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Résumé en Français

0.1 Contexte et Motivation
La synthèse de contenu animé 3D réaliste, conférant aux personnages virtuels l’illusion
d’une allure humaine, est un rêve de longue date. Au cours des dernières décennies,
l’intérêt et la demande pour ce type de contenu n’ont cessé de croître notamment avec
la montée en puissance des images de synthèse et la présence de personnages virtuels
dans de nombreux domaines (cinéma, les jeux vidéo, la robotique ou le domaine
médical). Parallèlement, le degré de réalisme et la qualité attendue ont fortement
évolué, élevant le niveau d’exigence des productions.

La capture de mouvements est une solution prometteuse, gouvernée par un idéal
visant à satisfaire l’ensemble de ces exigences. En effet, cette nouvelle technologie
permettrait de capturer et retranscrire toutes les subtilités du mouvement humain
dans l’animation des personnages virtuels. En pratique, la synthèse d’animation
convaincante demande encore beaucoup de temps et de travail, notamment pour
l’animation du visage : tromper l’œil expert des humains, affûté depuis la naissance à
reconnaître et distinguer les subtilités des signaux faciaux reste un défi majeur dans
le domaine de l’animation faciale. Même les systèmes de capture de mouvements
les plus sophistiqués nécessitent fréquemment une étape additionnelle de traitement
de l’animation pour atteindre la qualité exigée en production. Il est courant que
certaines parties d’une performance ne puissent pas être capturées, dû à l’occlusion
du visage de l’acteur ou parce que celui-ci est dans une position inattendue par
exemple. D’un point de vue technique, la résolution de la caméra, le bruit du système
de capture, le changement de lumière et les mouvements brusques de l’acteur sont
des facteurs impactant la qualité du signal d’animation et la précision de la capture,
qui appellent à une étape d’édition supplémentaire. Enfin, des modifications et
corrections supplémentaires sont nécessaires dans plusieurs cas également, même si
le signal de capture de mouvement est "techniquement parfait" :

• L’objet/l’intention de l’animation a changé a posteriori ; il est préférable de
réutiliser et d’adapter le contenu déjà capturé plutôt que de réutiliser un
système de capture (qui peut être très coûteux et massif).

• Certaines poses/expressions manquent à l’animation finale, et doivent être
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manuellement rajoutées après le tournage. Un cas d’application serait, par
exemple, si l’acteur a oublié une partie ou n’a pu faire certains mouvements
d’une séquence capturée, comme lever qu’un seul sourcil.

• Le mouvement capturé n’est pas parfait et des erreurs dans le jeu d’acteur
(discours, intention, performance) peuvent subvenir. Des corrections manuelles
sont alors nécessaires pour parvenir à une animation finale satisfaisante.

C’est pourquoi une étape d’édition d’animation est cruciale et souvent obligatoire
pour remédier au manque de flexibilité de la capture de mouvement et satisfaire aux
exigences de qualité.

Actuellement, cette étape reste très laborieuse: la complexité des signaux
d’animation ainsi que l’abondance des données sont notamment des facteurs limitant
les performances des solutions actuelles. D’un point de vue industriel, cette étape
reste très coûteuse en temps et en compétence, restreignant son accessibilité et sa
diffusion.

Dans cette thèse, on s’attache donc à comprendre le processus d’édition d’animation
faciale et à fournir des solutions algorithmiques répondant aux enjeux que celui-ci
soulève.

Positionnement du Problème La plupart des visages que nous rencontrons et
avec lesquels nous interagissons sont en mouvement; Durant une interaction so-
ciale, les humains sont systématiquement emmenés à décoder l’ensemble des signaux
dynamiques, diffusés par les visages de manière plus ou moins évidente (ex: sub-
tiles expressions faciales, mouvements conversationnels). De nombreuses études
ont montré la sensibilité accrue de la perception humaine aux mouvements faciaux
naturels [DBS18]. Fondé sur ces observations, l’animation faciale est alors considérée
comme un processus dynamique, constituée de motifs spatiotemporels intrinsèque-
ment corrélés. La modification, la correction de tels signaux, assurant la synthèse
d’une animation cohérente et réaliste, apparait donc comme une tâche compliquée.
Manipuler des données d’animation est d’autant plus fastidieux que celles-ci en-
globent une pléiade de motifs temporels et biomécaniques, soit non linéaires. En
effet, le visage possède différentes parties formant un ensemble très corrélé, mais
dont chaque composant varie selon des caractéristiques fréquentielles et dynamiques
très différentes. De plus, la demande grandissante de données d’animation de haute
qualité impose de fournir des solutions performantes et extensibles à de larges bases
de données.

Les méthodes d’intelligences artificielles ont investi de nombreux domaines depuis
leur création, et en grande majorité, ont surpassé les méthodes traditionnelles dans
de diverses taches, de par leurs innovantes et attractives capacités à maîtriser et
traiter de grandes quantités de données diversifiées, dont le processus sous-jacent
n’était pas simplement ou efficacement modélisable jusqu’à lors. En effet, les modèles
physiques et dynamiques actuels, bien que précis, présentent des caractéristiques de
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complexité, de lourdeur et d’instabilité qui ne permettent pas leur utilisation à grande
échelle, et un fonctionnement pertinent sur l’ensemble des exemples possibles. Plus
particulièrement, les réseaux de neurones, entraînés à apprendre à partir d’exemples,
se sont imposés en tant que solutions majeures les plus performantes dans différentes
tâches, surpassant les méthodes statistiques traditionnelles. Une caractéristique
largement exploitée dans nos travaux est leur attirante capacité à générer des sorties
réalistes, avec des dynamiques semblables aux données vues durant l’entraînement,
et à extrapoler ses résultats sur un grand nombre de situations non-observées. De
plus, les réseaux de neurones peuvent aujourd’hui être combinés à des processus
aléatoires et permettre une inférence générative, créant des données perceptiblement
similaires aux données d’apprentissage [GPAM+14]. Combinés aux succès de ces
méthodes à traiter des données temporelles telles que le signal de la voix [GJ14]
ou du texte [SMH11], l’ensemble de ces raisons ont motivé notre choix d’explorer
ce paradigme mathématique pour l’appliquer au domaine de l’animation et plus
particulièrement aux divers aspects de l’édition d’animation faciale.

L’objectif principal de cette thèse est de comprendre et de mettre à profit les
dernières avancées en apprentissage automatique afin d’améliorer l’édition de signaux
dynamiques d’animation faciale. D’un point de vue applicatif, nos solutions visent à
améliorer le processus d’édition de mouvements, réduisant l’implication laborieuse de
l’artiste et le temps de ce jalon dans la production d’animation faciale. Les solutions
proposées se doivent de respecter certains préceptes:

• Plausible : l’animation finale, bien que modifiée, doit rester convaincante, les
mouvements du visage générés doivent être naturels et avoir une dynamique
fidèle à la réalité.

• Pratique : nos solutions sont dévouées à respecter les contraintes imposées par
le domaine de l’animation faciale, notamment le format des données dicté par
les standards utilisés dans les chaînes de production d’animation.

• Accessibilité : les travaux développés dans ce manuscrit visent à simplifier la
manipulation de signaux d’animation, et notamment à élargir le champ des
représentations des données temporelles de mouvements faciaux, afin d’offrir
une gamme d’alternatives aux traditionnelles paramétrisations temporelles
bas niveaux. Dans la pratique, cela se traduirait par un souhait d’élargir
l’accessibilité de la manipulation de données d’animation à un public plus large
que celui des animateurs expérimentés.

• Vitesse : Un de nos objectifs est d’accroître l’efficacité du procédé d’édition et
de modification de signaux d’animation faciale. Les solutions créées se doivent
d’être temporellement performantes, de montrer un faible de taux de réponse
pour effectuer l’inférence d’une animation.
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Contributions Cette thèse est organisée autour de 3 contributions principales,
focalisées sur les différentes facettes de l’édition d’animation, qui prennent place dans
la chaîne d’animation faciale :

• Un algorithme temps réel de nettoyage et de perfectionnement d’animation
faciale, basé sur une architecture neuronale. Nous proposons un algorithme de
post-traitement, dévoué à l’amélioration de l’édition bas niveau des signaux
d’animation, qui préserve et même restaure les éléments clés des mouvements
du visage, de manière autonome, sans intervention manuelle. Basé sur une
paramétrisation originale du problème, celui-ci répond aux exigences de la
production puisqu’il est capable de traiter des signaux avec différentes fréquences
d’images.

• Un système interactif d’édition d’animation contrôlable reposant sur une ar-
chitecture neuronale temporelle et robuste. Nous proposons un algorithme de
régression permettant de manipuler des signaux d’animations à partir d’un
jeu réduit de paramètres hauts niveaux. Notre système est conçu pour au-
tomatiquement gérer et assurer la cohérence temporelle du signal d’animation
produite et préserver les dynamiques du visage malgré des signaux d’entrée
approximatifs.

• Une architecture générative d’édition d’animation faciale, permettant la ma-
nipulation et la synthèse d’animation non-supervisée, ou bien supervisée à
partir de signaux de contrôle discrets, sémantiques ou bruités et approximatifs.
Nous proposons une vision originale du problème d’édition d’animation comme
équivalente au problème de l’inpainting, technique consistant à reconstruire ou
recréer des parties manquantes ou endommagées d’une image.

Ces contributions ont été rendues possibles par un travail préliminaire de rassem-
blement et construction de deux bases de données.

Dans la suite de ce chapitre, nous allons présenter rapidement les bases de données
utilisées tout au long de nos travaux, puis nous résumerons nos 3 contributions.

0.2 Base de données d’animations faciales 3D
Cette thèse s’attache à explorer de nouvelles méthodes d’édition d’animation re-
posant sur le florissant et prometteur paradigme des réseaux de neurones. Ce
dernier n’est cependant utilisable qu’à condition de disposer de grandes quantités de
données adaptées à la tâche d’apprentissage sur laquelle le réseau puisse être entraîné.

Bien que l’accès à des images de synthèse et du contenu médiatique se soit
fortement amélioré ces dernières années, il n’existe que peu de bases de données
d’animation faciale, suffisamment larges et diversifiées, permettant un apprentissage
efficace des dynamiques naturelles des mouvements du visage. Outre le manque de
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données 3D dynamiques, nous voulons, à travers ces travaux, adresser les différentes
facettes de l’édition d’animation, telles que le nettoyage de signaux d’animation, le
contrôle d’animation faciale, ou encore la manipulation d’animation faciale multi-
modale, composée d’un signal visuel et d’un signal audio. L’exploration de telles
pistes de recherche impose, d’autre part, une large diversité et une richesse de
métadonnées (annotations, données multimodales, ...) accompagnant les données
d’apprentissage.

Pour ce faire, nous avons utilisé les récentes technologies de capture de mouve-
ments, solution technologique prévalente pour créer à grande échelle des données
d’animation de haute qualité, pour rassembler une première base de données, in-
corporant toutes les caractéristiques et les défauts des animations issues de cette
technique ; Puis nous avons construit une seconde base de données multimodales en
tirant profit d’une base de données existante et disponible.

Le premier jeu de données de paires d’animations, comme schématisé Figure 1; une
animation est directement produite à partir de la capture de mouvements d’un sujet,
et comporte ainsi tous les défauts et le bruit acquis lors de la chaîne d’acquisition et
de production d’une telle animation ; une seconde est issue de l’annotation et travail
manuel d’un animateur à partir de la même vidéo de capture. Ainsi, au lieu de
simuler synthétiquement le bruit du processus de capture de mouvement, nous nous
attachons ici à traiter le bruit "réel" contenu dans les données actuelles d’animation
issues de ce processus, afin d’éviter de créer des solutions dépendantes d’un bruit
donné et planifié. Ceci permet également de faciliter et de garantir une intégration
plus optimale dans la chaîne de production d’animation.

Avec l’objectif de varier les formes d’éditions temporelles, nous avons souhaité
utiliser des données d’animations plus riches, accompagnées de métadonnées perti-
nentes pour une analyse multimodale des mouvements faciaux. Nous avons donc
constitué une seconde base de données multimodales en utilisant celle fournie par
Fanelli et al. [FGR+10], nommée 3D Audio-Visual Corpus of Affective Communication
(B3D(AC)ˆ2). Celle-ci rassemble des longues séquences de 14 sujets récitant des
phrases avec ou sans émotion, et fournie, en plus des données 3D pour chaque frame,
les annotations phonétiques synchrones des paroles prononcées. Bien que diversifiée
dans son contenu sémantique, et attractive pour sa taille et les données (et métadon-
nées) fournies, la qualité des données 3D ainsi que la paramétrisation des animations
ne permettent pas une utilisation directe de ces séquences pour notre problème. Nous
avons donc fait un premier travail préliminaire, utilisant des méthodes géométriques
et d’optimisation actuelles pour pallier à ces lacunes. Au total, ce corpus amélioré
rassemble 85 minutes d’animation, reposant sur le principe des blendshapes.
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Figure 1 Présentation de la base de données d’animations issues de capture de
performance. Une animation, bruitée et imprécise, est automatiquement générée à
partir d’une vidéo originale grâce à un logiciel de suivi [Dyn19a]. Celle-ci n’a subi
aucun post-traitement additionnel. Parallèlement, un animateur expérimenté a crée
un animation vérité terrain associée à la vidéo originale, moyennant un logiciel
professionnel [Dyn19b].
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0.3 Filtrage de signaux d’animation en temps réel

Dans la chaîne de synthèse d’animation, l’édition la plus fréquente effectuée sur
les signaux d’animation est le nettoyage et filtrage de l’animation. En effet, dû
aux limitations des matériaux ou des logiciels qui la composent, il est très fréquent
que l’animation en sortie soit bruitée ou même qu’elle ait subi des pertes. Ce post-
traitement peut nécessiter la présence d’un animateur pour assurer une animation
fidèle et réaliste ou d’un utilisateur pour adapter les paramètres de l’algorithme de
traitement aux différents composants du signal d’animation.

Le nettoyage d’animation a été largement étudié pour traiter les erreurs de
capture de mouvements du corps, survenant par exemple, lors de l’occlusion des
marqueurs, du croisement des parties du corps ou encore à la détection des contacts
avec l’environnement. Néanmoins, les travaux visant à améliorer à la capture
des mouvements du corps se concentrent surtout sur les problèmes de détection,
d’identification ou de correction de marqueurs.

Les méthodes actuelles de capture de mouvements faciaux, quant à elles, tendent
à privilégier l’utilisation de technologie différente comme l’adaptation des signaux
d’animation à un modèle global de visage. Contrairement aux technologies de capture
de mouvement du corps, elles visent principalement à enlever les artefacts (sauts,
bruit) produits par le détecteur qui apparaissent dans le signal d’animation de sor-
tie. Les systèmes existants de capture en temps réel se sont en majorité tournés
vers des techniques de traitement du signal classiques, restituant une animation
lissée. Néanmoins, ces méthodes sont souvent appliquées aux paramètres d’animation
de manière indépendante, omettant la cohérence spatiale qui existe au sein des dif-
férentes parties du visage, et échouent à restituer toutes les subtilités des mouvements
du visage. De plus, fidèlement régler et ajuster ces méthodes à chaque coefficient
d’animation est souvent une tâche laborieuse, imputable à la diversité des dynamiques
qui gouvernent le visage humain. En effet, un clin d’œil forme un motif abrupt,
court mais intense dans le signal du mouvement des paupières, doit être préservé tel
quel ; A contrario, un tel motif dans le signal du mouvement du nez se doit d’être lissé.

Pour pallier ces lacunes, de nombreux chercheurs se sont tournés vers les méthodes
d’apprentissage par ordinateur pour fournir des solutions capables de filtrer une grande
diversité de signaux d’animation. Néanmoins ces solutions reposent sur des systèmes
non causaux, de par l’utilisation d’architecture convolutionnelle [BBKK17, HSKJ15]
ou de filtres adaptatifs [MLCC17]. Dans des premiers travaux, nous proposons de
suivre cette orientation de recherche et d’utiliser l’apprentissage par ordinateur pour
développer un système temps réel permettant de précisément et automatiquement
filtrer et même restaurer la dynamique d’une animation faciale bruitée.

Notre approche s’appuie sur un modèle neuronal récurrent qui apprend de manière
causale à générer un signal propre et précis, en s’appuyant sur les prédictions passées
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et les caractéristiques du mouvement du signal bruité au cours du temps.
Apprendre de manière causale la dynamique des mouvements faciaux pour une

application en temps réel ne peut s’appuyer sur une fréquence d’image constante et
fixe. En effet, les sources de capture d’images telles que les webcams, n’ont pas une
fréquence d’images constante au cours du temps. D’autre part, les algorithmes de
rééchantillonnage classiques ne sont pas applicables dans ce cas, car ils nécessitent la
connaissance des échantillons futurs.

Nous avons abordé le problème en reconsidérant le signal de mouvement sur lequel
nous avons entraîné notre réseau. En exploitant les premières dérivées temporelles
du signal, normalisées par l’intervalle de temps qui sépare deux images, l’information
sur la fréquence d’images n’est plus directement contenue dans le signal d’entrée,
et ainsi le système n’est plus dépendant de ce paramètre. Le réseau est également
alimenté de l’information sur les estimations précédentes afin de traiter n’importe
quelles animations, aussi longues soit elles.

La méthode proposée est alors plus précise que les méthodes de traitement du
signal et permet une restauration du signal d’animation plus réaliste que des méthodes
non récurrentes.

0.4 L’Édition d’Animation Faciale Contrôlable

Bien que le signal soit parfois techniquement parfait, le contenu même est souvent
sujet à corrections. Ces modifications sont généralement faites par un animateur,
expérimenté à manipuler des paramètres d’animation tels que les coefficients de
blendshapes. Comme le nombre de paramètres est souvent élevé et que ces coeffi-
cients possèdent généralement un effet localisé, ayant une interprétation assez bas
niveau, le travail d’édition prend beaucoup de temps. Contrairement au filtrage et
nettoyage du signal animation, considéré comme de l’édition bas-niveau d’animation,
dans ce chapitre on s’intéresse à une édition plus haut niveau de l’animation, dont
les modifications effectuées se doivent de respecter des contraintes définies par un
utilisateur.

Les méthodes précédentes de manipulation sémantique d’animation proposant des
solutions temporelles pour propager les corrections ponctuelles de l’animateur [SLS+12,
ASK+12] considèrent le problème d’optimisation dans l’espace des vitesses ou utilisent
un modèle spatio-temporel bilinéaire. Bien que créatrices d’animations lisses, la
résolution temporelle de ces méthodes dépend fortement d’hyperparamètres qui
demandent à être manuellement ajustés, rendant la tâche d’édition plus laborieuse.
Au contraire, nous avons opté pour une méthode d’apprentissage, automatisant la
modélisation des mouvements du visage et de leur dynamique, afin de s’abstraire de
toutes tâches de planifications, tout en produisant des animations convaincantes.

Ces travaux s’inscrivent dans la continuité de méthodes de contrôle de mouvement
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du corps humain à partir d’apprentissage par ordinateur [HSK16]. Dans des travaux
fondateurs du domaine, Holden et al. [HSK16] utilisent des réseaux convolutionnels
pour construire une variété représentant les mouvements du corps, puis la régression
de paramètres de dynamiques du mouvement du corps hauts niveaux à cette variété.
Naviguer dans cet espace (par le biais de paramètres de contrôle) permet d’assurer la
production d’animations réalistes. Cependant, nous avons démontré que ce système
n’est pas applicable directement aux mouvements du visage, car il ne permet pas de
préserver les mouvements hautes fréquences, tels que les fermetures de bouche ou les
clignements des yeux, primordiaux dans la création d’animations convaincantes.

Néanmoins, les réseaux convolutionnels (CNN), appliqués le long de l’axe temporel,
présentent des propriétés de continuité et d’invariance temporelle particulièrement
adaptées pour encoder des motifs de mouvement. Contrairement dans le cas du
filtrage d’animation, lorsque l’utilisateur souhaite modifier une animation, il désire
voir le signal entier avant, afin de cibler les portions à retoucher et les changements
à effectuer. L’aspect non-causal des CNNs permet de répondre à cette exigence.
Ces raisons nous ont poussés à étudier une architecture convolutionnelle de régres-
sion, conservant les hautes fréquences [RFB15], afin de mettre en correspondance les
paramètres de contrôle haut niveau choisis et les coefficients d’animation. Comparé
aux systèmes précédents de contrôle de mouvement du corps, notre système préserve
les mouvements hautes fréquences, générant alors une animation faciale plus fidèle.

Ainsi dans un deuxième temps, nous proposons une nouvelle méthode d’édition
haut-niveau s’appuyant sur une structure neuronale robuste et de haute précision
temporelle, adaptée à la modélisation spatiotemporelle de mouvements faciaux, et
permettant une représentation plus fidèle des motifs dynamiques gouvernant le mou-
vement du visage. Comme les travaux de Seol et al. [SLS+12], notre système considère
à la fois la nature spatiale et temporelle du signal d’animation. Toutefois, contraire-
ment aux travaux précédents, l’approche proposée autorise des signaux d’entrée
exagérés ou imprécis, tout en assurant la production de mouvements plausibles. En
effet, le réseau, entrainé sur des données d’animations réalistes, assimile la cohérence
temporelle des mouvements du visage et assure ainsi la génération d’une animation
convaincante.

Nous avons spécifiquement conçu note système pour être robuste à ce genre de
situation ; pour cela, nous avons ajouté un auto-encodeur débruiteur à la suite de
notre régresseur afin d’assurer une animation réaliste en sortie en toute circonstance.

En pratique, la solution avancée s’accompagne d’une interface graphique par
laquelle un utilisateur, non expérimenté, peut modifier une animation à partir de peu
de paramètres sémantiques. Le système proposé fonctionnant avec peu de latence,
il autorise l’utilisateur à interactivement appliquer ses modifications, observant
instantanément le résultat de ses changements. Cet outil de visualisation a été aussi
aidé à démontrer les performances du système, sa rapidité d’inférence ainsi que la
robustesse. Nous avons démontré l’utilité et la pertinence du système sur le cas d’une
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animation faite à partir de motion capture.

0.5 L’Édition d’Animation Faciale Générative

Bien que le système précédent permet une modélisation précise et robuste des signaux
de mouvements faciaux. Néanmoins celui repose sur un modèle de régression, ex-
igeant un signal d’entrée temporel géométrique dense et non ambiguë. La régression
impose également une stratégie d’entrainement déterministe, qui présume la présence
d’une animation cible à générer et d’une métrique pertinente qui atteste la qualité
de l’animation produite. Cette méthode empêche par exemple un contrôle précis à
l’échelle d’une expression, tel que le paramétrage par plan de séquence utilisé par les
animateurs. Poussant les limites de la synthèse d’animation et de la modification
d’animation, nous sommes ensuite tournés vers les systèmes de génération de signaux
temporels et avons proposé une nouvelle approche du problème d’édition d’animation.

Nous proposons une manière originale de concevoir le problème d’édition d’animation,
qui s’appuie sur le parallèle dessiné entre l’inpainting d’image et l’édition d’animation.
L’image inpainting vise à remplacer des parties manquantes ou non désirées d’une
image par des portions de pixels automatiquement générées, de manière à recréer
une image réaliste. L’édition d’animation poursuit un objectif semblable, celui de
remplacer ou régénérer des portions de signal de manière automatique. Pendant
longtemps, les solutions d’image inpainting reposaient sur des méthodes bas-niveau
de traitement de signal (gradient d’image). Bien qu’efficaces, ces approches s’avèrent
incompétentes lorsque les parties manquantes, à régénérer, sont trop grandes ou
très complexes. Un système neuronal génératif plus élaboré a alors vu le jour, le
GAN développé par Goodfellow et al. [GPAM+14], et a permis de combler les parties
manquantes avec des motifs visuels complexes à partir de peu ou pas de signaux
d’entrée. Au cours des cinq dernières années, les GAN ont démontré leur efficacité
en atteignant ainsi des résultats états de l’art dans différents domaines.

Les objectifs poursuivis dans ce chapitre sont semblables, bien qu’appliqués à
un domaine différent d’édition. Nous avons donc proposé une approche générative,
reposant sur le système du GAN, afin de régénérer de manière non supervisée ou
faiblement supervisée, des portions d’animation manquantes, non satisfaisantes ou
endommagées. Au lieu de comparer directement les animations produites à une
animation cible bien définie, le modèle d’entrainement du gan évalue par lui-même si
l’animation produite est plausible, réaliste.

Les GAN se composent d’un générateur, générant des animations réalistes à partir
d’animations partiellement masquées, et facultativement, d’un signal de supervision,
et d’un discriminateur qui assure le réalisme de l’animation générée. Afin d’apprendre
les dynamiques complexes des mouvements du visage, nous proposons une structure
récurrente bidirectionnelle, assurant une cohérence entre mouvements passés et futurs
et respectant l’aspect non-causal du processus d’édition par un utilisateur.
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La structure neuronale proposée peut également être façonnée et augmentée [MO14],
élargissant les possibilités de contrôler et de synthétiser une animation à différents
formats de paramètres de contrôle telles que :

• Non-supervisé : masquant de manière aléatoire des portions de l’animation,
notre système comble les parties manquantes avec des mouvements réalistes,
qui se raccordent aux bords de manière cohérente. Nous avons démontré que
notre système permet de combler de ’longues’ occlusions, souvent présentes
dans les tournages de capture de mouvements, de manière plus convaincante
qu’un système linéaire.

• Paramétrisation parcimonieuse d’expression. Notre système s’assure de recon-
stituer la temporalité du signal, restituant ainsi une animation réaliste, à partir
de contraintes spatiales (expressions faciales) définies à certains points dans le
temps. Ce cas d’inférence substituerait en pratique les fonctions interpolatrices,
et non réalistes intégrer dans les outils d’animations actuelles, et utilisées
lors de corrections manuelles faites par l’animateur lorsqu’une expression est
manquante ou bien qu’une fermeture de bouche doit être corrigée par exemple.

• Animation bruitée. Notre système peut également jouer le rôle de débruiteur,
restituant un signal lisse à partir d’un signal initial incomplet (masqué) et
d’un signal de contrainte approximatif. En effet, en pratique, il est courant
qu’une partie de l’animation ne soit pas satisfaisante : au lieu de refaire une
session de tournage, l’utilisateur pourrait modifier une partie de l’animation
à partir d’une autre animation bruitée, enregistrée à partir d’une webcam ou
d’un mobile par exemple.

• Séquence de phonèmes. Une animation parlée est souvent sujette à correction
lorsque le message n’est pas correct. Ainsi, notre système peut modifier une
animation pour correspondre à un nouveau signal sémantique donné en entrée,
tel qu’une séquence de phonèmes (regrouper ensuite en visèmes, selon leur
représentation visuelle). Un exemple illustrant cet usage est le changement de
mots dans le discours.

Le temps d’inférence de notre approche étant faible, celle-ci se relève ainsi plus
performante que les méthodes manuelles actuelles. D’un point de vue pratique, notre
solution permettrait de réduire le temps de l’édition et le travail de l’utilisateur
actuellement nécessaire pour modifier une animation de manière convaincante.

0.6 Conclusion
Les travaux de thèse, passés en revue dans ce chapitre, visent à explorer les facettes de
l’édition d’animation. De nouvelles approches ont alors été proposées pour améliorer
les techniques actuelles de filtrage et de manipulation d’animation, respectant les
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critères définis en introduction. Nous avons présenté de nouvelles méthodes d’édition
bas niveau (section 0.3) et de plus haut niveau (sections 0.4 et 0.5) qui assurent la
production d’animations faciales réalistes. L’utilisation de méthodes d’apprentissage
par ordinateur a été mise en avant, afin de faciliter la manipulation des signaux
temporels d’animation tout en préservant et même générant, les dynamiques naturelles
des mouvements du visage. Les approches proposées présentent d’autres avantages,
tels que leur rapidité d’inférence et leur généralisation à de nombreux motifs de
mouvement de visage, qui émanent des architectures neuronales explorées.

Ce manuscrit s’articule autour des trois principales contributions de cette thèse,
succinctement présentées ici, et détaille nos investigations.
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1.1 Context
Making virtual characters move and act as humans has been a long-time goal. In
many applications including the medical fields, robotics, communication, and the
entertainment sector, the pursuit of this dream has never stopped. It is all the more
true for the last decades, with the increasing appearance of synthetic characters in
films, video games, and recently virtual reality and beyond. Indeed as observed in
Figure 1.1, the demand for 3D content has undergone a rising growth, driven by
the overall trend toward 3D Visual Effect Technologies (VFX), 3D visualization,
3D gaming or even 3D mobile applications 1. Simultaneously, the desired level of
realism of media content has evolved. The current animation production has to deal
with an always increasing volume of animation data while reaching higher quality
requirements.

One particular attention is paid on the human face, which is among all the
different body parts, the one that conveys the richest, and most complex visual
information, such as the identity, gender, age and emotions, allowing humans to
interact in a challenging environment. The elaborated neural musculature innervation
and flexibility of the face, as well as facial features devoted to recognizing and inter-
preting of facial communicative signals, have evolved in tandem with the development

1https://www.marketresearchfuture.com/reports/3d-animation-market-2760

https://www.marketresearchfuture.com/reports/3d-animation-market-2760
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Figure 1.1 Global 3D Animation Market by Component (Source Market Research
Future (MRFR)). According to a market report published in September 20191, the
3D animation market is expected to continue growing in the future due to the demand
for Visual Effect Technologies (VFX), 3D visualization, 3D gaming, and 3D mobile
applications.

of more sophisticated social interactions [Tov95]. Indeed, the muscles of the face
have a “more complex pattern of innervation of extrafusal fibres than other skeletal
muscules” [WV18]. Processing facial cues is an ubiquitous operation in our lives and
involves a larger portion of our brain than the processing of other objects [RHD12].
Behavioral, neuroimaging, and other brain function studies [FRQL00, APM00, Kan10]
have demonstrated that our brain involved specific and dedicated strategies to grasp
faces information. These findings promote the hypothesis that our brain preferentially
focuses on faces.

