Thiede et al., 2019].
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To deal with the first hitting times problems, it is convenient to note
that the Fokker-Planck equation (Eq. (2.36)) can be written in the form of
a continuity equation

@G(x, t|y, 0)

@t
= L†[G(x, t|y, 0)] = �r · J(x, t|y, 0) (2.48)

where Ji(x, t|y, 0) = Ai(x, t)G(x, t|y, 0)� 1
2

P

j
@

@xj
[Dij(x, t)G(x, t|y, 0)].

In order to derive the differential equation that defines q(x), it is useful to
consider the set S = A[B as an absorbing set6. This means that the propa-
gator G(x, t|y, 0) must satisfy a backward Kolmogorov equation (Eq. (2.37))
with the condition G(x, t|y, 0) = 0 for y 2 S. If the process X(t) is ergodic,
it is certain that it will hit the frontier of S, denoted by @S, if it is observed
for a time long enough. However, the committor function is not the proba-
bility that the system hits S but the probability that it hits the part of S
corresponding to B.

Let z(x; b)|@S(b)| be the probability that the process hits S at point b,
where |@S(b)| denotes the area of the surface element at point b. Then, the
committor function is nothing but

q(x) =

Z

@B

db z(x; b)|@S(b)|. (2.49)

The quantity z(x; b) can be expressed as a function of the current J(b, t|x, 0)
as follows

z(x; b)|@S(b)| =

Z +1

0

dt J(b, t|x, 0) · @S(b). (2.50)

By considering that @G(x,t|y,0)
@t

= LG(x, t|y, 0) one has

Z +1

0

dt @tJ(b, t|x, 0) · @S(b) = L


Z +1

0

dt J(b, t|x, 0) · @S(b)

�

=

= L [z(x; b)|@S(b)|] = �J(b, 0|x, 0) · @S(b) = 0 if x 6= b. (2.51)

Eq. (2.51) shows that z(x; b) is an element of the kernel of the operator L for
x 6= b. Since L is a linear operator one obtains

L[q(x)] = L


Z

@B

db z(x; b)|@S(b)|

�

=

Z

@B

dbL[z(x; b)]|@S(b)| = 0. (2.52)

6The derivation of the differential equation for the committor closely follows the deriva-
tion for the distribution of exit points in [Gardiner et al., 1985].
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Thus, it has been shown that the committor obeys to the equation L[q(x)] =
0 for x /2 S. To complete this equation, it is necessary to specify the proper
boundary conditions. Clearly, it is certain to exit from the point b if the
process starts from b, therefore z(b; b)|@S(b)| = 1. Furthermore, since all the
points of the set S are absorbing, for any point x 2 S such that x 6= b the
probability that the process will leave the region through b is equal to 0.
Therefore, one has that q(x) = 0 for x 2 A and q(x) = 1 for x 2 B. Putting
all together, one obtains that the committor function q(x) is the solution of
the Dirichlet problem

8

>

<

>

:

q(x) = 0 if x 2 A,

q(x) = 1 if x 2 B,

L[q(x)] = 0 if x /2 A [ B.

(2.53)

In the next subsection, two examples where the problem 2.53 can be
solved analytically will be considered.

2.3.3 Examples: Wiener and Ornstein-Uhlenbeck pro-

cesses

In this subsection the committor function is computed for two simply one-
dimensional Markov processes: the Wiener process and the Ornstein-Uhlenbeck
process.

A Wiener process X(t) ⌘ W (t) is defined by the formal equation

Ẇ (t) =
p
2D⇠(t), (2.54)

or, equivalently, its propagator G(x, t|y, 0) obeys at the Fokker-Planck equa-
tion

@tG(x, t|y, 0) = D
@2G(x, t|y, 0)

@x2
. (2.55)

From a physical point of view, the Wiener process can be thought of as
a process that describes the position of a colloidal particle immersed in a
viscous fluid.

The phase space of the system Ω coincides with the real line, that is
Ω ⌘ R. Consider the sets A = (�1, a] and B = [b,+1) with a < b. The
committor function q(x) corresponds to the probability that the processW (t)
enters in B before entering in A knowing that W (0) = x. Since in this case
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the Fokker-Planck operator is self-adjoint, q(x) is the solution of the Dirichlet
problem

D
@2q(x)

@x2
= 0, q(a) = 0, q(b) = 1. (2.56)

The solutions of the partial differential equation D @2q(x)
@x2 = 0 are linear func-

tions of the form q(x) = ↵x + �. The two coefficient ↵ and � are found by
imposing the boundary conditions q(a) = 0 and q(b) = 1, obtaining ↵ = 1

b�a

and � = � a
b�a

. Hence, the committor function q(x) is

q(x) =
x� a

b� a
. (2.57)

Eq. (2.57) shows that for the Wiener process the committor function grows
linearly from the value 0 in A to the value 1 in B. The growth is independent
on the diffusion coefficient D and the slope only depends on the length of
the interval. Furthermore, it can be seen that to have a probability greater
than 0.5 to reach first B rather than A, the process must start beyond the
middle of the range, i.e. x > a+b

2
. Thus, this example is analogous of the fair

game in the gambler’s ruin problem (see the last expression in Eq. (2.22)),
where the odds of winning or losing a bet are equal. This is not surprising
since the Wiener process is exactly the generalization of the random walk in
a continuous space. To obtain the exponential solution equivalent to that of
Eq. (2.22), it is necessary to consider a drift term in Eq. (2.54). This means
to consider the process X(t) defined by

Ẋ(t) = µ+
p
2D⇠(t), (2.58)

which can be thought to describes the position of a colloidal particle immersed
in a viscous fluid and driven by a constant force µ. For instance, it could
represent the position of a pollen grain in water subject to gravitational force.

Also in this case, the Fokker-Planck operator is self-adjoint and it is
equal to L† = �µ @

@x
+ D @2

@x2 . Hence, the committor function is defined by
the Dirichlet problem

µ
@q(x)

@x
+D

@2q(x)

@x2
= 0, q(a) = 0, q(b) = 1, (2.59)

whose solution is

q(x) =
1� exp

�

� µ
D
(x� a)

�

1� exp
�

� µ
D
(b� a)

� . (2.60)

30





2.3. COMMITTOR FUNCTIONS FOR A CONTINUOUS TIME
MARKOV PROCESS

the particle is chosen to be the middle of the interval [a, b], the probabilities
to reach B before A are 50%, 85% and 10% for the three cases µ = 0, µ = 2D
and µ = �2D, respectively. The comparison between Fig. 2.2 and Fig. 2.1
and between the values of the committor in the middle point of the interval
further highlights the similarity between the two problems, showing that the
process X(t) (Eq. (2.58)) is the continuous equivalent of the Markov chain
considered in Sec. 2.2.3.

The second example that is considered is the Ornstein-Uhlenbeck pro-
cess. Historically, it was the first stochastic differential equation to appear in
physics, introduced in 1908 by the mathematician Paul Langevin to describe
the velocity of a Brownian particle. The stochastic differential equation that
describes this process is the following:

Ẋ(t) = �kX(t) +
p
2D⇠(t). (2.61)

In this equation the drift coefficient acts as a restoring force and tries to bring
the process towards its equilibrium position as long as k > 0, while for k < 0
the drift tends to force the system away from the equilibrium. For such a
process, the Dirichlet problem defining the committor (see Eq. (2.53)) takes
the form

�kx
@q(x)

@x
+D

@2q(x)

@x2
= 0, q(a) = 0, q(b) = 1, (2.62)

where the sets A = (�1, a] and B = [b,+1), with a < b, have been
considered. It is quite simple to show that the solution of Eq. (2.62) is given
by

q(x) =

R

x

a
dy exp

�

k
2D

y2
�

R

b

a
dy exp

�

k
2D

y2
�

. (2.63)

Thus, the committor function depends on the parameter � = k
2D

. In the
limit � ! 0, the process X(t) behaves roughly like a Wiener process and the
committor function becomes approximately linear. Instead, for |�| ! +1,
since the integrands of Eq. (2.63) are exponentials and therefore the integrals
are dominated by the maximum of the integrands over the interval [a, b], the
behavior of the committor strongly depends on the end points of the interval
[a, b].

The committor function for the three cases � ! �1, � ! +1 and � ! 0
is shown in Fig. 2.3. It can be seen that for small values of � the committor is
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has an explicit formula, i.e.

q(x) =

R

x

a
dy [ (y)]�1

R

b

a
dy [ (y)]�1

, (2.65)

where

 (y) = exp


Z y

a

dx
A(x)

D(x)

�

. (2.66)

2.4 Numerical computation of the committor

In the previous section the theory of the committor function for both Markov
chains and Markov processes has been introduced. This section, instead, will
be focused on presenting how to compute committor functions with numer-
ical methods. In particular, three methods will be introduced. The first
one, called direct estimation, consists in computing the committor from its
definition (Eq. (2.47)) by performing Monte Carlo experiments. The second
one, which is valid exclusively for ergodic dynamics, still aims to compute
the committor from its definition (Eq. (2.47)), but this is done by averaging
suitable functions over long trajectories. The third option, valid for diffusion
processes, consists in solving numerically the Dirichlet problem which defines
the committor (see Eq. (2.53)). Then, some machine learning methods that
estimate the committor function from observations are briefly mentioned.
Finally, it is explained how to validate an estimation of the committor func-
tion. To this purpose, two score functions are introduced: the Brier score
and the logarithmic score.

2.4.1 Direct estimation

The direct estimation consists in performing Monte Carlo experiments for
computing the committor function of a process X(t). Such a method is valid
for both deterministic and stochastic dynamics, since it only requires to be
able to generate N different realizations of the process with the same initial
condition.

To be more precise, suppose that one needs to compute the committor
function q(x) at point x for two sets A and B. To achieve this result, N
realizations of the process X(t) can be initialized at X(0) = x and then
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evolved through the dynamics until they reach A or B. Let NB(x) denote
the number of realizations that ends up in B. An estimation of the committor
q(x) is given by

q(x) =
NB(x)

N
, (2.67)

which converges to the exact value in the limit N ! +1.
If one needs to compute the committor over the entire phase space Ω, a

similar procedure can be employed. Indeed, let {Cj}1jJ be a partition of
the phase space Ω, i.e. Cj1 \ Cj2 = ; for j1 6= j2 and [J

j=1Cj = Ω. Then, for
each set Cj, one can generate N different realizations of the process X(t) with
initial condition X(0) = x 2 Cj. Let NB(Cj) be the number of trajectories
that reach the set B first, knowing that they start inside the set Cj. The
committor function q(x), for any point x 2 Cj, is

q(x) =
NB(Cj)

N
, (2.68)

which converges to the real committor when N ! +1 and J ! +1.
While this procedure is conceptually simple, it has at least two draw-

backs. The first one is that this approach is feasible as long as one is able
to generate precise initial conditions. Although this can be done in numeri-
cal simulations, it may not be the case in real laboratory experiments. The
second drawback is related to its computational cost. In fact, since one has
to observe N different realizations of the process until they reach one of the
two sets, the time for a realization to reach the sets must be sufficiently
small. Furthermore, even if the time to hit the two sets is small enough, this
method is impractical for high dimensional systems, since the number J of
sets Cj needed to partition the phase space Ω grows exponentially with the
dimension.

2.4.2 Committor computation based on a long trajec-

tory

For an ergodic process, being it deterministic or stochastic, the committor
function can be computed by using the information contained in one (or
more) long trajectory.
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Let 1⌧B<⌧A be the variable defined as

1⌧B<⌧A =

(

1 if ⌧B < ⌧A,

0 otherwise.
(2.69)

From the definition of the committor (Eq. (2.47)) it can be seen that

q(x) = Ex [1⌧B<⌧A ] , (2.70)

where Ex [·] denotes the average over the stationary distribution of the process
conditioned to the constrain X(0) = x. Furthermore, it should be noted that
Eq. (2.47) can be rewritten as

q(x) = P(⌧B < ⌧A|X(0) = x) =
P(⌧B < ⌧A;X(0) = x)

P(X(0) = x)
, (2.71)

where the numerator stands for the joint probability of observing ⌧B < ⌧A
and X(0) = x, while the denominator is simply given by ⇢s(x)dx. Therefore,
one has

⇢s(x)q(x)dx = P(⌧B < ⌧A;X(0) = x) = E [1⌧B<⌧A�(X(0)� x)] . (2.72)

By using the ergodicity for replacing the statistical average in Eq. (2.72) with
temporal averages one obtains

⇢s(x)q(x) = lim
T!+1

1

T

Z T

0

�(X(t)� x)1⌧B<⌧A , (2.73)

while the stationary distribution is given by

⇢s(x) = lim
T!+1

1

T

Z T

0

�(X(t)� x). (2.74)

By introducing a spatial and temporal discretization, Eqs. (2.73),(2.74)
can be used to compute an estimation of the committor function [Lopes and
Lelièvre, 2019,Lucente et al., 2019]. As in the previous section, let {Cj}1jJ

be a partition of the phase space Ω. Let {Xn}1nNt
be a realization of the

process observed at discrete time tn = n∆t with T = Nt∆t. The probability
for the system to be in the set Cj, denoted by p(Cj), is equal to

p(Cj) =
1

Nt

Nt
X

n=1

1Xn2Cj , (2.75)
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while the probability that it is in the set Cj and that it will visits the set B
before A, indicated by pB(Cj) is simply given by

pB(Cj) =
1

Nt

Nt
X

n=1

1Xn2Cj1⌧B(Xn)<⌧A(Xn). (2.76)

Finally, by combining Eqs. (2.75),(2.76) the committor function turns out to
be

q(Cj) =
pB(Cj)

p(Cj)
=

PNt

n=1 1Xn2Cj1⌧B(Xn)<⌧A(Xn)
PNt

n=1 1Xn2Cj
. (2.77)

Although both the direct estimation of the committor and the compu-
tation based on a long trajectory rely on Eq. (2.47), the latter should be
preferred since it uses all the informations that a trajectory carries with it.
However, as it will be seen in the next chapter, this method may suffer from
sampling issues. In fact, a finite trajectory cannot visit the entire phase space
Ω. Therefore, meaningful results can be obtained only for the part of the
phase where the dynamics spends enough time.

2.4.3 Committor computation solving the Backward

equation

It has be seen in Sec. 2.3.2 that for a continuous Markov process (i.e. a dif-
fusion process) the committor function q(x) is the solution of a second order
partial differential equation (Eq. (2.53)). Hence, the committor function can
be computed by solving Eq. (2.53) numerically. This can be achieved by em-
ploying any integration scheme for partial differential equation, for instance
by employing the finite difference method which is illustrated here for one
dimensional dynamics.

The finite difference method aims to approximate the derivatives of a
function with finite difference equations [Smith et al., 1985]. To derive
this method, consider the Taylor expansions of the committor function q(x)
around the point x:

q(x+∆x) = q(x) +
@q(x)

@x
∆x+

1

2

@2q(x)

@x2
∆x2 +O(∆x3), (2.78)

q(x�∆x) = q(x)� @q(x)

@x
∆x+

1

2

@2q(x)

@x2
∆x2 +O(∆x3). (2.79)
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By adding or subtracting Eqs. (2.78),(2.79) one obtains

@2q(x)

@x2
' q(x+∆x) + q(x�∆x)� 2q(x)

∆x2
,

@q(x)

@x
' q(x+∆x)� q(x�∆x)

2∆x
. (2.80)

These two formula suggest that the Dirichlet problem (2.53) can be ap-
proximated by a system of linear equations. In fact, let A = (�1, a] and
B = [b,+1) be the two sets for which the committor function needs to be
computed. It means that the set (A [ B)c where L[q(x)] = 0 is equal to
the interval [a, b]. To obtain the system of linear equations, consider L + 1
points xl = a+ l∆x, with xL = b, and let ql denotes the committor function
computed at point x = xl. Clearly, the boundary conditions for the Dirichlet
problem are q0 = 0 and qL = 1. Instead, for 1  l  L� 1 one has

Al
ql+1 � ql�1

∆x
+

1

2
Dl

ql+1 + ql�1 � 2ql
∆x2

= 0, (2.81)

where Al = A(xl) and Dl = D(xl). By solving Eq. (2.81) one obtains an
estimation of the committor that converges to the real one when ∆x ! 0.

Unlike the two methods described in the previous sections, such an ap-
proach can only be used for diffusion processes. In spite of this limitation, it
has the great advantage that its computational cost does not depend on the
intensity of the noise. Therefore, when transitions between sets A and B are
rare it is preferable to use this method since generating several trajectories
ending in A or B or a single trajectory long enough to cover a relevant por-
tion of the phase space can take a very long time and may not be feasible in
practice [Rolland and Simonnet, 2015].

Solving the problem (2.53) numerically is feasible as long as the system
under investigation has few degrees of freedom. When the dynamics takes
place in an high dimensional phase space Ω the number of linear equations
to be solved grows exponentially with the dimension, highlighting the impos-
sibility of finding a solution with finite computational resources.

2.4.4 Machine learning estimation

The style of this subsection slightly deviates from the style of the chapter.
In fact, the purpose here is to mention the possibility of estimating com-
mittor functions from observations. A rigorous treatment of the methods
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mentioned here is beyond the scope of this thesis. Nonetheless, it is impor-
tant to mention recent works which are somehow related to the topics of this
manuscript.

Many interesting methods have been or are currently being devised to
learn committor functions: based on direct machine learning [Pozun et al.,
2012], using a characterization of the committor function for diffusions as a
solution of a partial differential equation [Khoo et al., 2019,Li et al., 2019],
computing the committor function from a finite state Markov chain [Schütte
et al., 1999,Prinz et al., 2011,Noé and Rosta, 2019,Tantet et al., 2015], pos-
sibly a Markov state model approximation of the dynamics [Ulam, 2004].
Recently a very interesting approach has been considered starting from a
Galerkin approximation of the dynamics generator, or the Koopman opera-
tor. Finite dimensional approximations of the dynamics generator have been
used to identify good reaction coordinates [Froyland et al., 2014,Bittracher
et al., 2018], or to evaluate eigenfunctions of the operator [Giannakis et al.,
2015,Giannakis, 2019,Williams et al., 2015,Mardt et al., 2018], sometimes
with climate applications [Giannakis et al., 2015,Giannakis, 2019]. Recently
such direct Galerkin approximation has been used to directly compute com-
mittor function, avoiding the burden of discretizing a high dimensional phase
space [Thiede et al., 2019,Strahan et al., 2021].

In Chapter 4 a new method for estimating committor functions from
dynamical observations will be developed.

2.4.5 Validation of a committor estimate

Having introduced several numerical methods to compute the committor
function of a system, it is natural to ask how to evaluate the quality of a
particular estimate. First of all, note that the committor function q(x) is
the probability of success of a spatially dependent Bernoulli trial where the
two possible outcomes are the occurrence of the event ⌧B(x) < ⌧A(x) or
⌧A(x)  ⌧B(x) whose probabilities are q(x) and 1� q(x), respectively. Thus,
the predictive problem to be faced consists in assigning a probability to two
mutually exclusive events. The two mutually exclusive events are the two
possible values assumed by the random variable 1⌧B(x)<⌧A(x) which for brevity
will be denoted by y(x), i.e. y(x) ⌘ 1⌧B(x)<⌧A(x).

Therefore, the objective of estimating the committor function is to find
the best approximation of the joint probability P (x, y) of two events (x, y),
with x 2 Ω and y 2 {0, 1}. Note that these random variables are not in-
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dependent. Indeed, it has been argued that the conditional distribution of
y with respect to x is Bernoulli with parameter q(x), where q is the com-
mittor function. Thus, by assuming that the process is stationary (i.e. x is
distributed according the stationary distribution ⇢s(x)), one has

P (x, y) = P (x)P (y|x) = ⇢s(x) [q(x)�(y � 1) + (1� q(x))�(y)] , (2.82)

where �(·) is the Dirac delta function.
In this context, evaluating an estimate of the committor function requires

finding a way to quantify the discrepancy between the predictions made using
P (x, y) compared to those obtained using its approximation P̂ (x, y). Since
usually the committor function is computed using realizations of the process
under investigation, or in any case, it is computed only in regions of the
phase space mostly visited by the dynamics, it can be assumed without losing
generality that also for the distribution P̂ (x, y) the variable x is distributed
according to the stationary distribution ⇢s(x), i.e.

P̂ (x, y) = P̂ (x)P̂ (y|x) = ⇢s(x) [q̂(x)�(y � 1) + (1� q̂(x))�(y)] . (2.83)

The score functions to be used, denoted by R(P, P̂ ), must have two funda-
mental properties. The first one is that R exhibits an extremant for P = P̂ ,
which is equivalent to requiring that @R

@P̂
= 0 for P̂ = P . The second fun-

damental property is that the function R has an empirical counterpart R̃
that can be computed from observations, since the true committor function
is often unknown in real problems.

The request for an empirical counterpart R̃ is what distinguishes scores
from distances (or pseudo distances). In fact, one could try to use a distance
such as the L⇢s

2 norm or a pseudo distance such as the Kullback-Leibler diver-
gence to compute the error of an estimate of the committor function. How-
ever, as will be well illustrated in the next two subsections, these distances
cannot be computed from the data. The quantities that can be calculated
instead are the scores associated with these two distances. The scores differ
from distances only by an additive constant. The diagram in Fig. 2.4, to-
gether with the discussions in the following sections help to better understand
this important concept.

Two score functions that are widely used in probabilistic forecasts, which
are related to the L⇢s

2 norm and the Kullback-Leibler divergence, are the
Brier score and the logarithmic score.
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as a score the quantity Bn(x) defined as

BNy
(x) =

1

Ny

Ny
X

ny=1

(q̂(x)� yny
(x))2, (2.85)

The space-dependent Brier score BNy
(x) is thus a random variable, with val-

ues between 0 and 1. The random variable (q̂(x)�yny
(x))2 can only assumes

two values: (q̂(x) � 1)2 with probability q(x) and q̂(x)2 with probability
1� q(x). Therefore, the average value of BNy

(x) is

E
⇥

BNy
(x)
⇤

= (1�q̂(x))2q(x)+q̂(x)2(1�q(x)) = q(x)(1�q(x))+(q̂(x)�q(x))2.
(2.86)

Eq. (2.86) shows that the average space-dependent Brier score E
⇥

BNy
(x)
⇤

can
be decomposed into the sum of two positive terms. The first term represents
the variance of a Bernoulli trial with parameter q(x) and it is related with
the intrinsic stochasticity of the forecast itself. Indeed, since the variable
y is stochastic, there will always be an uncertainty in its prediction. This
uncertainty is as great as q(x) is close to the value 0.5 and it vanishes only
for q(x) = 0 or q(x) = 1. The second term, instead, measures how different
are the actual committor q(x) and its approximation q̂(x). Such a term is
always positive (since it is a square difference) and is equal to 0 if and only if
q̂(x) = q(x). From these considerations it is therefore clear that the smaller
the score, the more accurate the estimate of the committor function is.

In the limit Ny ! +1, according to the law of large numbers one has

lim
Ny!1

BNy
(x) = E

⇥

BNy
(x)
⇤

. (2.87)

So far, exclusively how to quantify the quality of the estimate of the
committor at a given point x has been discussed. To take into account also
the contributions deriving from other regions of the phase space it is sufficient
to add the contributions coming from different points:

BN =
1

Nx

Nx
X

nx=1

1

Ny

Ny
X

ny=1

(q̂(xnx
)� yny

(xnx
))2 =

1

N

N
X

n=1

(q̂(Xn)� yn)
2. (2.88)

By considering the limits Nx ! +1 and Ny ! +1 (or equivalently the
limit N ! +1) into Eq. (2.88) one obtains

lim
Nx!1

lim
Ny!1

BN = EP [(y(x)� q̂(x))] = B⇢s . (2.89)
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Eq. (2.89) shows that BN is the empirical version of B⇢s , that is BN = B̃⇢s .
Furthermore, by using Eq. (2.86), it easy to see that

B⇢s =k q � q̂ k2⇢s + k
p

q(1� q) k2⇢s , (2.90)

where k f k2⇢s= L⇢s
2 (f) =

R

dx f 2(x)⇢s(x).
The second term in the right hand-side of Eq. (2.90) depends only on the

true committor q(x) and therefore it is constant if one imagines the Brier
score as a function of q̂(x). Thus, in all cases in which the real committor
function is known, the difference of q̂(x) from q(x) can be studied using the
weighted norm L⇢s

2 , since it is the only non-constant term in Eq. (2.90).
Therefore, it has been shown that the Brier score can be used for assessing

the quality of an estimate of the committor function. In fact, it satisfies the
two basic requirements for a score function and it has a simple expression
which involves the L⇢s

2 distance. The major limitation, as noted in [Benedetti,
2010], is that it is not appropriate for dealing with rare (or frequent) events.
In fact, consider a state x for which the committor function is relatively small,
for example q(x) = 10�3. Also suppose that two estimates of the committor
function q̂1(x) = 0 and q̂2(x) = 10�3 are available. These two approximations

lead to the two values E

h

B1
Ny
(x)
i

= 10�3 and E

h

B2
Ny
(x)
i

= (1� 10�3)10�3.

Thus, by using the real committor function the score is reduced by only 0.1%
showing that it is very unfair in evaluating forecasts of rare events.

Logarithmic score

The logarithmic score is nowadays widely used both for the validation of
probabilistic predictions and in the field of machine learning. From the point
of view of information theory, this can be understood given its relationship
to relative entropy.

The relative entropy, also known as Kullback-Leibler divergence, was in-
troduced by Kullback and Leibler in 1951 [Kullback and Leibler, 1951] as a
measure to quantify how different two distributions are.

Let P (x, y) and P̂ (x, y) be two distributions, then the relative entropy is
defined as [Kullback and Leibler, 1951,Kullback, 1997]

S(P (x, y)||P̂ (x, y)) =

Z

dxdyP (x, y) log
P (x, y)

P̂ (x, y)
, (2.91)
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and it measures the information lost when P̂ (x, y) is used to approximate
P (x, y).

