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RÉSUMÉ EN FRANÇAIS

A vec la quantité exponentielle de données générées chaque jour, un be-
soin de pouvoir traiter les données en temps réel et de manière économe
en énergie est né. Ces défis ont motivé la recherche de moyens de traite-

ments non conventionnels de l’information. Parmi les techniques existantes,
l’apprentissage machine est un paradigme très efficace d’informatique non
conventionnelle. Il fournit, à travers de nombreuses implémentations possibles,
un ensemble de techniques pour apprendre à un ordinateur à effectuer des
tâches complexes, telles que la classification, la reconnaissance de formes ou la
génération de signaux.

Parmi les approches pour mettre en œuvre l’apprentissage machine, on
trouve le réseau de neurones artificiels. Il s’inspire du mécanisme de traitement
de l’information du cerveau humain, qui consiste en l’interconnexion de petites
unités de calcul appelées neurones. Un sous-groupe de réseaux de neurones
artificiels, appelés réseaux de neurones récurrents, comprend des cycles de
récurrence dans les interconnexions, ce qui permet au réseau d’exécuter effi-
cacement des tâches qui nécessitent de la mémoire tel que la reconnaissance
vocale et la reconnaissance de formes ou la génération de signaux, mais qui
implique un entraînement difficile du réseau neuronal artificiel.

Le reservoir computing a été proposé il y a une dizaine d’années [1, 2] comme
une extension des echo state network [3] et des liquid-state machine [4], et a
attiré beaucoup d’attention en raison de l’universalité de ses concepts [5–7]. Ce
nouveau paradigme a été suggéré comme un moyen de simplifier la procédure
d’entraînement du réseau de neurones. En effet, le réseau neuronal récurrent
est maintenu fixe et seules les connexions entre la couche de lecture et la sortie
sont entraînées au moyen d’une simple régression linéaire. L’architecture
interne du réseau neuronal - c’est-à-dire un réseau fixe récurrent avec une
couche de lecture - permet des implémentations sur substrat physique, et des
implémentations de réservoirs ont été proposées sur diverses plates-formes
matérielles, y compris la photonique [8–11], including photonics [12–18].

Les implémentations de réservoirs sur puce photoniques sont très promet-
teuses pour les applications de télécommunications optiques, car elles fonc-
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tionnent à grande vitesse avec une faible consommation d’énergie [12, 14, 15,
19, 20]. En particulier, un projet européen H2020 nommé Phresco (PHotonic
REServoir COmputing) [21, 22] a été proposé dans le prolongement des
travaux réalisés par nos proches collaborateurs de l’Université de Gand sur un
reservoir computer étendu composé de 16 nœuds linéaires interconnectés. Ce
projet est le fruit d’une collaboration entre la Katholieke Universiteit Leuven
(KUL), Universiteit Gent (Université de Gand), IBM Research GMBH à Zurich,
IHP GMBH (Innovations for High Performance Microelectronics à Leibniz) et
CentraleSupélec, et vise à concevoir et à expérimenter un réservoir sur puces
photonique à 64 noeuds pour les télécommunications à 32 Gb/s.

Les travaux présentés dans cette thèse sont à mettre en perspective avec
ce projet européen et s’inscrivent dans le cadre d’une étude exploratoire sur
les avantages et les inconvénients de l’ajout de nonlinéarités dans la structure
interne du réservoir. En effet, dans le travail de nos collaborateurs [15], les
neurones sont des composants photoniques linéaires (petits guides d’ondes
intégrés), et la nonlinéarité du système se trouve à la photo-détection. Cepen-
dant, il est souvent affirmé que la présence de nœuds nonlinéaires dans la
structure du réservoir est nécessaire à de meilleures performances. Ainsi, une
partie de cette thèse consiste en l’étude de la performance des architectures de
réservoirs dans lesquelles nous avons remplacé les nœuds linéaires de [15] par
des éléments nonlinéaires.

Nous avons basé nos architectures sur un composant très couramment
utilisé, à savoir le résonateur en anneau nonlinéaire. Cet élément intégré
présente des comportements dynamiques nonlinéaires riches [23–29]. Les
résonateurs en anneaux intégrés sur silicium sont principalement utilisés
comme filtres optiques [30], mais peuvent également être intégrés dans des
architectures plus complexes et effectuer d’autres types de traitement tout
optique de l’information tels que les fonctions booléennes [31], le seuillage [32]
ou la restauration des impulsions [33].

Dans cette thèse, nous avons étudié trois architectures réservoirs sur puce
photonique, en utilisant le résonateur nonlinéaire en anneau comme noeud
primaire.

Ordinateur à réservoir composé de 16 résonateurs en anneau non-
linéaires : Plus spécifiquement, nous avons proposé de remplacer les 16
noeuds linéaires des références [15, 20, 34] par 16 résonateurs en anneau
non linéaires, également interconnectés selon la topologie SWIRL. Nous avons
montré numériquement que cette structure peut être utilisée comme un réser-
voir, et qu’elle peut fonctionner à des niveaux de performance de pointe sur
la tâche typique du XOR retardé. Pour cette tâche, nous atteignons un taux
d’erreur de 2.5× 10−4 à 20 Gb/s, et pour un large ensemble de valeurs de
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paramètres.

Nous avons relié les propriétés intrinsèques de l’élément constitutif du
réservoir avec (i) la conception optimale en termes de délai d’entrelacement
des noeuds, et (ii) les paramètres d’injection optimaux du réservoir. En effet,
pour les applications réservoir, une technique d’injection couramment utilisée
consiste à faire fonctionner le système à la limite de l’instabilité [35]. Dans
notre cas, nous avons fait l’hypothèse que l’ensemble du réseau reste stable
lorsque chaque élément nonlinéaire est stable, et que lorsque nous injectons
les données proche de l’instabilité de chaque résonateur en anneau, le réseau
entier sera proche de sa région d’instabilités. Cette hypothèse reste cohérente
en raison des pertes de connexion entre deux nœuds consécutifs induites par
les séparateurs, les combinateurs et le long guide d’ondes d’interconnexion.
Nous avons donc cartographié les zones de stabilité d’un résonateur en anneau
soumis à une injection optique, dans un plan (désaccord optique, puissance
d’injection), et trouvé un ensemble de valeurs de paramètres optimales pour
faire fonctionner le réservoir. De plus, nous avons montré par des simulations
approfondies que ce type de structure est relativement robuste par rapport
aux procédés de fabrication, en particulier en ce qui concerne les fréquences de
résonance des anneaux.

Cependant, cette architecture composée de 16 micro-anneaux nonlinéaires
interconnectés ne surpasse pas clairement en terme de performance la struc-
ture utilisant uniquement des éléments linéaires comme nœuds. En effet, le
niveau de performance et la consommation énergétique de ce réservoir ne sont
que très légèrement meilleurs que ceux d’un réservoir composé uniquement
d’éléments linéaires. Ceci est principalement dû aux pertes dans la structure
interne du réservoir, dues aux séparateurs, aux combinateurs et aux longs
guides d’ondes d’interconnexion.

Calculateur de réservoir composé de 16 noeuds non-identiques :
Calculateur de réservoir composé de 16 noeuds non-identiques : Ainsi, afin
d’améliorer l’architecture du réservoir constituée de 16 résonateurs en anneau
nonlinéaires interconnectés, et dans le prolongement des travaux de nos col-
laborateurs [15, 20, 34] avec des nœuds linéaires, et des premiers travaux
introduisant la topologie SWIRL pour le reservoir computing utilisant les SOA
comme nœuds [19], nous avons proposé de mettre en œuvre une architecture
utilisant la topologie SWIRL à nœuds non identiques dans la structure du réser-
voir. Les nœuds ont été choisis pour être soit des résonateurs en anneau non
linéaires, soit des éléments linéaires (par exemple des petits guides d’ondes),
soit des amplificateurs optiques à semi-conducteur. Nous avons suggéré cette
structure pour ajouter du gain dans la structure interne du réservoir, afin
de compenser les pertes induites par les séparateurs, les combinateurs et les
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guides d’ondes d’interconnexion.
Nous avons démontré par des simulations numériques intensives que cette

structure fonctionne avec des niveaux de performance satisfaisant sur deux
tâches typiques : la tâche XOR retardée, et la tâche de reconnaissance de
formes à 3 bits, à 20Gb/s et 30Gb/s. Nous avons également étudié deux straté-
gies d’entrée, et avons confirmé le travail présenté par Andrew Katumba et
ses collaborateurs [20] sur la meilleure stratégie d’injection dans un réseau
4×4 SWIRL utilisé comme réservoir. Avec nos paramètres d’injection, nous
atteignons des niveaux de performance de pointe sur la tâche de reconnais-
sance de formes à 3 bits lorsque nous injectons uniquement sur les quatre
nœuds centraux, avec une puissance d’entrée optique moyenne de 0,6 mW et
une pompe électrique de 0,0675 A par SOA.

De notre étude numérique, nous avons trouvé un phénomène intéressant.
Lors de l’injection des données sur tous les nœuds, le système fonctionne
bien sur la tâche XOR retardée et moins bien sur la tâche de reconnaissance
de formes à 3 bits, mais lorsque nous injectons sur un plus petit nombre
de nœuds (les quatre nœuds centraux) le système fonctionne bien pour la
tâche de reconnaissance de formes, et ne fonctionne pas pour la tâche XOR
retardée. Nous expliquons ce phénomène par l’arbitrage entre la nonlinéarité
des nœuds et la capacité de mémoire linéaire d’un réservoir [3, 36]. En effet,
lorsque nous injectons sur tous les nœuds, les SOAs sont excités avec plus
de puissance, et donc se comportent de manière plus nonlinéaire que lorsque
nous injectons uniquement sur les quatre nœuds centraux. Par conséquent,
le système, lorsqu’il est injecté sur tous les nœuds, fonctionne mieux sur la
tâche XOR qui est très nonlinéaire, et ne peut pas effectuer correctement la
tâche de reconnaissance de formes qui nécessite une mémoire linéaire. Et au
contraire, lorsque nous injectons uniquement sur les quatre nœuds centraux,
les SOA reçoivent moins de puissance et se comportent donc de manière plus
linéaire. Le système est donc plus performant sur la tâche qui nécessite une
mémoire linéaire mais moins performant sur une tâche qui demande plus de
nonlinéarité.

Cependant, les résultats numériques sur cette architecture de réservoir
ne montrent pas d’amélioration nette des performances d’une telle structure
par rapport (i) au travail de nos collaborateurs [20], et (ii) au travail avec
seulement des résonateurs nonlinéaires en anneau. Nous pensons que dans
cette structure, la nonlinéarité imposée par la photo-détection écrase la non-
linéarité de la structure interne du réservoir.

Réservoir retard sur puce photonique utilisant un anneau non-
linéaire comme noeud physique : Après avoir étudié ces deux structures
étendues, nous sommes arrivés à la conclusion que la structure SWIRL étendue
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peut bien s’acquitter de tâches très simples à très grande vitesse, mais qu’elle
est limitée en termes d’évolutivité du nombre de nœuds, principalement en
raison des pertes dans la structure. Cette limite dans le nombre de nœuds
que nous pouvons utiliser dans le réservoir réduit considérablement l’étendue
des possibilités en termes de complexité des tâches. C’est pourquoi nous avons
proposé une implémentation sur puce photonique du très étudié réservoir à
retard temporel, en utilisant un résonateur en anneau nonlinéaire comme
nœud physique, et de multiples aller-retour dans une ligne à retard relative-
ment courte pour distribuer les nœuds virtuels. Cette idée d’utiliser plusieurs
allers-retours dans une ligne à retard pour distribuer les nœuds virtuels est
née à la fois de la modélisation mathématique d’un tel système et des travaux
de Takano [37].

Nous avons démontré numériquement qu’il est possible d’atteindre des
niveaux de performance à l’état de l’art sur des tâches plus complexes comme la
prédiction de séries temporelles chaotiques, en utilisant un système très simple,
composé d’un anneau nonlinéaire, d’un séparateur, d’un combineur, d’un SOA
et d’un guide d’ondes. Plus spécifiquement, avant de tester cette architecture de
réservoir sur des tâches de benchmark, nous avons étudié la capacité mémoire
du système, qui est la capacité du système à reconstruire les entrées passées.
Nous avons trouvé pour une valeur inter-nœuds et des paramètres d’injection
optimisés une capacité de mémoire de 15, ce qui signifie qu’à un moment
donné, le système contient des informations sur les 15 bits précédemment
injectés. Ensuite, afin de comparer la performance de cette architecture avec
notre réservoir étendu composé de 16 résonateurs en anneau non linéaire
interconnectés, nous étudions par simulations numériques la performance du
réservoir sur la tâche XOR retardée, et constatons que ce type de réservoir
fonctionne avec la même précision sur cette tâche booléenne. Cependant, en
raison du débit d’un réservoir à retard, cette application n’est pas pertinente
car ce calculateur à retard ne fonctionne qu’à 0,3 Giga symboles par seconde.
Cependant, ce type d’architecture est pertinent pour les tâches exigeantes en
mémoire, telles que la tâche de prédiction de séries temporelles chaotiques de
Santa Fe. Nous montrons par des simulations numériques intensives que cette
structure peut résoudre avec succès cette tâche, avec une erreur quadratique
moyenne normalisée de 1.12× 10−2, à 0,3 Giga symboles par seconde. Ce
niveau de performance peut être comparé de manière cohérente à des systèmes
basés sur le retard utilisant des lasers à semi-conducteurs comme noeuds non
linéaires, et un grand nombre de noeuds virtuels distribués dans une ligne
à retard constituée d’une longue fibre optique [37–39], avec des vitesses de
traitement plus faibles (de l’ordre de dizaines de méga symboles par seconde).

En plus de la simplicité de conception de ce circuit photonique intégré,
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cette structure offre une évolutivité très simple du nombre de nœuds. En effet,
l’augmentation du nombre de nœuds peut se faire sans modifier l’architecture
du circuit mais seulement en répartissant les nœuds sur un plus grand nombre
d’allers-retours dans la ligne à retard, ce qui induit l’inconvénient typique du
réservoir à retard temporel, qui est une réduction de la vitesse du traitement.

Conclusion : Dans cette thèse, nous avons suggéré, présenté et étudié
numériquement trois nouveaux concepts de réservoir computer sur puce op-
tique. Ces architectures reposent sur la mise en œuvre de systèmes très com-
pacts intégrés sur une puce photonique en silicium. Dans toutes ces architec-
tures, l’élément constitutif du réseau de neurones artificiels est le résonateur
en anneau nonlinéaire, qui est un élément bien connu et couramment utilisé.
Dans le prolongement des travaux de nos proches collaborateurs de l’Université
de Gand, nous avons proposé un réservoir à 16 nœuds composé de 16 anneaux
interconnectés selon la topologie SWIRL. Ensuite, nous avons proposé deux
architectures pour améliorer les performances de ce réservoir. La première
est basée sur la même topologie SWIRL, et la mise en œuvre d’un réseau neu-
ronal avec des nœuds non identiques. La deuxième architecture est basée sur le
paradigme du réservoir à retard, en utilisant un anneau comme nœud physique.
Cette architecture permet une virtualisation des nœuds sur plusieurs allers-
retours dans une ligne de retard relativement petite, donc cette conception est
très compacte et permet une évolutivité du nombre de nœuds.
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[2] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recur-

rent neural network training,” Computer Science Review, vol. 3, no. 3,

pp. 127–149, 2009.

[3] H. Jaeger, Short term memory in echo state networks. GMD-

Forschungszentrum Informationstechnik, 2001, vol. 5.

[4] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without

stable states: A new framework for neural computation based on

perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,

2002.

[5] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An experi-

mental unification of reservoir computing methods,” Neural networks,

vol. 20, no. 3, pp. 391–403, 2007.

[6] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information

processing capacity of dynamical systems,” Scientific reports, vol. 2, p.

514, 2012.

[7] L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,”

Preprint, pp. 1–25, 2018.

[8] F. Schürmann, K. Meier, and J. Schemmel, “Edge of chaos computation

in mixed-mode vlsi-a hard liquid,” Advances in neural information
processing systems, pp. 1201–1208, 2005.
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ENGLISH SUMMARY

W ith the exponential amount of data generated everyday has emerged a
need for real-time, energy-efficient data processing. These challenges
have motivated research in non-conventional information processing.

Among the existing techniques, machine learning is a very efficient paradigm
for non-conventional computing. It provides, through many possible implemen-
tations, a set of techniques to teach a computer to perform complex tasks, such
as classification, pattern recognition, or signal generation.

Among the approaches to implement machine learning is the so-called arti-
ficial neural network. It is inspired by the human brain information processing
mechanism, which consists in the interconnection of small computational units
called neurons. A subgroup of artificial neural networks, called recurrent neu-
ral networks, includes recurrence cycles in the interconnections, thus allowing
the network to perform efficiently on tasks that require memory like speech and
pattern recognition or signal generation, but resulting in a difficult training of
the artificial neural network.

Reservoir computing was proposed about a decade ago [1, 2] as an extension
of echo state networks [3] and liquid state machines [4], and has attracted a lot
of attention due to the universality of its concepts [5–7]. This new paradigm was
suggested as a way to simplify the training procedure of the neural network.
Indeed the recurrent neural network is kept fixed and only the connections
between the readout layer and the output are trained by a simple linear regres-
sion. The inner architecture of the neural network - that is a fixed recurrent
network with a readout layer - allows implementations at the physical layer,
and implementations of reservoir computing have been suggested on various
hardware platforms [8–11], including photonics [12–18].

On-chip implementations of photonic reservoir computing are very promis-
ing candidates for optical telecom applications as they operate at high-speed
with low power consumption [12, 14, 15, 19, 20]. In particular, a European
H2020 Project named Phresco (PHotonic REServoir COmputing) [21, 22] was
proposed as an extension of the work done by our close collaborators at the
Ghent University on extended reservoir computer made of 16 inter-connected
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linear nodes [15]. This project is in collaboration between the Katholieke
Universiteit Leuven (KUL), the Universiteit Gent (Ghent University), IBM
Research GMBH in Zurich, IHP GMBH (Innovations for High Performance
Microelectronics in Leibniz), and CentraleSupélec, and aims at the design and
the experimental demonstration of an on-chip 64-nodes reservoir computer for
telecommunication applications at 32 Gb/s.

The work presented in this dissertation should be put in perspective with
this European project, and is part of an exploratory study on the advantages
and drawbacks of adding non-linearity in the inner structure of the reservoir.
Indeed, in the work of [15], the neurons are linear photonics components (small
waveguides), and the non-linearity of the system is left to the photo-detection.
However, it is often stated that having nonlinear nodes in the structure of
the reservoir is necessary for better performance. Hence, part of this disser-
tation consists in the investigation on the performance of reservoir computer
architectures in which we have replaced the linear nodes of [15] by nonlinear
elements.

We have based our architectures on a very commonly used component,
namely the nonlinear ring resonator. This integrated element exhibits rich non-
linear dynamical behaviors [23–29]. Silicon-on-insulator microrings resonators
are mostly used as optical filters [30], but can also be integrated in more com-
plex architectures and perform other types of all-optical information processing
such as Boolean functions [31], thresholding [32], pulse restoration [33], or
ASK-to-PSK conversion [34].

In this thesis, we have investigated three architectures for on-chip reservoir
computing, using the nonlinear ring resonator as primary node.

Reservoir computer made of 16 nonlinear ring resonators : More specif-
ically, we have suggested to replace the 16 linear nodes of [15, 20, 35] by 16
nonlinear ring resonators, also interconnected according to the SWIRL topology.
We have shown numerically that this structure can be used as a reservoir com-
puter, and can perform at state-of-the-art levels of performance on the typical
delayed-XOR task. For this task, we attain a Bit Error Rate of 2.5×10−4 at 20
Gb/s, and for a large set of parameters values.

We have also connected the intrinsic properties of the building block of the
reservoir with (i) the optimum design in terms of node-interdelay, and (ii) the
optimum injection parameters for reservoir computing. Indeed for reservoir
computing applications, a commonly used injection technique is to operate the
system at the edge of instability [36]. In our case, we have made the assumption
that the whole network remains stable when each nonlinear element is stable,
and that when we inject the data close to the instability of each nonlinear
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ring resonator, the whole network will be close to its instable region. This
assumption remains consistent due to the losses in the connection between
two consecutive nodes induced by the splitters, the combiners, and the long
interconnection waveguide. Hence, we have mapped the stability regions of a
nonlinear ring resonator submitted to optical injection, in a (optical detuning,
injection power)-plane, and found a set of optimum parameter values to operate
the reservoir. Moreover, we have shown through extensive simulations that this
kind of structure is relatively robust with regards to the fabrication process, in
particular for the ring resonance frequencies.

However, this architecture made of 16 interconnected nonlinear ring res-
onators does not clearly outperform the structure using only linear elements
as nodes. Indeed, the level of performance and the power consumption of this
reservoir are only better by a very small factor in comparison with the reservoir
made only of linear elements. This is mostly due to the losses in the inner
structure of the reservoir, due to the splitters, the combiners, and the long
interconnection waveguides.

Reservoir computer made of 16 non-identical nodes : Thus, as a way
to improve the reservoir architecture made of 16 interconnected nonlinear ring
resonators, and as an extension of the work of [15, 20, 35] with linear nodes,
and the first work introducing the SWIRL topology for reservoir computing
using SOAs as nodes [19], we have suggested to implement an architecture
using the SWIRL topology with non-identical nodes in the structure of the
reservoir. Nodes have been chosen to be either nonlinear ring resonators, linear
elements (e.g. small waveguides), or semiconductor optical amplifiers. We have
suggested this structure to add gain in the inner structure of the reservoir,
in order to compensate for the losses induced by the splitters, combiners, and
interconnection waveguides.

We have demonstrated through intensive numerical simulations that this
structure can perform well on two typical tasks: the delayed XOR task, and the
3-bit pattern recognition task, at 20Gb/s and 30Gb/s. We have also investigated
two input strategies, and have confirmed the work presented by A. Katumba
et al. [20] on the best injection strategy in a 4×4 SWIRL network used as a
reservoir computer. With our injection parameters, we attain state-of-the-art
levels of performance on the 3-bit pattern recognition task when we inject only
on the four central nodes, with an averaged optical input power of 0.6 mW and
an electrical pump of 0.0675 A per SOA.

From our numerical investigation, we have found an interesting phe-
nomenon. When injecting the data on all nodes, the system performs well
on the delayed-XOR task and badly on the 3-bit pattern recognition task,
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but when we inject on a smaller number of nodes (the four central nodes)
the system performs well for the pattern recognition task, and badly for the
delayed-XOR task. Our explanation for this phenomenon is the trade-off be-
tween the non-linearity of the nodes and the linear memory capacity of a
reservoir computer [3, 37]. Indeed, when we inject on all nodes, the SOAs are
excited with more power, and thus behave more non-linearly than when we
inject only on the four central nodes. Hence the system, when injected on all
nodes, performs better on the very non-linear XOR task, and cannot perform
well the pattern recognition task that needs more linear memory. And on the
contrary, when we inject only on the four central nodes, the SOAs receive less
power, and thus behave more linearly. Hence the system performs better on
the task that needs linear memory but worse on a task that demands more
non-linearity.

However, the numerical results on this reservoir computing architecture
do not show a clear improvement of the performance of such a structure in
comparison with (i) the work of [20], and (ii) the work with only nonlinear
ring resonators. We think that in this structure, the non-linearity imposed by
the photo-detection overwrites the non-linearity in the inner structure of the
reservoir.

On-chip time-delayed reservoir computer using a nonlinear ring res-
onator as physical node : After investigating these two extended structure,
we have come to the conclusion that the extended SWIRL structure can per-
form well on very simple tasks at very high speed, but is limited in terms of
scalability of the number of nodes, mostly due to the losses in the structure.
This limit in the number of nodes we can use in the reservoir drastically reduce
the scope of possibilities in terms of complexity of the tasks. Hence we have
suggested an on-chip implementation of the well-studied time-delay reservoir
computing, using a nonlinear ring resonator as physical nodes, and multiple
round-trip in a relatively small delay line to distribute the virtual nodes. This
idea of using multiple round-trips in a delay line to distribute the virtual nodes
arose from both the mathematical modelling of such a system, and the work of
K. Takano et al. in [38].

We have numerically shown that it is possible to attain state-of-the-art
levels of performance on more complex tasks like chaotic time series prediction,
using a very simple system, made only of one nonlinear ring resonator, one
splitter, one combiner, one SOA, and one waveguide. More specifically, before
testing this reservoir architecture on benchmark tasks, we have investigated
the memory capacity of the system, which is the capacity of the system to
reconstruct past inputs. We have found for optimized inter-node value and
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injection parameters a memory capacity of 15, meaning that at a given time,
the system holds information on the 15 precedent injected bits. Then, in order
to compare the performance of this architecture with our extended reservoir
made of 16 interconnected nonlinear ring resonators, we investigate through
numerical simulations the performance of the reservoir on the delayed-XOR
task, and find that this kind of reservoir performs with the same accuracy
on this Boolean task. However, due to the drawback of time-delay reservoir,
this application is not relevant as this delay-based reservoir computer only
operates at 0.3 Giga symbols per second. However, this kind of architecture is
relevant for memory demanding tasks, such as the Santa Fe chaotic time series
prediction task. We show through intensive numerical simulations that this
structure can successfully resolve this task, with a normalized mean square
error of 1.12×10−2, at 0.3 Giga symbols per second. This level of performance
can be consistently compared to delay-based systems using semiconductor
lasers as nonlinear nodes, and a large number of virtual nodes distributed in a
delay line made of optical fibers [38–40], with lower processing speeds (of the
order of tens of Mega symbols per second).

In addition to the simplicity of design for this integrated photonic circuit,
this structure offers a very straightforward scalability of the number of nodes.
Indeed, increasing the number of nodes can be done without changing the
architecture of the circuit but only in distributing the nodes on a larger number
of round-trips in the delay line, inducing the typical drawback of time-delay
reservoir computing, which is a reduction of the processing speed.

Conclusion : In this dissertation, we have suggested, presented and numeri-
cally investigated three new designs for all-optical on-chip reservoir computing.
These architectures rely on the implementation of very compact systems in-
tegrated on a silicon photonic chip. In all of these architecture, the building
block of the artificial neural network is the nonlinear ring resonator, which
is a well-known and commonly used element. We have suggested a 16-node
reservoir computer made of 16 ring resonators interconnected according to the
SWIRL topology as an extension of the work by our close collaborators at the
Ghent University. Then we have suggested two architectures to improve the
performance of this reservoir computer. The first is based on the same SWIRL
topology, and the implementation of a neural network with non-identical nodes.
The second architecture is based on the time-delayed paradigm for reservoir
computer with a ring resonator as physical nodes. This architecture allows
for a virtualization of the nodes on multiple round-trips in a relatively small
delay line, hence this design is very compact and allows for a scalability of the
number of nodes.
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1
GENERAL INTRODUCTION

"Telephone did not come into existence from the persis-

tent improvement of the postcard."
— Amit Kalantri, Wealth of Words

W hen we look at any object around us, we can immediately recognise

this object, with no confusion between a chair and a table for example.

However, if we want to write a software for a computer to perform

this exact human-like task, it is way more difficult. One could extract the

typical properties of both objects (e.g. the size, the shape, if there is a backrest

or not), and try to write an algorithm to recognise these properties in an image.

But if we want to add a new object to this image classification software, let’s say

a sofa, we will have to extract the particular properties of this new class, and

add it to our software. This would become an incredibly unsatisfying solution

for a large number of objects.

This image classification task is a very good example of human-like task

the human brain is able to perform perfectly on, while an explicit software on a

computer would not be efficient at all. Among those human-like tasks, we can

mention speech or hand-writing recognition, car steering, medical diagnosis

and so on. With the purpose of trying to replicate the ease of the human
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brain to perform on this kind of tasks has emerged a new field of research in

computer science based on cognitive computing or neuromorphic computing,

with concepts like Artificial Intelligence or Machine Learning. The amount of

research related to this new field of computer science has grown exponentially

over the past twenty years, in particular with the exponential increasing of the

computational power of data centers.

Nowadays, we find machine learning techniques in our everyday life, with

applications far away from typical classification tasks. Say we go to our favorite

Internet browser, and send a search request for a few words. The algorithm used

to return the best results is based on machine learning algorithm taking into

account the most interesting articles according to other users, your personal

preferences, and so on. Moreover, your inquiry will be saved to sharpen the

algorithm for your upcoming search request, or to perform targeted marketing

according to your interests.