Despite the remarkable progress made within both the computer animation
research and the industrial communities, designing aesthetic and realistic human-like
character animation is still a tedious and highly time-consuming procedure. Indeed,
since birth, the human brain is specially tuned to human face behavior [SG15]. Hence,
human beings are experts at discerning inconsistencies in facial motions, even the
most subtle ones, such as missing lip contact when the mouth closes during a speech.
So that any implausible details can drastically reduce the perceived aspect of anima-
tion.

For the past two decades, motion capture has evolved into the leading technology
to create realistic animation, making the process of animation content generation
more reliable and accessible. It is now commonly used to produce body and facial
animations in numerous applications. Motion Capture (MoCap) refers to the pipeline
of recording performer movements and transferring the animation signals to a digital
character. An illustration of this pipeline is shown in Figure 1.2. The theoretical
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Figure 1.2 Illustration of the Motion Capture animation pipeline. The first step of
this pipeline consists of capturing the subject’s facial expression, with or without
markers. Various MoCap systems exist, including simple devices (webcam, mobile
phone) or a more sophisticated adapted technologies including magnetic or optical
systems (eg Head Mounted Camera (HMC)), resting upon active or passive sensors.
An automatic animation system processes the collected motion data to derive the
corresponding animation parameters from the recorded performer movements. Finally,
a retargeting system, transferring the animation deformations, enables animating
virtual characters.

promise of MoCap is the ability to completely and flawlessly capture and retarget
a human performance, from emotion down the most subtle motion of facial skin.
However, the raw MoCap animation data hardly ever comes out perfect, requiring
an additional editing step.

In reality, even professional motion capture setups often fall short of a perfect
animation result. It is for instance usual that some part of a performance cannot
be captured due to occlusions or unexpected poses. For facial MoCap, popular
video-based technologies have known flaws as well: the camera resolution limits the
capture precision, while signal noise, jitter, and inconsistent lighting can impair its
robustness. Even so, the result of a performance animation does is "technically"
perfect, it may not entirely fulfill the artistic intent (the performer wasn’t able to
reach some poses..), requiring additional corrections. Several reasons might explain
the necessity of a supplementary editing step [Gle99, Hav06]:

• The intent/purpose of the animation has evolved after the shooting. Rather
than capturing a new animation, with an expensive and massive setup, one
might prefer reusing and adapting an already captured sequence.

• The real movement is not perfect: the performer is human and therefore,
prone to make mistakes in the speech, the intent, or in its acting. Further
postprocessing refinements are often necessary to meet the requirements.

• Adding motions are needed after the shooting. For instance, some motion
might not be feasible by the performers (e.g., lift only one eyebrow) or have
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been forgotten during the shooting, which can be manually drawn afterward;
Virtual character’s animation need further motion magnification to express the
desired intent.

• The resulting retargeted animation is not directly usable and required additional
manual works. Most of the time, transferring motion from one character to
another produces a lot of artifacts. Morphological differences between the
performer and the driven digital character can lead to inconsistencies in the
final motion [SSK+11].

Hence, it is common to require human intervention to fine-tune the animation,
addressing the lack of flexibility of performance-based animation. In the prevalent
animation editing scheme, an animator directly manipulates a set of numerous low-
level temporal curves of complex facial parameterizations. The industry standard for
facial animation is the blendshape coefficients. This workflow usually goes hand in
hand with the traditional and widespread keyframing process, a form of animation
editing especially cherished by the artist community. Artists specify the configuration
of the character at specific key points in time and let automatic interpolation generate
the inbetweens motion.

In both workflows, the editing step requires technical and artistic skills to end up
with a coherent and satisfactory final animation. In addition, this process requires
a considerable amount of time as the expression of the face has to be manually
specified over a certain period. Hence, handmade animation editing remains an
expensive step in the performance-based facial animation production, that only the
animation studios, capable of employing talented and experienced animators, can
afford. The objective of this thesis is to study the complexity of the facial animation
manipulation, and investigate potential algorithms to make this editing task more
intuitive.

1.2 Problem Statement and Motivation
In this thesis, we consider the dynamic process of facial animation, i.e., the temporal
behavior of the face when performing a sequence of expressions. The motion editing
problem is defined as modifying a segment, or the full content of an unsatisfying
animation, and then resynthesizing a plausible animation under potential external
constraints guiding the generated motion segment [Gle01].

The Complexity of Facial Dynamics The major difficulty with facial motion
manipulation comes from the inherent dynamic aspect of facial animation. Indeed,
the human brain is very sensitive to recognizing biological motions and distinguish-
ing real or fake movements from subtle temporal cues of facial motion. From the
cognitive perspective, it has been widely proven that facial movement perception is
vital in social and non-language communications. Giese and Tomasio [GP03] even
report that complex movements and action recognition are crucial for the survival of



1.2 Problem Statement and Motivation 17

Figure 1.3 The Uncanny Valley hypothesis adapted from Mori works [Mor70, MMK12].
The uncanny valley is the area of negative response to characters that seem too
human like. Movement amplifies the observer’s response, in particular, deepen the
uncanny valley (MacDorman and Ishiguro, 2006; Mori, 1970/2012).

many species. This hypothesis is in correlation with the phenomena of "Uncanny
Valley", remarked by Mori et al. [Mor70, MMK12]: when an artificial character acquires
higher similarity to human beings, it heightens the sense of affinity to the observer.
However, when it starts acting almost as perfect as a human, one might notice a
very strong drop in comfort and familiarity feelings. The presence of movements is
crucial in human sensitivity response and amplified the peaks and the valleys of the
"uncanny valley" graph, as we can see in Figure 1.3. These findings, combined with
the fact that we mostly witness moving faces in the real world, put forward the im-
portance of the temporality to synthesize high quality and believable facial animation.

That motivates our choice to regard facial behavior as an inherently dynamic
rather than a static mechanism. The main requirement in animation editing is,
therefore, to preserve the naturalness of facial motions and the consistency of facial
expressions. However, facial animation is composed of a plethora of complex and
highly nonlinear bio-mechanical temporal patterns, spreading out over a wide range
of different temporal frequencies, which is challenging to model. Previously, data-
driven research into animation synthesis has offered an alternative to complex models.
Yet, much of the facial animation editing solution still required animation skills,
preventing a broader deployment of great quality facial animation.

The Animation Data Management Another difficulty with motion editing is
the duality of spatial and temporal coherence. Indeed, motion capture provides long
sequences of animation data at every timestamp. As the movement is continuous,
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motion corrections require changing many consecutive frames. A deep and empirical
analysis has to be made before, to properly define the scope of the motion to
edit inside the full animation. Facial motion data is all the more challenging to
modify due to the strong and intricate correlation between the different parts of
the face. In the physiological and cognitive fields, it has been widely proven that
the perception of facial movements implied distinct areas of the face [WMK05, MK14].
For instance, through a Magnetoencephalographic study on facial movements, Miki
and Kakigi [MK14] demonstrate the crucial spatial relationship between the contour
and facial components, which are essential factors in the perception of the facial
movements. Although it is imperative to preserve the whole face’s coherence during
the editing process, it is still difficult to precisely determine which sub-part of the
face has to be revised and how it has to be modified. The difficulty comes from the
diversity among the dynamics and the temporal features of the different parts of the
face, requiring adaptive processing. Indeed, facial dynamic induces both low- and
high-frequency of complex motion that is hard to model [ASK+12, BBG+14], rendering
the facial animation filtering/cleaning problem all the more challenging. Hence, with
the growth of synthetic data production, it appears necessary to provide solution
scaling to large data sets of motion.

The Neural Networks Revolution For the last decades, learning-based methods,
especially Neural Network (NN), have introduced innovation and advances to many
research areas. Neural networks are a programming paradigm, a category of Machine
Learning (ML) in which a computer is trained to perform a specific task by learning
from examples. This paradigm easily derives an efficient statistical model of the
process, which is relevant notably in the case of complex process modeling. A Neural
Network can automatically capture the correlation and the temporal dependency
between the movement of the different parts of the face. Biologically inspired, it is a
stack of several layers of linear classifiers with nonlinear functions, named neurons.
NN have become popular since the breakthrough of deep learning on the ImageNet
classification challenge in 2012 [KSH12]; Back up with the well-demonstrated universal
approximation property of multi-layer networks, their usage has been widely extended.
In particular, neural networks have enabled modeling of complex temporal signals,
such as the voice in speech recognition [GJ14], the image sequence in video compres-
sion, text-based image retrieval [ECPC18] or text-to-text [SMH11] or text-to-image
generation [RAY+16].
In our context, neural networks have several advantages. As explained above, it
bypasses the need for an accurate 3D facial motion model, which is highly challenging
to derive and limit the generalization across various performance-based animations.
Training neural approaches on real human facial motion allows condensing all the
motion variations features and specificities into a mathematical process, which can
be used to estimate new realistic motion afterward. In addition, neural networks
allow being combined with random schemes, making possible to perform generative
inference and create animation perceptually similar to the ones observed in the
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training data. Recently, learning-based systems have outperformed regular ones
in an abundance of tasks, opening novel possibilities to handle the complexity of
human motion signals [HSK16] and generate perceptually high-quality facial animation
results [TZK+17, LSSS18] using innovative optimization strategy [GPAM+14]. These
successes, coupling with the inherent capability of neural networks in managing large
and diversified data set, have motivated our work.

In this thesis, we explore the different aspects of facial animation editing and
leverage machine learning methods to overcome the mentioned difficulties. We
investigate ways to improve and facilitate the animation editing process and provide
innovative tools that reduce the time and the manual effort involved in this task.

The main objective of this thesis is, thus, to design suitable and practical solutions
to create powerful facial animation pipelines. The proposed solutions should be
compliant with the following requirements:

• Plausibility: the complex space-time patterns of human facial motion should
be respected. We want to provide solutions that preserve the dynamic and the
naturalness of facial motion, in particular high-frequency movements, such as
the blinks or the mouth closures in a speech-based facial animation.

• Practical: we wish to design solutions that can be easily integrated into the
traditional facial animation pipeline, and supporting the actual animator’s
workflow.

• Usability: we aim at developing solutions compliant with animator requirements,
but also accessible to a wider public than skilled animators. A facial animation
editing framework should offer an alternative to the actual editable animation
curves, with higher facial motion abstractions, more usable for non experts.

• Speed One of our goals is to make the process of facial animation editing more
efficient by reducing the manual effort and relevantly resynthesis the modified
animation.

1.3 Contributions

This thesis is organized around three main contributions that can find their application
in the performance-based facial animation production pipeline:

• A real-time cleaning and refinement facial animation system. A post-processing
performance-based animation signal algorithm that both preserves -and even
restores- crucial facial cues, without relying on any manual intervention. We
define an original parametrization of the problem to free our system from
framerate dependency, enabling a real-time inference.
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• A robust and interactive editing methods that automatically handles the
temporal consistency of facial motions and preserves their natural dynamics.
Based on semantic and high-level parameters, our system aims at pushing
forward the intuitiveness of the facial animation editing while allowing a
flexible motion controlling.

• A generative editing framework enabling the synthesis of motion segment in
both a supervised and unsupervised fashion. The proposed solution enables
fast facial animation modifications through versatile guidance inputs including
discrete, noisy or semantic guidance.

These contributions are backed up by a preliminary work gathering and refining
existing data to create a compliant database with respect to our requirements.

1.4 Thesis Organization

In this thesis, we aim at studying learning-based algorithms to advance the different
facial animation editing process further. Leveraging the power of neural-based
approaches, we explore different directions to handle various animation editing
procedures.

First, we review the relevant related works in the field of facial animation editing
in Chapter 2, covering the performance-based animation processing, the keyframing
editing task, and the facial motion controllability.

Throughout this thesis, we leverage neural-based techniques to design editing
solutions, preserving the natural dynamic of facial motions. Yet, these techniques rely
on accurate animation data to operate well. In Chapter 3, we list the two databases
used for all our experiments.

In Chapter 4, we investigate neural-based techniques to provide a real-time facial
animation refinement system, removing artifacts in performance-based animation
while preserving and restoring the natural dynamic of facial motions.

In Chapter 5, we present our second contribution that steps toward motion
controllability. Currently, the animation editing remains dedicated to professional
use; To address this shortfall, we propose a time resolution-preserving architecture,
capable of generating complex and plausible motion patterns, from a set of few
intuitive temporal high-level parameters.

In Chapter 6, we explore the generative learning process to forge a multifunctional
framework that handles different supervised or unsupervised editing scenarios such
as discrete keyframing editing, motion filling during occlusion, expression corrections,
semantic content modifications, and noise filtering.
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Finally, Chapter 7 concludes this thesis. We discuss the proposed solutions, our
contributions and suggest future improvements. This thesis is based on the work
published in the following articles:

• E. Berson, C. Soladié, V. Barrielle, and N. Stoiber. A Robust Interactive Facial
Animation Editing System. In Proceedings of the 12th Annual International
Conference on Motion, Interaction, and Games - MIG ’19, Newcastle-upon-
Tyne, United Kingdom, 2019

• E. Berson, C. Soladié, and N. Stoiber. Real-Time Cleaning and Refinement of
Facial Animation Signals. In Proceedings of the 4th International Conference
on Graphics and Signal Processing - ICGSP 2020, Nagoya, Japan, 2020

• E. Berson, C. Soladié, and N. Stoiber. Intuitive facial animation editing
based on a generative rnn framework. In Proceedings of the 19th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation - SCA ’20, Mon-
treal, 2020
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A tremendous amount of research efforts has been made in animation synthesis
since the pioneering work of Parke et colleagues [Par72], handling the different aspects
of the production pipeline [PASH13, NN98, DN07, ZTG+18]. As our thesis focuses on
one crucial step of the facial animation pipeline, with the general goal of making the
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facial editing process easier and faster without defacing the natural dynamic of facial
motions, it follows an extensive body of literature.

In this chapter, we provide an overview of the main techniques concerning facial
animation editing, omitting various aspects of the facial animation field, including
2D facial manipulation, face tracking or rendering techniques. Although this thesis
focuses on facial motion, motion editing has been widely studied in the field of body
motion. Hence, this chapter also incorporates the most relevant body motion editing
methods for this thesis.

Throughout this thesis, we hypothesize a given blendshape parameterized anima-
tion sequence. Introduced in [Par74], Blendshapes are "linear facial models in which
the individual basis vectors represent individual facial expressions." [LAR+14]. Due to
the simplicity of the mathematical model, its interpretability and its straightforward
implementation, this parametrization has been extensively used in the literature.
The blendshape model also offers the advantage of being a semantic parametrization;
As a consequence, it is the prevalent paradigm to create facial animation in the film
industry. Among others, the blendshape model has animated characters in The Curi-
ous Case of Benjamin Button [Flu11] and The Lord of the Rings. A complete overview
of the different rigging process and geometrical face deformation parametrization
techniques are also beyond the scope of this work and can be found in [OBP+12].

We consider three categories of animation editing: keyframe-based editing (Sec-
tion 2.1), motion controlling (Section 2.2) and animation processing (Section 2.3).

Historically, the initial approach to create and manipulate animation was keyfram-
ing, introduced in computer graphics in 70s [BW71]. It is the most basic form of
animation creation and has been used since the first animated film, The Dinosaur,
invented by Winsor McCay in 1914. The name, keyframing is derived from the
traditional animation conception process, where every frame (pose) of animation was
hand-drawn. The essential idea consists of correcting static key shapes at different
specific moments in time, and then use interpolation to generate the motion between
the edited keyframes and propagate the revised shape. Therefore, the illusion of
movements is created by smoothly filling the sequences with inbetweens using manual
tools, interpolation function, or a more sophisticated dynamic modeling process.

In the beginning, the most important frames, keyframes, were drawn by expert
animators, involving handicraft techniques [Bla94], and in-betweens were then designed
by a group of animators or by utilizing keyframing instruments. Since then, many
techniques have proposed to ease the keyframe drawing part, using geometrical
considerations (Section 2.1.1) or higher facial abstractions (Section 2.1.2). More
sophisticated computed interpolation schemes have also substituted the laborious
task of inbetweeners (Section 2.1.3). In the first section, we will, therefore, reference
to the main techniques used to ease the static facial expression correcting approaches
(Section 2.1).

Although keyframing is still widely popular, the prevalent approach to create an
animation is performance-based techniques [PSS99, Wil06]. While motion capture is not
directly suitable for the stage of motion editing, a quantity of work focuses on reusing
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motion data to fit external constraints. In the second section, we will analyze the
different strategies developed to edit the facial motion by using pre-captured motion
clips (Section 2.2). Early works focus on reusing motion samples through different
concatenation strategies. More recently, with the growth of available multimodal
data, many works rely on learning techniques. We will detail those two approaches
in Section 2.2.1 and Section 2.2.2 respectively.

A later tendency consists of directly performing temporal motion manipulation
on the original signal. We depicted them in a last part (Section 2.3). Temporal
motion manipulation strategies distinguish themselves from the previously described
procedures in that they do not consider frames individually nor portions of animation.

Finally, we discuss the positioning of this thesis with respect of the existing
literature.

2.1 Keyframing Editing

Historically, computer animation systems allow the user to control a set of discrete
“key” frames, by specifying the configuration of the character at certain key points
in time. The temporal continuity of the motion is generated afterward, without the
ability to lead interpolating frames. In the most common scheme, users provide
geometrical constraints to a keyframing tool which then solves the realistic animation
parameters configuration matching these user’s specifications. This process was
primarily applied for determining the configuration of the character’s parameters
from temporally localized specifications, named Inverse Kinematic. Later, this
concept was transposed in the facial animation field [LA10], known as the Direct
Manipulation technique. We detail various methods existing in the literature for
solving the underlying animation parameters in Section 2.1.1. However, geometrical
constraints require skills and experience to be accurately defined. Many studies have
imagined more intuitive scheme for non-expert users, while still allowing supervised
keyframe editing. An overview of these propositions is presented in Section 2.1.2.
Given the set of keyframes, the motion is synthesized by interpolating between these
frames. In the beginning, the in-betweens frames workflow was labor-intensive and
highly time-consuming as it was entirely made by hand. Since the pioneer work of
Parke et al. in 1972 [Par72], many studies have explored new ways to automate and
accelerate this process. The most relevant interpolation strategies are exposed in
Section 2.1.3. This section ends with a discussion of the advantages and drawbacks
of the current keyframe-based editing solutions.

2.1.1 Direct Manipulation

Since the early 2000s, creating a tool to help support the motion editing procedure
has been an active area of research in the computer animation community. Animation
editing was firstly explored in the literature, to manipulate character body motion,
employing inverse-kinematics formulation [ALCS18]. Gleicher et al. [Gle01] describe
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the IK as “a process for determining the configuration of a character’s parameters
(known as its pose) based on specifications of resulting features of the pose, such as
end-effector positions.”

This definition has been later adjusted to the facial animation field: facial editing
consists of solving the key animation parameters from static users’ constraints.
Therefore, the crucial issue of inverse kinematic is to generate reasonable faces
from only sparse constraints, which is a severely underconstrained problem. Early
tendencies use direct manipulation for editing keyframe facial pose [JTDP03, ZLH03,
ZSCS04, CGZ17] and handle this issue by leveraging reduced dimension space and
computing the animation parameters maximizing their likelihood with respect to
the data, using Principal Component Analysis (PCA) [BV99, ACP03, LCXS09] or
Independent Component Analysis (ICA) [CFP03]. Further local improvements of
the edited methods quality were achieved by segmenting the face into hierarchical
regions a priori [JTDP03, ZSCS04, LD08, MLD09, TDlTM11]. Another solution to edit
3d vertices on the mesh is Radial Basis Functions (RBF) as it guarantees smooth
geometric deformation [NFN00, SSK+12, SL14]. A new expression is derived from a
sparse and localized collection of steering parameters, defined on or near the surface
of the mesh [NFN00, ZSCS04]. To precisely render the nonlinearity structure of the
face, Seol and colleagues [SSK+12] allow the artist to sculpt nonlinear corrections
on the blendshape-based animation by exploiting the weighted pose space invented
by Kurihara [KM04]. In the proposed framework, the vertex-level adjustments are
interpolated using RBF inside the pose space, which is the blendshape model.
Additional blendshapes can also be drawn anywhere into this pose space, appearing
smoothly at the specified location. Xu et al. [XCLT14] give the user the possibility
to control the retargeting process by editing fine-scale details (wrinkles) on the
transferred animation, improving the visual rendering. In the same vein, Feng and
colleagues [FKY08] suggest kernel canonical correlation to generate plausible facial
deformations on animation from a sparse, underdetermined set of control points.

Lewis and Anjyo [LA10] introduce a novel paradigm called Direct-Manipulation,
formulating the regression from 3D vertices constraints to blendshape weights as
the regularized optimization constraints. The novel framework enables the artist to
perform fast "pin and drag" operations on the 3D mesh’s surface and solves for the
underlying animation parameters, as illustrated in Figure 2.1. The number of users’
constraints is usually smaller than the blendshape parameters. The optimization
problem is thus regularized through different criteria: by constraining the value of
the blendshape coefficients [LA10], by employing a statistical model [ATL12, WBLP11],
by constructing an orthogonal blendshape model [LD08], by using geometric con-
straints [RZL+17], with transposition approach [CLO17] or, by adding face areas
boundary constraints [TDlTM11]. Neumann and colleagues [NVW+13] perform the
optimization on sparse and localized deformation components. These linear sub-
spaces are automatically computed by imposing sparsity in the direct manipulation
optimization problem, resulting in a sparse PCA [ZHT06]. Seo et al. [Seo11] subsume
this framework but propose an innovative matrix compression scheme to handle non-
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Figure 2.1 Rather than manipulating traditional animation parameters, Lewis et
al. [LA10] propose a direct manipulation framework, that enables the artist to edit
the face by directly moving vertices. The main challenge of direct manipulation is
to effectively solve for the underlying parameters (the sliders) that generate a face
which best matches the vertex constraints.

linearity effectively. Later, Cetinaslan et al. [CO18, COL15] suggest a new approach
to localize the direct manipulation method theory and limit the spatial influence of
each modification, avoiding global peculiarity.

Direct manipulation relies on “end effectors” or low-level geometrical constraints.
While enabling another kind of control for animators such as the “pin-and-drag”
operation directly on the 3D facial expression, it is not adapted to a non-expert user
for it requires high animation skills.

2.1.2 Keyframe Editing Constraints

Creating efficient and intuitive facial expression editing tools encompass a reflection
on the user’s interface and the form of the control parameters. However, in this thesis,
we are looking for a user-friendly solution to manipulate facial motion. Traditionally,
artists edited facial expressions by changing the animation parameter values through
a sliders-based interface. Although animators are familiar with this kind of inter-
faces, they are allowed modifying one parameter at the time, leading to switching
back and forth operations between different sliders to generate the desired facial
expression [LA10]. Sliders are hardly intuitive, as their effects are often low level and
restricted to a particular part of the face. Combined with the fact that they require
to be wisely manipulated to avoid reaching unrealistic configurations, it becomes clear
that sliders remain dedicated to a targeted public, with high animation skills. Early
works stepping toward more intuitive facial modeling and editing drive the face mesh
by interactively dragging points on the face which are either image features [ZLH03],
motion markers [JTDP03], the 2D projection of 3D vertices [ZSCS04, LA10, CGZ17] or
lines on a 2D portrait [SMND08]. One group of works build upon these methods and
enhance the facial animation modeling access through sketch-base interfaces. We
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(a) (b)

Figure 2.2 Creating plausible facial expressions requires mastering sophisticated
facial parametrizations, which is challenging for non-expert users. (a) Many works
propose alternative user interfaces to ease facial geometry manipulation and solve
for the underlying facial rigs parameters [CO18]. (b) Miranda and collegues [MAO+12]
propose a sketching interface control system, allowing the user to deform a 3D face
by drawing strokes.

review these methods in Section 2.1.2.1. Another group of work proposes to use
more semantic inputs to edit animation. We present this category in Section 2.1.2.2.

2.1.2.1 Sketching interface

A group of work addresses the lack of accessibility to current rigging systems for
novices using sketching interface, introduced in 2006 by Natanelli and colleagues [NF06]
and extended in 2008 by Chang and colleagues [CJ08]. In 2009, Lau et al. [LCXS09]
propose an interactive sketch-based framework to ease 3D facial expressions posing.
Facial expressions are edited by drawing free-form strokes [GM10, CO18, ZHK+17], by
defining distances between facial points, by incrementally manipulating curves on
the face, or by directly specifying facial points in 2D screen space. The difficulty
of the sketch-based procedures lies in the interpretation of the user’s inputs, which
may be consistent with many unnatural facial expression configurations. Sketch-
based interfaces are a popular strategy to give a non-expert user the possibility to
perform keyframes editing, manipulating only facial parameters [COL15, LCXS09], 2d
landmarks [ZHP+19, LWW+18], fine details [ZHP+19] or just the lips shape [DBB+18].
Disambiguation of the user’s input is handled using maximum likelihood frame-
work [LCXS09, GM10], non-uniform rational basis spline curves (NURBS) [CO18],
reference curves [CJ08], or PCA [SMND08]. Zhao et al. [ZHP+19] formulate the problem
of sketch-based editing as reconstructing and deforming a 3D face model. The user’s
sketches serve at deforming 2D landmarks, and thereby the 3D model parameters,
a new photorealistic face is rendered via the 3D model parameters. Rather than
modifying animation parameters, Miranda et al. [MAO+11, MAO+12] define a external
canvas allowing the users to edit the underlying animation rig by drawing 2D strokes
(see Figure 2.2). In the same vein, Jin et al. [JGGN15] propose a sketch-based interface
to easily edit a variety of meshes.
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These above-mentioned studies mainly focus on keyframes expression editing
conceiving spatial abstractions of a facial representation, without considering the
temporal consistency of motions. Recently, several works investigate spacetime
curves for editing body motions [GRGC15, CiRL+16, CGNS17, COS19]. Nevertheless,
these approaches still involve controlling each keyframe individually and therefore,
specifying a pose at each time. While the notion of trajectories is intuitive for body
parts (arms, foot), representing time variations of facial motion is still an open
question.

2.1.2.2 Semantic Guidance

Another group of works rests on more semantic user constraints for keyframing
editing. One form of constraint is emotion cues. For instance, Stoiber and col-
leagues [SSB08] design a 2D interface with an emotional interpretation to control
facial expressions. Several methods rely on discrete phonemes-related guidance, such
as the viseme -the visual representation of a phoneme (speech unit)- [CM93]. Another
tendency is to derive from data, high-level parameters using Independent Component
Analysis [CFP03] or a bilinear model [CDB02]. In this way, they can modify the speech
and emotional content independently.

Higher abstractions of facial expression are desirable for intuitive and fast cor-
rection computation. While high-level discrete parameters have been easily derived
from body motion editing [HSK16], it is still an open question for facial animation.
One effective solution is semantic or high-level keyframes representation. Reed and
Cosker [RC19] circumvent this issue and create an evolutionary interface, in which a
non-expert user can edit an animation by iteratively choosing the most appropriate
example, until convergence to the desired one. Although this method is user-friendly
and flexible; it precludes a rapid and efficient application. Yet, the effect of corrections
should not be temporally localized due to the dynamic nature of facial motion and
has to be spread smoothly through the surrounding frames to maintain the temporal
coherency of the original sequence. Thus, this editing strategy must be coupled with
an editing propagation scheme.

2.1.3 Automatic Interpolation

Improving facial manipulation and providing high-level parameters are a crucial
ingredient to simplify the editing pipeline. However, as exposed in the introduction,
it is not sufficient for generating a realistic animation. Creating a believable edited
animation pass through rendering the natural and complex dynamics of the facial
motion. It is all the more challenging, as humans are very sensitive to detecting
temporal inconsistencies in facial motions (Chapter 1). The impression of movement
was initially created by stacking an infinite number of hand-drawn frames, making
objects moving in cartoon style. Later, in the process of facial animation editing,
only the most important frames, keyframes, were drawn by expert animators and
in-betweens were then designed by a group of animators or using keyframing tools.
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Although the motion was more natural; it required hours and millions of in-betweens
to generate a whole animation film [JT81]. When animation became computer-
generated instead of hand-drawn, the laborious task of in-betweeners has been
replaced by predefined interpolation functions, exposed in Section 2.1.3.1. Recently,
many work propose to connect keyframes using generative techniques, outlined in
Section 2.1.3.2.

