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1	Introduction	

1.1	What	is	a	gene?		

The	word	gene	comes	from	the	greek	word	γένεση	(meaning	birth)	or	γένος	(meaning	

generation	and	origin)	and	was	initially	coined	to	denote	an	abstract	“unit	of	inheritance”.	

The	first	one	ever	described	these	inheritance	units,	even	though	he	never	mentioned	the	

word	“gene”	but	rather	the	notion	of	“cell	elements”,	was	the	so-called	“father	of	genetics”	

Gregor	Mendel	in	1865	(Mendel	1865).	By	the	middle	of	the	nineteenth	century,	scientists	

observed	the	cell	division	and	understood	that	the	hereditary	information	was	located	in	

the	 cell	 nucleus.	 However,	 the	 physical	 hereditary	 material	 remained	 unknown.	 The	

discovery	 of	 the	 chromosomes	 by	 Walther	 Flemming	 in	 1882	 (Flemming	 1882)	

(Flemming	actually	discovered	the	chromosome,	but	the	term	was	proposed	a	few	years	

later	by	Heinrich	Waldeyer	(Waldeyer	1888))	soon	provided	a	fundamental	and	concrete	

material	 for	 the	 hereditary	 factors	 of	 Mendel	 and	 permitted	 the	 proposal	 of	 the	

chromosome	theory	by	the	German	biologist	Boveri	and	the	American	geneticist	Sutton	

during	the	years	1902–1903	(Boveri	1902,	1903;	Sutton	1903).	Shortly	after	the	birth	of	

the	 chromosome	 theory,	 the	 phenomenon	 of	 gene	 linkage	 (Bateson	 et	 al.	 1909)	

demonstrated	that	genes	exhibiting	“coupling”	(and	as	result	were	co-transmitted)	were	

located	on	 the	same	chromosome	while	genes	showing	 independent	assortment	were	

located	on	different	chromosomes.	

	

The	term	“gene”	was	coined	early	in	the	20th	century,	by	the	Danish	botanist	Johannsen	

together	with	 the	notions	of	genotype	and	phenotype	 (Johannsen	1909).	Thus,	by	 the	

early	1930s,	and	thanks	to	the	breakthrough	theories	of	Muller,	the	concept	of	the	gene	

became	more	concrete.	Genes	were	considered	as	indivisible	and	dimensionless	units	of	

inheritance,	each	one	located	at	a	specific	point	on	a	chromosome.	They	were	defined	by	

their	 four	 characteristics:	 (1)	 hereditary	 transmission,	 (2)	 genetic	 recombination,	 (3)	

mutation,	and	(4)	gene	function	(Portin	and	Wilkins	2017).	Furthermore,	in	1927	Muller	

associated	the	concept	of	the	gene	with	the	theory	of	evolution,	while	he	described	the	

gene	as	the	elementary	unit	of	evolution	and	the	origin	of	life	itself	(Muller	1927;	Carlson	

1966).	By	the	early	1940s,	the	genetic	recombination	revealed	that	the	genes	could	be	

dissected	 into	 segments,	 converting	 them	 from	 dimensionless	 points	 to	 entities	 with	
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length.	The	ultimate	breakthrough	for	the	DNA	theory	of	inheritance	was	the	revelation	

of	the	double-helical	structure	of	DNA	by	Watson	and	Crick	in	1953	(Watson	and	Crick	

1953a,	1953b).	The	earlier	hypothesis	“one	gene-one	enzyme”	proposed	by	Beadle	and	

Tatum	in	1941	and	which	highlighted	the	connection	between	genes	and	proteins,	was	

now	proven	by	the	genes’	 transcription	to	mRNA	(Beadle	and	Tatum	1941).	Soon,	 the	

discovery	of	 the	universal	genetic	code	by	several	 teams,	 revealed	 that	 the	nucleotide	

sequences	are	the	ones	that	determine	the	sequence	of	polypeptide	chains.	By	the	early	

1960s,	the	gene	had	acquired	a	definitive	molecular	identity	as	a	discrete	sequence	on	

the	genomic	DNA	molecule	that	codes	for	a	functional	polypeptide	product	(Gerstein	et	

al.	2007).	In	the	early	1970s	the	revolution	of	molecular	biology	led	to	the	sequencing	of	

the	first	gene	and	later	of	the	first	genome	from	the	bacteriophage	MS2	(Fiers	et	al.	1971,	

1976).	 In	 parallel,	 computational	 tools	were	 developed	 for	 the	 identification	 of	 genes	

based	on	 their	sequence	characteristics	permitting	 the	detection	of	 the	genes	by	 their	

predicted	sequences	rather	than	by	their	outcome	phenotype	to	the	organism	(Gerstein	

et	 al.	 2007).	 Soon,	 the	 advancements	 in	 DNA	 sequencing	 technologies	 and	 later	 the	

powerful	next-generation	sequencing	methods	led	to	the	explosion	of	genome	projects	

and	consequently	to	the	sequencing	of	multiple	genomes	(Hu	et	al.	2011).	The	availability	

of	multiple	sequenced	genomes	advanced	the	field	of	comparative	genomics	permitting	

the	identification	of	most	genes	by	their	similarity	to	other	known	genes	(Gerstein	et	al.	

2007).		

	

However,	the	hypothesis	of	“one	gene	-	one	mRNA	-	one	polypeptide”	started	to	expire	

with	 the	 advance	 of	 high	 throughput	 “omics”	 methods	 (such	 as	 transcriptomics,	

translatomics,	proteomics).	In	1986	it	was	shown	that	in	many	cases,	a	single	gene	could	

produce	more	 than	one	mRNAs	 through	 the	alternative	 splicing	procedure	 (Leff	 et	 al.	

1986).	 In	 fact,	 the	 genes	 of	 eukaryotic	 organisms	 are	 not	 continuous	 Open	 Reading	

Frames	(ORFs)	but	rather	are	interrupted	by	nucleic	sequences	called	introns.	Split	genes	

are	 transcribed	 into	 one	 pre-mRNA	molecule,	whose	 introns	 are	 removed	 during	 the	

maturation	of	the	mRNA	by	pre-mRNA	splicing.	In	the	alternative	splicing,	multiple	non-

consecutive	 exons	 are	 joined	 together	 in	 order	 to	 produce	 the	 final	 mature	 mRNA	

molecule	(Leff	et	al.	1986;	Black	2003).	As	a	result,	individual	exons	can	be	combined	in	

different	 ways	 and	 produce	 multiple	 different	 mRNAs	 which	 are	 translated	 into	

completely	different	proteins.	Additionally	to	the	alternative	splicing,	the	phenomenon	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 3	

of	RNA	editing	which	describes	the	post-transcriptional	molecular	processes	that	modify	

the	 structure	 of	 the	 mature	 mRNA	 molecule,	 complicates	 even	 more	 the	 traditional	

notion	 of	 the	 gene.	 In	 fact,	 the	 RNA	 editing	 in	 mRNAs	 leads	 into	 altered	 amino	 acid	

sequence	of	the	encoded	protein,	different	from	the	one	expected	by	the	genomic	DNA	

sequence	 (Brennicke	 et	 al.	 1999).	 Recently,	 thousands	 of	 putative	 intergenic	 open	

reading	frames	in	various	eukaryotic	organisms	have	been	identified	(Hanada	et	al.	2007;	

Heinen	et	al.	2009;	Yang	et	al.	2011;	Carvunis	et	al.	2012;	Zhao	et	al.	2014).	Moreover,	

transcriptomics	and	ribosome	profiling	experiments	report	a	widespread	transcription	

of	these	noncoding	regions	as	well	as	a	pervasive	translation	of	their	corresponding	RNAs	

(Kapranov	et	al.	2002;	Clark	et	al.	2011;	Ingolia	et	al.	2011;	Chew	et	al.	2013;	Bazzini	et	

al.	 2014).	 Interestingly,	 their	 sequences	 are	more	 conserved	 than	 those	of	 other	non-

genic	sequences	suggesting	that	they	could	have	a	functional	role	(Slavoff	et	al.	2013).	It	

becomes	 clear	 that	 the	 classical	 view	 of	 a	 gene	 as	 a	 unit	 of	 heredity	 aligned	 along	 a	

chromosome,	 has	 evolved	 greatly	 during	 the	 years.	 Contrary	 to	 the	 Human	 Genome	

Project	 which	 revealed	 an	 impressively	 low	 number	 of	 protein-coding	 genes	 in	 the	

human	genome,	the	ENCODE	project	(ENCODE	Project	Consortium	2007)	highlighted	an	

important	 number	 and	 complexity	 of	 the	 RNA	 transcripts	 that	 the	 human	 genome	

produces,	changing	dramatically	our	view	of	“what	is	a	gene”	(Gerstein	et	al.	2007).	

	

	

1.2	Small	ORFs	were	systematically	being	ignored	

Efforts	to	detect	and	annotate	protein	coding	sequences	(called	CDS)	in	genomes	using	

bioinformatic	approaches	have	traditionally	relied	on	arbitrary	rules	such	as	amino	acid	

conservation	and	homology,	translation	initiation	from	an	AUG	start	codon	and	minimum	

length	of	50	or	100	amino	acids	(Basrai	et	al.	1997;	Couso	and	Patraquim	2017;	Chen	et	

al.	2020).	These	annotation	rules	have	been	widely	adopted	for	convenience	and	in	order	

to	ensure	a	low	number	of	false	positives.	They	were	principally	based	on	the	assumption	

that	short	peptides	are	unlikely	to	fold	into	stable	structures	capable	of	being	functional	

(Couso	and	Patraquim	2017;	Ruiz-Orera	and	Albà	2019b;	Chen	et	al.	2020).	As	a	result,	

multiple	 small	ORFs	 (smORFs),	 lacking	experimental	evidence	of	 function,	were	being	

systematically	 discarded	 and	 many	 small	 proteins	 remain	 unannotated	 (Basrai	 et	 al.	

1997;	 Ruiz-Orera	 and	 Albà	 2019b).	 Nevertheless,	 the	 detection	 of	 these	 smORFs	 is	 a	

complicated	task	because	true	conservation	and	homology	of	small	ORFs	is	difficult	to	be	
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detected	due	to	the	tendency	of	short	sequences	to	present	lower	conservation	scores	

compared	 to	 longer	 canonical	 ones	 (Couso	 and	 Patraquim	 2017).	 In	 addition,	 many	

studies	in	different	organisms	give	evidence	for	multiple	expressed	smORFs	that	do	not	

necessarily	initiate	from	AUG	codon	(Ingolia	et	al.	2011;	Jackson	et	al.	2018;	Ruiz-Orera	

and	Albà	2019b).	As	a	result,	for	many	years	all	these	intergenic	smORFs	were	lacking	

annotation	and	were	considered	as	noncoding	sequences.	 In	the	1960s	the	term	“junk	

DNA”	became	quite	popular	while	 in	1972	the	term	officially	coined	independently	by	

Susumu	Ohno	(Ohno	1972)	and	David	Comings	(Comings	1972).	This	“provocative	term”	

was	used	 to	emphasize	 the	 “uselessness”	of	 this	DNA	 fraction	and	 for	many	years	 the	

believed	dogma	was:		

	

Noncoding	DNA	=	Nonfunctional	DNA	=	“Junk	DNA”		

	

Nevertheless,	millions	of	smORFs	are	 found	 in	eukaryotic	genomes,	with	thousands	of	

them	being	mapped	to	transcripts	and	some	of	 them	fulfilling	 important	physiological	

functions.	This	reveals	the	important	transcriptional	potential	of	the	genomes	which	is	

beyond	 the	 already	known	genes	 (Couso	and	Patraquim	2017).	 Couso	and	Patraquim	

(2017)	mention	 that:	 “It	 is	 as	 if	we	 have	 a	 genome	within	 our	 genome:	 a	 hidden	

genome	about	which	we	know	very	little”.		

	

	

1.3	The	noncoding	genome	is	not	as	silent	as	believed	

	

1.3.1	Evidence	of	pervasive	transcription	

Current	estimates	indicate	that	less	than	2%	of	the	mammalian	genome	codes	for	amino	

acids	in	proteins	(Clark	et	al.	2011;	Lybecker	et	al.	2014).	However,	global	transcription	

profiling	as	well	as	mRNA	abundance	have	revealed	that	the	vast	majority	of	the	genome	

is	largely	transcribed	beyond	the	boundaries	of	known	genes	(Kapranov	et	al.	2002;	Clark	

et	al.	2011).	This	phenomenon	is	defined	as	pervasive	transcription	and	is	responsible	

for	the	generation	of	a	large	ensemble	of	different	RNA	molecules	distinct	from	those	that	

encode	canonical	proteins	and	the	ones	with	already	established	functions	such	as	tRNAs,	

rRNAs,	snRNAs,	and	snoRNAs	(Jensen	et	al.	2013).	
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The	first	evidence	of	unconventional	transcripts	in	S.	cerevisiae	was	in	2003	through	the	

inactivation	of	two	chromatin	remodeling	factors	(Spt6p	and	Spt16p).	These	factors	are	

essential	for	the	correct	re-organization	of	the	nucleosomes	behind	the	elongating	RNA	

polymerase	 II	 during	 the	 transcription	 procedure.	 Their	 inactivation	 led	 to	 spurious	

intragenic	transcription	initiated	by	cryptic	promoters	within	gene	bodies(Kaplan	et	al.	

2003).	Later,	the	pervasive	transcription	was,	again,	demonstrated	in	S.	cerevisiae	strains	

with	inactivated	certain	RNA-degradation	pathways.	The	transcriptome	analysis	of	these	

strains	 revealed	 an	 ensemble	 of	 “hidden	 transcripts”	 which	 normally	 do	 not	 reach	

detectable	concentration	levels	in	wild-type	cells	(Davis	and	Ares	2006).	

	

Strikingly,	most	of	the	pervasive	transcripts	in	S.	cerevisiae	seem	to	result	from	divergent	

transcription	 from	gene	promoters,	 supporting	 that	 gene	promoters	have	 an	 intrinsic	

bidirectional	character	and	that	their	apparent	directionality	is	mostly	the	result	of	the	

instability	of	one	of	the	divergent	transcripts	(Neil	et	al.	2009;	Xu	et	al.	2009;	Jensen	et	al.	

2013).	This	divergent	transcription	originates	mostly	from	nucleosome-depleted	regions	

(NDRs)	at	the	5’	and	3’	ends	of	genes	(Jensen	et	al.	2013).	Especially,	in	the	case	of	dense	

genomes	(such	as	S.	cerevisiae),	an	NDR	at	the	5’	of	a	gene,	would	be	at	the	same	time	an	

NDR	at	 the	3’	 of	 its	upstream	gene	 (if	 the	genes	have	 the	 same	sense).	The	divergent	

transcription	 downstream	 the	 gene’s	 promoter	 will	 have	 as	 result	 the	 pervasive	

transcription	(from	the	3’	end)	of	the	preceding	gene	together	with	the	whole	intergenic	

region	of	the	two	genes	(Jensen	et	al.	2013).		

	

In	2012,	the	ENCODE	project	(ENCODE	Project	Consortium	2007)	reported	that	76%	of	

the	human	genome's	noncoding	DNA	sequences	were	transcribed	and	that	almost	half	of	

the	genome	was	accessible	to	transcription	factors	(Gerstein	et	al.	2007).	cDNA	analyses	

in	mouse	from	different	tissues	and	developmental	stages	have	revealed	that	at	least	63%	

of	 the	 genome	 is	 transcribed	 (Okazaki	 et	 al.	 2002).	 Interestingly,	 thousands	 of	 novel	

protein-coding	 transcripts	 were	 identified	 as	 well	 as	 around	 30.000	 long	 noncoding	

intronic	and	intergenic	transcripts	named	long	noncoding	RNAs	(lncRNAs)	with	no	clear	

protein-coding	potential	(Carninci	et	al.	2005;	Guttman	et	al.	2010;	Ingolia	et	al.	2014).	

Various	 studies	 on	 lncRNAs	 have	 proven	 their	 multiple	 roles	 in	 cellular	 functions.	

LncRNAs	 have	 been	 found	 to	 regulate	 chromosome	 architecture,	 to	 modulate	

chromosomal	interactions,	to	regulate	the	recruitment	of	chromatin	modifiers,	to	act	as	
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architectural	RNAs	or	even	to	regulate	the	translation	procedure	in	the	cytoplasm	(Yao	

et	al.	2019).	Pervasive	transcripts	in	bacteria	could	also	function	as	sponges	for	proteins	

or	other	ncRNAs	(Lybecker	et	al.	2014).	A	recent	study	revealed	differential	expression	

of	multiple	lncRNAs	in	different	human	organs	and	developmental	stages,	enforcing	their	

important	role	to	the	mammalian	development	(Sarropoulos	et	al.	2019).	

	

All	 these	 observations,	 of	 transcription	 beyond	 the	 protein	 coding	 genes,	 gave	 an	

important	regulative	role	to	the	noncoding	genome.	It	became	clear	that	the,	so	far,	called	

“Junk	 DNA”	 was	 not	 as	 useless	 and	 inactive	 as	 previously	 thought	 and	 that	 it	 could	

participate	 in	 multiple	 cellular	 functions.	 Lybecker	 et	 al.	 (2014)	 proposed	 that	

additionally	to	their	regulatory	role,	some	of	these	transcripts	could	potentially	code	for	

small	peptides,	further	increasing	the	protein-coding	potential	of	the	genomes.	

	

	

1.3.2	Evidence	of	pervasive	translation	

The	translatome	of	an	organism	or	a	cell	is	defined	as	the	ensemble	of	RNA	sequences	

which	 are	 translated	 by	 the	 ribosomal	 machinery	 (Ruiz-Orera	 and	 Albà	 2019b).	 The	

explosion	of	 translatomics	occurred	 thanks	 to	a	 recent	and	powerful	 technique	called	

Ribosome	 Profiling	 (or	 simpler	 RiboSeq)	 which	 provides	 genome-wide	 snapshots	 of	

translation	(Ingolia	et	al.	2009,	2011;	Chew	et	al.	2013;	Aspden	et	al.	2014;	Bazzini	et	al.	

2014;	Ruiz-Orera	and	Albà	2019b).	Contrary	to	RNA	sequencing	(RNA-seq),	which	aims	

at	 targeting	 complete	 RNA	 sequences,	 ribosome	 profiling	 is	 a	 very	 sensitive	method,	

which	targets	specifically	ribosome-protected	RNA	fragments	(Ingolia	et	al.	2009,	2014;	

Ruiz-Orera	and	Albà	2019b;	Blevins	et	al.	2019).	In	fact,	when	ribosomes	bind	a	mRNA,	

they	 can	protect	mRNA	 fragments	 of	 around	30	nucleotides	 from	RNAse	degradation	

(François	 et	 al.	 2021).	 Rapid	 translation	 inhibition	 through	 flash	 freezing,	 permits	 to	

capture	a	snapshot	of	ribosome	distributions	in	a	particular	physiological	state	of	the	cell	

(Brar	and	Weissman	2015).	Nuclease	treatment	permits	the	isolation	of	mRNA	fragments	

(called	Ribosome	Footprints)	corresponding	to	mRNA	regions	protected	by	the	ribosome	

(Brar	 and	Weissman	2015).	These	 fragments	 are	 then	 sequenced	and	mapped	on	 the	

reference	genome	giving	information	about	the	translation	state	of	the	cell	(François	et	

al.	2021).	What	makes	ribosome	profiling	such	a	sensitive	method	is	the	fact	that	it	has	a	

single	nucleotide	resolution	as	it	can	indicate	the	precise	location	of	the	peptidyl-site	(P-
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site)	 of	 each	 sequencing	 read	 (Ruiz-Orera	 and	 Albà	 2019b).	 This	 is	 very	 important	

because	 the	 P-site	 of	 the	 ribosome	 is	 indicative	 of	 the	 exact	 codon	which	was	 under	

translation.	 Consequently,	 ribosome	 profiling	 not	 only	 identifies	 mRNAs	 under	

translation	but	also	specifies	the	exact	frame	of	the	mRNA	(among	the	3	possible)	which	

was	translated	and	as	a	result	specifies	the	produced	amino	acid	sequence	(Figure	1.1).	

In	addition,	ribosome	profiling	provides	an	important	amount	of	qualitative	information	

such	as	 translation	 initiation	 site,	 pausing	 sites,	 new	 reading	 frames,	 stop	 codon	 read	

through	or	ribosome	residence	time	(François	et	al.	2021).	

	

	

Figure	 1.1.	 Schematical	 representation	 and	 comparison	 of	 the	 RNA-seq	 (left)	 and	 the	 Ribo-seq	

(middle)	 protocols.	 For	 the	 RNA-seq,	 after	 RNA	 purification	 and	 fragmentation,	 the	 RNA	 fragments	

generated	are	sequenced	and	mapped	on	the	reference	genome.	The	RNA	fragments	do	not	contain	any	

information	about	the	frame	of	translation	and	consequently	no	3-nucleotides	periodicity	can	be	observed.	

Concerning	 the	 Ribo-seq,	 the	 RNA	 fragments	 (called	 ribosome	 footprints)	 are	 purified	 after	 nuclease	

digestion	and	monosome	isolation.	The	RNA	fragments	purified,	are	the	ones	“protected”	by	the	ribosomal	

machinery	and	as	a	result	correspond	to	mRNAs	that	were	under	active	translation.	After	their	sequencing,	

the	ribosomal	P-site	on	the	RNA	fragments	can	be	detected	through	simple	position	reduction	(right).	Then,	

the	RNA	fragments	are	mapped	on	the	reference	genome	but	this	time	with	a	single-nucleotide	precision	

(P-site).	As	a	result,	we	do	not	simply	map	RNA	reads	but	the	exact	codon	which	was	under	translation	and	
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consequently	3-nucleotides	periodicity	can	be	observed	on	the	mapping.	The	figure	of	the	protocols	was	

adapted	 from	 the	 study	 Hsu	 et	 al.	 (2016)	 with	 the	 title	 “Super-resolution	 ribosome	 profiling	 reveals	

unannotated	translation	events	in	Arabidopsis”	and	the	figure	of	the	ribosome	P-site	detection	was	created	

with	BioRender.com.	

	

	

Ingolia	 et	 al.	 (2009)	 was	 the	 first	 study	 that	 introduced	 the	 ribosome	 profiling	 as	 a	

technique	for	monitoring	protein	translation,	thus	proposing	the	first	in-depth	analysis	

of	the	translation	process	in	the	yeast.	Their	results	highlighted	that	75%	of	the	ribosome-

protected	fragments	started	on	the	first	nucleotide	of	a	CDS	codon	(indicating	the	frame	

of	 translation)	 and	 revealed	 a	 widespread	 non-AUG	 translation	 initiation	 under	

starvation	 stress	 conditions.	 The	 last	 few	 years,	 the	 translatome	 of	 many	 eukaryotic	

organisms	has	extensively	been	explored	and	has	proven	that	additionally	to	sequences	

encoding	classical	long	proteins	(annotated	protein-coding	genes),	the	existence	of	many	

small	ORFs	that	arrive	to	be	translated,	leading	to	the	production	of	small	peptides	from	

presumed	noncoding	genomic	regions	(Ingolia	et	al.	2009,	2011;	Ruiz-Orera	et	al.	2018;	

Ruiz-Orera	and	Albà	2019b).	These	smORFs	with	translation	signatures	are	principally	

detected	 in	 transcripts	 previously	 considered	 as	 noncoding.	 After	 their	 identification,	

many	of	them	have	been	proven	to	have	important	regulatory	roles	for	genes	expression	

(i.e.,	 upstream	 ORFs	 which	 control	 the	 expression	 of	 other	 protein	 coding	 ORFs),	 to	

produce	 functional	 micropeptides	 or	 even	 to	 be	 simply	 the	 result	 of	 the	 pervasive	

translation	of	likely	nonfunctional	proteins	(Ruiz-Orera	and	Albà	2019b).	As	a	matter	of	

fact,	 an	 important	 fraction	 of	 translated	 species-specific	 smORFs	 in	mouse	 have	 been	

proven	to	evolve	neutrally	and	consequently	no	evident	functional	role	can	be	attributed	

to	 their	 peptides	 (Ruiz-Orera	 et	 al.	 2018)	 while	 their	 production	 can	 probably	 be	

attributed	 to	 the	 pervasive	 nature	 of	 the	 translation	 (Ingolia	 et	 al.	 2014).	 In	 fact,	 the	

pervasive	 translation	 of	 nonfunctional	 new	 peptides	 can	 be	 considered	 as	 a	waste	 of	

energy	and	material	for	the	cell.	However,	this	less	controlled	translation	in	combination	

with	the	already	mentioned	pervasive	transcription	offers	a	simple	way	to	the	organism	

for	“exploring”	the	coding	potential	of	its	whole	genome.	Moreover,	Ruiz-Orera	and	Albà	

(2019)	support	that	species-specific	transcripts	do	not	present	high	levels	of	expression,	

something	that	reduces	the	cost	of	their	production.	
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Studies	on	the	transcriptome	and	the	translatome	of	 the	yeast	have	demonstrated	the	

existence	of	an	important	number	of	previously	unannotated	RNAs	with	more	than	50%	

of	 them	 hosting	 translated	 smORFs	 (Smith	 et	 al.	 2014).	 These	 unannotated	 RNAs	

presented	 an	 important	 sensitivity	 to	 the	 nonsense-mediated	 RNA	 decay	 (NMD)	

pathway,	a	surveillance	mechanism	existing	in	all	eukaryotes	acting	to	eliminate	mRNA	

transcripts	that	contain	premature	stop	codons.	Premature	stop	codons	are	problematic	

as	they	can	lead	to	the	production	of	nonfunctional	proteins	(Kurosaki	et	al.	2019).	As	a	

matter	of	fact,	the	NMD	of	the	unannotated	RNAs	downregulates	the	expression	of	their	

smORFs	 in	 normal	 conditions	 while	 NMD	 inactivation	 (or	 simply	 dysfunction)	 could	

allow	small	peptides	to	be	produced	in	the	cell	(Smith	et	al.	2014).	Notably,	Smith	et	al.	

(2014)	identified	in	S.	cerevisiae,	192	unannotated	RNAs	targeted	to	rapid	decay	by	NMD	

in	 wild-type	 strains	 and	 translated	 in	 upf1Δ	 strains	 where	 NMD	 is	 inactivated.	

Interestingly,	 NMD	 is	 downregulated	 under	 cellular	 stress	 conditions	 or	 in	 specific	

tissues	(e.g.	brain	and	testes)	(Zetoune	et	al.	2008;	Gardner	2008)	leading	at	nongenic	

ORFs	to	be	translated	and	produce	novel	peptides,	thus	providing	additional	functional	

plasticity	to	the	cell.	

	

	

1.3.3	Evidence	of	peptides	encoded	by	presumed	noncoding	regions	

The	 products	 encoded	 by	 smORFs	 are	 called	 smORF-encoded	 peptides	 (SEPs)	 or	

micropeptides.	Mass	spectrometry	(MS)	is	the	gold	standard	method	for	direct	detection	

and	characterization	of	peptides	or	proteins,	even	though	only	few	micropeptides	have	

been	directly	identified	by	MS	(Yin	et	al.	2019).	MS	detects	smORF-encoded	products	by	

matching	 experimental	 spectra	 against	 theoretical	 spectra	 of	 all	 candidate	 peptides	

represented	in	a	reference	or	custom	database.	Potential	issues	of	the	method	include:	

sample	preparation,	low	SEPs	abundance,	small	size,	short	life,	usage	of	alternative	start	

codons	(non-AUG)	or	even	tissue/cell/developmental-specific	expression	patterns	(Yin	

et	al.	2019).	Ma	et	al.	(2014)	highlighted	that	the	low	abundance	of	the	SEPs	in	addition	

to	 the	 stochastic	 character	 of	 the	 shotgun	 peptidomics	 result	 in	 the	 low	 SEP	 overlap	

among	samples	and	different	workflows	of	SEPs	detection.	In	fact,	the	best	strategy	for	

detecting	SEPs	is	the	integration	of	multiple	approaches	and	running	multiple	replicates	

(technical/biological).	
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A	proteomic	experiment	on	human	cells,	identified	about	90	new	peptides	deriving	from	

noncoding	regions	and	which	could	not	be	detected	into	peptides’	databases	(Slavoff	et	

al.	2013).	The	size	of	these	peptides	ranged	between	18	and	149	amino	acids,	with	the	

majority	of	them	(~80%)	being	less	than	100	amino	acids.	The	abundance	of	these	non-

canonical	translation	products	are	comparable	to	those	of	typical	cellular	proteins	and	

their	sequences	are	more	conserved	than	those	of	 introns	suggesting	that	 they	have	a	

functional	role	(Slavoff	et	al.	2013).	In	addition,	Ma	et	al.	(2014)	identified	237	additional	

human	SEPs	by	combining	different	SEP-detection	approaches.	By	analyzing	additional	

cell	 lines	and	a	tumor	biopsy,	they	observed	that	in	general	SEPs	are	ubiquitous	while	

some	 of	 them	 were	 specific	 to	 a	 cell	 line	 (Ma	 et	 al.	 2014).	 Prabakaran	 et	 al.	 (2014)	

reported	 through	 MS	 experiments	 250	 non-canonical	 translation	 products	 in	 mouse	

neurons	coming	 from	both	 intragenic	and	extragenic	regions.	None	of	 these	 identified	

peptides	showed	a	similarity	to	known	coding	genes	products	nor	to	already	described	

peptides	in	previous	MS	experiments.	One	should	notice	that	all	of	these	MS	analyses	are	

generally	not	saturating	suggesting	that	the	number	of	small	peptides	identified	in	these	

studies	is	largely	underestimated	(Prabakaran	et	al.	2014).	

	

For	years,	the	smORFs	and	their	corresponding	micropeptides	were	overlooked	due	to	

their	 small	 size	 and	 the	 difficulty	 of	 their	 detection	 (Makarewich	 and	 Olson	 2017).	

However,	grace	to	the	protemic	studies,	several	micropeptides	have	been	characterized	

and	consequently,	 the	 field	of	peptidomics	has	attracted	more	attention.	Despite	 their	

small	 size,	 they	 have	 been	 shown	 to	 play	 critical	 roles	 in	 many	 biological	 processes	

including	development,	DNA	repair,	RNA	decapping,	calcium	homeostasis,	metabolism,	

stress	 signaling,	myoblast	 fusion	 and	 cell	 death	 (Makarewich	 and	Olson	 2017).	 Some	

micropeptides,	 encoded	by	 smORFs	within	 the	5’	UTR	of	 genes,	 often	play	 regulatory	

roles	in	gene	expression.	Similarly,	smORF-encoded	peptides	found	within	lncRNAs,	or	

overlapping	 coding	 regions	 within	 mRNAs	 (alternative	 ORFs),	 often	 function	 as	

regulators	 of	 transcript	 stability	 by	 engaging	 the	 NMD	 pathway	 (Yin	 et	 al.	 2019).	 In	

addition,	 many	 characterized	micropeptides	 have	 been	 shown	 to	 bind	 and	modulate	

larger	 cellular	proteins	 acting	 as	 ligands	 to	 receptors	or	 stabilizers	of	protein-protein	

interactions	 (Magny	 Emile	 G.	 et	 al.	 2013;	 Anderson	 et	 al.	 2015;	 Nelson	 et	 al.	 2016;	

Makarewich	and	Olson	2017).	Recently,	micropeptides	(specifically	called	neoantigens)	

have	been	attributed	with	another	crucial	 role	concerning	 the	 tumor	 immunotherapy.	
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Neoantigens	are	tumor-specific	peptides	which	are	only	expressed	in	tumor	cells	(Zhang	

et	 al.	 2021).	 They	 can	 be	 presented	 on	 the	 cell	 surface	 by	 major	 histocompatibility	

complex	 class	 I	 (MHC	 I)	 molecules	 and	 subsequently	 recognized	 by	 T	 cells,	 thus	

stimulating	strong	anti-tumor	immune	response	(Makarewich	and	Olson	2017;	Zhang	et	

al.	 2021).	 High-throughput	 sequencing	 techniques	 and	 MS-based	 studies	 enable	 the	

screening	 of	 smORFs	 for	 different	 species.	 The	 several	 SEPs	 already	 identified	 and	

characterized	 indicate	 that	 there	 is	 an	 undisclosed	 world	 of	 peptides	 waiting	 to	 be	

explored.	 However,	 how	 to	 describe	 the	 role	 and	 function	 mode	 of	 a	 validated	

micropeptide	is	another	big	challenge	(Yin	et	al.	2019).	

	

	

Table	1.1	Advantages	and	disadvantages	of	 the	methods	used	 for	 the	detection	of	SEPs.	The	 table	was	

extracted	and	adapted	from	the	study	of	Yin	et	al	(2019)	with	the	title	“Mining	for	missed	sORF-encoded	

peptides”	

Method	 Advantages	 Disadvantages	

RNA	

Sequencing	

• Provide a profile of the transcriptome and 

enable the construction a database reflecting 

the native transcript composition, including 

novel sequences. 

• Allow the detection of peptides containing 

SNPs associated with diseases. 

• Enable proteomics studies on non-model 

organisms with limited genome annotation. 

• The basis of ribosome profiling and mass 

spectrometry. 

• Laborious, time and money consuming. 

• Cannot identify alternative start codon 

sORFs. 

• Need computational methods to 

evaluate the coding potential of sORFs. 

• Need experimental methods to confirm 

the products of sORFs. 

	

Ribosome	

Profiling	

• Enable direct detection of sORF. 

• Enable the detection non-AUG sORFs. 

• Detect 5’-UTR sORFs and 3’-UTR sORFs. 

• Survey elongation speed, co-translational 

processing and in organelle protein synthesis. 

• Other proteins that bind RNA can cause 

false positive. 

• Sample preparation can dramatically 

impact results. 

• rRNA and tRNA may cause ribosome 

profiling noise. 

• Need computational methods to 

evaluate the coding potential of sORFs. 

• Need experimental methods to confirm 

the products of sORFs 

Mass	

spectrometry	

• Detect SEPs directly 

• Less labor and time consuming 

• Sample preparation can dramatically 

impact results. 

• Difficult to detect low abundance, 

small size, short half-life, or tissue/cell- 

and time-specific proteins. 
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In	 a	 recent	 work	 from	 Cuevas	 et	 al.	 (2021),	 the	 authors	 combined	 RNA	 sequencing,	

ribosome	profiling	and	mass	spectrometry	in	order	to	detect	non-canonical	translation	

products	 present	 in	 whole-cell	 extracts	 (proteome)	 as	 well	 as	 the	 major	

histocompatibility	complex	class	I	(MHC-I)	immunopeptidome	of	the	human.	The	MHC-I	

molecules	can	bind	non-covalently	various	peptides,	many	of	which	derive	from	defective	

ribosomal	products.	The	MHC-I-peptide	complexes	are	transported	to	the	surface	of	the	

cell	 and	 can	 be	 recognized	 by	 the	 T	 lymphocytes,	 a	 procedure	 that	 is	 called	

immunosurveillance.	As	 a	matter	 of	 fact,	MHC-I	 serves	 as	 a	 stabilizing	 element	which	

favorizes	the	detection	of	these	noncanonical	peptides	whose	translation	product	would	

otherwise	be	invisible	to	MS	due	to	their	instability	and	rapid	degradation	in	the	cytosol.	

They	identified	1842	new	cryptic	proteins,	83%	of	which	derived	from	noncoding	ORFs	

and	 17%	 from	 the	 translation	 of	 an	 alternative	 frame	 of	 protein	 coding	 ORFs.	 These	

cryptic	transcripts	presented	slightly	lower	abundance	and	similar	translation	efficiency	

with	the	canonical	transcripts.	They	were	shorter	and	frequently	initiated	with	non-AUG	

near-cognate	 codons.	 Most	 of	 the	 cryptic	 proteins	 were	 only	 detected	 in	 the	

immunopeptidome	of	the	cells	but	not	in	the	cytosolic	proteome,	supporting	that	they	are	

rapidly	 degraded	 due	 to	 their	 unstable	 character.	 Interestingly,	 they	 observed	 that	

cryptic	proteins	detected	in	the	cell	proteome	were	on	average	longer	than	those	found	

in	 the	 immunopeptidome	 supporting	 that	 longer	 peptides	 can	 achieve	 a	more	 stable	

structure	than	short	ones	(Cuevas	et	al.	2021).	

	

	

1.4	The	noncoding	genome	contains	different	types	of	smORFs		

Grace	 to	 the	 advance	 of	 multi-omics	 approaches	 (transcriptomics,	 translatomics,	

proteomics,	 peptidomics)	 multiple	 already	 presented	 studies	 report	 evidence	 of	

widespread	transcription	of	noncoding	regions,	as	well	as	pervasive	translation	of	their	

corresponding	 RNAs,	 together	 with	 evidence	 of	 peptides	 encoded	 by	 presumed	

noncoding	 regions.	 These	 observations	 support	 that	 the	 noncoding	 genome	 hosts	 an	

important	 potential	 of	 novel	 RNA	 and	 protein	 products.	 Nevertheless,	 it	 must	 be	

mentioned	that,	until	now	the	noncoding	genome	has	mostly	been	studied	with	an	RNA	

regulatory	perspective.	However,	RiboSeq	and	MS	results	have	 revealed	an	 important	

potential	of	smORFs	harboring	in	the	noncoding	genome	highlighting	the	importance	of	

adopting	 a	 more	 ORF-centered	 point	 of	 view.	 Hosting	 a	 large	 diversity	 of	 ORFs	
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(regulatory	or	peptides	coding	ones)	the	so-called	noncoding	genome	had	to	be	further	

characterized.	 Notably,	 Couso	 and	 Patraquim	 (2017)	 combined	 ribosome	 profiling,	

peptide	tagging	and	bioinformatic	analyses	and	proposed	the	existence	of	at	 least	 five	

types	of	smORFs	in	Drosophila	melanogaster	genome.	These	different	smORFs	present	

distinct	 characteristics	 such	 as	 transcript	 organization,	 size,	 conservation,	 mode	 of	

translation,	amino	acid	usage	and	peptide	structure	properties.		

	

• Intergenic	 ORFs:	 They	 are	 small	 genomic	 sequences	 which	 occur	 mostly	 by	

random	nucleotide	permutation	in	regulatory	or	“junk”	DNA.	They	do	not	present	

transcription	or	translation	signals	(in	at	least	detectable	levels)	and	that	is	why	

they	are	mostly	considered	as	non-functional.	They	constitute	the	most	abundant	

category	corresponding	to	96%	of	the	total	smORFs	(Couso	and	Patraquim	2017).	

	

• Upstream	ORFs	(uORFs):	They	are	smORFs	located	in	the	5’	untranslated	regions	

(UTRs)	of	canonical	protein	coding	genes.	They	are	thought	to	have	a	regulating	

role	by	repressing	the	translation	of	their	downstream	ORF.	As	a	result,	uORFs	are	

often	depleted	from	regions	in	proximity	to	highly	expressed	coding	ORFs.	Their	

repressive	 effect	may	 occur	 by	 several	mechanisms	 such	 as	 ribosome	 stalling,	

inhibition	of	translation	re-initiation,	or	uORF	induced	nonsense-mediated	decay	

(Couso	 and	Patraquim	2017).	 Even	 though	 some	have	been	 shown	 to	 produce	

detectable	 polypeptides	 (Slavoff	 et	 al.	 2013),	 in	 general	 uORFs	 present	 low	

conservation	 levels	 and	 their	 amino	 acid	 usage	 is	 different	 from	 the	 one	 of	

canonical	 proteins.	 Consequently,	 only	 a	 small	 subset	 of	 the	 uORFs	 encoded	

peptides	are	expected	to	present	any	function	(Ruiz-Orera	and	Albà	2019b).	

	

• Long	noncoding	ORFs	(lncORFs):	They	are	smORFs	embedded	in	putative	long	

noncoding	RNAs	(lncRNAs).	Recently,	 it	has	been	found	that	many	lncRNAs	are	

likely	 to	 encode	 small	 proteins	 or	 peptides,	 however	 a	 considerable	 debate	

remains	about	whether	this	translation	is	productive.	Many	RNAs	initially	named	

as	 lncRNAs	 were	 later	 shown	 to	 translate	 peptides	 associated	 to	 organisms’	

development	and	physiology	(Couso	and	Patraquim	2017).	Even	though	lncRNAs	

do	not	 present	 high	 conservation	 levels,	 recently	Ruiz-Orera	 and	Albà	 (2019a)	

identified	289	mouse	 lncRNAs	which	shared	homology	with	human	 transcripts	
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indicating	that	they	are	likely	to	be	functionally	relevant.	These	transcripts	were	

enriched	 in	 translated	 lncORFs	 supporting	 that	 they	 are	 likely	 to	 encode	 small	

proteins.	

	

• Short	coding	sequences	(short	CDS):	They	are	short	protein	coding	ORFs	with	

transcripts	presenting	mRNA	characteristics	and	translation	efficiency	similar	to	

canonical	proteins.	Even	 though	hundreds	of	 them	exist	 in	vertebrate	genomes	

only	a	small	portion	has	been	functionally	characterized	(Couso	and	Patraquim	

2017).			

	

• Short	 isoforms:	They	 correspond	 to	 alternative	 transcripts	 or	 splice	 forms	 of	

longer,	 canonical	 protein-coding	 ORFs.	 Their	 identification	 is	 quite	 difficult	

because	it	relies	exclusively	on	experimental	data	from	proteomics	and	ribosome	

profiling	studies	(Couso	and	Patraquim	2017).	

	

	

1.5	Pervasive	expression	of	smORFs	and	genetic	novelty	

All	the	previously	mentioned	studies,	give	evidence	that	a	non-negligible	number	of	loci	

outside	of	the	well-defined	protein	coding	regions	in	bacteria	(Ndah	et	al.	2017;	Weaver	

Jeremy	et	al.	2019),	 fungi	 (Ingolia	et	al.	2009;	Wilson	and	Masel	2011;	Carvunis	et	al.	

2012),	animals	(Ingolia	et	al.	2011;	Chew	et	al.	2013;	Bazzini	et	al.	2014;	 Ingolia	et	al.	

2014;	Aspden	et	al.	2014;	Ruiz-Orera	et	al.	2018)	and	plants	(Hanada	et	al.	2007;	Hsu	et	

al.	2016),	are	transcribed	and	translated	in	a	pervasive	way,	leading	to	the	production	of	

numerous	small	proteins	in	the	cell.	 Interesting	questions	concerning	the	fate	of	these	

small	proteins	and	their	impact	on	the	cell	can	be	posed.	Indeed,	even	though	it	is	now	

clear	that	the	noncoding	genome	can	produce	a	large	number	of	peptides,	among	which	

some	of	them	have	been	shown	to	be	functional,	the	fraction	of	functional	peptides	among	

all	 the	 pervasively	 translated	 products	 remains	 unknown.	 Also,	 the	 evolutionary	

longevity	 of	 functional	 peptides	 is	 to	 be	 further	 investigated,	 along	 with	 their	

contribution	in	genome	and	proteome	evolution.	Indeed,	functional	peptides	have	been	

mostly	associated	to	functions	related	to	adaptation,	stress	response,	signal	transduction	

etc.	(Hemm	et	al.	2008;	Fozo	et	al.	2008;	Storz	et	al.	2014;	Orr	et	al.	2020).	One	can	ask	
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whether	these	peptides	will	be	short-lived	in	evolution	or	whether	they	will	be	fixed	and	

established	as	novel	 genes.	 Precisely,	 comparative	 genomics	 studies	over	 the	 last	 few	

years	 have	 revealed	 multiple	 examples	 of	 functional	 protein-coding	 genes	 with	 no	

homologs	 in	 other	 species	 which	 have	 emerged	 from	 previously	 noncoding	 regions,	

called	de	novo	genes	(Levine	et	al.	2006;	Cai	et	al.	2008;	Li	et	al.	2009b;	Knowles	and	

McLysaght	2009;	Li	et	al.	2010;	Murphy	and	McLysaght	2012;	Gubala	et	al.	2017;	Vakirlis	

et	al.	2018;	Zhang	et	al.	2019a).		

	

All	these	studies	show	that	the	so-called	noncoding	genome	is	an	important	reservoir	of	

small	 ORFs,	 which	 upon	 pervasive	 transcription	 and	 translation	 can	 produce	 an	

important	 number	 of	 small	 peptides	 in	 the	 cell’s	 cytosol.	 Nevertheless,	most	 of	 these	

peptides,	 if	 not	 deleterious	 for	 the	 cell,	 are	 expected	 to	 be	 short-lived	 and	 instantly	

degraded	 with	 not	 particular	 functionality.	 However,	 numerous	 examples	 show	 that	

sometimes	functional	novel	products	can	emerge	from	this	procedure.	All	these	results	

attribute	a	central	 role	 to	 the	noncoding	genome	 in	 the	emergence	of	genetic	novelty,	

which	upon	pervasive	translation	offers	the	raw	material	for	selection.	

	

	

1.6	De	novo	genes		

Nowadays,	the	increasing	number	of	sequenced	genomes	in	combination	with	the	rapid	

progress	of	bioinformatic	methods	for	sequence	comparison	have	led	to	the	expansion	of	

taxonomic	sampling	and	therefore	to	the	significant	advance	of	comparative	genomics	

(Schlötterer	 2015).	 Multiple	 studies	 have	 revealed	 the	 existence	 of	 numerous	 genes	

lacking	homologs	in	any	other	 lineage	(orphan	genes)	or	being	present	only	in	closely	

related	species	(taxonomically	restricted	genes	-TRGs)	(Tautz	and	Domazet-Lošo	2011;	

Schlötterer	 2015).	 These	 genes	 are	 thought	 to	 be	 particularly	 important	 for	 taxon-

specific	developmental	adaptations	and	 interactions	with	 the	environment	(Tautz	and	

Domazet-Lošo	 2011;	 Palmieri	 et	 al.	 2014).	 Even	 though	 up	 to	 one-third	 of	 the	 total	

genomes’	genes	are	TRGs	or	strictly	orphan,	their	evolutionary	origins	are	still	not	clear	

(Tautz	and	Domazet-Lošo	2011;	Palmieri	et	al.	2014).	Tautz	and	Domazet-Lošo	(2011)	

support	that	orphan	genes	could	emerge	in	a	genome	through	two	distinct	ways:	(i)	Gene	

duplication	followed	by	fast	divergence	to	a	point	that	the	homology	detection	tools	are	
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not	capable	of	capturing	the	similarity	signal	and	(ii)	de	novo	evolution	from	previously	

noncoding	regions.	

	

In	the	first	scenario	(Figure	1.2A),	the	orphan	gene	results	from	the	gene	duplication	or	

transposition	of	an	already	established	gene	and	the	fast	adaptive	evolution	of	this	gene	

copy	until	the	complete	loss	of	similarity	with	its	parent	sequence.	Alternative	versions	

of	this	scenario	such	as	transposon	insertions	in	the	protein	coding	ORF	or	“overprinting”	

(expression	of	alternative	ORFs	 that	overlap	pre-existing	genes)	are	also	possible	and	

could	 lead	 to	 the	 production	 of	 completely	 different	 proteins.	 In	 the	 second	 scenario	

(Figure	1.2B),	 random	mutations	occurring	on	 the	noncoding	genomic	 regions,	would	

form	 spurious	 cryptic	 functional	 sites	 (i.e.,	 transcription	 initiation	 regions	 or	

polyadenylation	 sites)	 which	 could	 lead	 to	 the	 regulated	 transcription	 of	 an	 RNA	

molecule.	This	RNA	could	either	have	a	structural	role	(like	numerous	lncRNAs)	or	could	

eventually	 acquire	 a	 functional	 ORF	 capable	 of	 coding	 for	 a	 new	 protein	 (Tautz	 and	

Domazet-Lošo	2011).		

	

	

	

A

B
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Figure	1.2.	(A)	Duplication	and	fast	divergence	model	for	orphan	gene	evolution.	Once	the	gene	A	is	

duplicated,	the	one	copy	is	free	to	diverge	with	a	neutral	rate	accumulating	random	mutations	(upper	part,	

red).	The	freely	diverging	copy	could	assume	a	new	function	and	would	go	through	an	adaptive	phase	in	

the	respective	lineage	(species	2,	3	and	4).	It	would	diverge	to	a	point	that	no	homology	with	its	parent	

gene	A	would	be	detectable	and	would	thus	become	an	orphan	gene.	(B)	De	novo	evolution	model	for	

orphan	genes.	This	example	is	modelled	according	to	a	real	case	in	mice	and	corresponds	to	a	functional	

gene	that	evolved	out	of	a	noncoding	sequence.	Different	functional	sites	of	the	gene	are	presented	such	as	

an	upstream	regulatory	element	before	the	Exon	1,	the	transcriptional	start	site	(arrow),	the	exon	junctions	

(in	capitals)	and	a	polyadenylation	signal	at	the	end	of	the	Exon	3.	The	total	ORF	of	the	gene	is	functional	

only	for	the	species	1	and	2	(contain	only	green	boxes)	while	for	outgroup	species	(species	3	to	7)	at	least	

one	element	is	missing	(pink	boxes).	Both	figures	were	extracted	by	the	study	Tautz	and	Domazet-Lošo	

(2011)	with	title	“The	evolutionary	origin	of	orphan	genes”.	

	

	

De	novo	genes	arise	from	DNA	sequences	that	were	ancestrally	non-genic	(Van	Oss	and	

Carvunis	 2019).	 Some	 of	 their	 principal	 characteristics	 are	 their	 shorter	 ORFs,	 fewer	

exons,	 lower	 expression	 levels	 and	 similar	 codon	 usage	 compared	 to	 CDS	 sequences	

(Tautz	and	Domazet-Lošo	2011;	Schlötterer	2015;	Van	Oss	and	Carvunis	2019).	They	are	

found	to	evolve	more	rapidly	than	established	genes	and	present	tissue-specific	(brain	

and	testis)	or	condition-specific	(under	stress)	expression	(Levine	et	al.	2006;	Ingolia	et	

al.	2011;	Ruiz-Orera	and	Albà	2019b).	For	many	years,	the	de	novo	gene	emergence	from	

previously	noncoding	DNA	sequences	constituted	a	rarely	observed	event	and	was	not	

considered	as	a	potential	evolutionary	process	of	gene	birth	(Jacob	1977;	Siepel	2009;	

Ohno	 2013;	 Zhang	 et	 al.	 2019b).	 Susumu	 Ohno,	 in	 his	 book	 “Evolution	 by	 gene	

duplication”	(Ohno	2013)	supports	that	all	new	genes	arise	from	already	existing	ones	

while	Francois	Jacob	claimed	that	“the	probability	that	a	functional	protein	would	appear	

de	novo	by	random	association	of	amino	acid	is	practically	zero”	(Jacob	1977).	However,	

de	novo	emergence	from	noncoding	regions	has	now	been	proven	to	be	an	undeniable	

additional	mechanism	and	studies	reporting	evidence	of	de	novo	gene	birth	are	published	

every	 year,	 thereby	 giving	 a	new	 role	 to	noncoding	 regions	 in	 the	 creation	of	 genetic	

novelty	(Levine	et	al.	2006;	Cai	et	al.	2008;	Knowles	and	McLysaght	2009;	Murphy	and	

McLysaght	2012;	Carvunis	et	al.	2012;	Schlötterer	2015;	Gubala	et	al.	2017;	Zhang	et	al.	

2019a;	 Heames	 et	 al.	 2020;	 Bornberg-Bauer	 et	 al.	 2021).	 De	 novo	 genes	 have	 been	

detected	in	diverse	organisms	such	as	S.	cerevisiae	(Cai	et	al.	2008;	Bungard	et	al.	2017),	

A.	thaliana	(Li	et	al.	2016),	D.	melanogaster	(Levine	et	al.	2006),	M.	musculus	(Murphy	and	
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McLysaght	2012)	and	H.	sapiens	(Knowles	and	McLysaght	2009).	Notably,	a	pioneering	

study	of	Levine	et	al.	(2006)	conducted	in	D.	melanogaster,	identified	five	novel	genes	that	

have	derived	 from	ancestrally	noncoding	 sequences.	Their	 experimental	 results	 show	

significant	amounts	of	noncoding	DNA	transcription	though	at	a	low	level	supporting	that	

noncanonical	 transcription	 could	 occasionally	 be	 beneficial,	 resulting	 in	 the	

“recruitment”	of	noncoding	DNA	into	novel	function	and	consequently	into	de	novo	gene	

evolution.	

	

	

1.7	Detection	and	validation	of	de	novo	genes	

The	numbers	of	detected	de	novo	genes	vary	significantly	among	the	different	studies	

due	 to	 differences	 in	 the	 search	 strategies.	 As	 a	 matter	 of	 fact,	 there	 are	 significant	

challenges	 concerning	 not	 only	 the	 accurate	 detection	 of	 novel	 genes	 but	 also	 the	

validation	 of	 their	 actual	 de	 novo	 emergence	 from	 previously	 noncoding	 sequences	

(McLysaght	and	Guerzoni	2015).	

	

1.7.1	Detection	of	de	novo	genes		

(i)	Genomic	phylostratigraphy:	 Genomic	 phylostratigraphy	 is	 a	 sequence	 similarity-

based	 method	 that	 permits	 the	 relative	 dating	 of	 every	 gene	 of	 a	 given	 organism.	

Practically,	it	involves	the	detection	of	all	homologous	sequences	for	a	given	gene	(using	

either	 sequence-based	 or	 more	 sensitive	 profile-based	 detection	 methods)	 and	 the	

identification	of	the	most	distantly	related	species	in	which	a	homolog	is	detected.	Based	

on	 a	 predetermined	 phylogeny,	 it	 becomes	 possible	 to	 assign	 a	 relative	 “age”	 (or	

“genomic	phylostrata”)	to	every	single	species	of	the	tree	and	as	a	result	localize	and	date	

the	first	evidence	of	existence	of	every	single	gene	of	an	organism	of	interest.	In	the	case	

that	 a	 gene	 lacks	 any	 detectable	 homolog	 outside	 its	 own	 genome	 or	 closely	 related	

species,	it	can	be	considered	taxonomically	restricted	or	orphan	gene,	having	emerged	de	

novo	or	not.	It	becomes	evident	that	the	accuracy	of	this	method	depends	directly	on	the	

selection	of	the	species	to	be	compared,	the	quality	of	their	annotation	and	their	relative	

evolutionary	 relationships	 (Van	 Oss	 and	 Carvunis	 2019).	 Talking	 specifically	 about	

Saccharomyces	cerevisiae,	 the	studies	conducted	by	Carvunis	et	al.	(2012)	and	Wu	and	

Knudson	(2018)	constitute	the	two	major	genomic	phylostratigraphy	analyses	that	tried	
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to	detect	de	novo	genes	by	comparing	the	homology	of	S.	cerevisiae	ORFs	with	multiple	

neighboring	yeast	species.	

	

	

Figure	1.3.	Schematical	 representation	of	 the	genomic	phylostratigraphy	method	permitting	 the	

relative	dating	of	every	gene	for	a	given	organism.	In	this	quite	simplified	example,	the	human	is	the	

reference	organism	for	the	relative	dating	of	a	subset	of	its	20	genes.	Using	homology	detection	methods,	

we	 assign	 the	 presence	 (filled	 circle)	 or	 the	 absence	 (empty	 box)	 of	 the	 20	 genes	 of	 interest	 in	 the	 5	

neighboring	species	selected	to	be	compared.	We	can	observe	that	there	are	genes	(1	to	4,	highlighted	in	

yellow)	which	are	present	in	all	the	organisms	studied	and	correspond	to	ancient	genes.	The	genes	5	and	6	

(highlighted	in	pink)	are	detected	in	all	organisms	except	the	yeast	meaning	that	they	correspond	to	genes	

specific	to	mammalian	organisms.	The	genes	10	to	12	(highlighted	in	blue)	correspond	to	genes	specific	to	

Hominidae	 etc.	 It	 can	be	 observed	 that	 the	 genes	16	 to	 20	 (highlighted	 in	 orange)	 do	not	 present	 any	

homolog	in	any	other	linage	meaning	that	these	genes	are	Orphan	or	Taxonomically	Restricted	Genes	of	

the	human.	

	

	

(ii)	 Synteny-based	 approaches:	 These	 methods	 permit	 the	 identification	 of	 the	

nongenic	 ancestors	 of	 candidate	 de	 novo	 genes	 through	 the	 detection	 of	 their	

homologous	noncoding	sequences	 in	other	species	using	syntenic	sequences.	Syntenic	

sequences	are	genomic	regions	in	which	the	order	and	the	relative	positions	of	genomic	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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elements	(i.e.,	genes,	k-mers	or	exons)	which	play	the	role	of	anchoring	“markers”	have	

been	 maintained	 during	 evolution.	 These	 methods	 offer	 a	 more	 accurate	 way	 for	

validating	the	de	novo	emergence	of	a	gene	and	notably	differentiate	it	from	an	orphan	

gene	by	detecting	specifically	its	homologous	noncoding	region.	One	major	limitation	of	

these	 methods	 is	 the	 fact	 that	 synteny	 does	 not	 stay	 detectable	 for	 long	 timescales	

especially	 in	 lineages	with	 high	 rates	 of	 chromosomal	 rearrangements.	 In	 addition,	 it	

becomes	 evident	 that	 these	 methods	 demand	 high-quality	 sequenced	 genomes	 with	

fewer	fragments	(Van	Oss	and	Carvunis	2019).	Notably,	Vakirlis	et	al.	(2018),	Lu	et	al.	

(2017)	 and	Vakirlis	 et	 al.	 (2020b)	 have	 used	 syntenic	 regions	 alignments	 in	 order	 to	

detect	S.	cerevisiae	de	novo	genes	localized	into	orthologous	intergenic	regions.	

	

	

Figure	 1.4.	 Schematical	 representation	 of	 the	 de	 novo	 gene	 detection	 with	 syntenic	 regions	

alignment.	In	this	simplified	example,	the	gene	of	interest	is	highlighted	in	black	and	the	other	four	genes	

(two	upstream	and	two	downstream	of	the	black	gene)	constitute	the	anchoring	markers.	We	can	observe	

that	 grace	 to	 the	 relative	 positioning	 of	 the	 four	 anchoring	 genes	 we	 are	 capable	 at	 detecting	 the	

orthologous	noncoding	intergenic	region	of	the	black	human	gene	to	its	closest	neighbors	(presented	in	

grey)	and	validating	the	de	novo	emergence	of	this	orphan	gene.	Is	important	to	highlight	the	subtility	of	

this	technique	by	mentioning	that	the	four	anchor	genes	detected	their	homologs	in	the	yeast	genome	but	
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their	 relative	 positioning	 was	 lost	 (synteny	 rupture)	 making	 impossible	 to	 detect	 the	 orthologous	

intergenic	region	of	the	black	gene.	

	

	

Vakirlis	and	McLysaght	(2019)	developed	a	standardized	method	using	synteny-based	

approaches	in	combination	with	homology	searches	in	an	attempt	to	propose	a	strategy	

for	more	accurate	de	novo	genes	identification.	

	

	

1.7.2	Validation	of	a	de	novo	gene		

Even	if	the	detection	of	de	novo	emerging	orphan	sequences	is	a	difficult	task,	it	is	not	

sufficient	to	support	the	existence	of	a	newly	evolved	gene.	That	is	because	the	notion	of	

gene	is	usually	related	to	the	notion	of	function	and	consequently,	every	gene	is	expected	

to	code	 for	a	 functional	product	(Van	Oss	and	Carvunis	2019).	As	a	result,	 in	order	 to	

validate	that	the	detected	de	novo	sequence	is	indeed	a	novel	gene,	experimental	proof	

of	its	functional	role	in	the	organism	is	necessary.	The	first	step	towards	investigating	the	

functionality	of	 the	novel	 sequence,	 can	be	 the	validation	of	 gene	expression	patterns	

under	 normal	 or	 stress	 conditions.	 Multiple	 studies	 have	 shown	 that	 de	 novo	 genes	

present	 low	 expression	 rates	 which	 most	 of	 the	 time	 are	 detected	 under	 specific	

environmental	 conditions	 (Schlötterer	 2015).	 The	 expression	 of	 a	 novel	 gene	 can	 be	

verified	at	multiple	levels	such	as	the	transcription	(with	RNA-seq),	the	translation	(with	

Ribo-seq)	or	even	the	detection	of	a	final	protein	product	(with	MS	or	western	blotting)	

(Van	Oss	and	Carvunis	2019).	Once	the	expression	of	the	novel	gene	is	verified,	then	its	

functional	 role	 in	 the	 organism	 must	 also	 be	 tested,	 through	 genetic	 approaches	 of	

overexpression	 or	 gene	 disruption	 and	 analysis	 of	 their	 impact	 to	 the	 organism’s	

phenotype	or	fitness	(Kellis	et	al.	2014;	Zhao	et	al.	2014;	Vakirlis	et	al.	2020a).	

	

On	the	other	hand,	evolutionary	approaches	can	also	support	the	functionality	of	novel	

genes	based	on	the	fact	that	functional	genes	are	subjected	to	purifying	selection	which	

operates	against	deleterious	mutations	in	order	to	maintain	their	function	(Van	Oss	and	

Carvunis	2019).	As	a	result,	functional	genes	tend	to	present	lower	frequencies	of	these	

deleterious	mutations	as	they	mostly	tend	to	conserve	their	protein	sequence	intact.	To	

do	so,	 the	purifying	selection	 favors	mostly	nucleotide	mutations	that	do	not	alter	 the	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 22	

gene’s	protein	sequence	by	selecting	synonymous	(mutations	that	result	to	an	alternative	

codon	which	codes	for	the	same	amino	acid)	rather	than	non-synonymous	(mutations	

that	 result	 to	 an	 alternative	 codon	 which	 codes	 for	 a	 different	 amino	 acid)	 codon	

nucleotide	substitutions	(Yang	and	Nielsen	2000).	The	ratio	of	the	frequencies	of	these	

two	substitution	events	(dN/dS)	is	indicative	for	the	selection	type	exerted	on	the	gene	

of	question.	 In	the	neutral	scenario	of	a	sequence	which	presents	no	functionality	and	

mutates	 randomly,	 we	 can	 anticipate	 similar	 frequencies	 of	 synonymous	 and	 non-

synonymous	 substitutions	 and	 consequently	 a	 dN/dS	 ratio	 around	 the	 value	 1.	 In	

contrast,	a	functional	gene	under	purifying	(or	negative)	selection	would	present	a	dN/dS	

ratio	value	less	than	1	while	the	opposite	is	true	for	genes	under	positive	selection	(Yang	

and	Nielsen	2000).		

	

Nevertheless,	validating	the	de	novo	emergence	of	an	orphan	sequence	requires	not	only	

proving	 the	 functionality	of	 the	novel	 gene,	but	 also	 the	 lack	of	 functionality	 for	 their	

evolutionary	antecedents	(Siepel	2009).	While	determining	biological	 function	may	be	

difficult,	 proving	 lack	 of	 function	 is	 even	 harder	 (Gerstein	 et	 al.	 2007).	 Detection	 of	

disabling	mutations	(absent	start	codons,	premature	stop	codons	or	frameshift	indels)	in	

the	orthologous	 intergenic	 sequences	of	 neighboring	 species	 could	 constitute	 indirect	

evidence	of	lack	of	functionality	(Siepel	2009).		

	

	

1.8	Examples	of	de	novo	emerged	genes	

Together	with	the	above-mentioned	work	of	Levine	et	al.	(2006),	Knowles	and	McLysaght	

(2009)	was	one	of	the	first	studies	that	identified	de	novo	emerging	genes	in	the	human	

genome.	Starting	with	a	set	of	644	human	genes	absent	from	the	chimpanzee	genome	and	

applying	various	filters	proving	genes’	functionality	(i.e.,	mRNA	and	protein	expression)	

they	identified	three	candidate	human	de	novo	genes.	Using	syntenic	alignments	with	the	

chimp	and	macaque	genomes,	they	detected	disabling	mutations	(indels	leading	to	frame	

shifts	or	premature	termination)	suggesting	the	 lack	of	 functionality	 in	 the	chimp	and	

macaque	orthologs	while	enforcing	the	de	novo	emergence	of	these	three	genes	(Knowles	

and	McLysaght	2009;	Siepel	2009).	Two	years	later,	Wu	et	al.	(2011)	following	a	similar	

protocol	but	with	more	enriched	gene	expression	databases,	identified	60	de	novo	human	

genes.	Murphy	and	McLysaght	(2012),	following	the	same	method,	proposed	69	de	novo	
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candidates	in	the	mouse.	However,	they	were	able	to	identify	the	orthologous	noncoding	

sequence	in	rat,	guinea	pig	and	human	only	for	11	of	them.	For	7	out	of	the	11	cases,	they	

were	able	to	detect	the	mutational	events	that	led	to	birth	of	the	de	novo	ORF	while	for	

the	remaining	4	cases	 the	 transition	 from	noncoding	 to	ORF	was	 less	clear.	The	same	

detection	protocol	combined	with	a	logistic	regression	model	predicting	the	codability	of	

the	novel	ORFs	were	used	by	Vakirlis	et	al.	(2018)	enabling	them	to	propose	30	de	novo	

candidate	genes	in	Saccharomyces	cerevisiae.	Recently,	Zhang	et	al.	(2019)	identified	at	

least	 157	 de	 novo	 ORFs	 in	 Oryza	 sativa	 with	 verified	 recent	 ancestral	 noncoding	

sequences	and	evidence	of	translation	for	57%	of	them.	Prabh	and	Rödelsperger	(2019)	

identified	2	de	novo	genes	 in	Pristionchus	nematodes	with	 transcription	evidence	and	

premature	STOP	codons	in	orthologous	sequences	while	Zhou	et	al.	(2008)	detected	2	de	

novo	 genes	 in	D.	melanogaster	with	 transcription	 evidence	matching	with	 noncoding	

regions	to	neighboring	species.	Progress	in	comparative	genomics	and	Next	Generation	

Sequencing	(NGS)	have	enabled	the	detection	of	hundreds	of	de	novo	genes	in	multiple	

studies,	 thus	 providing	 the	 community	 with	 large	 and	 well	 annotated	 datasets	 for	

investigating	the	mechanism	underlying	the	emergence	of	de	novo	genes.	Despite	all	the	

effort,	many	of	these	studies	lack	evidence	for	the	origination	from	a	noncoding	ancestral	

sequence	in	their	reported	cases.	

	

The	methods	 for	 the	detection	of	de	novo	genes	have	become	more	accurate	with	 the	

years	and	have	permitted	the	identification	of	many	novel	genes,	in	different	organisms,	

bearing	proof	of	their	noncoding	origins.	However,	the	mechanism	behind	the	emergence	

of	de	novo	genes	stays	unclear	until	today.	As	it	has	already	been	discussed,	experimental	

evidence	(RNA	sequencing	and	Ribosome	Profiling)	support	that	the	eukaryotic	genomes	

are	largely	transcribed	and	translated	in	a	pervasive	way,	 leading	to	the	expression	of	

numerous	 unannotated	 intergenic	 ORFs	 (IGORFs)	 or	 annotated	 as	 lncRNA	 ORFs	

(lncORFs).	Furthermore,	mass	spectrometry	experiments	confirm	the	existence	of	many	

of	these	translation	products	in	the	cell	with	the	identification	of	hundreds	of	peptides	

derived	from	noncoding	regions.	All	these	results	attribute	a	central	role	to	the	so-called	

noncoding	genome	in	the	emergence	of	genetic	novelty,	which	upon	pervasive	translation	

offers	the	raw	material	for	selection.	This	pervasive	expression	of	intergenic	regions	has	

constituted	 the	basis	 for	various	 theoretical	models	proposed	to	describe	 the	de	novo	

birth	of	genes.	
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1.9	Models	for	de	novo	genes	birth	

Multiple	models,	 not	 necessarily	 exclusive	 the	 one	 to	 the	 other,	 have	 been	 proposed	

trying	to	explain	the	mechanism	behind	the	emergence	of	de	novo	genes.	In	his	study,	

Schlöterer	 (2015)	 supported	 that	 the	 birth	 of	 a	 de	 novo	 gene	 coding	 for	 a	 functional	

protein	implicates	two	distinct	steps:	the	establishment	of	a	regulated	transcription	and	

the	 acquisition	 of	 an	 ORF.	 The	 order	 of	 these	 two	 events	 is	 not	 clear,	 permitting	 to	

propose	two	different	but	equally	possible	models.	The	ORF	first	model	stipulates	that	

the	emergence	of	a	long	de	novo	ORF	precedes	the	one	of	its	promoter	region	and	that	

multiple	 ORFs	 exist	 in	 the	 genomes	 “awaiting”	 the	 establishment	 of	 their	 regulation	

(Figure	1.5A).	On	the	other	hand,	the	transcription	first	model	relies	on	the	observation	

that	genomes	can	be	pervasively	transcribed	and	stipulates	that	previously	transcribed	

(and	actively	translated	into	short	peptides)	smORFs,	can	be	subject	to	selection	while	

acquisition	 of	 mutations,	 such	 as	 stop	 codon	mutations,	 could	make	 them	 grow	 into	

functional	de	novo	genes	through	combination	with	neighboring	smORFs	(figure	1.5B).	

	

	

Figure	1.5.	(A)	ORF	first	model.	A	fully	functional	ORF	is	present	but	not	expressed	due	to	the	lack	of	

regulatory	 signals.	Once	a	 functional	 transcription	 factor	binding	 site	 is	 generated	 inside	 the	promoter	

region,	 the	 de	 novo	 gene	 is	 expressed	 and	 translated.	 (B)	 Transcription	 first	 model.	 Several	 short	

peptides	 are	 expressed	 from	 different	 smORFs.	 During	 evolution	 and	 through	 the	 acquisition	 of	 new	

mutations	the	smORFs	are	combined	into	a	longer	protein	coding	de	novo	gene.	Both	figures	were	extracted	

by	the	study	Schlöterer	(2015)	with	title	“Genes	from	scratch	–	the	evolutionary	fate	of	de	novo	genes”		

	

	

A B

ORF first Transcription first
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As	a	matter	of	fact,	the	transcription	first	model	supports	that	de	novo	proteins	emerge	

and	further	elongate	through	the	combination	of	multiple	consecutive	smORFs	each	one	

capable	to	code	for	different	short	peptides.		