These machine learning algorithms are based on a statistical learning of the

features allowing the computer to perform the task we want it to perform. If we

go back to the example of classification of house furniture (chairs, tables), the

typical procedure for the computer to learn how to classify picture will be to feed

the machine with thousands of pictures of chairs and tables, with or without

the correct label on it, and let the computer learn the features that distinguish

one furniture from the other. If this stage, called the training procedure, is

successful, the computer should be able to statistically associate unseen images

with the correct label. Moreover, the algorithm written to classify the images

will not be an explicit algorithm.

Among the approaches to implement machine learning is the so-called arti-

ficial neural network. It is inspired by the human brain information processing

mechanism, which consists in the interconnection of small computational units

called neurons. The training procedure for this kind of cognitive computer

consists in the modification of the strength of the connections between consecu-

tive neurons (weights), based on a large database of examples. A subgroup of

artificial neural networks, called recurrent neural networks, is opposed to the

architecture for feedforward neural network as it includes recurrence cycles in

the interconnections, thus allowing the network to perform efficiently on tasks
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that require memory like speech and pattern recognition, or signal generation,

but resulting in a difficult training of the artificial neural network.

Indeed, for typical software-based solutions for machine learning, the train-

ing procedure will consists in determining the weights of all the connections of

the network. On the contrary, a new paradigm for recurrent neural network

was suggested a decade ago. This neural network architecture, called reservoir

computing, relies on a fixed neural network, and a simple training procedure

which only involves the modification of the weights between a readout layer

and the output of the reservoir. This is done using a simple linear regression.

Finally, the fixed structure of the recurrent neural network allows for hardware

implementations, and many physical systems have been suggested for reservoir

computing on various platforms [1–4], including photonic systems [5–8].

In this thesis manuscript, we will investigate various implementations for

reservoir computing at the hardware level, and we will specifically focus on

implementations using nanophotonics, as this platform offers many advantages

over electronic implementations for example. Indeed, light is described by an

amplitude and a phase, and considering both amplitude and phase offers a

new degree of freedom in the network, which hopefully would improve the

computational power of the system. Secondly, the bandwidth of optical systems

is several orders of magnitude over the bandwidth of electronic systems. Fur-

thermore, the timescales for the non-linearity of optical circuits can be of the

order of the ps, or even fs. Finally, the power consumption of optical systems is

several orders of magnitude below the energy consumption of electrical circuits,

as the thermal losses are much lower.

However, the design of nanophotonics circuits remains a technological chal-

lenge, and it attracts a lot of studies, with the objective of replacing electronic

circuits by photonic circuits in telecommunication networks for simple oper-

ations like information routing. Many of the tasks performed by electronic

circuits in telecommunication networks involve decision making, which could

be done using artificial neural networks. Hence, the implementation at the

hardware level of machine learning techniques, using photonic reservoir com-

puting for example, could be a solution for some of today’s challenges, including

working at telecommunication data rates, with low energy consumption, and
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an easy compatibility with the existing optical fiber network.

This chapter is organised as follows. First, we present in Sec. 1.1 the

technological challenges brought by the exponentially growing amount of data

generated, processed, and transmitted everyday in today’s ultra-connected

world. Then, we present in Sec. 1.2 why nanophotonics, and in particular

photonic integrated circuits, are very good candidates for the implementation

of optical processing units, and in particular reservoir computing. We also

present in this section the European H2020 Phresco project, of which this

thesis is part. Finally, in Sec. 1.3 and 1.4 we respectively present the context

and goal of the thesis on the one hand, and the outline of the dissertation on

the other hand.

1.1 Information processing for
telecommunications

The amount of data we have at our disposal is exponentially growing. Mainly

due to the Internet, but also to local networks based on other telecommunica-

tion protocols like Bluetooth or NFC. Nowadays, everyone has a computer, a

smartphone, a tablets, and the number of connected objects from the Internet

of Things (IoT) is also growing at a very fast rate, with all the home automation

environment, the smart watches, smart glasses, the autonomous vehicles, etc.

And with the very foreseeable arrival of the 5G technology, this exponential

growth of the IoT will explode, with the creation of network of inter-connected

objects that will not only communicate one with another, but also be the core of

the telecommunication network of tomorrow.

All of these technologies relies on the possibility and the capacity to process

this huge amount of data generated and transmitted everyday, hence the emer-

gence of a need for real-time, energy-efficient data processing. These challenges

have motivated research in non-conventional information processing, that is a

set of techniques for computers and data-centers to perform a variety of new

tasks relying not only on explicit computing, but also on cognitive computing

for image and speech recognition applications, targeted marketing applications
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based on the behaviour of visitors on web-sites, decision making for financial

applications, etc. Among the existing techniques, machine learning is a very

efficient paradigm for non-conventional computing. It provides, through many

possible implementations, a set of techniques to teach a computer to perform

complex tasks, such as classification, pattern recognition, or signal generation.

On the other hand, the deployment of optical fiber networks for telecommu-

nication applications as a replacement for copper based networks has attracted

a lot of applications for optical communications, hence engaging a lot of re-

search and studies on this subject. In particular has emerged a need to also

replace the network core by all-optical elements, that is the information process-

ing unit. Indeed, using photonics components to process the data (for instance

routers, switches, etc) could allow for (i) an improvement of the data rate and

(ii) an improvement of the energy consumption balance.

1.2 Nanophotonics and photonic integrated
circuits

In photonic, we study the interaction between light and matter in various me-

dia, through studies on the generation, on the propagation, and the space-time

dynamics resulting from these interactions. From these studies have emerged

many applications in various domain such as sensing, telecommunications,

lighting, photovoltaics, and so on. For most of these applications, the wave-

lengths of interest are comprised in the visible (from 380 nm to 780 nm) and

the near infrared (from 780 nm to 2,000 nm).

Recently, in order to miniaturise the components, a lot of studies have

been done on the integration of optical circuits on photonic integrated circuits,

allowing for the integration of many components on a single photonic chip.

These chips are cheaper, more robust, consume less power than free-space

components, and now target application in the terahertz region [9], in quantum

information processing [10, 11], or re-configurable core for signal processing

[12].

In particular, silicon photonics has drown a lot of attention as it is a very
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good light guider in the near infrared at telecommunication application wave-

lengths (1,300 nm and 1,500 nm). Moreover, the process to create miniaturised

circuits in Silicon are very well-understood and robust as it benefits from the

electronics industry expertise. Hence, the field of silicon photonics begins to

have a bit of maturity and many applications have already been developed

thanks to the recent advances in the integration of light sources on silicon

photonics [13].

1.2.1 Optical reservoir computing

Reservoir computing implementation using photonic systems has been the

subject of a very large number of studies. Indeed, thanks to the universality of

the concept of reservoir computing, any system can be operated as a cognitive

hardware computer if driven by a sufficiently well formatted data stream. And

as stated beforehand, photonics systems are very fast systems for information

transmission and processing, hence a large variety of photonics systems for

reservoir computing have emerged. We can cite optoelectronic oscillators [14–

18], laser with optical feedback [19–24], semiconductor laser networks [25, 26],

large-scale extended networks [27] and photonic integrated circuits [7, 28–33].

Silicon-on-insulator on-chip reservoir computers are very good candidate for

telecommunications, as they can operate at telecommunication data rates,

and at low energy consumption [30]. Moreover, this technology is inherently

compatible with existing optical telecommunication networks.

Other paradigms for optical cognitive computing have emerged very re-

cently, like spiking optical networks [34, 35], or the very interesting project of

the startup LightOn [36], which is to implement an Optical Processing Unit

(OPU) for neuromorphic computing and image processing, with a cloud solution

and a python interface for online research. Their technology for image recogni-

tion is based on matrix multiplications using a dispersive media as a random

matrix. More info on their technology can be found on their website [37].
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1.2.2 Phresco H2020 Project

The Phresco (acronym for PHotonic REServoir COmputing) project is an

European H2020 Project [38, 39] in collaboration between the Katholieke

Universiteit Leuven (KUL), the Universiteit Gent (Ghent University), IBM

Research GMBH in Zurich, IHP GMBH (Innovations for High Performance

Microelectronics in Leibniz), and CentraleSupélec. The goals of the project are

depicted below, according to the official description of the project [39].

New computing paradigms are required to feed the next revolution in In-

formation Technology. Machines need to be invented that can learn, but also

handle vast amount of data. In order to achieve this goal and still reduce the

energy footprint of Information and Communication Technology, fundamental

hardware innovations must be done. A physical implementation natively sup-

porting new computing methods is required. Most of the time, CMOS is used to

emulate e.g. neuronal behavior, and is intrinsically limited in power efficiency

and speed.

Reservoir computing is one of the concepts that has proven its efficiency

to perform tasks where traditional approaches fail. It is also one of the rare

concepts of an efficient hardware realization of cognitive computing into a

specific, silicon-based technology. Small RC systems have been demonstrated

using optical fibers and bulk components. In 2014, optical RC networks based

integrated photonic circuits were demonstrated. The PHRESCO project aims to

bring photonic reservoir computing to the next level of maturity. A new RC chip

will be co-designed, including innovative electronic and photonic component

that will enable major breakthrough in the field. We will (i) Scale optical RC

systems up to 60 nodes (ii) build an all-optical chip based on the unique electro-

optical properties of new materials (iii) Implement new learning algorithms to

exploit the capabilities of the RC chip.

The hardware integration of beyond state-of-the-art components with novel

system and algorithm design will pave the way towards a new era of optical,

cognitive systems capable of handling huge amount of data at ultra-low power

consumption.
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1.3 Context and goal of the thesis

The work presented in this dissertation should be put in perspective with the

European H2020 Project Phresco (PHotonic REServoir COmputing) [38, 39].

This project was suggested as an extension of the work done by our close

collaborators at the Ghent University on extended reservoir computer made of

16 inter-connected linear nodes [29], and the mains goals of this project have

Figure 1.1: Official poster of the Phresco project, presenting graphically the
general concepts and goals of the project.
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been presented in Sec. 1.2.2.

The work of this thesis was part of an exploratory study on the advantages

and drawbacks of adding non-linearity in the inner structure of the reservoir.

Indeed, in the work of [29], the neurons are linear photonics components (small

waveguides), and the non-linearity of the system is left to the photo-detection.

However, it is often suggested that having nonlinear nodes in the structure of

the reservoir is necessary for better performance. Hence, in this work, we have

replaced the linear nodes by (i) only nonlinear nodes, and (ii) non-identical

nodes with a panel of linear and nonlinear nodes.

We have based our architectures on a very commonly used component, that

is the nonlinear ring resonator. This integrated element exhibits rich nonlinear

dynamical behaviors [34, 35, 40–44]. Silicon-on-insulator microrings resonators

are mostly used as optical filters [45], but can also be integrated in more com-

plex architectures and perform other types of all-optical information processing

such as Boolean functions [46], thresholding [47], pulse restoration [48], or

ASK-to-PSK conversion [49].

In this context of proposal for new structures for all-optical neuro-inspired

computers, we have also suggested a new architecture for on-chip reservoir

computing based on the well-known time-delay paradigm [50] with the possibil-

ity to distribute the nonlinear nodes of the architecture in multiple round-trips

in the delay line. The physical nonlinear node is still a ring resonator in this

architecture, and the model of this component submitted to optical feedback

allows this distribution of the nodes.

This thesis was mostly a numerical simulation work, using a python library

to model the optical components, developed by Luceda Photonics [51]. And a

few experimental measurement campaigns on the Phresco Chip have been

realised at our collaborator’s lab at the Ghent University for the benefit of the

project.

1.4 Thesis outline

This document is organised according to the following plan.
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We introduce in Chap. 2 the general concepts of silicon-based integrated

optics, and in particular we focus on the modelling techniques. We also present

in this chapter the models of usual integrated components that we will use

throughout this dissertation, and we concentrate our attention on the inte-

grated component used as a building block of our structures : the nonlinear

ring resonator.

We then introduce in Chap. 3 the field of reservoir computing, and give

general information on the training and testing methods for this particular

artificial neural network.

Chapter 4 is devoted to the in-depth analysis of the design and the per-

formance of a reservoir computing made of 16 inter-connected nonlinear ring

resonators. We will present the structure of the reservoir, test through nu-

merical simulations its performance, and discuss the correlation between the

internal dynamics of the building block of the reservoir, and the performance

of the aforementioned reservoir when modifying the injection parameters.

We extend in Chap. 5 the work of the precedent chapter by modifying the

internal structure of the reservoir. More specifically, we suggest to introduce

non-identical nodes in the inner structure of the reservoir, resulting in a

reservoir made of 16 inter-connected nodes being either (i) nonlinear ring

resonators, (ii) semiconductor optical amplifier, or (iii) small waveguides (linear

nodes, as in [29, 30]. We numerically test the performance of such a reservoir

computer on typical tasks and attain state-of-the-art levels of performance at

very high speed (20Gb/s to 30 Gb/s) with low power consumption.

Chapter 6 is dedicated to the numerical analysis of the performance of a

new on-chip architecture based on the well known time-delay paradigm for

reservoir computing. Indeed, we suggest in this chapter a very simple structure

for on-chip delay-based reservoir computing, made only of a ring resonator,

one splitter and one combiner, a relatively small waveguide as delay line,

and a semiconductor optical amplifier to compensate for part of the losses in

the structure. This structure benefits from its mathematical modelling to be

kept relatively small while allowing a very straightforward scale-up of the

number of nodes, through the distribution of the virtual nodes in multiple

round-trips in the aforesaid delay line. We numerically resolve benchmark

10
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tasks at state-of-the-art levels of performance with this structure.

Finally, chapter 7 presents our conclusions and future perspectives on this

work.

11
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2
SILICON-ON-INSULATOR PHOTONICS

"Music is the arithmetic of sounds as optics is the geom-

etry of light."
— C. Debussy

T he integration of optical technologies on silicon platforms has attracted

a lot of attention lately, through the study and the industrial exploita-

tion of photonic integrated circuits (PIC), resulting from a interesting

combination of technological and economical reasons. Indeed, the technological

challenge of silicon-on-insulator integrated optics are limited because silicon

is a well-understood and robust material that benefits from the electronics

industry expertise. Moreover, integrated optics in silicon remains attractive

because of the cost of bulk silicon, along with the reduced costs of processing

the wafers due to the maturity of the silicon processing technology.

The attractiveness of integrated photonics on the one hand, and on the other

hand the very recent development of hardware solutions for machine learning

applications, through the implementation of reservoir computing for instance,

have led to the field of silicon photonic reservoir computing that we explore in

this thesis. However, before we can start to analyse the performance of on-chip

reservoir computing architectures, we need to introduce some basics about
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integrated optics, and the modelling of usual silicon-on-insulator components.

Hence, we dedicate the chapter to the presentation of the integrated com-

ponents we are going to use as building blocks of our reservoir architectures.

More specifically, after a brief introduction on light guiding and silicon photonic

circuits in Sec. 2.1, we present in Sec. 2.2 the modelling strategy, and the Caphe
photonic circuit simulator library [1] that we use throughout this thesis to run

the numerical simulations. We then present in Sec. 2.3 some very common

components that we use in all our designs, like optical sources, photodetectors,

SOI waveguides, and directional couplers. We dedicate Sec. 2.4 to the presenta-

tion of the nonlinear element that will be used as nodes in our neural network

architectures, namely the nonlinear ring resonator. More specifically, we will

describe its model, and the various nonlinear behaviours that can arise when

subjected to optical injection. Finally, we conclude this chapter in Sec. 2.5.

2.1 Introduction to SOI photonic circuits

We give in this section a brief introduction to the light guiding theory, then we

give some insight on the experimental study of photonic integrated circuits,

and finally we suggest some applications of this technology.

2.1.1 Light guiding on a silicon photonic chip

This section is inspired from the interesting book : "Silicon Photonics, an

introduction", by G.T. Reed and A.P. Knights [2]. We suggest the reader to

refer to this book for a more complete overview of the guiding theory, the

theoretical analysis of the guiding properties of an on-chip waveguide, and the

mode propagation in these waveguides.

Light propagation theory is mostly studied using the classical electromag-

netic theory, and in particular the rigorous Maxwell’s equations. However,

these equations are not always necessary to study some basic concepts of light

propagation, and the ray optics approach can sometimes allow a reader to un-

derstand a propagation phenomenon. In particular, the concept of light guiding
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can be easily understood using the typical Snell’s law and the total reflection

idea.

The idea of using silicon as a substrate for on-chip optical wave guiding

applications raised from the transparency of silicon to telecommunications

wavelengths (around 1.3 to 1.6 µm), and from the technological knowledge of

the standard CMOS-processing techniques, as presented in the introduction

of this chapter. Figures 2.1(a) and 2.1(b) present respectively the geometry

of a silicon-on-insulator planar waveguide and the geometry of a SOI rib

waveguide. In Fig. 2.1(a), the guiding layer in silicon (n = 3.5) is constrained

between the cladding layer in silicon dioxide (SiO2, n = 1.45), and the air

(n = 1). In Fig. 2.1(b) the structure of a rib waveguide allows to achieve optical

confinement in two dimensions. Indeed, vertically the guiding layer is also

constrained between the cladding layer in silicon dioxide and the air, and

horizontally the waveguide is surrounded by air.

(a)

(b)

Buried SiO2 cladding
Surface Silicon guiding layer

Silicon substrate

Buried SiO2 cladding

Surface Silicon guiding layern1

n2

n3

Figure 2.1: (a) Silicon-on-Insulator planar waveguide. The silicon guiding
layer is confined between the buried SiO2 cladding layer and the air. (b) Rib
waveguide geometry, used to achieve optical confinement in two dimensions.
Figures taken and reproduced from [2].
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2.1.2 Experimental study of PICs

The usual process to design an integrated chip is to (i) choose a general in-

tegrated circuit according to the optical function we want to perform, (ii) to

define a specific design and perform numerical simulations of this design using

typical methods like Finite Difference Time Domain (FDTD), and finally (iii)

to create the chip and experimentally test it. In this thesis, we have limited

ourselves to the first point, but we also performed some experimental studies

of photonic integrated chips in collaboration with the Ghent University. We

present here the usual experimental setup used to test a photonic chip, and

the various coupling techniques between an optical fiber and an integrated

waveguide.

Figure 2.2: Picture of a photonic silicon chip, with the input and output coupling
optical fibers.

2.1.2.1 Usual experimental setup

We present in Fig. 2.2 a picture of a silicon photonic chip with the input and

output optical fibers. Depending on the study we need to perform on a chip,

various experimental setups can be suggested, and we present two different
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experimental setups in Fig. 2.3. First, a very simple experimental setup consists

of a laser, a polarization controller, the chip, and a power meter. This kind of

setup is mostly used for the study the transmission curve of a circuit. Secondly,

for more complex studies like information processing, it is necessary to use a

more complex experimental setup, as presented in Fig. 2.3(b). This setup is an

example and was used with our collaborators at Ghent University to measure

the output of an on-chip reservoir computer.

From this experimental setup, we can highlight a very challenging issue of

the study of photonic silicon chips : the losses. Indeed, we see that we need one

amplifier before the chip, and one after the chip.

Laser

MZ

PM

AWG

edfa amp

pd

OTF

Chip

(a)

(b)

Laser PM

Chip

Figure 2.3: (a) Simple experimental setup for the study of a silicon photonic
chip. The light from a tunable laser is coupled to the optical circuit after a
polarisation controller, and the light is coupled back in an optical fiber for
further analysis. (b) Experimental setup for information processing analysis
on a photonic chip. The light from a tunable laser is send to a Mach-Zehnder
modulator through a polarisation controller. We amplify the light using an
erbium doped fiber amplifier (edfa), then couple this light after a polarization
controller to the optical chip. The light is coupled back to an optical fiber,
amplified, and filtered thanks to an optical tunable filter before it is analysed
(optical spectrum analyser and ultra fast photodiode/oscilloscope).
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2.1.2.2 Coupling to the optical circuit

Among the losses when studying a silicon-on-insulator photonic chip, the

coupling between the chip and the optical fibers at the input and the output

are both responsible of 6 dB of losses at best. The best strategy to inject the

light from an optical fiber to a chip depends on the packaging of the chip, the

test we need to perform, etc. Hence, multiple techniques exist, and we present

the four main coupling strategies in Fig. 2.4.

WaveguideOptical
fiber

Waveguide

Input beam

Waveguide

Input beam

WaveguideInput
beam

Lens

(a) (b)

(c) (d)

Figure 2.4: Techniques for coupling light to an optical waveguide. (a) Prism
coupling, (b) grating coupling, (c) butt coupling, and (d) end-fire coupling. The
most usual coupling strategy is to use grating couplers. Figure taken from [2].

The strategies presented in Fig. 2.4(a) and (b) are respectively called the

prism coupling and the grating coupling, and are mostly used in testing pro-

cedures. The grating coupling is usually implemented as it reduce the losses.

The strategies presented in Fig. 2.4(c) and (d) are respectively called the

butt-coupling and the end-fire coupling technique, and are implemented for

packaged photonic chips.

2.1.3 Example of circuits and components

Silicon photonics is attracting a lot of attention lately. We present here a few

example of components and an example of picture of a silicon wafer. These

figures are coming from the paper of M. Hochberg et al. called "Silicon photonics,
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Figure 2.5: Optical micrograph and the picture of the layout of (a) grating
couplers, (b) a modulator, (c) a photodetector, and (d) a tunable ring resonator.
Figure taken from [3].

the next fabless semiconductor industry" [3], and we suggest the reader to refer

to this reference for more information.

We present in Fig. 2.5 the optical micrograph and the picture of the layout

of a few silicon photonic components it is now possible to fabricate. Respectively

grating couplers (as presented in Sec. 2.1.2.2), a modulator, a photodetector, and

a tunable ring resonator. These components were fabricated at IME A’STAR.

We also present in Fig. 2.6 the picture of a silicon wafer with various

integrated circuits. This figure was also taken from [3].
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Figure 2.6: Photograph of a SOI wafer with various integrated circuits and
components. Figure taken from [3].

2.2 Phenomenological modelling of photonic
integrated components

We present in this section the simulation framework deployed to model the inte-

grated components we use in our reservoir computing architectures throughout

this thesis. After a brief introduction on ordinary differential equations, we

present the Caphe photonic circuit simulator [1] used to perform our numer-

ical simulations. More specifically, we present the modelling strategy of this

python library, namely the coupled mode theory framework. We also present in

Sec. 2.2.4 the concept of hierarchical photonic integrated circuit, allowing to

create complex integrated systems from simple building unitary components

through the Caphe library.

2.2.1 Ordinary differential equations

Natural phenomena are usually theoretically described through the expression

of the time evolution of physical variables, called the state variables. The rele-

vant state variables used to model a phenomenon differ from one problem to

another, and may vary from fundamental properties like mass and position,

to ensemble variables like temperature, or relative properties like phase dif-
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ferences. These state variables are usually either real or complex valued, and

are described by time-dependant functions measuring those physical variables.

Finally, the evolution of these relevant physical variables can often be described

with ordinary differential equations (ODEs), whose general expression is given

in Eq. (2.1) :

(2.1)
dX(t)

dt
= F (X(t), t) ,

where X is the state variable vector, in which each coordinate correspond to

one time-dependant physical quantity describing the phenomenon, and F is

the evolution function that embodies the changes of the system with the time t
and is determined from fundamental laws and approximations. While F can be

relatively simple and thus analytically studied for a large variety of physical

phenomena like the typical pendulum, F can also be too complicated, hence

requiring numerical tools to study the evolution of the phenomenon.

2.2.2 Simulation methods

For the study of the light propagation in silicon-on-insulator integrated compo-

nents, the evolution function F is often too complicated for analytical resolution,

hence we must use numerical algorithms to study the time evolution of the

propagation. Depending on the purpose of the simulation, one can use different

numerical approaches to simulate an integrated circuit. Ref. [4] gives a very

recent overview of the techniques of the design of silicon photonic devices.

A common family of simulation techniques used to design components is

based on discretizing Maxwell’s equations on a finite grid both in space and in

time. One of these techniques is called Finite Difference Time Domain (FDTD),

and can be used both for 2D and 3D simulations. This kind of simulation is

very general and can be applied with no restriction of geometry or material

properties. However, for complex structures in which light can do multiple

round trips in the circuit, the computation time can explode and take hours to

days.
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At the other end of the range of existing simulation techniques, we find a

technique based on modelling integrated components using black boxes without

taking into account the spacial dependencies of the system. This technique

consists of interpreting the circuit as a collection of waveguides, and use an

eigenmode solver to calculate the mode profile of the waveguides. Finally,

using dynamical and temporal dependencies of the component through the

Couple-Mode Theory (CMT) framework for instance, it is possible to simulate

the phenomenological aspects of the circuit, while drastically decreasing the

computation time of the simulation.

We give in Fig. 2.7 a graphical example of the difference between those

two techniques on a simple ring resonator. In this example, one can simulate

the ring using a full vectorial FDTD, or the ring can be considered to be a

Figure 2.7: A microring can be investigated using different simulation algo-
rithms. A full vectorial FDTD, by discretizing the Maxwell’s equations both
in space and time will return a detailed distribution of the electromagnetic
fields. However, to reduce simulation time, one can also use an eigenmode
solver to calculate the mode profile of the waveguides. One can then calculate
effective refractive indices based on this mode profile, and use this information
in black box models that do not incorporate any spatial information of the
field distribution. For instance, the ring can be considered to be a combina-
tion of a directional coupler and a waveguide, which can be modelled using a
scatter-matrix. Figure taken from [5]
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combination of a directional coupler and a waveguide, which can be modelled

using a scatter-matrix, and adding nonlinear effects through the CMT model

of a ring resonator.

Depending on the purpose of the numerical simulation, one will choose the

full FDTD simulation, or the phenomenological representation.In this thesis,

we aim to design complex systems for reservoir computing applications, hence

we focus on the "black box" approach, and in particular, we use a very accurate

python library developed by Luceda Photonics [1] to perform our simulations on

a phenomenological level. We present this library, called Caphe, in Sec. 2.2.3.

2.2.3 The Caphe library

The Caphe library is a python extension of the Ipkiss library developed by

Luceda Photonics [1] as a toolbox to help researchers and industrial companies

to design photonic integrated circuits. The company started as spin-off from

imec, the photonics group of the UGent and the VUB, hence benefited from the

expertise if the research group.

The very realistic Caphe libraries relies on the implementation of the couple

mode theory description of integrated components (see Sec. 2.2.4) and allows for

the design of the layouts of a component, the frequency-domain and the time-

domain numerical simulation of the component, and the integration of single

components in much more complex structures (see Sec. 2.2.4.2 on hierarchical

integrated circuits).

The main idea of this library is to be able to define arbitrary building

block with their own arbitrary number of ports or their own set of ordinary

differential equations, and then to couple these components according to the

desired topology, thus resulting in a very powerful tool to design and simulate

integrated circuits both through frequency-domain time-domain analysis [6].
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Figure 2.8: Typical description of a node with N ports in Caphe. A linear and
instantaneous node is described by its scatter-matrix S. State variables (e.g.
temperature and free carriers), accompanied by the corresponding (nonlinear)
ODEs, can be added to this description. This makes the node non-instantaneous.
Figure reproduced from [5, 6].

2.2.4 Node description of a photonic integrated
component

The implementation of a photonic integrated component in the Caphe library

is based on its node description. This description is a way to implement the

Coupled Mode Theory (CMT, [7, 8]) model of a component. The node description

takes into account on the one hand the passive and linear part of the model,

embodied in the scatter matrix, and the nonlinear or time-dependant part of the

CMT-model of the optical component on the other hand. The node description

of a given component in Caphe is often summarized in the very general figure

given in Fig. 2.8.

More specifically, in the CMT-framework, a node is described by its input-

output relationship, and the different state-variables and their respective dif-

ferential equations. The input-output relationship is defined as a combination

of a linear, instantaneous, and memory-less part embodied in a scatter matrix

(see Sec. 2.2.4.1), and a nonlinear, non-instantaneous, and memory-containing

30



2.2. PHENOMENOLOGICAL MODELLING OF PHOTONIC INTEGRATED
COMPONENTS

part, taking into account the possible time delay induced by a node.

The "node" framework, with this separation of the different parts of the

model of a component, allows for a speed-up of the time-domain simulations

of networks, as the linear and instantaneous sections of the circuit will be

computed only by matrix operations, and the nonlinear and non-instantaneous

parts will be computed separately.

2.2.4.1 Scatter matrices

The scatter matrix is a rather elegant way to describe and embody the linear

and instantaneous properties of an optical component. With this description,

the component is considered to be a black box, with a certain number of ports.

A port can account for an optical waveguide mode, or an electromagnetic beam.

We assume each port corresponds to an optical mode, and we will define as

many ports as the number of modes in the case of a multi-mode simulation.

We can define sin,i (resp. sout,i) the complex amplitude of the ingoing (resp.

outgoing) normalized electromagnetic mode at each port. In the case of a linear

component, the relationship between the output sout = (sout,0, ..., sout,N−1) and

the input sin = (sin,0, ..., sin,N−1) is :

(2.2) sout =S×sin,

where S is the scatter matrix of the component, and Si j is the linear and

instantaneous transmission between port sin,i and port sout, j.