2.1.3.1 Interpolation Functions

Keyframe interpolation often relies on a linear workflow, enabling artists to control
and edit the in-between frames easily. Indeed, many animation software (Maya,
Blender, . . . ) still propose the keyframing procedure with automatic in-between
frames solving. Most of the automatic motion completion systems apply basic inter-
polation [Par72], usually linear, because of its simplicity and its execution speed. More
sophisticated interpolation methods were investigated such as a bilinear [AKA96] or
spline function [KB84], collisions were further detected to correct interpolation [Neb99].
The pioneer work of [Par72] suggests keyframing with cosine interpolation between
3D surface-based poses. Later, several studies considering the temporal behavior of
the face propose to spread the edition wielding a more sophisticated function such as
a Catmull-Rom spline [LD08] or a B-spline curve [CLK01] on the edited animation pa-
rameters. While interpolation has proved efficient for short segments with dense sets
of keyframes, these curves are agnostic about the nature of the animation, restraining
the quality of the produced animation. The smooth and monotonous motion patterns
they produce are far from realistic facial dynamics when used on longer segments.
Nowadays, animation cleaning usually relies on keyframing: having artists replacing
faulty animation with numerous carefully-crafted keyframes to interpolate a new
animation. Not only keyframing is a time and skill demanding process, but also it
requires acting on several of the character’s low-level animation parameters, which is
not intuitive for non-experts.

2.1.3.2 In-betweens Generation

Several works explore automatic hand-drawn in-betweens generation [BW75] in the
field of human motion. Initial methods propose user-guided systems by looking for
correspondence between strokes, and automatically interpolate between matched
strokes [Kor02, WNS+10]. Dalsein and colleagues [DRvdP15] continuously interpolate
in both space and time, 2D vector drawing through a novel structure, named the
Vector Animation Complex. With the aim of reducing the manual involvement of
the user, many works opt for deep learning models, filling large gaps of motion
segments between sparse keyframes constraints, without an explicit supervision on
the transition motion control. An overall trend to generate in-betweens automatically
is recurrent neural networks [ZvdP18, HP18]. Recently, considering that human motion
dynamics can be learned from data, Zhang et al. [ZvdP18] learn in-betweens patterns
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Figure 2.3 In the traditional keyframing workflow, the motion is synthesized by
interpolating between a set of given keyframes. Most common automatic completion
systems apply predefined functions that cannot reflect the complex non-linearity
of facial dynamics. Recent works propose to leverage neural networks to learn
realistic motion patterns, producing a believable animation. Zhang et al. [ZvdP18]
use an auto-regressive model that interpolates a hopping lamp motion given a set of
keyframes.

with an autoregressive two-layer recurrent network to automatically autocomplete
a hopping lamp motion between two keyframes, as shown in Figure 2.3. Harvey
and al [HP18] propose a Recurrent Transition Network (RTN), extending the RNN
to more complex body-motion actions. However, their system only works for a
fixed interval of 60 missing frames. Building upon their previous work, the same
authors [HYNP20] combine a LSTM structure and an adversarial training to generate
automatic motion transitions. Their system handles various in-betweening gaps by
inducing temporal awareness through an inventive time-to-arrival embedding. They
enforce the variability in the generated transitions using a innovative scheduled noise
strategy. Zhou et al. [ZLB+20] use a fully Convolutional Neural Network (CNN) in
an autoencoder architecture to interpolate motion in long-term segments guided by
sparse keyframes positioning at arbitrary points in the timeline, demonstrating good
results on full-body motions. The motion of face and body limbs is naturally the
deterministic outcome of muscle contraction between bones and tissues, obeying
physical laws. Yet, facial muscles and skin layers have a smaller scale and a much
denser structure than our main body muscles. These methods have not been tested
on facial motions, which are exhibit dynamic patterns that are significantly different
than those of larger body limbs (higher frequency, low inertia).

Discussion Keyframing remains popular due to its linear workflow, enabling
artists to control and edit specific keyframes easily, which is valuable for artists [IMH06].
Although manual keyframing can conduce to impressive results, the main interpolation
scheme fails at reproducing the natural temporal mechanic of facial motions, which
might be very disturbing in case of long-time gaps. While recent studies in characters
animation editing interface propose to steer both the temporal and spacial dimension
of the body motions by sketching line-of actions [GCR13] and gesture drawings [BVS16],
most of the facial animation framework still provides no mechanism to control and
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manipulate the resulting displayed motion. Handmade fine-tuning can conceal
unrealistic transitions, but it is certainly far from being a fast solution. Hence,
actual keyframing editing frameworks are ineffectual regarding our requirements.
Considering the temporal aspect of the motion into an editing framework was mainly
introduced in body animation with the concept of spacetime editing [WK88, Gle97].
Seol and colleagues [SLS+12, XCLT14] propose an innovative optimization scheme to
propagate edits in a more plausible way employing a movement matching equation.
In the same spirit, Dinev and colleagues [DBB+18] use a gradient-based algorithm
to smoothly propagate sparse mouth shape corrections throughout an animation.
Tangent-based optimization has been newly adopted to perform spacetime body-
motion editing [KG18, COS19]. While ending-up with smooth animations, these
strategies rest on a set of well-edited and accurately chosen keyframes to represent the
motion, that is inappropriate to non-expert users. Besides, the resulting animation’s
quality is still dictated by the number and relevance of user-created keyframes [ZLB+20].
Recently, Neural Network have shown promising results to synthesize very natural
human motion transitions [ZLB+20, ZvdP18]. Even so, the presented solutions remain
action specifics. In this thesis, we propose to incorporate the keyframing paradigm into
a global facial animation editing framework, tackling the above issues by leveraging
recurrent networks and generative framework which have recently demonstrated
successful results at modeling human motions [ZvdP18], but remain unexplored in the
field of facial animation.

2.2 Motion Controllability

Although keyframing is still in use, the leading technique to produce animations
is performance-based animation, as the capture data intrinsically encompass the
natural facial motion dynamics. Real-time mocap solutions enable to drive online
an avatar [NSX+19, WBLP11, CWW+16]. However, it is an ineffective approach to
synthesizing new animations satisfying constraints. For instance, performing a
particular expression, at a specific time, or synchronizing a viseme with a given audio
track may require many iterations before succeeding in acceptable results. Hence,
many works has come up with systems that adapt performance-based animation data
to meet temporally-dense external constraints, usually user defined, authoring the
generation of motion sequence. Several methods resynthesize motion by simulating
the dynamics of muscles and skins using the universal laws of physics [BSC16, SNF05,
IKKP17]. Building and simulating a plausible physical-based model is an arduous
task because of the intricate dynamics of the facial musculature and the layers
of skin tissues. Rather than manipulating a set of frames independently without
explicit guidance on the dynamic of the synthesized motion, in this section, we focus
on techniques that aim to control the generated motion sequence. A strategy to
edit motion data is reusing and appropriately recombining available examples using
motion blending approaches or by cleverly concatenating samples. In Section 2.2.1,
we review the most relevant works, an exhaustive overview on this topic may be
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found in [Gle08].
In more recent works, there has been an overall trend towards learning-based

methods leveraging motion capture data availability. Rather than concatenating
existing motion, another strategy consists of learning an underlying parametrization
of motion from motion capture data. A new sequence can be synthesizing afterward in
an inference step, respecting user constraints. Early systems rely on statistical models
but recently a flourishing panel of works investigates neural network paradigms to
generate natural motion matching input constraints. These approaches are presented
in Section 2.2.2. We discuss the limitation of the current approaches at the end of
this section.

2.2.1 Motion Sample Editing

Reusing and manipulating motion samples implies different strategies to bond motion
segments together. This can be done by blending motion segments (Section 2.2.1.1)
or by wisely concatenating animation samples (Section 2.2.1.2).

2.2.1.1 Motion Blending

Motion blending refers to the process of interpolating two or more motion clips, to
produce a sequence of motion respecting desired properties [FHKS12]. It is illustrated
in Figure 2.4a. Relying on motion capture examples, it was a promising approach
for motion editing and motion generation under the user’s constraints. Early ap-
proaches linearly blend motion samples to create a new sequence [WH97]. However,
linear interpolation limits the complexity of the produced motions and precludes
reproducing of the face’s mechanical and nonlinear behavior. Hence, researchers
have explored different strategies to cleverly stick together existing sequence with
K-Nearest Neighbors interpolation [KG03] or decomposing the motion into human
behavior using Fourier coefficients [UAT95]. Rose and colleagues [RCB98] distinguish
types of human action, called “Verbs”, and their style “Adverbs”. They enhance
previous work by adding a nonlinear function, RBF [PSS02, RISC01], to interpolate
between “Verbs” under a set of “Adverbs” constraints, making possible to create
various motion sequences (see Figure 2.4b). Kernel-based interpolation function has
been widely adopted to interpolate motion clips [MK05] smoothly. One downside of
this technique is its inability to exactly specified constraints. Many efforts strengthen
the kernel-based blending motion process, coming closer to space constraints, by
optimizing the blending weights afterward in “Inverse Blending” framework [HK10] or
proposing a (geo)statistical approach [MK05]. As demonstrated by Huang et al. [HK10],
inverse blending framework is suitable for generating parameterized walking motion
steered by precise feet placement controllers. Body-motion samples were recently
blended using neural network interpolation [GLSR19]. However, the proposed system
tends to oversmooth the dynamic in the blending motion part and does not generalize
well on complex and specific motion actions.



34 Literature Review

(a) Traditional motion blending. (b) The original RBF interpolation [RCB98]

Figure 2.4 One popular technique for animation synthesis is motion blending. (a)
It consists in interpolating similar motion clips using blending weights, in order to
produce a sequence that respects some high-level constraints. (b) Rose et al. [RCB98]
develop a new motion interpolation scheme combining the Radial Basis Functions
with polynomial terms, and generate new sequences from parameterized motion
examples, call "Verbs" characterized by their style labeled by "Adverbs".

Overall, motion blending is a straightforward technique to generate natural and
excellent quality results, which has seen widespread adoption in various motion
synthesis domains. Although kernel-based methods are the most popular, it is linked
with a high computational cost [RB05]. For that reason, subsidiary approaches have
been explored.

2.2.1.2 Motion Concatenation

One strategy to resynthesizing a new motion is to concatenate motions clips. The
principle is to retrieve from a large corpus of motion data, a corresponding motion
clips sequence that fits the user’s specifications. As the found motion piece was
not modified, it contains all the subtle details of the original animation. We dis-
tinguish two main ways to concatenate motion samples presented in this section:
nonparametric sampling techniques and motion graphs.

Nonparametric Sampling Methods Inspired by texture synthesis [EL99, LLX+01],
one approach consists of randomly reassembling motion data patches from qualified
candidates in the input motion. Deng et al. [DBNN04] consider a phoneme projected
representation as patch samples and regenerated speech animation with this kind of
patch-based texture sampling procedure. Recently, Roberts and colleagues [RAAL19]
improve a blocked facial animation (an animation that contains the basic movements
and timings but details are needed), by concatenating motion patches from motion
capture samples, including rich and subtle details of facial movements. They use
patch-based sampling and Gaussian falloff to synthesize new animation containing
the original animation’s coarse motion information and the feature of realistic facial
motions. Bermano and colleagues [BBG+14] enhance the temporal behavior of a facial
animation using the optimal projection of this animation onto a pre-captured motion
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capture database. The projecting sequence is then resampled to get the desired
number of frames. However, sampling methods cannot extrapolate samples beyond
the ones in the database. Besides, managing and properly sectioning a sequence of
clips yielding plausible and natural animation sequences is a daunting task.

Motion Graph An effective technique to perform temporal coherent editing and
generation is motion graphs [KGP02, AF02, LCR+02]. Motion Graph optimizes the path
to smoothly combine a set of motion clips, respecting the user’s constraints. This
technique leans on building a graph where nodes encode static poses or short-term
motion blocks [AF02]. The edges between nodes encode the likelihood of the transition
between those two blocks being plausible, so realistic animation reconstruction consists
of finding paths of minimal cost in the graph. A distance metric evaluates the extent
to which a transition is plausible. The metric distance measures the similarity between
either the motion parameter positions [LCR+02], velocities, accelerations of motion
samples, [AF02] or even the vertices at the boundaries of the motion sample [KGP02].
Pioneer works [AF02] in this direction develop a hierarchical graph representing the
connectivity of motion data and conducting a global randomized search to retrieve
a satisfying animation. Kovar et al. [KGP02] use a “branch and bound” search
algorithm to perform efficient controllable motion generation. This workflow has
been later exploited for speech-driven animation [CFKP04]. Lee et al. [LCR+02] propose
a similar approach but relies on cluster trees to encode plausible transitions between
motion data. At runtime, the graph can be navigated to recreate a convincing
animation sequence, meeting the user’s constraints. While the edges enforce the
similarity between two nodes, small discontinuities might be noticeable, requiring a
blending algorithm [LCR+02, LS99] or a smoothing function [AF02]. Kovar et al. [KGP02]
precompute a distance matrix between frames in the database and constructed
automatic smooth transitions at local minima (see Figure 2.5a).

Regarding facial animation, Motion Graph technique was adopted by Zhang et
al. [ZSCS04], named Face graph to interpolate frames realistically. Cao et al. [CFKP04,
CTFP05] develop an Anim Graph to encapsulate speech labeled motion data, based
on a greed search algorithm, to provide a real-time speech animation synthesis
system. In the same vein, without explicit use of the graph paradigm, many works
create speech animation by searching for the optimal combination examples from
a database [TMTM12, MCP+06, DN06, LO11, CG00]. Taylor et al. [TMTM12] generate a
cluster of dynamic viseme and propose a searching algorithm with both semantic
and temporal cost to find the best matching sequence. Finally, graph-based methods
can also be used in a texture space to improve the temporal coherence of a facial
animation [TZS+16].

Motion Graph enables steering virtual character in application with complex
environments, such as slow video games [LCR+02]. Recently, motion graph has also
shown to be useful for motion segmentation [VKK14, MC12]. Temporal sequencing of
the motion segments has been handled by using state-space search [AF02, ZSCS04], dy-
namic programming [AFO03], reinforcement learning methods [TLP07, MP07], min-max
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(a) Kovar et al. [KGP02] (b) Heck et al. [HG07] (c) Hyun et al. [HLL16]

Figure 2.5 Motion Graph is a popular data-driven technique that gathers motion
samples in graph data structure encoding the transition probability between different
motion samples. A new motion sequence is produced by searching this graph such
as satisfying user constraints. (a) Kovar et al. [KGP02] present a new algorithm that
automatically creates a motion graph from a database. This graph encapsulates both
the original motion samples and automatically computed smooth transitions. Due
to their flexibility and powerful motion controlling capability, many further works
have found extensions to reduce the complexity and the computational cost. (b) For
interactive control, Heck et al. [HG07] build a graph where each node represents a
parametric motion space, and the edges define valid transitions between source and
destination parameterized motion spaces. (c) Hyun et al. [HLL16] propose a motions
grammars paradigm, whereby motion transitions are enforced through semantic rules.

search [SKY12]. However, the main drawback of this technique is the cost involved
in locating candidates, growing exponentially with the number of examples. Due
to their flexibility and powerful motion controlling capability, many further works
have found extensions to reduce the complexity and the computational cost. These
methods include precomputation graph properties [SMM05, LL04], grouping similar
data [KPS03, KG04], using physic-based optimization [RZS10], or gathering examples in
“hub” according to the occurrence in the database forming a parameterized motion
graph [GSKJ08, SO06, HG07, MC12] (see Figure 2.5b) or by semantic connections [HLL16].
Hyun et al. [HLL16] propose a motions grammars paradigm, whereby motion transi-
tions are enforced through semantic rules, as illustrated in Figure 2.5c. The motion
graph has later shifted toward motion planning for motion interactive applications
in highly constrained and dynamically challenging environments [LLKP11, KBG+13].

Motion graph is a relevant and widespread technique for motion editing in the
games industry as it combines the realism of motion capture and the flexibility
of graph algorithms. Nevertheless, efficient candidate searching strongly relies on
generating a precise descriptive label, which is still produced by hand. Despite
improvements to automate the graph construction [AFO03, LZWM05], the resulting
computed graph gets a low responsiveness of the character affecting the efficiency
of the editing and controlling process. Properly determinate the unit of motion, its
length, boundaries, and indexing in the database remains a challenging problem.
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Alternatively, Lee an colleagues [LWB+10] use reinforcement learning to propose the
motion field representation, which enables the user to control the character operating
in a continuous space. While a short window increases the “controllability” power
of samples-based algorithms, enabling more flexibility and enlarging the complexity
of generated motions, it also strongly impacts their computational cost. Aristidou
et al. [ACOH+19] define a method to extract motion motifs and motion signature
to represent motion samples using a bag-of-word model [KN14, LHP+17] but fail at
creating an universal representation that encompasses every motion. With the same
goal, a recent research direction is Motion Matching, which was first presented by
Büttner and Clavet [But15, HHC+19, BCHF19, HKPP20] and quickly deployed in the
game industry. While still requiring a large database of motion capture sample and
looking at minimizing a "movement matching cost", this new technique efficiently
produces an animation encompassing specific body motion properties specifying by
the users, by automatically selecting the best fitting match.

While some motion patterns are easy to identify in facial motion, based on
semantic indexing (dynamic viseme, blink), the labeling and the motion segmentation
still require manual labor to ensure the quality of the synthesized animation. In
addition, it imposes a high memory usage as it needs retaining the whole graph for
inference: a balance has to be reached between expressivity, which can be obtained
by a graph with a large number of connections (and therefore a greater memory cost),
and physical plausibility, which is better enforced with a sparser graph featuring only
consistent transitions. Thus, researchers have turned interest toward approaches
handling larger databases with fewer manual work.

2.2.2 Learning Techniques

Instead of relying on manual motion correction, the task of resynthesizing animation
can be simplified by learning the natural dynamics of motions from data. Hence,
a number of studies turn toward learning models of the facial dynamics offering a
relevant flexibility for motion editing. In the literature, we observe three approaches
to modeling high-dimensional time series data properly: low-dimensional spaces,
dynamical systems, and neural-based methods.

2.2.2.1 Low-Dimensional Space

The major issue with motion data is “the curse of the dimensionality”. Relevantly and
accurately covering the space of realistic motions implies a growing number of samples
with respect to the size of the database. One hugely widespread strategy consists
of deducing a low-dimensional data representation. Indeed, dimension reduction is
an effective approach that has been extensively adopted to improve accuracy and
performance in various algorithms [AM00]. A motion sample can be represented in a
reduced dimension space, which can be created in a linear or non linear fashion. We
outline the two strategies in this part.
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Linear Subspace Early statistical approaches rely on PCA [Jol86] to analyze
motion data [Bow00] to model complex temporal problems such style motion synthe-
sis [BH00] and temporal motion editing propagation [ZLH03]. Chai et al. [CXH03] take
advantage of local PCA, along with motion capture, to produce high-quality facial
animation from 2D vision-based control parameters. Later, they leverage PCA to
generate full-body motion from a latent variable signal lying in a low-dimensional
subspace [CH05]. The first group of methods derive from data, a subspace of realistic
motion, and perform trajectory optimization, ensuring plausible motion generations
such as speech animation [EGP02, KMT03, SHP04, MCC09]. The continuous property of
this manifold guarantees the synthesis of coherent temporal facial animation. Akhter
et al. [ASK+12] embed both the spatial and the temporal dimensions of facial motion
in a bilinear subspace. The user constraints can be incorporated into an optimization
system which aims at solving for the optimal model parameters. This framework
ensures that both the spatial and temporal correlation of the edited motion are pre-
served. Because the manifold of facial motion is nonlinear, several works investigate
nonlinear dimension reduction techniques for a better representation of the data
points.

NonLinear Subspace Locally Linear Embedding (LLE) [WHL+04, RS00] is a
geometrical-motivated technique that assumes locally smooth manifolds with respect
to sufficiently small neighborhoods. Wang and colleagues [WHL+04] use LLE and
manifold alignment to generate new expression style facial motions. Isomap [TDSL00]
and its variants [ST03, JM04] take into account the similarity between pairs of data and
allow a better perceptual representation of projected data [Ple03]. Deng et al. [DN06]
propose a Phoneme Isomaps enabling the user to interactively browse and choose mo-
tion examples. These nonlinear dimension reduction algorithms hypothesize densely
sampled data to create the manifold, which is rarely the case for animation data.

Gaussian Process A nonlinear generalization of PCA is Gaussian Process Latent
Variable Model (GPLVM) capable of modeling nonlinear data distribution [GMHP04,
Law04, YL10]. GPLVM derives low-dimensional latent variables referring to motion
data, and learns the nonlinear mapping from observations (the users constraints), by
optimizing latent variables. Levine and colleagues [LWH+12] build a statistical model
based on GPLVM for interactive continuous character control. The low dimensional
embedding associated with innovative connectivity priors enables generating new
motions, with unseen transitions, without leaving the space of realistic motions.
Inspired by space-time body motion editing [Gle97], Ma et al. [MLD09] learn the
editing style on few frames through a constraint-based Gaussian Process, and then
utilize it to edit similar frames in the sequence. Their system is efficient at the
time-consuming task of animation editing, but it does not ensure the temporal
consistency of the motion.
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GPLVM has been widely exploited in animation to derive a new motion by
trajectory optimization in the latent space for human motion generations [WMC11], to
learn a shared latent space between motion capture and various character representa-
tions leading to a high-quality retargeting [BP14]. Compared to the linear dimension
reduction algorithm, GPLVM allows lower latent space dimensions without degrading
the quality of the reconstructed animation, requiring less computation and a better
generalization from small datasets.

Linear models of facial motion, such as PCA cannot encapsulate the full range
of motions. On the other hand, nonlinear methods such as GPLVM better reflect
the complexity of motion, but for a heavy memory cost, as the training dataset has
to be retained. Indeed, a trade-off has to be found between the ability to represent
various kinds of motion and the training complexity (the scalability of GPLVM is
cubic with respect to the number of examples) [TH09]. Performing the optimization
on the latent variable offers the attractive property of preventing exploring unnatural
configurations, which often leads to displaying visually unrealistic dynamics, such
as mapping the walking motion to the mean pose [WFH08]. However, such methods
assume that data are generated independently and preclude a temporal consistency
among the latent space.

2.2.2.2 Dynamical Statistic Models

Another statistical technique to model time-series motion data is dynamical systems,
where a function describes the behavior of points extracted from a manifold across
time. A new motion sequence is generated by deriving the most likely motion, given
user constraints.

Hidden Markov Model Early approaches describe the dynamics of motions
using Hidden Markov Models (HMM) [RJ86]. HMM have been extensively used to
model coarticulation in speech animation since pioneer work of Brand [Bra99, TKMK99,
CM93, GBBB06] (see [MV15]). Anderson et al. [ASWC13] extent HMMs-based system
by adding a cluster adaptive training, enabling expressive visual text-to-speech.
However, HMM models tend to be under articulated, leading to oversmooth motion.
This limit might be due to the limited number of hidden states, reducing the motion’s
naturalness.

Linear Dynamical Models Dynamical systems are very relevant for motion data
processing due to their capability for modeling the temporal evolution of the signal,
by learning transition between time steps. The simplest form is the Linear Dynamical
System (LDS) that presumes linear models for both the mapping function and the
dynamical process [DM08]. Chai et al. [CH07] generate new motion satisfying space-
time constraints, by extracting low-dimensional latent variable (PCA coefficients)
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from motion data and modeling motion priors using LDS. Li and colleagues [LMPF10]
adapt the LDS algorithm and add bone constraints to handle occlusion filling.

NonLinear Dynamical Models Yet, it has been demonstrated that the complex
temporal signature of motions is far from a simple linear pattern [SBS10, BS09]. Stoiber
et al. [SBS10] demonstrate that the short-term facial behavior is more precisely ap-
proximated with a Hammerstein model than with a linear one. Hence, nonlinear
dynamical systems have been studied to increase the expressiveness of the generated
motions. Switching Linear Dynamical System hypothesizes locally linear motion
behavior, applying LDS in piecewise fashion. The full sequence is fragmented into
motion samples, modeled as a set of switching states [Bis05]. Although SLDS has
proven to improve linear systems for human motion synthesis [PRM01, LP02], precisely
quantify the number of states is not trivial, combined with a large number of param-
eters to model the posterior distribution lead to an intractable inference. A large
body of literature suggests improvements to overcome this issue by approximating
the posterior distribution using sampling methods [ORBD05, KEG16]. Englebienne et
al. [ECR08] investigate talking face generation suggesting a simplified SLDS model,
parameterized with phoneme labels and sound features. The SLDS model appears
more tractable with a simplified covariance structure and performs better than
HMM for this task. Wang et al. [WFH08] combine GPLVM and dynamical systems,
and propose a Gaussian Process Dynamic Model that explicitly learn the temporal
connection between frames. This model was used to model speech-driven facial
animation [DHG13].

Overall, the main difficulty of dynamical models is to properly determine the
underlying nonlinear rules governing the temporal features of motions. Indeed,
dynamical systems tend to overfit a particular type of motion or require hand-tuning
parameters. Another major shortcoming of these methods is their lack of scalability
required to deal with the high-dimensional nature, the complex dynamics, and the
long-range dependencies of motion data. For these reasons, researchers have stepped
toward more sophisticated learning algorithms: Neural Network.

2.2.2.3 Neural-based Solutions

Controllable motion generation The first one to propose a fully learning-based
human motion editing system is the seminal work of Holden et al. [HSK16] (see Fig-
ure 2.6). They map high-level control parameters to a learned body motion manifold
using a fully convolutional structure presented formerly by the same authors [HSKJ15].
Navigating in this manifold of body motion allows easy alteration and control of body
animations while preserving their plausibility. Later, Holden et al. [HKS17] design a
specific phase-functioned neural architecture to steer the locomotive human body
from direct keyboard control in real-time. This model consists in disambiguating
the input motion signal by specializing network weights in each step of the walk
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(a) Auto-encoder. (b) Regressor.

Figure 2.6 The first one to propose a fully learning-based human motion editing
system is the seminal work of Holden et al. [HSK16]. They propose to learn the
mapping between a set of high-level controllers and animation parameters using a
two-step learning strategy. (a) First, an auto-encoder is trained to learn a manifold
of realistic body-motion. (b) Then, a regressor maps high-level control parameters to
the motion manifold. Thereafter, the pre-trained decoder enables producing realistic
animation from the control parameter code.

cycle, assuming a periodic motion signal. This technique was taken up and later
improved to model quadruped motions [ZSKS18], or to guide a character in an in-
teractive environment [SZKS19] through a sophisticated gating network. Although
the later extensions are less restrictive, they also hypothesize the modal nature of
the motion. While this assumption is appropriate for the body motion that can
be segmented into activities, it is less straightforward for facial motion. Recurrent
Neural Network have also been explored to perform densely constrained motion
synthesis [HHS+17, MBR17, LLL19] due to its attractive internal memory states, that
enables context-aware motion synthesis.

Motion Prediction Alternatively, many works propose instead to control the
motion synthesis given previous contextual frames. One of the earliest works to
investigate a neural network approach for motion prediction is Taylor et al. [THR07].
They explore several variants of Conditional Restricted Bolzmann Machine (CRBM)
for human motion modeling [THR07, THR07, THR11]. CRBM is a kind of recurrent
network which estimates the next frames from previous hidden units, with explicit
autoregressive connections between frames. This new paradigm successfully increases
the quality of the generated motion and allows the manipulation of the style of
the motion. Zhao and colleagues [ZJS15] suggest Factored Conditional Restricted
Bolzmann Machine (FCRBM) [TH09] to generate emotional facial animation. Given
an emotion label and initial Facial Action Parameter frames, the trained FCRBF
generates the corresponding animation parameters sequence using the Gibbs sampling.
Although, RBF-based techniques enhance the data representation capability that
may be learned from data, the tendency to generate noisy and floating motion data
remains [TH09, SHT09]. Besides, the training procedure still rests on sampling for
inference.
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As this task implies accurate knowledge on the motion dynamics, many studies
have naturally looked toward RNN methods to generate motion based on past context,
motivated by its relevant internal memory of the temporal dynamic. Fragkiadaki
et al. [FLFM15] predict the dynamics of human motions through two architectures:
an Encoder-Recurrent Decoder (ERD) and a 3 LSTM layers-based network (LSTM-
3LR). Jain et al. [JZSS16] create a structural RNN to perform the same task by
mixing high-level spatio-temporal graph with the efficient sequence learning of RNN.
Both propose to handle long-term horizon forecasting by gradually adding noise
to the input during the training. The noise scheduling enables their system to
produce plausible motions far into the future, before flattening into constant mo-
tion. However, this kind of curriculum learning is hard to implement accurately.
Crnkovic-Friis et al. [CFCF16] generate dance choreography with an overall style and
a composition consistency using RNN. Martinez et al. [MBR17] introduce a residual
sequence-to-sequence architecture to predict short-term motion. While demonstrating
state-of-the-art short term motion prediction, they fail at generating long sequences.
Long-term motion prediction remains a major issue in motion prediction. Many works
propose to solve this issue by incorporating additional hints to the network, including
derivative information [GMK+19], action label supervisions. [BBKK17], objects in a
scene [CPAMN20], geometrical constraints [GWLM18] or by using more sophisticated
recurrent architecture [LWJ+19, CAW+19, TMLZ18, GSAH17, LZX+18].

More recent works combine recurrent network with generative models [WCX19,
HHS+17, BKL17, KML18, GWLM18]. Wang et al. [WCX19] stack a “refiner” neural net-
work over the RNN-based generator, trained in an adversarial fashion to enhance the
realism of the generated motion sequence, while Habibie et al. [HHS+17] sample new
motion using the variational autoencoder paradigm. Ruiz et al. [RGMN19] forecast
long-term body motions using a CNN-based architecture and novel metrics that reflect
better motion capture temporal patterns. Generative learning [GPAM+14] has also
been extensively used for motion marker recovery [KBK18, CSLK19, MLCC17, PHMP19].