	

This	model	 is	 in	 line	with	another	potential	mechanism	of	de	novo	gene	birth	(named	

“grow	slow	and	moult”)	which	is	specific	to	protein-coding	genes	(Bornberg-Bauer	et	al.	

2015).	Based	on	this	model,	protein-coding	ORFs	could	eventually	expand	their	ends	via	

occasional	and	later	more	constitutive	read-through	translation	leading	to	the	expression	

of	novel	N-	and	C-terminal	domains.	These	novel	domains	may	be	well	integrated	in	the	

preexisting	protein	structure	and/or	further	be	refined	by	selection	potentially	offering	

novel	functions	to	the	old	protein.	Additionally,	sequences	encoding	these	novel	domains	

could	eventually	separate	by	their	hosting	ORF	leading	to	the	creation	of	a	de	novo	gene	

(Bornberg-Bauer	et	al.	2015;	Van	Oss	and	Carvunis	2019).	This	model	is	supported	by	

studies	conducted	on	yeast	and	fly	proteins,	reporting	that	the	vast	majority	of	proteins’	

orphan	domains	are	found	to	be	located	at	the	protein	termini	and	therefore	suggest	that	

these	orphans	have	been	created	by	mutations	affecting	the	start	or	stop	codons	of	the	

preexisting	 proteins	 (Ekman	 and	 Elofsson	 2010;	 Bitard-Feildel	 et	 al.	 2015).	 These	

observations	pose	an	interesting	question	about	to	which	extent,	these	orphan	domains	

could	have	emerged	from	noncoding	regions,	thus	attributing	a	new	role	to	the	noncoding	

genome	as	a	reservoir	of	novel	structural	domains	which	can	be	grafted	on	preexisting	

proteins	through	termini	extension.	It	reminds	an	interesting	study	published	in	2015	by	

Alva	et	al.	reporting	the	identification	of	40	ancestral	protein	fragments	sharing	remote	

homology	 while	 occurring	 in	 non-homologous	 domains	 (Alva	 et	 al.	 2015).	 These	

fragments	are	widespread	in	the	most	ancient	folds	and	may	correspond	to	the	vestiges	

of	a	primordial	RNA-peptide	world.	Nevertheless,	these	ancestral	peptides	presented	a	

wide	 diversity	 of	 amino	 acid	 sequences	 showing	 that	 essentially	 every	 one	 of	 these	

peptide	structures	can	be	formed	by	a	broad	range	of	different	sequences.	Their	results	

support	that	the	emergence	of	protein	domains,	and	therefore	proteins,	might	have	occur	

by	the	repetition,	fusion	and	accretion	of	these	(and	other	similar)	ancestral	peptides.	A	

question	 that	 arises	 is	 to	 which	 extend,	 these	 peptides	 extracted	 by	 evolutionary	

established	proteins	but	encoded	by	a	broad	range	of	amino	acid	sequences	could	also	be	

hosted	by	the	unevolved	noncoding	sequences,	 thus	supporting	a	potential	role	of	 the	

noncoding	genome	to	the	structural	diversity	of	the	proteins.	
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In	 addition	 to	 these	 models,	 two	 other	 theories	 focusing	 mostly	 to	 the	 structural	

properties	 of	 the	 de	 novo	 genes	 have	 been	 proposed	 in	 order	 to	 speculate	 how	 a	

noncoding	sequence	can	be	transformed	into	a	protein	coding	gene.	The	first	one	is	the	

“continuum”	 theory	 which	 supports	 the	 existence	 of	 translated	 intermediate	 stages	

between	non-genes	and	genes,	called	proto-genes	(Carvunis	et	al.	2012).	The	later	are	

immature	gene-like	sequences	which	can	either	evolve	towards	de	novo	genes	or	return	

to	their	ancestral	noncoding	state.	The	second	one	is	the	“preadaptation”	theory	which	

supports	that	a	novel	gene	could	emerge	from	a	noncoding	region	only	through	an	“all-

or-nothing”	transition	to	functionality	(Wilson	et	al.	2017).	This	means	that	de	novo	genes	

can	occur	only	from	sequences	that	have	been	already	pre-adapted	to	not	give	birth	to	a	

harmful	product.	

	

In	more	details,	the	“continuum”	model	is	based	on	the	hypothesis	that	genes	originated	

de	 novo	 could	 initially	 present	 simple	 characteristics	 and	 gradually	 become	 more	

complex	over	evolutionary	time.	The	authors	introduced	the	notion	of	proto-genes	which	

correspond	to	intermediate	and	reversible	stages	of	de	novo	gene	birth,	mirroring	the	

well-described	pseudo-genes	stages	of	gene	death.	In	fact,	genes	are	thought	to	emerge	

de	 novo	 when	 non-genic	 sequences	 become	 transcribed,	 acquire	 ORFs	 and	 the	

corresponding	 non-genic	 transcripts	 access	 the	 translation	 machinery.	 Using	 a	

phylostratigraphy-based	method,	Carvunis	et	al.	(2012)	classified	all	the	annotated	ORFs	

of	Saccharomyces	cerevisiae	 into	10	groups	based	on	their	conservation	(Figure	1.6A).	

12%	 of	 them	were	 found	 only	 in	 Saccharomyces	 sensu	 stricto	 species	 (mentioned	 as	

ORF[1-4])	presenting	weaker	conservation	signals	thus	supporting	their	recent	emergence	

and	 their	 characterization	 as	proto-genes.	The	 remaining	88%	of	 the	 annotated	ORFs	

(mentioned	 as	 ORF[5-10])	 corresponded	 to	well	 characterized	 genes	 presenting	 strong	

conservation	 signals.	 In	 addition	 to	 the	 annotated	 ORFs,	 they	 also	 extracted	 all	 the	

unannotated	intergenic	ORFs	of	more	than	30	nucleotides	and	free	from	overlap	with	any	

annotated	 feature	 on	 the	 same	 strand	 (~108.000	 ORFs).	 These	 unannotated	 ORFs	

(mentioned	as	ORF[0]),	were	specific	only	to	Saccharomyces	cerevisiae	and	corresponded	

to	noncoding	ORFs,	a	subset	of	which	could	correspond	to	initial	proto-gene	candidates	

with	no	conservation.	They	observed	that	ORF[1-4]	presented	intermediate	frequencies	of	

amino	acids	between	those	of	ORF[5-10]-encoded	proteins	and	the	theoretical	translation	
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products	 of	 the	 ORF[0]	 category.	 More	 precisely,	 comparison	 between	 the	 ORF[1-4]-

encoded	proteins	and	ORF[0]-encoded	peptides	did	not	present	any	significant	difference	

in	frequencies	of	strong	hydrophobic	residues	(M,I,L,F,W,Y,V).	However,	this	was	not	the	

case	when	they	were	compared	with	the	ORF[5-10]-encoded	proteins	where	the	younger	

ORF[1-4]-encoded	proteins	seem	to	be	enriched	in	hydrophobic	residues	than	the	older	

yeast	proteins	(figure	1.6B).	This	higher	hydropathicity	of	ORF[1-4]-encoded	proteins	was	

in	accordance	with	their	higher	tendency	to	form	transmembrane	regions	and	their	lower	

propensity	for	intrinsic	structural	disorder	in	comparison	with	their	older	counterparts	

(Figure	1.6C).	

	

Using	ribosome	profiling	data,	 they	identified	1891	young	ORFs	(1139	ORF[0]	and	752	

ORF[1-4])	with	evidence	of	translation.	Comparing	synonymous	against	non-synonymous	

mutations	of	these	young	translated	ORFs,	they	concluded	that	the	majority	of	them	did	

not	present	significant	deviation	from	neutral	evolution.	However,	the	fraction	of	young	

ORFs	under	purifying	 selection	was	 increasing	with	 the	 conservation	 level	permitting	

them	 to	 propose	 the	 continuum	 model	 in	 which	 young	 ORFs	 (proto-genes),	 upon	

pervasive	translation,	can	occasionally	acquire	adaptive	functions	and	then	be	retained	

and	 established	 as	 novel	 genes	 by	 natural	 selection.	 This	 continuum	 was	 further	

supported	by	the	identification	of	transcription	factors	(TF)	suggesting	ORFs’	regulation.	

It	was	found	that	young	proto-genes	(ORF[1-4])	seem	to	be	regulated	by	several	TFs	and	

that	 the	 TFs’	 number	 increases	 with	 the	 conservation	 level,	 indicating	 the	 ORF’s	

integration	into	larger	regulatory	networks	(Abrusán	2013).		
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Figure	1.6.	(A)	Phylostratigraphy	protocol	used	by	Carvunis	et	al.	(2012)	permitting	to	assign	conservation	

levels	to	S.	cerevisiae	ORFs.	Conservation	levels	of	annotated	ORFs	were	assigned	based	on	the	phylogenetic	

tree,	 by	 inferring	 their	 presence	 (filled	 circles)	 or	 absence	 (open	 circles)	 in	 the	 different	 species.	

Unannotated	intergenic	ORFs	were	assigned	to	conservation	level	0.	Unannotated	ORFs	(level	0)	together	

with	 young	 annotated	 Saccharomyces	 sensu	 stricto	 ORFs	 (levels	 1-4)	 correspond	 to	 initial	 proto-gene	

candidates.	Top	right,	number	of	ORFs	assigned	to	each	conservation	level	(logarithmic	scale).	(B)	Amino	

acids	frequency	shift	with	increasing	conservation	level.	For	both	lines	as	reference	amino	acid	frequency	

was	taken	the	one	of	the	ORFs[1-4]	and	was	compared	with	the	frequency	of	each	amino	acid	in	ORFs[0]	(black	

line)	and	 in	ORFs[5-10]	 (grey	 line).	Values	higher	 than	1	 indicate	amino	acids	enriched	 in	ORFs[1-4]	while	

values	 lower	 than	 1	 indicate	 amino	 acids	 depleted	 in	 ORFs[1-4]	 and	 enriched	 in	 ORFs[0]	 or	 ORFs[5-10],	

respectively.	 (C)	Average	hydropathicity	 (top),	 average	 fraction	of	ORFs	predicted	as	TM	 (middle)	 and	

average	 fraction	of	ORFs	predicted	as	disordered	 (bottom)	per	 conservation	 level.	All	 the	 figures	were	

extracted	by	the	study	Carvunis	et	al.	(2012)	with	title	“Proto-genes	and	de	novo	gene	birth”.	

	

A

B C
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Recently	 Vakirlis	 et	 al.	 (2020a)	 proposed	 the	 TM-first	 (transmembrane-first)	 model	

which	constitutes	a	 complementary	version	of	 the	proto-genes	 theory.	They	observed	

that	adaptive	incipient	proto-genes	with	transmembrane	domains	are	more	likely	to	be	

beneficial	for	the	cell	(increase	fitness)	than	non-transmembrane	ones.	They	speculate	

that	 the	membrane	 environment	 can	 provide	 a	 safe	 niche	 for	 transmembrane	 proto-

genes,	 protecting	 them	 from	 proteasome-mediated	 degradation	 and	 preventing	

deleterious	non-specific	interactions	in	the	cytoplasm.	

	

Notably,	they	classified	all	the	annotated	sequences	of	Saccharomyces	cerevisiae	in	two	

groups:	(i)	de	novo	emerging	ORFs	identified	using	a	combination	of	phylostratigraphy	

and	syntenic	alignments	and	(ii)	established	ORFs	coding	for	useful	protein	products.	

The	emerging	ORFs	did	not	present	evidence	of	 canonical	protein-coding	genes	while	

their	 disruption	 seemed	 to	 be	 inconsequential	 for	 the	 survival	 of	 yeast	 cells.	 They	

conducted	an	overexpression	 screening	analysis	 in	order	 to	detect	 adaptive	emerging	

ORFs	 that	 increased	 relative	 fitness	 upon	 increased	 expression.	 Testing	 five	 different	

environments	of	varying	nitrogen	and	carbon	composition	they	 identified	28	adaptive	

emerging	 ORFs	 that	 increased	 relative	 fitness	 in	 at	 least	 one	 environment.	 These	 28	

adaptive	ORFs	presented	high	thymine	content	accompanied	by	high	propensity	to	form	

transmembrane	domains.	

	

In	fact,	the	TM-model	constitutes	a	more	specific	version	of	the	proto-genes	model	which	

supports	 that	 thymine-rich	 intergenic	 sequences	 are	 capable	 of	 generating	 a	 diverse	

reservoir	 of	 novel	 peptides	 with	 high	 transmembrane	 domains	 propensity.	

Transmembrane	 emerging	 peptides	 were	 shown	 to	 be	 beneficial	 for	 the	 cell	 as	 they	

increased	the	relative	fitness	of	the	organism.	Upon	acquisition	of	translation	and	under	

the	effect	of	adaptive	change,	these	transmembrane	peptides	could	evolve	towards	more	

genuine	 transmembrane	 proteins.	 However,	 this	 model	 is	 mostly	 based	 on	

overexpression	screening	results,	and	it	should	be	mentioned	that	high	expression	levels	

of	adaptive	peptides	may	never	occur	in	canonical	growth	or	even	in	natural	environment	

conditions.	

	

On	 the	 other	 hand,	 contrary	 to	 the	 proto-gene	model	 (and	 consequently	 the	 TM-first	

model),	the	preadaptation	model	supports	that	recently	emerged	genes	are	expected	to	
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display	exaggerated	genic	features,	rather	than	features	intermediate	between	non	genic	

and	 genic	 sequences	 (Wilson	 et	 al.	 2017;	 Van	 Oss	 and	 Carvunis	 2019).	 According	 to	

Wilson	et	al.	(2017),	novel	genes	are	only	born	from	sequences	that	happen	to	be	pre-

adapted,	 not	 to	 be	 harmful	 for	 the	 cell.	 Such	 non-harmful	 sequences	 are	 soluble	

sequences,	with	high	intrinsic	disorder	propensity,	permitting	them	to	avoid	deleterious	

non-specific	aggregation	in	the	aqueous	cellular	environment.	

	

Analyzing	mouse	 and	 yeast	 genes,	 they	 showed	 that	 younger	 genes	 are	 predicted	 to	

present	higher	propensity	for	intrinsic	disorder	compared	with	their	older	counterparts	

and	 random	 non-genic	 sequences	 as	 well	 (Wilson	 et	 al.	 2017).	 This	 higher	 disorder	

propensity	 of	 young	 genes	 was	 initially	 attributed	 to	 their	 amino	 acid	 composition.	

Studying	the	clustering	of	hydrophobic	amino	acids	on	the	mouse	genes’	sequences,	Foy	

et	 al.	 (2019)	 observed	 that	 young	 genes	 show	 excess	 concentration	 of	 hydrophobic	

residues	near	one	another	while	old	genes	present	 interspersion	of	 their	hydrophobic	

residues.	They	attributed	this	increased	hydrophobic	clustering	of	young	proteins	to	a	

strategy	of	aggregation	avoidance.		These	results	support	the	important	contribution	of	

amino	acid	ordering	together	with	the	amino	acid	composition	in	young	genes	and	could	

be	 seen	 as	 a	 preadaptation	 for	 de	 novo	 gene	 birth.	 The	 notion	 of	 preadaptation	

corresponds	 to	 specific	 characteristics	 (i.e.,	 amino	 acid	 composition	 and	 ordering)	 of	

noncoding	sequences	which	make	them	more	favorable	to	give	birth	to	de	novo	genes	

contrary	to	the	large	pool	of	all	noncoding	sequences.	The	model	speculates	that	the	gene	

birth	is	a	sudden	transition	to	functionality	that	occurs	when	an	ORF	acquires	a	selected	

effect	(Van	Oss	and	Carvunis	2019).	Moreover,	Bitard-Feildel	et	al.	(2015)	observed	that	

orphan	domains	of	D.	melanogaster	are	likely	to	contain	more	large	loops	than	ancient	

domains	 and	 that	 present	 a	 unique	 pattern	 of	 high	 intrinsic	 disorder	 and	 potential	

binding	 affinity.	 They	 speculated	 that	 this	 might	 correspond	 to	 sequences	 having	 a	

particular	structural	behavior,	able	to	switch	between	ordered	and	disordered	states.	

 

Basile	et	al.	(2017)	supported	that	the	opposite	trends	observed	by	these	models	of	de	

novo	genes	emergence	could	be	explained	by	the	difference	in	GC	content	of	the	genome	

of	the	organisms.	The	claims	of	Wilson	et	al.	(2017)	were	based	on	studies	conducted	on	

the	mouse	or	fly	proteins	while	the	ones	of	Carvunis	et	al.	(2012)	were	made	on	the	yeast.	

Notably,	the	yeast	genome	is	AT-rich	(40%	GC	content)	while	the	fly	genome	is	GC-rich	
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(53%	GC	 content)	 and	 the	GC	 content	 has	 been	 proven	 to	 be	 correlated	with	 codons	

coding	for	disorder	promoting	amino	acids.	More	precisely,	the	codons	encoding	for	Ala,	

Pro	and	Gly	(disorder	promoting	amino	acids)	contain	80%	GC	while	the	ones	encoding	

for	 Phe,	 Tyr,	 and	 Ile	 (order	 promoting	 amino	 acids)	 contain	 20%	 or	 even	 less.	 They	

observed	that	low-GC	orphans	of	S.	cerevisiae	were	predicted	as	less	disordered	than	the	

high-GC	 orphans	 of	D.	 melanogaster	 while	 this	 relationship	 was	 weaker	 in	 the	 older	

proteins	of	both	organisms.	Notably,	the	structural	properties	of	the	youngest	proteins	

(disorder	 propensity,	 content	 of	 secondary	 structure,	 fraction	 of	 transmembrane	

residues,	fraction	of	low-complexity	residues)	resemble	properties	of	random	proteins	

with	similar	GC	content.	These	results	support	that	de	novo	created	orphan	proteins	are	

very	similar	to	random	proteins	respecting	the	general	GC	content	of	the	organism	while	

older	proteins	show	lower	dependency	of	their	structural	properties	on	GC.	It	must	be	

mentioned	 that	 the	 GC	 content	 between	 young	 and	 older	 proteins	 remains	 the	 same	

though	distinct	for	each	organism.	They	speculate	that	selective	pressure	acts	less	on	GC	

content	and	mostly	on	 the	 structural	 features	of	proteins	weakening	 their	 correlation	

through	 the	 evolutionary	process.	 Interestingly,	 in	 line	with	 the	observation	made	by	

Carvunis	et	al.	(2012),	they	also	observed	that	the	negatively	charged	residues	(D	and	E)	

were	more	represented	in	older	proteins	(and	notably	more	than	expected)	at	any	GC	

level	 suggesting	 a	 gradual	 increase	 of	 negative	 charges	 during	 evolution	 (Basile	 et	 al.	

2017).	

	

	

1.10	Open	questions	about	the	role	of	the	noncoding	genome	

Even	though	controversial,	these	models	support	that	the	initial	de	novo	peptide,	once	

established,	will	further	evolve	towards	a	more	canonical	and	well	folded	protein.	As	a	

result,	they	all	give	a	central	role	to	the	fold	potential	of	noncoding	ORFs	in	the	emergence	

of	genetic	novelty.	Consequently,	several	questions	can	emerge	about	the	foldability	of	

the	peptides	potentially	"encoded"	by	noncoding	regions	and	the	impact	of	the	structural	

properties	of	 the	peptides	that	could	emerge	from	noncoding	regions	 in	de	novo	gene	

birth	and	finally	in	genome	evolution.		

	

Indeed,	it	is	well	known	that	the	noncoding	genome	corresponds	to	unevolved	intergenic	

regions	 with	 random	 nucleotides’	 distribution.	 As	 a	 result,	 ORFs	 harboring	 in	 these	
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intergenic	regions	will	 code	 for	peptides	with	different	amino	acid	compositions	 from	

canonical	 proteins.	 Nevertheless,	 experimental	 data	 report	 evidence	 of	 widespread	

transcription	and	pervasive	translation	of	intergenic	ORFs,	making	us	wonder	about	the	

structural	properties	and	the	fold	potential	of	the	peptides	produced	by	the	ensemble	of	

the	intergenic	ORFs.	More	generally,	the	fate	and	the	impact	on	the	cell,	of	all	the	peptides	

coming	from	pervasive	translation,	remain	unknown	and	deserve	more	attention.	This	

opens	 the	 question	 of	 how	 the	 pervasive	 translation	 can	 be	 tolerated	 by	 the	 cell	 and	

shows	the	importance	of	investigating	the	structural	properties	of	the	potential	peptides	

that	could	result	from	pervasive	translation	on	the	cell	(i.e.,	being	potential	future	de	novo	

genes	or	not).	

	

On	the	other	hand,	proteomes	are	characterized	by	a	large	structural	diversity	including	

disordered	 proteins,	 globular	 ones	 or	 transmembrane	 proteins	 which	 aggregate	 in	

solution	while	being	able	to	fold	in	lipidic	environments.	Moreover,	despite	their	complex	

evolutionary	history,	protein-coding	genes	have	had	a	noncoding	ancestral	origin	(Nielly-

Thibault	 and	 Landry	 2019).	 This	 permits	 us	 to	 ask	 the	 question	 whether	 the	 large	

structural	 diversity	 observed	 in	 the	 proteomes	 today	 could	 be	 already	 encoded	 by	

noncoding	ORFs	which	gave	 rise	 to	novel	genes,	or	whether	 this	 important	 structural	

variability	of	the	proteomes	was	acquired	during	evolution.	If	and	how	the	amino	acid	

compositions	of	 the	noncoding	ORFs	can	account	 for	 the	structural	states	observed	 in	

proteomes	 are	 crucial	 questions	 to	 understand	 the	 relationship,	 if	 any,	 between	 the	

noncoding	genome	and	the	protein	structure	universe.	

	

Finally,	 some	of	 the	pervasively	 translated	products	would	provide	 to	 the	organism	a	

selective	 advantage	 in	 specific	 environmental	 changes.	 The	 latter	 can	 be	 then	 further	

subjected	 to	 selective	 pressure	 and	 be	 established	 as	 novel	 genes.	 As	 a	 result,	 this	

motivates	 us	 to	 study	 the	 early	 stages	 preceding	 de	 novo	 genes	 birth	 and	 raises	 the	

question	 whether	 de	 novo	 genes,	 emerge	 from	 noncoding	 ORFs	 presenting	 specific	

sequence	and	structural	properties	compared	with	the	overall	pool	of	noncoding	ORFs.	

Answering	these	questions	would	permit	us	to	estimate	the	extent	to	which	the	under-

explored	 noncoding	 genome	 could	 produce	 novel	 protein	 bricks	 which	 can	 act	 as	

innovation	tools	capable	at	either	giving	rise	to	novel	genes	or	being	integrated	into	pre-
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existing	proteins	 and	 thereby,	 investigate	 the	potential	 contribution	of	 the	noncoding	

genome	in	protein	evolution	and	structural	diversity.	

	

	

1.11	Structural	properties	of	random-unevolved	sequences	

In	 line	 with	 the	 above	 questions,	 there	 are	 studies	 which	 tried	 to	 investigate	 the	

structural	properties	of	random	short	amino	acid	sequences	(reminding	the	noncoding	

ORFs)	 (Davidson	 et	 al.	 1995;	 Chiarabelli	 et	 al.	 2006;	 Knopp	 et	 al.	 2019).	 Recently,	

Tretyachenko	et	al.	(2017)	studied	the	fold	potential	of	random-unevolved	amino	acid	

sequences	and	compared	them	with	biological	protein	sequences.	Their	results	showed	

that	random	sequences	are	predicted	with	comparable	secondary	structures	occurrences	

with	known	biological	proteins	supporting	that,	structural	motifs	are	not	so	difficult	to	

be	generated	in	a	random	way.	In	addition,	they	showed	that	random	sequences,	similarly	

to	 biological	 proteins,	 adopt	 a	 wide	 range	 of	 aggregation	 propensity	 containing	 low	

aggregation	 propensity	 like	 disordered	 proteins,	 high	 aggregation	 propensity	 like	

membrane	proteins	and	intermediate	aggregation	propensity.	Overexpression	of	some	

random	sequences	and	analysis	of	their	solubility	showed	that	all	the	random	sequences	

with	low	aggregation	propensity	were	soluble	whereas	the	same	was	true	only	for	30%	

of	 the	 sequences	 with	 high	 aggregation	 propensity.	 Notably,	 75%	 of	 the	 remaining	

sequences,	despite	their	intermediate	aggregation	propensity	were	also	soluble.	These	

results	 support	 that	 random	 amino	 acid	 sequences	 with	 low	 or	 even	 intermediate	

propensity	to	aggregate	could,	in	many	cases,	be	soluble	and	potentially	tolerated	by	the	

cells.	Interestingly,	LaBean	et	al.	(2011)	showed	experimentally	that	short	(71	residues),	

unevolved	random-sequence	polypeptides,	with	amino	acid	composition	close	to	natural	

globular	proteins,	are	capable	of	forming	secondary	structure	elements	and	consequently	

fold	into	a	more	dynamic	molten	globule	conformation.	

	

Langenberg	et	al.	(2020)	analyzed	a	large	dataset	of	globular	domains	and	observed	that	

segments	contributing	to	protein	stability	present	high	conservation	of	amyloidogenicity	

as	 well,	 suggesting	 that	 the	 evolutionary	 pressure	 towards	 the	 increase	 of	 protein	

stability	 will	 consequently	 increase	 their	 aggregation	 propensity.	 They	 support	 that	

amyloid	and	globular	structures	present	intrinsic	structural	properties	which	are	driven	

by	similar	physicochemical	proclivities.	These	results	are	in	line	with	the	hypothesis	for	
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an	amyloid-driven	origin	of	life	which	supports	that	amyloid	peptides	constitute	the	first	

self-replicating	and	catalytic	molecules	of	 life	 thus	 serving	as	an	 “ancestral	 fold”	 from	

which	 the	 globular	 protein	 universe	 could	 have	 emerged	 (Greenwald	 and	Riek	 2012;	

Langenberg	et	al.	2020).	

	

It	should	also	be	mentioned	that	protein	aggregation	is	related	to	protein	concentration	

and	as	result	overexpression	experiments	which,	by	definition,	produce	high	quantities	

of	 protein	 copies	 could	 eventually	 lead	 proteins	 to	 aggregate.	 A	 study	 on	 the	 yeast	

proteome,	 revealed	 that	 highly	 abundant	 proteins	 presented	 multiple	 chaperone	

interactions	which	counterbalance	the	aggregation	propensity	of	the	proteins	(Ibstedt	et	

al.	2014).	Notably,	in	their	recent	pre-print	Tretyachenko	et	al.	(2021)	show	that	almost	

40-50%	of	 their	 random-sequences	 library	 is	 soluble	and	structured	upon	 interaction	

with	 the	 DnaK	 chaperone	 supporting	 that	 the	 cellular	 context	 could	 provide	 further	

stabilization	 to	 the	 produced	 peptides.	 Overall,	 these	 studies,	 support	 that	 random	

noncoding	 peptides	 expressed	 in	 low	 levels,	 despite	 their	 non-optimized	 premature	

structures,	 could	 potentially	 be	 tolerated	 by	 the	 cell	 without	 generating	 aggregates.	

Furthermore,	in	the	case	that	they	get	established	as	novel	genes,	they	could	continue	to	

evolve	towards	more	soluble	well-structured	proteins.	

	

	

1.12	Some	structural	examples	of	de	novo	genes	

Even	though	comparative	genomics	have	permitted	the	detection	and	evolutionary	study	

of	numerous	de	novo	genes,	to	date	no	experimental	structure	of	any	de	novo	protein	has	

been	reported	(Bungard	et	al.	2017).	However,	some	attempts	of	experimental	structural	

characterization	of	de	novo	genes’	proteins	have	been	conducted.	

	

BSC4	de	novo	gene	

The	yeast	gene	BSC4	(“bypass	of	stop	codon”)	constitutes	a	well-studied	case	of	a	protein	

coding	 gene	 that	 emerged	 de	 novo	 from	 an	 ancestral	 noncoding	 sequence	 and	

participates	in	DNA	damage	repair	during	stationary	phase	(Cai	et	al.	2008;	Bungard	et	

al.	 2017).	Bsc4	 is	 a	 strictly	 orphan	protein	of	S.	 cerevisiae	 species	which	 is	 conserved	

among	 all	 its	 strains	 but	 no	 orthologous	 sequence	 exists	 in	 any	 other	 fungal	 species	

(Bungard	et	al.	2017).	Indeed,	Cai	et	al.	(2008)	used	synteny	and	phylogeny	methods	and	
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showed	 that	BSC4	 gene	 is	 homologous	 to	 an	 intergenic	 noncoding	 genomic	 region	 of	

other	fungal	species.	Contrary	to	old	proteins	that	fold	into	stable	and	specific	globular	

structures	 the	 young	 Bsc4	 tends	 to	 have	 “rudimentary”	 or	 “molten	 globule”	

characteristics	 lacking	 specific	 tertiary	 structure	 (Bungard	 et	 al.	 2017).	 Notably,	

numerous	 biochemical	 analyses	 (i.e.,	 native	 MS,	 far	 and	 near	 UV	 circular	 dichroism,	

thermal	 and	 chemical	denaturation)	give	evidence	 that	 the	Bsc4	protein	 is	neither	 an	

Intrinsically	Disordered	Protein	nor	a	well	folded	globular	one.	However,	Bsc4	presents	

resistance	to	proteolysis	suggesting	strong	intramolecular	interactions	and	high	level	of	

order	(Bungard	et	al.	2017).	Bsc4	protein	forms	predominantly	soluble	oligomers	rather	

than	monomers	 even	 at	modest	 concentration,	 suggesting	 that	 the	 oligomerization	 is	

important	 for	 establishing	 the	 protein’s	 stability	 and	 solubility	 in	 the	 cellular	

environment.	Until	today,	nobody	has	managed	to	determine	the	exact	structure	of	Bsc4	

through	 crystallization	 or	 nuclear	 magnetic	 resonance	 (NMR)	 and	 that	 reflects	 the	

unspecific	character	of	this	protein	structure.	Figure	1.7A	represents	in	a	very	interesting	

metaphoric	way	 the	 rudimentary	 fold	 of	 the	Bsc4	 protein,	 presenting	 the	 proteins	 as	

origami.	

	

Gdrd	de	novo	gene	

The	fruit	fly	gene	gdrd	(or	goddard)	emerged	de	novo	from	an	intronic	sequence	at	least	

50	million	 years	 ago	 (Mya)	 at	 the	 root	 of	Drosophila	 genus	 (Gubala	 et	 al.	 2017).	 This	

means	 that	 gdrd	 constitutes	 a	Drosophila	 taxonomically	 restricted	 gene	 and	 is	 found	

conserved	 in	 most	 fly	 species	 with	 only	 exception	 D.	 willistoni.	 gdrd	 is	 expressed	

specifically	 in	 the	 male	 reproductive	 tract	 and	 most	 likely	 participates	 in	 spermatid	

elongation	 during	 spermatogenesis	 being	 an	 essential	 gene	 for	 male	 fertility	 in	 D.	

melanogaster	species.	Like	in	Bungard	et	al.	(2017),	Lange	et	al.	(2021)	used	biochemical	

methods	(i.e.	circular	dichroism,	NMR,	thermal	denaturation)	and	showed	that	the	Gdrd	

protein	of	D.	melanogaster	although	presents	average	biochemical	properties,	contains	a	

stably	 folded	 core	 consisted	by	 a	 principal	 alpha	helix	 or	 coiled-coil	 conformation.	At	

note,	even	though	they	could	detect	the	general	structural	content	of	the	protein,	they	did	

not	manage	to	characterize	its	exact	3D	fold	experimentally.	In	addition,	Gdrd	appears	to	

be	soluble,	does	not	form	oligomers	nor	aggregates.	Then,	using	comparative	genomics	

and	structural	bioinformatics	approaches	they	(i)	reconstructed	the	ancestral	sequences	

that	preceded	the	emergence	of	gdrd	gene	and	(ii)	modeled	the	3D	structure	of	all	the	
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Drosophila	Gdrd	proteins	(together	with	their	theoretical	ancestral	protein	sequences)	

through	an	ab	 initio	 sequence	 fold	approach	 (iii)	 and	 tested	 the	 structural	 stability	of	

these	models	through	molecular	dynamics	(MD)	simulations.	As	observed	in	figure	1.7B	

all	the	Gdrd	protein	models	present	highly	similar	structures	all	containing	a	central	long	

alpha	 helix	 while	 the	 rest	 of	 the	 protein	 seems	 quite	 variant.	 The	 MD	 simulations	

validated	the	highly	stable	character	of	the	long	central	alpha	helix	as	well	as	the	fluctuant	

character	of	the	rest	of	the	protein.	Together	all	these	results	support	that	the	structure	

of	the	Grdr	de	novo	protein	has	been	largely	conserved	since	its	origin	while	the	authors	

speculate	that	its	essential	functionality	in	D.	melanogaster	specifically	might	have	arisen	

later,	possibly	through	local	structural	modifications	at	the	protein’s	termini.	

	

	

Figure	1.7.	(A)	Schematical	and	metaphorical	representation	as	origami	for	the	less	specific	folding	of	the	

de	novo	emerged	Bsc4	protein	 (in	green)	compared	with	established	proteins	 (in	blue	 frog	and	yellow	

swan).	The	 figure	was	extracted	 from	the	study	of	Bungard	et	al.	 (2017)	with	 the	 title	 “Foldability	of	a	

Natural	 De	 Novo	 Evolved	 Protein”.	 (B)	 Structural	 ab	 initio	 models	 of	 the	 de	 novo	 protein	 Gdrd	 of	 D.	

melanogaster	 (in	 red)	 and	 its	 orthologs	 in	 neighboring	 species	 (in	 orange,	 blue,	 turquoise	 and	 pink).	

Additionally,	predictions	for	the	most	likely	sequences	for	reconstructed	ancestors	of	Dmel/Dana	(bright	

green),	Dvir/Dmoj/Dgri	(green),	and	their	most	recent	common	ancestor	(dark	green)	are	shown	(branch	

lengths	are	not	meaningful).	It	is	observed	that	all	the	protein	models	contain	a	central	long	alpha	helix	

while	the	rest	of	the	protein	is	more	variant.	The	figure	was	extracted	from	the	study	Lange	et	al.	(2021)	

with	title	“Structural	and	functional	characterization	of	a	putative	de	novo	gene	in	Drosophila“.	

	

	

A B
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Overall,	these	two	extremely	interesting	examples	of	de	novo	proteins	converge	towards	

the	same	observations.	Young	proteins	that	have	emerged	from	ancestrally	noncoding	

genomic	regions	present	structural	and	biochemical	characteristics	comparable	 to	 the	

ones	of	conserved	and	well	folded	older	proteins.	However,	these	proteins	do	not	appear	

to	be	uniquely	folded	into	globular	proteins	but	rather	to	a	molten	globule	state	described	

as	 a	 “rudimentary	 fold”.	 All	 these	 observations	 enforce	 the	 hypothesis	 that	 de	 novo	

proteins	 capable	 of	 acquiring	 a	 fold,	 even	 partially,	 could	 potentially	 emerge	 from	

intergenic	or	intronic	regions	without	prior	adaptation	(Lange	et	al.	2021).	These	novel	

proteins	could	constitute	a	source	of	genetic	and	structural	innovation	for	the	cell	while	

after	 their	birth	 and	gain	of	 expression	 their	 functionality	 and/or	 foldability	 could	be	

adjusted	through	minor	structural	changes.	Nevertheless,	the	highly	dynamic	structure	

of	de	novo	proteins	makes	it	difficult	to	characterize	experimentally	their	capacity	to	fold	

and	even	more	 their	 exact	3D	 structure.	As	 a	 result,	 structural	 computational	biology	

seems	 to	 play	 an	 important	 role	 for	 the	 study	 of	 the	 fold	 potential	 and	 thereby	 the	

structure	of	novel	proteins.	

	

	

1.13	Predicting	the	fold	potential	of	an	amino	acid	sequence	

The	last	few	years,	the	prediction	of	the	3D	structure	for	a	given	amino	acid	sequence	has	

been	a	very	intriguing	challenge	for	the	structural-computational	biologists.	Homology	

modeling	methods	are	based	to	the	assumption	that	similar	amino	acids	sequences	will	

fold	into	similar	structures	(Fiser	and	Šali	2003;	Biasini	et	al.	2014;	Schymkowitz	et	al.	

2005)	while	protein	threading	methods	try	to	superimpose	an	amino	acid	sequence	on	

3D	scaffolds	of	known	proteins	(Söding	et	al.	2005;	Peng	and	Xu	2011;	Ghouzam	et	al.	

2016).	Then,	the	compatibility	of	the	sequence	to	the	structure	is	evaluated	using	physics-

based	scoring	functions.	Even	though	highly	efficient,	both	these	prediction	methods	are	

highly	dependent	on	the	sequence	and	structural	information	already	existing	in	known	

databases	making	them	less	reliable	for	orphan	sequences	with	no	homologs	(Kuhlman	

and	Bradley	2019).	On	the	other	hand,	the	few	ab	initio	methods	existing	are	based	mostly	

on	 structural	 “alphabets”	 demanding	 an	 exhaustive	 research	 of	 different	 structural	

“letters”	 combinations	 (Maupetit	 et	 al.	 2009;	 Yang	 et	 al.	 2020).	 Nevertheless,	 the	

computational	demands	of	all	 three	methods	 (but	especially	 the	ab	 initio)	make	 them	

prohibitive	for	genomic	scale	analyses.	Lately,	the	expansion	of	deep	learning	led	to	the	
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development	 of	 new	 and	 highly	 performant	 fold	 prediction	methods	 (i.e.,	 AlphaFold)	

which	revisited	the	problem	(Senior	et	al.	2020;	Jumper	et	al.	2021).	The	new	version	of	

AlphaFold	(AlphaFold2)	was	used	to	a	large-scale	study,	providing	full-length	structure	

predictions	 for	 almost	 the	 entire	 human	 proteome	 (98.5%	 of	 human	 proteins)	

(Tunyasuvunakool	et	al.	2021).	Strikingly,	58%	of	the	total	residues	presented	confident	

prediction	 with	 36%	 presenting	 specifically	 very	 high	 confidence.	 Notably,	 all	 these	

methods	aim	at	predicting	a	detailed	structural	model	for	a	given	amino	acid	sequence.	

However,	 the	 already	presented	 examples	 of	Bsc4	 and	Gdrd	make	 it	 clear	 that	 young	

emerging	proteins	tend	to	fold	into	more	dynamic	structures	with	less	defined	structural	

content.	Indeed,	the	prediction	made	on	Bsc4	protein	by	AlphFold2	reveals	that	the	per-

residue	 prediction	 confidence	 score	 is	 very	 low	 for	 the	 majority	 of	 the	 amino	 acids	

(Figure	 1.8).	 Whether	 this	 low	 confidence	 score	 results	 from	 the	 highly	 dynamic	

character	of	its	structure	or	simply	from	the	fact	that	Bsc4	lacks	homologous	sequences	

which	are	important	for	the	accuracy	of	AlphaFold2	remains	unknown.	

	

	

Figure	1.8.	Prediction	of	the	3D	structure	of	the	Bsc4	and	ADK1	proteins	made	by	AlphaFold2.	The	

two	models	are	colored	based	on	the	prediction	confidence	score	of	AlphaFold2.	Notably,	the	structure	of	

adenylate	kinase	(ADK1)	protein	is	predicted	with	high	confidence	(blue	and	light	blue	colored	residues)	

while	the	Bsc4	protein	is	predicted	with	low	confidence	(yellow	and	orange	residues).	

	

BSC4ADK1

Very high 

Confident

Low

Very low
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The	observations	made	on	Bsc4	highlight	two	distinct	but	very	important	aspects	of	the	

problem.	The	 first	one	corresponds	 to	 the	prediction	of	 the	exact	3D	 fold	of	a	protein	

while	the	second	corresponds	more	basically	at	predicting	the	ability	of	a	protein	to	fold	

in	 a	 given	 environment.	 These	 two	 questions	 demand	 different	methods	 and	 provide	

different	 information.	 Indeed,	predicting	a	detailed	structural	model	 for	young	orphan	

sequences	whose	capacity	at	acquiring	a	3D	fold	is	not	well	established	would	potentially	

lead	to	false	predictions.	Consequently,	before	the	prediction	of	any	detailed	structural	

model,	it	becomes	important	to	predict	the	ability	of	a	given	sequence	to	fold	into	a	more	

or	less	stable	fold	(referred	as	foldability).	The	foldability	of	a	protein	informs	us	about	

the	 structural	 state	 of	 a	 protein	 rather	 than	 its	 exact	 3D	 structure.	 Interestingly,	 the	

structural	 state	 of	 a	 protein	 can	 provide	 information	 on	 the	 potential	 behavior	 of	 a	

protein	in	the	cell	environment.	Proteins	can	be	completely	disordered,	folded	in	solution	

or	can	form	aggregates	in	the	cytosol,	and	will	therefore	behave	differently	according	to	

their	structural	state.	

	

In	fact,	differences	between	the	fold	state	of	proteins	can	be	appreciated	at	the	level	of	

the	 amino	 acid	 sequence.	 Order-promoting	 residues,	 mostly	 corresponding	 to	 strong	

hydrophobic	amino	acids	(V,	I,	L,	M,	Y,	W,	F),	are	known	to	participate	in	the	formation	of	

regular	secondary	structures	and	thus	to	the	densely	packed	cores	of	globular	domains	

and	proteins.	On	the	other	hand,	disordered	regions	are	significantly	depleted	in	order-

promoting	residues	and	enriched	in	disorder-promoting	ones	(A,	R,	G,	Q,	S,	P,	E,	K).	The	

Hydrophobic	Clusters	Analysis	(HCA)	constitutes	an	easily	interpretable	method	which	

given	 the	amino	acid	sequence	of	a	protein,	delineates	clusters	of	 strong	hydrophobic	

amino	acids	(Bitard-Feildel	et	al.	2018).	These	hydrophobic	clusters	have	been	shown	to	

be	associated	with	regular	secondary	structures	and	are	indicative	of	foldable	domains.	

The	hydrophobic	clusters	are	connected	by	linkers	corresponding	to	loops	or	disordered	

regions	 (Figure	 1.9).	 The	 overall	 composition	 of	 hydrophobic	 clusters	 can	 provide	

information	about	the	fold	potential	of	the	corresponding	amino	acid	sequence.	The	fold	

potential	 of	 an	 amino	 acid	 sequence	 can	 be	 appreciated	 in	 a	 quantitative	way	with	 a	

foldability	score	where	disordered	sequences	adopt	mostly	low	values,	sequences	prone	

to	 fold	 in	 membranes	 and	 aggregate	 in	 solution	 adopt	 high	 values	 and	 sequences	

susceptible	to	fold	adopt	mostly	intermediate	values	(Bitard-Feildel	&	Callebaut	2018).	

Analysis	 of	 real	 3D	 folds	 (from	 the	 SCOP	 database)	 revealed	 that	 globular	 domains	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 40	

present	on	average	33.3%	of	strong	hydrophobic	amino	acids	while	membrane	domains	

and	peptides,	around	41%	with	longer	Hydrophobic	Clusters.	On	the	contrary,	regions	

lacking	 Hydrophobic	 Clusters	 or	 containing	 small	 and	 scarcely	 distributed	 ones	

correspond	mostly	to	highly	disordered	sequences	or	flexible	linkers	(Bitard-Feildel	et	

al.	2018).		

	

	

Figure	1.9.	3D	mapping	of	HCA	hydrophobic	clusters	and	linkers.	HCA	hydrophobic	clusters	(colored)	

and	linkers	(in	grey)	delineated	for	the	sequence	of	Bucandin	(pdb	code:	1f94).	The	HCA-based	sequence,	

which	 consists	 in	 translating	 the	 protein	 sequence	 into	 a	 binary	 pattern,	 is	 given	 under	 the	 protein	

sequence.	“1”	corresponds	to	strong	hydrophobic	amino	acids	(V,	I,	L,	F,	M,	Y,	W)	and	“0”	to	the	other	amino	

acids.	HCA	clusters	and	linkers	are	mapped	on	the	3D	structure	of	Bucandin	with	respect	to	the	color	code	

used	for	the	sequence.	Is	interesting	to	observe	that	the	hydrophobic	clusters	are	not	only	the	delimitations	

of	regular	secondary	structures	(helices	and	strands)	but	they	can	encapsulate	more	complex	secondary	

structures’	arrangements.	

	

	

The	advantage	of	HCA	is	that	it	is	fast	and	needs	the	sole	information	of	the	amino	acid	

sequence,	 without	 prior	 knowledge	 of	 any	 homologous	 sequence,	 thus	 offering	 a	

promising	method	 to	 study	 the	 fold	potential	 of	 orphan	proteins	 (Bitard-Feildel	 et	 al.	

2018).	Moreover,	HCA	is	a	very	fast,	sequence-based	foldability	prediction	method	which	

makes	it	appropriate	for	large	genome	scale	analyses.	For	example,	among	other	studies,	
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HCA	has	been	used	 for	 the	detection	of	orphan	domains	 in	D.	melanogaster	proteome	

(Bitard-Feildel	et	al.	2015)	or	for	the	study	of	the	foldability	potential	of	the	un-annotated	

part	of	the	protein	universe	(referred	as	dark	proteome)	(Bitard-Feildel	and	Callebaut	

2017).	
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1.14	Thesis’	objectives	

The	 general	 objective	 of	 my	 thesis	 was	 to	 study	 the	 potential	 role	 of	 the	 noncoding	

genome	in	the	emergence	of	genetic	novelty.	In	particular,	I	aimed	at	investigating	how	

the	noncoding	genome	participates	in	the	emergence	of	de	novo	genes	as	well	as	in	the	

evolution	of	proteins.	In	order	to	address	this	question,	I	adopted	a	structural	point	of	

view	as	it	is	well	known	that	the	functionality	of	the	proteins	is	intimately	related	with	

their	structure.	Therefore,	I	characterized	the	fold	potential	diversity	(i.e.,	propensity	for	

disorder,	 folded	 state,	 or	 aggregation)	 of	 the	 amino	 acid	 sequences	 encoded	 by	 all	

intergenic	 ORFs	 (IGORFs)	 of	 S.	 cerevisiae	 in	 order	 to	 (i)	 estimate	 the	 potential	 of	 the	

noncoding	genome	to	produce	novel	protein	bricks,	 that	can	either	give	birth	to	novel	

genes	or	be	integrated	into	pre-existing	proteins,	thus	participating	in	protein	structure	

evolution	and	diversity,	and	(ii)	explore	whether	the	large	structural	diversity	observed	

in	 proteomes	 is	 already	 present	 in	 noncoding	 sequences,	 and	 thereby	 investigate	 the	

relationship,	if	any,	between	the	fold	potential	of	the	amino	acid	sequences	encoded	by	

IGORFs	and	the	structural	diversity	of	proteins.	

	

The	 first	 part	 of	 my	 thesis	 constituted	 at	 developing	 a	 bioinformatic	method	 for	 the	

detection	of	all	the	IGORFs	of	S.	cerevisiae	and	the	estimation	of	the	fold	potential	and	

other	sequence	and	structural	properties	of	the	potential	peptides	encoded	by	them.	For	

that	purpose,	I	participated	in	the	development	of	a	bioinformatic	tool	called	ORFtrack	

which	aims	at	“tracking”	all	the	ORFs	of	a	given	genome	and	annotate	their	overlapping	

(or	not,	in	the	case	of	IGORFs)	with	genomic	annotated	features.	Then	I	developed	ORFold	

which	 aims	 at	 estimating	 the	 fold	 potential	 as	 well	 as	 the	 disorder	 and	 aggregation	

propensity	of	a	given	amino	acid	sequence	and	I	applied	it	on	the	peptides	encoded	by	

IGORFs.	ORFold	makes	use	of	three	academically	free	bioinformatic	tools	(pyHCA	(Faure	

and	Callebaut	2013a,	2013b;	Bitard-Feildel	and	Callebaut	2018a;	Lamiable	et	al.	2019),	

IuPRED2	(Mészáros	et	al.	2018;	Dosztányi	2018;	Erdős	and	Dosztányi	2020)	and	Tango	

(Linding	 et	 al.	 2004;	 Fernandez-Escamilla	 et	 al.	 2004;	 Rousseau	 et	 al.	 2006a),	

respectively)	 and	 gives	 an	 indication	 of	 the	 overall	 foldability	 (together	 with	

complementary	information	of	the	disorder	and	aggregation	propensity)	for	every	amino	

acid	sequence	encoded	by	IGORFs.	These	two	bioinformatic	tools	are	grouped	together	

into	one	package	called	ORFmine	which	 is	 freely	accessible	via	GitHub	(GitHub	2021).	

The	 package	 ORFmine	 together	 with	 a	 detailed	 step-by-step	 protocol	 of	 IGORFs	
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extraction	 and	 their	 peptides’	 fold	 potential	 estimation	 were	 presented	 in	 the	 book	

Methods	Molecular	Biology,	in	a	special	issue	on	"Computational	Peptide	Science"	in	the	

chapter	entitled	“Exploring	the	peptide	potential	of	genomes”.	

	

I	 then	 characterized	 the	 early	 stages	 preceding	 de	 novo	 gene	 emergence	 with	 two	

complementary	approaches	(i)	the	systematic	reconstruction	of	the	ancestral	noncoding	

sequences	 of	 70	 S.	 cerevisiae	 de	 novo	 genes	 in	 order	 to	 identify	 the	 sequence	 and	

structural	features	of	IGORFs	that	indeed	gave	birth	to	known	de	novo	genes	and	(ii)	the	

identification	 of	 IGORFs	 with	 a	 strong	 translation	 signal	 through	 ribosome	 profiling	

experiments,	in	order	to	investigate	the	sequence	and	structural	properties	of	candidate	

IGORFs	that	could	give	birth	to	future	novel	genes.	At	this	part	of	my	thesis,	I	developed	

a	 pipeline	 which	 permits	 to	 correctly	 map	 Ribosome	 Profiling	 data	 on	 noncoding	

sequences	in	order	to	detect	IGORFs	with	translation	signal.	This	pipeline	called	ORFribo	

will	soon	be	part	of	the	ORFmine	package	proposing	a	complete	protocol	for	(i)	IGORFs	

detection	and	extraction,	(ii)	prediction	of	the	overall	foldability	potential	of	their	amino	

acid	 sequences,	 and	 (iii)	 identification	 of	 interesting	 IGORF	 candidates	 presenting	

translation	 signatures.	 All	 the	 results	 about	 the	 fold	 potential	 and	 sequence	 and	

structural	properties	of	peptides	encoded	by	IGORFs	are	presented	in	a	research	article	

entitled	“Intergenic	ORFs	as	elementary	structural	modules	of	de	novo	gene	birth	and	

protein	evolution”	and	which	has	been	published	at	the	Genome	Research	peer-reviewed	

journal	(Papadopoulos	et	al.	2021).	

	

In	 the	 next	 part	 of	 my	 thesis,	 using	 phylostratigraphy	 approaches	 I	 divided	 the	 S.	

cerevisiae	 proteins	according	 to	 their	 relative	phylogenetic	age	 in	order	 to	 investigate	

how	fast	are	fixed	and	how	evolve	the	sequence	and	structural	properties	of	the	yeast	

proteins	along	the	evolutionary	time.		

	

In	the	final	part	of	my	thesis,	 I	developed	a	supervised	machine	learning	model	which	

aims	 at	 predicting	 the	 folding	 state	 (i.e.,	 disordered,	 stable	 in	 solution,	 stable	 upon	

interaction	 with	 a	 partner	 or	 transmembrane)	 of	 the	 potential	 peptides	 encoded	 by	

IGORFs	and	therefore	predict	their	potential	“behavior”	in	the	cellular	environment.	The	

objective	of	this	part	was	to	explore	more	finely	the	structural	properties	of	the	peptides	
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encoded	by	IGORFs	in	order	to	better	understand	the	emergence	of	de	novo	genes	and	

further	investigate	how	the	pervasive	expression	of	IGORFs	could	be	tolerated	by	the	cell.		

	

Despite	its	compact	genome,	we	selected	S.	cerevisiae	for	our	study	because	corresponds	

to	a	eukaryotic	model	organism	whose	genome	has	been	completely	sequenced	and	well	

annotated	thus,	permitting	to	 identify	with	high	confidence	the	 intergenic	regions	and	

consequently	 the	 IGORFs.	 In	 addition,	 different	 teams	 in	 our	 institute,	with	which	we	

collaborate,	work	on	S.	cerevisiae	and	they	could	provide	us	with	experimental	data	(i.e.,	

Ribosome	 Profiling)	 permitting	 us	 to	 detect	 interesting	 IGORF	 candidates	 with	

experimental	proof	of	expression.	Furthermore,	the	genomes	of	species	closely	related	to	

S.	cerevisiae	are	also	available,	permitting	us	to	detect	the	noncoding	genomic	regions	of	

known	de	novo	genes	of	S.	cerevisiae	and	thus	reconstruct	their	ancestral	sequences.	
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2	Methodology	

In	this	section	are	presented	the	principal	methods	that	were	developed	during	my	thesis,	

in	order	to:	

(i) extract	all	the	ORFs	of	a	genome	and	annotate	them	according	to	specific	genomic	

features	(i.e.,	ORF	overlapping	a	 lncRNA,	a	protein	coding	gene,	 intergenic	ORF	

etc.),	

(ii) investigate	the	fold	potential	and	other	structural	properties	of	each	ORF	being	

coding	or	not,	

(iii) probe	the	translation	activity	of	all	ORFs.	

	

Therefore,	we	created	a	freely	distributed	package	named	ORFmine	which	consists	of	two	

bioinformatic	 tools.	 The	 first	 one,	 named	 ORFtrack,	 was	 developed	 by	 my	 colleague	

Nicolas	Chevrollier	and	aims	at	“tracking”	all	the	ORFs	of	a	genome	(with	a	STOP-to-STOP	

ORF	definition)	and	annotate	 them	based	on	 their	overlapping	with	known	annotated	

genomic	features.	At	note,	ORFtrack	adopts	an	ORF-centered	point	of	view	of	the	genome	

and	ORFs	do	not	correspond	 to	real	biological	objects	but	mostly	 reflect	 the	potential	

peptides	that	could	be	expressed	from	a	genome	.The	second	program,	called	ORFold	and	

developed	by	me,	aims	at	predicting	the	foldability	potential	together	with	the	disorder	

and	aggregation	propensity	of	any	amino	acid	sequence	by	combining	the	results	of	three	

independent	 bioinformatic	 tools:	 pyHCA	 (Faure	 and	 Callebaut	 2013a,	 2013b;	 Bitard-

Feildel	 and	 Callebaut	 2018a;	 Lamiable	 et	 al.	 2019),	 IuPRED2	 (Mészáros	 et	 al.	 2018;	

Dosztányi	2018;	Erdős	and	Dosztányi	2020)	and	Tango	(Linding	et	al.	2004;	Fernandez-

Escamilla	 et	 al.	 2004;	Rousseau	 et	 al.	 2006a),	 respectively.	 The	 two	principal	 tools	 of	

ORFmine	 (ORFtrack	 and	 ORFold)	 are	 completely	 independent	 permitting	 them	 to	 be	

integrated	 in	different	protocols.	However,	combined	together	they	offer	 to	 the	user	a	

complete	analysis	of	the	fold	potential	of	both	coding	and	noncoding	ORFs	of	any	genome.	

A	step-by-step	protocol	 for	 the	use	of	ORFmine	with	numerous	examples	on	different	

organisms	was	presented	in	the	book	Methods	Molecular	Biology,	in	a	special	issue	on	

"Computational	Peptide	Science"	in	the	chapter	entitled	“Exploring	the	peptide	potential	

of	genomes”.		
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In	 addition,	 with	 the	 help	 of	 a	 master	 student	 who	 I	 supervised,	 Camille	 Rabier,	 we	

developed	 a	 pipeline	 (named	ORFribo)	which	 aims	 at	mapping	 Ribo	 Seq	 data	 on	 the	

intergenic	regions	and	detecting	the	frame	under	translation	among	the	three	possible	

ones.	 ORFribo,	 is	 not	 yet	 integrated	 in	 the	 ORFmine	 package	 as	 it	 still	 needs	 some	

adjustments,	but	its	protocol	will	be	presented	in	this	chapter.	
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2.1	Exploring	the	peptide	potential	of	genomes	

Chris	Papadopoulos1,	Nicolas	Chevrollier2,	Anne	Lopes1	

	

1	Université	Paris-Saclay,	CEA,	CNRS,	Institute	for	Integrative	Biology	of	the	Cell	(I2BC),	91198,	Gif-sur-Yvette,	France	

2	Independent	investigator	

	

Abstract	

Recent	studies	attribute	a	central	role	to	the	noncoding	genome	in	the	emergence	of	novel	

genes.	The	widespread	transcription	of	noncoding	regions	and	the	pervasive	translation	

of	the	resulting	RNAs	offer	to	the	organisms	a	vast	reservoir	of	novel	peptides.	Although	

the	majority	 of	 these	 peptides	 are	 anticipated	 as	 deleterious	 or	 neutral	 and	 thereby,	

expected	to	be	degraded	right	away	or	short-lived	in	evolutionary	history,	some	of	them	

can	confer	an	advantage	to	the	organism.	The	latter	can	be	further	subjected	to	natural	

selection	and	be	established	as	novel	 genes.	 In	any	 case,	 characterizing	 the	 structural	

properties	 of	 these	 pervasively	 translated	 peptides	 is	 crucial	 to	 understand	 (i)	 their	

impact	on	the	cell	and	(ii)	how	some	of	these	peptides	derived	from	presumed	noncoding	

regions	can	give	rise	to	structured	and	functional	de	novo	proteins.	Therefore,	we	present	

a	protocol	that	aims	to	explore	the	potential	of	a	genome	to	product	novel	peptides.	It	

consists	in	annotating	all	the	open	reading	frames	(ORFs)	of	a	genome	(i.e.	coding	and	

noncoding	ones),	and	characterizing	the	fold	potential	and	other	structural	properties	of	

their	corresponding	potential	peptides.	Here,	we	apply	our	protocol	to	a	small	genome	

and	then	show	how	to	apply	it	to	very	large	genomes.	Finally,	we	present	a	case	study	

which	aims	to	probe	the	fold	potential	of	a	set	of	721	translated	ORFs	in	mouse	lncRNAs	

identified	 with	 ribosome	 profiling	 experiments.	 Interestingly,	 we	 show	 that	 the	

distribution	of	their	fold	potential	is	different	from	the	one	of	the	nontranslated	lncRNAs	

and	more	generally	from	the	other	noncoding	ORFs	of	the	mouse.		

Running	Head:	Mining	noncoding	genomes		

Key	words:	noncoding	DNA,	fold	potential,	de	novo	genes,	small	ORF-encoded	peptides,	
ORFtrack,	ORFold		
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1	Introduction	

	

Many	studies	attribute	a	central	role	to	the	noncoding	genome	in	novel	gene	birth	and	

more	generally	in	the	emergence	of	genetic	novelty.	As	a	matter	of	fact,	thousands	of	small	

Open	 Reading	 Frames	 (ORFs)	 have	 been	 identified	 in	 noncoding	 regions	 of	 various	

genomes.	 Interestingly,	 the	 wide	 use	 of	 transcriptomics	 revealed	 a	 high	 pervasive	

transcription	of	noncoding	regions,	and	an	important	fraction	of	the	resulting	RNAs	have	

been	shown	to	be	translated	by	ribosome	profiling	experiments	(Ingolia	et	al.	2011;	Ruiz-

Orera	 et	 al.	 2018;	 Li	 and	Liu	2019;	Chen	et	 al.	 2020).	 In	 addition,	mass	 spectrometry	

experiments	conducted	on	mammals,	bacteria,	or	plants	(Samayoa	et	al.	2011;	Hobbs	et	

al.	2011;	Slavoff	et	al.	2013;	Prabakaran	et	al.	2014;	Eguen	et	al.	2015;	Deng	et	al.	2018;	

Wang	et	al.	2019),	confirm	the	existence	of	these	translation	products	in	the	cell	with	the	

identification	 of	 hundreds	 of	 peptides	 derived	 from	 noncoding	 regions.	 The	 fact	 that	

these	noncanonical	products	display	short	sizes,	are	present	in	low	abundance,	and	use	

alternative	 start	 codons	 renders	 difficult	 their	 identification	 and	 suggests	 that	 their	

number	 is	 largely	 underestimated.	 Interestingly,	 their	 sequences	 are	more	 conserved	

than	 those	 of	 noncoding	 sequences	 suggesting	 that	 they	 are	 subjected	 to	 purifying	

selection	(Slavoff	et	al.	2013;	Prabakaran	et	al.	2014)	and	they	could	be	functional.	It	has	

been	proposed	that	these	noncanonical	translation	products	are	consequently	exposed	

to	 natural	 selection	 and	 thereby,	 provide	 the	 organism	with	 the	 raw	material	 for	 the	

emergence	of	genetic	novelty.	However,	how	noncoding	sequences	can	give	rise	to	novel	

genes	remains	unclear.	Particularly,	noncoding	sequences	are	not	expected	to	fold	to	a	

stable	and	specific	structure	and	have	not	been	subjected	to	purifying	selection	in	order	

not	to	be	deleterious	for	the	cell.	One	can	ask	how	these	pervasively	translated	products	

can	(i)	be	tolerated	by	the	cell	and	(ii)	give	rise	to	functional	products,	since	most	proteins	

achieve	their	function	through	a	well-defined	3D	structure.	Indeed,	noncoding	sequences	

display	different	sequence	features	from	coding	ones,	being	shorter	and	characterized	by	

different	nucleotide	 compositions	 (Carvunis	 et	 al.	 2012;	 Slavoff	 et	 al.	 2013).	They	 are	

rather	expected	to	encode	disordered,	misfolded,	or	aggregation-prone	peptides	and	we	

can	 hypothesize	 that	 they	 would	 be	 rapidly	 degraded	 or	 short-lived	 in	 evolutionary	

history.	 Nevertheless,	 it	 has	 been	 demonstrated	 that	 proteins	 from	 random	 libraries	

could	 fold	 in	 silico	or	 in	 vitro,	 some	of	which	being	 even	beneficial	 in	Escherichia	 coli	

(Keefe	 and	 Szostak	 2001;	 Schaefer	 et	 al.	 2010;	 Tretyachenko	 et	 al.	 2017;	Neme	 et	 al.	
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2017).	All	these	results	place	the	foldability	of	noncoding	ORFs	at	the	center	of	novel	gene	

birth	and	strengthen	the	need	for	the	characterization	of	the	fold	potential	(including	the	

propensities	for	disorder,	folded	state,	and	aggregation)	not	only	of	the	experimentally	

observed	 de	 novo	 peptides	 but	 also	 of	 all	 the	 amino	 acid	 sequences	 “encoded”	 by	

presumed	 noncoding	 ORFs	 which	 could	 give	 rise	 to	 novel	 peptides	 upon	 pervasive	

translation.		

Therefore,	we	present	a	protocol	that	enables	in	an	automated	way	(i)	the	extraction	and	

annotation	of	all	possible	ORFs	of	a	genome,	and	(ii)	the	prediction	of	their	fold	potential	

along	with	 their	 propensities	 for	 disorder	 and	 aggregation.	 It	 relies	 on	 the	 ORFmine	

package	(unpublished	but	available	at	https://github.com/i2bc/ORFmine)	which	aims	to	

annotate	 a	 genome’s	 ORFs	 and	 probe	 their	 fold	 potential	 and	 structural	 properties.	

ORFmine	consists	of	two	independent	programs	ORFtrack	and	ORFold.	ORFtrack	works	

in	 a	 stand-alone	 fashion	 and	 is	 very	 flexible,	 enabling	 different	 levels	 of	 annotation	

depending	 on	 the	 user	 request.	 ORFold	 relies	 on	 three	 gold-standard	 programs,	 HCA	

(Faure	and	Callebaut	2013a,	2013b;	Bitard-Feildel	and	Callebaut	2018a;	Lamiable	et	al.	

2019),	 Tango	 (Linding	 et	 al.	 2004;	 Fernandez-Escamilla	 et	 al.	 2004;	 Rousseau	 et	 al.	

2006a),	and	IUPred2A		(Mészáros	et	al.	2018;	Dosztányi	2018;	Erdős	and	Dosztányi	2020)	

which	 predict	 respectively	 the	 fold	 potential,	 the	 aggregation,	 and	 the	 disorder	

propensities	of	an	amino	acid	sequence.	Here,	we	consider	as	foldable,	 the	amino	acid	

sequences	which	are	able	to	fold	to	a	stable	3D	structure	or	to	a	molten	globule	state	in	

which	the	specific	tertiary	structure	is	lost,	whereas	the	secondary	structures	are	intact.	

Our	protocol	can	be	applied	to	any	completely	sequenced	genome	and	takes	a	few	hours	

on	a	personal	computer	 for	a	 small	genome	(bacteria,	archaea,	or	 fungi),	although	we	

recommend	launching	the	pipeline	on	a	cluster	for	larger	genomes	(e.g.	plant	or	mammal	

genomes).	Here	we	present	a	detailed	application	of	our	protocol	on	the	small	genome	of	

Escherichia	coli.	Then	we	show	how	to	apply	our	protocol	to	very	large	genomes	(Mus	

musculus).	 In	 the	 last	 part,	 we	 present	 a	 case	 study	 based	 on	 a	 ribosome	 profiling	

experiment	performed	on	the	mouse.	In	this	example,	we	probe	the	fold	potential	of	721	

ORFs	present	in	lncRNAs	which	are	translated,	not	conserved	across	species	and	which	

show	weak	or	no	signature	of	selective	pressure	(i.e.	presumed	as	noncoding).	We	then	

show	how	ORFold	can	be	used	to	compare	the	fold	potential	of	a	subset	of	ORFs	of	interest	

(e.g.	translated	ORFs	present	in	lncRNAs)	with	those	of	the	coding	and	noncoding	ORFs	

of	the	genome	they	belong	to.	The	latter	protocol	can	be	extended	to	any	set	of	sequences	
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of	interest	including	for	example,	peptides	identified	in	mass	spectrometry	experiments	

carried	out	in	different	conditions,	de	novo	peptides	associated	with	specific	diseases	or	

even	designed	sequences.		

	

	

2	Materials		

	

2.1	ORFmine		

ORFmine	is	a	package	that	we	developed	in	order	to	explore	the	peptide	potential	of	a	

noncoding	 genome	 with	 the	 extraction	 and	 the	 annotation	 of	 all	 the	 possible	 ORFs	

present	in	noncoding	regions.	The	ORFmine	package	is	not	published	yet	but	available	at:	

https://github.com/i2bc/ORFmine	and	consists	of	two	independent	programs,	ORFtrack	

and	ORFold	 that	 can	 be	 combined	 together	 or	 used	 independently	 (Figure	 2.1).	 Used	

together,	 ORFtrack	 and	ORFold	 provide	 a	 global	 picture	 of	 the	 fold	 potential	 and	 the	

structural	properties	of	all	the	potential	peptides	of	a	genome.	Otherwise,	ORFtrack	can	

simply	be	used	to	extract	and	annotate	the	ORFs	of	a	genome,	while	ORFold	can	estimate	

the	fold	potential	of	any	set	of	sequences	without	using	genomic	information.		

	

Figure	2.1:	Pipeline	of	ORFmine.	The	inputs	and	outputs	are	represented	with	grey	rectangles	while	the	

main	scripts	are	shown	with	red	circles.	The	mandatory	inputs	necessary	to	the	ORF	annotation	and	the	

estimation	of	their	structural	properties	(e.g.	fold	potential	and	disorder	and	aggregation	propensities),	as	
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well	as	their	corresponding	outputs	are	connected	to	their	related	scripts	with	black	arrows.	The	classical	

pipeline	of	ORFmine	provides	the	user	with	a	plot	representing	the	distribution	of	the	fold	potential	of	the	

input	ORFs	(red	box).	Optionally,	a	genome	annotation	file	(GFF	format)	can	be	given	to	ORFold	(dashed	

arrows).	In	this	case,	ORFold	produces	new	GFF	files	(one	per	studied	structural	property)	where	all	input	

ORFs	are	associated	with	the	score	of	 the	corresponding	property.	The	GFF	produced	by	ORFtrack	and	

ORFold	 can	 be	 subsequently	 uploaded	 on	 a	 genome	 viewer	 (black	 boxes)	where	ORFs	will	 be	 colored	

according	to	their	annotation	(black	box	on	the	left)	or	their	structural	properties	(black	box	on	the	right).	

	

	

2.1.1	ORFtrack		

ORFtrack	aims	at	extracting	and	annotating	all	the	possible	ORFs	of	a	genome	according	

to	a	 set	of	defined	genomic	 features.	 It	 takes	as	 inputs	a	FASTA	 file	 containing	all	 the	

chromosome	or	contig	sequences	and	 its	corresponding	annotation	GFF	file	(for	more	

details,	 see	 the	 GFF3	 file	 format	 description	 at	 https://github.com/The-Sequence-

Ontology/Specifications/blob/master/gff3.md).	 ORFtrack	 searches,	 in	 the	 six	 possible	

frames,	for	all	possible	ORFs	of	at	least	60	nucleotides	bounded	by	STOP	codons	(i.e.	it	

does	not	search	for	start	codons).	In	order	to	annotate	each	resulting	ORF	(e.g.,	intergenic	

ORF,	noncoding	ORF	that	overlaps	a	coding	sequence,	coding	ORF	etc.),	their	localization	

is	subsequently	compared	to	those	of	all	genomic	features	annotated	in	the	GFF	file	(e.g.	

CDS,	tRNA,	rRNA,	or	any	other	feature	defined	by	the	user	in	the	third	column	of	the	GFF	

file)	(Figures	2.2-2.3).	There	are	four	main	categories	of	ORFs:	(1)	Coding	ORFs	(c_CDS)	

which	correspond	to	ORFs	that	include	a	coding	sequence	(CDS)	(i.e.,	in	the	same	frame	

of	a	CDS).	They	are	generally	larger	than	the	CDS	since	they	are	defined	STOP-to-STOP.	