2.2.4.2 Hierarchical photonic integrated circuits

The node description of an optical component can be extended for circuits with

multiple nodes, with the creation of hierarchical nodes. Indeed, as represented

in the sketch of Fig. 2.9, when multiple nodes are inter-connected, it is possible

to define a global node called hierarchical node.
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Figure 2.9: Sketch of a hierarchical node made of 4 nodes. The node thus
created is now considered as a single 6-port node.

2.3 Usual photonic integrated components

We present in this section some usual integrated photonic components that

are used in this thesis. More specifically, we present the photodetector model

used in our simulations, and finally the models of optical waveguides, and

directional couplers. Note that the main component studied in this thesis is

described separately in Sec. 2.4.

In Caphe, optical sources are modelled as perfect optical sources and it is

possible to feed a component with any arbitrary signal.

2.3.1 Photodetectors

The detector used in our simulations is the same as the one used in previous

work [9] and its model is based on the Alphalas UPD-15-IR2-FC photodetector.

This takes into account the bandwidth limitation of the detector (modelled

by a low-pass filter with a 3 dB cutoff), the response-time limitations, the

responsivity, and various noise contributions, including shot noise and thermal

noise. The total noise σ2
n is given by Eq. (2.3) :

(2.3) σ2
n = 2qB (〈I〉+〈Id〉)+

4kBTB
RL

,
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where B is the bandwidth (B = 25 GHz), 〈I〉 and 〈Id〉 are respectively the

mean value of the photocurrent and the dark current (〈Id〉 = 0.1 nA), q is the

elementary particle charge, kB is Boltzmann’s constant, T is the temperature

(in K), and RL is the load impedance (RL = 50 Ω). The mean value of the

photocurrent is calculated from 〈I〉 = r ·NEP ·pB and the values given in the

data-sheet of the photodetector : the responsivity r = 0.5 A/W, and the noise

equivalent power (NEP = 10−15 W/
p

Hz ).

2.3.2 Modelling of an optical waveguide

We have presented in Sec. 2.1 the cross section of a waveguide (see Fig. 2.1(b)).

When we inject light in a waveguide of length L, the signal will be delayed

of τ= ne f f (λ)×L/c, with ne f f (λ) the effective index of the bulk silicon, and c
the speed of light. The amplitude of the signal will also be decreased with a

loss coefficient α(λ), taking into account the phase shift induced by the light

propagation. Finally, the input-output relationship of an optical waveguide is

given in Eq. (2.4).

(2.4) sout(t)=α(λ)× sin(t−τ),

where α(λ) is defined by :

(2.5) α(λ)= A(λ)exp
(
− j

2π
λ

Lne f f (λ)
)
.

In this equation, A is the loss factor, of the order of 0.1 to 3.0 dB per

centimeter [10]. This high loss factor is the reason most integrated circuits

must remain compact.

2.3.3 Modelling of directional couplers

A directional coupler is a three-port component that can be used either as a

splitter, or a combiner. It is also known as a Y-junction. This optical component

is linear and is considered as instantaneous in our simulations, hence is only

described by its scatter matrix, given in Eq. (2.6).
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(2.6)


s0

s1

s2


out

=


0

√
β

√
1−β√

β 0 0√
1−β 0 0

×


s0

s1

s2


in

,

where sout = (s0,out, s1,out, s2,out) is the output vector, and sin = (s0,in, s1,in, s2,in),

and β the splitting parameter.

The typical 3dB coupler is a symmetrical coupler, the scatter matrix S is

given in Eq. (2.7). This kind of coupler induce a typical loss of 3dB.

(2.7) S=


0

1p
2

1p
2

1p
2

0 0

1p
2

0 0

 .

2.3.4 Modelling of a semiconductor optical amplifier

In this dissertation, we will use semiconductor optical amplifiers (SOA). The

model of the component we use is the typical model of 1989 from Agrawal et
al. [11]. We have used this model as it is already implemented in the python

library we use for our simulations. Still, it could be interesting to use the model

of very recent advanced SOA in future studies.

The model of a SOA - with an input signal sin and an output signal sout -

is given in the following equations. The input/output relationship is given by

Eq (2.8), and the evolution of the state-variable y, called the integrated gain of

the SOA, is given in Eq. (2.9).

(2.8) sout(t)= sin(t−τ)×exp
(

j×φof f set −
α×h

2

)
,

where τ is the delay time induced by the propagation of the light in the SOA,

φof f set is the phase-shift induced by the light propagation in the SOA as a

function of its length L and the effective index ne f f of the material used to
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Table 2.1: Parameters values used in the simulations of the SOA model, from
the Caphe library.

Parameter Value
L 500×10−6 m
soawidth 2×10−6 m
soaheight 0.2×10−6 m
N0 1×1024 m−3

a 2.7×10−20

ne f f 3.75
τcarrier 300×10−12 s
γ 0.3
α 5

fabricate the SOA, α the linewidth enhancement, and h the real part of the

integrated gain of the SOA.

(2.9)
dy
dt

(t)= 1
τcarrier

×
(
(g0L−h)− Pin

Psat
× (exph−1)

)
,

where τcarrier is the lifetime of the carriers, g0 is the small-signal gain (de-

fined by g0 = γaN0(Ibias/I th −1), where γ is the confinement factor, a is the

differential gain coefficient, N0 is transparency carrier density, Ibias and I th

respectively the bias current and the threshold current depending on the geom-

etry of the SOA), L the length of the SOA, Pin = |sin|2, and Psat the saturation

power of the SOA. In our studies, the parameter we can tune to operate the

SOA is the bias current, and the other parameter values are given in Table 2.1.

2.4 Silicon-on-insulator microring resonator

We present in this section the component used as the most important building

blocks of the reservoir architectures presented in this thesis. We show in

Fig. 2.10 a schematic of a nonlinear ring resonator. This component is a two-
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port element where a ring is coupled through evanescent field to a small

waveguide with a coupling coefficient κ. In all our simulations, we neglect the

back-propagation.

2.4.1 Phenomenological description of a SOI ring
resonator

SOI ring resonators are mostly used as optical filters [12], due to the trans-

mission curve of a nonlinear ring resonator (see Fig. 2.11). Still, it can also

be integrated in more complex architectures and perform other types of all-

optical information processing such as boolean functions [13], thresholding [14],

pulse restoration [15], or ASK-to-PSK conversion [16]. Finally, this integrated

element exhibits rich nonlinear dynamical behaviors [5, 17–22].

In previous research done by our collaborators at the Ghent University,

optical bistability and self-pulsation in a SOI-microring has experimentally

been demonstrated [23]. Hence, it is necessary to use a model with enough

richness to explain these behaviours. Hopefully, these behaviours can be found

when using the CMT-description of a microring, in which we can include several

physical effects in a limited number of rate equations.

The typical effects taken into account in the CMT-model of a ring resonator

are presented here, with a small phenomenological description of these effects,

as presented in [5]. A first important effect in bulk silicon is two photon

Figure 2.10: Schematic of a nonlinear ring resonator, where a ring is coupled
through evanescent waves to a small waveguide.
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absorption (TPA), which generates free carriers. These free carriers are then

able to absorb light by free carriers absorption (FCA). In addition, the presence

of free carriers causes a blueshift in the wavelength by free carriers dispersion

(FCD). In SOI ring resonators also surface state absorption (SSA) at the silicon-

silica interface is present, and at the same time some light is lost due to surface

scattering and radiation loss [23].

The absorbed optical energy is mainly lost by thermo-optic effect, and the

heat induced by these effects results in a redshift in the resonance wavelength.

The free carriers typically relax at least one order of magnitude faster than the

temperature.

2.4.2 Model of a nonlinear microring resonator

The theoretical framework we use is based on the well-established coupled-

mode theory (CMT). The model described in our work has already been pro-

posed and was able to correctly describe for the SOI microrings a wide range of

dynamical behaviors observed experimentally [5, 17].

The input/output relation is given in Eq. (2.10), in which sin is the input

signal (with Pin = |sin|2 the input power), sout the output signal (with Pout =
|sout|2 the output power), φc the phase propagation in the bus waveguide, κ

the coupling between the bus waveguide and the microring, and a the complex

Figure 2.11: Transmission curve of a nonlinear ring resonator, obtained by the
numerical simulation of the CMT model of a ring resonator using a Runge-
Kutta 4 integration algorithm.
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amplitude of the optical mode in the cavity (with |a|2 the energy in the cavity).

(2.10) sout = e jφc sin +κa.

The state variables of the SOI nonlinear microring resonator within the CMT-

framework are : a the complex amplitude of the optical mode, ∆T the mode-

averaged temperature difference between the circular waveguide of the micror-

ing and its surroundings, and N the number of free carriers. These variables

account for the physical effects taking place in a nonlinear microring resonator

: specifically, (i) the two-photon absorption (TPA), which generates free carri-

ers; (ii) the free carrier absorption (FCA) (i.e.) absorption of light by the free

carriers; (iii) the free carrier dispersion (FCD) and (iv) losses.

The nonlinear dynamical equations controlling the temporal evolution of

the three state variables are given in Eqs. (2.11)-(2.13), with typical time scales

τa ≈ 21 ps, τth = 65 ns, and τ f c = 5.3 ns.

da
dt

=
[

j (ωr +δωnl −ω)− γloss

2

]
a+κsin,(2.11)

d∆T
dt

=−∆T
τth

+ Γthγabs|a|2
ρSi cp,SiVth

,(2.12)

dN
dt

=− N
τ f c

+ ΓFCAβSi c2|a|4
2~ωV 2

FCAn2
g

,(2.13)

where ω = 2πc/λ and ωr = 2πc/λr with λr = 1552.770 nm are the frequency

of the input light and the resonance frequency of the ring, respectively. The

relaxation times for the temperature variations and the free carriers are

respectively given by τth and τ f c. TPA in silicon is governed by the constant

βSi. nSi, cp,Si, and ρSi, which are the refractive index, the thermal capacity,

and the density of the bulk silicon, respectively. We neglect dispersion, thus

the group index ng is equal to nSi. We also define the effective volumes and

confinements for each nonlinear effect : VFCA, ΓFCA, VTP A, and ΓTP A.

Losses also play an important role, as they introduce coupling between the

three state variables. The total loss γloss results from the sum of absorption

losses γabs, coupling losses into the waveguide γcoup (with κ= j
√
γcoupe jφc ),

and radiation losses γrad. The absorption losses in the ring are due to linear
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surface absorption, TPA, and FCA, as presented in Eq. (2.14) :

(2.14) γabs = γabs,l in +ΓTP A
βSi c2|a|2
n2

gVTP A
+ΓFCA

σSi c
ng

N,

where γabs,l in is the linear absorption constant, and σSi is the absorption cross

section of FCA in silicon. In the case of a critically coupled ring, we also have

γcoup = γabs,l in +γrad.

Table 2.2: Parameters values used in the simulations of the microring model,
adapted from [5, 17].

Parameter Value
βSi 8.4×10−12 m·W−1

dnsi/dT 1.86×10−4 K−1

dnsi/dN −1.73×10−27 m3

σSi 10−21 m2

ρSi 2.33 g·cm−3

cp,Si 0.7 J·g−1·K−1

ng = nSi 3.476
ηl in 0.4
γabs,l in

2ηl in/205 ps−1

γcoup
2/205 ps−1

τth 65 ns
τ f c 5.3 ns
Γth 0.9355
ΓTP A 0.9964
ΓFCA 0.9996
Vth 3.19 µm3

VTP A 2.59 µm3

VFCA 2.36 µm3

Finally, we give in Eq. (2.15) the expression of the nonlinear detuning δωnl ,

that is caused by the thermo-optic effect and FCD, while the Kerr-effect is here

neglected :

(2.15) δωnl =−ωr

ng

(
dnSi

dT
∆T + dnSi

dN
N

)
.
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As for any optical injection study, the two parameters of interest are the

input power Pin = |sin|2, and the wavelength difference between the injected

light and the resonance wavelength of the nonlinear microring resonator, that

is the optical detuning δλ=λ−λr. For the other parameters of the model, we

use the typical numerical values listed in table 2.2( [5, 17]). These values will

be later used in all our numerical simulations.

2.4.3 Nonlinear dynamics in a microring resonator

2.4.3.1 Introduction to nonlinear dynamics

Investigations on the dynamical behaviours that can happen in a system can

lead to very rich studies, when one is interested in the nonlinear properties

of a system. When we study the evolution of a system using its ordinary dif-

ferential equation (see Sec. 2.2.1) while modifying the value of one or multiple

parameters, it may exhibit richer behaviours than the typical stable solution.

Some systems can show multi-stable solutions, a periodic evolution, an ex-

citable behaviour, or erratic dynamics (chaos). There are some tools existing

for the study of nonlinear systems. We present in this section the two main

indicators we use in this dissertation, namely the bifurcation diagram, and the

continuation technique.

When we study the dynamical response of a system while modifying one

particular parameter, it is possible to plot what we usually call a bifurcation

diagram. This diagram is constructed according to the following procedure: we

numerically integrate the ordinary differential equation describing the system

for each value of the parameter of interest (called bifurcation parameter), and

we report on a graph the extrema of the response of the system for each value of

this parameter (after deleting the transient). We give in Fig. 2.12 the example

of a typical bifurcation diagram obtained by the integration of the logistic

map [24].

In this figure, we can see different regions of the bifurcation parameter.

Before about 3.0, the output of the system has only one extremum, hence

the system is stable. From 3.0 to 3.45, the output of the logistic map has two

extrema, hence the population is oscillating between two values. Then from
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Figure 2.12: Example of a typical bifurcation diagram obtained by the inte-
gration of the logistic map [24]. The equation of the logistic map is xn+1 =
rxn(1−xn). The bifurcation parameter is the growth rate r, and this parameter
varies from 2.8 to 4.0.

3.45 to 3.55, the output has 4 extrema then 8 extrema. We can deduce that the

system is still periodic, but with a more complex dynamics than just simple

oscillations. And because after 3.55, the output of the system has a very large

number of extrema, we can deduce that (i) after 3.55 the system exhibits chaotic

behaviours and (ii) we have between 3.0 and 3.55 a period doubling bifurcation

cascade to chaos.

This tool is very interesting for the study of the behaviour of a system when

modifying one parameter. Indeed, it can show the values of the bifurcation

parameter for which the system is stable, periodic, or erratic. Moreover, the

values of dynamical changes in this diagram are called bifurcations. It is

possible, using continuation techniques, to follow a bifurcation point in a plane

of parameters [25]. This method is used to find the regions where the system is

stable, periodic, or chaotic in a parameter plane. These techniques allow for

the highlighting of various kind of bifurcations, to study their stability, etc.

The study of the bifurcations of a system is a whole field of expertise, and

in this dissertation, we only use this tools as a way to find the stable region of

parameters of our nonlinear elements.
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2.4.3.2 Nonlinear behaviours of a microring resonator

A nonlinear ring resonator, when submitted to optical injection, can exhibit

rich dynamical behaviours, as already presented in a few studies [5, 17–22].

In particular, the nonlinear dynamical properties of the particular model of

nonlinear ring resonator we use in our thesis was the subject of an in-depth

study by T. van Vaerenbergh and collaborators in the context of the study of

excitability of a ring resonator [5, 17], and we suggest the reader to refer to

these documents for a complete overview of the dynamical richness of this

particular on-chip optical component.

Nevertheless, we summarize here some of the main conclusions of these

studies, that we have recomputed with the authorisation of our collaborators

at the Ghent University. In particular, we give insights on the mapping of the

dynamical states of a ring resonator submitted to optical injection, since the

stability is a key information for reservoir computing applications.

We present in Figs. 2.13(a)-(c) three bifurcation diagrams of a nonlinear ring

resonator submitted to optical injection, obtained by the simulation of a single,

uncoupled, nonlinear microring resonator subjected to steps of optical power

between Pin0 = 0 mW and several maximum values Pin1 . The simulations are

performed as follow : we integrate the CMT-model of the nonlinear microring

resonator (see [5, 17] for the equations and the parameters values) over 2.5 µs

with a power step from Pin0 = 0 mW to the value of Pin1 at t = 100 ns. We use

an Euler integration method with a 1.0 ps integration time step, and a 10.0 ps

sampling time. These simulations are performed using the Caphe software

environment [1].

We then extract from the time series the consecutive extrema for each value

of the maximum input power, after deleting the transients. We plot the extrema

for each value of the maximum input power at different values of the optical

detuning, and obtain the bifurcation diagrams shown in Figs. 2.13(a)-(c), for

respectively (a) δλ=−50 pm, (b) δλ= 0 pm, and (c) δλ= 50 pm.

Figure 2.13(a) shows the output power of a microring resonator with an

optical detuning δλ=−50 pm, which is always a fixed point for Pin1 < 2.0 mW.

For an optical detuning δλ= 0 pm (see Fig. 2.13(b)), the output power is a fixed
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Figure 2.13: Nonlinear dynamics of a nonlinear ring resonator. (a)-(c) Bifur-
cation diagrams of a single nonlinear microring resonator. The bifurcation
parameter is the injected power Pin (in mW), and we give the diagrams for
various values of the optical detuning : (a) δλ = −50 pm, (b) δλ = 0 pm, and
(c) δλ= 50 pm. (d) Times series corresponding to the highlighted points of (b),
respectively (i) a fixed point obtained for injection parameters δλ= 0 pm and
Pin1 < 0.5 mW, and (ii) a self-pulsating dynamics obtained for δλ= 0 pm and
Pin1 < 1.0 mW.

point for Pin1 < 0.52 mW, and a self-pulsation (SP) for Pin1 > 0.54 mW. Finally,

we see in Fig. 2.13(c) that, for an optical detuning δλ= 50 pm, the output power

is stationary for Pin1 < 0.38 mW, and a self-pulsating for Pin1 > 0.40 mW.

We also present in Fig. 2.13(d) two examples of typical time series at the

output of a ring resonator, respectively for (i) a fixed point obtained for injection

parameters δλ= 0 pm and Pin1 < 0.5 mW, and (ii) a self-pulsating dynamics

obtained for δλ= 0 pm and Pin1 < 1.0 mW. These time traces have been used

to plot the two highlighted points (i) and (ii) of Fig. 2.13(b).
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Finally, in Fig. 2.14, we present a theoretically obtained stability map of

a nonlinear microring resonator. This shows the ring’s dynamical behavior

in the optical detuning/injected power plane, and for a given set of injection

parameters. We find three different regions associated to stable fixed points,

self-pulsing, and bistability when two different states can be reached depend-

ing of the initial conditions. Each region is delimited by bifurcation points,

two saddle-node and a supercritical Hopf bifurcation for the bistable and self-

pulsing region, respectively. Note that this map was originally presented in a

normalized parameter plane [5, 17], but we have recomputed it with contin-

uation techniques [26] and reformatted it with respect to our parameters of

interest.

With Fig. 2.14, it is possible to extract the information of Figs. 2.13(a)-(c)

for any optical detuning; thus finding the value of injected power for which the

microring is on a fixed point close to self-pulsing. This allows to set an optimal

operating parameter conditions for the reservoir.

Figure 2.14: Stability map of a nonlinear microring resonator in the (δλ, Pin)
plane. Figure adapted from [5, 17], using continuation techniques and the Auto
software [26]
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2.5 Conclusions

In this chapter, we have given a small introduction to the concept of light

guiding, and its application for on-chip circuits. We have also presented the

experimental challenges for photonic integrated circuit testing, that can be

summarized in a simple word : losses. These losses are due to the coupling

from the input optical fiber to the chip, to the coupling from the chip to the

output optical fiber, and on-chip losses in waveguides, and directional couplers

for instance.

We have presented our numerical simulation methods for the upcoming

chapters. In particular, we have presented the Coupled Mode Theory frame-

work of our simulations, and how it is possible to speed up the simulations

using the node description of a component in the Caphe library from Luceda

Photonics [1]. This description is based on the separation between the linear

and instantaneous part of the model on the one hand (embodied in the scat-

ter matrix), and the nonlinear and non-instantaneous part of the model on

the other hand. Using this description, and the Caphe numerical solver, the

linear part of the model is computed only using matrix operations, and the

nonlinear part is computed on its own, thus reducing the simulation time. This

description also allows for the implementation of hierarchical nodes, which is

an interesting tool for the design of complex structures.

Finally, we have presented the models of various integrated components

in the CMT framework, and when possible by their scatter matrices. More

specifically, in this thesis we need optical waveguides, directional couplers,

and nonlinear microring resonators. This last component has been widely

investigated as it will be the key component of our reservoir architectures (see

Chapters 4, 5, and 6), and we expect for the performance of these reservoir

architectures to have a strong correlation with the internal dynamics of their

building blocs.
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3
RESERVOIR COMPUTING

"To improve oneself you must be as persistent as the drip,

drip, drip of water filling a bucket. Do a little bit, every

day."
— Jeffrey Fry

A s stated in the general introduction of this dissertation, this thesis

aims at designing hardware implementations of machine learning

techniques. And reservoir computing is the perfect paradigm to do so,

thanks to the general concepts of this particular variation of artificial neural

networks. Indeed, a reservoir computing architecture relies on a fixed recurrent

neural network and a simplified training procedure of the network, based only

on the weighting of the connections between the readout layer and the output

of the reservoir.

This chapter introduce the various concepts, mathematical models, and

examples to understand the reservoir computing paradigm. However, this dis-

sertation only relies on this particular architecture of neural networks, hence

we do not investigate exhaustively machine learning methods, nor mathemati-

cal proofs of the properties of these systems. However, we suggest the reader to

refer to the recent work of A.E. Hassanien [1] for a complete and up-to-date
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overview on machine learning techniques.

This chapter is organised as follows. We briefly introduce in Sec. 3.1 the

general concepts of artificial neural networks. Then in Sec. 3.2 we present the

particular architecture of artificial neural network called reservoir computing

that we investigate in this dissertation. We also introduce in this section a few

architectures for reservoir computing that have been investigated, and focus

alternatively on architectures relying on various physical platforms on one

hand, and on photonic platforms on the other hand. We investigate in Sec. 3.3

the various benchmark tasks we will use to measure the level of performance

of our architectures throughout this dissertation. Finally, we conclude this

chapter in Sec. 3.4.

3.1 Artificial neural networks

Artificial neural networks have attracted a lot of attention lately, as it provides

a straightforward implementation for machine learning techniques. Machine

learning is a non-conventional information processing technique which aims

at creating a system that is able to perform on specific tasks without a pri-
ori knowledge of a given input. Instead of an exhaustive mapping of the in-

put/output, the system has learned to generalise from the training examples,

and is able to extrapolate on unknown input data. Machine learning is closely

related to statistical computing as the output of a trained system is the most

statistically probable answer for a given input.

Machine learning and conventional programming are based on very dif-

ferent approaches. Indeed, in machine learning, we do not write an explicit

software to solve a specific task, but we let the system modify its own parame-

ters during the training phase in order to find the relation between the input to

the output. There are many different methods for the system to find this rela-

tionship (i.e.) to train the system, and we present here the three main training

procedure families. Note that it is also possible to combine those methods for a

better accuracy.

• Unsupervised training methods [2] : the system is fed with unlabelled
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examples, and has no clue of which kind of results it must get. The main

goal of this kind of algorithm is to discover structures or regularities in a

data set, without having to explicitly program them.

• Reinforcement learning methods [3] : the system is fed with data, and

gets information on how well it behaves. However, the system does not

get information on what the exact output should be. The system is given a

score for each new input, but never the exact wanted output. The system

then learns from rewards and penalties. This training methods is popular

for applications which we do not know the exact result of, and the only

knowledge is if a given result is good or not. Robotics is a good example

of application for these learning methods.

• Supervised learning methods [4] : this set of methods is the most tradi-

tional and used way of training a cognitive computer. We feed the system

with labelled data i.e. with a set of known input data for which we know

the desired output. This set of data is called the training set. Knowing the

exact desired output for several examples greatly improves the accuracy

of the statistical model found by the neuromorphic computer.

As aforementioned, artificial neural networks have obviously emerged as

good candidate for solving machine learning problems, as they rely on brain

inspired structures. We present in the rest of this section the necessary concepts

for understanding neural network architectures.

3.1.1 Introduction to artificial neural networks

An artificial neural network is is in simple words a system that tries to mimic

the human brain information processing mechanisms. More specifically, an

artificial neural network consists of the interconnection of neuron-like com-

putational units, and we teach the neural network to solve the desired task

by modifying the weights of synapse-like interconnections during the training

procedure. We show in Fig. 3.1 an usual representation of two neurons inter-

connected through a synapse [5]. We present in the remaining parts of this
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section how we model the different components of this scheme in an artificial

neural network.

Figure 3.1: Usual representation of two neurons interconnected through a
synapse. In an artificial neural network, the neuron-like computational unit
are also connected one to another through synapse-like interconnections. Figure
taken from [5].

3.1.1.1 Neuron-like computational unit

In an artificial neural network, what we call a neuron is basically a mathemat-

ical function that non-linearly transform an input signal to an output signal.

We depict in Fig. 3.2 the model of a neuron. A neuron is submitted to a set

of inputs, and has one output. And the neuron apply its mathematical model

to the sum of the inputs to create the output. Depending on the application,

different models for an artificial neuron have been suggested.

• Threshold gate (or perceptrons) are based on the model of McCulloch-

Pitts for neurons. They only produce digital outputs. This very simple

model take the sum of the inputs, and if this sum is above a certain

threshold, the output is "1", "0" otherwise. See panel (i) of Fig. 3.2.

• A second class of model represents analog neurons based on an activation

function. The computational unit perform a nonlinear transformation

of the weighted sum of the inputs, and give an output according to

a continuous activation functions. See panel (ii) of Fig. 3.2. The most
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Figure 3.2: Symbolic illustration of the model of a neuron. A neuron is submit-
ted to a set of inputs, and has one output. And the neuron apply its mathemati-
cal model to the sum of the inputs to create the output. Various models for the
neuron function have been suggested, and we show respectively in (i) and (ii) a
digital threshold function, and an analog activation function.

common functions are sigmoid-type functions, such as the logistic (or

fermi) function (see Eq. (3.1)), or the tanh function.

(3.1) fermi(x)= 1
1+exp(x)

.

• A third type of neuron model is called the spiking model. This modelling

is biologically more realistic, but the resulting spiking neural network is

more complex to model and use in practice, due to the difficulties brought

by the data encoding.

In this dissertation, we investigate various neuron-like computational units

in our architectures for a hardware implementation of cognitive computing.

Since we use physical components as neurons, they are analogically modelled.

3.1.1.2 Synapse-like interconnection unit

In an artificial neural network, the synapse-like connection is ensured only

by saying the the output of a neuron is linked to the input of another neuron.

This connection is often modelled by its strength, called the weight. Hence, a

neuron will receive as an input a weighted sum of the output of the neurons

that are connected to him.
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Moreover, the training procedure for an artificial neural network consists

of finding the appropriate weights for the connections between the neurons of

the network in order to perform the desired task.

3.1.2 Neural networks architectures

In an artificial neural network, the neuron-like computational unit are con-

nected one to another through the synapse-like interconnection units. The way

they are interconnected defines a topology, that defines both which neuron

is connected to which, and which strength of the connection (weight). All of

this connectivity information is reported in the weight matrix W, where Wi j

determines both the connectivity (a non-zero value means neuron j is connected

to neuron i), and the weight of the connection.

Usually, artificial neural networks are divided into two different sub-types

of networks, depending on their connectivity. We present these typologies here,

which are called feedforward neural networks (see Sec. 3.1.2.1) and recurrent

neural network (see Sec. 3.1.2.2).

3.1.2.1 Feedforward neural network

Feedforward neural network are a sub-type of artificial neural network in which

there is no recurrent connections in the structure of the network. The nodes

(neurons) are distributed according to a layered topology, and the information

Figure 3.3: Illustration of a feedforward neural network. The information only
goes from one layer to the next, and the data only propagate in one direction.
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flow unidirectionally from the input layer, to the intermediates layers (also

called hidden layers), to the output layer, as presented in the sketch of Fig. 3.3.

This topology can also be called multi-layer perceptron.

One fundamental consequence of this topology is that such a neural network

cannot store temporal information as the data only flow in one direction. Hence,

this architecture is not suited for temporal memory demanding tasks like

speech recognition or signal generation for example.

The training of a neural network with this topology is considered to be

relatively easy, and the preferred method relies on the error-backpropagation

method, in which we adjust the weights of the network through an iterative

minimisation of the error between the actual output and the desired output.

This type of neural network is often implemented as it is a very good

architecture for decision making and generalisation, in particular with the

deep neural networks in which people implement feedforward neural networks

with hundreds to thousands of hidden layers.