While a consensus about the temporal motion control parameters has emerged
in the human body community, there is no such explicit and standard controllable
skeleton in facial animation. A group of works have explored other temporal modali-
ties to synthesize facial animations.

Temporally Dense Facial Motion Signal Constrain As building a model that
successfully generates realistic facial motion is highly challenging, many works pro-
pose alternatives. One group of works proposes to edit a (2D) facial animation using
dense motion control signals, whether they are video signals, dense animation curves,
or semantic controls, such as those used in facial reenactment.

Facial reenactment consists in driving the facial performance in an existing video
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by one from another source and recomposing a new realistic animation. The works
of Thies et al. [TZN+15] and Garrido et al. [GVR+14] have paved the way for facial
appearance transfer: Video facial reenactment has been a very fruitful area of re-
search [KEZ+19, KTC+18, FTZ+19, TZN+15, TZS+16, GVR+14, SSKS17, VBPP05] for the
last decades. The most common workflow, presented in Figure 2.7, consists in fitting
a 3D parametric model [VBPP05, CWZ+14] to an input RGB video [TZS+16, KTC+18,
KEZ+19, FTZ+19, DSJ+11] and then, rendering the target video by replacing the ex-
pression parameters [TZN+15, TZS+16, KTC+18], with eventually the pose [KTC+18]
of the target video with the source ones. Early works rest on traditional computer
graphic techniques and adopt an energy optimization strategy to carry out the motion
transfer [TZS+16, GVS+15, DSJ+11]. Since a few years, a rapid rise of neural-based
techniques has occurred in this field, overcoming most tracking, person-specific model,
and 3D reconstruction inaccuracies issues. NN has been adopted to either map 3D
facial parameters to photorealistic images animation [KEZ+19, NSX+19], to map source
video to the target one [WKZ+18], or to improve the quality of the target video ren-
dering [FTZ+19, KTC+18, SWQ+20]. Pushing forward the limits of facial reenactments,
neural network has allowed further high-level control on the generated animation,
such as the head pose control [KTC+18, NSX+19, ZSBL19, WKZ+18, YYZ+20, ZPW+20]
and the eyes [KTC+18, NSX+19] and a better generalization over multiple identi-
ties [ZSBL19, NSX+19, ZSBL19], yielding very impressive results. Facial reenactment
also involves many works that rely on 2D image warping [AECOKC17, SSKS17] leverag-
ing state-of-the-art image-to-image translation techniques [IZZE17, KTC+18]. However,
in this thesis, we focus on animation, not on rendering, and a complete review of
facial image synthesis is out of the scope of this thesis.

One instance of facial reenactment is Visual Dubbing. This task consists of
controlling the lips in a target video with a new input, given audio track reciting
by another subject, with eventually a foreign language [SSKS17, BCS97, GVS+15, CE05].
Accurate synchronization between the lips movements and the speech is manda-
tory [SP54, OCIM07] to create realistic animation. Indeed, inaccurate alignment
between the speech and the visual lips motion can strongly alter the comprehension
of the sentences: the Mcgurk Effect [MM76] occurs when the pronounced sound is
associated with the visual movement of another sound, creating the illusion to hear
another sound. To overcome this pitfall and consistently modifying the lips motion,
several works rest on facial reenactment transfer methods. Others produce a new
target animation by deriving a speech/audio to lips motion mapping. Neural networks
have emerged as the leading way to build a consistent and generalizable mapping.
A new video, representing a target subject animated with a desired speech-based
lip movement, can then be generated from a target audio track only [TET+19], or
by combining a target audio track with a source video [SWQ+20] or a source still
image [ZLH+20]. Nonetheless, whereas facial reenactment methods have achieved a
high degree of performance, they are devoted to a particular (2D) facial animation
editing scenario, in which either a semantic or source animation is available, prevent-
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Figure 2.7 Many works propose alternatives to edit a (2D) facial animation using
dense motion control signals, whether they are video signals, dense animation curves,
or semantic controls, such as those used in facial reenactment. Facial reenactment
consists in driving the facial performance in an existing video by one from another
source and recomposing a new realistic animation. Early work in this direction, Thies
et al. [TZN+15] propose a workflow that has been taken up by numerous following
works. This workflow consists in fitting a 3D parametric model to an input RGB
video and then, rendering the target video by replacing the expression parameters.

ing flexible and creative editing applications.

In the same line, another group of works synthesizes the whole animation based
on speech or text. Although, speech and text driven animation has stimulated the
research for a long time [BCS97, BBEO03], neural network has revolutionized the field,
allowing high quality facial animation synthesis [TKY+17, ZXL+18], video [SSKS17], or
an audio stream [KAL+17]. Speech-driven animation is an extremely popular subject;
we provide here only the most relevant works. An extensive review can be found [Hti17].
One major work by Taylor and colleagues [TKY+17] show an innovative system that
automatically generates very natural looking talking facial animation. Their ap-
proach, based on fully connected mapping a sliding window [KYTM15] of phonemes to
animation parameters, has engendered further speech-driven animation studies. The
main scheme consists of associating a sound unit, a phoneme, to their 3D visual coun-
terpart, which is either a face rig [ELFS16, ZXL+18], a mesh [KAL+17] or the blendshape
weights [PCP17]. Recent studies turn toward generating photorealistic 2D portraits,
using a joint embedding trained by a CNN auto-encoder [JCZ19, DBR20], image-to-
image translation technique [KTC+18], or a recurrent Generative Adversarial Network
(GAN) architecture [VPP19, VPP18, ZLL+19, KEZ+19]. Suwajanakorn et al. [SSKS17]
synthesize Obama’s speaking videos from an audio track leveraging the number of
available data on Obama to train a recurrent network. Outstanding photorealistic
results are obtained by relying on 3D parametric models [BV99, BBPV03] and neural-
based rendering network [KTC+18, KEZ+19, SWQ+20]. Fried and colleagues [FTZ+19]
propose a new workflow to edit a video by modifying the associated transcript. The
system automatically regenerates the corresponding altered viseme sequence using a



2.3 Animation Processing 45

two-stage method: a coarse sequence is generated by searching similar visemes in
the video and stitching them together. Then, a high-quality photorealistic video is
synthesized using a recurrent neural network. The quality of the generated animation
is improved by feeding the network with a still image [JCZ19, VPP18].

Discussion Both dynamical or low-dimensional approaches show failures at prop-
erly tackling the temporal dependency of motions. Long-term dependencies require
more data from the past and the future, or an increased memory of the model to
handle further past time. Most of the time, handling long-term dependencies implies
oversize inputs leading to intractable models or an overload of the model’s memory.
Besides, the length of the motion dependency is often unknown, expending the
difficulty of accurately coping with temporal motion sequences. Neural Networks
have shown promising results in efficiently modeling and generating motion data,
displaying the realism of the animation while allowing the flexibility of modeling
approaches. Theoretically, NN is devoted to learning from data the intrinsic depen-
dencies, permitting reproducing the dynamics of the motions faithfully. Overall,
state-of-the-art results in both human motion editing and 3D facial animation syn-
thesis and 2D facial animation manipulation have been derived using neural-based
techniques [TFT+20].

That is why, in this thesis we explore different neural-based approaches to model
respectfully the dynamics of facial animation and improve the facial animation editing
workflow. The attractive properties of neural networks to provide both the flexibility
and the responsivity of linear models, and the powerful capacity to model complex
temporal data of nonlinear ones have been demonstrated throughout our works.
Falling within the general trend, we demonstrate a breadth of edits by exploiting
recurrent GAN architecture [KEZ+19, SWQ+20] in Chapter 6. We produce realistic
facial animations matching semantic constraints, presenting a step forward facial
animation editing and cleaning which is important in vfx industry.

Although the notion of controllable motion has been explored in the field of body
motion, it remains an open question regarding facial animation. Indeed, while an
intuitive and high-level parametrization steering a body motion have generated a
consensus, there is no such standard abstraction to guide facial motion. Moreover,
in this thesis, we demonstrate that the inherent difference between the dynamics
of the body and the face, precludes applying actual body-motion systems to facial
dynamics. Thus, following works in controllable motion generation, we propose in
Chapter 5 a learning-based method to perform temporal animation editing, given
meaningful temporal vertex distances.

2.3 Animation Processing
While the previous sections focus on explicit constraint-based animation editing, this
section delves into non-constraint-based motion editing. Much like constraint-based
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approaches, these methods aim to modify the motion sequence (hence, it is an editing
operation) while preserving some original features. In that case, the editing process
is not explicitly described as modifying features in motion, but rather as processing
animation parameters used to represent the motion. These methods encompass
motion signal techniques such as motion retiming and motion filtering or operations.

2.3.1 Motion Warping

One kind of editing operation that an animator is often brought to perform is time
warping, that is, adjusting the timing of an animation. For instance, when mo-
tion samples are concatenated or blended, they should be dynamically aligned and
structurally similar. Indeed, in this case, no timewarped animation might display un-
realistic motion as you can see in Figure 2.8a. Time warping is, therefore, an editing
procedure to temporally reshape the motion signal without losing the content and
style properties [HdSP07]. Time-warping has been exploited in speech signal processing
to analyze akin utterances or to align lips motion and the speech [BCS97, CFKP04].
Overall, it generally determines the optimal sample correspondences between sig-
nals and applies a series of compression and extension operations, to optimally
“warp” signals [BW95]. Common techniques to align two motion signals are Dy-
namic Time Warping (DTW) [BW95] and curve alignment [GS05, WP95]. Witking
and Popovic [WP95] introduce the term in 1995 and choose Cardinal splines as time-
warping functions to generate a mapping between two motion signals respecting a
set of sparse keyframes. Adjusting the timing of animated character often requires
significant manual intervention. Hsu et al. [HdSP07] develop a new technique to
guide this process more efficiently through a set of keytimes and reference motion
examples, while ensuring the production of natural animated character. Even re-
cently, DTW was applied to synthesize talking animation to mimic the speaker
dynamics [SSKS17]. Motion retiming is a powerful method to edit motion sequences.
Even so, it remains at a low level of abstraction, requiring animators to describe
edits in a one-dimensional space. Recently, many studies turn toward innovative
frameworks to provide flexible and intuitive interactive interface to perform mo-
tion retiming [GRGC15, YAMZ+15, CiRL+16, CGNS17]. However, such abstractions are
devoted to manipulating body motions.

2.3.2 Animation Filtering

In facial animation, real-time motion capture based animation has demonstrated
high-quality results [WBLP11, LYYB13, CHZ14]. Yet, it is frequent that the animation
has to be cleaned to remove the noise, coming from the capture setup, or the failures
of the tracking software. Indeed, most of the time, the final animation is not the raw
mocap-based signal but rather a processed version, which has been roughly smoothed.
In this section, we review the main animation filtering techniques.
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(a) Kovar et al. [KG03]. (b) Hsu et al. [HdSP07]

Figure 2.8 One widespread editing operation that an animator is often brought to
perform is time warping, that is, adjusting the timing of an animation. (a) Motion
blending or concatenation often fail when two samples have different timing. Kovar
et al. [KG03] shows that stitching together a walking and jogging sample spanning
two locomotive cycles with different timing results in a non-realistic right leg motion.
As out-of-phase frames are combined, the character floats in the air with a leg almost
straight. (b) Automatic motion blending might lead to unrealistic motion, such as
quick jump (middle). Hsu et al. [HdSP07] propose a new approach to guide the timing
alignment process more efficiently, while ensuring realistic motion generation.

Signal Processing Methods Motion filtering has been a long-term research
topic. Early works applied standard signal processing model algorithms [BW95]
such as Kalman Filter [SLSG01, LMPF10], wavelet transformation [HK08], linear time
invariant filters [LS02, YN03] or exponential smoothing. For instance, the majority
of performance-driven facial animation systems based on depth sensors [WBLP11,
HMYL15] remove high-frequency jitters with a temporal filter with exponential adap-
tive weights. Some works further improve the temporal coherence of tracking by
enforcing an animation prior [CWLZ13]. In the same vein, Cao et al. [CHZ14] pe-
nalize the magnitude of temporal derivatives of the output animation. Garrido et
al. [GVWT13], as well as Valgaerts et al. [VWB+12], use structure-aware regularization
to strengthen optical flow estimation. While producing smooth results, their final
animations are not free from artifacts, notably the loss of high-frequency motions
in the eyes and mouth. Indeed, these post-processing techniques are not aware of
the motion nature, and thereby, tend to lose dynamic cues of the original facial motion.

Modeling the dynamics of the face is highly challenging due to the complexity
and the non-linear nature of facial motions. Methods using linear observation models
such as the Kalman filter [WKT06, Bre97, HDF12] appear insufficient for facial motions.
More complex motion filtering systems have been explored fusing particle filter with
Markov Chain [KF01] or belief propagation [LNLN06]. Huang et al. [HDF12] combine
AAM models with a Kalman filter to create a more robust face tracking. Another
trend among the motion filtering area is extended non-linear approaches and associate
particle filtering with local optimization [DDFG01, BKMVG07] or global one [GRBS10],
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but these are often hard to tune and too memory expensive for long sequences.

Data-driven Methods To capture the underlying temporal dynamics, many
works leverage the availability of motion data to perform motion refinement. One
investigated strategy to remove noise is to applied dimension reduction methods
(PCA) on the motion samples, removing non-informative signal components using
PCA [ASK+12, TS06, WCP10, GF16] or by learning an autoencoder manifold [VLL+10,
HSK16, LZZ+19, LZZL20]. Many works propose to filter motion through prior-based
strategies, modeling motion as either dynamic process, low-dimensional Gaussian
Processes [WFH08, UFG+08], a bilinear spatiotemporal model [ASK+12], Markov mod-
els [LGN14] or as binary latent variables [THR07].

Discussion Performance-based motion signals are high dimensional and often
contain noise. Signal processing approaches are often easy to implement and efficient
for short-term motion cleaning. However, these methods have several downsides. In
these approaches, some valuable information might be lost, or it demands a painstak-
ing parameter tuning to filter every facial motion signal accurately. Additionally,
these techniques are applied to each motion signal independently, ignoring the corre-
lation among the different animation parameters. Most of these studies are designed
to be non-causal, limiting their applications to offline processing. Early signal pro-
cessing techniques rest on a stationary hypothesis and a fixed and specific framerate,
which is far from the facial animation dynamic process. Recently, several studies
turn toward adaptive filters for each parameter demonstrating successful results in
cleaning any kind of actions, utilizing neural networks [MLCC17, FLFM15, BBKK17],
dictionary learning [XFJ+15, FJX+15, WLQ+16] or optimization framework [HJ10]. Even
so, these filters are applied to the motion signals afterward, precluding a real-time
application. That is why in this thesis, we proposed a recurrent neural network
system and an original parametrization to clean and refine an inaccurate motion
signal that overcomes these issues.

2.4 Conclusion

The facial animation editing task encompasses all the acts of modifying the motion
content. As exposed in this chapter, we found a wide literature, dealing with many
aspects of animation post-processing. Especially in body animation synthesis, the field
of motion editing has a long history. Yet, the stakes of the facial animation editing
are different; Most of the actual learning-based methods operate on body-motion
using a well-standardized skeleton representation, developing innovative training
strategies relying upon this animation parametrization. As far as facial animation is
concerned, there is not such a consensus on the facial motion representation, and no
benchmark database exists. Overall, this thesis lies alongside state-of-the-art works
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and builds upon previous knowledge, trying to push and evaluate new ideas in the
field of facial animation editing.
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As observed in the previous chapter, learning-based methods have led to tremen-
dous progress in the computing field, paving the way for more perspective in motion
manipulation and synthesis. Considering this, we aim at exploring current promising
learning-based techniques to revise the animation editing process. Yet, machine
learning breakthroughs have been made possible through the rise of synthetic media
content and, thus, the availability of large databases.

As far as facial animation is concerned, a rising number of static facial expres-
sions [CWZ+14, SAD+08, RBSB18, ZWL+13] and dynamic expression unit corpus [CKH11,
ZYC+13, CVTV05] have promoted constant improvements in still facial modeling [LSSS18]
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and facial animation rendering [WSS+19]1. Despite the explosive growth of 3D con-
tents, only a few 3D animation databases are suitable for our applications. Indeed,
most of the existing databases integrating temporal information are either too small
or provide animation sequences with limited variety of temporal information (only
unit expressions) to learn the natural dynamics of facial motions, precluding a thor-
oughgoing facial dynamic investigation. The lack of diversified and high-quality
datasets is still an open challenge, as recently observed by Egger et al. [EST+19]. In
this thesis, we investigate the different facets of facial animation editing: animation
manipulation and various forms of facial motion controlling. For instance, one line
of research explored in this work is the multimodal nature of facial animation, the
relation between animation and speech or text information. This implies a broad
diversity among the data and relevant annotated metadata. Yet, most released facial
datasets aim at capturing emotional expressions, and few one provide animation
caused by speech.

To bypass these deficiencies and meet our needs, we use two different databases:
we take advantage of the recent motion capture technologies to produce satisfying
new data and extend an available dataset to leverage its multimodal metadata.

In this chapter, we briefly expose the main principles of neural networks in Sec-
tion 3.1 motivating the use of a large and high quality database. Then, we present the
two datasets used in all our experiments, that include different valuable properties.
On the one hand, we gather performance-based animation sequences coming from
real-time tracking software [Dyn19a]. This animation data presented in Section 3.2, is
akin to ones that we might find in the production industry without post-processing
and data priors. Hence, this corpus relevantly reflects the real data prone to animation
post-processing editing.

On another hand, we target semantic motion controlling, and therefore we covet
a multimodal (audio/text-visual) database. Previous literature has put forward the
3D Audio-Visual Corpus of Affective Communication (B3D(AC)ˆ2) dataset released
by Fanelli and colleagues [FGR+10]. This corpus appears as an appropriate database
for our purpose as it is a large database of 3D geometry data, representing dynamic
facial animation produced from the capture of 14 actors reciting long sentences.
Moreover, it is supplied with valuable annotated metadata. In Section 3.3, we present
this corpus and its numerous advantages that have motivated our choice to use this
data for our experiments.

Yet, this dataset carries two major weaknesses: the first issue with the B3D(AC)ˆ2
dataset is the low quality of the 3D geometry data, preventing us from having a
good depiction of subtle mouth closures and blinking. Those are, however, crucial
to verbal and non-verbal communicative cues that facial animations convey. The
second concern relates to the animation parametrization formulation of the data.
The amount of ambiguity in this 3D geometry data, which entangles morphology
and expressive information, makes the inference task difficult. Besides, the 3D data

1A comprehensive survey of the existing 3D facial database can be found in [EST+19]
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is supplied with raw, dense meshes, which cannot be directly fed to neural networks
as it would imply a high memory cost to process the high resolution 3D structures
overtime. Yet, extending neural network architecture to the non-Euclidean domain is
not trivial and belongs to another research area [RBSB18], which is outside the scope
of this work.

To provide solutions compliant with the traditional facial animation pipeline, we
want facial expressions to be encoded through the standard blendshape parametriza-
tion, which is the predominant model used by animators to create realistic facial
animation. Indeed, the blendshape paradigm offers several advantages [LAR+14],
including an intuitive and semantic meaning of the parameters. Each blendshape
corresponds to sculpted and localized deformations of the neutral face mesh, which
can be more or less emphasized by activating blendshape weights. The defined set of
blendshapes, thereby, covers the range of possible facial expressions, enabling artists
to easily manipulate the face’s mesh with a low computational cost. These compelling
reasons have motivated our choice to use this parametrization. In Section 3.3.3, we
present the processing work to modify and extend this database, addressing the
above issues, and meeting our requirements.

3.1 Database Motivation

As introduced in Chapter 1, we aim to handle the complex nature of facial motions
using neural-based approaches. In this section, we briefly introduce the main concept
of statistical learning in Section 3.1.1. Then, we present the more complex notion
of neural networks in Section 3.1.2 and put forward the need for large datasets
in Section 3.1.3.

3.1.1 Statistical Learning

The main objective of statistical learning techniques is to learn an approximation
function fw, characterized by a set of parameters w, minimizing a loss L with respect
to a set of data D = {(xi,yi)}Ni=1. This dataset gathers pairs of input data/target
annotation or input data/target data depending on the objective task. The goal
of statistical learning is to find the optimal ŵ,ŵ = argminwJ (w), with J the full
objective function gathering the empirical loss L and a regularization penalty R.

The optimal ŵ is either computed through a closed-form solution in case of linear
regression (using the least squares framework) or exploiting iterative gradient descent
algorithms if there is no tractable solution.

3.1.2 Neural Network Principle

In the most basic form of feedforward network, neural networks consist of progressively
transforming the input data through a sequence of hidden projection layers and
non-linear activation functions. Formally, a feedforward network with l layers is
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represented as follows:
fw = fwl

(fwl−1(...fw1(x))). (3.1)

The more layers, the deeper the network. The main feature of neural networks is
their differential nature, which enables computing the gradient ∂J (w)

∂w of the objective
function with respect to the coefficients w through the efficient backpropagation
algorithm [RHW86]. Formally at each iteration, the new parameters are computed as:

w = w−η∂J (w)
∂w

, (3.2)

with η stands for the learning rate, weighting the gradient direction. Evaluating
the gradient on every sample of the dataset is never done in practice due to time
and memory issues. To alleviate the computational burden, stochastic approximation
algorithms of the gradient descent replace the exact gradient optimization. Faster and
efficient algorithms such as the Stochastic Gradient Descent (SGD) [Pol64, SMDH13] or
the Adam [KB14] iteratively compute the gradient on a batch of data, while preserving
a high enough convergence rate.

Despite the fast pace of progress in the field of deep learning, the theory underlying
the learnability of neural networks is still an open problem. Although many improve-
ments have been made in neural architecture design, gradient descent optimization,
data robustness, parameters initialization, training stability, and convergence speed,
the convergence to the global minimum is still not guaranteed due to the neural
networks non-convex nature. Deriving the optimal solution in high dimension space
remains highly challenging. For this reason, most of the deep learning approaches
are adopted from an empirical point of view.

3.1.3 The importance of Machine Learning Data
Given this definition, the dataset D appears as the backbone of any machine learning
algorithms which aim to assimilate high-level representation of such data to infer
future prediction on newly seen samples. Having relevant databases is therefore,
the crucial ingredient to train ML algorithms and make them comprehend and
ingest the realistic and useful subjacent features of the data. In this thesis, we
wish to exploit representative databases for the problem’s input, covering all the
characteristics of samples that might be observed in the real animation pipeline, and
with useful metadata to define the training strategy, the problem statement and the
task’s supervision rightly. Hence, we use two different datasets, exposed below, with
different properties related to real editing use cases.

3.2 Performance-based Animation Dataset
In this thesis, we put emphasis on the animation editing using neural-based ap-
proaches. As motivated is the previous section, we need a large amount of realistic
animation, with plausible dynamic properties. The best way to get this data at a



3.2 Performance-based Animation Dataset 55

Figure 3.1 Performance-based Animation Dataset Pipeline. From the original video,
a noisy animation is automatically generated by a real-time tracking software [Dyn19a]
without post-processing. An experimented animator creates the ground-truth anima-
tion associated with the original video, using a professional software.

good scale is motion capture. We thus use a professional tool to gather as much
as realistic-looking animation as we can from a set of prerecorded MoCap-based videos.

In our research, we investigate new methods to clean and refine performance-
based animation (see Chapter 4 and Chapter 6). Interestingly, less faithful and
less accurate motion tracking can be obtained from the same raw videos through
regression techniques for minimal effort. We employ one of these automatic face
tracking solutions to generate coarse, noisy animation corresponding to the initial
MoCap-based videos. These generated samples contain all the combination of noise
and inaccuracies that might appear on a real performance-based animation pipeline,
including the captation, the software processing and the retargeting. This feature
makes the generated animation data relevant for our purpose, as it avoids simulating
an artificial noise process to degrade the animation signals.

An illustration of the different components of this dataset is presented in Figure 3.1.
This dataset gathers 56 sequences recorded at different framerates: 30, 60, and 120
frames-per-second (fps), grouping talking animation and continuous successions of
dynamic expressions. In total, we gather around 286 000 frames of each paired data,
representing around 49 minutes of animation. Due to intellectual property interests,
we will not publish this dataset.
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Figure 3.2 The B3D(AC)ˆ2 Corpus is composed of 4O sentences reciting by 14
subjects (8 females and 6 males).

3.3 Multimodal Facial Animation datset: B3D(AC)ˆ2 Corpus

3.3.1 Presentation and Motivation
Through the use of professional tools, we gather an animation database of reasonable
scale, but metadata is lacking. As we wish to explore editing algorithms based
on high-level concepts, at least part of our data should be annotated. Thus, we
leverage another database, the B3D(AC)ˆ2 dataset released by Fanelli [FGR+10]. The
corpus contains the 3D geometries and the corresponding RGB images of 40 English
sentences recited by fourteen native English subjects (eight females and six males),
with both neutral and emotional tone. The 14 subjects are shown in Figure 3.2.

The pronounced sentences last on average 4.67s and have been recorded simulta-
neously with the visual information in a quiet environment (without other voices
or background noise), which are attractive properties for audio-visual mapping. Ev-
ery sequence is provided with the speech signal annotations such as the phonetic
transcriptions of the speech, an accurate phoneme segmentation and alignment, and
two other speech features (fundamental frequency and the signal intensity estimation).

The 3D dynamic nature of the corpus, combined with the diversity among the
subjects of this dataset and the quality of the audio-visual data labeling, have
motivated the utilization of this database. The overall corpus amounts for 85 minutes
of animation, with an average of 4.67s by sequences. We believe that the public
availability of this dataset is a strong asset for research purposes, as it enables the
reproducibility of our work.

3.3.2 Shortcomings
While this corpus provides an amount of exiting 3D facial animation data, this corpus
suffers from several shortcomings. Some of them are displayed in Figure 3.3. For our
purpose, the major drawbacks are listed below:
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Figure 3.3 Illustration of some shortcomings of the 3D B3D(AC)ˆ2 data. The 3D
data provided by the B3D(AC)ˆ2 database [FGR+10] is a dense 3D-vertice mesh
with more than 23 000 vertices. This parametrization overtime would overload any
current neural network. In addition, the data suffer from some shortcomings (left):
for instance, there is no information about the eye movement and the animation of
the mouth is occasionally inaccurate.

• Low Animation Quality. The supplied 3D data does not carry information
about the eyes, eyelids, and inner mouth [FGR+10]. Moreover, the quality of
the mouth animation is low due to noisy patterns and inaccuracies in the 3D
geometry data.

• Inappropriate Animation Parametrization. The 3D animation data, materi-
alized by a mesh of 23 370 vertices, are not in an adequate format. The
mesh is overly dense to be directly tractable by a learning model. Moreover,
the vertex-level representation entangles different types of information about
the pose, the morphology and the expressivity, making the editing task more
difficult. It often remains deserved to the drawing of the shape. The standard
instrumental technique to efficiently model and edit a facial animation is instead
to manipulate higher abstraction of the face’s deformations. The rigged format,
where a set of parameters are pre-defined, remains the prevalent technique,
permitting the creation of a wide range of plausible expressions with artistic
guidance.

We address the above issues using a two-part process; In the first part, we improve
the quality of the 3D data by fitting a standard deformable template, with a sparser
mesh, to the neutral geometry of each actor in a coarse-to-fine approach. In the
second part, we derive a new data representation by transferring a blendshape model
onto the aligned deformable template and computing the blendshape coefficients for
each frame. An overview of the database enhancement steps is given in Figure 3.4.
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Figure 3.4 B3D(AC)ˆ2 Dataset Extension Workflow. We improve the available
B3D(AC)ˆ2 corpus to derive a more accurate and suitable animation parametrization.
This pipeline encompasses two parts: the firsts steps aim to derive a novel and more
accurate neutral subject’s facial model. The last steps lead to the desired and precise
representation of this corpus: the blendshape weights.

In the following section, we detail this procedure, that is strongly inspired by previous
works [ACP03, ARV07, LAGP09].

3.3.3 Database Extension Process

The pipeline of the database extension can be divided into two parts, presented
in Figure 3.4. The first part leads to the construction of 3D animatable model
for every subject in order to improve the quality of the 3D data (Section 3.3.3.1);
This one-step part is applied only once per subject and consists of the morphology
adaptation of each subject’s geometry. While, the second part, divided in two steps,
intends to deriving a lightweight animation data representation (Section 3.3.3.2).
First, one subject-specific blendshape model is created for each subject. Then, a
blendshape weights fitting is computed for each shot.

The construction of this facial animation database assumes the availability of a
3D blendshape model sculpted in a template T represented as a triangle mesh with
vi ∈T, i= 1, ...,N vertices, combined with a 3D Morphable Model generated using
the same template triangle mesh connectivity.

3.3.3.1 Morphology Model Fitting

The B3D(AC)ˆ2 corpus provides faces parameterized as triangle meshes, with L=
23 379 vertices and an identical topology. The pipeline begins with the template
mesh fitting and alignment on the neutral mesh of every subject, using a stan-
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dard optimization-based framework for 3D facial model registration [ACP03, ARV07,
LAGP09, LYYB13]. In what follows, we briefly review the main milestones of this step,
see [Li10, LYYB13] for more details.