By inserting the expressions (2.82),(2.83) for P (x, y) and P̂ (x, y) into
Eq. (2.91), one obtains

S(P (x, y)||P̂ (x, y)) =

Z

dxdyP (x, y) log
P (x, y)

P̂ (x, y)

=

Z

dx⇢(x)



q(x) log
q(x)

q̂(x)
+ (1� q(x)) log

1� q(x)

1� q̂(x)

�

= C(q̂) + Const(q) = S⇢s , (2.92)

where

C(q̂) = �
Z

dx⇢(x)[q(x) log (q̂(x)) + (1� q(x)) log (1� q̂(x))], (2.93)

and

Const(q) =

Z

dx⇢(x)[q(x) log (q(x)) + (1� q(x)) log (1� q(x))]. (2.94)

Note that S⇢s and C(q̂) are well defined if and only if q̂(x) = 0 ) q(x) = 0
and q̂(x) = 1 ) q(x) = 1. Furthermore, it easy to verify that

argmin
q̂

{S⇢s} = argmin
q̂

{C(q̂)} = q. (2.95)

Eq. (2.92) shows that the relative entropy S⇢s is the sum of two terms.
The term Const(q) is minus the spatial average over the stationary distribu-
tion of the entropy of a spatial dependent Bernoulli trial with parameter q(x),
which is consistent with the interpretation of the committor given above. It
does not depend on q̂ and corresponds to an additive constant in the equation
for S⇢s . The other term is the cross entropy (or logarithmic score) between
P (x, y) and P̂ (x, y) and it is related with the mutual information between
the two probability distributions. It should be noted that the logarithmic
score C(q̂) contains all the dependence of S⇢s on q̂ and therefore minimize
S⇢s is equivalent to minimize C(q̂).

To be a useful score function, the corresponding empirical score must
exist. Unfortunately, the quantity S⇢s can be computed only when the true
committor is known due to the term Const(q) in Eq. (2.92). Nevertheless,
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it is possible to provide an empirical version of the logarithmic score C(q̂),
denoted by C̃(q̂). In fact, consider again N points (Xn, yn) with n = 1, · · · , N
drawn from the true distribution P (x, y). Let C̃N(q̂) be the empirical score
defined as

C̃N(q̂) = � 1

N

N
X

n=1

[yn log (q̂(Xn)) + (1� yn) log (1� q̂(Xn))] =

= � 1

N

N
X

n=1

Z

dx �(Xn � x) [yn log (q̂(x)) + (1� yn) log (1� q̂(x))] .

(2.96)

When N ! +1 one has

lim
N!+1

1

N

N
X

n=1

�(Xn � x)yn = ⇢s(x)q(x),

lim
N!+1

1

N

N
X

n=1

�(Xn � x)(1� yn) = ⇢s(x)(1� q(x)), (2.97)

which imply that
lim

N!+1
C̃N(q̂) = C(q̂). (2.98)

It has therefore been shown that the logarithmic score C(q̂) can be used
as a score function as it has an empirical version that can be computed from
data and it is also minimal for q̂ = q. Furthermore, since C(q̂) is well defined
for q̂(x)! = 0 (q̂(x)! = 1) unless q(x) = 0 (q(x) = 1), the logarithmic score
tends to discourage trivial assignments such as q̂(x) = 0 (q̂(x) = 1), thus
behaving better than the Brier score in evaluating the predictions of rare (or
frequent) events [Benedetti, 2010].

2.5 Time dependent committor functions

So far, the problem of computing the probability that a process enters a
certain region of the phase space before another region has been considered.
This section is devoted to discuss a slightly different problem which can
nevertheless be addressed using the same formalism introduced previously.
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The problem to be taken in this section is strictly related to prediction
problems. Indeed, it often happens that it is necessary to compute the prob-
ability that an observable O of the system exceeds a given threshold ⇣ within
a time T . For instance, O could be the average temperature of a country
and one may be interested in computing the probability to have an extreme
hot day in the incoming few weeks.

Although it may appear that these prediction problems have nothing to
do with committor functions, in this section it will be shown that these
probabilities are committor functions of an auxiliary process. Furthermore,
it will be explained that in the case in which the observable O does not
explicitly depend on time, there is a relationship between the probability of
exceeding the threshold and the first hitting time of a region of the phase
space. The section concludes by discussing this prediction problem in the
context of a two-dimensional Wiener process.

2.5.1 Definition and equation for time dependent com-

mittor

LetX(t) be a stochastic or deterministic dynamical system and let O (X(t), t)
be an observable of the system, i.e. a function O : [0,+1)⇥ Ω ! R. Then,
suppose that one is interested in computing the probability q(x, t0; ⇣, T ) that
O (X(t), t) exceeds a threshold ⇣ within the time interval [t0, t0+T ], knowing
that the process starts at X(0) = x, i.e.:

q(x, t0; ⇣, T ) = P

✓

max
t0tt0+T

[O (X(t), t)] > ⇣|X(0) = x

◆

. (2.99)

As previously mentioned q(x, t0; ⇣, T ) is nothing but a committor function
for an auxiliary process Y [Lestang et al., 2018]. In fact, consider the process
Y (t) = [O (X(t), t) , t] and let A and B be two subsets of the phase space of
Y . The definitions of the two sets are

A = {y = [z, t0 + T ] : z  ⇣}, (2.100)

B = {y = [z, t] : z > ⇣ and t 2 [t0, t0 + T ]}. (2.101)

Fig. 2.5 shows a schematic illustration of the phase space of Y (t) and it
could be useful to visualize the two sets A and B.

For the process Y (t) one can define the committor function as q̃(y) =
P (⌧B(y) < ⌧A(y)). Furthermore, by noting that Y (0) cannot be arbitrary
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1. instantaneous observables O (X(t)) which are functions that do not
depend explicitly on time,

2. time averaged observablesO (X(t), t) = 1
T̃

R t+T̃

t
dt h (X(t)) where h (X(t))

is time independent.

Note that the observables which belong to these classes are invariant under
the transformation t ! t + ⌧ provided that the process X(t) is a station-
ary process. This invariance is important as it allows the introduction of
an integral equation for q(x, t0; ⇣, T ). Indeed, consider a stationary Markov
process X(t) and an observable which belongs to one of the two classes. Let
G(y, t|x, 0) denote the propagator of the process. Then, it can be noted that
the probability that the observable O exceeds the threshold ⇣, knowing the
initial condition X(0) = x, is equal to the sum over all possibles intermediate
states X(t0) = y of the probabilities that O exceeds the threshold ⇣ when
the process starts at X(t0) = y times the propagator G(y, t0|x, 0), i.e.

q(x, t0; ⇣, T ) =

Z

dy P

✓

max
t0tt0+T

[O (X(t), t)] > ⇣|X(t0) = y

◆

G(y, t0|x, 0).

(2.103)
By using the invariance under the transformation t ! t+ ⌧ , one can write

P

✓

max
t0tt0+T

[O (X(t), t)] > ⇣|X(t0) = y

◆

= P

✓

max
0tT

[O (X(t), t)] > ⇣|X(0) = y

◆

=)

P

✓

max
t0tt0+T

[O (X(t), t)] > ⇣|X(t0) = y

◆

= q(y, 0; ⇣, T ). (2.104)

By combining Eqs. (2.103),(2.104) one obtains

q(x, t0; ⇣, T ) =

Z

dy q(y, 0; ⇣, T )G(y, t0|x, 0), (2.105)

which shows that exists a relationship between the time-dependent commit-
tor function at two different times.

In the next subsection, it will be shown that for instantaneous observables
the time dependent committor function q(x, 0; ⇣, T ) is the solution of a partial
differential equation analogous to Eq. (2.53) and moreover that it is related
with the cumulative distribution of first hitting times of the process X(t).
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2.5.2 Relation with cumulative distribution of first hit-

ting time

Let X(t) be an homogeneous continuous Markov process and O (X(t)) be an
observable which depends on time only through the stochastic process X(t).
Since O (X(t)) is time independent, one can define a subset C ⇢ Ω which
contains all the points x such that O(x) > ⇣, i.e. C = {x : O(x) > ⇣}.

Hence, the time-dependent committor function q(x, 0; ⇣, T ) is the proba-
bility that the first hitting time ⌧C(x) of set C is smaller than T :

q(x, 0; ⇣, T ) = P(⌧C(x) < T ). (2.106)

Following the same reasoning that in Sec. 2.3.2 led to the Dirichlet problem
for the committor function, it is possible to prove that q(x, 0; ⇣, T ) satisfies
the following partial differential equation

@q(x, 0; ⇣, T )

@T
= �L[q(x, 0; ⇣, T )], (2.107)

with the boundary condition q(x, 0; ⇣, T ) = 1 if x 2 C.
Thus, two other methods have been provided for computing q(x, 0; ⇣, T ):

the first one consists in solving Eq. (2.107) analytically or numerically, while
the second one aims to compute q(x, 0; ⇣, T ) by integrating up to time T
the first hitting time distribution of the set C. Once q(x, 0; ⇣, T ) have been
computed, it is possible to obtain q(x, t0; ⇣, T ) by means of Eq. (2.105).

2.5.3 Example: Wiener process

The aim of this section is to apply the formalism of the time-dependent
committor function for computing the probability that a Brownian particle
leaves a planar domain through a line within a certain time T . Consider a
Brownian particle which moves on a planar surface whose position is denoted
by X(t) = (Wx(t),Wy(t)). The equation of motion are

Ẇx(t) =
p
2D⇠x(t),

Ẇy(t) =
p
2D⇠y(t). (2.108)

Consider the line x = a with a = 1, and imagine having to compute the
probability that the particle leaves the phase space passing through the line
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within a time T = 10. Such a problem can be solved with the formalism
previously introduced by considering the observable O (X(t), t) = Wx(t) and
the threshold ⇣ = a.

First, note that although the system lies in a two-dimensional space,
the two components are independent of each other. Therefore, the time-
dependent committor function will only depend on the x�component of the
initial condition. Moreover, due to the independence of the two components,
also the propagator can G be written as the product of a propagator for
the y�component and a propagator for the x�component and the absorbing
boundary conditions will be imposed only for the x�component propagator.

Let Gx(Wx(t)|Wx(0)) and Gy(Wy(t)|Wy(0)) be the propagators of the two
components. Then, the total propagator G which satisfies the right boundary
conditions is [Redner, 2001]

G(X(t), t|X(0), 0) = Gx(Wx(t)|Wx(0))Gy(Wy(t)|Wy(0)),

Gy(Wy(t)|Wy(0)) =
1p
4⇡Dt

exp

✓

(Wy(t)�Wy(0))
2

4Dt

◆

,

Gx(Wx(t)|Wx(0)) =
1p
4⇡Dt



exp

✓

(Wx(t)�Wx(0))
2

4Dt

◆

� exp

✓

(Wx(t)� (2a�Wx(0)))
2

4Dt

◆�

.

(2.109)

Then, the probability that the first hitting time of the set C = {(x, y) :
x > a} is smaller than T is equal to

P(⌧C(x) < T ) = 1�
Z

C

G(X(T ), T |X(0) = (x, y), 0) = 1� erf

✓

a� xp
4DT

◆

,

(2.110)
where erf(·) denotes the error function.

Since O is an instantaneous observable, the time-dependent committor
function is equal to the probability that the first hitting time of the set
C is smaller than T . Thus, one has that q(x, 0; a, T ) = P(⌧C(x) < T ) =

1 � erf
⇣

a�xp
4DT

⌘

. Clearly, q(x, 0; a, T ) ! 0 if T ! 0 because if the particle

does not have enough time it will not leave the domain. In the opposite
limit, i.e. when T ! +1, q(x, 0; a, T ) ! 1 given that sooner or later the
particle will reach the threshold a. The same considerations hold for the
diffusion coefficient D. Indeed, when D � 1 the particle is much more likely
to leave the domain within time T than in the case D ⇠ 0. Considering the
dependence of q(x, 0; a, T ) on x, one has that if x is close to a then q(x, 0; a, T )
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Chapter 3

Committor Functions for

Climate Phenomena at the

Predictability Margin: The

example of ENSO in the Jin

and Timmermann model

In this chapter, the methods introduced in Chapter 2 are applied for studying
the committor function of the Jin and Timmerman model of El-Niño. In this
context, it is shown that the ability to predict the probability of occurrence
of the event of interest may differ strongly depending on the initial state.
The main result is the new distinction between intrinsic probabilistic pre-
dictability (when the committor function is smooth and probability can be
computed which does not depend sensitively on the initial condition) and in-
trinsic probabilistic unpredictability (when the committor function depends
sensitively on the initial condition).

The content of this chapter is intended to be a paper manuscript and has
been submitted to the ”Journal of the Atmospheric Sciences” (JAS) [Lucente
et al., 2021]. For this reason, the chapter is self-consistent and can be read
independently from the rest of the thesis. Therefore, some of the previously
described ideas, especially those discussed in the introductory chapter, are
discussed again. The reader who is reading the thesis manuscript entirely
can therefore skip the introduction of this chapter and start reading from
Sec. 3.2.
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3.1 Introduction

It has long become clear that statistics and probability are the natural lan-
guages for climate: for given boundary conditions, there is a typical state
(or several, in case of bimodality), the climatology, and fluctuations around
typical conditions, referred to as climate variability, involving various time
and space scales. At first sight, this kind of description may seem orthogo-
nal to the problem of weather forecasting, which consists in predicting the
exact state of the atmosphere at a given future time. However, notwithstand-
ing the use of probabilities in numerical weather forecasting for uncertainty
quantification, these two approaches meet in several areas of current climate
research [Kalnay, 2003,Dijkstra, 2013,Ragone et al., 2018]. For instance, we
are often interested in predicting the occurrence of specific fluctuations of
the climate system, be it a given mode of climate variability, such as the El
Niño Southern Oscillation (ENSO) [Philander, 1990], regime changes [Tantet
et al., 2015], or rare events such as heat waves [Ragone et al., 2018], sudden
stratospheric warming, cold spells, extreme precipitations, or any other event
of importance. All these events have a probability of occurring any given year,
i.e. with respect to climatological conditions, but one may also be interested
in their probability of occurrence conditioned on the state of the climate sys-
tem at the time of the prediction. For instance, given the global impact of
events like ENSO, much efforts have focused on developing methods to fore-
cast it several months in advance [Latif et al., 1994,Clarke, 2008,Chekroun
et al., 2011,Ludescher et al., 2014,Feng and Dijkstra, 2017,Nooteboom et al.,
2018]. Similarly, one may want to estimate the probability of occurrence of
a summer drought based on soil moisture in the spring, the probability of
occurrence of a heat wave a few weeks in advance, based on the observed
atmospheric circulation, or the probability of an extreme hurricane season,
based on sea surface temperature. Such forecasts are extremely challenging,
but would be rewarded with proportionally large benefits, given the socio-
economic impact of these events at the local and global scales, especially in
a climate change context [AghaKouchak et al., 2012, Coumou and Rahm-
storf, 2012,Field et al., 2012,Herring et al., 2014]. While it is not clear that
this may be reliably achieved for all the above examples, due to their dif-
ferent physical nature, conceptually all these events fall in the same class of
prediction problems. The goal of this paper is to discuss the mathematical
structure of such climate prediction problems.

Indeed, the mathematical structure of weather forecasting is quite clear:
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it consists in solving an initial value problem (IVP). Given an initial con-
dition x0 belonging to an appropriate phase space, we are interested in
computing the trajectory xt = �tx0, where �t is the flow of the dynam-
ical system, encapsulating the evolution equations. For many dynamical
systems, this description only holds for a finite time in practice, due to sen-
sitive dependence on initial conditions. This limitation was already known
from mathematicians in the 19th century, such as Poincaré and Hadamard.
For low-dimensional chaotic dynamical systems, this time scale, up to which
deterministic forecasts are relevant, corresponds the the Lyapunov time [Cas-
tiglione et al., 2008]. In the atmosphere, the predictability horizon, about
two weeks in practice, corresponds to the time it takes for undetectable errors
at the smallest scales of the flow to contaminate the large scales [Thompson,
1957,Novikov, 1959,Lorenz, 1969b]. Early numerical weather prediction at-
tempts fell short of this predictability horizon, both due to model errors
and sparsely constrained initial conditions. As models improved and ob-
servational data became much denser, owing in particular to the advent of
satellite observations, performance rose and skillfull forecasts are now close
to the theoretical barrier [Bauer et al., 2015]. Beyond this limit, the dynam-
ics becomes effectively stochastic. Notwithstanding the fact that the relevant
phase space may be different for climate dynamics over geological time scales,
climate therefore corresponds to the statistical properties of some stochastic
process (xt)t>0. Over very long times, we expect those statistical properties
to be independent of the initial condition. In other words, the mathematical
concept relevant for climate is the invariant measure of the system. For lack
of better techniques, in practice we still compute these properties by aver-
aging over long times and over realizations using ensembles of trajectories
obtained by numerical integration of climate models. In any case, the invari-
ant measure only describes the system for times larger than the mixing time,
after which the initial condition is forgotten. However, in the applications
cited above, the time scale of interest is the intermediate case for which a
deterministic forecast is not relevant, but for which some information, more
precise than the climate average, might be predicted. We call this range of
time scales the predictability margin.

Prediction problems at the predictability margin are of a probabilistic
nature, because they are concerned with time scales beyond the determinis-
tic predictability horizon of the system (e.g. the Lyapunov time). However,
we stress that the Lyapunov time scale, a global quantity, is clearly not the
relevant dynamical quantity for this predictability problem. By contrast, at
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Figure 3.1: Schematic illustrating the concept of predictability margin: deter-
ministic predictability is only possible until a finite time (e.g. the Lyapunov
time). The associated mathematical problem is an initial value problem
(IVP). Long term statistical properties (beyond the mixing time) do not de-
pend on the initial condition, and the corresponding mathematical object is
the invariant measure. In the intermediate range of timescales, which we call
the predictability margin here, the appropriate mathematical concept is the
committor function, which encodes the probability of a given event to occur,
condition on the state of the climate system at the time of the prediction.

the predictability margin, the predictability clearly depends on the current
state of the system. Then, the question is: what is the relevant mathe-
matical concept for prediction problems at the predictability margin? The
relevant mathematical concept is called the committor function [E et al.,
2005, Vanden-Eijnden, 2006]. This is a very generic concept: a committor
function is the probability for an event to occur in the future, as a function
of the current state of the system. Committor functions have first been in-
troduced in climate sciences in [Lucente et al., 2019], and has been used to
study sudden stratospheric warming [Finkel et al., 2020,Finkel et al., 2021]
or to understand the flow of ocean debris [Miron et al., 2021]. The interest
of putting a name, the committor function, to this otherwise very common
and generic concept, is two-fold. First it allows to study its mathematical
properties and to related them to key concepts in dynamical systems, for
instance the predictability margin, as we do in the present work. Second,
it comes with specific theoretical and computational approaches to compute
this important quantity, for instance transition path theory, see for exam-
ple [Vanden-Eijnden, 2006,Metzner et al., 2006, Metzner et al., 2009] and
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references therein. In atmosphere dynamics, a very interesting use of smart
ways of estimating the committor function for a simplified model of sudden
stratospheric warming is provided by [Finkel et al., 2021].

Many problems in medium-range forecasting fall within the predictabil-
ity margin range; to illustrate the interest of committor functions, we will
select only one exemple of application, the problem of ENSO prediction, us-
ing a very simple model. While, as mentioned above, many studies strive
to predict the occurrence of El Niño a few months in advance, we shall ad-
dress here a slightly different problem, focusing on predicting strong El Niño
events on longer time scales. This is also a relevant question from the point
of view of climate dynamics; while strong El Niño events have been observed
almost periodically since the 1950s, with a return time around 15–20 years,
historical data and paleoclimatic proxies indicate that ENSO may exhibit
high variability over centennial timescales [Cobb et al., 2003,Khider et al.,
2011,McGregor et al., 2013] and beyond [Rickaby and Halloran, 2005, Fe-
dorov et al., 2006, Cobb et al., 2013]. We study the dynamics of a low-
dimensional stochastic model proposed to explain the decadal amplitude
changes of ENSO, the Jin and Timmermann model [Timmermann and Jin,
2002,Timmermann et al., 2003]. This model is not aimed at reproducing any
precise properties of the real El Niño Southern Oscillation. It is rather used
as a paradigm example to introduce the concept of a committor function,
and to study its main properties. This will lead us to define probabilistic
predictability and unpredictability, some concepts that should be useful for
other applications.

We show that probabilistic prediction at the predictability margin de-
pends on the initial state, and that probabilistic predictability is encapsulated
in the committor function. This property is analogous to classical, determin-
istic predictability, which is known to depend on the state of the system:
some circulation patterns, such as the positive phase of the North Atlantic
Oscillation (NAO), lead to improved predictability. However, we stress that
deterministic and probabilistic predictability are different concepts: proba-
bilistic predictability means that the probability of the event does not depend
sensitively on the initial conditions. This corresponds to a region of phase
space where the committor function has gentle variations with the initial
conditions. In these areas, the event occurs with a probability p that can
be easily determined in practice because of these gentle variations. On the
contrary, probabilistic unpredictability corresponds to regions of the phase
space with a rough committor function. In these regions, the occurence of the
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event is also probabilistic. But the probability itself has very rapid variations
with the initial conditions, which make the prediction highly dependent on
the level of precision with which the initial condition is known. The existence
of such features, and especially the new and most interesting probabilistically
predictable region, should be generic for most prediction problems in climate
dynamics.

This paper also discusses relations between qualitative properties of the
committor function, finite time Lyapunov exponents, and the stability prop-
erties of trajectories with respect to noise perturbations. It also discuss
methodological aspects for a data-based approach for the computation of
committor functions.

The dynamics of the Jin and Timmerman model, when perturbed by a
weak noise, is characterized by rare transitions between a limit cycle and a
strange attractor [Roberts et al., 2016,Guckenheimer et al., 2017]. Based on
large deviation theory, and with generic hypothesis, the average transition
time E[⌧c] to see such transitions is expected to change following an Arrhe-
nius law: E[⌧c] ⇣

�!0
A exp (∆V/�2), where � is the noise amplitude. Using

numerical simulations, we demonstrate that the Jin and Timmerman transi-
tion times do not follow the expected Arrhenius law for a very large range of
small noise amplitudes. We conjecture that this very interesting phenomenon
might be the first observed counterexample to the expected generic result,
for deterministic dynamics perturbed by weak noises. We argue that this is
related to the intricated entanglement between the basins of attraction of the
limit cycle and the strange attractor.

The paper is organized as follows: in Sec. 3.2 we define the Jin and
Timmermann model [Timmermann and Jin, 2002,Timmermann et al., 2003].
In this model, the occurrences of strong ENSO events correspond to noise-
induced transitions between a strange attractor and a limit cycle [Roberts
et al., 2016,Guckenheimer et al., 2017]. We study in Sec. 3.3 the statistics
of such transitions, and we show that they do not obey an Arrhenius law.
Finally, in Sec. 3.4 we introduce the committor function, we compute it
for the Jin-Timmerman model, and characterize the regions of the phase
space with qualitatively different predictability properties. In the regime of
intermediate noise amplitude, at the predictability margin, we delineate four
regions (see Fig. 3.7): two regions of deterministic predictability (where the
event occurs with probability 0 or 1), one probabilistically predictable region
(where a value of the probability 0 < q < 1 can clearly be predicted with very
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mild dependence with respect to initial condition), and finally a region which
is unpredictable in practice, because the strong dependence with respect to
the initial condition prevents any precise prediction, either deterministic or
probabilistic.

3.2 The Jin and Timmermann model

El Niño Southern Oscillation (ENSO) is one of the most important mode
of climate variability at the interannual time scales [Philander, 1990]. El
Niño events consist in an increase of the Sea Surface Temperature in the
eastern equatorial Pacific Ocean, leading at the local scale to reduced ther-
mocline depth, reduced upwelling and reduced nutrient supply, thereby af-
fecting marine life. Such events are correlated with a reorganization of the
Walker circulation in the atmosphere, known as the Southern Oscillation.
The global phenomenon, referred to as ENSO, has major impacts all over
the world. However, the nonlinear coupled atmosphere-ocean dynamics of
ENSO makes it very difficult to predict [McPhaden et al., 2015]. Models of
various complexities have been constructed to capture the dynamics of El
Niño at different levels of realism [Clarke, 2008, Sarachik and Cane, 2010].
In order to introduce and illustrate the concept of committor function in the
simplest possible framework, we shall consider here one of the most ideal-
ized models, consisting of a low-dimensional stochastic process. This simple
dynamical model, introduced by [Jin, 1997a, Jin, 1997b], accounts for the
recharge-discharge mechanism which is at the basis of ENSO. This model
was later extended by [Timmermann et al., 2003] and was related to the
decadal amplitude changes of ENSO [Timmermann and Jin, 2002]. The
model describes the evolution of three variables:

1. T1, the Sea Surface Temperature in the western equatorial Pacific Ocean,

2. T2, the Sea Surface Temperature in the eastern equatorial Pacific Ocean,

3. h1, the thermocline depth anomaly in the western Pacific.

Assuming a thermal relaxation towards a radiative-convective temperature
Tr, the equations of motion can be written as [Timmermann and Jin, 2002,
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Timmermann et al., 2003]:

@T1

@t
= �↵(T1 � Tr)� ✏�⌧(1� �⌘t)(T2 � T1),

@T2

@t
= �↵(T2 � Tr) + ⇣�⌧(1� �⌘t)(T2 � Tsub),

@h1

@t
= r

✓

�h1 �
1

2
bL⌧

◆

, (3.1)

where ✏ and ⇣ represent the strength of the zonal and vertical advection, Tsub

denotes the temperature being upwelled into the mixed layer, ⌧ represents
the zonal wind stress, L denotes the basin width, b captures the efficiency
of wind stress in driving thermocline tilt, 1/↵ measures a typical thermal
damping timescale and 1/r is the dynamical adjustment timescale of the
thermocline depth. The term ⌘t in the equations for temperatures is a Gaus-
sian white noise with unit variance and the level of stochasticity is controlled
by the noise amplitude �. This term takes into account the fluctuating com-
ponent of wind stress. In the last equation the noise has not be considered
because wave processes are filtered out in the thermocline equations of the
model [Timmermann et al., 2003].

