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par

Assia Benbihi

CentraleSupelec

Thales SIX GTS

Ecole Doctorale IAEM
Informatique, Automatique, Electronique Electrotechnique, Mathématiques
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Co-directeur de thèse: : Matthieu Geist

Président du jury : Cédric Demonceaux

Rapporteurs : Cédric Demonceaux
Torsten Sattler

Examinateurs : Margarita Chli
Matthieu Geist
Cédric Pradalier
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Résumé

L’inspection visuelle consiste à observer une scène et mesurer ses change-

ments. Parmi ses nombreuses applications figurent la conduite autonome,

l’inspection industrielle ou encore la réalité augmentée. La principale diffi-

culté pour une machine consiste à reconnaitre une scène malgré que cette

dernière puisse changer d’apparence. C’est sur cette problématique que se

concentre cette thèse et plus particulièrement sur la reconnaissance à long

terme de scènes bucoliques, comme la rive d’un lac au fil des saisons. Le

but est ensuite de quantifier les variations de cette scène. L’approche adop-

tée se divise en deux étapes : la reconnaissance de la scène puis la mise en

correspondance de zones locales de celle-ci.

La reconnaissance visuelle se base sur des représentations de l’image telles

que deux images d’une même scène ont des descriptions similaires, et ce

même lorsque l’apparence visuelle de la scène a changé. Une des contribu-

tions majeures de cette thèse est la définition de deux descripteurs d’image

reposant sur la géométrie et la sémantique de la scène. Etant donnée que

ces deux informations sont globalement invariantes au temps, les descrip-

teurs le sont également. Comparés à l’état de l’art, ces descripteurs sont

parmi les plus performants pour la reconnaissance de scènes bucoliques et

généralisent même aux scènes urbaines.

Pour mettre en correspondance des zones de deux images d’un même scène,

ce sont leurs descriptions locales qui doivent être invariantes. L’approche

adoptée dans cette thèse est d’identifier les zones locales de l’image qui

restent invariantes en exploitant la structure de l’espace image de réseaux

de neurones déjà entrainés sur une tâche visuelle quelconque. Les représen-

tations locales qui en résultent sont tout aussi pertinentes pour la mise en

correspondance de zones d’image que celles issues d’un apprentissage pro-

fond spécifiquement dédié à cette tâche.

Enfin, cette thèse introduit deux méthodes d’apprentissage visant à réduire

le volume de données nécessaires à l’entrainement de réseaux de neurones

pour la segmentation sémantique. En plus de pouvoir s’intégrer à la descrip-

tion d’image, les information sémantiques permettent de rendre d’autres

applications visuelles plus robustes aux changement d’apparence. Ceci est

illustré par un exemple appliqué au cas de l’odométrie visuelle directe.



Abstract

Visual monitoring consists of observing a scene and tracking its modifica-

tions. This task is integrated into most of autonomous systems relying on lo-

calization such as autonomous driving, industrial inspection or augmented

reality. One of the main challenges is to define a robust image representa-

tion that allows an autonomous system to recognize a scene even when its

appearance changes. Given images of the same scene, the goal is then to

characterize the scene’s variations over time. This thesis addresses this chal-

lenge in bucolic environments over long periods such as parks or lakeshores

across seasons. The adopted approach is to first put the images to compare

in correspondence and then measure their variations.

The image correspondence problem is split into two sub-problems: scene

recognition and image local matching. In scene recognition, the challenge

is to define an image representation such that corresponding images have

similar descriptions even when there are strong variations in visual appear-

ance. One major contribution of this thesis is the definition of two novel

image descriptors based on the geometry and semantics of the scene. Since

these two properties are mostly invariant over time, the resulting descrip-

tors are also invariant. Experiments on two bucolic environments show that

they reach state-of-the-art performance. They are also compared with deep

learning approaches on urban scenes whereas they do not need training.

For image matching, the challenge is similar but at the scale of image re-

gions. The problem consists in choosing image regions relevant to the mon-

itoring task and generating a representation invariant to appearance vari-

ations. The second major contribution of this thesis is to query such re-

gions and representations from a neural network. A trained network gener-

ates a powerful representation space and experiments show that it reaches

the same matching performances as networks specifically trained for image

matching.

The remaining contribution of this thesis studies how to reduce the training

load to obtain efficient semantics. They are not only useful to define new

image representation but they also make existing localization approaches

more robust. For example, this thesis shows that it improves the tracking

robustness in direct visual odometry.
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Chapter 1

Introduction

Visual monitoring consists of tracking a scene’s variations over time. When integrated

into autonomous systems, it allows for safe and cost-efficient monitoring of remote and

hazardous areas, and facilitate systematic environment assessment over long periods.

Visual monitoring relies on four major visual tasks: scene recognition, scene localiza-

tion, scene alignment, and scene comparison. Each of these tasks is also of pivotal im-

portance in other domains. For example, mobile systems usually rely on visual localiza-

tion to get finer camera pose than the one provided by a GPS.

The visual primitive common to all of these tasks are visual features. A feature is

a compact, informative and discriminative representation of the image content. For

localization applications, an ideal feature should depend only on the image content and

not on the image appearance. This means that it should be invariant to variations such

as illuminations or viewpoints. However, most of the existing features are built upon

the statistics of the image pixels and not upon the image content. So, whenever the

image’s appearance changes, these features do too, even when the image content does

not. This can falsely lead an autonomous system to think that the scene changed or

that it is observing a different scene when it is not the case. This problem is a major

challenge in computer vision research and this motivates this thesis to introduce visual

features with improved invariance properties.

The rest of this section is organized as follows. Section (Sec.) 1.1 illustrates the ne-

cessity of visual features invariant to image appearance changes. Sec. 1.2 lists the contri-

bution of this thesis towards robust visual features. Sec. 1.3 summarises this thesis and

outlines its structure.

1.1 Robust Features for Visual Monitoring

This section depicts visual use cases for which robust features are crucial.
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Figure 1.1: The Sydney Opera House pictured with two extremely different light condi-
tions and opposite viewpoints.

Global image features. A global image feature is a representation vector that describes

the whole image content. Ideally, a robust visual feature should be invariant to a wide

range of appearance changes including illumination, viewpoint, season and weather.

Depending on the nature of the environment to monitor, some of these requirements

can be disregarded. For example, most images taken in cities depict buildings that are

naturally invariant to seasons. So the robustness to seasonal variations is less critical.

Currently, the main challenges for urban scene recognition is to define a global im-

age descriptor invariant to wide viewpoint variations and extreme illumination changes.

Figure (Fig.) 1.1 shows an example with the famous Sydney Opera House taken from op-

posite viewpoints and times of the day. Existing visual features are not invariant to such

color and geometry variations, which motivates most of the literature to focus on these

two invariance axes. One reason that explains this research bias for urban settings is the

high amount of public datasets available, which allows for a wider range of approaches,

2



including machine learning. Conversely, this thesis addresses the robustness problem

for bucolic environments such as forests or lakeshores. There, the nature of the varia-

tions requires visual features to be robust to a wider range of variations, which leads to

a different approach for image description.

Figure 1.2: Bucolic scenes exhibit additional types of variations compared to urban ones.
For example, the vegetation can grow with time.

In addition to the illumination and the viewpoint variations, visual features for bu-

colic scenes must also be robust to weather and seasons. Even in the ideal case where

two images are taken from the same viewpoint and under the same light conditions, the

vegetation state can induce differences in the image. The koala bush in Fig. 1.2 is a good

example: the picture on the left was taken during a sunny spring day and the koala looks

green and well-fed. Several months later, the koala looks grey, probably because of the

hot summer weather. It also seems to have lost a few pounds and let its fur grow. A robust

visual feature should be invariant to these changes and describes the koala structure the

same way throughout the year.

A major contribution of this thesis is the definition of two global image descriptors

based on the geometry and the semantics of the scene. As these elements are mostly

invariant over time and seasons, the resulting features also exhibit robustness.

Local image features. The previous example discussed global image description, i.e.,

one representation to describe the image. Another category of visual features describes

local regions of the image. These local features should exhibit the same robustness as

their global counterparts but also handle low-level visual distractors such as poor im-

age texture or repetitive patterns. An ideal method should select image regions consis-

tent over several images, and provide invariant descriptions over appearance variations.

Thus, image regions with the same content should have similar local features.
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Figure 1.3: Challenging local matching over bucolic environments. Left: The camera
displacement is obvious to the human eye and to the camera as the image holds sev-
eral salient and unique structures such as the clock. Right: The camera rotation and
translation are less perceivable.

As with the global approach, most of the literature focuses on illumination and wide-

viewpoint variations over urban structures. The release of such large datasets has espe-

cially allowed deep learning approaches to tackle the robustness problem. Most of the

approaches optimize a model on a specific type of data to detect and describe image

regions. The main advantage is that features are data-specific so they should inherently

be robust to the data appearance variations. However, this comes at the cost of com-

putationally demanding optimization and time consuming human supervision. This

motivates this thesis to define data-specific features while reducing the training over-

head.

Another major contribution of this thesis is to leverage the powerful representa-

tion space generated by a trained Convolutional Neural Network (CNN) to define data-

specific local features. The CNN can be queried for relevant image location by com-

puting the gradient of the feature map norm with respect to the image. This derivation

outputs a saliency map of which local maxima are the image regions to describe. The

same network is used to describe these local regions by interpolating the CNN’s features

on these locations. Experiments show that such local features are as performant as when

the neural network is specifically trained for feature detection.
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Semantics to robustify visual odometry. Semantics is one of the few visual informa-

tion that stays invariant over time. It cannot only be leveraged to define new localization

algorithms but also integrated into existing ones to make them more robust to image

variations. This is illustrated with the case of edge-based direct visual odometry, for

which the use of semantic edges instead of standard ones improves its tracking robust-

ness.

Alternatives to Human Supervision for Semantics. Another relevant application for

semantics is the assessment of the scene’s variations. Figure 1.4 shows two aerial images

of Wallabi Point, Australia, before and after the bushfires. A pixel-wise semantic seg-

mentation of these images allows for fast and automatic assessment of the fires’ impact

in the region. However, current segmentation methods require heavy human supervi-

sion to be robust to such appearance variations. So this thesis proposes two approaches

to reduce the supervision load while maintaining the segmentation performance.

Figure 1.4: A useful application of autonomous visual monitoring is the automatic as-
sessment of the landscape changes after a catastrophe, such as the 2019 Australian bush-
fires [212]. Supervised segmentation can currently provide pixel-wise labeling of the
land across these changes but requires heavy training with human annotation.

1.2 Contributions

The contribution of this thesis is the definition of robust visual features for visual moni-

toring that require few or no human supervision at all. It is divided into four parts, each

one addressing one of the challenges described in the previous section.

The first part introduces two novel global image descriptors robust to season vari-

ations and suitable for the recognition of bucolic scenes. The second part describes

how to design data-specific local features without supervision by leveraging a CNN’s

representation space. The third part illustrates how integrating semantics into existing

5



edge-based visual odometry algorithms can increase their tracking robustness. The last

part introduces alternatives to human supervision to adapt segmentation across image

domains.

This thesis builds on the following articles:

[25] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Geometric and semantic

visual words for scene recognition across seasons. submitted, 2019

[23] Assia Benbihi, Stéphanie Arravechia, Matthieu Geist, and Cédric Pradalier.

Image-based place recognition on bucolic environment across seasons from se-

mantic edge description. In 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020

[24] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Elf: Embedded local-

isation of features in pre-trained CNN. In Proceedings of the IEEE International

Conference on Computer Vision, pages 7940–7949, 2019

[27] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Semi-supervised do-

main adaptation with representation learning for semantic segmentation across

time. In International Conference on Neural Information Processing, pages 459–

466. Springer, 2019

[195] Xiaolong Wu, Assia Benbihi, Antoine Richard, and Cédric Pradalier. Seman-

tic nearest neighbor fields monocular edge visual-odometry. arXiv preprint arXiv:

1904.00738, 2019

[148] Antoine Richard, Assia Benbihi, Cédric Pradalier, Vincent Perez, Philippe

Durand, and Rosalinde Van Couwenberghe. Automated segmentation and classi-

fication of land use from overhead imagery. In International Conference on Preci-

sion Agriculture, 2018

The contributions in [148] and [195] are the results of collaborations with my Ph.D.

colleagues Antoine Richard and Xiaolong Wu where I participated in the experiments

and in the writing. In [148], I contributed to the finetuning of CNNs for semantic seg-

mentation of land occupation over aerial images. In [195], I collected and generated the

data necessary to run the semantic-edge-based visual odometry optimization.

The following publication is not included in the manuscript as it addresses another

aspect of visual monitoring on the sensor placement problem and to learn it from ex-

pert’s demonstrations.
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[26] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Learning sensor place-

ment from demonstration for UAV networks. In Proceedings of the IEEE Sympo-

sium on Computers and Communications, 2019

1.3 Overview

This section summarizes the thesis.

Part I: Robust visual features for scene recognition. Part one addresses the problem

of scene recognition in bucolic environments across seasons. Here, scene recognition

is framed as image retrieval where a query image is matched to the most similar im-

age available in a database. The search is computed on representations with a much

lower-dimensional space than the image. The challenge is to compute a compact im-

age encoding such that images of the same location are near to each other despite their

change of appearance due to environmental changes.

Chapter (Chap.) 3 [23] introduces a global image descriptor computed from seman-

tics and geometry. By embedding these two image invariants, this descriptor exhibits ro-

bustness against variations in visual appearance such as illumination, vegetation state,

weather, and viewpoint. It is built from the wavelet transforms of the image’s semantic

edges. Matching two images amounts to matching their semantic edge descriptors. This

method reaches State-of-the-Art (SoA) performance for image retrieval on two multi-

season environment-monitoring datasets: the Extended-CMU-Seasons [157] and the

Symphony Lake [66] datasets. It also generalizes to urban scenes on which it is on par

with the current baselines NetVLAD [9] and DELF [133].

While this representation exhibits higher robustness to seasonal changes than the

SoA, it has several limits. The first one is that it only leverages global geometric infor-

mation instead of the local edge variations. Another major drawback is the lack of scala-

bility with the number of edges. Finally, matching two scenes requires solving the linear

assignment problem between edge descriptors over the whole database. In Chap. 4 [25],

a better global descriptor addresses these limits while maintaining the scene recognition

performances. It aggregates hand-crafted local geometric features with semantic con-

straints into a compact vector. The local features are acceleration maxima of semantic

edges, described with the edges’ local variations. They are aggregated into label-specific

visual words in a semantic VLAD fashion.
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Part 2: data-specific features without supervision. Part 2 tackles the challenge of defin-

ing local features that are data-specific without the heavy supervision needed to reach

SoA. To do so, Chap. 5 [24] introduces a novel feature detector based only on informa-

tion embedded inside a CNN already trained on standard learning tasks, such as clas-

sification, with no further training. Keypoints are the local maxima of the gradient of

the feature maps’ norm with respect to the image. Local descriptors are generated by

interpolating one of the CNN feature maps on these keypoints locations. Contrary to re-

cent CNN-based methods, this method requires neither training nor finetuning, except

on the task it was previously trained on. When compared with hand-crafted or learning

methods, it reaches the same performance in terms of repeatability and matching score

on the HPatches and Webcam datasets. It also compares to their robustness against

light, scale, rotation and viewpoint changes. This shows that the feature representation

and localization information learned by a CNN to complete a visual task is as relevant as

when the CNN is specifically trained for feature detection.

Part 3: Pixel-Wise semantics for Robust localization. Part 3 illustrates how integrat-

ing pixel-wise semantics into edge-based visual odometry makes the visual tracking ro-

bust. Chap. 6 [195] extends existing edge-based visual odometry with the additional

constraint that associated edges should have the same semantic class. When tested on

the KITTI and vKITTI dataset, experiments show that it not only reaches lower trajectory

error but also exhibits a larger basin of attraction during the tracking phase. This latter

property makes it more robust to viewpoints variations due to large camera displace-

ments.

As for the semantic-based global descriptors of Part 1 [23, 25], the main performance

bottleneck is the segmentation accuracy. Currently, segmentation reaches top accuracy

only when heavily trained with pixel-wise annotations. This motivates the last part of

this thesis to investigate alternative supervision to train segmentation.

Part 4: Alternative Supervision for Segmentation Domain Adaptation. Chap. 7 [148]

proposes to transform existing annotated datasets into the desired domain using neural

style transfer. Style transfer is the task of reproducing an image content with the style of

another image. The output image keeps the same content but exhibits a pixel distribu-

tion nearer to the style image. This chapter relies on this concept to transform existing

annotated images towards the target pixel distribution. It is tested to segment overhead

land images where each pixel is classified with land types. In this example, annotations

are available only for images sampled in 2015, but not for images from previous years.
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The pixel distribution changes over time mostly because the data collection process is

updated. So even though they depict a similar scene, a CNN trained on the 2015 images

cannot generalize to the previous years. So the goal is to transform the 2015 images to

match the distributions of the past years and use these synthetic images to train a net-

work. Experiments show that the CNN still needs real annotated images to converge but

these synthetic images prove relevant to warm-up the network. Warming-up the net-

work can reduce the amount of real data needed for the finetuning, and even provide a

better initialization state that boosts the segmentation performance.

Although it does not require human supervision, the previous domain adaptation by

neural style transfer requires heavy computations. To alleviate the expensive data gen-

eration process, Chap. 8 [27] proposes a semi-supervised method for the specific case of

images with similar semantic content but different pixel distributions. This is a common

occurrence in long-term monitoring tasks. Given a network trained with supervision on

a past dataset, a copy of this network is finetuned on the new dataset to preserve its fea-

tures maps. The domain adaptation becomes a simple regression between the past and

new feature maps and does not require annotations on the new dataset. In other words,

the CNN is trained to project two images with the same content but different appearance

onto the same point in the CNN’s representation space. This method reaches perfor-

mances similar to classic transfer learning on the PASCAL VOC dataset whereas it does

not require additional supervision. The domain changes are emulated with synthetic

transformations such as color histogram variations, edge noise, and texture artifacts.
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Chapter 2

Related Work

Those who cannot remember the past are condemned to repeat it.

- George Santayana

This chapter reviews the literature relevant to this thesis’s contributions. Sec. 2.1

introduces the key concepts it builds upon such as projective geometry, local and global

features, and saliency. Then, Sec. 2.2 discusses the main research on local features. They

characterize local regions of the image and their aggregation provides image summaries

relevant to scene recognition reviewed in Sec. 2.3. Finally, Sec. 2.4 presents experimental

contributions researching the correlations between the representation space of a CNN

and the image space.

2.1 Concepts

The reader familiar with projective geometry, visual features, and CNN may skip this

section and start reading Sec. 2.2.

This section briefly reviews the camera model and the relation between the 3D world

and the image plane. This is useful to understand the contribution in Chap. 6 on Visual

Odometry (VO). Given two images on the same scene with different viewpoints, VO aims

at recovering the camera pose using geometric constraints between the images, the 3D

information of the scene and pixel correspondences across images. Two pixels corre-

spond when they project to the same 3D point in the scene.

In Chap. 6, the camera pose and the 3D information are jointly and iteratively ad-

justed until the corresponding pixels project to the same point in the scene. This opti-

mization is guided by the projection error and is dubbed direct VO. Indirect VO differs

in that it relies on previously computed pixel matches to constrain an equation system

where the unknowns are the camera pose parameters. The pixel pairings are computed
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beforehand based on their visual similarity: each pixel is assigned with a descriptor, i.e.,

a compact representation of its neighborhood. When combined with the pixel position,

it forms a local feature that characterizes the pixel. Chap. 5 introduces a novel approach

to compute such features.

These same local features are also used to compute a global summary of images, rel-

evant for scene recognition addressed in Chap. 3 and Chap. 4. Given an image database,

it searches for the entry that is the most similar to a query image. Rather than comparing

the images, it compares their compact summaries, also called global features.

Visual features are also leveraged for higher-level visual tasks such as object classifi-

cation or semantic segmentation. In general, these features can be either hand-crafted

or learned. While there is a wide literature on machine learning for image process-

ing [28], recent approaches mostly rely on a specific set of learning tools: Convolutional

Neural Networks. The last part of this section provides a brief introduction to convolu-

tions (see [63] for a deeper description).

Camera Model.

This subsection introduces a simple camera model based on the projection of 3D points

onto a plane. The projection equations are useful to better grasp the visual odometry

contribution in Chap. 6.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 2.1: Pinhole camera model illustration [72]. All coordinates are expressed in the
camera frame centered in C with the camera looking down its Z axis. The image plane
is defined by the equation Z = f with f a parameter called the focal distance. X is a 3D
point in the scene projected to a point x the image plane using Thales’s theorem.

An image is the projection of the 3D world onto a plane. The projection is achieved

by letting the world’s light rays go through a small opening (e.g. a diaphragm) and focus-

ing them on a plane using lens optics. Fig. 2.1 illustrates a simplified projection using

the simple pinhole camera model. Here, the lens is discarded and it is assumed that the
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camera opening is an ideal point, so one light ray going from X is projected on the image

plane. More complex models can be found in [72] but they are not required for following

the rest of this thesis.

The 3D world is described in the camera frame whose origin is the camera center

C. The axes are defined such that the camera looks down the Z axis and the (X,Y,Z)

basis is orthonormal. The image plane is defined by the equation Z = f , with f being

a parameter called the focal distance. The plane’s (x,y) axes are colinear to the (X,Y)

ones. Its origin is the point p= (0,0, f )T defined as the intersection of the Z axis with the

plane. A 3D point in the camera frame is notedXC = (x, y, z)T
C. Its projectionx is defined

as the intersection of that plane with the line (XCC). The coordinate of the projection

are computed with the Thales’s theorem xC = ( x· f
z , y · f

z )T in the camera frame (Fig. 2.1 -

right). In the rest of this thesis, the points on the image plane (i.e., the pixels) will always

be expressed in the camera frame and the subscript xC will be omitted to write x.

Homogeneous coordinates are introduced to write this projection as a linear trans-

formation. They are equivalent to the previous cartesian coordinates and one can go

from one form to the other using the following relations (Equation (Eq.) 2.1- 2.2). For a

point in the scene, let X and x be its cartesian coordinates of the 3D point and its pro-

jection. Their homogeneous counterparts, noted X̄ and x̄, are defined as follows with

x, y, z,u, v, w ∈R:

X ,

x
y
z

→ X̄ ,


x
y
z
1

 x,
(
u
v

)
→ x̄,

u
v
1

 (2.1)

The conversion from homogeneous coordinates is computed as follow:

X̄ ,


x
y
z
w

→X =
 x

wy
w
z
w

 x̄,

u
v
w

→x=
( u

w
v
w

)
(2.2)

Projecting the 3D point onto the image plane can now be written in matrix form by

introducing a matrix K, called the intrinsic matrix:
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K ,

 f 0 0
0 f 0
0 0 1


and x̄= (

K 0
)
X̄ with 0=T (0,0,0)u

v
w

=
 f 0 0 0

0 f 0 0
0 0 1 0




x
y
z
1


(2.3)

Note that the intrinsic matrix K in Eq. 2.3 has a simple form only because it is asso-

ciated with the pinhole camera model. Other camera models have additional non-zero

terms to better approximate the projection. This thesis does not address these addi-

tional terms and will note the projection matrix K.

Until now, the coordinates of the scene point X were defined relative to the camera

frame. This is not convenient as they will change every time the camera moves. Instead,

it is better to express X ’s coordinates relative to the world frame and transform them

into the camera frame at the time of the projection. This is achieved by updating Eq. 2.3

into Eq. 2.4 to compute X ’s coordinates in the camera frame before the projection. Let

SO(3) be the orthogonal group of dimension 3, CRW ∈ SO(3) be the rotation and CtW

the translation that transform from world to camera coordinates. The transformation

matrix from the world frame to the camera frame is called the extrinsic matrix and is

noted CTW ∈ R4×4. The scene point expressed in the world frame is noted X̄W . The

projection formula becomes:

CTW ,
(c RW

CtW

0 1

)
and x̄=KCTWX̄Wu

v
w

=
 f 0 0 0

0 f 0 0
0 0 1 0

(CRW
CtW

0 1

)
x
y
z
1


W

(2.4)

It is possible to project the pixel x= (u, v)T back to the 3D world XW , given that the

pixel’s depth z is available:
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X̄W =w Tc

(
z ·K−1x̄

1

)
W

x
y
z
w


W

=
(c RT

W −c RT
W ·c tW

0 1

)
·

z ·


1
f 0 0

0 1
f 0

0 0 1


u

v
1


1


(2.5)

Visual odometry.

This subsection describes the two main camera pose derivations in visual odometry.

Once again, the curious reader can refer to [72] for further details.

Visual odometry is the task of recovering the pose of the camera from image infor-

mation only. Given two images depicting the same scene from different viewpoints, it

leverages pixel associations and the geometric constraints between the image planes,

the camera poses, and the scene depth to recover the camera displacement.

X

xx
/

Figure 2.2: From [72]. X is a 3D point in the scene observed by two cameras. It projects
onto the pixels x and x′. The pixel coordinates, the camera displacement and the z coor-
dinate of X in the world frame are related. Visual odometry leverages this correlation to
recover the camera displacement from pixel pairs. Direct approaches use these pairs to
enable their iterative optimization whereas indirect approaches use them to constrain
equation-based approaches.

More formally, let C and C′ be two cameras with intrinsic matrices KC and KC′ captur-

ing the same scene with two different viewpoints, resulting in images IC and IC′ . There

can be one camera only moving around in which case KC = KC′ . Let C′
RC (respectively

(resp.) C′
tC) be the rotation (resp. the translation) from C′ to C. The goal is to recover

C′
RC and C′

tC. There are two broad categories of visual odometry: direct method and

indirect ones, also called feature-based ones.
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Direct methods. Direct approaches iteratively adjust C′
RC and C′

tC, and the depth of

the scene to best align IC over IC′ . In Fig. 2.2, this amounts to finding the camera dis-

placement and the depth of X to best project x over x′, and vice-versa. When the cor-

respondence between x and x′ is known, the projection is assessed with the distance

between x′ and the projection x̂ of x (Fig. 2.3). The analog distance is computed for the

reverse projection. However, in practice, this is not the case. So an alternative solution

is to compare the pixel intensity at x̂ and x′. With the assumption that the illumination

stays the same across the two images. the projection is correct when IC′[x̂] = IC′[x].

/x

/

X

e e /

x x /

/

C C

x
d d

Figure 2.3: From [72]. X̂ is a 3D point in the scene with an estimated depth ẑ with
respect to the camera frame C. It projects to x̂ and x̂′. The actual 3D point X with
the correct depth projects onto the pixels x and x′. The reprojection error penalizes the
camera displacement and the depth estimation with the distance d (resp. d ′) between
the projected pixel x̂ (resp. x̂′) with the projection target x (resp. x′).

More formally, each pixel x = (u, v)T in IC has an estimated depth z with respect to

the camera frame. It is projected onto a pixel x̂= π(x) (Eq. 2.6). This equation projects

x on the 3D scene with the projection matrix KC and the estimated depth. The resulting

3D point’s coordinates are relative to C’s frame. They are transformed into C′’s frame

using the estimated camera displacement. The 3D point is projected on C′’s image plane

using its projection matrix KC′ . Finally, the homogeneous coordinates are converted into

cartesian ones.

π(p) =


ũ

w̃
ṽ

w̃

 with

 ũ
ṽ
w̃

= KC′ ·
1 0 0 0

0 1 0 0
0 0 1 0

(C′
RC

C′
tC

0 1

)K−1
C

z ·u
z · v

z


1

 (2.6)
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Assuming that the illumination stays constant across the images, the alignment is

evaluated with the intensity variation of the projected pixel between IC and IC′ . More

formally, the loss to minimize is:

L := ∑
p∈IC

‖IC′[π(p)]− IC[p]‖2 (2.7)

In practice, the loss accumulates the intensity difference only for pixels which pro-

jection falls in the second image. This sum of squared difference is minimized with stan-

dard optimization. This leads to satisfying results as long as the pixel intensity does not

change across images. This assumption is called the brightness consistency assumption

and is fairly realistic in indoor environments where the light can be controlled. However,

it is easily violated in outdoor settings for which indirect methods are better suited.

Indirect methods. Indirect methods, also called feature-based methods, assume that

a set of pixel correspondences (x,x′) is available. This allows constraining a system

of geometric equations where the unknowns are the camera displacement terms. The

derivation of the pixel correspondences is the object of the next subsection on local fea-

tures.

The geometric constraint is called the epipolar constraint. It is derived from the

frame transformation between the two camera frames (Eq. 2.8). Let XW be a 3D point

expressed in the world frame and XC and XC′ its coordinates expressed in the camera

frames C and C′. Let xC and xC′ be the pixels where this points project on each image

plane. The epipolar constraint relates these pixels with relation xT
C′FxC = 0, where F is

called the fundamental matrix. It is derived as follows:

XC′ =C′
RC ·XC +C′

tC

⇒ C′
tC ×XC′ =C′

tC × (C′
RC ·XC +C′

tC)

⇒ XT
C′ · (C′

tC ×XC′) =XT
C′ · (C′

tC ×C′
RC ·XC)

⇒ 0 =XT
C′ · (C′

tC ×C′
RC ·XC)

⇒ 0 = (K−1
C′ xC′)T · (C′

tC ×C′
RC · (K−1

C xC))

⇒ 0 =xT
C′(K−1

C′ )T · (C′
tC ×C′

RC · (K−1
C xC))

⇒ 0 =xT
C′FxC

with F = (K−1
C′ )T · (C′

tC ×C′
RC) ·K−1

C

(2.8)

16



The fundamental matrix has seven degrees of freedom (a 3×3 has eight independent

ratios and F satisfies the additional constraint det F = 0, which removes one degree of

freedom). Seven epipolar constraints are enough to recover F i.e. although, in practice,

it is better to use more to account for the possible imprecision and errors in the pixel

correspondence (x,x′). Once F is computed, it is possible to recover C′
tC and C′

RC from

it.

Local Features.

This subsection provides an intuitive idea of what local features are. See Sec. 2.2 for an

in-depth review.

Figure 2.4: Keypoints are pixels that are easily matchable across images. In this example,
the center of the green circles are keypoints matched across two viewpoints.

One way to compute corresponding pixels between two images is to select the most

characteristic regions common to both, and try to associate them. Similarly to direct

odometry, pixels should be matched when they are the projection of the same scene

point. However, without prior geometric knowledge, only the image visual content is

left to compute such pairs. So two pixels should match when they point to similar visual

elements (e.g., the green circles in Fig. 2.4). This is enabled with Local features that are

compact summaries of the visual content around a pixel. It is then possible to efficiently

compute the similarity between pixels and associate the nearest ones with each other.

A local feature is made of the pixel coordinates and a vector representing the im-

age content around it, called a descriptor. A good description is one that characterizes

uniquely each image region with the same vector across images. Thus, the local feature

can be consistently matched based on their descriptors. In the example Fig. 2.4, the de-

scription of the clock center should be the same in the left and the right image. However,

it should be significantly different from the description of the plaque under it.
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A standard way to compute descriptors is to rely on high-level statistics of the neigh-

boring pixels. These are usually invariant to pixel intensity changes so they stay con-

sistent over images taken under various light conditions. So pixel correspondences can

be computed even when the brightness consistency assumption is violated. This is why

indirect methods are currently preferred in outdoor environments. Still, robustifying di-

rect approaches is the object of recent encouraging contributions [52, 196, 197, 213, 214].