Let Sj = [xj
1, ...,x

j
N ] be a deformed and aligned version of T, that must fit

the neutral face Yj of the subject j, also represented as a triangle mesh with
yl ∈Yj , l = 1, ..,L. In the remaining of this section, j will be omitted for clarity.
In a 3D geometrical point of view, the goal is to align and deform the mesh vertices
xi ∈ S, to match Y i.e., to minimize the energy function Ealign formulated as:

Ealign(S) =
N∑

i=1
wicpEicp(S) +Eprior(S), (3.3)

where Eicp measures how close S is from Y, while Eprior represents the prior knowledge
about the 3D deformable surface, limiting the allowed deformations.

Morphable Model To do this morphology adaptation, we impose a global struc-
ture representation to the 3D data and assume the 3D mesh X as a linear model,
using a generic 3D Morphable Model (3MM) paradigm, developed by Blanz and
Vetter in 1999 [BV99, PKA+09].
A 3D Morphable Model (3DMM) is a parametric model derived from applying a
PCA onto a database, expressed as M = (µ,M). In this formulation, µ ∈ R3N is
the mean vector, and M ∈ R3N×P−1 is the principal components matrix, forming an
orthogonal basis. We leverage the PCA statistics derived on the 200 scans such as
described in [BV99, PKA+09]. We notice that the standard morphable model gets two
independent (texture and shape) components, but here, we just take account of the
shape component. A new face can be generated by linearly combining the principal
component of the model using a novel coefficient vector α. A deformed mesh in this
linear parametrization is represented as a flattened 1-dimensional vector expressed
as:

s = µ+Mα. (3.4)

Relying on such statistical models as 3DMM drastically reduces the dimensionality
of a shape optimization problem, going from N dimensions, the number of vertices
in the deformable mesh S, to 200, the length of α. It provides a robust framework
for an initial coarse 3D template alignment.

Optimization function definition The straightforward method to perform 3D
points alignment of different topologies is the Iterative Closest Point algorithm,
developed by Besl and McKay [BM92], consisting of iteratively computing point
re-matching and solving:

S(t+ 1) = argmin
S

N∑
i=1

wpoint||xi−ci(t)||2 +Eprior(S). (3.5)
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where ci is the closest point on the input mesh Y from xi.2 The first term is generally
called the point-to-point metric. Alternatively, the point-to-plane [CM92] term is used
for an optimal alignment 3:

S(t+ 1) = argmin
S

wpointEpoint(S) +
N∑

i=1
wplane||nT

i (xi−ci(t))||2 +Eprior(S), (3.6)

where ni denotes the surface normal at ci.
An extensive literature enhancing this algorithm provides efficient implementation
algorithms for the 3D registration problem [RL01, PLH04, LYYB13].

Alignment and deformation problems typically rest on prior knowledge of the
underlying 3D object included in the second term. These priors limit and specify the
allowed deformations of the input mesh subject to geometrical or physical properties.
In what follows, we detail the priors used throughout the fitting process.

First, we make some assumption about the rigidity of the deformed mesh. For-
mally, the 3D mesh, considered as a globally rigid 3D object, can be aligned with the
subject’s mesh by finding the optimal global rotation R and translation t minimizing:

Erigid =
N∑

i=1
wrigid||(Rxi + t)−ci||2. (3.7)

To further improve the fitting, the 3D structures can be locally deformed instead,
in a non-rigid framework [ACP03, ARV07, LSP08]. In that case, the per-vertex pose
parameters (Ri,ti) for each vertex xi are optimized, with strong priors ensuring an
accurate 3D model structure [LSP08] and preserving the ICP convergence proper-
ties [ARV07].

As we aim to improve the quality of the data, we consider the 2D landmark
information derived from the 2D RGB frames. We assume that the projection of
some selected 3D vertices onto a 2D image plane should match targeted key image
points. Inspired by Li et al. [LYYB13], we improve the quality of the alignment around
the mouth and eyelids using 2D image landmark information for each frame, obtained
with a commercial face tracking software [Dyn19b] and manual cleaning. The energy
prior enforcing the 2D projection of the 3D vertices of the mesh S to match the K
landmark positions delivered by the tracking software [Dyn19b] can be formulated as:

E2D =
P∑

k=1
w2D||Π(xk)−uk||2, (3.8)

2We conserve only closest point pairs meeting some criterion: we prune all point pairs with
incompatible normal directions and a distance larger than several millimeters.

3Undesirable oscillations may appear if only point-to-plane is considered. Combining the two
metrics improves stability [LAGP09].
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where Π ∈R3 refers to the projection operator, uk = [ux
k,u

y
k] is the 2D landmarks

corresponding to the vertex xk ∈ S,k = 1, ...,K.

Finally, for a more accurate and finer fitting, we leverage surface-based defor-
mation techniques, which operate directly on the 3D mesh. Supposing the initial
triangle mesh S, the optimal deformed mesh vertices x̃ ∈ S̃, is commonly derived
by minimizing a point-to-point energy. Yet, surface-base deformation approaches
strongly rely on regularization to yield to attractive mesh, with desired surface prop-
erties. The prominent Laplacian surface-based regularization [BS08] is an established
3D prior which enables local modifications while preserving local curvatures as much
as possible.

Global-to-local Fitting Strategy The first part of the database extension work-
flow consists in a coarse-to-fine strategy which involves three optimizations, resting
upon prior knowledge. These priors go from the global face representation to the
local curvature of the face’s surface.

Coarse Model Fitting:
We coarsely align and deform the source mesh S, using a set of precise and
salient points correspondences, wherein the deformed surface is parameterized
with the morphable model (Equation (3.4)). We employ the Gauss-Newton
algorithm, assuming a rigid 3D object (Equation (3.7)) to infer the optimal
rigid pose parameters (R,t) and α coefficients vectors, using both point-point
and point-to-pane metrics.

Local Model Fitting with 2D Landmarks Prior:
We improve the deformed mesh by adding some details that are not present
in the B3D(AC)ˆ2 meshes, using information from the 2D landmarks. We
use the non-rigid ICP algorithm, with a 2D point prior (Equation (3.8)), still
optimizing for the pose parameters and the α vectors [LYYB13].

Local Mesh Refinement with Laplacian Prior:
Finally, we further refine the deformed model by adding local details that were
absent in the morphable model. In order to do this, we directly optimize the
vertices xi ∈ S by leveraging a Laplacian deformation algorithm [BS08].

At this point, we obtain the 3D registration of the 14 subject’s neutral faces,
represented in our template structure. The next part of this process is about deriving
a blendshape model for each subject and the corresponding blendshape weights
sequences.

3.3.3.2 Personalized Blendshape Model Adaptation and Fitting

In the second part of the database extension pipeline, we aim to express the subjects’
facial expressions over time in terms of blendshape weights sequences. In the following
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Figure 3.5 Subset of the blendshapes used in this work. The blendshapes correspond
to local and semantic deformations, often referenced as facial expression units.

parts, we present the blendshape paradigm,and detail the expression transfer workflow
to derive our extended database encompassing the steps 2 and 3 (see Figure 3.4).

Blendshape Parametrization The blendshape model defines animation as a linear
combination of shapes. These shapes express semantic deformations and approximate
the facial muscle activation [CLK01] described by the Facial Action Coding System
(FACS) established by Ekman and Friese [Ekm97].

A face mesh vector s can be expressed in the delta blendshape model as:

s = s0 +
Nb∑
i=1

wibi, (3.9)

where s0 is the face in the neutral configuration vector, b are the blendshape
vectors and Nb is the dimension of the blendshape model. The blendshape weights
w conventionally vary within the range [0,1] and reflect the extent to which the
corresponding blendshape is activated.

Due to its attractive properties, the blendshape model has been extensively used
to manipulate performance-based animation [LAR+14]. A subset of the blendshapes
used in this work is presented in Figure 3.5. We leverage existing blendshape models
that have been sculpted by an artist on the face template mesh T.
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Figure 3.6 Examples of the 3D blendshape weights derivated using our workflow.
From the subject specific blendshape model S̃j , the B3D(AC)ˆ2 input mesh and the
2D information extracted from the input RGB frame, we derived the corresponding
blendshape coefficients.

Deformation Transfer The second part of the database extension workflow, illus-
trated in Figure 3.4, incorporates two steps: the subject-specific blendshapes model
construction and blendshape weight fitting.

The goal of the first step is to determine from the subject-specific deformed tem-
plate mesh Sj , the corresponding subject-specific blendshape matrix Bj = [b1, ...,bNb ].
To do so, we exploit the popular deformation transfer introduced by Sumner and
coworkers [SP04], to map the set of pre-defined expressions deformations (the blend-
shapes), T̃i

bs, i = 1, ..,Nb, sculpted in our template mesh Tbs onto the subject’s
deformed models Sj . We applied this efficient framework to compute the set of blend-
shapes [S̃j

1, ..., S̃
j
Nb

] for each subject and derive the desired subject-specific blendshape
matrix for each subject.

Blendshape Weight Fitting on Sequences Finally, we derive our final dataset of Nb
blendshape animation weights. The last step corresponds to the fitting of the given
blendshape model (Equation (3.9)) on the input 3D data. In this step, we solve the
optimal blendshape weights for each frame using a non-rigid optimization and the
2D information, as described by Li and colleagues [LYYB13]. Examples illustrating
this step and the different notations are shown in Figure 3.6.
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Figure 3.7 Examples of templates and their Specifications. We use different hand-
crafted blendshape templates for our work with the N vertices and Nb Blendshapes.

3.3.3.3 Processing Details and Results

Our processing work leads to suitable 3D animation data representation for learning
techniques with fewer parameters Nbs < 50 instead of L= 23370, while respecting the
3D original shape (see Figure 3.8). This representation disentangles expressive and
morphology information, necessary to provide efficient animation editing solution,
and is compliant with the actual animator’s workflow, enabling our work to take
place in the facial animation pipeline. Through this data processing step, we enhance
the original B3D(AC)ˆ2 data by incorporating information about the eyes and the
eyelids in the 3D model, using a better template than the original one [FGR+10].
We notably refine the mouth shape to more accurately replicate the original actor’s
expression, as shown in Figure 3.8. This workflow was successfully performed using
different templates, which then enables us to validate the results presented in this
manuscript. An example of these templates, with their specifications, is presented
in Figure 3.7.

Discussion We leverage this extended dataset suitable for neural-based ap-
proaches to perform our experiments. We have made public this dataset for re-
producibility purposes, and with the goal of contributing to the enrichment of
the limited available facial animation resources. The data are available at http:
//www.rennes.centralesupelec.fr/biwi3D. Despite the presented work improv-
ing the suitability of this data for learning-based techniques, some issues remain
unaddressed. Indeed, the native capture frame rate of the videos is 25 fps, which
is too low to acquire all relevant natural facial cues. Important high-frequency
information has already been lost at acquisition time.

Since then, a new multimodal database has been released: Cudeiro et al. [CBL+19]
introduce a 4D facial animation corpus, VOCASET, based on a more sophisticated
model, the FLAME morphable model [LBB+17]. We perform all the steps presented
in this section, except that we do not incorporate 2D landmark information, to test
the generalization of our solution on the last released data (see Chapter 5). Yet, we
note that the quality of this data remains below professional quality standards.

http://www.rennes.centralesupelec.fr/biwi3D
http://www.rennes.centralesupelec.fr/biwi3D
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Figure 3.8 Examples of 3D animation derivated using our workflow. Our processing
work leads to suitable 3D animation data representation for learning techniques with
fewer parameters and compliant with the actual animator’s workflow. In addition, it
enhances the original B3D(AC)ˆ2 by adding animation information about the eyes.
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Our work is not devoted to enhancing the realism and the accuracy of the
synthesized 3D performance-based facial model but instead, emphasizing novel
approaches for intuitive and efficient tools to manipulate existing facial animation.
Despite the quality of some sequences not being up to professional quality standard,
it exhibits sufficient accuracy and diversity to support learning-based algorithms. It
is however natural that the animation generated by learning-based techniques will
match, at best, the quality of their learning database. Beyond this limitation, we aim
to further advance in the facial animation editing and exploring the facial animation
mechanism.

3.3.4 Conclusion
In this chapter, we presented the two databases used throughout our work, which
enable us to explore the different facets of facial animation editing. A summary of
the properties of these databases is presented in Table 3.1.

Table 3.1 Summary table of the databases properties used in this work.

Performance-based Extended B3D(AC)ˆ2

Creation Made by Artists Computed
Quality ++ +
FPS 30,60,120 25
Included MoCap-based Audio, transcription

noisy animation & alignment
Status Private Public
Total Animation Time 49 min 85 min

Next chapters focus on our contributions: we investigate new methods to improve
various aspects of the facial animation editing.
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4.1 Introduction
This thesis investigates scientific approaches to tackle facial animation cleaning
and editing. In this chapter, we focus on the most problematic issue with modern
mocap-based facial animation pipeline, which is cleaning out noise and local artifacts.
Due to hardware limitation and software restrictions, it is usual that the resulting 3D
MoCap-based animation signals contain noise. Among other reasons, such artifacts
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might be due to environmental interferences, such as lighting changes, sensor noise,
data occlusion, and induce reduced accuracy and jitters in the resulting animation.
To obtain clean and high quality data, further post-processing usually involves manual
intervention to ensure a realistic and accurate animation.

Animation cleaning has been widely investigated to deal with body motion capture
errors, including body penetration, marker occlusions or wrong body contact with
the environment. Yet, body MoCap issues revolve around marker mis-identification,
swapping, disappearance or slipping. Modern facial motion capture tends to favor
different technologies, fitting global shape models on dense signals such as video
pixels or depth values. Unlike body motion capture technologies, their dominating
artifacts are fitting jitters due to sensor noise, or spikes/aberrations in the source
material. Existing real-time motion capture solutions have opted for standard signal
processing methods to strengthen temporal coherence of the resulting animations
and remove inaccuracies. However, traditional signal processing methods such as the
Kalman filter or Gaussian smoothing process often fail at preserving the subtleties of
facial motions. For instance, a blink constitutes an abrupt spike in the eyelid motion
signal. With aforementioned filtering frameworks, transient motion like blinks end up
oversmoothed. Therefore, while these methods produce smooth results, they inher-
ently filter-out part of the dynamics of facial motion, such as high-frequency transient
movements. Indeed, in the case of facial animation, automating filtering/cleaning
is a tough problem requiring a careful understanding of the signal-to-noise ratio,
as facial dynamics induce both low- and high-frequency of complex motions that
are hard to model [ASK+12, BBG+14]. Besides, the frequency content can undergo
significant variations over different frames, when the actor is talking and emoting
quickly, changing his facial expression suddenly.

Current works have made the jump to learning-based methods, to cope with the
deficiencies of the traditional filtering. Mall and colleagues [MLCC17] learn adaptative
filters for each animation parameters, demonstrating successful results in cleaning
any kind of actions. Alternatively, many works address the topic of learning natural
motion model with neural networks, typically with CNN architectures [HSKJ15, HSK16,
BBKK17]. CNN architectures and filter-based techniques are however non-causal, as
they use future time samples to process the current one, limiting their applicability
to offline tasks. Causal architectures such as Recurrent Neural Network have proven
successful in processing sequential data in language modeling [SMH11], human motion
prediction [FLFM15] or speech recognition [GJ14].

In this chapter, we follow these works and propose a real-time animation refining
system that preserves -or even restores- the natural dynamics of facial motion. Our
system learns the complex facial motion dynamics from data, and thus has the
ability to preserve natural-looking motion, even transient ones. We leverage Long
Short-Term Memory architecture to produce natural motion models for animation
filtering, presented in Section 4.2.2.
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Learning the dynamics of facial motions for real-time applications also differs
in that it cannot rely on a known, fixed sensor frame rate. Traditional resampling
algorithms are not viable, as they require to know future samples. Also, real-time
source for face images, such as webcams, can have nonconstant framerates. We
suggest a new reformulation for the parametrization of the input signal to bypass this
difficulty. Rather than a system predicting the next frame values given the past frame
values, our recurrent network is trained to learn the values of the signal’s derivatives
at the current frame. Considering the temporal derivative of the motion sidesteps
the problem of frame rate dependency at run-time. We observe that feeding a
recurrent network with the previous estimated states and the dynamic features of the
mocap-based signal, allows for processing animation with infinite length overcoming
(see Section 4.4)

One tricky aspect of motion capture signal cleaning is that the 3D facial animation
ground truth matching facial motion capture signals is hardly ever available; it would
require a really cumbersome and expensive setup to acquire data. We propose to
overcome this difficulty by leveraging handmade animation database created with a
professional performance-based animation software [Dyn19b], presented in Section 3.2,
and train our network to minimize the difference between the resulting animation
and these created data.

Chapter Overview This chapter is organized as follows: Section 4.2 is dedicated
to the presentation of our overall system, combining an effective parametrization
and a specific learning strategy with a popular neural architecture for temporal data
processing. In Section 4.3, we present qualitative results showing that our system is
able to retrieve natural motion signals from noisy or degraded input animation, along
with comparisons with standard motion signal processing methods, highlighting the
effectiveness of our solution. In Section 4.4, we present additional experiments and
ablation studies, bringing to the fore a more comprehensive understanding of the
relevance of the proposed system. Finally, we discuss the application of our system
on a related problem in Section 4.5 and further perspectives in Section 4.6.

4.2 RNN motion cleaning system

Our goal is to enhance the accuracy and remove artifacts of a performance-based
animation. To this end, a learning-based solution is trained to turn a noisy ani-
mation into a realistic one. In this section, we begin by detailing the particular
parametrization we use to make values in our system independent of the framerate
of the input data (Section 4.2.1). Then, we explicit the proposed architecture based
on a Recurrent Neural Network (Section 4.2.2), as well as the training procedure of
our recurrent neural network (Section 4.2.3). An overview of our system is shown in
Figure 4.1.
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Figure 4.1 System overview. Our recurrent system takes as an input the first n
moments of the estimate signal at time t-1 as well as a corrective moments of the
inputs and regress n derivatives at time t.

4.2.1 Parametrization of the system

Our filtering system essentially refines MoCap-based facial motion to produce natural
looking animation. We use the performance-based animation database presented in
Section 3.2 to perform our experiments. Formally, the input data of our system is
represented as a sequence of N frames of M=34 blendshape coefficients X = X(0) =
[x[0], ..,x[N ]]T ∈RN×M . We design our system to be framerate-independent: instead
of correcting the absolute value of the current motion, we consider the normalized
temporal k-th order derivatives of the motion signal:

x(k)[n] = x(k−1)[n+ 1]−x(k−1)[n]
∆t[n] , (4.1)

where x(k) denotes the forward kth-order derivative of the motion at the frame
n and ∆t is the time between two consecutive frames. With this formulation, the
framerate information is factored out of the input, preventing our network to be
reliant on it at both training and inference time.

At each frame n, our system aims at predicting the forward k derivatives, x̂(k)[n]
with k = {1, ..,K} (green on Figure 4.1) given the previous estimated animation x̂[n],
the estimated derivatives x̂(k)[n−1], and the current corrective forward derivatives
x(k)

c [n] (grey on Figure 4.1, see below for details).

Finally, from x̂(k)[n], we recover the estimate K−1 derivatives using the equa-
tion 4.1 (k=0 corresponds to the absolute blendshape values).
In this study, we have observed that feeding back to the system a measure of how
much the currently produced state deviates from the real input signal improve the
performance of our system. Hence, we give as input to our network the k corrective
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temporal derivative, xk
c , of the input signal, xi formulated as:

x(k)
c [n] = x(k−1)

i [n+ 1]− x̂(k−1)[n]
∆t[n] . (4.2)

where Xi and X̂ are respectively the input and the generated animation. Be-
sides, we add information about the dynamics of the sequence by adding a residual
connection between the input and the output of each RNN cells of our network as
proposed by Martinez et al. [MBR17].

4.2.2 Recurrent Neural Network (RNN) for motion modeling

Our approach is based on a recurrent network [FLFM15, MBR17]. The goal of this work
is to learn to generate proper facial dynamics from data. Our network is depicted in
Figure 4.1 and mainly consists of a sequence of LSTM layers with a stacked final
dense output layer to get dimensions matching the output features.

As explained in Chapter 1, computing the facial animation inherently implies to
take the temporal aspect of the motion signal into account. RNN is a type of neural
architecture that has been widely used to model temporal behaviours of complex
patterns. Its relevance cames from the parameters shared over time which learn to
focus or forget temporal relations between input features. The temporal context is
propagated through hidden states, retaining relevant information from history. The
RNN represents the motion signal at the instant t through the hidden state expressed
as:

hn = nw(xn,hn−1). (4.3)

This definition puts forward the temporal dependency of this representation to
the previous states (hn−1,hn−2, ...,h0). The initialization of the first state h0 is either
randomly or deterministically set, depending the objective task. RNN is therefore
rightly suitable for handling temporal dependence of facial motions.

However, RNN might suffer from the vanishing gradient pitfalls in case of long
sequence processing. The gradient value of RNN is evaluated considering the tempo-
ral dependence of the coefficients over time, using Back Propagation Through Time
(BPTT) [Wer88]. Passing through the numerous activation layers, the RNN gradient
magnitude is prone to a drastic reduction or expansion overtime.

Hochreider and Schmidhuber [HS97] develop the Long Short-TermMemory (LSTM)
structure and overcome this issue by introducing an internal state into the RNN
preserving the long-term memory. The LSTM relies on a combinaison of gates to
control the flow of information passing through the network, and updates its internal
memory cn considering previous states and current input sample, shown in Figure 4.2.
Three gates, named the forget fn, input in and output on gate, learn to select over
time which information must be added for later prediction and which information is
no longer needed and has to be forgotten. These gates are expressed as follows:
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Figure 4.2 The Long Short-Term Memory (LSTM) structures. Through a gates
game, the LSTM network controls the information flow over time. Its internal state
is updated considering the previous states and the current input sample, preserving
or forgetting its temporal motion knowledge.

fn = σ(Wfxxn +Wfhhn−1 +bf ),
in = σ(Wixxn +Wihhn−1 +bi),
on = σ(Woxxn +Wohhn−1 +bo),

(4.4)

where σ is the Sigmoid nonlinear activation function. The internal memory cell
cn and the hidden states hn are iteratively updated at each step as:

gn = tanh(Wgxxn +Wghhn−1 +bg),
ct = cn−1� fn + in�gn,

ht = on� tanh(cn),
(4.5)

where � denotes the pointwise multiplication. The LSTM cell formulation ensures
a tractable gradient through time while memorizing relevant temporal dependencies.
Overall, LSTM have been largely adopted to process long sequences. Thus, we
benefit from well-established LSTM [HS97] capacities to model and forget temporal
dependencies to carry out this task.

4.2.3 Learning Details

As our network is thought for real-time animation, it is inputted with past time
samples. Its objective is to predict a plausible estimation of facial motion given
previously estimated states and the corrective derivative of the input signal (Equa-
tion 4.2). Therefore, at training time, we formulate the cost function as the mean
square error (MSE) between the animation made by an artist, Xgt and the system’s
estimate output state X̂.

LMSE = ||Xgt− X̂||2. (4.6)
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We also encourage our network to focus on the higher-order dynamics of facial
motion with an MSE between the derivatives of the estimate motion and the ground
truth one:

Lder =
K∑

k=1
||X(k)

gt − X̂(k)||2. (4.7)

The blendshape parameterization is not the most representative of the importance
of each movement they encode. Movements such as mouth openings/closures carry
more expressive and communicational weight than others such as nose movements.
The loss that our network learns to minimize should reflect this aspect. We add a
loss Ldis, to focus on the preservation of some key inter-vertices distances between
the estimate and the ground truth animations:

Ldis = ||Dgt− D̂||2 +αdis||Di− D̂||2, (4.8)

In this loss, we include six distances: the first three, vlipss ∈ R, where s ∈
{middle,right, left}, measure the extend between the upper and the lower lips (at
the middle and at one and two third of the mouth), the fourth is between the mouth
corners vcorners ∈ R and the last ones between the right and left eyelids veyess ∈
R,s ∈ {right, left}. All these quantities are concatenated into a large matrix D =
[d0, ...,dL] ∈ RL×6, with dl = {vl

lipsmiddle
,vl

lipsright
,vl

lipsleft
,vl

corners,v
l
eyesright

,vl
eyesleft

}.
This loss emphasizes the salient role of the lips and eyes to convey expressivity and
communicational cues in facial animation. Finally, we optimize the following cost
function:

L= LMSE +wderLder +wdisLdis. (4.9)

For all our experiments, we set wder and wdis at 0.01 and 0.1, αdis at 0.8 and use
K=1. The dimension of the hidden states is set to 128 for every LSTM layer. Our
network is optimized using the ADAM algorithm [KB14]. During the training, we
add a dropout [SHK+14] of 0.3 to avoid overfitting. We set the initial learning rate at
0.001.

4.3 Animation Filtering Results

In this section, we demonstrate the capability of our model to clean-up a noisy
performance-based animation while preserving a plausible facial motion dynamic
in Section 4.3.1. We also compare our system to standard signal processing methods
to highlight the difficult task of hyperparameters tuning in the case of motion
signals filtering (see Section 4.3.2). Finally, we demonstrate the relevance of our
recurrent structure by comparing our system with non-recurrent learning methods in
Section 4.3.3.
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Figure 4.3 Our system detects a blink pattern and correct the motion to retrieve a
realistic full closure of the eyelids.

4.3.1 Motion Refinement

Facial performance-base systems often rely on video sources to capture motion and
solve for animation. Most of the time, either due to sensor quality or environmental
factors (lighting changes, occlusions), the delivered animation contains noise and
inaccuracies. Some crucial properties of facial animation, such as the amplitude of
the movements, are often lost resulting in a less expressive animation. As shown in
Figure 4.3, our system recovers the natural dynamic of the facial motion. For instance,
providing the previous estimate velocities, our learning-based method detects an
upcoming blink and correct the animation to get a natural full closure of the eyes.

Our system has to predict the expression parameters of the whole face at each
time step, without having the ground-truth available. Hence, it learns the correlation
between animation parameters, as we can see in Figure 4.4 (top). Our system can
"magnify" the motion by augmenting movements in the animation, which were absent
from the noisy input. Conversely, when unrealistic blendshape activation patterns
appear, our system efficiently smooths the signal (see Figure 4.4 (middle, bottom)).

The time to infer one frame is less than 0.5 ms on GPU (GeForce GTX 1060).
Hence, our system could be integrated in any real-time facial animation software 1.

1More results on full animations are provided at https://elo-nsrb.github.io/homepage/
publi_data/ICGSP2020/video.mp4

https://elo-nsrb.github.io/homepage/publi_data/ICGSP2020/video.mp4
https://elo-nsrb.github.io/homepage/publi_data/ICGSP2020/video.mp4
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Figure 4.4 Our system corrects the motion of every part of face: either by increasing
the motion such as the "lip protrusion" motion or by smoothing the lips or the eyes
frown movement.

4.3.2 Comparison with traditional temporal filters

One shortcoming of standard filtering methods is hyperparameters tuning. One
needs to find a trade-off between preserving high-frequency patterns such as a blink
or noise or getting a smooth animation and losing the natural dynamics of some part
of the face. For instance, one popular filtering algorithm for real-time processing is
exponential smoothing:

x̂[n] = γx[n] + (1−γ)x̂[n−1]. (4.10)

Setting a high γ results in an estimate signal, which is more faithful to the input.
In this case, more subtle motion patterns of the input signal are kept. Conversely,
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setting a low γ prevents from high variations in the estimate motion signal leading
to a smoother animation.
Another popular smoothing scheme is Gaussian-based filtering. It consists of con-
volving the input signal with a Gaussian window, and thus requires having the whole
signal. The smoothness of the output signal depends on the resolution of the window
fixed by standard deviation σ of the Gaussian. The lower the standard deviation,
the higher the temporal resolution of the window. A narrow window better preserves
the fine temporal details. In both cases, the techniques only filter the animation and
cannot refine it. The dynamics of the different part of the face is very different and
complex to model. While the eyelids motion is composed mainly of flat portions and
quick spikes corresponding to blinks, frowning movements consists of more subtle
variations with variable lengths. Handmade tuning of γ or σ parameters is thus a
cumbersome task. By learning the inherent dynamic faces, our method is free from
such frequency parameters tuning.

We compare our system with the temporal smoothing algorithm, parameterized
with two different values of γ 0.3 and 0.5 (see Figure 4.5a) and with the Gaussian
smoothing using a window with σ of 1.0 and 5.0 (see Figure 4.5b). Our system is
able to enhance eyelids signal producing accurate closures of the eyes. Indeed, our
system detects the inaccurate spikes observed on the "Top right lip sneer" blendshape
and corrects it to produce a smoother and a more natural motion signal. Conversely,
both methods process the spikes observed on the "Top right lip sneer" blendshape
and on the "Eyelid" motion similarly, by either preserving it or smoothing it. At
each time step, our system is fed with the motion of the whole face. As shown in
Figure 4.5, our system is able to learn natural correlations in facial motion and use
this knowledge to correct and generate more accurate motion sequences, even if the
input tracking is inexact.

Table 4.1 Quantitative comparison with Exponential and Gaussian smoothing
algorithms.

MSE

Exponential (γ:0.3) 0.0170
Exponential (γ: 0.8) 0.0172
Gaussian (σ: 1) 0.0170
Gaussian (σ: 5) 0.0167
Raw input 0.0173
Ours 0.0140

We also numerically compare the MSE of those algorithms on the test set in
Table 4.1. Our system gets the lowest MSE, while smoothing methods get a MSE
similar to the MSE between the input and the ground truth.
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(a) Comparison with exponential smoothing.