(2)	 Noncoding	 intergenic	 ORFs	 (nc_intergenic)	 which	 do	 not	 overlap	 any	 genomic	

feature.	 (3)	 Noncoding	 ORFs	 which	 overlap	 a	 genomic	 feature	 on	 the	 same	 strand	

(nc_ovp_same-x	 with	 x	 standing	 for	 the	 corresponding	 genomic	 feature),	 and	 (4)	

Noncoding	ORFs	which	overlap	a	genomic	feature	on	the	opposite	strand	(nc_ovp_opp-x	

with	x	standing	for	the	corresponding	genomic	feature)	(Figures	2.2-2.3).	
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Figure	2.2:	Decision	tree	of	ORFtrack.	ORFs	are	annotated	according	to	four	main	categories:	c_CDS	for	

coding	ORFs	(orange	box),	noncoding	intergenic	ORFs	(grey	box),	noncoding	ORFs	that	overlap	a	genomic	

feature	on	the	same	strand	(blue	box)	or	on	the	opposite	strand	(green	box).		

	

	

The	user	has	to	keep	in	mind	that	ORFtrack	provides	an	ORF-centered	point	of	view	of	

the	input	genome	and	that	ORFs	do	not	correspond	to	real	biological	objects	but	rather	

to	 the	 potential	 peptides	 that	 could	 be	 produced	 upon	 pervasive	 translation	with	 no	

information	on	the	localization	of	their	first	translated	codon.	For	example,	a	noncoding	

ORF	overlapping	a	tRNA	does	not	correspond	to	a	tRNA	which	by	definition	has	neither	

phase	nor	a	corresponding	amino	acid	sequence,	but	to	the	corresponding	peptide	which	

could	be	produced	upon	the	pervasive	translation	of	the	tRNA	gene	with	no	knowledge	

of	the	first	translated	codon.		

If	 a	 noncoding	 ORF	 overlaps	 more	 than	 one	 genomic	 feature,	 ORFtrack	 applies	 the	

following	priority	rules:		
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• the	noncoding	ORF	overlaps	a	CDS	and	any	other	genomic	feature:	it	is	annotated	

as	 a	 noncoding	 ORF	 overlapping	 a	 CDS	 (same	 or	 opposite	 strand)	 (e.g.	

nc_ovp_[same/opp]-CDS)		

• the	noncoding	ORF	overlaps	a	genomic	feature	on	the	same	strand	and	any	other	

genomic	feature	on	the	other	strand	(except	CDS):	it	is	annotated	as	a	noncoding	

ORF	overlapping	the	feature	on	the	same	strand	(e.g.	nc_ovp_same-x)		

• the	noncoding	ORF	overlaps	two	or	more	genomic	features	located	on	the	same	

strand	that	can	correspond	to	the	same	or	the	opposite	strand	of	the	noncoding	

ORF:	it	is	annotated	as	overlapping	the	genomic	feature	that	has	the	larger	overlap	

with	it	(e.g.	nc_ovp_[same/opp]-	x)		

	

	

	

Figure	2.3:	Schematic	representation	of	the	six	frames	of	a	DNA	section.	The	genomic	features	annotated	

in	 the	original	GFF	 file	are	represented	 in	 the	middle	 line.	The	ORFs	of	 the	six	 frames	are	colored	with	

respect	to	their	ORFtrack	annotation.	The	overlap	between	an	ORF	and	a	genomic	feature	is	illustrated	with	

a	rectangle	colored	according	to	the	ORF	annotation.	

	

	

The	program	provides	 the	user	with	a	new	GFF	 file	containing	all	 the	 identified	ORFs	

annotated	according	to	the	four	categories	defined	previously.	ORFget	(a	tool	provided	

with	 ORFtrack)	 generates	 a	 FASTA	 file	 containing	 the	 amino	 acid	 sequences	 of	 all	

identified	ORFs	or	a	subset	of	ORFs	selected	with	respect	to	their	annotation	category	

(e.g.	c_CDS,	nc_intergenic,	nc_ovp_same,	nc_ovp_opp)	or	to	their	complete	annotation	for	

a	finer	selection	(e.g.	nc_ovp_same-lncRNAs	and	nc_ovp_opp-lncRNAs	if,	for	example,	the	

user	seeks	to	investigate	whether	ORFs	overlapping	lncRNAs	display	specific	properties	
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compared	to	other	noncoding	ORFs	-	see	Subheading	3.3		for	an	example).	Finally,	ORFget	

allows	 the	 user	 to	 extract	 in	 a	 FASTA	 file,	 the	 amino	 acid	 sequences	 of	 all	 annotated	

proteins,	and	to	reconstruct	all	isoforms	of	multi-exonic	genes	if	they	are	annotated	in	

the	input	GFF	file.		

	

2.1.2	ORFold		

ORFold	aims	at	estimating	the	fold	potential	of	a	set	of	amino	acid	sequences	using	the	

HCA	method	 (Faure	 and	Callebaut	 2013a,	 2013b;	Bitard-Feildel	 and	Callebaut	 2018a;	

Lamiable	 et	 al.	 2019).	 In	 addition,	 it	 can	 predict	 their	 disorder	 or	 aggregation	

propensities	with	 IUPred	(Mészáros	et	al.	2018;	Dosztányi	2018;	Erdős	and	Dosztányi	

2020),	and	Tango	(Linding	et	al.	2004;	Fernandez-Escamilla	et	al.	2004;	Rousseau	et	al.	

2006a),		respectively.	Although	HCA	is	very	fast	and	can	handle	all	ORFs	of	a	small	genome	

in	a	few	minutes,	the	calculation	of	the	disorder	and	aggregation	propensities	slows	down	

ORFold	(around	3	hours	on	a	single	CPU	(2GHz	processor,	16GB	RAM)	for	all	the	ORFs	of	

Escherichia	coli).	Consequently,	the	user	can	turn	off	the	calculation	of	the	disorder	and	

aggregation	propensities.	ORFold	takes	as	input	a	FASTA	file	containing	the	amino	acid	

sequences	to	treat.	The	output	of	ORFold	is	a	table	containing	the	fold	potential	and/or	

the	disorder	and	aggregation	propensities	of	each	input	sequence.	Optionally,	the	user	

can	provide	ORFold	with	the	genome	annotation	GFF	file	of	the	input	genome.	In	this	case,	

the	fold	potential	and/or	the	disorder	and	aggregation	propensities	of	each	ORF	will	be	

added	in	the	GFF	file.	The	latter	can	be	uploaded	subsequently	on	a	genome	viewer	such	

as	IGV	(Robinson	et	al.	2011),	enabling	the	visual	inspection	and	manual	analysis	of	the	

distribution	of	the	fold	potential	and	the	other	structural	properties	along	the	genome.	

The	program	can	handle	several	FASTA	files	at	the	same	time	and	will	generate	as	many	

outputs	 as	 given	 FASTA	 files.	 Finally,	 ORFold	 can	 also	 provide	 the	 user	 with	 plots	

representing	the	distribution	of	the	fold	potential	of	the	input	sequences	along	with	those	

of	a	dataset	of	globular	proteins	used	as	reference	taken	from	Mészáros	et	al.	(2018).		

	

HCA		

ORFold	 estimates	 the	 fold	 potential	 with	 the	 HCA	 (Hydrophobic	 Cluster	 Analysis)	

approach	 (Bitard-Feildel	 and	 Callebaut	 2017,	 2018b).	 HCA	 toolkit	 is	 available	 at	

https://github.com/T-B-F/pyHCA.	 It	 splits	 an	 amino	 acid	 sequence	 into	 hydrophobic	

clusters	and	linkers.	The	formers	gather	strong	hydrophobic	residues	(V,	I,	L,	F,	M,	Y,	W)	
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and	cysteines	while	the	latter	correspond	to	stretches	of	residues	which	are	composed	of	

at	 least	 four	 non-hydrophobic	 residues	 or	 a	 proline.	 Hydrophobic	 clusters	 usually	

indicate	one	or	 several	 regular	 secondary	 structures	 connected	by	 short	 loops,	which	

constitute	 signatures	 of	 globular	 domains.	 Linkers	 correspond	 to	 loops	 or	 disordered	

regions.	The	fold	potential	of	a	sequence	is	determined	by	its	composition	in	hydrophobic	

clusters	and	linkers	and	is	reflected	with	the	HCA	score.	The	latter	ranges	from	-10	to	+10	

with	low	HCA	scores	indicating	sequences	that	are	enriched	in	linkers	and	expected	to	be	

disordered.	High	HCA	scores	correspond	to	sequences	with	a	high	density	in	hydrophobic	

clusters,	and	are	likely	to	form	aggregates	in	solution,	though	some	of	them	may	be	able	

to	 fold	 in	 lipidic	environments.	Sequences	 that	are	able	 to	 fold	 in	 solution	are	usually	

characterized	by	intermediate	HCA	scores	as	shown	with	the	HCA	scores	of	the	reference	

dataset	of	globular	proteins	in	Figure	2.5.		

	

Tango	

ORFold	calculates	the	aggregation	propensity	of	a	sequence	with	Tango	(Linding	et	al.	

2004;	Fernandez-Escamilla	et	al.	2004;	Rousseau	et	al.	2006a)	which	 is	available	here	

http://tango.crg.es	upon	request	from	the	developers.	Following	the	criteria	proposed	by	

Linding	 et	 al.	 (2004),	 a	 sequence	 segment	 is	 considered	 as	 aggregation	 prone	 if	 it	 is	

composed	of	at	 least	 five	consecutive	residues	predicted	as	populating	a	b-aggregated	

conformation	with	a	percentage	occupancy	greater	than	5%.	The	aggregation	propensity	

of	a	sequence	is	then	calculated	as	the	fraction	of	residues	predicted	in	an	aggregation	

prone	segment.		

	

IUPred	

ORFold	 calculates	 the	 disorder	 propensity	 with	 IUPred	 (Mészáros	 et	 al.	 2009,	 2018;	

Dosztányi	2018;	Erdős	and	Dosztányi	2020).	We	use	the	version	2A	of	IUPred	(Mészáros	

et	al.	2018;	Erdős	and	Dosztányi	2020)	which	is	available	here	https://iupred2a.elte.hu	

upon	request	from	the	developers.	Consistently	with	the	criteria	used	for	the	definition	

of	an	aggregation	prone	region,	we	considered	as	disordered,	a	region	composed	of	at	

least	 five	 consecutive	 residues	 displaying	 a	 disorder	 probability	 higher	 than	 0.5.	

According	 to	 the	 aggregation	 propensity	 calculation,	 the	 disorder	 propensity	 of	 a	

sequence	 is	 calculated	 as	 the	 fraction	 of	 residues	 predicted	 in	 a	 disordered	 prone	

segment.		
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3	Methods	

 

3.1	Classical	use:	probing	the	fold	potential	of	a	complete	genome		

Here	we	seek	to	probe	the	fold	potential	and	the	aggregation	and	disorder	propensities	

of	all	noncoding	ORFs	of	Escherichia	coli	str.	K-12	substr.	MG1655	(E.	coli)	regardless	they	

overlap	a	genomic	feature.	As	a	reference,	we	will	also	characterize	these	properties	for	

all	CDS	of	E.	coli.		

	

3.1.1	FASTA	and	GFF	files	used	in	this	example	

• E_coli.fna	(available	at	https://github.com/i2bc/ORFmine	in	the	"examples"	directory)	

• E_coli.gff	(available	at	https://github.com/i2bc/ORFmine	in	the	"examples”	directory)		

	

3.1.2	Annotation	of	the	ORFs	of	E.	coli	with	ORFtrack	

The	following	instruction	of	ORFtrack	displays	all	the	genomic	features	annotated	in	the	

genome	of	E.	coli:	

	

	

	

Up	to	12	different	genomic	features	are	annotated	in	the	E.	coli	genome	including	CDS,	

tRNA,	 rRNA...	 (see	Note	1).	We	 then	annotate	all	 the	possible	ORFs	of	E.	 coli	with	 the	

following	instruction:		

	

	

	

The	execution	time	on	a	single	CPU	(2GHz	processor,	16GB	RAM)	is	38	seconds.	ORFtrack	

generates	a	new	GFF	file	(mapping_orf_E_coli.gff)	that	contains	135097	annotated	ORFs	

among	which	130637	are	annotated	as	noncoding.	Table	1	shows	the	distributions	of	the	

output	ORFs	across	the	different	annotation	categories	with	various	levels	of	annotations.	

This	information	is	available	in	the	summary	file	produced	by	ORFtrack	(summary.log).	

Notice	that	it	is	also	possible	to	scan	all	the	annotated	ORFs	by	loading	the	new	GFF	on	a	

genome	viewer.		

> orftrack -fna E_coli.fna -gff E_coli.gff --show-types 

> orftrack -fna E_coli.fna -gff E_coli.gff 
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Table	2.1:	Counts	of	E.	coli	ORFs	for	each	annotation	category		

Total	ORFs	

135097	

Coding	(c_CDS)	 Noncoding	(nc_*)	

4460	 130637	

	
Noncoding	intergenic	

(nc_intergenic)	

Noncoding	overlapping	with	a	genomic	feature…	

(nc_ovp_*)	

	 18318	 112319	

	 	
On	the	same	strand	

(nc_ovp_same-x)	

On	the	opposite	strand	

(nc_ovp_opp-x)	

	 	 47880	 64439	

	 	 	 with	x	standing	for:	 	

	 	 45053	 CDS	 62354	

	 	 1136	 repeat	region	 545	

	 	 626	 sequence	feature	 566	

	 	 607	 r-RNA	 528	

	 	 140	 nc-RNA	 130	

	 	 119	 t-RNA	 114	

	 	 119	 pseudogene	 109	

	 	 77	 mobile	genomic	element	 87	

	 	 3	 origin	of	replication	 4	

	 	 0	 recombination	feature	 2	

	

	

3.1.3	Extraction	and	writing	of	the	noncoding	ORFs	and	the	CDS	of	E.	coli	

	

Extraction	of	noncoding	ORFs	

In	 this	 example,	we	 consider	all	 the	130637	noncoding	ORFs	and	do	not	differentiate	

noncoding	 intergenic	ORFs	 from	 those	 that	 overlap	 a	 genomic	 feature.	 Therefore,	we	

extract	 and	write	 the	 amino	 acid	 sequences	 of	 all	 noncoding	ORFs	 (i.e.	 nc_intergenic,	

nc_ovp_same	and	nc_ovp_opp)	with	ORFget	with	the	following	command	line	(see	Note	

2):		
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ORFget	generates	a	FASTA	file	with	the	resulting	130637	amino	acid	sequences.		

	

Extraction	of	CDS	

Finally,	in	order	to	compare	the	structural	properties	of	CDS	with	those	of	the	potential	

peptides	 “encoded”	 in	 noncoding	 regions,	 we	 extract	 and	 rebuild	 the	 amino	 acid	

sequences	of	each	CDS	of	E.	coli	according	to	the	original	annotation	GFF	file.		

	

	

	

We	obtain	a	FASTA	file	of	4316	protein	sequences.		

	

3.1.4	 Characterization	 of	 the	 fold	 potential,	 and	 the	 disorder	 and	 aggregation	

propensities	of	the	ORFs	and	CDS	of	E.	coli	with	ORFold		

We	 aim	 at	 characterizing	 the	 fold	 potential,	 and	 the	 disorder	 and	 aggregation	

propensities	of	the	noncoding	ORFs	(intergenic	and	overlapping	ORFs)	and	CDS	of	E.	coli.	

ORFold	can	handle	the	two	datasets	at	the	same	time	with	the	following	instruction:		

	

	

	

The	execution	time	on	a	single	CPU	is	around	3	hours.	ORFold	generates	two	tables	(one	

per	dataset)	containing	for	each	sequence,	its	fold	potential,	as	well	as	its	disorder	and	

aggregation	propensities	calculated	by	HCA,	IUPred	and	Tango,	respectively.	In	addition,	

ORFold	writes	 the	output	values	 in	a	new	GFF	 file	 that	 can	be	uploaded	on	a	genome	

viewer.	The	original	GFF	can	be	uploaded	as	well,	providing	a	reference	with	the	exact	

localization	 of	 the	 genomic	 features	 annotated	 in	 the	 original	 GFF.	 We	 recall	 that	

ORFtrack	 identifies	 and	 annotates	 all	 the	 possible	 ORFs	 of	 a	 genome	 which	 do	 not	

correspond	to	real	objects	but	rather	to	the	potential	peptides	that	could	be	produced	if	

> orfget -fna E_coli.fna -gff mapping_orf_E_coli.gff -

features_include nc -o E_coli_noncoding 

> orfget -fna E_coli.fna -gff E_coli.gff -features_include CDS -o 

E_coli_CDS  

> orfold -fna E_coli_noncoding.pfasta E_coli_CDS.pfasta -gff 

mapping_orf_E_coli.gff E_coli.gff - options HIT 
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their	 corresponding	 DNA	 region	 is	 transcribed,	 and	 the	 resulting	 RNA	 subsequently	

translated.	

Figure	2.4	shows	the	two	DNA	strands	of	a	genomic	section	of	E.	coli	represented	by	the	

genome	viewer	IGV	(Robinson	et	al.	2011)	after	uploading	the	original	GFF	(blue	genes	

in	the	middle)	and	the	new	GFF	returned	by	ORFtrack	(small	ORFs	in	the	panels	2	and	4).	

Although	the	genome	of	E.	coli	is	very	compact	with	a	few	intergenic	regions,	there	is	a	

high	density	of	noncoding	ORFs	that	overlap	with	the	coding	genes	of	E.	coli,	and	that	

represent	 a	 high	 potential	 of	 novel	 peptides	 in	 case	 of	 ribosomal	 frameshifting.	

Interestingly,	the	distribution	of	the	fold	potential	along	the	genome	is	not	homogeneous.	

We	observe	an	island	of	noncoding	ORFs	with	high	HCA	values	(ORFs	in	light	and	dark	

red	 in	 the	middle	 of	 the	 figure).	 These	 ORFs	 potentially	 encode	 peptides	 enriched	 in	

hydrophobic	residues	that	are	likely	to	be	foldable	(light	red	ORFs)	or	expected	to	form	

aggregates	 in	 solution	 (dark	 red	 ORFs).	 The	 GFF	 returned	 by	 ORFold	 containing	 the	

Tango	or	IUPred	values	can	provide	the	user	with	complementary	information	(data	not	

shown).	The	genomic	regions	around	the	island	of	high	HCA	values	ORFs,	are	enriched	in	

ORFs	with	intermediate	HCA	values	typical	of	foldable	sequences	(ORFs	in	light	red	and	

light	 blue).	 Overall,	 it	 is	 interesting	 to	 note	 that	 the	 fold	 potential	 seems	 to	 be	 quite	

conserved	among	the	three	frames	of	a	strand,	though	it	can	vary	along	the	strand.	This	

recall	 the	 observation	 made	 by	 Bartonek	 et	 al.	 (2020),	 who	 showed	 that	 the	

hydrophobicity	profiles	of	protein	sequences	are	preserved	in	+1,	-1	frames	through	the	

structure	of	the	genomic	code.	Finally,	the	visual	inspection	of	the	distribution	of	the	fold	

potential	of	noncoding	ORFs	suggests	that	there	is	a	vast	amount	of	ORFs	that	potentially	

encode	foldable	peptides	(light	blue	and	light	red	boxes	corresponding	to	intermediate	

HCA	values).	Whether	these	peptides	would	fold	to	a	specific	3D	structure	or	to	a	molten	

globule	is	a	crucial	and	very	difficult	question	that	deserves	further	investigation.		

	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 60	

	

Figure	2.4:	Screenshot	of	a	genomic	section	of	E.	coli	represented	by	IGV.	Genomic	features	present	in	the	

original	GFF	file	(CDS	in	this	example)	are	represented	with	blue	boxes	in	the	middle	of	the	figure	(panel	

3).	 Panels	 2	 and	 4	 represent	 the	 noncoding	 ORFs	 identified	 by	 ORFtrack	 in	 the	 positive	 and	 negative	

strands,	respectively.	They	are	colored	according	to	their	annotation	category	(grey,	blue	and	green	for	

nc_intergenic,	nc_ovp_same	and	nc_ovp_opp	respectively).	Panels	1	and	5	represent	the	same	ORFs	colored	

with	respect	to	their	HCA	scores.	ORFs	with	low	HCA	scores	are	colored	in	blue,	whereas	ORFs	with	high	

HCA	scores	are	colored	in	red.	For	more	clarity	c_CDS	which	correspond	to	ORFs	including	a	CDS	in	the	

same	frame	are	not	shown	since	the	corresponding	CDS	are	already	represented	with	the	blue	boxes	in	the	

middle	panel.		

	

	

Finally,	we	plot	the	distributions	of	the	fold	potential	of	the	two	datasets	with	ORFplot.	

Notice	that	ORFplot	can	deal	with	several	inputs	and	will	plot	as	many	distributions	as	

given	tables.		

	

	

	

Figure	2.5	shows	the	fold	potential	distributions	of	the	noncoding	ORFs	and	the	CDS	of	E.	

coli	as	plotted	by	ORFplot.	Furthermore,	as	a	reference,	ORFplot	plots	the	distribution	of	

the	HCA	scores	of	a	set	of	globular	protein	sequences	taken	from	Mészáros	et	al.	(2018).	

The	 fold	 potential	 distribution	 of	 the	 CDS	 is	 clearly	 different	 from	 the	 one	 of	 the	

noncoding	sequences	(KS	test,	P	=	9.9e-18).	The	CDS	are	enriched	in	intermediate	HCA	

2,990 kb 3,000 kb

araE kduD kduI yqeF yqeG yqeH yqeI yqeL ygeF ygeH ygeI ygeK ygeN insD-4 ygeP ygeR xdhA xdhB

yqeJ ygeO insC-4 xdhC

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

fold potential

1

2

3

4

5

> orfplot -tab E_coli_CDS.tab E_coli_nocoding.tab -names “E. coli 

CDS” “E. coli noncoding ORFs” 
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values	typical	of	foldable	proteins	as	shown	by	the	HCA	scores	of	the	globular	proteins.	

Conversely,	 noncoding	 ORFs	 display	 a	 wide	 range	 of	 HCA	 values	 reflecting	 foldable,	

disordered	or	aggregation	prone	potential	peptides.	Nevertheless,	it	is	interesting	to	note	

that	 the	 majority	 of	 them	 (~64%)	 exhibit	 similar	 HCA	 scores	 to	 globular	 proteins,	

revealing	an	important	potential	of	foldable	peptides	in	line	with	the	observation	made	

in	Figure	2.4.		

	

	

Figure	2.5:	Distribution	of	the	HCA	scores	calculated	for	the	CDS	and	the	noncoding	ORFs	of	E.	coli	(dark	

blue	 and	 light	 blue	 curves	 respectively).	 The	 HCA	 score	 distribution	 of	 the	 set	 of	 globular	 proteins	 is	

represented	by	the	grey	histogram.	Dotted	black	lines	delineate	the	boundaries	of	the	low,	intermediate	

and	high	HCA	score	bins	so	that	95%	of	the	globular	proteins	fall	into	the	intermediate	HCA	score	bin.	Each	

distribution	 is	 compared	 with	 the	 one	 of	 the	 globular	 proteins	 set	 with	 a	 Kolmogorov	 Smirnov	 test.	

Asterisks	on	the	plot	denote	level	of	significance:	***	<	1	×	10-3.	

	

	

3.2	Application	to	large	genomes	and	comparison	with	other	species		

The	execution	time	and	the	size	of	the	outputs	increase	with	the	size	of	the	input	genome.	

This	can	become	dramatical	for	very	large	genomes	such	as	those	of	mammals	or	plants.	

Even	if	the	execution	time	for	ORFtrack	and	ORFget	is	acceptable,	it	becomes	prohibitive	

for	 ORFold.	 Furthermore,	 the	 sizes	 of	 the	 outputs	 are	 very	 large.	 In	 this	 section,	 we	

present	 alternatives	 to	 reduce	 the	 computational	 time	 and	 the	 size	 of	 the	 generated	

outputs.	
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3.2.1	FASTA	and	GFF	files	used	in	this	example		

• M_musculus.fna		

• M_musculus.gff		

(downloadable	at	https://www.ncbi.nlm.nih.gov/genome/?term=mus+musculus)		

• E_coli.fna		

• E_coli.gff		

(downloadable	at	https://www.ncbi.nlm.nih.gov/genome/?term=e+coli)		

• H_volcanii.fna		

• H_volcanii.gff		

(downloadable	at	https://www.ncbi.nlm.nih.gov/genome/?term=haloferax+volcanii)		

• D_melanogaster.fna		

• D_melanogaster.gff		

(downloadable	at	https://www.ncbi.nlm.nih.gov/genome/?term=drosophila+melanogaster)		

	

3.2.2	Annotation	of	ORFs	of	Mus	musculus	with	ORFtrack		

In	order	to	reduce	the	execution	time	(around	64h	hours	on	a	single	CPU),	we	recommend	

running	ORFtrack	on	a	cluster.	The	following	command	displays	all	the	"seqid"	contained	

in	the	first	column	of	the	input	GFF	file	(usually	chromosomes	and	contigs):		

	

	

	

The	ORF	annotation	 can	be	 therefore	distributed	over	multiple	CPUs	 (i.e.	 one	 job	per	

"seqid"),	 reducing	 substantially	 the	 computational	 time.	 That	way,	 ORFtrack	must	 be	

launched	 as	 many	 times	 as	 different	 "seqid"	 are	 indicated	 in	 the	 original	 GFF.	 Here,	

ORFtrack	is	launched	on	the	chromosome	NC_000067.7	with	the	following	instruction:		

	

	

	

	

	

	

> ORFtrack -fna M_musculus.fna -gff M_musculus.gff --show-chr  

> orftrack -fna M_musculus.fna -gff M_musculus.gff -chr 

NC_000067.7 



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 63	

3.2.3	Extraction	and	writing	of	the	ORFs	and	CDS	of	Mus	musculus	with	ORFget	

	

Definition	of	a	minimal	subset	size	to	characterize	the	fold	potential	and	structural	

properties	of	noncoding	ORFs		

Extracting	all	annotated	ORFs	with	ORFget	 takes	around	3	hours	on	a	single	CPU	and	

generates	a	7.5GB	FASTA	file	containing	up	to	89x106	noncoding	ORFs.	Characterizing	

their	fold	potential	and	disorder	and	aggregation	propensities	with	ORFold	would	take	

about	 6	months	 on	 a	 single	 CPU.	 Consequently,	we	 recommend	 running	ORFold	 on	 a	

representative	subset	of	noncoding	ORFs.	Indeed,	a	subset	of	20000	ORFs	is	sufficient	to	

estimate	the	fold	potential	and	the	disorder	and	aggregation	propensities	of	the	whole	

dataset	 of	 noncoding	 ORFs.	 The	 Kolmogorov	 Smirnov	 test	 p-value	 calculated	 for	 the	

comparison	 of	 the	HCA	 score	 distribution	 obtained	with	 a	 subset	 of	 20000	 randomly	

selected	noncoding	ORFs	with	that	of	the	complete	set	of	noncoding	ORFs	of	Drosophila	

melanogaster	 is	 not	 significant.	 The	 same	 observations	 are	made	 for	 the	 IUPred	 and	

Tango	score	distributions	and	hold	also	for	other	species	such	as	Haloferax	volcanii	and	

Escherichia	coli.	Consequently,	in	the	next	section,	ORFold	will	be	applied	to	a	set	of	20000	

randomly	selected	noncoding	ORFs	extracted	from	the	complete	set	of	mouse	noncoding	

ORFs.		

	

Extraction	and	writing	of	the	amino	acid	sequences	of	a	dataset	of	20000	noncoding	

ORFs	

The	following	instruction	allows	the	extraction	of	a	subset	of	20000	noncoding	ORFs	(see	

Note	3	for	more	advanced	examples).		

	

	

	

Then,	 in	 order	 to	 compare	 the	 fold	 potential	 and	 the	 disorder	 and	 aggregation	

propensities	 of	 the	 noncoding	 ORFs	 of	 Mus	 musculus	 with	 those	 of	 the	 CDS,	 we	

reconstruct	the	amino	acid	sequences	of	all	the	isoforms	annotated	in	the	original	GFF	

file.		

> orfget -fna M_musculus.fna -gff mapping_orf_M_musculus.gff -

features_include nc -o M_musculus_noncoding -N 20000 
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3.2.4	Characterization	of	the	fold	potential,	and	the	structural	properties	of	a	set	of	

20000	noncoding	ORFs	along	with	those	of	M.	musculus	CDS		

We	execute	ORFold	on	the	small	dataset	of	randomly	selected	noncoding	ORFs	and	the	

complete	set	of	mouse	isoforms:		

	

	

	

ORFold	provides	us	with	two	tables	containing	the	fold	potential	and	the	disorder	and	

aggregation	propensities	of	the	20000	noncoding	ORFs	and	the	92473	mouse	isoforms	

(around	40	hours	on	a	single	CPU).		

	

3.2.5	 Comparison	 of	 the	 fold	 potential	 of	 the	 noncoding	 ORFs	 and	 the	 CDS	

calculated	for	different	species		

ORFplot	can	handle	multiple	datasets	at	the	same	time.	Following	the	same	protocol	as	

the	one	used	for	the	mouse,	we	also	calculated	the	fold	potential	of	a	subset	of	20000	

noncoding	 ORFs	 and	 all	 CDS	 of	 Haloferax	 volcanii,	 Escherichia	 coli,	 and	 Drosophila	

melanogaster.	We	then	present	the	HCA	score	distributions	of	all	datasets	on	the	same	

graph.		

	

	

	

	

Figure	2.6	shows	for	the	four	species,	the	HCA	score	distributions	of	the	corresponding	

CDS	 (Figure	 2.6A)	 and	 noncoding	 ORFs	 (Figure	 2.6B).	 Although	 the	 fold	 potential	

> orfget M_musculus.fna -gff M_musculus.gff -features_include CDS 

-o M_musculus_CDS  

> orfold -fna M_musculus_noncoding.pfasta M_musculus_CDS.pfasta -

options HIT  

> orfplot -tab E_coli_CDS.tab H_volcanii_CDS.tab 

D_melanogaster_CDS.tab M_musculus_CDS.tab -names “E. coli” “H. 

volcanii” “D. melanogaster” “M. musculus” 

> orfplot -tab E_coli_noncoding.tab H_volcanii_noncoding.tab 

D_melanogaster_noncoding.tab mouse_noncoding.tab -names “E. coli” 

“H. volcanii” “D. melanogaster” “M. musculus” 



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 65	

distributions	of	the	CDS	display	slight	variations	among	the	four	species,	the	vast	majority	

(more	than	85%)	exhibits	intermediate	HCA	scores	typical	of	the	scores	obtained	for	the	

globular	 proteins.	 This	 reflects	 that	 being	 foldable	 is	 a	 trait	 that	 has	 been	 strongly	

selected	during	evolution.	However,	the	fold	potential	distribution	of	the	noncoding	ORFs	

calculated	 for	Haloferax	 volcanii	 is	 clearly	 different	 from	 those	 of	 the	 other	 species.	

Indeed,	the	other	species	are	mostly	characterized	by	noncoding	ORFs	that,	similarly	to	

CDS,	encode	peptides	predicted	as	foldable.	Conversely,	the	noncoding	ORFs	of	Haloferax	

volcanii	 are	 enriched	 in	 sequences	 with	 low	 HCA	 scores	 that	 are	 likely	 to	 encode	

disordered	peptides.	Whether	this	enrichment	in	hydrophilic	sequences	comes	from	the	

fact	 that	 this	 species	 lives	 in	 hypersaline	 environments	 is	 an	 exciting	 question	 that	

deserves	further	investigations.		

	

Figure	2.6:	(A)	Distribution	of	the	HCA	scores	calculated	for	the	CDS	of	E.	coli,	H.	volcanii,	D.	melanogaster	

and	M.	musculus	(dark	blue,	light	blue,	dark	orange	and	light	orange	curves	respectively).	(B)	Distribution	

of	the	HCA	scores	calculated	for	the	noncoding	ORFs	of	E.	coli,	H.	volcanii,	D.	melanogaster	and	M.	musculus	

(dark	blue,	light	blue,	dark	orange	and	light	orange	curves	respectively).	The	HCA	score	distribution	of	the	

set	of	globular	proteins	is	presented	with	the	grey	histogram.	Each	distribution	is	compared	with	the	one	

of	 the	 globular	 proteins	 set	 with	 a	 Kolmogorov	 Smirnov	 test.	 Asterisks	 on	 the	 plot	 denote	 level	 of	

significance:	***	<	1	×	10-3.	

	

	

3.3	Probing	the	fold	potential	of	a	set	of	mouse	noncoding	ORFs	shown	

to	be	pervasively	translated	

Recently,	 Ruiz-Orera	 et	 al.	 (2018)	 revealed	 with	 ribosome	 profiling	 experiments,	 the	

translation	of	721	ORFs	in	mouse	lncRNAs	(i.e.	translated	lncRNA-ORFs).	They	are	not	
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conserved	 across	 the	 neighboring	 species	 nor	 subjected	 to	 selective	 pressure.	 The	

authors	 propose	 them	 as	 intermediates	 between	 noncoding	ORFs	 and	 de	 novo	genes	

(Ruiz-Orera	et	al.	2018).	This	prompts	us	to	ask	whether	their	corresponding	peptides	

display	specific	structural	properties	compared	to	those	of	the	ones	encoded	by	ORFs	in	

other	 lncRNAs	 (i.e.	 nontranslated	 lncRNA-ORFs).	 Therefore,	 in	 this	 section,	 we	

characterize	their	respective	HCA	score	distributions	along	with	those	of	the	CDS	and	the	

subset	 of	 20000	 randomly	 selected	 noncoding	 ORFs	 defined	 in	 Subheading	 3.2.	 The	

amino	acid	sequences	of	all	translated	products	identified	in	Ruiz-Orera	et	al.	(2018)	(i.e.	

products	coming	from	protein	coding	genes	or	noncoding	regions)	can	be	downloaded	

at:	https://figshare.com/articles/dataset/Ruiz-Orera_et_al_2017_/4702375?file=10323906	

	

We	 extracted	 the	 sequences	 of	 the	 721	 translated	 lncRNA-ORFs	 by	 searching	 the	

sequences	 containing	 either	 the	 “lncRNAa:translated:NC”	 or	 the	 “novel:translated:NC”	

pattern	 in	 their	 annotation.	 Then,	 20000	 nontranslated	 lncRNA-ORFs	were	 extracted	

randomly	from	the	GFF	generated	with	ORFtrack	in	Subheading	3.2	with	the	following	

instruction:		

	

	

	

The	 amino	 acid	 sequences	 of	 the	 721	 translated	 lncRNA-ORFs	 and	 the	 20000	

nontranslated	lncRNA-	ORFs	can	be	directly	given	as	input	to	ORFold.		

	

	

We	subsequently	plot	the	fold	potentials	of	the	four	sets	of	ORFs	with	ORFplot:		

	

> orfget -fna M_musculus.fna -gff mapping_orf_M_musculus.gff -

features_include nc_ovp_same-lncRNA -o M_musculus_nc_ovp_same-

lncRNA -N 20000 

> orfold -fna M_musculus_nc_ovp_same-lncRNA.pfasta 

M_musculus_translated_721_orfs.pfasta - options H 

> orfplot M_musculus_CDS.tab M_musculus_noncoding.tab 

M_musculus_nc_ovp_same-lncRNA.tab 

M_musculus_translated_721_orfs.tab -names “CDS” “Noncoding ORFs” 

“Nontranslated lncRNA-ORFs" “Translated lncRNA-ORFs” 
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Figure	2.7	shows	the	HCA	score	distributions	of	the	four	sets	of	ORFs.	If	the	nontranslated	

lncRNA-ORFs	display	similar	HCA	scores	to	noncoding	ORFs	(Kolmogorov	Smirnov	test,	

P	 =	 0.46),	 the	 721	 translated	 lncRNA-ORFs	 exhibit	 a	 clearly	 different	 HCA	 value	

distribution	from	the	three	other	datasets	(Kolmogorov	Smirnov	test,	P	=	5.9e-06,	4.8e-

06,	 and	 2.4e-05	 with	 nontranslated	 lncRNA-	 ORFs,	 noncoding	 ORFs,	 and	 CDS	

respectively).	Although	they	are	characterized	by	a	majority	of	intermediate	HCA	score	

sequences	expected	to	be	foldable,	they	are	clearly	enriched	in	disorder	prone	sequences	

recalling	 the	 observation	made	by	Wilson	 et	 al.	 (2017)	 that	 young	proteins	 are	more	

disordered	than	old	ones.	That	said,	it	is	interesting	to	note	that,	similarly	to	the	two	other	

noncoding	ORF	categories,	the	translated	lncRNA-ORFs	exhibit	a	majority	of	sequences	

that	 potentially	 encode	 peptides	 expected	 to	 be	 foldable.	 Further	 investigations	 are	

needed	to	determine	whether	 their	corresponding	peptides	 fold	 to	a	well-defined	and	

stable	3D	structure	or	to	a	molten	globule.		

	

	

Figure	2.7:	Distribution	of	the	HCA	scores	calculated	for	the	CDS,	the	20000	noncoding	ORFs,	the	2000	

nontranslated	 lncRNA-ORFs,	and	the	721	translated	 lncRNA-ORFs	of	M.	musculus	(dark	blue,	 light	blue,	

dark	orange	and	light	orange	curves	respectively).	The	HCA	score	distribution	of	the	set	of	globular	proteins	

is	presented	with	the	grey	histogram.	Each	distribution	is	compared	with	the	one	of	the	globular	proteins	

set	with	a	Kolmogorov	Smirnov	test.	Asterisks	on	the	plot	denote	level	of	significance:	***	<	1	×	10-3.		
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4	Conclusion	

	

Here,	we	presented	three	protocols	that	all	aim	at	characterizing	the	fold	potential	and	

the	 structural	 properties	 of	 different	 sets	 of	 ORFs,	 including	 coding	 sequences,	 the	

ensemble	or	a	representative	subset	of	 the	noncoding	ORFs	of	a	genome,	or	a	specific	

subset	of	sequences	of	interest.	ORFtrack	is	very	fast,	annotating	million	ORFs	in	a	few	

hours.	In	addition,	it	allows	the	user	to	deal	with	different	levels	of	annotation	and	various	

combinations	 of	 selection	 patterns,	 thereby	 facilitating	 the	 definition	 of	 many	 ORF	

categories.	ORFold	can	handle	many	inputs	and	enables	the	simultaneous	visualization	

of	the	fold	potential	calculated	for	different	datasets	or	the	manual	inspection	of	the	fold	

potential	 or	 structural	 properties	 of	 all	 annotated	 ORFs	 of	 a	 genome	with	 a	 genome	

viewer.	 In	addition,	ORFold	can	be	used	to	probe	 the	 fold	potential	and	the	structural	

properties	of	any	set	of	amino	acid	sequences	without	any	genomic	information	including	

for	instance,	designed	peptides	or	de	novo	peptides	identified	with	mass	spectrometry	in	

different	tissues	or	conditions.	Finally,	ORFmine	opens	up	new	applications	in	peptide	

discovery	and	characterization.	In	particular,	recent	studies	have	reported	the	existence	

of	de	novo	peptides	associated	with	human	diseases	(Barbosa	et	al.	2013;	Lawrence	et	al.	

2013;	Yadav	et	al.	2014;	Sendoel	et	al.	2017;	von	Bohlen	et	al.	2017;	Wang	et	al.	2019;	Yin	

et	al.	2019).	ORFtrack	can	be	used	to	mine	noncoding	genomes	for	the	identification	of	de	

novo	peptides	which	are	usually	difficult	to	identify	with	mass	spectrometry	experiments	

(for	example,	peptides	resulting	from	the	translation	of	RNAs	associated	with	diseases).	

On	the	other	hand,	ORFold	provides	valuable	and	complementary	information	with	the	

characterization	of	their	fold	potential	and	structural	properties.		

	

	

5	Notes		

	

1. Notice	 that	 the	 genomic	 features	 of	 a	 GFF3	 file	 follow	 a	 specific	 hierarchy.	 For	

example,	the	feature	“gene”	has	children	(e.g.	CDS,	exons,	tRNAs,	rRNAs...).	In	addition,	

features	 of	 the	 same	 level	 can	 overlap	 with	 each	 other	 (e.g.	 a	 CDS	 and	 its	

corresponding	exon).	By	default,	the	features	“gene”	and	“exon”	are	not	considered.	

ORFs	that	match	with	the	feature	“gene”	will	be	annotated	according	to	its	children	or	
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related	features	(mRNA,	tRNA...).	For	example,	ORFs	overlapping	tRNAs	on	the	same	

strand	necessarily	overlap	the	parent	genes	as	well,	but	for	a	more	precise	annotation,	

ORFtrack	 will	 annotate	 them	 as	 nc_ovp_same-tRNA	 instead	 of	 nc_ovp_same-gene.	

Finally,	 an	 ORF	 that	 matches	 with	 the	 feature	 “CDS”,	 usually	 matches	 with	 the	

corresponding	“exon”	feature	as	well.	However,	the	“exon”	feature	is	not	considered	

and	the	ORF	will	be	annotated	as	c_CDS	if	 it	 is	 in	the	same	frame	as	the	CDS,	or	as	

nc_(same/opp)_ovp-CDS	if	it	is	in	another	frame	than	the	CDS.		

2. Notice	that	the	following	instructions	will	lead	to	the	same	result.		

	

3. Notice	 that	 ORFget	 can	 extract	 a	 random	 subset	 of	 ORFs	 belonging	 to	 a	 specific	

category	(e.g.	extraction	of	20000	noncoding	ORFs	overlapping	lncRNAs	on	the	same	

strand)	as	follows:		
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2.2	ORFribo	

	

ORFribo	corresponds	to	the	third	tool	of	ORFmine	package	(not	still	integrated)	which	

aims	at	mapping	correctly	Ribo	Seq	data	on	the	ORFs	of	a	given	genome	being	coding	or	

not,	 thereby	 probing	 the	 translational	 activity	 of	 CDS	 but	 also	 of	 ORFs	 presumed	 as	

noncoding.	As	it	has	already	been	presented	in	the	introduction,	Ribosome	Profiling	is	

more	informative	method	than	the	RNA	Seq	as	it	can	identify	specifically	the	codon	under	

translation	(P-site)	and	consequently	the	frame	of	the	mRNA	(out	of	the	three	possible)	

which	is	indeed	translated.	However,	mapping	Ribo	Seq	data	on	noncoding	regions	and	

detecting	the	frame	of	translation	is	one	of	the	most	complicated	tasks	of	the	Ribo	Seq	

data	analysis.	The	data	need	to	be	first	calibrated	on	coding	sequences	(CDS),	for	which	

the	translation	frame	is	known,	and	then	can	be	used	for	the	detection	of	the	frame	that	

is	translated	in	sequences	unannotated	and	therefore	presumed	as	noncoding.	

	

2.2.1	 Detection	 of	 the	 P-site	 through	 phasing	 of	 the	 reads	 on	 the	

transcriptome	

Ideally,	the	size	of	the	Ribo	Seq	reads	is	expected	to	be	28	nucleotides	(corresponding	to	

the	length	of	the	mRNA	protected	by	the	ribosome	machinery	during	translation)	and	the	

first	nucleotide	of	the	codon	under	translation	(P-site)	is	localized	at	the	14th	position	of	

the	read.	However,	the	experimental	conditions	(conformational	changes	of	the	ribosome	

machinery,	alterations	at	the	digestion	time	by	the	nuclease	etc.)	can	generate	reads	of	

different	sizes,	thereby	leading	to	the	modification	of	the	P-site’s	location	on	the	reads,	

which	may	lead	to	misidentification	of	the	correct	P-site	(Figure	2.8).	One	should	note	

that,	false	localization	of	the	P-site,	inevitably	leads	to	the	wrong	identification	of	the	true	

frame	under	translation.	Therefore,	it	is	of	crucial	importance	to	identify	the	fragments	

size	which	enable	us	to	correctly	detect	the	location	of	the	P-site	and	consequently	of	the	

translated	frame.	This	procedure	is	called	“phasing”	and	consists	in	separating	the	Ribo	

Seq	reads	into	groups	of	different	sizes	(notably	from	26	to	30	nucleotides)	and	mapping	

them	independently	on	the	transcriptome	(CDS)	of	the	organism.	The	advantage	of	using	

the	 CDS	 is	 that	 we	 know	 which	 frame	 among	 the	 three	 possible	 is	 expected	 to	 be	

translated.	We	can	use	this	information	in	order	to	identify	the	reads’	size	for	which	the	

first	nucleotide	of	a	true	codon	under	translation	is	localized	at	the	14th	position	for	the	
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majority	 of	 the	 reads	 (Figure	 2.8).	 By	 convention,	 we	 name	 the	 translated	 frame	 as	

“Frame	 0”	 while	 the	 +1	 and	 +2	 frames	 are	 named	 as	 “Frame	 1”	 and	 “Frame	 2”,	

respectively.	 Consequently,	 a	 read	 for	 which	 the	 14th	 position	 indicates	 the	 first	

nucleotide	of	the	true	translated	codon	is	considered	as	“in-frame”	or	a	“Frame	0	read”.	

In	 a	 similar	 way,	 a	 read	 for	 which	 the	 14th	 position	 indicates	 the	 second	 or	 third	

nucleotide	of	the	true	translated	codon	is	considered	as	a	“Frame	1	read”	or	a	“Frame	2	

read”,	respectively.	The	phasing	procedure	aims	at	detecting	the	kmers	or	group	of	reads	

according	 to	 their	 size	 that	maximizes	 the	 fraction	of	 in-frame	 reads	 (“Frame	0”)	 and	

minimizes	the	fraction	of	out-of-frame	reads	(“Frame	1”	and	“Frame	2”).	Indeed,	the	14th	

position	of	these	kmers	is	expected	to	indicate	correctly	the	codon	under	translation	and	

subsequently	the	translated	frame	in	the	translated	RNA.	

	

	

Figure	2.8.	Schematical	representation	of	the	phasing	procedure	for	Ribo	Seq	reads	with	different	sizes	

aligned	on	the	same	region	of	the	transcript.	Every	square	corresponds	to	a	single	nucleotide	while	the	

codons	 on	 the	 CDS	 sequence	 are	 highlighted	with	 thick	 black	 line.	 In	 blue	 is	 colored	 the	 codon	 under	

translation	localized	in	the	P-site	of	the	ribosome.	Ribo	Seq	reads	of	different	sizes	are	aligned	with	the	

sequence	 of	 the	 translated	mRNA	 and	 their	 14th	 position	 is	 highlighted	with	 grey	 filled	 square.	 Their	

theoretical	codon	under	translation	is	highlighted	with	red	thick	line.	As	it	can	be	observed,	only	the	28-

mer	identified	correctly	the	true	P-site	and	as	a	result	this	read	is	tagged	as	“Frame	0”	because	is	in	the	

26-mer

27-mer

28-mer

29-mer

30-mer

CDS

P-Site
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same	frame	with	the	coding	sequence	indeed	translated.	The	14th	position	of	the	26-	and	30-mer	reads	

localize	at	third	nucleotide	of	a	codon	of	the	translated	frame	and	are	tagged	as	“Frame	2	reads”	while	the	

14th	position	of	the	27-	and	29-mer	reads	 localize	at	the	second	nucleotide	of	a	codon	of	the	translated	

frame,	being	subsequently	tagged	as	“Frame	1	reads”.	Only	the	“Frame	0”	reads	indicate	codons	indeed	

translated	in	the	transcript.	The	ribosome	figure	was	created	with	BioRender.com.	

	

	

The	phasing	procedure	is	conducted	by	the	ORFribo	pipeline	using	the	option	“phase”.	

The	output	of	this	step	is	a	table	of	reads	count	per	transcript	together	with	their	tagging	

as	in-frame	(“Frame	0”)	or	out-of-frame	reads	(“Frame	1”	and	“Frame	2”).	 In	addition,	

another	table	is	generated,	mapping	the	number	of	reads	(and	tagging	them	as	in-frame	

or	out-of-frame)	per	codon.	This	file	permits	us	to	study	the	periodicity	of	the	reads	which	

corresponds	to	the	total	count	of	reads	tagged	as	“Frame	0”,	“Frame	1”	and	“Frame	2”	per	

position	 on	 the	 transcripts.	 Due	 to	 the	 variant	 sizes	 of	 the	 transcripts,	 we	 can	 only	

visualize	 the	 periodicity	 for	 a	 few	 positions	 at	 the	 beginning	 and	 at	 the	 end	 of	 the	

transcripts.		

	

In	 Figure	 2.9	 are	 presented	 the	 results	 of	 the	 phasing	 for	 one	 Ribo	 Seq	 experiment	

(accession	number:	SRR6398740)	on	the	transcriptome	of	S.	cerevisiae.	Every	horizontal	

line	 corresponds	 to	 reads	 of	 different	 sizes	 (from	 26	 to	 30	 nucleotides).	 Figure	 2.9A	

represents	 the	distribution	of	 the	reads	 tagged	as	 “in-frame”	 (“Frame	0”)	and	 “out-of-

frame”	(“Frame	1”	or	“Frame	2”)	per	transcript.	It	can	be	observed	that	~70%	of	the	28-

mers	correspond	to	reads	that	 localize	the	true	P-site	at	 their	14th	position	(tagged	as	

“Frame	0”)	while	the	other	two	types	of	reads	(“Frame	1”	and	“Frame	2”)	correspond	to	

~15%,	each.	As	a	result,	the	28-mers	seem	to	be	the	best	phased	reads	and	are	the	ones	

for	which	we	can	identify	with	higher	confidence	(~70%	at	this	example)	the	true	codon	

under	 translation	 and	 finally	 the	 translated	 frame.	 Figure	 2.9B-C	 correspond	 to	 the	

periodicity	of	the	reads	at	the	beginning	and	the	end	of	the	transcripts,	respectively.	The	

periodicity	 plot	 informs	 us	 also	 about	 the	 quality	 of	 the	 data	 and	 therefore	 of	 the	

experiment.	Again	the	28-mers	present	a	clear	periodic	signal	with	the	“Frame	0”	reads	

(in	green)	being	overrepresented	against	the	other	two	types	of	reads	for	every	position	

of	the	transcripts.	In	addition,	the	periodicity	plot	informs	us	about	the	total	number	of	

reads	 per	 position	 which	 can	 be	 compared	 among	 the	 different	 read	 sizes.	 In	 this	

example,	we	can	observe	that	the	28-mers	not	only	are	better	phased	and	present	more	
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periodic	signals	on	the	transcripts	but	also	contain	a	more	important	number	of	reads	

than	the	26-	or	the	27-mers.				
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Figure	 2.9.	 Example	 of	 the	 results	 of	 the	 phasing	 for	 one	 Ribo	 Seq	 experiment	 (accession	 number:	

SRR6398740)	on	the	transcriptome	of	S.	cerevisiae.	(A)	Distribution	of	the	in-frame	reads	(“Frame	0”)	and	

out-of-frame	reads	(“Frame	1”	and	“Frame	2”)	for	different	read	sizes	(i.e.,	kmers).	(B)	Periodicity	of	the	

reads	at	the	beginning	of	the	transcripts	(C)	Periodicity	of	the	reads	at	the	end	of	the	transcripts.	

	

	

2.2.2	Detection	of	the	frame	under	translation	for	intergenic	mRNA	

With	 the	 phasing	 procedure,	 we	 aim	 at	 detecting	 the	 kmer(s)	 that	 maximize(s)	 the	

fraction	of	 in-frame	reads	and	minimizes	the	fraction	of	the	out-of-frame	reads	on	the	

transcriptome,	for	which	we	know	the	frame	expected	to	be	translated.	The	phasing	step	

is	of	crucial	importance	because	(i)	gives	us	information	about	the	quality	of	the	Ribo	Seq	

data	and	therefore	of	the	experiment	itself	and	(ii)	permits	us	to	identify	the	read	size	for	

which	we	are	highly	confident	about	the	detection	of	the	frame	that	is	indeed	translated.	

Having	 good	 phasing	 (high	 fraction	 of	 in-frame	 reads)	 and	 good	 periodicity	with	 the	

selected	reads	size,	we	can	infer	the	translated	frame	of	noncoding	RNAs	with	mapped	

reads	 (for	 which	 by	 definition	 we	 do	 not	 know	 the	 translated	 frame).	 As	 a	 result,	

noncoding	 ORFs	 with	 in-frame	 mapped	 reads	 can	 be	 considered	 as	 truly	 translated	

(Figure	2.10).	
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Figure	2.10.	Schematical	representation	of	the	detection	of	the	frame	under	translation	for	a	noncoding	

RNA.	Every	square	corresponds	to	a	single	nucleotide	while	the	codons	of	the	three	possible	Open	Reading	

Frames	of	the	mRNA	sequence	are	highlighted	with	thick	black	line.	 In	blue	is	colored	the	codon	under	

translation	localized	in	the	P-site	of	the	ribosome.	The	28-mer	Ribo	Seq	read	is	aligned	with	the	sequence	

of	the	RNA	and	its	14th	position	is	highlighted	with	grey	filled	square.	Its	theoretical	codon	under	translation	

is	highlighted	with	red	thick	line.	Based	on	the	phasing	procedure	(presented	in	Figures	2.8	and	2.9)	the	

28-mers	were	found	to	be	correctly	phased	on	the	transcriptome	and	consequently	are	the	ones	expected	

to	indicate	the	true	P-site	at	their	14th	position.	As	a	result,	28-mers	aligned	on	presumed	noncoding	regions	

can	be	used	to	identify	which	of	the	three	possible	Open	Reading	Frames	of	the	RNA	sequence	was	the	one	

truly	 translated.	 The	 Frame	0,	 1	 and	 2	 correspond	 to	 the	 relative	 frames	 of	 the	RNA	molecule.	 In	 this	

example,	the	28-mer	aligned	on	the	noncoding	RNA	specifically	indicates	the	Frame	1	as	the	frame	under	

translation	and	consequently	determines	the	noncoding	ORF	(among	the	three	overlapping)	which	was	

translated.	The	ribosome	figure	was	created	with	BioRender.com.	

	

	

2.2.3	Protocol	for	the	mapping	of	the	Ribo	Seq	reads		

In	Figure	2.11	is	presented	the	pipeline	for	phasing	and	mapping	Ribo	Seq	reads	using	

the	ORFribo	tool	in	combination	with	other	tools	of	ORFmine.	

	

1. Transcriptome	extraction:	The	phasing	of	the	Ribo	Seq	reads	is	conducted	on	

the	transcriptome	for	which	we	know	the	correct	frame	of	translation.	With	the	

genome	(in	fasta	file)	and	its	annotation	(in	gff	file)	and	using	the	tool	ORFget	we	

can	extract	the	nucleotide	sequences	of	the	transcriptome	of	the	organism	(in	fasta	

file).	

2. Phasing	the	reads	on	the	transcriptome:	Then	with	the	transcriptome	and	the	

Ribo	Seq	raw	reads	(in	fastq	file)	and	using	the	ORFribo	tool	(option	“phase”)	we	

launch	the	phasing	procedure.	The	initial	step	is	to	remove	the	adaptor	sequence	

used	during	the	sequencing	procedure.	The	tool	Cutadapt	(v3.4)	(Martin	2011)	is	

used	to	remove	the	adaptor	sequence	from	the	3’	end	of	the	reads	and	filter	the	

remaining	nucleotide	sequences	based	on	their	size	(from	26	to	30	nucleotides).	

Then	every	set	of	read	sizes	is	mapped	on	the	transcriptome	independently,	and	

the	counts	of	the	reads	per	transcript	are	obtained	with	ORFribo	(option	“map”).	

The	alignment	of	the	reads	on	the	transcriptome	is	conducted	with	the	tool	Bowtie	

(v1.3)	(Langmead	et	al.	2009).	We	permit	maximum	2	misaligned	nucleotides	per	

read	and	count	only	the	reads	that	are	aligned	to	a	single	region.	Samtools	(Li	et	
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al.	2009a)	 is	used	 in	order	 to	 index	 the	aligned	reads	and	 transform	them	 into	

binary	 file	 decreasing	 the	 computational	 time.	 Then	 ORFribo	 detects	 the	

theoretical	P-site	on	the	mapped	reads	and	tags	every	read	as	in-frame	(“Frame	

0”),	if	the	read	is	in	the	same	frame	with	a	transcript,	or	out-of-frame	(“Frame	1”	

or	“Frame	2”)	in	the	opposite	case.	Then	generates	a	table	file	containing	the	count	

of	in-frame	and	out-of-frame	reads	per	transcript.					

3. Finding	 the	 best	 kmer:	 Based	 on	 the	 distribution	 of	 the	 in-frame	 reads	 per	

transcript,	 ORFribo	 can	 make	 an	 automated	 decision	 about	 the	 best	 phased	

kmer(s).	The	threshold	of	the	fraction	of	in-frame	reads,	above	which	we	consider	

a	 kmer	 to	 present	 a	 good	 phasing,	 is	 given	 by	 the	 user.	 The	 user	 can	 specify	

whether	he	prefers	the	threshold	to	be	compared	with	the	mean	or	the	median	

value	of	the	distribution	of	in-frame	reads.			

4. Mapping	 the	 best	 phased	 kmer(s)	 on	 the	 IGORFs:	 Once	 the	 best	 phased	

kmer(s)	is/are	detected,	we	can	map	the	selected	reads	size(s)	on	the	ensemble	of	

the	 noncoding	ORFs	 and	detect	with	 high	 confidence	 noncoding	ORFs	with	 in-

frame	reads,	thus	considered	as	translated.	For	that	step	we	use	ORFribo	(option	

“map”)	and	we	provide	as	inputs	the	reads	of	the	best	phased	kmer(s)	(in	fastq	

file),	the	genome	sequence	(in	fasta	file)	and	the	total	ORFs	annotation	(in	gff	file)	

as	generated	by	ORFtrack.	ORFribo	generates	a	table	containing	the	count	of	in-

frame	(“Frame	0”)	and	out-of-frame	(“Frame	1”	and	“Frame	2”)	reads	for	every	

ORF	contained	in	the	ORF	annotation	file.	
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Figure	2.11.	Pipeline	of	ORFribo.	The	inputs	and	outputs	are	represented	with	grey	rectangles	while	the	

main	scripts	are	shown	with	red	circles.	The	mandatory	inputs	as	well	as	their	corresponding	outputs	are	

connected	 to	 their	 related	 scripts	 with	 black	 arrows.	 The	 pipeline	 starts	 with	 the	 extraction	 of	 the	

transcriptome’s	nucleotide	sequences	using	the	ORFget	tool.	Then	follows	the	phasing	of	the	Ribo	Seq	reads	

on	the	transcriptome.	The	adaptors	are	removed	with	cutadapt	and	the	reads	are	organized	based	on	their	

size	(from	26	to	30	nucleotides).	Every	set	of	reads	size	is	mapped	independently	on	the	transcriptome	

with	ORFribo-“map”	(using	Bowtie	and	Samtools)	and	one	table	of	read	counts	per	transcript	is	generated	

for	every	read	size	group.	The	distribution	of	the	reads	in-frame	per	transcript	is	estimated	and	ORFribo	

decides	which	size(s)	of	reads	is/are	the	best	phased	based	on	a	threshold	defined	by	the	user.	In	this	case,	

only	the	28-mers	passed	the	threshold	and	are	mapped	on	the	noncoding	ORFs	using	again	ORFribo-“map”.	

This	time	we	map	the	28-mers	on	the	total	genome	and	count	the	mapped	reads	only	for	the	ORFs	indicated	

in	the	ORF	annotation	file	as	generated	by	ORFtrack.	

	

	

The	initial	inputs	for	the	ORFribo	pipeline	are	(i)	the	genome	sequence	(in	fasta	file),	(ii)	

the	genome	annotation	(in	gff	file),	(iii)	the	Ribo	Seq	reads	raw	data	of	a	single	experiment	

(in	 fastq	 file)	 and	 the	 ORF	 annotation	 (in	 gff	 file)	 generated	 by	 ORFtrack	 presented	

already.	The	final	output	is	a	table	format	file	with	the	count	of	reads	(in-frame	and	out-

of-frame)	for	every	ORF	indicated	in	the	ORF	annotation	file.	The	automatization	of	the	

Ribo	Seq	data	mapping	on	the	noncoding	genome	permits	us	to	apply	this	analysis	on	

multiple	datasets.	Due	to	the	noncoding	ORFs’	low	signal	of	translation,	combining	the	

results	 of	 multiple	 different	 experiments	 is	 expected	 to	 increase	 the	 probability	 of	

detecting	 noncoding	 ORFs	 under	 translation.	 In	 addition,	 the	 systematic	 detection	 of	

translation	 signal	 for	 some	noncoding	ORFs	permits	us	 to	discriminate	between	 truly	

translated	noncoding	ORFs	and	ribosomes	which	are	simply	scanning	the	RNA.	
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3	Intergenic	ORFs	as	elementary	structural	modules	of	

de	novo	gene	birth	and	protein	evolution	

In	 this	 section	 I	 applied	 the	methods	presented	 in	Section	2	 in	order	 to	detect	all	 the	

IGORFs	 of	S.	 cerevisiae	 (with	ORFtrack)	and	 estimate	 the	 fold	 potential	 diversity	 (i.e.,	

propensity	for	disorder,	folded	state,	or	aggregation)	together	with	other	sequence	and	

structural	properties	of	the	peptides	encoded	by	them	(with	ORFold).	This	permitted	me	

to	explore	the	foldability	diversity	encoded	by	ORFs	hosted	in	the	noncoding	genome	of	

the	yeast	and	compare	it	with	the	one	observed	in	proteomes.	Overall,	it	permitted	me	to	

estimate	the	potential	of	the	noncoding	genome	to	produce	novel	structural	bricks	which	

can	either	serve	as	starting	points	for	the	birth	of	novel	genes	or	be	integrated	into	pre-

existing	proteins.	

	

Then,	 using	 comparative	 genomics	 and	 ancestral	 reconstruction	 I	 systematically	

reconstructed	 the	ancestral	noncoding	sequences	 that	gave	rise	 to	70	known	de	novo	

genes	of	S.	 cerevisiae	and	characterized	 their	sequence	and	structural	properties.	This	

permitted	me	 to	 compare	 the	 fold	 potential	 of	 de	 novo	 proteins	with	 the	 one	 of	 the	

ensemble	 of	 IGORFs	 in	 order	 to	 understand	whether	 IGORFs	 that	 gave	birth	 to	 novel	

genes	display	 specific	 sequence	and	structural	properties.	Finally,	 analyzing	 ribosome	

profiling	data	of	five	independent	experiments	(with	ORFribo),	I	identified	IGORFs	with	

a	strong	translation	signal	in	order	to	investigate	the	sequence	and	structural	properties	

of	candidate	IGORFS	that	could	potentially	give	birth	to	future	novel	genes.		

	

All	the	results	of	this	section	are	presented	in	a	research	article	entitled	“Intergenic	ORFs	

as	elementary	structural	modules	of	de	novo	gene	birth	and	protein	evolution”	and	which	

has	been	published	at	the	Genome	Research	peer-reviewed	journal	(Papadopoulos	et	al.	

2021).	
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Abstract	

The	 noncoding	 genome	 plays	 an	 important	 role	 in	 de	 novo	 gene	 birth	 and	 in	 the	

emergence	of	genetic	novelty.	Nevertheless,	how	noncoding	sequences'	properties	could	

promote	the	birth	of	novel	genes	and	shape	the	evolution	and	the	structural	diversity	of	

proteins	remains	unclear.	Therefore,	by	combining	different	bioinformatic	approaches,	

we	characterized	the	fold	potential	diversity	of	the	amino	acid	sequences	encoded	by	all	

intergenic	 ORFs	 (Open	 Reading	 Frames)	 of	 S.	 cerevisiae	 with	 the	 aim	 of	 (i)	 exploring	

whether	 the	 structural	 states'	 diversity	 of	 proteomes	 is	 already	present	 in	noncoding	

sequences,	and	(ii)	estimating	the	potential	of	the	noncoding	genome	to	produce	novel	

protein	bricks	that	could	either	give	rise	to	novel	genes	or	be	integrated	into	pre-existing	

proteins,	thus	participating	in	protein	structure	diversity	and	evolution.	We	showed	that	

amino	acid	sequences	encoded	by	most	yeast	 intergenic	ORFs	contain	 the	elementary	

building	blocks	of	protein	structures.	Moreover,	they	encompass	the	large	structural	state	

diversity	 of	 canonical	 proteins	 with	 the	 majority	 predicted	 as	 foldable.	 Then,	 we	

investigated	 the	 early	 stages	 of	 de	 novo	 gene	 birth	 by	 reconstructing	 the	 ancestral	

sequences	 of	 70	 yeast	 de	 novo	 genes	 and	 characterized	 the	 sequence	 and	 structural	

properties	of	intergenic	ORFs	with	a	strong	translation	signal.	This	enabled	us	to	highlight	

sequence	 and	 structural	 factors	 determining	 de	 novo	 gene	 emergence.	 Finally,	 we	

showed	a	strong	correlation	between	the	fold	potential	of	de	novo	proteins	and	the	one	

of	 their	 ancestral	 amino	 acid	 sequences,	 reflecting	 the	 relationship	 between	 the	

noncoding	genome	and	the	protein	structure	universe.	
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Introduction	

	

Comparative	 genomics	 have	 revealed	 the	 existence	 of	 an	 important	 amount	 of	

taxonomically	 restricted	 genes	 and	 more	 specifically	 of	 orphan	 genes	 in	 various	

eukaryotic	genomes	(Tautz	and	Domazet-Lošo	2011;	Wissler	et	al.	2012;	Van	Oss	and	

Carvunis	2019;	Vakirlis	et	al.	2020b).	These	genes	lack	detectable	homologs	in	outgroup	

species	and	can	constitute	up	to	30%	of	a	genome's	genes.	They	can	derive	from	clearly	

distinct	mechanisms,	including	the	well-known	mechanisms	of	duplication	or	horizontal	

gene	transfer	 followed	by	fast	divergence	(Kaessmann	2010;	Tautz	and	Domazet-Lošo	

2011;	Schlötterer	2015;	Van	Oss	and	Carvunis	2019).	However,	de	novo	emergence	from	

noncoding	regions	has	now	been	proven	to	be	an	undeniable	additional	mechanism	and	

studies	reporting	evidence	of	de	novo	gene	birth	are	published	every	year,	thereby	giving	

a	 new	 role	 to	 noncoding	 regions	 in	 the	 creation	 of	 genetic	 novelty	 (Knowles	 and	

McLysaght	2009;	Wu	et	al.	2011;	Tautz	and	Domazet-Lošo	2011;	Murphy	and	McLysaght	

2012;	Zhao	et	al.	2014;	Schlötterer	2015;	Li	et	al.	2016;	Vakirlis	et	al.	2018;	Zhang	et	al.	

2019a;	Vakirlis	et	al.	2020b;	Heames	et	al.	2020;	Blevins	et	al.	2021).	Nevertheless,	how	

noncoding	 sequences	 can	 code	 for	 a	 functional	product	 and	 consequently	 give	 rise	 to	

novel	genes	remains	unclear.	Indeed,	function	is	intimately	related	to	protein	structure	

and	more	generally	to	protein	structural	properties.	All	proteomes	are	characterized	by	

a	large	diversity	of	structural	states.	The	structural	properties	of	a	protein	result	from	its	

composition	 in	 hydrophobic	 and	 hydrophilic	 residues.	 Highly	 disordered	 proteins	

display	 a	 high	 hydrophilic	 residue	 content.	 Membrane	 proteins	 which	 fold	 in	 lipidic	

environments,	but	aggregate	in	solution,	are	enriched	in	hydrophobic	residues.	Finally,	

foldable	 proteins	 are	 characterized	 by	 a	 subtle	 equilibrium	 of	 hydrophobic	 and	

hydrophilic	residues	(Bresler	and	Talmud	1944).	The	latter	are	arranged	together	into	

specific	 patterns	 that	 dictate	 the	 formation	 of	 the	 secondary	 structures	 and	 the	

outcoming	 fold.	 However,	 contrarily	 to	 coding	 sequences	 (CDS),	 the	 nucleotides	 of	

noncoding	 ones	 are	 expected	 to	 be	 distributed	 randomly	 along	 the	 DNA,	 thereby	

resulting	 in	different	amino	acid	compositions	 from	CDS.	 If	and	how	these	amino	acid	

compositions	 can	account	 for	 the	 structural	 states	observed	 in	proteomes	 is	 a	 crucial	

question	to	understand	the	relationship,	if	any,	between	the	noncoding	genome	and	the	

protein	structure	universe.	So	far,	different	models	of	de	novo	gene	emergence	have	been	

proposed	 (Carvunis	 et	 al.	 2012;	 Schlötterer	 2015;	 Wilson	 et	 al.	 2017).	 The	
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"preadaptation"	model	proposes	an	"all	or	nothing	transition	to	functionality"	where	only	

sequences	pre-adapted	not	to	be	harmful	(i.e.	with	enough	disorder	not	to	be	subjected	

to	aggregation),	will	give	rise	to	gene	birth	(Wilson	et	al.	2017).	This	model	is	supported	

by	 the	 observation	 that	 young	 genes	 and	 de	 novo	 protein	 domains	 display	 a	 higher	

disorder	propensity	than	old	genes	(Ekman	and	Elofsson	2010;	Bitard-Feildel	et	al.	2015;	

Schmitz	 et	 al.	 2018;	 Foy	 et	 al.	 2019).	 In	 contrast,	 the	 proto-gene	model	 proposes	 an	

evolutionary	 continuum	 ranging	 from	 nongenic	 sequences	 to	 genes	 (Carvunis	 et	 al.	