3.1.2.2 Recurrent neural network

On the other hand, the topology of recurrent neural networks contains recur-

rence in the inner structure of the neural network, as shown in the illustration

given in Fig. 3.4. Hence, the information does not flow unidirectionally, and

can go trough a neuron on multiple occasions, thus creating feedback loops

Figure 3.4: Illustration of a recurrent neural network. The information can do
recurrent loops in the inner structure of the network.
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involving a temporal delay in the network.

The consequence of these feedback loops in the network is that the state of

the network now depends not only on the current input, but also of past inputs

and past states of the network. Hence, this topology can partially solve the

issue raised in the presentation of feedforward neural networks, and this kind

of neural network can solve temporal problems, like speech recognition, signal

generation, or time series forecasting.

However, even if recurrent neural networks seem to solve the issue raised

by the feedforward topology, this is at the expense of the training ease of

the network. Indeed, the are few to none learning methods for this kind of

network, and they converge slowly. Hence, recurrent neural networks are rarely

implemented.

3.2 Reservoir computing

Reservoir computing was proposed about a decade ago [6, 7] as an extension

of recurrent neural networks. This new paradigm was suggested as a way to

simplify the training procedure of the neural network. Indeed the recurrent

neural network is kept fixed and only the connections between the readout

layer and the output are trained by a simple linear regression. This new

paradigm has attracted a lot of attention recently due to the universality of its

concepts [8–10], and is the subject of this dissertation.

3.2.1 General structure of a reservoir computer

Reservoir computing was suggested as an extension of echo-state networks [11]

and liquid-state machines [12] - two subgroups of recurrent neural networks -

allowing for a simplification of the training procedure. We present here both of

these concepts, and the typical topology of a reservoir computer. These three

particular architectures for recurrent neural network rely on the same concept

that a dynamical system maps the problem to a higher dimensional feature

space, and it become easier to separate the features using an hyperplane. We
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Figure 3.5: In this very simple example, we want to separate in dimension 2 the
red disks from the yellow ones. In (a), the task is easy an can be done only by a
hyperplane of dimension 1 (a straight line). However in (b), it is not possible to
use a straight line to separate the features. But, if we map the features in a
higher dimensional space (dimension 3 in this case), it might become possible
to use a hyperplane of dimension 2 to separate the red spheres from the yellow
ones.

give in Fig. 3.5 a typical illustration of a problem shifted to a higher dimensional

space.

Echo State Network : Echo state networks have been introduced in 2001

by H. Jaeger [11]. This network is a recurrent neural network with a random

topology and randoms weights describing the connection between the neurons.

The data is fed to the network, and we use the states of the system to simply

train the system to perform on the desired task, through a simple linear

regression. Such a neuro-inspired machine possess fading memory, meaning

that after a while the network returns to its stable state and somehow forgets

the information it has seen. This kind of network is very attractive as it is quite

easy to implement, and successfully resolve a variety of difficult benchmark

tasks. However, the optimal dynamical regime for the network to perform well

depends on the application, and can be a laborious search of the optimal scaling

parameter of the weight matrix.
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Liquid State Machine : The liquid state machine concept was introduced

by W. Maass in 2002 [12], and is an architecture for recurrent neural networks

with a lot of similarities to echo state networks. This architecture is inspired

from the biologically realistic spiking neural networks, but with two separated

parts. The liquid state machine is formed by a dynamical spiking network, and

output neurons that transform the high dimensional transient states given by

the spiking network to stable readout values tat can be used for the training of

the neural network.

This kind of network relies on its ability to separate different input streams

into different trajectories of internal states (the separation property), and on

its ability to distinguish and transform different dynamical trajectories into

distinguishable outputs (approximation property). While the simplicity of the

readout makes it easy to evaluate the properties of this kind of system, it

remains difficult to encode and decode the data into train of spikes.

Reservoir Computing : As stated before, reservoir computing was intro-

duce about a decade ago [6, 7] as an extension of these two concepts. It im-

plements a mapping of the features in a higher dimensional space by a fixed

recurrent neural network with readout neurons trained to extract those differ-

Output
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Figure 3.6: General structure of a reservoir computer. The data stream is fed
to the system through the input layer. The reservoir is a fixed recurrent neural
network, and the connection matrix is defined by the topology of the reservoir.
The readout layer consists of the different information we can extract from the
network. And finally, the output of the reservoir is constructed as a weighted
sum of the readout layer elements.
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ent features. Hence, the general structure of a reservoir computer is composed

of an input layer, a fixed recurrent neural network called the reservoir, and a

readout layer, as depicted in Fig. 3.6.

Again, depending on the task we want to solve, the optimal values for the

parameters influencing the dynamical behaviour of the reservoir will change.

In particular, the topology of the reservoir, the type of non-linearity, the number

of neurons, etc. Nevertheless, for an optimal use of the reservoir, fading memory

remains an important feature of a system. Hence, it is necessary to operate

the reservoir in a stable dynamical state. However, to improve the memory

of the system, it can be interesting for this stable state to have long and rich

transient dynamics, thus it can be interesting to operate the reservoir both on

a stable state, and close to an unstable state.

3.2.2 Mathematical description of a reservoir computer

We present in this section a more rigorous mathematical description of a

reservoir computing system, as the one illustrated in Fig. 3.6. We present in

Eq. (3.2) the general state-update equation of a reservoir computer :

(3.2) x[k+1]= f (x[k],Wresx[k]+Win(u[k+1]+ubias)) ,

where x is the state of the reservoir, f is a nonlinear vector field that accounts

for the nonlinear transformations induced by the reservoir nodes, u is the

input signal to the reservoir, ubias is a bias signal that can be added to the

input signal, Win is the input matrix, representing the input weights, and

finally Wres is the interconnection matrix to account for the inner design of the

reservoir.

The output yout of the reservoir is given by Eq. (3.3), and is a linear com-

bination of the states xreadout of the reservoir at the output layer. The output

weights of the reservoir are collected in the readout matrix Wout, and are

determined during the training by a simple ridge regression.

(3.3) yout[k]=Woutxreadout[k].
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3.2.3 Training of a reservoir computer

There are two main approaches to train a reservoir computer, either on-line

learning or off-line learning. We briefly present in this section the on-line and

off-line learning procedure and concepts.

On-line learning : The on-line learning procedure is an incremental tech-

nique, which consists of modifying the output weights immediately after the

recording of a new sample [13].

Off-line learning : The off-line learning technique for the training of a

reservoir computer consists of feeding the system with the whole train of

input data, and record the dynamical state of the network at the readout layer

xreadout. Afterwards, the output weights are determined and stored in the

readout matrix Wout. The weights are found through a simple ridge regression

using the training data and the corresponding desired output [14].

In this thesis manuscript, we will only focus on off-line learning for the train-

ing of our simulated reservoir computers. And, in practice for our numerical

simulations, the training procedure is done using typical regression functions

implemented in Python libraries for machine learning, like scikit learn [15].

3.2.4 Hardware implementations of reservoir computing

As stated previously, the main feature of a reservoir computing is that the inner

structure of the recurrent neural network is kept fixed during the training

procedure. This particular property allows implementations at the physical

layer, and indeed implementations of reservoir computing have been suggested

on various hardware platforms, including photonics. We present here a few

studies on physical implementations of reservoir computing. Nevertheless, we

also suggest to the reader to refer to the recent work of G. Tanaka et al. [16] for

a very complete overview of physical implementations of reservoir computing.
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3.2.4.1 Reservoir computing on various hardware platforms

Hardware implementations of reservoir computing have attracted, and still

attract a lot of studies on a large variety of substrates, due to the universality

of its concepts [8–10]. And a very recent study is even trying to present an

unified framework for the characterisation of reservoir computers, with no

dependency in the substrate [17].

Among the existing hardware platforms for reservoir computing, implemen-

tations using electronic systems have been actively studied. On this substrate,

the implementations aim at the design of high-speed, energy-efficient archi-

tectures in the electronic domain. Reservoir computer systems using FPGAs
are widely studied as this substrate is a common hardware device with config-

urable logic blocks and interconnection structures, and it allows to implement

either the artificial neural network [18, 19] or the readout layer [20]. Memris-

tive systems as reservoir computing implementations have also been inves-

tigated as they are good candidate for hardware implementations of neural

networks [21–28].

Spintronics is also a very promising technology that has been used to

implement reservoir computing, in particular through the implementation

spin-based reservoir computers with (i) spin oscillations [29, 30], (ii) spin

waves [31], and (iii) skyrmions [32].

Another class of substrates widely investigated in recent studies are the

mechanical architectures for reservoir computing, with applications in robotics

using soft bodies (inspired of octopus limbs) [33–35] or compliant robots [36–40].

The idea of using a physical system to perform the computations in the field of

robotics is known as morphological computing [41].

Finally, as a way to go further in the idea of using physical bodies to compute,

some studies have focus on the implementation of reservoir computing using a

biological substrate, such as regions of the brain [42–44], or in vitro cultured

cells [45–47].

A few studies on the possibility to implement quantum reservoir computing

have been done very recently on the theoretical level [48].
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3.2.4.2 Photonic reservoir computing

The implementation of reservoir computing techniques using photonic devices

is a whole field of research, and has attracted a lot of attention lately, since

the photonic substrate allows for very high speed data processing, with very

low energy consumption compared to electronic devices for instance. Hence,

many studies have arisen using very different architectures and paradigms.

We summarise the rich literature of photonic reservoir computing here, and we

categorise the implementations in two main fields, namely spatially distributed

array reservoirs (or extended reservoirs), and reservoir with delayed feedback.

We suggest very complete reviews on this subject in [49, 50], and a tutorial on

the implementation of delay-based reservoirs in [51].

Extended designs for reservoir computing : A first category of photonic

implementations of the reservoir computing paradigm is based on spatially

distributed array reservoirs, in which each neuron-like computational unit in

the network is a physical component.

Amongst the implementations, a few designs based on the principles of

free-space optics have been suggested. Interactions between a laser beam and

a diffrative element can lead to rich spatial nonlinear dynamics, and have been

used by several groups to implement reservoir computers [52–55]. This family

of implementations is close in terms of concepts to the work done by the startup

LightOn on optical processing units [56, 57].

Secondly, the main family of designs for spatially distributed array reservoir

computers is based on the on-chip implementation of extended optical circuits.

The first implementations have been suggested by the group of the Ghent

University in 2008 [58], and this group has been working on this kind of

devices ever since [59–62]. Various components have been used as nodes for

on-chip extended reservoir computing, including SOAs [59], InGaAsP ring

resonators [63, 64], or silicon-on-insulator (SOI) linear nodes [60–62], or crystal

cavities [65, 66]. In this thesis manuscript, we investigate on this kind of

architectures as an extension of the work done by our collaborators at the

Ghent University, and focus in Chap. 4 and 5 on the numerical simulation of
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on-chip reservoir computers using respectively (i) SOI ring resonators and (ii)

non-identical SOI components.

Time-delayed architectures for reservoir computing : A solution to

have a large number of nodes in a reservoir computer was suggested in 2011

by L. Appeltant et al. [67], and consist of having only one nonlinear node

and distributing a large number of virtual nodes in a long delay line. We

focus particularly on this kind of implementations in Chap. 6 of this thesis

manuscript.

This kind of delay-based architecture for reservoir computing has attracted

a lot of attention lately. In fact, it is the most extensively studied implemen-

tation for optical reservoir computers. Systems using opto-electronic systems

have been initially suggested [13, 68–76] as a way to implement the paradigm

suggested by L. Appeltant et al.. In these implementations, either the feed-

back loop or the nonlinear node can be in the electronic domain. For instance

in [68, 69], the nonlinear node is continuous emitting laser, and the feedback

loop is and opto-electronic device, while in [72] the feedback loop is in the

optical domain and the nonlinear node is opto-electronic. Finally, a few re-

cent works have demonstrated the possibility to implement online learning

techniques for opto-electronic reservoir computer [13, 74–76]. Finally, an in-

teresting opto-electronic multimode design based on a Vertical Cavity Surface

Emitting Laser (VCSEL) chip array was numerically investigated in [77, 78].

All-optical systems have also been suggested [79–88], using either a con-

tinuous emitting laser and an optical gain as nonlinear node in the feedback

loop [79, 89], or a laser diodes directly submitted to optical delayed feed-

back [81, 82, 84, 87, 88]. In the study of J. Vatin et al. [87, 88], an improvement

of the levels of performance attained by a time-delayed reservoir computer is

shown when we use the polarisation dynamics of a VCSEL submitted to optical

delayed feedback.
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3.3 Tasks and metrics

Multiple indicators are used to benchmark the performance of a reservoir

computer. The memory capacity [90] is a good indicator of the capacity of a

system to perform on memory-demanding tasks. We also present in this section

a few temporal tasks, namely the delayed exclusive-OR task, the 3-bit pattern

recognition task, and the one-step Santa Fe chaotic time series forecasting

task.

3.3.1 Memory capacity

Many applications of machine learning require a mixing of previous inputs.

Time series forecasting and pattern or speech recognition are good examples

of these memory demanding applications, and the absence of memory in the

system can drastically degrade the performance of the neural network on such

tasks. The ability of an artificial neural network, and in particular a reservoir

computer, to reconstruct past input signals is measured by the evaluation of the

memory capacity. The memory capacity was introduced in 2002 by H. Jaeger

in [90], and gives a good insight on how much of past input signals is still in

the network at a given time.

Mathematically, the memory capacity is measured according to the follow-

ing procedure. We first generate a random input time series u, where the uk

are drawn from a uniform distribution in the interval [−1,1]. This input signal

is then fed to the reservoir, and we successively train the reservoir to construct

an infinite number of output series yi, each being copies of the input time series

u shifted by i steps in the past. With these notations, yi[k] is the reconstruction

of u[k− i] for i = 1 ...∞. Finally, the memory capacity µc is defined as the sum

of the normalised correlations mi between the approximation of the targets ŷi

at the output of the reservoir and their associated target yi, as presented in

Eq. (3.4):

(3.4) µc =
∞∑

i=1
mi =

∞∑
i=1

corr[yi, ŷi] .
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In practice, it is not necessary to compute this sum for an infinite number

of output time series, as it was theoretically demonstrated in [90] that the

maximum possible memory capacity is limited by the number of nodes in the

neural network. Hence we train our reservoir to successively reconstruct the

u[k− i] for i = 1 ... N, with N the number of nodes in the reservoir.

Figure 3.7 is an example of the plot of the normalised correlation mi as

a function of the number of the delayed input steps for the 16-nodes SWIRL
reservoir computer presented later in Chap. 4. In this example, the measured

memory capacity is the sum of the mi, and is equal to 6.4. We can see from this

figure that the reservoir can reconstruct the six past inputs with a normalised

correlation mi greater than 0.6, so we can easily conclude that at a given time,

the current signal in the reservoir incorporate information from the six past

inputs in the system.

0

0.5

1

40 8 12 16

Delayed input steps

Figure 3.7: Example of the evaluation of the memory capacity of a 16-nodes
swirl reservoir computer with nonlinear microring resonators as nodes. We
plot the normalised correlation mi as a function of the delayed input steps. The
measured memory capacity is the sum of the mi, and is equal to 6.4 in this
example.

This quantity gives simultaneous indications on the properties (presented

in Sec. 3.2) that define a good system as a reservoir computer, namely the

consistency and the separability properties. Indeed, the ability to reconstruct

a past input comes from these two properties, hence the evaluation of the

memory capacity is a good metric to analyse the relevance of using a system as

a reservoir computer.
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3.3.2 Delayed exclusive OR task

In this dissertation, we benchmark the performance various on-chip architec-

tures for reservoir computer on the binary delayed exclusive OR task (XOR

task), defined in Eq. (3.5) and depicted in Fig. 3.8. This task is considered as

the most difficult two-bits binary delayed task, due to the nonlinear separabil-

ity in machine learning terms [61], and is commonly used to benchmark the

performance of similar architectures [60–62].

The current output bit y[k] for this task is the Boolean XOR operation

between the current input bit u[k] with the bit that is ndelay bits in the past

u[k−ndelay].

(3.5) y[k]= u[k]⊕u[k−ndelay].

The level of performance of the reservoir on this task is measured by the

evaluation of the bit error rate (BER), defined by Eq. (3.6) as the number of
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Figure 3.8: Illustration of the delayed XOR task for ndelay = 1. The target y[k]
is the Boolean XOR operation between the current input bit u[k] with the bit
that is ndelay bits in the past u[k− ndelay]. The top panel shows the actual
output of the 1-bit delayed Boolean XOR operation, and the lower panel shows
the resolution of the task by a reservoir computer, with an example of an error.
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times the output of the reservoir is different of the target, divided by the total

number of tested bits.

(3.6) BER = # times ŷ[k] 6= y[k]
total # of y[k]

.

3.3.3 3-bit pattern recognition task

We also benchmark the performance of the reservoir computer architectures on

a task with direct telecommunication applications, the binary pattern recogni-

tion task. The ability to recognise a bit pattern is essential for data processing,

in particular the header recognition process is necessary for information rout-

ing.

This task is defined as follows: the current output bit y[k] is equal to one

if the 3 (respectively 4) last bits of the input series are forming the pattern

we intend to recognise, and is null in any other case. In our simulations, the

3-bit pattern (respectively the 4-bit pattern) we intend to recognise is the

pattern [1.0.1] (respectively [1.0.1.1]), hence the current output bit y[k] of the

reservoir is given by Eq. (3.7) (respectively Eq. (3.8)) and we illustrate this task

in Fig. 3.9.
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Figure 3.9: Illustration of the 3-bit pattern recognition task. We intend to
recognise the pattern [1.0.1]. In this small time series, the pattern can be found
two times, highlighted in red and in blue. The output of the reservoir is then
one when the last 3 bits of the input series are forming the pattern [1.0.1], and
null in any other case.
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y[k]=
1 if u[k]= 1 & u[k−1]= 0 & u[k−2]= 1,

0 else.
(3.7)

y[k]=
1 if u[k]= 1 & u[k−1]= 1 & u[k−2]= 0 & u[k−3]= 1,

0 else.
(3.8)

The level of performance of the reservoir on this task is also measured by

the evaluation of the bit error rate (BER), defined by Eq. (3.6) as the number of

times the output of the reservoir is different of the target, divided by the total

number of tested bits.

3.3.4 The Santa Fe Task

Finally in Chap. 6 of this dissertation, we test the performance of an on-chip

time-delayed reservoir computer. We show through the study of the memory

capacity of such a system that this reservoir architecture can perform on

more challenging tasks. Hence, we will benchmark our system on the Santa

Fe chaotic time series one-step prediction task. This task is usually used to

benchmark time-delayed reservoir computers [82, 87, 91–94]. The time series

we aim to forecast is composed of a clean low-dimensional nonlinear and

stationary time series derived from a laser-generated data set, recorded from

a far-infrared laser in a chaotic state. This time series is the first part of the

Santa Fe time series prediction competition [95]. We plot in Fig. 3.10 1,000

samples of the Santa Fe A time series.

For this task, we feed the Santa Fe times series to the system, and we train

the reservoir to predict the next step of the time series. The performance of the

reservoir is assessed by measuring the normalised mean square error (NMSE)

between the output of the trained reservoir and the actual Santa Fe time series,

using the equation given in Eq. (3.9) :

(3.9) NMSE = 1
N

×
∑N

i=1(y(i)− ỹ(i))2

σy
,
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Figure 3.10: Plot of 1,000 samples of the Santa Fe chaotic time series. This
temporal sequence is part of the Santa Fe time series prediction contest [95],
and is usually referred as the Santa Fe A time series.

Delay-based systems can successfully resolve the one-step Santa Fe pre-

diction task with good levels of performance. More specifically, L. Appeltant

was able to resolve the task with a NMSE of 0.04 numerically, and 0.124 ex-

perimentally [94], K. Hicke resolved the Santa Fe prediction task numerically

and attained a NMSE of 0.02 [82], H. Zhang did resolve the task using an

on-chip time-multiplexing solution based on multiple nonlinear ring resonators

coupled to a single waveguide, and obtained numerically a NMSE of 0.027. Very

recently on another on-chip delay-based reservoir, K. Takano experimentally

resolved the Santa Fe task with a NMSE of 0.109, and J. Vatin suggested to

use the polarization dynamics of a VCSEL to improve the performance and

numerically obtained a NMSE of 10−3 on a classical fiber optics system with

400 nodes.

3.4 Conclusion

We have presented in this chapter the general framework of reservoir comput-

ing as a particular sub-type of recurrent neural network. We have explained

why this paradigm is well suited for an implementation at the hardware level,

and presented various implementations on different hardware platforms, in-
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cluding photonics. In this dissertation, we will focus on implementations using

nanophotonic components, and in particular photonic integrated circuits. The

various architecture will be presented alternatively in chapters 4, 5, and 6.

The benchmark tasks used to asses the level of performance of these various

architectures have been presented in this section.

In this dissertation, we have only focused ourselves on a few benchmark

tasks, mostly for computational time issues. There are a few other typical

benchmark tasks it could interesting to test our reservoir computing architec-

tures on, like the nonlinear autoregressive moving average (NARMA) task,

or the nonlinear channel equalisation task, with direct telecommunication

applications.
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4
SILICON-BASED RING RESONATORS AS NODES OF

AN ON-CHIP RESERVOIR COMPUTER

"I seem to see ahead, in a kind of way. I know we are

going to take a very long road, into darkness; but I know

I can’t turn back."
— J. R. R. Tolkien, The Lord of the Rings

T he aim of this PhD is to design new architectures of Si-based on-

chip reservoir computers for all-optical signal processing applications.

In this chapter, we numerically investigate the properties of a 16-

nodes reservoir computer in which every neuron-like computational unit is a

nonlinear microring resonator, as introduced in Sec. 2.4. In this architecture,

the 16 nonlinear nodes are interconnected according to the SWIRL topology

using integrated splitters, combiners, and waveguides. We suggest this design

as an extension of the work previously done by K. Vandoorne et al. [1, 2] and

A. Katumba et al. [3, 4] on SWIRL architectures. This previous work done by

our collaborators at the Ghent University investigated the performance of a

network strictly made of linear nodes, and only using the non-linearity of the

photodetectors at the readout layer of the reservoir.

In this work, we investigate the advantages and drawbacks of adding an-
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other level of non-linearity in the inner structure of the reservoir, through the

implementation of network using nonlinear ring resonators as nodes. This com-

monly used component [5–15] can exhibit rich nonlinear dynamical behaviours,

hence we expect an improvement of the overall performance of the reservoir.

We perform an in-depth numerical analysis of the performance of such a reser-

voir and investigate the impact of typical parameters, namely the injected

power, the optical detuning, and possible resonance mismatches between the

microring resonators. The performance of our reservoir on benchmark tasks

will be compared to the performance of the purely linear reservoir from [2–4]

in order to analyse the advantages and the drawbacks of such an architecture.

The performance of the reservoir architecture is assessed on typical bench-

mark tasks. We compute the memory capacity as an indication of how well the

reservoir will perform on memory-demanding tasks such as pattern recognition

or time series forecasting. We analyse the performance on the typical binary

delayed-XOR task, which is a commonly used task to benchmark this kind

of integrated architectures as it demands a strong nonlinear separability in

machine learning terms [3]. The performance on this task is measured using

the bit error rate (BER), and we demonstrate that our reservoir computer can

reach error rate levels lower than 10−3 at a data rate of 20 Gb/s, and over

a wide range of design parameters. Furthermore, we show that the power

consumption required to reach this level of performance is only 0.15 mW per

node. We also test our architecture on a task with immediate telecommunica-

tion applications, namely the header recognition task. We show that we can

successfully resolve the 3-bit and 4-bit pattern recognition task at a data rate

of 20 Gb/s.

The rest of this chapter is organised as follows. We first present in Sec. 4.1

the architecture of our 16-nodes reservoir computer. More specifically, we give a

detailed overview of the input layer to the reservoir, the inner structure of the

reservoir with a complete description of the SWIRL topology, and finally the

output layer of the reservoir. In Sec. 4.2, we introduce our numerical simulation

strategies. In particular, we give an in-depth presentation of the library PhotRC,

developed by our collaborators at the Ghent University, and modified to match

our needs. We also present the various tasks used to measure the performance
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of the reservoir computer, and their corresponding metrics. We conclude this

Sec. 4.2 with a description of our training and testing procedures. We devote

the section 4.3 to the search of an optimal operating point for our reservoir

computer. We demonstrate that this optimal operating point can be empirically

determined from the static and dynamical properties of the building block

of the reservoir, namely the nonlinear microring resonator. In Sec. 4.4, we

investigate through intensive numerical simulations the performance of the

reservoir. We first evaluate the memory capacity of our reservoir. Then we

study the performance of this architecture on the typical binary delayed-XOR

task and examine the impact of various parameters on the reachable levels

of performance. Finally, we evaluate the performance of the reservoir on a

telecom-oriented task, that is the pattern recognition task. We give in Sec. 4.5

the conclusions of this chapter.

The results presented in this chapter have been published in an article

in a peer-reviewed journal and a proceeding of a SPIE Photonics Europe

conference [16, 17].

4.1 Architecture of the reservoir computer

This section is dedicated to the description and the design of the architecture

of the reservoir computer presented in this chapter. The general structure of a

reservoir computer [18, 19] has been investigated in Sec. 3.2.1, and consists

of an input layer, the so-called reservoir that is a fixed artificial neural net-

work, and a readout layer. We reproduce in Fig. 4.1 the scheme of the general

structure of a reservoir computer.

In this section, we first describe the input layer to the reservoir that rep-

resents how the data is injected to the reservoir. Then, we present the inner

structure of the reservoir. More specifically, we introduce the SWIRL topology,

and show how this topology can be integrated on a silicon photonic chip using

silicon-on-insulator ring resonators as nonlinear nodes. Finally, we depict the

readout layer of our integrated reservoir computer.
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Figure 4.1: General structure of a reservoir computer. The data is send to the
neural network from the input layer. The fixed recurrent neural network is
called the reservoir. We read the state of the reservoir at the readout layer, and
we construct the output of the reservoir as a linear combination of the readout
states of the reservoir.

4.1.1 Input layer to the reservoir

The input layer to the reservoir is a representation of how the input signal

is fed to the so-called reservoir. In the mathematical framework of reservoir

computing, given in Sec. 3.2.2 by Eq. (3.2), this input layer is embodied by the

input matrix Win. This input matrix represents the input weights on each node.

In our simulations, we inject the same power modulation in all the active nodes

with random phase shifts, hence Win is a 16×16 diagonal matrix with random

elements sampled from a uniform distribution over the interval [−π,π].

4.1.2 Inner structure of the reservoir

We investigate in this section the inner structure of the fixed neural network

used as the reservoir of our implementation. Our design is integrated on a

silicon photonic chip, hence the structure must to be planar but must also allow

maximum signal mixing. Hence, we structure our reservoir computer according

to the SWIRL topology.

The SWIRL approach for the distribution of the nodes in a planar archi-

tecture was introduced by K. Vandoorne in [1], and we show in Fig. 4.2(a) a

scheme of a 4×4 SWIRL network. This topology is one of the few structures that
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4.1. ARCHITECTURE OF THE RESERVOIR COMPUTER
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Figure 4.2: (a) Typical scheme of a 4×4 SWIRL network. (b) Scheme of the 4×4
SWIRL network with nonlinear ring resonators as neuron-like computational
units. (c) Illustration of a fully connected node in the SWIRL topology, including
the 3 dB splitters and combiners. The input to a node is a sum of the signals
coming from two previous neighbouring nodes at ports In1 and In2 and the
input signal. Similarly, the signal at the output of a node is split between the
signal going to the readout layer (detector, and the signals going to the two
next neighbouring nodes at ports Out1 and Out2.

allows sufficient mixing of the input signals while satisfying to the planarity

constraint of the integrated implementation and minimizing the power losses

in the structure. In this specific work, we implement the SWIRL topology on a

silicon photonic chip, and we use nonlinear microring as neuron-like computa-

tional units, as represented in Fig. 4.2(b). This nonlinear integrated component

is commonly used, and has been extensively studied in Sec. 2.4 and in [6, 8].

The schematic illustration of Fig. 4.2(c) presents a complete overview of a

fully connected node in the SWIRL network. In the SWIRL topology, a 2-port
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node receives a signal that is a sum of the signals coming from two previous

neighbouring nodes and the input signal. Similarly, the signal at the output of

this 2-port node is split between the signal going to the readout layer, and the

signals going to the two next neighbouring nodes. The synapse-like connections

between neighbouring nodes are ensured by long waveguides, which introduce

a non-negligible inter-delay due to the finite-time propagation of optical signals.