The expressions of Tsub and ⌧ are

Tsub =
Tr + Tr0

2
+

Tr � Tr0

2
tanh

✓

H + h2 � z0
h⇤

◆

,

⌧ =
µ(T2 � T1)

�
, (3.2)

where Tr0 is a reference temperature, h2 is the thermocline departure from its
reference value H, z0 represents the depth at which ⇣ takes its characteristic
value, h⇤ measures the sharpness of the thermocline. The relation between
the eastern and western thermocline depth anomalies is

h2 = h1 + bL⌧. (3.3)

In order to study the dynamical behavior of the system it is useful to
perform a change of variables from physical to dimensionless ones [Roberts
et al., 2016]. So, we define

x =
T2 � T1

T0

, y =
T1 � Tr

T0

,

z =
h1 +H � z0

h⇤ , t̃ =
t

t⇤
,
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where T0 = h⇤�

bLµ
and t⇤ = bL

�⇣h⇤
. After the change of variables, the equa-

tions (3.1) read

ẋ = ⇢�(x2 � ax) + x[x+ y + c� c tanh (x+ z)]�Dx(x, y, z)⌘t,

ẏ = �⇢�(x2 + ay) +Dy(x, y, z)⌘t,

ż = �
⇣

k � z � x

2

⌘

, (3.4)

where

Dx(x, y, z) = [(1 + ⇢�)x2 + xy + cx(1� tanh (x+ z))]�,

Dy(x, y, z) = ⇢�x2�,

and the new control parameters �, ⇢, c, k, and a are defined as follows:

� =
rbL

⇣�h⇤ , ⇢ =
✏h⇤�

rbL
,

a =
↵bL

✏�h⇤ , c =
Tr � Tr0

2T0

, k =
H � z0

h⇤ .

The deterministic version (� = 0) of equations (3.4) was widely studied in
literature. For some parameter values, the system has only one attractor, a
periodic orbit. Figure 3.2-b illustrates such a periodic orbit, with the param-
eter values [�, ⇢, c, k, a] = [0.2625, 0.3224, 2.3952, 0.4032, 6.8927] and dimen-
sional normalization constants [T0, t

⇤, h⇤] = [2.8182 �C, 104.9819 days, 62m].
[Roberts et al., 2016] also analyzed the mechanism through which this limit
cycle arises. [Roberts et al., 2016] defined strong El-Niño events for this model
as periods in this limit cycle for which the temperature is large. Figure 3.2
shows a qualitative comparison of the eastern Pacific sea surface temperature
anomaly for this limit cycle with the El-Niño3 index. Both the measurements
and the model display positive temperature anomaly excursions with a return
time of approximately 15 years.

Varying the parameter �, a strange attractor emerges through a period
doubling cascade, as shown by [Guckenheimer et al., 2017]. Moreover, [Guck-
enheimer et al., 2017] show that for some parameter values the limit cycle and
the strange attractor coexist. Following [Guckenheimer et al., 2017], we use
the parameter values [�, ⇢, c, k, a] = [0.225423, 0.3224, 2.3952, 0.4032, 7.3939]
all along this paper. While [Guckenheimer et al., 2017] considered only the
deterministic model (� = 0), we also consider later on the stochastic model
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3.3 Statistics of the first exit times for tran-

sitions to strong El Niño regimes

As discussed in the previous section, we define strong El Niño events as
periods of time when xc > �1, which occur along the limit cycle. In this
section, we study transitions from the strange attractor regime to the strong
El Niño regime, and how their statistics change when the noise amplitude �
is varied.

We consider X(t) = (x(t), y(t), z(t)) solutions to the stochastic Jin and
Timmerman model (3.4). We define first exit times from a point x to the
strong El Niño regime as

⌧c(x) = inf{t > 0 : x(t) > xc | X(0) = x}. (3.5)

The random variable ⌧c(x) depends both on the realization of the noise and
on the initial condition x. The statistics are understood as averages over
both the noise realization and the invariant measure of x over the strange
attractor of the deterministic system (� = 0), the so called SRB measure.
For instance the mean first exit time E[⌧c] is defined as

E[⌧c] =

Z

dx ⇢SRB(x)Enoise[⌧c(x)]. (3.6)

where Enoise[·] is the expectation with respect to the noise realization and
dx ⇢SRB(x) is the SRB measure.

The SRB measure is defined through time averages of the deterministic
dynamics (� = 0). In practice, we thus compute a very long trajectory of
the deterministic dynamics. We then choose a set of 1000 initial conditions x
taken randomly among all the points of this deterministic trajectory. Then,
for any fixed value of � > 0, for any initial condition x, we compute the
first-passage time ⌧c for several noise realizations.

In Fig. 3.5, we show the probability density function p(⌧c) of ⌧c based on
this ensemble. The probability density function is close to an exponential:
p(⌧c) = �e��⌧c . The parameter � is then equal to the inverse of the mean
first exit time: ��1 = E[⌧c].

Because typically ⌧c(x) is much larger than the relaxation time to the
strange attractor, one might expect that for most of the points of the strange
attractor the dependence of ⌧c(x) on x is practically irrelevant. Indeed, we
have verified numerically that except for a small region around the transition
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paths, the statistics are independent from the initial condition, up to numer-
ical accuracy. Hence we have E[⌧c] ' ESRB[⌧c(x)] ' Enoise[⌧c(x)] for generic
points x close to the strange attractors.

As illustrated in Fig. 3.5, the mean first exit time E[⌧c] is of the order
of 1,000 in non-dimensional time units. The measured value is ⌧c = 1, 039.
As ⌧c is much larger than the mixing time of the SRB measure, of order
1, then it is natural to expect that the first exit times should be random
and distributed, with a very good approximation, according to a Poisson
statistics. The observed exponential distribution is consistent with such a
Poison statistics. Similar exponential distributions for first exit times were
observed for the deterministic dynamics with periodic modulation of the a
coefficient [Guckenheimer et al., 2017].

We now study how the mean first exit time E[⌧c] varies when the noise
amplitude � is changed. One generally expects an Arrhenius law:

E[⌧c] ⇠
�!0

Ae
∆V

�2 . (3.7)

Arrhenius laws where first derived by Kramers for gradient dynamics forced
by white noise ẋ = �dV/dx+

p
2�⌘(t), where ∆V (the potential barrier) is

the difference of potential between the original attractor and the saddle-point
separating the basins of attraction of the two attractors (see for example the
textbook by [Gardiner et al., 1985]). The Jin and Timmermann model is how-
ever not a gradient dynamics, and the function V is not explicit. For such non
gradient systems, the exponential factors of the Arrhenius law can be justified
through a Laplace principle for a path integral representation of the transi-
tion probabilities, or asymptotic studies of Fokker-Planck operators [Graham,
1987], or through large deviation theory [Freidlin and Wentzell, 2012]. The
function V is then called the quasipotential, which can be computed through
a variational problem, or computing viscosity solutions of a Hamilton-Jacobi
equation. The sub-exponential prefactor A in Eq. (3.7) can be computed
through Eyring-Kramers formulas, derived either for gradient [Bovier et al.,
2004] or non-gradient dynamics [Bouchet and Reygner, 2016], for transitions
from a point attractor and through a point saddle. Many generalizations ex-
ist, for instance for periodically modulated systems [Dykman and Ryvkine,
2005] or systems approaching a bifurcation [Herbert and Bouchet, 2017]. In
large dimensional systems related to climate dynamics, effective Arrhenius
laws have been observed numerically, for instance in transitions in beta-plane
turbulence [Bouchet et al., 2019] or in a simplified climate model with ice-
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first integration scheme is the fourth order Runge Kutta method to which
a zero mean gaussian white noise is added. The variance of the noise is
proportional to the integration time step ∆t. In this way we have a precision
of ∆t4 for the deterministic part while we make an error of order

p
∆t for

the statistics. The second integration scheme is the stochastic Runge Kutta
method which has an error of order ∆t for a stochastic dynamics [Roberts,
2012].

Let us note that many other behaviors than exponential ones have been
observed for mean exit times. For instance a power-law has been observed
for flow reversals in numerical simulations of inviscid turbulent flows [Shukla
et al., 2016]. However for this last example, as the dynamics is not a de-
terministic system with attractors perturbed by weak noise, it was not clear
why one should have expected an Arrhenius law in the first place.

We observe a breakdown of the Arrhenius law for the Jin and Timmer-
mann model which is a deterministic system with attractors perturbed by
weak noise. This is striking. Indeed we stress again that if a finite distance
d > 0 exists between the strange attractor and the saddle set, then there is a
non-zero quasipotential difference ∆V > 0, and an Arrhenius law should be
expected. The distance d might be expected to be generically strictly larger
than 0.

We see two possible heuristic explanations for this interesting breakdown.
The first explanation might be that a finite distance d > 0 and a quasipo-
tential barrier ∆V > 0 between the strange attractors and the basin of
attraction limit cycle do actually exist, but they are extremely small. Then
the explanation of the observed breakdown in Fig. 3.6 would be that we have
not studied small enough values of �. We note however that we computed
first exit times of order E[⌧c] = 5.105 for values of � as small as 10�6. If this
first explanation is valid, this means that the Arrhenius law is practically
irrelevant even if it might be mathematically correct.

The second possible explanation might be that there exists no finite dis-
tance between the strange attractor and a possible fractal boundary between
the basins of attractions. Then for any small values d and v, there always
exist points in the strange attractor and in the boundary of the basin of
attraction at a distance smaller than d and a quasipotential differences ∆V
smaller than v. Many phenomenologies could then be imagined, for instance
with a distribution of a large number of transition paths, possibly infinite,
leading to a power law or an effective behavior of the first exit times described
by any function. Those conjectures are not based on any mathematical re-
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sults yet. However the possibility of a breakdown of the Arrhenius law is
a very interesting problem, that should be studied further either through
theory and mathematics, or through numerical simulations.

3.4 Committor function of the Jin and Tim-

merman model

In Sec. 3.3, we have shown that, in the stochastic Jin and Timmerman model,
transitions between the strange attractor regime and the strong El-Niño
regime occur at random times, in the limit of small noise � ! 0. In this
section, we focus on the associated prediction problem: What is the proba-
bility that a strong El Niño event occurs within a given timeframe, given the
state of the system at the time of prediction? We will address this question
for any finite value of the noise amplitude �.

We consider solutions X(t) = (x(t), y(t), z(t)) of the stochastic Jin an
Timmerman model (3.4). We remind the reader that we identify a strong El
Niño with an event when x > �1. For a solution X(t) that starts from x,
that is X(0) = x, we want to predict the probability q(x) that a strong El
Niño event occurs within a fixed time T . This is

q(x) = P

✓

max
0tT

x(t) > �1 | X(0) = x

◆

. (3.8)

Recalling the definition of the first passage time to a strong El Niño regime,
Eq. (3.5),

⌧c(x) = inf{t > 0 : x(t) > �1 | X(0) = x}, (3.9)

we note that q(x) = P[⌧c(x) < T ] is the cumulative distribution function
(CDF) of the first-passage time. We now define committor functions and
explain that q is a committor function.

Committor functions. For a Markov stochastic process {Y(t)} which
takes values in Γ, we define the first hitting time of the set C as ⌧C(y) =
inf{t : Y(t) 2 C | Y(0) = y}. For two disjoint subsets A, B ⇢ Γ, the
committor function q̃(y) is defined as the probability to hit the set B before
hitting the set A:

q̃(y) = P(⌧B(y) < ⌧A(y)). (3.10)

69



3.4. COMMITTOR FUNCTION OF THE JIN AND TIMMERMAN
MODEL

Considering the auxiliary process {Y(t)}, with Y(t) = (X(t), t), and the
two sets

A = {y = (x, t) | x > �1 and t 2 [0, T ]} and

B = {y = (x, T ) ; x  �1}, (3.11)

we see that q(x) = q̃(x, 0). Hence q, in Eq. (3.8) is a committor function.
For an ergodic process, replacing statistical averages by temporal averages

in (3.10), and using y = (x, t), we have

⇢(x)q(x) = lim
t!1

1

t

Z t

0

dt0 � (Xt0 � x) 1{⌧B⌧A},

and ⇢(x) = lim
t!1

1

t

Z t

0

dt0 � (Xt0 � x) , (3.12)

where ⇢(x) is the stationary distribution function of X, � is a Dirac delta
function, and 1{⌧B⌧A} takes value 1 if ⌧B  ⌧A and 0 otherwise. The formulas
(3.12) can be used to estimate q(x) from an observed trajectory {X(t)} of the
dynamical system. For the sake of completeness, it should be said that when
the dynamics is a stochastic differential equation, the committor function
q(x) is the solution of the Dirichlet problem [E et al., 2005, Thiede et al.,
2019].

To illustrate the concept of predictability margin introduced in Sec. 3.1,
we choose the value T=200 in non-dimensional time units, which is slightly
larger than the period of the limit cycle (the “natural” periodicity of strong
El-Niño events which is 186), and of the order of the Lyapunov time. This
choice guarantees that for the deterministic dynamics, � = 0, each trajec-
tory starting in one point of the limit cycle almost certainly will reach the
threshold xc = �1.

3.4.1 Description of the committor function: deter-

ministic and probabilistic predictability

Figure 3.7 shows the committor function q(x), for different values of �. As
q is a function of 3 variables (x, y, z), we have chosen to represent cuts of
q in different planes. We will discuss in detail the cut of q along the plane
x = �2.831 (Fig. 3.7) and also cuts along the planes y = �1.1580 and
z = 1.3409 (Fig. 3.8 and Fig. 3.9, respectively). To compute the committor
function q(x) on the different planes we adopted the following strategy:
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in the yellow area q = 1, when trajectories reach the threshold within a time
T , corresponding to large values of z; in a thick purple band q = 0, when
no trajectory reaches the threshold. In those two regions, the occurrence
of strong El-Niño events is easily predicted. Everywhere else, we see very
fine filaments of alternating yellow and purple values. In this third region,
because of the sensitive dependence on the initial conditions, a small but

finite initial perturbation, of the order of 1% of the values of x or y, leads to
a different outcome. In this region, the occurrence of strong El-Niño events is
very difficult to predict. A precise definition of this third area is not intrinsic,
it depends on the actual precision with which the values of x and y can be
measured. However the distinction between areas with easy predictability
and areas with difficult predictability, might be crucial at a practical level.

One might ask what relationship exists between the regions outlined
above and the basins of attraction of the system. However, this relation-
ship is less trivial than one might expect. Although some regions reflect the
structure of the basins of attraction, this is not true in general. In fact, there
are points in the basin of attraction of the strange attractor which pass the
threshold before reaching the strange attractor, as well as points in the basin
of attraction of the limit cycle which do not reach the threshold within the
time T.

Committor Function for � 6= 0

Figures 3.7b and 3.7c show the committor function in the case where a fi-
nite noise amplitude � 6= 0 is considered. As can be seen by comparing
Figs. 3.7a, 3.7b and 3.7c, adding a small noise blurs the visible structures of
the deterministic case. For larger noise values (� = 10�3), Fig. 3.7c shows
that the committor function looks smooth nearly everywhere (mathemati-
cally it is smooth everywhere, smooth here is used qualitatively and means
with mild variations). This means that the deterministic predictability is
lost for most initial conditions as (0 < q < 1). Then one cannot expect to
predict the outcome in the way of a deterministic forecast. However, the
occurrence of strong El-Niño events is probabilistically predictable: the value
of the probability can be determined in practice with an excellent precision
as it changes very slowly when one changes the initial conditions. It can also
be seen on the figure that the occurrence of strong El-nino events is frequent
(q > 0.6 almost everywhere). This is an indication that for such a value of �
we are in the noise-dominated regime.
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3.5 Conclusion

In this paper, we have introduced a mathematical concept, the committor
function, encoding the probability that an event occurs within a given time,
conditioned on the state of the system at the time of prediction. We believe it
is an appropriate concept for many prediction problems in climate science in
a range of time scales which we call the predictability margin. It corresponds
to timescales for which a deterministic description of the system is no longer
relevant, because of the sensitive dependence to initial conditions, but for
which more precise probabilistic predictions than the climatological one can
be made, because the system has not yet forgotten completely the initial
condition.

In the context of a simple, low-dimensional stochastic model, the Jin-
Timmerman model, in a regime of coexistence of a limit cycle and a strange
attractor found by [Guckenheimer et al., 2017], we have shown that noise
could induce transitions between the two attractors. These transitions cor-
respond to regime shifts regarding the occurrence of strong El Niño events,
which are periodic in the limit cycle, with a return time close to 15 years,
and which do not occur at all in the strange attractor (in the determinis-
tic case). In the stochastic case, the occurrence of strong El Niño events
therefore becomes random, and the waiting times follow a Poisson statistics.

In this example, we have shown that the probability of occurrence of
strong El Niño events had different predictability properties depending on
the state of the system at the time of prediction. The most important re-
sult is that there exist regions of probabilistic predictability, where the event
has a finite probability of occurring 0 < q < 1, and this probability does
not depend sensitively on the initial state, and regions of probabilistic un-
predictability where the probability changes a lot if one changes by a small
and finite amount the initial condition. We expect the existence of this
dichotomy between probabilistically predictable and probabilistically unpre-
dictable regions to be a generic feature for climate prediction problems at the
predictability margin. We stress that this notion depends on the precision
with which the initial condition can be assessed.

We have also discussed the methodological aspects for computing the
committor functions. For our example, a small stochastic perturbation of
a chaotic deterministic system, we have computed the committor function
using two approaches. First, by direct sampling of ensembles of initial con-
ditions close to any point in phase space, and second, through a data based
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approach using observed trajectories. As soon as the number of degrees of
freedom increases, the first method will become impossible to use in practice,
because of the numerical cost. The second method may sometimes be asso-
ciated with sampling issues, as one can get meaningful results only for the
parts of the phase space that have been visited many times. Another method
mentioned in Sec. 3.4, would be to solve a backward Kolmogorov equation.
This method is impractical for systems with more than a few degrees of
freedom. To be able to sample efficiently committor functions in large di-
mensions, more efficient data-based methods will be necessary, relying either
on classical statistical methods or machine learning methods [Lucente et al.,
2019]. The development of such methods shall be a prerequisite for studying
climate prediction problems using more realistic models.
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Chapter 4

Coupling rare event algorithms

with data-based learned

committor functions using the

analogue Markov chain

In the previous chapters, the committor function was introduced and it was
computed for a low-dimensional model for El-Niño showing that the ability
to predict the probability of occurrence of extreme events strongly depends
on the initial condition. The purpose of this chapter is to propose a new
approach, based on the analogue Markov chain, for data-based learning of
committor functions. It will be shown that such learned approximate com-
mittor functions are extremely efficient scoring functions when used with the
Adaptive Multilevel Splitting algorithm. This approach is illustrated in the
context of two stochastic systems: a gradient dynamics in a three-well po-
tential and the Charney-DeVore model, which is a paradigmatic toy model
of multistability for atmosphere dynamics. For these two dynamics, it is
shown that observing few transitions is enough to have a very efficient data-
based scoring function for the rare event algorithm. The main advantages of
this new approach are that rare events can be simulated with minimal prior
knowledge, and results are much more accurate than those obtained with a
user-designed scoring function.

This chapter is the result of a collaboration with J. Rolland, C. Herbert
and F. Bouchet and has been submitted to the ”Journal of Statistical Me-
chanics: Theory and Experiment” (J. Stat. Mech.). Therefore, this chapter
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is self-consistent can be read independently from the rest of the thesis. The
reader is advised that the notation of this chapter is slightly different from
the rest of the manuscript. This choice was made to make the notation con-
sistent with the one known in the rare event algorithm literature. Here, an
arbitrary subset of phase space is called D instead of C, and the first hit time
is called T instead of ⌧ , which is used to indicated the duration of reactive
trajectories. Many of the topics discussed in the opening sections of this
chapter have already been covered in previous chapters. In order to avoid
redundancies, the reader of the manuscript can start reading this chapter
from Sec. 4.3.

4.1 Introduction

Rare events are often extremely important, either because they have a huge
impact, for instance climate extremes [Seneviratne et al., 2021], or because
they change completely the structure of the system and shape its history over
long times, for instance the dynamics of metastability [Farkas, 1927] and
multistability phenomena [Eyring, 1935, Kramers, 1940]. Such rare events
are so important in many physics, chemistry, and biology applications that
specific tools have been developed to study them, by the statistical mechanics
and applied mathematics community: theoretical approaches and dedicated
computation algorithms.

In this paper, we are mainly interested in computational approaches for
rare events. A key difficulty in numerical computation is that these rare
events can be so rare that simulating them directly might be prohibitively
expensive. Since the 50’ [Kahn and Harris, 1951], rare event algorithms
and simulations [Bucklew, 2013] that aim at reducing the computational
cost have been devised. They have been used to address many problems
in statistical physics, for instance studying percolation [Adams et al., 2008],
liquids physics [Allen and Tildesley, 2017], Lyapunov exponents [Tailleur and
Kurchan, 2007], dynamical phase transitions [Pérez-Espigares and Hurtado,
2019], first order phase transitions [Rolland et al., 2016], just to cite a few
examples among many others. Chemical physics, biochemistry and the study
of biomolecules has inspired many new technics, see for example [Bolhuis
et al., 2002, Noé et al., 2009,Metzner et al., 2009, Hartmann et al., 2014].
Recent uses in biology models [Donovan et al., 2016] and ecology has also to
be noticed.
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Recently, rare events have been studied in far from equilibrium systems
and non-equilibrium steady states, where one starts from dynamics without
detailed balance. Rare event technics have then been extended to scien-
tific fields so far unexpected, with complex dynamics. For instance in study
of multistability on turbulence [Laurie and Bouchet, 2015, Bouchet et al.,
2019], study of intermittency in turbulence models [Grafke et al., 2013,Grafke
et al., 2015,Ebener et al., 2019], transitions to turbulence in pipe and Cou-
ette flows [Rolland, 2018,Rolland, 2021,Nemoto and Alexakis, 2018], rogue
waves [Dematteis et al., 2018], atmosphere dynamics [Bouchet et al., 2019,Si-
monnet et al., 2021], climate dynamics [Ragone et al., 2018,Webber et al.,
2019,Ragone and Bouchet, 2020,Plotkin et al., 2019,Finkel et al., 2021,Finkel
et al., 2020], astronomy [Woillez and Bouchet, 2020, Abbot et al., 2021],
among many other examples.

For such non-equilibrium problems, without detailed balances, one can
use either computations related to minimum action methods, possibly re-
lated to large deviation theory (see for instance [Grafke and Vanden-Eijnden,
2019]), or the vast family of splitting algorithms or cloning algorithms [Kahn
and Harris, 1951,Del Moral, 2012,Cérou and Guyader, 2007]. However, for
many applications, for instance in turbulence, climate, atmosphere dynamics
or astronomy, the system is either deterministic, or may be stochastic, but
one has not access to a precise noise statistics, or rare events are not produced
directly by the model noise but rather by internal fluctuations. In all these
cases, any method that rely on an a-priori given bare action is not appropri-
ated. Then the only possible choices, for rare event algorithms, are splitting
algorithms. Those algorithms have indeed been empirically shown to work
well for some classes of deterministic chaotic dynamical system [Wouters and
Bouchet, 2016,Ragone et al., 2018]. An alternative route for studying rare
events, without rare event algorithms, would be to use methods that require
only short off equilibrium simulations, for instance through resimulating and
milestoning [Noé et al., 2009,Vanden-Eijnden and Venturoli, 2009] or coarse
graining of a reduced space of collective variables [Finkel et al., 2021,Finkel
et al., 2020]. Such approaches might be very relevant, however only when
the system is simple enough or when one knows sufficiently well the system
to define a-priori relevant collective variables.

The main aim of this paper is to develop the methodology of splitting
algorithms such that they might actually be used, practically, for genuinely
complex dynamics. The general principle of splitting algorithms is to per-
form ensemble simulations, select trajectories prone to produce extremes,
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discard other less interesting ones, and resimulate from the interesting ones.
The effectiveness of these algorithms strongly relies on the quality of the score
function which is used for the selection stage. For complex dynamics, in cases
when the dynamics is simple enough or the phenomenology of the dynamics
is well understood to devise good score functions, splitting algorithms are
wonderful tools. For instance, they were used to compute rare event prob-
abilities, which were totally unreachable with direct numerical simulations,
for stochastic partial differential equation [Rolland et al., 2016], atmosphere
turbulent flows [Bouchet et al., 2019,Simonnet et al., 2021], or full complexity
climate models [Ragone et al., 2018]. However, without a good score func-
tion, splitting algorithms might completely fail. If the score function is not
too bad, but not very good, splitting algorithms happen to actually produce
efficiently rare events, but might suffer from the phenomenon of apparent
biases for the estimation of probabilities [Glasserman et al., 1998, Bréhier
et al., 2016a]. The aim of this work is to propose a new methodology to solve
these problems and to be able to use splitting algorithms in very complex
dynamics without a-priori knowledge or understanding of a simple effective
description of the dynamics.

For many splitting algorithms, there exists a mathematical characteri-
zation of an optimal score function: a score function which minimizes the
algorithm variance for the computation of the rare event probability and
will be very efficient in practice. For instance, for the Adaptive Multilevel
Splitting (AMS) [Cérou and Guyader, 2007], to be used in this article, the
committor function is the optimal score function [Cérou et al., 2019a] . The
committor function is the probability that a trajectory visits a region B of
the phase space before another region A, as a function of the initial condi-
tion [Onsager, 1938] . If B is the set of rare events of interest, the committor
function is then a probabilistic measure of the progress towards the rare
event. The committor function is also a central object of transition path
theory [E et al., 2005,Weinan and Vanden-Eijnden, 2006, Vanden-Eijnden
et al., 2010,Metzner et al., 2006]. A key difficulty is that this optimal score
function, the committor function, is actually the rare event probability con-
ditioned on the state of the system. It contains the information one wishes
to compute. One has thus no easy access to it.