2012).	 Here,	 genes	 evolve	 de	 novo	 through	 transitory	 proto-genes	 that	 result	 from	

pervasive	 expression	 of	 nongenic	 sequences	 and	 proto-genes	 are	 expected	 to	 exhibit	

features	intermediate	between	non-gene	and	genes.	In	this	study,	the	authors	reported	

that	 in	yeast,	young	genes	are	 less	prone	to	disorder.	 	Recently,	Vakirlis	et	al.	 (2020a)	

proposed	a	TM-first	model	where	the	membrane	environment	provides	a	safe	niche	for	

transmembrane	(TM)	adaptive	emerging	peptides	which	can	further	evolve	toward	more	

soluble	 peptides.	 These	 adaptive	 peptides	 have	 been	 identified	 with	 overexpression	

which,	 according	 to	 the	authors,	may	not	be	 reached	outside	 the	 laboratory.	Whether	

such	peptides,	though	beneficial	in	the	experimental	conditions,	would	be	produced	and	

be	beneficial	in	"natural"	conditions,	deserves	further	investigation.			

	Overall,	all	these	studies	attribute	to	the	fold	potential	of	noncoding	ORFs	(including	the	

propensities	 for	 disorder,	 folded	 state,	 and	 aggregation)	 an	 important	 role	 in	 the	

emergence	 of	 genetic	 novelty.	 However,	 several	 questions	 remain	 open.	 First,	 if	 the	

sequence	and	structural	properties	of	de	novo	genes	have	been	largely	investigated	in	

specific	species,	the	raw	material	for	de	novo	gene	birth	and	the	early	stages	preceding	

the	fixation	of	the	beneficial	ORFs	are	to	be	further	characterized	(Schmitz	et	al.	2018).	

Second,	 if	 the	 role	 of	 the	 noncoding	 genome	 in	 de	 novo	 gene	 birth	 has	 been	 largely	

investigated,	 its	 role	 in	 protein	 evolution	 and	 structural	 diversity	 is	 to	 be	 further	

characterized	 as	well.	 Indeed,	 de	 novo	 domains	may	 emerge	 from	noncoding	 regions	

through	 ORF	 extension	 or	 exonization	 of	 introns	 (Bornberg-Bauer	 and	 Alba	 2013;	

Bornberg-Bauer	 et	 al.	 2015).	 On	 the	 other	 hand,	 we	 can	 assume	 that	 protein-coding	

genes,	 whatever	 their	 evolutionary	 history,	 have	 had	 a	 noncoding	 ancestral	 origin	

(Nielly-Thibault	and	Landry	2019).	Whether	the	noncoding	ORFs	which	gave	rise	to	novel	

genes	can	account	 for	the	structural	diversity	of	proteomes	or	whether	this	structural	

diversity	evolved	from	ancestral	genes	which	all	displayed	similar	structural	properties	
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(i.e.	disordered,	foldable	or	TM-prone)	is	a	crucial	question	to	better	understand	the	role,	

if	any,	of	noncoding	sequences	in	the	protein	structure	universe.	

Here,	we	characterized	the	diversity	of	the	fold	potential	encoded	in	all	intergenic	ORFs	

(IGORFs)	 of	 S.	 cerevisiae	with	 the	 aim	 of	 (i)	 exploring	whether	 the	 large	 diversity	 of	

structural	states	observed	in	proteomes	is	already	present	in	noncoding	sequences,	and	

(ii)	studying	the	potential	of	the	noncoding	genome	to	produce	novel	protein	bricks	that	

could	 give	 birth	 to	 novel	 genes	 or	 be	 integrated	 into	 pre-existing	 proteins.	 Then,	 we	

investigated	the	sequence	and	structural	factors	determining	de	novo	gene	emergence	by	

(i)	characterizing	the	early	stages	of	de	novo	gene	birth	through	the	reconstruction	of	70	

yeast	 de	 novo	 genes'	 ancestral	 sequences	 and	 (ii)	 characterizing	 the	 sequence	 and	

structural	 properties	 of	 IGORFs	 with	 a	 strong	 translation	 signal	 through	 ribosome	

profiling	experiments.		

	

	

Results	

	

We	extracted	105041	IGORFs	of	at	 least	60	nucleotides	 in	S.	cerevisiae	 (Methods).	We	

probed	their	fold	potential	with	the	Hydrophobic	Cluster	analysis	(HCA)	approach	(Faure	

and	Callebaut	2013a,	2013b;	Bitard-Feildel	and	Callebaut	2017;	Bitard-Feildel	et	al.	2018;	

Bitard-Feildel	and	Callebaut	2018a)			and	compared	it	with	the	one	of	the	6669	CDS	of	S.	

cerevisiae.	HCA	highlights	from	the	sole	information	of	a	single	amino	acid	sequence,	the	

building	blocks	of	protein	folds	that	constitute	signatures	of	folded	domains.	They	consist	

of	clusters	of	strong	hydrophobic	amino	acids	that	have	been	shown	to	be	associated	with	

regular	 secondary	 structures	 (Bitard-Feildel	 and	 Callebaut	 2017;	 Bitard-Feildel	 et	 al.	

2018;	Lamiable	et	al.	2019)	(Supplemental	Fig.	S3.1).	These	clusters	are	connected	by	

linkers	corresponding	to	loops	or	disordered	regions.	The	combination	of	hydrophobic	

clusters	 and	 linkers	 in	 a	 sequence	 determines	 its	 fold	 potential.	 The	 latter	 can	 be	

appreciated	 in	 a	 quantitative	way	 through	 the	 calculation	 of	 a	 foldability	 score	 (HCA	

score)	which	covers	all	the	fold	potential	diversity	of	proteins.			
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IGORFs	contain	elementary	building	blocks	of	proteins	

We	first	investigated	the	structural	and	sequence	properties	of	proteins	encoded	by	CDS	

and	IGORFs	(Figure	3.1;	Supplemental	Tables	S3.1-3.4).	CDS	are	longer	than	IGORFs	and	

contain	more	HCA	clusters	(Mann-Whitney	U	test,	P	<	2.2	×	10-16	for	both	observations)	

(Figure.	3.1A,B).	The	HCA	clusters	of	CDS	and	IGORFs	display	similar	sizes	of	about	11	

residues	(Mann-Whitney	U	test,	P	=	1	×	10-1)	(Figure	3.1C)	and	96.9%	of	IGORFs	harbor	

at	least	one	HCA	cluster.	This	result	shows	that	the	elementary	building	blocks	of	proteins	

are	widespread	 in	noncoding	sequences.	 In	 contrast,	CDS	are	enriched	 in	 long	 linkers	

reflecting	 long	 flexible	 regions	 (6.3	and	11.5	 residues	 for	 IGORFs	and	CDS	on	average	

respectively,	 Mann-Whitney	 U	 test,	 P	 =	 2.6	 ×	 10-11)	 (Figure	 3.1D).	 As	 a	 control,	 we	

generated	 scrambled	 intergenic	 sequences	 (Methods).	 The	 resulting	 random	 IGORFs	

behave	similarly	to	real	IGORFs	for	most	properties,	while	being	slightly	shorter	(Mann-

Whitney	U	test,	P	=	3	×	10-3)	(Supplemental	Fig.	S3.2).	Whether	the	enrichment	in	long	

ORFs	 observed	 for	 real	 IGORFs	 results	 from	 high	 GC	 content	 genomic	 regions	 (STOP	

codons	are	AT-rich)	is	to	be	further	investigated.		

	

	

	

	

Figure	3.1:	Plots	of	the	distributions	of	sequence	and	HCA-based	structural	properties	of	IGORFs	and	CDS.	

(A)	sequence	size	(B)	number	of	HCA	clusters	per	sequence	(C)	size	of	HCA	clusters	(D)	size	of	linkers.	The	

p-values	were	computed	with	the	Mann-Whitney	U	test	(one-sided	for	(A),	(B),	(D),	and	two-sided	for	(C)).	

Asterisks	denote	 level	of	 significance:	 ***p	<	1	×	10-3,	 see	Supplemental	Tables	S3.1-3.4	 for	detailed	p-

values.		
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CDS	are	enriched	in	polar	and	charged	residues	

If	hydrophobic	clusters	of	CDS	and	IGORFs	display	similar	sizes,	they	may	not	have	the	

same	 amino	 acid	 composition.	 Therefore,	 for	 each	 amino	 acid,	 we	 calculated	 its	

propensity	 for	 being	 in	 HCA	 clusters	 of	 CDS	 over	 HCA	 clusters	 of	 IGORFs.	 CDS	 HCA	

clusters	are	clearly	enriched	in	polar	and	charged	residues	compared	to	those	of	IGORFs	

(Supplemental	Fig.	S3.3A).	The	same	tendency	is	observed	for	CDS	linkers	(Supplemental	

Fig.	 S3.3B).	Moreover,	 negatively	 charged	 residues	 are	 over-represented	 compared	 to	

positively	charged	ones	in	both	HCA	clusters	and	linkers	of	CDS.	In	fact,	it	has	been	shown	

that	the	charge	distribution	of	a	protein	has	an	impact	on	its	diffusion	in	the	cytosol	where	

positively	 charged	 proteins	 get	 caught	 in	 nonspecific	 interactions	 with	 the	 abundant	

negatively	charged	ribosomes	(Schavemaker	et	al.	2017).	We	show	that	the	frequency	of	

negatively	charged	residues	of	the	yeast	cytoplasmic	proteins	is	strongly	correlated	with	

the	proteins'	abundance	(Spearman's	correlation	coefficient:	Rho	=	0.44,	P	<	2	×	10-16)	

suggesting	that	the	crowded	cellular	environment	has	shaped	the	charge	distribution	of	

abundant	proteins	(Supplemental	Fig.	S3.4).	This	result	recalls	the	observation	made	in	

previous	studies	 showing	 that	 the	 frequency	of	 “sticky”	amino	acids	on	 the	surface	of	

globular	 proteins	 or	 in	 disordered	 proteins	 decreases	 as	 the	 protein	 cellular	

concentration	 increases	 (Levy	 et	 al.	 2012;	Macossay-Castillo	 et	 al.	 2019).	 Finally,	 CDS	

tend	 to	 be	 enriched	 in	 ancient	 amino	 acids	 and	 codons	 and	 depleted	 in	 recent	 ones	

(Supplemental	Fig.	S3.5).	As	observed	in	other	studies	(Trifonov	1987;	Brooks	and	Fresco	

2003),	yeast	CDS	are	particularly	enriched	in	GNN	codons	which	include	those	coding	for	

negatively	charged	amino	acids.	Whether	this	enrichment	is	unrelated	to	codon	age	and	

simply	results	from	amino	acid	content	constraints,	whether	CDS	favor	the	usage	of	old	

codons	for	ignored	reasons,	or	whether	this	observation	results	from	a	combination	of	

both	remains	unclear.	

		

	

IGORFs	 encode	 for	 peptides	 that	 display	 a	 wide	 diversity	 of	 fold	

potential	including	a	substantial	amount	of	foldable	peptides	

We	next	used	the	HCA	score	in	order	to	assess	the	fold	potential	of	the	peptides	encoded	

by	 IGORFs.	 As	 a	 reference,	we	 calculated	 the	HCA	 scores	 for	 three	 sequence	 datasets	

consisting	 of	 731	 disordered	 regions,	 559	 globular	 proteins	 and	 1269	 TM	 regions	
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extracted	from	transmembrane	proteins,	thereby	expected	to	form	aggregates	in	solution	

while	being	able	to	fold	in	lipidic	environments	(Methods)	(Figure	3.2A;	Supplemental	

Fig.	S3.6).	Based	on	their	HCA	scores,	we	defined	three	categories	of	fold	potentials	(i.e.	

disorder	prone,	foldable,	or	aggregation	prone	in	solution).	Here,	we	define	as	foldable,	

proteins	that	are	able	to	fold	into	a	compact	and	well-defined	3D	structure	or	partially	

into	an	ordered	structure	in	which	the	secondary	structures	are	however	present.	Figure	

3.2B	shows	that	CDS	and	IGORFs	belonging	to	 the	 low	HCA	score	category	are	 indeed	

presumed	to	be	disordered	and	display	low	propensity	for	aggregation.	Comparable	but	

small	proportions	of	CDS	and	IGORFs	fall	into	this	group	(4.9%	and	7.7%	respectively)	

indicating	 that	 most	 coding	 but	 also	 noncoding	 sequences	 are	 not	 highly	 prone	 to	

disorder	 in	 line	 with	 Tretyachenko	 et	 al.	 (2017).	 The	 high	 HCA	 score	 category	

corresponds	to	aggregation-prone	sequences	with	low	disorder	propensity.	CDS	falling	

into	this	category	are	highly	hydrophobic	(Supplemental	Table	3.5)	with	81%	of	them	

annotated	as	uncharacterized	according	to	UniProt	(The	UniProt	Consortium	2019)	and	

60%	predicted	as	containing	at	least	one	TM	domain	(Methods).	Finally,	the	intermediate	

category	gathers	sequences	which	have	a	high	potential	for	being	completely	or	partially	

folded	 in	 solution	as	 shown	by	 their	 intermediate	HCA	scores	 comparable	 to	 those	of	

globular	 proteins.	Most	 CDS	 (91.4%)	 and	 a	majority	 of	 IGORFs	 (66.6%)	 fall	 into	 this	

category.	Both	are	characterized	by	intermediate	aggregation	and	disorder	propensities,	

although	 IGORFs	display	a	wider	range	of	aggregation	propensities	 (Figure	3.2B).	The	

fact	 that	 these	 CDS,	 though	 predicted	 as	 foldable,	 exhibit	 a	 certain	 propensity	 for	

aggregation,	is	in	line	with	several	studies	which	report	a	high	aggregation	propensity	of	

proteomes	across	all	kingdoms	of	life	(Greenwald	and	Riek	2012;	Langenberg	et	al.	2020).	

This	 observation	 has	 been	 explained	 as	 the	 side	 effect	 of	 the	 requirement	 of	 a	

hydrophobic	core	to	form	globular	structures	(Rousseau	et	al.	2006b;	Ganesan	et	al.	2016;	

Langenberg	 et	 al.	 2020).	 In	 particular,	 Langenberg	 et	 al.	 (2020),	 show	 a	 strong	

relationship	 between	 protein	 stability	 and	 aggregation	 propensity	 with	 aggregation	

prone	regions	mostly	buried	into	the	protein	and	providing	stability	to	the	resulting	fold.	

Like	for	CDS,	these	regions,	under	the	hydrophobic	effect,	may	facilitate	the	stabilization	

of	 the	 IGORF	encoded	peptide	 structure.	Whether	peptides	encoded	by	 IGORFs	 in	 the	

intermediate	category	fold	into	a	specific	3D	structure,	a	partially	ordered	structure	or	a	

“rudimentary	fold”	which	stabilizes	itself	through	oligomerization	like	the	Bsc4	de	novo	

protein	(Bungard	et	al.	2017),	deserves	further	investigation.	Finally,	the	proportions	of	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 90	

sequences	 in	 the	different	 fold	potential	 categories	are	different	between	 IGORFs	and	

CDS,	with	CDS	mostly	 falling	 into	 the	 intermediate	HCA	 score	 category	 reflecting	 that	

being	foldable	is	a	trait	which	has	been	strongly	selected	by	evolution.	In	contrast,	IGORFs	

cover	 a	wide	 range	 of	 fold	 potentials	 that	 is	 also	 observed	 in	 random	 IGORFs	 (4.4%,	

61.7%	and	33.9%	of	sequences	in	the	low,	intermediate	and	high	HCA	score	categories)	

showing	that	randomly,	a	wide	range	of	fold	potentials	including	a	majority	of	foldable	

IGORFs	 can	 be	 expected.	 Overall,	 it	 is	 questionable	 whether	 de	 novo	 genes	 mainly	

originate	from	IGORFs	encoding	foldable	peptides	or	from	IGORFs	whose	corresponding	

peptides	subsequently	evolved	toward	foldable	peptides	regardless	of	their	 initial	 fold	

potential.	

	

	

Figure	3.2.	IGORFs	encompass	the	large	spectrum	of	fold	potential	of	canonical	proteins.	(A)	Distribution	

of	 the	 HCA	 scores	 for	 the	 three	 reference	 datasets	 (i.e.	 disordered	 regions,	 globular	 domains,	 and	

transmembrane	regions	-	green,	black	and	pink	curves	respectively)	along	with	those	for	the	CDS	(orange	

curve)	and	 IGORFs	(purple	curve).	There	 is	a	clear	distinction	between	the	distributions	of	HCA	scores	
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calculated	 for	 the	 three	 reference	 datasets.	 (Two-sided	Kolmogorov-Smirnov	 test,	 P	 <	 2	 ×	 10-16	 for	 all	

comparisons).	Dotted	black	lines	delineate	the	boundaries	of	the	low,	intermediate,	and	high	HCA	score	

categories	reflecting	 the	 three	categories	of	 fold	potential	 (i.e.	disorder	prone,	 foldable,	or	aggregation-

prone	in	solution).	The	boundaries	are	defined	so	that	95%	of	globular	domains	fall	into	the	intermediate	

HCA	score	category	whereas	the	low	and	high	HCA	score	categories	include	all	sequences	with	HCA	values	

that	are	 lower	or	higher	than	those	of	97.5%	of	globular	domains	respectively.	High	HCA	scores	reflect	

sequences	with	high	densities	in	HCA	clusters	that	are	likely	to	form	aggregates	in	solution.	Low	HCA	scores	

indicate	sequences	with	high	propensities	for	disorder,	while	intermediate	scores	correspond	to	globular	

proteins	 characterized	 by	 an	 equilibrium	 of	 hydrophobic	 and	 hydrophilic	 residues	 (Methods).	 The	

percentages	of	sequences	in	each	category	are	given	for	all	datasets.	Raw	data	distributions	are	presented	

in	Supplemental	Fig.	S3.6.	(B)	Aggregation	and	disorder	propensities	calculated	with	TANGO	and	IUPred	

respectively	are	given	for	CDS	and	IGORFs	of	each	foldability	HCA	score	category.		

	

	

From	IGORFs	to	de	novo	genes	

Therefore,	we	 traced	back	 the	 evolutionary	 events	preceding	 the	 emergence	of	70	de	

novo	 genes	 identified	 in	 S.	 cerevisiae	 by	 reconstructing	 their	 ancestral	 IGORFs	

(ancIGORFs)	 in	order	 to	 compare	 the	 foldability	potential	 of	 the	peptides	 encoded	by	

IGORFs	that	gave	birth	to	de	novo	genes	with	the	one	of	the	peptides	encoded	by	all	other	

IGORFs	and	to	characterize	the	steps	preceding	the	emergence	of	a	novel	gene	(Methods;	

Supplemental	 Fig.	 S3.7;	 Supplemental	 Table	 3.6).	 Supplemental	 Fig.	 S3.8	 shows	 the	

example	of	the	YOR333C	de	novo	gene	which	emerged	in	the	lineage	of	S.	cerevisiae.	The	

corresponding	noncoding	region	in	the	ancestors	preceding	its	emergence	consists	of	two	

IGORFs	 separated	 by	 a	 STOP	 codon.	 The	 fusion	 of	 the	 two	 consecutive	 IGORFs	 was	

triggered	by	two	nucleotide	substitutions	which	occurred	specifically	in	the	S.	cerevisiae	

lineage	and	led	respectively	to	the	appearance	of	a	start	codon	(mutation	of	Isoleucine	

into	Methionine	through	an	A/G	substitution)	and	the	mutation	of	the	STOP	codon	into	a	

Tyrosine	through	a	G/C	substitution.	Overall,	the	70	de	novo	genes	emerged	from	a	total	

of	 167	 ancIGORFs.	 A	 minority	 of	 de	 novo	 genes	 (16	 cases)	 emerged	 from	 a	 single	

ancIGORF	 which	 covers	 almost	 all	 their	 sequence	 (95%	 of	 coverage	 between	 the	

ancestral	IGORF	and	the	resulting	de	novo	gene)	(i.e.	single-ancIGORF	de	novo	genes),	

while,	the	majority	(54	cases)	results	from	the	combination	of	multiple	ancIGORFs	(2.8	

on	 average)	 through	 insertion/deletion	 (indel)	 events	 leading	 to	 frameshifts	 in	 the	

original	 sequence	 and/or	 STOP	 codon	 mutations	 as	 observed	 with	 the	 example	 of	

YOR333C	(i.e.	multiple-ancIGORF	de	novo	genes).	In	line	with	the	findings	of	Zhang	et	al.	
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(2019),	 indels	 are	 two	 times	 more	 frequent	 than	 STOP	 codon	 mutations	 (64/33).	

Moreover,	the	multiple-ancIGORF	de	novo	genes	exhibit	sequence	sizes	similar	to	those	

of	 the	 single-ancIGORF	 ones	 although	 the	 ancestral	 IGORFs	 they	 originate	 from	 are	

shorter	than	those	that	led	to	single-ancIGORFs	de	novo	genes	(Supplemental	Fig.	S3.9).		

	

Figure	3.3	shows	the	HCA	scores	of	the	proteins	encoded	by	the	70	de	novo	genes	(i.e.	de	

novo	 proteins)	 and	 of	 the	 peptides	 encoded	 by	 their	 corresponding	 ancIGORFs.	 The	

majority	of	de	novo	proteins	(78%)	are	predicted	as	foldable,	whereas	peptides	encoded	

by	ancIGORFs	display	a	larger	range	of	HCA	scores.	However,	ancIGORFs	are	not	IGORF-

like,	 being	 enriched	 in	 sequences	 encoding	 foldable	 peptides	 (75.4%	 and	 66.6%	 for	

ancIGORFs	and	IGORFs	respectively	-	one	proportion	z-test,	P	=	9.5	×	10-3)	and	depleted	

in	 sequences	 encoding	aggregation	prone	ones	 (18.6%	and	25.7%	 for	 ancIGORFs	and	

IGORFs	respectively,	one	proportion	z	test,	P	=	2.1	×	10-2).		

	

	

Figure	3.3.	From	ancIGORFs	to	de	novo	genes.	Plot	of	the	HCA	score	of	each	ancIGORF	(black	and	white	

points	for	single	and	multiple	ancIGORFs	respectively)	along	with	its	corresponding	de	novo	gene	(blue	

points).	Each	de	novo	gene	is	connected	to	its	parent	ancIGORF(s)	with	a	colored	line.	One	should	notice	

that	 a	 de	 novo	 gene	 is	 connected	 to	 several	 IGORFs	when	 it	 results	 from	 the	 combination	 of	 different	

ancestral	IGORFs	(i.e.	multiple-ancIGORF	de	novo	genes).	Green	lines	indicate	cases	where	a	de	novo	gene	

is	 connected	 to	 a	 low	 HCA	 score	 ancIGORF,	 while	 grey	 and	 pink	 lines	 indicate	 connections	 with	 an	

intermediate	and	a	high	HCA	score	ancIGORFs,	respectively.	The	HCA	score	densities	of	de	novo	genes	and	

ancIGORFs	are	shown	in	grey	(bottom	and	top	of	the	graph	respectively).		
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Impact	of	indels	and	STOP	codon	mutations	on	the	fold	potential	of	a	

de	novo	protein	

The	overall	relationship	between	the	HCA	scores	of	peptides	encoded	by	ancIGORFs	and	

their	corresponding	de	novo	proteins	is	characterized	by	a	funnel	shape	revealing	that	

most	 de	 novo	 proteins	 are	 foldable	 regardless	 of	 the	 fold	 potential	 of	 the	 peptides	

encoded	 by	 their	 IGORF	 parents	 (Figure	 3.3).	 Two	 hypotheses	 can	 explain	 this	

observation:	(i)	this	funnel	mostly	results	from	the	amino	acid	substitutions	which	have	

occurred	since	the	fixation	of	the	ancIGORF(s)	and	which	led	to	an	increase	in	foldability	

of	the	resulting	de	novo	genes,	(ii)	this	funnel	results	from	the	fact	that	combining	at	least	

one	IGORF	encoding	a	foldable	peptide	with	IGORFs	encoding	peptides	with	different	fold	

potentials,	 leads	 to	 a	 foldable	 product.	 Figure	 3.4A	 shows	 that	 de	 novo	 genes	 display	

amino	acid	 frequencies	similar	 to	 those	of	ancIGORFs	(Supplemental	Table	S3.5).	This	

result	shows	that	the	mutations	which	occurred	since	the	fixation	of	the	ancIGORF	did	

not	change	the	overall	amino	acid	composition	of	the	resulting	de	novo	genes	and	thus,	

cannot	explain	the	funnel	shape	observed	in	Figure	3.3.	We	then	reasoned	that	since	the	

divergence	of	the	last	common	ancestor	predating	the	emergence	of	de	novo	genes,	single	

and	multiple-ancIGORF	de	novo	genes	were	 subjected	 to	 similar	amino	acid	mutation	

rates	(average	sequence	identity	between	ancIGORFs	and	their	corresponding	de	novo	

genes:	 83%	 and	 80%	 respectively),	 while	 the	 multiple-ancIGORF	 ones	 (which	 by	

definition	result	 from	the	combination	of	 several	 IGORFs)	have	also	undergone	 indels	

and/or	STOP	codon	mutations.	This	enabled	us	to	quantify	the	impact	of	these	different	

mutational	events	on	the	fold	potential	of	the	outcoming	de	novo	proteins	by	calculating	

the	correlation	between	the	HCA	score	of	each	de	novo	protein	and	the	peptides	encoded	

by	 its	 corresponding	 ancIGORF(s).	 Figure	 3.4B	 shows	 that	 single-ancIGORF	 de	 novo	

proteins	display	a	clear	correlation	of	HCA	scores	with	those	of	the	peptides	encoded	by	

their	corresponding	ancIGORFs	(Spearman's	correlation	coefficient:	Rho	=	0.87,	P	<	1.2	×	

10-5).	This	reveals	that	the	amino	acid	mutations	which	occurred	between	the	ancestor	

and	 the	 de	 novo	 protein	 did	 not	 affect	 the	 fold	 potential	 of	 the	 ancestral	 sequences	

suggesting	 that	 the	 structural	 properties	 of	 the	 peptides	 encoded	 by	 the	 single-

ancIGORFs	were	retained	in	the	resulting	de	novo	proteins.	In	contrast,	the	correlation	is	

weaker	for	multiple-ancIGORF	de	novo	proteins	(Spearman's	correlation	coefficient:	Rho	

=	0.47,	P	<	1.2	×	10-9).	This	can	be	attributed	to	the	fact	that	81%	(44/54)	of	the	multiple-

ancIGORF	de	novo	proteins	are	predicted	as	 foldable	(white	dots	 included	 in	 the	pink	
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squares	 in	Figure	3.4B)	while	being	associated	with	ancIGORFs	of	different	 foldability	

potentials.	 All	 foldable	 de	 novo	 genes	 include	 at	 least	 one	 foldable	 ancestral	 peptide	

suggesting	that	in	these	cases,	combining	disordered	or	aggregation-prone	peptides	with	

a	 foldable	one,	 has	 led	 to	 a	 foldable	de	novo	protein	 as	well.	 Supplemental	 Fig.	 S3.7E	

shows	the	example	of	 the	de	novo	gene	YLL020C	which	results	 from	the	combination	

through	 an	 indel	 event,	 of	 a	 long	 foldable	 ancIGORF	with	 a	 short	 IGORF	predicted	 as	

aggregation	prone.	The	resulting	de	novo	gene	is	also	predicted	as	foldable.	Whether	the	

foldable	IGORF	was	the	first	to	be	selected	and	whether	selection	has	only	retained	the	

combinations	 of	 IGORFs	 that	 do	 not	 affect	 the	 foldability	 of	 the	 preexisting	 selected	

product	are	exciting	questions	that	deserve	further	investigation.		

	

	

Figure	3.4.	(A)	Radar	plot	reflecting	the	20	amino	acid	frequencies	of	IGORFs,	ancIGORFs,	de	novo	genes,	

and	CDS.	(B)	Plot	of	the	HCA	score	of	each	de	novo	gene	with	those	of	its	parent	ancIGORF(s).	The	fold	

potential	of	a	single	ancIGORF	de	novo	gene	is	mostly	determined	by	the	one	of	its	parent	ancIGORFs	while	

the	combination	of	several	ancIGORFs	through	frameshift	events	and	STOP	codon	mutations	leads	most	of	

the	time	to	a	foldable	product.	Single	and	multiple	ancIGORF	de	novo	genes	are	represented	by	black	and	

white	 points	 respectively.	 Spearman's	 correlation	 coefficients	 of	 the	 relationships	 between	 single	 and	

multiple	 ancIGORF	 de	 novo	 genes’	 HCA	 scores	 versus	 the	 score	 of	 their	 parent	 ancIGORF(s),	 and	 the	

corresponding	p-values	are	 indicated	on	the	plot.	The	contour	 lines	mark	the	percentiles	of	the	density	

function	range	in	black	and	grey	for	single	and	multiple	ancIGORF	de	novo	genes	respectively.	The	light	

pink	region	indicates	de	novo	genes	encoding	proteins	predicted	as	foldable.	
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Translation	of	IGORFs	

Next,	we	performed	ribosome	profiling	experiments	on	S.	cerevisiae	(strain	BY4742)	and	

used	 three	 additional	 ribosome	 profiling	 datasets	 to	 define	 two	 types	 of	 translated	

IGORFs	 (Radhakrishnan	 et	 al.	 2016;	 Thiaville	 et	 al.	 2016)	 (Methods).	 The	 former	

corresponds	to	IGORFs	that	are	occasionally	translated	with	a	weak	translation	signal	(at	

least	10	reads	in	one	experiment)	(Methods).	The	latter	corresponds	to	IGORFs	with	a	

strong	translation	signal	(more	than	30	reads	 in	at	 least	 two	experiments)	and	whose	

translation	 is	 strongly	 favored	 over	 the	 overlapping	 IGORFs	 in	 the	 other	 phases	 (i.e.	

highly	translated	IGORFs)	(Methods).	We	identified	1235	occasionally	translated	IGORFs	

and	 31	 highly	 translated	 ones.		 Figure	 3.5	 and	 Supplemental	 Fig.	 S3.10	 show	 the	

frequencies	of	the	first	translated	codons	and	amino	acids	respectively.	For	both	highly	

and	 occasionally	 translated	 IGORFs,	 the	 first	 translated	 codon	 is	 enriched	 in	 AUG	

compared	to	all	the	other	translated	positions	(one	proportion	z-test,	both	p-values	<	1	×	

10-16).	The	enrichment	in	AUG	is	clearly	stronger	for	highly	translated	IGORFs,	while	the	

first	translated	codons	of	occasionally	translated	IGORFs	are	also	enriched	in	the	NUG	

near-cognate	codons	reported	as	alternative	start	codons	(one	proportion	z-tests,	all	p-

values	<	2	×	10-2)	(Ingolia	et	al.	2011;	Cuevas	et	al.	2021).	Nevertheless,	due	to	the	low	

read	coverage	of	IGORFs,	we	cannot	ensure	that	the	first	codon	with	a	read	is	the	first	to	

be	 translated,	 though	 the	 enrichments	 in	 AUG	 or	 near-cognate	 codons	 support	 this	

assumption.	In	 addition,	 the	 frequencies	 of	 the	 three	 STOP	 codons	 are	 comparable	

between	 all	 ORF	 categories	 (chi-2	 tests	 between	 all	 pairs,	 p-values	 >	 5	 ×	 10-2)	

(Supplemental	Table	3.7)	with	a	systematic	higher	frequency	of	UAA.	S.	cerevisiae	genome	

is	AT-rich	and	the	clear	enrichment	in	UAA	in	all	ORF	categories	including	IGORFs,	is	in	

line	 with	 previous	 reports	 conducted	 on	 different	 organisms	 showing	 that	 the	

frequencies	 of	UAA	 and	UGA	 STOP	 codons	 are	 strongly	 dependent	 on	 the	GC	 content	

(Povolotskaya	et	al.	2012;	Korkmaz	et	al.	2014;	Belinky	et	al.	2018).	
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Figure	3.5.	Frequencies	of	the	61	codons	at	the	first	translated	position	for	highly	translated	IGORFs	(red)	

and	occasionally	translated	ones	(yellow).	Gini	 indexes	which	reflect	the	statistical	dispersion	of	the	61	

codons	at	the	first	translated	position	are	given	for	highly	and	occasionally	translated	IGORFs	in	red	and	

yellow	 respectively.	 Gini	 index	 values	 range	 from	 0	 to	 1	 and	 high	 values	 reflect	 the	 fact	 that	 the	 first	

translated	positions	are	enriched	in	specific	codons,	particularly,	AUG	and	other	NUG	ones.	Codons	that	are	

significantly	 observed	 at	 the	 first	 translated	 position	 compared	 to	 the	 other	 translated	 positions	 are	

indicated	 with	 a	 star	 (one	 proportion	 z-test,	 P	 <	 5	 ×	 10-2).	 Near-cognate	 codons	 are	 indicated	 with	

diamonds.		

	

	

Translated	 and	 ancestral	 IGORFs	 display	 intermediate	 properties	

between	IGORFs	and	CDS	

Figure	3.6A-D	shows	the	boxplot	distributions	of	the	sizes	of	the	sequences,	clusters	and	

linkers	of	all	ORF	categories	along	with	their	number	of	clusters	per	sequence.	The	HCA	

cluster	 size	 remains	 invariant	 for	 all	 categories	 except	 for	de	novo	genes.	 In	 contrast,	

highly	 translated	 IGORFs,	 ancestral	 ones	 and	 de	 novo	 genes	 overall	 display	 for	most	

properties,	intermediate	values	between	IGORFs	and	CDS.		
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Figure	 3.6.	 Continuum	 of	 sequence	 and	 structural	 properties	 between	 the	 different	 ORF	 categories.	

Comparison	of	(A)	the	sequence	size,	(B)	cluster	number,	(C)	cluster	sizes,	and	(D)	linker	sizes	for	each	

ORF	category	(IGORFs	in	purple,	occasionally	translated	IGORFs	in	yellow,	highly	translated	IGORFs	in	red,	

ancIGORFs	in	grey,	de	novo	genes	in	blue	and	CDS	in	orange).	The	p-values	were	computed	with	the	Mann-

Whitney	U	test	(one-sided	for	(A),	(B),	(D),	and	two-sided	for	(C)).	Asterisks	denote	level	of	significance:	*p	

<	5	×	10-2,	**p	<	1	×	10-2,	***p	<	1	×	10-3.	For	each	plot,	the	color	of	the	asterisks	indicates	the	ORF	category	

used	for	the	comparison.	The	exact	p-values	are	given	in	Supplemental	Tables	S3.1-3.4.	

	

	

In	 particular,	 the	 highly	 translated	 IGORFs,	 and	 the	 ancIGORFs	 are	 both	 longer	 than	

IGORFs	(Mann-Whitney	U	test,	P	=	3.4	×	10-2	and	1.3	×	10-22	respectively),	display	slightly	

longer	linkers	(Mann-Whitney	U	test,	P	=	2.6	×	10-2	and	1.8	×	10-2),	and	higher	GC	contents	

(41.9%,	 38%,	 and	 36.1%	 for	 ancIGORFs,	 highly	 translated	 IGORFs,	 and	 IGORFs	

respectively).	 In	 order	 to	 understand	 whether	 the	 increase	 in	 linker	 size	 could	 be	

explained	by	the	 increase	 in	ORF	 length	or	GC	content,	we	generated	artificial	 IGORFs	

with	 nucleotide	 compositions	 of	 IGORFs	 and	 size	 distribution	 of	 ancIGORFs	 or	 highly	

translated	IGORFs	respectively.	Artificial	IGORFs	with	ancIGORF	lengths	exhibit	linkers	

of	similar	size	to	those	of	IGORFs	(Mann-Whitney	U	test,	P	=	2	×	10-1)	showing	that	the	

increase	in	linker	sizes	observed	for	ancIGORF	cannot	be	explained	by	their	larger	size	

(Supplemental	 Fig.	 S3.11).	 However,	 the	 artificial	 linkers	 are	 shorter	 than	 those	 of	

ancIGORFs	(Mann-Whitney	U	test,	P	=6	×	10-4)	suggesting	that	the	effect	can	be	attributed	

to	 the	 nucleotide	 composition	 of	 ancIGORFs.	 Indeed,	 scrambling	 the	 ancIGORF	

nucleotides	results	in	linker	sizes	similar	to	those	of	ancIGORFs	suggesting	that	the	sole	

GC	content	of	ancIGORFs	is	sufficient	to	generate	long	linkers.	A	similar	trend	is	observed	

for	 highly	 translated	 IGORFs,	 though	 the	 effect	 is	 less	 pronounced	 (Supplemental	 Fig.	

S3.11).	More	 generally,	 if	 for	 extreme	 hydrophobic	 and	 hydrophilic	 contents,	 the	
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sequence	 length	has	a	 substantial	 impact	on	cluster	and	 linker	 sizes,	 for	 intermediate	

hydrophobic	contents	such	as	 those	of	all	ORF	categories	 including	CDS,	 the	sequence	

length	 has	 no	 or	 small	 effect	 (Supplemental	 Fig.	 S3.12).	 As	 a	matter	 of	 fact,	 artificial	

IGORFs	with	CDS	sizes	and	IGORF	nucleotide	compositions	are	characterized	by	shorter	

linkers	than	those	of	real	and	scrambled	CDS	(Mann-Whitney	U	test,	P	=	7.1	×	10-8	and	2	

×	10-4	 respectively)	 (Supplemental	Fig.	 S3.13).	All	 these	 results	 reveal	 that	 the	 size	of	

linkers	results	from	a	subtle	combination	of	sequence	length,	GC	content,	and	finally,	of	

the	resulting	amino	acid	composition	(Supplemental	Fig.	S3.12;	Supplemental	Fig.	S3.13;	

Supplemental	Fig.	S3.14).		

	

	

Discussion	

		

In	this	work,	we	showed	that	the	noncoding	genome	encodes	the	raw	material	for	making	

proteins.	In	particular,	we	showed	the	widespread	existence	in	the	noncoding	genome	of	

the	elementary	building	blocks	of	protein	structures.	Hydrophobic	clusters	in	noncoding	

sequences	display	sizes	similar	to	those	observed	in	CDS.	In	contrast,	CDS	are	enriched	in	

longer	 linkers	 which	 probably	 contribute	 to	 optimize	 the	 local	 arrangements	 of	

secondary	 structures,	 provide	 flexibility	 to	 proteins,	 and	 specificity	 in	 protein	

interactions.	This	observation	is	in	line	with	several	studies	reporting	a	central	role	to	

loops	in	protein	function	and	structural	innovation	(Blouin	et	al.	2004;	Tendulkar	et	al.	

2004;	Espadaler	et	al.	2006;	Papaleo	et	al.	2016).	Like	Schmitz	et	al.	(2018),	we	stipulate	

that	the	increase	in	intrinsic	structural	disorder	observed	for	old	genes	in	Carvunis	et	al.	

(2012),	 is	 related	 to	 the	 fact	 that	 CDS	 are	 characterized	 by	 longer	 linkers,	 thereby	

inducing	an	 increase	 in	 the	disorder	score.	As	a	matter	of	 fact,	most	CDS	display	HCA	

scores	similar	to	those	of	globular	proteins,	with	low	disorder	propensities	(Figure	3.2).	

Overall,	we	showed	an	enrichment	in	polar	and	charged	residues	for	CDS	which	may	be	

accompanied	by	an	increase	in	specificity	of	protein	folds	and	interactions	through	the	

optimization	of	the	folding	and	assembly	processes	(Lumb	and	Kim	1995).	De	novo	genes	

display	 a	GC	 content	 similar	 to	 the	 one	 of	 CDS	while	 their	 amino	 acid	 composition	 is	

rather	IGORF-like.	The	effect	is	even	stronger	for	ancIGORFs	which	are	characterized	by	

the	highest	GC	content	of	all	ORF	categories	while	displaying	an	IGORF-like	amino	acid	

composition.	 This	 suggests	 an	 important	 role	 for	 the	 GC	 content	 in	 de	 novo	 gene	
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emergence,	as	reported	in	Vakirlis	et	al.	(2018).	We	can	hypothesize	that	the	amino	acid	

composition	 is	 optimized	 afterward	 while	 maintaining	 the	 GC	 content	 through	 the	

structure	of	the	genetic	code.		

		

Nevertheless,	how	a	noncoding	sequence	becomes	coding	remains	unclear.	In	this	work,	

we	propose	the	IGORFs	as	potential	elementary	modules	of	protein	birth	and	evolution.	

IGORFs	could	serve	as	starting	points	for	de	novo	gene	emergence	or	could	be	combined	

together,	thus	increasing	protein	sizes,	contributing	to	protein	modularity,	and	leading	to	

more	 complex	protein	 architectures.	 They	 resonate	with	 the	 short	 protein	 fragments,	

reported	so	far,	that	result	from	different	protein	structure	decompositions	with	the	aim	

of	 partitioning	 protein	 structures	 into	 universal	 basic	 units	 of	 folding,	 folds	 and/or	

function		(Berezovsky	et	al.	2000,	2001;	Lamarine	et	al.	2001;	Papandreou	et	al.	2004;	

Alva	 et	 al.	 2015;	 Postic	 et	 al.	 2017;	 Nepomnyachiy	 et	 al.	 2017).	 The	 sizes	 of	 these	

structural	 fragments,	 overall,	 range	 from	25	 to	 35	 residues	with	 the	 exception	 of	 the	

"themes"	 (Kolodny	 et	 al.	 2021)	 (average	 of	 49	 residues)	 and	precisely	 recall	 those	 of	

IGORFs.	Additionally,	we	showed	that	IGORFs	encompass	all	 the	protein	fold	potential	

diversity	observed	in	CDS.	A	majority	of	IGORFs	encode	peptides	predicted	as	foldable	

while	an	important	fraction	displays	high	HCA	scores	and	aggregation	propensities.	Some	

of	the	latter,	though	not	the	majority	(28%),	are	predicted	with	at	least	one	TM	domain	

and	may	“safely”	locate	in	membranes	as	proposed	in	Vakirlis	et	al.	(2020a).	The	impact	

of	 the	 other	 high	 HCA	 score	 IGORFs	 on	 the	 cell	 deserves	 further	 investigation.	

Nevertheless,	we	can	hypothesize	that	if	produced,	most	of	the	time,	their	concentration	

will	not	be	sufficient	to	be	deleterious	(Langenberg	et	al.	2020).	Indeed,	it	seems	that	for	

CDS,	a	certain	degree	of	aggregation	is	tolerated	at	low	concentration	(Supplemental	Fig.	

S3.15).	On	the	other	hand,	although	IGORFs	with	intermediate	HCA	scores	may	exhibit	a	

certain	 propensity	 for	 aggregation,	 we	 can	 hypothesize	 that	 these	 aggregation-prone	

regions,	under	the	hydrophobic	effect,	may	play	a	role	in	their	capacity	to	fold,	in	line	with	

the	hypothesis	of	an	amyloid	origin	of	the	globular	proteins	(Greenwald	and	Riek	2012;	

Langenberg	et	al.	2020).	We	hypothesize	that	the	balanced	equilibrium	of	hydrophobic	

and	hydrophilic	residues	observed	for	these	IGORFs	(39.1%	of	hydrophobic	residues	to	

be	compared	with	the	50.8%	observed	for	high	HCA	score	IGORFs)	may	render	possible	

the	burying	of	aggregation-prone	regions	and	the	exposure	of	hydrophilic	residues	that	

is	accompanied	by	an	increase	in	foldability.	We	can	hypothesize	that,	if	produced,	these	
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IGORFs	 could	 form	 small	 compact	 structures	 and/or	 could	 be	 stabilized	 through	

oligomerization	or	interactions	with	other	proteins.	Precisely,	we	showed	that	ancestral	

IGORFs	predating	de	novo	gene	emergence	are	not	 IGORF-like,	but	 rather	enriched	 in	

sequences	 with	 a	 high	 propensity	 for	 foldability.	 Nevertheless,	 we	 can	 reasonably	

hypothesize	 that	de	novo	peptides	struggle	 to	 fold	 into	a	well-defined	and	specific	3D	

structure	as	shown	with	the	young	de	novo	genes	BSC4	and	goddard	identified	in	the	S.	

cerevisiae	 and	D.	melanogaster	 lineages	respectively	 (Namy	et	al.	2003;	Bungard	et	al.	

2017;	 Lange	 et	 al.	 2021).	 In	 particular,	 Bungard	 et	 al.	 (2017)	 reported	 that	 the	 Bsc4	

protein	folds	partially	to	an	ordered	structure	that	is	unlikely	to	be	unfolded	according	to	

Circular	 Dichroism	 spectra	 and	 bioinformatic	 analyses.	 However,	 despite	 this	

“rudimentary”	 fold,	 they	 show	 through	 Mass	 Spectrometry	 and	 denaturation	

experiments	 that	 Bsc4	 is	 able	 to	 form	 compact	 oligomers.	 Its	 hydrophobic	 residue	

content	(38%)	is	higher	than	the	one	of	CDS	(33%)	and	typical	of	foldable	IGORFs	(39%).	

Whether	 this	 may	 be	 related	 to	 its	 "rudimentary"	 fold	 is	 questionable.	 We	 can	

hypothesize	 that	 the	 specificity	 of	 the	 Bsc4	 structure	 will	 increase	 during	 evolution	

through	amino	acid	substitutions	toward	hydrophilic	residues.		

		

Altogether,	these	results	enable	us	to	propose	a	model	(Figure	3.7)	which	gives	a	central	

role	to	IGORFs	in	de	novo	gene	emergence	and	to	a	lesser	extent	in	protein	evolution,	thus	

completing	the	large	palette	of	protein	evolution	mechanisms	such	as	duplication	events,	

horizontal	 gene	 transfer,	 domain	 shuffling...	 	 This	 model	 unifies	 two	 evolutionary	

processes	 that	 are	 usually	 addressed	 separately:	 the	 origin	 of	 novel	 genes	 and	 the	

elongation	and	 thus	evolution	of	pre-existing	proteins,	 through	 IGORFs	as	elementary	

molecular	modules	widespread	in	noncoding	regions.	Once	an	IGORF	is	selected	(Figure	

3.7A),	it	can	be	subjected	to	different	mutational	events	such	as	nucleotide	substitutions	

or	 indels.	 In	 our	 model,	 multiple	 rounds	 of	 nucleotide	 substitutions	 are	 expected	 to	

change	the	amino	acid	landscape	of	the	selected	IGORF	as	shown	with	the	enrichment	of	

CDS	in	hydrophilic	residues.	We	can	hypothesize	that	mutations	of	hydrophobic	residues	

towards	hydrophilic	ones	can	disrupt	weak	clusters	 into	 linkers	or	 can	switch	cluster	

extremities	into	linker	extremities,	thereby	increasing	the	size	of	linkers	(Figure	3.7B).	

Besides,	we	 hypothesize	 that	 the	 selected	 IGORF	 can	 elongate	 through	 indels	 and/or	

STOP	 codon	 mutations,	 thus	 incorporating	 a	 neighboring	 IGORF	 (Figure	 3.7C).	 We	

hypothesize	 that	 the	 combination	of	 two	neighboring	 IGORFs	 through	 indels	 or	 STOP	
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codon	 mutations	 can	 lead	 to	 the	 creation	 of	 long	 linkers	 at	 the	 IGORFs’	 junction	 as	

observed	 in	 the	example	of	 the	YMR153C-A	de	novo	gene	(Supplemental	Fig.	S3.16A).	

Similarly,	the	fusion	of	ancIGORFs	can	also	give	rise	to	long	clusters	as	observed	with	the	

YPR126C	de	novo	gene	(Supplemental	Fig.	S3.16B),	although	it	seems	that	long	clusters	

have	not	been	retained	by	selection	as	suggested	by	the	CDS	cluster	size	which	is	similar	

to	the	one	of	IGORFs.	We	showed	with	the	reconstruction	of	70	yeast	de	novo	genes	and	

in	line	with	Zhang	et	al.	(2019),	that	STOP	codon	mutations	are	less	frequent	than	indels.	

Bartonek	et	al.	 (2020),	reported	that	 the	hydrophobicity	profiles	of	protein	sequences	

remain	 invariant	 after	 frameshift	 events	 thanks	 to	 the	 interdependence	 of	 the	 three	

reading	frames.	Consequently,	indels	or	frameshift	events	are	most	of	the	time	expected	

to	incorporate	an	IGORF	that	encodes	a	peptide	with	a	hydrophobicity	profile	similar	to	

that	of	the	preexisting	gene	and	may	explain	the	fact	that	they	are	more	frequent	than	

STOP	codon	mutations.	This	suggests	that	the	fold	potential	is	a	critical	feature	that	needs	

to	be	conserved	even	in	noncoding	sequences,	being	preserved	in	+1,	-1	phases	through	

the	structure	of	the	genetic	code.	In	addition,	we	showed	that	combining	IGORFs	encoding	

foldable	 peptides	with	 IGORFs	 encoding	 disorder	 or	 aggregation-prone	 ones	 has	 low	

impact	 on	 the	 foldability	 of	 the	 resulting	 de	 novo	 proteins	 of	 the	 study.	 We	 can	

hypothesize	that	the	newly	integrated	IGORFs	will	benefit	from	the	structural	properties	

of	 the	 preexisting	 IGORF	 network.	 Proteins	 can	 be	 seen	 as	 assemblies	 on	 an	 ancient	

protein	core,	whatever	its	evolutionary	history,	of	either	duplicated,	shuffled	domains	or	

de	novo	translated	products	encoded	by	neighboring	IGORFs	(Figure	3.7D).	Overall,	 in	

line	with	recent	evolutionary	fragment-based	protein	design	developments,	this	model	

offers	a	rational	 framework	 for	designing	novel	chimeric	proteins	by	combining	small	

elementary	modules	with	specific	structural	properties	(Höcker	2014;	Berezovsky	2019;	

Yin	et	al.	2021;	Ferruz	et	al.	2021;	Bornberg-Bauer	et	al.	2021).	
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Figure	3.7.	Model	of	de	novo	gene	emergence	and	protein	evolution	with	IGORFs	as	elementary	structural	

modules.	(A)	IGORFs	encode	a	wide	diversity	of	peptides	from	disorder-prone	to	aggregation-prone	ones,	

among	which,	a	vast	amount	is	expected	to	be	able	to	fold	in	solution.	Upon	pervasive	translation,	some	

peptides	that	can	be	deleterious	or	not	will	be	degraded	right	away.	Among	the	others,	the	blue	one	will	

confer	an	advantage	to	the	organism	and	will	be	further	selected,	thus	providing	a	starting	point	for	de	

novo	gene	 birth.	 (B)	 The	 starting	 point	 IGORF,	 once	 selected,	 is	 subjected	 to	 amino	 acid	 substitutions	

thereby	increasing	the	overall	proportion	of	hydrophilic	residues	of	the	encoded	peptide.	In	the	present	

C IGORF combination by stop codon 

mutations or frameshift events

Frame 1:

Frame 2:

Frame 3:

* * * *

* * * * * * *

* * * * *

Degraded

Not selected

Selected

Gene A Gene B

Frame 1:

Frame 2:

Frame 3:

* * *
* * * * * * *

* * * * *

A Intergenic sequences harbor a wide diversity of potential peptides

B Amino acid substitutions 

D The newborn protein now displays CDS canonical properties

Gene A Gene B

Specificity

Flexibility

Modularity

Linker size

Cluster size

Charge-Polarity

Sequence size

Frameshift event

Frame 1:

Frame 2:

Frame 3:

* * * *
* * * * * * *

* * * * *

Gene A Gene B

Linker size

Cluster size

Charge-Polarity

Sequence size

Linker size

Cluster size

Charge-Polarity

Sequence size
*

Pervasive translation

Intergenic region

Coding region

Hydrophobic residue

Hydrophilic residue

HCA cluster

Stop codon

Feature gradient

IG
O

R
F

C
D

S

Gene A Gene B

Frame 1:

Frame 2:

Frame 3:

* * *
* * * * * * *

* * * * *

Stop codon 
mutation

Linker size

Cluster size

Charge-Polarity

Sequence size



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 103	

case,	this	induces	(i)	the	disruption	of	the	second	cluster	resulting	in	the	increase	of	the	size	of	the	central	

linker	 and	 (ii)	 the	 establishment	of	 specific	 interactions	between	hydrophilic	 residue	 (red	dots)	which	

increase	the	specificity	of	the	folding	process	and	the	resulting	fold.	(C)	The	STOP	codon	of	the	starting	

point	 IGORF	 can	 be	mutated	 into	 an	 amino	 acid,	 thereby	 adding	 the	 yellow	 IGORF	 to	 the	 preexisting	

selected	IGORF	and	elongating	its	size.	(D)	After	multiple	events	of	amino	acid	substitutions	and	IGORF	

combinations	through	STOP	codon	mutations	or	indels,	we	obtain	a	protein	which	displays	the	canonical	

features	of	CDS	(i.e.	long	sequences,	long	linkers,	enrichment	in	polar	and	charged	residues)	which	enable	

the	optimization	of	its	flexibility,	the	increase	in	specificity	of	its	folding	process,	3D	fold,	and	interactions	

and	finally	participate	along	with	domain	shuffling	or	duplication	events	 in	the	modular	architecture	of	

genuine	proteins.	One	 should	notice	 that	 although	 the	 figure	 focuses	 on	de	novo	gene	 emergence,	 this	

model	can	also	apply	to	already	existing	proteins.	

	

	

Our	model	is	supported	by	previous	observations	which	show	that	(i)	de	novo	genes	are	

shorter	than	old	ones	(Wolf	et	al.	2009;	Tautz	and	Domazet-Lošo	2011),		(ii)	the	size	of	

de	novo	gene	exons	are	similar	to	those	of	old	genes	(Neme	et	al.	2017;	Palmieri	et	al.	

2014;	Schlötterer	2015),	and	(iii)	novel	domains	are	generally	observed	in	the	C-terminal	

regions	 (Bornberg-Bauer	 et	 al.	 2015;	 Klasberg	 et	 al.	 2018).	 Nevertheless,	 a	 lot	 of	

questions	regarding	the	mechanisms	predating	the	selection	of	an	IGORF	remain	open.	

Figure	3.6	displays	a	continuum	in	the	presented	properties	between	IGORFs	and	CDS	

that	 recalls	 the	 proto-gene	 model	 proposed	 by	 Carvunis	 et	 al.	 (2012),	 though	 the	

continuity	between	the	translated	IGORFs	and	the	ancestral	ones	is	to	be	demonstrated.	

Whether	the	high	translation	signal	of	highly	translated	IGORFs	derives	directly	from	the	

acquisition	of	a	Methionine	or	whether	it	derives	from	previously	occasionally	translated	

IGORFs	 that	have	optimized	 their	 translational	activity	 remains	unclear.	Similarly,	 the	

fate	of	highly	translated	IGORFs	and	their	relationship	with	ancIGORFs	are	to	be	further	

characterized.	 Indeed,	 among	 the	population	of	highly	 translated	ORFs,	 some	of	 them	

may	give	rise	to	future	novel	genes,	thereby	constituting	today,	the	ancestral	IGORFs	of	

tomorrow,	while	others	may	be	short-lived	in	evolutionary	history.	Finally,	the	increase	

in	 sequence	 and	 linker	 sizes	 observed	 between	 the	 different	 ORF	 categories	 opens	

several	 questions.	 We	 showed	 that	 the	 increase	 in	 linker	 size	 for	 ancIGORFs	 can	 be	

explained	 by	 their	 GC	 content	 and	 finally	 their	 amino	 acid	 composition.	 Precisely,	

ancIGORFs	 display	 a	 higher	GC	 content	 than	 IGORFs	 (41.9%	 and	 36.1%	 respectively)	

suggesting	a	role	for	GC-rich	genomic	regions	in	de	novo	gene	properties	and	emergence	

as	 reported	 in	previous	 studies	 (Basile	 et	 al.	 2017;	Vakirlis	 et	 al.	 2018).	Whether	 this	
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increase	in	GC	content	is	accompanied	by	an	increase	in	sequence	length	(STOP	codons	

are	 AT-rich),	 linker	 size,	 and	 finally	 in	 foldability	 is	 a	 very	 interesting	 question	 that	

deserves	further	study.	Indeed,	it	is	still	unknown	whether	the	linker	size	is	simply	the	

consequence	of	the	enrichment	of	CDS	in	hydrophilic	residues	and	the	increase	in	protein	

size	or	whether	harboring	long	linkers	is	accompanied	by	an	increase	in	foldability	and	

is	 thus	a	 selected	criterion.	Finally,	 all	 these	 results	highlight	an	 intimate	 relationship	

between	sequence	length,	GC	content	and	amino	acid	composition,	whose	combination	is	

directly	 related	 to	 the	 size	 of	 linkers	 and	 clusters	 and	 finally	 to	 the	 foldability	 of	 the	

resulting	product.	Which	one	or	which	combination	has	driven	the	evolution	of	CDS?	Our	

results	 cannot	 enable	 us	 to	 conclude.	 Nevertheless,	 the	 function	 of	 a	 protein	 derives	

directly	 from	its	structure	and	 interactions,	and	can	be,	more	generally,	 related	to	 the	

concepts	of	stability,	specificity	and	diversity.	These	concepts	are	in	turn	related	to	the	

equilibrium	 between	 hydrophobic	 and	 hydrophilic	 residues,	 protein	 modularity	 and	

finally,	protein	size	which	may	altogether	shape	the	linker	and	cluster	size	of	proteins.	

	

In	 this	 work,	 we	 propose	 a	 model	 that	 covers	 the	 genesis	 of	 all	 the	 diversity	 of	 the	

structural	states	observed	in	current	proteins.	If	IGORFs	encoding	foldable	peptides	seem	

to	be	more	likely	to	give	rise	to	novel	genes,	disordered	or	aggregation-prone	de	novo	

proteins	 may	 emerge	 occasionally	 (Figure	 3.4B).	 They	 are	 most	 of	 the	 time	 (79%)	

associated	 with	 ancIGORFs	 expected	 to	 encode	 disordered	 or	 aggregation-prone	

peptides	as	well,	suggesting	that	the	structural	properties	of	de	novo	proteins	are	already	

encoded	 in	 the	 ancestral	 peptide	 they	 originate	 from.	Whether	 the	 fold	potential	 of	 a	

starting	point	IGORF	conditions	the	structural	properties	of	the	resulting	de	novo	protein	

is	an	exciting	question	that	deserves	further	study.	Indeed,	we	can	hypothesize	that	once	

selected,	 an	 IGORF	 can	 elongate	 over	 time	 through	 the	 incorporation	 of	 neighboring	

IGORFs,	provided	that	the	latter	do	not	affect	the	fold	potential	of	the	preexisting	protein.	

In	accordance	with	Vakirlis	et	al.	(2020a),	we	can	reason	that	once	a	starting	point	IGORF	

is	 selected,	 it	 engenders	novel	 selected	 effects	which	 in	 turn,	 increase	 the	 constraints	

exerted	 on	 it	 and	 subsequently	 reduce	 the	 possibility	 of	 future	 changes.	 It	 is	 thus	

tempting	 to	 speculate	 that	 the	 structural	 properties	 of	 the	 peptide	 encoded	 by	 the	

starting	point	 IGORF	will	 be	 retained	during	 evolution	 through	 the	 elimination	of	 the	

deleterious	IGORFs’	combinations.	All	these	observations	suggest	that	the	diversity	of	the	

structural	 states	 observed	 in	 current	 proteins	 has	 been	 originally	 inherited	 from	 the	
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diversity	of	the	fold	potential	already	encoded	in	the	noncoding	genome.	If	and	how	the	

noncoding	genome	can	account	for	the	structural	diversity	of	proteins	is	another	exiting	

question	that	deserves	another	study.	

	

	

Methods	

	

Datasets:	

CDS	and	IGORFs:	The	CDS	were	extracted	from	the	genome	of	Saccharomyces	cerevisiae	

S288C	 according	 to	 the	 genome	 annotation	 of	 the	 Saccharomyces	 Genome	 database	

(Cherry	et	al.	2012).	All	unannotated	ORFs	of	at	least	60	nucleotides,	no	matter	if	they	

start	 with	 an	 AUG	 codon,	 were	 extracted	 from	 the	 16	 yeast	 chromosomes.	 We	 only	

retained	ORFs	that	are	free	from	overlap	with	another	gene	or	that	partially	overlap	with	

a	gene	if	the	non-overlapping	region	is	more	than	70%	of	the	IGORFs	sequence.	Datasets	

of	 reference:	 The	disorder	dataset	 consists	 of	 731	disordered	 regions	 extracted	 from	

intrinsically	disordered	proteins	of	the	DisProt	database	(Hatos	et	al.	2020),	that	were	

used	 for	 the	 calibration	 of	 HCAtk	 (Bitard-Feildel	 and	 Callebaut	 2018a).	 The	 globular	

dataset	consists	of	559	globular	proteins	extracted	from	the	Protein	Data	Bank	(Berman	

et	al.	2000;	Burley	et	al.	2021)	that	were	used	for	the	calibration	of	IUPred	(Dosztanyi	et	

al.	 2005;	 Mészáros	 et	 al.	 2009;	 Dosztányi	 2018;	 Mészáros	 et	 al.	 2018).	 The	

transmembrane	 regions	dataset	 gathers	1269	 transmembrane	 regions	 extracted	 from	

the	 transmembrane	 proteins	 contained	 in	 the	 PDBTM	database	 (Tusnády	 et	 al.	 2004,	

2005;	Kozma	et	al.	2012).	We	only	retained	 transmembrane	segments	 longer	 than	20	

amino	 acids	 corresponding	 to	 the	 minimum	 size	 of	 an	 IGORF.	 Random	 noncoding	

genome:	Intergenic	regions	were	concatenated,	and	their	nucleotides	were	scrambled.	

Then	 random	 IGORFs	 of	 at	 least	 60	 nucleotides	 were	 extracted	 as	 explained	 above.	

Scrambled	sequences:	scrambled	sequences	were	generated	by	shuffling	the	nucleotides	

of	the	ORFs	of	interest.	When	an	in-frame	STOP	codon	was	generated,	its	3	nucleotides	

were	 randomized	 until	 they	 did	 not	 lead	 to	 a	 STOP	 codon.	 Artificial	 IGORFs:	 we	

generated	 artificial	 sequences	 of	 fixed	 size	 (e.g.	 size	 of	 CDS)	 by	 drawing	 nucleotides	

according	to	the	nucleotide	composition	of	IGORFs.		

	

	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 106	

	

Estimation	of	the	fold	potential,	the	aggregation,	disorder	and	TM	propensities			

The	 	 foldability	 potential	 was	 estimated	 using	 a	 score	 derived	 from	 the	 HCA	

(Hydrophobic	Cluster	Analysis)	approach	using	the	HCAtk	program	(Bitard-Feildel	and	

Callebaut	 2018a;	 Bitard-Feildel	 et	 al.	 2018),	 while	 the	 disorder	 and	 aggregation	

propensities	 were	 assessed	 with	 IUPred	 and	 TANGO	 respectively	 (Supplemental	

Methods)	(Linding	et	al.	2004;	Fernandez-Escamilla	et	al.	2004;	Rousseau	et	al.	2006a,	

Dosztanyi	et	al.	2005;	Mészáros	et	al.	2009;	Dosztányi	2018;	Mészáros	et	al.	2018).	The	

presence	of	TM	domains	was	predicted	with	TMHMM	(Krogh	et	al.	2001).		

		

Protein	abundances	and	amino	acid	propensities	

Protein	abundance	data	were	extracted	from	the	PaxDB	database	(Wang	et	al.	2012).	In	

order	to	depict	the	impact	of	the	avoidance	of	nonspecific	interactions	with	the	ribosome,	

we	only	retained	cytoplasmic	proteins	as	annotated	in	UniProt	(The	UniProt	Consortium	

2019).	The	propensity	of	an	amino	acid	i	to	be	found	in	a	CDS	cluster	is	defined	by	the	log	

ratio	 of	 the	 frequencies	 of	 the	 amino	 acid	 i	 in	 CDS	 clusters	 versus	 IGORF	 clusters	 as	

follows:	

	

propensity(aa!	in	CDS	clusters) = log"# 6 freq(aa!)	!%	&'(	)*+,-./,freq(aa!)	!%	01234	)*+,-./,9	
	

	

Reconstruction	of	Ancestral	IGORFs	

To	reconstruct	the	ancIGORFs	of	S.	cerevisiae,	we	used	the	genomes	of	the	neighboring	

species	S.	paradoxus	(Durand	et	al.	2019),	S.	arboricola	(Yue	et	al.	2017),	S.	mikatae,	S.	

kudriavzevii,	and	 S.	 uvarum	 (Scannell	 et	 al.	 2011).	Based	on	 four	 independent	 studies	

which	each	listed	de	novo	genes	of	the	S.	cerevisiae	genome,	we	retained	all	de	novo	genes	

identified	in	at	least	two	studies	(Carvunis	et	al.	2012;	Lu	et	al.	2017;	Vakirlis	et	al.	2018;	

Wu	and	Knudson	2018).	This	led	to	a	total	of	171	de	novo	genes	among	which	we	retained	

those	for	which	we	were	able	to	identify	at	least	two	additional	homologous	sequences	

in	 the	neighboring	species	among	which,	at	 least	one	had	to	be	noncoding	 in	order	 to	

reconstruct	the	corresponding	nongenic	region	in	the	ancestor	(Supplemental	Table	S6).	

Therefore,	 we	 searched	 for	 the	 orthologous	 genes	 of	 the	 70	 de	 novo	 genes	 in	 the	
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neighboring	species	using	BLASTP	(evalue	<	1	×	10-2)	(Supplemental	Fig.	S3.7A).	Then,	

based	on	the	species	tree	and	starting	from	the	branch	of	S.	cerevisiae,	we	traced	back	to	

the	root	and	identified	the	first	node	branching	with	a	branch	for	which	no	orthologous	

gene	had	been	detected	(yellow	circle	in	Supplemental	Fig.	S3.7A).	We	hypothesize	that	

the	 corresponding	 locus	 in	 the	 ancestor	 was	 still	 nongenic.	 We	 searched	 for	 the	

corresponding	nongenic	regions	in	the	remaining	species	with	TBLASTN	(evalue	<	1	×	

10-2).	Following	the	protocol	described	by	Vakirlis	and	McLysaght	(2019),	the	resulting	

homologous	nucleotide	 sequences	 and	orthologous	de	novo	genes	were	 subsequently	

aligned	 with	 MACSE	 v2.05	 (Ranwez	 et	 al.	 2011,	 2018)	 and	 the	 corresponding	

phylogenetic	 tree	 was	 constructed	 with	 PhyML	 (Guindon	 et	 al.	 2010).	 The	 multiple	

sequence	alignment	and	its	corresponding	tree	were	given	as	input	to	PRANK	(Löytynoja	

and	 Goldman	 2010)	 for	 the	 reconstruction	 of	 the	 corresponding	 ancestral	 nongenic	

nucleotide	 sequence	 (Supplemental	 Fig.	 S3.7B,C).	 Finally,	 the	 ancestral	 nucleotide	

sequences	were	translated	into	the	three	reading	frames.	The	resulting	IGORFs	were	then	

aligned	with	the	de	novo	gene	of	S.	cerevisiae	with	LALIGN	(Huang	and	Miller	1991)	those	

sharing	a	homology	with	it	were	retained	(Supplemental	Fig.	S3.7D).	

		

Ribosome	Profiling	analyses		

Ribosome	profiling	datasets:	we	used	five	ribosome	profiling	datasets	of	wild	type	S.	

cerevisiae,	 two	of	which	were	generated	 in	the	present	study	(Supplemental	Methods)	

(GEO	 accession	 number	 GSE173861,	 samples	 GSM5282046	 and	 GSM5282047).	 The	

three	 others	 were	 taken	 from	 Radhakrishnan	 et	 al.	 (2016)	 (GEO	 accession	 number	

GSE81269,	 samples	GSM2147982	 and	GSM2147983)	 and	Thiaville	 et	 al.	 (2016)	 (GEO	

accession	 number	 GSE72030,	 sample	 GSM1850252).	 Selection	 of	 RPF	 (Ribosome	

Protected	 Fragments):	 Ribosome	 profiling	 reads	 were	 mapped	 on	 the	 genome	 of	 S.	

cerevisiae	S288C	using	Bowtie	(Langmead	et	al.	2009).	For	this	study,	we	only	kept	the	

28-mers	since	on	average	90%	of	 them	were	mapped	on	a	CDS	 in	the	correct	reading	

frame	 (Supplemental	 Fig.	 S3.17).	 Periodicity:	 The	 periodicity	 is	 calculated	 using	 a	

metagene	 profile.	 It	 provides	 the	 number	 of	 footprints	 relative	 to	 all	 annotated	 start	

codons	in	a	selected	window.	The	metagene	profile	is	obtained	by	pooling	together	all	the	

annotated	 CDS	 and	 counting	 the	 number	 of	 RPFs	 at	 each	 nucleotide	 position.	

Supplemental	Fig.	S3.17	shows	a	clear	accumulation	of	signal	over	the	CDS,	and	a	nice	

periodicity	over	the	100	first	nucleotides.	Identification	of	the	occasionally	translated	
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IGORFs:	 we	 retained	 the	 IGORFs	 with	 at	 least	 10	 reads	 in	 at	 least	 one	 dataset.	

Identification	of	 the	highly	 translated	 IGORFs:	we	kept	 the	 IGORFs	with	 at	 least	30	

reads	in	at	least	two	datasets	for	which	the	fraction	of	in-frame	reads	was	higher	than	0.8.	