(b) Comparison with gaussian smoothing.

Figure 4.5 Common filtering methods require hyperparameter tuning to balance
between oversmoothing and details preservation. Our system learns the dynamic
of facial motions so as to tailor the filtering process for each motion. Hence, it can
enhance a blink motion while removing unrealistic spikes in "left squint" motion. It
is also able to retrieve natural patterns in the "right lip sneer" motion for instance.

4.3.3 Comparison with non recurrent learning methods

We compare our system with non-recurrent learning methods: a Fully Connected
neural network (FC) and a non-neural machine-learning algorithm using Gradient-
Boosted Trees (GBT). In these algorithms, the estimates of previous derivatives are
not fed back at train time. Hence, we adapt the input parameterization by replacing
the estimate of previous outputs with parameters of the input signal. At each frame
n, we estimate the K derivatives of the corrected signal at time n+1, given the K
derivatives of the input animation at n and n−1, and the current state of the input.

As these methods are not recurrent and to avoid accumulating errors through
time, the estimate animation is derived as:

X(k)
r = αr(∆tX̂(k+1) +X(k)

r ) + (1−αr)(X̂(k)),

with:
X̂0 = Xi,X(K)

r = X̂(K)

Xr is the resulting animation, while X̂ is the estimate animation by the FC/GBT
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algorithms. We augment the training set by upsampling and downsampling each
sequence with a factor 2 to avoid overfitting. We train both the GBT and FC using
K=4 and produce the final animation using empirically chosen values of αr=0.97
(GBT) and αr=0.9 (FC). During the training, we optimize the loss Lder. We also
test these algorithms on animations with different framerates.

Figure 4.6 depicts two frames extracted from the resulting animation of GBT or
FC and the animation estimated by our system when it is fed with a performance-
based animation recorded at 30 fps. Compared to these algorithms, our system
not only rectifies the motion signals but also enhances the expressiveness of the
animation. As we can see, non-recurrent methods tend to flatten the motion signals,
whereas our system produces natural motion patterns preserving the amplitude of
eyebrows frowning or lip protrusion movements. We also numerically compare the
MSE error obtained on the test set, and observe that our recurrent method gets a
lower MSE than GBT or FC architectures (Table 4.2). We improve the accuracy of
these methods and the plausibility of the output animation by limiting the regressed
coefficients to the range [0,1] (see Clip in Table 4.2). Dynamic animation results are
shown in the supplementary video.

Table 4.2 Quantitative comparison with non-recurrent methods.

MSE

GBT + Clip 0.0451
FC + Clip 0.0462
Ours 0.0140
Ours + Clip 0.012

4.4 Ablation Study and Model Understanding
With the mind of pushing forward our understanding of the proposed system,
we conduct several experiments highlighting the contribution of each part of the
architecture in the overall performance. To do so, we train our system with different
input segment lengths in Section 4.4.1 and various architecture components in
Section 4.4.2 on more epochs than in the previous paragraph to avoid an early stop.
For our experiments, we evaluate the different systems retaining the configuration
that gets the lowest validation error during the training.

4.4.1 Optimal Input Segment Length

One key ingredient of temporal sequence modeling is to properly define the scope
of the motion representation. While at runtime, our system can generate sequences
with arbitrary length, during the training the size of the input sequence is fixed to
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Figure 4.6 Comparison with non-recurrent machine-learning algorithms on a new-
recorded performance-based animation: a Gradient Boosting Trees (GBT) and a
Fully Connected neural network (FC). Our system not only rectifies the motion
signals but also enhances the expressiveness of the animation, such as enforcing the
eyebrows frowning movements or the lip protrusion.

enable parallel computing. Yet, the length of the input sequence should be large
enough so as to capture all the salient temporal dependencies. We observe the effects
of the input length on the performance of our system measured with two metrics
the Mean Square Error and Mean Absolute Error. As shown in Figure 4.7, better
performances are obtained with a larger input length. These results confirm the
importance of learning the dynamics of facial motion on reasonably long motion
chunks [TKY+17], taking at least temporal patterns of 1.7 seconds. Learning the
motion with a too small context may not allow our system to properly disambiguate
between two plausible motion dynamics.

(a) Mean Square Error with respect to
the length of the input window.

(b) Mean Absolut Error with respect to
the length of the input window.

Figure 4.7 Effect of the proposed architecture with respect to the length of the input
window.
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Figure 4.8 Effect of an external loop. We observe that feeding back the previous
estimated state, either directly, concatenated to other inputs or indirectly by using
the corrective input formulation (Equation (4.2)), precludes the divergence of the
output even in case of very long sequences.

4.4.2 System Understanding

Model Efficiency We measure the impact of our looping strategy and our original
corrective formulation of the input by comparing our system with three baselines. A
first baseline, No Loop, consists of the system without the loop feeding the recurrent
network with the previous estimate state. We introduce a second baseline, No
Corrective, by replacing our corrective input formulation (Equation (4.2)) with the
standard derivative formulation described in Equation (4.1). Finally, the third
baseline, No Loop, No Corrective, refers to the system trained with neither the
looping strategy nor the corrective formulation. As shown in Figure 4.7, both
examined components contribute to the overall performance. However, we notice a
difference in the degree of impact on the quantitative results: the looping strategy
gets a greater influence on both the MSE and MAE. Our system gets the lowest
MAE and MSE similar to the No Corrective system.
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Figure 4.9 Relevance of our architecture. The looping strategy precludes unrealistic
temporal motion patterns, while the corrective formulation of our input enables a
more accurate output animation.

Model Suitability We further examine their role through qualitative analysis,
putting forward the suitability of the proposed architecture for facial motion cleaning.
As illustrated in Figure 4.8, feeding back to the system a measure of how much
the currently produced state deviates from the real input signal through either an
open-loop or indirectly by computing the corrective input states, prevents the system
from drifting apart in case of long sequences inference. More precisely, the external
loop precludes the system from ending-up with unrealistic patterns, still present in
the No corrective system (see Figure 4.9). The corrective formulation beneficially
leads to a more subtle but yet relevant improvement. As observed in Figure 4.9,
the corrective formulation enables a more accurate restoration of motion dynamics.
The No corrective system might lose valuable motion cues in case of highly dynamic
animation segments, as we can see in Figure 4.9.

These results pose our system as an animation controller: it takes into account
the difference between the previous generated state and the current input state to
explicitly reduce the drifting effect happening on long-term predictions and improving
the accuracy of the refined animation.

4.5 Text-based Animation Restoring
The objective pursued with this approach is the ability to deduce plausible dynamics
from a coarse or noisy motion signal in order to ease manual animation tasks. We
have seen above that we can restore/hallucinate realistic looking animation from
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low-fidelity signals. This motivates investigation of whether we can do the same
with even coarser inputs, such as restoring a plausible coarticulation dynamic from
a coarse viseme-based animation. Herein, using the same paradigm, we discuss
additional experiments we have done, extending the application of our system to a
related problem, the text-based animation restoring.

Problem Statement and Motivation Given a sequence of viseme2 along with
the corresponding blendshape activation values, we derive a basic and unrealistic
talking animation by converting the sequence of visemes in a sequence of blendshape
coefficients, as illustrated in Figure 4.10. However, humans do not pronounce each
phoneme separately, but instead, every phonetic realization impacts the surrounding
articulations. In the linguistic field, this phenomenon is called co-articulation and
refers to the mutual influence between the articulators involved in the movement to
finish one sound and anticipate the next one [JM08, MC95, Sca04]. It is the leading
mechanism responsible for smooth dynamic transitions between phonemes, allowing
to realistically produce overlapping movement segments. However, this phenomenon
is not well-modeled due to the intricate nature of the phoneme-to-viseme mapping,
raising several questions about its representation. The nature of this mapping, which
was early assumed as a many-to-one, appears insufficient to model the complexity of
the visual movements underlying the sequence of uttered sounds. Besides, there is
not a clear consensus about the visual unit and the boundaries of the visual segment
to consider in this mapping. Taylor et al. [TMTM12] demonstrate that a dynamic
visual unit better represents the visual appearance of an utterance than a discrete
one. We believe that our system could address the above issue by retrieving this
complex motion dynamics, in a real-time framework.

Discussion and Future Work We observe natural-looking and promising output
animations. Yet, we still face issues such as the lack of a relevant testing strategy to
quantitatively assess the quality of our results. As explained above, the way to pro-
nounce sounds hinges on a subject-depend dynamic and might vary within the same
subject performance, depending on the actor’s style of acting and emoting. Thus, for
the same utterance, one might find corresponding different equally valid animation
within our database. It is all the more true as the sentence included in the B3D(AC)ˆ2
are uttered both with a neutral intent and an emotional intonation [FGR+10]. Al-
though the original animation sequences, standing for the ground-truth, intrinsically
carry these features, it is not included in the initial sequence of phonemes. Thus,
we cannot expect our system to restore it at all. The main limitation we face is
thus the absence of a relevant metric measuring animation plausibility to guide our
training. The use of the MSE loss should be replaced by a more relevant function that
takes into account this discrepancy between the ground-truth data and the regressed
output. In Chapter 6, we experiment with generative framework to overcome this
issue. One interesting experiment would be to use only neutral sequences. Another

2A group of phonemes with the same visual representation
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Figure 4.10 Potential application of our system. Instead of restoring the real dynamic
of a noisy animation, our recurrent system could process a coarse talking animation,
and derive the real coarticulation between the visemes.

issue comes from the time resolution of the animation signal which should be high
enough to capture all the visual speech units and align an uttered sound to a visual
gesture. We believe further research in this work is necessary to understand and
evaluate the performance of our framework. More experiments should be carried
to optimally leverage the presented architecture. In particular, a more in-depth
analysis on our results with an accurate validation on our system on this attractive
application.

4.6 Conclusion
In this chapter, we reported our investigation on a real-time facial animation cleaning
and refinement system. Taking blendshape animation as input, such as raw motion-
capture animation, our system successfully filters and enhances the animation, in
real-time, regardless of the input framerate. Contrary to traditional signal processing
method, our system learns the dynamics of facial motions on realistic data, to be
able to remove noise and inaccurate signal patterns regardless of the animation signal
frequency properties, and yet preserve high-frequency transient motions. Besides, the
proposed solution is fully automatic and does not require further manual painstaking
fine-tuning.

We demonstrate the benefit of using recurrent structure, endowed with an internal
memory, to approximate a realistic dynamic based on the current state relevantly.
Besides, we demonstrate that our system refines MoCap-based animation, delivering
natural motion patterns with realistic correlations between the different parts of the
face. By learning the derivatives of the motion rather than the motion’s absolute
values, we free our system from framerate dependency, enabling it to process any
input animation in real-time.

As any learning-based system, our system strongly depends on the data used
during the training. Thus, our system tends to produce only motion patterns it has
already seen, refining animation in the style of the animations it has learned on. It is
very likely that the amount and the type of data (inevitably bearing the style of the
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animators who made it), strongly affects the delivered animation. A more in-depth
analysis on database dependency and style learning would be required to get full
control of the animation quality that our system outputs. A solution could be to
segment the face into regions [JTDP03], as it makes the system more generalizable,
and reduces the style-dependency on the database.

We provide a real-time and accurate system to clean and refine a motion signal
that is in addition compliant with the blendshape animation formulation. We hope
this study will provide additional evidence that learning-based system have great
potential for motion cleaning and restoration. The encouraging quality of the results,
coupled with the system’s ability to handle arbitrary framerates in real-time also
show that this approach has potential for industrial applications.
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5.1 Introduction
In the previous chapter, we addressed the very common animation cleaning problem,
when noise or local artifacts are present in the signal. This low-level editing aims at
modifying the signal so as to remove inaccurate patterns, without explicit external
constraints. In the following chapters, we consider a given animation which is "tech-
nically" perfect, but does not entirely fulfill the user intent. Instead of signal-level
cleaning, this animation requires additional semantic level adjustments or corrections.
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These modifications are manually done by an animator trained in manipulating
low-level 3D animation parametrization such as blendshape coefficients. This editing
pipeline implies technical and artistic skills, as well as a considerable amount of time
to end up with a coherent and satisfactory final animation.

In this chapter, we investigate an editing algorithm that allows modifying an
animation while preserving the dynamics of the face. We develop a machine-learning-
based approach trained to produce natural-looking animation from a small set of
input parameters. By training on natural animation space-time patterns, our system
learns to preserve the temporal coherency of the motion and ensure smooth and
continuous animation.

Previous data-driven methods [SLS+12, ASK+12] propose a temporal solution to
propagate the edits across the surrounding frames by solving a movement matching
equation or by using a bilinear spatiotemporal model. Although these methods
provide smooth results, their temporal resolution depends on hyperparameters (energy
weights or frequency coefficients) that need to be manually adjusted rendering the
editing task more difficult to tune. On the contrary, recent works have shown
very promising learning-based methods in related animation, providing efficient
solutions to automatically handle the complexity of the facial movements while
yielding consistent animation.

As contributions such as Seol et al. [SLS+12], our system is meant to cope with
constraints akin to real-world applications as shown in Figure 5.1. However, unlike
Seol et al. [SLS+12] who focuses on producing an efficient system dedicated to a
professional use, our goal is to provide an alternative solution for non-specialist
users. For example, in the case of exaggerated user constraints, the system of Seol et
al. [SLS+12] method generates implausible animations. We specifically study designs
that are robust to inadequate user edits, and handle exaggerate or conflicting inputs.
Besides, instead of complicated facial control parameterizations, we propose to use
intuitive high-level control parameters as input to the system, such as specifying the
distance between the lips over time. The system runs at low latency, enabling us to
create a graphical interface for users to interactively modify the output animation
until getting a satisfying result. Moreover, we offer the flexibility to the user to
iteratively modify its animation, either by editing a few frames or by imposing
full-sequence constraints, until a satisfying result is produced (see Section 5.3.4).

This work takes inspiration from the seminal work of Holden et al. [HSK16], which
tackles the same challenge of editing an animation using simple high-level parameters.
Using a fully convolutional learning-based human motion editing system, they map
high-level control parameters to a learned body motion manifold presented earlier by
the same authors [HSKJ15]. Navigating this manifold of body motion allows to easily
alter and control body animations, while preserving their plausibility. Unlike body
motion, however, one challenge when dealing with facial animation is to preserve
the high-frequency patterns of the motion, as they are responsible for important
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Figure 5.1 System overview. Our editing system allows a non-specialist user to
easy and quickly interfere in the traditional facial animation pipeline to refine an
animation.

communication cues (eye closures, lip contacts). Indeed, as pointed out by Seol et
al. [SLS+12], ensuring an accurate mouth and eyelids closures at specific frames is
of paramount importance to provide realistic facial animation. This is particularly
true for learning-based solutions, that leverage large datasets of complex, possibly
conflicting animation patterns [HSK16].

Although the system of [HSK16] demonstrated impressive results on body motion,
we found that their architecture is not particularly suited to this particular aspect of
facial animation. Among the shortcomings of these solutions is the ability to preserve
the different frequency components of the animation and to adapt the behavior of
the system to inconsistent inputs. Using it in our scenario leads to over-smoothed,
unappealing facial animations, which we illustrate in Section 5.3.1.

Yet, Convolutional Neural Network models have genuine attractive properties
including continuity and time invariance, making them reliable candidates to encode
the temporal aspect of the motion. This structure progressively transforms local
motion patterns through multiple layers, until producing the desired output animation
and therefore, requires the full input signal to be specified to produce the desired
output. When editing, the user often wants to see the entire motion at once before
selecting motion segments to revise, and does not wish to modify early frames that
will impact future motions. Hence, unlike in this previous chapter, user-driven editing
only happens offline and thus, precludes a causal architecture. For these reasons, we
adapt their convolutional-based approach for the purpose of facial motion, and tackle
the high-frequency issue leveraging a resolution-preserving neural network. Exploiting
the state-of-the-art architecture in high-resolution image processing, we build our
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system on a one-dimensional fully convolutional network inspired by Ronnenberger
and colleagues [RFB15], with skip connections between the down-sampling and the
up-sampling parts designed specifically to preserve high-frequency details. Besides,
we aim at a system that is resilient to coarse editing by non-specialist users. To that
end, we propose to train an additional denoising autoencoder that we stack at the
end of the network to ensure a natural-looking final animation output.

Previous learning-based motion editing works exploit a standard high-level body
motion parameterization that includes joint positions and motion moment cues.
However, there is no such counterpart motion representation consensus in the facial
animation community. In this chapter, we suggest a new approach to code facial
expressions through semantic high-level parameters for non-expert motion control.

In summary, this chapter presents the following investigations:

• A facial animation editing system based on convolutional neural networks,
which enables to quickly edit a temporal talking facial animation with few
intuitive control parameters. Based on a time resolution-preserving architecture,
we experiment with an approach that can generate complex and plausible facial
motion patterns. The proposed framework features a regressor designed to map
low-dimensional control parameters to blendshape coefficients sequences. It is
followed by an autoencoder meant to ensure the naturalness of the outputted
animation sequences.

• A focus on robustifying produced animations, to be resilient to implausible
inputs constraints. We use a denoising training strategy to improve the re-
liability of our system. The originality comes from the noise added to the
indirect inputs used to train the stacked autoencoder, and an additional loss
term encouraging mouth closure preservation during talking facial animations.

Chapter Overview The remainder of the chapter is organized as follows. We
describe the input control parameters and detail our model in Section 5.2. We focus
particularly on the benefit of the added autoencoder and the specific way of training
it. We compared our system with related works in Section 5.3 and conducted several
experiments highlighting the performance and benefits of our architecture. Finally,
we demonstrate the usability of our framework in a realistic animation production
pipeline before discussing the proposed approach in Section 5.4.

5.2 System Description
In this section, we describe our facial animation editing approach in more details.
First, we discuss the choice of the control parameters which constitutes the input
of our system in Section 5.2.1. Then, we elaborate on the structure of the neural
network that forms the heart of our system. Our system shown in Figure 5.2 is
composed of two neural-based parts. Both are fully convolutional, and operate on
space-time signals, meaning they perform temporal convolutions on a time window
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Figure 5.2 System description. (Top) At train time, fixing the parameters of the
regressor, the autoencoder learns to reconstruct the initial blendshape weights from
the noisy meaningful control parameters. (Bottom) At test time, the edited control
parameters lead to an accurate blendshape weights sequence thank to the regressor.
The stacked autoencoder is robust to inaccurate inputs and is trained to always
output realistic edited animation.

of their input parameters. We briefly review this popular structure in Section 5.2.2.
The first part of our system, presented Section 5.2.3, is a regressor which maps
high-level inputs to a blendshape weights sequences. The second one is a stacked
autoencoder that cleans the blendshape weight sequence to ensure a final realistic
animation. We describe this second part in Section 5.2.4.

5.2.1 Meaningful high-level control parameters

Our investigations for controllable animation editing focuses intentionally on usability.
The input of the proposed methods have to be meaningful, low-dimensional and
easy to manipulate. From an application point of view, the user must be able to
efficiently personalize a 3D animation without advanced animation skills. Thus, we
consider a system that takes intuitive high-level parameters as input, with an explicit
effect, so that users can easily perform their desired modifications into animation.
Particularly important in facial animation is the rendition of speech, so we want the
control parameters to be able to specify all plausible mouth shapes that occur during
a natural speech.

Inspired by the work of Seol and colleagues [SSK+11], we choose inter-vertex
distances with semantic meaning and a major effect on facial expressions, as control
parameters. In their work, Seol and al. [SSK+11] propose to derive hierarchical GUI
controllers from the original animation sliders. Classifying the blendshape according
to their level of impact on the face into a three-layered layout, they define 12 large
activation parameters shown in Figure 5.3: two for raising the eyebrows, two for the
eyes openings, one nose-link blendshape, two for leading the mouth opening, one the
mouth corners motion, and four controlling the chin and the jaw movement.
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Figure 5.3 The various control parameters used by Seol and colleagues [SSK+11].
They create three layers of control, dividing the 44 blendshapes according to their
activation levels.

However, these parameters remain blendshape-specific and cannot be derived on our
template straightforwardly.

With particular attention paid to disambiguating the mouth movement and
selecting a small number of controllers, we pick out eight control parameters shown
in Figure 5.4. The horizontal and vertical inner-lips distances as well as the eyelids
distances determine the state of the mouth/eye closure, two important expressive cues.
To enable editing the emotional expressiveness of the animation such as modifying
the smile intensity, we add the distance between the upper-lip center and the mouth
corners. The lips protrusion, activated by pronouncing palate sounds such as "sh
or ch" or doing a kiss shape are manipulated with the distances between the nose
bridge and the upper-lip center and between the chin and the bottom-lip center. We
found this to be a rather minimal set for our approach. Fewer parameters would
result in ambiguous specifications for face shape, leading to a noisy regressor output.

To define their GUI controllers, Seol and coworkers [SSK+11] geometrically compute
the optimal center of effect area and direction of the movement blendshapes. They
design their arrow-shaped controller by fixing the z and use only the projection
on the xy-plane to parameterize their controllers. In the same vein, we use the x
or y projection of the vertices distances to give the user more intuition about the
semantics of each control parameter. However, our control parameters are directly
derived from the mesh of our template, and thus, do not depend on the blendshape
model contrary to the mentioned work [SSK+11].

In this work, we always measure those distances on a blendshape-based character
with fixed morphology TW . This ensures that the distance patterns we extract from
the B3D(AC)ˆ2 dataset’s animations of the section 3.3 are actor-independent. In
that way, any type and style of facial animation should be editable (see Section 5.3.2).
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Figure 5.4 Eight inter-vertices distances, extracted from the mesh, used to compute
our meaningful control parameters.

While our network can learn full-face motion patterns, we found that gener-
alization of the results is improved if we split the facial controls in three groups
that exhibit low motion correlation with each other in the database: lower-face,
upper-face and eyelids. An independent network will be trained for each group, with
its own relevant high-level control parameters as input, and appropriate blendshape
coefficients as output. This splitting of the face is common in previous research works
and practical applications [JTDP03, ZSCS04].

5.2.2 Convolutional Neural Networks for Motion Modeling
As explained in the introduction of this chapter (Section 5.1), this work builds upon
state-of the-art motion editing work [HSK16]. In the domain of learning motion
representation, an effective and proved technique to handle motion data is to use
Convolutional Neural Network (CNN). The convolutional neural layer was initially
introduced to process visual data [LBD+89], and basically consists of applying a
convolving kernel, with learnable parameters, on local features, sliding over all the
input data. The reduced number of parameters involved in this structure has allowed
the processing of images with any size, achieving great success in the particular
task of image classification [KSH12, SZ15]. CNN gets the attractive property to learn
continuous high-level of reasoning from the input data, creating an informative
representation of the motion data, such as a Motion Manifold [HSKJ15]. Although
CNN was historically devoted to visual data, it has subsequently enabled effective
time series modeling, demonstrating excellent results in speech recognition [GJ14] or
natural language processing [CWB+11]. In Figure 5.5, we present the one-dimensional
convolution principle used at the core of our neural architecture. By shifting along
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Figure 5.5 The one-dimensional convolutional layer. The convolving kernel is applied
to temporal motion window to produce a new motion features and then moves
along the time direction to process the next window. The convolution operation,
followed by a nonlinear activation function, is computed from the beginning to the
end to all the windows of the input motion sequence, leading to a more informative
representation of the motion data. (Source [Kim14]).

the temporal axis only, a one-dimensional CNN presumes a temporal invariance.
This assumption might not be valid in the spatial domain as the different parts of
the face are strongly correlated and get their own temporal signatures. For instance,
the underlying structure of the mouth strongly differs from the one of the eyes.

5.2.3 Regression from low dimension control parameters to blendshape
weights

Motivated by the observation that facial animation is also composed of important
high-frequency features, we moved away from previous motion-modeling network
architectures and built a resolution-preserving neural network to regress the control
parameters cgt ∈ RL×Ncp to blendshape weights xreg ∈ RL×Nfeat as shown in Fig-
ure 5.2. L is the length of the input sequence, Ncp the number of control parameters,
and Nfeat = 29 is the size of the output blendshape vector. The control parameter
coefficients have been calculated on a fixed morphology character, animated with
the blendshape weights (xgt ∈ RL×Nfeat) extracted from the B3D(AC)ˆ2 database.

The regressor is a fully one-dimensional convolutional neural network with skip
layers, a structure sometimes loosely described as U-net. Its architecture is depicted
in Figure 5.6a. We use one-dimensional max-pooling layers and up-sampling layers
to respectively down-sample and up-sample the temporal dimension. Each convolu-
tional block in Figure 5.6 is composed of a batch normalization layer, a convolutional
layer and the ELU activation function [CUH15]. As input to the regressor we use
a time-window of 64 frames. We extract those windows from complete sequences
with a time-overlap ratio of 0.75. As preprocessing, we subtract the mean controller
values calculated on the whole trainset. All the filters in the network have a size of 3.
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Figure 5.6 Architecture of the regressor (a) and the autoencoder (b)

Our loss function is composed of two terms [HSK16]: the mean square error (MSE)
between the xgt and xreg, LMSE , and a L2 regularization on the weights β ∗Lreg.

We set the tradeoff parameter β equals to 1. We employ the Adam optimizer for
training with a batch size of 128 and an initial learning rate of 0.001 with a decay
ratio of 0.95 every five consecutive epochs with no validation loss improvement. We
use sequences from 13 subjects of the dataset to train our network. This amounts
to around 85 minutes of facial animation, which we split into a training set and a
validation with a 0.95 ratio. We consider the final state of the network as the state
at the epoch with the lowest validation loss.

5.2.4 Autoencoder for ensuring the naturalness of the animation

Our network features an animation autoencoder whose role is to clean-up the output
of the regressor. Our regressor is a rather straightforward mapping network, so it will
faithfully transcribe any user input, easily extrapolating to cases of unrealistic facial
animation. On its own, such a regressor would not provide much value to non-expert
users. It solely changes the parametrization with which animation is controlled, but
it is not robust to exaggerations and inconsistencies. The added auto-encoder acts
as a corrector that keeps the outputs in a realistic animation space. Its architecture
is depicted in Figure 5.6b.

Ensuring that the network produces realistic animation is due to both the presence
of the autoencoder and to the following denoising training strategy. Training autoen-
coders as denoisers -meaning feeding them with noised inputs and clean outputs- is
common practice, but we found that the resulting autoencoder is very dependent on
the noise characteristics. In our case, since the noise is supposed to mimic unrealistic
inputs such as the one that a non-expert user might provide to the network, we found
it difficult to find a good noise model. Instead we chose to train the whole end-to-end
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system as a denoiser, while keeping the regressor weights constant (except the statis-
tics of the batch normalization layers) and optimize the autoencoder’s weights to
reconstruct xgt. In practice, we modify around 20% of the control parameter inputs
of the regressor cgt (see Figure 5.2) with salt-and-pepper noise. We found that this
creates noisy animation patterns that are closer to what the system would encounter
in a real runtime scenario and therefore, forces the autoencoder to learn to clean-up
inaccurate inputs. For the autoencoder to preserve the high-frequency features of the
regressed output, we use a convolutional architecture similar to that of the regressor
(Figure 5.6).

We train the autoencoder using the standard MSE loss, LMSE applied on all
blendshape coefficients. Such as our previous system presented in Section 4.2.3, we
add a loss Ldistance, measuring the difference between some intervertices distances
on the model animated with xgt and xout. Finally, the autoencoder is trained to
minimize the followed loss:

L= LMSE +αLdistance. (5.1)

Typically, Ldistance measures the distances between the lips, and between the
eyelids. This term helps ensure an accurate mouth closure during a talking facial
animation [MD18]. For our experiments, the parameter α is set to 1. Training the
model takes less than 2 hours on a NVIDIA GeForce GTX 1070 GPU.

5.3 Experiments & Results

In this section, we present experimental results of our facial animation editing system.
First, we evaluate our system by comparing its integrity to the recent related work
of [HSK16], which addresses a similar set of requirements, albeit for body animation
applications. We retained their system’s architecture, adapting it for our specific
inputs and outputs. The discrepancy between quantitative measures and qualitative
look of the animations leads us to use special metrics for a more complete comparison
(Section 5.3.1). This comparison confirms the suitability of the proposed neural
network system for the purpose of facial animation, as well as its capability to create
plausible facial animation preserving the complex dynamics of the facial movements.

To assess the data-dependency and reproducibility of our system, we apply it on
a different recently released database (see Section 5.3.2) and measure quantitative
performance. In Section 5.3.3, we study the robustness of our system to inaccurate
user constraints, and analyze the role of the system’s components. Finally, as our
system runs with low latency, we demonstrate in Section 5.3.4 its potential as an
interactive animation tool by showing examples of performance-based animation
editing.



5.3 Experiments & Results 95

(a) Auto-encoder. [HSK16]. A manifold of realistic body-motion is learned through a
fully convolutional auto-encoder.

(b) Regressor [HSK16]. After the creation of the manifold, the feedforward fully convolu-
tional regressor is trained to map high-level control parameters to this motion manifold.
Thereafter, the pre-trained decoder enables producing realistic animation from the
control parameter code.

Figure 5.7 2-networks architecture introduced by Holden et al. [HSK16].