For similar problems, when one would need to know an approximation
of a function to efficiently compute this function itself, it is very natural
to consider an iterative procedure: a feedback control between the efficient
algorithm to produce the data and the learning of the function itself. The
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used to identify good reaction coordinates [Froyland et al., 2014,Bittracher
et al., 2018], or to evaluate eigenfunctions of the operator [Giannakis et al.,
2015,Giannakis, 2019,Williams et al., 2015,Mardt et al., 2018], sometimes
with climate applications [Giannakis et al., 2015,Giannakis, 2019]. Recently
such direct Galerkin approximation has been used to directly compute com-
mittor function, avoiding the burden of discretizing a high dimensional phase
space [Thiede et al., 2019,Strahan et al., 2021]. Several computation of com-
mittor functions have been performed with applications in either geophysi-
cal fluid dynamics or climate applications [Finkel et al., 2021,Miron et al.,
2021,Finkel et al., 2020,Lucente et al., 2019,Lucente et al., 2021], using either
direct or involved approaches.

The aim of this paper is to test the coupling of data-based learning of
approximate score functions with rare event algorithm, in the spirit of fig-
ure 4.1. As we are specifically interested in complex dynamics, the learning
strategy needs to have the potentiality to scale well in very large dimensions.
Moreover, it should be suited for any dynamics, including chaotic determin-
istic systems or dynamics for which the noise is irrelevant for the process of
interest. It also needs to be not too greedy in terms of dataset length. Among
all the possible approaches for learning committor functions, the ones based
on approximation of the dynamics generator seem to be best suited [Thiede
et al., 2019,Strahan et al., 2021].

In this paper we propose a new method based on an approximation of
the dynamics generator. For this purpose, we consider a slightly modi-
fied version of the analogue method, firstly proposed by Lorenz [Lorenz,
1969c,Lorenz, 1969a]. The idea behind the analogue method can be summed
up by Maxwell’s sentence [Garnett and Campbell, 1882] ”From like an-
tecedents follow like consequents”. This approach is nowadays used to build
stochastic weather generators [Yiou, 2014, Yiou and Déandréis, 2019]. A
key remark is that the analogue method defines a Markov chain which an
approximation of the dynamics generator of the original dynamics. Then
a learned approximate committor function can be computed using classical
methods for computing Markov chain committor functions. This new way
to compute committor function, based on the analogue Markov chain, is an
alternative path that leads to dynamic based estimates of the committor
function. We show in this paper that this method is actually very simple,
robust, and efficient. We show that the learned committor function, based
on the analogue Markov chain, is more precise and efficient than the classical
K-nearest neighbors regression, which computes the committor by averaging
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the observations of K nearby points.
After having put forward and tested this committor function computation

using the analogue Markov chain, we couple it to the Adaptive Multilevel
Splitting (AMS) [Cérou and Guyader, 2007]: we directly use the data-based
approximate committor function as a score function for the algorithm. We
make a precise study that shows that for large enough data sets, the perfor-
mance of the AMS algorithm is greatly improved. We get rid of the apparent
bias phenomena and can compute rare events without a-priori knowledge of
the dynamics.

To summarize the previous discussion, the purpose of this work is twofold.
On the one hand, we introduce a data-driven approach which can be used to
compute the committor function, and which exploits the dynamical informa-
tion provided by the observed dynamics. On the other hand, we show how
it is possible to use this method to build a learned score function for efficient
rare event algorithms. We illustrate our approach for two dynamics. First
a stochastic gradient dynamics in a three-well potential, in dimension two.
Then we study the Charney-DeVore model, which is a paradigmatic toy
model of multistability for atmosphere flows [Charney and DeVore, 1979],
with six variables. For these two dynamics, we show that having observed a
few transitions is enough to have a very efficient data-based score function
for the rare event algorithm.

The paper is organized as follows. In Sec. 4.2., we define and discuss
the mathematical properties of the committor function, we explain a direct
sampling strategy, and define the Brier score which quantifies the quality
of an approximate committor function. Sec. 4.3 is devoted to the analogue
method and how it can be used to obtain a dynamics-bases estimate of the
committor function. Finally, in Sec 4.4 we introduce the AMS rare events
algorithm, we use it with a score functions which is the learned analogie
Markov chain committor function, and we discuss the improvements given
by this approach.

4.2 The committor function
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A

first passage trajectory

reactive trajectory

B

A

C

Figure 4.2: An example of first passage trajectory from A to B is shown.
The transition path, also called reactive trajectory, is highlighted in red.

4.2.1 Definition of the committor function for a Markov

process

For a Markov process, a committor function [E et al., 2005, Weinan and
Vanden-Eijnden, 2006,Vanden-Eijnden et al., 2010,Metzner et al., 2006] is the
probability to hit a set B of the phase space before another set A, conditioned
on the knowledge of the initial condition. With adapted definitions of the
sets A and B, it can be the probability of transition between metastable
states [Lopes and Lelièvre, 2019], see Fig. 4.2, or to the probability that an
event occurs within a given timeframe [Lestang et al., 2018, Lucente et al.,
2021].

To give a more precise definition, we consider a discrete time stochastic
process on a phase space X . A given realization of the process will be noted
as {Xn}1nNt

, with Xn 2 X . The first hitting time TD(x) of a set D ⇢ X
is defined as

TD(x) = inf{n : Xn 2 D|X0 = x}. (4.1)

The committor function q(x) is the probability that the first hitting time of
a set B be smaller than the first hitting time of set A, as a function of the
initial condition, i.e.

q(x) = P[TB(x) < TA(x)]. (4.2)

This definition immediately generalizes for continuous time Markov pro-
cesses.

If the dynamics is a stochastic differential equation, q(x) is the solution
of the Dirichlet problem [E et al., 2005,Thiede et al., 2019]:

Lq(x) = 0 with q(x) = 0 if x 2 A and q(x) = 1 if x 2 B, (4.3)
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with L the adjoint of the Fokker-Planck operator:

L =
X

i

ai(x)
@

@xi

(·) +
X

ij

Dij(x)
@2

@xi@xj

(·), (4.4)

where a is the drift coefficient and D the diffusion coefficient. One way to
compute a committor function is to solve this partial differential equation.
In practice, such a computation is impossible, using standard techniques as
soon as the system has more than a few degrees of freedom. This equation
can be used for computing approximate solutions, using machine learning, for
systems of dimension of the order of magnitude of ten [Khoo et al., 2019,Li
et al., 2019].

4.2.2 Direct sampling of the commitor function

In this section we consider data-based methods for the computation of a
committor function. The data consist of sets of trajectories of the stochastic
process. The simplest method is to directly use the definition (4.2). In
practice, to compute the function at point x, we initialize an ensemble of N
trajectories in X0 = x and evolve them until they reach A or B. Let NB

be the number of trajectories that have reached B. Then, the value of the
committor function at point x can be estimated as

q(x) =
NB

N
. (4.5)

Like the Dirichlet problem (4.3), this method can only be applied if the
equations of motion are known, and it is inapplicable for high dimensional
systems, as it requires simulating many trajectories for each point of phase
space where we want to compute the committor function. The numerical
burden thus increases exponentially with the dimension of the system.

For an ergodic process, the committor function q(x) and the stationary
distribution function ⇢(x) can be computed from an observed trajectory {Xn}
from the formulas

⇢(x)q(x) = lim
Nt!1

1

Nt

Nt
X

n=0

� (Xn � x) 1{TB(Xn)TA(Xn)} and

⇢(x) = lim
Nt!1

1

Nt

Nt
X

n=0

� (Xn � x) , (4.6)
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where � is a Dirac delta function, and 1{TB(Xn)TA(Xn)} takes value 1 if the
trajectory visits set B before set A starting from Xn, and 0 otherwise. Nu-
merically, q(x) can be computed from (4.6) after spatial and temporal dis-
cretization of the process (see for instance [Lucente et al., 2019, Lopes and
Lelièvre, 2019,Lucente et al., 2021]). Unlike the previous methods, this ap-
proach is applicable even if we do not know the equations of motion. Its
numerical cost does not depend on the dimension of phase space, but it only
provides estimates of the committor function on points which neighborhood
was visited many times by the observed trajectory.

4.2.3 Estimating the committor function for any point

of the phase space

In Sec. 4.2.2, we have presented a direct sampling method to estimate the
committor function based on data. However, it provides values only on the
set of points that was visited along the trajectory. This is also true for
the other data-based method that we will present in Sec. 4.3, the analogue
method. For applications, we may need to estimate the value of the committor
function for points which were not in the learning dataset. This may be the
case simply for graphical representations of the committor function along a
line or on a plane in phase space (e.g. Sec. 4.3.3). Even more importantly,
to use the estimated committor function as a score function with the AMS
algorithm (Sec. 4.4), we need to be able to compute it for arbitrary points in
phase space.

To do so, we will use a nearest neighbor method [Altman, 1992]. Let
us denote {Xn}1nNp

2 R
D the learning dataset, for which we have an

estimate of the committor q̂(Xn). For any point y 2 R
D, we search the 

nearest neighbors (using the Euclidean distance d(y,x)2 =
PD

i=1 (yi � xi)
2),

corresponding to indices nj 2 J1, nK in our dataset, for 1  j  . We then
perform a weighted average of the corresponding values of the committor:

q̂(y) =

P

j=1 wj q̂(Xnj
)

P

j=1 wj

. (4.7)

The weights wj can be chosen uniform: wj = 1 (like in Sec. 4.3.3) or given

by a kernel, such as wj = e�
d(y,Xnj

)2

!2 , where ! > 0 is a kernel width (like in
Sec. 4.4), depending on the application.
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4.2.4 Estimation of the quality of an approximate com-

mittor function: the Brier score

In this section we address the issue of how to quantify the quality of an
estimate of the committor function. In what follows, the true committor
function is denoted by q while q̂ stands for our estimate. As the committor
function is the probability of a binary variable, it is natural to look for a score
for a forecast of a binary variable. We also require that this score can be
computed directly from observations. The Brier score is a natural candidate.

We first consider Y a random variable with binary outcomes, Y 2 {0, 1},
and a Bernoulli distribution: P[Y = 1] = q and P[Y = 0] = 1 � q. We look
for an estimator that quantifies the value of an estimation q̂ of q.

One of the simpler quantities having the required properties was proposed
in 1950 by Brier [Brier, 1950]. We consider a {Yn}1nN , N independent
realizations of the variable Y . The Brier score is defined as

BN =
1

N

N
X

n=1

(q̂ � Yn)
2, (4.8)

The Brier score is thus a random variable, with values between 0 and 1.
The random variable (q̂�Yn)

2 takes value (1� q̂)2 with probability q and
value q̂2 with probability (1� q). Then the average value of BN(x) is

E(BN) = (1� q̂)2q + q̂2(1� q) = q(1� q) + (q̂ � q)2. (4.9)

The expectation of the Brier score BN(x) is therefore the sum of two terms.
The first one, q(1� q) is related to the stochastic nature of the forecast and
is independent of q̂, while the second one, (q̂ � q)2, is related to the error
made in the estimation of q. The closer is the forecast q̂ to the real value q,
the lower is the Brier score. The Brier score has a fixed lower bound q(1�q).
We see that the Brier score is merely a quadratic measure of the error (the
second term) plus a constant term (the lower bound). However, while the
computation of the quadratic error requires the knowledge of the truth q, the
computation of the Brier score does not require the knowledge of q. In the
limit N ! 1, we have an ergodic average and limN!1 BN = E(BN).

We now extend naturally the definition of the Brier score to the case
of Markov processes and committor functions. We consider a set of events
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{(Xn, Yn)}1nN , where Xn are points in the phase space distributed accord-
ing to the invariant measure ⇢ of the Markov process, E [(� (Xn � x)] = ⇢(x),
and Yn are binary variables which takes the value 1 with probability q (Xn)
and value 0 with probability 1 � q (Xn). For instance, the couples (Xn, Yn)
can be sampled along one or several trajectories of the Markov chain, where
Xn are the states of the Markov chain and Yn is equal to zero if the first
hitting time of B after n is smaller than the first hitting time of A after n.

We want to estimate the quality of an approximation q̂ of the committor
function q. Then the committor function Brier score is defined as

BTN =
1

N

N
X

n=1

[q̂ (Xn)� Yn]
2, (4.10)

Extending directly the previous computations, and assuming ergodicity, we
have

E(BTN) = lim
N!1

BTN = kq � q̂k2⇢ +
�

�

�

p

q(1� q)
�

�

�

2

⇢
, (4.11)

where kfk2⇢ =
R

D
f 2(x)⇢(x) dx is L2 norm weighted according to the invariant

measure. Then the committor Brier score is kq � q̂k2⇢, the weighted L2 norm

of the difference q � q̂, up to the constant term
�

�

�

p

q(1� q)
�

�

�

2

⇢
. While the

weighted L2 norm cannot be computed without the knowledge of q and ⇢, the
Brier score can be directly computed from the data by the ergodic average
(4.10).

4.3 The analogue Markov chain

In this section we introduce the analogue method in one of its current ver-
sions [Yiou, 2014, Lguensat et al., 2017, Yiou and Déandréis, 2019, Platzer
et al., 2021b,Platzer et al., 2021a]. It provides a way to build effective dy-
namics from the data that can be reused to generate new trajectories of
the system under consideration at a lower computational cost. Although
more precise definitions will be given throughout the section, we think that
briefly illustrating the analogue method in its original form proposed by
Lorenz [Lorenz, 1969c,Lorenz, 1969a] in 1969 is both conceptually and his-
torically instructive. Furthermore, this can be seen as a particular case of
the method we will present in which only K = 1 analogue is considered.
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In a nutshell, the idea is the following. Suppose we have access to a time
series of observations that we will denote by {Xn}1nNt

, at times tn = n�t
where �t is the sampling time step. Starting from a state x at time t, we
want to predict a possible dynamical evolution at a time t + l�t. We search
among the available data {Xn}1nNt

the closest to x, i.e an analogue, which
will be denoted by Xn?

:

Xn?
= argmin

{Xn}

{d(x, Xn)}, (4.12)

where d(·) is a distance. After identifying the best analogue Xn?
, the predic-

tion of x(t+∆t), denoted x̃(t+ l�t), will be

x̃(t+∆t) = Xn?+l. (4.13)

This method was intended by Lorenz as a deterministic prediction. In the
following we are rather interested by stochastic predictions, either because the
actual dynamics itself is stochastic, or because we understand the analogue
method as an approximate effective description of a chaotic dynamics. For
stochastic prediction, we will use K analogues rather than a single one.

4.3.1 Definition of the analogue Markov chain

Let {X(t)}0t+1 be a dynamical process that takes values in the phase

space X ⇢ R
D. The nature of the process, i.e. whether it is deterministic or

stochastic, Markovian or not, is irrelevant to the discussion. Suppose that
a realization of this process is observed at regular time intervals �t during
a total time T = Nt�t and let {Xn}1nNt

denote this sampled trajectory

made up of Nt points. Each point Xn is in R
D, where D is the dimension of

the phase space.
We will build a Markov chain that is a data-based approximation of the

initial process, based on a generalization of the Lorenz analogue method. We
now define possible transitions starting from an observed state Xn. Rather
than considering just a single nearest neighbor of Xn in the observed data,
we will use the K nearest neighbors, where K is a positive number. Those
K nearest neighbors are denoted {X̂

(k)
n }1kK . After identifying analogues

{X̂
(k)
n }, we suppose that we can have a transition between the state Xn and

all the possible images of this set of points. These images will be denoted
by {X̂

(k)
n+1}1kK

and the probability to have a transition between Xn and
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for 1  k  K. We stress that T is not the transition matrix of the Markov
chain, to be described latter. T is rather a matrix of indices of the states.

Since we cannot associate any transition to the end-point XNt
, this point

will be excluded from the possible candidates for the analogues of each point.
To summarize, each entry of T can take values between 1 and Nt � 1, i.e.
Tnj 2 J1, Nt � 1K for all n, j such that 1  n  Nt and 1  j  K.

To generate a synthetic trajectory, we can proceed as follows. We start
with a state s0 2 J1, NtK. Then, we generate a random integer k distributed
uniformly in the interval [1, K] and the new state will be s1 = Ts0k +1. This
procedure is iterated to build the entire trajectory. Through this method we
build a Markov chain whose states are {Xn}1nNt

, i.e. the learning dataset.
We now describe the transition matrix G 2 MNt

(R). The elements Gnj

of G are the probability to observe a transition from the state n to the state
j. They are given by

(

Gnj =
1
K

if 9 k? 2 J1, KK : j = Tnk? + 1 ,

Gnj = 0 otherwise .
(4.14)

G is an approximation of the propagator P(Xj|Xn) of the real dynamics.
Given an observable at time t, represented by a column vector f(t) =

fi(t), the observable at time t+ 1 is obtained by applying the operator G to
f(t), i.e.

f(t+ 1) = Gf(t). (4.15)

Therefore, G plays the same role as the generator of a continuous stochastic
process.

Concerning the temporal evolution of probabilities there are two possi-
bilities:

• consider probabilities as row vectors ⇡ and let G act to the right, i.e
⇡(t+ 1) = ⇡(t)G;

• consider column vectors ⇡ and let them evolve by applying the adjoint
operator G†, i.e. ⇡(t+ 1) = G†⇡(t).

In this paper, the second choice has been adopted to emphasize the analogy
with continuous stochastic processes.

To initialize a trajectory at a point x that does not belong to the dataset,
we search the K nearest neighbors of x among the available data and we
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select as initial condition one of these points with a probability 1
K
. This

corresponds to the association of a probability vector p(x) = pi(x) to the
point x defined as

(

pi(x) =
1
K

if Xi is an analogue of x ,

pi(x) = 0 otherwise .
(4.16)

Note that, for simplicity, in equations (4.14) and (4.16) we have assumed
that each of the K analogues are chosen with uniform probabilities. We
could generalize this choice using analogue dependent weights, for instance
computed according to the distances of Xn to its analogues.

4.3.2 Computing the committor function from the ana-

logue Markov chain

Using the analogue Markov chain defined in the previous section, we can
compute the committor function q for this Markov chain. A first approach
would be to generate trajectories of this Markov chain, and to directly sam-
ple the committor function through a Monte Carlo estimation as described
in Sec. 4.2. However, we propose a more efficient computation which consists
in solving a linear equation that characterizes the committor function of a
Markov chain. Solving this linear equation is more precise than the direct ap-
proach, as we obtain the exact committor function up to numerical accuracy,
without sampling errors. This linear equation will be solved by estimating
the leading eigenmodes of a spectral problem, following the algorithm pro-
posed in Ref. [Prinz et al., 2011]. Our paper is the first application of this
idea to the analogue Markov chain.

We start from the Markov chain transition matrixG. We consider two sets
A ⇢ X and B ⇢ X , and we will compute the committor function q which is
the probability to reach B before A. For simplicity, we group together all the
states that belong to A (resp. B) into a single state with index iA (resp iB).
We then define an auxiliary process where A and B are absorbing states:
no transition out of these states is allowed. The corresponding modified
transition matrix is G̃, with G̃iAiA = 1 and for all j 6= iA, G̃iAj = 0, G̃iBiB = 1
and for all j 6= iB, G̃iBj = 0, while for i 6= iA, i 6= iB, G̃iiA =

P

k:Xk2A Gik

and G̃iiB =
P

k:Xk2B Gik, and for all other transitions G̃ij = Gij.

For the Markov chain G̃, the committor function is a column vector q = qi
where qi is the value at the committor function at the state i. qi is an
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approximation of the the committor function of the initial dynamics at point
Xi: q(Xi).

For simplicity, we use the same notation for the vector q (associated to
the Markov chain) and the function q (associated to the initial dynamics),
although they are actually different. In the limit of a large dataset, when
the Markov chain fits perfectly the real dynamics, we have asymptotically
qi ! q(Xi).

From the definition qi = P(TB(i) < TA(i)), we have qiA = 0 and qiB = 1.
Moreover it is a classical result that G̃q = q [Schütte et al., 1999,Prinz et al.,
2011,Noé and Rosta, 2019,Tantet et al., 2015]. This is a simple consequence
of the estimation of q at two successive steps of the Markov chain. The affine
problem

G̃q = q with qiA = 0 and qiB = 1 (4.17)

then characterizes the committor function, if we assume that G is ergodic.
Following Ref. [Prinz et al., 2011], we note that 1 is the largest eigenvalue

of G̃ (a consequence of the Perron-Frobenius theorem for positive operators
that preserve probability). Moreover G̃† has two trivial eigenstates with
eigenvalue 1, corresponding to situations where the full probability vector is
concentrated on state iA or iB, respectively. As a consequence, G̃ has also two
eigenstates with eigenvalue 1. If we assume G is ergodic, then the number of
eigenstates of G̃ is exactly 2.

This gives a simple algorithm to compute q. We first compute v1 and v2
the two leading eigenvectors of G̃ with any standard algorithm. Then q is
a linear combination of v1 and v2: q = ↵v1 + �v2, where ↵ and � can be
computed from the two conditions qiA = 0 and qiB = 1.

If the initial dynamics is indeed ergodic, we expect that for large enough
dataset the Markov chain G will also be ergodic for most of the realizations.
However, this might not be the case for some realizations. Such situations
could lead to an incorrect computation of q as the solution of equation (4.17)
is then not unique. In practice we check a posteriori (after running the
algorithm) whether qi 2 [0, 1] for all i, which is a necessary condition for
qi to be a probability. Sometimes, for some realizations of the sampling of
the analogue Markov chain, rarely and even more rarely for large datasets, q
takes values outside the interval [0, 1]. We interpret these cases as a sign of
breaking of ergodicity. We then exclude these rare realizations, with possible
ergodicity breaking of the Markov chain, from the results.
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4.3.3 Applications

In this section, we estimate the committor function using the analogue method
for two different models: Sec. 4.3.3 deals with a system of dimension 2 while
Sec. 4.3.3 concerns a model with 6 degrees of freedom. For each system, we
compare the estimated committor to the true committor, and we analyze
the behavior of the error as the quantity of data upon which the analogue
Markov chain relies varies. Finally, we compare the results of the analogue
method with those obtained by the direct method, based on the same amount
of data.

Model with two degrees of freedom

Let us consider a non-trivial 2-dimensional dynamics [Bréhier et al., 2016a].
The model is defined by the following stochastic differential equation:

ẋ = �rV (x) +
p
2✏Ξ(t), (4.18)

where x = (x, y), Ξ = (⇠x, ⇠y) is a two dimensional gaussian white noise with
h⇠ii = 0, h⇠i(t)⇠j(t0)i = �ij�(t� t0), and the potential V (x) is

V (x, y) = 0.2x4+0.2

✓

y � 1

3

◆4

+3e�x2
⇣

e�(y�
1
3)

2

� e�(y�
5
3)

2⌘

�5e�y2
⇣

e(x+1)2 + e(x�1)2
⌘

.

(4.19)
The stationary distribution of the system is

⇢s(x) = Z�1e�
V (x)

✏ , (4.20)

where Z =
R

dx e�
V (x)

✏ .
Figure 4.4 shows both the potential V (x) (4.4a) and the stationary dis-

tribution ⇢s(x) for ✏ = 0.5 (4.4b). As can be seen in Fig. 4.4a, V (x) has
two global minima close to the points x1 = (�1, 0) and x2 = (1, 0), one
local minimum close to the point xm = (0, 1.5) and a saddle point close
to xs = (0,�0.5) — there are also two saddle points separating the global
minima from the local minimum, approximately located at (�0.6, 1.0) and
(0.6, 1.0). By comparing the panels 4.4a and 4.4b, it can be noted that small
values of the invariant distribution correspond to large values of the potential
and vice versa. In particular, Fig. 4.4b shows that ⇢s(x) has global or local
maxima at x1, x2, and xm.
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a distance and a number of nearest neighborsK. Because we want to measure
the quality of our estimator q̂(x), by comparing it to the reference committor
q(x), as the quantity of available data varies, we generate three trajectories
(using the real dynamics) of different length. Rather than fixing the length of
the trajectory, we integrate each trajectory until a fixed number of transitions
(1, 2 and 20) between sets A and B are observed. We then construct three
analogue Markov chains using each of these trajectories as learning dataset
and compute the corresponding committor function. For these computations,
we have used the Euclidian distance and K = 150 analogues. The estimate
of the committor function for the three choices of learning dataset are shown
in Figs. 4.6a,4.6b,4.6c. Note that the method presented in Sec. 4.3.2 yields
an estimate of the committor function only at the points included in the
learning dataset. To represent the contour levels in Figs. 4.6a, 4.6b and 4.6c,
we extend our estimate of the committor function to the whole region of
interest by using a k-nearest neighbor regression method, as explained in
Sec. 4.2.3. To avoid introducing additional parameters, we choose uniform
weights wj = 1 for all the nearest neighbor and we use the same number of
neighbors as for constructing the analogue Markov chain k = K = 150.

In addition to the reference committor, we also want to compare the com-
mittor estimator based on the analogue method to a direct sampling estimate
with the same amount of data. To do so, we also compute the committor
function using Eq. (4.6) for the same three trajectories as above. In prac-
tice, because the exact same points are never visited twice, this amounts to
assigning value 1 to a point in the trajectory if set B is visited before A in
the rest of the trajectory, and value 0 otherwise. Again, this provides an
estimate of the committor function only at points included in the learning
dataset and we extend it to the region of interest with the same k-nearest
neighbor method as above. This alternative estimator for the committor
function, which we refer to as the direct method, is shown in Figs. 4.6d, 4.6e,
and 4.6f.