		

Statistical	analyses	

All	statistical	analyses	that	aimed	at	comparing	distributions	were	performed	in	R	(4.0.3)	

(Team	R	Core	2020)	using	the	Kolmogorov–Smirnov	test	(two-sided)	when	comparing	

whether	the	HCA	score	distributions	are	statistically	different	and	the	Mann	Whitney	U	

test	for	the	comparison	of	the	median	cluster	size,	linker	size,	sequence	size	and	cluster	

number	distributions	(bilateral	test	for	the	comparison	of	cluster	sizes	and	unilateral	test	

for	the	other	properties).	We	used	the	one	proportion	z-test	for	the	comparison	of	the	

proportion	 of	 disordered,	 foldable	 or	 aggregation	 prone	 sequences	 between	 different	

ORF	categories.	In	order	to	circumvent	the	p-value	problem	inherent	to	large	samples	(Lin	

et	al.	2013),	tests	were	performed	iteratively	1000	times	on	samples	of	500	individuals	

randomly	chosen	from	the	initial	sample	when	it	was	larger	than	500	individuals.	The	

averaged	p-value	over	the	1000	iterations	was	subsequently	calculated.		

	

Data	Access	

The	raw	ribosome	profiling	data	generated	in	this	study	have	been	submitted	to	the	NCBI	

Gene	Expression	Omnibus	(GEO;	https://www.ncbi.nlm.nih.gov/geo/)	under	accession	

number	GSE173861.	Raw	and	calculated	data	along	with	codes	to	reproduce	analyses	and	

figures	are	available	as	Supplemental	Code	1,	and	the	programs	to	extract	the	IGORFs	and	

estimate	their	structural	properties	(ORFtrack	and	ORFold)	are	available	in	the	ORFMine	

package	as	Supplemental	Code	2	and	on	GitHub	(https://github.com/i2bc/ORFmine).		
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4	 Study	 of	 sequence	 and	 structural	 properties	 of	

proteins	along	evolution	

	

4.1	Introduction	

	

In	section	3,	we	studied	and	compared	the	sequence	and	structural	properties	between	

established	coding	ORFs	(CDS)	and	noncoding	intergenic	ORFs	(IGORFs)	of	the	yeast.	We	

showed	that	the	IGORFs	can	encompass	a	large	diversity	of	foldability	potential	while	the	

CDS	have	evolved	towards	a	more	limited	range	of	foldability	which	falls	mostly	in	the	

range	of	globular	and	well	 folded	proteins.	We	also	showed	 that	CDS	are	significantly	

longer	than	the	IGORFs,	hosting	longer	disordered	regions	(HCA	linkers)	while	they	both	

(CDS	and	IGORFs)	present	similar	sizes	of	HCA	clusters.	Although	we	addressed	the	CDS	

as	a	single	and	homogeneous	group	of	sequences,	one	should	notice	that	the	proteins	of	

S.	cerevisiae	have	appeared	at	different	points	of	the	evolutionary	time	and	as	a	result,	the	

proteins	observed	today	have	not	been	subjected	to	selection	for	the	same	length	of	time.	

Notably,	older	proteins	have	been	subjected	to	selection	for	longer,	compared	to	younger	

ones.	 If	 and	 how	 the	 evolutionary	 time	 has	 affected	 the	 sequence	 and	 structural	

properties	 of	 the	 CDS	 are	 interesting	 questions	 that	 we	 address	 in	 this	 section.	 CDS	

sequences	code	 for	 functional	proteins	and	most	of	 them	are	 found	conserved	among	

multiple	organisms.	Using	homology	detection	methods,	it	becomes	possible	to	assign	the	

presence	or	absence	of	a	CDS	sequence	from	the	genome	of	an	organism	and	detect	its	

last	occurrence	among	a	set	of	different	organisms	(Van	Oss	and	Carvunis	2019).	This	

procedure	permits	to	assign	a	relative	date	to	the	CDS	sequence	which	corresponds	to	

the	 evolutionary	 timepoint	 of	 its	 last	 occurrence.	 This	 method	 is	 called	 genomic	

phylostratigraphy	and	has	already	been	presented	at	the	introduction	of	this	manuscript	

as	a	method	for	orphan	genes	detection.	Notably,	ancient	proteins	will	be	present	in	all	

(or	the	majority)	of	the	studied	species	while	young	proteins	will	be	present	only	in	a	

subset	of	species.	

	

In	 this	 section,	 we	 aim	 at	 studying	 the	 evolution	 of	 several	 sequence	 and	 structural	

properties	 of	 the	 CDS	 along	 with	 the	 evolutionary	 time.	 To	 do	 so,	 the	 proteins	 of	 S.	
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cerevisiae	 were	 divided	 in	 ten	 distinct	 phylostrata	 (age	 groups)	 based	 on	 an	 already	

published	 phylostragraphy	 of	 the	 yeast	 (Wilson	 et	 al.	 2017).	 The	 motivation	 of	 this	

analysis	 is	the	comparison	of	these	properties	among	the	different	protein	age	groups	

and	particularly	between	the	youngest	and	the	oldest	phylostrata	in	order	to	capture	any	

interesting	tendencies	established	with	evolution.	Together	with	the	already	described	

sequence	 and	 structural	 predicted	 properties,	 we	 studied	 the	 evolution	 of	 additional	

properties	of	 the	yeast	proteins	 such	as	 the	protein	abundance	 in	 the	 cell,	 number	of	

protein-protein	 interaction	 partners,	 their	 predicted	 structural	 domains	 and	 the	

secondary	structure	content	of	their	3D	structures.	

	

	

4.2	Methods	

	

4.2.1	Age	groups	of	S.	cerevisiae	proteins	

For	 our	 analysis	we	used	 the	 relative	 ages	 of	S.	 cerevisiae	proteins	 as	 estimated	with	

phylostratigraphy	in	the	study	of	Wilson	et	al.	(2017).	Notably,	genes	taken	in	June	2014	

from	 the	Saccharomyces	Genome	Database	 (SGD)	were	 subjected	 to	a	BLASTp	search	

with	 an	 E-value	 threshold	 of	 0.001	 against	 the	 National	 Center	 for	 Biotechnology	

Information	 (NCBI)	 non-redundant	 protein	 sequences	 (nr)	 database.	 The	 most	

phylogenetically	distant	hit	was	used	to	place	the	gene	into	one	of	10	defined	phylostrata.	

The	 youngest	 phylostratum	 contained	 562	 proteins	 encoded	 by	 TRGs	 of	 the	

Saccharomyces	genus,	304	of	which	were	S.	cerevisiae	orphans.	In	addition,	we	created	

an	eleventh	group	of	genes	corresponding	to	genes	termed	as	“dubious”	by	the	SGD	and	

which	are	deemed	unlikely	 to	be	 real	 (Skrzypek	and	Hirschman	2011).	 In	 table	4.1	 is	

presented	the	reparation	of	the	S.	cerevisiae	proteins	in	the	different	age	groups	from	the	

older	to	the	younger	phylostrata.	
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Table	4.1.	Count	of	S.	cerevisiae	proteins	per	age	group.		

	
Total	number	of	

proteins	

Cellular	Organisms	 2575	

Eukaryota	 1578	

Opisthokonta	 127	

Fungi	 289	

Dikarya	 75	

Ascomycota	 140	

Saccharomyceta	 71	

Saccharomycetales	 366	

Saccharomycetaceae	 346	

Saccharomyces	 562	

Dubious	 545	

Total	 6649	

	

	

4.2.2	Structural	properties	calculation	

For	 the	calculation	of	 the	 foldability	potential	as	well	as	 the	aggregation	and	disorder	

propensities	we	used	the	tools	pyHCA	(Faure	and	Callebaut	2013a,	2013b;	Bitard-Feildel	

and	 Callebaut	 2018a;	 Lamiable	 et	 al.	 2019),	 Tango	 (Linding	 et	 al.	 2004;	 Fernandez-

Escamilla	et	al.	2004;	Rousseau	et	al.	2006a)	and	IuPred	(Mészáros	et	al.	2018;	Dosztányi	

2018;	Erdős	and	Dosztányi	2020),	respectively,	through	the	ORFold	tool	which	is	part	of	

the	ORFmine	package.	See	section	2	for	details.	

	

4.2.3	 Proteins’	 abundance	 and	 Protein-Protein	 Interaction	 (PPI)	

partners	

Protein	 abundance	 data	were	 extracted	 from	 the	 PaxDB	database	 (Wang	 et	 al.	 2012)	

while	 the	 PPI	 of	 every	 protein	 were	 extracted	 from	 the	 BioGRID	 (version	 4.4.200)	

database	(Stark	et	al.	2006).	
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4.2.4	SCOP	superfamilies	annotation	of	the	S.	cerevisiae	proteome	

The	SCOP	superfamilies	annotation	of	the	S.	cerevisiae	proteome	was	downloaded	from	

the	 SUPERFAMILY	 database	 (https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/)	

(Gough	et	al.	2001).	All	the	annotations	had	E-value	<	0.01	and	every	SCOP	superfamily	

was	assigned	to	its	corresponding	SCOP	class.	For	this	analysis	we	focused	on	the	five	

principal	 SCOP	 classes	 (all-α,	 all-β,	 α/β,	 α+β,	 multi-domain)	 and	 eliminated	 domains	

corresponding	to	other	SCOP	classes	(Hubbard	et	al.	1997;	Andreeva	et	al.	2014).	

	

4.2.5	Dataset	of	S.	cerevisiae	protein	3D	structures	from	the	PDB	

For	 the	 S.	 cerevisiae	 PDB	 protein	 structures	 dataset,	 we	 were	 based	 on	 the	 UniProt	

(UniProt	Consortium	2019)	annotation	of	the	S.	cerevisiae	S288C	strain.	For	every	gene	

entry	 with	 PDB	 structures,	 we	 retained	 only	 one	 representative	 structure	 with	 the	

following	 preference:	 the	 X-ray	 against	 NMR	 structures	 and	 the	 X-ray	 with	 lowest	

resolution	among	all	the	X-ray	cases.	Like	this	we	extracted	1346	PDB	structures	each	

one	corresponding	to	a	single	S.	cerevisiae	gene.	For	more	details	about	the	repartition	of	

the	structures	in	the	10	age	groups	see	table	4.3.	For	the	secondary	structures	assignation	

on	the	PDB	structures,	the	tool	Stride	(Heinig	and	Frishman	2004)	was	used.	

	

4.2.6	Dataset	of	S.	cerevisiae	protein	3D	structures	models	predicted	by	

AlphaFold2	

The	3D	model	structures	of	the	proteome	of	S.	cerevisiae	predicted	by	AlphaFold2	were	

downloaded	from	the	Alphfold	Protein	Structure	Database	(https://alphafold.ebi.ac.uk)	

(Tunyasuvunakool	et	al.	2021).	For	more	details	about	the	repartition	of	the	structures	

in	 the	 10	 age	 groups	 see	 table	 4.3.	 For	 the	 secondary	 structures	 assignation	 on	 the	

AlphaFold2	models,	the	tool	Stride	(Heinig	and	Frishman	2004)	was	used.	

	

	

4.3	Results	

	

Based	 on	 the	 phylostratigraphy	 presented	 in	Wilson	 et	 al.	 (2017),	 the	 proteins	 of	 S.	

cerevisae	were	assigned	with	a	relative	age.	Older	proteins	present	homologs	with	more	

distantly	related	species	while	younger	proteins	are	mostly	restricted	 to	close	related	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 118	

organisms.	Out	of	 the	 ten	phylostrata,	 the	dubious	genes	constituted	a	supplementary	

group	which	is	not	assigned	with	any	age.	Almost	83%	(58/70)	of	the	reconstructed	de	

novo	genes	presented	in	section	3	correspond	to	this	dubious	category.	

	

4.3.1	Evolution	of	the	fold	potential		

In	figure	4.1A	is	presented	the	HCA	score	distribution	for	the	different	yeast	gene	ages	

together	with	the	ones	of	dubious	genes	and	IGORFs.	It	is	interesting	to	observe	that	the	

HCA	score	distribution	becomes	less	wide	and	more	centered	with	the	evolutionary	time.	

In	order	to	verify	that,	we	generated	samples	of	100	randomly	selected	proteins	for	every	

phylostratum	and	performed	pairwise	comparisons	of	the	HCA	scores	variance	for	all	the	

phylostrata	with	the	F-test.	This	procedure	was	repeated	1000	times	and	an	average	p-

value	for	the	1000	comparisons	was	calculated.	The	HCA	scores	of	the	oldest	age	group	

presented	significantly	different	variance	than	any	other	age	group	(Two-sided	F-test,	all	

p-values	<	5	×	10-2)	reflecting	that	older	proteins	present	more	homogenous	foldability	

potentials	while	younger	proteins	present	a	larger	spectrum	of	foldabilities.	Indeed,	the	

HCA	score	distribution	of	the	oldest-genes	group	(Cellular	Organisms)	is	systematically	

different	from	the	distribution	of	any	other	younger	age	group	(Two-sided	Kolmogorov	

Smirnov	test,	all	p-values	<	2.2	×	10-16).	Notably,	 the	HCA	scores	of	all	 the	protein	age	

groups	 fall	 principally	 inside	 the	 foldable	 boundaries	 showing	 that	 foldability	 is	 an	

important	trait	that	is	constantly	optimized	during	evolution.	However,	both	the	dubious	

and	the	young	Saccharomyces	TRGs	present	an	intermediate	behavior	between	IGORFs	

and	older	genes	by	acquiring	a	large	range	of	foldability	potentials.	Interestingly,	their	

foldability	 score	distribution	 is	not	 similar	neither	 to	 IGORFs	 (Two-sided	Kolmogorov	

Smirnov	test,	P	=	4	×	10-3	and	P	=	5	×	10-3,	respectively)	nor	to	any	other	older	age	group	

(Two-sided	Kolmogorov	Smirnov	test,	all	p-values	<	2.2	×	10-16).	Notably,	they	are	both	

enriched	in	foldable	sequences	(80%	and	79.7%	for	dubious	and	Saccharomyces	TRGs,	

respectively)	in	comparison	to	IGORFs	(66.6%)	(one	proportion	z-test,	P	=	4	×	10-10	and	

P	=	3	×	10-4	for	dubious	and	Saccharomyces	TRGs,	respectively)	such	as	the	S.	cerevisiae	

de	 novo	 genes	 presented	 in	 section	 3.	 Figure	 4.1B-C	 present	 the	 distribution	 of	 the	

disorder	and	the	aggregation	propensity,	respectively,	for	the	different	yeast	gene	ages	

together	with	 the	 ones	 of	 dubious	 genes	 and	 the	 IGORFs.	 One	 should	 notice	 that	 the	

distribution	 of	 these	 properties	 for	 the	 dubious	 and	 the	 Saccharomyces	 TRGs	 is	

significantly	 different	 from	 any	 other	 protein	 age	 group	 (Mann-Whitney	U-test,	 all	 p-
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values	<	2.2	×	10-16)	while,	on	 the	contrary,	 they	are	statistically	similar	 to	 the	one	of	

IGORFs	(Mann-Whitney	U-test,	P	=	1	×	10-1	and	P	=	4	×	10-1		for	the	disorder	propensity;	

P	 =	 1	 ×	 10-1	 and	 P	 =	 4	 ×	 10-1	 for	 the	 aggregation	 propensity,	 for	 dubious	 and	

Saccharomyces	 TRGs,	 respectively).	 Pairwise	 comparisons	 between	 consecutive	 age	

groups	 for	 these	 two	 properties,	 revealed	 an	 overall	 stable	 tendency	 along	 with	 the	

evolutionary	 time	with	 exception	 the	 older	 age	 groups	which	 seem	 to	 present	 lower	

disorder	propensity.	
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Figure	4.1.	(A)	Distribution	of	the	HCA	foldability	score	for	the	proteins	of	the	ten	S.	cerevisiae	age	groups	

(presented	in	different	shades	of	orange)	as	well	as	the	IGORFs	(presented	in	purple)	and	the	dubious	genes	

(presented	in	white).	Dotted	black	lines	delineate	the	boundaries	of	the	low,	intermediate	and	high	HCA	

score	 categories	 reflecting	 the	 three	 categories	 of	 fold	 potential	 (i.e.,	 disorder	 prone,	 foldable,	 or	

aggregation	 prone	 in	 solution).	 Horizontal	 bars	 correspond	 to	 the	 mean	 ±	 standard	 deviation	 of	 the	

distribution.	 (B)	 Boxplot	 distribution	 of	 the	 intrinsic	 disorder	 propensity	 of	 each	 protein	 age	 group	

(presented	in	different	shades	of	orange)	as	well	as	the	IGORFs	(presented	in	purple)	and	the	dubious	genes	

(presented	 in	white).	(C)	Boxplot	distribution	of	 the	aggregation	propensity	of	 each	protein	age	group	

(presented	in	different	shades	of	orange)	as	well	as	the	IGORFs	(presented	in	purple)	and	the	dubious	genes	

(presented	 in	 white).	 Asterisks	 denote	 level	 of	 significance	 for	 the	 Mann-Whitney	 U-test	 for	 every	

consecutive	pair:	*p	<	5	×	10-2,	**p	<	1	×	10-2,	***p	<	1	×	10-3.	The	outliers	of	the	boxplots	are	omitted	for	

clarity.	

	

	

Based	on	these	results,	the	young	yeast	genes	(Saccharomyces	TRGs)	present	foldability	

score	 distribution	which	 is	 different	 from	 both	 IGORFs	 and	 the	 rest	 of	 the	 older	 age	

groups,	while	their	disorder	and	aggregation	propensities	are	clearly	different	from	the	

rest	of	the	phylostrata	and	similar	to	the	ones	of	the	IGORFs.	These	support	that	the	young	

genes	might	represent	an	intermediate	state	between	noncoding	ORFs	and	older	genes.	

Notably,	the	same	observations	stand	for	the	group	of	dubious	genes	making	us	wonder	

whether	dubious	genes	in	fact	correspond	to	young	genes.	

	

4.3.2	Evolution	of	HCA	clusters	and	linkers	

In	section	3,	we	showed	that	the	sequence	length,	the	HCA	clusters’	occurrences	and	the	

linkers’	 size	 of	 successive	 stages	 preceding	 the	 birth	 of	 de	 novo	 genes,	 display	

intermediate	 values	 between	 IGORFs	 and	 CDS	 supporting	 that	 the	 evolution	 of	 these	

properties	somehow	accompanies	the	emergence	of	novel	genes.	Precisely,	long	linkers	

were	 found	 to	be	 specific	 to	CDS	while,	 on	 the	 contrary,	 the	 size	of	HCA	clusters	was	

invariant	 among	 the	 ORF	 categories	 (except	 the	 one	 of	 the	 de	 novo	 genes	which	 are	

enriched	in	hydrophobic	residues).	This	prompts	us	to	investigate	whether	the	increase	

in	 linker	 size,	 observed	 for	 CDS,	 was	 a	 continuous	 procedure	 over	 evolution	 or	 is	 a	

property	that	is	fixed	early	in	evolution.	

We	studied	the	sequence	size	and	the	HCA	clusters	number	of	the	different	gene	groups,	

and	we	noticed	the	well-known	tendency	of	proteins	to	elongate	and	acquire	more	HCA	

clusters	with	the	evolutionary	time	(Figure	4.2A-B).	Our	finding	that	HCA	clusters’	sizes	
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do	 not	 differ	 significantly	 between	 IGORFs	 and	 CDS,	 still	 stands	 for	 all	 the	 yeast	

phylostrata	and	the	dubious	genes	(Figure	4.2C),	enforcing	even	more	our	initial	results	

and	supporting	the	idea	of	HCA	clusters	as	elementary	building	blocks	of	proteins	(Mann-

Whitney	U-test,	all	pairwise	p-values	>	0.05).	On	the	other	hand,	the	linkers’	size	between	

IGORFs	and	the	proteins	of	any	other	age	group	(no	matter	younger,	older	or	dubious)	is	

significantly	different	(Figure	4.2D),	with	the	IGORFs	presenting	smaller	linker	sizes,	as	

already	described	in	section	3.	Interestingly,	the	group	of	young	genes	(Saccharomyces)	

presents	intermediate	linker	sizes	between	the	IGORFs	and	the	Saccharomycetaceae	age	

group	(Mann-Whitney	U-test,	P	=	6	×	10-8	and	3	×	10-2,	respectively)	while	the	linker	sizes	

among	all	 the	other	 age	groups	 seems	 to	be	 invariant	 along	 the	evolutionary	 time.	 In	

addition,	the	dubious	genes	present	intermediate	linker	sizes	between	IGORFs	and	the	

young	 yeast	 genes.	Whether	 the	 dubious	 genes	 reflect	 an	 intermediate	 state	 between	

noncoding	sequences	and	young	yeast	genes	or	just	a	younger	subset	of	the	young	genes	

is	an	interesting	question.		
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Figure	4.2.	Boxplot	distribution	of	the	sequence	size	(A),	the	number	of	HCA	clusters	(B),	the	size	of	HCA	

clusters	(C)	and	the	size	of	 linkers	(D)	per	protein	age	group	(presented	in	different	shades	of	orange)	

together	with	the	ones	of	the	IGORFs	(presented	in	purple)	and	the	dubious	genes	(presented	in	white).	

Asterisks	denote	level	of	significance	for	the	Mann-Whitney	U-test	for	every	consecutive	pair:	*p	<	5	×	10-

2,	**p	<	1	×	10-2,	***p	<	1	×	10-3.	The	outliers	of	the	boxplots	are	omitted	for	clarity.	

	

	

4.3.3	Evolution	of	the	amino	acid	composition		

As	it	has	already	been	described	in	section	3,	IGORFs	and	CDS	present	distinct	profiles	of	

amino	 acid	 frequencies.	 Precisely,	 IGORFs	 are	mostly	 enriched	 in	 strong	hydrophobic	

amino	 acids	 (F,	 L,	 I,	 Y,	 C)	 all	 participating	 in	 the	 HCA	 clusters	 while	 CDS	 are	mostly	

enriched	in	polar	and	charged	residues	with	an	even	stronger	enrichment	in	negatively	

charged	amino	acids	(D,	E).	Figure	4.3	shows	the	frequency	of	all	20	amino	acids	per	gene	

age	group.	All	the	age	groups,	except	of	the	young	Saccharomyces	TRGs	(in	beige),	present	

similar	amino	acids’	frequency	profiles	to	the	one	of	CDS	(orange	thick	line).	This	is	not	

the	 case	 for	 the	 youngest	 proteins	 (in	 beige)	 which	 present	 a	 profile	 intermediate	

between	IGORFs	and	the	older	yeast	proteins	for	most	amino	acids.	Notably,	the	dubious	

genes	(in	black)	present	amino	acids	frequencies	similar	to	the	ones	of	IGORFs	and	de	

novo	genes	(in	blue).	
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Figure	4.3.	Radar	plot	reflecting	the	20	amino	acid	frequencies	of	IGORFs	(presented	in	purple)	and	the	

CDS	 for	 the	 10	 age	 groups	 (presented	 in	 different	 shades	 of	 orange)	 together	with	 the	 dubious	 genes	

(presented	in	black)	and	the	70	de	novo	genes	(presented	in	blue)	presented	at	section	3	of	the	manuscript.	

	

	

Figure	4.4A	represents	the	 frequencies	of	amino	acids,	 this	 time	grouped	according	to	

their	 physico-chemical	 properties,	 across	 the	 different	 protein	 phylostrata.	 Strong	

hydrophobic	amino	acids	(usually	associated	with	HCA	clusters)	are	represented	with	

empty	circles,	polar	hydrophilic	amino	acids	(usually	associated	with	HCA	linkers)	are	

represented	with	black	circles,	negatively	charged	residues	(D,	E)	are	shown	with	red	

inverted	 triangles	 while	 positively	 charged	 residues	 (K,	 R)	 are	 shown	 with	 green	

triangles.	On	the	plot,	we	observe	that	the	young	genes	(Saccharomyces	group)	present	

intermediate	frequencies	of	hydrophobic	and	hydrophilic	residues	between	IGORFs	and	

the	older	genes.	In	fact,	the	young	genes	are	depleted	in	hydrophobic	residues	(Mann-

Whitney	U-test,	 P	 =	 4	 ×	 10-2)	 and	 enriched	 in	 hydrophilic	 and	 specifically	 negatively	

charged	residues	(Mann-Whitney	U-test,	P	=	2	×	10-2	and	P	=	3	×	10-2,	respectively)	when	

compared	with	the	IGORFs.	On	the	contrary,	no	significant	difference	is	observed	when	

they	are	compared	with	all	the	older	age	groups	(Mann-Whitney	U-test,	all	pairwise	p-

values	 >	 5	 ×	 10-2	 for	 hydrophobic,	 hydrophilic	 and	 negatively	 charged	 residues,	

respectively).	Consequently,	these	results	support	that	the	hydrophobic	and	hydrophilic	

residues	frequencies	of	young	yeast	genes	are	more	similar	to	the	ones	of	the	older	genes	

highlighting	the	importance	of	the	negative	charges	in	the	genes’	evolution.	On	the	other	

hand,	dubious	genes	were	enriched	in	hydrophobic	(Mann-Whitney	U-test,	all	pairwise	

p-values	<	2	×	10-16)	and	depleted	in	hydrophilic	and	negatively	charged	residues	(Mann-

Whitney	U-test,	all	pairwise	p-values	<	2	×	10-16	and	2	×	10-4,	respectively)	compared	with	

all	the	other	age	groups	while	they	did	not	present	significant	difference	of	hydrophobic	

and	negatively	charged	residues	when	compared	with	the	IGORFs	(Mann-Whitney	U-test,	

P	 =	 5	 ×	 10-1	 and	 P	 =	 5	 ×	 10-1,	 respectively)	 thus	 reflecting	 mostly	 IGORF-like	

characteristics.	Whether	 dubious	 genes	 correspond	 to	 an	 intermediate	 state	 between	

noncoding	sequences	and	young	genes	(resembling	mostly	to	IGORFs)	and	whether	the	

young	genes	are	also	an	intermediate	state	towards	the	establishment	of	older	genes	are	

interesting	questions.	
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Figure	 4.4.	 (A)	 Frequency	 of	 the	 strong	 hydrophobic	 (presented	 in	 empty	 circles),	 the	 hydrophilic	

(presented	in	black	circles),	the	negatively	charged	(presented	in	red	inverted	triangles)	and	the	positively	

charged	(presented	in	green	triangles)	residues	for	the	different	age	groups	together	with	the	IGORFs	and	

the	dubious	genes	(B)	GC	content	of	the	S.	cerevisiae	CDS	for	the	different	age	groups	together	with	the	

IGORFs	and	the	dubious	genes.	In	dotted	line	the	average	GC	content	of	the	total	CDS.	

	

	

At	note,	the	yeast	genes	of	all	the	age	groups	as	well	as	dubious	genes,	present	similar	GC	

content	of	around	40%	while	 the	noncoding	ORFs	present	 lower	CG	content	of	36.1%	

(Figure	 4.4B).	 However,	 proteins	 encoded	 by	 dubious	 genes	 present	 amino	 acid	

composition	 similar	 to	 the	one	of	 IGORFs	while	 the	young	proteins	 in	Saccharomyces	

group	present	an	overall	intermediate	composition	of	amino	acids	between	IGORFs	and	

older	genes,	thus	resembling	mostly	to	CDS	when	amino	acids	are	grouped	according	to	

their	physico-chemical	properties.	In	line	with	section	3	and	Vakirlis	et	al.	(2018),	is	again	

tempting	 to	 speculate	 that	 the	 increased	 GC	 content	 is	 an	 important	 trait	 for	 the	

emergence	of	novel	longer	ORFs	(stop	codons	are	AT-rich)	from	noncoding	regions	and	

then	 follows	 the	 amino	 acid	 optimization	 by	 mutating	 towards	 negatively	 charged	

residues.	

	

4.3.4	 Evolution	 of	 cellular	 abundance	 and	 number	 of	 protein	

interactions	

Our	results	highlight	that	the	yeast	genes	in	the	youngest	age	group	present	intermediate	

characteristics	(HCA	foldability	scores,	disorder	and	aggregation	propensity	and	linker	
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sizes)	between	nongenic	sequences	and	older	genes.	 In	 this	part,	we	are	 interested	 in	

further	 estimating	 the	 potential	 behavior	 of	 a	 protein	 in	 the	 cell.	 Therefore,	 we	

investigated	the	relationship	between	the	protein	ages	and	their	cellular	abundance	as	

well	as	their	number	of	Protein-Protein	Interactions	(PPI).	

	

In	 Figure	 4.5A	 is	 presented	 the	 protein	 cellular	 abundance	 distribution	 (in	 parts	 per	

million)	for	the	different	yeast	protein	ages	together	with	the	dubious	genes.	Notably,	the	

abundance	of	the	proteins	in	the	cell	increases	continuously	with	their	age,	supporting	

that	 the	older	proteins	 are	more	 expressed	or	potentially	 longer	 living	 in	 the	 cellular	

environment.	In	addition,	the	proteins	in	the	youngest	group	together	with	the	dubious	

genes	present	significantly	lower	cellular	abundance	than	any	other	age	group.	Indeed,	is	

known	that	de	novo	emerging	genes	present	lower	expression	levels.	
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Figure	4.5.	Boxplot	distribution	of	(A)	the	protein	cellular	abundance	(in	parts	per	million)	and	(B)	the	

Protein-Protein	 Interaction	 partners	 number	 per	 age	 group	 (presented	 in	 different	 shades	 of	 orange).	

Asterisks	denote	level	of	significance	for	the	Mann-Whitney	U-test	for	every	consecutive	pair:	*p	<	5	×	10-

2,	**p	<	1	×	10-2,	***p	<	1	×	10-3.	

	

	

The	study	of	Abrusán	(2013)	inspired	us	to	study	the	evolution	of	the	number	of	Protein-

Protein	Interactions	(PPI)	among	the	different	phylostrata.	To	do	so,	we	extracted	all	the	

yeast	PPIs	from	the	BioGRID	(version	4.4.200)	database	(Stark	et	al.	2006).	Figure	4.5B	

presents	the	number	of	PPIs	for	every	yeast	protein	by	age	group.	In	line	with	Abrusán	

(2013),	it	is	observed	that	the	young	genes’	group	present	fewer	PPIs	compared	with	the	

rest	of	the	age	groups	(Mann-Whitney	U-test,	all	p-values	<	5	×	10-2).	In	addition,	even	

though	the	consecutive	pairwise	comparisons	between	the	age	groups	do	not	support	

any	 significant	 gradual	 increase	 of	 the	 PPIs	 with	 the	 evolution	 time,	 the	 comparison	

between	 the	 younger	 and	 the	 older	 phylostrata	 revealed	 that	 the	 three	 younger	

phylostrata	(from	Saccharomyces	until	Saccharomycetales	group)	contain	significantly	

less	PPI	partners	than	the	four	oldest	age	groups	(from	Fungi	until	Cellular	Organisms	

group).	Whether	younger	proteins	interact	with	fewer	partners	due	to	more	specific	cell	

functionalities	is	a	question	which	should	be	further	investigated.	In	addition,	it	must	be	

mentioned	that	as	the	interaction	databases	are	incomplete,	the	number	of	PPIs	is	likely	

to	 be	 underestimated	 and	 consequently	 these	 results	 should	 be	 considered	 with	

cautiousness.	

	

We	showed	that	the	protein	cellular	abundance	and	the	number	of	PPIs,	both	present	an	

increasing	 tendency	with	 the	 protein	 age.	 In	 addition,	 the	 young	 yeast	 proteins	 of	 S.	

cerevisiae	presented	significant	lower	abundance	and	less	PPIs	than	any	other	age	group.	

Whether	 these	 two	 observations	 reflect	 an	 intermediate	 character	 of	 young	 proteins	

which	are	less	expressed	and	interact	with	fewer	partners	than	their	older	counterparts,	

is	 an	 interesting	 question.	 However,	 it	 must	 be	 highlighted	 that	 although	 the	 two	

properties	 studied	 in	 this	 section	 (cellular	 abundancy	 and	 number	 of	 PPIs)	 present	

similar	 increasing	 tendencies	 along	 evolution	 time,	 we	 do	 not	 know	 if	 there	 is	 any	

correlation	between	them	and	further	studies	should	be	done	to	investigate	that.	
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4.3.5	Evolution	of	protein	fold	

Our	 results	 based	 on	 HCA,	 highlight	 that	 the	 proteins’	 fold	 potential	 is	 continuously	

optimized	with	 the	 evolutionary	 time.	The	HCA	 score	provides	 information	 about	 the	

capacity	of	a	protein	to	 fold	but	does	not	provide	any	 information	about	 its	structural	

content.	In	this	part,	we	use	the	proteins’	age	groups	of	the	yeast	in	order	to	investigate	

if	and	how	the	evolution	has	shaped	the	overall	structural	content	of	proteins.	

	

4.3.5.1	Prediction	of	structural	domains	from	the	protein	sequences	

Different	classification	methods	have	been	developed	in	order	to	organize	and	categorize	

the	folds’	universe	(Hubbard	et	al.	1997;	Andreeva	et	al.	2014;	Dawson	et	al.	2017;	Sillitoe	

et	al.	2021;	Mistry	et	al.	2021).	One	of	these	manual	classification	schemes	is	the	SCOP	

database	 which	 attempts	 to	 cluster	 hierarchically	 protein	 domains	 with	 common	

structural	and	evolutionary	relationships	(Hubbard	et	al.	1997;	Andreeva	et	al.	2014).	

Based	 on	 protein	 domains’	 evolutionary	 divergence	 and	 structural	 similarity,	 SCOP	

organizes	 them	 into	 families	 and	 superfamilies.	 These	 are	 further	 classified	 into	

structural	 folds,	 which	 do	 not	 necessarily	 indicate	 common	 evolutionary	 origin,	 and	

classes	 reflecting	 the	 domains’	 secondary	 structures	 (Andreeva	 et	 al.	 2014).	 Globular	

proteins’	domains	are	classified	by	their	majority	secondary	structure	content	in	one	of	

the	four	main	SCOP	classes	(Hubbard	et	al.	1997;	Edwards	et	al.	2013):	

1. all-α:	those	whose	structure	is	essentially	formed	by	α-helices	

2. all-β:		those	whose	structure	is	essentially	formed	by	β-sheets	

3. α/β:	those	with	α-helices	and	β-strands	

4. α+β:	those	in	which	α-helices	and	β-strands	are	largely	segregated	

or	the	fifth	class:		

5. multi-domain:	those	with	domains	of	different	fold	and	for	which	no	homologues	

are	known	at	present.	

	

In	this	part,	we	annotated	the	domain	superfamilies	for	the	proteins	of	S.	cerevisiae	 in	

order	to	investigate	the	domains’	representation	in	different	age	groups.	SUPERFAMILY	

is	a	 library	of	hidden	Markov	models	(HMMs)	for	sequences	corresponding	to	protein	

domains	with	known	structure	(Gough	et	al.	2001).	These	HMMs	are	used	 in	order	 to	

identify	 SCOP	 superfamilies	 of	 domains	 in	 protein	 sequences	 (Gough	 et	 al.	 2001).	

SUPERFAMILY	model	library	has	been	used	in	order	to	annotate	the	sequences	of	over	
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50	proteomes,	one	of	which	was	the	proteome	of	S.	cerevisiae.	We	retrieved	the	domains’	

annotation	 for	 the	 proteome	 of	 S.	 cerevisiae	 and	 assigned	 every	 domain	 with	 its	

corresponding	 SCOP	 class	 (all-α,	 all-β,	 α/β,	 α+β,	multi-domain)	 together	with	 the	 age	

group	 of	 the	 protein	 the	 domain	 belonged.	 It	 is	 important	 to	mention	 that	 there	 are	

proteins	of	S.	cerevisiae	with	no	domain	annotation	(~45%	of	the	proteome)	while	others	

with	more	than	one	domain.	In	Table	4.2	are	presented	the	counting	of	proteins	with	at	

least	one	annotated	domain	as	well	as	the	total	number	of	domains	annotated	per	age	

group.	 Is	 interesting	 to	highlight	 that	90.8%	(2339/2575)	of	 the	oldest	proteins	were	

annotated	with	at	least	one	SCOP	superfamily	while	it	is	the	case	only	for	1.4%	(8/562)	

of	the	youngest	ones.	Notably,	the	oldest	age	group	is	overrepresented	(one	proportion	

z-test,	 P	 =	 1	 ×	 10-8)	while	 the	 three	 younger	 age	 groups	 (from	 Saccharomycetales	 to	

Saccharomyces)	are	underrepresented	(one	proportion	z-test,	P	=	1	×	10-2,	P	=	6	×	10-3	

and	P	=	2	×	10-9,	respectively).	In	addition,	dubious	genes	did	not	present	any	domain	

annotation.	

	

Table	4.2.	Count	of	S.	cerevisiae	proteins	with	at	least	one	annotated	domain	and	total	number	of	annotated	

domains	per	age	group.	

	
Total	number	

of	proteins		

Proteins	with		

at	least	one		

domain	

Total	number	of		

domains	

Cellular	Organisms	 2575	 2339	 3634	

Eukaryota	 1578	 989	 1372	

Opisthokonta	 127	 49	 59	

Fungi	 289	 115	 128	

Dikarya	 75	 18	 20	

Ascomycota	 140	 33	 37	

Saccharomyceta	 71	 10	 10	

Saccharomycetales	 366	 34	 36	

Saccharomycetaceae	 346	 16	 18	

Saccharomyces	 562	 8	 9	

Dubious	 545	 0	 0	

Total	 6649	 3611	 5323	
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In	Figure	4.6	is	presented	the	repartition	of	the	5323	domain	classes	annotated	for	3611	

proteins	 of	 S.	 cerevisiae	 among	 the	 different	 phylostrata.	 Due	 to	 the	 low	 number	 of	

annotated	 domains	 for	 the	 younger	 proteins,	 we	 decided	 to	 pull	 together	 some	

neighboring	age	groups	in	order	to	have	a	more	statistically	accurate	representation	(the	

groups	 are	 highlighted	 with	 dotted	 lines	 in	 Table	 4.2).	 It	 is	 interesting	 to	 note	 that	

proteins	 of	 the	 oldest	 age	 group	 are	 significantly	 enriched	 in	 α/β	 domains	 (Mann-

Whitney	U-test,	 all	 p-values	 <	 2.2	 ×	 10-16)	 and	 significantly	 depleted	 in	 all-α	 domains	

(Mann-Whitney	U-test,	 all	 p-values	<	2.2	×	10-3)	 compared	with	 any	other	 age	 group,	

supporting	that	older	proteins	have	evolved	towards	domains	combining	alpha	helix	and	

beta	strand	secondary	structures	while	younger	proteins	mostly	contain	domains	with	

similar	secondary	structures	(all-α	or	all-β).	

	

	

Figure	4.6.	Repartition	of	the	annotated	SCOP	classes	for	protein	domains	of	different	age	groups.		

	

	

4.3.5.2	Structural	content	of	S.	cerevisiae	proteins	

Based	on	the	SCOP	superfamilies	annotation,	we	observe	that	domains	in	older	proteins	

tend	 to	 present	 a	 mixed	 composition	 of	 secondary	 structures	 while	 the	 domains	 of	
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younger	proteins	tend	to	be	more	homogenous.	In	this	part,	we	investigate	whether	the	

same	observations	stand	for	the	3D	structures	of	S.	cerevisiae	proteins.	

	

We	 were	 able	 to	 extract	 up	 to	 1346	 protein	 structures	 from	 the	 PDB,	 each	 one	

corresponding	to	a	single	yeast	gene	(see	Methods	for	details)	and	assign	them	with	one	

of	 the	 ten	 phylostrata.	 Although	 these	 proteins	 cover	 only	 almost	 20%	of	 the	 total	S.	

cerevisiae	proteome,	the	advantage	of	this	dataset	is	that	it	contains	structures	that	were	

characterized	experimentally.	On	the	other	hand,	in	order	to	increase	the	coverage	of	the	

yeast	proteome,	we	used	the	3D	protein	structural	models	as	predicted	by	AlphaFold2	for	

the	total	proteome	of	S.	cerevisiae.	Recently	published	AlphaFold2,	is	a	method	that	relies	

on	deep	learning	for	predicting	the	3D	structure	of	a	protein	from	its	amino	acid	sequence	

(Jumper	et	al.	2021;	Tunyasuvunakool	et	al.	2021).	Contrary	to	the	most	successful	free	

modelling	approaches	which	rely	on	fragment	assembly	to	predict	the	shape	of	a	protein,	

AlphaFold2	 is	 trained	 on	 PDB	 structures	 in	 order	 to	 predict	 the	 pairwise	 distances	

between	the	Cβ	atoms	of	a	protein’s	residues.	Distance	predictions	provide	more	specific	

information	 about	 the	 shape	 of	 the	 protein	 than	 contact	 predictions.	 With	 this	

information,	AlphaFold2	constructs	a	potential	of	mean	force	that	can	accurately	describe	

the	shape	of	a	protein,	and	which	can	further	be	optimized	 in	order	to	generate	more	

accurate	structure	predictions	(Senior	et	al.	2020).	The	central	component	of	AlphaFold2	

is	 a	 convolutional	 neural	 network	 trained	 on	 PDB	 structures	 and	 has	 been	 shown	 to	

achieve	high	accuracy,	even	 for	sequences	without	a	 template	structure	 in	 the	PDB	or	

with	relatively	few	homologous	sequences	(Senior	et	al.	2020).	Recently,	the	AlphaFold	

team	 together	 with	 the	 European	 Molecular	 Biology	 Laboratory	 (EMBL)	 released	 a	

publicly	 available	 database	 which	 contains	 protein	 structure	 predictions,	 made	 with	

AlphaFold2,	for	the	whole	proteome	of	many	different	model	organisms	(i.e.,	human	or	

yeast)	 (Tunyasuvunakool	 et	 al.	 2021).	We	 extracted	up	 to	5974	 structure	predictions	

covering	almost	90%	of	the	S.	cerevisiae	proteome	and	assigned	them	with	one	of	the	age	

groups.	

	

In	Table	4.3	is	presented	the	repartition	of	the	experimental	protein	structures	and	the	

predicted	structural	models	of	S.	cerevisiae	in	the	ten	phylostrata.	Concerning	the	1346	

PDB	protein	structures	of	S.	cerevisiae,	 it	should	be	highlighted	that	 the	two	older	age	

groups	 (Cellular	 Organisms	 and	 Eukaryota)	 are	 overrepresented	 by	 structures	 (one	
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proportion	z-test,	P	=	1	×	10-3	and	3	×	10-3,	respectively)	while	the	younger	age	group	is	

significantly	depleted	 in	 structures	 (one	proportion	z-test,	P	=	1	×	10-9)	 reflecting	 the	

unequal	representation	of	the	different	age	groups	in	the	PDB.	On	the	contrary,	all	the	

phylostrata	 are	well	 represented	 by	 AlphaFold2	 models	 (one	 proportion	 z-test,	 all	 p-

values	>	5	×	10-2)	with	only	exception	the	dubious	genes	which	are	underrepresented	

(one	proportion	z-test,	P	=	5	×	10-3).	

	

Table	4.3.	Count	of	S.	cerevisiae	proteins	with	a	3D	structure	in	the	PDB	and	a	3D	protein	structure	model	

predicted	by	AlphaFold2	per	age	group.	

	

	
Total	number	of	

proteins	

Proteins	with		

PDB	structures	

AlphaFold	

models	

Cellular	Organisms	 2575	 720	 2555	

Eukaryota	 1578	 428	 1553	

Opisthokonta	 127	 23	 125	

Fungi	 289	 39	 289	

Dikarya	 75	 9	 74	

Ascomycota	 140	 21	 140	

Saccharomyceta	 71	 14	 70	

Saccharomycetales	 366	 44	 351	

Saccharomycetaceae	 346	 38	 343	

Saccharomyces	 562	 10	 360	

Dubious	 545	 0	 114	

Total	 6649	 1346	 5974	

	

	

AlphaFold2	calculates	a	confidence	metric	per-residue	(on	a	scale	from	0	to	100)	for	every	

prediction,	called	predicted	lDDT-Cα	(pLDDT).	The	confidence	score	estimates	how	well	

the	prediction	 is	expected	to	agree	with	an	experimental	structure	based	on	the	Local	

Distance	 Difference	 Test	 (Tunyasuvunakool	 et	 al.	 2021).	 A	 value	 of	 pLDDT	 >	 90	 is	

considered	as	the	high	accuracy	cutoff,	corresponding	to	a	correct	prediction	at	the	level	

of	residue’s	side	chain.	A	lower	cutoff	of	pLDDT	>	70	corresponds	to	a	generally	correct	

backbone	prediction	while	low	pLDDT	values	(lower	than	50)	should	not	be	interpreted	
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as	structures	but	rather	as	a	prediction	of	disorder	(Tunyasuvunakool	et	al.	2021).	As	a	

result,	AlphaFold2	defines	four	distinct	confidence	score	thresholds:	

• pLDDT	>	90	:	High	accuracy	prediction	–	Correct	side	chain	

• pLDDT	between	70	and	90	:	Confident	prediction	–	Correct	backbone		

• pLDDT	between	50	and	70	:	Low	accuracy	prediction		

• pLDDT	<	50	:	Very	low	accuracy	prediction	–	Disordered	region	

	

In	Figure	4.7A	is	presented	the	median	value	of	the	frequency	for	high	(in	blue),	confident	

(in	light	blue),	low	(in	orange)	and	very	low	(in	yellow)	accuracy	predicted	amino	acids	

per	 age	group	and	 the	dubious	genes.	 Similarly,	 in	Figure	4.7B	 is	presented	 the	 same	

information	 but	 this	 time	 the	 high	 and	 confident	 accuracy	 predictions	 are	 summed	

together	(in	blue)	and	the	low	and	very	low	accuracy	predictions	are	summed	as	well	(in	

orange).	Strikingly,	we	observe	a	clear	 increasing	tendency	of	high	accuracy	predicted	

amino	 acids	with	 the	 evolution	 time	while	 the	 opposite	 is	 true	 for	 the	 low	 confident	

predicted	ones.	

	

	

Figure	4.7.	(A)	Frequency	of	high	 (in	blue),	 confident	 (in	 light	blue),	 low	(in	orange)	and	very	 low	(in	

yellow)	 accuracy	 predicted	 amino	 acids	 per	 age	 group	 (B)	 Frequency	 of	 high	 and	 confident	 accuracy	

predictions	together	(in	blue)	and	the	low	and	very	low	accuracy	predictions	together	(in	orange).	
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These	 results	 highlight	 that	 AlphaFold2	 struggles	 to	 predict	 with	 accuracy	 the	 3D	

structure	of	young	proteins.	This	may	result	from	the	fact	that	young	genes	display	less	

homologous	sequences,	thus	producing	less	reliable	Multiple	Sequence	Alignments	which	

may	 lead	 to	 low	accuracy	 scores.	This	may	also	 result	 from	 the	 fact	 that	young	genes	

encode	proteins	with	folds	absent	from	the	PDB,	on	which	AlphaFold2	has	been	trained,	

in	line	with	the	observation	that	young	proteins	are	underrepresented	in	the	PDB	dataset	

of	 the	 S.	 cerevisiae	 proteome.	 Additionally,	 this	may	 reflect	 the	 fact	 that	 young	 genes	

encode	proteins	with	different	foldability	properties	like	the	rudimentary	fold	proposed	

for	the	young	protein	Bsc4	which	is	folded	but	lacks	a	specific	and	well-defined	3D	fold.	

Whether	young	proteins	are	well	folded	or	display	a	rudimentary	fold	deserves	further	

investigation.	The	wide	range	of	the	HCA	score	for	the	young	yeast	proteins	could	support	

this	hypothesis	although	 this	must	be	demonstrated.	As	an	example,	 the	prediction	of	

AlphaFold2	on	the	Bsc4	protein	(Figure	4.8)	presented	an	overall	rudimentary	fold	with	

few	 secondary	 structures	 (57%	 of	 the	 residues	 in	 coil	 conformation)	 and	 very	 low	

prediction	score.	Precisely,	13.7%	of	the	residues	presented	low	prediction	score	while	

the	remaining	86.3%	presented	very	low	score.		

	

	

Figure	4.8.	Prediction	of	 the	3D	structure	of	 the	Bsc4	protein	made	by	AlphaFold2.	 In	 yellow	 the	

residues	with	low	prediction	confidence	and	in	orange	the	residues	with	very	low	prediction	confidence.	

	

	

We	used	the	stride	tool	in	order	to	assign	the	secondary	structure	for	each	protein	of	our	

two	 datasets	 (PDB	 structures	 and	 AlphaFold2	 models).	 Based	 on	 local	 geometrical	

arrangements	of	atoms,	stride	can	assign	a	secondary	structure	state	(alpha	helix	or	beta	

Low prediction

Very low prediction
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strand)	or	coil	 state	 to	each	amino	acid	of	 the	protein.	Specifically,	 for	 the	AlphaFold2	

models	we	assigned	the	secondary	structures	for	all	the	residues	predicted	with	pLDDT	

score	more	than	50	in	order	to	avoid	residues	with	very	low	quality	of	prediction.	Then	

for	every	protein	we	calculated	the	fraction	of	residues	assigned	in	alpha	helix	and	in	beta	

strand	secondary	structure.	In	order	to	estimate	the	secondary	structure	composition	of	

a	protein	we	calculated	the	absolute	value	of	the	difference	of	these	two	fractions:	

	

Secondary	Structure	Composition = 	 <		residues5*675residues − residues8.-5residues 		<	
	

Low	values	of	this	metric	correspond	to	proteins	containing	important	fractions	of	both	

alpha	 helices	 and	 beta	 strands	 while	 higher	 values	 correspond	 to	 proteins	 mostly	

populated	by	one	of	 the	 two	secondary	structure	 types.	 In	Figure	4.9	 is	presented	the	

secondary	 structure	 composition	 for	 the	 proteins	 of	 the	 PDB	 (Figure	 4.9A)	 and	 the	

AlphaFold2	models	(Figure	4.9B).			
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Figure	4.9.	Boxplot	distribution	of	the	difference	between	the	fraction	of	residues	in	alpha	helix	and	the	

fraction	of	residues	in	beta	strand	by	age	group	for	(A)	the	experimental	protein	structures	of	the	PDB	and	

(B)	the	protein	models	predicted	by	AlphaFold2.	

	

	

In	 figure	4.9B	(AlphaFold2)	we	can	observe	a	decreasing	 tendency	of	 this	metric	 from	

younger	towards	older	proteins	reflecting	that	 the	proteins	evolve	towards	structures	

with	more	mixed	composition	of	secondary	structures	combining	alpha	helices	and	beta	

strands	while	younger	proteins	tend	to	present	a	more	homogenous	representation	of	

secondary	structures	(mostly	all	alpha	or	all	beta).	The	tendency	is	less	pronounced	for	

the	 dataset	 of	 PDB	 proteins	 (Figure	 4.9A)	 but	 this	 can	 be	 associated	 with	 the	 low	

representativity	 of	 the	 proteins	 in	 the	 PDB	 subset.	 Nevertheless,	 the	 older	 proteins	
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present	significantly	lower	values	of	this	metric	compared	with	the	proteins	of	any	other	

age	group	(Mann-Whitney	U-test,	all	p-values	<	2.2	×	10-7).	These	results	are	in	line	with	

the	results	obtained	for	the	protein	domains	by	the	SCOP	superfamilies	annotation.	

	

	

4.4	Conclusions	

	

In	 this	 section	 we	 were	 interested	 in	 investigating	 if	 and	 how	 numerous	 structural	

properties	 of	 S.	 cerevisiae	 proteins	 variate	 along	 with	 the	 evolutionary	 time	 and	

consequently	understand	how	evolution	has	shaped	the	structural	properties	of	proteins.	

Our	 results	 on	 the	 proteins’	 fold	 potential	 highlight	 that	 the	 yeast	 proteome	 tends	 to	

become	 more	 foldable	 with	 the	 evolutionary	 time,	 supporting	 that	 foldability	 is	 an	

important	feature	that	gets	continuously	optimized	with	evolution.	As	a	matter	of	fact,	

the	 example	 of	 young	 de	 novo	 protein	 Bsc4,	with	 its	 rudimentary	 fold,	 supports	 that	

young	 proteins	 present	 structures	which	 lack	 fold	 specificity	 compared	 to	 older	well	

folded	proteins.	Globular	proteins	are	usually	characterized	by	a	stable	and	well	folded	

structure	known	to	be	a	requirement	for	many	aspects	of	their	function	(Edwards	et	al.	

2013).	 As	 a	 result,	 an	 interesting	 question	 is	whether	 the	 fold	 potential	 optimization	

observed	for	older	proteins,	is	intimately	related	with	a	potential	functional	optimization	

or	whether	is	the	outcome	of	the	selection	pressure	exerted	on	them	for	longer	time.	Our	

results	do	not	permit	us	to	conclude.	

Additionally,	we	observed	the	well	reported	increasing	tendency	of	protein	sequence	size	

accompanied	by	the	 increase	of	HCA	clusters	occurrences	along	with	the	evolutionary	

time.	 Interestingly,	 the	HCA	cluster	 sizes	 for	 all	 the	protein	 age	groups	 (including	 the	

dubious	and	the	IGORFs)	present	similar	distributions	across	the	different	protein	ages,	

enforcing	even	more	our	initial	results	and	giving	to	the	HCA	clusters	an	interesting	role	

as	elementary	protein	building	blocks	of	constant	sizes	throughout	the	evolutionary	time.	

On	the	other	side,	the	HCA	linkers	of	the	CDS	presented	also	similar	sizes	among	the	yeast	

phylostrata,	 with	 exception	 the	 youngest	 age	 group	 (Saccharomyces	 TRGs)	 which	

present	intermediate	linker	sizes	between	IGORFs	and	older	proteins	showing	that	size	

of	 linkers	 is	 a	 property	 that	 is	 fixed	 early	 in	protein	 evolution.	This	 result	 is	 strongly	

supported	 by	 the	 disorder	 and	 aggregation	 propensity	 swifts	 observed	 between	 the	

young	 Saccharomyces	 genes	 and	 the	 young	 established	 Saccharomycetaceae	 genes.	
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Whether	 this	swift	of	young	proteins	 towards	sequences	with	 longer	disorder	regions	

and	less	aggregation	propensity	is	an	internal	criterion	for	the	foldability	optimization	

along	evolution	or	is	simply	the	outcome	of	the	sequences’	elongation,	is	an	interesting	

question	that	we	pose.	Edwards	et	al.	(2013)	compared	newly	evolved	structures	with	

structures	 presenting	 a	 long	 evolutionary	 history	 and	 showed	 that,	 overall,	 a	 shorter	

evolutionary	history	corresponded	to	less	elaborate	structures	with	fewer	intra-residues	

contacts.	They	 speculated	 that	newly	born	proteins	 evolve	 into	 gradually	 longer	ones	

maintaining	 at	 the	 same	 time	 the	positioning	of	 important	 residues	while	minimizing	

other	undesirable	interactions.	In	fact,	study	of	their	amino	acid	frequencies	showed	that	

young	 yeast	 proteins	 present	 frequencies	 of	 hydrophobic	 and	 hydrophilic	 residues	

similar	 to	 the	 ones	 of	 their	 older	 counterparts,	 although	 the	 effect	 is	marginal,	while	

proteins	encoded	by	dubious	genes	presented	amino	acid	frequencies	similar	to	IGORFs.	

	

Studying	 the	 repartition	 of	 the	 per-residue	 confidence	 score	 of	 AlphaFold2	 along	 the	

different	phylostrata	but	also	the	dubious	genes,	we	observed	that	AlphaFold2	structural	

models	 for	young	and	dubious	proteins	present	very	 low	confidence	 scores	while	 the	

score	increases	along	with	the	evolutionary	time.	This	result	highlight	that	AlphaFold2	

struggles	 to	 predict	with	 high	 confidence	 the	 structure	 of	 young	 proteins	 or	 proteins	

encoded	by	dubious	genes.	This	could	be	related	to	the	lack	of	homologous	sequences	for	

young	 proteins	 but	 also	 permits	 us	 to	 speculate	 that	 these	 proteins	 present	 a	 more	

rudimentary	 fold	which	 is	 less	 represented	 in	 the	 PDB.	Notably,	 proteins	 encoded	by	

dubious	 genes	 presented	 an	 intermediate	 character	 of	 structural	 and	 sequence	

properties	between	IGORFs	and	young	S.	cerevisiae	TRGs	for	some	features	and	young	

genes-like	for	others.	Whether	the	dubious	genes	reflect	an	intermediate	state	between	

noncoding	sequences	and	young	yeast	genes	(reminding	the	proto-genes	of	Carvunis	et	

al.	(2012))	and	whether	young	genes	are	also	an	intermediate	state	towards	older	well-

established	genes	in	an	evolutionary	continuum	are	interesting	questions.	Regarding	this	

question,	Paul	Roginski	 (1st	year	of	PhD),	during	his	Master	2	 internship	developed	a	

machine	learning	model	which	aims	at	discriminating	coding	sequences	from	noncoding	

ones	 by	 training	 on	 random	 nucleotide	 sequences	 of	 similar	 sizes.	 His	 model	 uses	

descriptors	such	as	nucleotide	and	codon	frequencies	as	well	as	the	frequency	of	the	four	

bases	 in	 every	 codon	 position	 and	 presents	 high	 accuracy	 values.	 Indeed,	 his	 model	

presented	high	predictive	capacity	(95%)	on	the	genes	of	S.	cerevisiae.	Interestingly,	the	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 138	

majority	of	the	336	non-predicted	genes	corresponded	to	young	yeast	TRGs	(23.2%)	as	

well	as	dubious	genes	(44%),	supporting	that	these	genes	present	premature	and	not	yet	

optimized	 nucleotide	 sequences.	 All	 these	 observations	 remind	 the	 continuum	

hypothesis	 of	 Carvunis	 et	 al.	 (2012)	 which	 propose	 the	 proto-genes	 as	 intermediate	

reversible	 states	 of	 young	 sequences	 with	 intermediate	 structural	 properties.	 These	

young	and	weakly	expressed	sequences,	in	the	absence	of	selection	for	some	beneficial	

properties,	could	easily	turn	back	to	their	noncoding	state	while	they	could	be	established	

as	young	de	novo	genes	in	the	opposite	scenario.	

	

Moreover,	although	we	used	the	same	phylostratigaphy	data	with	Wilson	et	al.	(2017),	

we	did	not	make	the	same	observations.	Firstly,	 the	study	of	Wilson	et	al.	 (2017)	was	

basically	focused	on	the	mouse	proteome	and	consequently	all	their	observations	were	

mostly	valid	for	mammalian	multicellular	species.	They	referred	to	the	yeast	proteome	

only	in	order	to	compare	the	preadaptation	theory	with	the	continuum	model	presented	

by	Carvunis	et	al.	(2012).	In	order	to	compare	their	results	with	the	ones	presented	by	

Carvunis	et	al.	(2012),	they	fitted	their	data	to	the	phylostratigraphy	made	by	the	proto-

genes	 study,	 which	 did	 not	 present	 the	 same	 age	 groups	 delimitations.	 Then,	 they	

presented	 the	 disorder	 propensity	 of	 the	 yeast	 proteins	 based	 on	 the	 age	 groups	 as	

defined	by	Carvunis	et	al.	(2012)	(Figure	4.10A).	Interestingly,	they	observed	the	same	

tendency	 as	 described	 by	 Carvunis	 et	 al.	 (2012),	 that	 young	 proteins	 tend	 to	 present	

lower	 disorder	 propensity	 than	 older	 proteins	 (Figure	 4.10A	 black	 circles	 and	 blue	

diamonds).	Then,	they	applied	some	filters	 in	order	to	curate	their	data.	Notably,	 they	

removed	all	 the	dubious	genes,	the	genes	that	they	were	not	able	to	classify	 in	a	clear	

phylostratum	and	the	genes	that	did	not	present	any	homolog	except	of	S.	cerevisiae	(S.	

cerevisiae	 orphan	 genes),	 considering	 them	 as	 potential	 annotation	 errors,	 thereby	

eliminating	all	recent	de	novo	genes.	The	counting	of	the	genes	per	phylostrata	after	the	

application	of	every	filter	is	presented	in	figure	4.10B.	After	their	data	treatment,	the	two	

younger	phylostrata	(S.	cerevisiae	and	S.	paradoxus),	which	are	precisely	the	ones	that	

support	 their	 theory	of	higher	disorder	of	young	proteins	contrarily	 to	what	has	been	

observed	by	Carvunis	et	al.	(2012)	(figure	4.10A	Light	blue	squares),	contained	only	2	

genes	each	(Figure	4.10B	–	lines	1	and	2,	last	column).	In	fact,	in	figure	4.10A,	the	standard	

error	bars	of	the	distribution	of	ISD	values	for	the	two	younger	phylostrata	are	very	long	

simply	 because	 they	 contain	 only	 2	 observations	 each.	 This	 reduces	 considerably	 the	
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confidence	one	can	have	in	their	results.	On	the	contrary,	our	results	clearly	agree	with	

those	of	Carvunis	et	al.	(2012).	

	

	

Figure	4.10.	(A)	Prediction	of	the	disorder	propensity	(ISD)	of	the	S.	cerevisiae	proteins	for	the	different	

phylostrata	as	defined	by	the	phylostratigaphy	presented	in	Carvunis	et	al.	(2012).	At	note,	the	direction	of	

the	phylostrata	is	from	the	older	towards	the	younger.	Black	circles	and	blue	diamonds	correspond	to	the	

ensemble	of	proteins	before	applying	any	filtering	to	the	dataset	(including	and	excluding	the	cysteines	

from	 the	 protein	 primary	 sequence,	 respectively).	 Light	 blue	 squares	 correspond	 to	 the	 proteins	 after	

excluding	dubious	genes,	S.	cerevisiae	orphan	genes	and	unclassified	genes	based	on	the	study	of	Wilson	et	

al.	(2017).	(B)	The	counting	of	the	proteins	per	phylostratum	after	excluding	dubious	genes,	S.cerevisiae	

orphan	genes	and	unclassified	genes.	Both,	the	figure	and	the	table	were	extracted	from	the	study	of	Wilson	

et	al.	(2017)	with	title	“Young	genes	are	highly	disordered	as	predicted	by	the	preadaptation	hypothesis	of	de	

novo	gene	birth“.	

	

	

Concerning	the	structural	content	of	the	yeast	proteome,	our	results	highlight	that	young	

proteins	tend	to	present	a	more	homogeneous	secondary	structure	content	(all-α	or	all-

β)	while,	on	the	contrary,	older	proteins	seem	to	acquire	folds	that	combine	alpha	and	

beta	secondary	structures	thus	leading	to	more	complex	arrangements	such	as	the	α/β	

fold	class.	Our	results	are	 in	 line	with	Choi	and	Kim	(2006)	who	showed	that	recently	

born	 and	 still-evolving	 proteins	 belong	mostly	 to	 all-α	 or	 all-β	 class	 (as	well	 as	 their	

random	mixtures,	α+β	class),	while	the	majority	of	the	older	aged	proteins	belong	to	α/β	

class.	Notably,	Edwards	et	al.	(2013)	analyzed	all	the	SCOP	superfamilies	and	showed	that	

A B
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α/β	 class	 domains	were	 significantly	 older	 than	 superfamilies	 belonging	 to	 the	 other	

three	 classes.	 Interestingly,	 α/β	 folds	 also	 contain	 a	 large	 number	 of	 the	 so-called	

‘superfolds’	 (folds	 containing	 large	 numbers	 of	 different	 superfamilies	 and	 a	 high	

proportion	of	all	determined	structures)	which	are	known	to	be	associated	with	a	large	

repertoire	of	fundamental	functions.	Enrichment	analysis	of	GO	functions	in	the	different	

age	groups	demonstrated	that	ancient	superfamilies	correspond	to	fundamental	cellular	

processes	shared	among	the	vast	majority	of	the	species	(Edwards	et	al.	2013).	Choi	and	

Kim	(2006)	proposed	a	scenario	for	the	evolution	of	the	protein	structural	classes	which	

supports	 that	 the	 ancestral	 proteins	 contain	 mostly	 short	 secondary	 structures	 and	

consequently	correspond	to	three	SCOP	classes	(all-α,	all-β	and	α+β).	Then	they	evolve	to	

medium-sized	proteins	and	are	distributed	in	the	four	SCOP	classes	(all-α,	all-β,	α+β	and	

α/β)	while	finally	they	evolve	to	large	proteins	populating	mostly	the	α/β	class.	Alva	et	

al.	 (2010)	 in	 their	 study	 “A	 galaxy	 of	 folds”	 generated	 a	 network	 of	 all	 the	 SCOP	 fold	

classes	connected	according	to	their	sequence	similarity.	They	observed	that	even	though	

the	 fold	 classes	 were	 in	 general	 well	 clustered,	 there	 were	 numerous	 incidences	 of	

domains	 from	 different	 superfamilies	 and	 folds	 with	 homologous	 connections,	 thus	

supporting	 the	 potential	 of	 interchange	 among	 different	 fold	 types	 during	 evolution.	

Whether	the	combination	the	two	types	of	secondary	structures,	observed	for	the	older	

proteins,	 is	 related	 with	 more	 diverse	 and	 fundamental	 functions	 or	 is	 simply	 the	

outcome	of	the	proteins’	size	increase	which	permit	more	complex	rearrangements	is	a	

question	to	investigate.	

	 	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 141	

5	Prediction	of	the	fold	state	of	peptides	using	machine	

learning	

	

5.1	Introduction	

	

In	 section	3,	 it	was	presented	a	 large-scale	analysis	of	 the	 foldability	potential	 for	 the	

ensemble	of	S.	cerevisiae	IGORFs.	Using	the	HCA	method,	we	were	able	at	defining	and	

predicting	three	major	categories	of	sequences:	(i)	Sequences	with	low	HCA-score,	rich	

in	polar	and	charged	amino	acids	that	potentially	encode	highly	disordered	peptides.	(ii)	

Sequences	 with	 high	 HCA-score,	 rich	 in	 strong	 hydrophobic	 amino	 acids	 potentially	

encoding	 transmembrane	 peptides	 and	 believed	 to	 aggregate	 in	 solution	 due	 to	 high	

exposure	 of	 hydrophobic	 residues.	 (iii)	 Sequences	 with	 intermediate	 HCA-score	

presenting	 a	 mixture	 of	 hydrophobic	 and	 hydrophilic	 amino	 acids,	 that	 potentially	

encode	 peptides	 expected	 to	 be	 able	 to	 acquire	 a	 3D	 fold	 under	 solution	 or	 upon	

oligomerization	 or	 interaction	 with	 other	 protein	 partners.	 However,	 it	 must	 be	

mentioned	that	folding	into	a	well-defined	conformation	is	a	stricter	requirement	than	

forming	a	molten	globule	with	some	secondary	structure	elements	(Mezei	2020).	LaBean	

et	 al.	 (2011)	 showed	 that	 unevolved	 random	 polypeptides	 fold	mostly	 into	 a	molten	

globule	 conformation.	 This	 reveals	 that	 the	 foldable	 category	 contains	 an	 important	

variability	 of	 fold	 potentials	 ranging	 from	 simply	 forming	 some	 secondary	 structures	

arranged	around	a	hydrophobic	core	(rudimentary	fold	like	the	example	of	Bsc4	protein)	

until	 being	well	 folded	 like	 a	 globular	protein.	More	 generally,	 the	 concept	 of	 protein	

foldability	 should	 be	 systematically	 used	 in	 a	 specific	 context.	 Indeed,	 the	 case	 of	 the	

transmembrane	helices	highlights	the	importance	of	the	context	under	which	a	peptide	

can	acquire	its	fold	state.	For	instance,	the	TM	(i.e.,	Transmembrane)	peptides	are	folded	

in	a	hydrophobic	environment	(i.e.,	the	membrane)	but	probably	misfolded	and	expected	

to	aggregate	 in	solution.	Here,	 the	foldable	category	of	HCA	concerns	the	capacity	of	a	

protein	of	acquiring	a	fold	in	solution	(i.e.,	in	the	cytosol).	

	

In	 this	chapter	we	aim	at	better	characterizing	the	 foldability	potential	and	finally	 the	

conditions	necessary	to	the	potential	peptides	encoded	by	IGORFs	to	fold.	In	particular,	
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we	wish	to	better	discriminate	those	that	adopt	a	stable	fold	in	solution,	from	those	that	

display	 a	more	 rudimentary	 fold	 such	 as	 the	 de	 novo	 protein	 Bsc4	 or	 those	 that	 are	

disordered	in	solution	but	able	to	fold	upon	binding	with	a	partner.	This	will	indirectly	

provide	us	with	information	about	their	potential	behavior	in	the	cell	and	more	generally	

will	 offer	 an	 opportunity	 to	 further	 study	 the	 structural	 properties	 of	 specific	 ORF	

categories	(i.e.,	whole	population	of	IGORFs,	occasionally	and	highly	translated	IGORFs)	

thereby	 investigating	whether	 the	 different	ORF	 categories	 display	 specific	 structural	

properties	and	foldability	status.	

	

If	a	lot	of	successful	methods	have	been	developed	to	predict	the	3D	structure	of	a	protein,	

they	 are	 not	 designed	 to	 distinguish	 peptides	 with	 a	 stable	 fold	 in	 solution	 from	

disordered	ones	which	 fold	upon	binding	or	peptides	with	a	rudimentary	 fold.	 In	 fact,	

they	were	mostly	trained	on	well-defined	and	stable	3D	structures	extracted	from	the	

PDB,	and	we	can	expect	that	they	will	struggle	to	predict	the	structure	of	proteins	with	

rudimentary	folds	as	observed	for	Bsc4	and	its	prediction	from	AlphaFold2.	Therefore,	in	

this	 section	 we	 aim	 to	 develop	 a	 method	 able	 to	 characterize	 more	 specifically	 the	

different	foldability	status	of	the	potential	peptides	encoded	by	the	IGORFs	of	a	genome.	