There are mainly two levers to define ideal features: the pixel description and the

pixel selection. A perfect descriptor should be map all the patches pointing to the same

element of the scene to the same descriptor. This condition is extremely hard to comply

with and is not even necessary to derive the fundamental matrix, which is the motivation

for pixel correspondences. Indeed, the derivation can theoretically be achieved with at

least seven pairs of matching pixels. So this condition is simplified by selecting only a

subset of characteristic pixels in the two images and associate them. Feature detection

is the problem of selecting the most relevant pixels to describe and match.

Image Retrieval.

The local features previously introduced can be used for more than pixel association.

When fused, they generate a global summary of the image that is relevant for image

retrieval applications, of which the Google Image browser is the most popular. Fig. 2.5

illustrates an example: the images at the top are stored in a database with their global

descriptions. Given a query image (bottom), the browser computes a query descriptor

and retrieves the database images with the nearest description. The main challenge is to

compute image summaries that are robust to variations in the image appearance such as

day/night, ground/aerial views, or season changes. This is complex because it requires

the features to ignore the pixel variations related to these changes and only capture the

high-level content of the scene. CNN are relevant tools to compute such features and

their basic operations are described in the next subsection.

Convolutional Neural Networks (CNN).

Convolution. A convolution is a linear operator between two functions. In signal pro-

cessing, it is how filters are mathematically represented. In image processing, the func-

tions are discrete and defined over 2D spaces. A convolution is defined by ( f ∗g )(u0, v0) =
∞∑

u=−∞

∞∑
v=−∞

f (u, v) · g (u0 −u, v0 − v), with f and g in RR
2
.
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Database images.

Query image.

Figure 2.5: Retrieval example. Top: Various images of the Opera House stored in a
database along with other pictures. Bottom: Query image. Image retrieval searches for
the database images most similar to the query one.

Convolutions allow computing image statistics such as gradients or edges. In the

previous definition, f is a convolution filter or kernel, and g is an image. The filter usu-

ally has a finite support so the two infinite sums become finite. More specifically, let

I ∈ Rh×w be an image of height h ∈ N and width w ∈ N, and W ∈ Rk×k be a filter of size

k ∈ N, with k ≡ 1[2]. For each pixel (u, v) ∈ N2, the convolution outputs a real value

computed as:

W ∗ I : R2 → R

(u0, v0) →
k−1

2∑
u=− k−1

2

k−1
2∑

v=− k−1
2

W[u, v] · I[u0 −u, v0 − v]
(2.9)

Figure 2.6 illustrates the operation on a small example with a 3×3 convolution kernel

(gray square). The blue square is a 5×5 one channel image and the green square is the

convolution output. The illustration is borrowed from the insightful report of Dumoulin

19



0 1 2

2 2 0

0 1 2
2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

Figure 2.6: Illustration borrowed from the insightful convolution guide from Dumoulin
and Visin [50]. Discrete convolutions are computed by sliding the convolution ker-
nel (grey) over the image, and summing the output of the element-wise multiplication.
Light blue: one-channel image. Dark blue: kernel aligned over the image. Light green:
convolution output. Dark green: current convolution output.

and Visin on image convolutions [50]. The convolution is computed by sliding the kernel

over the image and accumulating the element-wise multiplication. A classic example is

the Sobel filter that computes the first order derivative of the pixel intensity along the x

and y axis (Fig. 2.7). The output of each convolution is a map with high activations where

the intensity gradients are high. Since edges are image areas where the pixel intensity

varies, these convolutions are useful to find image edges.

CNNs. Instead of hand-crafting the filter weights, it may be easier to learn them. For

example, one can learn the Sobel filter by replacing the convolution values with un-

knowns wi , j (Fig. 2.8). Given a set of images with their respective Sobel outputs, the fil-

ter weights are iteratively updated until they generate the expected Sobel output. Note

that this assumes there exist examples of images with their Sobel outputs.

The Sobel filters are quite straightforward and learning them seems like overkill.

However, the composition of a high number of these simple filters can also be trained to

learn visual information as complex as object classification [98, 171], semantic segmen-

tation [18, 36, 210], image saliency [137, 101], image features [24, 46, 51, 135, 199].

A filter bank is a set of convolutional filters applied to an input image. The outputs of

these filters are concatenated to form a feature map. This map can also be the input to

further filters and the outputs can be fused in various ways such as averaged, concate-

nated, or summed. The composition of successive filters allows deriving pixel statistics
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Figure 2.7: Left-Right: Image, Vertical Sobel filter, Horizontal Sobel filter. The filters
compute the first order derivative of the pixel intensity along the y and x axis. It highlight
the edges, i.e., an area where the pixel intensity varies.
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Figure 2.8: Parametric convolution with learnable weights wi , j .

at such a high-level that low-level intensity variations become negligible. This is what

makes CNN features relevant for robust image description.

2.2 Local features

A local feature is defined by a keypoint and its descriptor. A keypoint is a location in the

image, specified by image coordinates or an area. It can be augmented with the local

orientation of the pixels or the scale of the image local content. For example, image

corners are suitable keypoints [71]. A descriptor is a vector that characterizes the local

region around the keypoint in the most discriminative way possible. An example is the

histogram of the gradient’s orientation of the neighboring pixels [116]. In an ideal world,

there would exist a bijective mapping between the set of all image patches depicting the
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same scene structure and a descriptor. This would allow the unique identification of

point in the scene from its descriptor only, no matter the appearance of the image patch.

One way to achieve this is to define descriptors with infinite dimensions, but this is not

tractable. Instead, an easier constraint to comply with is to make the descriptor bijective

only over the set of selected keypoints.

This constraint sets the quest for the holy grail of features. Good keypoints form a

set over which a bijective descriptor can be defined. And a good descriptor should be

a bijection over the selected keypoints. See how the noble quest has now turned into a

chicken and egg problem? Should we start by defining a descriptor function and then

select keypoints over which it is bijective? Or should we first select keypoints and then

define the descriptor?

Rather than fall into this never-ending loop, the literature has agreed on some prop-

erties for good features. They should be repeatable: this means that the selected loca-

tions should be consistent over the scene even when the illumination or the viewpoint

change. They should be easy to match: this is achieved by selecting discriminant image

locations, which are easier to characterize uniquely. There can be additional constraints

depending on the final application. When used in localization, for example, the key-

point locations are better specified with sub-pixel precision. Else, the camera pose de-

rived for the matches can lack accuracy. In image retrieval, this constraint can be slightly

lessened when computing the image description, but no more than to a few pixels pre-

cision. However, the post-processing requires the same precision as for the localization.

The literature on local features is extremely rich and too large to be entirely reviewed

here. So, this section focuses on reviewing the history of local features rather than de-

scribing the list of all the contributions. Extensive evaluations of the main contributions

described in this section are available in [106, 130, 161].

Applications. Figure 2.9 illustrates an example of two images of the same street. The

local features are matched according to their descriptor distance: each feature from the

first image is matched to the feature with the most similar descriptor in the second im-

age. This generates a list of corresponding pixels between the two images.

Assuming that the features are ‘good’, the absence of correspondences is usually a

reliable indication that the images do not depict the same scene. Given enough corre-

spondences, one can recover the transformation between the two images. The derived

transformation is used to project the features from the first image onto the other. The

quality of the transformation is measured with the number of inliers, i.e., the number

of features from the first image that are projected near their matching features on the
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Figure 2.9: Two images depicting the same street art in Athens with different viewpoints.
The green dots locate the features. The green lines link the matching ones. Only a small
subset of matches is drawn for visibility purposes.

second image. A low ratio of inliers is also a reliable indication that the images do not

depict the same scene. Note that this post-processing is reliable only if the local features

perform well.

The previous processing is called geometric verification and is one of the many appli-

cations for local features. It is a standard way to improve the performance of image re-

trieval [142, 172] by checking that the retrieved images are geometrically coherent with

the query. Given a query image and a retrieved one, few inliers indicate that these two

images do not depict the same scene. Since pictures are rarely taken under the same

illumination or viewpoint conditions, robust features are essential. They must detect

consistent points across a wide range of scene variations to allow reliable matching. The

description must also ignore appearance changes and only embed the invariant content

around the keypoint location.

Another popular application is Structure-from-Motion (SfM) [160]. Given a set of

images depicting a scene from various viewpoints, it reconstructs the 3D representation

of the scene by estimating the camera pose and the scene’s depth. The first step of SfM

is the derivation of local features. These are matched over several images based on their

descriptor distances. The resulting feature pairs are used to constrain the camera poses

and the depth. First, a subset of the 3D structure is reconstructed from a pair of images.

Then, SfM alternates between estimating the pose of the next image to integrate and the

depth of its local features. The whole pipeline relies on local feature matching so this

application is a good example of the importance of robust features.

Another type of localization is visual Simultaneous Localization And Mapping (SLAM) [44,

131]. An autonomous system must reconstruct an unknown environment and localize

itself inside it. The first step is called the mapping and the second the tracking. One
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way is to sample images during the exploration and, once again, compute pixel corre-

spondences between successive images. This generates geometric constraints used to

estimate the camera displacements and sparse depth of the scene. As the robot goes,

it integrates these successive displacements and the 3D information into a trajectory

localized in the 3D scene.

Hand-crafted Local Features. Early methods rely on hand-crafted detection and de-

scription. This means the criteria to select keypoints are manually set, as well as the

pixel statistics to describe it.

One of the most popular detectors is the Harris Corner [71]. The idea relies on the

intuition that corners are distinctive and repeatable in the image. So keypoints are pixels

belonging to corners and they store the corner’s scale with respect to the image scale. In

practice, a corner is characterized by strong variations of the image gradients in two

directions. This phenomenon is quantified by the Harris corner function: it compares

the amplitude of the gradient variations over two orthogonal axes. If only one is high,

the pixel probably lies on an edge and not a corner. If both are high, the pixel lies on a

corner. These two amplitudes are computed as the eigenvalues of the Hessian matrix in

the second-order approximation of the gradient variations around the keypoint.

While corners are robust to illumination and viewpoint variations, they are not con-

sistent when the image scale changes. This motivates [124] to integrate automatic scale

selection [111, 193] to define the Harris-Laplacian detector. It looks for corners over mul-

tiple scales and keeps only the most prominent ones. The bottleneck of this approach is

the duration of the Hessian computation. Bay et al. [21] address this problem with the

Speeded-Up Robust Features (SURF) feature. Given an image, they compute the image

integrals [192] to reduce the Hessian computation to only 3 additions. Another of their

contribution is a descriptor defined as a 2D Haar wavelet transform of the keypoint re-

gion. This amounts to decomposing the image patch over a finite basis of patterns.

While SURF benefits from the Wavelet invariance properties, the gold standard for

local features stays SIFT [115, 116]. The first difference with the previous approach is

that SIFT detects invariant blobs rather than corners. A formal approach to do so is

to select maxima of Laplacians of Gaussians of the image. But a faster computation

based on the Difference of Gaussians (DoG) of the image is used in practice. The blobs

are detected over multiple scales of the image. The resulting keypoints are image pixels

with the scale at which they are found. The keypoint location is estimated with precision

even lower than the pixel by interpolating the DoG signal both in scale and in space. As

motivated previously, such a resolution is crucial for localization applications.
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The SIFT descriptor is computed from the pixel statistics over a circular region around

this keypoint and proportional to its scale. First, the canonical orientation for the patch

is estimated by the direction with the highest cumulative intensity gradient. The patch

is then divided into sub-patches and for each sub-patch the orientations of the pixel

gradients are accumulated in a histogram. The descriptor is the concatenation of all the

sub-histograms. In practice, SIFT has proved its robustness over the decades against a

wide range of datasets. In theory, the robustness to scale is explained by the multi-scale

detection and scale adaptive description. The robustness to orientation is provided by

the patch rectification to its canonical orientation. And the robustness to illumination

is enforced by the use of image gradients for the detection and the description. Gradient

is usually invariant to global intensity changes, such as the ones caused by a variation in

illumination.

Another approach similar to blob detection is introduced in [121]. The Maximally

Stable Extremal Region (MSER) detector segment image areas that are the most invari-

ant to affine transformations of pixel intensity. Formally, given an intensity threshold, it

segments contiguous areas which intensity is higher (or lower) than the threshold and

that stay invariant to a finite range of such thresholds. This design has the advantage of

intrinsically detecting image areas that are robust to illumination variations.

While the previous approach, and more specifically SIFT, offer robustness against a

wide range of variations, they were previously deemed too slow and memory-greedy for

real-time applications such as SLAM [44] or autonomous navigation [42]. This moti-

vated part of the research effort to tackle efficiency in addition to robustness. FAST [151]

proposes to detect corners using an efficient pixel test. A pixel is a corner only if its in-

tensity is lower (or brighter) than most of the pixels located on a circle around it. The au-

thors note that the test can be speeded up by selecting only a subset of these neighboring

pixels. The subset and the order of pixels to test is optimized to minimize the number

of pixels needed to correctly classify a pixel as a corner or not. They derive a classifica-

tion tree where each node is a pixel of the circle and keep only the most informative one

for the binary decision. In a way, FAST is one of the first learning-based detectors. This

detector is fast enough for real-time application, and its extension AGAST [118] is even

faster. Another extension improves the pixel selection strategy [152]. But the main limit

of FAST is that it is not tailored to handle scale variations in the images.

The ORB feature [153] tackles this issue by running the FAST detector on multiple

scales of the same image. It also augments the BRIEF [32] descriptor to make it robust to

rotation changes. Given an image patch, the BRIEF descriptor aggregates the responses
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to manually defined binary tests between pairs of pixels. An example is to sample ran-

domly 128 pairs of pixels and test whether the intensity of the first is higher than the

second. The main advantage of such a descriptor is that it is binary. So during the fea-

ture matching, the descriptor distance can be a simple bit comparison. This is especially

suitable for robotics and other real-time applications. However, the ORB’s authors ob-

serve that BRIEF is sensitive to in-plane rotations. So they compute the canonical patch

orientation and rotate the pixels before aggregating the test binary responses.

The BRISK [108] feature also builds on the FAST and BRIEF approaches. It runs FAST

on multiples scale of the image and generates a FAST score map. As in SIFT, keypoints

are local extrema of these score maps over both image and scale spaces. The descriptor

is analog to BRIEF in that it aggregates binary responses of pixel comparisons. However,

they sample the pixels according to a circular pattern around the keypoint, in a similar

fashion to the Daisy descriptor [184]. The difference with [184] is that they sample fewer

pixels to keep the descriptor more compact. [7] also investigates the best pixel pattern

to sample the binary tests.

KAZE [8] breaks with the quest for computational efficiency and tackles the problem

of the scale space derivation. The standard way to derive the scale space of an image

uses the Gaussian kernel but this induces a loss of resolution that hinders the precision

of the keypoint localization, and then the performance of the target application. One

solution already introduced in SIFT is to interpolate the keypoint location in the scale

space. Instead, KAZE proposes to derive the scale space with other filters that better pre-

serve the localization information. It relies on existing filtering work from [194] to derive

a data-adaptive scale space where blurring is reduced over locations likely to hold key-

points, such as object boundaries. This allows for better keypoints localization, which is

crucial for most of the applications. Similar work can be found in [35, 139].

Even though these hand-crafted methods have proven to be successful, recent ap-

proaches prefer to rely on machine learning and more specifically deep learning.

Detector Learning. One of the first detectors trained for robustness to drastic natural

illumination variations is TILDE [191]. It is optimized to select consistent keypoints on

the Webcam dataset that depicts six static outdoor scenes over a wide range of natural

illumination and weather, e.g., sunset, sunrise, night, overcast, fog. Inspired by hand-

crafted approaches, the model generates a score map in which local maxima are the

selected keypoints. The regression model is supervised so that the local maxima occur

at the locations of SIFT robust keypoints. A SIFT keypoint is robust if it is consistent over

at least 100 images of the same scene.
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TILDE is one of the most robust detectors on the Webcam dataset but one drawback

is that it relies on the hand-crafted SIFT for supervision. This biases the keypoint selec-

tion towards what the SIFT criterion would already select. A solution is to train a model

without supervision as in [158]. The authors train a neural network to rank keypoints

according to their robustness to random hand-crafted transformations. Then they keep

the top/bottom quantile of the ranking as keypoints. Here, the supervision signal is the

robustness of the keypoints. Analog work is proposed in [107, 209, 207] where the gen-

eral idea is to keep pixels that are consistent over local image transformations.

Recent experiments show that CNN can be a relevant source of keypoint locations.

The CNN’s feature maps were previously deemed too coarse to carry local information.

But the experimental study of Long et al. [113] suggests that features correlate to local

image regions at a lower resolution than their large receptive field. This work is one of

the motivations of the contribution in Chap. 5: ELF [24] extracts localization informa-

tion for the feature maps and also uses these maps to define the descriptor. The result-

ing features are as performant as when the CNN is specifically trained to detect features.

Following work [51, 166] comforts the assumption that the feature space of a trained

CNN embeds relevant information for keypoint detection.

Although unsupervised approaches present the advantage of breaking with human

bias, current SoA is reached either by SIFT, heavily supervised methods or recent ap-

proaches that leverage CNN representation space.

Descriptor Learning. Even though recent research favors the joint training of detector

and descriptor, there is significant literature on individual descriptor learning. Most of

it follows this general pipeline: train a neural network to generate compact descriptors

of the image regions so that these representations are close if the content is similar, far

otherwise. Papers differ in the network architecture they use, the definition of descriptor

similarity, whether they work on image patches or the whole image, and the training

loss.

The first deep descriptors rely on Siamese networks [39] fed with image patches.

They are trained so that the descriptors of matching patches stand close to each other.

A standard loss is the contrastive loss [68]: it minimizes the distance between matching

descriptors and maximizes it when they do not. Following works investigate the choice

of the training loss: DeepDesc [168] and [204] use a hinge loss between the two descrip-

tors, [73] uses the mean Average Precision metric as a loss, Matchnet proposes to learn

both the descriptor network and the similarity network [69]. In addition to minimiz-
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ing the descriptor distance, L2-net [180] also constrains the network’s feature maps for

matching patches to be close.

Instead of comparing only pairs of descriptors, [20, 100, 209] use a triplet loss: three

patches are fed to the same network, two of them match and the third does not. The

triplet loss forces the distance between the non-matching descriptor to be higher than

the distance between the matching ones by a certain margin. Inspired by Lowe’s ra-

tio, [127] minimizes the distance between matching patches but then differs by maxi-

mizing the distance between the patch and his second nearest neighbor. [91] points out

the lack of constraint of the feature distance as an issue. In practice, most of the models

converge but this has raised questions on how to efficiently chose negative examples. In-

vestigating how to mine these negative examples is a recurrent problem [127, 146, 147].

Rather than generating descriptors, [200] proposes to learn a post-processing step

that classifies matching pairs as correct or not. Another line of work rather focuses on

the network architecture to make the descriptors robust rather than on the loss or the

data: [56] introduces a pooling method to make descriptors rotation invariant. Simi-

larly, [40] integrates a spatial transformer network [78] in their architecture.

In the detector learning literature, experiments from [113] suggest that the represen-

tation space generated by a trained CNN embeds information on keypoints at a satis-

fying resolution. At the same time, [57] shows that the feature space of a CNN is also

discriminative enough to extract local descriptors from it. Their results show that such

descriptors even compare to SIFT and can be used for other standard vision tasks [164].

Even though CNNs are the most widespread learning models in computer vision,

other models are also relevant. [189] defines a descriptor as a weighted combination of

image responses and the combination is optimized using boosting. [170] augments the

SIFT Histogram of Oriented Gradients (HoG) descriptor by learning a pooling pattern

over it and a reduction step.

The current standard for local descriptor training is ‘Universal Correspondences Net-

work (UCN)’ [40]. Given a pair of matching images, the network generates a feature

map for each. For each keypoint in the image, a 3d voxel is extracted from the feature

map that corresponds to that point location. The network is trained with the corre-

spondence contrastive loss: the voxel distance between matching keypoints should be

minimized and the one between non-matching points should be higher than a margin

m. It is integrated into the recent SoA end-to-end learning methods SuperPoint [46].

Another efficient loss is the triplet loss that contrains the difference between matching

and non-matching distance to be higher than a margin m. Examples comprising this

loss include [20, 127] and the recent D2-Net [51].
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End-to-end Learning. Instead of separately training detection and description, recent

research favors joint or end-to-end learning.

One pioneer of this approach is LIFT [199]. The method comprises three CNNs, one

for each of the standard steps: keypoint selection, estimation of the canonical orienta-

tion, and keypoint description. They first start with the description training as in [168]:

the network is fed with a triplet of patches with two of them matching and the third one

is a negative example. The descriptor is trained to produce similar descriptors for the

matching patches and a distinct one for the negative patch. They rely on SfM to gener-

ate pairs of matching patches: once the 3D environment is reconstructed, they sample

3D points and crop the images around the corresponding 2D image points. The trained

descriptor is then used to supervise the orientation network [128] on pairs of matching

matches. This second network should output the patch orientation that minimizes the

descriptor distance between the corresponding patches. Finally, the detector is inte-

grated with the two previous networks and trained. Given an image, it outputs a score

map in which local maxima are the keypoints’ location. The three networks are jointly

optimized so that matching detected keypoints have close descriptors, non-matching

ones have distinct descriptors and non-keypoint locations are not detected.

The same authors later propose an optimization to train the detector, the orientation

estimator and the descriptor jointly [135]. They rely on images for which the depth and

the camera extrinsics are available, or rely on SfM to generate it. The descriptor network

and the optimization are similar to LIFT’s ones. Again, the detector network outputs a

score in which local maxima are the keypoints location. The first difference lies in the

multi-scale processing: they resize the detector’s feature map before the output at mul-

tiple resolutions. This generates score maps at multiple scales. These are then resized

to the image resolution and fused. The same feature map is leveraged to estimate im-

age orientation at each pixel by feeding to a distinct convolutional filter bank. This is

more efficient than the multiple feeds in LIFT. The detector is trained on two images

depicting the same scene and for which the camera extrinsic and the depth are pro-

vided. This allows warping the first image over the other, i.e., project the pixels of the

first image onto the second. The detector is trained to generate consistent score maps

over the two images. This is measured by how well the score map of the first image is

aligned with the second’s one after warping. In practice, the first score map of the im-

age is post-processed before the warping. The detector is also constrained to output the

same orientation and scale for the detected keypoints, i.e., the score map maxima. LF-

Net almost doubles the performance of LIFT even when they are trained on the same
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data. This suggests that although LF-Net benefits from more training data, this novel

joint optimization is beneficial.

LF-Net reaches SoA performance on urban outdoor scenes but SuperPoint [46] is

slightly more successful on indoor scenes. One of the main strengths of SuperPoint is its

self-supervised approach and the high amount of data it was trained on. It first trains

a detector on synthetic shapes to detect shape junctions as keypoints: this teaches the

network that corners are patterns. The detector classifies each pixel as junction or not at

a lower resolution than the image. The loss is a simple cross-entropy loss. The network is

adapted to natural images on the MS-COCO [110] dataset. Once again, self-supervision

is used: for each image, they sample pseudo-ground-truth keypoints and warp the im-

age with random homographies. They then train the detector to detect the warped key-

points on the warped image. A key element to the CNN performance is the homography

sampling (details in [46]). Once the detector converges, they train the descriptor using

the previous work from [40]. The network generates feature maps for a pair of images.

For each keypoint in the image, a 3d voxel is extracted from the feature map at the point

location. The network is trained so that the distance between these voxels is minimized

for matching keypoints, and maximized otherwise. Using synthetic homographies tells

whether the keypoint match or not.

Recently, the philosophy supporting better exploitation of CNNs representation space

has regained interest [57, 113]. D2-Net [51] leverages the localization information present

in the trained CNN feature map to detect keypoints. The CNN is trained with the triplet

margin loss. One of the feature maps is selected to extract keypoints from. Keypoints

are pixels that are both local spatial maxima over one channel and maxima along the

feature channels. Rather than defining an individual detection loss, they only extend

the description one by weighting the triplet loss. The weight encourages the network to

generate high feature scores for locations that are well described and improve the fea-

tures for corresponding local maxima that have poor descriptors.

Although most of the end-to-end learning methods push the SoA in terms of match-

ing scores, they require a significant amount of data and complex optimization. In anal-

ogy with the past efforts to make hand-crafted features more efficient, this thesis tackles

the problem of reducing the training overhead while maintaining the data-specific of

these features [26]. This is the contribution of Chap. 5 that relies on CNN already trained

on a standard vision task. It then extracts the relevant information already embedded

inside the network for local feature detection, which requires no training nor supervi-

sion. A score map is generated from the gradient of the feature map norm with respect
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to the image in one backward pass. A standard Non Maxima Suppression (NMS) sam-

ples the local maxima as keypoints. One of the CNN feature map is interpolated at the

keypoint locations to generate descriptor vectors.

2.3 Global Features

A global image feature is a descriptor that characterizes the whole image rather than only

a local region as in the previous section. A standard way to proceed is to detect local

features, describe them and aggregate them. Existing approaches differ on how they

perform each step and whether they are hand-crafted or learned. The rest of this section

describes some applications and reviews the main standard descriptors. See [211] for an

extensive literature review.

Figure 2.10: Example of day/night challenge for scene recognition. Question: which
images match with the middle image: the left one or the right one? Answer: The left
and middle image show the same Christmas tree. The right image shows another tree.
A global descriptor defines a vector that summarizes the whole image. It is ‘good’ when
the descriptors are similar for the first two images and different than the third one.

Applications. The main application for global features is scene recognition. It is the

process by which a place that has been observed before can be identified when revisited.

It is usually framed as an image retrieval problem: images from the visited scenes are
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characterized by descriptors and stored in a database. When presented with a query

image, the system retrieves the database images with the descriptors most similar to

the query’s one. The most popular example is the Google Image browser: you query

Google with an image and it outputs the set of images depicting the same scene. Current

applications work toward other types of outputs such as the Wikipedia page describing

the scene content or a map location. In general, it serves as a pre-processing step before

finer localization. In SLAM, it is used for loop closure, in SfM it helps to select the next

image to register.

Hand-crafted Methods Early methods define global descriptors by aggregating local

features such as SIFT. One of the first aggregation is inspired by text descriptions. For

example, two texts are usually deemed similar if they exhibit similar word frequencies:

a reinforcement learning paper is much likely to use the words ‘state’ and ‘rewards’ than

a computer vision one. So a characteristic and compact representation of the text is a

histogram of its text words. Then, two texts are similar if their histograms are. One way

to choose the relevant words is to analyze word frequencies over a corpus and keep the

most informative. An analog approach is adopted by the Bag of Words (BoW) [142, 172]

approach, which is a gold standard for image retrieval. Here images are analog to text

documents, and local features to words.

The first step is to compute the visual words over which the histogram is computed.

Words are visual features computed by clustering the local features over a corpus of im-

ages. The second step is the image description. A new image is described by the distri-

bution of its local features with respect to the visual words. For example, BoW computes

a histogram over the visual words. Each feature is assigned to the nearest visual word

and the bin corresponded to this word is increased. In practice, the image corpus used

for this step is spatially disjoint from the image on which the scene recognition is per-

formed.

The BoW approach has the advantage of being fast and relatively compact. For ex-

ample, it is used for loop closure in ORBSLAM2 [131]. A typical value for the number of

centroids, i.e. the descriptor size, is 64. This can still be too large when the number of

images reaches several million. So a line of work is to reduce the dimensionality of such

descriptor while preserving its discriminative properties [81, 143]. Another area for im-

provement is to refine the statistical model of the feature distribution over the visual

words. Instead of a histogram, Fischer Vector (FV) [140, 141] fits a mixture of Gaussians

over the visual words. The image descriptor concatenates the gradient of the probability
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of the local features belonging to one of the Gaussians. Principal Component Analysis

(PCA) is used to reduce the dimensionality of the vector.

Contemporary work introduces the Vector of Locally Aggregated Descriptors (VLAD) [82,

83] to improve the distribution model while maintaining the simplicity of BoW. As the

authors put it, ‘the VLAD is to the FV what k-means is to GMM clustering’ [83]. The

computation of the visual words stays the same. However, rather than only storing the

cluster assignment as in BoW, they store the distance vector between each local feature

and its nearest visual word. Authors show that this is a special case of the Fusher Vector

derivations where all the Gaussians have the same weights and zero variance. The re-

sulting descriptor is larger than in the previous methods so dimensionality reduction is

necessary to make it practical.

In parallel to contributions on the feature distribution models, another line of work

researches how to post-process the global descriptor. Reducing the dimensionality of

the descriptor is one example. Another issue that arises is the strong correlation that

can exist between local features. This occurs when, for example, the scene holds repet-

itive patterns, which leads to similar local features. The resulting descriptor is an un-

balanced feature distribution over the words since similar features contribute to the

same visual word. One solution is to whiten the features to reduce their correlation [79].

Other approaches rely on the descriptor normalization [10] or weight the feature con-

tributions [188]. In addition to uniformizing the previous approaches under a common

framework, [185] also investigates local descriptor selection schemes proposes to filter

out the ones that do not contribute to the similarity measurement.

A common limit to existing approaches is their robustness to extreme variations in

the image appearance such as day/night or seasonal changes. One reason is that the

local features on which the descriptor relies are not robust to such variations either.

One solution is to generate synthetic views of the query image to bring it closer to the

database ones [187]. The next paragraph addresses another line of work that aims at

improving local features. The contributions in Chap. 3 and 4 fall into this category. They

break with the standard pixel-statistics based approaches and propose to leverage ge-

ometry and semantics to define local features.

Learning Methods Learning-based methods usually rely on the highly informative rep-

resentation space of CNNs [57, 113].

One of the first contributions uses the CNN’s fully connected layer’s as the global

image descriptor [16]. A first experiment shows that such a vector is as descriptive as
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existing methods, even when the network is trained on an unrelated task, such as Im-

ageNet classification [98]. A second experiment improves these descriptors by training

the same network to classify landmark images over 1000 labels. The intuition is that

such training constrains the fully connected layer to embed information relevant for the

landmark recognition so it is better suited for retrieval. The resulting descriptor has a

higher dimension that its predecessor but this is addressed with a simple PCA. The fol-

lowing work from the same authors then turns to manual aggregation of convolution

features by sum-pooling rather than relying on the fully connected one [15]. Another

way to aggregate these features is global max-pooling [14]. Although they reach satis-

fying performance, these aggregations fail to preserve the local feature locations, useful

for geometric post-processing. This is addressed in [186] by computing image-region-

specific descriptors: features are pooled over the region rather than the whole image.

The global image descriptor is computed by the sum of all the regional features. This

approach is refined by learning which regions are relevant to describe and fuse in the

final descriptor [64]. One of the latest approaches [179] relies on a landmark detector to

extract bounding boxes relevant to the scene recognition and select a subset of regions

to keep with a filtering analog to ASMK [185]. Each region is described with a VLAD de-

scriptor with the deep local features DELF [133] specifically trained for landmark image

retrieval.