Several conclusions can be drawn by comparing qualitatively the com-
mittor estimates shown in Fig. 4.6 with the reference committor shown in
Fig. 4.5. First of all, note that a single reactive trajectory does not con-
tain enough information to capture the structure of the committor function
(Figs. 4.6a,4.6d). The committor estimates start to be qualitatively accept-
able when two reactive trajectories are used (Figs. 4.6b,4.6e). This is due to
the fact that our data set includes the two types of transition paths between
A and B (the one that passes through the saddle point xs and the one that
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stable results. A simple interpretation is that when there is not enough data,
the analogue Markov chain is not a good enough approximation of the real
dynamics to provide any benefit to estimate the committor function. How-
ever, it becomes the case as the amount of data increases, and the analogue
method outperforms the direct method as soon as the learning dataset con-
tains at least 4 transitions. When the data contains at least 4 transitions,
the error with the analogue method is two to three times smaller than the
error with the direct method.

The Charney-DeVore model

We now apply the analogue method to compute a committor function for a
more complex dynamics, the Charney–DeVore model [Charney and DeVore,
1979]. It is a simple toy model of atmospheric dynamics in the Northern
Atlantic region, represented as a 2D channel with differential rotation. It is
not intended to be realistic. Actually, the kind of multistability observed in
this model is not observed in real atmosphere dynamics. The interest of this
model is more methodological.

This model was introduced with the aim of proving that the combination
of topography and barotropic instabilities can lead to different atmospheric
flow regimes. The model is obtained by expanding the quasi-geostrophic
stream function  (z, y, t) (z corresponds to the longitude and y to the lati-
tude) on the basis {�nm(z, y)} with

�0m =
p
2 cos

⇣my

b

⌘

,

�nm =
p
2 exp (inz) sin

⇣my

b

⌘

,
(4.22)

and truncating the series to retain only the first six terms. After the following
change of variables [De Swart, 1989],

x1 =
1

b
 01, x4 =

1

b
 02, (4.23)

x2 =
1p
2b

( 11 +  �11), x5 =
1p
2b

( 12 +  �12), (4.24)

x3 =
ip
2b

( 11 �  �11), x6 =
ip
2b

( 12 �  �12), (4.25)
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the truncated equations of motion become

ẋ1 = �̃1x3 � C(x1 � x?
1) +

p
2✏⇠1 ,

ẋ2 = �(↵1x1 � �1)x3 � Cx2 � �1x4x6 +
p
2✏⇠2 ,

ẋ3 = (↵1x1 � �1)x2 � �1x1 � Cx3 + �1x4x5 +
p
2✏⇠3 ,

ẋ4 = �̃2x6 � C(x4 � x?
4) + ⌘(x2x6 � x3x5) +

p
2✏⇠4 ,

ẋ5 = �(↵2x1 � �2)x6 � Cx5 � �2x3x4 +
p
2✏⇠5 ,

ẋ6 = (↵2x1 � �2)x5 � �2x4 � Cx6 + �2x2x4 +
p
2✏⇠6 ,

(4.26)

where a Gaussian white noise ξ(t) has been added with an arbitrary am-
plitude controlled by the parameter ✏. All the components of the noise are
independent and delta-correlated in time: h⇠i(t)⇠j(t0)i = �ij�(t � t0). The
parameters in (4.26) are defined as follows

↵m =
8
p
2

⇡

m2

4m2 � 1

b2 +m2 � 1

b2 +m2
, �̃m = �

4m

4m2 � 1

p
2b

⇡
, (4.27)

�m =
�b2

b2 +m2
, ⌘ =

16
p
2

5⇡
, (4.28)

�m =
64
p
2

15⇡

b2 �m2 + 1

b2 +m2
, �m = �

4m3

4m2 � 1

p
2b

⇡(b2 +m2)
. (4.29)

There are 7 free parameters in this model: b, �, �, C, x?
1, x

?
4, and the noise

amplitude ✏. For ✏ = 0, the main feature of the system is the coexistence of
multiple equilibrium states, in particular the existence of blocked flow and
zonal flow regimes. The number and stability of these equilibrium states
depend on the choice of the system parameters [De Swart, 1989,Crommelin
et al., 2004]. We adopt the same choice made by T. Grafke et al. [Grafke
et al., 2017,Grafke and Vanden-Eijnden, 2019], that is {b, �, �, C, x?

1, x
?
4} =

{0.5, 1, 1.25, 0.1, 4.5,�1.8}. Crommelin et al. show that for these parame-
ter values the system has two stable equilibrium points [Crommelin et al.,
2004]: one corresponding to a zonal regime and the other to a blocked one.
Figure 4.8 shows the convergence of the system towards the two equilib-
rium states as well as the corresponding stream function  for the deter-
ministic model (✏ = 0). The panels 4.8a and 4.8b show clearly that, for
this choice of parameters, the system exhibits multistability, and that the
time it takes to reach the stationary regimes is of order O(10). The two
equilibria correspond to a zonal state, with almost horizontal streamlines
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(Fig. 4.8c) and a blocked state, with strong cyclonic and anticyclonic struc-
tures (Fig. 4.8d). In the zonal regime the flow is characterized by a strong
eastward jet uz / @y (z, y, t). Instead, in the blocked state there is no jet,
the flow meanders strongly across the domain and it is characterized by the
presence of vorticity.

For ✏ 6= 0, the system can switch spontaneously from one regime to the
other, under the influence of noise. To study the noise-induced transitions
between the zonal and blocked states, we have to define the corresponding
regions of the phase space. Let xZ

eq and xB
eq be the equilibrium points corre-

sponding to zonal and blocked flow, respectively. Given two radii rB, rZ > 0,
we define the sets

A = {x : k x� xZ
eq k< rZ} ,

B = {x : k x� xB
eq k< rB} . (4.30)

In the rest of this section, we consider rZ = 0.8, rB = 0.3 and ✏ = 0.02.
For such parameters, the average time between two transitions is of order
O(103).

Let us now discuss the committor function q(x) = P(TB(x) < TA(x))
of the system. First of all, it should be noted that a direct computation
of q(x) in the whole phase space is not feasible. Indeed, such a calculation
would require discretizing the six-dimensional phase space and to simulate
a set of N trajectories for each point of the domain until they reach ei-
ther A or B. If 100 points along each direction were to be taken, then
N ⇥ 1012 trajectories would have to be simulated. Considering a time of one
millisecond to simulate N trajectories, the computation of q(x) would still
take Tq = 109 s ⇡ 11574 days. Therefore, the reference committor q(x) is
computed on a limited number of points Np distributed according to the in-
variant measure. Since the invariant distribution of the system is not known,
the points Np are sampled at regular time intervals over a very long trajec-
tory. To be more specific, we consider a trajectory 107 time units long and we
sample the Np points at intervals �t = 103 time units. In this way, we ensure
the statistical independence of the points and furthermore, by construction,
their distribution will coincide with the invariant distribution of the system
in the limit Np ! +1. Then, the commitor function on those points can be
computed by running N Montecarlo experiments for each of them.

After computing q(x) along a trajectory in the six-dimensional space, it
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different size to build the analogue Markov chain used to estimate the com-
mittor. The size of these datasets is measured by the number n = 2, 5,
10, 15 of transitions between A and B. As previously, we select K = 150
analogues using the Euclidean distance. We represent the conditional distri-
butions ⇣A(q|x1) for the estimates of the committor using 2 and 15 reactive
trajectories in Fig. 4.10. By comparing Fig. 4.9 and Fig. 4.10, it can be
noted that the conditional distributions ⇣A(q|x1) provided by the analogue
method have the same qualitative structure as the conditional distribution
of the reference committor, with values concentrated close to 0 and 1 in the
vicinity of sets A and B, and a sharp transition region in between. However,
the distributions are much more concentrated around the two set A and B
than the reference one. This is probably because the phase space has not
been explored sufficiently and therefore the analogues of points lying outside
the hyperballs defining the sets are instead inside A and B. Similarly, the
transition region is narrower. The estimates obtained with the two datasets
of different lengths are qualitatively very similar (see Figs. 4.10a and 4.10b),
even if the distribution using 15 reactive trajectories (Fig. 4.10b) exhibits
slightly more spread close to attractor B and a seemingly broader transition
region.

We now compare the performances of the two data-based methods (the
analogue method and the direct estimator) as the amount of data varies using
the same procedure as in Sec. 4.3.3. The error associated to an estimate of the
committor is given by the non-constant term of the Brier score (Eq. (4.11)),
i.e.

kq � q̂k2⇢s =
Z

dx(q(x)� q̂(x))2⇢s(x) ⇡
1

Np

Np
X

i=1

(q(xi)� q̂(xi))
2, (4.32)

where q is the true committor, q̂ its approximation and ⇢s is the invariant
measure. Note that here, we are directly comparing the committor functions
q and not the distributions ⇣(q|x1).

For each dataset size, we repeat the computation 10 times using different
realizations of the trajectory. The best estimate of the error is computed as
the empirical average over those realizations and the error bar corresponds
to the standard deviation computed over the different experiments. These
results are shown, as a function of the size of the dataset upon which the
analogue Markov chain is built, in Fig. 4.11. The estimates of the committor
function provided by the analogue method are more precise than those ob-
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4.4 Using the learned committor function in

Adaptive Multilevel Splitting

In Sec. 4.3, we estimated the committor function with the analogue method.
We will now illustrate how this approximated committor can be used in a rare
event simulation, using the Adaptive Multilevel Splitting (AMS) algorithm.
This algorithm relies on a function used to select the trajectories leading to
the rarest events, called the score function. The committor function is known
to be the optimal score function, but it is generally not known exactly. We
will show that using the estimated committor as a score function has two
advantages. First, it provides a version of AMS where the user does not
need to explicitly prescribe the score function. This is very useful in practice
when we have little knowledge of the dynamics beyond the presence of the
two attractors A and B. In addition, it can improve the precision of the
quantities computed with AMS, compared to user defined score functions.
Indeed, it approximates the true committor, which leads to minimal errors
on estimates. On other hand, user defined score functions, with analytical
formulas, have no reason to be good approximations of the true committor
in general.

4.4.1 The Adaptive Multilevel Splitting algorithm and

the quality of score functions

Adaptive Multilevel Splitting is a splitting method designed to estimate the
probability of rare events, inspired by the pioneering works of Kahn and
Harris [Kahn and Harris, 1951] and Rosenbluth and Rosenbluth [Rosenbluth
and Rosenbluth, 1955]. It has been proposed by Cérou & Guyader [Cérou and
Guyader, 2007], as an improvement over Multilevel Splitting (see Ref. [Glasser-
man et al., 1998] for instance). Many variants have been developed since,
and the algorithm has been applied in a variety of contexts [Rolland, 2018,
Bouchet et al., 2019, Lopes and Lelièvre, 2019, Lestang et al., 2020]. The
description of the algorithm given here follows the presentation of Lestang
et al. [Lestang et al., 2018]. See the review article by Cérou, Guyader &
Rousset [Cérou et al., 2019b] for a recent overview of the method and its
applications.

For definiteness, we consider a continuous time Markov process Xt in the
phase space X . Let us define two regions A and B in phase space. We again
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seek to estimate the probability ↵ = P[TB < TA], where TD = inf{t > 0, Xt 2
D with X0 2 C} is the first hitting time of the set D, starting from a set C.
The set C encloses the set A. We also wish to compute the corresponding
realizations of the dynamics.

The AMS algorithm computes these quantities iteratively. For this mat-
ter, the algorithm uses a score function �, (sometimes termed reaction co-
ordinate) a map from the phase space X to R. Ideally, the score function
is bounded from below by 0 and from above by 1, vanishes identically on A
and is identically equal to 1 on B. Our aim is to compare the efficiency of
different score functions.

In order to run the algorithm, we first need to sample initial conditions
according to the invariant measure restricted to the set C. In practice, we
sample these initial conditions on C by sampling long trajectories in the
bassin of attraction of A. Then the algorithm is initialized by sampling N
independent trajectories, with initial conditions on the set C and run until
they reach either the set A or the set B. Let us denote by {x

(0)
n (t)}1nN

the initial ensemble of trajectories, where the subscript denotes the index of
the trajectory in the ensemble and the superscript denotes the iteration of
the algorithm. We associate a weight w0 = 1 to those trajectories.

At each iteration j � 1, we apply the following selection and mutation
steps, which are schematically illustrated in Fig. 4.12:

• We compute the score of each trajectory in the ensemble at iteration
j � 1: Φ

(j)
n = supt �(t,x

(j�1)
n (t)).

• We determine the trajectories which have the lowest score: Φ
?
j =

min1nN Φ
(j)
n and we set n?

j,1, . . . , n
?
j,`j

the indices such that Φ
(j)
n?

j,1
=

· · · = Φ
(j)
n?

j,`j

= Φ
?
j . One can have `j > 1 in some iterations. If `j = N

and not all the trajectories have reached B, the algorithm stops: it
leads to an extinction.

• We mutate each trajectory x
(j�1)
n?

j,`
(1  `  `j): for each of them, we

choose a trajectory x
(j�1)
n`

(n` 6= nj,1, . . . nj,`j) drawn randomly among
the N � `j remaining trajectories. We determine the smallest time t

such that �(t,x
(j�1)
n`

(t)) > Φ
?
j , denoted by tj,`. The new trajectory x

(j)
n?

j,`

is set by copying the trajectory x
(j�1)
n`

from t0 to tj,`, and simulating
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3

1

2

1’: 1 branched on 2

B

x

A

Φ3Φ2
Φ1

Observable : Φ : R
d
→ R

Φ1 < Φ2 < Φ3

N = 3 clones

Figure 4.12: Sketch illustrating two iterations of AMS in a simplified example
with 3 clones (Figure originally made for Ref. [Simonnet, 2016]), in order to
compute trajectories going from set A to set B. Trajectory 1 (dashed line)
has the smallest excursion out of A as measured by the score function Φ.
It is removed and branched on another trajectory (in that case trajectory 2,
leading to the purple line). In the successive iteration, trajectory 2 has the
smallest score function and is branched on trajectory 3 (leading to the red
line).
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the trajectory with a new independent realisation of the noise, starting
from time tj,`, until it hits either the set A or the set B.

• Trajectories with higher scores are not modified at this step: x
(j)
n =

x
(j�1)
n for n 6= n?

j,1, . . . , n
?
j,`.

• We compute the weight of iteration j: wj =
⇣

1� `j
N

⌘

wj�1.

The algorithm is iterated until all the trajectories reach the set B. The
number of iterations J is a random number. This leads to an estimator ↵̂ for
the transition probability ↵:

↵̂ = wJ =
J
Y

j=0

✓

1� `j

N

◆

. (4.33)

This estimator is a random variable, with one value obtained for each re-
alization of the algorithm. We perform M independent realizations of the
algorithm and compute the statistics of ↵̂: the empirical average and variance
of ↵̂.

The mathematical properties of this estimator have been extensively stud-
ied [Cérou and Guyader, 2007,Guyader et al., 2011,Rolland and Simonnet,
2015,Bréhier, 2015,Bréhier et al., 2015,Bréhier et al., 2016a,Bréhier et al.,
2016b,Simonnet, 2016]. The key property is that, for any N and score func-
tion �, it is an unbiased estimator [Bréhier et al., 2016a,Bréhier et al., 2016b]
with a finite variance. The variance �↵(N) depends on N and on the score
function. The optimal score function, with the lowest variance, is the com-
mittor function.

More precise results exist asymptotically for largeN . It is then proven [Cérou
et al., 2019a] that the variance scales like 1p

N
asymptotically �↵(N) ⇠

N!1
G(�)p

N
. Moreover, when the score function is the committor function, G is

minimal, and the variance scales like the ideal variance

�id =
↵
p

| log(↵)|p
N

. (4.34)

In many cases, an asymptotic scaling is observed in practice when the number
of clones is larger than 100 (see for instance Ref. [Rolland, 2018], Fig. 14 (c)).

115



4.4. USING THE LEARNED COMMITTOR FUNCTION IN
ADAPTIVE MULTILEVEL SPLITTING

The computation of the empirical variance of ↵, given by �↵(N,M) =
r

1
M

PM
m=1 (↵̂

2
m)�

⇣

1
M

PM
m=1 ↵̂m

⌘2

, and its comparison to the ideal variance

�id has often been used as an a posteriori test of the quality of the score
function and how close it is to the committor [Rolland and Simonnet, 2015,
Bréhier and Lelièvre, 2019,Rolland et al., 2016].

Although the estimator is actually unbiased (E[↵̂] = ↵), in numerical uses
of AMS, it is often observed that ↵̂ underestimates ↵ in the large majority of
the M realizations of the algorithm. These underestimates are such that the
average h↵̂iM = 1

M

PM
m=1 ↵̂m over M realizations is most of the time strictly

smaller than ↵ although the average is ↵ (E[h↵̂iM ] = ↵). This phenomenon
is called an apparent bias. We note that a similar observation is made in the
context of fixed Multilevel Splitting [Glasserman et al., 1998] and Importance
Sampling [Devetsikiotis and Townsend, 1993]. In these contexts, it can be
demonstrated that 1

M

PM
m=1 ↵̂m underestimates ↵ with a probability that

goes to 1 as parameters like ✏, which control the rareness of the event, go to
zero [Glasserman et al., 1998]. This happens if the score function yielding the
levels of Multilevel Splitting is not adapted. As a consequence, the observed
sample mean of ↵̂ will be strictly smaller than ↵ unless an out of reach number
of realizations of AMS is performed. It has been conjectured [Bréhier et al.,
2016a] that the observed apparent bias phenomenon could be explained for
the AMS by analogy with the studies for fixed multilevel splitting.

The apparent bias, measured through the difference ↵� h↵̂iM , decreases
like 1

N
as the number of clones N is increased. However,it has been observed

that for some cases, the apparent bias seems to reach a plateau for extremely
large values of N [Rolland and Simonnet, 2015]. We will see similar behavior
in the following. In these situations, it is observed that this apparent bias
is minimal when the score function is the committor function [Rolland and
Simonnet, 2015]. As this apparent bias is a very important practical problem,
we will use use the magnitude of this apparent bias as a measure of the quality
of the score function.

We have seen that the committor function is the best score function for
the AMS algorithm, and explained that the computation of the empirical
variance and of the apparent bias are two ways to quantify the quality of a
score function. We can also test the AMS computations by comparing the
computation of other observables. For instance, we will compute the transi-
tion path duration, denoted ⌧ . This physical quantity has proven to be a good
indicator of whether AMS was correctly sampling transition paths [Rolland
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and Simonnet, 2015].
To have an unbiased estimate of ↵ and ⌧ and validate the output of AMS

computations, we perform a large number of Direct Numerical Simulations
(DNS) of reactive trajectories. These DNS start like AMS computations with
initial conditions on C, we let them evolve until they reach either A or B.
The proportion of DNS that reach B before A yields a direct estimate of ↵.
We also perform an estimate of ⌧ by averaging the duration trajectories that
reach B before A.

The estimate of a quantity by AMS is deemed to be precise enough when
the 95% confidence intervals of this estimate performed by AMS and by DNS
overlap [Bréhier et al., 2016a]. These confidence intervals are constructed by
noting that we look at the sum of independent random variables of finite
variance. They therefore follow a central limit theorem and the sample mean
of ↵̂ has a gaussian distribution. The confidence interval is then given by
h↵iM ± 1.96�↵(N,M), with the empirical variance �↵(N,M). Similar confi-
dence intervals are constructed for ↵ and ⌧ for both AMS and DNS results.

4.4.2 The learned committor function

Our goal is to investigate the performance of a score function relying on a
data-based estimate of the committor function, using the analogue method
presented in Sec. 4.3. As mentioned above, this method only provides an
estimate on the points initially present in the dataset. To extend the score
function to the whole phase space, we proceed as explained in Sec. 4.2.3, with
a nearest-neighbor method using an exponential kernel with width ! = 0.1.
Here, a small number of neighbors  = 10 is used for efficient computations of
the score function. Indeed, for each computation, a search through neighbors
must be performed. For a given training dataset, this method defines a score
function, which we shall denote �dat.

The use of a kernel is justified by the need to avoid regions of constant
score function. Indeed, when R

D is divided in finite subvolumes, many points
y have the same neighbours {xj}1j

and thus would have the same score
function if uniform weights were used. On the other hand, the kernel ensures
a dependence on y even within such regions. In other words, the kernel
ensures that sets of constant �dat are hypersurfaces and not hypervolumes and
that much fewer y have the same values of Φ at each stage of the algorithm.
Practice shows that this leads to more efficient branching by limiting the
number of clones suppressed at each stage of the algorithm and the risk of
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extinction.
We will test the use of the analogue based estimate of the committor as

a score function for the AMS computations for the two systems presented in
Sec. 4.3.3: the 2D three-well system (Sec. 4.4.3) and the Charney-DeVore
model (Sec. 4.4.4). The test of the learned committor function will be
twofold. First, we will consider a score function learned on a dataset dis-
playing a large number of transitions and study the quality of the result as
a function of the clone number N . This will allow us to discuss the phe-
nomenon of apparent bias and how the learned committor function deals
with it. The second aim will be to study the required size of the dataset to
have good results with the AMS algorithm. This question is critical for com-
plex systems for which data will be scarce because of computation costs. To
address this question, we will then perform AMS computations with a fixed
large number of clones N = 1000 and datasets of increasing size (measured
in number of recorded transitions).

4.4.3 AMS study for the two dimensional three well

model

In this subsection, we work on the dynamics of the two-dimensional three-
well model presented in Sec. 4.3.3 (Eq. (4.18)). The sets A and B as well as
the noise variance ✏ are defined as in Sec. 4.3.3.

Efficiency of the AMS algorithm with the learned committor func-

tion for large N for the three-well model

We first study the efficiency of the AMS algorithm when using the learned
approximate committor funciton �dat as a score function, when the number
of clones is increased with a fixed data set length.

The time series which is used to compute this score function has Np = 1.4·
105 datapoints (effectively 1400 time units long) and displays 21 transitions.
The results for the AMS algorithm with this score function will be compared
to either DNS computations, or to AMS computations with two explicitly

user defined score functions: �lin(x) = x+1
2

and �norm(x) =

p
(x+1)2+ 1

2
y2

2
.

The performances of these score functions have been studied in detail in the
literature [Rolland and Simonnet, 2015].

In Fig. 4.13 (a), we first show the transition probability h↵iM as a function
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Figure 4.13: Efficiency of the AMS algorithm with the learned committor
function for fixed and large dataset, for the three-well problem. Compari-
son of the estimated (a) Transition probability h↵i, (b) Duration of reactive
trajectories h⌧i, and (c) Rescaled variance �, as a function of the number
of clones N . For each plot the black curve is the reference: either the DNS
(a) and (b), or the optimal value 1 (c). The dashed black lines are the 95%
confidence interval for the DNS. The color curves have been computed us-
ing the AMS, with respectively the learned committor function (green), the
linear score function (blue) and the quadratic score function (red). The red
and blue curves clearly illustrate the apparent bias phenomenon. The learned
committor function gives excellent results, suppressing the apparent bias and
giving smaller, close to optimal, empirical variance.
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of the number of clones N used in AMS computations, using the three score
functions �dat, �lin and �norm, and computed by means of DNS. Error bars
show the 95% interval of confidence. One can first note that for the AMS
computations, h↵iM(N) is within 1% of its asymptotic value if the number
of clones used is larger than N = 100. As noted in Sec 4.4.1 h↵iM grows with
N toward this asymptotic value. The confidence intervals of the probability,
for AMS and DNS computations, do not overlap when we use the norm score
function �norm: the asymptotic value of h↵iM overestimates ↵. With the
linear score function �lin, the asymptotic value of h↵iM in turn underestimates
↵: this is a possible consequence of the apparent bias phenomenon [Bréhier
et al., 2016a]. These results are in agreement with previous studies [Rolland
and Simonnet, 2015], which have related these biases to errors in the relative
sampling of transition paths. For instance, the linear score function selects
preferentially trajectories going through the bottom channel (where paths
remain around y ' 0 and where they cross the highest potential difference,
see Fig. 4.4a and Ref. [Rolland and Simonnet, 2015], Fig. 7)a)), leading to
the bias. By contrast, if the learned committor function �dat is used, the
confidence intervals overlap as soon as N � 250, thus indicating that no bias
can be detected in this estimate of ↵.

The results for ⌧ , the average length of reactive trajectories, are qualita-
tively similar: Fig. 4.13 (b) shows h⌧iM as a function of the number of clones
used in AMS for the three score functions, compared to a reference DNS
calculation. Error bars are again given by the 95% confidence interval. We
first note that for the data-based and linear score functions h⌧iM converges
toward its asymptotic value to within 1% for N � 250; for the norm score
function it is within that interval for all values of N . The 95% confidence
interval of the AMS estimate with learned committor function and of DNS
overlap if more than 1000 clones are used (a larger number than for the tran-
sition probability ↵; note however that the confidence intervals are narrower
for ⌧ than for ↵). On the other hand, both the linear and the norm score
functions lead to overestimates of ⌧ .

Finally, in Fig. 4.13 (c), we consider the rescaled variance �↵(N,M)/�id(N)
of the estimator of ↵ as a function of the clone number N . Here the abso-
lute reference is the unit value, obtained for the optimal score function, the
exact committor. We first note that for all score functions, the rescaled vari-
ance reaches a plateau if the number of clones is larger than N = 100. The
value of this plateau is largest when we use the linear score function, with
�↵(N,M) = 1.4± 0.02. It is somewhat smaller for the norm score function,
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with �↵(N,M) = 1.25± 0.02. The best results are obtained for the learned
committor function, with �↵(N,M) = 1.12 ± 0.2. This again indicates that
the computations performed using the learned committor function are the
most precise, in that they come with the smallest statistical error, which is
10% larger than the smallest error possible.

All things considered, we conclude that if we use a large dataset to learn
an estimate committor function with the analogue Markov chain, and use it
as a score function for AMS, the estimates of transition properties show no
apparent biases and converge to their true value when the number of clones is
increased. The better precision of the results with the learned score function
is also clearly visible for the lower statistical error measured by the empirical
variance of the algorithm. This better precision is seen as soon as the number
of clones N is of the order of 100 and the 95% confidence interval is reached
for N of the order of a few hundreds.