The	method	must	be	fast	enough	to	handle	several	thousands	of	peptides	and	will	focus	

on	the	characterization	of	short	amino	acid	sequences	(20	–	70	residues).	 Indeed,	our	

results	 presented	 in	 section	 3	 suggest	 that	 the	 sequence	 length	 has	 an	 effect	 on	 the	

structural	 properties	 and	 finally	 on	 the	 foldability	 of	 the	 corresponding	 peptide	 or	

protein.	Consequently,	we	developed	a	method	dedicated	to	the	characterization	of	the	

foldability	status	of	peptides	and	do	not	guarantee	its	applicability	to	larger	proteins.	To	

do	so,	we	defined	five	distinct	fold	states,	and	generated	a	dataset	of	peptides	populating	

these	categories.	We	calculated	numerous	sequence-based	physicochemical	descriptors	

and	 constructed	a	 supervised	machine	 learning	 (ML)	pipeline	based	on	multiple	 two-

class	 Support	Vector	Machine	 (SVM)	 classifiers.	 Each	 classifier	was	 trained	 to	predict	

specifically	a	single	fold	state	and	the	predictions	of	all	the	SVMs	were	combined	together	

for	 the	 final	 fold	 category	 decision.	 We	 then	 applied	 our	 model	 to	 characterize	 the	

potential	fold	states	of	the	S.	cerevisiae	IGORF-encoded	peptides	as	well	as	the	peptides	

encoded	 by	 pervasively	 translated	 IGROFs	 in	 yeast	 and	 peptides	 resulting	 from	 the	

translation	of	alternative	reading	frames	of	human	CDS	(Brunet	et	al.	2019,	2021).	
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5.2.	Methods	

	

5.2.1	Dataset	for	the	construction	of	the	model	

For	the	development	of	the	model,	we	defined	five	different	categories	of	fold	states	and	

generated	a	database	of	peptides	with	known	fold	state	annotated	according	to	these	five	

categories.	 The	 size	 of	 the	 peptides	 ranged	 between	 20	 and	 70	 amino	 acids,	

corresponding	to	the	size	range	of	95%	of	the	IGORFs.	The	lower	limit	is	the	minimum	

size	 of	 IGORFs	while	 the	 higher	 limit	 corresponds	 to	 the	 average	 plus	 two	 times	 the	

standard	 deviation	 of	 the	 size	 of	 the	 IGORFs.	 The	 details	 for	 the	 five	 fold	 states	 are	

presented	in	Table	5.1.	

	

Table	5.1.	Information	about	the	fold	state	categories	used	for	our	prediction	model.	

	 Fold	state	 Symbol	 PDB	 Database	 Count	 Comments	 	

	
Intrinsically	

Disordered	
IDP	 No	 DisProt	 417	

Disordered	regions	extracted	from	

intrinsically	disordered	proteins	
	

	
Disordered	

Binding	Site	
DIBS	 Yes	 DIBS	 232	

IDPs	capable	of	binding	to	and	

folding	upon	the	surface	of	ordered	

protein	partners	

	

	 Small	proteins	 Small	 Yes	
SCOPe	

(g)	
220	

Proteins	with	little	or	no	secondary	

structures.	
	

	
Structure	Stable	

in	Solution	
S3	 Yes	

SCOPe	

(a,b,c,d,e)	
206	

Small	proteins	with	ordered	

structure	in	solution	
	

	
Transmembrane	

helix	
TM	 Yes	 PDBTM	 305	

Transmembrane	segments	

extracted	from	membrane	proteins	
	

	

	

• Intrinsically	Disordered	Peptides	(IDPs):	Correspond	to	disordered	regions	of	

intrinsically	disordered	proteins	extracted	from	the	DisProt	database	(Piovesan	

et	al.	2017;	Hatos	et	al.	2020).	The	mmseqs	tool	(Hauser	et	al.	2016)	was	used	in	
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order	 to	 remove	 sequences	 sharing	 more	 than	 30%	 of	 sequence	 identity	 (we	

retained	only	one	representative	sequence).	

• Disordered	Binding	Site	(DIBS):	Correspond	to	peptides	disordered	in	solution	

but	capable	of	binding	to	and	folding	upon	the	surface	of	ordered	protein	partners.	

They	were	extracted	from	the	DIBS	database	(Schad	et	al.	2018).	The	mmseqs	tool	

(Hauser	et	al.	2016)	was	used	in	order	to	remove	sequences	sharing	more	than	

30%	of	sequence	identity	(we	retained	only	one	representative	sequence).	

• Small	 proteins	 (Small):	 Correspond	 to	 proteins	 with	 little	 or	 no	 secondary	

structures	 in	 solution	 as	 monomers.	 In	 general,	 they	 lack	 an	 extensive	

hydrophobic	core,	and	their	secondary	structures	are	small	and	irregular.	Their	

tertiary	structure	is	usually	maintained	by	disulfide	bridges	(Cheek	et	al.	2006).	

They	 were	 extracted	 from	 the	 SCOP	 database	 (class	 g)	 and	 correspond	 to	

structures	of	single	chain	or	cases	that	were	clearly	mentioned	as	monomers.	

• Peptides	with	Structure	Stable	in	Solution	(S3):	Correspond	to	small	proteins	

presenting	an	ordered	structure	in	solution	as	monomers.	They	were	extracted	

from	the	SCOP	database	(classes	a,	b,	c,	d	and	e)	and	correspond	to	structures	of	

single	chain	or	cases	that	were	clearly	mentioned	as	monomers.	

• Transmembrane	 helices	 (TM):	 Correspond	 to	 Transmembrane	 segments	 of	

membrane	proteins	 extracted	 from	 the	PDBTM	database	 (Tusnády	 et	 al.	 2004,	

2005;	Kozma	et	al.	2012)	and	predicted	as	transmembrane	helices	by	the	TMHMM	

tool	(Sonnhammer	et	al.	1998;	Krogh	et	al.	2001).	The	mmseqs	tool	(Hauser	et	al.	

2016)	was	used	in	order	to	remove	sequences	sharing	more	than	30%	of	sequence	

identity	(we	retained	only	one	representative	sequence).	

	

Concerning	the	S3	and	Small	fold	categories,	due	to	their	limited	number	of	sequences	we	

decided	to	not	remove	their	redundancy	but	rather	to	weight	the	contribution	of	each	

sequence	during	the	training	of	the	model	(explained	later).	Some	illustrative	examples	

of	the	3D	structure	of	the	different	fold	states	(except	the	IDPs)	are	presented	in	Figure	

5.1.	
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Figure	5.1.	Illustrative	examples	of	some	3D	structures	for	the	different	fold	states	(except	the	IDPs)	used	

for	the	training	of	the	model.	The	corresponding	PDB	codes	are	mentioned	under	every	peptide.	For	the	

TM	representation	the	lipid	bilayer	is	represented	schematically.	

	

	

5.2.2	Datasets	for	the	application	of	our	method	

Once	the	model	was	constructed,	we	applied	our	method	on	different	categories	of	amino	

acid	sequences:	

	

• IGORFs	

We	applied	our	fold	state	prediction	method	on	the	potential	peptides	encoded	by	

the	105041	IGORFs	extracted	from	the	genome	of	S.	cerevisiae	with	our	program	

ORFtrack.	In	addition,	we	focused	specifically	on	the	1235	occasionally	translated	

IGORFs	as	well	as	on	the	31	highly	translated	ones.		

	

Therefore,	 we	 defined	 2	 additional	 datasets	 and	 applied	 the	 same	 protocol	 of	 size	

selection	(20-70	amino	acids)	and	redundancy	elimination	(30%	identity)	described	for	

the	dataset	of	the	model	construction.		

	

• Known	folded	peptides		

157	peptides	with	experimentally	characterized	3D	structure	were	extracted	from	

the	class	j	of	SCOPe	database	which	contains	fragments	of	longer	proteins	as	well	

as	short	peptides	(Chandonia	et	al.	2019).		

	

• Peptides	encoded	by	AltORFs	and	bear	experimental	proof	of	expression	

1935	peptides	produced	by	the	translation	of	ORFs	in	alternative	reading	frames	

of	known	human	proteins	(AltORFs)	were	extracted	from	the	OpenProt	database	

(https://openprot.org)	(Brunet	et	al.	2019,	2021).	This	database	offers	a	deeper	

view	of	the	human	proteome	by	annotating	novel	proteins.	The	AltORF-encoded	

peptides	 of	 our	 dataset	 cumulated	 translation	 evidence	 (through	 publicly	

available	 Ribo	 Seq	 datasets)	 as	 well	 as	 expression	 evidence	 (through	 publicly	

available	MS-MS	datasets)	(Brunet	et	al.	2019,	2021).		
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5.2.3	Descriptors	

Our	prediction	model	was	trained	on	a	set	of	numerous	sequence-based	physicochemical	

descriptors	calculated	on	the	total	amino	acid	sequence	of	every	peptide	(presented	in	

Table	5.2).	In	more	details,	among	the	descriptors	there	were	the	frequency	of	each	amino	

acid,	the	frequency	of	hydrophobic	amino	acids,	the	disorder	and	aggregation	propensity	

of	the	sequence	as	well	as	the	average	value	of	the	58	AAindices	described	in	the	ProtFP	

descriptor	set.	These	58	descriptors	are	only	based	on	the	natural	amino	acids	and	have	

been	selected	so	that	they	are	largely	independent	by	removing	all	the	indices	with	large	

covariance	(van	Westen	et	al.	2013b,	2013a).	

	

Table	5.2.	Presentation	of	the	various	amino	acid	sequence-based	descriptors	calculated	for	every	peptide	

sequence	used	for	training	our	prediction	model.	The	first	column	contains	the	name	of	the	descriptor,	the	

last	column	a	more	detailed	explanation	while	the	second	column	contains	the	type	of	the	descriptor	(%	

stands	for	frequency	or	sequence	portion	while	avg	stands	for	average	value	of	the	total	sequence)	

Name	 Type	 Explanation	

X_frequency	 %	 Frequency	of	each	one	of	the	20	amino	acids	(X	stands	for	every	amino	acid)	

Hydrophobic	 %	 Frequency	of	the	strong	hydrophobic	amino	acids	(V,I,L,F,M,Y,W)	

IuPRED	 %	
Portion	of	the	sequence	predicted	as	disorder	prone	

(Explained	in	details	in	the	methodology	part	of	the	manuscript)	

IuPRED	 avg	 Mean	IuPred	value	calculated	for	the	total	of	the	sequence	

Anchor	 %	 Portion	of	the	sequence	predicted	as	disordered	in	solution	but	capable	to	fold	upon	binding	

Aggregation	 %	
Portion	of	the	sequence	predicted	as	aggregation	prone	

(Explained	in	details	in	the	methodology	part	of	the	manuscript)	

ARGP820103	 avg	 Membrane-buried	preference	parameters	(Argos	et	al.	1982)	

BHAR880101	 avg	 Average	flexibility	indices	(Bhaskaran	and	Ponnuswamy	1988)	

CHAM810101	 avg	 Steric	parameter	(Charton	1981)	

CHAM820101	 avg	 Polarizability	parameter	(Charton	and	Charton	1982)	

CHAM830101	 avg	 The	Chou-Fasman	parameter	of	the	coil	conformation	(Charton	and	Charton	1983)	

CHAM830107	 avg	 A	parameter	of	charge	transfer	capability	(Charton	and	Charton	1983)	

CHAM830108	 avg	 A	parameter	of	charge	transfer	donor	capability	(Charton	and	Charton	1983)	

CHOP780201	 avg	 Normalized	frequency	of	alpha-helix	(Chou	and	Fasman	1978)	

CHOP780202	 avg	 Normalized	frequency	of	beta-sheet	(Chou	and	Fasman	1978)	

CHOP780203	 avg	 Normalized	frequency	of	beta-turn	(Chou	and	Fasman	1978)	

CIDH920105	 avg	 Normalized	average	hydrophobicity	scales	(Cid	et	al.	1992)	

FASG760101	 avg	 Molecular	weight	(Fasman	1975)	

FAUJ880102	 avg	 Smoothed	upsilon	steric	parameter	(Fauchere	et	al.	1988)	

FAUJ880103	 avg	 Normalized	van	der	Waals	volume	(Fauchere	et	al.	1988)	

FAUJ880104	 avg	 STERIMOL	length	of	the	side	chain	(Fauchere	et	al.	1988)	

FAUJ880105	 avg	 STERIMOL	minimum	width	of	the	side	chain	(Fauchere	et	al.	1988)	

FAUJ880106	 avg	 STERIMOL	maximum	width	of	the	side	chain	(Fauchere	et	al.	1988)	

FAUJ880109	 avg	 Number	of	hydrogen	bond	donors	(Fauchere	et	al.	1988)	

FAUJ880110	 avg	 Number	of	full	nonbonding	orbitals	(Fauchere	et	al.	1988)	
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FAUJ880111	 avg	 Positive	charge	(Fauchere	et	al.	1988)	

FAUJ880112	 avg	 Negative	charge	(Fauchere	et	al.	1988)	

FAUJ880113	 avg	 pK-a(RCOOH)	(Fauchere	et	al.	1988)	

GRAR740102	 avg	 Polarity	(Grantham	1974)	

JANJ780102	 avg	 Percentage	of	buried	residues	(Janin	et	al.	1978)	

JANJ780103	 avg	 Percentage	of	exposed	residues	(Janin	et	al.	1978)	

JOND920102	 avg	 Relative	mutability	(Jones	et	al.	1992)	

JUNJ780101	 avg	 Sequence	frequency	(Jungck	1978)	

KLEP840101	 avg	 Net	charge	(Klein	et	al.	1984)	

KRIW790101	 avg	 Side	chain	interaction	parameter	(Krigbaum	and	Komoriya	1979)	

KYTJ820101	 avg	 Hydropathy	index	(Kyte	and	Doolittle	1982)	

LEVM760102	 avg	 Distance	between	C-alpha	and	centroid	of	side	chain	(Levitt	1976)	

LEVM760103	 avg	 Side	chain	angle	theta(AAR)	(Levitt	1976)	

LEVM760104	 avg	 Side	chain	torsion	angle	phi(AAAR)	(Levitt	1976)	

LEVM760105	 avg	 Radius	of	gyration	of	side	chain	(Levitt	1976)	

LEVM760106	 avg	 van	der	Waals	parameter	R0	(Levitt	1976)	

LEVM760107	 avg	 van	der	Waals	parameter	epsilon	(Levitt	1976)	

NISK800101	 avg	 8	A	contact	number	(Nishikawa	and	Ooi	1980)	

NISK860101	 avg	 14	A	contact	number	(Nishikawa	and	Ooi	1986)	

PONP800101	 avg	 Surrounding	hydrophobicity	in	folded	form	(Ponnuswamy	et	al.	1980)	

RACS770103	 avg	 Side	chain	orientational	preference	(Rackovsky	and	Scheraga	1977)	

RADA880108	 avg	 Mean	polarity	(Radzicka	and	Wolfenden	1988)	

ROSG850101	 avg	 Mean	area	buried	on	transfer	(Rose	et	al.	1985)	

ROSG850102	 avg	 Mean	fractional	area	loss	(Rose	et	al.	1985)	

ROSM880102	 avg	 Side	chain	hydropathy,	corrected	for	solvation	(Roseman	1988)	

WARP780101	 avg	 Average	interactions	per	side	chain	atom	(Warme	and	Morgan	1978)	

WOLR810101	 avg	 Hydration	potential	(Wolfenden	et	al.	1981)	

VINM940101	 avg	 Normalized	flexibility	parameters	(B-values),	average	(Vihinen	et	al.	1994)	

TAKK010101	 avg	 Side-chain	contribution	to	protein	stability	(kJ/mol)	(Takano	and	Yutani	2001)	

MONM990201	 avg	 Averaged	turn	propensities	in	a	transmembrane	helix	(Monné	et	al.	1999)	

KOEP990101	 avg	 Alpha-helix	propensity	derived	from	designed	sequences	(Koehl	and	Levitt	1999)	

KOEP990102	 avg	 Beta-sheet	propensity	derived	from	designed	sequences	(Koehl	and	Levitt	1999)	

MITS020101	 avg	 Amphiphilicity	index	(Mitaku	et	al.	2002)	

COSI940101	 avg	 Electron-ion	interaction	potential	values	(Cosic	1994)	

PONP930101	 avg	 Hydrophobicity	scales	(Ponnuswamy	1993)	

ZHOH040102	 avg	 The	relative	stability	scale	extracted	from	mutation	experiments	(Zhou	and	Zhou	2004)	

ZHOH040103	 avg	 Buriability	(Zhou	and	Zhou	2004)	

BAEK050101	 avg	 Linker	index	(Bae	et	al.	2005)	

CASG920101	 avg	 Hydrophobicity	scale	from	native	protein	structures	(Casari	and	Sippl	1992)	

	

	

5.2.4	Training	of	the	prediction	model	

For	the	model	training	step,	20	random	sequences	of	every	fold	state	were	extracted	for	

constructing	a	test	set	independent	from	the	sequences	used	for	the	training	of	the	model.	

These	 sequences	are	 consequently	only	used	 for	 the	model’s	performance	estimation.	
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From	the	remaining	sequences,	for	each	fold	state	category	we	selected	randomly	up	to	

200	sequences.	These	selected	sequences	constituted	our	training	set.	Specifically,	for	the	

S3	and	Small	fold	states,	for	which	we	had	less	than	200	sequences,	we	did	not	remove	

redundant	sequences	but	rather	weighted	their	respective	contribution	during	the	model	

training.	 Therefore,	 using	 the	 mmseqs	 tool	 (Hauser	 et	 al.	 2016)	 we	 clustered	 the	

sequences	of	these	sets	according	to	their	similarity	with	a	threshold	of	30%	of	sequence	

identity.	 The	 contribution	 of	 each	 sequence	 in	 the	 training	 of	 the	 model	 was	 then	

weighted	 based	 on	 its	 representation	 by	 homologous	 sequences.	 For	 example,	 if	 4	

sequences	share	more	than	30%	of	sequence	identity,	each	one	gets	a	weighting	value	of	

0.25.	

	

The	fold	state	prediction	model	was	based	on	multiple	two-class	SVM	classifiers	using	the	

Radial	 Basis	 Function	 (RBF)	 Kernel	 function.	 One	 SVM	 classifier	 was	 trained	

independently	 for	 each	 fold	 category	 in	 order	 to	 distinguish	 between	 sequences	

belonging	 to	 this	 specific	 fold	 category	 and	 sequences	which	 do	 not.	 As	 a	 result,	 five	

distinct	SVM	classifiers	were	generated,	each	one	aiming	at	predicting	whether	a	given	

amino	acid	sequence	corresponds	or	not	to	its	specific	fold	category.	The	advantage	of	

using	5	independent	classifiers	relies	on	the	fact	that	a	peptide	can	be	unannotated	if	it	

does	not	correspond	to	any	of	the	5	categories.	This	enables	us	to	identify	peptides	with	

unexpected	fold	states.	The	hyperparameters	C	and	gamma	for	each	SVM	classifier	were	

defined	based	on	a	grid	search	where	multiple	combinations	of	different	C	and	gamma	

are	tested	and	the	combination	with	the	best	performance	is	finally	selected	(explained	

later).	The	hyperparameters	used	for	every	SVM	classifier	are	presented	in	Table	5.3.	

	

Table	5.3.	Parameters	used	for	every	two-class	SVM	classifier.	

	 C	 gamma	 Kernel	

IDPs	 1	 0.01	 rbf	

DIBS	 13	 0.003	 rbf	

Small	 1015	 0.0001	 rbf	

S3	 1071	 0.0006	 rbf	

TMs	 1	 0.001	 rbf	
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Then	 the	 five	 independent	 predictions	 were	 combined	 in	 order	 to	 give	 one	 final	

prediction	based	on	the	following	schema:	

	

• Unique	prediction:	If	a	single	predictor	was	positive	while	the	four	others	were	

negative,	then	the	prediction	was	the	one	of	the	positive	predictor.	

• Multiple	prediction:	If	two	or	more	predictors	were	positive,	we	preferred	not	

to	 force	any	prediction	but	rather	we	created	a	“multiple”	prediction	class.	We	

consider	that	sequences	belonging	to	this	multiple	class	might	share	similarities	

with	different	fold	states	and	could	be	placed	in	the	“twilight	zone”	of	multiple	

fold	categories.	

• No	 prediction:	 If	 none	 of	 the	 predictors	 was	 positive,	 then	 the	 sequence	 is	

assigned	as	“non-predicted”	and	correspond	to	cases	that	do	not	have	any	clear	

representative	fold	category	in	our	training	dataset.	

	

The	prediction	schema	is	presented	in	Figure	5.2.	
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Figure	5.2.	Representation	of	the	two-class	SVM-based	prediction	schema	for	the	prediction	of	the	

fold	state	of	a	given	short	amino	acid	sequence.	Starting	with	the	amino	acid	sequence	whose	fold	state	

is	to	be	predicted,	83	physicochemical	descriptors	are	calculated	and	are	tested	with	the	five	SVM	models	

each	one	trained	to	recognize	one	specific	fold	state	(IDPs	in	green,	DIBS	in	red,	Small	in	blue,	S3	in	black	

and	TMs	in	purple).	Based	on	the	prediction	of	every	model	our	schema	makes	the	final	prediction	(arrows	

on	the	right).	In	the	first	case,	only	the	DIBS	predictor	was	positive	and	consequently	the	final	prediction	

will	be	uniquely	DIBS.	In	the	second	case,	none	of	the	predictors	made	any	prediction	so	the	schema	will	

not	 take	 any	 decision	 and	 will	 assign	 the	 sequence	 to	 the	 non-predicted	 class.	 In	 the	 third	 case,	 two	

predictors	were	positive	(IDPs	and	DIBS)	and	so	the	sequence	is	assigned	to	the	multiple	class	where	more	

than	one	prediction	was	made.	

	

	

5.2.5	Estimation	of	the	model’s	performance	

After	having	trained	the	five	SVM	classifiers,	we	tested	their	predictive	performance	by	

calculating	different	performance	estimators.	Therefore,	a	confusion	matrix	is	calculated	

based	on	the	output	of	the	classifier	and	counts	the	number	of	its	True	Positive	(TP),	False	

Positive	(FP),	True	Negative	(TN)	and	False	Negative	(FN)	predictions.		

	

Table	5.4.	Example	of	a	confusion	matrix	for	a	two-class	classifier		

	 	 Prediction	

	 	 Positive	 Negative	

Real	case	

Positive	 Number	of	TP	 Number	of	FN	

Negative	 Number	of	FP	 Number	of	TN	

	

	

With	this	confusion	matrix	we	can	calculate	for	each	classifier	its	precision,	recall	and	F1-

score	estimators.		

	

Precision	is	the	fraction	of	the	True	Positive	from	the	total	instances	predicted	as	positive.	

The	precision	is	intuitively	the	ability	of	the	classifier	not	to	label	as	positive	a	case	that	

is	negative.	

	

Precision =
True	Positive

True	Positive + False	Positive
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Recall	is	also	termed	sensitivity	and	 is	defined	as	 the	ratio	of	 the	True	Positive	 to	 the	

number	of	actual	positive	cases.	The	recall	is	intuitively	the	ability	of	the	classifier	not	to	

label	as	negative	a	case	that	is	positive	and	thus	to	find	all	the	positive	cases.	

	

Recall =
True	Positive

True	Positive + False	Negative
	

	

F1-score	is	the	harmonic	mean	of	precision	and	recall	and	is	considered	one	of	the	best	

metrics	for	classification	models	as	it	combines	the	information	of	these	two	metrics.	

	

F1 = 2
Precision ∗ Recall

Precision + Recall
	

	

These	 three	metrics	were	used	 to	estimate	 the	performance	of	each	SVM	classifier	 (i)	

through	 a	 5-fold	 Cross	 Validation	 (CV)	 process	 of	 1000	 iterations	 and	 (ii)	 on	 the	

independent	test	set.	During	one	iteration	of	the	CV,	the	training	set	is	divided	into	five	

equal	random	parts.	One	part	is	excluded	from	the	model’s	training	process	in	order	to	

serve	 as	 an	 independent	 test	 set	 for	 the	 performance	 estimation.	 The	 four	 remaining	

parts	are	used	for	the	model’s	training	and	the	performance	estimators	are	calculated	on	

the	one	part	left	aside.	This	process	is	repeated	five	times	such	that	each	part	is	used	once	

as	 a	 test	 set.	 Consequently,	 at	 every	 iteration	 step	of	 the	CV	 five	different	models	 are	

generated	each	one	combining	four	random	parts	of	the	initial	training	set.	The	average	

performance	of	all	the	five	models	is	reported	as	the	performance	of	every	iteration	step.	

This	procedure	is	iterated	1000	times	and	the	average	performance	of	all	the	iterations	

is	calculated	as	the	final	CV	performance.	

After	 combining	 the	 information	 from	 the	 five	 SVM	 classifiers	 we	 construct	 a	 larger	

confusion	matrix	which	 contains	 five	 classes	 instead	 of	 two	 (matrix	 5x5).	 In	 order	 to	

assess	the	performance	of	 the	overall	prediction	model	we	calculate	the	same	metrics	

(precision,	recall	and	F1-score)	for	each	class,	and	calculate	their	average,	weighted	by	

the	number	of	true	instances	for	each	class.	
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5.3	Results	

	

We	 generated	 a	 training	 set	 of	 986	 amino	 acid	 sequences	 of	 five	 different	 fold	 state	

categories.	 For	 every	 sequence,	 83	 sequence-based	physicochemical	 descriptors	were	

calculated	 in	 order	 to	 train	 our	 fold-category	 classification	 model	 (see	 Methods	 for	

details).	At	note,	we	used	descriptors	calculated	strictly	with	 the	peptides’	amino	acid	

sequence	and	not	with	their	3D	structure,	so	that	the	prediction	model	can	be	applied	to	

every	peptide	sequence.	

	

5.3.1	 The	 physicochemical	 descriptors	 can	 discriminate	 the	 fold	

categories		

First,	 we	 investigated	 whether	 the	 descriptors	 selected	 presented	 a	 discriminative	

capacity	 among	 the	 five	 categories	 of	 fold	 states.	 Non	 informative	 descriptors	 would	

generate	 models	 with	 low	 predictive	 accuracy.	 To	 do	 so,	 we	 performed	 a	 Principal	

Components	Analysis	(PCA)	on	our	training	set	(Figure	5.3).	The	PCA	is	a	dimensionality-

reduction	 method	 which	 transforms	 a	 large	 set	 of	 variables	 into	 a	 smaller	 one	 that	

contains	most	of	 the	 information	 in	 the	 large	 set	 (Abdi	 and	Williams	2010).	Principal	

Components	(PCs)	are	new	variables	that	are	constructed	as	linear	combinations	of	the	

initial	 ones.	These	 combinations	are	done	 in	 such	a	way	 that	 these	new	variables	 are	

uncorrelated	and	most	of	the	information	within	the	initial	variables	is	compressed	into	

the	first	PCs.	The	PCs	correspond	to	novel	axes	that	provide	the	best	angle	to	see	and	

evaluate	 the	 data,	 so	 that	 the	 differences	 between	 the	 observations	 are	 better	 visible	

(Abdi	and	Williams	2010).	
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Figure	5.3.	Principal	Components	Analysis	of	 the	 training	set	with	projection	of	 the	 test	 set.	(A)	

Correlation	 circle	 between	 the	 variables	 of	 the	 first	 and	 the	 second	 PCs.	 Only	 variables	 with	 high	

contribution	are	presented.	(B)	Correlation	circle	between	the	variables	of	the	first	and	the	third	PCs.	Only	

variables	with	high	contribution	are	presented.	(C)	PCA	of	the	first	and	the	second	PCs.	The	individuals	of	

the	training	set	are	presented	with	ellipses	and	small	points	colored	by	their	fold	state	category.	The	level	

of	the	ellipses	is	set	to	90%	of	the	data	per	category.	The	test	is	projected	on	the	PCA	with	large-solid	points	

and	colored	by	fold	state	category.	(D)	PCA	of	the	first	and	the	third	PCs.	The	individuals	of	the	training	set	

are	presented	with	ellipses	and	small	points	colored	by	their	fold	state	category.	The	level	of	the	ellipses	is	

set	to	90%	of	the	data	per	category.	The	test	set	is	projected	on	the	PCA	with	large-solid	points	and	colored	

by	fold	state	category.	Colors:	Green	for	IDPs,	Red	for	DIBS,	Blue	for	Small,	Black	for	S3	and	Purple	for	

TMs.	
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In	Figure	5.3	is	represented	the	PCA	of	the	three	first	PCs	of	the	training	set.	Altogether	

the	three	PCs	explain	up	to	70.4%	of	the	overall	data	variance.	One	can	observe	that	the	

two	first	PCs	can	clearly	separate	the	two	extreme	fold	categories,	i.e.,	the	IDPs	(in	green	

on	the	left	part	of	the	plot)	and	the	TMs	(in	purple	on	the	right	part	of	the	plot),	reflecting	

clearly	their	opposite	character	according	to	the	PC1	axis.	However,	the	remaining	three	

categories	 locate	at	the	central	part	of	the	plot	in-between	the	two	other	extreme	fold	

categories	(IDPs	and	TMs).	According	to	PC1	and	PC2,	it	is	difficult	to	distinguish	them	as	

shown	 by	 their	 overlapping	 ellipses	 (red,	 blue	 and	 black	 for	 DIBS,	 Small	 and	 S3,	

respectively).	This	result	could	reflect	a	continuum	among	the	different	categories	of	fold	

states.	 Indeed,	 the	 PC1	 consists	 mostly	 of	 descriptors	 which	 are	 associated	 with	 the	

hydrophobic	content	of	the	amino	acid	sequences.	In	more	details,	the	negative	values	of	

the	PC1	(distinguishing	the	IDPs)	are	associated	with	peptides	presenting	high	polarity	

(GRAR7401102,	 RACS770103),	 high	 flexibility	 (VINM940101),	 high	 percentage	 of	

exposed	 residues	 (JANJ780103)	 and	 high	 disorder	 propensity.	 On	 the	 contrary,	 the	

positive	 values	 of	 the	 PC1	 (distinguishing	 the	 TMs)	 are	 associated	 with	 peptides	

presenting	 high	 frequency	 of	 strong	 hydrophobic	 residues	 (V,	 F,	 I,	 L,	 W,	 M),	 high	

aggregation	propensity,	high	preference	to	get	buried	in	membrane	(ARGP820103),	high	

hydropathy	index	(KYTJ820101)	or	hydrophobicity	scales	(PONP930101,	CASG920101)	

and	high	 relative	 hydration	potential	 (WOLR810101)	 corresponding	 to	 peptides	with	

low	solubility.	To	sum	up,	the	PC1	axis	separates	amino	acid	sequences	based	on	their	

potential	for	being	disordered	and	rich	in	polar	residues	(adopting	lower	values),	their	

propensity	 to	 aggregate	 and	 being	 insoluble	 (adopting	 higher	 values)	 or	 presenting	

intermediate	levels	of	these	properties,	and	thereby	expected	to	be	foldable.	Finally,	the	

PC1	axis	is	in	line	with	the	HCA	foldability	score	which	mostly	rely	on	the	distribution	

and	patterns	of	hydrophobic	and	hydrophilic	residues.	Interestingly,	Figure	5.3D	shows	

that	the	PC3	axis	provides	additional	information	compared	with	HCA,	since	it	enables	

the	discrimination	between	the	Small	fold	category	and	those	of	DIBS	and	S3,	though	the	

S3	category	overlaps	partially	the	one	of	DIBS.	The	study	of	the	main	descriptors	of	the	

PC3	 revealed	 that	 the	 Small	 fold	 category	 presents	 high	 average	 value	 of	 net	 charge	

(index	KLEP840101)	and	high	frequency	of	cysteines.	These	results	may	explain	the	less	

ordered	character	of	this	fold	category,	due	to	its	higher	net	charge	content.	However,	the	

higher	 frequency	of	 the	disulfide	bond-formatting	amino	acid	cysteine	could	 favor	 the	

formation	of	stabilizing	 interactions	 leading	 to	a	 fold	 that	 is	overall	 foldable.	All	 these	
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observations	 described	 on	 the	 training	 set	 make	 us	 confident	 that	 the	 83	 selected	

physicochemical	descriptors,	 are	 capable	of	 capturing	differences	among	 the	different	

fold	states.	An	important	descriptor	is	the	hydropathy	of	the	sequences	which	is	able	to	

separate	the	IDPs	and	the	TMs	from	the	three	other	fold	categories.	In	addition,	the	net	

charge	and	 the	 frequencies	of	 amino	acids	 seem	 to	participate	 in	better	 clarifying	 the	

groups.	 All	 the	 observations	made	 on	 the	 training	 set	were	 also	 valid	 for	 the	 test	 set	

presented	in	Figure	5.3C-D	with	large	colored	points.	

	

An	interesting	observation	based	on	the	PCA	plot,	is	the	existence	of	a	region	between	the	

ellipse	of	 the	TMs	and	 the	ones	of	 the	 remaining	 fold	 states	which	presents	 very	 low	

density	 of	 points.	 This	 region	 has	 not	 been	 associated	with	 any	 fold	 state	 but	mostly	

corresponds	to	a	transitory	region	between	foldable	in	solution	and	highly	hydrophobic	

aggregation-prone	 sequences.	Knowing	 that	 the	PC1	axis	discriminates	 the	 sequences	

based	on	their	hydropathy,	sequences	localized	in	this	intermediate	region	are	expected	

to	present	an	important	hydrophobic	content	but	not	as	high	as	the	TM	domains.	A	very	

exciting	question	that	arises	based	on	these	observations	is	whether	this	region	free	of	

specific	 fold	category	 is	simply	a	bias	resulting	 from	the	choice	of	our	 five	datasets	of	

reference	(i.e.,	the	five	categories	may	not	cover	all	fold	states	observed	in	databases	or	

in	 the	nature)	or	whether	 it	 reflects	 a	 real	 gap	 in	 the	 structural	 space	 (i.e.,	 functional	

peptides	 and/or	 peptides	 resulting	 from	 regulated	 or	 pervasive	 translation	 cannot	

populate	this	region).	

	

	

5.3.2	Machine	learning	model	performance	estimation	

Then	we	set-up	a	method	which	could	either	assign	a	given	short	amino	acid	sequence	to	

one	of	the	five	fold	states	or	to	label	it	as	non-predicted	when	the	sequence	could	not	be	

assigned	 to	 one	 of	 the	 five	 categories.	 To	 do	 so,	 we	 created	 a	 supervised	 prediction	

schema	based	on	five	independent	two-class	SVM	classifiers,	each	one	trained	to	predict	

one	 of	 the	 five	 predefined	 fold	 categories	 (see	Methods	 for	 details).	 In	 Table	 5.5	 are	

presented	the	performance	estimators	calculated	for	the	five	two-class	SVM	classifiers	on	

the	 independent	 test	 set	 and	with	 cross	 validation	 on	 the	 training	 set.	 The	 five	 SVM	

classifiers	present	high	performances,	especially	on	the	independent	test	set	which	has	
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not	 been	 used	 for	 the	 training	 procedure,	 enforcing	 the	 robustness	 of	 the	 prediction	

model.	

	

Table	5.5.	The	performance	estimators	for	the	two-class	SVM	classifiers	for	the	five	fold	categories	with	

cross	validation	(CV)	on	the	training	set	and	on	the	independent	test	set.	

	 IDPs	 DIBS	 Small	 S3	 TMs	

	 CV	 Test	 CV	 Test	 CV	 Test	 CV	 Test	 CV	 Test	

Precision	 0.96	 0.95	 0.85	 0.91	 0.97	 0.97	 0.93	 0.94	 1.0	 1.0	

Recall	 0.95	 0.95	 0.72	 0.91	 0.97	 0.97	 0.92	 0.93	 1.0	 1.0	

F1-score	 0.95	 0.95	 0.74	 0.91	 0.97	 0.97	 0.92	 0.93	 1.0	 1.0	

	

	

Based	on	the	five	predictions	of	the	SVM	classifiers,	our	prediction	schema	is	capable	at	

assigning	 a	 given	 amino	 acid	 sequence	 either	with	 one	 of	 the	 defined	 fold	 categories	

(IDPs,	 DIBS,	 Small,	 S3,	 TMs)	 or	 with	 “multiple”	 classes	 where	 more	 than	 one	 fold	

categories	 could	 be	 predicted.	 In	 addition,	 our	 prediction	 schema,	 contrary	 to	 other	

multiclass	predictors,	is	also	capable	of	not	assigning	any	fold	category	if	the	prediction	

is	not	highly	accurate.	This	option	is	very	interesting	as	it	prevents	us	from	misassigning	

a	peptide	that	does	not	belong	to	any	of	the	five	categories	which	is	very	important	(i)	for	

studying	 the	 IGORFs	 that	 may	 exhibit	 different	 fold	 states	 from	 peptides	 stored	 in	

structural	databases	and	(ii)	for	considering	the	gap	observed	previously	on	the	PCA,	that	

may	be	populated	by	unevolved	sequences.	

	

Table	5.6	presents	the	performance	estimators	calculated	for	the	prediction	schema	on	

the	 independent	 test	 set.	 It	 must	 be	 mentioned	 that	 the	 multiclass	 predictions,	 by	

definition	are	not	associated	with	a	single	fold	category	(as	they	contain	more	than	one	

category	 predictions)	 and	 as	 a	 result	 always	 count	 as	 a	 negative	 prediction,	 thereby	

overestimating	our	negative	predictions.	Overall,	the	fold	state	prediction	model	presents	

high	performance	on	the	independent	test	set	which	becomes	even	higher	if	we	consider	

as	 positive	 the	 multiclass	 predictions	 whose	 real	 fold	 category	 made	 part	 of	 their	

predicted	fold	states,	thus	supporting	the	important	capacity	of	our	schema	at	correctly	

predicting	the	fold	potential	of	short	amino	acid	sequences.	
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Table	5.6.	Performance	estimators	for	our	prediction	schema	on	the	test	set	before	and	after	the	multiclass	

prediction	reannotation.	

	
Before	multiclass	

reannotation	

After	multiclass	

reannotation	

Precision	 0.93	 0.94	

Recall	 0.82	 0.90	

F1-score	 0.87	 0.92	

	

	

The	prediction	occurrences	on	the	test	set	per	category	are	presented	explicitly	in	Table	

5.7.	It	can	be	observed	that	DIBS	is	the	most	difficult	fold	category	to	be	predicted	and	

indeed,	most	of	the	times	it	is	confused	with	either	IDP	or	S3	or	assigned	to	multi-classes	

precisely	involving	S3	and	DIBS	fold	states.	This	observation	reflects	probably	the	special	

behavior	of	the	DIBS	category	presenting	a	transitional	character	between	disorder	and	

folded	 state	 depending	 on	 their	 environment	 (in	 solution	 or	 upon	 interaction	 with	

another	protein,	 respectively).	This	 is	also	supported	by	 the	PCA	plot	where	 the	DIBS	

ellipse	is	placed	between	the	IDPs	and	the	S3	fold	states	presenting	important	overlap	

with	both	categories.	

	

Table	 5.7.	 The	 prediction	 results	 in	 absolute	 numbers	 of	 our	 fold	 state	 prediction	 model	 on	 the	

independent	test	set.	

	 True	Positive	 False	Positive	 Multiclass	Predicted	 Not	predicted	

IDPs	 17	 1	 1	 1	

DIBS	 11	 3	 4	 2	

Small	 18	 0	 1	 1	

S3	 16	 2	 2	 0	

TMs	 20	 0	 0	 0	

	

	

5.3.3	Prediction	on	known	folded	peptides	

The	 performance	 estimators	 of	 the	 prediction	 schema	 on	 the	 test	 set,	 highlight	 its	

capacity	of	predicting	with	high	confidence	the	fold	state	of	a	short	amino	acid	sequence.	

Even	 though	 independent	 from	 the	 training	 set,	 the	 test	 set	 consists	 of	 peptides	
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corresponding	strictly	to	one	of	the	five	defined	fold	states.	In	this	part,	we	are	predicting	

the	fold	states	of	a	real	dataset	of	157	folded	peptides	(extracted	from	the	class	j	of	the	

SCOPe	database)	which	have	not	been	selected	according	to	the	definition	of	the	five	fold	

categories	 and	 consequently	we	have	no	a	priori	 about	 their	 specific	 fold	 state.	 Their	

predictions	are	presented	in	Table	5.8.	It	can	be	observed	that	the	model	predicts	only	

3.8%	(6/157)	of	the	sequences	as	IDPs,	while	it	does	not	predict	any	fold	category	for	

22.3%	(35/157)	of	the	cases.	The	remaining	73.9%	of	the	sequences	were	assigned	to	

one	or	multiple	fold	categories.	

	

Table	5.8.	Count	and	percentage	of	the	predicted	fold	categories	for	the	157	peptides.		

Prediction	 Counts	 Percentage	(%)	

IDPs	 6	 3.8	

DIBS	 34	 21.7	

S3	 24	 15.3	

Small	 20	 12.7	

TMs	 25	 15.9	

Multiple	 13	 8.3	

Non-Predicted	 35	 22.3	

		

	

In	Figure	5.4	is	presented	the	PCA	on	the	training	set	(in	colored	ellipses)	together	with	

the	projection	of	the	157	peptide	sequences	colored	according	to	the	predictions	of	the	

model.	 With	 only	 exception	 the	 TMs,	 the	 different	 fold	 state	 predictions	 are	 well	

positioned	 inside	or	around	their	corresponding	ellipse	delimitations	supporting	once	

more	that	the	predictions	made	by	the	model	are	quite	accurate.	
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Figure	5.4.	Principal	Components	Analysis	of	the	training	set	presented	with	colored	ellipses	(ellipse	level	

at	90%	of	the	data)	and	projection	of	the	157	peptides	extracted	from	the	class	j	of	SCOPe	database	(in	

colored	 densities).	 (A)	 PCA	 of	 the	 first	 and	 the	 second	 PCs;	 data	 colored	 according	 to	 the	 fold	 state	

prediction	made	by	our	model	(B)	PCA	of	the	first	and	the	third	PCs;	data	colored	according	to	the	fold	state	

prediction	made	by	our	model.	The	non-predicted	cases	are	projected	in	yellow	points.	Colors:	Green	for	

IDPs,	Red	for	DIBS,	Blue	for	Small,	Black	for	S3	and	Purple	for	TMs.	

	

	

At	note,	60%	(15/25)	of	the	TM	predicted	cases	are	found	to	be	delocalized	from	their	

corresponding	ellipse	and	populating	the	region	free	of	fold	state.	Research	of	these	15	

peptides	on	the	PDB	revealed	that	all	of	them	are	indeed	TM	peptides	whose	structure	

has	 been	 characterized	 in	 apolar	 solvents	 resembling	 the	 membrane	 hydrophobic	

environment.	This	interesting	result	shows	that	the	prediction	model	is	quite	accurate	at	

predicting	transmembrane	peptides	even	though	their	descriptors	combinations	make	

them	fall	out	of	their	corresponding	ellipse	defined	by	the	training	set.	This	suggests	that	

our	model	has	captured	the	TM	propensity	of	these	peptides	even	though	they	display	

different	behavior	(according	to	the	first	three	PCs)	from	the	TM	peptides	of	the	training	

set.	 On	 the	 other	 hand,	 the	 20	 Small	 fold	 state	 predicted	 cases	 are	 found	 to	 be	 well	

localized	inside	their	corresponding	ellipse	(in	blue)	while	the	vast	majority	of	their	PDB	

structures	 correspond	 to	 cysteine-rich	 structures	 which	 stabilize	 mostly	 grace	 to	

disulfide	 bonds	 formation.	 The	 scorpion	 toxins	 androctonin	 and	 kappa-Hefutoxins	 as	

well	as	various	conotoxins	are	some	of	the	examples	of	cysteine-rich	peptides	that	are	

predicted	to	participate	in	this	fold	category. Concerning	the	peptides	predicted	as	the	

three	other	fold	categories	(IDPs,	DIBS	and	S3),	they	are	found	well	localized	inside	their	
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corresponding	ellipses	(green,	red	and	black,	respectively)	even	though	some	(7/24)	of	

the	peptides	predicted	as	S3	fold	state	are	outside	the	border	of	the	black	ellipse	in	the	

region	free-of-fold-state.		

 

The	3D	structures	and	the	PDB	information	for	the	peptides	predicted	as	DIBS	(34)	and	

S3	(24)	fold	state,	revealed	that	both	fold	categories	contain	mostly	amphipathic	peptides	

which	can	either	interact	with	other	receptor	proteins	(such	as	hormones)	or	embed	their	

helical	 structure	 at	 the	 surface	 of	 membrane	 bilayers,	 burring	 in	 both	 cases	 their	

hydrophobic	part.	The	similar	character	of	these	two	fold	categories	is	also	supported	by	

the	important	overlapping	of	their	respective	ellipses	on	the	PCA	plot.	Indeed,	the	S3	fold	

state	ellipse	(in	black)	is	included	inside	the	ellipse	of	the	DIBS	fold	state	(in	red).	In	order	

to	 better	 understand	 the	 predictions	 made	 by	 our	 model,	 we	 investigated	 the	

experimental	 conditions	 in	which	 every	 peptide	was	 characterized.	We	 defined	 three	

types	of	structures	according	to	the	information	in	their	corresponding	PDB	file:	

	

(a) Stable	 in	 solution:	 Peptides	 with	 regular	 secondary	 structure(s),	 detected	

without	 any	 partner,	 in	 water	 solution	 or	 other	 polar	 solvent	 mimicking	 the	

cytoplasmic	environment.	

(b) Stable	upon	interaction:	Peptides	with	regular	secondary	structure(s)	detected	

either	in	interaction	with	another	protein	or	in	mixtures	of	polar-apolar	solvents	

(i.e.,	micelles)	mimicking	the	membrane	surface	environment.	For	these	cases	we	

have	no	information	about	their	structural	state	alone	in	solution.	

(c) Unstable	in	solution	and	stable	upon	interaction:	Peptides	which	bare	proof	of	

their	 unfolded	 state	 in	 water	 solution	 and	 detected	 with	 regular	 secondary	

structure(s)	in	interaction-mimicking	environments.	

	

One	 should	notice	 that	 the	 categories	b	 and	 c	 are	quite	 similar,	 however	 the	 cases	 in	

category	b	do	not	mention	explicitly	the	disordered	state	of	the	peptide	under	aqueous	

solution.	

	

Interestingly,	62.5%	(15/24)	of	the	S3-predicted	cases	are	found	as	stable	in	solution	in	

a	 monomeric	 form	 (category	 a)	 while	 the	 remaining	 37.5%	 are	 found	 stable	 upon	

interaction	(categories	b	and	c	-	33.3%	and	4.2%,	respectively).	On	the	contrary,	35.3%	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 162	

(12/34)	 of	 the	 DIBS-predicted	 peptides	 present	 regular	 secondary	 structure(s)	 in	

solution	while	64.7%	(22/34)	are	found	stable	upon	interaction	(categories	b	and	c).	At	

note,	44.1%	(15/34)	of	the	DIBS-predicted	cases,	bear	proof	of	their	unstructured	state	

under	 solution	 (category	 c).	 Finally,	 most	 of	 the	 S3-predicted	 peptides	 were	

characterized	in	solution	while	most	of	the	DIBS-predicted	ones	were	characterized	in	

conditions	that	impose	fold	stabilization	(mimicking	membrane	surfaces).	Interestingly,	

despite	 the	 fact	 that	most	 of	 these	 peptides	 (predicted	 as	 S3	 or	 DIBS)	 correspond	 to	

similar	 3D	 structures	 (i.e.,	 amphipathic	 helices),	 our	 model	 was	 able	 to	 capture	 the	

conditions	necessary	to	acquire	their	3D	fold.	

	

Finally,	35	peptides	were	not	predicted	with	any	fold	category	and	their	projections	are	

presented	with	yellow	points	in	Figure	5.4.	They	are	localized	at	the	central	part	of	the	

plot,	 falling	mostly	 in	 the	 S3/DIBS	or	 Small	 fold	 state	 ellipses	 (88.6%	 -	31/35),	while	

11.4%	(4/35)	are	localized	in	the	free-of-fold-state	region.	Research	on	the	PDB	revealed	

that	31.4%	(11/35)	of	the	non-predicted	cases	are	found	stable	in	solution	(category	a),	

45.7%	 (16/35)	 are	 stable	 upon	 interaction	 (category	b)	while	 22.8%	 (8/35)	 stabilize	

through	interaction	while	present	an	unstructured	state	in	solution	(category	c).	Their	

information	from	the	PDB	in	combination	with	their	central	positioning	on	the	PCA	plot,	

support	 that	 the	 non-predicted	 cases	 correspond	 to	 an	 heterogenous	 population	 of	

peptides	that	resemble	strongly	to	S3	and/or	DIBS	fold	states.	However,	these	cases	may	

be	characterized	by	descriptor	values	which	are	distinct	from	the	ones	of	the	peptides	

used	 for	 the	 training.	This	would	explain	 the	 failure	of	 the	model	 to	predict	 their	 fold	

category	with	accuracy.	

	

These	observations	highlight	two	coexisting	difficulties	which	probably	cause	our	model	

to	fail	at	taking	a	decision	and	pose	an	open	question	concerning	the	sensitivity	of	our	

prediction	 schema.	 The	 first	 one	 is	 the	 intrinsic	 similarity	 (in	 terms	 of	 structural	

characteristics)	that	share	the	S3	and	DIBS	fold	states	as	discussed	previously.	However,	

we	showed	that	although,	most	of	the	peptides	predicted	as	S3	or	DIBS	correspond	to	

amphipathic	helices,	our	model	was	able	to	identify	their	respective	folding	properties	

(i.e.,	stable	in	solution	in	a	monomeric	form	or	folded	upon	binding	with	a	partner	or	a	

membrane).	Nevertheless,	a	small	fraction	of	the	peptides	predicted	as	S3	or	DIBS	fold	

states	 were	 inverted	 between	 these	 two	 categories.	 This	 reflects	 a	 subtle	 continuum	
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between	these	two	fold	state	categories	whose	borders	according	to	our	sequence-based	

descriptors	 overlap	 as	 shown	with	 the	 PCA	 of	 the	 training	 set	 (Fig	 5.3).	 The	 second	

difficulty	lies	in	the	lack	of	sensitivity	of	our	model	as	shown	by	the	35	peptides	that	were	

annotated	 as	 "non-predicted"	while	 our	manual	 inspection	 revealed	 that	 they	mostly	

corresponded	to	peptides	folded	in	a	monomeric	form	or	able	to	fold	upon	binding	with	

a	partner.	We	can	ask	whether	the	peptides	used	for	the	training	of	the	SVM	models	did	

not	 display	 enough	 diversity,	 thereby	 explaining	 that	 our	 models	 face	 difficulty	 at	

generalizing	with	peptides	that	display	different	distributions	of	features	from	those	used	

for	the	training.	Even	though	the	35	peptides	that	were	classified	as	non-predicted	mostly	

fall	in	the	ellipses	of	the	S3,	DIBS	or	Small	categories,	thereby	reflecting	that	they	display	

similar	descriptors	according	to	the	3	first	axes	of	the	PCA,	they	may	display	different	

values	for	the	remaining	descriptors.	This	reflects	an	important	limitation	of	our	method	

which	 maybe	 is	 quite	 accurate	 at	 detecting	 peptides	 that	 present	 similar	 descriptor	

values	to	those	of	the	peptides	used	for	the	training	set	but	struggle	to	handle	further	

variability.	Enlarging	the	training	set	and	monitoring	the	impact	of	the	variability	in	the	

accuracy	of	the	predictions	is	to	be	further	investigated.	

	

	

5.3.4	Fold	prediction	on	the	IGORFs		

In	this	section,	we	launched	our	fold	state	prediction	schema	on	the	peptides	encoded	by	

the	IGORFs	of	S.	cerevisiae	in	order	to	study	the	distribution	of	the	different	fold	states	in	

the	ensemble	of	the	IGORFs.	As	a	reference,	we	also	calculated	their	HCA	foldability	score	

and	compare	them	with	the	fold	state	predictions.	In	Table	5.9	are	presented	the	results	

of	the	fold	category	predictions	for	the	set	of	IGORFs,	in	total	but	also	grouped	by	their	

HCA	score.	28.4%	(29873/105041)	of	the	IGORFs	were	predicted	as	belonging	to	the	TM	

fold	category,	42.8%	(44965/105041)	were	predicted	with	one	(or	multiple)	fold	states	

capable	 of	 acquiring	 a	 3D	 fold	 in	 solution	 or	 upon	 interaction	 (DIBS,	 S3,	 Small	 or	

combination	 of	 them)	while	 0.8%	 (998/105041)	were	 predicted	 as	 IDPs.	 In	 addition,	

27.8%	(29205/105041)	of	the	IGORFs	were	not	assigned	to	any	of	the	fold	states.	These	

results	reflect	a	large	range	of	fold	states	that	exist	in	the	IGORFs	of	S.	cerevisiae	with	an	

important	 depletion	 of	 intrinsically	 disordered	 peptides	 which	 has	 already	 been	

highlighted	with	the	HCA	foldability	score.	
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Table	5.9.	Frequency	of	the	fold	state	predictions	for	the	set	of	IGORFs	in	total	but	also	grouped	by	their	

HCA	score.	

Prediction	
Total	

(%)	

Low	HCA	

(%)	

Intermediate	HCA	

(%)	

High	HCA	

(%)	

IDPs	 0.8	 10.0	 0.1	 0	

DIBS	 14.7	 48.1	 15.4	 2.7	

S3	 10.6	 3.3	 14.0	 4.2	

Small	 11.5	 6.9	 13.5	 7.9	

TMs	 28.4	 0.2	 18.6	 62.3	

Multiple	 6.0	 12.0	 5.4	 6.0	

Non-Predicted	 27.8	 19.5	 33.0	 16.7	

Total	 100	 100	 100	 100	

	

	

In	Figure	5.5	is	presented	the	PCA	of	the	training	set	(in	colored	ellipses)	together	with	

the	projection	of	the	total	IGORF-encoded	peptides	colored	according	to	their	fold	state	

prediction.	

	

	

	

Figure	5.5.	Principal	Components	Analysis	of	the	training	set	presented	with	colored	ellipses	(ellipse	level	

at	90%	of	the	data)	and	projection	of	the	total	IGORFs	(in	colored	densities).	(A)	PCA	of	the	first	and	the	

second	PCs;	data	colored	according	to	the	fold	state	prediction	made	by	our	model	(B)	PCA	of	the	first	and	

the	third	PCs;	data	colored	according	to	the	fold	state	prediction	made	by	our	model.	The	non-predicted	
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cases	are	projected	in	yellow	densities.	Colors:	Green	for	IDPs,	Red	for	DIBS,	Blue	for	Small,	Black	for	

S3	and	Purple	for	TMs.	

	

	

In	Figure	5.5	we	can	see	that	the	ensemble	of	the	IGORFs	presents	a	large	dispersion	all	

over	 the	 PCA	 plot	 highlighting	 the	 important	 fold	 potential	 diversity	 existing	 in	 the	

peptides	encoded	by	the	noncoding	genome.	Again,	we	can	observe	the	continuum	of	fold	

states	all	along	the	PC1	axis	which	reflects	the	general	hydrophobic	content	of	the	amino	

acid	sequences.	IGORFs	predicted	as	IDPs	and	DIBS	are	found	well	localized	inside	their	

respective	ellipses	on	the	PCA	plot.	On	the	contrary,	IGORFs	predicted	as	TM,	S3	or	Small	

are	found	delocalized	from	their	respective	ellipses	(ellipse	level	set	at	90%	of	the	points)	

with	 a	 tendency	 to	 cumulate	 towards	 the	 free	 of	 fold	 state	 region.	 Precisely,	 47.9%	

(5349/11166)	 of	 the	 S3-predicted	 IGORFs	 and	 45.4%	 (5512/12146)	 of	 the	 Small-

predicted	ones	are	found	inside	the	region	free-of-fold-state	while	it	is	the	case	for	up	to	

71.4%	(21336/29873)	of	the	TM	predicted	IGORFs.	Furthermore,	almost	one	fourth	of	

the	total	IGORFs	(29205/105041)	were	not	assigned	to	any	fold	category	with	60%	of	

them	(17667/29205)	localized	at	the	fold	state-free	region.	

	

In	line	with	our	previous	work,	these	results	reflect	the	important	fold	state	variability	

existing	 in	 the	 peptides	 encoded	 by	 the	 yeast	 IGORFs,	which	 ranges	 from	 completely	

disordered	peptides	until	highly	hydrophobic	TM	ones,	prone	to	aggregate	in	solution.	

Even	though	the	prediction	model	presents	good	predictive	capacity	on	the	test	set	and	

the	independent	set	of	157	structured	peptides,	the	PCA	plot	reveals	that	many	IGORF-

encoded	 peptides	 are	 delocalized	 from	 the	 fold	 state	 ellipse	 they	 were	 predicted	 to	

belong,	towards	the	region	free-of-fold-state.	In	fact,	we	showed	with	the	157	peptides	

dataset,	that	an	important	fraction	(60%)	of	peptides	experimentally	shown	to	be	TM,	

were	localized	outside	the	TM	purple	ellipse	on	the	PCA,	reflecting	that	our	model	was	

able	to	capture	their	TM	propensity	even	though	they	display	slightly	different	values	for	

the	descriptors	associated	with	 the	3	 first	PCA	axes	 from	 those	of	 the	peptides	of	 the	

training	 set.	 However,	 we	 do	 not	 know	 whether	 this	 holds	 for	 the	 other	 fold	 state	

categories.	In	particular,	one	can	ask	whether	the	peptides	predicted	as	S3	or	Small	which	

are	 localized	outside	 the	 S3	 and	Small	 ellipses	 respectively	 are	predicted	 correctly	or	

constitute	false	positives.	More	generally,	one	can	ask	whether	our	model	trained	on	real	
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peptides	is	able	to	predict	the	fold	state	of	unevolved	peptides.	Indeed,	our	model	was	

trained	 on	peptides’	 sequences	which	 correspond	 to	 evolutionary	 optimized	peptides	

that	 must	 satisfy	 the	 structure-stability-function	 compromise	 while	 the	 IGORFs,	

correspond	 to	unevolved	 sequences.	 In	other	words,	 coding	peptides	have	 evolved	 to	

maintain	 their	 function	 including	 their	 interactions	 with	 their	 partners	 and	 more	

generally	with	the	cellular	environment.	Indeed,	it	has	been	shown	that	the	crowded	cell	

has	shaped	the	surface	interaction	properties	of	proteins	to	prevent	them	to	be	trapped	

in	non-functional	 interactions	 (Levy	 et	 al.	 2012;	Macossay-Castillo	 et	 al.	 2019).	 These	

different	 constraints	exerted	on	coding	peptides	are	expected	 to	 leave	 “footprints”	on	

their	 amino	 acids	 composition	 that	may	be	 reflected	 by	 the	 ellipses.	On	 the	 contrary,	

IGORFs	 may	 be	 able	 to	 fold,	 but	 have	 not	 been	 optimized	 for	 a	 function	 including	

interaction	with	 specific	 partner(s)	 but	 also	with	 the	 cellular	 environment.	 This	may	

explain	 the	 fact	 that	 even	 though	our	method	has	predicted	 them	as	 S3	or	 Small	 fold	

states,	 these	 unevolved	 peptides	 whose	 interaction	 properties	 with	 the	 cellular	

environment	have	not	been	optimized,	fall	outside	the	ellipses	of	the	corresponding	fold	

state	categories.	As	a	result,	applying	a	prediction	model	trained	to	recognize	fold	states	

of	coding	sequences	on	a	dataset	of	unevolved	noncoding	sequences	 is	a	very	difficult	

task	and	thus,	we	cannot	estimate	to	which	extend	the	predictions	made	on	the	IGORFs	

are	indeed	highly	accurate.		

	

	

5.3.5	 Comparison	 of	 the	 IGORF	 predictions	 with	 the	 HCA	 foldability	

score	

In	Figure	5.6A	is	presented	the	distribution	of	the	fold	states	prediction	on	the	IGORFs	in	

the	three	distinct	HCA	score	bins	(Low,	Intermediate	and	High).	It	can	be	observed	that,	

as	expected,	sequences	with	low	HCA	scores	are	mostly	predicted	as	IDPs	(10%)	and	DIBS	

(48.1%)	(one	proportion	z-tests	p-values	with	intermediate	and	high	HCA	score	bins:	<	2	

×	10-16)	while	sequences	with	high	HCA	scores	are	mostly	predicted	as	TMs	(62.3%)	(one	

proportion	 z-tests	 p-values	 with	 low	 and	 intermediate	 HCA	 score	 bins:	 <	 2	 ×	 10-16).	

IGORFs	with	intermediate	HCA	scores	are	predicted	with	a	large	variability	of	fold	states	

(from	DIBS	to	TMs)	and	notably	are	enriched	in	S3-predictions	(14%)	(one	proportion	z-

tests	p-values	with	low	and	high	HCA	score	bins:	1	×	10-4	and	6	×	10-4,	respectively),	Small	

predictions	(13.5%)	(one	proportion	z-tests	p-values	with	low	and	high	HCA	score	bins:	
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1	×	10-2	and	4	×	10-2,	respectively)	and	also	non-predicted	cases	(33%)	(one	proportion	

z-tests	p-values	with	low	and	high	HCA	score	bins:		1	×	10-3	and	6	×	10-4	,	respectively).		

	

	

	

Figure	5.6.	(A)	Frequencies	of	 fold	state	predictions	 for	 the	 IGORFs	per	HCA	score	bin.	(B)	HCA	score	

distribution	for	the	different	IGORFs	fold	state	predictions.	Dotted	black	lines	delineate	the	boundaries	of	

the	low,	intermediate	and	high	HCA	score	categories	reflecting	the	three	categories	of	fold	potential	(i.e.,	

disorder	prone,	foldable,	or	aggregation	prone	in	solution);	Colors:	Green	for	IDPs,	Red	for	DIBS,	Blue	

for	Small,	Black	for	S3,	Purple	for	TMs,	Salmon	for	Multiple	class	prediction	and	Yellow	for	Non-

predicted.	

	

	

Notably,	in	Figure	5.6B,	is	presented	the	HCA	score	distribution	of	the	IGORFs	grouped	

by	their	fold	state	prediction.	The	distributions	of	the	HCA	scores	for	the	different	fold	

state	 predictions	 on	 the	 IGORFs,	 present	 a	 continuum	 tendency	 which	 reflects	 the	

hydrophobic	 content	 of	 their	 amino	 acid	 sequences	 and	 consequently,	 their	 fold	

potential.	 Notably,	 IDP-predicted	 IGORFs	 present	 low	 HCA	 scores,	 DIBS-predicted	

IGORFs	 present	 low	 and	 intermediate	 HCA	 scores,	 S3	 and	 Small-predicted	 IGORFs	

present	 intermediate	HCA	score	while	TM-predicted	 IGORFs	present	mostly	high	HCA	

scores.	The	multiple	predicted	cases	present	a	wide	range	of	HCA	scores	while	the	non-

predicted	cases	present	mostly	intermediate	scores	supporting	their	potential	ability	to	

fold,	though	we	do	not	know	their	fold	properties	(able	to	fold	upon	binding,	stable	in	
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solution	or	rudimentary	fold).	As	a	matter	of	fact,	the	HCA	score	distribution	of	the	non-

predicted	cases	was	statistically	similar	to	both	S3	and	Small	predicted	cases	(two	sided	

Kolmogorov–Smirnov	test:	P	=	7	×	10-2	and	P	=	4	×	10-1,	respectively).	All	the	distributions	

present	an	important	overlapping	supporting	that	the	limits	between	the	different	fold	

states	are	not	distinct,	highlighting	a	continuum	among	them.	Overall,	these	observations	

reflect	the	important	capacity	of	the	HCA	method	at	estimating	the	foldability	potential	

of	a	given	amino	acid	sequence.	However,	they	also	highlight	that	peptides	with	similar	

HCA	scores	can	acquire	different	fold	states	and	consequently	support	that	our	prediction	

model	could	be	useful	in	order	to	further	refine	the	results	of	HCA.	

	

	

5.3.6	Translated	IGORFs	and	human	alternative	ORFs	present	similar	

foldability	potential	

All	 the	 previous	 observations	 were	 made	 on	 the	 ensemble	 of	 peptides	 potentially	

encoded	by	the	noncoding	genome	of	S.	cerevisiae.	However,	not	all	IGORFs	are	expected	

to	be	translated	and	to	produce	peptides	in	the	cell.	Among	IGORFs	that	are	translated,	

we	showed	that	most	of	them	are	only	translated	occasionally.	They	are	not	expected	to	

be	functional,	and	we	hypothesize	that	they	will	be	short-lived	in	the	evolutionary	history.	

On	the	other	hand,	we	showed	that	a	small	fraction	of	IGORFs,	are	translated	with	a	strong	

signal.	In	particular,	most	of	the	reads	(>	80%)	that	map	on	their	genomic	locus	are	in-

frame,	reflecting	that	the	translation	of	these	ORFs	is	strongly	favored	compared	to	the	

overlapping	ORFs.	This	may	indicate	the	optimization	of	their	translation	and	finally	the	

potential	emergence	of	function.	As	a	complement,	we	also	investigated	the	fold	state	of	

peptides	encoded	by	alternative	ORFs	overlapping	with	human	CDS	in	different	frames,	

observed	with	ribosome	profiling	and	mass	spectrometry	experiments.	These	peptides,	

beyond	the	fact	of	being	translated,	are	stable	enough	(i.e.,	not	degraded)	to	be	observed	

with	mass	spectrometry.	They	were	observed	in	the	human	cells,	and	consequently	are	

not	 directly	 comparable	with	 the	 IGORFs	 translated	 in	 S.	 cerevisiae	 but	 they	 offer	 an	

opportunity	to	study	real	peptides,	probably	unevolved	since	they	result	from	noncoding	

ORFs,	and	which	are	stable	enough	to	be	captured	with	mass	spectrometry.	They	offer	a	

great	opportunity	to	interrogate	whether	unevolved	peptides	resulting	from	pervasive	

translation	and	stable	enough	to	be	observed	with	mass	spectrometry,	could	populate	the	

region	free-of-fold-state	which	is	populated	by	IGORFs	but	not	by	the	peptides	annotated	
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in	 the	 SCOP	 database.	 In	 Table	 5.10	 is	 presented	 the	 repartition	 of	 the	 fold	 state	

predictions	made	for	every	dataset.	

	

Table	5.10.	Fold	state	predictions	made	by	our	models	on	different	datasets	of	peptides.	

Prediction	 IGORFs	(%)	
Occasionally	

translated	(%)	

Highly	

translated	(%)	

Human	

AltORFs	(%)	

IDPs	 0.8	 0.7	 0	 6.7	

DIBS	 14.7	 14.9	 29.0	 16.6	

S3	 10.6	 13.5	 25.8	 24.3	

Small	 11.5	 9.8	 9.7	 9.6	

TMs	 28.4	 24.1	 9.7	 5.6	

Multiple	 6.0	 5.5	 6.4	 3.7	

Non-Predicted	 27.8	 31.5	 19.3	 33.5	

	

	

5.3.6.1	Occasionally	and	highly	translated	IGORFs	fold	state	predictions	

In	Figure	5.7A-B	is	presented	the	PCA	plot	of	the	occasionally	translated	peptides	colored	

based	on	their	fold	state	prediction.	The	localization	of	the	different	fold	state	predictions	

on	the	PCA	plot	together	with	their	repartition	(Table	5.10),	reveal	that	the	occasionally	

translated	IGORFs	present	a	wide	range	of	fold	states	which	is	similar	to	the	one	of	the	

total	IGORF	peptides	(one	proportion	z-tests,	all	p-values	>	5	×	10-2).	Notably,	similarly	

to	 the	 IGORFs,	 31.5%	 (389/1235)	 of	 the	 occasionally	 translated	 peptides	 were	 not	

predicted	with	a	fold	state	while	54.2%	(211/389)	of	them	were	localized	in	the	region	

free-of-fold-state.	Also	43.7%	(73/167),	46.3%	(56/121)	and	79.5%	(237/298)	of	 the	

occasionally	 translated	 IGORFs	predicted	as	S3,	Small	and	TM	fold	states,	 respectively	

localize	outside	their	corresponding	ellipses	in	the	free-of-fold-state	region.	Again,	these	

cases	may	reflect	 the	 fact	 that	 these	unevolved	peptides	while	belonging	 to	 these	 fold	

state	 categories	 display	 different	 values	 for	 the	 3	 first	 PCA	 axis	 descriptors	 from	 the	

peptides	 of	 the	 training	 set.	 All	 these	 results	 support	 that	 the	 occasionally	 translated	

IGORFs	are	IGORF-like	without	any	fold	state	specificity.	This	suggests	that	they	were	not	

specifically	 selected	 to	 be	 translated	 according	 to	 their	 structural	 properties	 but	may	

reach	 the	 translational	machinery	 grace	 to	 their	 favorable	 genomic	 position	 or	 other	

reasons.	
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On	the	other	hand,	in	Figure	5.7C-D	are	presented	the	PCA	plots	of	the	peptides	encoded	

by	the	31	highly	translated	IGORFs.	The	predictions	of	our	model	(Table	5.10)	show	that	

70.9%	(22/31)	of	the	highly	translated	peptides	are	predicted	with	one	(or	multiple)	fold	

states	other	than	IDP	or	TM	supporting	that	most	highly	translated	IGORFs	are	able	to	

fold	in	solution.	In	particular,	highly	translated	IGORFs	are	clearly	enriched	in	DIBS	and	

S3	 fold	 state	 predictions	 (one	 proportion	 z-tests	 p-values:	 3	 ×	 10-4	 and	 5	 ×	 10-5	

respectively)	and	depleted	in	TM	predictions	(one	proportion	z-tests	p-values:	3	×	10-6)	

compared	 to	 the	 predictions	 of	 the	 IGORFs.	Moreover,	 19.3%	 (6/31)	 of	 the	 peptides	

encoded	by	highly	translated	IGORFs	do	not	present	a	fold	state	prediction	with	50%	of	

them	 (3/6)	 localized	 in	 the	 free-of-fold-state	 region.	 It	 is	 interesting	 to	 note	 that	 this	

fraction	 is	 less	 important	 than	 the	 one	 observed	 for	 the	whole	 population	 of	 IGORFs	

suggesting	that	peptides	belonging	to	the	free-of-fold-state	region	are	depleted	in	highly	

translated	peptides.	This	region	is	expected	to	correspond	to	peptides	with	an	important	

fraction	of	hydrophobic	residues	that	may	be	deleterious	in	solution.	This	may	explain	

the	fact	that	peptides	belonging	to	the	free-of-fold-state	region	are	under-represented	in	

highly	 translated	 peptides.	 Could	 the	 fact	 that	 these	 highly	 translated	 peptides	 are	

enriched	 in	 peptides	 able	 to	 fold	 in	 solution	 or	 upon	 interaction	 be	 related	 with	 a	

potential	 functional	 character	 and	 consequently	with	 the	 establishment	 of	 their	more	

regulated	expression?	This	is	an	interesting	question	which	will	need	further	studies.	