DELF follows the same philosophy but at the pixel-scale. It builds upon the previous

landmark classification network [16] and fuses the convolutional features into an image

descriptor with sum-pooling as in [15]. Their contribution resides in the training of im-

portance weights for each feature before their aggregation. These weights represent how

relevant a feature is for the landmark recognition. They are modeled with an additional

layer that takes the last convolutional layer and outputs a weight for each feature. The

weighted features are then fed to the same fully connected layer as before for output a

landmark label. The network is trained on landmark classification: the authors fix the

convolutional layers and only update the weights layers. This allows training the weights

without direct supervision.

NetVLAD [9] relies on stronger supervision to train a deep version of VLAD [83]. Both

local features and visual words are learned in an end-to-end fashion. VLAD computed

local features over the images and accumulated the residues between each feature and

its nearest visual word, computed in a previous step. In NetVLAD, dense local features

are generated by a CNN and also assigned to visual words. However, the local features,

the visual words, and the assignment are jointly learned. These operations must be dif-

ferentiable to train the network and this is not the case for VLAD’s hard assignment. So
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it is replaced with a soft-assignment step and the final output is an image descriptor.

The network is trained over image triplets where two images depict the same scene un-

der various conditions and the third one is different. NetVLAD is optimized to generate

similar descriptors for the matching images that are different from the third one by a

margin manually defined. These image triplets are carefully selected at each step and

require to know the camera poses for the training data. For a given query image, the

positive image is the matching one with the nearest descriptor. And the negative image

is the one with dissimilar content but with the nearest descriptor. The network is trained

to bring the positive pair nearer and push the negative descriptor further.

Several works build upon NetVLAD. For example, [92] proposes to weight the NetVLAD

feature before the soft-assignment step, which recalls the DELF philosophy. Another

work aims at improving the delicate triplet selection, on which NetVLAD heavily de-

pends on the triplet selection. For example, the camera poses available for most dataset

have only GPS precision (∼ 5 meters) so two images supposedly matching can have only

a little or no overlap. This is addressed in [146] that leverages the 3D structure of the

images: a pair of images depict the same scene when they depict the same 3D points.

This allows modulating the ‘positiveness’ of the pairs, i.e., how many points are com-

mon across images. The same applies to negative pairs and this selection is relevant to

schedule the training on increasingly hard pairs.

Although the previous global descriptors reach impressive performance, it is com-

plex to explicitly constrain the invariance of the local and global descriptors. This moti-

vates following approaches to explicitly encode invariance properties in the descriptors

using semantic information. In the same line as the selective descriptor approach, [129]

weights the local descriptors depending on their semantic label before aggregating them

in a BOW fashion. For example, in the context of urban scene recognition, vegetation

features are down-weighted since they are more distracting than informative. [11] aug-

ments the features with semantic information to better filter obvious outliers. [182] uses

semantics to mask the image and aggregate region descriptors. Regions are manually

defined and the descriptor is made of a histogram over the pixel labels and a HoG-based

descriptor over the masked pixels. VLASE leverages the pixel semantic distributions only

to describe an image [201]: given that semantics stays mostly invariant to long-term ap-

pearance variations, the descriptor is relatively robust to such changes. They use a se-

mantic edge network [202] to generate a distribution over each pixel. It represents the

pixel probability to belong to a semantic edge of a given class. Local features are pixels

with a probability higher than 0.5 to be an edge pixel and they are aggregated in a VLAD

fashion.
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Semantic Features for Localization Such semantic local features also benefit structure-

based localization that are invariant over long periods and enable pixel correspondences

that stay consistent over images with strong appearance variations. A second contribu-

tion of [182] is a structure-based camera pose optimization. Given a reference seman-

tic 3D representation is available, it takes a query image with its initial pose computed

with the retrieval procedure previously described. The pose is then refined by comput-

ing the camera pose that best projects the 3D semantic points to their corresponding

pixels. A 3D point and a pixel correspond when they have similar labels. Although

this reprojection error appears under-constrained, a careful selection of the labels to

project provides satisfying localization results across seasons. These semantic corre-

spondences are also used in [183] to make SfM more robust to appearance variations:

the 2D-3D matches are scored by their semantic consistency. These values are used as

weights during the RANdom SAmple Consensus (RANSAC)-based camera pose estima-

tion: consistent matches are given higher importance. [162] embeds both semantic and

3D geometric information into a novel descriptor. They are generated by convolutional

Variational-Auto-Encoder (VAE) trained for semantic volume completion. These local

descriptors are then used in the standard SfM pipeline.

The semantic constraints can also be integrated into bayesian approaches. VSO [109]

integrates them with the standard odometry ones to recover both the camera poses and

the 3D representation over a set of images. The optimization loss has two terms: the

first one embeds pixel matches based either on their intensity (direct approach) or their

feature similarity (indirect). The second term constraints the camera poses and 3D lo-

cations to best approximate the semantic distribution over the 3D point clouds given

dense semantic maps for each image. [175] follows the same approach and additionally

takes advantage of the sequentiality of the images in a SLAM fashion. They integrate

the semantic matches in a Bayesian filter where the observations are the pixel semantic

labels. The 2D-3D semantic matches are leverages to define the observation probability.

They show that this optimization achieves localization results on par with filters based

on matches derived with standard high-dimensional features such as SIFT. Their filter

has the advantage to rely on a much denser representation, which is pivotal for robotics

applications. Following work [104] adapts the segmentation to make it better suited for

this localization. In standard segmentation, the goal is to cut semantic units that have

a human interpretation out. In the paper, a semantic unit is an arbitrary image region

common to several images. For example, a tree segmented with the first approach would

output a monolithic bloc over the tree. So any tree pixels can match with one another

and this does not constrain the localization enough. With the second segmentation,
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the trees would be divided into several semantic units: one for the trunk, one for the

lower foliage and one for the upper foliage for example. This provides more matches

constraints to exploit for the localization.

The two previous approaches are mostly applied to environments with a mix of ur-

ban and bucolic elements. This thesis differs in that it addresses the localization prob-

lem on bucolic scenes with few or no city structures. Also, it tackles the localization

problem only at the image level, i.e., the visual scene recognition problem. The pose

of a query image is approximated with the one from the nearest database image. This

approach was favored over the previous ones for it was deemed easier to tackle in these

highly challenging images and helped to better grasp the visual properties of bucolic

images. Research on finer localization is the object of future work.

Concurrent work [61] adopts a similar approach: it converts images into a semantic

graph, uses temporal information to fuse the graphs over time and generates a global

database graph. Then, given a new image expressed as a semantic graph, image retrieval

is reduced to a graph matching problem. However, this approach assumes again that the

environment is rich in semantic elements to avoid ambiguous graphs. This is not the

case in bucolic environments which leads us to leverage edges as another robust and

discriminative image signal.

2.4 Saliency

Visual modeling is the problem of learning how humans observe the world. One specific

is saliency learning, i.e. learning the human’s visual attention over pictures [29]. Atten-

tion is a general concept covering all factors that influence selection mechanisms, and

saliency characterizes some part of a scene that stands out. Another line of work studies

the gaze that is the coordinated movement of the eyes and the head. This section pro-

vides a brief review of saliency learning as it motivates the novel detector introduced in

Chap. 5 of this thesis. Extensive reviews are available in [29, 59].

Saliency Learning There are mainly two categories of saliency: the bottom-up one and

the top-down one. The bottom-up saliency represents the attractiveness potential of an

image region. For example, the eye is automatically attracted to the soldier in the center

of the image Fig. 2.11. One interpretation is that the peculiarity of such a figurine attracts

our eye (bottom-up). Another explanation is that the figurine is the main information

in the image and that the brain is trained to look at what is informative in the image

(top-down).
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Figure 2.11: Left-Right: Soldier image - Color Saliency - Black-White Saliency. The
saliency is generated using the DeepGazeII saliency model [101].

Early methods rely on low-level local features computed in a previous step such

as pixel orientation, colors, and orientation to learn attention. Bayesian models [89,

208] learn the attention distribution over a set of images. It relies on a set of images

with pseudo-ground-truth saliency collected either with manual labeling or with eye-

trackers. Information-theoretic models maximize information sampled from the pic-

ture in an analog way to the information-driven exploration problem in robotics [97].

One application is autonomous visual exploration [45] where the next step is sampled in

the most salient direction of the environment. Decision theoretic models define salient

regions as the most useful one to complete a task [67].

The limit common to these approaches is that they rely on hand-crafted visual fea-

tures to learn saliency. As for other vision domains, recent approaches propose to learn

jointly the visual features and the saliency. DeepFix [99] and DeepGazeII [101] are among

the best saliency models as ranked by the MIT Saliency Benchmark [87]. Despite recent

efforts in uniformizing saliency metrics [31], evaluating such models is not as straight-

forward as camera pose regression error for example. One reason is that saliency is a

more complex notion and each metric evaluates a property of the learned model.

A recent and popular application of saliency is the integration of ‘attention models’

in the training of unrelated models. DELF [133] is such an example where weights are
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trained to give more importance to features relevant to the landmark’s classification.

This is analog to learning which features are the most salient where ‘saliency’ means

‘visual usefulness’.

CNN Saliency Another popular application for saliency is CNN’s visual interpretability.

For example, it allows locating the image regions that motivate a trained classifier to say

whether the image holds a cat or a dog. Although there is no quantifying metric for

interpretability, it provides insightful qualitative results that can be used to pre-process

images. Image regions deemed to hold useless information, or to be visual distractor

can be masked. One example is object retrieval in cluttered environments [167]: given a

cluttered scene, a trained CNN filters out most of the noise to keep information on the

most salient objects. The saliency queried from the CNN can be used to mask the image

before feeding it to a standard object retrieval pipeline.

Various computations have been explored to query trained CNN for saliency. The

underlying idea is to compute the correlation between the CNN features and the image

space, or between features at different levels. The approaches differ by their mathemat-

ical derivations and the handling of the non-invertible operations such as Rectifying

Linear Unit (Relu) or max-pool.

One of the first visualizations aims at reconstruction images from logit scores and

classification saliency [169]. The class saliency visualization queries the network about

the spatial support of a particular class in the image. It is computed as the derivative

of the class logits with respect to (w.r.t) the image space. This gradient has the same

dimensions as the image. For each pixel, the gradient value expresses how much the

class logit is correlated to this pixel, i.e., how much this pixel contributes to the logit.

Assume that a trained classification network is fed with a cat image and classifies it

as a cat. The last fully connected layer of the network generates a logit vector, where

each entry is the probability for the image to belong to a class. In this example, the logits

for the cat should be high and the others low. The authors aim at generating an image

from scratch that will produce a logit with the same distribution. To do so, they learn the

image pixels while freezing the network’s weights. The image is initialized with zeros,

fed to the network and iteratively updated to increase the cat logits. The pixel ranges are

constrained with regularization. The optimization relies on gradient descent to update

the pixels in the direction that increase the logits. This requires the computation of the

derivative of the logit score w.r.t the image variables. This is achieved by backpropagat-

ing the logit score until the image space.
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The following work proposes to visualize what contributes the most to feature acti-

vations instead of the classification result [206]. A trained classification network is fed

with an image and generates a set of features maps and a classification score. The au-

thors derive a computation to observe which of the image regions and structures ‘excite’

each layer of a given feature map. For each feature map, one layer is sampled and all

the others are set to 0. The authors feed this modified feature map to a deconvolution

network which can be seen as the network running the approximate inverse operation

of the first classification network. They define alternative inverse for the non-invertible

operations such as Relu and max-pool. In practice, the operation is similar to backprop-

agating the modified feature map w.r.t the image and where the backpropagation input

is the modified feature map. The differences lie in the handling of the non-invertible op-

erations. The result has the same dimension of the input image and with non-zero val-

ues on the pixels that contribute to this feature map. The derivation for ELF in Chap. 5

differs in that the whole feature map is backpropagated back to the image space with-

out modification. Also, the output gradient is post-processed to make it better suited for

local feature detection.

[117] builds upon the two previous works and reconstructs images from feature maps.

It differs from [169] in that the image must generate a target feature map instead of tar-

get logits. It builds on the derivations [206] to compute the optimization gradients. Once

again, an image is fed to a trained classification network to generate feature maps. The

authors derive an image from scratch so that it leads to the same feature maps. They

feed the trainable image to the network, compute a regression loss between the out-

put features and the target ones, and backpropagate this loss through the network to

the image space. The backpropagation outputs a gradient with the shape as the image.

The image is iteratively updated until convergence and the resulting image has similar

content as the target image. Similar optimization is employed in the neural style trans-

fer [60] discussed in Chap. 7. Once again, ELF differs in that the feature map itself is

backpropagated back to the image space and not a feature loss.

Instead of image reconstruction, the following works mostly focus on the gradient

derivation for classification. [174] dubs its derivation ‘Guided Backprop’ and proposes to

replace the pooling operations with large convolution stride to avoid the non-invertible

pool operation. When backpropagating through Relu operations, they set the local back-

prop output to zero when the forward and the backward inputs are negative. Con-

trary to [206] that computes the derivative of the classification score of a label w.r.t

the image, Grad-CAM [163] derives it w.r.t feature maps, and sums them with impor-

tance weights representing how much each map contributes to the classification score.
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DeepLIFT [165] varies in that it defines reference values for the logits and the CNN fea-

ture maps, as when one sets the zero value of a balance. For example, a reference value

can be the logits and the features generated from a noise image. When the trained net-

work is fed with the image to classify, DeepLIFT computes the gradient of the difference

between the logits and the reference ones w.r.t to the features difference. The authors

argue that this provides a smoother gradient. Integrated gradients extend this deriva-

tion by accumulating the feature gradient w.r.t several intermediate inputs interpolated

between the reference image and the image to classify. In practice, only a finite number

of images are considered. One advantage is that the resulting gradient is less sensitive

to image variations such as illumination changes. Similarly, Smooth-grad [173] averages

several saliency maps over multiple instances of the same image disrupted with Gaus-

sian noise.

All these approaches have in common that they derive saliency maps to explain a

CNN’s output. The various operations all aim for a smooth and fine delimitation of

the image region that contributes the most to the CNN. Instead, this thesis leverages

CNN saliency to define a novel local feature detector where features are located at the

saliency’s local maxima. It differs from the previous approaches in that it looks for salient

regions independently of the image classification label. In ELF (Chap. 5), saliency is de-

rived as the gradient of the feature map norm w.r.t the image. Previous methods usu-

ally compute the gradient of the classification score with either the feature maps or the

image. The derivation most similar to ELF is the Guided Backprop [174]. A minimal

difference lies in the Relu handling: ELF computes a simple backpropagation of the fea-

ture over the image space whereas the Guided Backprop masks the input and output of

each local backpropagation based on their sign. The main difference with all the previ-

ous approaches is the investigation of the feature space of which saliency is suitable for

local feature detection, and the post-processing of such a saliency map. The resulting

local detector proves to be as relevant as when the CNN is specifically trained for feature

detection.
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Part I

Global Features Robust to Seasons
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The first part of this thesis addresses the problem of bucolic scene recognition across

seasons. It frames the problem as an image retrieval task where a query image under a

specific light and season conditions is matched to the most similar image available in

a database. This relies on the definition of a compact and informative summary of the

image called a descriptor. Current retrieval methods are mostly tailored for urban envi-

ronments for which the main challenge is to describe the image in a way that is robust

to day/night variations and extreme viewpoints changes [84, 133]. Instead, the next two

chapters focus on bucolics environments such as natural scenes with low texture and

little semantic content. The nature of the variations is different and this leads to a differ-

ent approach to image description. This part introduces two global image descriptors

computed from the image’s semantic and topological information. They achieve results

on par with similar approaches [182, 201] on two multi-season datasets [66, 157] and

even generalize to urban environments.
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Chapter 3

Coarse Features for Long-Term Visual
Scene Recognition

1

Scene recognition is the process by which a place that has been observed before can be

identified when revisited under different conditions. Visual features are used to describe

images for place recognition. This task is usually cast as image retrieval where a query

image is matched to the most similar image available in a database. The search is com-

puted on a relevant image representation of much lower-dimensional space. Such en-

coding is usually the result of aggregating local image features whether hand-crafted or

learned. The challenge is then to define features such that images of the same scene are

near to each other despite their change of appearance due to environmental changes.

Most of the research effort on image-based place recognition is designed for urban

environments [9, 16, 61, 82, 83, 133, 141, 172]. For these scenes, the main challenge

is to design a global image description invariant to wide viewpoint variations and ex-

treme illumination changes. However, robustness to seasonal variations is not critical

because the image content is usually invariant to seasons. For example, a building is

less likely to change over the course of the year than a tree. This is not the case for

bucolic environments, such as natural scenes with low texture and little semantic con-

tent [66, 157]. There, the main challenge is to handle the variations in visual appearance

across time such as illumination, weather, vegetation state in addition to the viewpoint

changes. This chapter answers this problem by fusing hand-design and machine learn-

ing to define a global image descriptor based on semantics and geometry. The proposed

approach selects semantic edges as relevant locations and describes them with their

wavelet transform. This descriptor allows SoA performance for image retrieval on two

multi-season environment-monitoring datasets: the CMU-Seasons and the Symphony

Lake dataset.
1This chapter describes contributions to be published in ICRA 2020 [23].
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Figure 3.1: WASABI computes a global image descriptor for bucolic scene recognition
across seasons. It builds upon the image semantics and its edge geometry that are
robust to strong appearance variations caused by illumination and seasonal changes.
While existing methods are tailored for urban-like scenes, our approach applies to bu-
colic scenes, which offer distinct challenges, and generalizes to city ones.

The usual approach for hand-crafted descriptors is to first detect and describe lo-

cal features, then aggregate them into a low-dimensional vector. The methods differ in

the local feature detection, description, and aggregation. Here, local features are the

wavelet transform of the semantic edges. These edges are computed from the segmen-

tation provided by a trained CNN. They are described by the wavelet transform [41] over

a fixed-sized subsampling of the edge. This approach is motivated by the observation

that edges and semantics are one of the most invariant information over long periods.

So, it can be expected that these features are also robust to long-term variation in visual

appearance. The global image representation is a simple concatenation of these edge

descriptors and their labels.

Figure 3.1 illustrates the image retrieval pipeline with this novel descriptor dubbed

WASABI2 3. A collection of images is recorded along a road during the Spring. A de-

2WAvelet SemAntic edge descriptor for BucolIc environment
3https://github.com/abenbihi/wasabi
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scriptor is computed for each image and stored in a database. Later in the year, e.g. in

Autumn, while traversing the same road, the image at the current location is described.

The goal is to retrieve the database image which descriptor is the nearest to the current

one. The image distance is computed by first assigning each semantic edge from the first

image to the nearest one in the second image based on their wavelet descriptor distance.

An additional constraint is that associated edges should have the same semantic label.

The distance between the two edges is the Euclidean distance between their descrip-

tors. Finally, the image distance is the sum of the distances between edge descriptors of

associated edges. Note that this computation can seem heavy and is one of the limits

addressed by the next descriptor in Chap. 4.

The rest of this chapter is organized as follows. Sec. 3.1 recalls the subset of SoA

described in Chap. 2 that is relevant to this chapter. Then Sec. 3.2 details the visual fea-

tures derivation. In Sec. 3.3, WASABI is compared to existing image retrieval methods

on two outdoor bucolic datasets: the park slices of the CMU-Seasons [157] and Sym-

phony [66], recorded over a period of 1 year and 3 years respectively. Experiments show

that it outperforms existing methods, both hand-crafted and learned even when the lat-

ter are finetuned for these datasets. It is also on par with NetVLAD, one of the current

SoA, on urban scenes, which is specifically optimized for city environments. This shows

that WASABI can also generalize across environments.

3.1 Review of visual scene recognition

This section summarizes the place recognition SoA previously detailed in Sec. 2.3. All

image retrieval methods follow roughly the same steps: local feature detection and de-

scription, and feature aggregation into a global image descriptor. They differ in how they

perform each step and whether it is hand-crafted or learned.

Hand-crafted approaches. Early global descriptors are designed by aggregating locally

invariant features such as SIFT [116]. The first step is the generation of the visual words

by clustering local feature descriptors over a training dataset. The words are the clus-

ters’ centroids and are usually referred to as the codebook. The training dataset must

be spatially disjoint from the place recognition one to generalize well. An image is

then described with the statistics of its local features with respect to this codebook. In

BoW [172], the local features of the image are assigned to the codebook clusters and the

descriptor is simply the histogram of cluster occurrences. The Fisher vectors [141] im-

prove over the previous clustering by fitting a mixture of Gaussians over the visual words.
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Then, for each local feature of the image of interest, they concatenate the gradient of

the probability of this feature to belong to one of the Gaussians. This high-dimensional

vector is then reduced with Principal Component Analysis (PCA). This approach is sim-

plified in VLAD [82] that concatenates the distance vector between each local feature

and its nearest cluster. All these methods rely on features based on pixel distribution

that assumes that images have strong textures, which is not the case for bucolic images.

They are also sensitive to variations in the image appearance such as seasonal changes.

In contrast, WASABI relies on the image’s local geometry and semantics, which proves

to be robust to strong appearance changes.

Learned approaches. Later works leverage the rich representation space of CNN to de-

sign higher-level local features. This aims at disentangling local features and pixel inten-

sity through learned feature descriptions. [16] uses the features of a pre-trained classifi-

cation CNN as local features and aggregates in a VLAD fashion. VLASE [201] follows the

same approach and aggregates local features extracted from the CaseNet network [202],

trained to generate semantic edges. Keypoints are pixels that lie on a semantic edge and

they are described with the probability distribution of the pixel to belong to a semantic

class, as provided by the last layer of the CNN. DELF [133] trains the network to classify

landmarks with a weight layer to give more importance to informative CNN features.

Those with high weights are then aggregated as in VLAD. NetVLAD [9] proposes to train

both the CNN features, the visual words, and the aggregation.

They define an end-to-end learning pipeline and reach top performances on urban

scenes such as the Pittsburg or the Tokyo time machine datasets [187, 188]. WASABI

also relies on CNNs but only to segment images, not to describe them. In this sense, it is

similar to the image description defined in [182]: the image is divided into patches over

which one semantic descriptor and one pixel-statistics-based descriptor are computed.

The first one is the semantic histogram of the static semantic classes, and the second one

is the HoG of the patch, as in SIFT. The global image descriptor is the concatenation of

the patch descriptors. WASABI differs in that it describes the geometric properties of the

semantic edges and not pixel statistics. The edge wavelet transforms are accumulated

to describe the image.

Edge description. The choice to represent edges with their Wavelet transform is moti-

vated by experimenting with various edge descriptors. Most of them, reviewed in [123],

are tailored for simulation-like images where edges are smooth rather than outdoor im-

ages where they are much noisier. This explains why edge descriptors are usually less
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robust to illumination and viewpoint variations than their pixel-based counterparts. Ex-

periments show that the wavelet descriptor [41] is invariant and compact enough to de-

scribe an edge in its entirety and be integrated into the image retrieval pipeline.

Chap. 4 will show that local edge information is even more relevant to integrate in

the image descriptor. Inspired by contributions on loop closing using lidar local de-

scriptors [88, 181, 190], the next chapter defines local edge features described with the

Shape Context Descriptor [22]. Whether in this chapter or the next, the influence of the

edge description on the retrieval performance is still under investigation.

3.2 Scene Recognition from Coarse Hand-Crafted Features

This section details the derivation of WASABI from visual features robust to long-term

variations in appearance. Semantic edges are extracted and described by their wavelet

transform. An image is characterized by this set of edge descriptors and their seman-

tic labels. Two images are similar when the distance between matching semantic edge

descriptors is small.

3.2.1 Semantic Edges as Regions of Interest

Given a color image as input, local features are the continuous semantic edges described

with the wavelet transform. To extract the edges, two equivalent approaches can be

considered. The first is to extract them from the semantic segmentation of the image,

i.e. its pixel-wise classification [103, 210]. The second approach is also based on CNNs

but directly outputs the edges together with their labels [6, 202, 203]. The first approach

is favored for the following reasons. First, there are many more public segmentation

models than semantic edge ones. This generalizes WASABI to a wider range of data by

substituting the segmentation model with one tuned to the data. Also, semantic edges

generated with the second approach are coarse and noisy so they are less consistent and

repeatable than the ones from the first method.

Starting from the semantic segmentation, a post-processing stage is necessary to re-

duce the labeling noise. Most of this noise consists of labeling errors around edges or

small holes inside bigger semantic units. To reduce the influence of these errors, se-

mantic blobs smaller than min_blob_size are merged with their nearest neighbors.

Furthermore, to make semantic edges robust over long periods, it is necessary to

ignore classes corresponding to dynamic objects such as cars or pedestrians. Other-

wise, they would alter the semantic edges and modify the global image descriptor. These
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classes are removed from the segmentation maps and the resulting hole is filled with the

nearest semantic labels.

A simple Canny-based edge detection is run on the cleaned-up semantic segmen-

tation and edges smaller than min_edge_size pixels are filtered out. Segmentation

noise may also break continuous edges, so the remaining edges are processed to re-

connect edges belonging to each other. For each class, if two edge extremities are below

a pixel distance min_neighbour_gap, the corresponding edges are grouped into a

unique edge.

The parameters are chosen empirically based on the segmentation noise of the im-

ages. Images are segmented with the PSP-Net [210] model trained on cityscapes [43]

and finetuned for robust inter-season segmentation [103]. In this case, the relevant de-

tection parameters are summarized in Table (Tab.) 3.1.

min_blob_size 50
min_edge_size 50
min_neihbor_gap 5

Table 3.1: Edge sampling parameters.

3.2.2 Feature Description: Edge Wavelet Transform

Among the many existing edge descriptors, the wavelet descriptor [41] is favored for its

properties relevant to image retrieval. It consists of projecting a signal over a basis of

known functions and is often used to generate a compact and unique representation

of a signal. Wavelet description is not the only transform to generate a unique repre-

sentation for a signal. The Fourier descriptors [65, 205] also provide such a unique em-

bedding. However, the wavelet description is more compact than the Fourier one due

to its multiple-scale decomposition. Experiments confirmed that the former was more

discriminative than the latter for the same number of coefficients.

The 2D contours extracted from the semantic segmentation are subsampled at reg-

ular steps to collect N pixels. Their (x, y) locations in the image are concatenated into a

2D vector. The discrete Haar-wavelet decomposition is computed over each axis sepa-

rately. The two output vectors are concatenated and L2 normalized. In the experiments,

N = 64 is used and only the even coefficients of the wavelet transforms are kept. This

does not destroy information as the coefficients are redundant. The final edge descrip-

tor is a 128-dimension vector.
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3.2.3 Feature Aggregation and Image Distance

Figure 3.2: Symphony. Semantic edge association across strong seasonal and weather
variations.

The image descriptor is the accumulation of the edge’s wavelet transforms and se-

mantic label. Given two images and their aggregated edge descriptors, the image dis-

tance is the average distance between matching edges. Matching edges are computed by

solving the assignment problem between edges of the same class (see Fig. 3.2). The dis-

tance used is the Euclidean distance between edge descriptors and the image distance

is the average of the associated descriptor distances. In a retrieval setting, we compute

such a distance between the query image and every image in the database and return

the database entry with the lowest distance.

3.3 Experiments

WASABI shows better performance on bucolic scenes than existing methods while only

slightly underperforming NetVLAD and DELF on urban environments. This is expected

as they are optimized for such settings. Still, this shows that fusing hand-design and

machine learning can provide visual features as relevant and robust as the most per-

forming learning approaches. Finetuning the learning methods on the bucolic scenes

proves to be useful for VLAD but does not improve the overall performance for BoW and

NetVLAD. A plausible explanation is that these methods require more data than the one

available. Note however that, in addition to robustness, this highlights another advan-

tage of integrating hand-design in visual features definition: it reduces the burden of

data collection and training. The rest of this section presents the numerical results and

their interpretation.
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Datasets. This paragraph describes the two bucolic datasets over which the image re-

trieval is evaluated.

Figure 3.3: Extended CMU-Seasons. Top: images. Down: segmentation instead of the
semantic edge for better visualization. Each column depicts one location from a slice
i and a camera j that we note i_cj. Each line depicts the same location over several
traversals noted T.

Extended CMU-Seasons. The Extended CMU-Seasons [157] dataset (Fig. 3.3) is an

extended version of the CMU-Seasons [17] dataset. It depicts urban, suburban, and park

scenes in the area of Pittsburgh, USA. Two front-facing cameras are mounted on a car

pointing to the left/right of the vehicle at approximately 45 degrees. Twelve traversals

are recorded over a period of 1 year and the images from the two cameras do not over-

lap. The traversals are divided into 24 spatially disjoint slices, with slices {2-8} for urban

scenes, {9-17} for suburban and {18-25} for park scenes respectively. All retrieval meth-

ods are evaluated on the park scenes for which ground-truth poses are available {22-25}.

The other park scenes {18-21} can be used to train learning approaches. The reference

traversal is recorded during a sunny day in early spring with no foliage on the trees. The

11 other traversals are the queries and cover all seasons with various illuminations and

light artifacts summarised in Table 3.2. Note that the 11-th traversal captured from the

right-camera is much shorter than the 10 others (10 images vs 200 images), so we dis-

card it in the evaluation. In total, there are 80 image sets of roughly 200 images with

ground-truth camera poses. Figure 3.3 shows examples of matching images over multi-

ple seasons with significant variations in season and lighting.
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Traversal Season Tree State Weather / Light Artifact
Reference Early Spring No Foliage Sun -

0 Spring Foliage Sun -
1 Early Autumn Foliage Overcast -
2 Autumn Foliage Sun Light haze
3 Autumn Mixed-Foliage Sun -
4 Autumn Mixed-Foliage Overcast -
5 Autumn Mixed-Foliage Low-Sun -
6 Autumn Mixed-Foliage Sun Sun glare
7 Winter No Foliage Overcast Light haze
8 Winter No Foliage Snow / Sun Sun glare
9 Winter No Foliage Sun -

10 Spring Foliage Overcast Light haze

Table 3.2: CMU-Seasons season and light conditions for each traversal.

Symphony. The Symphony [66] dataset consists of 121 visual traversals of the shore

of Symphony Lake in Metz, France. The 1.3 km long shore is surveyed using a pan-tilt-

zoom (PTZ) camera and a 2D LiDAR mounted on an unmanned surface vehicle. The

camera faces starboard as the boat moves along the shore while maintaining a constant

distance. The boat was deployed on average every 10 days from Jan 6, 2014 to April

3, 2017. In comparison to the roadway datasets, it holds a wider range of illumination

and seasonal variations and much less texture and semantic features, which challenges

existing place recognition methods.

For this evaluation, 10 discontinuous traversals are randomly sampled over the East

side of the lake using the ground-truth poses computed in [145]. The West side of the

lake can be used for training. To define the database, images from one of the 121 traver-

sals are sampled at a regular interval. For each database image, the matching images are

sampled from 10 random traversals out of the 120 left. Note that contrary to the CMU-

Seasons dataset, this means that there is no light and appearance continuity over one

traversal (Fig. 3.4).