Efficiency of the AMS algorithm with the learned committor func-

tion as a function of the dataset length for the three-well model

In Sec. 4.4.3, we used a large dataset with 21 transitions to accurately esti-
mate the committor, before using it as a score function for the AMS. Com-
pared to analytically defined score functions, this suppressed the apparent
bias phenomenon and reduced the statistical error.

However, for many complex systems with very costly computations, it
might not always be affordable to use a long dataset to learn the committor
function. Moreover, in the initial stage of the study, one need to work with
short datasets. Hence, we now study how the results of AMS computations
using the learned committor function depend upon the size of the learning
dataset, in the regime of short datasets, for the 2D three-well model.

For this matter, we sample trajectories of increasing length that contain
an increasing number of transitions, from 1 to 21. For each number of transi-
tions, we sample seven independent trajectories. For each of these datasets,
we estimate the committor with the analogue method (Sec. 4.3) and use it
as a score function in AMS computations with N = 1000 clones.

Fig. 4.14 (a,b) show the transition probability ↵ and the average length
of reactive trajectories ⌧ as a function of the number of sampled transitions
in the dataset. For each realization of the dataset which is used to learn
the score function, we represent the best estimate and the 95% intervals
of confidence, as different points. However, all the points are essentially
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Figure 4.14: Efficiency of the AMS algorithm with the learned committor
function, as a function of the dataset length, for the three-well problem.
Comparison of the estimated (a) Transition probability h↵i, (b) Duration of
reactive trajectories h⌧i, and (c) Rescaled variance �, for each case averaged
over independent realizations of the score function. For each plot the black
curve is the reference one, either the DNS (a and b) or the optimal value
1 (c). The dashed black lines are the 95% confidence interval for the DNS.
The color curves have been computed using the AMS, with respectively the
learned committor function (green), the linear score function (blue) and the
quadratic score function (red). The red and blue curves are constant values
(they do not depend on the data set length) for comparison. The learned
committor function gives much better results than the user defined score
functions, even for very small datasets. With datasets containing only a
few transitions, two to five, the results are already excellent. However, for
such small datasets, the quality of the score function varies much from one
realization to another.
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superimposed: all the realizations of the score functions lead to the same
results. We note that even if we use a short dataset to learn the committor
function, the estimates are very precise: the intervals of confidence of the
AMS algorithm and the DNS estimates overlap for all our datasets lengths,
except for the shortest dataset (only one transition) for ⌧ . In particular,
they are always significantly more accurate than the estimates performed
with the user defined score functions, as a consequence of the apparent bias
phenomenon.

This is confirmed in Fig. 4.14 (c) by considering �, the rescaled variance of
the estimate of ↵. In this plot, for each dataset length, we have computed the
empirical average and variance of the rescaled variances estimated with the
different realizations of the score function. This first shows that the rescaled
variance decreases as the number of transitions contained in the dataset
increases, from 1.6 when the dataset contains only two transitions to almost
1.1 when the dataset contains 8 transitions or more. This indicates with
datasets with 8 transitions or more, the statistical error is systematically
reduced when using the learned score function is learned rather than user
defined score functions.

We also note that the fluctuations of the variance between different dataset
realizations decreases as the number of transitions contained in the dataset
increases. If the dataset is short, no more than 6 transitions, one can obtain
a score function that leads to better or worse results than analytically defined
score functions with comparable probability. With a dataset with 3 transi-
tions or more, the statistical error is most of time reduced when the score
function is learned from datasets, compared to the case with user defined
score functions.

Finally, we stress that for very short dataset, with only a few transitions,
even if the variance on the estimate of ↵ is of the same order for both user
defined and learned score function, the systematic apparent bias is much
smaller with the learned committor function.

4.4.4 Application to the Charney-DeVore model

We now perform the same tests for AMS computations using the learned
committor function in the Charney-DeVore model (Eq. (4.26)). We use the
same parameters and definition of the sets A and B as in Sec 4.3.3, describing
transitions between zonal and blocked flows.
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Figure 4.15: Efficiency of the AMS algorithm with the learned committor
function for large dataset as a function of the clone number N , for the
Charney-DeVore model. Comparison of the estimated (a) Transition proba-
bility h↵i, (b) Duration of reactive trajectories h⌧i, and (c) Rescaled variance
�. For each plot the black curve is the reference one, either the DNS (a and
b) or the optimal value 1 (c). The dashed black lines are the 95% confidence
interval for the DNS. The color curves have been computed using the AMS,
with the learned committor function (green) and the linear score function
(blue). The learned committor function gives excellent results, similar to the
linear one for the weak apparent bias of the transition probability (a), and
much better than the linear one for the variance and the length of reactive
trajectories (b and c).

Efficiency of the AMS algorithm with the learned committor func-

tion for large N for the Charney-DeVore model

We proceed as in Sec. 4.4.3: we first learn the committor function �dat

(Sec. 4.4.2) from a long trajectory, containing 3.4 · 104 data points and dis-
playing 38 transitions. The perfomances will be compared to DNS results
and to a simple linear score function �x1 =

x1�x1,Z

x1,B�x1,Z
with x1,Z = 4.308 and

x1,B = 0.709 (see Figs. 4.8a and 4.8b).
We first show the estimate of the transition probability ↵ as a function of

the number of clones used in AMS in Fig. 4.15 (a). For all three estimates,
the 95% intervals of confidence are fairly large: 2% of the best estimate. All
three intervals overlap if more than 100 clones are used in AMS computations.
Based on this observable alone, both score functions give comparable results,
and we cannot conclude on whether one is better than the other.

We then show the estimate of the average length of reactive trajectories as
a function of the number of clones used in AMS computations in Fig. 4.15 (b).
The two AMS estimates h⌧iM decrease with N towards an asymptotic value.

124



4.4. USING THE LEARNED COMMITTOR FUNCTION IN
ADAPTIVE MULTILEVEL SPLITTING

With the learned committor function �dat, the 95% confidence intervals of
the AMS and DNS estimates overlap if N � 250. This never happens for the
linear score function �x1 .

Finally, Fig. 4.15 (c) shows the rescaled variance of the AMS estimator of
↵ as a function of the number of clones. Both are compared to the reference
value 1. The learned committor function significantly reduces the statistical
error, compared to the linear score function.

We conclude that using the learned committor function computed from
a long dataset leads to more precise results than using the user defined score
function �x1 , especially for the statistical error and for the estimate of the
duration of reactive trajectories. We note that AMS computations yield
estimates close to the asymptotic value if N � 1000.

Efficiency of the AMS algorithm with the learned committor func-

tion as a function of the dataset length for the Charney-DeVore

model

As we did with the 2D three-well model (Sec. 4.4.3), we now wish to determine
the amount of data necessary to learn a committor function leading to good
AMS estimates. Again, we sample longer and longer trajectories, containing
from 1 to 99 transitions. From each of these datasets we learn a committor
function and use it in AMS computations using N = 1000 clones. For each
dataset length, we perform an average over independent realizations of the
score function.

We first consider the transition probability ↵ (Fig. 4.16 (a)) and the
average length of the reactive trajectories ⌧ (Fig. 4.16 (b)) as a function of
the number of recorded transitions. We note that as soon as there are more
than five recorded transitions in the dataset, using the AMS with the learned
committor, the 95% intervals of confidence of ↵ and ⌧ overlap with the DNS
estimate. This indicates that the learned committor function is relevant for
much smaller datasets than used in Sec. 4.4.4. The results improve with the
size of the dataset.

We now examine the rescaled variance of the AMS estimate of the tran-
sition probability ↵, using the learned committor function (Fig. 4.16 (c)).
We note that if there are very few transitions recorded in the dataset, the
variance can be larger than the one obtained using the linear score function.
However, the statistical error quickly decreases for larger datasets: it is re-
duced by about 20% compared to the linear score function when the dataset
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Figure 4.16: Efficiency of the AMS algorithm with the learned committor
function as a function of the dataset length (measured in number of tran-
sitions), for the Charney-DeVore model. Comparison of the estimated (a)
Transition probability h↵i, (b) Duration of reactive trajectories h⌧i, and (c)
Rescaled variance �. For each plot the black curve is the reference one, either
the DNS (a and b) or the optimal value 1 (c). The dashed black lines are the
95% confidence interval for the DNS. The color curves have been computed
using the AMS, with the learned committor function (green) and the linear
score function (blue). For dataset as short as 5 transitions the AMS algo-
rithm with the learned committor function leads to results as precise as the
DNS, and more precise than the linear score function, for both the rescaled
variance and trajectory duration. Having few transitions in the dataset leads
to variability in the quality of the score function.
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contains at least 38 transitions.

4.5 Conclusion

In this paper, we have proposed a data-driven approach for the computation
of the committor function. This approach relies on the analogue method to
define effective dynamics starting only from observations. We have shown
that this defined a Markov chain on the observed states of the dynamics,
which approximates the true propagator. This allows a spectral character-
ization of the committor function. Computing the committor function this
way gives remarkably smooth and robust results for the committor function.

We have highlighted by means of two examples that it is possible to
obtain fairly precise estimates of the committor function, even in cases where
few observations are available. In addition, we have pointed out that these
approximations are more precise than those provided by a naiver data-driven
approach and that increasing the number of data results in a faster reduction
of the error. These improvements are because that the analogue Markov
chain is a dynamical approach, which uses all the information contained in
the trajectories, while this is not the case for the direct approach, which
treats all the points of the same reactive trajectory equally. We also stress
that the analogue Markov chain approach can be used using any trajectories
of any length, not necessarily distributed according to the invariant measure
of the dynamics.

Finally, we provided evidence of the advantage of coupling the analogue
method with a rare event algorithm. Indeed, learned committor with the
analogue Markov chain can be used as a score function performing better
than user defined score functions. This means that it is possible to develop
an almost-fully automatic algorithm that requires very little knowledge and
understanding of the system under consideration. The quality of the results
suggest that better understanding can be obtained a-posteriori.

Although the learned committor function based on the analogue Markov
chain, and its coupling with rare event algorithms, have revealed several very
interesting advantages, some limitations might arise especially when one faces
high-dimensional systems. We have tested the approach for a fairly complex
dynamics with 6 degrees of freedom. It still has to be tested for more complex
dynamics. For systems in high dimensions, the choice of the distance for the
analogue method might be a critical issue.
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4.5. CONCLUSION

Another interesting question would be to compare the quality of the es-
timation of the committor function using the analogue Markov chain, with
other methods. It would be interesting to compare it other methods based
using dynamical information, sometimes more complicated, for instance the
direct Galerkin approximation [Thiede et al., 2019, Strahan et al., 2021]
method. It would also be interesting to compare it to direct approaches
using machine learning.
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Chapter 5

Predicting extreme events

using the analogue method: the

heat-wave case

5.1 Introduction: heat waves and committor

functions

Often rare events, for instance extreme heat waves or cold spells, have a
huge impact on socio-economic systems [Ragone et al., 2018, Field et al.,
2012,AghaKouchak et al., 2012,Herring et al., 2014,Coumou and Rahmstorf,
2012, Ragone and Bouchet, 2021]. Therefore, one of the major challenges
nowadays is to accurately describe their dynamics and find effective ways to
forecast the probability of occurrence of such events. The greatest difficulty
in studying these events lies in the lack of observations. For example, consider
the case of heat waves. These events happen every year in different parts
of the world and have been observed in the past. The impact, amplitude
and duration of these events vary widely depending on the region in which
they occur, the period and many other factors. The most extreme events
have a return time (the average time between two occurrences of the event)
of the order of hundreds or thousands of years [Ragone et al., 2018,Ragone
and Bouchet, 2021]. It is therefore not possible to rely on historical data
because such events may have never been observed due to the many factors
that contribute to their occurrence. Difficulties in analyzing these events also
arise using climate models because of their huge computational costs.

129



5.1. INTRODUCTION: HEAT WAVES AND COMMITTOR
FUNCTIONS

This study focuses on extremes of long lasting summer heat waves. Al-
though various definitions can be given, roughly speaking a heatwave is an
extended period of hot weather relative to the expected conditions of the area
at that time of year. As an example the France region has been considered.

According to existing phenomenological theory1 [Perkins, 2015, Horton
et al., 2016], the principal causes of heat waves include large-scale atmo-
spheric circulation patterns [Cassou et al., 2005, Della-Marta et al., 2007,
Jézéquel et al., 2018] and lack of rainfall and soil moisture [Vautard et al.,
2007, Zampieri et al., 2009,D’Andrea et al., 2016]. Although these are rec-
ognized as the main causes, it is extremely complex to establish causal re-
lationships between them [Horton et al., 2016] and their influence varies in
importance depending on the geographical region [Stefanon et al., 2012]. For
instance, it is well established that long-lasting heat waves in extratropical
regions are related to persistent weather regimes and blocking events [Lau
and Kim, 2012,Hoskins and Woollings, 2015,Horton et al., 2016,Kornhuber
et al., 2019,Ragone and Bouchet, 2021].

Therefore, studying extreme heat waves concerns the study of the non-
linear and turbulent dynamics of the atmosphere. Two key variables are the
temperature and pressure fields, although it is important to note that relative
humidity can also play a role. Surface temperature and pressure fields at a
certain height of the vertical coordinate are usually considered. The most
convenient vertical coordinate is the geopotential height. The geopotential
Φ(�, ✓, z) is the gravitational potential energy per unit mass at latitude �,
longitude ✓, and elevation z,

Φ(�, ✓, z) =

Z z

0

dz0 g(�, ✓, z), (5.1)

where g(�, ✓, z) is the gravity acceleration. The geopotential height Z(�, ✓, z)
is the geopotential normalized to the standard gravity at mean sea level
g0 = 9.80665 ms�2, i.e.

Z(�, ✓, z) =
Φ(�, ✓, z)

g0
. (5.2)

Instead of using the pressure fields at a certain value of the geopotential
height, it is possible to look at the value of the geopotential height on a sur-

1The term phenomenological theory is used here to indicate a theory based on the
observations of a certain phenomenon and which therefore does not derive from first prin-
ciples.
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face defined by a fixed pressure. Indeed, the geopotential height on a surface
defined by a fixed pressure behaves as a streamfunction for the geostrophic
wind vector and it is often used to visualize the state of the atmospheric
circulation since it highlights regions of low pressure (cyclonic anomalies typ-
ically associated with bad weather) and high-pressure regions (anticyclonic
anomalies typically associated with fair weather). The geopotential height is
important in the study of heat waves as these are typically associated with
persistent anticyclonic anomalies [Ragone et al., 2018]. As an example, con-
sider the map of temperature at 850 hPa (colors) and geopotential height
at 500 hPa (contours) in Fig. 5.1. As can be seen, the geopotential height
gives indications on atmospheric circulation. Indeed, the two predominant
features are the jet streams of the two hemispheres. Furthermore, it can be
noted that the regions where the temperature is high (low) are associated
with high (low) values of the geopotential height.

In this study, a specific criterion for selecting heat waves has been chosen.
It consists of extremes of time averaged surface temperature fluctuations
(anomalies) defined as

A(t) =
1

T

Z t+T

t

1

|D|

Z

D

(Ts � Ec [Ts]) (r, t
0) drdt0, (5.3)

where D is a specific region of the globe, |D| represents the area of the region
and Ec [·] denotes the climatological average, i.e. an average over time made
for any given location r and intra-year time t that preserves the intra-year
seasonal effect. The integrand of Eq. (5.3) is the surface temperature anomaly
field and will be indicated by T a

s (r, t) = (Ts � Ec [Ts]) (r, t). Throughout the
study, heat waves of duration T = 15 days will be analyzed. It should be
underlined that extremes of temperature anomalies rather than extremes of
absolute temperature are considered. This definition emphasizes dynamical
characteristics, which are thought to be described reasonably well on a sea-
sonal time scale, rather than physical impacts which are often related to the
absolute temperature. However, it can be expected that those events have
the same dynamical characteristics, at least for the most important aspects.

Considering that the predictability horizon of the atmosphere is about
two weeks, it is easy to be convinced that the problem of predicting heat
waves a few days in advance falls into the class of prediction problems at the
predictability margin. Therefore, even in this case, the appropriate mathe-
matical tool to deal with this problem is the committor function.
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The committor function q⌧ (x; a) is the probability that a heat waves of
amplitude greater than a will occur in ⌧ days as a function of the current
state of the system x, i.e.

q⌧ (x; a) = P(A(t0 + ⌧) > a|X(t0) = x). (5.4)

The state variable x can be the set of all the variables that describe the
system (temperature, pressure, soil moisture, wind velocity and so on) or a
part of them (for instance temperature and geopotential height). Since at
the predictability margin the system behaves like a stochastic process, the
committor function q⌧ (x; a) takes values in the interval [0, 1]. In Sec. 2.5.1 it
was shown that the probability defined in Eq. (5.4) is a committor function
for the auxiliary process Y (t) = [O (X(t), t) , t], where O (X(t), t) is the time
averaged surface temperature fluctuation A(t).

The computation of the committor starting from observations (being they
real measurements or climate model outputs) is a complex task, especially for
very extreme events (i.e. for large values of a), given the large dimensionality
of the system and the scarcity of recorded events. However, it is crucial to
access the information q⌧ (x; a) contains. In fact, knowing how likely it is
that, starting from the state x, a heat wave will occur in the next ⌧ days
could help to make informed decisions in order to mitigate the impact of
such an event on societies. Furthermore, by studying the dependence of
q⌧ (x; a) on the different variables that define the state of the system x, it is
possible, on the one hand, to identify more or less informative variables for
the prediction of heat waves, and, on the other hand, to recognize recurrent
dynamical patterns (such as teleconnection patterns). Finally, as explained
in Chapter 4, q⌧ (x; a) can be used to drive rare events algorithms, making
available a larger collection of observations and helping the understanding of
such events.

The aim of this study is to introduce the analogue Markov chain for the
computation of extreme events probabilities, and in particular the probabil-
ities of occurrence of heat waves.

The structure of the chapter is the following: Sec. 5.2 introduces the ana-
logue method in the context of climate dynamics and explains how to build
several types of analogue Markov chains. These different types of Markov
chains are characterized by different properties. The first distinction is made
between seasonal and annual Markov chains. The former are developed by
considering dynamical observations related to a single season (e.g. summer)
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and consequently are used to generate synthetic trajectories only in that
season. The latter, instead, are developed using yearly trajectories. Within
the class of annual Markov chains, a further distinction can be made be-
tween time-periodic or homogeneous Markov chains depending on whether
the transition matrix depends on time or not. Then, Markov chains are
used to generate synthetic trajectories. From these synthetic trajectories,
some stationary properties of the chains, such as the distribution of the time
averaged temperature A (Eq. (5.3)), the return times, and the probability
distribution of the days visited by the trajectories, are computed. In ad-
dition, these quantities are compared to the ones computed from the real
dynamics (where the term real refers here to climate model outputs). These
consistency checks show that the type of Markov chain suitable for repro-
ducing heat wave statistics depends on which variables are used as states of
the chain. The section ends by showing that the analogue method allows
the observation of events whose return time is much longer than the length
of the trajectory used for building the analogue Markov chain. This result
proves the ability of the analogue method to generate realistic trajectories
useful for studying extreme events. Sec. 5.3 deals with the computation of the
committor function using the analogue method. The committor function is
computed by employing seasonal Markov chains. Indeed, as it will be better
explained throughout the chapter, the committor function only depends on
short trajectory statistics (since it is a function of the initial condition) and
it is therefore not too much sensitive to the choice of the type of the analogue
Markov chain. The predictive skills of the committor are evaluated by build-
ing a classifier (the analogue based classifier) that predicts the occurrence
or not of a heat wave according to the current state of the system. Then,
the classifier is used to assess the impact of some parameters, such as the
coarse-graining time, the spatial domain on which analogues are computed
and the combination of different physical quantities, on the predictability of
extreme events. The section concludes by showing a comparison between
the analogue based classifier and a classifier based on the committor func-
tion computed with a more naive approach (k-Nearest Neighbors regressor)
highlighting that the analogue method provides more accurate predictions.
Due to lack of time, a systematic study was not carried out in this section.
Therefore most of the results obtained here must be thought of as insights
rather than assertions.
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5.2 The analogue method for heat waves

In Sec. 4.3, the analogue method has been introduced demonstrating its
usefulness in computing committor functions. Given the success in low-
dimensional stochastic dynamics, the purpose of this section is to illustrate
its application to the study of heat waves. This is an extremely complex
topic, especially regarding the occurrence of the more severe ones due to
the difficulty in collecting sufficient statistics. Clearly, the statistics of the
dynamics introduced by the analogue method converge to the real statistics
when infinite data-set are considered, also keeping constant the number of
analogues K. However, in the case under investigation, the data-set is too
short and the convergence has to be studied empirically.

The use of analogues of atmospheric circulation for weather forecasting
dates back to the second half of the 20th century with the pioneering works
of Lorenz [Lorenz, 1969a,Lorenz, 1969c]. Over the years, forecasts based on
analogues have been set aside due to the difficulty of finding good analogues
within a limited number of observations [Van den Dool et al., 2007]. However,
slightly modified versions of this method have sparked new interest in recent
years, especially regarding the development of stochastic weather genera-
tors [Yiou et al., 2013,Yiou, 2014,Jézéquel et al., 2018,Yiou and Déandréis,
2019,Yiou and Jézéquel, 2020]. Following the ideas developed in these works,
the analogue method can therefore be used to generate synthetic time series
at low computational cost, thus allowing to overcome the lack of observations.

The dynamics that will be examined is deterministic as it is generated by
a climate model (PLASIM). PLASIM is a general circulation model that aims
at solving the fluid mechanics equations for the atmosphere [Fraedrich et al.,
2005,Lunkeit et al., 2011]. At first glance, the use of a stochastic generator
to learn deterministic dynamics may seem inappropriate but this choice is
more reasonable than one might think. In fact, it is true that PLASIM is a
deterministic climate model, but it is chaotic and, like all climate models, it
features the evolution of thousands of variables which evolve on very different
time scales. A well established result for dynamical systems with multiple
time scales is that, if there is a gap between the time scales (i.e. slow variables
evolve on much larger time scales than fast variables) and the dynamics of fast
variables is mixing (i.e. the system looses the memory of its initial condition
after a certain time), the dynamics of slow variables can be described by
a system of Markovian stochastic equations [Kifer, 1992,Kifer, 2004,Givon
et al., 2004,Melbourne and Stuart, 2011]. However, since heat waves originate
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from the interplay of processes taking place on different time scales, the time
scale gap does not exist for the climate model. In order to cope with this
issue and to make the application of the analogue method meaningful, it
could be useful to introduce a temporal coarse graining for the variables
used to describe the system. To explain the reasoning behind it, it is better
to first define a coarse grained variable. Let F(r, t0) be the value of a generic
field at point r 2 R

2 at time t0. One can introduce the coarse grained field
F̃(r, t0) where the coarse graining is done in time with a coarse graining
duration equal to ⌧c:

F̃(r, t0) =
1

⌧c

Z t0+
⌧c
2

t0� ⌧c
2

dtF(r, t). (5.5)

The typical correlation time ⌧corr of the relevant variables for heat waves,
such as temperature or geopotential height, is of the order of a few days
in PLASIM. Considering a coarse graining time of the same order of the
correlation time, i.e. ⌧c ⇠ ⌧corr, and looking at the system on time scales
of the same order, one has that F̃(r, t0 + ⌧c) is correlated with F̃(r, t0) but
much less with F̃(r, t0�⌧c). This justifies the choice of adopting a Markovian
description, i.e. the analogue method, of the system.

In what follows it will be described how to adapt the analogue method to
study heat waves. Since the development of the analogue Markov chain has
already been explained in Sec. 4.3.1, the following discussion focuses solely
on how to select analogues.

The state of the system will be defined by a vectorXt =
⇣

F̃1(r, t), · · · , F̃I(r, t)
⌘

where I is the number of variables considered. To identify the analogues of
a point X, a distance d(·) must be defined. A good choice would be to use
a Euclidean distance normalized to the local variance of the fields. The dis-
tance will be labeled with dl where l stands for local. To be more precise, let
�2
F̃i
(r) be the local variance of the field F̃i(r, t), i.e.

�2
F̃i
(r) = Et[F̃

2
i (r, t)]� Et[F̃i(r, t)]

2. (5.6)

where Et[·] is the expectation value over time (which will be approximated
by time average over all time steps). Note that Et[·] 6= Ec[·] since Et[·] does
not preserve intra-year seasonal effect.

Then, the distance dl between two pointsX1 ⌘ Xt1 =
⇣

F̃1(r, t1), · · · , F̃I(r, t1)
⌘
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and X2 ⌘ Xt2 =
⇣

F̃1(r, t2), · · · , F̃I(r, t2)
⌘

is defined as

dl(X1, X2) =


Z

dr
I
X

i=1

(F̃i(r, t1)� F̃i(r, t2))
2

�2
F̃i
(r)

�
1
2

. (5.7)

where the integral is to be intended on a region of space D. Another possi-
bility is to use a Euclidean distance normalized to the average variance, i.e.

dg(X1, X2) =


Z

dr
I
X

i=1

(F̃i(r, t1)� F̃i(r, t2))
2

Σ2
F̃i

�
1
2

, (5.8)

where

Σ
2
F̃i

=
1

|D|

Z

D

dr�2
F̃i
(r). (5.9)

An alternative approach is to use the Mahalanobis distance dM(·), which
is

dM(X1, X2) =


Z

dr1dr2

I
X

i=1

(F̃i(r1, t1)�F̃i(r1, t2))Cov
�1

F̃i
(r1, r2)(F̃i(r2, t1)�F̃i(r2, t2))

�
1
2

.

(5.10)
A priori, it is not obvious which is the most appropriate distance to

use: the Mahalanobis distance is the most discriminative criterion but its
computational cost is quite high because it requires to compute the product
between large matrices. For this reason, the Euclidean distances have been
preferred and the choice between the local and the global version depends on
the spatial homogeneity of fields’ fluctuations.

The last ingredient for the development of the analogue Markov chain is
the choice of its time unit ⌧M . Note that the unit time of the Markov chain
⌧M and the coarse graining time ⌧c are different objects. Indeed, the former
represents the lag time between a state s0 and its evolution s1 while the latter
is the duration of the time averages that define the coarse grained variables.
Although they are different concepts, it this chapter, unless differently stated,
⌧M = ⌧c will be considered.