	

To	 sum	 up,	 our	 results	 show	 that	 the	 occasionally	 translated	 IGORFs	 are	 IGORF-like	

presenting	similar	fold	state	predictions	with	the	ensemble	of	IGORFs.	On	the	contrary,	

the	highly	translated	IGORFs	are	enriched	in	S3	and	DIBS	predictions	and	more	generally	

enriched	in	sequences	able	to	fold	in	solution	or	upon	interaction	with	a	partner,	being	

mostly	 located	 in	 the	 central	 region	 of	 the	 PCA	 plot.	 This	 supports	 that	 IGORFs	with	

important	translation	signal	tend	to	display	specific	structural	properties	compared	to	

IGORFs.	 Whether	 these	 properties	 were	 accompanied	 with	 the	 emergence	 of	

functionality	and	were	a	selected	criterion	is	to	be	further	investigated.	

	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 171	

	

Figure	5.7.	Principal	Components	Analysis	of	the	training	set	presented	with	colored	ellipses	(ellipse	level	

at	90%	of	the	data)	and	projection	of	the	1235	occasionally	and	31	highly	translated	IGORFs	(in	colored	

densities	 and	 points,	 respectively).	 (A)	 PCA	 of	 the	 first	 and	 the	 second	 PCs	 for	 the	 1235	 occasionally	

translated	IGORFs	(B)	PCA	of	the	first	and	the	third	PCs	for	the	1235	occasionally	translated	IGORFs	(C)	

PCA	of	the	first	and	the	second	PCs	for	the	31	highly	translated	IGORFs	(D)	PCA	of	the	first	and	the	third	

PCs	for	the	31	highly	translated	IGORFs;	The	non-predicted	cases	are	projected	in	yellow	points.	All	the	

data	are	colored	according	to	the	fold	state	prediction	made	by	our	model;	Colors:	Green	for	IDPs,	Red	

for	DIBS,	Blue	for	Small,	Black	for	S3	and	Purple	for	TMs.	

	

	

5.3.6.2	Human	AltORFs	fold	state	predictions	

We	showed	 that	highly	 translated	yeast	 IGORFs	are	not	 IGORF-like,	being	enriched	 in	

sequences	 coding	 potentially	 for	 peptides	with	DIBS	 or	 S3	 fold	 state.	However,	 being	
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translated	does	not	necessarily	involve	being	present	in	the	cell.	We	can	hypothesize	that	

many	of	these	products	will	be	degraded	right	away.	Therefore,	this	prompt	us	to	take	

advantage	of	mass	spectrometry	data	and	investigate	the	fold	state	of	peptides	that	were	

indeed	 observed	 experimentally.	 OpenProt	 is	 a	 database	 that	 contains	 numerous	

peptides	annotated	from	the	human	genome	(Brunet	et	al.	2019,	2021).	These	peptides	

are	of	great	interest	because	they	bear	proof	of	expression	with	ribosome	profiling	and	

MS	 experiments	 and	 therefore	 correspond	 to	 peptides	 known	 to	 exist	 in	 the	 cellular	

environment	while	they	may	not	be	functional	(i.e.,	resulting	from	pervasive	translation).	

Using	 OpenProt,	 we	 extracted	 1935	 peptides	 produced	 by	 the	 translation	 of	 ORFs	

annotated	in	alternative	reading	frames	of	known	proteins	(AltORFs).	 In	addition,	one	

should	note	that	their	analysis	cannot	be	directly	compared	with	the	one	performed	on	

the	 IGORFs	 of	 S.	 cerevisiae	 since	 they	 belong	 to	 different	 species	 and	 AltORFs,	 by	

definition,	 are	 not	 intergenic	 but	 overlap	 coding	 genes.	 They	 are	 thus	 expected	 to	 be	

subjected	to	different	constraints	and	consequently	may	display	different	structure	and	

sequence	properties.	

	

The	predictions	made	by	our	model	(presented	in	Table	5.10)	show	that	54.2%	of	the	

peptides	are	predicted	with	one	(or	multiple)	fold	states	other	than	IDP	(6.7%)	or	TM	

(5.6%)	while	33.5%	are	not	assigned	with	any	fold	state.	In	Figure	5.8	is	presented	the	

PCA	plot	of	the	AltORF-encoded	peptides	colored	according	to	their	fold	state	prediction.	

We	can	observe	that	the	IDP-	and	the	DIBS-predicted	peptides	are	well	localized	inside	

their	corresponding	ellipses	while	on	the	contrary,	TM	predictions	are	clearly	outside	the	

purple	ellipse	as	already	observed	with	the	dataset	of	157	folded	peptides.	In	addition,	

28.9%	 (136/471)	 of	 the	 S3-predicted	 and	 23.7%	 (44/186)	 of	 the	 Small-predicted	

peptides	were	positioned	in	the	region	free-of-fold-state	although	close	to	the	border	of	

their	 ellipses’	 delimitations.	 These	 results	 pose	 again	 the	 question	 concerning	 the	

accuracy	of	these	predictions	outside	the	ellipses	and	the	overall	specificity	of	the	model	

on	unevolved	sequences.	
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Figure	5.8.	Principal	Components	Analysis	of	the	training	set	presented	with	colored	ellipses	(ellipse	level	

at	90%	of	the	data)	and	projection	of	the	1935	AltORFs	(in	colored	densities).	(A)	PCA	of	the	first	and	the	

second	PCs;	data	colored	according	to	the	fold	state	prediction	made	by	our	model	(B)	PCA	of	the	first	and	

the	third	PCs;	data	colored	according	to	the	fold	state	prediction	made	by	our	model;	The	non-predicted	

cases	are	projected	in	yellow	points.	All	the	data	are	colored	based	on	the	fold	state	prediction	made	by	our	

model;	Colors:	Green	for	IDPs,	Red	for	DIBS,	Blue	for	Small,	Black	for	S3	and	Purple	for	TMs.	

	

	

Concerning	the	AltORF-peptides	for	which	no	prediction	was	made,	they	correspond	to	

33.5%	(648/1935)	of	the	total	cases.	Even	though	not	directly	comparable,	one	should	

note	 that	 this	 fraction	 is	 similar	 to	 the	 27.8%	 of	 the	 non-predicted	 IGORFs	 (one	

proportion	 z-test,	 P	 =	 2	 ×	 10-1).	 However,	 it	 is	 interesting	 to	 observe	 that	 the	 non-

predicted	cases	of	AltORF-peptides	are	mostly	positioned	 inside	the	 fold	state	ellipses	

delimitations	with	only	22.2%	 (144/648)	of	 them	 localized	 in	 the	 region	 free-of-fold-

state	 (the	 respective	 number	 for	 the	 non-predicted	 IGORFs	was	 60%).	 This	 suggests	

again	 that	 AltORF-peptides	 observed	 with	 MS	 experiments	 are	 depleted	 in	 peptides	

belonging	to	the	free-of-fold-state	region,	though	it	should	be	further	investigated	since	

these	 numbers	 are	 not	 directly	 comparable.	 On	 the	 other	 hand,	 it	 is	 unclear	 why	 an	

important	fraction	of	peptides	was	not	predicted	with	any	fold	state	while	located	in	the	

red,	blue	or	black	ellipses	which	reflect	that	they	display	similar	properties	according	to	

those	of	the	three	first	axes	of	the	PCA.	However,	their	positioning	on	the	PCA	plot	permits	

us	 to	hypothesize	 that	an	 important	 fraction	of	 them	could	share	similarities	with	 the	

−5

0

5

−10 0 10

Principal Component 1

P
ri

n
c
ip

a
l 
C

o
m

p
o
n
e
n
t 
2

PCA of human AltORFs

A

−5

0

5

−10 0 10

Principal Component 1

P
ri

n
c
ip

a
l 
C

o
m

p
o
n
e
n
t 
3

PCA of human AltORFs

B



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 174	

DIBS,	 the	 S3	or	 the	 Small	 fold	 states	 and	 therefore	 acquire	 a	 fold	 in	 solution	or	upon	

interaction	with	a	partner.	

	

In	this	section,	we	studied	the	predictions	of	fold	state	on	a	dataset	of	human	peptides	

encoded	by	ORFs	in	alternative	frames	from	protein	coding	sequences.	These	peptides	

have	been	proven	experimentally	to	be	produced	in	the	human	cells,	but	their	functional	

role	is	not	clear	yet.	Their	overall	fold	state	predictions	together	with	their	positioning	on	

the	PCA	plot	support	that	an	important	fraction	of	the	AltORFs-encoded	peptides	may	be	

able	to	fold	in	solution	or	upon	interaction	with	a	partner,	while	a	minority	of	them	are	

prone	to	aggregate.	Although	not	directly	comparable,	these	results	recall	the	ones	of	the	

highly	translated	IGORFs	of	S.	cerevisiae	and	consequently	it	is	interesting	to	speculate	

that	peptides	resulting	from	IGORFs	with	higher	level	expression,	or	which	are	indeed	

observed	 in	 the	 cell	 display	 a	 high	 propensity	 for	 being	 folded	 in	 solution	 or	 upon	

interaction	with	a	partner.	

	

	

5.4	Conclusions	

	

In	this	chapter	we	aimed	at	developing	a	method	for	the	prediction	of	the	fold	states	of	

peptides	(20	–	70	amino	acids)	in	order	to	further	characterize	the	foldability	potential	

of	peptides	encoded	by	IGORFs.	One	should	notice	that	we	are	interested	in	predicting	

the	 foldability	properties	of	 a	peptide,	which	can	 further	provide	us	with	 information	

about	 its	 potential	 behavior	 in	 the	 cell	 and	 its	 global	 properties	 rather	 than	 having	 a	

precise	description	of	its	3D	structure.	To	do	so,	we	constructed	a	dataset	of	peptides’	

sequences	 corresponding	 to	 five	 different	 fold	 state	 categories	 which	 present	 an	

important	variability	of	fold	potential,	ranging	from	completely	disordered	peptides	in	

solution	 until	 transmembrane	 peptides	 prone	 to	 aggregate	 in	 solution	 but	 probably	

capable	to	fold	in	a	lipidic	bilayer.	The	fold	state	prediction	model	performed	quite	well	

on	the	independent	test	set	presenting	F1-score	of	0.87.	In	addition,	when	applied	on	a	

dataset	of	known	structured	peptides,	our	model	predicted	one	or	multiple	fold	states	for	

77.7%	of	 the	 cases.	Manual	 inspection	of	 the	 structural	 content	 and	 the	 experimental	

conditions	 in	which	 these	 peptides	were	 characterized,	 revealed	 that	 our	model	was	

correctly	predicting	all	the	TM	cases	and	the	majority	of	DIBS	and	S3	cases.	However,	it	
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is	not	clear	why	our	model	did	not	predict	any	fold	state	for	22.3%	of	the	peptides,	as	our	

manual	inspection	supports	that	they	mostly	resemble	DIBS	or	S3	peptides.	As	a	result,	

further	studies	on	the	descriptors’	distributions	are	needed,	in	order	to	better	understand	

why	our	model	failed	to	give	an	accurate	fold	state	prediction	for	these	cases.	

	

In	order	to	better	understand	the	predictions	of	the	model,	we	studied	the	capacity	of	our	

descriptors	 to	 discriminate	 the	 different	 fold	 states	 by	 performing	 a	 Principal	

Components	 Analysis	 on	 the	 training	 set.	 Our	 results	 reveal	 that	 the	 different	 fold	

categories	can	be	separated	according	to	the	first	three	PCs.	However,	DIBS,	S3	and	Small	

fold	 states	overlap	partially	 reflecting	a	 continuum	of	properties	between	 these	 three	

foldable	categories	(to	note	that	they	all	correspond	to	intermediate	HCA	scores).	This	

continuum	reflects	 the	general	hydrophobic	content	of	 the	peptides	and	consequently	

their	fold	potential.	On	the	contrary,	disordered	peptides	(with	low	hydrophobic	content)	

as	 well	 as	 TMs	 (with	 high	 hydrophobic	 content)	 are	 well	 separated	 from	 the	 other	

categories.	 The	 remaining	 three	 categories,	 with	 intermediate	 hydrophobic	 content,	

locate	in-between.	Interestingly,	the	DIBS	presented	a	large	dispersion	which	overlapped	

with	 the	 IDPs	and	 the	S3	 fold	 states,	 showing	 that	 the	DIBS	category	can	host	a	 large	

variability	of	peptides	with	different	levels	of	fold	potential.	In	addition,	peptides	of	the	

Small	 fold	 category	 can	be	discriminated	 from	 those	of	 the	S3	 category	grace	 to	 their	

higher	average	net	charge	and	enrichment	in	cysteines	which	may	altogether	participate	

in	the	fold	properties	specific	to	this	category.	For	instance,	knottins	and	toxins	belong	to	

this	 fold	 category.	 These	 peptides	 are	 known	 to	 be	 depleted	 in	 regular	 secondary	

structures	 and	 enriched	 in	 cysteines	which	may	 stabilize	 the	 overall	 structure	 of	 the	

peptide.	The	PCA	plot	 constituted	a	very	useful	 tool	which	helped	us	 to	have	a	global	

overview	 of	 the	 data,	 and	which	 can	 be	 useful	 to	 a	 posteriori	 further	 analysis	 of	 the	

predictions.	

	

Interestingly,	the	PCA	plot	revealed	a	region	between	the	ellipse	of	the	TM	and	the	ones	

of	the	other	fold	states	which	was	not	occupied	by	any	of	the	five	defined	fold	states.	This	

observation	 made	 us	 wonder	 whether	 this	 less	 occupied	 region	 on	 the	 PCA	 plot,	

corresponds	simply	to	a	technical	bias	due	to	the	lack	of	an	actual	fold	category	from	our	

initial	 training	 set,	 or	 is	 a	 real	biological	 “gap”	 corresponding	 to	an	underrepresented	

subset	of	amino	acid	sequences	in	the	natural	proteomes.	We	can	hypothesize	that	the	
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peptides	falling	in	this	free	of	fold	state	region,	which	display	a	high	hydrophobic	content	

(though	lower	than	the	TMs),	could	constitute	the	mirroring	category	of	the	DIBS.	Indeed,	

globular	proteins	are	characterized	by	a	subtle	equilibrium	between	hydrophobic	and	

hydrophilic	 residues	 (Bresler	 and	 Talmud	 1944).	 DIBS	 are	 characterized	 by	 a	

displacement	 of	 the	 equilibrium	 towards	more	 hydrophilic	 residues	 and	 are	 thereby	

disordered	in	solution	but	able	to	fold	upon	binding.	Peptides	corresponding	to	the	free-

of-fold-state	region	are	on	the	contrary	enriched	in	hydrophobic	amino	acids.	Whether	

sequences	 falling	 in	 this	 “empty”	 region	 correspond	mostly	 to	 hydrophobic	 peptides,	

unstable	 in	 polar	 environments	 and	which	may	 stabilize	 only	 under	 oligomerization,	

embedded	in	a	protein	or	in	membrane	surfaces,	is	an	interesting	question.	Unlike	DIBS,	

these	 hydrophobic	 peptides	 unable	 to	 fold	 as	monomers,	may	 become	 deleterious	 in	

aqueous	environment	such	as	the	cytosol,	explaining	why	they	are	underrepresented	in	

the	coding	world.	

	

	

Prediction	on	the	IGORFs	

Our	model’s	predictions	on	the	potential	peptides	encoded	by	the	S.	cerevisiae	IGORFs,	

reveals	a	large	range	of	different	fold	states	harboring	in	the	yeast	noncoding	genome.	

This	is	in	line	with	the	vast	foldability	potentials	observed	with	HCA	in	section	3	of	this	

manuscript.	As	a	matter	of	fact,	72.2%	(75836/105041)	of	the	peptides	are	assigned	with	

one	(or	more)	fold	states	with	strikingly	28.4%	of	the	cases	being	TMs.	Notably,	IGORFs	

predicted	as	TM,	S3	or	Small	fold	states	present	an	important	delocalization	from	their	

corresponding	ellipses	posing	questions	about	the	accuracy	of	the	model’s	predictions.	

For	 the	 rest	 27.8%	 (29205/105041)	 of	 the	 IGORFs,	 our	 model	 could	 not	 make	 any	

prediction	with	60%	(17667/29205)	of	these	non-predicted	cases	being	localized	in	the	

free-of-fold-state	region	and	the	remaining	40%	(11538/29205)	being	inside	the	ellipses	

of	the	different	fold	states.	As	discussed	previously,	whether	this	region	free-of-fold-state	

correspond	to	a	biological	gap	highlighting	another	population	of	potential	peptides	that	

are	“forbidden”	or	“limited”	in	the	coding	world	is	an	interesting	question	to	which	we	do	

not	have	the	answer	yet.	On	the	other	hand,	the	other	40%	of	the	non-predicted	cases	

supports	 that,	 eventually	 an	 important	 portion	 of	 the	 non-predicted	 peptides	 could	

acquire	a	3D	structure,	but	it	is	unknown	why	our	model	is	not	capable	at	assigning	them	

to	 a	 specific	 fold	 category.	However,	 it	must	 be	 noted	 that	 our	 prediction	model	was	
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trained	on	a	dataset	of	 fold	categories	with	known	structured	and	 functional	peptides	

which	have	long	been	subjected	to	evolutionary	selection	and	thus	have	optimized	their	

fold	potential.	Consequently,	we	are	wondering	to	what	extend	we	can	extrapolate	and	

use	 a	 model	 trained	 to	 detect	 the	 fold	 state	 of	 coding	 and	 evolutionary	 restrained	

peptides	on	a	set	of	noncoding	and	unevolved	sequences.	This	is	an	extremely	difficult	

question	to	which	we	probably	do	not	have	the	answer.	

	

Expressed	noncoding	peptides	present	important	fold	potential	

Predicting	the	 fold	states	of	 the	total	set	of	 IGORFs	permits	us	 to	have	an	overall	 idea	

about	the	potential	small	folds	that	could	be	produced	upon	pervasive	transcription	and	

non-canonical	translation.	However,	only	a	subset	of	the	total	IGORFs	would	be	translated	

and	 finally	 produced	 as	 peptides	 in	 the	 cell.	 Having	 identified	 1235	 occasionally	

translated	yeast	IGORFs	with	weak	translation	signals,	we	observed	that	the	reparation	

of	their	fold	state	predictions	together	with	the	dispersion	of	their	points	on	the	PCA	plot	

were	 statistically	 non	 distinguishable	 from	 the	 ones	 of	 the	 total	 IGORFs.	 These	

observations	 are	 in	 line	 with	 the	 results	 presented	 in	 section	 3,	 showing	 that	 the	

occasionally	 translated	 IGORFs	 present	 similar	 structure	 and	 sequence	 properties	 to	

IGORFs.	 These	 results	 permit	 us	 to	 speculate	 that	 IGORFs,	 no	matter	 their	 structural	

properties	 or	 fold	 potential,	 can	 be	 translated	 in	 the	 cell	 and	 that	 their	 translation	 is	

independent	from	these	features.	

	

On	 the	 contrary,	 the	 31	 highly	 translated	 yeast	 IGORFs	 are	 enriched	 in	 S3	 and	 DIBS	

predictions	and	their	dispersion	on	the	PCA	plot	is	clearly	restrained	to	the	central	region,	

contrarily	to	the	occasionally	translated	IGORFs.	The	same	tendency	(even	though	more	

dispersed)	 is	 observed	 for	 1935	 human	 peptides	 produced	 by	 the	 translation	 of	

alternative	reading	frames	of	known	protein	ORFs	(AltORFs).	It	must	be	mentioned	that	

Bartonek	et	al.	(2020)	have	reported	the	interdependence	of	the	hydrophobicity	profiles	

of	 protein	 sequences	 with	 the	 two	 other	 overlapping	 reading	 frames.	 Whether	 the	

important	foldability	potential	of	human	AltORFs	is	related	to	a	potential	functional	role	

in	the	cell,	or	 this	 foldability	 is	simply	an	 intrinsic	property	 inherited	by	their	overlap	

with	protein	coding	ORFs	is	an	interesting	question	for	which	we	do	not	have	the	answer	

yet.	We	can	hypothesize	that	this	strong	translation	signal	indicates	a	functional	outcome	

for	these	peptides.	Whether	the	structural	properties	observed	for	the	highly	translated	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 178	

IGORFs	 favor	 the	 emergence	 of	 function	 and	 the	 optimization	 of	 their	 translational	

activity	is	to	be	further	investigated.	

	

	

Functionality		

Our	results	revealed	that	almost	one	third	of	the	IGORFs	were	predicted	as	participating	

in	 the	TM	 fold	 category	 believed	 to	 aggregate	 in	 solution	but	 to	 be	 foldable	 in	 lipidic	

environments.	Notably,	proteins	encoded	by	smORFs	have	been	shown	to	be	localized	at	

the	membranes	of	the	cells	presenting	a	broad	range	of	functions	(Orr	et	al.	2020).	Several	

small	proteins	(in	eukaryotic	and	prokaryotic	organisms),	presenting	a	wide	sequence	

diversity,	have	been	found	to	participate	into	larger	membrane	protein	complexes	such	

as	the	photosystems	I	and	II	or	the	cytochrome	oxidases.	In	addition,	small	proteins	have	

been	 found	 to	 act	 as	 positive	 or	 negative	 regulators	 of	 membrane	 proteins	 thus	

participating	 into	 the	 cellular	 responses	 to	 environmental	 changes	 (Orr	 et	 al.	 2020).	

Another	example	of	functionality	was	presented	by	Knopp	et	al.	(2019)	who	identified	

three	 peptides	 encoded	 by	 randomly	 generated	 ORFs	 that	 increased	 significantly	

aminoglycoside	resistance	of	bacterial	cells.	Combining	genetic	and	functional	analyses	

they	showed	that	these	highly	hydrophobic	peptides,	once	inserted	into	the	membranes,	

reduce	the	membrane	potential	and	as	a	result	decrease	the	aminoglycoside	uptake	of	

the	 cell.	 This	 study	 constitutes	 a	 very	 interesting	 example	 of	 random	DNA	 sequences	

(reminding	 the	 IGORFs)	which	 are	 capable	 at	 encoding	 peptides	 that	 confer	 selective	

benefits	 to	 the	 organism	 and	 illustrates	 how	 expression	 of	 random	 sequences	 could	

spuriously	lead	to	the	origination	of	new	genes.	A	very	interesting	question	is	how	these	

highly	 hydrophobic	 peptides	 traverse	 the	 cytoplasm	 towards	 the	 cellular	membranes	

without	 aggregating	or	 getting	 stuck	 into	non-specific	 interactions	with	other	 cellular	

proteins.	Recently,	Tretyachenko	et	al.	(2021)	studied	a	large	random-sequences	library	

and	 showed	 that	 many	 random	 peptides	 arrive	 to	 form	 interactions	 with	 the	 DnaK	

chaperone	 a	mechanism	which	 could	 potentially	 serve	 for	 the	 “safe”	 translocation	 of	

highly	hydrophobic	peptides	towards	the	membranes.	

	

Nevertheless,	determining	the	function	of	peptides	encoded	by	IGORFs	is	a	very	difficult	

and	ambitious	task	which	is	out	of	the	scope	of	this	manuscript.	In	fact,	we	cannot	know	

what	a	pervasively	translated	peptide	really	does	in	the	cell	but	studying	peptides	with	
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known	 functions,	we	 could	 investigate	what	 their	 structural	 properties	would	 permit	

them	to	do.	In	a	preliminary	analysis	we	defined	three	datasets	of	functionally	annotated	

peptides	from	the	SATPdb	(Structurally	annotated	therapeutic	peptides	database)	(Singh	

et	al.	2016).	They	constitute	of	1276	antimicrobial	peptides,	662	toxic	peptides	and	120	

peptides	participating	into	the	cell-cell	communication.	Our	model	revealed	that	the	cell-

cell	communication	peptides	were	clearly	depleted	in	TM	peptides	(1.6%)	while	none	of	

their	23	non-predicted	cases	was	 found	 located	 in	 the	 free-of-fold-state	 region	 (Table	

S5.1	and	Supplemental	Fig.	S5.1).	This	highlights	that	IGORFs	falling	in	the	free-of-fold-

state	 region	 or	 assigned	 as	 TMs	 do	 not	 share	 structural	 properties	 with	 cell-cell	

communication	 peptides	 and	we	 can	 hypothesize	 that	 they	will	 not	 give	 rise	 to	 such	

peptides.	 It	 is	 interesting	 to	 observe	 that	 the	 function	 of	 the	 cell-cell	 communication	

peptides	 is	 somehow	 not	 compatible	 with	 a	 high	 hydrophobic	 content.	 Indeed,	 this	

category	 of	 functional	 peptides	 consists	 of	 hormone	 peptides	 and	 quorum	 sensing	

peptides	 (Singh	 et	 al.	 2016;	 Verbeke	 et	 al.	 2017)	 which	 both	 activate	 their	 receptor	

protein	through	highly	specific	binding.	We	can	hypothesize	that	these	peptides	present	

an	increased	hydrophilic	content	in	order	to	avoid	non-specific	interactions	and	to	ensure	

the	specific	interactions	with	their	receptor.	On	the	other	hand,	52.1%	(345/662)	of	the	

toxic	peptides	were	assigned	to	the	Small	fold	state	category,	while	only	3%	(20/662)	of	

the	cases	are	non-predicted	and	 locate	 in	 the	 free-of-fold-state	region	(Table	S5.1	and	

Supplemental	Fig.	S5.1).	This	highlights	that	IGORFs	assigned	to	the	Small	fold	category	

share	 similar	 structural	 properties	 with	 known	 toxic	 peptides	 and	 this	 could	 be	 a	

potential	fate	of	these	IGORFs.	Finally,	the	antimicrobial	peptides	revealed	a	wide	range	

of	fold	states	with	only	3.4%	(43/1276)	of	the	peptides	being	IDPs	and	8.2%	(105/1276)	

being	 TMs.	 Even	 though	 19.4%	 (248/1276)	 of	 the	 antimicrobial	 peptides	 were	 not	

predicted	with	any	 fold	 state,	only	4.6%	(59/1276)	were	 localized	 in	 the	 free-of-fold-

state	 region	 revealing	 that	 the	 antimicrobial	 peptides	 present	 quite	 heterogenous	

structural	properties	(Table	S5.1	and	Supplemental	Fig.	S5.1).	However,	it	is	interesting	

to	note	that	all	three	categories	present	low	number	of	non-predicted	cases	in	the	free-

of-fold-state	region	when	compared	with	the	unevolved	IGORFs	(16.8%)	supporting	that	

this	 region	 may	 be	 depleted	 in	 functional	 peptides.	 All	 these	 results	 correspond	 to	

preliminary	observations	made	on	three	datasets	of	peptides	with	functional	annotation.	

A	 more	 detailed	 analysis	 on	 multiple	 categories	 of	 functional	 peptides	 should	 be	
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conducted	in	order	to	investigate	properly	the	potential	fate	of	different	peptides	based	

on	their	structural	properties.	

	

	

Perspectives	

In	 section	3,	we	proposed	 the	 IGORFs	 as	potential	 structural	 bricks	 that	 can	 serve	 as	

starting	points	for	de	novo	gene	emergence	or	can	be	combined,	thus	participating	in	the	

overall	 fold	evolution	of	proteins.	Our	 results	highlighted	 that	 foldable	de	novo	genes	

were	 born	 through	 the	 combination	 of	 multiple	 IGORFs	 with	 different	 foldability	

potentials	 supporting	 that	 less	 foldable	 IGORFs	 could	 be	 integrated	 into	 an	 existing	

protein	fold	and	profit	from	the	already	established	structural	stability.	As	a	result,	we	

can	speculate	that	IGORFs	localized	in	the	region	free-of-fold-state,	even	though	highly	

unstable	and	prone	to	aggregate	in	solution,	they	could	still	play	an	important	role	in	the	

evolution	of	folds	as	elementary	structural	bricks	that	could	be	integrated	into	an	already	

existing	 protein,	 thus	 stabilizing	 with	 the	 hydrophobic	 environment	 provided	 by	 the	

protein.	They	resonate	with	short	protein	 fragments,	 reported	so	 far,	 that	 result	 from	

different	 protein	 structure	 decompositions	 with	 the	 aim	 of	 partitioning	 protein	

structures	into	universal	basic	units	(Berezovsky	et	al.	2000,	2001;	Lamarine	et	al.	2001;	

Papandreou	et	al.	2004;	Alva	et	al.	2015;	Postic	et	al.	2017;	Nepomnyachiy	et	al.	2017).	

Studying	the	fold	state	predictions	together	with	the	repartition	on	the	PCA	plot	of	these	

fundamental	protein	fragments,	would	be	a	very	interesting	perspective	of	our	analysis	

which	could	further	describe	the	fold	potential	of	proteins’	elementary	structural	bricks	

outside	their	protein	environment.	Computational	simulations	of	these	small	structures	

(i.e.,	molecular	dynamics)	together	with	experimental	validation	of	their	structural	state	

would	complete	 the	analysis	by	 shedding	more	 light	 to	 their	 fold	 stability	 in	 solution.	

These	would	permit	us	to	study	in	detail	the	variability	of	fold	states	existing	in	known	

protein	building	blocks	and	compare	it	with	the	one	of	the	potential	peptides	harboring	

in	the	yeast	noncoding	genome.	
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6	General	Conclusions	

	

The	wide	use	of	transcriptomics	has	revealed	a	high	level	of	pervasive	transcription	of	

presumed	noncoding	regions,	and	a	fraction	of	the	resulting	RNAs	have	been	shown	to	be	

translated	 by	 ribosome	 profiling	 experiments.	 In	 addition,	 mass	 spectrometry	

experiments	conducted	on	different	organisms	confirm	the	existence	of	these	translation	

products	 in	 the	 cell	 with	 the	 identification	 of	 hundreds	 of	 peptides	 derived	 from	

noncoding	regions.	On	the	other	hand,	many	studies	report	examples	of	de	novo	gene	

emergence	 from	 noncoding	 regions.	 These	 genes	 display	 clear	 regulation	 patterns,	

encode	 functional	 proteins	 and	were	 shown	 to	 be	 subjected	 to	 selective	 pressure.	All	

these	results	attribute	a	central	role	to	the	so-called	noncoding	genome	in	the	emergence	

of	genetic	novelty,	which	upon	pervasive	translation	offers	the	raw	material	for	selection.	

However,	 the	mechanism	behind	 the	 emergence	 of	 de	 novo	 genes	 stays	 unclear	 until	

today.	

	

The	aim	of	my	thesis	was	to	explore	the	potential	role	of	the	noncoding	genome	in	the	

emergence	 of	 genetic	 novelty	 and	 more	 precisely	 to	 investigate	 how	 the	 noncoding	

genome	participates	in	the	emergence	of	de	novo	genes	as	well	as	in	the	evolution	and	

structural	diversity	of	proteins.	Adopting	a	structural	point	of	view,	I	aimed	at	estimating	

the	potential	of	the	noncoding	genome	at	producing	elementary	structural	bricks	which	

could	either	serve	as	the	starting	points	for	the	birth	of	de	novo	genes	or	be	integrated	

into	pre-existing	proteins.	

	

The	noncoding	genome	contains	the	elementary	building	blocks	of	proteins	

Using	the	Hydrophobic	Clusters	Analysis,	I	showed	that	the	IGORFs	of	S.	cerevisiae	contain	

elementary	building	blocks	of	proteins.	These	elementary	blocks	correspond	to	clusters	

of	strong	hydrophobic	amino	acids	that	have	been	shown	to	be	associated	with	regular	

secondary	structures	(Bitard-Feildel	et	al.	2018;	Lamiable	et	al.	2019).	The	HCA	clusters	

of	peptides	encoded	by	IGORFs	present	statistically	similar	sizes	with	the	ones	of	the	CDS	

proteins.	This	result	remains	 true	 for	all	 the	proteins	of	S.	cerevisiae	no	matter	 if	 they	

emerged	recently	or	earlier	in	the	evolutionary	time,	thereby	reinforcing	the	concept	of	

hydrophobic	 clusters	 as	 elementary	 building	 blocks	 of	 proteins	 which	 are	 found	
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widespread	 in	noncoding	sequences	and	are	retained	along	 the	evolution.	 In	contrast,	

CDS	are	enriched	in	long	linkers	reflecting	long	flexible	regions	on	the	proteins.	Although	

CDS	sequences	are	becoming	continuously	longer	with	the	evolutionary	time,	groups	of	

older	proteins	present	similar	linker	sizes	among	them	and	longer	than	the	ones	of	the	

IGORFs.	Notably,	 yeast	 proteins	 encoded	 by	 young	 Saccharomyces	 TRGs	 and	 dubious	

genes	 present	 intermediate	 linker	 sizes	 between	 IGORFs	 and	 older	 proteins,	 thus	

supporting	that	the	size	of	the	linkers	is	a	property	fixed	early	in	protein	evolution.	

	

Study	of	their	amino	acid	composition	revealed	that	the	CDS	HCA	clusters	and	linkers	are	

enriched	in	polar	and	charged	residues	compared	to	those	of	IGORFs	with	particularly,	

negatively	charged	residues	being	over-represented.	In	addition,	CDS	sequences	present	

higher	GC	content	 compared	 to	 the	 IGORFs.	Multiple	 tests	on	random	sequences	with	

different	sizes	as	well	as	different	nucleotide	and	amino	acid	compositions	revealed	that	

the	size	of	linkers	results	from	a	subtle	combination	of	sequence	length,	GC	content,	and	

finally,	of	the	resulting	amino	acid	composition.	Nevertheless,	it	is	still	unclear	whether	

the	 linker	size	 is	a	neutral	consequence	of	 the	 increase	of	CDS	size	and	enrichment	 in	

hydrophilic	residues	or	is	a	criterion	that	has	been	selected	along	with	sequence	length	

and	hydrophilic	content.	

	

IGORFs	encode	for	peptides	that	display	a	wide	diversity	of	fold	potential	

Moreover,	using	the	HCA	foldability	score,	 I	showed	that	IGORFs	encode	peptides	that	

display	a	wide	range	of	fold	potential	diversity	including	a	substantial	number	of	foldable	

peptides.	My	fold	state	prediction	model	enforced	this	observation	by	predicting	one	(or	

more)	fold	state(s)	for	72.2%	of	the	potential	peptides	encoded	by	IGORFs,	highlighting	

a	 large	 range	 of	 different	 fold	 states	 harboring	 in	 the	 yeast	 noncoding	 genome.	 In	

addition,	my	results	on	the	foldability	potential	of	proteins	with	different	ages	support	

that	the	yeast	proteome	tends	to	evolve	towards	more	foldable	proteins	supporting	that	

foldability	is	an	important	trait	that	is	constantly	optimized	during	evolution.	As	a	matter	

of	fact,	globular	proteins	are	usually	characterized	by	a	stable	and	well	folded	structure	

which	is	known	to	be	a	requirement	for	many	aspects	of	their	function	(Edwards	et	al.	

2013).	 However,	 the	 example	 of	 de	 novo	 emerged	 protein	 Bsc4	 supports	 that	 young	

proteins	present	less	optimized	folds	which	do	not	resemble	globular	proteins	but	rather	

adopt	a	more	rudimentary	structure.	Notably,	Bsc4	presents	 intermediate	 linker	sizes	
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between	IGORFs	and	CDS	sequences	(7.7,	6.3	and	11.5	residues	on	average,	respectively),	

its	hydrophobic	residues	content	 is	higher	than	the	one	of	CDS	and	typical	of	 foldable	

IGORFs	and	is	significantly	depleted	in	negatively	charged	residues	compared	with	older	

proteins.	In	line	with	the	previous	paragraph,	it	is	still	unknown	whether	the	linker	size	

is	 simply	 the	 consequence	 of	 the	 enrichment	 of	 CDS	 in	 hydrophilic	 residues	 and	 the	

increase	in	protein	size	or	whether	harboring	long	linkers	is	accompanied	by	an	increase	

in	foldability	and	is	thus	a	selected	criterion.	Overall,	all	my	results	highlight	an	intimate	

relationship	between	sequence	length,	GC	content	and	amino	acid	composition,	whose	

combination	 is	 directly	 related	 to	 the	 size	 of	 linkers	 and	 clusters	 and	 finally	 to	 the	

foldability	 of	 the	 resulting	 product.	Which	 one	 or	 which	 combination	 has	 driven	 the	

evolution	of	CDS?	It	is	a	very	complicated	question	to	which	we	do	not	have	a	clear	answer	

yet.	

	

How	is	the	pervasive	translation	tolerated	by	the	cell?	

My	results	highlight	that	an	important	fraction	of	IGORF-encoded	peptides	displays	high	

HCA	 scores	 and	 aggregation	 propensities,	 thus	 posing	 important	 concerns	 about	 the	

impact	of	these	IGORFs	on	the	cell	if	they	ever	become	expressed.	Notably,	my	prediction	

model	 assigned	 the	majority	 of	 these	peptides	with	 a	 transmembrane	helix	 fold	 state	

supporting	 that	 they	may	 “safely”	 locate	 in	membranes	 as	 proposed	 in	 Vakirlis	 et	 al.	

(2020a).	Proteins	encoded	by	smORFs	have	been	shown	to	be	localized	at	the	membranes	

of	 the	 cells	 presenting	 a	 broad	 range	 of	 functions	 such	 as	 participate	 into	 larger	

membrane	protein	complexes	or	act	as	protein	regulators	(Orr	et	al.	2020).	Concerning	

the	rest	of	high	HCA	score	IGORFs,	we	can	hypothesize	that	if	produced,	most	of	the	time,	

their	concentration	will	not	be	sufficient	so	that	they	become	deleterious	(Langenberg	et	

al.	2020).	Our	hypothesis	is	supported	by	our	observation	that	lowly	abundant	proteins	

are	more	permissive	to	higher	aggregation	propensities	than	the	highly	abundant	ones	

(see	section	3).	As	a	matter	of	fact,	the	results	from	ribosome	profiling	experiments	show	

that	the	translation	of	IGORFs	is	most	of	the	times	an	occasional	phenomenon	which	is	

not	expected	to	 lead	to	the	production	of	peptides	 in	high	concentration.	Only	a	small	

subset	of	 IGORFs	(31	 in	this	study)	presents	more	 important	signatures	of	 translation	

and	 thus	 a	more	 systematic	 expression.	 Interestingly,	my	 fold	 state	 prediction	model	

revealed	that	these	IGORFs	are	enriched	in	peptides	which	can	acquire	a	stable	structure	

autonomously	 (S3)	 or	 upon	 interaction	 with	 another	 protein	 (DIBS)	 and	 depleted	 in	
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disordered	 or	 transmembrane	 peptides	 susceptible	 to	 aggregate	 in	 the	 cytosolic	

environment.	Whether	 the	 structural	 properties	 observed	 for	 these	 highly	 translated	

IGORFs	favor	the	emergence	of	a	functionality	and	the	optimization	of	their	translational	

activity	is	a	question	that	needs	to	be	further	investigated.	

	

On	 the	 other	 hand,	 even	 though	 IGORFs	with	 intermediate	HCA	 scores	may	 exhibit	 a	

certain	 propensity	 for	 aggregation	we	 hypothesize	 that	 their	 balanced	 equilibrium	 of	

hydrophobic	 and	 hydrophilic	 residues	 could	 permit	 them	 to	 form	 small	 compact	

structures	which	are	either	stable	in	solution	or	get	stabilized	through	oligomerization	

or	 interactions	 with	 other	 proteins.	 My	 fold	 state	 prediction	 model	 supports	 this	

hypothesis,	as	IGORFs	with	intermediate	HCA	scores	are	enriched	in	peptides	expected	

to	 be	 stable	 in	 solution	 or	 peptides	 presenting	 less	 typical	 fold	 properties	 that	 get	

stabilized	 through	 disulfide	 bridges,	 when	 compared	 to	 the	 other	 two	 HCA	 score	

categories.	It	is	interesting	to	note	that	an	important	fraction	of	these	IGORFs	could	not	

be	assigned	with	any	fold	state	supporting	that	they	do	not	display	clear	similar	structural	

properties	 with	 any	 of	 the	 defined	 fold	 states.	 Whether	 these	 IGORFs,	 despite	 non	

predicted	with	a	fold	state,	fold	into	a	specific	3D	structure,	a	partially	ordered	structure	

or	more	dynamic	folds	that	stabilize	through	oligomerization	or	embedded	into	a	protein	

environment	(if	they	are	fused	with	a	larger	protein)	deserves	further	investigation.	

	

Toward	de	novo	genes		

In	 this	study,	 I	propose	 the	 IGORFs	as	elementary	modules	of	novel	protein	birth	and	

evolution.	However,	how	noncoding	sequences	become	coding	is	a	very	difficult	question	

to	 answer.	 In	 order	 to	 address	 this	 question,	 I	 studied	 the	 sequence	 and	 structural	

properties	 of	 different	 stages	 that	 precede	 the	 emergence	 of	 de	 novo	 genes.	 Using	

multiple	 ribosome	 profiling	 data,	 I	 identified	 IGORFs	 presenting	 different	 levels	 of	

translation	 signals.	 It	 must	 be	 noted	 that,	 although	 we	 assume	 that	 IGORFs	 with	 an	

important	signal	of	translation	are	more	prone	to	be	the	starting	points	which	will	further	

give	birth	to	novel	genes,	this	is	not	the	case	for	all	the	translated	IGORFs	as	their	majority	

will	 probably	 be	 short-lived	 and	 will	 never	 become	 a	 gene.	 In	 addition,	 using	

reconstruction	methods,	 I	 was	 able	 to	 reconstruct	 the	 ancestral	 noncoding	 sequence	

preceding	the	emergence	of	70	yeast	de	novo	genes	and	identify	ancIGORFs	which	indeed	

gave	birth	 to	de	novo	genes.	 It	 should	be	mentioned	 that	 the	ancestral	 reconstruction	
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methods	are	based	on	hypothetical	models	of	evolution	and	are	highly	dependent	on	the	

quality	 of	 the	 initial	 sequences’	 alignment.	 As	 a	 result,	 whether	 the	 reconstructed	

noncoding	sequences	correspond	to	the	actual	ancestral	sequences	which	gave	birth	to	

the	 de	 novo	 genes,	 we	 cannot	 know	 it	 with	 certainty.	 The	 observed	 continuum	 of	

structural	properties	between	IGORFs	and	CDS,	recalls	the	proto-gene	model	proposed	

by	 Carvunis	 et	 al.	 (2012)	which	 suggests	 that	 de	 novo	 genes	 emerge	 from	 transitory	

nongenic	 sequences	 exhibiting	 intermediate	 properties	 between	 non-gene	 and	 genes.	

Even	though	the	relation	of	our	highly	translated	and	ancIGORFs	with	the	proto-genes	is	

highly	 plausible,	 the	 continuity	 between	 our	 different	 intermediate	 states	 (translated	

IGORFs	and	ancIGORFs)	needs	to	be	further	demonstrated.	Whether	IGORFs	with	high	

translation	signals	derive	from	occasionally	translated	IGORFs	that	have	optimized	their	

translational	activity	and	whether	IGORFs	that	gave	birth	to	de	novo	genes	are	related	

with	 highly	 translated	 IGORFs	 are	 interesting	 questions	 which	 demand	 further	

investigations.	

	

The	“LEGO	brick”	model	

Studying	 the	relation	between	 the	structural	properties	of	ancIGORFs	and	 the	ones	of	

their	de	novo	genes,	we	proposed	a	model	which	gives	a	central	role	to	IGORFs	in	de	novo	

gene	emergence	and	to	a	lesser	extent	in	protein	evolution.	Based	on	this	model,	IGORFs	

can	 constitute	 starting	 points	 for	 de	 novo	 gene	 emergence	 or	 can	 be	 combined,	 thus	

increasing	protein	sizes,	and	leading	to	more	complex	protein	architectures.	This	model	

unifies	two	evolutionary	processes	that	are	usually	addressed	separately:	the	origin	of	

novel	genes	and	the	elongation	and	thus	evolution	of	pre-existing	proteins,	considering	

IGORFs	as	elementary	structural	bricks	widespread	in	noncoding	regions.	Our	model	is	

further	supported	by	our	results	showing	that	proteins	become	longer	and	acquire	more	

HCA	clusters	with	the	evolutionary	time	while,	at	the	same	time,	the	sizes	of	their	clusters	

remain	 invariant.	We	 can	 hypothesize	 that	 this	 is	 the	 outcome	 of	 the	 combination	 of	

consecutive	IGORFs	that	contain	clusters	of	similar	sizes.	

	

Moreover,	 systematic	 study	of	 the	 ancIGORFs	 and	 their	 corresponding	de	novo	genes	

revealed	that	ancIGORFs	with	different	foldability	potentials	could	be	combined	and	give	

birth	 to	 overall	 foldable	 de	 novo	 genes.	 This	 suggests	 that	 newly	 integrated	 IGORFs	

benefit	from	the	structural	properties	of	the	preexisting	IGORF	network	and	permits	the	
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integration	of	disordered	or	aggregation	prone	IGORFs.	Whether	the	extreme	structural	

properties	of	these	peptides	produced	as	monomers	in	the	cytosol	would	be	tolerated	by	

the	 cells	 or	 whether	 they	 are	 more	 likely	 to	 “exist”	 being	 integrated	 into	 protein	

structures	is	a	very	interesting	question.	

	

Predicting	the	“behavior”	of	peptides	in	the	cell	with	machine	learning	

During	my	thesis,	 I	developed	a	supervised	machine	learning	model	 in	order	to	better	

characterize	the	fold	state	of	the	potential	peptides	encoded	by	IGORFs.	The	advantage	of	

this	 model	 is	 that	 it	 is	 trained	 on	 amino	 acid	 sequences	 corresponding	 to	 real	

experimentally	characterized	structures	of	short	peptides	and	consequently	can	give	us	

an	indication	about	the	potential	behavior	of	the	peptides	in	the	cell.	Overall,	the	model	

presented	 good	 performance	 at	 predicting	 the	 fold	 state	 of	 independent	 datasets	 of	

coding	 sequences.	 Further	 study	 of	 the	 properties	 of	 the	 five	 different	 fold	 state	

categories	 with	 PCA	 reveals	 a	 continuum	 among	 them	 which	 reflects	 their	 overall	

hydropathy.	Disordered	peptides	enriched	in	polar	residues	are	clearly	separated	from	

highly	 hydrophobic	 transmembrane	 peptides	while	 the	 other	 three	 fold	 states	 lie	 in-

between.	However,	I	identified	a	region	along	this	continuum	which	does	not	correspond	

to	any	of	the	defined	fold	states.	Whether	this	region	free	of	fold	state	corresponds	to	a	

fold	category	that	we	did	not	consider	in	our	five	fold	states	of	reference	(technical	bias)	

or	 it	 reflects	 a	 real	 gap	 in	 the	 structural	 space	 (biological	 bias)	 is	 a	 very	 interesting	

question.	Therefore,	a	systematic	and	exhaustive	research	of	different	types	of	peptides	

from	multiple	sequence	and	structural	databases	is	needed	in	order	to	identify	potential	

fold	states	that	are	missing	from	this	initial	analysis.	

	

However,	almost	17%	of	the	total	IGORFs	were	not	predicted	with	a	specific	fold	state	

and	 located	 in	 this	 region	 free-of-fold-state.	 Based	on	 their	 high	hydrophobic	 content	

(though	not	as	high	as	the	TMs)	we	can	stipulate	that	if	produced,	they	would	correspond	

to	 peptides	 unstable	 in	 polar	 environments	 and	 which	 may	 stabilize	 only	 under	

oligomerization	or	embedded	in	mixed	polar-apolar	environments	such	as	the	membrane	

surface.	One	should	notice	that	proteins	correspond	also	to	those	mixed	environments	

presenting	a	highly	hydrophobic	core	and	a	polar	surface.	In	line	with	our	“LEGO	brick”	

model,	 is	 tempting	 to	 speculate	 that	 these	 hydrophobic	 peptides,	 unable	 to	 fold	 as	

monomers	in	aqueous	environments	(and	potentially	deleterious),	could	participate	in	
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the	 proteins’	 construction	 benefiting	 from	 the	 overall	 protein	 environment.	 Multiple	

methods	 of	 protein	 structure	 decomposition	 into	 universal	 basic	 units	 have	 been	

proposed	(Berezovsky	et	al.	2000,	2001;	Lamarine	et	al.	2001;	Papandreou	et	al.	2004;	

Alva	et	al.	2015;	Postic	et	al.	2017;	Nepomnyachiy	et	al.	2017).	An	interesting	perspective	

would	be	to	investigate	whether	some	elementary	structural	bricks	of	proteins	can	locate	

in	 this	 free-of-fold-state	 region	 thus,	 supporting	 that	 these	 peptides	 are	

underrepresented	in	the	nature	as	monomers	but	can	exist	inside	protein	structures.	

	

Concerning	the	fold	state	predictions	on	the	potential	peptides	encoded	by	IGORFs,	my	

model	assigned	one	(or	more)	fold	state(s)	for	72.2%	of	the	IGORFs	supporting	that	the	

IGORFs	can	acquire	a	wide	range	of	fold	states,	in	line	with	the	results	of	the	HCA	fold	

potential	score.	However,	the	PCA	plot	revealed	that	multiple	IGORF-encoded	peptides	

predicted	as	TM,	S3	or	Small	fold	states	were	located	outside	their	corresponding	ellipses	

towards	 the	 region	 free-of-fold-state.	 Notably,	 my	 results	 on	 known	 folded	 peptides	

revealed	 that	 although	 real	 TM	 peptides	 were	 systematically	 located	 outside	 their	

corresponding	 ellipse,	 the	 model	 was	 capable	 at	 recognizing	 them	 and	 correctly	

predicting	them	as	TM	fold	state.	These	observations	pose	questions	about	the	accuracy	

of	the	predictions	made	by	my	model	and	therefore,	its	overall	accuracy.	Do	these	IGORFs	

predicted	as	foldable	in	solution	(S3	and	Small)	really	correspond	to	the	fold	state	they	

are	assigned	to,	even	though	located	out	of	their	corresponding	ellipse	(like	the	example	

of	the	TMs),	or	is	the	model	wrong	when	assigning	them	to	a	fold	state?	This	is	a	question	

to	which	I	do	not	have	a	clear	answer.	

	

However,	 I	must	 highlight	 that	my	prediction	model	was	 trained	 on	 a	 dataset	 of	 fold	

categories	extracted	from	the	coding	world.	These	peptides	are	evolutionary	optimized	

in	order	to	satisfy	the	structure-stability-function	compromise	and	consequently	these	

evolutionary	constraints	are	expected	to	have	shaped	the	amino	acid	composition	of	their	

sequences.	On	the	contrary,	the	IGORFs	correspond	to	unevolved	sequences	which	may	

be	able	to	fold	but	have	not	been	optimized	for	a	function	and	therefore	their	amino	acid	

sequences	present	a	more	important	variability.	As	a	result,	I	am	posing	the	question	to	

which	extend	we	can	apply	a	model	 trained	 to	 recognize	 fold	 states	 corresponding	 to	

coding	sequences	to	unevolved	noncoding	sequences.	This	relates	with	the	observations	

made	on	the	fold	prediction	of	AlphaFold2	on	the	proteome	of	S.	cerevisiae.	As	a	matter	of	
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fact,	AlphaFold2	has	been	trained	to	predict	folds	that	are	well	represented	by	structures	

in	the	PDB	database	while	it	struggles	to	predict	with	accuracy	the	3D	structure	of	young	

proteins	 that	 are	 probably	 characterized	 by	 more	 rudimentary	 folds	 and	 are	

underrepresented	in	the	structural	databases.		

	

On	the	other	hand,	my	model	did	not	make	a	fold	state	prediction	for	27.8%	of	the	IGORFs.	

60%	 of	 the	 non-predicted	 cases	 populate	 the	 free-of-fold	 state	 regions	 while	 the	

remaining	40%	correspond	to	peptides	located	inside	the	ellipses	of	different	fold	states.	

It	is	unclear	why	my	model	is	not	capable	at	assigning	them	to	a	specific	fold	category,	

however	 I	 can	 hypothesize	 that	 they	 could	 potentially	 acquire	 a	 3D	 fold	 in	 solution	

according	to	their	localization	on	the	PCA.	It	must	be	also	mentioned	that	the	PCA	is	a	

dimensionality-reduction	method	which	permits	to	visualize	highly	complex	datasets	in	

simple	2D	or	3D	scatterplots.	Inevitably,	this	data	transformation	into	new	uncorrelated	

variables	(PCs)	leads	to	partial	loss	of	information.	As	a	matter	of	fact,	the	three	first	PCs	

of	the	PCA	are	capable	at	explaining	up	to	70.4%	of	the	overall	data	variance.	Studying	

the	repartition	of	the	data	beyond	the	three	first	PCs,	could	potentially	clarify	the	reason	

why	these	cases	were	not	predicted	as	a	fold	state,	even	though	they	overlap	with	fold	

state	 ellipses	 at	 the	 first	 three	 PCs.	 In	 addition,	 the	 PCA	 was	 used	 as	 an	 initial	

representation	of	the	data	with	the	aim	to	capture	general	tendencies.	A	more	careful	and	

detailed	 comparison	 of	 the	 descriptors	 among	 the	 different	 predictions	 made	 by	my	

model	is	of	crucial	importance	to	understand	their	subtle	differences.		

	

Finally,	both	these	observations,	the	mislocation	of	some	fold	state	predictions	from	their	

corresponding	ellipses	and	 the	overlap	of	non-predicted	cases	with	 fold	state	ellipses,	

make	us	pose	question	about	the	initial	dataset	on	which	the	model	was	trained.	Whether	

the	 training	 set	 consisted	 of	 too	 specific	 examples	 of	 the	 predefined	 fold	 states	 thus,	

making	 the	 model	 to	 face	 difficulty	 at	 generalizing	 in	 cases	 with	 more	 variability?	

Although	 the	 redundancy	 of	 homologous	 sequences	 (more	 than	 30%	 identity)	 was	

eliminated	from	the	training	set,	this	still	stays	a	possible	scenario.	Enlarging	the	training	

set	and	monitoring	the	impact	of	the	variability	in	it,	is	to	be	further	investigated.	
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Methodologies	developed	during	this	thesis		

During	my	thesis	I	developed	a	package	of	bioinformatic	tools	named	ORFmine	which	is	

available	 via	 Github:	 https://github.com/i2bc/ORFmine.	 ORFmine	 consists	 of	 two	

bionformatic	tools	developed	by	me	and	my	colleague	Nicolas	Chevrollier	in	python3.	The	

first	one,	named	ORFtrack,	aims	at	“tracking”	all	the	ORFs	of	a	genome	and	annotate	them	

based	on	their	overlapping	with	known	annotated	genomic	features.	This	tool	was	used	

in	order	to	extract	all	the	IGORFs	from	the	noncoding	genome	of	S.	cerevisiae.	The	second	

one,	named	ORFold	aims	at	predicting	the	foldability	potential	together	with	the	disorder	

and	 aggregation	 propensity	 of	 any	 amino	 acid	 sequence	 by	 making	 use	 of	 three	

independent	bioinformatic	tools:	pyHCA,	IuPRED2	and	Tango,	respectively.	It	was	used	

in	order	to	estimate	the	fold	potential	of	the	IGORFs	and	detect	their	HCA	clusters	and	

linkers.	 Both	 these	 bioinformatic	 tools	 are	 independent	 but	 their	 combination	 can	

provide	 a	 global	 picture	 of	 the	 fold	 potential	 and	 the	 structural	 properties	 of	 all	 the	

potential	peptides	of	a	genome.	ORFtrack	can	be	applied	to	any	sequenced	and	annotated	

genome	(from	bacteria	to	human)	while	ORFfold	can	be	used	to	any	amino	acid	sequence	

longer	than	20	residues.	In	addition,	with	the	help	of	a	master	student	who	I	supervised,	

Camille	 Rabier,	 I	 developed	 another	 tool,	 named	 ORFribo,	 which	 aims	 at	 mapping	

correctly	ribosome	profiling	data	on	the	IGORFs	of	a	given	genome.	This	tool	was	used	in	

order	 to	 identify	 interesting	 IGORF	 candidates	 presenting	 weak	 or	 high	 signals	 of	

translation	 (occasionally	 and	 highly	 translated,	 respectively).	 ORFribo,	 is	 not	 yet	

integrated	in	the	ORFmine	package	as	it	still	needs	some	adjustments.	Finally,	I	developed	

a	supervised	SVM-based	machine	learning	model	which	aims	at	predicting	the	fold	state	

of	a	given	short	amino	acid	sequence	and	thus	complement	the	fold	potential	estimation	

of	ORFold.	Even	though	in	a	preliminary	state,	this	model	presents	good	performance	at	

predicting	 the	 fold	 state	 of	 known	 structured	 peptides.	 However,	 its	 predictions	 on	

peptides	encoded	by	unevolved	IGORFs	are	debatable	and	more	controls	need	to	be	done.		

	

Perspectives		

During	my	 thesis	 I	developed	a	pipeline	which	permitted	me	 to	study	 the	overall	 fold	

potential	 and	 the	 structural	 properties	 of	 all	 the	 potential	 peptides	 encoded	 by	 the	

noncoding	genome	of	S.	cerevisiae.	The	yeast	was	used	as	model	organism	grace	to	 its	

normal	sized	and	well	annotated	genome.	Once	my	protocol	is	set,	it	would	be	interesting	

to	apply	 it	on	different	organisms	with	different	 level	of	genomic	complexity	and	thus	
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explore	 the	 repertoire	 of	 fold	 potential	 harboring	 in	 their	 noncoding	 genomes.	 Some	

preliminary	 results	 on	 different	 organisms	 (E.	 coli,	 H.	 volcanii,	 D.	 melanogaster,	 M.	

musculus)	 were	 presented	 in	 the	 Methodology	 section	 but	 more	 systematic	 analyses	

should	be	conducted	towards	the	exploration	of	the	noncoding	world.		

	

In	addition,	the	recent	breakthrough	of	AlphaFold2	and	its	high	performance	at	predicting	

the	3D	 structure	 of	 proteins	 has	 revisited	 the	 subject	 of	 protein	 folding	based	on	 the	

advancement	 of	 the	 deep	 learning	 approaches.	 Although	 our	 results	 support	 that	

AlphaFold2	 predicts	 with	 lower	 accuracy	 young	 proteins	 with	 less	 canonical	 folds,	 it	

would	be	interesting	to	study	its	prediction	performance	on	the	ensemble	of	the	potential	

peptides	encoded	by	the	IGORFs	and	compare	them	with	the	ones	of	the	fold	potential	

predicted	by	HCA.	Whether	IGORFs	that	present	intermediate	HCA	scores	are	predicted	

with	higher	accuracy,	thus	supporting	their	overall	foldable	character	is	a	very	interesting	

question	 that	 should	 be	 further	 explored.	 In	 addition,	 other	 methods	 rather	 than	

AlphaFold2	exist,	aiming	at	predicting	the	3D	fold	of	proteins	or	peptides	with	ab	initio	

approaches	rather	than	deep	learning	(Maupetit	et	al.	2009;	Yang	et	al.	2020).	Predicting	

the	 3D	 structure	 of	 peptides	 encoded	 by	 IGORFs	 with	 different	 fold	 prediction	

approaches,	would	permit	us	to	generate	multiple	repertoires	of	structural	models	of	the	

IGORFs.	 Comparison	 of	 these	 structural	 models	 would	 permit	 us	 to	 identify	 IGORFs	

presenting	 similar	 structure	 predictions	 with	 different	methods	 (permitting	 us	 to	 be	

more	 confident	 about	 their	 3D	 structure	 prediction)	 from	 IGORFs	 presenting	 more	

diverse	structure	predictions.		

	

Moreover,	the	translation	of	IGORFs	is	an	occasional	event	that	cannot	be	captured	easily	

by	ribosome	profiling	experiments	which	correspond	to	a	genome-wide	snapshot	of	the	

cell’s	translation.	Consequently,	 the	detection	of	these	noncanonical	translation	events	

demands	 the	 integration	 of	multiple	 ribosome	 profiling	 data	 in	 order	 to	 increase	 the	

probability	 of	 detecting	 this	 weak	 signal	 of	 translation	 and	 differentiate	 it	 from	

experimental	noise.	During	my	thesis,	 I	combined	the	 information	of	 five	 independent	

ribosome	profiling	experiments	and	detected	IGORFs	with	weak	and	stronger	signal	of	

translation.	Nowadays,	multiple	ribosome	profiling	data	are	stored	on	public	databases	

and	their	vast	information	still	stays	unexploited.	Expanding	the	number	of	experiments	

(and	maybe	of	experimental	conditions)	and	combining	their	information,	would	permit	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 191	

us	 to	 characterize	 with	 more	 confidence	 the	 translational	 activity	 of	 the	 noncoding	

genome	 and	 identify	 interesting	 IGORF	 candidates	 presenting	 more	 systematic	

translation.	ORFribo	is	an	automated	method	permitting	to	correctly	map	Ribo	Seq	reads	

on	the	noncoding	genome	of	an	organism.	It	could	be	used	in	order	to	create	a	large	and	

interactive	 database	 which	 would	 integrate	 the	 information	 of	 multiple	 ribosome	

profiling	data.	
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7	Supplemental	Methods	

Estimation	of	the	fold	potential,	the	aggregation,	disorder	and	TM	propensities	

The	 	 foldability	 potential	 was	 estimated	 using	 a	 score	 derived	 from	 the	 HCA	

(Hydrophobic	Cluster	Analysis)	approach	using	the	HCAtk	(Bitard-Feildel	and	Callebaut	

2018a;	 Bitard-Feildel	 et	 al.	 2018).	 HCA	 divides	 a	 protein	 sequence	 into	 (i)	 clusters	

gathering	strong	hydrophobic	residues	(V,	I,	L,	F,	M,	Y,	W)	or	cysteines,	and	(ii)	linkers	

composed	of	at	least	4	non-hydrophobic	residues	(or	a	proline).	The	fold	potential	of	a	

sequence	is	determined	by	its	density	in	hydrophobic	clusters	but	also	by	the	density	of	

hydrophobic	amino	acids	within	these	clusters.	It	is	reflected	with	the	HCA	score	which	

ranges	 from	-10	to	+10	where	 low	and	high	HCA	scores	 indicate	sequences	which	are	

likely	 to	 be	 disordered	 or	 expected	 to	 form	 aggregates	 in	 solution.	 respectively.	 The	

aggregation	propensity	of	 a	 sequence	was	assessed	with	TANGO	 (Linding	et	 al.	 2004;	

Fernandez-Escamilla	et	al.	2004;	Rousseau	et	al.	2006a).	Following	the	criteria	presented	

in	Linding	et	al.	(2004),	a	residue	was	considered	as	participating	in	an	aggregation	prone	

region	 if	 it	was	 located	 in	 a	 segment	of	 at	 least	 five	 consecutive	 residues	which	were	

predicted	 as	 populating	 a	 b-aggregated	 conformation	 for	 more	 than	 5%.	 Then,	 the	

aggregation	propensity	of	each	sequence	is	defined	as	the	fraction	of	residues	predicted	

in	 aggregation	 prone	 segments.	 The	 disorder	 propensity	 was	 probed	 with	 IUPred	

(Dosztanyi	et	al.	2005;	Mészáros	et	al.	2009;	Dosztányi	2018;	Mészáros	et	al.	2018)	using	

the	 short	 prediction	 option.	 To	 be	 consistent	with	 the	 criteria	 used	 for	 assessing	 the	

aggregation	propensity,	we	considered	a	residue	as	participating	in	a	disordered	region	

if	it	is	located	in	a	segment	of	at	least	five	consecutive	residues,	each	presenting	a	disorder	

probability	higher	than	0.5.	Then,	the	disorder	propensity	of	each	sequence	is	defined	as	

the	fraction	of	residues	predicted	in	disordered	prone	segments.		

	

Ribosome	Profiling	analyses		

Ribosome	 profiling	 experiments:	 Cells	 were	 grown	 overnight	 in	 0.5	 liter	 of	 liquid	

glucose-YPD	till	an	OD600	of	0.6,	50	microg/microl	of	cycloheximide	were	added	to	the	

culture	 and	 incubated	 during	 5	min	 and	 kept	 at	 +	 4°C.	 The	 pellet	 of	 yeast	 cells	 was	

recovered	by	centrifugation	during	5	min	at	5000	rpm	in	Beckman	F10	rotor	at	+	4°C.	

Total	RNA	and	polysomes	were	extracted	as	previously	described	(Baudin-Baillieu	et	al.	

2014).	Briefly,	 cells	were	 lysated	by	 vortex	during	15	min	 in	500	microl	 of	 polysome	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 193	

buffer	(10	mM	Tris-acetate	pH7.5	;	0.1M	NaCl	and	30	mM	Mg-acetate)	in	presence	of	glass	

beads	 in	 Eppendorf	 tube,	 followed	 by	 5	 min	 of	 centrifugation	 at	 16	 krcf	 at	 +	 4°C.	

Ribosome-protected	mRNA	fragments	(RPFs)	were	generated	by	the	treatment	following	

the	ratio	of	1	OD260nm	of	extract	with	15	U	of	RNase	I	during	1	h	at	25°C.	Monosomes	were	

collected	by	2h15	min	centrifugation	on	a	24%	sucrose	cushion	at	+4°C	on	TLA	110	rotor	

at	110	krpm.	The	monosomes	were	resuspended	with	500	microl	of	polysome	buffer.	

RNA	was	purified	by	phenol–chloroform	extraction	and	28-34	nucleotides	RPFs	were	

recovered	by	electrophoresis	in	a	17%	acrylamide	(19/1)	7M	urea	in	1x	TAE	gel.	These	

RPFs	 were	 depleted	 of	 ribosomal	 RNA	 by	 treatment	 with	 the	 Ribo-Zero	 Gold	 rRNA	

removal	kit	for	yeast	from	Illumina	company.	RPF	libraries	were	generated	with	NEBNext	

Small	RNA	Sample	Prep	Kit,	according	to	the	manufacturer’s	protocol,	and	were	checked	

with	 the	 bioanalyser	 small	 RNA	 kit.	 Sequencing	 was	 performed	 by	 a	 HighSeq	 2000	

(Illumina)	75-nucleotide	single-read	protocol.	
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8	Supplemental	material	

	

	

Supplemental	Figure	S3.1	|	3D	mapping	of	HCA	hydrophobic	clusters	and	linkers		

HCA	hydrophobic	clusters	(colored)	and	linkers	(in	grey)	delineated	for	the	sequence	of	Bucandin	

(pdb	code:	1f94).	The	HCA-based	sequence,	which	consists	in	translating	the	protein	sequence	

into	a	binary	pattern,	is	given	under	the	protein	sequence.	“1”	corresponds	to	strong	hydrophobic	

amino	acids	(V,	I,	L,	F,	M,	Y,	W)	and	“0”	to	the	other	amino	acids	(see	Methods	for	more	details).	

HCA	clusters	and	linkers	are	mapped	on	the	3D	structure	of	Bucandin	with	respect	to	the	color	

code	used	for	the	sequence.		
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Supplemental	 Figure	 S3.2	 |	 Random	 IGORFs	 behave	 similarly	 to	 real	 IGORFs	 for	 most	

properties		

Boxplot	 distributions	 of	 sequence	 and	 HCA-based	 structural	 properties	 of	 real	 IGORFs	 and	

random	 IGORFs	 (A)	 sequence	 size	 (B)	 number	 of	HCA	 clusters	 per	 sequence	 (C)	 size	 of	HCA	

clusters	(D)	size	of	linkers.	Asterisks	denote	level	of	significance:	*p	<	5	×	10-2,	**p	<	1	×	10-2,	***p	

<	1	×	10-3		
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Supplemental	Figure	S3.3	|	CDS	are	enriched	in	hydrophilic	residues		

(A)	Log	ratios	of	amino	acid	frequencies	in	HCA	clusters	of	CDS	versus	HCA	clusters	of	IGORFs.	

Negative	values	(purple)	correspond	to	amino	acids	with	higher	frequency	in	IGORF	HCA	clusters	

while	positive	values	 (orange)	correspond	 to	amino	acids	 that	are	more	 frequent	 in	CDS	HCA	
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linkers.	 (B)	Log	 ratios	of	 amino	acid	 frequencies	 in	HCA	 linkers	of	CDS	versus	HCA	 linkers	of	

IGORFs.		