5.3.1 Comparison with state-of-the-art approach

Our system is designed for animation editing and control, but it will only be useful
if its architecture can handle and represent sufficiently varied facial motion. Of
particular interest is the ability to preserve the high-frequency components of facial
animation, which are important for human communication. In practice, we evaluate
how close the generated animation wc is to ground-truth wgt when the edited control
parameters ce are kept unchanged, equal to cgt (see Figure 5.2). We evaluate this
metric on the whole database using the leave-one-subject-out strategy.

To our knowledge, there is no work directly addressing the problem of high-level,
temporal consistent manipulation of facial animation, precluding a direct comparison.
In the broader field of animation research, Holden et al. [HSK16] set to tackle a similar
set of goals for body animation editing and control. Part of their system is valid for
facial animation and can be adapted to our inputs and outputs. Their 2-network
architecture is presented in Figure 5.7.

To represent their approach, we first learn a time-convolutional autoencoder with



96 Controllable Facial Animation Editing

one layer to encode the sequence animation into a latent space and one layer to decode.
Then, we learn a fully convolutional network to regress the control parameters to
this latent space (see [HSK16] for details). The regressor is built with only 2 layers
as it appeared to give better results in our case. To get a fair comparison, we
train this system for each face area separately, using our same training strategy (see
Section 5.2.1).

We evaluate the different systems by minimizing the mean square error (MSE)
between the input and the output blendshape weights sequences. For our experiments,
we use the regressor with the lowest MSE because the role of the regressor is to
accurately regressed the control parameters to the blendshape weights.

Table 5.1 Quantitative comparison between the regressor and the full system on the
test set.

MSE (lower face) MSE (eyelids)

Regressor only 0.0028 0.0064
Holden et al. [HSK16] 0.004 0.009

Our system 0.0082 0.0086

Interestingly, Table 5.1 shows that Holden et al. [HSK16] performs equally (eyelids)
or better (lower face) than our complete system in term of MSE. However, by looking
at the temporal curves of inner lips distance derived from cgt and cc, we realize that
their system smooths the motion signal and shows consequent loss of high-frequency
components of the mouth and the eyes (Figure 5.8). While the reconstruction MSE
is lower, the corresponding animation is qualitatively less appealing as it misses the
key high-frequency communicational cues on the mouth and eyelids. Note that this
behavior was probably less an issue in their original application on body animation,
as high-frequency components carry less semantic weight in their case as it does
for facial motion. In Figure 5.9, we display two frames extracted from sequences
created from the same cgt with the system of Holden et al. [HSK16] and our system.
We can see that, while our system produces an animation with faithful mouth open-
ings and closures, the animation resulting of their system misses these cues due to
the smoothing nature of their architecture. More precisely, the blurriness of the
output animation might be assigned to the simple depooling process used in their
autoencoder [HSK16]. Examples of animations using both systems are shown in the
supplementary video1.

For a more representative quantitative comparison between our system and
Holden et al. [HSK16], we propose to use a metric that highlights the capability to
accurately retain facial animation cues such as mouth contacts, closures and eye

1Results presented in this chapter are shown in the supplementary video available at https:
//elo-nsrb.github.io/homepage/publi_data/mig2019/video.mp4

https://elo-nsrb.github.io/homepage/publi_data/mig2019/video.mp4
https://elo-nsrb.github.io/homepage/publi_data/mig2019/video.mp4
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Figure 5.8 Comparison with Holden et al. [HSK16]: Curves of inner lips distance for
different sequences. The body motion system [HSK16] smoothes the output signal
loosing the high frequency components.

blinks. To our knowledge, there is no agreed-upon metric in the community for
such semantic facial cues, so we suggest measuring a true positive rate (TPR), i.e.
ratio of true positive mouth- (respectively eyelid-) closures to the number of actual
mouth- (eyelid-) closures, and the false positive ratio (FPR) defined as the ratio of
false positive mouth- (eyelid-) closures to the actual mouth- (eyelid-) closures. The
TPR measures the capability of the system to accurately preserve the desired mouth-
and eye-related conversational cues. The FPR controls that the system does not
hallucinate undesired such movements. On Figure 5.10, we plot the TPR and the
FPR for the mouth and right eyelid closures with respect to the threshold of detection.
We can see that for lower thresholds, only our system creates consistent mouth/eye
closures as its TPR is always the highest. The system of Holden et al. [HSK16] is not
capable of producing eye closures so its FPR is zero for lower thresholds. Meanwhile,
we control that our system does not hallucinate motion as its FPR remains low.

An interesting aspect to monitor is the ability to model immobility, that we
observe here on the first curve plotting the inner lips distance in Figure 5.8. Between
the 40th frame and the 60th frame, we can observe that our system can cope with no
inner lips movements for multiple consecutive frames.

5.3.2 Data dependency: transfers on another database

As with all data-based approach, it is important to know how the approach depends
on the size and content of the dataset. Thus, we test the validity of our model (trained
with the B3D(AC)ˆ2 dataset) on the recently released Vocaset database [CBL+19],
using the inference scheme exhibited in Figure 5.11. This dataset is composed of
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Figure 5.9 The ground-truth (left). Compare to [HSK16] (middle), our system (right)
is able to generate an animation which faithfully respects the input mouth movements
and its amplitude.

Table 5.2 Quantitative results of our system trained with the trainset of the
B3D(AC)ˆ2 dataset.

Trainset Testset MSE (mouth) TPR FPR

Vocaset Vocaset 0.038 0.87 0.06
Vocaset B3D(AC)ˆ2 0.05 0.81 0.38

B3D(AC)ˆ2 Vocaset 0.004 0.98 0.22
B3D(AC)ˆ2 B3D(AC)ˆ2 0.008 0.98 0.22

Both Vocaset 0.003 0.95 0.22
Both B3D(AC)ˆ2 0.01 0.95 0.35

sequences of 12 subjects speaking sentences from the TIMIT corpus [Gar93]. We
use the same processing pipeline to get the blendshape coefficients sequence as in
Section 3.3 except that we do not use 2D information. We downsample the frame
rate to 25 fps to match the frame rate of our dataset B3D(AC)ˆ2.

As shown in Table 5.2, our system trained with only the trainset of the B3D(AC)ˆ2
dataset and applied to the whole Vocaset gives a comparable MSE (0.004) as a one
trained with both the Vocaset and B3D(AC)ˆ2 dataset (0.003). The Vocaset content
is less diversified, that is why the results obtained using only this dataset are the
lowest. Indeed, there is no emotional sequence in this dataset unlike in the B3D(AC)ˆ2
dataset which is one-half composed of emotional sequence. In such sequences, the
amplitude of the movements is generally higher compared to neutral sequences. So,
at test time, it is easier for a system trained with emotional content to render neutral
speech content than the other way around. We can see on the supplementary material
that our system is suitable to model any new subjects in the Vocaset.
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Figure 5.10 Comparison with [HSK16]: Curves of the TPR and the FPR of the mouth
and eyes closures on the testset.

5.3.3 System Robutness: necessity of the autoencoder

Here we evaluate the robustness of our system by its ability to handle inaccurate
input. We show that using the regressor alone would be more accurate than the full
system in terms of MSE as shown in Table 5.1. However, without the autoencoder,
the regressor alone would be too sensitive to user’s inputs, leading to unrealistic
animation output as soon as input control parameters do not match a realistic
animation. The regressor handles the accuracy of mapping from control parameters
to blendshape animation, while the subsequent autoencoder keeps the resulting
animation inside the space of plausible animation. Both components are essential
for a system aimed at non-specialist users. We show this by inputting different
mouth-opening constraints and looking at inner-lips distance at output. One example
of the edited curves is shown in Figure 5.12 and the corresponding output can be
seen in Figure 5.13. We can see that the regressor is unstable; as soon as the input
constraints constitute an unrealistic facial pattern, the output shapes are unrealistic.
The autoencoder cleans up the output animation of the regressor, generating a
natural animation. For instance, it projects unrealistic mouth openings to realistic
ones when it is required. Note that this is not just a geometric projection operation
but a temporal one as well, as our autoencoder models time-windows of animation.
More results on full animations are provided in the supplementary video.
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Figure 5.11 We evaluate our system on the recently released vocaset [CBL+19] using
the following inference scheme: first, we extract the continuous control parameters
from the tested animation and pass these temporal features through our system.
Then, we observe the resulting animations and compare it to the original animation.

5.3.4 Usability: integration in a traditional facial animation pipeline

Even if our system processes whole sequences of animation, its architecture is light
and performs network inference very quickly. This renders interactive uses of such a
system imaginable. In this work, we propose an interactive editing tool that is meant
to be easily integrated in a facial animation pipeline that would enable non-specialist
users to generate quality facial animation. A common modern performance-based
facial animation pipeline consists in acquiring sequences of actor performance, track-
ing his/her facial expressions, retargeting those to blendshape animation coefficients,
and finally manually tuning the obtained animation. Today, real-time face tracking
methods enable non-experts to get raw facial animation from simple video feeds, but
the animation is often noisy. Moreover, as in professional pipelines, the animation
must often be edited later on to match the artistic intent. Our tool finds its place
at the editing stage of the pipeline. Through an interactive interface, the user can
continuously refine the animation to produce the desired animation with low-latency.
A screenshot of this interface is shown in Figure 5.14. Indeed, the inference time, time
between the moment the user applies its new control parameters and the moment
the new final animation is produced is on average less than 0.015s for a typical scene
of 8 seconds (202 frames) on CPU.

To showcase this, we use an off-the-shelf real-time face tracking software [Dyn19a]
that outputs blendshape coefficients. We developed a user interface that enables to
visualize temporal curves for our control parameters and edit them via click-and-
drag. Our network then runs inference to deliver the edited facial animation at an
interactive rate. One can for instance change a neutral speech animation sequence by
increasing the mouth corners distance, causing the character to smile while speaking.
The figure 5.15 shows a frame with the 2D tracking landmarks, the corresponding
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Figure 5.12 Realistic (left) and unrealistic (right) mouth opening input signal and the
corresponding output with our system with and without the autoencoder. We can
observe that the regressor alone is too sensitive to the input : unrealistic patterns
appear as soon as a unseen input is given.

Figure 5.13 Output animation with an unrealistic mouth opening without (left) and
with the autoencoder (right).

animation given by the tracking as well as the final edited animation with a smile.
More isolated edits can be performed such as forcing a mouth closure or a blink by
acting on the relevant local frames. Dynamic results of such edits are presented in
the supplementary video.

5.4 Discussion
In this chapter, we present an interactive and robust approach to provide a convenient
follow-up facial animation editing approach. Although data-driven approaches are not
new in the field of motion editing [SLS+12, ASK+12], previous methods require manual
intervention setting-up hyperparameters to enable accurate facial motion processing
and handle the large range of facial motion frequencies. The study we have conducted
leads to neural network proposition that takes care of the temporal consistency of
the edited segment with the rest of the animation, ensuring natural transitions at its
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Figure 5.14 Screenchot of our interactive interface, enabling a non-expert user to
continuously refine the animation and produce the desired animation with low-latency.

Figure 5.15 Editing of a performance-based animation: example of frame with 2D
tracking landmarks, the animation given by the tracking software and the final edited
animation. We change a neutral speech animation sequence by increasing the mouth
corners distance, causing the character to smile while speaking.

boundaries. Using recent successful engineering deep learning tricks, our system up-
holds the essence of the facial animation throughout its processing. We have studied
the behavior of our system by evaluating quantitatively on the error and semantic
metrics versus relevant previous work, and have experimented with different datasets.
In particular, we have demonstrated the necessity of using resolution-preserving
architecture neural network to retain the temporal high-frequency information of
facial motion, which architectures from previous work did not address.

This study also leads to the development of an experimental tool that can be
used by non-specialist users to complete their facial animation pipeline, without
manual data preprocessing such as labeling, alignment or motion segmentation.
Indeed, the proposed design enables processing high abstractions of the animation
signal, letting the users to quickly correct and modify portions of animation with any
length, at any point in the timeline. The low latency at the inference allows instant
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feedback on the resulting modified animation, increasing the speed and the efficiency
of the editing task. Besides, our method is content-independent and emphasizes
robustness, resulting in an editing tool that outputs plausible animation even when
given imprecise or unrealistic user inputs.
We feel these results represent a step forward reducing the time-consuming task of
facial animation editing while weighing up the usability of the solution.

A potential end goal this work wishes to address it to broaden the facial animation
authoring to a less restrictive audience than actual editing tools. As our solution
is devoted to large-scale facial editing only for non-expert usability purposes. A
future direction could be to enhance it with a fine-scale details restoration solu-
tions [BLB+08, BBA+07, MJC+08] or to integrate this system into a hierarchical or
evolutionary process, starting from a coarse motion manipulation to precise motion
refinement [RC19, SSK+11].

We note that the performance of our system strongly depends on the choice of
the control parameters. More parameters result in a more accurate but less intuitive
system that is harder to manipulate. Conversely, few parameters cause ambiguity
in mapping controllers to facial shapes, resulting in less control over the produced
animations. As an example, the sidewise motion of the chin is lost due to the lack of
dedicated controllers (see Figure 5.16).

Rigging face model is a complex problem that leads to sophisticated structures
involving shape deformers and blendshapes, enforcing multiple trial and error manip-
ulations before achieving a satisfying one. Besides, a relevant low-dimensional face
representation has to be informative enough to allow an efficient and unambiguous
inference, producing realistic animation.

While body-motion can be intuitively and efficiently steered through dynamic
high-level parameters such as the trajectory of the skeletal or the position and the
angles between joints, such a relevant high-level and low-dimensional representation
of the face remains an open question in the research community. Moreover, as
previous motion editing architecture, the proposed framework is based on Euclidean
frame-wise training metrics and relies on temporally dense inputs to guide motion
signals explicitly at every frame.

The nature of the input and the definition of good training metrics that relevantly
assess the quality of the edited animation, are hard problems that cannot be solved
incrementally with current network architectures. In the next chapter, we explore
alternative motion controllers and generative framework, in which the animation
output, intended be human-like and plausible, is validated by the model. We study
the possibility of providing discrete inputs, even semantic ones -such as phonemes- to
control the generated animation leveraging the well-known GAN paradigm [GPAM+14].
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Figure 5.16 Limitation of our system: some motion such as the sidewise motion of
the chin of the ground-truth (left) is lost at the output of our system (right).
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6.1 Introduction

In the previous chapter, we presented a learning-based method to perform temporal
animation editing, providing spatiotemporal constraints on meaningful vertices
distances. However, this work suffers from several limitations, inherent to the chosen
approach. The previous work relies on a regression model, imposing explicit and
temporally dense constraints at each frame to guide the motion generation. This does
not integrate well with the keyframing editing process, that is particularly cherished
by artists in production. Moreover, a regressive model rests on a deterministic
training strategy, assuming an available target motion sample and relevant metrics
to weight the quality of the produced output at every frame.

Building upon our previous works, we propose in this chapter, a new point of
view of the editing task through a generative framework. The perspective in viewing
animation editing that we develop in this section originates from the parallel we draw
between editing an animation and performing image inpainting (see Figure 6.1). Image
inpainting aims at replacing unwanted/missing parts of an image with automatically
generated pixel patterns, so that the edited image looks realistic. In animation
editing, we pursue the same objective, substituting 2D spatial pixel patterns for 1D
temporal motion signals. For a long time, image inpainting solutions have relied on
low-level signal-based techniques such as image gradient preservation [PGB03]. While
tremendously efficient, this approach reaches limitations when targeting larger image
areas and rich image content. More elaborate neural-based generative models have
recently shown their ability to fill-in gaps with complex image patterns and generate
state-of-the-art results from little to no inputs. We share similar constraints and
objectives as those recent studies, albeit in a different editing domain. We focus on
the generation of complex believable motion patterns, given sparse, high-level inputs.
We therefore investigate a machine-learning approach relying on GAN framework
developed by [GPAM+14], that generates unsupervised plausible motion segments
to replace missing, damaged, or unsatisfactory animation segments. Instead of
comparing the output animation to a defined target one as in a regression set up, the
adversarial learning strategy evaluates whether the produced animation is plausible
and "real", allowing undeterministic motion generation.

This enables going beyond standard interpolation techniques, when no input
animation signal is available to guide the result. Due to their simplicity and execution
speed, several automatic motion completion systems have been developed based on
simple interpolation between user-specified keyframes [Par72], usually with linear or
cubic polynomials. Yet, while interpolation has proven efficient for short segments
with dense sets of keyframes, the smooth and monotonous motion patterns they
produce are far from realistic facial dynamics when used on longer segments. In
many cases where the capture process has failed to produce an animation (occlusion,
camera malfunctions), no input animation signal is available to guide the result.
While standard interpolations are inefficient, the GAN paradigm enables producing
realistic motion segments, filling gaps automatically without input guidance.
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Figure 6.1 At the origin of this work is the parallel we draw between editing an
animation and performing image inpainting. The goal is to replace unsatisfying parts
with newly generated realistic ones. To do so, we derive a corresponding mask and
noise vector from the input animation, in the same way as it is done in most image
inpainting frameworks, and consider user’s inputs to steer the new motion segment
generation.

The GAN system consists of a generator intending to create plausible sequences
in designated segments in the input animation, and a discriminator ensuring that
the generated animation looks realistic. To cope with learning the complex temporal
dynamics of the facial motion, we suggest designing our generator as a bidirectional
recurrent architecture, ensuring both past and future motion consistency. Moreover,
this architecture lends itself to the offline aspect of the user-driven editing. The
proposed framework provides the user with control over the edited animation through
high-level guidance, just as sketches enable semantic image manipulation in image
inpainting scenarios [JP19], for intuitive and flexible animation editing. Leveraging
the GAN improvement proposed by Mirza et al. [MO14], the standard GAN training
is extended to allow different guiding signals including discrete or semantic user-
guidance such as keyframes, noisy signals, or a sequence of visemes for supervised
animation editing. Our approach reduces both the time and the manual work
currently required to perform facial animation editing, while retaining the flexibility
and the creativity properties of the current tools.

In summary, our primary investigations revolve around designing a multifunc-
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tional framework that handles various high-level and semantic constraints to guide
the editing process. We consider many editing use cases, such as long occlusions,
expressions adding/changing, or viseme modifications.

Chapter Overview The remainder of the chapter is organized as follows. We
describe the proposed methods in Section 6.2, motivating the original parametrization
and the generative learning strategy that we use. We demonstrate the relevance of
the developed framework to render realistic animations in various editing scenarios in
Section 6.3 and conduct several quantitative evaluations highlighting the performance
and benefits of this architecture in Section 6.4. Finally, we discuss the proposed
approach in Section 6.5.

6.2 A Generative Editing Framework
Our goal herein is to train from data a generative neural network capable of generating
plausible facial motions given different kinds of input constraints such as sparse
keyframes, discrete semantic input, or coarse animation. In this section, we describe
the parametrization of our system with different constraints, enabling supervised
motion editing (Section 6.2.1). Then, we detail our system based on the well-
established GAN minmax game (Section 6.2.3), briefly introduced beforehand in
Section 6.2.2, as well as the training specifications. An overview of our system is
depicted in Figure 6.2

6.2.1 Parametrization of our system

As motivated in the chapters 3, we parameterize facial animations with the highly
popular blendshape representation, common throughout academia and the indus-
try [LAR+14]. We develop a framework similar to the image inpainting ones [YLY+19,
JP19]: more precisely, we consider an analogous training strategy for our networks.
We feed our generator, G, with an incomplete animation, a noise vector, and a
mask and optionally a discrete, noisy, or semantic input guiding the editing process.
At training time, the incomplete animation Xi ∈ RL×N corresponds to the origi-
nal ground-truth animation Xgt ∈ RL×N with randomly erased segments signaled
by the mask. Both the original and the incomplete input animations consist of
the concatenation of L= 200 frames of N = 34 blendshape coefficients. The mask
M ∈ RL×N encodes locations of erased segments (all blendshape coefficients) for a
random number of consecutive frames. The input animation can be expressed as
Xi = (1−M)�Xgt. M is a matrix with zeros everywhere and ones where blendshape
coefficients are removed, and 1 is an all-ones matrix of size L×N . The number and
the length of masked segments in the input animation are chosen randomly, such
as at test time our network can edit both short and very long sequences. At test
time, masked segments are placed by the user to target the portions of the input
sequence to edits. We note that our network can also generate an animation by
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Figure 6.2 Framework overview. We build our editing tool upon a GAN scheme,
using an approach similar to image inpainting. We feed the generator with a mask,
an incomplete animation and a noise vector, eventually we add contraints such as
sparse keyframes, a noisy animation or sequence of viseme. The generator ends-up
with the completed animation. The discriminator has to distinguish between real
animation and fake ones: it is supplied with the ground-truth animation and the
generated one (the partial ground-truth sequence completed with the generate parts).

using a mask covering the full sequence. The vector of noise, z ∈ RL×1, is composed
of independent components drawn from Gaussian distribution, with 0 mean and a
standard deviation of 1. We use the same framework for different editing scenarios
and train a different network for each editing input type. Our framework can also
perform unguided motion completion in missing segments, which is useful in the
case of long occlusions for instance. In many cases though, the animator/user wants
to guide the edit; so we focus on employing our framework for supervised motion
editing. To achieve this, we leverage the conditional GAN (CGAN) [MO14] mechanism
to add semantic guidance to our system. We concatenate a constraint matrix to
the input, Ci = M̃i�Cgt,i, with non-zero components where animation has been
erased. Cgt,i ∈ RL×Nfeati encodes the ith constraint vector of Nfeati

features over
time. M̃i ∈ RL×Nfeati is the constraint-specific mask matrix, with zeros everywhere
and ones at the same frame indices as M. The constraints Cgt,i can be a sparse
matrix with keyframes, a noisy animation signal, or one-hot vectors representing
pronounced visemes at each frame. Each constraint conditions the training of the
corresponding specific system. We consider three high-level constraint types enabling
animation editing for several use cases:

• Keyframes: One main cause of animation editing is expression modifications,
such as correcting the shape of the mouth or adding new expressions. Hence, we
add sparse keyframes extracted from the ground-truth animation as constraints.
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Table 6.1 Groups of phonemes.

Visemes Phonemes Visemes Phonemes

sil G + K + H g, k, q, å
AO + OY a, O L + N + T + D l, n, t, d, Ï, S, R
AA + AE + AY æ, A S + Z s, z, G
EH + EY e, E, eI Sh + Ch + Zh S, Ù, Z
IH + IY + EE + IX i, I, 1 TH + DH T, ð
OH + OW o, 6 F + V f, v
AH + ER 2, @, Ä, Ç M + B + P b, m, p
UW + AW + UH u, U, aU W w, û
JH j, Ã R ô

The time between two keyframes is chosen randomly between 0 and 0.8 seconds.

• Noisy Animation: Our system enables the user to change the content of the
animation and guide it with a coarse animation, such as one obtains from
consumer-grade motion capture on consumer devices (webcam, mobile phone,
...).

• Visemes: We also consider a more semantic editing use case, such as speech
corrections from audio. We use an audio-to-phoneme tool to obtain annotation
in phonemes of each sequence in the database. In this work, we use the
Montreal-Forced-Aligner [MSM+17], but any audio-to-phoneme tool can be used.
We constrain our network with a one-hot vector representing the visemes at
each time. A viseme is the visual facial representation of a group of phonemes.
We group all phonemes in 18 classes of visemes presented in Table 6.1.

6.2.2 Generative Adversarial Network

We aim to realistically synthesize new motion segments that look like the real
performance-based animations. Technically, we wish to generate one-dimensional
animation vectors, with a temporal dynamic akin to real physical movements. This
issue cannot be solved with regression-based learning techniques, that aim at finding
the output data closed to well-defined target data, as explained in Section 3.1.1.
Faithfully creating data, with a plausible underlying dynamic process lying in a
high-dimensional space, is a challenging task that generative models wish to solve.

The purpose of generative algorithms is to generate sequences of numbers whose
distribution is akin to a real (unknown) one. Among other techniques, one can find
neural-based generative models, which learn the transformation function, mapping
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a sequence of random numbers (following a known distribution) to a sequence of
numbers with the desired properties. One early solution, the direct learning strategy,
consists of explicitly comparing the generated distribution to the real one. Yet, it
assumes a tractable and well-defined target process. This issue was ingenuously
replaced by the indirect approach in the deep learning community, with the use of
a new learning paradigm, the Generative Adversarial Network (GAN), introduced
by Goodfellow and colleagues in 2014 [GPAM+14], that allows handling the case of
intractable target distributions.

In that case, the output distribution is not directly compared to the real one,
but is enforced to be close to the real one using an adversarial scheme. Its attractive
generative property coupling with its striking success have motivated the investigation
of the GAN principle for the animation editing purpose.

As in any GAN framework, our system is composed of two adversarial neural
networks: the generator, designed to fill the timeline with realistic animation, and
the discriminator intended to evaluate the quality of the generated animation, and
to detect whether it is real. This game compels both networks to iteratively progress
toward the optimal equilibrium in which the generator fools the discriminator,
producing samples indistinguishable from the original ones; while the discriminator
classifies as real the "true" and the "generated" samples with the same probability.

6.2.3 Framework details
Our generator, G, has to learn the temporal dynamics of facial motion. We use a
recurrent architecture for our generator, as sharing parameters through time have
demonstrated impressive results in modeling, correcting, and generating intricate
temporal patterns. Our generator uses a Bidirectional Long Short-Term Memory (B-
LSTM) architecture for its capability to adapt to quickly changing contexts yet also
model long-term dependencies, properties well-demonstrated by the research commu-
nity. Our generator consists of a sequence of Nlayers B-LSTM layers (Nlayers=2) with
a stacked final dense output layer to get dimensions matching the output features.
The recurrent layers consist of 128 hidden units. The main goal of the generator
is to create plausible animations, i.e., to fill a given timeline segment with realistic
motion signals that smoothly connects to the motion at the edge of the segment.

Our discriminator, D, has to learn to distinguish between a generated animation
and a one produced by ground-truth motion capture. Because we want our gen-
erator to create an animation that blends well outside its segment, we supply our
discriminator with the entire animation rather than only the generated segment, and
choose a convolutional structure for D. Some elements have a higher impact on the
quality perception of a facial animation. For instance, inaccuracies in mouth and eye
closures during speech or blinks are naturally picked up as disturbing and unrealistic.
Thus, we enrich the discriminator’s score with relevant distance measurements over
time that matches those salient elements. Our discriminator’s structure is inspired
by previous works [YLY+19, JP19]. It is a sequence of 4 convolutional layers, followed
by spectral normalization [MKKY18], stabilizing the training of GANs. Over the
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convolutional layers, we stack a fully connected layer predicting the plausibility of
the input animation. The convolutional layers get a kernel of size 3, scanning their
input with a stride of 2, and end up with respectively 64, 32, 16, 8 channels. We use
the LeakyRelu activation function [XWCL15] after every layer except the last one.

6.2.4 Training methods

Classically, to train the proposed system we consider the minmax game between
the generative and the discriminative losses. GAN frameworks have been reportedly
hard to train, suffering from many pitfalls: the unsecured convergence of the system,
the generator mode collapse, the unbalanced training between the two networks or
even the hypersensitivity of the system to hyperparameters. Defining a functioning
learning strategy is still an open question. Many solutions have been proposed since
the initial work of Goodfellow and colleagues [GPAM+14], a comprehensive discussion
on the different solutions can be found in [KAHK17].

In practice, we observe high quality results by leveraging state-of-the-art system
developed in the Computer Vision field. Strongly inspired by [JP19, YLY+19], we
design our generative loss as a sum of three terms. Our generator has to reproduce
the input animation outside masked segments faithfully. Thus, we define a first loss
ensuring accurate animation reconstruction:

Lfeat = αgt(1−M)�|G(Xi)−Xgt|+M�|G(Xi)−Xgt| (6.1)

The blendshape representation weights equally salient shapes such as shapes con-
trolling eyelid closure and shapes with minor effect such as the one affecting the
nose deformation. Therefore, as in our previous investigations, we add a loss Ldis

(Equation (4.8)), to focus preservation of some key inter-vertices distances between
the estimate and the ground truth animations. This loss encourages accurate mouth
shape and eyelid closure, crucial ingredients for realistic facial animation. Finally,
the generator is trained to minimize the following loss:

LG = E[1−D(G(Xi))] +wfeatLfeat +wdisLdis. (6.2)

At the same time, we train our discriminator to minimize the adversarial loss. We
force the discriminator to focus on the edited part by feeding it with a recomposed an-
imation Xrec, which is the incomplete input animation completed with the generated
animation, i.e, Xrec = (1−M)�Xgt + M�G(Xi). We also influence the discrim-
inator attention by providing it the key intervertices distances mentioned earlier.
We add the WGAN-GP loss [GAA+17], Lgp = E[||(∇UD(U)�M||−1)2] to make the
GAN training more stable. In this formula, U is a vector uniformly sampled along
the line between discriminator inputs from Ygt and Yrec, i.e, U = tYgt + (1− t)Yrec

with 0≤ t≤ 1. Hence, the loss of the discriminator is:

LD = E[1−D(Ygt)] +E[1 +D(Yrec)] +wgpLgp, (6.3)
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where Y refers to the concatenation of an animation and its corresponding
intervertices distances.

For all our experiments, we set wfeat = 1, αgt = 10, wgp = 10 and wdis = 1. We
set the initial learning rate of both the generator and the discriminator at 0.001. We
use the Adam optimizer [KB14]. We add a dropout of 0.3 to regulate the generator.
This system has been implemented using the Pytorch framework.