In the following, several implementation of analogue Markov chains will
be defined, analyzing the consistency of synthetic data with respect to the
real ones.
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5.2.1 Stationary vs time periodic analogue Markov chains

The main novelty between the systems studied in the previous chapter and
the climate model analyzed here is the presence of a seasonal cycle in climate
data. Hence, in the present case, several analogue Markov chains can be
developed: they can be built on a seasonal (e.g. summer) or annual data-
set. In the latter case, it is possible to make a further distinction between
homogeneous analogue Markov chains (the transition matrix does not depend
on time) or time-periodic analogue Markov chains (the transition matrix
depends on time and has an annual periodicity).

Before illustrating how to develop the three Markov chains it might be
convenient to briefly describe the data-set. It consists of 10 independent
realizations of the climate dynamics produced by PLASIM. Each realization
(also called batch) is 100 years long with outputs provided every 3 hours.
Thus, each batch consists of time series (one for each model variable) of
Nb = 100 ⇥ 360 ⇥ 8 = 288000 time steps (each month is 30 days long).
Although the temporal coarse-graining procedure reduce the number of time
steps to Ñb = Nb � ⌧c ⇥ 8, the search for analogues in a data-set made up of
Ñb points is extremely slow. Therefore, it was chosen to use a sampling time
⌧s = 1 day to further reduce the size of the data-set. Note that three different
times are relevant to define the analogue Markov chain, namely ⌧c, ⌧M and
⌧s. The coarse graining time ⌧c represents the duration of the time averages
that define the coarse grained variables. The Markov chain time step ⌧M is
the lag time between two consecutive states of the Markov chain. Finally,
the sampling time ⌧s represents the lag time between two observations in the
data-set, i.e. the sampling time of the climate model. Although these three
times differ from each other, throughout the chapter ⌧M = ⌧c is considered,
unless otherwise stated.

By adopting ⌧s = 1 day, the number of points in each batch becomes
N̂b = 100⇥ 360� (⌧c � 1). To be more explicit, using ⌧c = 5 days each batch
will contain variables defined between January 3 of year 1 and December
28 of year 100. Thus, the total number of points in the data-set is Nt =
10⇥ N̂b ' 360000.

Having defined the data organization, it can be explained how to build
the different types of analogue Markov chains.
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Seasonal analogue Markov chains

For the construction of this type of analogue Markov chains only the data
corresponding to a given season (e.g. summer) are considered. This implies
that instead of having 10 independent realizations each 100 years long, there
will be 1000 independent realizations each 90 days long. Recalling the ter-
minology of Sec. 4.3.1, the data-set will be indicated with {Xn}1nNt

with
Nt = 90000. Unlike Sec. 4.3.1 where the data-set consisted of a single trajec-
tory and the time step of the Markov chain coincided with the sampling time,
here the data-set is composed of multiple trajectories and the time step of the
Markov chain ⌧M is not equal to the sampling time ⌧c. Therefore, instead of
excluding only the final point of the trajectory from the possible candidates
for the analogues, the last ⌧M points of each trajectory will be excluded as
it is not possible to associate any transition from them. To be more precise,
using ⌧c = 5, for each point Xn the analogues are searched between June 1
and August 25 of each year. Keeping these small changes in mind, the rest
of the procedure is equivalent to that already described in Sec. 4.3.1. The K
best analogues will be stored in a matrix T of size Nt ⇥K, where K is the
analogue number and Nt the data-set length. The matrix T is a matrix of
indices, i.e. the n-th row of T contains the indices of the K analogues of the
point Xn. Note that the index n of each point Xn is nothing more than the
time at which Xn was observed. As shown in Sec. 4.3.1, from the matrix T
it is possible to derive the transition matrix of the analogue Markov chain G
(Eq. (4.14)).

The synthetic trajectories can be built by applying the same procedure
as in Sec. 4.3.1. Given an initial state of the Markov chain s0, a random
number k distributed uniformly in the interval [1, K] is generated. Then s1,
the evolved state from s0, will be s1 = Ts0k + ⌧M . Once again, note that
⌧M can be added to the elements of the matrix T as the latter represent the
times at which the corresponding states were observed. Therefore the state
corresponding to s1 (Xs1) is the state that comes ⌧M days after the state
corresponding to Ts0k (XTs0k

). The entire synthetic trajectory is obtained by
iterating the previous step.

Annual homogeneous analogue Markov chains

Since seasonal analogue Markov chains are learned using only the data cor-
responding to a single season, they can only be used to generate synthetic
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trajectories in that season. Instead, the aim of this section is to introduce a
type of analogue Markov chains that can be used to generate annual trajec-
tories. In this way, generating a very long synthetic trajectory corresponds
to simulating the dynamics of the system over several years.

This type of Markov chain is built using all the 10 batches. Therefore,
the data-set is {Xn}1nNt

with Nt = 10 ⇥ (100⇥ 360� (⌧c � 1)). At this
point, it should be noted that due to the strong seasonal cycle only fields
in the same season share similar dynamics. Therefore, the analogues of a
point X are searched not in the whole data-set but in a time window of two
months centered on the day corresponding to the state X. To be clearer, the
analogues of June 1st will be searched among the fields corresponding to the
period May 1st - July 1st of all available years.

As in the previous case, attention must be paid to the end points of the
trajectories. Therefore, considering that each batch loses the last ⌧c�1

2
days

of December of year 100 due to temporal coarse-graining, the last ⌧M + ⌧c�1
2

December days of year 100 of each batch are excluded from the set in which
analogues are searched. To clarify, with ⌧c = ⌧M = 5 days, the days following
December 23 of year 100 of each batch can not be the analogues of any state.

Once the matrix T and the corresponding transition matrix G have been
learned, they can be used to generate synthetic trajectories in the same
manner as for the seasonal Markov chain.

Since the analogues of each point X depend exclusively on the calendar
day of X, they do not evolve over time as the time of the Markov chain
moves forward. Therefore, the transition matrix G is time independent.
Recalling the terminology of Sec. 2.2, it means that this annual analogue
Markov chain is homogeneous. This also implies that these Markov chains
do not have seasonality or, more precisely, they have a random seasonality
in the sense that the duration of the seasons and the duration of the year are
random variables.

Annual time-periodic analogue Markov chains

This section aims to illustrate how to develop annual analogue Markov chains
whose dynamics have the same periodicity as the climate model data.

As for the annual homogeneous Markov chains, the data-set considered
for the development of the annual time-periodic Markov chains consists
in 10 trajectories each long 100 years, i.e. {Xn}1nNt

with Nt = 10 ⇥
(100⇥ 360� (⌧c � 1)). The final points of the trajectories are also treated

140



5.2. THE ANALOGUE METHOD FOR HEAT WAVES

as before, that is the last ⌧M + ⌧c�1
2

December days of the last year of the
trajectory are not considered as possible analogues.

The main difference with respect to how the annual homogeneous Markov
chain is defined is that, in this case, a fundamental role is played by the
calendar date of the Markov chain. The calendar date of the Markov chain,
denoted by c̃, indicates the day of the year which corresponds to a given time
t̃ of the Markov chain. Therefore, c̃ is a number which takes values between
1 and 360 corresponding to a day of the year (remember that each year in
PLASIM is 360 days long). The time of the Markov chain t̃ keeps track of the
time that flows in the synthetic dynamics and, at each time step, it increases
by ⌧M . The relation between t̃ and c̃ is c̃ = (t̃ mod 360), where mod indicates
the modulo operation.

In order to develop a Markov chain whose transition matrix is time-
periodic, the procedure for selecting the analogues differs from the one em-
ployed in the development of the annual homogeneous Markov chain. Indeed,
in this case, the analogues of a state X are chosen in a time window of two
months centered around the Markov chain calendar date c̃ and not on the
date corresponding to the state itself.

An example can help to better understand the concept and it also illus-
trates how synthetic trajectories are generated in this case. Let c denotes
the calendar date of a state X in the data-set, i.e. c represents the day at
which X was observed. Consider ⌧c = ⌧M = 5 days and suppose one wants
to generate a synthetic trajectory starting on January 1st. This means that
the Markov chain calendar date is c̃0 = 1 (since it is the first day of the year).
Also the Markov chain time t̃0 is equal to 1. Let s0 be the initial state of the
Markov chain corresponding to a point X and let c be the real calendar date
of X. It has been explained that, for developing the annual analogue time-
periodic Markov chain, the analogues have to be sought in a time window of
two months centered around the Markov chain calendar date c̃. This means
that, in this example, regardless of the value assumed by c (i.e. regardless
of the day to which X corresponds), the analogues of X must be searched
for in the period from December 1st to February 1st, i.e. in a time window
of two months centered around c̃0 = 1. Let Ts0(t̃0) indicates the set of K
analogues of X at time t̃0 = 1 (i.e. January 1st). To evolve s0, an analogue
k has to be selected from Ts0(t̃0). Then s1, the evolved state from s0, will
be s1 = Ts0k(t̃0) + ⌧M . At the same time, the Markov chain calendar date
c̃ and the Markov chain time must also be updated, i.e. t̃1 = t̃0 + ⌧M and
c̃1 = (t̃1 mod 360). Then, the set of K analogues of s1, denoted by Ts1(t̃1), is
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computed by searching the best K analogues of s1 in a period of two months
centered around c̃1. In this example, it corresponds to search analogues in
the period between December 6th and February 6th. The Iteration of this
scheme leads to the generation of a synthetic trajectory.

Applying this procedure, the set of K analogues of a state X changes as
the Markov chain calendar date c̃ changes. Thus, analogues can be stored
in M = 360 (one for each day of the year) {T (m)}1mM matrices of size
Nt ⇥K. To each of these M matrices it is possible to associate a transition
matrix G(m) making the Markov chain periodic in time.

5.2.2 Consistency of synthetic data: return time plot

and time averaged temperature statistics

In this section the consistency of the statistics of the synthetic data compared
to the real ones will be analyzed. Synthetic data refers to data produced
using the dynamics of the Markov chain, while real data refers to the data
generated by the climate model (PLASIM). Since the ultimate interest is
to estimate committor functions for heat waves, it is useful to check how
similar the distribution of the time averaged temperature A(t) (Eq. (5.3))
computed with the analogue Markov chain is to the real one. For an heat
wave duration T = n⌧c, A(t) can be expressed in term of the coarse-grained
surface temperature anomalies field T̃ a

s (r, t), i.e.

A(t) =
1

T

Z t+T

t

dt0
1

|D|

Z

D

dr(Ts � Ec[Ts])(r, t
0) =

1

n

n
X

i=1

1

|D|

Z

D

drT̃ a
s (r, t

0
i)

(5.11)
where t0i = t+(i� 1

2
)⌧c. Eq. (5.11) means that A(t) is obtained by adding the

surface temperature anomalies averaged over the region D over n consecutive
states of the Markov chain (remember ⌧c = ⌧M). In what follows a duration
T = 15 days is considered (15�day heat waves).

The test can be formalized as follows. Let ⇢A(A) be the real empirical
distribution of A(t) in summer, i.e. ⇢A(A) =

1
t

P

t �(A�A(t)), and let ⇢̃A(A)
be the distribution obtained with the analogue Markov chain. One has that

⇢̃A(A) =
X

l2{Summer}

⇡lP(A|s0 = l) :=
X

l2{Summer}

⇡l⇢̃
(l)
A (A), (5.12)

where P(A|s0 = l) ⌘ ⇢̃
(l)
A (A) represents the conditional probability of observ-

ing the value A knowing the initial state s0, while ⇡l is the probability of
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being in the state l (i.e. the stationary distribution of the Markov chain).
Since A is defined using n consecutive states of a realization of the Markov
chain (see Eq. (5.11)), for any initial condition s0 = l, A can assume at
most Kn different values, denoted by Al

k, for k = 1, · · · , Kn. Furthermore,
each of the Kn realizations is equally probable. Therefore, the conditional
probability P(A|s0 = l) can be expressed as

P(A|s0 = l) = ⇢̃
(l)
A (A) =

1

Kn

Kn
X

k=1

�(A� Al
k). (5.13)

Combining (5.12) and (5.13), one has

⇢̃A(A) =
X

l2{Summer}

1

Kn

Kn
X

k=1

⇡l�(A� Al
k). (5.14)

Hence, the first consistency check consists in comparing ⇢A(A) and ⇢̃A(A).
From a practical point of view, ⇢̃A(A) can be estimated on a very long syn-
thetic trajectory.

In the following, the distributions resulting from different Markov chains
will be considered. In each of the tests performed, a coarse-graining time
⌧c = 5 days was considered.

Consistency of time averaged temperature statistics: seasonal Markov

chains

The first consistency test was performed on a seasonal summer (JJA) Markov
chain built on the coarse-grained field of the geopotential height at 500 mb
Z̃(r, t) defined in the North-Atlantic region (80�W � 30�E,30�N � 70�N),
i.e. X = Z̃. The choice to use the geopotential height at 500 mb in the
North-Atlantic region is due to the fact that, as explained in Sec. 5.1, the
occurrence of heat waves is linked to persistent anticyclonic anomalies and
the atmospheric circulation of this region is the one that most influences the
occurrence of extreme heat waves over France.

In this case, the analogues are computed by employing the Euclidean
distance normalized to the average variance (Eq. (5.8)). The distributions of
A(t) for the Markov chains computed over very long trajectories are shown in
Fig. 5.2 for different numbers of analogues K. It can be seen that, regardless
of the number of analogues employed, the distribution obtained by using the
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sponding to one of the first 5 days of June can only evolve towards states
corresponding to days following June 5 (i.e. from June 6 onwards). Vice
versa, a state s corresponding to the last 5 days of August cannot move
forward more than 5 days and, on average, it evolves towards states corre-
sponding to previous days.

One may wonder whether the systematic drift is exclusively due to the
seasonal Markov chain approximation or if there are other sources such as the
type of data used for the construction of the Markov chain. Therefore, an ana-
logue Markov chain is built on the coarse-grained geopotential height at 500

mb anomaly field Z̃a(r, t) =
⇣

Z̃ � Ec

h

Z̃
i⌘

(r, t) in the North-Atlantic region

(80�W � 30�E,30�N � 70�N). The analogues are searched by employing the
Euclidean distance normalized to the average variance (Eq. (5.8)). Fig. 5.5
shows the invariant distribution of calendar days for this Markov chain. It
can be noted that when only 5 analogues are considered (see Fig. 5.5a), the
systematic drift is present, although it is less pronounced than in the pre-
vious case. However, as the number of analogues K increases, this problem
tends to disappear and the distribution comes closer and closer to a uniform
one (see Figs. 5.5b,5.5c). It means that the systematic drift is affected by
the type of data used for the construction of the chain. Although the drift is
present in both cases analyzed, it is much less pronounced when the Markov
chain is built on geopotential height anomalies. Indeed, the ratio between
the maximum and the minimum of the distribution is of order O(1) when the
Markov chain is built on geopotential height anomalies while it is of order
O(10) or more when the geopotential height (which has a strong seasonal
cycle) is considered. Thus, it can be drown the conclusion that the seasonal
Markov chain can be built only on variables whose seasonal cycle has been
removed.

Having explained, at least partially, the reason for the systematic drift of
the calendar day, one might ask whether the seasonal Markov chain built on
geopotential height anomalies is able to reproduce the distribution of A(t).
The distributions of A(t) for different numbers of analogues are shown in
Fig. 5.6. It can be seen from the figure that although there is no perfect
agreement, the discrepancies between the distributions are not too marked.
However, by comparing Figs. 5.6a,5.6b,5.6c it can be noted that the distri-
bution of A(t) matches the real one less and less as the number of analogues
K increases. Fig. 5.7 shows how the first two moments of the distribution
vary as the number of analogues increases. It can be seen in Fig.5.7a that a
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Consistency of time averaged temperature statistics: annual ho-

mogenous Markov chains

As mentioned earlier, seasonal Markov chains, because of the systematic
drift, are not appropriate for dealing with the evolution of variables that
have a seasonal cycle. This is the conceptual reason that leads to the intro-
duction of annual Markov chains, which might not suffer from this problem.
It is therefore important to understand if with such a chain it is possible
to better reproduce the statistic of A(t). Therefore, in this subsection the
statistics of A on long synthetic trajectories generated by a homogeneous
annual Markov chain are analyzed. The chain has been built on the coarse-
grained geopotential height at 500 mb Z̃(r, t) in the North-Atlantic region
(80�W�30�E,30�N�70�N) and the analogues have been selected by employ-
ing the Euclidean distance normalized to the average variance (Eq. (5.8)).

Before analyzing the distributions of A as the number of analogues varies,
it may be interesting to study the behavior of the stationary distributions of
calendar days. They are shown in Fig. 5.8 for different numbers of analogues
K. As can be seen from the figure, the distribution shows two peaks. The
first one is in winter while the second one is in summer. Furthermore, by
comparing Figs. 5.8a,5.8b,5.8c, it can be noted that the height of the peaks
increases as the number of analogues increases. The explanation of these
two peaks is linked to the presence of the seasonal cycle. In fact, winter
and summer correspond respectively to the minimum and maximum of the
seasonal cycle with a slowing down of the seasonal variations, and therefore
it is easier to find analogues in these periods. This implies that a synthetic
trajectory spends more time in states corresponding to these seasons. This
also suggests that there may be problems in computing the distribution of
A in the summer period. Indeed, the slowdown of the dynamics could make
the duration of the year a random variable, preventing a good computation
of the distribution of A. The distributions of A for different number of
analogues are shown in Fig. 5.9. It can be seen from the figure that, regardless
of the number of analogues considered, the Markov chain completely fails
to reproduce the real distribution. Furthermore, by increasing the number
of analogues the discrepancies are further accentuated. This is even more
evident by looking at Fig. 5.10 which shows the first two moments of the
distribution. Concerning the mean (Fig. 5.10a), this is not very far from the
true value when only 5 analogues are considered. However, as the number of
analogues increases, it grows further and further away from the real value.
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Consistency of return time plot

In the previous section, the consistency of typical fluctuations has been stud-
ied by analyzing the mean and the variance of the probability distribution
of the time averaged temperature A computed by employing the analogue
Markov chains. This section, instead, focuses on rare fluctuations. In partic-
ular, it aims to check the consistency between the return time plot computed
from synthetic trajectories and the return time plot obtained from the real
dynamics. Since the Markov chains that best reproduce the statistics of
A are the seasonal analogue Markov chain built on the geopotential height
anomaly field Z̃a(r, t) in the North-Atlantic region and the annual time-
periodic Markov chain built on the geopotential height field Z̃(r, t) in the
North-Atlantic region, these are the only chains considered in this section.

The return time of a heat wave of amplitude a is defined as the average
time that elapses between the observation of two independent events with
amplitude greater than a. It has been chosen to analyze the return times
of summer maximum of the time averaged temperature A(t). The summer
maximum ai of the i-th summer is defined as

ai := max
t2summer (i)

{A(t)} , (5.15)

where i = 1, · · · ,M , and M = 1000 is the number of summers in the data-
set. Note that with this definition one has 1 summer maximum per year.
This choice is motivated by the fact that, in this way, independent events
are analyzed, since the maximum of A(t) in one summer is independent from
that of another summer.

For estimating the return time plot, the sequence of summer maxima
{ai}1iM has to be sorted in decreasing order. Let {ãi}1iM be the ordered
sequence. Finally, at each threshold ãi it is possible to associate a return time

r(ãi) =
M

m
years. (5.16)

The quantity r(a), known as return time or return period, is the average time
between the occurrence of two heat waves with amplitude greater than a. At
the same time, the r-year return level (or threshold) ar can be defined as the
value ar such that a heat wave of amplitude greater than ar is observed every
r years on average.

Fig. 5.14 shows the comparison between the return time plot computed
from the analogue Markov chains and the one computed using the real dy-
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time-periodic chain is slightly greater than that of the seasonal chain.
These results show once again that the analogue method is capable of

reproducing the statistics of A with a relatively good accuracy. Indeed,
the return level can be estimated by using the analogue Markov chain with
an error of about 10% for the seasonal analogue Markov chain or smaller
(about 5%) for the annual time periodic Markov chain. It should be noted
that the errors reported here refer to the errors in the estimation of the
return levels for fixed return times. However, one might be interested in
estimating the return times error for a given return level. In this case, it
can be seen from Figs. 5.14a,5.14b that the errors in the estimation of the
return times at certain return levels are much greater when the return times
are estimated through the seasonal analogue Markov chain with respect to
the case when the time-periodic analogue Markov chain is used. Therefore,
it can be concluded that the time-periodic analogue Markov chain has to be
preferred for the study of rare stationary fluctuations of the time averaged
temperature A. Anyway, the analogue method is a promising tool for the
study of extreme heat waves.

5.2.3 Extending return time plots

In the previous section it has been seen that the analogue method is able
to reproduce some statistics of the original system (consistency checks). In
particular, it has been shown that, under suitable conditions, it is possible
to reproduce the probability distribution of A and the return time plot with
an error of about 10% (when seasonal summer Markov chain was used) or
about 5% (when the time-periodic analogue Markov chain was used).

The aim of this section is to understand whether it is possible to extend
the return time plot for return times larger than the data-set length by using
the analogue Markov chains beyond consistency. The idea is therefore to
learn the dynamics of the Markov chain on a portion of the data and to
use this analogue Markov chain to generate many synthetic summers. These
synthetic summers are then used to estimate the return time plot. More
precisely, the aim is to develop analogue Markov chains by using 100-year of
the data for predicting return times plot up to 900 years. For this purpose, the
Markov chains defined on the same variables used in the previous subsection
have been considered. The only difference is that, in this case, instead of
looking for analogues over all 1000 years available, they are sought in the
first 100 years. Then, 10 synthetic trajectories of length 900 years have been
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difficult to observe in climate models given their rarity. Moreover, given the
low computational cost, it also allows to collect a statistics sufficient to make
robust analysis, or in any case more robust than those possible only with
direct simulations. It is worth stressing once again that to study the return
times of heat waves it is preferable to use time-periodic analogue Markov
chains.

In this section (Sec. 5.2) the statistically stationary statistics of 15-day
heat waves were studied. The next section will instead focus on the transient
statistics of these events, that is, the statistic computed on short trajectories.

5.3 Committor estimation through the ana-

logue method

The tests performed in the previous section have proved the usefulness of
the analogue method in the study of statistically stationary statistics of 15-
day heat waves. Therefore, in this section the method is used in order to
compute the committor function. According to the definition Eq. (5.4), the
committor function q⌧ (x; a) is the probability that a heat waves of duration
T and amplitude greater than a will occur after ⌧ days knowing that x is
the state of the system at current time. In the context of analogue Markov
chains, the state x corresponds to a state s of the chain. As in the previous
section, 15-day heat waves are studied.

Before defining the committor function for Markov chains, it is important
to note that this function only depends on the short trajectory statistic.
Indeed, since q⌧ (x; a) is a probability conditioned on the current state of
the system, it only depends on the statistic of trajectory of length T + ⌧ .
Therefore, there is not much difference between the committor computed by
means of seasonal or time-periodic chains. Furthermore, the latter chains
only add unnecessary complications as the committor function becomes a
function not only of the initial state but also of the initial time. To avoid
these further complications, exclusively the committor function estimated
through the seasonal Markov chain will be discussed.

In Sec. 5.2.2 the quantity ⇢̃
(s)
A (A) has been introduced (Eq. (5.13)), which

corresponds to the probability of having a heat waves of amplitude A and
duration T knowing the initial state s of the system. Since for ⌧ = 0 the com-
mittor q0(s; a) is the probability of observing a heat wave with an amplitude
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greater than a starting from the state s0 = s, one has

q0(s; a) =

Z +1

a

dA⇢̃
(s)
A (A) =

1

Kn

Z +1

a

dA
Kn
X

k=1

�(A� As
k) =

Na(s)

Kn
, (5.17)

where Na(s) denotes the number of trajectories that start at s0 = 0 and have
A > a.

Once the committor function is computed at ⌧ = 0, it is easy to obtain
the function at any time ⌧ = m⌧M . Indeed, it is sufficient to multiply q0(s; a)
by the power m of the transition matrix G, i.e.

q⌧ (s; a) =
X

s0

Gm
ss0q0(s

0; a). (5.18)

This formula is the discrete version of Eq. (2.105). It only says that the
probability of observing a heat wave of duration T after ⌧ days, knowing the
state of the system s at the current time, is given by the sum over all states
s0 of the probability of having a heat wave knowing the state s0 times the
probability of going from s to s0 in ⌧ days.

In the following, three different thresholds will be considered a5 = 3.08K, a2.5 =
3.7K, a1.25 = 4.23K which correspond to the 5%, 2.5% and 1.25% most ex-
treme events of the time averaged temperature A or alternatively to events
beyond the 95, 97.5 and 98.75 percentile.

5.3.1 Committor validation

To asses the quality of the estimates of the committor function, it is relevant
to adopt a cross validation approach. Depending on the task one wants to
focus on different score can be employed. In Sec. 2.4.5 two scores (the Brier
score and the logarithmic score) for evaluating probabilistic predictability
have been introduced. However, it has been explained that the Brier score
is not appropriate for dealing with extreme events since it requires a huge
number of test observations. Therefore, the Brier score can not be used in
this context and the logarithmic score should be used. This applies to the
task of carrying out probabilistic forecasts.

However, another interesting task is to build a quantifier, that is an ob-
ject that, knowing the probability of occurrence of an event, predicts its
occurrence or not. Such a quantifier can be very useful in decision-making
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processes, where one needs to choose the most appropriate way to act. Fur-
thermore, the performance of this object can be used to validate the estimate
of the probability of occurrence of the event, that is, the estimate of the com-
mittor function.