	

	

Supplemental	Figure	S3.4	|	Abundant	proteins	are	enriched	in	negatively	charged	amino	

acids		

Protein	abundances	(in	parts	per	million)	of	all	cytoplasmic	proteins	are	plotted	against	 their	

corresponding	 negatively	 charged	 residues	 (Aspartate	 and	 Glutamate)	 frequencies.	 The	

Spearman	rank	correlation	coefficient	is	indicated	on	the	plot	(p-value	<	2.2	×	10-16).		
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Supplemental	Figure	S3.5	|	CDS	are	enriched	in	ancient	amino	acids		

(A)	Frequencies	of	amino	acids	of	CDS	(orange)	and	IGORFs	(purple)	ordered	according	to	their	

chronology	of	appearance	during	evolution	as	defined	in	Trifonov	et	al.	(2001)	(B)	Frequencies	

of	 codons	 of	 CDS	 (orange)	 and	 IGORFs	 (purple)	 ordered	 according	 to	 their	 chronology	 of	

appearance	during	evolution	as	defined	in		Trifonov	et	al.	(2001).	Amino	acids	or	codons	enriched	

in	CDS	or	IGORFs	are	indicated	by	orange	or	purple	stars	respectively	(z-test,	p-values	<	5	×	10-

2).	
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Supplemental	 Figure	 S3.6	 |	 IGORFs	 encompass	 the	 large	 spectrum	 of	 fold	 potential	 of	

canonical	proteins	(raw	data)	

(A)	Histograms	of	the	HCA	scores	of	the	three	reference	datasets	(i.e.	disordered	regions,	globular	

domains	and	transmembrane	regions	–	green,	black	and	pink	histograms	respectively).	Dotted	

black	lines	delineate	the	boundaries	of	the	low,	intermediate	and	high	HCA	score	categories.	The	

boundaries	are	defined	so	 that	95%	of	globular	domains	 fall	 into	 the	 intermediate	HCA	score	

category	whereas	the	low	and	high	HCA	score	categories	include	all	sequences	with	HCA	values	

that	are	lower	or	higher	than	those	of	97.5%	of	globular	domains	respectively.	(B)	Histograms	of	

the	HCA	scores	of	CDS	and	IGORFs.	The	percentages	of	sequences	in	each	category	are	given	for	

all	datasets.		
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Supplemental	 Figure	 S3.7	 |	 Reconstruction	 of	 the	 ancestral	 IGORFs	 (ancIGORFs)	which	

gave	birth	to	known	de	novo	genes	

(A)	Identification	of	homologous	sequences	(that	can	be	an	orthologous	gene	or	a	homologous	

noncoding	sequence)	of	the	de	novo	gene	of	interest	in	all	neighboring	species	with	blast	(Altschul	

et	 al.	 1990)	 (see	Methods	 for	more	 details)	 (B)	Multiple	 sequence	 alignment	 of	 the	 detected	

homologous	nucleotide	sequences	with	MACSE	(Ranwez	et	al.	2011,	2018)	and	construction	of	

their	phylogenetic	tree	with	PhyML	(Guindon	et	al.	2010)	(C)	reconstruction	of	the	corresponding	

ancestral	nongenic	nucleotide	sequence	(in	yellow)	with	PRANK	(Löytynoja	and	Goldman	2010).	

The	latter	is	subsequently	translated	into	the	three	frames.	STOP	codons	are	indicated	with	stars.	

(D)	Alignment	of	all	the	reconstructed	IGORFs	(amino	acid	sequences)	with	the	de	novo	gene(s)	

of	interest	with	LALIGN	(Huang	and	Miller	1991)	and	detection	of	the	IGORFs	sharing	a	homology	

with	 it	 (i.e.	 ancIGORFs)	 (E)	 Alignment	 of	 the	 S.	 cerevisiae	 de	 novo	 gene	 YLL020C	 with	 the	

translation	 products	 of	 its	 corresponding	 ancestral	 noncoding	 sequence	 as	 predicted	 for	 the	

ancestor	of	S.	 cerevisiae	and	S.	paradoxus.	 STOP	codons	are	 indicated	with	 red	 stars.	The	 two	

IGORFs	which	gave	birth	 to	 the	YLL020C	gene	 (ancIGORFs)	are	 indicated	by	blue	and	orange	

boxes	 respectively.	 The	 two	 ancIGORFs	 are	 distributed	 across	 two	 frames	 showing	 that	 the	

current	version	of	YLL020C	results	from	a	frameshift	event.	The	sections	of	the	ancIGORFs	that	
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participate	in	the	resulting	de	novo	gene	are	indicated	in	bold.	The	HCA	scores	of	the	blue	and	

orange	IGORFs	are	0.48	(foldable)	and	7.71	(aggregation-prone)	respectively.		

	
	
	
	

	
	

	
Supplemental	Figure	S3.8	|	Appearance	of	a	Methionine	and	fusion	of	two	ancIGORFs	in	the	

S.	cerevisiae	lineage	

The	sequences	of	the	YOR333C	de	novo	gene	and	its	corresponding	noncoding	regions	in	the	five	

neighboring	species	of	S.	cerevisiae	are	indicated	in	blue.	The	ancestral	sequences	are	indicated	

in	yellow.	STOP	codons	are	represented	with	red	stars.	The	appearance	of	the	Methionine	in	the	

S.	cerevisiae	lineage	is	highlighted	with	a	grey	box	while	the	STOP	codon	mutation	that	led	to	the	

fusion	of	the	two	ancIGORFs	in	the	S.	cerevisiae	lineage	is	indicated	with	a	green	box.		
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Supplemental	 Figure	 S3.9	 |	 De	 novo	 gene	 categories	 display	 similar	 sizes	 while	 their	

corresponding	ancIGORFs	exhibit	different	sizes	

(A)	Boxplot	 comparing	 the	sequence	size	of	multiple	and	single	ancIGORF	de	novo	genes.	 (B)	

Boxplot	 comparing	 the	 sequence	 size	 of	 ancIGORFs	 preceding	 the	 emergence	 of	 single	 and	

multiple	ancIGORF	de	novo	genes.		
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Supplemental	Figure	S3.10	|	Translated	IGORFs	are	mostly	initiated	with	Methionine		

Frequencies	of	the	20	amino	acids	at	the	first	translated	position	for	highly	translated	IGORFs	

(red)	 and	 occasionally	 translated	 ones	 (yellow).	 Gini	 indexes	 which	 reflect	 the	 statistical	

dispersion	 of	 the	 20	 amino	 acids	 at	 the	 first	 translated	 position	 are	 given	 for	 highly	 and	

occasionally	translated	IGORFs	in	red	and	yellow	respectively.	Gini	index	values	range	from	0	to	

1	and	high	values	reflect	the	fact	that	the	first	translated	positions	are	enriched	in	specific	amino	

acids,	particularly,	in	MET	and	to	a	lesser	extent	in	LEU	for	occasionally	translated	IGORFs.	Amino	

acids	which	 are	 significantly	 observed	 at	 the	 first	 translated	 position	 compared	 to	 the	 other	

translated	positions	are	indicated	with	a	star	(z-test	p.value	<	5	×	10-2).		
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Supplemental	Figure	S3.11	|	The	nucleotide	composition	of	ancestral	and	highly	translated	

IGORFs	seems	to	play	an	important	role	in	the	linker's	size	

(A)	 Linkers’	 size	 for	 real	 IGORFs	 (purple),	 artificial	 IGORFs	 (i.e.	 ORFs	 with	 size	 similar	 to	

ancIGORFs	 but	 nucleotide	 composition	 of	 IGORFs)	 (white),	 ancIGORFs	 with	 scrambled	

nucleotides	 (light	grey)	and	real	ancIGORFs	(grey).	 (B)	Linkers’	 size	 for	 real	 IGORFs	 (purple),	

artificial	 IGORFs	 (i.e.	 ORFs	 with	 size	 similar	 to	 highly	 translated	 IGORFs	 but	 nucleotide	

composition	of	IGORFs)	(white),	highly	translated	IGORFs	with	scrambled	nucleotides	(ligh	tred)	

and	real	highly	translated	IGORFs	(red).	The	p-values	were	computed	with	the	Mann-Whitney	U	

test	(one-sided).	Asterisks	denote	level	of	significance:	*p	<	5	×	10-2,	**p	<	1	×	10-2,	***p	<	1	×	10-

3.	The	color	of	the	asterisks	indicates	the	ORF	category	used	for	the	comparison.		

	

	

	

	

***
**

0

10

20

30

40

IGORFs artificial
IGORFs

scrambled
ancIGORFs

ancIGORFs

N
u

m
b

e
r 

o
f 

re
s
id

u
e

s

Linker sizeA

*

0

10

20

30

40

IGORFs artificial
IGORFs

scrambled
highly trans.

highly trans.

N
u
m

b
e
r 

o
f 

re
s
id

u
e

s

Linker sizeB



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 205	

	

	
Supplemental	Figure	S3.12	|	Impact	of	the	hydrophobicity	content	and	sequence	length	on	

the	size	of	clusters	and	linkers	

In	 order	 to	 properly	 decipher	 the	 contributions	 of	 the	 amino	 acid	 composition	 and	 sequence	

length,	we	generated	artificial	sequences	with	different	sizes	and	different	hydrophobic	residue	

contents	(1000	sequences	per	bin	of	sequence	size	and	hydrophobicity	content).	(A)	The	median	

values	of	the	resulting	cluster	sizes	are	subsequently	plotted	in	number	of	residues.	(B)	For	the	

same	artificial	sequences,	the	median	values	of	the	resulting	linker	sizes	are	plotted	in	number	of	

residues.	 In	 both	 plots	 sequences	 are	 colored	 according	 to	 their	 hydrophobicity	 content	 that	

ranges	from	0.1	(i.e.	10%	of	strong	hydrophobic	residues	according	to	HCA	definition:	V,	I,	L,	M,	

Y,	F,	W	and	C)	to	0.9.	For	a	given	sequence	length,	hydrophobic	and	hydrophilic	contents	have	a	

significant	impact	on	the	size	of	clusters	and	linkers	respectively	with	an	even	more	important	

effect	on	long	sequences.		
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Supplemental	Figure	S3.13	|	Effect	of	the	sequence	length,	and	GC	content	on	the	size	of	

clusters	and	linkers	

Number	of	HCA	clusters	(A),	size	of	HCA	clusters	(B)	and	size	of	linkers	(C)	for	real	CDS	sequences	

(orange),	scrambled	CDS	sequences	(light	orange)	and	artificial	IGORFs	(i.e.	with	size	similar	to	

CDS	but	nucleotide	compositions	of	IGORFs	(white).	The	clusters	of	scrambled	CDS	are	similar	to	

those	of	CDS	while	their	linkers	are	slightly	shorter	(Mann-Whitney	U	test,	P	=	4	×	10-2)	showing	

that	 randomly	 and	 according	 to	 the	 GC	 content	 and	 size	 of	 CDS,	 long	 though	 slightly	 shorter	

linkers	can	be	generated.	In	contrast,	the	linkers	of	artificial	IGORFs	are	of	comparable	size	to	

those	of	IGORFs	though	slightly	larger,	while	the	artificial	clusters	are	longer	(Mann-Whitney	U	

test,	P	=	4	×	10-2	and	P	=	6	×	10-4	respectively).	This	reflects	that	at	the	IGORF	GC	content,	the	

sequence	length	alone	has	a	small	impact	on	cluster	size	while	the	effect	is	marginal	on	linker	

size,	and	overall	cannot	explain	the	increase	in	linker	size	observed	for	CDS.	Indeed,	the	artificial	

linkers	are	clearly	shorter	than	those	of	both	real	and	scrambled	CDS	(Mann-Whitney	U	test,	P	=	

7.1	×	10-8	and	2	×	10-4	respectively)	highlighting	the	impact	of	the	amino	acid	composition	but	

also	of	the	GC	content	of	the	CDS	on	their	linker	size.	The	p-values	were	computed	with	the	Mann-

Whitney	U	test	(one-sided).	Asterisks	denote	level	of	significance:	*p	<	5	×	10-2,	**p	<	1	×	10-2,	***p	

<	1	×	10-3.	The	color	of	the	asterisks	indicates	the	ORF	category	used	for	the	comparison.		

	
	
	

	
	
	
	

******

0

10

20

30

40

IGORFs artificial

IGORFs

scrambled

CDS

CDS

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

Cluster numberA

***
***

0

10

20

30

40

IGORFs artificial

IGORFs

scrambled

CDS

CDS

N
u
m

b
e
r 

o
f 
re

s
id

u
e
s

Cluster sizeB

****
****

0

10

20

30

40

IGORFs artificial

IGORFs

scrambled

CDS

CDS

N
u
m

b
e
r 

o
f 
re

s
id

u
e
s

Linker sizeC



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 207	

	
	

	
	

	

	
Supplemental	 Figure	 S3.14	 |	 Impact	 of	 the	 GC	 content	 on	 the	 resulting	 amino	 acid	

compositions		

Radar	plot	reflecting	the	20	amino	acid	frequencies	for	real	CDS	(light	orange	shadow),	scrambled	

CDS	(orange	 line)	and	artificial	 IGORFs	(i.e.	sequences	with	size	similar	 to	CDS	but	nucleotide	

compositions	 of	 IGORFs	 (black	 line)).	 CDS	 and	 artificial	 IGORFs	 exhibit	 slightly	 different	 GC	

contents	(GC	content	of	36.1%	and	39.6%	for	IGORFs	and	CDS	respectively)	that	lead	to	slightly	

different	amino	acid	compositions.		
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Supplemental	 Figure	 S3.15	 |	 Lowly	 abundant	 proteins	 display	 a	 large	 spectrum	 of	

aggregation	propensities	

Protein	abundances	(in	parts	per	million)	of	all	cytoplasmic	proteins	are	plotted	against	 their	

corresponding	aggregation	propensity	predicted	with	TANGO	(Linding	et	al.	2004;	Fernandez-

Escamilla	et	al.	2004;	Rousseau	et	al.	2006).	The	Spearman	rank	correlation	coefficient	is	-0.30	

with	p-value	<	2.2	×	10-16.		
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Supplemental	Figure	S3.16	|	The	fusion	of	IGORFs	can	lead	to	longer	clusters	or	linkers		

The	sequence	of	the	YMR153C-A	de	novo	gene	(A)	and	YPR126C	(B)	are	indicated	by	the	blue	

boxes	while	 their	corresponding	ancestral	sequences	are	 indicated	by	the	yellow	boxes.	STOP	

codons	are	represented	by	red	stars.	HCA	clusters	are	highlighted	by	red	boxes	while	HCA	linkers	

correspond	to	the	regions	connecting	two	HCA	clusters	or	extremities	that	are	not	associated	with	

an	HCA	cluster.		
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Supplemental	Figure	S3.17	|	Quality	control	for	the	28-mer	RPFs	used	for	the	detection	of	

occasionally	and	selectively	translated	IGORFs	for	all	five	experiments	

The	left	panel	shows	that	90%	(in	average)	of	the	28-mer	RPFs	are	in	frame	with	the	start	codon	

of	the	CDS	(Frame	0).	The	right	panel	presents	the	number	of	RPFs	at	each	nucleotide	position	

(determined	by	the	site	P	of	each	28-mer)	showing	accumulation	of	signal	over	the	CDS	(reads	

detected	 only	 after	 the	 start	 codon),	 and	 a	 nice	 periodicity	 (of	 frame	 0)	 over	 the	 100	 first	

nucleotides.	 Both	 these	 results	 inform	 us	 about	 the	 good	 quality	 of	 the	 RPF	 data	 in	 all	 five	

experiments.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 212	

Supplemental	Table	S3.1.	One-sided	Mann-Whitney	U	test	p-values	for	all	the	ORF	categories	–	

Sequence	length	(in	amino	acids)		

	

	 IGORFs	
Occasionally	

translated	

Highly	

translated	

Ancestral	

IGORFs	

De	novo	

genes	
CDS	

IGORFs	 -	 3	×	10-4	 3	×	10-2	 2.2	×	10-23	 5.2	×	10-38	 1.4	×	10-153	

Occasionally	

translated	
	 -	 2	×	10-1	 1.3	×	10-15	 1.8	×	10-36	 1.0	×	10-150	

Highly	

translated	
	 	 -	 1.3	×	10-3	 1.5	×	10-13	 2.2	×	10-19	

Ancestral	

IGORFs	
	 	 	 -	 1.1	×	10-16	 1.7	×	10-63	

De	novo	

genes	
	 	 	 	 -	 5.2	×	10-20	

CDS	 	 	 	 	 	 -	

	

	

	

	

Supplemental	Table	S3.2.	One-sided	Mann-Whitney	U	test	p-values	for	all	the	ORF	categories	-	

Number	of	clusters	

	

	 IGORFs	
Occasionally	

translated	

Highly	

translated	

Ancestral	

IGORFs	

De	novo	

genes	
CDS	

IGORFs	 -	 2	×	10-2	 6	×	10-2	 3.2	×	10-15	 1	×	10-35	 7	×	10-148	

Occasionally	

translated	
	 -	 2	×	10-1	 8	×	10-11	 3.3	×	10-33	 1.9	×	10-142	

Highly	

translated	
	 	 -	 1	×	10-2	 1.1	×	10-10	 2.2	×	10-18	

Ancestral	

IGORFs	
	 	 	 -	 1.7	×	10-13	 1.8	×	10-60	

De	novo		

genes	
	 	 	 	 -	 3.3	×	10-20	

CDS	 	 	 	 	 	 -	
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Supplemental	Table	S3.3.	Two-sided	Mann-Whitney	U	test	p-values	for	all	the	ORF	categories	–	

Cluster	size	

	

	 IGORFs	
Occasionally	

translated	

Highly	

translated	

Ancestral	

IGORFs	

De	novo	

genes	
CDS	

IGORFs	 -	 5	×	10-1	 7	×	10-1	 6	×	10-1	 8	×	10-2	 1	×	10-1	

Occasionally	

translated	
	 -	 6	×	10-1	 6	×	10-1	 6	×	10-2	 1	×	10-1	

Highly	

translated	
	 	 -	 7	×	10-1	 4	×	10-1	 2	×	10-1	

Ancestral	

IGORFs	
	 	 	 -	 5	×	10-2	 1	×	10-1	

De	novo	

genes	
	 	 	 	 -	 2	×	10-3	

CDS	 	 	 	 	 	 -	

	

	

	

	

	

Supplemental	Table	S3.4.	One-sided	Mann-Whitney	U	test	p-values	for	all	the	ORF	categories	–	

Linker	size	

	

	 IGORFs	
Occasionally	

translated	

Highly	

translated	

Ancestral	

IGORFs	

De	novo	

genes	
CDS	

IGORFs	 -	 1	×	10-1	 2	×	10-2	 1	×	10-2	 9	×	10-5	 6.3	×	10-11	

Occasionally	

translated	
	 -	 9	×	10-2	 1	×	10-1	 2	×	10-3	 1.5	×	10-8	

Highly	

translated	
	 	 -	 7	×	10-1	 3	×	10-1	 8	×	10-3	

Ancestral	

IGORFs	
	 	 	 -	 3	×	10-2	 7.9	×	10-7	

De	novo	

genes	
	 	 	 	 -	 1.1	×	10-3	

CDS	 	 	 	 	 	 -	
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Supplemental	 Table	 S3.5.	 Strong	 hydrophobic	 residues	 (V,I,L,F,M,Y,W)	 frequency	 per	 ORF	

category	for	the	three	HCA	score	categories.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Low	

HCA	

Intermediate	

HCA	

High	

HCA	
Total	

IGORFs	 0.239	 0.391	 0.508	 0.410	

Occasionally	

translated	
0.241	 0.384	 0.494	 0.401	

Highly	translated	 0.251	 0.355	 0.406	 0.353	

Ancestral	IGORFs	 0.241	 0.376	 0.508	 0.392	

De	novo	genes	 0.215	 0.398	 0.479	 0.410	

CDS	 0.219	 0.332	 0.475	 0.328	
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Supplemental	 Table	 S3.6.	 The	 70	 de	 novo	 genes	 of	 Saccharomyces	 cerevisiae	 used	 for	 the	

ancestral	 reconstruction.	 For	 the	 last	 two	 columns	 the	 hydrophobic	 residues	 considered	 are:	

V,I,L,F,M,Y,W	and	the		hydrophilic	ones	are:	K,R,D,E,Q,N.		

Gene	

name	

Ancestral	

type	

Protein	

size	

HCA	

score	

HCA	

bin	

Clusters	

count	

Disorder	

propensity	

Aggregation	

propensity	

Hydrophobic	

percentage	

Hydrophilic	

percentage	

YAL026C-A	 multiple	 145	 5.54	 high	 5	 0	 0.407	 0.475	 0.31	

YAL031W-A	 multiple	 102	 3.87	 intermediate	 4	 0	 0.284	 0.431	 0.225	

YAL047W-A	 single	 109	 4.06	 intermediate	 6	 0.055	 0.312	 0.451	 0.203	

YBL100W-C	 multiple	 39	 5.97	 high	 3	 0.205	 0.256	 0.386	 0.361	

YBR056C-B	 single	 52	 -5.44	 low	 1	 0.5	 0.096	 0.211	 0.308	

YBR206W	 multiple	 107	 1.68	 intermediate	 4	 0.056	 0.121	 0.299	 0.243	

YCL058C	 single	 152	 6.28	 high	 6	 0	 0.546	 0.52	 0.107	

YCR085W	 multiple	 117	 4.33	 intermediate	 6	 0	 0.385	 0.512	 0.196	

YDL016C	 single	 100	 0.78	 intermediate	 3	 0	 0.05	 0.37	 0.25	

YDL158C	 multiple	 102	 7.32	 high	 2	 0	 0.598	 0.509	 0.256	

YDR024W	 multiple	 161	 0.01	 intermediate	 7	 0.062	 0.174	 0.336	 0.273	

YDR154C	 multiple	 116	 0.34	 intermediate	 3	 0.086	 0.19	 0.379	 0.198	

YDR327W	 multiple	 108	 1.98	 intermediate	 5	 0.046	 0.093	 0.381	 0.27	

YDR396W	 multiple	 166	 4.39	 intermediate	 8	 0	 0.373	 0.385	 0.222	

YDR426C	 multiple	 125	 6.5	 high	 4	 0	 0.392	 0.504	 0.232	

YER014C-A	 multiple	 153	 4.46	 intermediate	 10	 0.039	 0.301	 0.399	 0.248	

YER046W-A	 multiple	 109	 2.96	 intermediate	 7	 0.073	 0.165	 0.404	 0.212	

YER076W-A	 single	 115	 3.82	 intermediate	 3	 0.087	 0.252	 0.409	 0.26	

YER087C-A	 multiple	 183	 2.54	 intermediate	 9	 0.055	 0.213	 0.382	 0.131	

YER133W-A	 multiple	 113	 2.3	 intermediate	 4	 0.071	 0.124	 0.39	 0.239	

YFR026C	 single	 169	 1.56	 intermediate	 6	 0.101	 0.213	 0.314	 0.32	

YGL152C	 multiple	 225	 5.4	 high	 9	 0	 0.409	 0.422	 0.129	

YGL165C	 multiple	 192	 3.51	 intermediate	 7	 0.026	 0.349	 0.421	 0.218	

YGL214W	 single	 161	 0.34	 intermediate	 7	 0.05	 0.081	 0.324	 0.267	

YGR011W	 multiple	 108	 3.06	 intermediate	 5	 0	 0.352	 0.407	 0.24	

YGR050C	 multiple	 118	 1.79	 intermediate	 5	 0.153	 0.042	 0.372	 0.287	

YGR064W	 multiple	 122	 5.04	 intermediate	 5	 0	 0.115	 0.353	 0.229	

YGR137W	 multiple	 124	 2.85	 intermediate	 5	 0.04	 0.298	 0.434	 0.242	

YGR151C	 single	 111	 0.26	 intermediate	 7	 0.045	 0.135	 0.369	 0.387	

YHL006W-A	 single	 117	 2.59	 intermediate	 8	 0	 0.051	 0.352	 0.155	

YHR022C-A	 multiple	 29	 4.86	 intermediate	 3	 0	 0	 0.447	 0.274	

YHR071C-A	 single	 106	 7.51	 high	 3	 0	 0.179	 0.452	 0.264	

YHR180W	 single	 163	 1.77	 intermediate	 9	 0.037	 0.227	 0.404	 0.227	

YIL028W	 multiple	 132	 4.84	 intermediate	 6	 0	 0.333	 0.448	 0.219	

YIL030W-A	 multiple	 112	 5.07	 intermediate	 4	 0	 0.384	 0.482	 0.242	

YIL066W-A	 multiple	 147	 2.14	 intermediate	 6	 0.088	 0.259	 0.341	 0.205	

YIL071W-A	 multiple	 158	 4.16	 intermediate	 8	 0.082	 0.399	 0.444	 0.196	

YIL086C	 multiple	 102	 -0.97	 intermediate	 5	 0.157	 0.118	 0.332	 0.314	
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YJL077W-B	 multiple	 32	 4.09	 intermediate	 2	 0	 0.156	 0.436	 0.374	

YJL119C	 single	 107	 0.29	 intermediate	 4	 0.047	 0.224	 0.328	 0.326	

YJL142C	 multiple	 130	 4.83	 intermediate	 7	 0.054	 0.523	 0.483	 0.215	

YJL211C	 multiple	 147	 0.02	 intermediate	 7	 0.095	 0.136	 0.328	 0.273	

YJR018W	 multiple	 120	 4.38	 intermediate	 4	 0	 0.25	 0.39	 0.184	

YJR020W	 single	 110	 3.38	 intermediate	 5	 0	 0.245	 0.391	 0.227	

YJR087W	 multiple	 116	 3.87	 intermediate	 5	 0	 0.267	 0.432	 0.207	

YKL036C	 multiple	 130	 1.35	 intermediate	 3	 0.131	 0.362	 0.37	 0.261	

YKL053W	 multiple	 124	 2.3	 intermediate	 6	 0.056	 0.452	 0.54	 0.217	

YKL076C	 multiple	 127	 3.34	 intermediate	 6	 0	 0.299	 0.447	 0.259	

YKL123W	 multiple	 126	 4.13	 intermediate	 5	 0	 0.31	 0.428	 0.317	

YKL136W	 multiple	 132	 -0.14	 intermediate	 6	 0	 0.311	 0.355	 0.182	

YKL153W	 multiple	 169	 3.54	 intermediate	 6	 0.036	 0.249	 0.414	 0.308	

YLL020C	 multiple	 101	 3.85	 intermediate	 6	 0.059	 0.436	 0.487	 0.18	

YLR041W	 multiple	 106	 4.71	 intermediate	 3	 0.094	 0	 0.34	 0.378	

YLR171W	 single	 129	 4.02	 intermediate	 6	 0.047	 0.504	 0.473	 0.165	

YLR255C	 multiple	 117	 -1.42	 intermediate	 3	 0.197	 0.154	 0.308	 0.342	

YLR412C-A	 multiple	 68	 -4.51	 low	 2	 0.676	 0	 0.221	 0.515	

YLR434C	 multiple	 127	 5.39	 high	 4	 0	 0.181	 0.393	 0.329	

YMR052C-A	 single	 121	 7.22	 high	 4	 0	 0.479	 0.562	 0.207	

YMR103C	 multiple	 120	 -2.13	 intermediate	 3	 0.108	 0.158	 0.342	 0.251	

YMR119W-A	 single	 124	 8.48	 high	 2	 0	 0.5	 0.557	 0.216	

YMR153C-A	 multiple	 111	 4.12	 intermediate	 3	 0.045	 0.252	 0.432	 0.252	

YMR173W-A	 multiple	 394	 2.82	 intermediate	 21	 0.018	 0.312	 0.445	 0.111	

YNL150W	 multiple	 135	 1.89	 intermediate	 6	 0.104	 0.222	 0.348	 0.23	

YNL226W	 multiple	 136	 2.43	 intermediate	 5	 0.037	 0.228	 0.434	 0.236	

YNL269W	 multiple	 131	 1.98	 intermediate	 7	 0.122	 0.168	 0.375	 0.305	

YOR316C-A	 multiple	 69	 -1.2	 intermediate	 3	 0.217	 0	 0.318	 0.274	

YOR333C	 multiple	 138	 5.46	 high	 6	 0	 0.159	 0.413	 0.326	

YPL056C	 multiple	 101	 0.53	 intermediate	 6	 0	 0.218	 0.367	 0.209	

YPR126C	 multiple	 102	 7.54	 high	 4	 0	 0.461	 0.568	 0.186	

YPR150W	 multiple	 173	 5.63	 high	 5	 0	 0.416	 0.462	 0.169	
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Supplemental	Table	S3.7.	Frequencies	of	the	three	STOP	codons	for	different	ORF	categories.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 UAA	 UAG	 UGA	

IGORFs	 0.45	 0.24	 0.31	

Occasionally	translated	 0.48	 0.23	 0.29	

Highly	translated	 0.48	 0.32	 0.20	

CDS	 0.47	 0.23	 0.30	
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Table	S5.1.	Fold	state	predictions	made	by	our	model	on	different	datasets	of	functional	peptides.	

Prediction	
Antimicrobial		

peptides	(%)	

Toxic		

peptides	(%)	

Cell	communication	

peptides	(%)	

IDPs	 3.4	 1.8	 17.5	

DIBS	 22.9	 10.0	 28.3	

S3	 11.0	 8.0	 9.2	

Small	 22.5	 52.1	 17.5	

TMs	 8.2	 6.2	 1.6	

Multiple	 12.5	 7.4	 6.7	

Non-Predicted	 19.4	 14.5	 19.2	

	

	

	

Figure	S5.1.	Principal	Components	Analysis	of	the	training	set	presented	with	colored	ellipses	

(ellipse	level	at	90%	of	the	data)	and	projection	of	the	different	categories	of	functional	peptides	

(in	colored	densities).	(A)	PCA	of	the	first	and	the	second	PCs	for	antimicrobial	peptides;	(B)	PCA	

of	the	first	and	the	second	PCs	for	toxic	peptides;	(C)	PCA	of	the	first	and	the	second	PCs	for	cell-

cell	communication	peptides;	(D)	PCA	of	the	first	and	the	third	PCs	for	antimicrobial	peptides;	

(E)	PCA	of	the	first	and	the	third	PCs	for	toxic	peptides;	(F)	PCA	of	the	first	and	the	third	PCs	for	

cell-cell	communication	peptides.		The	non-predicted	cases	are	projected	in	yellow	points.	All	the	

data	are	colored	based	on	the	fold	state	prediction	made	by	our	model;	Colors:	Green	for	IDPs,	

Red	for	DIBS,	Blue	for	Small,	Black	for	S3	and	Purple	for	TMs.	
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Résumée	en	français		

	

Le	génome	non	codant	

Les	efforts	pour	détecter	et	annoter	les	séquences	codant	pour	les	protéines	(appelées	

CDS)	dans	les	génomes	à	l'aide	d'approches	bioinformatiques	se	sont	traditionnellement	

appuyés	 sur	 des	 règles	 arbitraires	 telles	 que	 la	 conservation	 des	 acides	 aminés	 des	

séquences,	la	recherche	d'un	codon	de	départ	AUG	et	une	longueur	minimale	de	50	ou	

100	acides	aminés	(Basrai	et	al.	1997,	Couso	et	Patraquim	2017,	Chen	et	al.	2020).	Ces	

règles	d'annotation	ont	été	largement	adoptées	pour	des	raisons	de	commodité	et	afin	

d'assurer	 un	 faible	 nombre	 de	 faux	 positifs.	 En	 conséquence,	 plusieurs	 petits	 ORFs	

(smORF),	 sans	preuve	expérimentale	de	 fonction,	ont	été	systématiquement	rejetés	et	

pendant	de	nombreuses	années,	tous	ces	smORF	intergéniques	ont	été	considérés	comme	

des	 séquences	 non-codantes	 (Basrai	 et	 al.	 1997;	 Ruiz-Orera	 et	 Albà	 2019).	 Dans	 les	

années	1960,	le	terme	«	Junk	DNA	»	est	devenu	très	populaire	tandis	qu'en	1972,	le	terme	

a	été	officiellement	inventé	indépendamment	par	Susumu	Ohno	(Ohno	1972)	et	David	

Comings	 (Comings	 1972).	 Ce	 «	 terme	 provocateur	 »	 a	 été	 utilisé	 pour	 souligner	 «	

l'inutilité	»	de	ces	régions	d'ADN.	

	

Le	génome	non-codant	n'est	pas	aussi	silencieux	qu'on	le	croyait		

Les	estimations	actuelles	indiquent	que	moins	de	2	%	du	génome	des	mammifères	code	

pour	des	séquences	codantes	(Clark	et	al.	2011	;	Lybecker	et	al.	2014).	Cependant,	 les	

approches	 de	 transcriptomique	 ont	 révélé	 que	 la	 grande	 majorité	 du	 génome	 est	

transcrite	au-delà	des	limites	des	gènes	connus	(Kapranov	et	al.	2002	;	Clark	et	al.	2011).	

Ce	phénomène	est	défini	comme	une	transcription	omniprésente	et	est	responsable	de	la	

génération	d'un	grand	ensemble	de	différentes	molécules	d'ARN	différentes	de	celles	qui	

codent	pour	les	protéines	canoniques	et	celles	avec	des	fonctions	déjà	établies	telles	que	

les	ARNt,	 les	ARNr,	 les	snRNA	et	les	snoRNA	(Jensen	et	al.	2013).	Ces	observations,	de	

transcription	 au-delà	 des	 gènes	 codant	 pour	 les	 protéines,	 ont	 attribué	 un	 rôle	

essentiellement	régulateur	au	génome	non-codant.	Il	est	devenu	clair	que	l'ADN	jusqu'à	

présent	appelé	«	Junk	DNA	»	n'était	pas	aussi	inutile	et	inactif	qu'on	le	pensait	auparavant	

et	qu'il	pouvait	participer	à	de	multiples	fonctions	cellulaires.	
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De	plus,	ces	dernières	années,	le	translatome	(i.e.	étude	de	la	traduction	de	l'ensemble	

d'un	génome)	de	nombreux	organismes	eucaryotes	a	été	largement	exploré	et	a	prouvé	

qu'en	plus	des	 séquences	 codant	pour	 les	protéines	 longues	 classiques	 (gènes	 codant	

pour	les	protéines	annotés),	il	existe	de	nombreux	petits	ORFs	présumés	non-codants	qui	

peuvent	être	traduits,	conduisant	à	la	production	de	petits	peptides	à	partir	de	régions	

génomiques	présumées	non-codantes	(Ingolia	et	al.	2009,	2011	;	Ruiz-Orera	et	al.	2018	;	

Ruiz-Orera	 et	 Albà	 2019).	 Ces	 smORFs	 avec	 des	 signatures	 de	 traduction	 sont	

principalement	 détectés	 dans	 des	 transcrits	 précédemment	 considérés	 comme	 non-

codants.	Après	leur	identification,	il	a	été	prouvé	que	beaucoup	d'entre	eux	ont	des	rôles	

régulateurs	 importants	pour	 l'expression	des	gènes,	pour	produire	des	micropeptides	

fonctionnels	 ou	 même	 être	 simplement	 le	 résultat	 de	 la	 traduction	 omniprésente	

conduisant	probablement	à	 la	production	de	peptides	non-fonctionnels	(Ruiz-Orera	et	

Albà	2019).	

	

Les	 produits	 codés	 par	 les	 smORF	 sont	 appelés	 peptides	 codés	 par	 smORF	 (SEP)	 ou	

micropeptides.	Pendant	des	années,	 les	smORF	et	 leurs	micropeptides	correspondants	

ont	 été	 négligés	 en	 raison	 de	 leur	 petite	 taille	 et	 de	 la	 difficulté	 de	 leur	 détection	

(Makarewich	et	Olson	2017).	Cependant,	grâce	aux	études	protéiques	et	à	l'avancement	

des	techniques	de	spectrométrie	de	masse,	plusieurs	micropeptides	ont	été	caractérisés	

et	par	conséquent,	le	domaine	de	la	peptidomique	a	attiré	plus	d'attention.	

	

Tous	ces	résultats	prouvent	qu'un	nombre	non	négligeable	de	loci	en	dehors	des	régions	

codant	 pour	 les	 protéines	 bien	 définies	 chez	 les	 bactéries	 (Ndah	 et	 al.	 2017;	Weaver	

Jeremy	et	al.	2019),	les	champignons	(Ingolia	et	al.	2009;	Wilson	et	Masel	2011	;	Carvunis	

et	al.	2012),	les	animaux	(Ingolia	et	al.	2011	;	Chew	et	al.	2013	;	Bazzini	et	al.	2014	;	Ingolia	

et	al.	2014	;	Aspden	et	al.	2014	;	Ruiz-Orera	et	al.	2018	)	et	les	plantes	(Hanada	et	al.	2007	

;	Hsu	et	al.	2016),	sont	transcrits	et	traduits	de	manière	omniprésente,	conduisant	à	la	

production	de	petites	protéines	dans	la	cellule.	Des	questions	intéressantes	concernant	

le	devenir	de	ces	petites	protéines	et	leur	impact	sur	la	cellule	peuvent	être	posées.	Ces	

peptides	 pourraient-ils	 acquérir	 un	 rôle	 fonctionnel	 pour	 la	 cellule,	 ou	 sont-ils	

simplement	le	résultat	d'une	traduction	non-canonique	?	
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En	fait,	malgré	leur	petite	taille,	il	a	été	démontré	que	les	micropeptides	jouent	un	rôle	

essentiel	 dans	 de	 nombreux	 processus	 biologiques,	 notamment	 le	 développement,	 la	

réparation	de	l'ADN,	l'homéostasie	du	calcium,	le	métabolisme,	la	signalisation	du	stress,	

la	 fusion	 des	 myoblastes	 et	 la	 mort	 cellulaire	 (Makarewich	 et	 Olson	 2017).	 Certains	

micropeptides,	codés	par	les	smORF	dans	les	régions	5'	UTR	des	gènes,	jouent	souvent	

un	rôle	régulateur	dans	l'expression	des	gènes,	révélant	un	rôle	fonctionnel	important	de	

ces	petites	protéines.	En	parallèle,	les	progrès	des	technologies	de	séquençage	de	l'ADN	

et	 les	 puissantes	 méthodes	 de	 séquençage	 de	 nouvelle	 génération	 ont	 conduit	 au	

séquençage	de	plusieurs	génomes	(Hu	et	al.	2011).	La	disponibilité	de	plusieurs	génomes	

séquencés	 a	 fait	 progresser	 le	 domaine	 de	 la	 génomique	 comparative	 (Gerstein	 et	 al.	

2007)	et	a	révélé	plusieurs	exemples	de	gènes	fonctionnels	codant	pour	des	protéines	qui	

ont	émergé	de	régions	auparavant	non-codantes,	appelés	gènes	de	novo	(Levine	et	al.	

2006;	Cai	et	2008	;	Li	et	coll.	2009	;	Knowles	et	McLysaght	2009	;	Li	et	coll.	2010	;	Murphy	

et	McLysaght	2012	;	Gubala	et	coll.	2017	;	Vakirlis	et	coll.	2018	;	Zhang	et	coll.	2019a).	

	

Toutes	ces	études	montrent	que	le	génome	dit	non-codant	est	un	réservoir	important	de	

petits	 ORFs	 qui,	 lors	 d'une	 transcription	 et	 d'une	 traduction	 omniprésentes,	 peuvent	

produire	un	nombre	important	de	petits	peptides	dans	le	cytosol	cellulaire.	Néanmoins,	

la	plupart	de	ces	peptides,	s'ils	ne	sont	pas	délétères	pour	 la	cellule,	devraient	être	de	

courte	durée	et	instantanément	dégradés.	Cependant,	de	nombreux	exemples	montrent	

que	parfois	de	nouveaux	produits	fonctionnels	peuvent	émerger	de	cette	procédure.	Tous	

ces	résultats	attribuent	un	rôle	central	au	génome	non-codant	dans	 l'émergence	de	 la	

nouveauté	génétique,	qui,	lors	d'une	traduction	omniprésente,	offre	la	matière	première	

pour	la	sélection	et	l'évolution	de	gènes	de	novo.	

	

Les	gènes	de	novo	

Pendant	de	nombreuses	 années,	 l'émergence	de	novo	de	 gènes	 à	partir	 de	 séquences	

d'ADN	auparavant	non-codantes	a	constitué	un	événement	rarement	observé	et	n'a	pas	

été	considéré	comme	un	processus	évolutif	potentiel	de	naissance	de	gènes	(Jacob	1977	

;	Siepel	2009	;	Ohno	2013	;	Zhang	et	al.	2019b).	Susumu	Ohno,	dans	son	livre	«	Evolution	

by	gene	duplication	»	(Ohno	2013)	soutient	que	tous	les	nouveaux	gènes	proviennent	de	

gènes	 déjà	 existants	 tandis	 que	 François	 Jacob	 a	 affirmé	 que	 «	 la	 probabilité	 qu'une	

protéine	fonctionnelle	apparaisse	de	novo	par	association	aléatoire	d'acides	aminés	est	
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pratiquement	zéro	»	(Jacob	1977).	Cependant,	l'émergence	de	novo	à	partir	de	régions	

non-codantes	s'est	maintenant	avérée	être	un	mécanisme	supplémentaire	indéniable	et	

des	études	rapportant	des	preuves	de	la	naissance	de	gènes	de	novo	sont	publiées	chaque	

année.	

	

Plusieurs	modèles	ont	été	proposés	pour	tenter	d'expliquer	le	mécanisme	sous-jacent	de	

l'émergence	de	gènes	de	novo.	Le	modèle	du	«	continuum	»	repose	sur	l'hypothèse	que	

les	gènes	issus	de	novo	pourraient	initialement	présenter	des	caractéristiques	simples	et	

devenir	progressivement	plus	complexes	au	cours	de	l'évolution	(Carvunis	et	al.	2012).	

Les	 auteurs	 ont	 introduit	 la	 notion	 de	 proto-gènes	 qui	 correspondent	 à	 des	 stades	

intermédiaires	 et	 réversibles	 de	 la	 naissance	 de	 gène	 de	 novo.	 D'autre	 part,	

contrairement	au	modèle	des	proto-gènes,	le	modèle	de	préadaptation	soutient	que	les	

gènes	 récemment	 apparus	devraient	 afficher	des	 caractéristiques	 géniques	 exagérées,	

plutôt	 que	 des	 caractéristiques	 intermédiaires	 entre	 les	 séquences	 non	 géniques	 et	

géniques	(Wilson	et	al.	2017;	Van	Oss	et	Carvunis	2019).	Selon	Wilson	et	al.	(2017),	les	

nouveaux	gènes	ne	naissent	que	de	séquences	qui	se	trouvent	être	pré-adaptées,	pour	ne	

pas	 être	 nocives	 pour	 la	 cellule.	 De	 telles	 séquences	 non-nocives	 sont	 des	 séquences	

solubles,	 avec	une	 forte	propension	 intrinsèque	au	désordre,	 leur	permettant	d'éviter	

d'agréger	ce	qui	serait	délétère	dans	l'environnement	cellulaire	aqueux.	Un	autre	modèle,	

nommé	 «	grow	 slow	 and	 moult	 »,	 soutient	 que	 les	 ORF	 codant	 pour	 les	 protéines	

pourraient	 éventuellement	 étendre	 leurs	 extrémités	 via	 la	 traduction	 au-delà	 des	

bordures	de	la	séquence	codante,	occasionnelle	dans	un	premier	temps	et	constitutive	

plus	tard,	conduisant	à	l'expression	de	nouveaux	domaines	aux	N-	et	C-terminaux.	Ces	

nouveaux	domaines	peuvent	être	bien	intégrés	dans	la	structure	protéique	préexistante	

et	être	encore	affinés	par	sélection	offrant	de	nouvelles	fonctions	à	l'ancienne	protéine	

ou	séparés	par	leur	ORF	d'hébergement	conduisant	à	la	création	d'un	gène	de	novo.	

	

Tous	 ces	modèles	 soutiennent	que	 le	peptide	de	novo	 initial,	 une	 fois	 établi,	 évoluera	

davantage	vers	une	protéine	plus	canonique	et	bien	repliée.	En	conséquence,	ils	donnent	

tous	un	rôle	central	au	potentiel	de	repliement	des	ORFs	non-codants	dans	l'émergence	

de	la	nouveauté	génétique.	Notamment,	le	génome	non-codant	peut	être	vu	comme	un	

réservoir	d'innovation	moléculaire	apportant	une	plasticité	génétique	aux	organismes	et	

leur	permettant	d'évoluer	dans	leur	environnement.	
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Le	but	de	cette	thèse	

L'objectif	général	de	ma	thèse	est	d'étudier	le	rôle	potentiel	du	génome	non-codant	dans	

l'émergence	de	la	nouveauté	génétique.	En	particulier,	j'ai	cherché	à	étudier	comment	le	

génome	non-codant	participe	à	l'émergence	de	gènes	de	novo	ainsi	qu'à	l'évolution	et	à	

la	diversité	structurale	des	protéines.	Pour	répondre	à	cette	question,	j'ai	adopté	un	point	

de	vue	structural	car	il	est	bien	connu	que	la	fonction	des	protéines	est	intimement	liée	à	

leur	 structure.	 Par	 conséquent,	 j'ai	 caractérisé	 la	 diversité	 du	potentiel	 de	 repliement	

(propension	au	désordre,	à	l'état	replié	ou	à	l'agrégation)	des	séquences	d'acides	aminés	

codées	par	 tous	 les	ORFs	 intergéniques	 (IGORF)	de	S.	 cerevisiae	 afin	de	 (i)	 estimer	 le	

potentiel	 du	 génome	 non-codant	 pour	 produire	 de	 nouvelles	 briques	 protéiques,	 qui	

peuvent	 soit	 donner	 naissance	 à	 de	 nouveaux	 gènes,	 soit	 être	 intégrées	 dans	 des	

protéines	préexistantes,	participant	ainsi	à	l'évolution	et	à	la	diversité	de	la	structure	des	

protéines,	et	(ii)	explorer	si	la	grande	diversité	structurelle	observée	dans	les	protéomes	

est	 déjà	 présente	 dans	 les	 séquences	 non-codantes,	 et	 ainsi	 étudier	 la	 relation,	 le	 cas	

échéant,	entre	le	potentiel	de	repliement	des	séquences	d'acides	aminés	codées	par	les	

IGORF	et	la	diversité	structurale	des	protéines.	

	

	

Principaux	résultats	

La	première	partie	de	ma	thèse	consistait	à	développer	une	méthode	bioinformatique	

pour	 la	 détection	 de	 tous	 les	 IGORFs	 de	 S.	 cerevisiae	 et	 l'estimation	 du	 potentiel	 de	

repliement	des	peptides	potentiels	codés	par	ceux-ci.	Pour	cela,	nous	avons	développé	un	

outil	bioinformatique	appelé	ORFtrack	qui	vise	à	«	extraire	»	tous	les	ORFs	d'un	génome	

donné	et	annoter	leur	chevauchement	(ou	pas,	dans	le	cas	des	IGORFs)	avec	des	éléments	

génomiques	 annotées.	 Ensuite,	 nous	 avons	 développé	 ORFold	 qui	 vise	 à	 estimer	 le	

potentiel	 de	 repliement	 ainsi	 que	 la	 propension	 au	 désordre	 et	 à	 l'agrégation	 d'une	

séquence	d'acides	aminés	donnée	et	nous	l'avons	appliqué	sur	les	peptides	codés	par	les	

IGORFs.	 ORFold	 utilise	 trois	 outils	 bioinformatiques	 académiques	 et	 libres	 (pyHCA	

(Faure	 et	 Callebaut	 2013a,	 2013b	 ;	 Bitard-Feildel	 et	 Callebaut	 2018	 ;	 Lamiable	 et	 al.	

2019),	 IuPRED2	(Mészáros	et	al.	2018	 ;	Dosztányi	2018	 ;	Erdős	et	Dosztányi	2020)	et	

Tango	 (Linding	 et	 al.	 2004	 ;	 Fernandez-Escamilla	 et	 al.	 2004	 ;	 Rousseau	 et	 al.	 2006),	

respectivement)	 et	 donne	 une	 indication	 du	 potentiel	 de	 repliement	 (ainsi	 que	 des	
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informations	 complémentaires	 sur	 le	 désordre	 et	 la	 propension	 à	 l'agrégation)	 pour	

chaque	 séquence	 d'acides	 aminés	 codés	 par	 les	 ORFs	 codants	 et	 non-codants	 d'un	

génome.	 Ces	 deux	 outils	 bioinformatiques	 sont	 regroupés	 dans	 un	 package	 appelé	

ORFmine	qui	est	 librement	accessible	via	GitHub	(GitHub	2021).	Le	package	ORFmine	

ainsi	qu'un	protocole	détaillé	étape	par	étape	d'extraction	des	IGORFs	et	de	l'estimation	

du	potentiel	de	repliement	des	peptides	qu'ils	encodent	ont	été	présentés	dans	le	livre	

Methods	Molecular	Biology	dans	un	issue	specific	à	«	Computational	Peptide	Science	»	

dans	le	chapitre	intitulé	"Exploring	the	peptide	potential	of	genomes".	

	

Les	résultats	produits	par	ces	méthodes	nous	ont	permis	de	caractériser	le	potentiel	de	

repliement	ainsi	que	d'autres	propriétés	de	séquence	et	de	structure	des	peptides	codés	

par	les	IGORFs.	En	particulier,	nous	avons	montré	que	les	IGORFs	codent	pour	une	grande	

diversité	de	peptides	potentiels,	y	compris	des	peptides	à	forte	propension	au	désordre	

ou	à	l'agrégation,	et	de	manière	surprenante,	une	majorité	prédite	comme	capables	de	se	

replier	 en	 3	 dimensions	 (i.e.	 foldables).	 De	 plus,	 en	 utilisant	 l'Analyse	 des	 Cluster	

Hydrophobes	(HCA),	nous	avons	montré	que	les	IGORF	de	S.	cerevisiae	contiennent	les	

briques	 élémentaires	 de	 construction	 de	 protéines.	 Ces	 briques	 élémentaires	

correspondent	à	des	amas	d'acides	aminés	hydrophobes	(dits	clusters	HCA)	qui	ont	été	

montrés	comme	correspondant	aux	structures	secondaires	régulières	(Bitard-Feildel	et	

al.	2018	;	Lamiable	et	al.	2019).	Les	clusters	HCA	identifiés	dans	les	peptides	encodés	par	

les	 IGORFs	 présentent	 des	 tailles	 statistiquement	 similaires	 à	 ceux	 trouvés	 dans	 les		

protéines	encodées	par	les	CDSs.	En	revanche,	les	CDSs	sont	enrichies	en	régions	riches	

en	acides	aminés	hydrophiles	(dits	linkers,	qui	reflètent	de	longues	régions	flexibles)	plus	

longues	que	celles	identifiées	dans	les	IGORFs.	On	émet	l'hypothèse	que	ces	longs	linkers	

contribuent	 probablement	 à	 optimiser	 les	 arrangements	 locaux	 des	 structures	

secondaires,	offrent	une	flexibilité	aux	protéines	et	une	spécificité	dans	les	interactions	

protéiques.	L'étude	de	leur	composition	en	acides	aminés	a	révélé	que	les	clusters	et	les	

linkers	HCA	de	CDSs	sont	enrichis	en	résidus	polaires	et	chargés	par	rapport	à	ceux	des	

IGORFs,	 les	 résidus	 chargés	négativement	 étant	particulièrement	 surreprésentés.	 Cela	

peut	 s'accompagner	 d'une	 augmentation	 de	 la	 spécificité	 des	 repliements	 et	 des	

interactions	 protéiques	 grâce	 à	 l'optimisation	 des	 processus	 de	 repliement	 et	

d'assemblage	(Lumb	et	Kim	1995).		
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Nous	avons	ensuite	caractérisé	les	premiers	stades	précédant	l'émergence	des	gènes	de	

novo	 avec	 deux	 approches	 complémentaires	 (i)	 la	 reconstruction	 systématique	 des	

séquences	ancestrales	non-codantes	de	70	gènes	de	novo	de	S.	cerevisiae	afin	d'identifier	

les	 propriétés	 de	 séquence	 et	 de	 structure	 des	 IGORFs	 qui	 ont	 effectivement	 donné	

naissance	à	des	gènes	de	novo	connus	et	(ii)	l'identification	d'IGORFs	avec	un	fort	signal	

de	traduction	par	des	expériences	de	ribosome	profiling,	afin	d'étudier	des	propriétés		de	

séquence	 et	 de	 structure	des	 IGORFs	 candidats	qui	 pourraient	donner	naissance	 à	de	

futurs	nouveaux	gènes.	Dans	cette	partie	de	ma	thèse,	nous	avons	développé	un	pipeline	

qui	 permet	 de	 cartographier	 correctement	 les	 données	 de	 ribosome	profiling	 sur	 des	

séquences	non-codantes	 afin	de	détecter	des	 IGORFs	avec	un	 signal	de	 traduction.	Ce	

pipeline	appelé	ORFribo	fera	bientôt	partie	du	package	ORFmine	proposant	un	protocole	

complet	pour	(i)	la	détection	et	l'extraction	des	IGORFs,	(ii)	la	prédiction	du	potentiel	de	

repliement	de	leurs	séquences	d'acides	aminés,	et	(iii)	la	caractérisation	de	l'activité	de	

traduction	des	IGORFs.	

	

Nous	avons	montré	que	bien	que	 les	 IGORFs	ancestraux	affichent	une	 large	palette	de	

potentiels	de	repliement,	les	IGORFs	foldables	sont	plus	susceptibles	de	donner	naissance	

à	de	nouveaux	gènes	et	que	la	plupart	des	gènes	de	novo	résultent	de	la	combinaison	de	

plusieurs	IGORFs	avec	différents	potentiels	de	repliement.	De	plus,	nous	avons	distingué	

les	IGORFs	qui	sont	traduits	de	façon	occasionnelle	avec	un	faible	signal	de	traduction	de	

ceux	qui	affichent	une	signature	de	 traduction	 forte	et	avons	montré	que	bien	que	 les	

premiers	 ressemblent	aux	ORFs	non-codants	en	général,	 les	 seconds,	 avec	 les	 IGORFs	

ancestraux,	présentent	des	propriétés	de	séquence	et	de	structure	intermédiaires	entre	

les	IGORFs	et	les	gènes	codant	pour	des	protéines.	Au	total,	ces	résultats	nous	permettent	

de	proposer	un	modèle	(présenté	sur	la	Figure	R1)	qui	donne	un	rôle	central	aux	IGORFs	

dans	 l'émergence	de	novo	de	gènes	et	dans	une	moindre	mesure	dans	 l'évolution	des	

protéines,	 complétant	ainsi	 la	 large	palette	des	mécanismes	d'évolution	des	protéines	

comme	les	événements	de	duplication,	transfert	horizontal	de	gènes,	réarrangement	des	

domaines…	Ce	modèle	unifie	deux	processus	évolutifs	qui	 sont	généralement	abordés	

séparément	:	l'origine	de	nouveaux	gènes	et	l'élongation	et	donc	l'évolution	de	protéines	

préexistantes,	 à	 travers	 les	 IGORFs	 en	 tant	 que	 modules	 moléculaires	 élémentaires	

répandus	dans	les	régions	non-codantes.	Tous	ces	résultats	sont	présentés	dans	un	article	

de	recherche	intitulé	«	Intergenic	ORFs	as	elementary	structural	modules	of	de	novo	gene	
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birth	and	protein	evolution	»	et	qui	a	été	accepté	pour	publication	dans	la	revue	Genome	

Research.	

	

	

	

Figure	R1.	Modèle	d'émergence	de	gènes	de	novo	et	d'évolution	des	protéines	avec	 les	

IGORFs	comme	modules	structuraux	élémentaires.	(A)	Les	IGORFs	codent	pour	une	grande	

diversité	de	peptides	parmi	lesquels	une	grande	quantité	devrait	pouvoir	se	replier	en	solution.	

Lors	d'une	traduction	omniprésente,	certains	peptides	qui	peuvent	être	délétères	ou	non	seront	

immédiatement	dégradés.	Parmi	les	autres,	le	peptide	bleu	conférera	un	avantage	à	l'organisme	

et	sera	sélectionné,	fournissant	ainsi	un	point	de	départ	pour	la	naissance	d'un	gène	de	novo.	(B)	

C IGORF combination by stop codon 

mutations or frameshift events

Frame 1:

Frame 2:

Frame 3:

* * * *

* * * * * * *

* * * * *

Degraded

Not selected

Selected

Gene A Gene B

Frame 1:

Frame 2:

Frame 3:

* * *
* * * * * * *

* * * * *

A Intergenic sequences harbor a wide diversity of potential peptides

B Amino acid substitutions 

D The newborn protein now displays CDS canonical properties

Gene A Gene B

Specificity

Flexibility

Modularity

Linker size

Cluster size

Charge-Polarity

Sequence size

Frameshift event

Frame 1:

Frame 2:

Frame 3:

* * * *
* * * * * * *

* * * * *

Gene A Gene B

Linker size

Cluster size

Charge-Polarity

Sequence size

Linker size

Cluster size

Charge-Polarity

Sequence size
*

Pervasive translation

Intergenic region

Coding region

Hydrophobic residue

Hydrophilic residue

HCA cluster

Stop codon

Feature gradient

IG
O

R
F

C
D

S

Gene A Gene B

Frame 1:

Frame 2:

Frame 3:

* * *
* * * * * * *

* * * * *

Stop codon 
mutation

Linker size

Cluster size

Charge-Polarity

Sequence size



The	noncoding	genome,	a	reservoir	of	genetic	novelty	 	 Christos	(Chris)	Papadopoulos	

	 227	

L'IGORF	bleu,	une	fois	sélectionné,	est	soumis	à	des	substitutions	d'acides	aminés	augmentant	

ainsi	la	proportion	globale	de	résidus	hydrophiles.	Dans	le	cas	présent,	cela	induit	(i)	la	rupture	

du	second	cluster	entraînant	l'augmentation	de	la	taille	du	linker	central	et	(ii)	l'établissement	

d'interactions	 spécifiques	 entre	 les	 résidus	 hydrophiles	 (points	 rouges)	 qui	 augmentent	 la	

spécificité	du	processus	de	repliement.	(C)	Le	codon	STOP	de	l'IGORF	bleu	peut	être	muté	en	un	

acide	aminé,	ajoutant	ainsi	l'IGORF	jaune	à	l'IGORF	sélectionné	préexistant	et	allongeant	sa	taille.	

(D)	Après	plusieurs	événements	de	substitutions	d'acides	aminés	et	de	combinaisons	d’IGORFs	

via	des	mutations	de	codon	STOP	ou	des	insertions	délétions,	nous	obtenons	une	protéine	qui	

présente	 les	 caractéristiques	des	protéines	 canoniques	 (c'est-à-dire	de	 longues	 séquences,	 de	

longs	linkers,	un	enrichissement	en	résidus	polaires	et	chargés)	qui	permettent	l'optimisation	de	

sa	flexibilité,	l'augmentation	de	la	spécificité	de	son	processus	de	repliement,	de	son	repliement	

3D	et	de	ses	interactions	et	enfin	qui	participent	avec	des	événements	de	réarrangement	ou	de	

duplication	de	domaines	dans	l'architecture	modulaire	de	protéines.	Il	convient	de	noter	que	bien	

que	 la	 figure	 se	 concentre	 sur	 l'émergence	 de	 gènes	 de	 novo,	 ce	 modèle	 peut	 également	

s'appliquer	à	des	protéines	déjà	existantes.	

	

	

Dans	 la	partie	 suivante	de	ma	 thèse,	 en	utilisant	des	 approches	de	phylostratigraphy,	

nous	avons	divisé	les	protéines	de	S.	cerevisiae	en	fonction	de	leur	âge	phylogénétique	

relatif	 afin	 d'étudier	 à	 quelle	 vitesse	 sont	 fixées	 et	 comment	 évoluent	 au	 cours	 de	

l'évolution,	 les	 propriétés	 de	 séquence	 et	 de	 structure	 des	 protéines	 que	 nous	 avons	

identifiées.	 Nous	 avons	 alors	 pu	 montrer	 que	 les	 jeunes	 protéines	 de	 S.	 cerevisiae	

présentent	des	propriétés	intermédiaires	entre	les	peptides	potentiellement	encodés	par	

les	 IGORFs	 et	 les	 protéines	 plus	 anciennes.	 Notamment,	 bien	 que	 les	 protéines	 du	

protéome	 de	 S.	 cerevisaie	 deviennent	 continuellement	 plus	 longues	 au	 cours	 de	

l'évolution,	les	protéines	plus	anciennes	présentent	des	tailles	de	linkers	similaires	tandis	

que	les	jeunes	protéines	codées	présentent	des	tailles	de	linkers	intermédiaires	entre	les	

IGORF	et	 les	protéines	plus	anciennes,	soutenant	ainsi	que	la	taille	des	 linkers	est	une	

propriété	fixée	au	début	de	l'évolution	des	protéines.	D'autre	part,	 les	clusters	HCA	de	

toutes	les	protéines	de	S.	cerevisiae	présentent	des	tailles	statistiquement	similaires,	peu	

importe	l'âge	des	protéines,	renforçant	ainsi	le	concept	de	clusters	hydrophobes	en	tant	

que	briques	élémentaires	de	construction	des	protéines.	
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Dans	la	dernière	partie	de	ma	thèse,	nous	avons	développé	un	modèle	d'apprentissage	

supervisé	qui	vise	à	prédire	 le	comportement	de	repliement	 (c'est-à-dire	désordonné,	

stable	en	solution,	stable	lors	de	l'interaction	avec	un	partenaire	ou	transmembranaire	

avec	une	forte	propension	à	s'agréger	en	solution)	des	peptides	potentiellement	encodés	

par	les	IGORFs	dans	l'environnement	cellulaire.	L'objectif	de	cette	partie	était	d'explorer	

plus	finement	les	propriétés	structurales	des	peptides	codés	par	les	IGORFs	afin	de	mieux	

comprendre	 l'émergence	des	gènes	de	novo	et	d'étudier	plus	profondément	comment	

l'expression	omniprésente	des	IGORFs	pourrait	être	tolérée	par	la	cellule.		

	

Nos	résultats	préliminaires	montrent	que	les	IGORFs	codent	pour	des	peptides	potentiels	

avec	une	 large	 gamme	d'états	 de	 repliement,	 tandis	 que	 les	peptides	désordonnés	ou	

propices	 à	 l'agrégation	 semblent	 être	 sous-représentés	 dans	 les	 peptides	 qui	 ont	 été	

montrés	 traduits	 par	 des	 approches	 expérimentales.	 De	 plus,	 nous	 avons	 identifié	 un	

nombre	 important	 de	 séquences	 d'acides	 aminés	 codées	 par	 les	 IGORFs	 qui	 n'est	

représenté	 par	 aucun	 état	 de	 repliement.	 Est-ce	 que	 ces	 séquences	 correspondent	

simplement	à	un	biais	technique	dû	à	l'absence	d'une	catégorie	de	repliement	dans	notre	

ensemble	 d'apprentissage	 initial,	 ou	 est-ce	 qu'elles	 témoignent	 d'un	 réel	 état	 de	

repliement	 sous-représenté	 dans	 le	 monde	 codant	 ?	 Cette	 question	 est	 ouverte	 et	

motivera	de	futures	analyses.	

	

Au	final,	ma	thèse	m'a	permis	de	développer	des	méthodes	pour	explorer	les	régions	non-

codantes	avec	un	regard	structural	(étude	des	propriétés	de	structure	des	peptides	que	

ces	régions	encodent	potentiellement)	mais	aussi	OMIQUE	(étude	de	la	traduction	de	ces	

régions).	J'ai	pu	appliquer	cet	ensemble	de	méthodes	à	l'étude	des	régions	non-codantes	

de	 S.	 cerevisiae	 et	 pu	 mettre	 en	 évidence	 que	 les	 IGORFs	 de	 la	 levure	 encodent	 des	

peptides	 présentant	 une	 grande	 variabilité	 de	 propriétés	 structurales	 incluant	 des	

peptides	avec	une	forte	propension	au	désordre,	à	l'agrégation	ou	avec	un	fort	potentiel	

de	repliement.	Ensuite,	 j'ai	pu	mettre	en	évidence	 les	déterminants	de	séquence	et	de	

structure	 pour	 l'émergence	 de	 nouveaux	 gènes.	 Ces	 travaux	 ouvrent	 la	 voie	 à	 de	

nombreuses	 études	 afin	 de	 tester	 la	 généralité	 de	 ces	 résultats	 sur	 d'autres	 espèces	

présentant	 des	 propriétés	 génomiques	 différentes	 (différents	 taux	 GC	 ou	 différentes	

compacités	de	génomes).	
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Titre : Le génome non codant, réservoir de nouveauté génétique 

Mots clés : gènes de novo, génome non codant, potentiel de repliement, évolution des protéines, briques protéiques 

Résumé : Le génome non codant joue un rôle important 

dans la naissance des gènes de novo et l'émergence de la 

nouveauté génétique. Tous les gènes codant pour des 

protéines, quelle que soit leur histoire évolutive, doivent 

avoir eu à un moment donné une forme ancestrale non-

codante. D'autre part, les protéomes sont caractérisés par 

une grande diversité d'états structuraux. Néanmoins, la 

façon dont les propriétés des séquences non-codantes 

permettent la naissance de nouveaux gènes et façonnent 

la diversité structurale et l'évolution des protéines demeure 

inconnu. 

 

Au cours de ma thèse, combinant différentes approches de 

bioinformatiques, j'ai caractérisé la diversité du potentiel 

de repliement  des séquences d'acides aminés encodées 

par tous les ORF (Open Reading Frames) intergéniques de 

S. cerevisiae dans le but (i) d'explorer si la diversité des états 

structuraux des protéomes est aussi retrouvée dans les 

ORFs non-codantes, et (ii) d'estimer le potentiel du 

génome non-codant à produire de nouvelles briques 

protéiques qui peuvent soit donner naissance à de 

nouveaux gènes, soit être intégrées dans des protéines 

préexistantes, participant ainsi à la diversité et à l'évolution 

des structures protéiques. 

J'ai montré que les séquences d'acides aminés encodées 

par la plupart des ORF intergéniques contiennent les blocs 

élémentaires des structures protéiques. Ces derniers 

correspondent à des groupements de résidus riches en 

acides aminés hydrophobes. De plus, j'ai montré que ces 

séquences couvrent la grande diversité d'états structuraux 

des protéines canoniques, avec la majorité d'entre elles 

prédites comme repliables. 

 

De plus, en utilisant des approches de reconstruction 

ancestrale ainsi que des expériences de « ribosome 

footprint profiling », j'ai identifié des caractéristiques de 

séquence et de structure déterminant l'émergence de 

nouveaux gènes. 

 

En particulier, j'ai montré une forte corrélation entre le 

potentiel de repliement des protéines de novo et celui 

de leurs séquences ancestrales, reflétant ainsi la relation 

entre le génome non-codant et l'univers des structures 

protéiqes. L'ensemble de ces résultats m'a permis de 

proposer un modèle de naissance de genes de novo et 

d'évolution de protéines à partir de régions non-

codantes reposant sur les ORF intergéniques comme 

modules structuraux élémentaires. 

 

De plus, en utilisant des approches de phylostragraphie, 

j'ai pu classer les protéines de la levure en différents 

phylostrates en fonction de leur âge évolutif relatif. Cela 

m'a permis d'étudier à quelle vitesse se fixent et par 

conséquent comment évoluent diverses propriétés de 

séquence et de structure des protéines de la levure au 

cours de l'évolution. 

 

Dans la dernière partie de ma thèse, je me suis intéressé 

à mieux caractériser l'état de repliement des peptides 

potentiellement codés par les petits ORF d'un génome 

non-codant (par exemple, désordonné, stable en 

solution, stable en interaction avec un partenaire ou 

transmembranaire) et donc prédire leur potentiel « 

comportement » dans l'environnement cellulaire. Pour ce 

faire, j'ai développé une méthode rapide basée sur des 

approches d'apprentissage automatique qui permet 

d'associer une courte séquence d'acides aminés à l'un 

des états de repliement prédéfinis. La méthode présente 

de très bonnes performances sur des peptides pour 

lesquels nous avons une caractérisation expérimentale. 

Je l'ai ensuite appliquée sur l'ensemble des ORF 

intergéniques de la levure et j'ai ainsi pu annoter la 

majorité d'entre eux avec l'une des catégories 

prédéfinies et j'ai pu confirmer fait qu'ils présentaient 

une grande diversité d'états structuraux. 
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Abstract : The noncoding genome plays an important role 

in de novo gene birth and the emergence of genetic 

novelty. All protein-coding genes, whatever their 

evolutionary history, must have had at some point a 

noncoding ancestral form. On the other hand, proteomes 

are characterized by a large diversity of structural states. 

Nevertheless, how the properties of noncoding sequences 

could promote the birth of novel genes and shape the 

structural diversity and evolution of proteins remains 

unclear. 

 

During my thesis, combining different bioinformatic 

approaches, I characterized the fold potential diversity of 

the amino acid sequences encoded by all intergenic ORFs 

(Open Reading Frames) of S. cerevisiae with the aim of (i) 

exploring whether the structural states’ diversity of 

proteomes is already present in noncoding sequences, and 

(ii) estimating the potential of the noncoding genome to 

produce novel protein bricks that can either give rise to 

novel genes or be integrated into pre-existing proteins, 

thus participating in protein structure diversity and 

evolution. 

I found that the amino acid sequences encoded by most 

intergenic ORFs contain the elementary building blocks of 

protein structures corresponding to clusters rich in 

hydrophobic amino acids. Moreover, I showed that they 

encompass the large structural state diversity of canonical 

proteins with strikingly the majority of them predicted as 

foldable. 

 

Furthermore, using ancestral reconstruction approaches 

together with ribosome footprint profiling experiments I 

identified sequence and structural features that determine 

the emergence of novel genes.  

 

In particular, I observed a strong correlation between the 

fold potential of de novo proteins and the one of their 

ancestral amino acid sequences, reflecting the 

relationship between the noncoding genome and the 

protein structure universe. All these results permitted me 

to propose a model of de novo genes birth and protein 

evolution from noncoding regions with intergenic ORFs 

as elementary structural modules. 

 

In addition, using phylostragraphy approaches, I was able 

to classify the yeast proteins into different phylostrata 

based on their relative evolutionary age. This permitted 

me to study how fast are fixed and consequently how 

evolve various sequence and structural properties of the 

yeast proteins along the evolutionary time. 

 

In the final part of my thesis, I was interested at better 

characterizing the fold state of peptides potentially 

encoded by the small ORFs of a noncoding genome (i.e., 

disordered, stable in solution, stable upon interaction 

with a partner or transmembrane) and therefore predict 

their potential “behavior” in the cellular environment. To 

do so, I developed a fast method based on machine 

learning approaches which enables the association of a 

short amino acid sequence with one of the predefined 

fold states. The method presented very good 

performance on peptides with experimental 

characterization. I, then, applied it on the whole set of 

intergenic ORFs of the yeast permitting the annotation of 

the majority of them with one of the predefined fold state 

categories and confirming their vast structural state 

diversity. 
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