The experiments evaluate WASABI against the SoA over a wide range of season and il-

lumination variations on the Extended-CMU-Seasons and the Symphony datasets [157,

66]. The CMU-Seasons dataset even allows for a finer evaluation of the performances

with respect to semantic in one hand, and season and illumination on the other hand.

Baselines. WASABI is compared to SoA image retrieval methods BoW, VLAD, NetVLAD

and DELF [9, 83, 133, 172]. In their version available online, these methods are mostly
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Figure 3.4: Symphony dataset. Top-Down: images and their segmentation. First line:
reference traversal at several locations. Each column k depicts one location Pos.k.
Each line depicts Pos.k over random traversals noted T. Note that contrary to CMU-
Seasons, we generate mixed-conditions evaluation traversals from the actual lake traver-
sals. So there is no constant illumination or seasonal condition over one query traversal
T.

tailored for rich semantic environments: the codebook for BoW and VLAD is trained

on Flickr60k [80], NetVLAD is trained on the Pittsburg dataset [188] and DELF on the

Google landmark one [133]. For fair comparison, we finetune them on CMU-Seasons

and Symphony when possible, and report both original scores and the finetuned ones

noted with ‘_tuned’.

BoW and VLAD. A new codebook is generated for BoW [172] and VLAD [83], by

clustering SIFT local features on 1691 images from the few CMU park training slices {18-

21} and 1230 images from the West side of the Symphony lake. The number of clusters

is set to 64.

NetVLAD. This paragraph only summarises how NetVLAD is finetuned on the CMU-

Seasons and Symphony datasets. A detailed and self-contained description of the fine-

tuning of NetVLAD is available in Appendix A. These details are not necessary for the

rest of this chapter but are included for the sake of reproducibility.

NetVLAD is trained to generate a global description from an input image. It is opti-

mized with the triplet loss [20]: a set of three images is sampled from the dataset so that
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two of them match and the third one depicts another scene. The network is optimized

so that the descriptors of the matching images are near to each other while the third one

is far. Finetuning requires images with ground-truth poses, which is only the case for

slices {22-25} of the CMU-Seasons. So the model is trained on three slices from {22-25}

and evaluated on the remaining one. For each configuration, half of the images are used

for the database and the other half as queries. On Symphony, images together with their

ground-truth poses are sampled from the west side of the lake that is spatially disjoint

from the evaluation traversals.

DELF. The DELF learned local features are not finetuned because the training code

is not available and we did not manage to reproduce it when replacing the landmark

scenes to classify [16] with scenes sampled from the CMU-Seasons and Symphony traver-

sals. One probable explanation is that these datasets are too small to ease the conver-

gence.

The authors provide four codebooks: two made of 1024 words, each trained either

on the Paris6k dataset or the Oxford5k dataset, and two others made of 66536 words. In

both cases, the visual words have dimensions 128. The raw DELF features have dimen-

sion 2048 so they are quantized into a vector of dimension 128 using the dimensionality

reduction code provided by the authors. Only the two 1024-codebooks are tested and

they lead to near-equal quantitative performance so we report only result for the Paris6k

codebook.

VLASE. VLASE extracts local features from the CaseNet CNN [202] trained to gen-

erate semantic edges over an image. VLASE aggregates these features in a VLAD fashion.

Given an image I ∈ Nh×w×3 of height h ∈ N and width w ∈ N, K semantic labels, the

network outputs K pseudo-probability maps (Yk )k∈�0,K−1�, with Yk ∈ [−1,1]h×w . Each

map Yk represents the probability of the pixels to belong to a semantic class k, i.e.,

Yk (u, v) is the probability that the pixel (u, v) belongs to the semantic edge of class k.

Note that the CaseNet network is designed such that
∑K−1

k=0 Yk (u, v) 6= 1, i.e, a pixel can

belong to several classes with probabilities higher than 0.5 for each. Conversely, a pixel

can belong to no edge at all when Yk (u, v) = 0,∀k ∈ �0,K−1�. One possible motivation is

that edge pixels lie at the limit between at least two semantic classes so it seems natural

to assign these pixels more than one label. When the probabilities are constrained to

sum to one, it may be harder to distribute the probability weights over several classes.

Instead, optimizing the independent classification of a pixel on whether it belongs to a
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semantic edge with label k seems more straightforward. The labels CaseNet is trained

on are the Cityscape labels described in Tab. 3.3.

road pole terrain truck car
sidewalk traffic light sky bus fence
building traffic sign person train

wall vegetation rider motorcycle

Table 3.3: Cityscapes labels.

The authors define a local feature as a pixel for which there is at least one class c

such that the probability to belong to a semantic edge is higher than a threshold Te .

More formally, a pixel (u, v) is a local feature if ∃k ∈ �0,K−1�,Yk (u, v) > Te . In practice,

there are too many such pixels, in the order of [104,105], and many of them are strongly

correlated, especially when they are contiguous. This motivates the choice to keep only

up to max_num_feat such pixels.

A grid search over the two parameters Te and max_num_feat are run over the

ranges Te ∈ {0.5,0.6,0.7,0.8,0.9}, max_num_feat ∈ {1000,2000,3000,4000,5000}. The

number of words nwor d s in the visual codebook is also tested with nwor d s ∈ {32,64}. The

best performances are reached with the following set of parameters Tab. 3.4.

Te 0.5
max_num_feat 3000

n_words 64

Table 3.4: VLASE parameters.

Toft et al. The localization paper [182] relies on image retrieval to initialize pose

optimization. They define a global image descriptor from semantic and pixel intensity

statistics. In the paper, the top half image is divided into 6 rectangle patches (2 lines

and 3 columns). For each patch, they first compute a semantic histogram over the static

classes, such as the vegetation or the road. Then they compute a descriptor based on

the pixel statistics: the patch is masked to keep only the vegetation and building pixels

and the histogram of oriented gradients of these pixels is computed, as in SIFT. More

specifically, each patch is further divided into smaller rectangles over which a HoG is

computed. The patch descriptor is the concatenation of the semantic histogram and all

the HoGs. Then, the image descriptor is the concatenation of the patch descriptors.
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This descriptor depends on the parameters listed in Tab. 3.5 for which a grid search

in run.

Parameters Grid search Optimal Authors’
range value parameters

Number of patches per line �2,6� 6 2
es Number of patches per column �3,9� 9 3

(HoG) Number of rectangles per line �2,4� 4 4
(HoG) Number of rectangles per column �2,4� 4 4

(HoG) Bin discretization 8 8 8

Descriptor Length - 7506 834

Table 3.5: Toft et al. parameters over image of size h = 768 and w = 1024. Note: the opti-
mal values corresponds the highest resolution tested. It is expected that the quantitative
performance would be even better with a higher resolution.

The description is computed over the top two-third of the image instead of the top

half. This crop provides the best retrieval results over the crops tested by sliding horizon-

tal windows of various sizes over the image. The semantic histogram is computed over

all the static classes. The HoGs are computed over the pixels belonging to the vegetation

and building classes. The addition of other static classes in the HoG does not improve

the performance for this dataset.

Note that the best parameters are the ones that lead to local description at the high-

est resolution: this method performs best with the maximum number of patches and

the maximum HoG discretization. A descriptor with higher resolution would probably

give even better results but this would come at the cost of a longer descriptor: here, one

image descriptor already has a dimension of 6 ·9 · (4 ·4 ·8+11) = 7506. In practice, one

would investigate quantization to reduce this descriptor dimension. This is outside the

scope of this chapter and all descriptors are compared with their original dimensions.

Another variant of this method is run with the author’s parameters.

Metrics. The place recognition metrics are the recall@N and the mean Average Preci-

sion (mAP) [142]. Both depend on a distance threshold ε: a retrieved database image

matches the query if the distance between their camera center is below ε. Both metrics

are available in the code 4.
4https://github.com/abenbihi/wasabi
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The recall@N is the percentage of queries for which there is at least one matching

database image in the first N retrieved images. We set N ∈ {1,5,10,20}, and ε to 5 meters

(m) and 2m for the CMU-Seasons and the Symphony datasets respectively.

The mAP frames image retrieval as a classification problem. Given a query image,

let P be the total number of database images matching this query and N the number

of retrieved images. Using classification syntax, true positives are the retrieved images

that match the query. False positives are the remaining retrieved images. Note that N =
TP+FP. With the standard definitions of precision and recall, the mAP is the area under

the precision-recall curve. More formally, let TP and FP be the number of true and false

positives respectively. The precision is the ratio TP
TP+FP and the recall is TP

P . The precision-

recall curve is drawn by computing these ratios for several values of retrieved images N.

This mAP implementation is borrowed from the code of [80].

Setup. The segmentation is generated with the PSP-Net [210] specifically finetuned for

segmentation robust to Seasons on the CMU-Seasons dataset provided by [103]. Given

the lack of ground-truth segmentation on the Symphony dataset, the segmentation is

generated using the same model for both datasets. Although the results on the Sym-

phony dataset are noisier, WASABI still manages to provide SoA results.

The GPU-based approaches are run on an Nvidia 1080Ti with Torch 0.4.1 for the

segmentation, Tensorflow 1.12, Cuda9 and Cudnn7 to train NetVLAD, and Tensorflow

1.5 with the V1.13 tag from the DELF GitHub repository. The CPU-based methods are

run with Python3 and OpenCV 3.4..

3.3.1 Global evaluation on Extended-CMU-Seasons

Experiments suggest that a hand-design approaches based on semantics, such as the

WASABI descriptor and [182, 201], are as relevant for scene recognition as deep-learning

approaches [9, 133].

Fig. 3.5 plots the Recall@N over the three types of data: the CMU park, the Symphony

lake, and the CMU city. Overall, the method from Toft et al. achieves the best results

when it aggregates local descriptors at a high resolution (toft_etal (7506)). The necessary

memory overhead may be addressed with dimensionality reduction but this is out of the

scope of this chapter. WASABI achieves the 2nd best performance of the CMU park and

is on par with SoA methods tailored for urban environments such a NetVLAD and DELF.

This suggests that semantic edges are discriminative enough to recognize a scene, even

when there seem to be few semantic elements such as in the park. This assumption is

comforted by the satisfying performance of VLASE, which also leverages semantic edges
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Figure 3.5: Retrieval performance for each dataset measured with the Recall@N. Re-
trieval is performed based on the similarity of the descriptors and no further post-
processing is run for all methods. The high-resolution description from [182] reaches
the best score, followed by WASABI and current SoA methods. These results suggest
that a hand-designed descriptor can compare with existing deep approaches. However,
WASABI still needs to be improved to be as relevant as Toft et al. [182]’s description.

to compute local features. Note that while it underperforms WASABI on the CMU-Park,

it provides better results on the Symphony data and the same goes for [182].

There are two main explanations for the poor WASABI results on Symphony: the first

is that the segmentation model trained for the CMU images generates noisy outputs on

the Symphony images, especially around the edges (Fig. 3.6). So the WASABI wavelet de-

scriptors cannot be consistent enough across images. One reason that allows [182] and

VLASE to be robust to this noise is that they do not rely on the semantic edge geometry

directly: Toft et al. leverages the semantic information in the form of a label histogram

which is less sensitive to noise than segmentation itself. A similar could explain VLASE’s

robustness even tough it samples local features from those same semantic edges. The

final histogram of semantic local feature is less sensitive to semantic noise than the se-

mantic edge coordinates on which WASABI relies.

The second explanation for WASABI’s underperformance on WASABI is the smaller

edge densities compared to the CMU data. This suggests that the geometric information

should be leveraged at a finer scale than the edge’s one. This is addressed in the next

chapter along with the scalability issues. Note that the descriptor size and the image

distance computational complexity are quadratic with the number of semantic edges of
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Figure 3.6: Segmentation failures. Left column: In Ext-CMU-Seasons, strong sun glare
is present along traversals 6 (sunny spring) and 8 (snowy winter). Other columns: Sym-
phony. The segmentation is not finetuned on the lake and produces a noisier output. It
is also sensitive to sun glare.

the image. This prevents its integration in real systems and this problem is addressed

in the Chap. 4. The rest of this section analyzes the influence of image variations on

retrieval performance.

3.3.2 Robustness to Illumination Variations

Light / Season Spring Autumn Winter
Overcast 10 2,4 7,9

Sun 0 1,3,5,6 8

Table 3.6: CMU-Seasons traversal ids and their season and light conditions.
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Rationale. The main sources for visual variations in a bucolic scene are the light and

the season. The Ext-CMU-Seasons allows evaluating the robustness of the visual fea-

tures with respect to these two factors. Each car traversals captures scenes from urban

and bucolic environments with a specific season and light condition (c.f. Tab. 3.2). The

retrieval results on traversals with similar conditions are averaged. Table 3.6 recalls the

traversals that share visual appearance.

Results. The next paragraph discusses the robustness of WASABI and SoA methods to

illumination and season variations. Overall, WASABI is as robust as existing methods.
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Figure 3.7: CMU-Seasons on Sunny Weather. The reference traversal is sampled dur-
ing winter. The degradation performance in the Park during the winter snowy weather
(bottom-left) is mostly due to the destructive sun glare in the images. The weather seems
to hold no influence on city retrieval results.

Various seasons on Sunny Weather. Figure 3.7 suggests that all methods are more

sensitive to light variations than seasons. The main difference between the spring traver-

sals (top) and the winter ones (bottom) is that the winter images of the park suffer from

strong sun glare in most of the images (Fig. 3.6 - left column). This is damageable for

pixel intensity-based approaches like NetVLAD but also WASABI. This artifact degener-

ates the semantic edges so all the derivations following are corrupted. Note however
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that the results are not impacted in the city. Although some city images exhibit the sun

glare, it is much less present and the images hold enough semantic elements to recover

from it.

Given that the reference traversal was sampled during winter, these results suggest

that local light artifacts have a higher impact on the recognition performances than

global scene variations like the leaves’ color. This suggests that descriptors robust to

general image noise is as important as robustness to appearance variations.
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Figure 3.8: CMU-Seasons during Autumn with various weathers. The reference traversal
is sampled during the winter.

Various Weathers in Autumn. Fig. 3.8 previously compares the retrieval scores av-

eraged over several autumn traversals. The main source of appearance variations in the

images are caused by the light. Although the park performances in autumn are slightly

lower than for the spring, this is enough to suggest that recognition is harder in autumn

than in spring. One explanation for the slight drop is, once again, a sun glare present in

one of the autumn traversals. This induces a score drop of 10% in average over all meth-

ods. For the other traversals, the light induces a relative change of 1% only. Surprisingly,

one of the city traversals also exhibits a performance drop. A qualitative observation

shows that the main reason is that it is sampled when the sun is lower than in other

traversals, which induces a global change in the scene colors. This comforts the pre-

vious assumption that illumination variations may have a higher impact than the ones

induced by seasonal changes. The right plot (Fig. 3.8) suggests that current methods all

have the same robustness to such variations.

Correlation between Season and Weather variations. As stated previously, light

variations are a challenge in addition to the seasonal ones. Figure 3.9 shows the scene
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Figure 3.9: CMU-Seasons in Winter. The reference traversal is recorded during a sunny
winter day whereas the queries are sampled during a day with overcast weather.

recognition performance over the same season as the reference traversal, winter, but

with different illuminations. The reference traversal is sampled during a sunny day

whereas the query traversal is overcast. Surprisingly, the performances on the park are

equivalent to the autumn retrieval scores. One could have expected that the higher sim-

ilarity between winter traversals would boost the results. This reinforces the assumption

that illumination variations may be as challenging as the seasonal ones.

3.3.3 Robustness to semantic variations

City Park
Slices 6 7 8 22 23 24 25
Conditions c0 c1 c0 c1 c0 c1 c0 c1 c0 c1 c0 c1 c0 c1
Dense trees x x x x
Sparse trees x x x
Grass x x x
Road x x x x x x x x x x x x x x
Sidewalk x x x x x x x x x
Buildings x x x x x x x x

Table 3.7: Semantic elements in each slice. Note that the park slice 25 holds urban ele-
ments, camera 1 from slice 7 captures scenes with natural elements, and slice 23 display
less features than other slices with dense trees occupying roughly 80% of the images.

Rationale. Another way to split the CMU dataset is to divide it into the contiguous

slices based on the car’s position, as in [157]. This adds to the natural urban/park sep-

aration. Each slice holds images with specific semantic structures. For example, the
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park slice 25 holds mostly bridge and building skyline elements that fall into the urban

semantic category rather than the bucolic one. Evaluating scenes with respect to the

slice content over all season-light conditions amounts to evaluating the scene recogni-

tion with respect to the semantics. Table 3.7 details the slices peculiarities. The main

takeaways of this table are that although captured in the city, images sampled over slice

7 with camera 1 hold bucolic elements. Also, some park slices display less semantic con-

tent than others such as the right cameras of slice 22 and 24 as well as the whole slice 23.

For these slices, the camera capture scenes with mostly dense trees occupying approxi-

mately 80% of the scene.

Results. Overall, WASABI exhibits a significant advantage over SoA on scenes with sparse

bucolic elements. It is limited by the amount of geometric information available: when

the images have dense foliage, the performance drops to the level of existing methods.

On urban environments, it compares to NetVLAD and DELF although it is not specifi-

cally tailored for it. This shows that although hand-designed, the WASABI visual features

can generalize.
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Figure 3.10: Ext-CMU-Seasons. Retrieval results on scenes with sparse vegetation v.s
scenes with dense vegetation. All methods exhibit a strong sensitivity to dense vegeta-
tion: the main challenges are the few semantic edges used by semantic approaches, and
the repetitive patterns used by pixel-intensity-based approaches.

Bucolic scenes with sparse foliage. Figure 3.10 shows the results for park slices

with sparse trees along the road. WASABI exhibits a significant advantage over the oth-

ers, especially when the error tolerance is small (Recall@N1).
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Bucolic Scenes with dense Foliage. When the slices hold mostly dense trees along

the road, all performances drop (Figure 3.10). The images not only have few features but

also few semantic edges on which WASABI relies. This limit motivates the exploitation

of multiple scales of edge information and not only the coarse one. Note that finetun-

ing NetVLAD exceptionally proves to be relevant for slice23. This suggests that retrieval

could be learned in challenging bucolic environments. However, the average perfor-

mance on the remaining slices suggests that a simple finetuning may not be enough.
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Figure 3.11: Ext-CMU-Seasons. Retrieval results on urban scenes with vegetation ele-
ments v.s. urban scenes with only city structures.

Urban Scenes. WASABI compares with SoA NetVLAD scores on urban scenes even

though it is not specifically tailored for such environments (Figure 3.11). It is interesting

to note that when there are vegetation distractors along with the urban structures (left

plot), WASABI slightly outperforms SoA urban approaches. These scenes mostly hold

grass and trees along a parking lot instead of buildings only. This observation supports

the bias that existing methods have toward urban environments.

3.3.4 Global evaluation on Symphony.

Rationale. The Symphony dataset captures scenes with the same semantic content all

along the shore with season and light conditions randomly sampled among 141 traver-

sals collected every two weeks for three years. The wide range of season and light con-

dition it holds make it suitable for a global evaluation of scene recognition over several

conditions.
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Figure 3.12: Symphony global performance measured through Recall@N. WASABI only
compares to the SoA tailored for urban environments but falls behind VLASE and [182].
One explanation is that the segmentation is too noisy on the Symphony dataset. This
noise is propagated in the image description.

Results. WASABI presents a slight advantage over NetVLAD and DELF although one

could have expected higher performance based on the previous solid results on CMU-

Seasons. One explanation is the segmentation noise induced by the image noise in one

hand (e.g., sun glare) and the lack of domain adaptation on the other hand (Fig. 3.6).

As there is no ground-truth segmentation for the Symphony dataset, finetuning the seg-

mentation is currently not possible. However, the satisfying results on CMU-Seasons

motivate future work to improve the Symphony segmentation as well as the robustness

of the descriptor to failures of the segmentation stage.

3.4 Summary

This chapter introduced a novel image global descriptor from the fusion of hand-design

and machine learning to make it robust to long-term variations in visual appearance.

Provided a semantic segmentation CNN is available, the wavelet description of semantic

edges is aggregated into a descriptor. When tested on multi-season bucolic datasets, it

achieves or surpasses the SoA. It even compares to them in urban settings for which the

SoA is specifically tailored for. This highlights that WASABI can generalize and does not

need manual tuning. This suggests that fusing hand-design and machine learning can

be a solution to the generalization challenge of learning methods.

One limit of the current method is the use of only coarse hand-picked useful loca-

tions. So WASABI can not handle scenes with dense features or low-scale information.

This motivates the next chapter to define an approach that also includes useful locations
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at a pixel-wise scale.
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Chapter 4

Local Feature for Long-Term Visual
Scene Recognition

The previous chapter introduced a novel global descriptor from the fusion of semantics

and geometry. It proves robust to long-term variations in visual appearance but only

leverages coarse-scale information. This is especially limiting for scenes with small and

dense elements, or when the semantic edges are noisy. This motivates this chapter to

select image features at finer scales and aggregate them in a VLAD fashion (Fig. 4.1).

Keypoints are acceleration maxima of the semantic edges. They are described with

the Shape Context Descriptor [22], which represents the local distribution of the edge

points around that location. These local features are then fused into a global image de-

scriptor with a modified VLAD aggregation, where local features are assigned to visual

words with the same semantic label. Experiments show that it boosts the retrieval per-

formances on the challenging Symphony dataset. Another improvement over WASABI

is that the image description is now more compact. It is even four times smaller than

NetVLAD and DELF before their dimensionality reduction step. Also, the image distance

is a simple Euclidean distance between their descriptors.

As in BOW and VLAD, the visual word index is generated by clustering local features

computed on a set of training images. The centroids, that is the clusters’ centers, are the

visual words. A slight modification from the standard BOW/VLAD clustering is intro-

duced to better leverage the semantic information: the local features are first grouped

by class before being clustered. This way, a visual word has a semantic class.

The VLAD aggregation is also modified to integrate semantic information. The local

features extracted from an image are associated with the nearest visual word with the

same semantic class. The residues of these associations are accumulated for each word

and concatenated to produce the global image descriptor. It has the shape d ∗Nd with

d the local descriptor dimension, and Nd the number of visual words.

67



Figure 4.1: Illustration of the global description. Local features are located along se-
mantic edges where the edge acceleration is maximum. They are described with the
local edge variation derived with the Shape Context Descriptor [22]. Local features are
separated according to their semantic labels. A visual codebook is computed by clus-
tering these local features on a training dataset. The clusters are derived within groups
of local features with the same labels. A query image is described by aggregating its lo-
cal features in a semantic VLAD fashion where each feature is associated with the visual
word with the same class.

The rest of this chapter is organized as follows. Sec. 4.1 reviews the limits of WASABI

introduced in the previous chapter. Sec. 4.2 then details the novel multi-scale approach

derived in this chapter. Experiments in Sec. 4.3 show that this novel approach com-

pares to SoA performances on bucolic and urban scenes, and even doubles it over the

challenging Symphony dataset.

4.1 Limits of Coarse Features for Scene Recognition

This section reviews the limits of the WASABi descriptor, introduced in the previous

chapter. WASABI selects semantic edges as relevant locations and describes them with
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their wavelet transform [41] over a fixed-sized subsampling of the edge. When used for

scene recognition, these features are aggregated by simply concatenating their descrip-

tors. The resulting vector provides a global description of the image. To compute the

distance between two images, edges from one image are associated with the nearest

edge with the same semantic label in the other image. The distance between the two

edges is the Euclidean distance between descriptors, and the image distance is the sum

of the distances between associated edges.

WASABI exhibits the following limits:

1. It relies only on a coarse edge description. It ignores the edge’s local variations that

can be used to further characterize the edge.

2. The WASABI image representation is not scalable with the number of edges. An

image is represented by the collection of descriptors for each semantic edges. So

the size of this global representation increases with the number of semantic edge.

3. The image distance complexity increases quadratically with the number of edges.

The distance between the two images is the sum of the distance between their

matching edge descriptors. Although successful, a better distance computation

would avoid the loop over all edges. Despite these restrictions, WASABI demon-

strates that fusing hand-designed geometric information with learned semantic is

a relevant approach to define visual features robust to long-term variations.

4.2 Scene Recognition from Local Hand-Crafted Features

This section derives a new image descriptor dubbed SG-VLAD 1 2, for Semantic and Ge-

ometric VLAD, to address WASABI’s limits.

4.2.1 Local Keypoints: Semantic Edge Acceleration Maxima

A keypoint is a point on a semantic edge that is also an edge acceleration maximum.

With the edge framed as a parametric curve (x(t ), y(t )), the acceleration is given by

( d 2x
d t 2 , d 2 y

d t 2 ). For the two 1D signals x(t ) and y(t ), the second-order derivative is the Lapla-

cian. To avoid numerical edge-cases and accelerate the computation, the Laplacians are

approximated with a Difference of Gaussians (DoG), as for SIFT. The multiplication fac-

tor between the standard deviation of the two Gaussians is 1.6 to best approximate the

1https://youtu.be/JeYpcRPqDUM
2https://github.com/W2desc/wasabi2.git
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Figure 4.2: Edge acceleration heatmap with detected keypoints drawn in black circles.
The size of the circle represents the scale of the keypoint.

Laplacian. Local acceleration maxima are computed in both space and scale. The stan-

dard deviation of the Gaussian used to derive the scale-space representation of the edge

is also 1.6. Edge maxima are located with sub-pixel accuracy by fitting a 2D quadratic

function to the local acceleration and finding its root. It is the 2D Euclidean analog to the

sub-pixel refinement used in SIFT [116]. A keypoint is defined by a triplet (x, y, s) where

(x, y) are the point location and s the edge scale for which this point is an acceleration

maximum. The point local orientation is not computed at this stage as this information

is present in the descriptor described in the next paragraph.

The reader familiar with feature detectors based on curvature maxima may wonder

over the advantages of this acceleration approach. Curvature-based methods are akin

to corner detection on the edge. Given the geometric nature of the edge, this detector

activates on much fewer locations. This weakens the final image description that relies

only on sparse local geometric information. Hence the motivation for the acceleration-

based approach that provides more repeatable keypoints to exploit.

4.2.2 Local feature description

Keypoints are described with the Shape Context Descriptor (SCD) introduced by Be-

longie et al. [22]. It describes a point on an edge with the 2D histogram of directions

between this point and its neighbors (Figure 4.3). This naturally captures the point’s lo-

cal orientation with respect to its neighbors. This is why it is not deemed necessary to

explicitly compute the keypoint orientation in the detection step.

The SCD parameters are the histogram discretization. In all experiments, the orien-

tation is discretized over 12 bins covering 360◦. Given the keypoint scale s, the distance
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Figure 4.3: Shape Context Descriptor 2D histogram [22].

between the keypoint and its neighbors is discretized over 4 bins covering a distance up

to log (s). The log-sampling is a way to give more importance to nearer edge variations.

Finally, the histogram is flattened to get a 12×4 = 48-dimension descriptor.

4.2.3 Semantic Codebook

Semantic visual words are derived by clustering local features sampled from training im-

ages. In the standard codebook derivation, the clusters are computed over all features.

Instead, here, a set of clusters is computed over local features in each semantic class. The

number of clusters is specific to each semantic class, which presents two advantages.

The first one is that it provides additional information on the features that serve to

better discriminate them. This is especially relevant for the edge description as edges

can be locally similar so semantics better separate them.

The second is that it allows modulating the importance of each class in the image

description. For example, urban structures are much more important than vegetation

for scene recognition in the city. So it is intuitive to allocate more visual words to index

urban features than vegetation features. The reverse strategy is adopted when most of

the scenes depict bucolic environments, as in the CMU park.

4.2.4 Semantic Aggregation

Local features are aggregated in a VLAD fashion in which semantic constraints are inte-

grated.

The formal standard aggregation is recalled here. Let d ∈ N be the local feature’s

dimension, (vi )i∈�0,Nd−1� be Nd visual words of dimension d , and let ( f j ) j∈�0,N−1� be N

local features of dimension d sampled over the image. The VLAD descriptor is derived

by accumulating the residuals between each local feature and its nearest visual word.

More formally, it is a 2D matrix V ∈ RNd×d where V(r,c) = ∑N−1
j=0 δr, j (vr [c]− f j [c]) with

δr, j = 1 when the j th local feature is assigned to the r th visual word, and 0 else way.
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Intuitively, the r th line stores the cumulative residues between the r th visual word and

the local features that are assigned to it. The 2D matrix is flattened and the descriptor

is normalized with Signed Square Rooting (SSR) following the guidelines in [79, 82], i.e.

the descriptor V becomes si g n(V)
p|V|.

SG-VLAD modifies the aggregation to assign the local feature f j to the nearest visual

word vi with the same semantic label.

4.2.5 Addressing the Coarse Approach’s Limits

1. WASABI relies only on a coarse edge description. An intuitive assumption is that the

more informative the visual features are, the more useful they are for the end-goal

task. By leveraging local information, SG-VLAD computes richer image represen-

tation. This is particularly relevant for images with few semantic elements: there

are few edges to exploit whereas there can be many local edge variations specific to

the image. For example, in bucolic scene visual recognition, the skyline between

the sky and trees is usually the most informative part of the image. Although most

skylines look globally similar, the local variations are highly discriminative.

2. The image representation is not scalable with the number of edges. SG-VLAD’s im-

age descriptor is a fixed-sized 48∗Nd vector. It depends neither on the number of

edges nor on the number of local features.

3. The image distance is not scalable with the number of edges. Now that an image is

described with a simple 1D vector, computing the image distance is a simple L2

norm of the vectors’ difference.

4.3 Experiments

The finer features of SG-VLAD reach similar or better performances than WASABI and

SoA deep learning approaches. This shows that semantic and geometric fusion for im-

age description can be a relevant alternative to end-to-end approaches when heavy

training and large specific datasets are not feasible. The rest of this section details the

experimental results.

Datasets and Metrics As for WASABI, the retrieval performance is computed on the

CMU-Seasons and the Symphony datasets. The CMU-Seasons dataset evaluates the

scene recognition with respect to semantics variations in one hand, and season-light

conditions on the other. The Symphony dataset measures the global performance of
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SG-VLAD over a wide range of season and illumination variations of scenes dominated

by vegetation. Performances are measured with the Recall@N.

Setup All GPU-based methods are run on a NVIDIA 1080Ti with Tensorflow 1.12, Cuda9,

Cudnn7 and OpenCV 3.4. The CPU-based methods are run with Python3 or C++. More

details are available in the released code. The baselines setup is the same as in the previ-

ous chapter. And the segmentation is computed with the same model provided by [103].

SG-VLAD’s codebooks are generated by clustering local features on all images from

the CMU park training slices {18-21} and 1230 images from the west side of the Sym-

phony lake. These are the same image numbers used to generate the codebooks for

VLASE. This way, it is possible to compare the data needs of each of these methods. Note

however that, due to a code typo, the codebooks for bow_tuned and vlad_tuned

were trained only on 1691 CMU park images.

Class CMU-Park CMU-City Symphony Class CMU-Park CMU-City Symphony
Road 2 4 2 Traffic Light 2 4 0

Sidewalk 2 4 1 Traffic Sign 2 4 0
Building 2 4 1 Vegetation 4 2 4

Wall 2 4 0 Terrain Sky 4 2 4
Fence 2 4 0 Sky 4 2 4
Pole 2 4 1 - - - -

Table 4.1: Distribution of the number of visual words per semantic class on CMU-
Seasons (CMU) and Symphony (SYM).