In the framework of reservoir computing, given in Sec. 3.2.2 by Eq. (3.2), the

inner structure of the reservoir is described by the interconnection matrix Wres.

The coefficient of this matrix represent the connections between the nodes of

the reservoir, and takes into account splitting ratios, the losses induced by

the synapse-like connections, and random phase shifts uniformly distributed

on [−π,π] to acknowledge for random difference in the manufacture of the

interconnection waveguides.

4.1.3 Readout layer and output of the reservoir

We measure the state of the reservoir node as the output power coming out

of a node, as represented in Fig. 4.2(c). This measure is performed using a

photodetector, whose model is depicted in Sec. 2.3.2 [20]. In the mathematical

framework of reservoir computing presented in (3.3) of Sec. 3.2.2, we report

the output power at each node in the readout vector xreadout, and we construct

the output yout as a linear combination of the readout vector coordinates. The

coefficients of this linear combination are reported in the readout matrix Wout,

and are called the output weights of the reservoir. They are determined during

the training procedure using a ridge regression.

4.2 Numerical simulation methods

We examine in this section the numerical simulation methods used to measure

the performance of our 16-node reservoir computer. We obtain the reservoir

states through the simulation of the 4×4 SWIRL reservoir depicted in Fig. 4.2(c).

For the simulations, we modify the library PhotRC, developed by our collabora-

tors at the Ghent University, to allow the use of a new type of nodes. Hence, we
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first present this library as well as the changes made to match our needs, and

we present in a second paragraph the respective training and testing procedure

for the different tasks.

4.2.1 The PhotRC library

To obtain the reservoir states, we run numerical simulations of the 4×4 SWIRL
network illustrated in Fig. 4.2(b). We use a Python library named PhotRC to

perform our simulations. This library was developed by our collaborators at the

Ghent University as an extension of the Caphe library [21] for the simulation of

complex networks. More precisely, this library creates all the objects necessary

to create and simulate a SWIRL network when given the number and the

type of the nodes. In particular, the library generates the interconnection

matrix Wres, accounting for the splitting ratios of a fully connected node (see

Fig. 4.2(c)), the losses induced by the waveguides used as synapses, and random

phase shifts due to light propagation. The library also generates the input

matrix Win resulting from the definition of the input layer to the reservoir. In

our case, we inject the same power modulation in all the active nodes with

random phase shifts, but the library also allows for the generation of more

complex input matrix with different input powers at the nodes, injection only

on some of the nodes, the addition of a bias signal, etc.

In this particular work, we analyse the performance of a 4×4 network in

which the nodes are nonlinear microring resonator. It was then necessary to

create a new type of node, being the nonlinear microring resonator described

in Sec. 2.4. As a reminder, the microring is a 2-port node described by its

input/output relationship, and three state variables: the optical mode a, the

temperature variations ∆T, and the free carrier concentration N. Finally,

once created with the PhotRC library, the reservoir states of this reservoir

computer are obtained by the simulation of the system using the numerical

Euler algorithm, and the post processing (training and testing of the reservoir)

can be performed as described in Sec. 4.2.2, according to the desired task.

89



CHAPTER 4. SILICON-BASED RING RESONATORS AS NODES OF AN
ON-CHIP RESERVOIR COMPUTER

4.2.2 Numerical simulations and post processing

This section is devoted to the description of the numerical simulations, and

the post processing operations. In particular, the post processing procedures

include the training and the testing of the reservoir, and can vary according to

the desired task. We will describe the numerical simulation strategy and the

post processing operation for the three benchmark tasks we use in this chapter,

namely the evaluation of the memory capacity, the delayed-XOR task, and the

N-bit pattern recognition task. These tasks have been presented in Sec. 3.3.

In the case of the evaluation of the memory capacity, the input signal fed

into the reservoir consists of 5,000 randomly chosen samples drawn from a

uniform distribution in the interval [−1,1], scaled down and shifted to match

the optimal operating point presented in Sec. 4.3.2. We perform our simulations

with a sampling rate of 200 Gb/s, and the same input stream is injected

simultaneously on all nodes of the reservoir at 10 Gb/s, though the input

matrix Win, which is a 16×16 diagonal matrix with random elements sampled

from a uniform distribution over the interval [−π,π] accounting for random

phase shifts at the input layer. The reservoir states are obtained through the

simulation of the 4×4 SWIRL network using the PhotRC library. For the

readout layer, we use the discrete states xdetector of all 16-nodes to perform the

training and the testing of the reservoir. The training of the linear readouts is

performed using a simple linear regression on 1,400 bits using the scikit-learn

library [22], and the testing is done on the 3,600 remaining bits.

In the case of the 1-bit delayed-XOR task, the bit stream fed into the

reservoir consists of 20,000 randomly chosen bits. We use in our simulations a

sampling rate of 160 Gb/s. Multiple-input simulations are performed with the

same bit stream injected simultaneously with the same input power weights on

all 16-nodes, also through the input matrix Win. For the readout layer, we also

use the discrete states xdetector of all 16-nodes to perform the training and the

testing of the reservoir. The training of the linear readouts is performed using

regularized ridge regression on 16,000 bits, using the scikit-learn library [22].

The testing is done on the 4,000 remaining bits, for a regularization parameter

chosen using the best case from a five-fold cross-validation. We report the error
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rates on the test data, hence the minimum measurable error rate is 2.5×10−4.

And finally, in the case of the 3-bit and 4-bit pattern recognition task, the

simulation strategy and the post processing procedure are the same than what

has been presented for the delayed XOR task.

4.3 Operating point of the reservoir

J. Dambre highlighted in 2012 [23] that any dynamical system having a fading

memory [24] and linearly independent internal variables has in principle the

capacity to process information, in particular in the framework of reservoir

computing. A proof of this assertion is provided by the large number of systems

that have been investigated as implementation of reservoir computing. To

name a few, the very simple bucket of water [25], a physical soft body [26], the

brain of a living cat [27], memristor-based systems [28, 29], and obviously opto-

electronic [30–33] and photonic [1, 2, 34–41] systems. This profusion of very

different systems used for the same application demonstrates the universality

of the concept of reservoir computing.

From this observation, it was said in [42] that one the most challenging

task of the study of a reservoir computer is to find the optimal operating point

for the resolution of the desired task. The identification of the best operating

parameters can be done in a very exhaustive way, thus requiring a large

amount of time and resources to scan all the parameters of the phase space.

However, it is also possible to intuit a close range of parameters in which

the reservoir computer optimal operating point will be from the dynamical

properties of the system.

In our work, we suggest an operating point for the reservoir computer

thanks to the knowledge of the intrinsic properties of the building block of

the reservoir, namely the nonlinear ring resonator.In particular, we both take

into account the static and dynamical properties of this nonlinear integrated

component to intuit a range of space parameters (injection power and optical

detuning) for an optimal use of the network for reservoir computing applica-

tions.
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4.3.1 Edge of instabilities

The fading memory [24] is a very important property of a system for reservoir

computing applications [23]. In order to maximise the fading memory in a

reservoir, a commonly used technique is to operate the system at the edge of

instability [43]. Typically, the system should operate in a stable regime, but

close to instabilities in order for the transient dynamics to be as complex as

possible.

For some simple dynamical systems, it is possible to mathematically map

the regions of the phase space where the system is stable through stability

analysis procedures and continuation techniques. From this information, it

is very simple to suggest an range of parameters at the edge of instability.

However, our system is made of 16 nonlinear microring resonators intercon-

nected in a complex network through splitters, combiners, and long waveguides

inducing time delays. As presented in Sec. 2.4.2, a nonlinear ring resonator

is described in the coupled-mode theory framework by one static equation,

and three coupled complex ordinary differential equations. Hence, such a 4×4

network would be described by four static delayed equations and 16×3= 48

complex delayed differential equations. The theoretical stability analysis of

such a system cannot be performed, hence we use a pragmatic approach to find

the optimal operating point of our reservoir. This approach is described in the

following section.

4.3.2 Pragmatic approach to find the best reservoir
operating point

We describe in this section our approach for a pragmatic search of the injection

parameters to operate our network as a reservoir computer. As explained previ-

ously, we cannot search for the regions of stability of the network theoretically

due to the complexity of the system model. However, the dynamical and static

properties of the neuron-like computational unit are well known and can be

used to suggest an operating point.

Indeed, we can make the simple assumption that the reservoir will be in
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a steady state if a single node of the reservoir is on a fixed point. This is a

reasonable assumption because of the weak linear optical coupling due to the

losses induced by the waveguides (3dB/cm), the splitters (3dB for each splitter),

and the combiners (3dB for each combiner). This study is performed below.

4.3.2.1 Stability of a ring resonator

We study in this section the stability of a nonlinear ring resonator. We first

simulate using the Caphe software environment [21] a single, uncoupled,

nonlinear microring resonator subjected to steps of optical power between

Pin,0 = 0 mW and several maximum values Pin,1, for various values of the

optical detuning δλ as defined in Sec. 2.4.2. The simulations are performed

as follow : we integrate the CMT-model of the nonlinear microring resonator

(see Sec. 2.4.2 and Ref. [6, 8] for the equations and the parameters values) over

2.5 µs with a power step from Pin,0 = 0 mW to the value of Pin,1 at t = 100 ns.

We use an Euler integration method with a 1.0 ps integration time step, and a

10.0 ps sampling time. This nonlinear element can exhibit mostly two different

dynamical behaviours: a stable equilibrium and a self-pulsating dynamics. We

illustrate these two dynamical behaviours in Fig. 4.3 respectively with injection

parameters Pin,1 = 0.5mW and δλ= 0 pm for Fig. 4.3(a) and Pin,1 = 1.0mW and

δλ= 0 pm for Fig. 4.3(b).
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Figure 4.3: Illustration of the dynamical behaviours of a single, uncoupled,
nonlinear microring resonator. (a) Stable equilibrium and (b) self pulsating
dynamics. The injection parameters are respectively (a) Pin,1 = 0.5mW and
δλ= 0 pm, and (b) Pin,1 = 1.0mW and δλ= 0 pm.
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Then, from the time series obtained through these simulations, we extract

the consecutive extrema for each value of the maximum input power, after

deleting the transients. We plot the extrema for each value of the maximum

input power Pin,1 at different values of the optical detuning δλ, and obtain

the bifurcation diagrams shown in Figs. 4.4(a)-(c), for respectively (a) δλ=−50

pm, (b) δλ= 0 pm, and (c) δλ= 50 pm. For an optical detuning δλ=−50 pm,

the output power is always a fixed point for Pin,1 < 2.0 mW. For an optical

detuning δλ= 0 pm, the system is in a stable state for Pin,1 < 0.52 mW, and

is self-pulsating for Pin,1 > 0.54 mW. Finally, we see in Fig. 4.4(c) that, for an

optical detuning δλ = 50 pm, the output power is stationary for Pin,1 < 0.38

mW, and self-pulsating for Pin,1 > 0.40 mW.
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Figure 4.4: Bifurcation diagrams of a single, uncoupled, nonlinear microring
resonator for respectively (a) δλ= 0 pm, (b) δλ=−50 pm, and (c) δλ= 50 pm.
The bifurcation parameter is the high value of the power step Pin,1. Note that
the we have highlighted two particular injection parameters in (b), correspond-
ing respectively to the times series obtained in Fig. 4.3(a) (blue star), and
Fig. 4.3(b) (red dot).

From these bifurcation diagrams, we can identify an operating point for

the reservoir in terms of power amplitude modulation for each value of the

optical detuning. For δλ = 0 pm, we choose Pin,1 = 0.5 mW (close to the self-

pulsation bifurcation point). For δλ= 50 pm, we choose Pin,1 = 0.3 mW. And

finally, for δλ = −50 pm, a single nonlinear ring resonator does not exhibit

unstable dynamics, hence this value of optical detuning does not allow the ring

resonator to be close to instabilities.
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Finally, in order to have a complete overview of the stability of a single,

uncoupled, nonlinear ring resonator, we present in Fig. 4.5 a theoretically

obtained stability map of a ring resonator. This map was originally presented

in a normalized parameter plane in [6], and was recomputed and reformatted

with continuation techniques using Auto [44] with respect to our parameters

of interest (see Sec. 2.4.3.1). This map shows the ring’s dynamical behavior in

the optical detuning/injected power plane, and for any given set of injection

parameters.
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Figure 4.5: Theoretically obtained stability map of a ring resonator in the
(δλ,Pin) plane, adapted from [6] with continuation techniques. Each region is
delimited by bifurcation lines: respectively two saddle-node and a supercritical
Hopf bifurcation for the bistable (BI) and self-pulsing (SP) region.

We find three different regions associated respectively to stable fixed points,

self-pulsation, and bistability. We call bistable region a region where two differ-

ent states can be reached depending of the initial conditions. Each region is

delimited by bifurcation lines: respectively two saddle-node and a supercritical

Hopf bifurcation for the bistable and self-pulsing region. With Fig. 4.5, it is

possible to extract the information of Figs. 4.4 for any optical detuning. This

map gives us a good indication to set the optimal operating parameters for the

reservoir.
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4.3.2.2 Filtering properties of a ring resonator

We have analysed in the previous section the dynamical properties of a ring

resonator, in order to find the best injection parameters to use our system as

a reservoir computer. However, we also need to take into account the static

properties of a ring resonator. Indeed, this integrated component is mostly

used as an stop-band filter, due to its typical transmission curve. Hence, if

we inject the signal with a frequency close to the resonance frequency of

the ring resonators, we could filter the signal, thus reducing the interactions

between the nodes. We give in Fig. 4.6 the typical transmission curve of a

single, uncoupled, nonlinear ring resonator obtained through the simulation of

the building block of our reservoir.
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Figure 4.6: Numerically obtained transmission curve of a nonlinear microring
resonator with a resonance at λr = 1552.770. We inject a constant input power
Pin = 1.0 mW and record the output value after deleting the transients. This
curve shows the stop-band filtering properties of this integrated element.

4.3.2.3 Operating point of the reservoir

We choose in this section the injection parameters to operate our 4×4 SWIRL
network as a reservoir computer. Our pragmatic approach for the choice of the

operating parameters was to study the static and dynamical properties of a ring

resonator, and to choose the injection parameters so that the ring resonator is

stable, but at the edge of stability. Then, due to the weak linear optical coupling

due to the losses induced by the waveguides and splitters/combiners, we make
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the reasonable hypothesis that the whole network will remain in steady state

if the dynamics of a single node is steady. We choose the injection parameters

to be δλ= 50 pm and Pin,1 = 0.3 mW since it allow us to be relatively far from

the resonance frequency of the ring (thus the signal is not filtered by the rings),

close to the instability bifurcation, and at a relatively limited optical injection

power.

We verify our hypothesis that the SWIRL network is still stable by injecting

a power step from Pin,0 = 0.0 mW to Pin,1 = 0.3 mW on all nodes, with an

optical detuning with regards to the resonance frequency of the ring resonators

δλ = 50 pm. We plot the output of one node recorded by a photodetector in

Fig. 4.7. We see in this figure that indeed, the network is stable for these

injection parameters.
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Figure 4.7: Output of one node (highlighted in the network) recorded by a
photodetector when we inject a power step from Pin,0 = 0.0 mW to Pin,1 = 0.3
mW on all nodes, with an optical detuning with regards to the resonance
frequency of the ring resonators δλ= 50 pm.

4.4 Performance of the reservoir

We analyse now the performance of our reservoir computer. We first evaluate

the memory capacity of the system, then test the performance on the delayed

XOR task and the 3-bit and 4-bit pattern recognition task. Finally, we study the

parametric influence of injection parameters (bit rate, injection power, optical

detuning) in order to study the correlation between the performance of the

reservoir with the intrinsic properties of its building block. We also study the
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robustness of the performance with regards to fabrication uncertainties by

introducing a resonance frequency mismatch between the nodes.

4.4.1 Memory capacity of the reservoir

We evaluate in this section the memory capacity of the reservoir computer.

We measure the memory capacity using the simulation methods described in

Sec. 4.2 for the 4×4 SWIRL reservoir with nonlinear microring resonators

as nodes. In this work, we investigate the optimal design of the reservoir in

terms of interconnection lengths, for a fixed data rate. Hence, we investigate

the evolution of the memory capacity when changing the node interdelay at 10

Gb/s. The node interdelay tdelay represents the time the light needs to travel

in the waveguide from one node to its closest neighbour, and can be calculated

from intrinsic properties of the system by Eq. (4.1):

(4.1) tdelay =
L×nSi

c
,

where L is the length of the interconnection waveguide, nSi = 3.476 is the

refractive index of the bulk silicon, and c is the speed of light.
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Figure 4.8: memory capacity as a function of the node interdelay for the 4×4
SWIRL reservoir made of nonlinear ring resonators at 10 Gb/s. The best
measured memory capacity is 7.3.

We present the results of our numerical simulations on the evaluation

of the memory capacity in Fig. 4.8. The best measured memory capacity is
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7.3, so we can easily conclude that at a given time, the current signal in the

reservoir incorporate information from the six or seven past inputs in the

system. With this value of memory capacity, we can expect to be able to resolve

pattern recognition up to 6-bit pattern recognition at maximum, however this

value is not adequate for more complex and memory demanding tasks as

NARMA10 [45] or chaotic time series forecasting like the Santa Fe task [46].

4.4.2 Delayed-XOR task

We investigate in this section the performance of our reservoir computer on

the 1-bit delayed XOR task, and we compare the results to the performance

of the network from [3] with linear nodes. We study the influence of various

injection parameters, namely the processing rate, the injection power, and

the optical detuning. Finally, from the results of our simulations, we study

the correlation between the performance and the intrinsic properties of the

microring resonator used as node.

4.4.2.1 Influence of the bit rate

The reservoir performance is plotted in Fig. 4.9. We focus on the influence of

the data rate, and give the performance as a function of the node interdelay

at 10 Gb/s (black dots), 15 Gb/s (red squares), 20 Gb/s (blue triangles), and 30

Gb/s (green diamonds), respectively. In order to compare with previous work,

we give in Fig. 4.9(a) the performance of the fully passive reservoir of [2, 3],

and in Fig. 4.9(b) the performance of the reservoir using nonlinear microring

resonators as nodes (called MR-reservoir for clarity purposes). In the case of

the passive reservoir (Fig. 4.9(a)), the bit stream is fed on all nodes through

a power modulation from Pin,0 = 0.1 mW and Pin,1 = 0.2 mW. In the case of

the MR-reservoir (Fig. 4.9(b)), we fix the optical detuning at δλ= 50.0 pm, and

we modulate the injected power between Pin,0 = 0.0 mW and Pin,1 = 0.3 mW,

according to the optimal injection parameter conditions determined in Sec. 4.3.

In this reservoir, all the ring resonators have the same resonance frequency.

The results presented in this figure suggest that the reservoir with non-

linear microring resonators as nodes can perform the typical 1-bit delayed
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Figure 4.9: Error rate - for the XOR task - as a function of the node interdelay
for various bit rates : 10 Gb/s (black dots), 15 Gb/s (red squares), 20 Gb/s (blue
triangles), and 30 Gb/s (green diamonds). Comparison between (a) the passive
reservoir of [2, 3], and (b) the MR-reservoir. (a) : we modulate the injected
power between Pin,0 = 0.1 mW and Pin,1 = 0.2 mW. (b) : the optical detuning
is δλ= 50.0 pm, and we modulate the injected power between Pin,0 = 0.0 mW
and Pin,1 = 0.3 mW. The minimum acceptable error rate is 2.5×10−4.

XOR task with error rates about 2.5×10−4 (lowest achievable value with the

number of bit used in testing) for various values of the interdelay at high bit

rates. We also see that the range of interdelay values, where the reservoir

performs at its best, is slightly greater for lower bit rates. This is similar to

the passive reservoir (see Fig. 4.9(a)), but our architecture can achieve lower

error rates. We notice also a reduced range of interdelay values for the best

performance compared to a passive reservoir. This is most likely due to the

internal time scale of the optical mode τa ≈ 20 ps in the microring resonator

model. This time scale is close to the optimal value of interdelay in term of

reservoir performance.

We present also in Fig. 4.10(a) normalized time series at four nodes at the
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Figure 4.10: (a) Time series at the readout layer of four different nodes of the
reservoir when injecting the bit stream on all nodes with an optical detuning
δλ= 50.0 pm, a power modulation between Pin,0 = 0.0 mW and Pin,1 = 0.3 mW
at 20 Gb/s, and a node interdelay tdelay = 18.75 ps. (b) Desired output (green
curve), trained output of the reservoir (blue curve), and decision threshold (red
line) for the same injection parameters as in (a). These parameters correspond
to an optimal value of the error rate of Fig. 4.9(b).

readout layer of the reservoir, along with the input power in each node. These

time series are obtained for the simulation of the MR-reservoir for an optical

detuning δλ = 50.0 pm, a power modulation comprised between Pin,0 = 0.0

mW and Pin,1 = 0.3 mW, and an interdelay tdelay = 18.75 ps. This injection

point corresponds to an optimal value of the error rate in Fig. 4.9(b). Finally, in

Fig. 4.10(b), we show the output of the trained reservoir for the same injection

parameters as in Fig. 4.10(a). The green curve is the desired output, the blue

curve is the output of the trained reservoir, and the red line is the decision

threshold. For both Fig. 4.10(a) and Fig. 4.10(b), the time is normalized with

respect to the duration of one bit.
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Figure 4.11: Error rate - for the XOR task - as a function of the reservoir
interdelay for various values of the optical detuning at 20 Gb/s. The power
modulation is chosen so that a microring alone is in a stationary state, but
close to the instabilities, with Pin,0 = 0.0 mW and respectively δλ=−50 pm and
Pin,1 = 0.5 mW (red squares), δλ= 0.0 pm and Pin,1 = 0.5 mW (blue triangles),
δλ= 50 pm and Pin,1 = 0.3 mW (black dots), and δλ= 100 pm and Pin,1 = 0.5
mW (green diamonds). The minimum acceptable error rate is 2.5×10−4.

4.4.2.2 Influence of the optical detuning

In this section, we focus on the influence of a new degree of freedom introduced

by the use of nonlinear ring resonators, namely the optical detuning between

the injected light and the resonance frequency of the ring resonators. We

investigate the changes in the levels of performance that can be attained with

such a reservoir when introducing this nonlinear resonant element as node,

and find the correlation between the intrinsic properties of the building block

of the reservoir and the performance. In Fig. 4.11 is plotted the performance of

the reservoir as a function of the node interdelay for four different values of

the optical detuning : δλ=−50 pm (red squares), δλ= 0.0 pm (blue triangles),

δλ= 50 pm (black dots), and δλ= 100 pm (green diamonds). The Return-to-Zero

power modulation is chosen so that a microring alone is in a stationary state,

but close to a bifurcation point. Referring to the stability map of a ring resonator

given in Fig. 4.5, the high value of the power modulation is Pin,1 = 0.3 mW for

δλ= 50 pm, and Pin,1 = 0.5 mW for δλ= 0 pm, δλ= 100 pm, and δλ=−50 pm.

Figure 4.11 shows that the reservoir performs better when the value of the

optical frequency of the injected light is shifted with respect to the resonance
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Figure 4.12: Error rate - for the XOR task - as a function of the optical detuning
for a power modulation between Pin,0 = 0.0 mW and Pin,1 = 0.5 mW, a node
interdelay of 18.75 ps, and a bit rate 20 Gb/s. Error bars are given for seven
series of simulations. The minimum acceptable error rate is 2.5×10−4.

frequency of the nonlinear node (typically in our study δλ ∈ {−50,50,100} pm),

than when the light is injected at the resonance frequency of the microring

resonator (i.e. δλ= 0 pm). Note that the performance is similar for those three

different values of the optical detuning δλ ∈ {−50,50,100} pm. Intuitively, this

can be understood by looking at the filtering properties of a microring resonator

presented in Sec. 4.3.2.2: The nonlinear rings absorb more optical power if

the frequency of the injected light is close to their resonance. As a result, the

wave-mixing between the nodes in the network is reduced, thus impeding the

reservoir computer performance.

In order to corroborate the results of Fig. 4.11, we plot in Fig. 4.12 the per-

formance of the reservoir as a function of the optical detuning. More specifically,

we have set the interdelay tdelay = 18.75 ps, which corresponds to the best

choice in terms of interconnection length, as it ensures relatively small connec-

tion waveguides. And, we inject a power modulation between Pin,0 = 0.0 mW

and Pin,1 = 0.5 mW. We realize seven experiments for each optical detuning,

and averaged the results that are given with the error bars.

Figure 4.12 unveils a better level of performance when the frequency of the

injected light is far from the frequency resonance of the nonlinear microring

resonators. We see also that the performance are better for negative values of

the frequency detuning. This can be understood by looking at the stability map
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Figure 4.13: Error rate - for the XOR task - as a function of the reservoir
interdelay for various values of the optical detuning at 20 Gb/s. The power
modulation is chosen so that a microring alone is in a stationary state, but
close to the instabilities, with Pin,0 = 0.0 mW and respectively δλ=−50 pm and
Pin,1 = 0.5 mW (red squares), δλ= 0.0 pm and Pin,1 = 0.5 mW (blue triangles),
δλ= 50 pm and Pin,1 = 0.3 mW (black dots), and δλ= 100 pm and Pin,1 = 0.5
mW (green diamonds). in addition, we have introduced a frequency mismatch
from one ring to another, through a 10 pm standard deviation centred on
respectively δλ ∈ {−50,0,50,100} pm. The minimum acceptable error rate is
2.5×10−4.

of Fig. 4.5. For positive values of the optical detuning from 0 pm and 75 pm, a

nonlinear microring resonator is self-pulsing for an injected power of 0.5 mW,

thus meaning the reservoir is not on a steady state and consequently reducing

its performance.

4.4.2.3 Inhomogeneities of the nonlinear nodes

In the precedent section, we have considered that all the nodes are strictly

the same, meaning that all 16 nonlinear microring resonators have the same

resonance frequency. For more realistic simulations, we give in Fig. 4.13 -

and for the same input conditions as in Fig 4.11 - the performance of our

reservoir when the resonance frequencies of the ring resonators are different.

The resonance frequencies of the 16 microring resonators follow a Gaussian

distribution centred on respectively δλ ∈ {−50,0,50,100} pm, with a 10 pm

standard deviation, that is a rather pessimistic value with regard to the current

technology.
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Figure 4.14: Error rate - for the XOR task - as a function of the high value of
the power modulation for an optical detuning δλ= 50.0 pm, at 20 Gb/s, and
with a node interdelay tdelay = 18.75 ps. The low value of the Return-to-Zero
power modulation is set to Pin,0 = 0.0 mW. We give error bars for an average on
seven series of simulations. The minimum acceptable error rate is 2.5×10−4.

Figure 4.13 shows a good robustness of the reservoir with regards to het-

erogeneities in the frequency resonance between the nodes, providing that

the detuning of the injected light is larger than the standard deviation of the

heterogeneities in the oscillator resonance frequencies. This information is of

great importance for manufacturing purposes.

4.4.2.4 Influence of the injection power

We investigate here the influence of the injection power on the level of perfor-

mance that can be attained by our reservoir computer, as a way to focus on

the energy consumption. In order to quantify the influence of this injection

parameter, we evaluate the bit error rate for Return-to-Zero modulations of the

injected power at each node for an optical detuning δλ= 50.0 pm, at 20 Gb/s,

and with a node interdelay tdelay = 18.75 ps. We plot in Fig. 4.14 the error rate

of the reservoir as a function of the high value of the power modulation Pin,1.

We give the average and the error bars for seven series of simulations. Note

that we have also introduced mismatches in the resonance frequency between

the rings, similarly to previous studies.

Figure 4.14 shows that values of the injected power lower than 0.1 mW

result in a degradation of the performance, due to a reduction of total power
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on each node and wave-mixing between the nodes through losses in the other

integrated elements (waveguides, splitters, combiners). We also see that the per-

formance of the reservoir are low for high values of the modulation (Pin,1 > 1

mW). This is due the fact that each node is self-pulsing for these injection

parameters, as previously shown in the stability map of a single, uncoupled,

nonlinear ring resonator in Fig. 4.5. Finally, the optimal operating condition

at this particular optical detuning is when the high value of the power modu-

lation leads a single microring resonator to be in a steady state, but close to

instabilities. However, we also find a very good performance obtained for the

high value of the power modulation Pin,1 = 0.5 mW, where a single microring

resonator alone is self-pulsing.

In the simulations performed in the previous sections, we have set the

optical detuning at δλ= 50.0 pm, with a power modulation comprised between

Pin,0 = 0.0 mW and Pin,1 = 0.3 mW, which is in the interval of best performance

at this particular detuning. From this information, we can evaluate the total

power budget of our architecture for an optimal use, and find it to be very

low. Indeed the chip is only powered by the optical power using the same bit

stream input on each node, thus the averaged power needed for the reservoir to

perform is Nnodes ×0.5× (Pin1 −Pin0)= 2.4 mW (with Nnodes = 16, the number

of nodes in the reservoir). Moreover, unlike the purely passive reservoir of [2, 3],

where a bias power was necessary to perform optimally, the MR-reservoir has

the best performance when there is no power bias, thus reducing the mean

power consumption.