Although both of these tasks are interesting, in what follows only the task
of building a quantifier will be analyzed. Building a quantifier is equivalent
to developing a classifier based on the committor function. It should be noted
that predicting the occurrence of a heat wave through a classifier is equiva-
lent to make a deterministic prediction. Although in this thesis it has been
explained that it would be more appropriate to deal with probabilistic predic-
tions, it has been chosen to use deterministic predictions mainly to compare
the analogue method with a deep learning approach [Jacques-Dumas et al.,
2021]. For lack of time it was not possible to study both deterministic and
probabilistic predictions and therefore the validation of probabilistic predic-
tions will be the subject of a future study. Thus, in the next subsection it
will explained how to build a classifier based on the analogue method and
how to test the performance of this classifier.

5.3.2 Classifier based on the analogue method

This section explains how to build a classifier based on the analogue method
for predicting the occurrence of extreme heat waves. The advantage to de-
velop a classifier based on the analogue method is that this classifier uses all
the information contained in the dynamics.

A classifier can be thought as a deterministic function C : Ω ! {0, 1}
where Ω is the phase-space of the system. Such a function takes a point x 2 Ω

as input and return a binary output o 2 {0, 1} that represents the class of the
input (occurrence or not of the event). Over the years, different methods have
been developed to accomplish this task, ranging from the simplest k-Nearest
Neighbors and logistic regression, to more sophisticated methods such as
random forests, vector support machines, and neural networks [MacKay and
Mac Kay, 2003,Bishop, 2006,Theodoridis, 2015]. Unfortunately, all of these
approaches face various difficulties with unbalanced data (i.e. the two classes
are not equally populated) and therefore ad hoc modifications (such as un-
dersampling or oversampling techniques) are required to obtain reasonable
results [Krawczyk, 2016, Johnson and Khoshgoftaar, 2020, Jacques-Dumas
et al., 2021].

In this section, an alternative approach is proposed which consists in
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matrix formed by TN, FP, FN, TN) and is not sensitive to the choice of the
class of positive events (as opposed to what happens with accuracy or F1
score) [Chicco, 2017, Chicco and Jurman, 2020]. Although the case where
the MCC takes one of the values {�1, 0, 1} is easily interpretable, the same
is not valid for intermediate values. Hence, for a deeper understanding of
the performance of the classifier it is useful to consider also the true positive
rate (TPR) and the false detection rate (FDR)

TPR =
TP

TP + FN
, FDR =

FP

TP + FP
(5.20)

which measure the fraction of positive events correctly classified and the
fraction of negative events erroneously classified as positive, respectively.

The analogue based classifier only depends on two hyperparameters (K
and q̄). The selection of these two parameters, which will be defined as the
learning process, is based on the Monte Carlo cross-validation method [Du-
bitzky et al., 2007,Kuhn et al., 2013].

The learning process is performed as follows. Among the 1000 available
trajectories, 100 are selected randomly. The set of 100 trajectories is denoted
by Hval while the set of the remaining 900 trajectories is indicated by Hlearn.
The analogue Markov chain is built on the set Hlearn. Then, by varying
the number of analogues K, the committor function qK(x, ⌧) for x 2 Hval is
computed. The subscript K is added to underline the dependence of q on
the number of analogues considered. Finally, for each value of K and for
each example x in the validation set Hval, a set of binary output oK(x; q̄(⌧))
is computed. These outputs give rise to a set of MCC values denoted by
MCC(K, q̄(⌧)). By repeating this procedure R = 20 times, the average
values hMCC(K, q̄(⌧))i = 1

R

PR
r=1 MCCr(K, q̄(⌧)) can be obtained and from

these the optimal parameters (K?, q̄?(⌧)) can be inferred, i.e.

(K?, q̄?(⌧)) = argmax{hMCC(K, q̄(⌧))i)}. (5.21)

Once the optimal hyperparameters have been learned, the performance
of the classifier is tested by generating additional R = 20 test sets Htest and
evaluating the average value of the MCC for K = K? and q̄(⌧) = q̄?(⌧).

In the following subsections the results of the predictions of the occurrence
of heat waves, by increasing intensity of these events (5%, 2.5% and 1.25%
most extreme events corresponding to events beyond the 95, 97.5 and 98.75
percentile), are illustrated. Furthermore, the impact of quantities such as the
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coarse graining time, the size of the domain or the combination of different
variables have on the quality of these predictions will be analyzed. Finally,
a comparison between the analogue based classifier and one based on the
committor function estimated with the k-Nearest Neighbors regressor will be
performed.

Before starting to illustrate the results, it is convenient to briefly discuss
the choice of the variables used for the predictions. Many of the analysis
performed later will be done using the surface temperature anomaly field
instead of the geopotential height anomaly field. This might seem contrary
to what was stated in the introduction (Sec. 5.1) and with the analysis made
in the previous section, where it was stated that the geopotential height is a
key variable in the dynamics of heat waves. Although the importance of the
geopotential height remains unquestionable, the ability of analogue Markov
chains built on this variable to correctly predict the transient statistic of 15-
day heat waves appeared limited, probably due to the lack of data. Therefore,
it was decided to use the temperature anomaly field. From a physical point
of view, this corresponds to trying to make predictions by exploiting the
persistence of the temperature field.

Impact of temporal coarse-graining

The goal of this subsection is to answer the question: does the use of tem-
poral coarse-graining improve the prediction skills of the classifier? For this
purpose, two analogue Markov chains were constructed using two different
variables, namely the surface temperature anomalies T̃ a

s (r, t) on the North
Atlantic region (80�W � 30�E,30�N � 70�N), and the surface temperature
anomalies averaged over France T̃ a

F (t). For each of these variables, three
coarse-graining times were used, namely ⌧c = 1, 3, 5 days.

It is important to note that, for prediction lag time ⌧ = 0, the coarse
graining procedure always improves the quality of the forecasts. Indeed, the
amounts of information about temperature at the beginning of the heat waves
grows when the coarse graining time increases. However, this is only valid
for a prediction lag time ⌧ = 0. For ⌧ > 0, there are no information about
the temperature at the beginning of the heat wave and therefore it is not
obvious to determine whether the coarse graining procedure improves or not
the predictive skills of the analogue based classifier.

Fig. 5.17 shows the MCC obtained for the three classes of events as a
function of the prediction lag time ⌧ , for different coarse-graining times. The

167







5.3. COMMITTOR ESTIMATION THROUGH THE ANALOGUE
METHOD

analogue Markov chain is built on a simple scalar, the predictive abilities of
the classifier are quite impressive. For all classes, it is possible to predict the
occurrence of heat waves up to 15 days in advance (except for ⌧c = 1 where
forecasts are possible up to 9 or 12 days in advance for classes corresponding
to 1.25% and 2.5% more extreme events, respectively). The important thing
to underline is that, once more, increasing the coarse-graining time leads to
an increase in the predictive skills of the classifier.

Considering all the analysis shown it can be said that this property is valid
in general, regardless of the variables used to construct the analogue Markov
chain, although a clear motivation is missing. It could be hypothesized that
this is due to a combination of two factors: the first is that the time averages
eliminate statistical fluctuations from the variables while the second is that
the evolution of these variables at time scales of the order of ⌧c becomes
more and more Markovian as ⌧c grows, improving the agreement between
the real dynamics and its approximation with a Markov chain. However,
further verifications are necessary in order to confirm these hypotheses.

Impact of domain size: spatial coarse graining

The main question to be answered in this subsection is the following: does
the domain on which the analogues are computed have an impact on the
predictive capabilities of the classifier? To answer this question, it has
been chosen to build 3 different analogue based classifiers using the surface
temperature anomalies T̃ a

s (r, t) on 3 different regions, namely the North-
ern Hemisphere (180�W � 180�E,30�N � 90�N), the North-Atlantic region
(80�W�30�E,30�N�70�N) and the France region (3�W�5�E,42�N�50�N).
The coarse-graining time was taken equal to 3 days. Fig. 5.19 shows a snap-
shot of T̃ a

s (r, t) in the Northern-Hemisphere where the other two regions are
highlighted by a black or red box respectively.

The results of the experiments performed using the three variables are
shown in Fig. 5.20 where the dashed lines correspond to the Northern Hemi-
sphere, the solid lines to the France region and the dash-dotted lines corre-
sponds to the North-Atlantic region. Since the curves corresponding to the
North-Atlantic region have been extensively discussed in the previous sub-
section, only those corresponding to the other two regions will be described.

Considering the Northern Hemisphere it can be seen that for the class
of most extreme events the predictions are possible only at time ⌧ = 0 and
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for subsequent times the classifier does not perform better than a random
choice (remember that a prediction is considered to be significant if the
MCC > 0.1). The situation does not improve much for the intermediate
class, where predictions are significant up to 6 days in advance. Regarding
the 5% class of most extreme events, a significant fraction of heat waves can
be predicted up to 12 days in advance. Despite this, considering the values
assumed by the MCC, it can be stated that the analogue based classifier
built using the temperature anomalies over such a large region does not pro-
vide accurate forecasts. The situation changes drastically when considering
the small French region. In this case, for all three classes it is possible to
make predictions up to 15 days in advance. In addition, it can be noted that
for ⌧ = 0 the MCC assumes rather high values, thus highlighting how the
persistence of heat waves can be used to make predictions. It is also impor-
tant to note that the predictions provided by the classifier built on this small
region are better than those obtained with the larger regions.

This analysis suggests that better predictions are obtained by reducing
the region over which the analogues are computed. This is not surprising, as
Euclidean distance is known to become a poor similarity criterion in high
dimensions. It would therefore be tempting to say that the smaller the
region, the better the prediction. However, comparing the solid blue curve
of Fig. 5.20 and the solid orange curve of Fig. 5.18 it can be seen that the
predictions made using the French region are better than those obtained
based on the average temperature over France. It means that a compromise
must be found between the information a variable carries with it and the
dimension of the variable itself. To put it another way, a tradeoff between
the complexity of the dynamics of the Markov chain and the information
available is needed.

An interesting way to reduce the dimension of the system without losing
too much information is to perform spatial coarse-graining. It is therefore
important to know if this spatial coarse-graining can actually improve the
predictive skills of the classifier. To achieve this results, it has been chosen to
repeat the experiments by employing the Northern Hemisphere and its spatial
coarse-grained counterpart. The spatial coarse-grained adopted here consists
in an average over 6 = 3 ⇥ 2 grid points of the original field corresponding
approximately to an average over 8.4� and 5.6� for longitude and latitude
respectively. Two snapshots of the original field at the resolution provided
by the climate model and its spatial coarse-grained counterpart are illustrated
in Fig. 5.21.
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better (not shown) and contribute to the high value of the MCC.
All things considered, the analysis carried out in this subsection has shown

that using a few very informative variables leads to good predictions. This
further strengthens the statement made earlier on the need to find a com-
promise between the number of variables to use and the information these
variables carry. Indeed, too many variables prevent a good computation of
the analogues but, at the same time, as shown in this section, it is useful to
combine the information coming from different variables.

Comparison between classifiers

To conclude the study of the analogue based classifier, it is shown that such a
classifier performs better than one based on the committor function computed
with a simpler approach, namely the k-Nearest Neighbors regressor. It was
decided to perform this analysis using the low-dimensional system of the
previous subsection. The reason for this choice lies on the one hand in the
fact that it is one of the systems that provided the best forecasts, on the other
hand because it is known that the k-Nearest Neighbors regressor performs
better for low-dimensional systems.

The results obtained with the two classifiers are shown in Fig. 5.25, where
the solid lines correspond to the analogue based classifier while the dash-
dotted lines to the classifier based on the k-Nearest Neighbors regressor.
From the figure it can be seen that the analogue based classifier outper-
forms the one based on the committor function estimated with the k-Nearest
Neighbors method, although the latter shows good predictive abilities. In-
deed, it should be noted that the curve of the MCC corresponding to the
most extreme events class estimated from the analogue based classifier is al-
most always above the MCC corresponding to the less extreme events class
estimated with the other method. This analysis is a further confirmation of
the utility of the analogue method for estimating committor functions and
predicting extreme events probabilities in climate systems.

5.4 Conclusions and perspectives

In this chapter the analogue method has been applied for studying seasonal
extreme climate events, e.g. summer heat waves over France.

A heat wave of duration T and amplitude a has been defined as an event
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such that the temporal average over period T of the surface temperature
anomalies, averaged over the region of interest D, is equal to a. In addition,
the concept of a committor function for such events has been introduced.
The committor encodes the probability that a heat wave of duration T and
amplitude greater than a will occur after ⌧ days, as a function of the current
state of the system.

In order to study these phenomena, several analogue Markov chain have
been developed. For each type of Markov chain, consistency checks were per-
formed to ensure that the Markov chain approximation was able to correctly
reproduce the stationary statistical properties of the events under investiga-
tion. These tests have shown that Markov chains learned on seasonal climate
data provide meaningful results if the data does not exhibit a seasonal cycle
while they fail in the other cases. It has also been shown that the use of data
with a seasonal cycle is possible provided that annual time-periodic Markov
chains are used. It can therefore be concluded that analogue Markov chains
work quite well in the study of statistically stationary statistics of heat waves.
Indeed, they reproduce well the distribution of the time averaged tempera-
ture A, although a reduction of the variance of about 25 � 35% (seasonal
analogue Markov chains) or about 15 � 35% (annual time-period analogue
Markov chains) is observed. Furthermore, they allows the computation of
return times plots and estimate the return levels with an error of about 10%
(seasonal analogue Markov chains) or about 5% (annual time-period analogue
Markov chains).

The first remarkable result is to have shown that by using the learned
dynamics, it is possible to extend the return times plot for return times
larger than the data-set length. Indeed, it has been shown that by using
100-year of data it is possible to compute return times up to 900 years, i.e.
return times 10 times bigger than the data-set length. This implies that the
analogue method offers the possibility to compute return times at a much
lower computational cost than traditional methods that solve a set of partial
differential equations. In addition, it allows the collection of a much greater
number of extreme events than those present in the data-set on which the
dynamics is learned, opening up the possibility of carrying out significant
statistical analysis.

After testing the usefulness of the analogue method, the analogue Markov
chains have been used to compute the committor function. It has been
explained that the choice of the type of analogue Markov chain does not affect
much the computation of the committor and therefore it has been decided
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to carry out the study using seasonal Markov chains. An analogue Markov
chain based classifier has been built to assess the predictive informations
encoded in the committor. The analogue based classifier is a tool that takes
system variables as input and from these it asserts whether ⌧ days later there
will be a heat wave or not.

The analogue based classifier has been used to evaluate the impact of
several parameters on the forecast of heat waves. It turns out that a tempo-
ral coarse-graining improves the performance of the classifier, likely because
the coarse-graining procedure makes the temporal correlations less important
and consequently the approximation of the dynamics with a Markov chain
more realistic. Also the spatial domain on which analogues are computed
affects the quality of the prediction. It has been shown that the smaller the
domain the higher the performance of the classifier is. This is most likely
due to the difficulty in finding good analogues in high-dimensional systems,
especially using Euclidean distance as a similarity criterion, and therefore
reducing the size of the system improves the quality of the analogues them-
selves. However, it has been noted that this is true as long as the fields in
the smaller region contain sufficiently accurate information. For example, it
has been shown that the analogue based classifier built on the surface tem-
perature anomalies of France produces more accurate predictions than those
obtained by building the classifier only on the average of these anomalies.
This suggests that a compromise needs to be found between the dimension
of the variables used as predictors and the information they hold. It has
therefore been shown that spatial coarse-graining improves predictive abili-
ties as it reduces the size of variables without discarding their information.
To further strengthen the discussion between predictor dimensions and infor-
mation in them it has been shown that an analogue based classifier built on
only three very informative scalars, i.e. the surface temperature anomalies,
the geopotential height anomalies and the soil moisture anomalies averaged
over France, lead to excellent predictions. Finally, it has been shown that the
analogue based classifier outperforms a more naive approach, that is a clas-
sifier based on the committor function estimated by a k-Nearest Neighbors
regressor.

This work is conceived as a first step in understanding the analogue
method applied to high-dimensional dynamical systems, such as the climate
dynamics. Therefore, various modifications are possible to improve the co-
herence of the synthetic data produced by the analogue Markov chains, the
quality of the estimation of the committor function and the predictive skills
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of the analogue based classifier. For instance, following [Yiou, 2014,Jézéquel
et al., 2018,Yiou and Déandréis, 2019,Yiou and Jézéquel, 2020], one could
build analogue Markov chain where the where the probabilities of choosing
one of the K analogues are not uniform as in this study but they are rather
state dependent, for instance taking into account the distances of Xn to its
analogues. Another improvement may consist in employing non-Euclidean
distances as similarity criterion for the selection of analogues in order to
take into account the spatial structure (i.e. spatial correlations) of the data.
While both of these procedures can prove to be excellent ways to improve the
performance of the analogue method by producing more accurate statistics
and estimating the committor function more precisely, they can suffer from
a lack of generality. Lack of generality is intended as a strong dependence
on the data-set under investigation, thus making difficult to apply the same
methodology to problems in different fields without having to perform long
computations to recalibrate this tool. A more interesting modification of the
algorithm proposed here would be to exploit the power of machine learning
to perform a dimensional reduction of the system and to learn analogues in
this reduced space. This can be done by employing autoencoders, as shown
for example in [Kingma and Welling, 2013,Pulgar et al., 2018]. Furthermore,
the dimensional reduction can be done keeping in mind that the ultimate
goal is to estimate the probability of certain extreme events, and therefore
extracting only the information relevant to the computation of such proba-
bilities [Snoek et al., 2012, Banijamali and Ghodsi, 2016, Banijamali et al.,
2018, Du et al., 2019]. This would allow to obtain a highly generalizable
algorithm as it would be able to learn that contain most of the information
useful for the computation of the committor function.
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Chapter 6

Conclusions

This work was aimed at predicting the probability of climate extremes from
dynamics and observations. More specifically, the work focused on the study
of prediction problems at the predictability margin. These prediction prob-
lems are inherently probabilistic because the time scales on which they occur
lie beyond the deterministic predictability time of the atmosphere, but it is
nevertheless possible to make statistically significant predictions, depending
on the current state of the system.

It has been explained that the mathematical object for dealing with pre-
diction problems at the predictability margin is the committor function which
encodes the probability that a given event occurs in the future as a function
of the current state of the system.

In the first part of this thesis (Chapter 3), the committor function was
studied in the context of a simple low-dimensional model proposed to explain
the decadal amplitude changes of ENSO. Although this study was performed
on a toy model for El-Niño, it allowed us to draw general conclusions valid
for climate prediction problems. Based on the observation that the ability to
predict the probability of occurrence of an event strongly differs depending
on the initial state, a distinction can be traced between intrinsic probabilistic
predictability (when the committor function is smooth and the probabilities
do not depend sensitively from the initial conditions) and intrinsic probabilis-
tic unpredictability (when the committor function depends sensitively on the
initial conditions). This dichotomy between probabilistically predictable and
unpredictable regions is expected to be a generic feature of prediction prob-
lems at the predictability margin. Therefore, it becomes crucial to develop a
method that accurately estimates the committor function, especially in high
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dimensional systems.
Estimating the committor function in high dimensional systems is an

extremely complex task. Furthermore, when attention is paid to rare events,
the problem of lack of observations also arises. To cope with the lack of
data, rare event algorithms have been developed over the years, such as the
family of splitting or cloning algorithms. To be efficient, those algorithms
need to use a smart score functions during the selection stage and the optimal
score functions are the committor functions. Since the committor function is
precisely the object to be computed, it seems natural to consider an iterative
approach where an algorithm is used to learn an estimate of the committor
which is then used in the rare event algorithm to increase the number of
samples improving the estimate of the committor function itself.

This iterative approach was developed in Chapter 4. A data-driven ap-
proach for estimating committor functions has been adopted. This approach
relies on the analogue method used to define effective dynamics starting from
dynamical observations only. It has been shown that this matches with the
introduction of a Markov chain on the data so that its transition matrix
approximates the true propagator of the system. Then, an estimate of the
committor function has been obtained by employing classical methods for
computing Markov chain committor functions, resulting in simple, robust,
and efficient method. By means of two example, it has been established that
the committor function can be accurately estimated from few observations.
These approximations are more precise than those provided by a more naive
data-driven approach and they converge faster to the exact committor when
the number of observations increase. It was also pointed out that these im-
provements are due to the fact that the analogue method exploits all the
dynamic information contained in a trajectory, while the direct approach
treats the points of the same reactive trajectory equally. Finally, it has been
proven that such learned approximate committor functions are extremely
efficient score functions, when used with the Adaptive Multilevel Splitting
algorithm. In this way, the rare events can be simulated with a minimal prior
knowledge on the system and the results are much more precise than those
obtained with a user-designed score function.

Finally, in Chapter 5 the analogue method has been applied to a complex
climate data set in order to predict the probability of occurrence of heat
waves. To this purpose, several types of analogue Markov chain have been
introduced. It has been explained that it is possible to develop meaning-
ful analogue Markov chains on seasonal data when the data do not exhibit a
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strong seasonal cycle. In addition, it was explained that annual time-periodic
analogue Markov chains should be considered when dealing with data that
has a seasonal cycle. By using the dynamics introduced with the analogue
Markov chains it was possible to extend the return time plot by an order
of magnitude. Such a result is remarkable as it opens up the possibility of
studying rare events by collecting a greater number of observations than tra-
ditional methods at lower computational cost. Then, the analogue Markov
chain was used to compute the committor function. Starting from the latter,
an analogue based classifier was developed with the aim of predicting the oc-
currence of heat waves several days ahead. The analogue based classifier was
employed to assess the impact that different parameters, such as the coarse
graining time and the spatial domain on which analogues are computed, have
on the heat waves forecast. The main result is to have shown that there is
a need for a compromise between the amount of information used for the
prediction and the complexity of the effective dynamics introduced by the
analogue Markov chain. Indeed, learning an analogue Markov chain on high
dimensional data results in a poor estimate of the true propagator. At the
same time, increasing the information available, especially if it comes from
different variables, can greatly improve the performance of the classifier. Fi-
nally, it has been demonstrated that the analogue based classifier performs
better than a classifier based on the committor function computed using a
simpler approach.

Future developments are possible on several fronts. First of all, the study
of the prediction of heat waves will be completed by analyzing and validating
the probabilistic predictions that can be obtained by estimating the commit-
tor function through the analogue method. Then, regarding the analogue
method, it is possible to develop analogue Markov chains where the proba-
bilities of choosing one of the K analogues are not uniform but are rather
state dependent, for instance taking into account the distances of Xn to its
analogues. Furthermore, analogues could be selected by employing distances
different from Euclidean ones or even by applying machine learning or other
techniques to identify similarities between data. These modifications could
be particularly relevant in the case of high dimensional systems because they
could greatly improve the accuracy of the effective dynamics introduced by
the analogue Markov chain. It would also be interesting to compare this
method with other methods based on the use of dynamic information such
as the Galerkin direct approximation method or with direct approaches that
use machine learning. Regarding the coupling of the analogue method with
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rare event algorithms, it would be useful to complete the study of the iter-
ative procedure explained in Chapter 4. Indeed, it has been shown that the
analogue method can provide an excellent score function for rare event algo-
rithms, while it has not been tested whether the use of the data generated
by these algorithms improves the approximation of the committor function
itself or not. Finally, in light of the increasingly frequent catastrophic events
occurring around the world, it would be very important to couple the ana-
logue method and rare event algorithms to deepen the understanding of the
dynamics and occurrence of rare or high impact climate events. Indeed, the
committor function estimated through analogue Markov chains may prove
to be a much more efficient score function for the rare event algorithms ap-
plied to climatic dynamics than the score functions used nowadays. This
could therefore lead to the development of very efficient algorithms both as
regards their computational cost and as regards the accuracy of the extreme
trajectories produced by the rare event algorithms.
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merical study of extreme mechanical force exerted by a turbulent flow on a
bluff body by direct and rare-event sampling techniques. Journal of Fluid
Mechanics, 895.

[Lestang et al., 2018] Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C.,
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de Noblet-Ducoudré, N., and Yiou, P. (2009). Hot european summers
and the role of soil moisture in the propagation of mediterranean drought.
Journal of Climate, 22(18):4747–4758.

206


	Introduction
	Committor Functions
	Introduction
	Committor Functions for a Markov chain
	Markov chains
	Committor functions: definition and equation
	Example: the Gambler's ruin

	Committor functions for a continuous time Markov process
	Markov processes
	Committor functions: definition and equation
	Examples: Wiener and Ornstein-Uhlenbeck processes

	Numerical computation of the committor
	Direct estimation
	Committor computation based on a long trajectory
	Committor computation solving the Backward equation
	Machine learning estimation
	Validation of a committor estimate

	Time dependent committor functions
	Definition and equation for time dependent committor
	Relation with cumulative distribution of first hitting time
	Example: Wiener process


	Committor Functions for Climate Phenomena at the Predictability Margin: The example of ENSO in the Jin and Timmermann model
	Introduction
	The Jin and Timmermann model
	Statistics of the first exit times for transitions to strong El Niño regimes
	Committor function of the Jin and Timmerman model
	Description of the committor function: deterministic and probabilistic predictability
	Dynamical characterization of the probabilistically predictable region
	Committor function computed from long trajectories

	Conclusion

	Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain
	Introduction
	The committor function
	Definition of the committor function for a Markov process
	Direct sampling of the commitor function
	Estimating the committor function for any point of the phase space
	Estimation of the quality of an approximate committor function: the Brier score

	The analogue Markov chain
	Definition of the analogue Markov chain
	Computing the committor function from the analogue Markov chain
	Applications

	Using the learned committor function in Adaptive Multilevel Splitting
	The Adaptive Multilevel Splitting algorithm and the quality of score functions
	The learned committor function
	AMS study for the two dimensional three well model
	Application to the Charney-DeVore model

	Conclusion

	Predicting extreme events using the analogue method: the heat-wave case
	Introduction: heat waves and committor functions
	The analogue method for heat waves
	Stationary vs time periodic analogue Markov chains
	Consistency of synthetic data: return time plot and time averaged temperature statistics
	Extending return time plots

	Committor estimation through the analogue method
	Committor validation
	Classifier based on the analogue method

	Conclusions and perspectives

	Conclusions