Only semantic edges from non-moving classes are kept. The number of clusters per

class is summarised in Table 4.1: the general approach is to assign more words to classes

that are deemed more important or more represented. Some urban elements in the

CMU park are still present so they are allocated two visual words. Four visual words

are assigned to nature-related classes such as vegetation or terrain. Four words are also

used for the skyline as it usually adjacent to the vegetation. The inverse distribution is

adopted for the CMU city. For the Symphony dataset, some urban elements are absent

or too infrequent so they are not represented in the codebook. Note that the road label

with class id 0 is replaced with a ‘water’ label. In total, we use Nd = 39 visual words on the

park slices and Nd = 17 visual words on the lake. Further experiments on the semantic

distribution of the visual words are ongoing.
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Figure 4.4: SG-VLAD improves over WASABI on the Symphony dataset and achieves sim-
ilar results to VLASE and the low-resolution of Toft’s descriptor [182]. It preserves the
performance on the CMU scenes while addressing the scalability limits of WASABI.

4.3.1 Global evaluation on Extended-CMU-Seasons

Fig. 4.4 compares the new SG-VLAD descriptors to the other methods described in the

previous chapter. While it achieves similar performance as WASABI on the CMU dataset,

it significantly improves on the Symphony retrieval and achieves scores comparable to

VLASE and the low resolution version of [182] (toft-834). This agrees with the previous

observation that methods that leverages local semantic information seem more robust

to noisy segmentation, such as the Symphony one. One possible explanation is that

histograms of either pixel labels or local semantics seem to be invariant to such amount

of noise. Another motivation to favor SG-VLAD over WASABI is that the image descriptor

has now a fixed size and the image similarity is assessed with the descriptor Euclidean

distance. The rest of this section provides further analysis of SG-VLAD robustness, as

was done for WASABI.

4.3.2 Robustness to Illumination Variations

Rationale. We start with a reminder of how the illumination robustness is evaluated.

Each CMU traversal captures scenes from urban and bucolic environments with a spe-

cific season and light condition, for example, overcast-winter, sunny-autumn. So, the

scene recognition performance over one complete traversal amounts to evaluate the
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Figure 4.5: Retrieval scores grouped by light conditions: sunny (top), overcast (bottom).
Overall, the Recall@N for overcast scenes is 10% higher on average than for the sunny
scenes. This is expected given that the reference traversal was sampled during an over-
cast winter. When the light varies, SG-VLAD’s performance evolves the same way as
existing approaches, which suggests that it is as robust to light variations.

performance with respect to one-season light condition. Here, traversals with the same

illumination are evaluated together. This provides an observation of the light’s influence

on the retrieval.

Results. Globally, SG-VLAD evolves the same way as existing methods when the illu-

mination changes (Figure 4.5). This suggests that it is robust to light variations as the

SoA.

The performance variations from one illumination to another change differently for

each method, which prevents drawing a trend on the light’s influence on the retrieval.

Overall, the numerical gaps are lower than 10%, with some descriptors exhibiting stronger

shifts than others. For example, the WASABI and the Toft et al. [182] descriptors vary the

least, closely followed by SG-VLAD and NetVLAD. Surprisingly, the DELF score on the

overcast city retrieval is 10% higher than in the sunny city. This is unexpected as deep

features usually describe the image with pixel statistics high enough to ignore such low-

level intensity variations.
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Note that the evaluation ignores the seasonal variations in appearance for the park

retrieval. Indeed, it evaluates the Recall@N with respect to the light only. The same is

done for the city scenes where it is reasonable to assume that the image content did not

significantly change. Still, the performance shifts respective to each method are analog

across both environments. This suggests that the correlation between the retrieval per-

formance and the illumination variations may be tackled independently of the seasonal

variations.

4.3.3 Robustness to Semantic Variations
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Figure 4.6: Ext-CMU-Seasons: Retrieval performance with respect to the semantic con-
tent of the images. SG-VLAD presents a slight advantage over most methods when the
scenes hold vegetation elements.

Rationale. The reader is reminded of the evaluation’s motivation detailed in the previ-

ous chapter for WASABI. Each CMU traversal is split into continuous slices based on the

car’s position. So each slice covers scenes with the same semantic structures over long

periods. Evaluation on one slice amounts to evaluating this task with respect the slice’s

semantics. Slices with similar semantic content are evaluated together.
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Results SG-VLAD presents the same advantages as WASABI for retrieval on scenes with

bucolic content while offering better scalability properties (Fig. 4.6). However, contrary

to what was expected, leveraging local edge information instead of the coarse one does

improve the performance when the vegetation is dense. The rest of this paragraph fur-

ther details the results.

Bucolic scenes with sparse foliage. When the scenes hold sparse vegetation ele-

ments (Figure 4.6 - left), leveraging finer features, as done in SG-VLAD, does not boost

the results over WASABI. One reason is that when natural elements are sparsely dis-

tributed in the image, coarse edge information is already informative enough to describe

the image. SG-VLAD still has the advantage of a shorter and fixed-size image descriptor

as opposed to the non-scalable WASABI one.

Bucolic scenes with dense foliage One of the motivations for SG-VLAD was to tackle

the current recognition limits when the scene holds dense vegetation. The main chal-

lenges come from the repetitive pixel intensity patterns, and the few edges and the little

semantic information. This explains why the Recall@N drops for most methods. WASABI

and SG-VLAD were designed to leverage the little information that discriminates be-

tween such images, mostly the geometric information of semantic edges. WASABI slightly

improved over existing approaches by exploiting the global edge geometry, but it could

be improved. So this motivated the design of SG-VLAD to leverage additional informa-

tion in the local edge variations. However, experiments show that it does not induce the

expected boost. Investigating further improvements, including the exploitation of finer

edges than the semantic ones, is the object of future work.

Note that contrary to images with sparse vegetation, VLASE and Toft et al. [182] de-

scriptors reach the same performance as non-semantic methods. Although the gap is of

only 10%, it shows the benefit of leveraging both the geometric and the semantic infor-

mation in SG-VLAD. VLASE is made of the fusion of semantic probabilities over the edge,

and while it offers robustness to illumination and seasonal variations, it underperforms

on the dense vegetation scenes. In addition to the few edges to leverage, another reason

may be that the highly repetitive patterns in these scenes lead to similar semantic edge

probabilities. So their aggregation into an image descriptor is not discriminative enough

to differentiate such scenes. A similar explanation holds for the [182] descriptor of which

both the semantic histogram and SIFT-like descriptors are similar across images. Once

again, the main cause is the repetitiveness of the image information.
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Note that this is also an open problem for urban environments. One of the few works

that tackle this specific problem is [188]. Torii et al. propose to weight the aggregation

of local features so that repetitive ones do not dominate the sparser one. However, this

processing can not be integrated as is since dense bucolic scenes are entirely dominated

by repetitive patterns. So there is no other discriminative information to balance them

with. The integration of such balancing is the object of future work to tackle the chal-

lenge of repetitive patterns in natural scenes.

Urban Scenes. (Figure 4.6) shows that SG-VLAD does generalize to other scenes

than the bucolic ones. This is a significant advantage over SoA approaches. Note that

the descriptor dimension here is significantly smaller than SoA based approaches before

their dimensionality reduction step: 48 for WASABI v.s. 256 for NetVLAD and 1024 for

DELF.

4.3.4 Global evaluation on Symphony.

Rationale. As stated in the previous chapter, the Symphony dataset captures scenes

with the same semantic content with various seasons and light conditions. The wide

range of season and light condition it holds make it suitable for a global evaluation of

scene recognition over several conditions.
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Figure 4.7: Symphony global performance. SG-VLAD increases by 100% over the previ-
ous SoA.
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Results. Figure 4.7 shows that SG-VLAD doubles the results previously reached by WASABI.

This result is even more outstanding given that this environment presents much harder

challenges than the CMU park. A possible explanation for this significant improvement

is that Symphony often exhibits few semantic edges per image. If an image holds only

2 edges, WASABI represents it with only 2 coarse descriptors. But SG-VLAD uses local

information that is more present so the descriptor is richer and easier to discriminate.

Future work will build upon SG-VLAD to exploiting edges other than the semantic ones.

4.4 Summary

This chapter presented SG-VLAD, a novel image descriptor based on semantics and ge-

ometry to overcome the limits of its predecessor, WASABI, that only leveraged coarse-

scale information. Provided with the same semantic segmentation, it adopts an ap-

proach analog to VLAD and aggregates local geometric keypoints. A keypoint is an ac-

celeration maximum of one semantic edge. It is described with the local distribution

of the edge at that point. These local features are aggregated in a VLAD fashion while

integrating semantic information.

Experiments show that it reaches SoA on bucolic environments and even induce a

100% performance improvement on the extremely challenging Symphony dataset. It

compares to deep-learning SoA on urban environments even though it required no deep

training and exploits much more compact representations. These results reiterate the

relevance of hand-design and machine learning for useful visual features.

One limit that it shares with WASABI is the sensitivity to segmentation noise. Another

limit is that it does not address the open problem of describing repetitive patterns. This

is a problem also common to urban settings for which a reliable solution is yet to come.

Finally, while semantic edges usually carry enough information to discriminate between

images, leveraging other types of edges could prove useful. These three lines of study are

the object of future work.
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Part II

Unsupervised Local Features from
Trained CNNs
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The previous parts addressed the problem of robustness in scene recognition by

manually fusing semantics and geometry to design novel image global descriptors. Ex-

periments showed that this approach is as performant as a heavily trained deep learning

approach on bucolic scenes and reaches reasonable results in urban environments.

This part now turns on the problem of reducing the learning overhead when defining

data-specific local features. The proposed solution draws motivation from the edifying

observations in [57, 113]. Long et al. [113] discusses how the representation space gen-

erated by a CNN is correlated to the image space with a ‘high’ resolution. Fischer et

al. [57] show that this same space is discriminative enough to provide local descriptions

for image regions. The next chapter continues efforts towards this research direction: it

defines a local detector and a descriptor from a trained CNN that is as performant on

image matching as when the CNN is specifically trained for this task.
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Chapter 5

Local Features from pre-trained CNN
1

Figure 5.1: (1-6) Embedded Detector: Given a CNN trained on a standard vision task
(classification), we backpropagate the feature map norm back to the image space to
compute a saliency map. It is thresholded to keep only the most informative signal and
keypoints are the local maxima. (7-8): Local descriptors are computed from the feature
map interpolation on the detected keypoints.

This chapter introduces a novel feature detector from the information embedded in-

side a CNN already trained on standard learning tasks, such as classification, with no fur-

1This chapter describes contributions published in ICCV 2019 [24].
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ther training. Fig. 5.1 illustrates the method dubbed ELF (Embedded Localization infor-

mation from CNN Features). A score map is computed from the gradient of the feature

map norm with respect to the input image. The local maxima of this map are relevant

keypoints. Note that contrary to recent deep learning methods, this does not require

to train the CNN. These keypoints are as repeatable as the ones from hand-crafted and

learned detectors. The same CNN is used to get local descriptors by interpolating one of

its feature maps on the detected keypoints. The resulting local features achieve similar

matching performance and robustness on standard evaluation datasets (HPatches [19],

Webcam [191]). This shows that the representation space and the feature localization

learned by a CNN to complete a visual task is relevant to define local features. And these

features are as relevant as when the CNN is specifically trained to produce them.

The rest of this chapter is organized as follows. Sec. 5.1 recalls the related work rel-

evant to this chapter. Sec. 5.2 and 5.3 detail the detector and descriptor derivations.

Experiments in 5.4 show that it compares to the SoA matching performances.

5.1 Review of Local Features

This section summarizes the local features related to ELF. See Sec. 2.2 for more details.

Early methods rely on hand-crafted detection and description: SIFT [116] detects 3D

spatial-scale keypoints on differences of Gaussians and describes them with a 3D His-

togram Of Gradients (HOG). SURF [21] uses image integrals to speed up the previous

detection and uses a sum of Haar wavelet responses for description. KAZE [8] extends

the previous multi-scale approach by detecting features in non-linear scale spaces in-

stead of the classic Gaussian ones. ORB [153] combines the FAST [151] detection, the

BRIEF [32] description and improves them to make the pipeline scale and rotation in-

variant. MSER-based detector hand-crafts desired invariance properties for keypoints,

and designs a fast algorithm to detect them [121]. Even though these hand-crafted meth-

ods have proven to be successful, they are now outperformed by learning-based meth-

ods.

One of the first learned detectors is TILDE [191], trained under drastic changes of

light and weather on the Webcam dataset. It uses supervision to learn saliency maps of

which maxima are keypoint locations. Ground-truth saliency maps are generated with

‘good keypoints’: it uses SIFT and filters out keypoints that are not repeated in more than

100 images. One drawback of this method is the need for supervision that relies on an-

other detector. However, there is no universal explicit definition of what a good keypoint
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is. This lack of specification inspires Quad-Networks [158] to adopt an unsupervised ap-

proach: they train a neural network to rank keypoints according to their robustness to

random hand-crafted transformations. They keep the top/bottom quantile of the rank-

ing as keypoints. ELF is similar in that it does not requires supervision but differs in that

it does need to further train the CNN.

Recent learned detectors are trained within full feature extraction pipelines such as

LIFT [199], SuperPoint [46] and LF-Net [135]. LIFT contribution lies in its original train-

ing method of three CNNs. The detector CNN learns a saliency map where the most

salient points are keypoints. It then crops patches around these keypoints, computes

their orientations and descriptors with two other CNNs. First, the descriptor is trained

with patches around matching points with contrastive loss, then the orientation CNN

together with the descriptor and finally with the detector. One drawback of this method

is the need for ground-truth matching keypoints to initiate the training. In [46], the

problem is avoided by pre-training the detector on a synthetic geometric dataset made

of polygons on which they detect mostly corners. The detector is then finetuned during

the descriptor training on image pairs from COCO [110] with synthetic homographies

and the correspondence contrastive loss introduced in [40]. LF-Net relies on another

type of supervision: it uses ground-truth camera poses and image depth maps that are

easier to compute with laser or standard SfM than ground-truth matching keypoints. Its

training pipeline is similar to LIFT but employs the projective camera model to project

detected keypoints from one image to the other. These keypoint pairs form the ground-

truth matching points to train the network. ELF differs in that the CNN model is already

trained on a standard task. It then extracts the relevant information already embedded

inside the network for local feature detection, which requires no training nor supervi-

sion.

A large literature studies how to train CNN to generate local descriptors: TFeat [20],

MatchNet [69], DeepDesc [168]. These methods train the network to produce descrip-

tor vectors with minimal/maximal similarity on matching/non-matching patches with

either contrastive loss [68], triplet loss [20, 91] or correspondence-contrastive-loss [40].

Another approach learns task-specific descriptors for image retrieval for landmark recog-

nition [133] or robot localization [156]. ELF breaks with this trend and builds on the

experimental results of [57] to generate local descriptors from a trained CNN. The de-

scriptor derivation used in ELF is not novel: the interpolation of a feature map on the

keypoint location is a common practice, e.g., UCN [40], SuperPoint [46], D2-net [51].

Contrary to these examples, ELF never finetunes the CNN previously trained on some

visual task.
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The ELF detection is inspired by the initial observation in [169]: given a CNN trained

for classification, the gradient of a class score with respect to the image is the saliency

map of the class object in the input image. A line of works aims at visualizing the CNN

representation by inverting it into the image space through optimization [60, 117]. ELF

differs in that it backpropagates the feature map itself and not a feature loss. The fol-

lowing works use these saliency maps to better understand the CNN training process

and justify the CNN outputs. Efforts focus on the gradient definition [173, 174, 178, 206].

They differ in the way they handle the backpropagation of the non-linear units such as

Relu. Grad-CAM [163] introduces a variant where they fuse several gradients of the clas-

sification score with respect to the feature maps and not the image space. Instead, ELF

computes the gradient of the feature map and not a classification score with respect to

the image. Also, it runs a simple backpropagation that differs from the guided back-

propagation in the non-linearity handling. Finally, to the extent of my knowledge, this is

the first work to exploit the localization information present in these gradients for local

feature detection. See Sec. 2.4 for more details and feature gradients.

5.2 Low-level Feature Detection from CNN Saliency

This section describes ELF, a detection method valid for any trained CNN. Keypoints are

local maxima of a saliency map generated from the gradient of one of the CNN feature

map’s norm with respect to the image. This map is automatically thresholded to keep

only relevant locations using the data-adaptive Kapur threshold [90]. The remaining

local maxima are the keypoints and their coordinates are computed with a simple NMS

to get the maxima coordinates.

5.2.1 Saliency Score from CNN Feature Map

The saliency map Sl is a map that activates on the image regions that are the most infor-

mative for the l -th CNN feature map (Figure 5.2). It is computed as the gradient of the

feature Fl (I) map with respect to the image I and evaluated on that same feature map.

Another way to derive it is to backpropagate the feature map back into image space.

From a geometrical point of view, this operation can be seen as projecting the gradient

∇IFl of the feature signal Fl (I) into the image space. From a signal processing approach,

it amounts to filtering Fl (I) through ∇IFl into the image space.

More formally, let I be a vector image of dimension DI = HI ·WI ·CI, and Fl be a vec-

torized feature map of dimension DF = Hl ·Wl ·Cl . The saliency map Sl , of dimension
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DI, is Sl (I) =
∣∣∣∇I

∣∣Fl (I)
∣∣2

∣∣∣ = ∣∣TFl (I) ·∇IFl
∣∣, where ∇IFl is a DF ×DI matrix and TFl (I) is the

transpose of the feature map vector.

Saliency activates on the image regions that contribute the most to the feature rep-

resentation Fl (I). The term ∇IFl explicits the correlation between the feature space of

Fl and the image space in general. The multiplication by Fl (I) applies the correlation to

the features Fl (I) specifically and generate a visualization in image space Sl (I). If CI > 1,

Sl is converted into a grayscale image by averaging the saliency map across channels.

5.2.2 Feature Map Selection

The previous computation can provide saliency maps at different image scales depend-

ing on the feature map level l . High values of l correspond to deeper feature maps and

generate coarse-scale utilities. The first levels generate maps where saliency focuses

on low-level signals such as edges. Intermediate levels allow getting local features that

can still capture high-level image representation. Currently, trial-and-error is the only

approach to choose the relevant level l although saliency maps exhibit peculiar visual

patterns that can reduce the search. This section details the experimental approach to

choose the saliency level l .

The multi-scale property of such saliency comes from the CNN structure. CNN oper-

ations such as convolution and pooling increase the receptive field of feature maps while

reducing their spatial dimensions. This means that Fl has less spatial resolution than

Fl−1 and the backpropagated signal Sl ends up more spread than Sl−1. This is similar to

when an image is too enlarged as shown in Fig. 5.2. It shows the saliency computed from

the pool2 and pool3 layers of the VGG [171] network. On the top row, pool2’s gradient

(Fig. 5.2-left) better captures the location details of the dome whereas pool3’s gradient

(Fig. 5.2-right) is more spread. Another consequence of this resolution loss is that small

features are not embedded in Fl if l is too high. In that case, only coarse-level saliency

can be recovered by the gradient computation. This would reduce the space of potential

keypoint to only large-scale features which would hinder the image matching.

Remember that the SoA already provides ways to compute visual saliency at coarse

levels. This chapter focuses on features at a higher resolution. This motivates the choice

of the feature level l as the highest one that still provides pixel-wise feature localization.

This is visually observable by a sparse high-intensity signal contrary to the blurry aspect

of higher layers.
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5.2.3 Automatic Data-Adaptive Thresholding

The map derived previously exhibits a peculiar distribution with sparse high saliency

peaks. It is thresholded based on the saliency distribution to keep only the most useful

locations. Figure 5.3 shows saliency maps before and after thresholding using Kapur’s

method [90], which is briefly recalled below. It chooses the threshold that maximizes the

information between the image background and foreground i.e. the pixel distribution

below and above the threshold. This method is especially relevant in this case as it aims

at maintaining as much information on the distribution above the threshold as possible.

This distribution describes the set of local saliency maxima.

More formally, for an image I of N pixels with n sorted gray levels, let (ni )i∈�0,n−1� be

the corresponding histogram, i.e., ni is the number of pixels with gray level i . This de-

fines an empirical pixel distribution where pi = ni
N is the probability of a pixel to hold the

value nth
i level. Let s ∈ n be a threshold level and A,B the empirical background and fore-

ground distributions: A =
(

pi∑
i≤s pi

)
i<s

and B =
(

pi∑
i≥s pi

)
i>s

. The level s is chosen so that

the two distributions A and B become independant. This is achieved by minimizing the

mutual information I(A,B) between these distributions, which is equivalent to maximiz-

ing the sum of their entropy H(A)+H(B) = H(A,B)−I(A,B). For better results, the saliency

map is first denoised with a Gaussian of parameters (µthr ,σthr ) before computing the

threshold level.

Once the threshold is set, the saliency map is denoised a second time with a Gaussian

of parameters (µnoi se ,σnoi se ). Standard NMS (the same as for SuperPoint) iteratively

selects decreasing global maxima while ensuring that their nearest neighbor distance is

higher than the window wNMS ∈ N. The keypoints within a distance of bNMS ∈ N pixels

to the image border are ignored.

5.3 Local feature description from CNN

Inspired by SuperPoint’s description, the keypoints are described by interpolating one

the CNN feature map on the keypoints locations. The feature map level used for the

description may be different from the one for detection. High-level feature maps have

wider receptive fields so it is reasonable to assume that they embed more information

than lower levels. This leads to more informative descriptors.

However, as the feature map level l increases, the feature map loses resolution. If the

map level is too high, the interpolation of the descriptors generates vector too similar

to each other. For example, the VGG pool4 layer produces more discriminative descrip-

tors than pool5 even though pool5 embeds information more relevant for classification.

87



Empirically, there exists a layer level l ′ above which the description performance stops

increasing before decreasing. This is measured through the matching score metric intro-

duced in [126]. The final choice of the feature map is done by testing a set of layers with

increasing levels and select the lowest feature map before the descriptor performance

stagnates.

5.4 Experiments

Baselines. This section compares the local features queried from the CNN against the

SoA with available code: the fully hand-crafted SIFT [116], SURF [21], ORB [153], KAZE [8],

the learning-based LIFT [199], SuperPoint [46], LF-Net [135], the individual detectors

TILDE [191], MSER [121]. They are evaluated on how consistent the locations and their

descriptions are across various light and viewpoint conditions.

OpenCV’s code is used for SIFT, SURF, ORB, KAZE, MSER with the default parame-

ters and the author’s code is run for TILDE, LIFT, SuperPoint, LF-Net with the provided

models and parameters.

Setup. The tests run on Nvidia QuadroM2200 and GeForce 1080Ti graphic cards, with

Tensorflow 1.4, Cuda 8, Cudnn6 and Opencv3.4. The number of keypoints is limited to

500. All images are resized to the canonical size 480×640 px and the transformations are

rectified accordingly.

The blurring parameters (µthr ,σthr ), (µnoi se ,σnoi se ) are set with a grid search in the

range �3,21�2 and the NMS parameters (wNMS ,bNMS) in �4,13�2.

Metrics. Standard validation guidelines [126] provide metrics to evaluate how consis-

tent the useful locations and their descriptions are. The repeatability (rep) assesses how

invariant the useful locations are. The matching score (m.s.) measures how discrimina-

tive the descriptors are. Given two images of the same scene taken under different light

and viewpoint conditions, rep measures the percentage of locations common to both

images. The m.s. is the percentage of corresponding locations for which descriptors are

nearest neighbors.

As done in [46, 135], the overlap score used in [126] to compute correspondences

is replaced with a 5-pixel distance threshold. Following [199], the m.s. is modified to

include all descriptors in the greedy bipartite-graph matching. This differs from [126]
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that includes only descriptors pairs of which inter-distance is below an arbitrary thresh-

old. The latter’s threshold may introduce bias as the descriptors have different dimen-

sions. The rest of this paragraph details the metrics, that are also available in the released

code 2.

Repeatability. Let (I1,I2), be a pair of images and KP i = (kp i
j ) j<Ni the set of Ni

keypoints in image Ii. Both metrics are in the range [0,1] but are expressed as percent-

ages for better expressibility.

Repeatability measures the percentage of keypoints common to both images. The

locations in the first images are warped to the second one and the output coordinates

are noted KP 1,w . A naive definition of repeatability is to count the number of pairs

(kp1,w ,kp2) ∈KP 1,w ×KP 2 such that ‖kp1,w −kp2‖2 < ε, with ε a distance threshold.

As pointed by [191], this definition overestimates the detection performance for two rea-

sons: a keypoint close to several projections can be counted several times. Moreover,

with a large enough number of keypoints, even simple random sampling can achieve

high repeatability as the density of the keypoints becomes high.

The definition implemented in VLBench [105] solves this issue. It defines a weighted

graph (V,E) where the edges are all the possible keypoint pairs between KP 1,w and

KP 2 and the weights are the Euclidean distance between keypoints.

V = (kp1,w ∈KP 1,w )∪ (kp2 ∈KP 2)

E = (kp1,w ,kp2,‖kp1,w −kp2‖2) ∈KP 1,w ×KP 2 ×R
(5.1)

A greedy bipartite matching is run on the graph and matches are pairs with a distance

less than εkp . With M be the resulting set of matches, rep is computed as:

r epeat abi l i t y = #M

min(#KP 1,#KP 2)
(5.2)

Matching score. The matching score definition introduced in [126] captures the

percentage of keypoint pairs that are nearest neighbors both in image space and in de-

scriptor space, and for which these two distances are below their respective threshold

εkp and εd . Let M be defined as set of keypoint matches based on their Euclidean dis-

tance, and Md be the analog set of matches based of their descriptor distance instead.

Keypoint pairs are deleted if their spatial (resp. descriptor) distance is above the thresh-

olds ε (resp. εd ). With #M ∩Md the number of keypoints pairs which are both nearest

neighbors in image space and descriptor space, m.s. is defined as:

2https://github.com/abenbihi/elf
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matchi ng scor e = #M ∩Md

min(#KP 1,#KP 2)
(5.3)

Metrics parameters. The spatial distance threshold is set to ε= 5, as is done in LIFT

[199] and LF-Net [135]. Note that a way to reach perfect rep is to sample all the pixels or

sample them with a frequency higher than the distance threshold εkp of the metric. One

way to prevent this flaw is to limit the number of keypoints. Here the number of detected

keypoints is limited to 500 for all methods.

As briefly described previously, one drawback of the m.s. definition is that there is

no unique descriptor distance threshold εd valid for all methods. For example, the SIFT

descriptor as computed by OpenCV is a [0,255]128 vector for better computational pre-

cision, the SuperPoint descriptor is a [0,1]256 vector and the ORB descriptor is a 32 bytes

binary vector. Not only the vectors are not defined over the same normed space but

their range varies significantly. To avoid introducing human bias by setting a descriptor

distance threshold εd for each method, εd is set to ∞. This means that any descriptor

match is valid as long as they match corresponding keypoints even when the descriptor

distance is high.

Datasets. Various standard datasets allow for evaluation with respect to various condi-

tions. Figure 5.4 shows examples from each set. The HPatches dataset gathers 116 image

sequences with light and viewpoint variations. It is augmented with artificial scale and

rotation transformations for further robustness analysis. The Webcam dataset displays

static outdoor scenes with a wide range of natural light. Further details on each dataset

are provided with the experimental results.

5.4.1 General performance

Dataset. The HPatches dataset [19] gathers a subset of standard evaluation images

such as DTU and OxfordAffine [4, 125]: it provides a total of 696 images, 6 images for

116 scenes and the corresponding homographies between the images of a same scene.

For 57 of these scenes, the main changes are photogrammetric and the remaining 59

show significant geometric deformations due to viewpoint changes on planar scenes.

Setup. ELF is tested on three classification networks trained on ImageNet, AlexNet

[98], VGG [171], Xception [38] as well as the trained SuperPoint’s and LF-Net’s descriptor

networks. Each variant is called after the network it relies on prefixed with ELF. The au-

thor’s models are converted to Tensorflow [5] except for LF-Net. These variants provide

90



observations on the influence on the network architecture, the training task and training

dataset.

Results. Figure 5.5 (left) shows that the rep variance is low across detectors whereas

ms is more discriminative, hence our validation method (Section 4.1). On HPatches, Su-

perPoint (SP) reaches the best rep-ms [68.6, 57.1] closely followed by the ELF variants

(e.g. ELF-VGG: [63.8, 51.8]) and TILDE [66.0, 46.7]. In general, learning-based meth-

ods all outperform hand-crafted ones. Still, LF-Net and LIFT curiously underperform

on HPatches: one reason may be that the data they are trained on differs too much

from this one. LIFT is trained on outdoor images only and two LF-Net models are avail-

able, one for indoor and one for outdoor images. However, HPatches holds both indoor

and outdoor scenes. For fair comparison, LF-Net models are tested and the best results

are reported, which is achieved by the indoor model. Even though LF-Net and LIFT

fall behind the top learned methods, they still outperform classic hand-crafted meth-

ods, which suggests that these learned models embed more information than the hand-

crafted methods. This supports the recent direction towards trained detectors and de-

scriptors.

5.4.2 Illumination Robustness.

Dataset. The Webcam dataset [191] gathers static outdoor scenes with drastic natural

light changes contrary to the HPatches images which mostly hold artificial light changes

in indoor scenes.

Results. Once more, ms is a better discriminant on Webcam than rep (Figure 5.6 bot-

tom). ELF-VGG reaches top rep-ms [53.2, 43.7] closely followed by TILDE [52.5, 34.7]

which was the SoA detector.

Overall, there is a performance degradation (∼20%) from HPatches to Webcam. The

former holds images with standard features such as corners that state-of-the-art meth-

ods are made to recognize either by definition or by supervision. There are fewer fea-

tures in the Webcam dataset because of the natural lighting that blurs them. There are

also strong intensity variations that these models do not handle well. One reason may

be that the learning-based methods never saw such lighting variations in their train-

ing set. However, this assumption is rejected since even SuperPoint, which is trained

on Coco images, outperforms LIFT and LF-Net, which are trained on outdoor images.

Another justification can be that what matters the most is the pixel distribution the net-

work is trained on, rather than the image content. The top methods are the ELF variants
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together with SuperPoint: the first ones are trained on the huge Imagenet dataset and

benefit from heavy data augmentation. SuperPoint also employs a heavy synthetic data

strategy to train its network. Thus, these CNNs may cover a much wider pixel distri-

bution which would explain their robustness to pixel distribution changes such as light

modifications.

5.4.3 Rotation and Scale Robustness

Dataset. Two synthetic datasets are derived from HPatches. For each of the 116 scenes,

the first image is rotated with angles from 0◦ to 210◦ with an interval of 40◦. Four zoomed-

in version of the image are generated with scales [1.25,1.5,1.75,2]. The two datasets are

released with the code.