4.4.2.5 Mapping of the performance in the optical detuning,
injection power plane

We present in Fig. 4.15 a mapping of the performance of the reservoir for

various optical detuning and high values of the power modulation. For all the

simulations, the design of the reservoir if fixed with an interdelay of 18.75 ps.

In order to study the robustness of the reservoir, and as in Sec. 4.4.2.3, we have

introduced heterogeneities in the resonance frequency of the ring resonators.

Typically, the resonance frequencies of the 16 microring resonators follow a
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Gaussian distribution centred at λr, with a 10 pm standard deviation, which

is a rather pessimistic value with respect to the current technology. For all

the simulations, the same input stream of 15,000 bits is fed at 20 Gb/s on all

16-nodes of the reservoir. We realise the training on 12,000 bits and the testing

on the 3,000 remaining bits.

We see in this map that the reservoir can perform at acceptable levels of

performance for various injection parameters, and for low power consumption.

Indeed the average power consumption of the reservoir is given by Eq. (4.2) :

(4.2) < Ptotal >= Nnodes < Pin >= Pin,0 +Pin,1

2
Nnodes,

where Nnodes is the number of nodes, and Pin,1 the high value of the power mod-

ulation. Hence, we can find a set of injection parameters where the reservoir

computer performs at best with very low power consumption. For instance for

a power modulation between Pin,0 = 0.0 mW and Pin,1 = 0.1 mW, at δλ= 50 pm,

the BER is lower than 10−3 and the total averaged power is 0.8 mW.
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Figure 4.15: Mapping - in the optical detuning/power modulation plane - of the
performance of the reservoir computer on the delayed XOR task. The interdelay
is 18.75 ps. The minimum error rate is 2.5×10−4.
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4.4.3 Header recognition

Finally, we analyse the performance of our reservoir computer on a typical task

with telecommunication applications, namely the pattern recognition task. We

have extensively studied in the precedent section the best set of parameters

for the injection of a binary signal on the 16-node reservoir. More specifically,

for a node interdelay is tdelay = 18.75 ps, the best injection parameters at 20

Gb/s are an optical detuning δλ= 50.0 pm, and a power modulation comprised

between Pin,0 = 0.0 mW and Pin,1 = 0.3 mW. These parameters give the best

measurable performance on the XOR task, while ensuring the lowest power
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Figure 4.16: Desired output (green curve), trained output of the reservoir (blue
curve), and decision threshold (red line) for respectively (a) the 3-bit pattern
recognition task and (b) the 4-bit pattern recognition task at 20 Gb/s. The
pattern we intend to recognise is respectively (a) [1.0.1], and (b) [1.0.1.1]. The
binary stream is injected on all nodes according to the following parameters:
δλ= 50.0 pm, and Pin,0 = 0.0 mW and Pin,1 = 0.3 mW, with a node interdelay
tdelay = 18.75 ps. These parameters correspond to the best measurable per-
formance 2.5×10−4. Note that in (b), we have lowered the threshold value to
attain this level of performance.
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budget.

Hence, it is reasonable to inject our binary signal for the pattern recogni-

tion task according to the same parameters. We attain with these injection

parameters the same bit error rate of 2.5×10−4 on the 3-bit pattern recognition

task, corresponding to the lowest measurable error with this number of testing

bits. It is also possible to attain this level of performance for the 4-bit pattern

recognition task with these injection parameters, but it is necessary to lower

the value of the threshold discriminating a 1 from a 0. We plot in Fig. 4.16 the

output of the trained reservoir for the best injection parameters, respectively

for (a) the 3-bit pattern ([1.0.1]) recognition task, and (b) the 4-bit pattern

([1.0.1.1]) recognition task. The green curve is the desired output, the blue

curve is the output of the trained reservoir, and the red line is the decision

threshold. For both Fig. 4.16(a) and Fig. 4.16(b), the time is normalized with

respect to the duration of one bit.

4.5 Conclusion

In this chapter, we have suggested a novel integrated reservoir architecture

using microring resonators as nonlinear nodes, that can perform at state-of-the-

art level of performance [1, 3, 4] on a nonlinear Boolean task and on a memory

demanding task for various operating parameter conditions. We also have

related the performance of the reservoir computer to the nonlinear properties

of the nodes stability with respect to injected power and frequency detuning

between the injected light and the resonance of the rings. More specifically,

we have studied the influence of the data rate, and shown that the intrinsic

presence of three distinct time scales in the model of the nonlinear nodes

leads to the need to carefully design the reservoir in terms of the length of the

interconnections between the nodes. We have also investigated the influence of

two critical operational parameters in the network dynamics : (i) the injected

power and (ii) the optical detuning. We have found that a large variety of

operating conditions can lead to optimal performance of the reservoir on the

typical delayed XOR task, when some important conditions are fulfilled. First,
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each node should be in a steady state, close to instabilities. This condition,

along with a stability map of a single node, allows us to choose the operating

condition of the complete reservoir parameters for optimal performance. We

have also found a good robustness when we introduce heterogeneities in the

properties of the nonlinear nodes, for example in the resonance frequencies of

the different ring resonators.

We have demonstrated that this integrated reservoir can perform very

well and with very low power consumption on a typical Boolean task, namely

the 1-bit delayed XOR task, and on a memory demanding task with direct

telecommunication applications, i.e. the pattern recognition task. Considering

the Return-to-Zero power modulation between Pin,0 = 0.0 mW and Pin,1 = 0.3

mW with the same bit stream input on each node, the power budget is very

good, and could be further improved in future work by reducing the number of

injected nodes, for instance by injecting the data only on the four central nodes,

as suggested by A. Katumba et al. in [47]. Moreover, from an experimental

point of view, it is simpler to inject the data on fewer nodes, as it reduces the

routing density on the chip.

Contrary to the passive reservoir of [2, 3] in which the non linearity is

in the readout (i.e. the detector), we have integrated nonlinear elements (the

microring resonators) in the recurrence of the network. This work shows

that the performance on these particular tasks in terms of error rate and

power consumption are very similar with the previous design. This is mainly

due to the losses limiting the mixing in both architectures with or without

embedded nonlinear elements. A different internal architecture with better

loss management would probably enhance our performance in presence of

microring resonators. The current results motivate further investigations on

the performance of this kind of structure, and in particular we investigate a

structure with heterogeneous nodes in Chap. 5, in which some of the nodes are

the nonlinear microring resonator from this architecture, some nodes are the

linear nodes from [2], and finally, some nodes are integrated semiconductor

optical amplifier, as in the work of K. Vandoorne in [1].
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5
HETEROGENEOUS SWIRL RESERVOIR

COMPUTER ON A SILICON PHOTONIC CHIP

"Evolution is an integration of matter and concomitant

dissipation of motion; during which the matter passes

from an indefinite, incoherent homogeneity to a definite,

coherent heterogeneity."
— H. Spencer, First Principles

W e have presented in Chapter 4 a 16-node network made of nonlinear

microring resonators, and studied the performance of such a system

on typical tasks, namely the delayed-XOR task and the pattern

recognition task. We have compared our numerical results to a similar SWIRL
architecture, introduced by K. Vandoorne in [1], and studied extensively with

linear components as nodes by our collaborators at the Ghent University

[2–4]. The results from Chapter 4 suggest that the losses induced by the

interconnecting waveguides and the splitters/combiners are playing a very

important role in limiting the wave-mixing between the nodes, and therefore

the performance that can be attained with such a system.

A classical way to amplify an optical signal on a silicon photonic chip is to

integrate a semiconductor optical amplifier (SOA) [5]. This integrated compo-
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nent allows for an amplification of the signal, but is also a nonlinear element

that can be used as a nonlinear node in a reservoir computing architecture, as

suggested by K. Vandoorne [1]. In this chapter, we suggest a new architecture

for on-chip high-speed reservoir computing, relying on the implementation of a

4×4 SWIRL network with heterogeneous nodes. More specifically, some of the

nodes of our architectures are nonlinear ring resonators as in the architecture

presented in Chapter 4 and in [6–8], some nodes are the purely passive com-

ponents as in the architecture presented in [2, 3], and finally a few carefully

chosen nodes are semiconductor optical amplifier, as in the work presented

in [1].

We numerically analyse in this chapter the performance of this architecture

on the two typical tasks already presented in the previous chapter, namely

the delayed-XOR task. and the pattern recognition task, at telecommunication

application processing rate, i.e. 20 Gb/s and 30 Gb/s. Through the extensive

numerical simulation campaign, we show that our hybrid on-chip reservoir

computer can operate at state-of-the-art levels of performance on those tasks

up to 30 Gb/s when we inject the input data on all nodes (bit error rate below

10−3). We also demonstrate that the reservoir performs at state-of-the-art

levels of performance on the 3-bit pattern recognition task when the injection

is done only on the four central nodes, thus reducing the total optical power

consumption for this telecommunication oriented task to 0.6 mW. This injection

strategy on this kind of SWIRL network was suggested in the work of A.

Katumba in [3], and we confirm using our novel architecture that this way of

injecting the data is indeed a good strategy.

This chapter is organized as follows. We give in Sec. 5.1 an in-dept descrip-

tion of the structure of the reservoir computer, and in particular we present

the input layer, the inner structure, and the readout layer of the reservoir.

Section 5.2 is dedicated to the presentation of our simulation methods and

the search for the optimal operating parameters. We investigate the reservoir

performance in Sec. 5.3 on both the delayed-XOR task and the 3-bit pattern

recognition task at 20 Gb/s and 30 Gb/s, and we focus alternatively on two in-

jection strategies, namely an injection on all nodes, and an injection on the four

central nodes. Finally, a small conclusion to this chapter is given in Sec. 5.4.
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The results presented in this chapter have been submitted for publication

in a peer-review journal, and the article is still in the review procedure.

5.1 Architecture of the reservoir computer

We present in this section the detailed architecture of the reservoir studied

in this chapter. We give once again in Fig. 5.1 the general structure of a

typical reservoir computer [9, 10], as given in Sec. 3.2.1. A reservoir computer

is made of an input layer to the reservoir, a fixed recurrent neural network

named the reservoir, and a readout layer. In this section, we give a detailed

description of the three layers of our heterogeneous reservoir computer, with a

particular focus on the inner structure of the recurrent neural network with

heterogeneous nodes.

Output
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Figure 5.1: General structure of a reservoir computer. The data is send to the
neural network from the input layer. The fixed recurrent neural network is
called the reservoir. We read the state of the reservoir at the readout layer, and
we construct the output of the reservoir as a linear combination of the readout
states of the reservoir.

5.1.1 Input layer to the reservoir

In the mathematical framework of reservoir computing, extensively studied in

Sec. 3.2.2, the input layer is embodied in the input matrix Win, whose coeffi-

cients are called input weights to the reservoir. In this chapter, we investigate
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the reservoir performance for two injection strategies, and we describe below

the corresponding input matrices.

5.1.1.1 Input to all nodes

The first input strategy is to inject the same power modulation in all the

active nodes with random phase shifts, exactly as in chapter 4. Hence, since

our reservoir is a 4×4 SWIRL network, Win is a 16×16 diagonal matrix with

random elements sampled from a uniform distribution over the interval [−π,π].

5.1.1.2 Input to the four central nodes

The second strategy to inject the data on our 4×4 SWIRL reservoir computer

was suggested in [3], and consist on injecting the same power modulation on

only the four central nodes of the network, with random phase shifts. Hence, the

input matrix Win is a 16×16 diagonal matrix where only the four coefficients

corresponding to the central nodes are non-zero, and are random elements

sampled from a uniform distribution over the interval [−π,π].

5.1.2 SWIRL reservoir with heterogeneous nodes

Our implementation relies on the SWIRL topology (see Fig. 5.2(a)), already

presented in Sec. 4.1.2, however in this structure, we suggest the use of het-

erogeneous neuron-like computational units. This idea of using neurons with

non-identical activation functions in an artificial neural networks has been

investigated in other fields of artificial intelligence as a way to improve our

understanding of natural nervous systems [11, 12].

We give an in-depth description of the inner structure of our SWIRL network

in Fig. 5.2(b). In our 4×4 network, the four central nodes (in red) are nonlinear

microring resonators, as in the work presented in chapter 4 [6], the outer nodes

are either linear nodes (small waveguides, in white) as in the work by our

collaborators at the Ghent University [2, 3], or semiconductor optical amplifier

(in blue) as in [1].
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(a) (b)

Figure 5.2: (a) Typical scheme of a 4×4 SWIRL network. (b) Scheme of the
4×4 SWIRL network with heterogeneous nodes as neuron-like computational
units. The four central nodes (in red) are nonlinear microring resonators, as
in the work presented in chapter 4, the outer nodes are either linear nodes
(small waveguides, in white) as in the work by our collaborators at the Ghent
University [2, 3], or semiconductor optical amplifier (in blue) as in [1].

We have carefully chosen the location of the SOA in such a way that they

are immediately after a nonlinear ring resonator in the SWIRL topology. This

choice is motivated by the input strategy presented in Sec. 5.1.1.2, namely to

inject the data stream on the four central nodes. We expect that the signal

coming from the nonlinear microring resonators to be amplified before being

sent to the following linear nodes, thereby maximizing the signal-mixing of the

whole structure.

5.1.3 Readout layer of the reservoir

This section is devoted to the presentation of the readout layer and the actual

output of the reservoir computer. Similarly to the case of the 16-node SWIRL
reservoir presented in Chap. 4, we measure the state of all reservoir nodes as

the output power coming out each node. This measure is performed using a

photodetector [13], whose model is depicted in Sec. 2.3.2. In the mathematical

framework of reservoir computing presented in (3.3) of Sec. 3.2.2, we report

the output power at each node in the readout vector xreadout, and we construct

the output yout as a linear combination of the readout vector coordinates. The

coefficients of this linear combination are reported in the readout matrix Wout,
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and are called the output weights of the reservoir. They are determined during

the training procedure by a ridge regression.

5.2 Numerical simulation strategy

This section is devoted to the description of the numerical simulation method-

ology. In particular, we explain in a first part how we modified the library

PhotRC to simulate our specific network. In a second part, we present the

actual numerical simulation strategy and the post processing methods. Finally,

a last part is dedicated to the search of the operating parameters in order for

our reservoir to operate at best levels of performance.

5.2.1 Modification of the PhotRC library

We have already introduced the PhotRC library in Sec. 4.2.1. This python

library was developed by our collaborators at the Ghent University as an exten-

sion of the Caphe photonic circuit simulator [14] in order to simulate complex

networks of interconnected elements in the SWIRL topology. In particular, the

library creates all the necessary objects (Win, Wres) to design and simulate a

SWIRL network when given the number and the type of the nodes.

This library was originally developed to simulate homogeneous on-chip

networks, in which all the nodes are the same elements. In this chapter, we

investigate the properties of a network made of non-identical nodes. Hence,

we modify the library in order to achieve the creation of this particular design

of reservoir computer. We created a framework for the heterogeneous distri-

bution of the nodes in a 4×4 network, according to our design presented in

Fig. 5.2. More specifically, the four central nodes are 2-port nonlinear microring

resonators, as presented in [6, 15, 16]. Four of the outer nodes are 2-port semi-

conductor optical amplifiers [1, 5], and their location is set in such a way that

they are immediately after a nonlinear ring resonator in the SWIRL topology.

Finally, the other outer nodes are 2-port small waveguides introducing no time

delay, as in [2–4].
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5.2.2 Data stream and post processing

The reservoir states are obtained through the simulation, using the PhotRC and

the Caphe photonic circuit simulator [14] libraries, of the 4×4 SWIRL network,

where nodes are non-identical, as presented in Fig. 5.2(b). For this reservoir

architecture, we measure the level of performance on the delayed-XOR task and

the 3-bit pattern recognition task,which have both been presented in Sec. 3.3.

The input data stream is constructed as follows. We feed the system with

a signal stream consisting of 17,000 randomly chosen bits. We use in our

simulations a sampling rate of 160 Gb/s, and a fourth order Runge Kutta

algorithm. The training of the reservoir (i.e the identification of the readout

matrix Wout) is performed using the regularized ridge regression on 15,000

bits, and the testing is done on the 2,000 remaining bits. We average the

performance on either 20 or 50 sets of simulations, and the number of sets of

simulations will be specified for each given result.

For the XOR task, the regularization parameter is chosen using the best

case from a five-fold cross-validation, and the threshold value separating a "0"

and a "1" is at half the amplitude. For the 3-bit pattern recognition task, we
B

E
R

 [
.]

100

10-2

10-4-15

-10

-5

0

lo
g

( 
 )

 [
.]

0.0 0.3
Power threshold [mW]

0.1 0.2

Figure 5.3: Typical map of the error rate in the regularization parameter,
threshold value (α, th) plane. The map is averaged on 50 simulations, and
maps the error rate for the 3-bit pattern recognition task at 20 Gb/s, with an
input on all nodes. The measured error rate is the minimum value of this map,
which is 9×10−5.
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determine for each value of interdelay the regularization parameter (α) and

the threshold value (th) separating a "0" and a "1" using the map presented in

Fig. 5.3. This map is obtained through the simulations of the reservoir states

for 20 (resp. 50) sets of input signals. We train the reservoir for each value of α,

and test the performance of the reservoir for every value of the power threshold

th. We then map the error rate for each simulation in this (α, th) plane, and we

average on the 20 (resp. 50) sets of simulation the error rate for each point of

the map. Finally, the reported error rate is chosen as the minimum error rate

of the averaged map, presented in Fig. 5.3.

5.2.3 Operating point of the reservoir

In Sec. 4.3, we highlighted that the search for the optimal injection parameters

to operate a reservoir computer are one of the most challenging part of the

design of an architecture for reservoir computing applications [17]. Hence, we

devote this section to the investigation of optimal operating parameters.

As stated in [18], the fading memory [19] of a system is a very important

property for its use as a reservoir computer. A way to maximise the fading

memory of a dynamical system was proposed by [20] and consists for the system

to be stable, but close to instabilities. This strategy for the driving of the system

maximise the length of the transient dynamics, hence maximising the signal

mixing in the network for reservoir applications.

We have already found in Sec. 4.3 the optimal injection parameters in terms

of power modulation and optical detuning in a network of ring resonators for

reservoir computing applications. In the system presented in this chapter, the

four central nodes are the same ring resonators as in Chapter 4, hence the

information found in Sec. 4.3 is still relevant for the strategy corresponding

to an input on the four central nodes. In all the simulations, the bit stream

is fed on the injected nodes (either the four central nodes or all the nodes

of the network) through a power modulation between Pin,0 = 0.0 mW and

Pin,1 = 0.3 mW, with a random phase shift. The injected light wavelength is

set to λ= 1552.820 nm, corresponding to an optical detuning δλ= 50 pm with

regards to the resonance frequency of the ring resonators.
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Figure 5.4: (a) Performance of the SWIRL 4×4 reservoir computer on the 3-bit
pattern recognition task at 30 Gb/s as a function of the bias current of the four
SOAs. The pattern we intend to recognise is "101". The performance is averaged
on 20 sets of simulations, and the input stream is fed to the four central nodes.
(b) Averaged power per node in the same conditions for (i) Ibias = 25.0 mA, (ii)
Ibias = 67.5 mA, (iii) Ibias = 100 mA, and (iv) Ibias = 200 mA. For each case,
the corresponding performance of the reservoir is highlighted (red dots) in the
upper panel of the figure.

Let us now identify the best operating point for the reservoir in terms of

bias current of the semiconductor optical amplifiers. We aim for our reservoir

to be used for telecommunication applications, hence we focus our research

on one use case. We want to perform the 3-bit pattern recognition task at 30

Gb/s, with an averaged input power as low as possible. This low average power

consumption is attained with the injection strategy based on a data stream

only fed to the four central nodes of the 4×4 SWIRL reservoir.

In order to set the bias current of the optical amplifiers in our network,

we plot in Fig. 5.4(a) the level of performance of the hybrid on-chip reservoir
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computer 3-bit pattern recognition task at 30 Gb/s, when the input data stream

is fed to the four central nodes, as a function of the bias current of the SOAs.

We find the best level of performance for a bias current Ibias = 67.5 mA. We

also give in Fig. 5.4(b) (i)-(iv) the averaged power at each node for various bias

currents of the SOAs. We show in Fig. 5.4 that the best level of performance is

not obtained, as one could expect, when the averaged power is the highest at

each node, but for an intermediate value Ibias = 67.5 mA. This can be explained

by a saturation at the SOAs nodes, or also the amplification of non-meaningful

signals (i.e. simulation noise).

We have determined in this section the operating parameters for our reser-

voir. These parameters are reported in Table 5.1.

Parameter Strategy (i) Strategy (ii)

Input nodes All nodes Four central nodes

Light wavelength λ λ= 1552.820 nm λ= 1552.820 nm

Optical detuning δλ δλ= 50 pm δλ= 50 pm

Power modulation 0.0 to 0.3 mW 0.0 to 0.3 mW

Bias current SOA Ibias = 67.5 mA Ibias = 67.5 mA

Table 5.1: Operating injection parameters for the heterogeneous 4×4 SWIRL
network used as a reservoir computer.

5.3 Performance of the reservoir

We investigate in this section the level of performance of our heterogeneous

reservoir computer. We evaluate the performance on the typical delayed XOR

task in Sec. 5.3.1, and on the 3-bit pattern recognition task in Sec. 5.3.2. For

both those tasks, we try our two input strategies, namely the input on all nodes

and the input on the four central nodes. The injection parameters have been

presented for the two strategies in Table 5.1.
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5.3.1 Delayed-XOR task

We present in this section the numerically obtained measure of the performance

of the 4×4 heterogeneous SWIRL network on the delayed-XOR task, and focus

alternatively on the performance when we feed the input bit stream on (i) all

nodes, and (ii) only on the four central nodes.

5.3.1.1 Input to all nodes

We plot in Fig. 5.5(a) and Fig. 5.5(b) the performance of the hybrid reservoir on

the 1-bit delayed XOR task at respectively 20 Gb/s and 30 Gb/s. We see that

when we inject the data stream on all active nodes, the level of performance of

the reservoir computer on this task at 20 Gb/s and 30 Gb/s is below 10−3 for

a large set of interdelay values, which corresponds to a large set of possible

designs in terms of interconnection waveguide lengths. Indeed, the node inter-

delay is directly related to the length of the interconnection waveguide by the

relation (5.1) :

(5.1) tdelay =
L×nSi

c
,

where L is the length of the interconnection waveguide, nSi = 3.476 is the

refractive index of the bulk silicon, and c is the speed of light.

These numerical results are consistent with the results on the same task for

the 4×4 SWIRL network made of homogeneous nodes presented in Chapter 4

in which nodes are nonlinear ring resonators. Even the shrinking of the range

of node interdelay values that are optimal for using the network as a reservoir

computer with the increasing of the data rate is consistent with what was

observed in Fig. 4.9(b). However, for both 20 Gb/s and 30 Gb/s data rates, the

range of interdelay values for which we attain the best level of performance in

improved with the heterogeneous design. At 20 Gb/s, the best interdelay values

are in the interval [18.75,35] ps for the reservoir of Chapter 4 and are in the

interval [18.75,50] for the reservoir presented in this chapter. And similarly

at 30 Gb/s, the best interdelay values are in the interval [18.75,25] ps for the

homogeneous reservoir and are in the interval [12.5,25] for the heterogeneous
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(a) XOR task at 20 Gb/s
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(b) XOR task at 30 Gb/s
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Figure 5.5: Performance of the 4×4 reservoir computer on the delayed XOR
task at (a) 20 Gb/s and (b) 30 Gb/s. The input bit stream is fed on all nodes,
and the performance is averaged over 50 sets of data.

reservoir. For this task, we benefit from the non-linearity and the reduction of

the losses introduced by the SOAs.

5.3.1.2 Input to the four central nodes

We present in Fig. 5.5(a) and Fig. 5.5(b) the performance of the hybrid reservoir

on the 1-bit delayed XOR task at respectively 20 Gb/s and 30 Gb/s when we feed

the input signal only on the four central nodes. We clearly see in these figures

that when we inject the signal only on the four central nodes, this reservoir

with non-identical neuron-like computational units cannot resolve the 1-bit

delayed XOR task.

The 1-bit delayed XOR task is a very nonlinear binary task. The fact that

our heterogeneous reservoir cannot resolve this task when we inject the data

only on the four central nodes could be due to the fact that this injection

strategy does not trigger enough non linearity. Indeed, when we inject only
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to the four central nodes, the SOAs are driven in a very linear amplification

regime, while they behave more non-linearly when they are excited with more

power, for instance when we inject the data strem on all nodes, including the

SOAs.

(a) XOR task at 20 Gb/s
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(b) XOR task at 30 Gb/s
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Figure 5.6: Performance of the 4×4 reservoir computer on the delayed XOR
task at (a) 20 Gb/s and (b) 30 Gb/s. The input bit stream is fed on the four
central nodes, and the performance is averaged over 50 sets of data.

5.3.2 Header recognition

We now study the level of performance that can be attained by our heteroge-

neous SWIRL reservoir on a more telecommunication oriented task, namely the

pattern recognition task. Indeed, we target for this kind of architecture to by

able to perform header recognition at telecommunication data processing rates,

with sufficient level of performance, i.e. about 10−3. We also focus alternatively

on our two input strategy (i) input on all nodes and (ii) input on the four central

nodes.
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5.3.2.1 Input to all nodes

We plot in Fig. 5.7 the level of performance attained by this reservoir computer

on the 3-bit pattern recognition task at respectively (a) 20 Gb/s and (b) 30 Gb/s.

We train our reservoir to recognise the pattern "101". Our reservoir is able to

resolve this task at 20 Gb/s for a range of interdelay values in the interval

[25,50] ps with error rates below 10−3, and we attain a BER = 10−4 for three

values of node interdelay : tdelay = 34,4 ps, tdelay = 37.5 ps, and tdelay = 46.9 ps.

For this last value tdelay = 46.9 ps, using the post processing strategy presented

in Sec. 5.2.2, we attain our best performance BER = 9×10−5.

On the contrary, Fig. 5.7(b) shows that this heterogeneous reservoir com-

puter cannot resolve the 3-bit pattern recognition task at 30 Gb/s when we

inject on all nodes. In order to explain this, we have measured the memory ca-

pacity of this system at 30 Gb/s. The methodology used to evaluate the memory

(a) 3-bit pattern recognition task at 20 Gb/s
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(b) 3-bit pattern recognition task at 30 Gb/s
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Figure 5.7: Performance of the 4×4 reservoir computer on the 3-bit patter
recognition task task at (a) 20 Gb/s and (b) 30 Gb/s. The 3-bit pattern we
intend to recognise is [1.0.1]. The input bit stream is fed on all nodes, and the
performance is averaged over 50 sets of data.
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capacity of a system has been previously presented in Sec. 3.3.1. We measure a

memory capacity of 2.29 when we inject the data stream on all nodes at 30 Gb/s.

Hence, with this value of memory capacity, we understand that our system

cannot resolve a task demanding a memory depth greater than two at 30 Gb/s

when we inject on all nodes. This can explain why we could resolve the 1-bit

delayed XOR task (memory depth equal 2) in the same injection conditions,

but not the 3-bit pattern recognition task (memory depth equal 3).

We finally plot in Fig. 5.8(a) the time series obtained at the output of each

node in grey when we inject the data stream in blue on all nodes. Note that the

input data stream has been scaled down in this figure for clarity purpose, and is

a power modulation between Pin,0 = 0.0 and Pin,1 = 0.3 mW. Figure 5.8(b) shows

the output of the trained reservoir (blue), desired output (green), and decision

threshold (red) for the 3-bit pattern recognition task at the best performance

for an input on all nodes at 20 Gb/s. In both plots, the time is normalized with

respect to the duration of one bit.
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Figure 5.8: (a) Output power at each node (grey). The input stream (blue)
is scaled down for clarity purpose. (b) Output of the trained reservoir (blue),
desired output (green), and decision threshold (red) for the 3-bit pattern recog-
nition task at the best performance for an input on all nodes at 20 Gb/s. In both
plots, the time is normalized so that one bit is equal to one unit of time.
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5.3.2.2 Input to the four central nodes

We plot the averaged performance in Fig. 5.9 at respectively (a) 20 Gb/s and (b)

30 Gb/s for 50 sets of simulations. We see that for both data rates presented,

the heterogeneous reservoir can resolve this task with error rate levels of

the order of 10−3 for at least one node interdelay value, which corresponds to

state-of-the-art levels of performance on this task for similar architectures [3].