6.3 Results
In this section, we demonstrate our system’s capability to render realistic animation
with different types of editing constraints. First, we detail the data used for the
training and the testing of our framework (Section 6.3.1). Then, we describe the
different scenarios in which our framework might be useful, from unsupervised motion
completion (Section 6.3.2), to constraint-based motion editing (Section 6.3.3).

6.3.1 Gathered Test Set

We use the two datasets presented in Chapter 3 for our experiments. We leverage
the multimodal property of the B3D(AC)ˆ2 to train our networks, especially the one
requiring both facial animation and phoneme labels, and use the performance-based
database alone (presented in Section 3.2) to train our "noisy-signal-based" editing
system. As the noisy animations are obtained with an automatic face tracking
solution [Dyn19a], noisy by nature, we do not need to add artificial noise to the input.
For all our experiments, we resample every animation at 25 fps (the framerate of
the B3D(AC)ˆ2) and use the same blendshape model,the template Tl counting 34
blendshapes (see Figure 3.7) for every animation of each of our scenarios.

As with any learning-based methods, it is essential to know how the proposed
approach depends on the training data. To test our framework, we record new
sequences with a different subject, reciting new sentences, and performing different
expressions to check if the model generalizes well. We derive both the original
animations and the noisy ones using the same procedure as the one employed to
derive the performance-based database (see Figure 3.1).

6.3.2 Unsupervised Motion Filling

First, we demonstrate the capability of our approach to generate plausible animation
without any supervision. We validate it using animation of the test set by randomly
removing some parts of them. We regenerate a complete sequence using our network,
producing undirected motion filling. As we can see in the accompanying video1, the
generated parts (lasting 2.6s) are blended realistically with the animation preceding
and following the edit. In this sequence, our generator produces "talking-style"

1Results presented in this chapter are shown in the supplementary video available at https:
//elo-nsrb.github.io/homepage/publi_data/SCA2020/video.mp4

https://elo-nsrb.github.io/homepage/publi_data/SCA2020/video.mp4
https://elo-nsrb.github.io/homepage/publi_data/SCA2020/video.mp4
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Figure 6.3 Occlusion motion completion. Compared to standard linear interpolation
solving, our system generates realistic motion dynamics: in case of long occlusions,
our system ensures that the mouth returns to the neutral pose. Moreover, as we use
a bidirectional architecture, our system anticipates the wide opening of the mouth
and smoothly re-open the mouth from the neutral pose.

motions and hallucinates eyebrows movements rendering the edited parts more
plausible.

One potential application of our unsupervised animation generation system is
its capability to generate more realistic sequences in case of long occlusions than
simple interpolation methods. We use a new recorded sequence with occlusion of
around 3 seconds (about 75 frames). Such occlusions often alter the quality of the
final animation and require manual cleaning. We compare our generative method
with a sequence resulting in interpolating the missing animation with boundaries and
derivatives constraints. As we can see in Figure 6.3, filling the gap with interpolation
leads to long oversmoothed motions, far from realistic motion patterns. Our system
creates a more realistic sequence: the subject first returns to the neutral pose and
anticipates the wide mouth opening by smoothly reopening the mouth. One might
also observe the eyebrows activation, consistent with the mouth openings.

6.3.3 Guided Motion Editing

While unsupervised motion completion can be used to handle long occlusions, most
relevant uses require users to steer the editing process. In the following, we present
several use cases of guided facial animation editing. We test our system using
both the test set, which is composed of sequences of unseen subjects, and new
performance-based animations recorded outside the dataset.
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Figure 6.4 Validation of our keyframes-based constraint system on our testset with
animation. Our system ensures natural coarticulation between key frames constraints
and input signal.

6.3.3.1 Guiding with Keyframes

It is common for performance-based animation to require additional or localized
corrections either due to technical or artistic considerations. Ideally, one would
simply use new captured or manually-specified expressions to edit the animation
and expect the editing tool to derive the right facial dynamics, reconstructing a
realistic animation automatically. This use case has motivated the keyframe-based
supervision of our editing system. We test our system’s ability to handle this scenario
by randomly removing parts of the input animation and inputting the network with
sparse, closely- or widely-spaced, keyframe expressions. We observe that the system
outputs natural and well-coarticulated motions between the keyframe constraints
and the input signal: as we can see in Figure 6.4, our system generates non-linear
blending around the smile keyframe expressions, and naturally reopens the mouth at
the end of the edited segment. We can see in the video that our system generates a
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more natural and organic facial dynamics than classic interpolation.

(a) Addition of one expression such as a wink. Our system naturally adds a key-expression:
as we can observe, the mouth motion consistently moves to re-match the smiling expression.

(b) Modification of the mouth shape. Our system generates a more faithful shape of the
mouth, given only one keyframe.

Figure 6.5 Keyframe-based Editing. Our system generates realistic motions with
only a few keyframes as a constraint.

Another use case is adding an expression not present in the existing animation.
For instance, in one of our videos, the performer forgot the final wink move at the
end of the sequence (see 6.5a). We simply add it to the sequence by constraining the
end of the sequence with a wink keyframe, which has been recorded later. We can
observe in Figure 6.5a how naturally the mouth moves to combine the pre-existing
smiling expression and the added wink request.

Finally, one recurrent shortcoming of performance-based animation is getting a
mouth shape that does not match the audio speech. For instance, on a video outside
the dataset, we observe that the face capture yields imprecise animation frames of
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the mouth. As we can see in Figure 6.5b, the mouth should be almost closed, yet it
remains wide open during a few frames. We fed the desired expression as a keyframe
input to the system, and let the system generate the corrected mouth motion. The
visual signature of labial consonants is a mouth closure. In the same editing spirit,
our system can revise an inaccurate labial viseme by imposing mouth closure. We
display an example of this correction in the accompanying video.

6.3.3.2 Guiding with Noisy Animation

Animation changes longer than a few seconds would require specifying many guiding
keyframes. Instead, when long segments need to be substantially changed, one
could guide animation editing with lower-quality facial tracking applications, using
webcam or mobile phone feeds. In that case, the guiding animation is noisy and
inaccurate, but is a simple and intuitive way to convey the animation intent. We
test this configuration, feeding our system with noisy animations generated from
a blendshape-based face tracking software as a guide for the animation segment
to edit. As we can see in Figure 6.6, our system removes jitters and unrealistic
temporal patterns but preserves natural high-frequency components such as the
eyelids closures.

We compare the proposed approach to the one developed in Chapter 4. To do
so, we mask-out the complete input (original) sequences included in the test set of
the performance-based animation dataset (Section 3.2). Simultaneously, we feed
the generator with the complete corresponding noisy animations and compute the
MSE between the generated animation and the input one. We also provide the same
sequences, which are been down-sampled at 25 fps, to the regression-based filtering
system detailled earlier(see Section 4.2). The regression-based approach yields a lower
MSE of 0.012 than the proposed GAN-based approach (MSE = 0.013). Qualitatively,
we also observe that the output generated by the GAN-based system is less precise
and includes motion patterns that are not present in the original sequence. On the
contrary, animations produced by our previous filtering approach are more similar to
the original ones. These results align with the general observations on the difference
between traditional learning strategy and GAN framework.

We notice that the data used to train the GAN has been downsampled to a
fixed and low framerate (25 fps), degrading the quality of animation samples. Hence,
unlike the filtering system developed in Chapter 4 that is framerate independent, this
network has not seen high resolution motion dynamics during training and therefore
cannot retrieve it at run time. This might explain the loss of accuracy observed on
animation produced by the GAN.

An interesting point to note is that the bidirectional recurrent architecture
prevents from the drifting effect observed while processing long sequence (see Sec-
tion 4.4.2).
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Figure 6.6 Noisy animation-based system. We mask half the original sequence and
feed the network with the other half noisy animation. As we can see on the left,
our system removes jitters and unnatural temporal patterns, generating a smooth
animation at the boundary. We can see on the right, how the unrealistic lips frowning
movements are filtered by our system, while the natural dynamic of the eyelids is
preserved.

6.3.3.3 Guiding with Visemes

We demonstrate the capability of our system to edit an animation semantically. We
use the initial sentence found in the test set "Oh, I’ve missed you. I’ve been going
completely doolally up here.". We generate a new animation by substituting "you"
with other nouns or noun phrases pronounced by the same subject in order to have
consistent audio along with the animation. As we can see in Figure 6.7, our system
generates new motions consistent with the input constraints, "our little brother": it
adjusts the movements of the jaw to create a realistic bilabial viseme. We observe
the closure of the mouth when pronouncing "brother" in Figure 6.7. It hallucinates
consistent micro-motions, such as raising eyebrows at the same time, favoring natural-
looking facial animation. Other examples are shown in the supplementary video.

We also perform viseme-based editing on a new subject reciting new sentences.
For instance, we turn the initial sentence "My favorite sport is skiing. I’m vacationing
in Hawai this winter.” into "My favorite sport is surfing. I’m vacationing in Hawai
this winter.” The generated motion follows the new visemes sequence "surfing" in
Figure 6.8. More precisely, we can see the bottom lip raising up to the bottom of
the top teeth to generate the viseme "f".

6.4 Evaluation

In this section, we present quantitative evaluations of our framework. First, we
demonstrate the capability of our approach to reduce the manual effort required to
edit facial animation. We then compare our methods with related ones in dealing
with controllable animation editing. Finally, we assess the quality of our results by
gathering user evaluation on a batch of edited sequences.
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Figure 6.7 Our system modifies the jaw motion according to the input constraints
such as adjusting the jaw opening to fit bilabial consonant constraints. It hallucinates
micro-motions such as raising eyebrows to make the editing part more plausible.
(Top) Generated frames given the input phonemes sequence "brother".

6.4.1 Fast Animation Editing System
The principal objective of this work is to provide a system that accelerates the
editing task. We timed two professional animators to measure the average time
they need to create a sequence of 100 frames (see Table 6.2). From this experiment,
we find that it takes between 20 and 50 minutes to create a 100-frames animation,
depending on the complexity and the framerate of the animation. This amounts
to an average individual keyframe setup time between 12 and 30 seconds. We note
that this estimation is consistent with the study conducted by Seol et al. [SSK+11].
Now, for different sequences processed by our method, we estimate the number of
keyframes that would be required to produce the same result manually. We proceed
as follows: we automatically estimate the number of control points necessary for a
cubic Bézier curve fitting algorithm to approximate the edited animation curves,
within a tolerance threshold (set at 0.01). This process is repeated for each animation
parameter independently. In manual facial animation, some complex motions require
very dense keyframe layouts to look realistic, making our method all the more
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Figure 6.8 Generated frames given the input phonemes sequence "surfing". We can
notice the bottom lip raises up to the bottom of the top teeth to generate the viseme
"f".

Table 6.2 Average time to create 100-frames animation.

Handmade

Artist 1 ∼ 20 min
Artist 2 ∼ 50 min

appealing.
We compare in Table 6.3 the time to edit a few animations with our system and

manual keyframing. From this experiment, we note that our system considerably
reduces the time required to edit animation segments.

6.4.2 Comparison with Continuous Control Parameters Editing Systems
Recent controllable motion generation studies have an objective akin to animation
editing, as they use regression neural networks to generate motion from high-level
inputs. We compare our system to two previous works, closely related to motion
editing: the seminal work of Holden et al. [HSK16] on controlled body motion gen-
eration and our previous work on facial animation editing (cf Chapter 5). For a
fair comparison, we use the same control parameters as described in Chapter 5, but
derived on the template Tl and train only one network for the different parts of

Table 6.3 Time performance evaluation. We compare the time to edit few animation
with our system and manual keyframing. Our system considerably reduces the time
of facial animation editing.

# of # of estimated Average error Manually created Inference full
frames Bézier Points by parameters by an animator sequence (CPU)

Occlusion completion 62 36 0.010 ∼ 12 min 0.14s
Viseme editing 19 15 0.012 ∼ 5 min 0.12 s
Noisy-based 116 93 0.010 ∼ 31 min 0.12 s
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the face. We regress the corresponding blendshape weights using either the fully
convolutional regressor and decoder of [HSK16], or the 2-network system proposed
in Chapter 5. We quantitatively compare the reconstruction error between these
methods and our system on the test set. Therefore, we mask-out the complete input
animation and feed our network with the control parameter signals. We measure the
mean square error between the original animation and the output one. As we can
see in Table 6.4, our system achieves better performances than a regression network
trained with MSE only.

Table 6.4 MSE between high level parameters and our network with 8 control
parameters.

MSE

[HSK16] 0.016
Chapter 5 0.018
Ours 0.014

We also observe qualitative differences between regressors [HSK16, BSBS19] and our
current approach. We do so by feeding our generator with dense control parameter
curves, as used by regressors. Even when stretching and deforming control curves to
match sparse constraints, our system robustly continues to generate animation with
realistic dynamics, preserving high-frequency motions as opposed to [HSK16].

As mentioned by Holden et al. [HSK16], the main issue with regression frameworks
is the ambiguities of high-levels parameter inputs: the same set of high-level pa-
rameters can correspond to many different valid motion configurations. We test the
behavior of our approach in such ambiguous cases, by using very few input control
parameters (3): the mouth opening amplitude, the mouth’s corners distance, and
one eyelids closure distance. We indeed observe that a more ambiguous input signal
leads to a noisier output animation for regression networks. With the same input,
our system is able to hallucinate missing motion cues outputs, producing a more
natural and smooth animation. We note that our system is even capable of creating
plausible dynamics for the whole face in an unsupervised fashion (Section 6.3.2).

6.4.3 User Feedback

One widely recognized issue with animation generation methods is reliable evaluation
of animation quality. Indeed, there is no quantitative metrics that reflect the
naturalness and the realism of facial motions. Hence, we gather qualitative feedback
on edited animation generated by our system in an informal study. A sample of 44
animation sequences -with different lengths and with or without audio- were presented
to 21 subjects. Half the animations were edited with our system, using either visemes
constraints, keyframes expression, noisy signals, or in an unsupervised fashion.
Subjects were asked to assess whether the animation cames from original mocap or
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was edited. In essence, participants were asked to play the role of the discriminator
in distinguishing original from edited sequences. Most of the participants were not
accustomed to close observation of 3D animation content. We gather the following
user feedback among the 21 subjects: 54% of the original animations were classified
as such (true positive), while 51% of edited sequences were also classified as original
ones (false positive). We also show the sequences to 5 experienced subjects, that
know the context of this work: even they detected only 58% of the edited sequences
(true negative) and half of the original ones (true positive).

6.5 Conclusion

We have proposed a generative facial animation framework able to handle a wide
range of animation editing scenarios. It enables unsupervised motion completion,
semantic animation modifications, as well as animation editing from sparse keyframes
or coarse noisy animation signals. The lack of high-quality animation data remains
the major limitation in facial animation synthesis and editing research. While our
system obtains good results, we note that the quality of produced animation can only
be as good-looking and accurate as what the quality and diversity of our animation
database covers. We present various results, testifying for the validity of the proposed
framework, but the current state of our result calls for experimentation on more
sophisticated blendshape models, more diverse facial motions, and possibly the
addition of rigid head motion.

The presented method relies on a generative model and offers no guarantee as
such to match input constraints exactly. Yet, ensuring an exact hit is a standard
requirement for high-quality production. We note that a workaround solution in our
case would be to post-process our system’s animation to match sparse constraints
exactly, following the interpolation of [SLS+12] for instance.

Beyond the proposed solution for offline facial animation editing, an interesting
direction would be to enable facial animation modifications to occur in real-time. We
plan on evaluating the performance of a forward-only recurrent network to assess the
feasibility of real-time use cases. We leverage recurrence architecture that with its
internal memory is conducive to approximating and extrapolating missing frames. A
useful application of our work could be temporal super-resolution animation restoring
that is decompressing animation with a low framerate by interpolating transitions
between the given frames.

Our system aims to make facial animation editing more accessible to non-expert
users, but also more time-efficient, to reduce the bottleneck of animation cleaning
and editing. In terms of user interaction, our semantic editing framework requires
isolating the animation segments to edit, and providing editing cues. An interesting
future work would be to integrate our system within a user-oriented application,
combining our network with a user interface and a recording framework, forming a
complete, interactive, efficient animation editing tool.

Our experiments show that the proposed framework achieves good performance
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on facial animation editing, demonstrating the potential and the versatility of our
approach to animation modeling. This work opens up new possibilities in the future,
in particular, it would be interesting to extent this work by considering other inputs
including alternative controllers, audio signal or image-based features.
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7.1 Summary of Contributions
This thesis falls within the context of Motion Capture facial animation synthesis,
a technology with the theoretical promise of having the ability to completely and
flawlessly capture and retarget a human performance, from emotion down the most
subtle motion of facial skin.

While Motion Capture has revolutionized the 3D animation field by providing
a way to generate highly realistic animation, some pitfalls remain, limiting the
access and the usability of this technique. Research and industry efforts have largely
focused on improving the precision and robustness of motion capture. While this
has undoubtedly lead performance-based animation to great results and success,
It’s very common that the animation obtained from the performance does not meet
the quality requirement or the artistic intent. An animation editing step is thus
necessary to correct or change the animation, implying going back to lengthy and
tedious manual keyframing tasks.

Throughout this thesis, building upon previous work, we investigate recent ma-
chine learning techniques that have had striking success in other fields to extend
various aspects of the facial animation editing. With the intuition that artificial intel-
ligence is the next step in the 3D animation content production and could overcome
these issues in the future, we report our investigation, results and limitations in this
document with the hope to contribute to the improvement of 3D animation content
editing.
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In Chapter 4, we develop a real-time algorithm to automatically clean and refine
an animation, leveraging from the recent progress made in recurrent neural archi-
tecture. Compared to standard low-level editing methods, the proposed system is
causal and faithfully restores the natural dynamic of facial animation, without losing
crucial cues included in the high-frequency motions or requiring painstaking manual
fine-tuning. We suggest enhancing the standard recurrent structure, by feeding back
the previous estimate state, to prevent our system from dying out or drifting away
when processing long sequences. The proposed parameterization enables producing
qualitative, pleasant, accurate results, outperforming standard signal processing
techniques, and non-recurrent machine learning approaches. Once the training is
done, our system, based on a causal architecture, is fast enough for a real-time
application.

Cleaning and low-level editing is only one part of the animation editing con-
cerns. More high-level control is needed. Thus, we investigate new algorithms to
improve the constraint-based facial motion editing process.Presented in Chapter 5,
we develop a solution for fast and efficient animation editing, that does not need
any manual data pre-processing of the animation sequence. Following-up on re-
cent advances in body-motion editing work, the proposed technique preserves and
faithfully regenerates the specificity of the facial movements, delivering realistic
modified animation. We propose a new facial animation representation to steer facial
movements through temporally dense low-dimensional control parameters. Using
an original interface, we demonstrate the suitability of our solution for a concrete
animation editing application. This work represents the first step toward intelligent
editing systems, which contributes to improving the efficiency of the facial animation
manipulation. Besides, applying a machine-learning technique trained on real data
ensures realistic animation production, while preventing the users from precisely
defining all the temporal behaviors and every detail of the facial motion, making
the editing task easier and more accessible. Yet, several limitations remains due to
the regression-based approach including the nature of the input and the training
strategy.

With the limitations of Chapter 5 in mind, we further explore intelligent facial
editing in Chapter 6 and alternative facial motion representation to bypass these
issues. We explore the GAN paradigm that has yielded very encouraging visual
results, to provide a versatile solution allowing unsupervised, slightly supervised,
or fully controllable motion editing. Notably, the proposed solution leverage adver-
sarial learning to validate the quality of the motion by the model itself, and allow
stochastic motion generation. This enables filling motion with plausible motion
patterns, outperforming standard motion interpolation models. Notable attractive
points include the flexibility and efficiency of the proposed technique. Suitable for
the art direction of the standard keyframing workflow, the developed framework
enables automatically dealing with motion occlusions or perform semantic animation
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modifications, accelerating and supporting the facial editing process.
Recent learning-based algorithms, such as neural networks, have the ability to

capture complex and diversified data distribution, including motion dynamics as
some previous works have empirically proved. This makes them particularly well-
suited tools to build systems that robustly generate realistic non-linear signals, even
when driven by noisy, sparse or low-quality inputs. We demonstrate throughout
this thesis their benefit to efficient and convenient dynamic facial animation editing
solutions. By developing deep learning techniques devoted to the performance-based
data manipulation, we hope to have contributed to the long-term objective of making
efficient and manageable high-quality animation production tools more accessible
and widespread. This thesis has led to publications in international conferences,
which are listed below:

• E. Berson, C. Soladié, V. Barrielle, and N. Stoiber. A Robust Interactive Facial
Animation Editing System. In Proceedings of the 12th Annual International
Conference on Motion, Interaction, and Games - MIG ’19, Newcastle-upon-
Tyne, United Kingdom, 2019

• E. Berson, C. Soladié, and N. Stoiber. Real-Time Cleaning and Refinement of
Facial Animation Signals. In Proceedings of the 4th International Conference
on Graphics and Signal Processing - ICGSP 2020, Nagoya, Japan, 2020

• E. Berson, C. Soladié, and N. Stoiber. Intuitive facial animation editing
based on a generative rnn framework. In Proceedings of the 19th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation - SCA ’20, Mon-
treal, 2020

7.2 Perspectives and Future Work
The research progress outlined in this thesis is a first step in bringing forward the
facial animation editing process. However, a number of problems remain, suggesting
possible future research directions.

Creating a high-quality facial animation rests on various interconnected compo-
nents, including motion-capture techniques settling the original animation’s quality,
a rigging step establishing the quality of animation parameterization and an editing
step, whereby artists refine the animation. This thesis explores new perspectives
improving the facial motion editing component. However, focusing on motion edit-
ing rests on the quality of the performance-based database, and assumes a given
animation model.

Indeed, the main significant issue, shared among the deep learning community,
remains the dependency on an appropriate large database of motion examples used
for training. As observed in many studies, neural-based systems might fail if the
input sample goes far beyond the span of the training set. While we provide an initial
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validation of our solutions in this thesis, future works are necessary to test our solution
to more complex facial animations. We start to overcome this issue in Chapter 3
by enhancing an available database [FGR+10]. Providing animated faces that climb
up the right side of the uncanny valley is still challenging as humans are too good
at noticing very small errors. Awe-inspiring results have been achieved in the facial
animation field using neural-based approaches and high-quality data [LSSS18, WSS+19].
However, these data remain very rare as it implies using an expensive setup (up
to 40 multicamera) for the creation. A further direction would be to use the last
state-of-the-art 3D model reconstruction to extent this database. An interesting data
augmentation that would ensure a larger diversity among motion examples would
be to leverage the amount of available 2D videos. For instance, we could use the
recent outstanding 3D differential neural-based rendering approaches [TZK+17], to
automatically extract the 3D face mesh representation from a 2D images using the
combination of a 3D differential rendered and a neural network. Combined with
state-of-the-art speech detection/alignment systems, it would improve the talking
motion coverage of our database.

Regarding the rigging foundation, we consider in this work the blendshape
parametrization as it is a de-facto standard in both production and research com-
munities. Yet, this model already limits the precision of the allowed temporal
deformation [BSC16]. Interesting path could be explored to extend our system to
other animation formats. One promising path would combine our work, with an
interactive 3D face sculpting enhancement tool [GFZ+20] and/or to augment the
proposed solution with automatic solutions restoring facial details, by leveraging the
texture [LSSS18] or using the fast deep deformation system proposed by Bailey et
al. [BODO20] mapping rig parameters to high-quality mesh.

In this thesis, we explore the facial motion controllability. The temporal curves
proposed in Chapter 5 make explicit the temporal aspect of the motion, suggesting
an overall user’s authoring on the motion dynamics. Based on geometrical and
semantic considerations, these parameters allow the user to coarsely edit the most
salient features of the facial motion on a large scale. While leading to efficient motion
editing, they fail to embody the whole range of spatiotemporal motion patterns,
which constitute the intricate facial dynamic signature. Alternatively, in Chapter 6
we step toward more higher-level motion editing requiring less involvement of the
users in supervising every instant in the timeline, while emphasizing the versatility
and compactness of our solution with regard to actual editing application scenarios
in real production pipeline. Yet, one could imagine new abstractions of the facial
motions, encompassing both the geometrical and the temporal dimensions of this
process. Guay and colleagues [GRGC15] propose a new paradigm, named line of
actions, to drive body-motion through strokes in space-time fashion simultaneously,
opening new motion metaphor perspectives [COS19]. While such representation is not
directly transposable in the facial area, it is an interesting topic for future research.

With the booming success of (inverse) neural rendering [TZK+17, TFT+20], another
direction would be to align 3D motion editing with 2D video editing, reforming the
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spatiotemporal facial animation representation, and the user controllers. Combining
3D differential renders with neural networks, this technique has yielded tremendous
results, outperforming standard computer graphics methods. Nevertheless, achieving
fully motion controllability through neural approaches raises questions about the
editability of the output animation. While neural networks have demonstrated great
success in producing highly realistic animation, the prediction and control of failure
cases are still open questions. Indeed, the main limitation of neural-based solutions
remains its black box property. The growing prominence of neural networks does not
imply a real understanding of their functioning. There is still no precise recipe for
dealing with spatiotemporal data such as facial motion. Overall, the design of their
architecture remains an empirical process. However, we notice that the technical
choices and the scientific direction we have made, fall with the latest Computer
Animation research [HYNP20, ZWR+20, ZLH+20, ZLB+20].

Although Motion Capture technology has become readily available for everyday
consumers through affordable 3D capture technology, high-quality animations still
require costly setups [LSSS18]. Bringing the gap between the accessibility and quality
of 3D animation content is already in development, and we believe it will be unveiled
in the near future. Going a step further, one could imagine the future of the facial
animation in generative methods rather than Motion Capture technologies. As far
as facial animation is concerned, we hope that this work will be the basis for further
follow-up research, promoting its spread in a variety of new applications, reaching a
larger audience.
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Titre : L’Utilisation des Méthodes d’Apprentissage Profond au service de l’Édition d’Ani-
mation Faciale 3D
Mots-clés : Animation Faciale, Edition d’Animation, Deep Learning

Résumé : L’animation faciale vise à mouvoir des
personnages virtuels afin de leur donner vie. Pro-
duire une animation faciale satisfaisante est une
tâche difficile, notamment parce que l’œil humain
est affûté à analyser les visages, et très sensible
aux moindres défauts. Les technologies de cap-
ture de mouvements ont ouvert de nouvelles pos-
sibilités, facilitant la génération d’animations réa-
listes. La promesse de ces technologies est de
parfaitement capturer et retranscrire toute la sub-
tilité des mouvements faciaux, et du signal expres-
sif et émotionnel qu’il diffuse. En pratique, même
les systèmes les plus aboutis échouent à accomplir
parfaitement ce rôle. L’édition d’animation est alors
une étape cruciale dans la production d’animations,
mais demeure une étape très couteuse. En effet,
manipuler une animation requiert un certain savoir-
faire et une grande quantité de travail pour ré-
pondre aux exigences de qualités attendues. Nous

proposons d’améliorer le processus d’édition en
mettant à profit les récentes méthodes d’appren-
tissage, qui permettent de produire en grande
quantité, des animations convaincantes. Ces mé-
thodes apprennent les caractéristiques et les spé-
cificités des dynamiques du visage, afin de syn-
thétiser de nouvelles animations réalistes. Nous
proposons une nouvelle méthode de filtrage d’ani-
mation qui apprend à nettoyer et même restaurer
les dynamiques des différents paramètres d’anima-
tion. Cette thèse étudie également de nouvelles
possibilités de modifier une animation et de diri-
ger la synthèse d’animation à partir de paramètres
de contrôle originaux, intuitifs et sémantiques. En-
fin, cette thèse explore les méthodes d’apprentis-
sage génératives, permettant la synthèse et l’édi-
tion, non ou faiblement supervisée, d’une anima-
tion.

Title: Leveraging Neural Networks for 3D Facial Animation Editing
Keywords: Facial Animation, Motion Editing, Neural Networks

Abstract: Facial animation consists of breathing
life into computer graphic characters. The major
challenge of facial animation is to fool the human’s
eyes, very acute at recognizing natural motions.
The emergence and increasing availability of mo-
tion capture (MoCap) technologies have opened
a new era, where realistic animation generation
is more deterministic and repeatable. The theo-
retical promise of MoCap is the ability to capture
and retarget human performance completely and
flawlessly, from emotion down to the most subtle
motion of facial skin. In reality, even professional
motion capture setups often fall short of a per-
fect animation. Animation editing is therefore un-
avoidable and frequently the bottleneck of modern
performance-based animation pipelines, requiring
a considerable amount of time and special skills.
We propose to improve the facial animation signal
editing process by leveraging recent deep learn-

ing techniques. These methods enable producing
realistic motion sequences, endowed with all the
specificities included in the real animation used for
training. We adopt this technology to enhance the
cleaning facial animation editing process, providing
a solution preserving and even restoring the facial
motion dynamics. We also explore new possibili-
ties to synthesize facial animations from alternative
high-level control inputs, more semantic and intu-
itive than the current standard animation parame-
ters. Pushing forward the motion editing toward
user controllability, we provide a robust and inter-
active regressive neural-based method to modify
a facial animation efficiently, from few temporally
dense parameters. To bypass the limitations of re-
gression algorithms, we explore generative meth-
ods suitable for unsupervised and partially super-
vised motion editing.
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