Results. ELF-VGG is compared to SoA detectors and their respective descriptors (Fig-

ure 5.7). Repeatability is mostly stable for all methods: SIFT and SuperPoint are the most

invariant whereas ELF follows the same variations as LIFT and LF-Net. Once again,

ms better assesses the detectors’ performance: SuperPoint is the most robust to scale

changes, followed by LIFT and SIFT. ELF and LF-Net lose 50% of their matching score

with the increasing scale. It is surprising to observe that LIFT is more scale-robust than

LF-Net when the latter’s global performance is higher. A reasonable explanation is that

LIFT detects keypoints at 21 scales of the same image whereas LF-Net only runs its de-

tector CNN on 5 scales. Nonetheless, ELF outperforms LF-Net without manual multi-

scale processing.

Even though rep shows little variations (Figure 5.8), all learned methods’ ms crash

while only SIFT survives the rotation changes. This suggests that the orientation nor-

malization step in SIFT’s detection is indeed relevant. LIFT and LF-Net integrateto an

analog normalization: both learn the keypoint orientation with a CNN either from the

image patch for LIFT, or from the deep patch features for LF-Net. The second approach

appears to provide better results compared to LIFT. Not surprisingly, our proxy-descriptor

is not rotation invariant as the convolutions that make the CNN are not. This also ex-

plains why SuperPoint also crashes similarly. These results suggest that the orientation

learning step in LIFT and LF-Net is relevant but its robustness could be improved.

5.4.4 3D Viewpoint Robustness

Dataset. Three Strecha scenes [177] with increasing viewpoint changes are used: Foun-

tain, Castle entry, Herzjesu-P8. The viewpoint changes proposed by HPatches are lim-
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ited to planar scenes which does not reflect the complexity of 3D structures. Since the

ground-truth depths are not available anymore, a pseudo scaleless ground-truth depth

is recovered using SfM [160]. They are also made available in the released code.

Results. While SIFT shows a clear advantage of pure-rotation robustness, it displays

similar degradation as other methods on realistic rotation-and-translation on 3D struc-

tures. Figure 5.9 shows that all methods degrade uniformly. One could assume that

this small data sample is not representative enough to run such robustness analysis.

However, these results rather suggest that all methods have the same robustness to 3D

viewpoint changes. Even though the previous analyses allow ranking the different fea-

ture extraction methods, each has advantages over others on certain situations: ELF or

SuperPoint on general homography matches, or SIFT on rotation robustness. This is

why the experiments only aim at showing that ELF reaches the same performances and

shares similar properties to existing methods as there are no generic ranking criteria.

5.4.5 Architecture influence

Rationale. The comparison of the classification network studies the influence of the

representation space size and the convolution method: VGG and AlexNet use the same

type of convolution but the functional space of VGG is much bigger than for AlexNet.

VGG and Xception both have high dimension representation spaces but VGG uses clas-

sic convolution whereas Xception uses fusions of depth-wise convolutions. The com-

parison with SuperPoint and LF-Net aims at showing whether ELF can benefit from a

network trained for feature extraction.

Results. ELF is applied to three classification networks and the descriptor networks of

SuperPoint and LF-Net (Figure 5.5, 5.6 - ‘Our variants’).

For a fixed training task (classification) on a fixed dataset (ImageNet), the VGG, the

AlexNet, and the Xception variants are compared. As could be expected, the network ar-

chitecture has a critical impact on the detection and ELF-VGG outperforms the other

variants. One explanation is that AlexNet is made of wider convolutions than VGG,

which induces a higher loss of resolution when computing the gradient. As for ms,

the higher representation space of VGG may help to build more informative features

which are a stronger signal to backpropagate. This could also justify why ELF-VGG out-

performs ELF-Xception that has fewer parameters. Another explanation is that ELF-

Xception’s gradient maps seem smoother. Salient locations are then less emphasized
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which makes the keypoint detection harder. One could hint at the depth-wise convo-

lution to explain this visual aspect but no experimental way to verify it was found for

now. Surprisingly, ELF-LF-Net outperforms the original LF-Net on both HPatches and

Webcam and ELF-SuperPoint variant reaches similar results as the original.

5.4.6 Individual components comparison

Setup. A first comparison experiment evaluates how well the individual detector per-

forms in feature extraction with our proxy descriptor. This provides a comparison be-

tween salient points that a CNN autonomously learns and the ones defined by hand or

by supervision. It also raises the question of whether contrastive and triplet losses are

relevant for descriptor training compared to the description a CNN naturally learns.

A second comparison measures how well the ELF detector can integrate into other

pipelines by replacing their original detector with ours. This brings attention to whether

detector training aims at learning information already embedded in networks.

Results. First, the descriptor of all methods is replaced with the ELF-VGG descriptor

using the pool3 layer. They are then compared to the top ELF variant based on VGG

(Figure 5.10, strips). Here, pool3 is selected instead of pool4 because it produces better

results for the other methods while preserving ours. ELF reaches higher ms [51.3] for all

methods except for SuperPoint [53.7] for which it is comparable. This shows that it is as

relevant, if not more, than previous hand-crafted or learned ones.

This naturally leads to the question: ’What kind of keypoints does ELF detect ?’. There

is currently no answer to this question as it is complex to explicitly characterize proper-

ties of the pixel areas around keypoints. Hence the open question ’What makes a good

keypoints ?’ that the research still tries to answer. Empirically, the ELF detector activates

mostly on high-intensity gradient areas although not all of them. An assumption is that,

as the CNN is trained on the vision task, it learns to ignore image regions useless for its

semantic representation. This results in killing the gradient signals in those areas that

may be unsuited for matching.

Another surprising observation is that for a fixed SuperPoint (SP) detector, SP de-

scriptor and our proxy-descriptor reach similar ms. This raises the question of whether

contrastive-like losses can better constrain the CNN features than simpler losses. This

also shows that there is more to CNNs than only the task they are trained on: they embed

much more information that can prove useful for unrelated tasks. Although the simple

proxy-descriptor is defined for evaluation purposes, these results demonstrate that it

can be used as a description baseline for feature extraction.
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The integration of the ELF detector with other method’s descriptor (Figure 5.10, cir-

cle) also boosts the ms. [199] previously suggested that there may be a correlation be-

tween the detector and the descriptor when they are jointly trained, i.e. the LIFT de-

scriptor is trained to describe only the keypoints output by its detector. However, these

results show that ELF can easily be integrated into existing pipelines and even boost

their performances.

5.4.7 Gradient Baseline

Setup. Visually, the feature gradient map is reminiscent of the image gradients com-

puted with the Sobel or Laplacian operators. To evaluate the difference, two ELF vari-

ants are run where the saliency map is replaced with the image standard gradient. This

aims at showing whether feature gradients embed more information than image inten-

sity variations only.

Results. The saliency map is replaced with simple Sobel and Laplacian gradient maps

of which local maxima are keypoints. The repeatability of these points is plotted Fig-

ure 5.11 - Left. These two gradients are completed with the descriptors from ELF on

VGG, AlexNet, and Xception. The matching performances are compared with their re-

spective ELF variant (Right). Results show that these simpler gradients can detect sys-

tematic keypoints with comparable rep on very structured images such as HPatches.

However, ELF is more robust to illumination changes (Webcam). On HPatches, the

Laplacian-variant reaches similar ms as ELF-VGG (55 vs 56) and outperforms ELF-AlexNet

and ELF-Xception. One explanation is that when the images are structured, high-intensity

gradient locations are relevant enough keypoints. However, on Webcam, all the ELF de-

tectors outperform the Laplacian and Sobel gradients with a factor of 100%. This shows

that ELF is more robust than the Laplacian and Sobel operators. Also, feature gradi-

ent is a sparse signal which is better suited for local maxima detection than the much

smoother Laplacian operator (Figure 5.12).

Qualitative results The green lines Fig. 5.13 are ELF’s putative matches based only

on nearest-neighbor matching of descriptors. More qualitative results are presented in

the video 3.
3https://youtu.be/oxbG5162yDs
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5.5 Summary

This chapter introduced ELF, a novel method to extract feature locations from pre-trained

CNNs, with no further training. Extensive experiments show that it performs as well

as SoA detectors. It can easily be integrated into existing feature extraction pipelines

and proves to boost their matching performances. Even when completed with a sim-

ple feature-map-based descriptor, it turns into a competitive feature extraction method.

These results shed new light on the information embedded inside trained CNNs. This

work also raises questions on the descriptor training of deep-learning approaches and

whether their losses constrain the CNN to learn better features than the ones it would

learn on its own to complete a visual task. Preliminary results show that the CNN ar-

chitecture, the training task, and the dataset have a consequent impact on the detector

performances. Further analysis of these correlations is the object of a future work.
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Figure 5.2: Saliency maps computed from the feature map gradient Sl (I) = ∣∣∇IFl (I)2
∣∣.

Enhanced image contrast for better visualization. Top row: gradients of VGG pool2 and
pool3 show a loss of resolution from pool2 to pool3. Bottom: (pooli )i∈[1,2,5] of VGG
on Webcam, HPatches and Coco images. Low-level saliency maps activate accurately
whereas higher saliency maps are blurred.
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Figure 5.3: Saliency maps thresholding to keep only the most informative location. Top:
original image. Middle: blurred saliency maps. Bottom: saliency map after threshold-
ing.

Figure 5.4: Preview of the evaluation datasets. Left-Right: HPatches: planar viewpoint.
Webcam: light. HPatches: rotation. HPatches: scale. Strecha: 3D viewpoint.
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Figure 5.5: Local feature matching performance on HPatches [19]. Left-Right: repeata-
bility, matching score.

Figure 5.6: Local feature matching performance on Webcam [19]. Left-Right: repeata-
bility, matching score.
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Figure 5.7: HPatches scale robustness. Left-Right: rep, ms.

Figure 5.8: HPatches rotation robustness. Left-Right: rep, ms.

Figure 5.9: Robustness analysis: 3D viewpoint.
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Figure 5.10: Left-Right: original perf, integration of ELF, integration of the VGG-proxy-
descriptor.

Figure 5.11: Gradient baseline.

Figure 5.12: Feature gradient (right) provides a sparser signal than Laplacian (middle)
which is more selective of salient areas.
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Figure 5.13: Green lines are ELF’s putative matches of the proxy-descriptor before
RANSAC-based homography estimation.
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Part III

Semantics for Robust Localisation
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The previous contributions of this thesis related to visual features. The first part ad-

dressed the problem of feature robustness for long-term scene recognition. It answered

this problem with two novel image descriptors based on semantics and geometry. The

second part proposed to reduce the need for heavy training to get data-specific local

features. It built on previous work that already suggests that the representation space of

a CNN can answer this problem.

The remaining chapters of this thesis focus on the better exploitation of semantic in-

formation. The global descriptors introduced previously already showed that semantics

can be integrated with other image information to provide robust solutions for visual

tasks. This part describes another example where the integration of semantic into exist-

ing edge-based visual odometry algorithms improves their tracking robustness.
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Chapter 6

Integration of Semantic Edge for Direct
Visual Odometry

road sidewalk building pole

vegetation rider carhuman

Figure 6.1: Visualisation of the semantic VO output. Red line: recovered trajectory. Color
point cloud: the reconstructed scene where the color of 3D point represents its semantic
class.

The contributions presented in this chapter are the results of a collaboration with

my Ph.D. colleague Xiaolong Wu, whose main research area is robust outdoor visual

odometry. In this joint work, he contributed to the optimization derivation and imple-

mentation, and I contributed to the data collection and generation. This work resulted

in a paper that we jointly wrote and submitted to IROS19 [195]. This chapter borrows
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the plots from the paper but the writing is my own.

The first two chapters of this thesis showed that the integration of semantics into

visual local features [23, 25, 182, 201] is relevant to make scene recognition robust to

strong variations in appearance. This chapter investigates whether semantics can also

prove useful for robust outdoor direct visual odometry.

Sec. 2.1 previously introduced the direct VO optimization and its challenges. Given

two images of the same scene taken under different viewpoints, it iteratively optimizes

the camera displacement and the depth of the scene that corresponding pixels are pro-

jected to the same 3D point in the scene. In practice, once the depth and the camera

pose are estimated, the first image is warped over the second and the optimization is

evaluated with the image alignment. The convergence and the performance of this al-

gorithm heavily depend on this alignment loss. A standard way to derive it is to com-

pare the pixel intensities between the warped and target images, which assumes that

the brightness is constant between the two images. This assumption is easily violated in

outdoor environments. Another loss evaluates only the alignment of the edges instead

of the whole image. Edges are more robust to light variations that pixel intensity but they

usually are not repeatable enough from one image to another. This means that one edge

in one image may not appear in the other one so it can not be aligned and contribute

to the optimization loss. Even worse, it can be wrongly aligned with another edge of

similar geometry and lead the VO to diverge. This can happen when the camera’s dis-

placement is too large and the resulting viewpoint differ too much. This motivates this

chapter to investigate the integration of semantic edges in monocular direct VO and

their influence of the optimization’s robustness. Experiments show that semantic edges

are more repeatable than standard ones, which make the algorithm more robust to view-

point variations. Also, semantics provide additional constraints on the pixels to align so

the final camera pose is more accurate.

The rest of this chapter is organized as follows. Sec. 6.1 recalls the edge-based VO

derivation. Sec. 6.2 derives the integration of semantics into the VO optimization. The

method is dubbed SNNFs for Semantic Nearest Neighbor Fields. Sec. 6.3 presents the ac-

curacy and robustness performance of this novel optimization in an autonomous driv-

ing setting on the KITTI dataset. Results show that this system achieves SoA perfor-

mances.

6.1 Review of Direct Visual Odometry

This section briefly recalls the visual odometry principles previously described in Sec. 2.1.
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Visual Odometry (VO) is the process by which a system mounted with a camera relies

only on images to recover its trajectory inside an estimated map of the world Fig. 6.1.

It is widely used in many outdoor robotic applications such as autonomous driving or

environmental monitoring. Existing methods usually fall in one of these two categories:

direct or indirect methods.

Indirect methods [94, 131, 176] rely on local feature matching between overlapping

images to recover the camera displacement. These methods rely on the research efforts

on robust local features to handle both photometric noise and geometric distortion in

images.

Direct methods jointly optimize the camera displacement and the scene depth to

align successive images. These estimations are used to warp the first image onto the

second, and the estimation is evaluated by the pixel intensity difference between the

warped and the second images. But this makes the unreasonable assumption that the

brightness stays constant between successive images. This limits the use of direct VO

outdoor where the light is out of the system’s control. Recent contributions [53, 52,

132, 138, 144] address this problem and improve the accuracy of the motion estima-

tion. However, another problem is the small convergence basin of direct optimization

compared to indirect methods because of the unconstrained data association: local fea-

ture matching is constrained by the descriptor distance. Edge-based VO estimation is a

relevant alternative to address this issue.

In a way, edge VO reduces the gap between direct and indirect methods: it matches

local edges between two images by recovering the camera motion and the depth from

the geometric constraint of the matches. The difference with the feature-based ap-

proaches is that edges are associated using Iterative Closest Point (ICP)-based alignment

rather than using descriptor matching. Since edges are more robust than pixels against

image variations (e.g., illumination changes, motion blur, or occlusion), they are more

reliable to align. This allows edge-based motion estimation to reach impressive motion

accuracy in indoor environments [213]. Yet, when it comes to outdoor environments,

the poor repeatability of standard edges detectors break the performance. This is be-

cause the existing VO methods rely on a simple edge-association strategy that is highly

sensitive to outlier edges and large camera motion. This motivates this chapter to in-

vestigate a robust edge association strategy using semantics invariants. Another source

of robustness is the recent effort in edge learning towards the detection of useful edges

only. One advantage of these new approaches is that they filter out most of the noisy

edges that are not exploitable by the VO. This chapter also investigates the advantages

of these learned edges over the standard Canny detector [33].
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6.2 Semantic-Edge Alignment-Based optimization

The derivation of edge-based VO is recalled before introducing the semantic adaptation.

Notations. The Euclidean coordinates of a pointX in the 3D scene areX = (x, y, z)T in

the camera frame. The camera coordinate systems is the one typically used in computer

vision. The camera looks down the z-axis, with the x-axis pointing to the right and the

y-axis pointing downwards. The z coordinate is the depth of the point. The 3D rotation

and translation that transforms coordinates from frame c to c ′ are written c ′Rc ∈ SO(3)

and c ′ tc ∈R3, with SO(3) denoting the group of orthogonal matrices of size 3.

This chapter works on gray-scale images I : R2 → R where x is the 2D pixel coordi-

nates and x̄ denotes the homogeneous coordinates (See Sec. 2.1 for more details). These

two coordinates are related by Eq. (6.1):

X =
x

y
z

 x̄=
u

v
w

→x=
( u

w
v
w

)
(6.1)

The L2 loss is written ‖ · ‖2 and the Huber loss ‖ · ‖γ. The camera intrinsic matrix is

noted K ∈R3×3. The set of edge pixels in one image is noted E .

6.2.1 Edge-Based Optimization

Edge-based VO estimates the camera motion between a reference camera frame and a

target frame. Edges are detected in the reference image Ir and the new image Ik . Given

the camera motion between the two frames and the depth of the scene, the edge pixels

in Ir are projected onto Ik . Each projected pixel is assigned to the nearest edge pixel

detected in Ik . Given ideal edges, the optimization finds the camera motion and the

depth that minimizes the distance between these associated pixels. This is why repeat-

able edges are pivotal for this optimization. When they are not, there is no way to know

if the pixel matches are incorrect because the estimation is false or because they belong

to different edges.

The mathematical derivation in the rest of this paragraph formalizes the previous

paragraph. It is not required to understand the rest of this chapter.

Let x= (u, v) ∈ E be an edge pixel in the source image (camera frame c) with depth z.

It is projected onto a pixelπ(x) in the target image (camera frame c ′) using the operation:
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π(x) =
( ũ

w̃
ṽ
w̃

)
wi th

 ũ
ṽ
w̃

= K ·
1 0 0 0

0 1 0 0
0 0 1 0

 ·
(c ′Rc
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0 1

)z ·K−1

u
v
1


c

1

 (6.2)

Note that the unknown in Eq. (6.2) are the pixel depth z and the camera rotation c ′Rc

and the translation c ′ tc .

Each projected pixelπ(x) is associated to the nearest pixel in E ′, the set of edge pixels

detected in the target image I′:

NN(π(x)) = argmin
x′∈E ′

‖x′−π(x)‖ (6.3)

The optimization estimates the camera rotation and translation, and the pixel depth,

that minimizes the distance between associated edge pixels:

E := ∑
x∈E

‖π(x)−NN[π(x)]‖γ (6.4)

The energy function in Eq. (6.4) is minimized using a 2D-3D ICP-based optimiza-

tion [95]. It alternates between finding approximate nearest neighbors and register the

putative correspondences using an iteratively reweighted Gauss-Newton algorithm. Fol-

lowing the theory of optimization under unitary constraints [119], the energy function

is minimized on Lie-manifolds for better convergence.

6.2.2 Semantic Nearest Neighbor Fields

Figure 6.2: Illustration on the semantic edge extraction on the KITTI dataset. The first
and second columns show the image and all its semantic edges. The rest of the columns
show a subset of the semantic edges.
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The previous optimization is now adapted to integrate semantic constraints at the

pixel association step 6.3. Previously, the projected edge pixel was assigned to the near-

est edge pixel in the target image. Now, the associated pixel must also have the same

semantic class as the projected pixel.

The semantic edges are generated with available CNN models, such as CaseNet [202].

As described in Sec. 3.3, these networks output probability maps at the image resolu-

tion that represents the probability of a pixel to belong to a semantic edge of a given

class. More formally, given an image I ∈ Nh×w×3 of height h ∈ N and width w ∈ N,

K semantic labels, the network outputs K pseudo-probability maps (Yk )k∈�0,K−1�, with

Yk ∈ [−1,1]h×w . Each map Yk represents the probability of the pixels to belong to a se-

mantic class k, i.e., Yk (u, v) is the probability that pixel (u, v) belongs to the semantic

edge of class k. Note that the CaseNet network is designed such that
∑K−1

k=0 Yk (u, v) 6= 1,

i.e, a pixel can belong to several classes with probabilities higher than 0.5 for each. For

example, an edge pixel lying between a car and the road has both labels. The labels

CaseNet is trained on are the Cityscape labels described in Tab. 6.1.

road pole terrain truck car
sidewalk traffic light sky bus fence
building traffic sign person train

wall vegetation rider motorcycle

Table 6.1: Cityscapes labels.

During the data association step, each edge pixel is only matched with pixels that

have the same semantic label. This reduces ambiguous associations and enlarges the

convergence basin. Since a pixel has multiple classes, it is associated several times, one

for each of its classes. By adding these constraints, this soft data association makes the

optimization more robust. The energy function 6.4 is adapted to integrate these ad-

ditional constraints. The set of edge pixels with class k in the reference image is now

written Ek . The search for the nearest edge pixel in the target image with class k written

NNk . The new energy function is defined by:

E :=
K−1∑
k=1

∑
x∈Ek

‖π(x)−NNk [π(x)]‖γ (6.5)
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6.3 Experiments

Datasets. The localization is evaluated on the left-camera images from the KITTI odom-

etry dataset [62]. The experiments are run on the rectified color images for which intrin-

sic and extrinsic are provided. The data is split into 11 sequences (00-10) and each of

them exhibits specific semantic content summarised in Table 6.2. This allows assessing

the influence of the semantics on the odometry performance.

Scene Sequence No. Semantics
city 00, 05, 06, 07 buildings, cars with few vegetation

village 02, 03, 04, 08, 09 vegetation with few buildings, cars
highway 01 roads, cars, and signs

Table 6.2: Semantics in various KITTI dataset sequences.

Baselines. The experiments compare SNNFs to its non-semantic counterparts AN-

NFs [213] and ONNFs [214] to evaluate the robustness gain induced by the semantic

constraints. These methods are tested with the default Canny detector and the learned

edges Holistically-nested edge detection (HED) [198] and Structured Edges (SE) [47].

They are also evaluated with the semantic edges from CaseNet [202] and SEAL [203]. The

probabilistic edges are fused over the semantic labels to output one semantic-less edge

map. This evaluates the influence of edge detection on these methods’ performance.

Setup. The semantic edges are generated with the CaseNet and SEAL variants trained

on the Cityscapes dataset [?]. The learned edges models for SE [47] and HED [198] used

in this chapter are the ones trained on the BSDS500 dataset [12, 120]. The learned edges

are generated with the code released by the authors. SE is run with Matlab 2017 and

HED, CaseNet and SEAL rely on the Caffe [85] on an Nvidia 1080Ti set with Cuda8 and

CudNN6. The semantic edges are generated with the CaseNet and SEAL variants trained

on the Cityscapes dataset [?].

Following [213], we implement a point-to-tangent residual, that is we project the

original pixel-wise residual onto its local gradient direction to obtain additional robust-

ness against outliers. It should be noted that this formulation makes the underlying

assumption that the camera motion is free of large inter-frame rotations. In reality, this

assumption is valid for the autonomous driving application considered in this chapter.

The semantic edge constraints are integrated both into mapping and tracking. In

the tracking phase, the edge residuals get more weights to enforce a better convergence

basin. In the mapping phase, they get fewer weights and the depth map is regularized to

111



penalize large inverse depth updates. For example, the inverse depth of an edge pixel is

unobservable when the epipolar lines are perpendicular to the edge normals.

In some experiments, the edge-based VO is integrated into the standard pixel-based

VO with the difference that the pixel intensity is replaced with the intensity gradient.

The gradient proves to be more robust to illumination changes [196].

When the images exhibit few edges, the pixels that support the optimization are not

distributed uniformly over the image. This often happens when the scene is dominated

by vegetation and can lead to ambiguous motion estimation. To solve this problem,

additional supportive pixels are sampled even when they are non-edge pixels. When

the edges are well distributed, only a few pixels are needed and vice-versa. The sam-

pling strategy in the same as in [52]. These points are not integrated into the semantic

data-association. Instead, they are registered only based on their photometric gradient

similarity as in standard direct VO.

Metrics. The localization is evaluated with the Absolute Trajectory Error (ATE). It mea-

sures the absolute difference between the camera positions of two trajectories. For a fair

comparison, no loop-closure is used and all methods use the ground truth poses to re-

cover the scale of motion every 200 frames. Experiments show that the pose estimation

for the first frames are usually unstable and vary for each method. So the first ten pose

estimates are discarded for all runs.

6.3.1 Localization Performances

SNNF is compared to the following SoA methods: mono-ORBSLAM2 [131] for monoc-

ular indirect VO, DSO [52] for direct approaches and VSO [109] for the semantic direct

methods. Overall, SNNF reaches lower error in the camera pose estimation for all urban

scenes. It also exhibits a larger convergence basin which makes it more robust to large

camera displacement than other edge-based approaches. However, it is limited by the

segmentation performance: when the edges are too noisy, the performance can drop

but still achieves SoA. The rest of this section details the evaluation and Fig. 6.3 shows

examples of recovered trajectories.

Setup. The authors of both ORB-SLAM2 and DSO provide code to run the experiments.

There is no code release with the paper describing VSO. So an alternative implementa-

tion is developed by introducing the semantic constraint energy into DSO for both track-

ing and mapping. For fair comparison, only 4000 active points are kept in all methods.

Here, all edge-based methods are augmented with the gradient photometric constraint.
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Seq 00 Seq 01

Seq 02 Seq 09

Figure 6.3: Qualitative results: Trajectories recovered from SNNF, indirect ORBSLAM2,
direct DSO, and semantic VSO systems on KITTI. Left to Right: KITTI-seq00, 01, 02, and
09. Note that seq01 only shows SNNF and the ground truth because other methods
cannot generate the whole trajectory.

Results. Table 6.3 summarises the ATE of the camera for all KITTI sequences. SNNF

provides lower error than the SoA, especially on the highway sequence. For this se-

quence, only SNNF converges whereas VSO and DSO can not recover the full trajectory.

One reason is the nature of the scene and the movement. The sequence holds mostly im-

ages from the highway road with either trees along the road or grasslands. This means

that these images hold few discriminant features that ORB relies on, which explains the

error higher than average for ORBSLAM2. It also holds poor texture that DSO relies on,

so there are less discriminative regions to align during the VO optimization. This makes

it easy for the DSO tracking to fails. And although VSO relies on semantics to garner

more information, the scenes hold few large connected components that are harder to
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KITTI
city village highway

00 05 06 07 02 03 04 08 09 01
ORBSLAM2 16.14 15.96 13.35 10.63 15.58 3.44 3.05 15.43 12.88 36.32
DSO 16.83 13.64 16.83 9.55 17.08 3.71 3.01 18.31 13.05 -
VSO 15.31 10.08 14.10 8.39 14.57 3.76 3.09 15.29 13.12 -
SNNF 11.82 8.39 10.92 6.11 14.15 3.72 3.03 15.07 12.63 14.59

Table 6.3: Tracking Error on the KITTI sequences for SNNF and the SoA.

precisely align than in urban scenes with smaller semantic units and better semantic

borders. This suggests that the geometric information inside the edges can boost the

robustness of the VO, as supported by these numerical results.

In the city, SNNF reaches lower pose error than the SoA by a margin of up to 30%

(seq 05). One explanation is that the segmentation is particularly accurate in the cities

and exhibits many semantic edges due to the rich urban structures. This way, there

are more reliable edges to exploit for the optimization. This also benefits VSO, which

supports the integration of semantics benefits the VO.

This stays true even when the segmentation gets noisy as in the village sequences

03 and 04. For these trajectories, SNNF is outperformed by ORBSLAM2 and DSO by no

more than 3%. One reason is that these sequences display more vegetation elements

for which the semantic edges are less repeatable. This hinders the convergence to the

correct pose.

6.3.2 Convergence Analysis

Rationale. One challenge of VO is the tracking robustness. One way to evaluate it is to

measure how well the optimization can recover from large camera displacement. Exper-

iments show that SNNF offers higher robustness than Approximate Nearest Neighbour

Field (ANNF) and Orientation Nearest Neighbour Field (ONNF).

The tracking robustness is measured with the trajectory ATE with respect to the ini-

tial camera displacement. The displacement ranges from 0 to 5 meters since there is

usually too little overlap for larger shifts.

Setup. To rule out the error introduced by the depth estimation’s inaccuracies, the tests

are run on the vKITTI dataset [58] instead of the KITTI one. The ground-truth depth is

integrated into the optimization and only the camera motion is estimated. Since it is

a simulation dataset, the depth is accurate enough to enable the tracking evaluation

without the mapping noise. The tracking starts from the ground-truth camera pose at
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the beginning of the trajectory. The next frame is sampled within a range of 5 meters.

The rest of the optimization is the same as before. The ATE with respect to one value of

initial displacement is averaged over all trajectories.

Here, the photogrammetric loss is not used in the optimization, and SNNF and ANNF

are derived with the learned HED edges.

Figure 6.4: ATE averaged over vKITTI trajectories with respect to initial camera displace-
ment. SNNF can recover from larger displacements than SoA edge-based approaches.

Results. Figure 6.4 shows that SNNF is more robust than edge-based approaches. The

latter converge to trajectories which ATE becomes linear with the initial displacement

once it is higher than 1 meter. This phenomenon occurs only after 3.5 meters for SNNF

and the final error is sub-linear. Given that tracking failure is one of the main challenges

tackled by VO research, such robustness is pivotal.

6.3.3 Edge Repeatability

Learned edges and more specifically semantic edges tend to be more repeatable than

the standard Canny approach.

Rationale. The choice of edge detection for outdoor VO is still an open question. Schenk

and Fraundorfer [159] observe that the performance of edge-based VO highly depends

on the repeatability of the edges. Given two images depicting the same scene, it is the

115



ratio of potential edge pixels associations over the number of edge pixels. This is com-

puted by first detecting edges on the first image and then projecting them onto the sec-

ond using the camera displacement and the scene depth. With n the number of pixels

that falls into an edge in the second image and N the total number of edge pixels, re-

peatability is measured by n
N .

Setup. Here, only N = 9000 edge pixels are randomly sampled from the first image for

a fair comparison. This is motivated by the fact that the edge density has a high variance

over the methods. This lead to values of N with a different order of magnitude.

The repeatability is measured on the simulated data vKITTI [58]. This prevents the

noise of the camera motion or the depth estimation to influence the metric.

Figure 6.5: Repeatability analysis on vKITTI. We compare conventional edge detector
(Canny [34]), learned edges (SE [47], HED [198]), and semantic edges (CaseNet [202],
SEAL [203]).

Results. Fig. 6.5 shows the edge repeatability with respect to the number of frames

between the two images. As expected, the repeatability decreases when the changes be-

tween the images increase. The results show that learned edges significantly outperform

the conventional Canny detector, which justifies the recent effort on edge learning. Also,

the plot suggests that semantic edges are slightly more robust than standard edge: their

repeatability curves decrease slower than the latter’s one.

6.3.4 Influence of the Edge Derivation

This section evaluates the influence of the derivation of learned edges for ANNF, ONNF

and SNNF. Experiments show that end-to-end learning approaches provide semantic
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edges better suited for visual tracking. Figure 6.6 visualizes the various edges.

RGB Canny

SE HED

CaseNet SEAL

Figure 6.6: Illustrations of the various edge detection methods.