Interestingly, our system is able to resolve the 3-bit pattern recognition

task at 30 Gb/s when we inject the data stream only on the four central nodes

at state-of-the-art level of performance BER = 10−3, but cannot resolve the

same task when we inject the signal on all 16 nodes. Our explanation for this

phenomenon is the trade-off between the non-linearity of the nodes and the

linear memory capacity of a reservoir computer [21, 22]. Indeed, when we inject

on all nodes, the SOAs are excited with more power, and thus behave more

(a) 3-bit pattern recognition task at 20 Gb/s
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(b) 3-bit pattern recognition task at 30 Gb/s
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Figure 5.9: Performance of the 4×4 reservoir computer on the 3-bit patter
recognition task task at (a) 20 Gb/s and (b) 30 Gb/s. The 3-bit pattern we intend
to recognise is [1.0.1]. The input bit stream is fed on the four central nodes,
and the performance is averaged over 50 sets of data.
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non-linearly than when we inject only on the four central nodes. Hence the

system, when injected on all nodes, performs better on the very non-linear XOR

task (see Sec. 5.3.1), and cannot perform well the pattern recognition task that

needs more linear memory. And on the contrary, when we inject only on the

four central nodes, the SOAs receive less power, and thus behave more linearly.

Hence the system performs better on the task that needs linear memory like

the 3-bit pattern recognition task.

We finally plot in Fig. 5.10(a) the time series obtained at the output of each

node in grey when we inject the data stream in blue on the four central nodes.

Note that the input data stream has been scaled down in this figure for clarity

purpose, and is a power modulation between Pin,0 = 0.0 and Pin,1 = 0.3 mW.

Figure 5.10(b) shows the output of the trained reservoir (blue), desired output

(green), and decision threshold (red) for the 3-bit pattern recognition task at

the best performance for an input on all nodes at 30 Gb/s. In both plots, the

time is normalized so that one bit is equal to one unit of time. In comparison
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(a) Time series : power at each node
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(b) Time series : output of the reservoir

Figure 5.10: (a) Output power at each node (grey). The input stream (blue)
is scaled down for clarity purpose. (b) Output of the trained reservoir (blue),
desired output (green), and decision threshold (red) for the 3-bit pattern recog-
nition task at the best performance for an input on the four nodes at 30 Gb/s.
In both plots, the time is normalized so that one bit is equal to one unit of time.
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to Fig. 5.8, we see in the upper panel that there is less power at each node

which is consistent with the fact that there is less optical power in the whole

structure, and we see in the lower panel that even if we can resolve the 3-bit

pattern recognition task, the decision threshold must be carefully chosen as

the discrimination between a "1" and a "0" is really narrow.

5.3.3 Summary of the performance levels

We have presented in Sec. 5.3.1 and 5.3.2 the performance of our 4×4 SWIRL
reservoir computer with non-identical neuron-like computational units on

two typical tasks used to benchmark this kind of reservoir architectures. We

summarise in Table. 5.2 the best performance levels attained by our reservoir.

From this table, it is interesting to note that it is possible to adapt the input

strategy and the speed to be able to resolve these two tasks with good levels of

performance.

5.4 Conclusion

To conclude, we have designed an on-chip all-optical reservoir computer with

non-identical nodes that can perform at very high speed on two benchmark

tasks : the Boolean delayed-XOR task, and the 3-bit pattern recognition task.

1-bit delayed XOR 3-bit pattern recognition

Data rate St (i) St (ii) St (i) St (ii)

20 Gb/s 2.5×10−4 2×10−2 9×10−5 10−3

30 Gb/s 5×10−4 10−1 2×10−2 10−3

Table 5.2: Performance of the heterogeneous reservoir computer on the delayed
XOR task and the 3-bit pattern recognition task. We report in this table the
best error rate attained in each case. St (i) and St (ii) correspond respectively
to the two injection strategies, i.e. feeding the input signal to all nodes and
feeding the input signal to the four central nodes.
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The nodes can be microring resonators, waveguides, or SOAs. We have found

the best operating point in terms of SOA bias current to be 0.0675 A, while we

inject optically the data as a power modulation between 0 and 0.3 mW, and

an optical detuning of 50 pm with regards to the ring resonators according to

previous work [6]. With these injection parameters, we attain state-of-the-art

levels of performance on the 3-bit pattern recognition task when we inject only

on the four central nodes, with an averaged optical input power of 0.6 mW and

an electrical pump of 0.0675 A per SOA. This already low power consumption

could be further improved by using more recent SOA technologies like quantum

dots SOAs [23].

This work opens new research venues aiming at integrated, high-speed,

energy-efficient, all-optical data processing for telecommunication applications.

More specifically, our photonic reservoir approach allows for scalability, i.e
one could add more nodes in the reservoir in order to perform the pattern

recognition task for longer patterns, or for all-optical routing applications.

Moreover, the fact that this hybrid reservoir computer performs better on a

pattern classification than a reservoir with identical nodes could suggest that

having heterogeneous nodes in a reservoir computing architecture, or more

generally having neurons with non-identical activation functions in an artificial

neural network, could improve our understanding of natural nervous systems,

as suggested in [24] in which the authors study heterogeneous artificial neural

networks (using natural animal neural systems as examples) to improve the

performance of a cognitive computer on an adaptation task.
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6
DELAY-BASED RESERVOIR COMPUTING ON A

SILICON PHOTONIC CHIP

"Never do today what you can put off till tomorrow.

Delay may give clearer light as to what is best to be

done."
— A. Burr, The Complete Art of Public Speaking

W e have presented in Chap. 4 and Chap. 5 two architectures for on-chip

reservoir computing relying on the implementation of an extended

network of 16 physical nodes, respectively using only nonlinear ring

resonators or non-identical nodes. These architectures can perform very well on

simple binary tasks, like the delayed XOR task or the 3-bit pattern recognition

task. However, the limited number of nodes does not allow more complex tasks

to be resolved with a satisfactory level of performance. Moreover, having a large

number of nodes in integrated photonic reservoir computing is a significant

technological challenge, and most of the reservoir computing systems have

been investigated for a small number of nodes, for example 16 nodes in [1–4].

Indeed, the losses in the many splitters, couplers, and long waveguides do not

allow for sufficient signal mixing in the reservoir, thus reducing significantly

the performance on challenging tasks like chaotic time series prediction.
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A quite convincing solution to scale up the number of nodes in a reservoir

computer was suggested in 2011 by L. Appeltant [5], and consists of having only

one nonlinear node and distributing a large number of virtual nodes in a long

delay line. This kind of time-delayed architectures has attracted a lot of focus

lately, as it can attain very good levels of performance using opto-electronics

systems [6–9], or all-optical systems [10–15]. However, implementing such an

architecture on a silicon photonic chip remains a very challenging technological

issue. Indeed, the length of the delayed feedback loop usually range from a few

meters (for example about 12 m in [15]) to a few kilometers (for example 1.6 km

in [16]), and the typical losses in an on-chip silicon waveguide is between 0.1

dB/cm to 3 dB/cm [17], thus implementing a delay based reservoir computer on

a photonic chip was only suggested a few times [18–20], mostly on InP chips,

hence allowing to integrate laser sources directly on the photonic chip.

We suggest in this chapter a novel time-delayed architecture integrated

on a silicon photonic chip using a ring resonator as nonlinear node. In our

approach and similarly to [19], the virtual nodes are distributed along multiple

round-trips in the delay line, hence the length of the delay waveguide is kept

small and the corresponding losses remain small. The idea of distributing the

virtual nodes in multiple round-trip in the delay line naturally emerges from

the model of a nonlinear ring resonator submitted to delayed optical feedback,

and can successfully be implemented by changing the masking procedure

for delay-based reservoir computing. In this chapter, we numerically study

this novel design for on-chip neuromorphic computing, and we demonstrate

that it is possible to attain state-of-the-art levels of performance with this

very compact structure. In particular, we successfully resolve the Santa Fe

chaotic time series prediction task with a normalised mean square error of

1.12×10−2, and at a processing speed of 0.3 Giga symbols per second. We also

show that with this architecture, the scalability of the number of nodes is very

straightforward. Indeed, we do not need to change the design of the chip to add

more nodes, but only to distribute the nodes on more round-trip.

This chapter is organised as follows. We present in Sec. 6.1 the general

structure of a delay-based architecture for reservoir computing, along with the

masking and reading procedures. We devote Sec. 6.2 to the presentation of
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our on-chip design for time-delayed reservoir computing. More specifically, we

give the full model of a ring resonator submitted to delayed optical feedback,

and then explain the modified masking procedure. We present in Sec. 6.3

the numerical simulation methods, and in particular the training and testing

procedures, and how we choose the best reservoir operating point for our

simulations. Finally we numerically analyse in Sec. 6.4 the performance of

the on-chip delay-based reservoir computer. More specifically, we measure the

memory capacity of the system, the performance on the delayed-XOR task in

order to compare the performance with the reservoir presented in Chap. 4, and

the performance on the Santa Fe chaotic time series prediction task. We report

our conclusions in Sec. 6.5.

The results presented in this chapter have been submitted for publication

in a peer-review journal, and the article is still in the review procedure.

6.1 Time-delayed reservoir computing

The paradigm of delay-based reservoir computing was introduced in 2011 by

L. Appeltant as a solution to reduce the complexity of the system used for

reservoir computer applications [5]. In this kind of architecture, a nonlinear

node is submitted to delayed feedback, and an arbitrary number of virtual

nodes are distributed in the delay line of length L and duration τ. We present

in Fig. 6.1 a figure taken from the supplementary materials of [5] showing

the typical architecture as presented by L. Appeltant et al.. This figure is the

first representation of the concept of time-delay reservoir computing. Along

the delay line of duration τ are distributed N virtual nodes, separated by a

temporal distance θ from each other. A mask of duration τ is superimposed on

the input data (see Sec. 6.1.2.1), and the output of the reservoir is constructed

as the weighted sum of the readout of the virtual time-multiplexed nodes, as

presented in Sec. 6.1.2.2.

The rest of this section is organised as follows. We present in Sec. 6.1.1

the typical architecture for delay-based reservoir computing, and the various

experimental systems that have been recently investigated. We finally devote
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Figure 6.1: Scheme of single nonlinear node reservoir computer. Along the delay
line are distributed N virtual nodes, separated a distance θ from each other. (i)-
(ii) To create more diversity in the states a mask is superimposed on the input.
(iii) The transient response of the node. Figure taken from supplementary
material of Appeltant et al. [5]. This figure is the first introducing the concept
of time-delay reservoir computing. We introduce with more details the different
inserts of this figure in our own figures in this section.

Sec. 6.1.2 to the presentation of the masking and reading procedures that

defines the interconnection structure of the reservoir.

6.1.1 Single node with delayed feedback

In the framework of liquid-state machines [21] and echo-state network [22],

the reservoir is driven by an input signal and generates high-dimensional

transient responses using a network of interacting neurons. The output of the

reservoir is eventually constructed as a weighted sum of the readout layer

vector coordinates. Another technique to generate high-dimensional patterns

from an input signal would be to use a time-delayed dynamical system [23].
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wi*xi

Figure 6.2: Typical scheme of a delay-based reservoir computer. The input
data is masked through the procedure described in Sec. 6.1.2.1. The reservoir
is made of a nonlinear node submitted to delayed feedback, and N virtual
nodes are distributed every θ in the delay line of length τ. The output is the
weighed sum of the component of the readout vector, constructed according to
Sec. 6.1.2.2.

Such a system can be described by Eq. (6.1) :

(6.1)
dx(t)

dt
= F (t,x(t),x(t−τ)) ,

where t is the continuous time, x is the state vector, F is a nonlinear function

representing the flow of the system, and τ is the time delay. This kind of

delayed systems can exhibit rich dynamical behaviours including periodic

oscillations [24] or deterministic chaos [25].

The idea of using a time-delayed dynamical system as a reservoir computer

consists of having only one nonlinear node submitted to delayed feedback.

We give in Fig. 6.2 the typical scheme of a delayed based reservoir computer.

In this delay-based architecture for reservoir computer, the nonlinear node

is described by the state vector x of Eq. (6.1), and the flow of the system is

represented by F. The time delay τ is therefore the length of the delay line,

and N virtual nodes are distributed every θ in this delay line. Equation (6.2)

gives the relation between the number of nodes N, the node interdelay θ, and

the length of the delay line τ.

(6.2) τ= N ×θ.
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This kind of delay-based architecture for reservoir computing has attracted

a lot of attention lately. In fact, it is the most extensively studied imple-

mentation for optical reservoir computers, using either opto-electronic sys-

tems [6–9, 16, 26–30], or all-optical systems [10–12, 14, 15, 31–35]. We report

in Table 6.1 some important results on this subject.

Paper Important result

L. Appeltant et al. Suggestion of the architecture.

[5]

L. Larger et al. [6] First experimental demonstration

Y. Paquot et al. [7] with an opto-electronic feedback loop.

F. Duport et al. All-optical system with an

[10] optical amplifier and a fiber coupler.

M. Soriano et al. Importance of the pre-processing mask to

[8] limit the impact of noise on the performance.

R. Nguimdo et al. Chaotic time series prediction and

[12] nonlinear channel equalisation tasks.

Y. Kuriki et al. Colored-noise or chaotic mask can

[36] improve the performance.

J. Vatin et al. Improvement of the performance when using

[14, 15] the polarization dynamics of a VCSEL.

Table 6.1: Important results on delay-based architectures for reservoir comput-
ing. This table is not exhaustive.

However, the implementation of such a delay-based architecture with a long

delay line on a photonic chip has only been suggested a few times yet [19, 20],

due to the typical losses in an integrated waveguide (typical losses between

0.1 and 3.0 dB/cm [17]). In our approach for Si-based on-chip delay-based

reservoir computing, we use a nonlinear ring resonator as a nonlinear node

and an relatively small integrated waveguide (2.85 cm) as feedback loop, and
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we distribute the virtual nodes along multiple round-trips in this feedback loop

(similarly to Ref. [19]), hence the length of the delay waveguide is kept small

and the corresponding losses remain limitted.

6.1.2 Time multiplexed virtual nodes

We present in this section the masking and reading procedures for the time

multiplexing of the virtual nodes of the network. These procedures were intro-

duced by L. Appeltant in 2011 [5] as the key concept to implement this kind of

delay-based architectures for reservoir computing.

6.1.2.1 Masking procedure

The masking procedure is a necessary step for time-delayed architectures

to work efficiently, since it keep the reservoir in a dynamically rich regime.

As presented in Fig. 6.1 and Fig. 6.2, the input data undergoes a series of

transformations before being fed to the reservoir, called the masking procedure,

and presented in Fig. 6.3. First, the time-continuous u(t) or time-discrete u[k]

is converted to an input stream that is constant during one delay interval τ

through a sample-and-hold operation. In principle the reservoir could be fed

with this piece-wise constant stream, but this would lead to a low-dimensional

response in the transient time series of the delayed system. Hence, a τ-periodic

Sample-and-hold

t

Mask (   )

t

Masked signal

t

Signal u(t) or u[k]

t or k

Figure 6.3: Description of the masking procedure. The time-continuous u(t)
or time-discrete u[k] is converted to an input stream that is constant during
one delay interval τ through a sample-and-hold operation. This stream is
convoluted to a mask of length τ, divided in N constant intervals of length θ.
This procedure defines the N virtual nodes, and set the node interdelay θ.
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function is superimposed to the input, with N piece-wise constant values

of length θ. This procedure defines the N virtual nodes, and set the node

interdelay θ. The choice of the node interdelay value is of great importance as

it sets the dynamical richness in the transient response of the reservoir.

In Fig. 6.3, we have shown an example of binary mask, as most imple-

mentations are using this kind of masks. Nevertheless, more complex masks

have been explored recently by Kuriki et al. in [36] and they demonstrated

an improvement of the performance of the reservoir when using a chaotic or

colored-noise mask, provided a proper selection of the cut-off frequency of the

signal used as mask. Moreover and as described in Sec. 2.1.2 of L. Appletant

thesis [37], the mask is a natural representation of the input matrix Win of

Eq. (3.2), as it sets the input weight at each node.

6.1.2.2 Readout of the reservoir

The construction of the readout of a delay-based reservoir deserves some

further explanation. Indeed, we only record one continuous time trace at the

output of the system, and construct sequentially the coordinates of the readout

vector xreadout. We present in Fig. 6.4 the construction of the readout vector

: the output signal is sampled down every θ, and for each input i, the k-th

Masked signal (Input)

t

Input Readout

t

Readout

[i] [i+1]

Figure 6.4: Readout layer of the reservoir. The masked input signal is fed to
the neural network, and the signal coming out from the system is processed
according to the following procedure to reconstruct the readout layer of the
reservoir. The output signal is sampled every θ, and for each input i, the k-th
component of the readout vector xreadout[i] is xkθ[i], as presented in the right
panel of the figure.
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component of the readout vector xreadout[i] is xkθ[i], as presented in the right

panel of Fig. 6.4. In this figure, the sampling position is chosen in the middle of

θ. However, other choices of sampling position can also yields good results, and

we have here a degree of freedom to slightly improve the performance.

A very important issue with delay-based reservoir computing architectures

is the processing speed. Indeed, to reconstruct the output of the reservoir y[i]
as the weighted sum of the coordinates of the readout vector xreadout[i], we

must have recorded all the xkθ[i], hence it takes exactly the time τ to construct

the output of one sample. Finally, the processing speed will be set by the length

of the delay line and is limited to 1/τ.

6.2 On-chip time-delayed reservoir computer

We present in this section the design of our silicon on-chip time-delayed reser-

voir computer. As mentioned previously, the on-chip implementation of a delay-

based architecture for reservoir computing is a technological challenge, as the

losses in the long feedback loop would drastically reduce the signal mixing in

the reservoir. Also, the on-chip integration of a waveguide with a length in the

range of a few meters would considerably reduce the compactness of the chip,

hence questioning the relevance of the implementation. However, we suggest

in this chapter to distribute the virtual nodes in multiple round-trips in the

delay line, quite similarly to K. Takano et al. in [19]. Hence, the waveguide

used for the delay line remains short, thus reducing the corresponding losses,

and improving the compactness of the system.

6.2.1 System used as a reservoir computer

This section is devoted to the presentation of the system used as an on-chip

delay-based reservoir computer, that is a nonlinear ring resonator submitted

to delayed optical feedback. The models of each component of the system have

been extensively studied in Secs. 2.3 and 2.4, and we investigate in this section

the modelling of the whole structure.
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6.2.1.1 Ring resonator with delayed feedback

Our system for time-delayed reservoir computing on a silicon photonic chip

is presented in Fig. 6.5. The nonlinear node is a ring resonator, as presented

in Sec. 2.4 and already used as nonlinear node of our previous structures

presented respectively in Chaps. 4 and 5. We create a relatively small feedback

loop through a 2.85 cm-long waveguide, with a typical loss factor 1 dB/cm. The

data stream sin is fed to the reservoir through a 3-port combiner (see Sec. 2.3.3)

with a 90/10% splitting ratio. Similarly, the output signal sout is read though a

3-port splitter (see Sec. 2.3.3), also with a 90/10% splitting ratio. This output is

then connected to a photodetector whose model is based on an experimental

equipment in the Ghent University laboratory, the Alphalas UPD-15-IR2-FC

photodetector (see Sec. 2.3.2 and [38]). Finally, in order to compensate for the

losses in (i) the long waveguide and (ii) the splitter and the combiner, we put a

semiconductor optical amplifier [39] in the delay line that improve the quality

factor of the whole loop.

Figure 6.6 shows a very accurate scheme of the physical implementation of

Figure 6.5: Scheme of the on-chip system we intend to use as a time-delayed
reservoir computer. A nonlinear microring resonator is submitted to delayed
optical feedback through a 2.85 cm-long waveguide. The input and the output
are connected through a 90/10% splitter and a 90/10% combiners. Finally, a
semiconductor optical amplifier is added in the feedback loop to compensate
for the losses in the delay line, the splitter, and the combiner. s1, s2, s3, and s4
are virtual points of interest used for the calculations.
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this kind of architecture. The design of the spiral waveguide allows a reduction

of the spatial congestion, hence the structure used as a reservoir computer

is very compact. Moreover, as presented in Sec. 6.2.2, the virtual nodes are

distributed in multiple round-trips in the reservoir. Hence, once the design is

fixed, we still can tune the node interdelay and the number of nodes, just by

doing a different number of round-trips in the delay line. Hence, such a design

allows great flexibility.

OutputInput

Figure 6.6: Scheme of the physical design of the system. We use a spiral
waveguide to reduce the spacial congestion. Hence, the design is very compact.

6.2.1.2 CMT-model of the system

We present in this section the coupled mode theory model of a ring resonator

submitted to optical feedback as depicted in Fig. 6.5. We give in particular the

calculations used to determine the expression of the output signal sout as a

function of the state variables of a ring resonator, the waveguide model, and the

3-port directional couplers with a splitting ratio β= 90%. The models of these

components have been presented in Sec. 2.3 and 2.4. In our calculations, we

model the optical amplifier by its gain G in order to simplify our initial analysis,

however in our numerical simulations, we use the SOA model suggested in

1989 by Govind P. Agrawal [39].

We calculate the output signal sout, and the power can be calculated by

Pout = |sout|2. From the model of a 3-port combiner with a spitting ratio β, we

can deduce
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(6.3) sout(t)=
√

1−β2 s2(t),

where s2 has been defined in Fig. 6.5 as a point of interest. We can link the

signal s2 coming out of a nonlinear ring resonator to the input signal to the ring

resonator and the optical mode a of the ring resonator through the input/output

relationship of the coupled mode theory model of a ring resonator. Hence, we

have

(6.4) s2(t)= e jφc s1(t)+κa(t),

where j is the imaginary unit, φc is the phase shift induced by the very small

waveguide coupled to the ring resonator, and κ is the coupling coefficient of

the ring resonator. Once again, from the model of a 3-port combiner used as a

directional coupler, we get the expression of s1 as a function of the input signal

to the system sin (with Pin = |sin|2), and the signal at the point s3, given in

Eq. (6.5) :

(6.5) s1(t)=
√

1−β2 sin(t)+βs3(t).

The expression of s3 is deduced from the model of a waveguide already in-

vestigated in Sec. 2.3.3, and the phenomenological gain G of the semiconductor

optical amplifier. The signal at the output of a waveguide is the signal at the

input with a loss factor α(λ), and a delay τ depending on the length of the

waveguide. Hence, we have the following expression :

(6.6) s3(t)=Gα(λ)s4(t−τ).

We use once again the model of a 3-port directional coupler to extract the

expression of s4 as a function of s2 :

(6.7) s4(t−τ)=βs2(t−τ),
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with β the splitting ratio of the 3-port splitter. Finally, from Eqs. (6.4) to (6.7),

we can deduce a first expression of the signal at the point s2 at any time t. This

equation is given in Eq. (6.8).

(6.8) s2(t)= κa(t)+ e jφc

[√
1−β2 sin(t)+β2Gα(λ)s2(t−τ)

]
.

We can follow the same logic to get the expression of s2(t−τ) as a function

of the variables. The expression is very similar and is given in Eq. (6.9).

(6.9) s2(t−τ)= κa(t−τ)+ e jφc

[√
1−β2 sin(t−τ)+β2Gα(λ)s2(t−2τ)

]
.

Th expression of s2(t−kτ) can be generalised for k ∈N. We can then combine

all these equations with Eq. (6.3) to get the following expression of the output

signal sout :

(6.10) sout(t)=
√

1−β
[√

1−βe jφc
∞∑

n=0
Gnα(λ)ne jnφcβnsin(t−nτ)

+κ
∞∑

n=0
Gnα(λ)ne jnφcβna(t−nτ)

]
.

As expressed in Sec. 2.4, a ring resonator is not only described in the coupled

mode theory framework by its input/output relationship, but also by three state

variables : the optical mode a, the temperature variations ∆T, and the free

carriers concentration N. The ordinary differential equations governing the

evolution of the temperature variations and the free carriers concentration

are not modified with regards to the equations of Sec. 2.4, however the state-

update equation of the optical mode a is modified in a very similar way to the

input/output relationship of the whole system, and according to the following

calculations.

We give again in Eq. (6.11) the ordinary differential equations governing

the evolution of the optical mode a in our system.

(6.11)
da
dt

(t)=
[

j (ωr +δωnl −ω)− γloss

2

]
a(t)+κs1(t),
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where ωr −ω is the optical detuning, δωnl(∆T, N) is a nonlinear detuning

induced by thermo-optic effects and free carrier dispersion, γloss(a, N) the total

coefficient loss resulting from absorption losses, coupling losses, and radiation

losses. The detailed expression of these parameters can be found in Sec. 2.4 in

which we investigate the coupled mode theory of the ring resonators. The other

parameters of this equation have already been presented in this section.

From Eqs. (6.4) to (6.7), we can extract the expression of the signal at the

point s1 at time t :

(6.12) s1(t)=
√

1−β2 sin(t)+β2Gα(λ)
[
e jφc s1(t−τ)+κa(t−τ)

]
.

Again, and very similarly to our previous calculations, we can express

s1(t−τ) as :

(6.13) s1(t−τ)=
√

1−β2 sin(t−τ)+β2Gα(λ)
[
e jφc s1(t−2τ)+κa(t−2τ)

]
.

And finally, if we express s1(t− kτ) for k in 0,1, ...,∞ in a similar way to

Eq. (6.13), we can then combine all these equations with Eq. (6.11) to get

the very nice expression of the ordinary differential equations governing the

evolution of the optical mode a given in Eq. (6.14) :

(6.14)
da
dt

(t)=
[

j (ωr +δωnl −ω)− γloss

2

]
a(t)

+κ
[√

1−β
∞∑

n=0
Gnα(λ)ne jnφcβnsin(t−nτ)

+κ
∞∑

n=1
Gnα(λ)ne j(n−1)φcβna(t−nτ)

]
.

These simplified modelling equations for the nonlinear ring resonator sub-

mitted to delayed optical and expressed in the coupled mode theory framework

are interesting, because we see that the output power of the whole system is

function of an infinite sum of past inputs and past values of the state variable

a. Hence, we can carefully set the value of the gain G of the optical amplifier
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in order for the information to stay virtually forever in the system. Of course

in our simulations, and moreover in an experiment, this conclusion must be

restricted due to the nonlinear behaviour of the SOA and the losses in the

substrate. Still, from this simplified model naturally has emerged the idea of

distributing the virtual nodes on multiple round-trips in the delay line.

6.2.2 Multiple round-trips in the feedback loop

In this section, we specify our strategy to distribute the virtual nodes on

multiple round-trips in the small delay line. In particular, we present the time

scale τ′ corresponding to the total length of the mask, and the corresponding

modified masking procedure.

6.2.2.1 Node distribution

As already mentioned before, the idea of distributing the virtual nodes natu-

rally emerges from the model of a ring resonator in the coupled mode theory

framework. In particular, the expression of the output signal sout is function

of infinite sums of past inputs to the systems sin(t−kτ) and past states of the

reservoir a(t−kτ).

The N virtual nodes are distributed along multiple round-trips in the delay

line. We set the node interdelay θ, and we distribute the N virtual nodes on

p round-trips in the delay line of length τ. Hence, the total delay we use to

1

23

4

5

6

7
8

9

10

Figure 6.7: Sketch of the distribution of the virtual nodes in the first three
round-trips in the delay line. The N nodes are distributed every θ in p round-
trips in the delay line of length τ. The total delay we use to distribute the
virtual nodes is τ′ = p×τ= N ×θ.
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distribute the virtual nodes is τ′ = p×τ= N×θ. We show in Fig. 6.7 an example

of distribution of the first ten virtual nodes in three round-trips in the delay

line of length τ.

6.2.2.2 Modified masking procedure

The masking procedure is modified in order to distribute the virtual nodes on

multiple round-trips in the delay line of length τ. Unlike the masking procedure

described in Sec. 6.1.2, the length of the mask is not equal to the length of the

delay line. The new length of the mask is τ′, and is equal to the number of

round-trips p times the length τ of the delay line. The total length of the mask

is also still equal to the node interdelay θ times the number of nodes N.

We show in Fig. 6.8 an example of the masking procedure used to distribute

33 virtual nodes on ten round trips in a delay line of length τ′ = 3.3 ns with

an interdelay θ = 100 ps. The colors on top of the node number correspond to

the colors in Fig. 6.7 for the distribution of the ten first virtual nodes in three

round-trips in the delay line.
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Figure 6.8: Masking procedure on multiple round-trips in the delay line. In
this example, the 33 time-multiplexed virtual nodes are distributed along ten
round-trips in the delay line. The interdelay between two consecutive nodes is
θ, the time of one round-trip in the delay waveguide is τ, and the total length of
the mask is τ′ = 33×θ = 10×τ. The colors on top of the node number correspond
to the colors in Fig. 6.7.
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6.3 Numerical simulation strategy

We investigate in this section the numerical simulation strategy used to mea-

sure the performance of the system presented in Sec. 6.2. More specifically,

we present in Sec. 6.3.1 the tools used to perform the numerical simulations.