Rationale. There are two main approaches to generate semantic edges. The first one

relies on end-to-end learning approaches such as CaseNet and SEAL. Their input is a

color image and the output is a set of probability maps, one for each class. Each map

represents the probability of a pixel to belong to an edge in this class. The main differ-

ences are the training optimization and the emphasis put on the edge thinning.

The second approach is to fuse standard semantic maps with learned edges such as

SE or HED. They take a color image and output an edge probability map of the same di-

mension. Each pixel value is the probability of that pixel to belong to an edge. This edge

map is fused with a semantic probability map where each pixel value is the probability

of this pixel to belong to a class. Such probabilities are computed from the softmax on

the segmentation network logits i.e. the output of the last layer of the network. Finally,

a map representing the probability of a pixel to belong to an edge with a given label is

computed from the multiplication of the previous maps. This assumes that the edge

variable and the label variable are independent, which is a reasonable assumption.

Setup. The semantic segmentation is computed with the Xception-65 [38] variant of

the SoA DeepLabV3 [37]. It is pretrained on the Cityscapes dataset and an open imple-

mentation finetuned it on the KITTI dataset [13].

The pure edge-based methods ANNF and ONNF only integrate the geometric infor-

mation of the learned edges, even when they are provided with semantics. Here, the

photometric gradient constraint is integrated to the edge-based optimization.
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City Village Highway

Figure 6.7: KITTI trajectory errors averaged over each environment (city, village, high-
way). The SoA DSO is compared to SNNF variants based on learned semantic edges, or
the fusion and semantics and edges learned individually. The first approach provides
better tracking results.

Results. Results suggest that semantic edges learned in an end-to-end manner are bet-

ter suited for VO, whether the semantics are leverages or not. For a fixed edge detector,

the semantic constraints lead to a lower ATE. This reinforces the relevance of semantics

integration for visual localization.

Fig. 6.7 compares the influence of the edge generation on one hand the influence of

the semantic integration on the other. The results are divided over the three KITTI en-

vironments: city, village, and highway. All edge-based approaches reach lower or equiv-

alent error to DSO and the boost is significant for city and highway scenes. An intuitive

explanation is that the more repeatable edges the image hold, the more constraints the

optimization can leverage.

Even when ANNF and ONNF leverage the same geometric edges as SNNF, the latter

achieves similar or lower ATE. This shows that the integration of semantic does benefit

localization. Information is pivotal for robust tracking. The performance gap between

the geometry-based ANNF and ONNF, and their semantic counterpart SNNF is signifi-

cant when the semantics are accurate. This is the case for the city scenes for example.

But when the segmentation gets noisy, the two approaches become equivalent (e.g, vil-

lage). This result motivates the effort toward better segmentation models.
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6.3.5 Runtime and Qualitative Results

When it comes to runtime performance, ORBSLAM2 and DSO stay the most compet-

itive approaches. One main drawback of SNNF is the need for a CNN to generate the

semantic edges. This makes the time for tracking and mapping 1.34× longer than DSO

on average. This comparison is computed on the original KITTI and vKITTI image size

((1224,376)px) for which the semantic edge generation takes 0.7 seconds per image on a

NVIDIA 1080Ti. A relevant line of work that addresses this issue is model distillation [76].

Given a large CNN model trained on a visual task, a smaller model is trained to gener-

ate the same outputs as the larger one. This approach has already proven relevant for

standard tasks such as classification, detection and segmentation [75, 76, 154], image

retrieval [156] and local feature detection and description [155].

Figure 6.8: Reconstructed semantic edge maps for KITTI. Left: semantic edge maps re-
covered from city, village, and highway sequences. Right: semantic edge images gener-
ated using CaseNet [202].

6.4 Summary

This chapter studied how the integration of semantics into edge-based direct visual

odometry addresses the tracking robustness challenge. It reinforces the edge pixel regis-
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tration during the tracking step by constraining associated pixels to belong to the same

semantic class. It takes into consideration that a pixel can have multiple labels and use

these additional constraints to make the data association more robust. When compared

to existing edge-based methods on an autonomous driving use case, it leads to lower tra-

jectory error. This supports the idea that integrating semantics into existing localization

applications can improve their performances and robustness.

This is not the first application where semantics augment a visual task: Chap. 3 and

Chap. 4 already showed that fusing semantics with coarse of local geometry information

defines global image descriptors that achieve SoA in multi-season scene retrieval. One

issue with semantics is that they require large models trained with supervision on a high

amount of data. This limits the integration of semantic in tasks with specific data and

this is why the last part of this thesis discusses methods to reduce the training load of

semantic segmentation.
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Part IV

Semantics Training with Alternative
Supervision
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The previous parts of this thesis provide examples of how semantics can be inte-

grated into visual localization applications to make them robust to image variations in

appearance.

The state-of-the-art for semantic segmentation relies on large CNN models heavily

trained on high amounts of specific data. Any time the pixel distribution of the data

changes, CNNs usually fail to generalize well. For example, the segmentation network

trained on the CMU-Seasons dataset outputs noisy results on the Symphony dataset,

which limits the performance of the semantic-based localization. One solution is to

finetune the CNN to the target application. But collecting supervision data is costly,

time-consuming and sometimes even not feasible. This motivates the next part of this

thesis to discuss methods that reduce the need for supervision data when finetuning

segmentation CNN.
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Chapter 7

Synthetic Data Generation for CNN
Domain Adaptation

1

Figure 7.1: Two samples of the segmentation dataset. Left: the source data collected
in 2015 with a digital camera. Right: the target data collected in 1955 with an analog
camera and later digitized. Bottom: qualitative segmentation results.

The contributions presented in this chapter are the results of a collaboration with my

Ph.D. colleague Antoine Richard and the master student Gabriel Hurtado. In this joint

work, Antoine contributed to the data collection and processing, Gabriel contributed to

1This chapter describes contributions published in ICPA 2018 [148].
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the synthetic data training and I contributed to the segmentation training. This work

resulted in a paper that we jointly wrote and published in ICPA18 [148]. This chapter

borrows some of the plots from the paper but the writing is my own.

Given a CNN trained with supervision on a source dataset, domain adaptation up-

dates the network so that it generalizes on a target data. Figure 7.1 illustrates a seg-

mentation example on two aerial images taken 50 years apart where each pixel must be

classified according to the land type (e.g, fields, road, city). The goal is for the network

trained on the recent color images (left) to generalize to the 1950 analog images (right).

One reason for poor generalization is when the source and target datasets exhibit

different pixel distributions. The standard solution is to collect annotated images from

the target data and finetune the network i.e. train it starting from the previous model

optimized on the source images. However, this requires additional annotations that

are costly and time-consuming. This chapter proposes to transform the source dataset

so that its pixel distribution gets closer to the target one without changing its content.

This way, the source annotation can be reused to finetune the CNN on this transformed

data. By training the network on images with a closer distribution to the target’s one,

this method improves the CNN’s generalization.

Figure 7.2: Neural Style Transfer Example [60]. Left: natural image. Right: the natural
image with the painting style of the bottom image.

This approach is motivated by the neural style-transfer (Fig. 7.2) that modifies the

image appearance but preserves the image’s composition. The first approach from Gatys

et al. [60] leverages the feature space generated by a trained CNN. It observes that two

images with similar style exhibit the same feature statistics, and more specifically similar

Gram matrices over the feature vectors. When the two images also have similar content,

their feature maps are close in the Euclidean space. This allows neural-style-transfer to
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find the minimal image update for the natural image to get similar feature statistics as

the painting. The resulting image has the same content as before with the appearance

of the painting.

The same approach is used to transform a source dataset to match the target data’s

statistics while preserving its content. Then, the segmentation annotations already avail-

able for the source dataset can be reused on the transformed images. The CNN is fine-

tuned on the transformed data with standard supervision.

The rest of this section is organized as follows. Sec. 7.1 recalls the style transfer op-

timization. Sec. 7.2 introduces the segmentation dataset and the experimental results.

The data is collected by an organization dedicated to long-term monitoring of national

land occupation. Aerial images have been sampled every few years since 1950. The

images present a wide range of appearance from recent color images taken with multi-

spectral cameras to analog images that were later digitized. The experiments show that

the synthetic data is not enough to achieve satisfying segmentation results. However,

it proves useful to warm up the CNN. The network still needs to be trained on real an-

notated target data but need fewer examples and reaches higher segmentation perfor-

mances.

Figure 7.3: Illustration of the Neural Style Optimization in [60]. The same trained CNN is
used to compute the loss from the feature statistics. The gradient of the loss with respect
to the image is computed with backpropagation and used to update the image.
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7.1 Synthetic Data Generation

This section describes the neural style derivation from Gatys et al. [60] and the speeded-

up approach from Johnson et al. [86], which is the one used in the experiments.

The first neural approach [60], illustrated Fig. 7.3, relies on a trained neural network.

The figure shows three networks but it is the same one replicated three times for the

sake of clarity. Note that the network weights are never updated, only the image is. The

style image (left) and the content image (right) are fed to the network and their feature

maps are stored for later use. The goal is to generate an image so that its features share

statistics with the style’s ones but stay close to the content image’s features.

The optimization starts from a random noise image fed to the network. This image

is fed to the same network (center) and two losses are computed. The first is the con-

tent loss computed as the square residue between the features of the input and content

images. The style loss is the squared difference between the Gram matrices of the style

image and the input one. The Gram matrix represents the dependence of the feature

vectors. One way to see a feature map Fl of size hl × wl × cl is a a set of hl wl feature

vectors of dimension cl . The (i , j ) ∈ N2 element of the Gram matrix is the dot product

of the i th and j th feature vector. These two losses may be computed on different feature

maps. For example, in Fig. 7.3, the style loss is computed on features from the 5th con-

volutional block whereas the content one is computed from the 4th. Each of the loss is

backpropagated back to the image space to compute the gradient of the theses losses

with respect to the input image. These two gradients are summed and integrated into

an Stochastic Gradient Descent (SGD) optimization to update the image. These steps

are repeated until convergence.

Johnson et al. [86] propose an alternative derivation to speed up the generation.

They feed a network with the natural image and train it to output the transformed im-

age. The training is also computationally demanding and a network must be trained for

each style, but the generation at run-time is much faster. So this approach is preferred

to the previous one.

7.2 Experiments

Dataset. The data to segment are overhead images collected in 1955 and 2015 over the

Grand Est region of France. The French national Institute of Geographical and forestry

Information (IGN) surveys the region regularly and provides rectified images ready to

process for segmentation. The 2015 images are sampled using a multi-spectral camera
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and only some channels are kept: red, blue, green and near-infrared. They exhibit a

resolution of 50 cm per pixel so they can even represent narrow structures such as road

and streams. The 1955 images are analog black and white photographs, later digitized

and rectified afterward. These images still hold the same resolution but display some

altering effects such as blur, grain, and saturation and poor contrast.

Human Annotation. Relevant land classes are defined by the EUNIS habitat classifi-

cation [114] which is a pan-European system describing habitats across Europe. It gath-

ers hundreds of labels and only 14 are kept for the sake of the monitoring application

(Tab. 7.1). Most of them focus on wetlands such as hems and riparian groves. A hu-

man fuses various maps to annotate each pixels such as water network maps [3], forest

maps [1], culture maps [2], and Google Street View. On average, it takes 8 hours. Given

the monotony of the task, it is split over several days and in practice, it took the hired

engineer a week to get the annotation for a 10 000 × 10 000 pixels image.

0 Encoder 7 Coniferous woodland
1 Surface standing waters 8 Tree farms
2 Constructed areas 9 Fruit orchards
3 Extractive Industrial Sites 10 Riparian vegetation
4 Grasslands 11 Heathlands, scrub and tundra
5 Arable lands 12 Chopping areas
6 Broadleaved woodland 13 Vineyards

Table 7.1: Semantic classes.

Data Processing. The data collected exhibits a strong class imbalance. For instance,

there are 100 times more pixels of grasslands than woodlands pixels. Such a data pattern

usually hinders the segmentation performance. A standard solution is data augmenta-

tion: it samples the images with under-represented labels and applies transformations

that preserve the semantics (e.g rotations,crops). The resulting images are added to the

training dataset. However, there is an additional constraint for the dataset used in this

chapter. One image can hold both over and underrepresented classes. So the addition of

such images would increase the class imbalance. To address this issue, an image is aug-

mented only if it reduces the inter-class variance. Fig. 7.4 shows the class distribution

before and after augmentation. The augmentation does not result in a uniform class

distribution but it still improves over the previous imbalance.
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Figure 7.4: Pixel distribution of classes before and after the data augmentation. Although
the augmentation does not compensate for the whole imbalance, it brings the classes
closer to a uniform distribution than before.

Metrics. The segmentation model is evaluated with two standard metrics: the accuracy

and the mean Intersection Over Union (mIOU).

The accuracy measures the ratio of pixels correctly classified. More formally, for a

class c, TP is the number of pixels with correct classification, and FP is the number of

pixels wrongly classified. The accuracy of class c is acc = TP
TP+FP .

The mIOU expresses how well the model locates the various semantic instances and

how good it segments their boundaries. For a class c, let Bg t (resp. B) be the set of

ground-truth (resp. learned) semantic boundaries. The mIOU is defined as mIOU =
Bg t∩B
Bg t∪B .

7.2.1 Baseline: real supervision

Setup. Among the various segmentation models with SoA performance back in 2017

[18, 36, 112, 134], DeepLab [36] reached the highest accuracy and mIOU on the land

dataset. The experiments use the Resnet-101 [74] variant of DeepLab pretrained on

the PASCAL VOC [55] dataset. DeepLab fuses the segmentation of three independent

Resnet-101 on three scales of the same image. Experiments showed that this multi-scale

approach did not boost the performance for this specific dataset. So only the branch

that processes the original scale is kept. This reduces the memory requirements from
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8G to 3G of RAM. DeepLab is finetuned on the overhead dataset and the output is post-

processed with an efficient implementation of Conditional Random Fields (CRF) [96].

This step denoises the segmentation, especially around boundaries.

The code is run using the Caffe [85] library on Nvidia GT1080 GPU set with Cuda8

and CudNN5. The segmentation is optimized with SGD [30] with an initial learning rate

of α= 2.5×10−4 and a polynomial decay. This reduces the learning every iteration using

the formula α→ α×(1− i ter ati on
30000 )power with power = 0.9. The SGD momentum is set to

0.9 and the weight decay to 5×10−4. The network is trained on 300×300 pixels image

crops sampled from the original images.

Training Parameters. Table 7.2 summarises the parameters for the two separate train-

ings on first the 2015 data, then on the 1955 one.

2015 1955
Train set size 15360 7328
Test set size 3232 790
Image size 300 300
Batch size 8 8

Train epochs 7 15
Training time 24h 24h

Table 7.2: Training parameters for the baseline segmentation.

Results. The DeepLab segmentation model trained on the 2015 dataset reaches 73%

of accuracy in average and 75% of mIOU . It slightly underperforms on the 1955 data

with only 65% of accuracy and 55% mIOU . The main explanation is that the first model

is trained on twice as much images. Figure 7.5 details the mIOU for each class. Note

that the classes with the lower scores are usually underrepresented, like the riparian

vegetation.

Another cause for the network’s confusion is the visual similarities in appearance

between classes. For example, the riparian vegetation is visually akin to grasslands. The

confusion is reinforced by the fact that there are many more examples of grasslands than

riparian vegetation. When there are enough examples of two visually similar classes, the

network manages to differentiate them. For the 1955 model, another source of error

is the higher unbalance of the dataset than for the 2015 images. For example, only 35

images hold tree farms pixels after the data augmentation. This is another motivation
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Figure 7.5: Segmentation mIOU performance for each class on the 2015 and the 1955
data.

to rely on the 2015 supervision as it is better balanced. This is the object of the next

experiments.

7.2.2 Synthetic supervision

This section evaluates the segmentation trained on synthetic data. Experiments show

such training achieves only a third of the performance reached with real data finetuning.

So it needs to be additionally trained on real annotated images from the target data. Still,

the network needs fewer images when it is warmed up with the synthetic data.

Baselines. The segmentation network is initialized with training weights on the source

data i.e. the 2015 data. Then, it is finetuned using one of the three following 1955

datasets: the real 1955 images with human annotations, the synthetic 1955 images gen-

erated from all the 2015 data with the style transfer, and the black-and-white version of

the 2015 images. The last set aims at showing that the style transformation is more than

a change of the color domain. All the networks are evaluated with the segmentation

performances on the real 1955 images.

Setup. The synthetic generation uses the Tensorflow [5] code released by Logan En-

gstrom [54]. The image transformation network follows the VGG network [171] and has
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been previously trained for classification on ImageNet [98]. It is finetuned to generate

the MS-COCO [110] images with the appearance of 1955 land images.

The segmentation optimization follows the same setup as for the training on the

source data.

Training Parameters. The transformation network is trained with the Adam optimizer [93]

with a learning rate of 10−3 for 2 epochs over the 80K COCO images. Each iteration has

a batch of 4 images. The content loss is computed on the relu_4_2 feature map and

is weighted with λw = 7.5. The style loss uses the relu1_1, relu2_1, relu3_1,

relu4_1, relu5_1 maps with a weight of λst yle = 102. The generated images are

regularized with total variation regularization with a weight λr eg = 2×102.

Data Accuracy (%) mIOU (%)
Black-and-White 2015 10 4

Stylized 2015 24 12
Real 1955 65 55

Table 7.3: Segmentation results on the real 1955 dataset. The networks, previously
trained on the 2015, are finetuned on either the black-and-white 2015 data, the stylized
2015 data, or the real 1955 data. Only the finetuning on real 1955 data converges.

Results. Finetuning on the synthetic achieves only a third of the performance of real

data finetuning. Tab. 7.3 shows that the synthetic data achieves no more than 24% accu-

racy whereas finetuning on real data gives the top score (65%). The stylized data leads to

better results than the black-and-white one, which shows that style transfer runs more

than a simple color change. However, it is not enough to bridge the gap between pixel

distributions of the source and the target data.

Data / Network DeepLab SegNet
Back-and-White 2015 + Real 1955 67.28 63.60

Stylized 2015 + Real 1955 70.37 64.28
Real 1955 65.0 NA

Table 7.4: Segmentation boost measured with mean accuracy (%). The segmentation
networks previously trained on 2015 images are finetuned on real 1955 images. The first
two lines show the performance when the CNN is first finetuned on synthetic data then
on the real one. This additional training boosts the segmentation results, especially with
the stylized data.
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Still, synthetic data seems to be relevant to warm-up the CNN on the target data

(Tab. 7.4). This agrees with previous observations in the litterature and motivates the

generation of high-definition synthetic datasets [149, 150]. The segmentation networks

previously trained on 2015 images are now finetuned on synthetic data before the real

1955 images. This boosts the segmentation performance from 2% to 5%, which is a sig-

nificant boost for segmentation. Even the simple black-and-white transformation al-

lows for a boost of 2% accuracy.

The same test is run on SegNet [18] too, another SoA segmentation network (Tab. 7.4

- right). In this case, finetuning on the real 1955 data only does not allow SegNet to

converge. One possible explanation is that SegNet runs a weighted pixel-wise classifi-

cation where the weights are inversely proportional to the frequency of this class in the

dataset. When the unbalance is too extreme, as in the 1955 dataset, this induces weights

with high amplitude that hinders the convergence. In this case, warming up the network

provides a better starting point in the optimization space. Note that for SegNet, the sim-

ple black-and-white images provide a warm-up almost as useful as the styled images.

7.3 Summary

This chapter described how to leverage previous contributions in neural style transfer to

generate synthetic data for segmentation adaptation. It assumes that a source dataset

is provided with annotation. These source images are transformed so that their pixel

distribution gets closer to the target distribution while preserving their content. This

is achieved using the style transfer optimization. The CNN is then finetuned on the

transformed data with the source annotations. Experiments show that this optimization

achieves only a third of the performance reached with real data. However, this synthetic

data proves to be useful to warm up the CNN. Then finetuning on the few real target

images achieves better results than without the warm-up.
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Chapter 8

Features Transfer for Segmentation
Adaptation

1

The previous chapter proposed to transform the distribution of an annotated source

dataset to fit the ‘style’ or distribution of the target data. Then a CNN trained on the

transformed data should better generalize on the target one. Experiments show that

the transformed data is useful to warm up the CNN but the training still needs real an-

notated images from the target dataset to provide satisfying performances. Still, this

provided some insight on the information inside the feature maps: they not only hold

representations of the image content but also statistical information about the image

appearance, what was called the ‘image style’. And it showed that it possible to transfer

the ‘style’ of one image to another using this feature information. In other words, the

pixel distribution of a dataset can be changed to get closer to another dataset. One issue

is that the computed optimization to transform the data is computationally expensive

and time-consuming. So this chapter investigates a simpler way to leverage the infor-

mation embedded in the CNN feature maps to transfer image distributions from one

dataset to another.

Previously, the style of the target dataset was captured by the features of the CNN

trained on the source dataset. It was brought back to the image space to transform the

source data. This transformed data was sent back to the feature space of a distinct CNN

to finetune it on the target data. Instead, this chapter proposes to short-cut this process

and only manipulate feature information. One drawback of the proposed method is that

it requires semi-annotations in the form of approximately aligned images.

The target CNN is initialized with the weights of the source CNN trained on the an-

notated data. It is then trained to generate the same feature maps on the target data as

1This chapter describes contributions published in ICONIP 2019 [27].
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the source CNN did on a source image. The constraint is that the source image holds ap-

proximately the same content as the target one. The advantage is that there is no need

to generate new data and finetuning becomes a simple regression problem.

The rest of this section is organized as follows. Sec. 8.1 derives the training approach.

Sec. 8.2 presents both quantitative and qualitative results: the proposed method reaches

performances similar to classic transfer learning on the PASCAL VOC dataset with syn-

thetic transformations. And feature visualization suggests that the target CNN now projects

both source and target image into the same point in its feature space. This means that it

has become sensitive only to the image content and not to the image pixel distribution.

This is what is expected from aligned images but with different pixel distributions after

finetuning.

8.1 Domain adaptation from feature map regression

8.1.1 Feature map regression

Figure 8.1: Top: The trained and frozen (gray) network provides ground truth deep rep-
resentations. Down: The trainable layers (blue) must learn the deep representations.

In Figure 8.1, the top network is the source network trained in a supervised manner

on an annotated source dataset Ds . After training, it is frozen (grey) and its feature maps

hold high-level semantic representations of the image content.

The bottom network is initialized with the source weights and is trained on the target

dataset Dt . The training requires a pair of approximately aligned images with different
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pixel distributions (Xs ,Xt ) ∈ Ds ×Dt . The target network Ht is adapted to generate the

same features maps on Xt as the upper network Hs on Xs . This is achieved with a simple

regression between the feature maps of the layers to adapt (blue). Note that this process

does not require segmentation annotation on the target data Dt . The target network is

trained by backpropagating the Euclidean distance between analog feature maps of the

two networks. The difference between the l th feature maps is backpropagated through

the previous layers only. This leaves the option to adapt only a subset of feature maps

rather than the whole target network.

8.1.2 Visualising the Feature Adaptation

This section adapts existing visualization techniques [60, 117] to try to observe the fea-

ture maps evolution. A source image Xs is fed to the target network Ht to generates a

set of l feature maps {Fl
t (Xs)}l . The goal is to invert this features back to image space i.e.

generate an image X that leads to the features {Ft (Xs)}l . The goal is to visualize how the

network sees the image.

X is initialized with white noise and is optimized so that Fl
t (X) = Fl

t (Xs) for all feature

maps. This is achieved by backpropagating all the feature map residues back to image

space. The result is the accumulation of image gradients from all the feature map errors.

The input X is updated with this image gradient using SGD [117].

Previous work on neural style transfer by Gatys et al. [60] observed that the previous

optimization only constrains X in content and not in style or distribution. This con-

straint is expressed with the Gram matrix: Gl
t (Xs) designates the Gram matrix of the l th

feature map of the target network when fed with a source image Xs . In addition to the

previous content condition, X should also satisfy Gl
t (Xs) = Gl

t (X) for all feature maps. As

for the feature map difference, the Gram residues are backpropagated into the image

space. Then X is updated with these cumulated gradients using SGD. See [60] for more

details on the Gram matrix derivation.

8.2 Experiments: semantic segmentation adaptation on
PASCAL VOC

Metrics The method is evaluated on the segmentation performances of the target net-

work on the target data. The standard segmentation metrics defined in the previous

chapter are used again: the accuracy and the mIOU .
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Dataset The experiments are run on three synthetic transformations of the augmented

version [70] of the PASCAL VOC12 dataset [55]. It holds 10 582 training images and 1449

validation images with 21 semantic classes. The original dataset contains 1464 train

images, 1449 validation images, and 1456 test images. The regression is trained on the

10 582 original images.

Three transformations T1,T2,T3 with increasing perturbations are generated with

GIMP 2 resulting in the three target datasets D1
t ,D2

t ,D3
t (Figure 8.2). The ‘photocopy’ filter

T1 emulates a change of color and saturation. This problem arises in long-term environ-

mental monitoring where recent datasets are numerical RGB images and older datasets

are collected with the numerization of analogic pictures [148]. The ripple distortion T2

simulates image misalignment and edge noise. This is typical in natural environmental

monitoring such as in the dataset from [66]. Finally, texture and edge noise are mixed

with the ‘cubism’ filter T3.

Figure 8.2: Synthetic transformations. Column 0: PASCAL. Left-Right: transformation.
Photocopy (Distortion: 32.5%), Ripple (62.6%), Cubism (94.0%)

For each transformation, the image distortion between the source dataset and the

target one is quantified with the performance degradation of the source network on the

target data. In the experiments, the network uses the DeepLab V3 architecture [36]. After

training on the source images, the accuracy and mIOU reach respectively 79.92% and

69.22%. So the image distortion is quantified by:

1

2

( |79.92−accuracy(Hs ,Dt )|
79.92

+ |69.22−mIOU(Hs ,Dt )|
69.22

)
(8.1)

T1: Photocopy T2: Ripple T3: Cubism
32.48 62.59 94.03

Table 8.1: Quantification of the dataset distortion (%).

2https://www.gimp.org/
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The dataset distortion values (Tab. 8.1) follow the visual intuition that the three

transformations exhibit an increasing level of complexity.

Setup.

Supervised training of the source network. Both networks use the VGG-16 archi-

tecture [171] from DeepLabV3 [36]. The source network is trained on the PASCAL dataset

during 5 hours on an NVIDIA 1080Ti with the original optimization parameters. The net-

work is trained for 20 000 iterations with a batch size of 10, SGD with a momentum of

0.9, a weight decay of 0.5 and the polynomial learning rate policy initialized at 2.5×10−4

and power = 0.9.

This setup is used for training the source and target networks on their respective

dataset with supervision.

Feature map regression on the target network. The choice of feature map to regress

is investigated in the experiments.

The target network is initialized with the source weights. Then it is trained for 20 000

iterations with SGD with a momentum of 0.9. The learning rate is initialized at 10−4 and

decreased at each step following the polynomial policy with a power of 0.99.

8.2.1 Comparison with the Baselines

B Training Test
B0 Hs on annotated Ds Hs on Dt

B1 Ht on annotated Dt Ht on Dt

B2 Ht initialized with Hs , Ht on Dt

fine-tuned on annotated Dt

Table 8.2: Baselines summary.

Baselines. The feature regression is evaluated with the segmentation performance of

the target network on the target data. It is compared against three baselines (Table 8.2).

The baseline B0 measures the performance of the source network Hs on the target

dataset Dt , i.e. how well the source network generalizes to the target dataset.

The baseline B1 trains the target network with full supervision on the target data Dt

using the annotations from the source data Ds . This is an ideal training setting.
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The last baseline B2 measures the performance of the target network when it is ini-

tialized with the source network and then finetuned in the standard way. This evaluates

the classic supervised fine-tuning and sets the performance the regression approach

should reach.

Setup.

Ideal finetuning. The target network is initialized with the source weights. Then

it is trained on the target data with the same optimization parameters as for the source

training.

Feature map regression on the target network. Here, the regression adapts all the

network layers up to the fifth block of VGG convolution. The loss is the Euclidean dis-

tance between the pool5 outputs of the source and target networks.

Results The regression adaptation reaches similar or higher performance than classic

supervised fine-tuning.

Figure 8.3: Transfer performance against the baselines.

Fig. 8.3 shows that the regression on pool5 reaches similar performances to clas-

sic fine-tuning. The B0 line recalls the performance of the source training on the target

dataset. The regression adaptation improves the segmentation so this makes it a rele-

vant fine-tuning method.
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As expected, classic finetuning B2 of the target network outperforms the cold training

of this network on the target data. This reinforces the importance of network warm-up

[102].

The regression adaptation achieves better mIOU than standard finetuning and sim-

ilar accuracy. This shows that feature transfer is a relevant adaptation alternative for

segmentation. Another advantage is that the supervision by the regression approach is

simpler: sampling approximately aligned images is easier than pixel-wise labeling. Still,

further experiments are needed to compare it with other works in domain adaptation.

8.2.2 Influence of the regressed feature map.

Setup The regression adaptation is run subsets of the target network layers to better

understand the CNN’s feature hierarchy.

An intuition gathered from the literature [48, 136, 169] suggests that early layers cap-

ture low-level representations such as colors and edges, whereas higher layers embed

more complex features such as object contours and their label. This intuition suggests

that adapting high layers is more relevant than lower ones as the image transformation

gets important. This assumption is tested by adapting subsets of the network layers. A

natural split is to adapt the VGG convolution blocks: for example, the convolutions up

to pool1 or up to pool3 are adapted. The output of pool layers is preferred to the out-

put of convolutions because they exhibit higher visual changes between the source and

target data. When looking at the VGG feature maps, the features of successive convo-

lutional layers look highly similar whereas there is always a break in the visual patterns

after the pooling layers.

This experiment also assesses the correlations between the network’s feature maps.

Rather than backpropagating the loss between one feature map down the network, sev-

eral Euclidean losses are computed at successive levels of the network. For the loss be-

tween the features after pool1 is backpropagated down the first convolution block and

the same goes for higher blocks. Once again, only the loss between post-pooling layers

is computed. Two weight strategies are tested: the first one gives more weight to lower-

level layers and the second does the opposite. There are five feature maps post-pooling

and the weights follow the following weight distribution [0.2,0.4,0.6,0.8,0.9].

Results Fig. 8.4 compares the segmentation performances with respect to the adapted

layers. The best performances are reached with the individual regression on the highest

post-pooling layer pool5. This suggests that high-level representations are the most

relevant to transfer for semantic segmentation.
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Figure 8.4: Transfer performance with respect to the transferred features maps. Trans-
ferring on pool5 gives the best scores. Left-Right: Photocopy, Ripple, and Cubism
transformations. Adapting all layers to adjust the feature post-pool5 gives the best
scores.

The experiments suggest that there is a correlation between the type of image trans-

formation and the relevant layers to adapt. When the image undergoes color or satu-

ration variation, like the photocopy transformation, adapting low-level layers gives rea-

sonable results. This aligns with the common assumption that color processing is han-

dled in the low-level layers of a CNN. When the image edges are modified, higher layers

must be adapted. This also agrees with the hypothesis that contours are processed in

higher layers than for color.

Another observation is that over-constraining the features may be counter-productive.