Sec. 6.3.2 is devoted to the description of the training and testing procedures,

and finally Sec. 6.3.3 is dedicated to the search of an optimal operating point.

6.3.1 Simulation of the system

The simulation of the system is done using the Caphe photonic circuit simulator

[40]. Caphe is a realistic on-chip circuit simulator that gives results very close

to what can be experimentally obtained [41]. More specifically, we use a typical

source term representing the input signal either from a laser source or the

coupled light from an optical fiber to the chip. We create a hierarchical structure

of the whole system from the typical component models presented in Sec. 2.3

and 2.4. And finally, we use a photodetector to construct the output power

based on the Alphalas UPD-15-IR2-FC [38], with a 25 Gb/s bandwidth.

The data stream is created according to the task, and fed to the system

with a sampling rate of 200 Giga sample per second.The states of the reservoir

are obtained by the simulation using a four order Runge Kutta algorithm of

the system using the Caphe photonic circuit simulator.

6.3.2 Training and testing procedures

We present in this section the training and testing procedures for the mea-

surement of the performance of our on-chip system used as a time-delayed

reservoir computer. More specifically, for each benchmark task we test our

reservoir computer on, we describe how we construct the time series, and the

procedures for the training and testing of the performance. For this particular

design, we measure the memory capacity of the system, as an indicator of the

capacity of the system to reconstruct past inputs. Then in order to compare this

design with the extended architecture presented in Chap. 4 we asses the level

of performance of this reservoir computer on the delayed-XOR task. And finally,
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as the memory capacity of this system is sufficiently high, we benchmark our

reservoir on the typical and memory-demanding one-step Santa Fe chaotic

time series prediction task. The detailed description of these tasks is given in

Sec. 3.3.

For the measure of the memory capacity of the system, the input time

series is a randomly generated succession of 5,000 samples chosen from a

uniform distribution on ]0,0.5[. This time series is then masked according

to the procedure described in Sec. 6.2.2.2, and the resulting signal is scaled

in order for the amplitude modulation of the input signal to be within the

0.5−1.0 mW power range. We train the system on the first 1,500 samples using

a simple linear regression, and we measure the memory capacity using the

remaining 3,500 samples.

In the case of the delayed-XOR task, the input is a succession of 20,000 ran-

domly chosen binary bits, masked using the procedure described in Sec. 6.2.2.2,

and scaled to be a power modulation between 0.5 and 1.0 mW. The reservoir

computer is trained on 16,000 bits using a simple linear regression, and tested

on the remaining 4,000 bits, hence the smallest measurable error is 2.5×10−4,

and we set any lower BER to this value.

Finally, for the one-step Santa Fe chaotic time series prediction task, we

have taken the typical 9,000-samples data set used in the Santa Fe competitions

[42], that we have masked using the same process as previously, and scaled

down as a power modulation between 0.5 and 1.0 mW. We train the reservoir

to predict the time series on the first 8,000 samples using a simple linear

regression, and test the performance on the remaining 1,000 samples.

6.3.3 Operating point of the reservoir

In Sec. 4.3, we already highlighted that the search for the optimal injection

parameters to operate a reservoir computer is one of the most challenging part

of the design of an architecture for reservoir computing applications [43]. Hence,

we devote this section to the investigation of optimal operating parameters.

As stated in [44], the fading memory [45] of a system is a very important

property for its use as a reservoir computer. A way to maximise the fading
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memory of a dynamical system was proposed by [46]. It consists of operating

the system in a steady state but also to inject the system such that it maximises

the time for the transient dynamics to vanish, therefore maximising the signal

mixing in the network for reservoir applications.

In order to inject the data in the system while maximizing the length of

the transient dynamics, we can tune three main parameters, namely (i) the

optical detuning between the resonance frequency of the ring resonator and the

frequency of the injected light, (ii) the injected power range for the modulation

of the injected data, and (iii) the bias current of the semiconductor optical

amplifier used to improve the quality factor of the whole system. We plot

the step response for various injection parameters in Fig. 6.9. The injection

parameters for cases (1) to (7) are given in Table. 6.2.

These parameters are only a few amongst the vast exploration of injection

parameters, and account for most interesting cases we can find while searching

for the operating point. Indeed, for most values of the injection parameters,

either the system is oscillating or unstable, or the output power is not sufficient

to perform reservoir computing. Hence, in order for the system to be in a linear

regime, but still close to instabilities, we remain close to the natural resonance

frequency of the ring, and inject a step of power. We have found that the power

modulation comprised between 0.5 and 1.0 mW is the most representative, and

gives the richest transient.

In Fig. 6.9, we see that for some sets of injection parameters, the system

is self pulsing at a very low rate, due to the internal time scales of N and

∆T of the nonlinear ring resonator. For those injection cases (3) and (7), we

cannot use this system since a reservoir computer as the system is not stable.

However, for the other injection cases, the system is stable when we inject a

power step. We therefore focus on cases (1,2,4-6) in Fig. 6.9(b)-(f). We first see

that for cases (1) and (5), the transient state is not rich enough compared to

the other cases. Finally, among the three last cases, we computed the memory

capacity of the system, and saw the case (4) was the injection parameter set

giving the best results. Finally, Fig. 6.9(g) shows a zoom of the step response

for the best injection parameter set, with an insight of the relevant time scales

θ, τ and τ′.
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Figure 6.9: step response for various injection parameters. The injection para-
meters are given in Table. 6.2 for cases (1) to (7). (b) to (f) correspond to zooms
of (a) for each set of injection parameters, and (g) is a zoom of (f). We do not
show zooms of cases (3) and (7) as the pulsating dynamics does not allow for
reservoir computing applications.
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Case δλ (pm) P0 (mW) P1 (mW) Ibias (mA)

(1) -10 0.5 1 50.0

(2) 50 0.5 1 129.5

(3) 10 0.5 1 50

(4) -10 0.5 1 129.5

(5) 0 0.5 1 50

(6) 0 0.5 1 129.5

(7) 10 0.5 1 129.5

Table 6.2: Injection parameters for cases (1) to (7) of Fig. 6.9.

6.4 Performance of the reservoir

We present in this section the performance of the on-chip delay-based reservoir

computer. In Sec. 6.4.1 we discuss on the processing speed of such a delay-based

reservoir computer. Then, we measure in Sec. 6.4.2 the memory capacity of the

system. And finally in Sec. 6.4.3 and 6.4.4, we present successively the levels of

performance of this reservoir computer on the delayed-XOR task and the Santa

Fe chaotic time series one-step prediction task. For each task, we compare the

results with the reservoir computer made of 16 interconnected nonlinear ring

resonators, presented in Chap. 4.

6.4.1 On the processing speed

The delay-based architecture for reservoir computing shows usually good re-

sults on a large variety of tasks [10–15]. However, the processing speed that

can be attained with this approach is still a drawback of this kind of implemen-

tations. Indeed, the processing speed is fixed by the multiplicative inverse of

the total length τ′ of the mask we use to distribute our virtual nodes in the

feedback loop, or in our case in multiple round-trips in the feedback loop.

We take the example of the best case for the Santa Fe task, attained for

N = 56 virtual nodes with a node interdelay of θ = 50 ps, the processing speed
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is given by :

(6.15) Rate = 1
τ′

= 1
N ×θ = 0.36 Giga symbols per second.

The data rate we can achieve with this kind of architecture is quite far from

the data rate that can be processed by the reservoir computers presented in

Chaps. 4 and 5. Actually, the limiting factor to improve the processing speed is

not really the chip but the speed limit of our classical measuring equipment.

6.4.2 Memory capacity of the reservoir

We measure in this section the memory capacity of the system, according to the

numerical simulation procedure presented in Sec. 6.3. The memory capacity of

the system tells us about the ability of the system to reconstruct past inputs,

therefore giving us a good insight on the performance we can expect on memory

demanding tasks as the Santa Fe chaotic time series one-step prediction task.

We mostly analyse the memory capacity when changing the node interdelay θ,

that is the time between two consecutive virtual nodes.

We present in Fig. 6.10 a mapping of the memory capacity of a 33-nodes

on-chip reservoir computer in the plane (θ, Ibias), where Ibias is the bias current

controlling the gain of the SOA in the feedback loop of the reservoir. We explore

in Fig. 6.10(a-b) two strategies for the parametric study of the node interdelay.

In Fig. 6.10(a), the design is kept fixed, (in particular we fix the length of the

long waveguide), and we distribute the 33 virtual nodes on a variable number

of round trips in the feedback loop. In Fig. 6.10(b), we change the length of

the long waveguide, and we always distribute the 33 virtual nodes along 10

round-trips in the feedback loop. Note that the 100 ps-interdelay column is the

same for the two strategies.

From Fig. 6.10(a-b), we can extract the following information. First, we

can attain a memory capacity of about 13 with a 33-nodes reservoir computer

for carefully chosen values of node interdelay and bias current of the SOA.

Secondly, for any value of node interdelay θ, the maximal bias current of the

SOA for which we attain an acceptable value of memory capacity is Ibias = 129.5
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mA. Hence, we will choose this particular value for the following simulations.

Finally, if we compare strategies (a) and (b) for the modification of the node

interdelay, we see that the strategy (a) - that consists in keeping a fixed length
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Figure 6.10: Measure of the memory capacity. (a-b) Mapping of the memory
capacity of the 33-nodes delay-based reservoir computer in a parametric plane :
node interdelay θ and bias current Ibias of the SOA. We explore two strategies
for the parametric study of the node interdelay. (a) the design is kept fixed,
and we distribute the 33 virtual nodes on a variable number of round trips in
the feedback loop, and (b) we change the length of the long waveguide, and we
always distribute the 33 virtual nodes along 10 round-trips in the feedback
loop.
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Figure 6.11: Measure of the memory capacity. Comparison of the memory
capacity of the parallel 16-node SWIRL network from Chap. 4 at 10 Gb/s (black
squares with dashed lines), with the memory capacity of the 16-nodes (resp.
33-nodes) delay-based reservoir computer (red dots with plain lines (resp. blue
triangles with dashed lines)) when changing the the node interdelay.
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of the waveguide, and distributing the virtual nodes on a variable number of

round-trips in the delay line - allows for better performance in terms of memory

capacity. We will keep this strategy for further sweeps in node interdelay, hence

we fix the length of the waveguide to 2.85 cm, inducing a time delay of 330 ps.

We compare in Fig. 6.11 the memory capacity of a 16-nodes delay-based

reservoir computer made of one non-linear ring resonator submitted to delayed

optical feedback (red dots with plain lines), to the memory capacity of the

16-nodes extended reservoir computer made of 16 nonlinear ring resonators of

Chap. 4 at 10 Gb/s (black squares with dashed lines). We see that the memory

capacity of the delay-based reservoir is always greater than the memory ca-

pacity of the SWIRL reservoir. Hence if we compare the extended design with

the time-delayed architecture, not only the physical implementation is simpler

with the delay-based reservoir computer, but the memory capacity with the

same number of nodes is also better.

We also plot in Fig. 6.11 the memory capacity of a 33-nodes delay-based

reservoir computer as a function of the node interdelay (blue triangles with

dashed lines) without changing the inner design of the reservoir computer. We

achieve higher levels of memory capacity compared to the 16-nodes on chip

delay-based reservoir computer.

In Fig. 6.12, we plot the memory capacity as a function of the number of
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Figure 6.12: Measure of the memory capacity. Memory capacity as a function
of the number of nodes for the delay-based reservoir for a node interdelay of 50
ps (resp. 100 ps) in red dots with plain lines (resp. black squares with dashed
lines).
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nodes (without changing the design of the reservoir computer) for θ = 50 ps

(resp. θ = 100 ps) in red dots with plain lines (resp. black squares with dashed

lines). The best memory capacity we can attain is 15 for various number

of nodes with θ = 50 ps, hence we can expect this system to perform with

good levels of performance on memory-demanding tasks. These plots shows

that it is possible and very straightforward to scale up the number of virtual

nodes without modifying the physical system, and that it allows for better

performance, at the cost of a reduced processing speed. Indeed, the processing

speed is given by 1/(nnodes ×θ), i.e. 500 Mega symbol per second for 40 nodes

and θ = 50 ps.

6.4.3 Delayed-XOR task

We present in this section the numerical results on the measure of the level of

performance of our on-chip delay-based architecture for reservoir computing

on the delayed-XOR task. This task is not usually used to measure the perfor-

mance of delay-based architectures, as it is not a memory demanding task, and

that there are other ways of performing this Boolean task at higher processing

speed. However, we test our reservoir on this task in order to compare the

performance of this reservoir with the reservoir presented in Chap. 4.

6.4.3.1 Influence of the node interdelay

We give in Fig. 6.13 a comparison of the performance of the parallel 16-node

SWIRL network from Chap. 4 [4] at 10 Gb/s (black squares with dashed lines),

with the performance of the 16-nodes delay-based reservoir computer (red dots

with plain lines) when changing the the node interdelay on the 1-bit delayed

XOR task. Our reservoir with 16 physical nodes presented in Chap. 4 can

perform at the best measurable performance for a large number of interdelay

values.

We see that the 16-nodes delay-based reservoir can also perform at the best

measurable level of performance on this task for some node interdelay values

(for instance, θ = 120 ps, giving a processing speed of 520 Mbits/s), similarly

to the 16-nodes physical network. However, in the last plot of Fig. 6.13 (blue
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Figure 6.13: Reservoir performance on the delayed XOR task. Comparison of
the performance of the parallel 16-node SWIRL network from Chap. 4 at 10
Gb/s (black squares with dashed lines), with the performance of the 16-nodes
(resp. 33-nodes) delay-based reservoir computer (red dots with plain lines, resp.
blue triangles with dashed lines) when changing the the node interdelay on
the delayed XOR task.

triangles with dashed lines), we increase the number of nodes in the delay-

based reservoir to 33, without modifying the inner design of the reservoir, and

we attain this best measurable level of performance on this task for a large

range of node interdelay values θ ∈ [80 : 150] ps, giving a processing speed in

[202:378] Mbits/s.

We give in Fig. 6.14 an example of time series of the output of the trained

Figure 6.14: Reservoir performance on the delayed XOR task. Example of time
trace of the output of the trained 33-nodes delay-based RC on the delayed XOR
task. Green dashed line is the target, blue plain line is the actual output of the
trained reservoir, and red dots are the thresholded outputs. This figure shows
no errors, and the error rate is 2.5×10−4.
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33-nodes delay-based reservoir on the 1-bit delayed XOR task. Green dashed

line is the target, blue plain line is the actual output of the trained reservoir,

and red dots are the thresholded outputs. This figure shows no errors : the error

rate reaches 2.5×10−4 which the lowest error rate one can compute considering

the number of testing bits.

6.4.3.2 2-bits and 3-bits delayed XOR task

Figure 6.15 shows the evolution of the level of performance of the 16-node

SWIRL network from Chap. 4, the 16-nodes delay-based reservoir computer,

and the 33-nodes delay-based reservoir when changing n delay , the memory in

the delayed XOR task. In Fig. 6.15, we choose for each reservoir an interdelay

value for which it performs at best for ndelay = 1 (see Fig. 6.13), and we modify

ndelay . We come to the conclusion that the 16-nodes extended reservoir cannot

resolve the delayed XOR task for ndelay > 1, the 16-nodes delay-based reservoir

cannot resolve the delayed XOR task for ndelay > 2, and the 33-nodes delay-

based RC can resolve the delayed XOR task for ndelay = 3. This figure can be

linked to the comparison of memory capacity of Fig. 6.11, and the results are

very consistent with the conclusions from this figure: the delay-based reservoir

performs better on memory demanding tasks compared to the SWIRL network.
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Figure 6.15: Reservoir performance on the delayed XOR task. Comparison
of the performance of the parallel RC (black squares with dashed lines), the
delay-based RC with 16 nodes (red dots with plain lines), and the delay-based
RC with 33 nodes (blue triangles with dashed lines) on the 1-bit delayed XOR
task, when changing ndelay.
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6.4.4 Santa Fe task

We present in this section the performance of our on-chip delay-based reservoir

computer on a chaotic time series forecasting. More specifically, we train the

reservoir to perform the one-step prediction of the Santa Fe A time series

presented in Fig. 3.10. Being able to predict chaotic behaviours can be very

interesting as it can help to predict financial fluctuations, as financial time

series are governed by deterministic chaos [47]. This is why the Santa Fe

task is a typical benchmark task to test the performance of artificial neural

networks.

6.4.4.1 Influence of the node interdelay

We compare in Fig. 6.16 the performance of the parallel 16-node SWIRL net-

work from Chap. 4 and [4] at 10 Gb/s (black squares with dashed lines), with

the performance of the 16-nodes delay-based reservoir computer (red dots with

plain lines). We see that the two 16-nodes reservoir computers have relatively

low levels of performance on this task, with measured NMSE larger than

1×10−1. However, if we train a 33-nodes delay-based reservoir computer to
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Figure 6.16: Reservoir performance on the one-step Santa Fe time series fore-
casting task. Comparison of the performance of the parallel 16-node SWIRL
network presented in Chap. 4 at 10 Gb/s (black squares with dashed lines),
with the performance of the 16-nodes (resp. 33-nodes) delay-based reservoir
computer (red dots with plain lines, resp. blue triangles with dashed lines)
when changing the the node interdelay on the one-step Santa Fe time series
forecasting task.
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perform the one-step Santa Fe time series forecasting (blue triangles with

dashed lines in Fig. 6.16), we see that we manage to attain an acceptable level

of performance, with a NMSE = 1.2×10−2 for an interdelay value θ = 100 ps.

6.4.4.2 Influence of the number of nodes

We then investigate the performance of the delay-based reservoir computer

when increasing the number of nodes without changing the inner design of the

system, for interdelay values of 50 ps (red dots with plain lines) and 100 ps

(black squares with dashed lines). The results are reported in Fig. 6.17, and

show that we successfully reach a NMSE equal to 1.2×10−2 for θ = 100 ps

and 32 nodes, and we reach a NMSE equal to 1.12×10−2 for θ = 50 ps and

56 nodes. The levels of performance of our very compact all-optical on-chip

reservoir computer are consistent with state-of-the-art levels of performance on

this task by comparable systems [19, 32, 37], but with a lower number of nodes.

Usually, the reservoir from Ref. [19, 32, 37] resolve this task for a number of

nodes greater than 100, and a NMSE of 1×10−3 was numerically obtained in

Ref. [14] for 400 nodes.

Finally, we present in Fig. 6.18 an example of time trace of the output

of the trained 56-nodes delay-based reservoir on the one-step Santa Fe time

series prediction task. Black dashed line is the target, and red dots is the
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Figure 6.17: Performance on the Santa Fe prediction task as a function of the
number of nodes for the delay-based reservoir for a node interdelay of 50 ps
(resp. 100 ps) in red dots with plain lines (resp. black squares with dashed
lines).
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actual output of the trained reservoir. The measured NMSE in this example is

1.12×10−2.

Figure 6.18: Example of time trace of the output of the trained 56-nodes delay-
based reservoir on the one-step Santa Fe time series prediction task. Black
dashed line is the target, and red dots is the actual output of the trained
reservoir. The measured NMSE in this example is 1.12×10−2.

6.5 Conclusion

In this chapter, we have suggested, presented and numerically investigated

a new design for all-optical on-chip reservoir computing. This architecture

relies on the implementation of a very compact system integrated on a silicon

photonic chip, made of a nonlinear ring resonator submitted to delayed optical

feedback, used as a time-delay feedback reservoir computer. In this particular

design, the nonlinear node is a ring resonator, and virtual nodes are distributed

along multiple round-trips in the delay line.

We have studied through intensive numerical simulations the memory

capacity of such a system used as a reservoir computer, and compared the

performance of this system to our previous design made 16 interconnected

nodes in which the nodes were also nonlinear ring resonators, presented in

Chap. 4 and in Ref. [4]. More specifically, we have shown that this new design
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performs either as good for strongly non-linear tasks or better on memory

demanding tasks than our previous architecture for the same number of nodes,

however with a more compact and simplified architecture. Moreover, it is

possible to scale-up the number of nodes in this design without modifying

the inner structure of the reservoir, leading to an out-performance of this

architecture on typical memory demanding tasks, for example the one-step

Santa Fe time series forecasting task.

We have shown through our simulations that this system can perform at

state-of-the-art levels of performance on various benchmark tasks for optimized

parameters including the number of nodes, node interdelay, and bias current

of the SOA positioned in the feedback loop. In particular, on the non-trivial

one-step chaotic Santa Fe time series forecasting, we attain a NMSE equal to

1.12×10−2 for 56 nodes separated by a node interdelay θ = 50 ps, distributed

along ten round-trips in the delay line, at 0.3 Giga symbols per second. This

level of performance can be consistently compared to other optical delay-based

reservoir systems that use semiconductor laser with optical or optoelectronic

feedback [19, 32, 37] . These other delay-based approaches require typically

a larger number of nodes to achieve the same performance, hence lowering

the processing speeds (of the order of tens of Mega symbols per second). By

comparison, our reservoir computer is a very compact Silicon-based on-chip

system, hence allowing for a large scale manufacturing at low cost.

These results open new research venues aiming at compact on-chip im-

plementations of machine learning techniques for all-optical data processing

applications. More specifically, our new architecture for reservoir computing

allows for a straightforward scalability in terms of number of nodes, without

modifying the inner structure of the very compact system. This work could also

motivate for an experimental validation of these numerically obtained results.
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7
GENERAL CONCLUSION AND PERSPECTIVES

"In literature and in life we ultimately pursue, not con-

clusions, but beginnings."
— Sam Tanenhaus, Literature Unbound

I n this chapter, we summarize the work that has been presented in

this thesis. We also suggest some perspective of this work for the imple-

mentation at the hardware level of reservoir computing techniques for

all-optical communications. In particular, we point out the lack of experimental

validation of this work, and suggest for future studies to experimentally test

the conclusions of this work.

7.1 Summary

This dissertation has focus alternatively on the numerical study of three new

architectures for on-chip reservoir computing. This work was done in the con-

text of the European H2020 Phresco project [1, 2], which aim at the design, and

the experimental demonstration of an on-chip 64-nodes reservoir computing

for telecommunication applications at 32 Gb/s.
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The main strategy for this project was to extend the passive structure

already studied by our collaborators at the Ghent University for all-optical

on-chip reservoir computing based on a small network of 16 linear nodes (small

waveguides) interconnected according to the SWIRL topology [3–5], leaving

the readout layer do the nonlinear transformation through photo-detection

of the optical signal. Hence, we suggested to work on the addition of non-

linearity in the intrinsic architecture of the reservoir, that is to replace the

linear nodes of [3–5] by nonlinear elements. In this thesis, we have investigated

three architectures for on-chip reservoir computing, using the nonlinear ring

resonator as primary node.

More specifically, we have suggested in Chap. 4 to replace the 16 linear

nodes of [3–5] by 16 nonlinear ring resonators, also interconnected according

to the SWIRL topology. We have shown numerically that this structure can be

used as a reservoir computer, and can perform at state-of-the-art levels of per-

formance on typical tasks, such as the delayed-XOR task at 20 Gb/s, and for a

large set of parameters values. We have also connected the intrinsic properties

of the building block of the reservoir with the optimum injection parameters for

reservoir computing. Moreover, we have shown through extensive simulations

that this kind of structure is relatively robust with regards to the fabrication

process, in particular for the ring resonance frequencies. However, this archi-

tecture made of 16 interconnected nonlinear ring resonators does not clearly

outperform the structure using only linear elements as nodes. This is mostly

due to the losses in the inner structure of the reservoir, due to the splitters, the

combiners, and the long interconnection waveguides.

Thus, as a way to improve the design presented in Chap. 4, and as an

extension of the work of [3–5] with passive nodes and the first work introducing

the SWIRL topology for reservoir computing using SOAs as nodes [6], we

have suggested in Chap. 5 to implement an architecture using the SWIRL
topology with non-identical nodes in the structure of the reservoir. Nodes can

be either nonlinear ring resonators, linear elements, or semiconductor optical

amplifiers. We have suggested this structure to add gain in the inner structure

of the reservoir, in order to compensate for the losses induced by the splitters,

combiners, and interconnection waveguides. We have demonstrated through
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intensive numerical simulations that this structure can perform well on two

typical tasks : the delayed XOR task, and the 3-bit pattern recognition task, at

20Gb/s and 30Gb/s. We have also investigated two input strategies, and have

confirmed the work presented by A. Katumba et al. [4] on the best injection

strategy in a 4×4 SWIRL network used as a reservoir computer. However,

the numerical results of this chapter do not show a clear improvement of the

performance of such a structure in comparison with (i) the work of [4], and

(ii) the work presented in Chap. 4. We think that in this structure, the non-

linearity imposed by the photo-detection overwrites the non-linearity in the

inner structure of the reservoir.

After investigating the two extended structures of Chap. 4 and 5, we have

come to the conclusion that the extended SWIRL structure can perform well

on very simple tasks at very high speed, but is limited in terms of scalability of

the number of nodes, mostly due to the losses in the structure. This limit in

the number of nodes we can use in the reservoir drastically reduce the scope

of possibilities in terms of complexity of the tasks. Hence we have suggested

in Chap. 6 an on-chip implementation of the well studied time-delay reservoir

computing, using a nonlinear ring resonator as physical nodes, and multiple

round-trip in a relatively small delay line to distribute the virtual nodes. This

idea of using multiple round-trips in a delay line to distribute the virtual nodes

arose from both the mathematical modelling of such a system, that has been

investigated in Sec. 6.2, and the work of K. Takano et al. in [7]. We have numer-

ically shown in this chapter that it is possible to attain state-of-the-art levels of

performance on more complex tasks like chaotic time series prediction, using a

very simple system, made only of one nonlinear ring resonator, one splitter, one

combiner, one SOA, and one waveguide. In addition to the simplicity of design

for this integrated photonic circuit, this structure offers a very straightforward

scalability of the number of nodes Indeed, increasing the number of nodes can

be done without changing the architecture of the circuit but only in distributing

the nodes on a larger number of round-trips in the delay line, inducing the

typical drawback of time-delay reservoir computing that is a reduction of the

processing speed.
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7.2 Perspectives for future work

All-optical on-chip reservoir computing is still a very recent and promising field

of research. We suggest in this section a few ideas that could extend this work.

7.2.1 New benchmark tasks and applications

We have restrained ourselves on a limited number of applications, and we have

trained our different reservoir architectures to perform on relatively simple

tasks, that have no direct applications except for the pattern recognition task

for telecommunication applications, and the chaotic time series prediction task

for applications in finance or extreme event prediction (natural disasters for

instance).

Reservoir computing is a very general concept in the scope of machine

learning, and the results obtained throughout this dissertation suggest that

we could train our neural network to perform on other, more complex tasks for

telecommunication, or classification applications. For instance, our system pre-

sented in Chap. 6 can attain a memory capacity of 15, which can be associated

with the possibility for the system to reconstruct around 15 bits in the past.

With such memory in the system, it could be possible to use such reservoir

for nonlinear channel equalization (i.e compensation of the signal distortion

induced by the communication channel), speech recognition, or other memory

demanding tasks.

Another scope of application of machine learning is image classification.

It would be an interesting application for this kind of structure to be able to

perform well on image recognition tasks, like the widely used handwritten digit

database MNIST [8] for instance. The difficulty with this kind of task would be

to the data pre-processing and encoding the information in such a way that the

reservoir could process it. In particular, we inject information sequentially in

the reservoir, and for image recognition, it could be interesting to either inject

all the information simultaneously, or to reduce the sequential nature of the

injected data through projection of 2D information to 1D information.

Finally, an interesting future work would be to implement online learning
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concepts, and to add on-chip weights for all-optical applications. Some studies

have been done in this direction by our collaborators at the Ghent University [9]

for extended structures with great architectural similarities with the reservoir

presented in Chap. 4 and 5. Hence, we can extend this work and apply the

conclusions to our structures and expect good results.

7.2.2 Experimental validation

The whole dissertation has addressed the numerical investigation of various

architectures for reservoir computing, with a very realistic component library

developed by Luceda Photonics [10]. However, for various reasons, it has not

been possible to experimentally test these structures in order to validate the

numerical results. Due to the accuracy of the library, we can expect the experi-

mental results to be close to our conclusions, but it would still be interesting to

get this validation, as experimental and numerical results can easily vary due

to the importance of the noise levels, mostly at the detection but also when we

have amplification, and thermal variations.
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