For example, the transfer learning on multiple layers performs worse than the transfer

onpool5 only. In the cubism experiments, the results are better when the regression on

higher layers is given more weights than the opposite. This is surpising as recent work

has shown that multi-level optimization can speed-up the network training and even

make it more robust as in [49, 77, 122, 202]. Further work is needed to better investigate

the importance of various feature levels in the network generalization.

8.2.3 Visualisation of the features adaptation.

Setup A source image Xs is fed to the target network Ht to generates a set of l feature

maps {Fl
t (Xs)}l . The goal is to invert these features back to image space i.e. generate an

image X that leads to the features {Ft (Xs)}l according to the target network. The goal is

to visualize how the network sees the image.
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The image X is constrained by the content and the style losses over the output of the

first convolution of each VGG block. The loss computed from the feature mapconv_i_1

are backpropagated only to the lower convolutional blocks until the image space. The

style loss is given a higher weight than the content one: wst yle = 10−2 and wcontent =
10−4. The losses on the feature maps from blocks higher than the first one are down-

weighted by a factor 0.1. The optimization runs for 3500 iterations using SGD with mo-

mentum 0.9 and learning rate 10−2.

Results Figure 8.5 shows that the images reconstructed from the target network all ex-

hibit the style the network is adapted on, even when the input image has no specific

style. This suggests that two images with the same content but different styles are pro-

jected to the same point in the target network representation space.

Figure 8.5: Image reconstruction. Left: source image fed to the target network. Right:
The image reconstructed from the network feature maps i.e the image as seen by the
network. The generated images have the same content as the source image but the style
of the adapted network.
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Figure 8.6 visualizes how target feature maps get visually closer to the source features

after the regression.

8.3 Summary

This chapter introduced an optimization to adapt a segmentation network to a novel im-

age distribution with operations run only in the feature space. Compared to the previous

chapter, this has the advantage to reduce computational complexity. But this comes at

the price of semi-supervision in the form of approximately aligned images. Given a set

of aligned images with two different distributions, the target network is trained to gen-

erate a feature space that is invariant to the distribution changes. This method achieves

the same performance as standard finetuning on three synthetic transformations of the

PASCAL dataset. Experiments suggest that there is a correlation between the distribu-

tion variations and the optimal layers to adapt. Future work will investigate this correla-

tion to improve adaptation performances.
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Figure 8.6: Deep representation evolution. Line 1: source image. Line 2: source feature.
Line 3: target image. Line 4: feature of the source network on the target image. Line 5:
feature of the adapted network on the target image. The last line shows the network
features on the target images after the regression adaption. The features appear less
noisy than before the adaptation (line above).
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Chapter 9

Conclusion

This thesis has considered the robustness problem of visual features for long-term image-

based monitoring in bucolic environments. This task involves various types of features

for the scene recognition step, the localization of the monitoring system, the image

alignment, and the pixel-to-pixel image comparison. One common requirement for

these features is the invariance to image variations in appearance that are not related

to the scene content or structure. In place recognition, for example, two images of the

same scene should have features invariant to seasonal alterations. This way, a system

can recognize a location previously visited by comparing its current image description

with the past ones. This requirement also benefits semantic segmentation. For exam-

ple, an autonomous car should be able to recognize a tree whether it is spring or autumn.

This thesis relies on several approaches to define robust features. The first one integrates

semantics in the feature derivation for place recognition. The second one leverages the

feature space of neural networks to get data-specific features without training. Seman-

tics are not only useful to define invariant features but also to robustify existing localiza-

tion pipelines such as edge-based visual odometry. Given the importance of semantics,

this thesis investigates approaches to reduce the need for supervision for segmentation

and facilitate its usage in real applications. The next sections summarize this thesis and

present the research problems that it identified.

9.1 Summary

Global Description. The first part of this thesis addressed the problem of image-based

scene recognition in bucolic environments. Place recognition is the process by which

a place that has been observed before can be identified when revisited. In practice, it

is usually cast as an image retrieval task where a query image is matched to the most

similar image available in a database. The search is computed on a representation of
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the image content on a lower-dimensional space. The challenge is then to compute a

compact and robust image encoding such that images of the same location are near to

each other despite their change of appearance due to environmental changes. Most of

the existing approaches are tailored for urban settings, in which pictures exhibit rich se-

mantics or strong textures. Instead, this thesis tackles the problem for images depicting

nature or structures with few semantics or textured elements. The type of the varia-

tions is different and that leads to a different approach to describing a bucolic scene

that integrates semantics and geometry. The two descriptors, WASABI [23] 1 and SG-

VLAD [25] 2 3 achieve competitive performance on two multi-season bucolic environ-

ments: Extended-CMU-Seasons-park and Symphony-lake. They also generalize to ur-

ban scenes and reach performance similar to the current deep baselines NetVLAD and

DELF.

The standard derivation of most of the global description follows three steps: the

detection of characteriztic local elements, the description of these local elements, and

their aggregation into a global description. In Chap. 3, WASABI selects semantic edges

as relevant locations and describes them with their wavelet transform over a fixed-sized

subsampling of the edge. These local descriptors are aggregated by simple concatena-

tion. Then, the distance between the two images is the cumulative distance between

associated edges. An edge from the first image is associated with the nearest edge with

the same semantic label in the other image based on their descriptor distance. In theory,

the Wavelet transform decomposes a signal uniquely over a basis of wave functions. This

makes an ideal descriptor as it defines a bijection between an edge signal and its wavelet

transform. In practice, this property does not hold because of the precision limits of

the computer: image edges are discretized and only a subset of the wavelet coefficients

are kept to reduce the memory requirements. This descriptor stays reliable enough to

achieve state-of-the-art performance in place recognition. Still, further investigation on

edge descriptions could boost the recognition results.

WASABI is evaluated on two multi-season dataset: the CMU-Seasons and the Sym-

phony datasets. The CMU-Seasons dataset illustrates an autonomous driving scenario

with 12 car traversals recorded over a year. It depicts images from Pittsburg’s city and

parks. The Symphony dataset illustrates a long-term monitoring scenarios with 141 au-

tonomous boat traversals along the shore of the Symphony lake. It depicts vegetation at

1WASABI code: https://github.com/abenbihi/wasabi.git
2SG-VLAD illustrative video: https://youtu.be/JeYpcRPqDUM
3SG-VLAD code: github.com/W2desc/wasabi2.git

145

https://github.com/abenbihi/wasabi.git
https://youtu.be/JeYpcRPqDUM
github.com/W2desc/wasabi2.git


various states with poor texture and few semantics. WASABI is compared against hand-

crafted and learning methods and the latter are finetuned to the bucolic environments

when possibles. In the bucolic settings, this novel descriptor achieves better recognition

performance than previous approaches and the results are consistent over the seasons.

This shows that this representation is invariant to such variations. Further experiments

demonstrate that WASABI generalizes to urban scenes and even reaches similar perfor-

mance as one of the current baselines, NetVLAD. Note that it does not need to be trained

or tuned to do so contrary to the learning approaches. WASABI only relies on the avail-

ability of CNNs previously trained for semantic segmentation, which are widely made

publicly available. However, research on unsupervised training of segmentation would

broaden its range of applications.

While WASABI achieves better performance than previous methods, it presents three

main limits, addressed in Chap. 4, that hinders its integration in real systems. First, it

relies only on coarse edge description, so it ignores the edge’s local variations that could

further characterize the edge. Second, the image representation is not scalable with the

number of edges. The image descriptor is the collection of the semantic edge descrip-

tions. So, its size increases with the number of semantic edges. Similarly, the image

distance is not scalable either. The distance between the two images is the cumulative

distance between their matching edge descriptors. Although successful, a better dis-

tance computation would avoid the loop over all edges. This motivates the definition of

second image descriptor, dubbed SG-VLAD, to tackle these limits.

SG-VLAD also follows the standard retrieval pipeline, that is local feature detection,

description, and aggregation. Local features are the scale-space acceleration maxima of

semantic edges. They are described with the edges’ local variations derived with Shape

Context Descriptor [22]. Now, local features have a finer resolution than the whole edge.

They are aggregated by augmenting the existing VLAD aggregation with semantics con-

straints. The resulting descriptor represents the distribution of these local features over

a dictionary of semantic visual words previously computed. The descriptor is made of

the cumulative residues between each local feature and the nearest visual word, accu-

mulated over the words. Beforehand, a collection of visual words is computed by clus-

tering these local features over training images. This derivation is modified to integrate

semantics: local features are first grouped by semantics before intra-class clustering.

At the time of image description, local features are assigned to the nearest visual word

with the additional constraint that they must belong to the same semantic class. Note

that the image description has now a fixed size for all images that only depends on the

number of words and the dimension of the local descriptor. The scale and orientation

146



discretization chosen for the Shape Descriptor lead to a local descriptor with size 48 and

the number of visual words is chosen depending on the image content. More words are

used for the semantic classes that occur often such as the vegetation in the CMU-Park

or the Symphony lake, or the buildings in the CMU city. In total, experiments use no

more than 40 visual words. The resulting descriptor is four times smaller than NetVLAD

and DELF before their dimensionality reduction step. All these modifications allow SG-

VLAD to address all the limits of WASABI and experiments show that it achieves similar

performance on CMU-Seasons and significantly boosts the results on Symphony.

Local Description. In the second part of this thesis, another approach to local feature

definition is addressed. Chap. 5 introduces a novel local detector, dubbed ELF [24] 4 5,

based only on information embedded inside a CNN already trained on standard learn-

ing tasks, such as classification, with no further training. Previous works on deep local

features already take advantage of representation properties to generate local descrip-

tors [57, 113]. Instead, ELF extracts feature locations from the network to build a de-

tector. This information is computed from the gradient of the feature map’s norm with

respect to the input image. The output is a saliency map with local maxima on rele-

vant keypoint locations. Contrary to recent CNN-based methods, this requires neither

supervised training nor finetuning. The detected keypoints are then described by the

same CNN’s features. A descriptor is generated by interpolating of one the network’s

feature map on the keypoint’s location. This is the same derivation as in UCN [40] later

used in SoA SuperPoint [46] and D2-Net [51]. ELF differs in that it relies on a CNN pre-

viously trained on a standard vision task whereas they they trained the CNN specifically

for description.

ELF is tested on three classification networks and on two feature networks: Super-

Point and LF-Net [135]. It is evaluated on the repeatability of the detected keypoint

and the matchability of the local features. When compared against the main hand-

crafted and learning approaches, ELF achieves similar performance. Surprisingly, the

ELF derivation applied to LF-Net even reached higher numerical results than LF-Net.

However, LF-Net exhibits better robustness to image rotations. The ELF detector can be

integrated with existing local descriptors, whether hand-crafted or learned. This usually

improves the matching results.

While ELF compares to existing methods in terms of matching score, these prove to

be better suited for structure-based localization. Local matches are fed to a SfM pipeline

4ELF code: https://github.com/abenbihi/elf
5ELF demonstration video: https://youtu.be/oxbG5162yDs
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to reconstruct the 3D of the scene. Given a query images, its local features are matched

with the ones from the 3D scene. These 2D-3D correspondences are then used to recover

the camera pose of the query image. When evaluated on the feature matching chal-

lenge 6 and the day-night localization challenge 7 at CVPR 2019, ELF underperformed

compared to other methods such as D2-Net or SuperPoint. It is not easy to pinpoint

what hindered the results given than the localization pipeline integrates several com-

ponents. Two elements are being investigated: the sparsity of the ELF detection and its

localization precision. Another limit is that there is currently no automatic criteria to

select the feature map from which the saliency is derived. A visual criterion has been es-

tablished that favors the feature maps for which saliency exhibits sparse high-intensity

signals. A numerical formulation of this criteria is under investigation.

Semantics for robust localization. The third part of this thesis returns to the use of

semantics for robust visual localization. Chap. 6 illustrates an example where seman-

tics are integrated into monocular direct visual odometry. Direct VO allows a system

mounted with a camera to recover its trajectory inside an estimated map of the world us-

ing images only. Given two successive images, it jointly optimizes the image’s depth and

their relative camera displacement until they can be perfectly warped over each other.

The optimization is assessed with the pixel-to-pixel difference of the aligned images,

which assumes that the brightness is constant. It is mostly true in indoor environments

for which direct VO achieves impressive results, but it is not the case outdoor.

So rather than aligning pixels, edge-based VO proposes to align edges. Their geomet-

ric nature makes them more robust to illumination variations. Now, the optimization is

assessed by how well the associated edges align. The classic way to associate edges is to

assign an edge pixel in one image to the nearest one in the second image. This simple

association is prone to errors whenever edges are noisy or poorly repeatable. This moti-

vated the integration of semantic constraints into this data association step: SNNF [195]

matches an edge pixel in one image to the nearest one in the other image with the addi-

tional constraint that they must belong to the same semantic class.

When evaluated in an autonomous driving scenario using the vKITTI and the KITTI

dataset, SNNF achieves lower trajectory error than Direct Sparse Odometry (DSO), ORB-

SLAM2, and previous edge-based methods ANNF and ONNF. It also exhibits a larger

convergence basin than existing edge-based VO, which means that it is more robust to

6https://vision.uvic.ca/image-matching-challenge/
7https://www.visuallocalization.net/workshop/cvpr/2020/
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large camera displacement. The experiments also compare the edge repeatability of sev-

eral semantic edge derivations. The edges derived by end-to-end learning methods are

the most repeatable and lead to the best localization performance. While SNNF already

improves the robustness of edge-based VO, one limit is the coarse edge localization. The

learned edges exhibit a localization error that can go up to a few pixels. Future work will

investigate reducing the noise in the edge localization to improve the localization final

performance.

Semi-supervised Domain Adaptation for Semantics. The previous parts of this thesis

showed how useful semantics are to make localization robust to image variations. Many

trained segmentation models are already available online which facilitate the semantics’

integration. However, these models usually exhibit poor generalization as soon as the

image domain changes. This performance drop can go from segmentation noise to a

full deterioration. To solve this issue, the standard approach is to finetune the model on

a relatively small set of images from the target application but this requires supervision

in the form of manually annotated images that can be costly and time-consuming to

collect. This motivates the last part of this thesis to investigate two lighter supervisions

to adapt semantic segmentation over domains.

Usually, a CNN generalizes well to images of which pixel distribution is similar to the

one it was trained on. So Chap. 7 proposes to leverage existing annotated datasets and

transform them to bring their pixel distribution closer to the target data’s one. Then, the

CNN can be finetuned on the transformed data with the previous annotations. By train-

ing the network on images with a closer distribution to the target’s one, this method im-

proves the CNN’s generalization. This approach draws motivation from the neural style-

transfer that transforms the appearance of an image while preserving its content. Given

a trained CNN, a source dataset already annotated, and a target set, the source images

are transformed to exhibit the same CNN feature statistics as the target images. To do so,

the source image is iteratively updated with a gradient computed by the backpropaga-

tion of two feature-based losses through the network and back to the image space. The

resulting gradient is added to the image until convergence. The first loss constrains the

image to keep the same content while the style loss forces it to adopt the target image’s

appearance.

This method is tested on a long-term monitoring dataset collected by local region

partners. It is made of aerial images sampled every few years since 1950. They present a

wide range of appearances from recent color images taken with multi-spectral cameras

to analog images that were later digitized. Pixel-wise annotations have been collected
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by a human for the 2015 images. Here, the goal is to transform the 2015 images to bring

them closer to the 1950 distribution. The synthetic 1950 data is evaluated with the seg-

mentation performance on the real 1950 data. The results show that such synthetic data

achieves only a third of the performance reached with the real data. Another test trains

the CNN on a black-and-white version of the 2015 dataset. The segmentation results

are worse, which suggests that the style transformation does more than a simple color

change. Even though the stylized data can not replace the real one, it proves useful to

warm up the CNN. The network then needs fewer real examples and even reaches higher

segmentation performances than without the warm-up.

The previous approach relied on the CNN feature property to represent the image’s

statistics. This information is brought back to the image space to transform the source

data. Then the transformed data serves to finetune the CNN feature space. Chap. 8

proposes to short-cut this process and only manipulate feature information. One draw-

back is that it requires semi-annotations in the form of approximately aligned images.

The target CNN is initialized with the weights of the source CNN trained on the anno-

tated data. Given a pair of source and target images, the target network is trained to

generate the same feature maps on the target data as the source network does on the

source image. This assumes that the images are approximately aligned, which naturally

occurs in localization applications. The advantage is that there is no need to generate

new data and finetuning becomes a simple regression problem. This method achieves

similar performance as standard finetuning on the PASCAL VOC dataset with synthetic

transformations. A qualitative study observed the images reconstructed from the tar-

get network’s feature maps exhibit the same appearance as the images the network was

trained on. This suggests that after the regression adaptation, the CNN project images

with similar content and different appearance to the same point in the feature space.

This is what is expected from a robust model.

9.2 Future work

This section lists the questions raised by this thesis that will be investigated in future

work.

Local and Global Features. On the local detection from a trained CNN, the first chal-

lenge is to bring the detection to a sub-pixel precision for localization applications. A

second issue is that only one feature map is used to compute the saliency map from
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which keypoints are detected. This limits the information that ELF can leverage. An-

other limit is that the feature map used for detection is manually set. Qualitative exper-

iments showed that the optimal choice may vary from one scene to another, and even

over illuminations. So a numerical criterion for the automatic selection of the detection

feature map must be defined.

The place recognition contributions in this thesis highlighted that edges are also

a good source of local features. The literature usually discards edge features for they

are too ambiguous to match. But the results achieved by SG-VLAD suggest that it is

possible to leverage such information for feature-based localization. Current work has

already started investigating such features and the qualitative results are encouraging

even though defining a discriminative descriptor remains the main challenge.

Visual odometry. Integrating semantics into direct visual odometry has proven to make

it more robust to illumination variations than existing approaches. One of the main

challenges is the poor precision of semantic edge detection. It hinders the edge repeata-

bility on which the optimization relies sensitively. One line of research currently investi-

gated is to integrate feature-based geometric verification in the optimization loop, as a

regularizer.

Unsupervised Domain Adaptation for Semantics. Semantics have played a pivotal

role in most of the contributions of this thesis. To facilitate further research on semantic-

based localization, future work will further investigate semi-supervised and unsuper-

vised training methods to minimize the need for annotations.
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Appendix A

NetVLAD Finetuning

A.1 NetVLAD Finetuning

This paragraph first recalls the NetVLAD training loss and parameters. The reader famil-

iar with NetVLAD can skip this paragraph.

NetVLAD’s input is a triplet of images (I, Ip , In) where I is the reference image, Ip a

positive match image and In a hard negative image. A positive image is one that depicts

the same scene as I and with similar viewpoint. In is the image with the nearest image

descriptor but that does not overlap with the reference scene. This means that although

this In has no similar content with the reference one, its image descriptor says that it

does. NetVLAD is trained to generate the descriptors triplet (d ,dp ,dn) so that the de-

scriptor distance ‖d −dp‖2 between the reference and the positive images is small. And

the descriptor distance between the reference image and the negative one ‖d −dn‖2 is

high. As there is no way to manually specific what ‘high’ and ‘small’ mean to a network,

NetVLAD is trained so that the negative distance is at least higher than the positive one

by a margin m: m +‖d −dp‖2 ≤ ‖d −dn‖2. The network is trained to minimize the loss

L = max(0,(m +‖d −dp‖2)−‖d −dn‖2). The right element is positive only when the

negative descriptor distance is too small i.e. when the negative descriptor is too near to

the reference image. Notice that the margin m is a key parameter to the training: if is too

slow, it allows the negative descriptor to be near the reference one when it may be im-

proved. And when it is too high, it leads to training instability as it requires the negative

descriptor to exhibit values far from the reference one.

When training, triplets are sampled to improve the model efficiently by sampling the

hardest examples. The hardest negative image is the one with the nearest descriptor to

the reference one while it holds no overlap with the reference image. The positive exam-

ple is simply the matching image with the nearest example. Authors take advantage of
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the higher distribution of negative matches: at each training step, the model is training

on one positive example Nnh hard negatives.

Notice that defining these triplets requires the camera ground-truth poses and that

NetVLAD descriptors are available for all images. Obviously, it is not realistic to update

the NetVLAD descriptors each time the network is optimized. Arandjelovic [9] propose

to update the dataset descriptor every C training steps. Another computational bottle-

neck is the search for the hardest negative examples. One way to compute them is to find

the Nnh hardest negative examples and update them every C training steps. The issue

with this approach is that it requires to update the descriptors for the whole training set

every C steps, and to search for the Nnh descriptors that are the furthest to query. Given

that the training datasets usually encompass tens of thousands of images and that the

descriptor computation requires one forward pass, this derivation requires too much

time. Instead, the authors propose to update the Nnh hardest negative sample in the

following way: sample randomly Nnr negatives noted B. The new Nnh hardest negative

examples are the Nnh hardest examples in A∪B. The parameter values are summarised

in Tab. A.1.

Parameter CMU-Seasons
batch size 3

Nnr 10
Nnh 3

margin m 1
C 1000

epochs 30
learning rate 10−4

momentum 0.9
weight decay 10−3

Learning rate decay 0.5
Decay epoch interval 5

Table A.1: NetVLAD finetuning parameters for CMU-Seasons and Symphony.

For CMU-Seasons, the park slices with ground-truth poses are {22-25} which are also

the evaluation slices. Note that one constraint when training image retrieval systems is

that the training data and the evaluation one must be spatially disjoint. To comply with

this constraint, the model is finetuned on three of these slices and evaluated on the re-

maining one. One of 2 images is sampled from both the database and the query images

of each slices. Two images match when the euclidean distance between their camera

center is below dpos = 5m. They are not matching when the distance is higher than
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dneg = 10m. This ensures that In has no overlap with the reference image I. Images

withing a distance dpos < d < dneg are not positives: they may hold some overlap with

the reference image but not enough to require NetVLAD to generate similar descriptors.

They are not negatives samples as the marginal overlap may lead to some similarity be-

tween the images’ descriptors.
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[9] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

Netvlad: Cnn architecture for weakly supervised place recognition. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 40(6):1437–1451, 2017. 7,

34, 44, 47, 52, 57, 153

[10] Relja Arandjelovic and Andrew Zisserman. All about vlad. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pages 1578–1585,

2013. 33

163

http://professionnels.ign.fr/bdforet
http://professionnels.ign.fr/rpg
lenc12vlbenchmarks


[11] Relja Arandjelović and Andrew Zisserman. Visual vocabulary with a semantic

twist. In Asian Conference on Computer Vision, pages 178–195. Springer, 2014.

35

[12] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour de-

tection and hierarchical image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 33(5):898–916, 2010. 111

[13] Hiwad Aziz. https://github.com/hiwad-aziz/kitti_deeplabxsxs,

2018. 117

[14] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan

Carlsson. From generic to specific deep representations for visual recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 36–45, 2015. 34

[15] Artem Babenko and Victor Lempitsky. Aggregating local deep features for image

retrieval. In Proceedings of the IEEE international conference on computer vision,

pages 1269–1277, 2015. 34

[16] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural

codes for image retrieval. In European conference on computer vision, pages 584–

599. Springer, 2014. 33, 34, 44, 47, 54

[17] Hernan Badino, Daniel Huber, and Takeo Kanade. The CMU Visual Localization

Data Set. http://3dvis.ri.cmu.edu/data-sets/localization,

2011. 51

[18] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(12):2481–2495, 2017. 20, 128, 132

[19] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk.

Hpatches: A benchmark and evaluation of handcrafted and learned local descrip-

tors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 5173–5182, 2017. 83, 90, 99, 159

[20] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolutional neural networks.

In Britich Machine Vision Conference. 28, 53, 84

[21] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust fea-

tures. In European Conference on Computer Vision, pages 404–417. Springer, 2006.

24, 83, 88

164

https://github.com/hiwad-aziz/kitti_deeplab
http://3dvis.ri.cmu.edu/data-sets/localization


[22] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object

recognition using shape contexts. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, (4):509–522, 2002. 48, 67, 68, 70, 71, 146, 158

[23] Assia Benbihi, Stéphanie Arravechia, Matthieu Geist, and Cédric Pradalier. Image-

based place recognition on bucolic environment across seasons from semantic

edge description. In 2020 IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2020. 6, 7, 8, 44, 106, 145

[24] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Elf: Embedded localisation of

features in pre-trained CNN. In Proceedings of the IEEE International Conference

on Computer Vision, pages 7940–7949, 2019. 6, 8, 20, 27, 82, 147

[25] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Geometric and semantic vi-

sual words for scene recognition across seasons. submitted, 2019. 6, 7, 8, 106,

145

[26] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Learning sensor placement

from demonstration for UAV networks. In Proceedings of the IEEE Symposium on

Computers and Communications, 2019. 7, 30

[27] Assia Benbihi, Matthieu Geist, and Cédric Pradalier. Semi-supervised domain

adaptation with representation learning for semantic segmentation across time.

In International Conference on Neural Information Processing, pages 459–466.

Springer, 2019. 6, 9, 133

[28] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

11

[29] Ali Borji and Laurent Itti. State-of-the-art in visual attention modeling. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(1):185–207, 2013.

37

[30] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421–436. Springer, 2012. 129

[31] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. What

do different evaluation metrics tell us about saliency models? arXiv preprint

arXiv:1604.03605, 2016. 38

[32] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Bi-

nary robust independent elementary features. In European Conference on Com-

puter Vision, pages 778–792. Springer, 2010. 25, 83

165



[33] John Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, (6):679–698, 1986. 107

[34] John Canny. A computational approach to edge detection. In Readings in com-

puter vision, pages 184–203. Elsevier, 1987. 116, 160

[35] Francine Catté, Pierre-Louis Lions, Jean-Michel Morel, and Tomeu Coll. Image

selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on

Numerical analysis, 29(1):182–193, 1992. 26

[36] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2017. 20, 128, 136, 137

[37] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018. 117

[38] François Chollet. Xception: Deep learning with depthwise separable convolu-

tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1800–1807, 2017. 90, 117

[39] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-

criminatively, with application to face verification. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 539–546, 2005. 27

[40] Christopher B Choy, JunYoung Gwak, Silvio Savarese, and Manmohan Chan-

draker. Universal correspondence network. In Advances in Neural Information

Processing Systems, pages 2414–2422, 2016. 28, 30, 84, 147

[41] GC-H Chuang and C-CJ Kuo. Wavelet descriptor of planar curves: Theory and

applications. IEEE Transactions on Image Processing, 5(1):56–70, 1996. 45, 48, 49,

69

[42] Winston Churchill and Paul Newman. Experience-based navigation for long-term

localisation. The International Journal of Robotics Research, 32(14):1645–1661,

2013. 25

[43] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In Proceedings of

166



the IEEE conference on computer vision and pattern recognition, pages 3213–3223,

2016. 49

[44] Mark Cummins and Paul Newman. Appearance-only slam at large scale with fab-

map 2.0. The International Journal of Robotics Research, 30(9):1100–1123, 2011.

23, 25

[45] Tung Dang, Christos Papachristos, and Kostas Alexis. Visual saliency-aware reced-

ing horizon autonomous exploration with application to aerial robotics. In 2018

IEEE International Conference on Robotics and Automation (ICRA), pages 2526–

2533. IEEE, 2018. 38

[46] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-

supervised interest point detection and description. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, pages 224–

236, 2018. 20, 28, 30, 84, 88, 147

[47] Piotr Dollár and C Lawrence Zitnick. Fast edge detection using structured forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8):1558–1570,

2015. 111, 116, 160

[48] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with con-

volutional networks. 2016. 139

[49] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. In Proceedings of the

IEEE International Conference on Computer Vision, pages 2758–2766, 2015. 140

[50] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for

deep learning. arXiv preprint arXiv:1603.07285, 2016. 20, 156

[51] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko

Torii, and Torsten Sattler. D2-net: A trainable cnn for joint description and detec-

tion of local features. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019. 20, 27, 28, 30, 84, 147

[52] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–625, 2018.

18, 107, 112

[53] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale di-

rect monocular slam. In European conference on computer vision, pages 834–849.

Springer, 2014. 107

167



[54] Logan Engstrom. Fast style transfer. https://github.com/lengstrom/

fast-style-transfer/, 2016. 130

[55] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John

Winn, and Andrew Zisserman. The pascal visual object classes challenge: A ret-

rospective. International journal of computer vision, 111(1):98–136, 2015. 128,

136

[56] Bin Fan, Fuchao Wu, and Zhanyi Hu. Rotationally invariant descriptors using in-

tensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 34(10):2031–2045, 2012. 28

[57] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor matching

with convolutional neural networks: a comparison to sift. arXiv preprint

arXiv:1405.5769, 2014. 28, 30, 33, 81, 84, 147

[58] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as

proxy for multi-object tracking analysis. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4340–4349, 2016. 114, 116

[59] Dashan Gao, Sunhyoung Han, and Nuno Vasconcelos. Discriminant saliency, the

detection of suspicious coincidences, and applications to visual recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(6):989–1005, 2009.

37

[60] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using

convolutional neural networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2414–2423, 2016. 40, 85, 124, 125,

126, 135, 161

[61] Abel Gawel, Carlo Del Don, Roland Siegwart, Juan Nieto, and Cesar Cadena. X-

view: Graph-based semantic multi-view localization. IEEE Robotics and Automa-

tion Letters, 3(3):1687–1694, 2018. 37, 44

[62] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3354–3361, 2012. 111

[63] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016. 11

[64] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image re-

trieval: Learning global representations for image search. In European conference

on computer vision, pages 241–257. Springer, 2016. 34

168

https://github.com/lengstrom/fast-style-transfer/
https://github.com/lengstrom/fast-style-transfer/


[65] Gösta H Granlund. Fourier preprocessing for hand print character recognition.

IEEE Transactions on computers, 100(2):195–201, 1972. 49

[66] Shane Griffith, Georges Chahine, and Cédric Pradalier. Symphony lake dataset.

The International Journal of Robotics Research, 36(11):1151–1158, 2017. 7, 43, 44,

46, 52, 136

[67] Erdan Gu, Jingbin Wang, and Norman I Badler. Generating sequence of eye fixa-

tions using decision-theoretic attention model. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops, pages 92–92, 2005.

38

[68] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learn-

ing an invariant mapping. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1735–1742, 2006. 27, 84

[69] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C

Berg. Matchnet: Unifying feature and metric learning for patch-based matching.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3279–3286, 2015. 27, 84

[70] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jiten-

dra Malik. Semantic contours from inverse detectors. In Proceedings of the IEEE

International Conference on Computer Vision, pages 991–998, 2011. 136

[71] Christopher G Harris, Mike Stephens, et al. A combined corner and edge detector.

In Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988. 21, 24

[72] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vi-

sion. Cambridge university press, 2003. 11, 12, 14, 15, 155, 156

[73] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors optimized for average preci-

sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 596–605, 2018. 27

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778, 2016. 128

[75] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing

Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching

for mobilenetv3. In Proceedings of the IEEE International Conference on Computer

Vision, pages 1314–1324, 2019. 119

169



[76] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017. 119

[77] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and

Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep net-

works. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2462–2470, 2017. 140

[78] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer

networks. In Advances in Neural Information Processing Systems, pages 2017–

2025, 2015. 28
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