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Abstract

This thesis work concerns the theoretical modeling and numerical simulations in the
areas of nanophotonics (light-matter interactions at the nanoscale) in general and plas-
monics in particular. This latter field has received considerable attention over the last
decades arising from the unique and unusual optical properties of surface plasmons po-
laritons such as the confinement and control of light at the subwavelength scale. Noble
Metals such as gold and silver have usually been used as the building blocks for several
plasmonic structures in the visible range. However, in the infrared (IR) and terahertz
(THz) frequencies, these materials exhibit very large losses and are hardly tunable
which limits their application as performant plasmonic devices in these frequencies
ranges. To overcome this problem, graphene, a two dimensional (2D) material made
of carbon atoms arranged in a honeycomb lattice, possessing extraordinary electrical,
thermal, and optical properties, has emerged in the plasmonics field as a potential alter-
native plasmonic material working in the mid-infrared and terahertz (THz) frequencies
ranges. In this context, the purpose of this thesis is to develop theoretical models for
the study of novel graphene based plasmonic structures and construct numerical codes
that allow the simulation of their behavior.

The research presented in this work is articulated around two main axes: (i) the first
one concerns the study of hybrid plasmonic structures based on graphene and metals
in the absence of an external magnetic field (ii) the second is in the investigation of
the magneto-optical and non-reciprocal properties of structures based on graphene and
metals subjected to an external static magnetic field.

In the framework of this thesis, three plasmonic structures of academic and techno-
logical interests have been explored. The study of each of these structures was carried
out into two steps. In the first step, the structures in question were studied in an exact
manner using rigorous numerical methods. Once the exact calculation was established
and to better understand the obtained results, an approximate semi-analytical model
was developed for each structure to reproduce in a simple way the exact results. These
simple models allowed us to interpret and explain the optical spectra of the stud-
ied structures in terms of some remarkable modes and to understand the underlying
physics.

The First studied structure is a hybrid tunable plasmonic system consisting of a 1D
array of periodic subwavelength metal slits and a graphene sheet separated by a dielec-
tric gap. By splitting the whole system into two coupled sub-systems which involve two
kinds of couplings, we have proposed a semi analytical model allowing to fully describe
the spectrums of this system and understand the origin of the resonances appearing
in them. After that, we have been interested in two different structures. First, we
developed a simple and fast semi-analytical method to accurately and efficiently pre-
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Abstract

dict the magneto-optical response of a one-dimensional graphene strip grating in the
presence of an external static magnetic field, in which the graphene is modeled as an
anisotropic layer with atomic thickness and a frequency dependent complex permittiv-
ity tensor. Finally, we have studied the magneto-optical and non-reciprocal properties
of a plasmonic structure consisting of a 2D array of nano-slits perforating a gold film.
By extending the 1D model developed for the first structure, we succeeded to study
and reproduce the magneto-optical spectra of this structure. First, we studied the
response of the structure in the absence of a static magnetic field. Then, we added a
static magnetic field and filled the slits with an anisotropic gyrotropic material.
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Résumé

Ce travail de thèse concerne la modélisation dans le domaine de la nanophotonique
(interaction de la lumière avec des objets de taille nanométrique) et la plasmonique
en particulier. Cette dernière est une thématique de recherche qui a connu un grand
attrait au niveau international durant les dernières décennies découlant des propriétés
optiques uniques et inhabituelles des plasmons polaritons de surface (PPs) telles que
le confinement et l’exaltation du champ EM à des échelles sub-longueur d’onde. Les
PPS ont été découverts et étudiés dans le visible avec les métaux nobles tels que l’Or
et l’Argent dont les fréquences plasma se situent dans cette gamme de fréquences.
Cependant, dans le domaine THz, ces matériaux souffrent de pertes très importantes
ce qui dégrade leurs performances et limite plusieurs applications dans ce domaine
qui est devenu un domaine attrayant au cours des dernières années. Le grand intérêt
pour cette gamme de fréquences découle de son importance pour diverses applications
technologiques déjà existantes pour les autres gammes de fréquences du spectre élec-
tromagnétique et jusque-là non disponibles pour la gamme THz (imagerie médicale
et sécuritaire, capteurs d’agents chimiques et/ou biologiques, radars compacts...). Ces
limitations ont été surmontées, en partie, avec l’avènement du graphène, un seul feuillet
de graphite, qui consiste en un arrangement périodique et bidimensionnel d’atomes de
carbone disposés selon un réseau en nid d’abeilles. Ce matériau a suscité un immense
intérêt, à la fois de la part de la communauté scientifique et des industriels, en raison de
ses propriétés optiques et électrodynamiques particulières. En particulier, il est possible
de contrôler et de modifier sa conductivité via un dopage électrostatique ou chimique.
Grâce à ces propriétés, le graphène peut supporter des PPS avec des propriétés excep-
tionnelles telles qu’un confinement beaucoup plus important que celui des métaux et
des pertes qui sont relativement faibles dans les domaines THz et Infra-Rouge lointain.
Ceci fait du graphène un matériau prometteur pour la réalisation de nouveaux disposi-
tifs commandables/contrôlables dans les domaines THz et Infra-Rouge. C’est dans ce
contexte très concurrentiel que se sont inscrits les travaux de cette thèse qui visent
à mettre au point des modèles théoriques pour étudier des structures plasmoniques à
base de graphène et de construire des codes de calcul permettant la simulation de leur
comportement.

Les travaux présentés dans ce travail s’articulent autour de deux axes principaux :
(i) le premier concerne l’étude de structures plasmoniques hybrides à base de graphène
et de métaux en absence de champ magnétique statique externe (ii) le second porte
sur l’investigation des propriétés magnéto-optiques et non-réciproques de structures à
base de graphène et de métaux soumises à l’effet d’un champ magnétique.

Dans le cadre de cette thèse, trois structures plasmoniques d’intérêt académique et
technologique ont été explorées. L’étude de chacune de ces structures a été réalisée en
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Résumé

deux étapes. Dans la première étape, les structures en question ont été étudiées de
manière exacte en utilisant des méthodes numériques rigoureuses. Une fois le calcul ex-
act établi et afin de mieux comprendre les résultats obtenus, un modèle semi-analytique
approché a été développé pour chaque structure afin de reproduire de manière simple
les résultats exacts trouvés par des calculs plus ou moins compliqués. Ces modèles sim-
ples ont permis d’interpréter et d’expliquer les spectres optiques des structures étudiées
en termes de certains modes remarquables et de comprendre la physique sous-jacente.

La première structure étudiée est un système plasmonique hybride constitué d’un
réseau périodique, 1D sub-longueur d’onde, fait de nano-fentes gravées dans un métal,
le tout étant déposé sur une couche diélectrique elle même déposée sur une feuille de
graphène. En divisant l’ensemble du système en deux sous-systèmes couplés qui met-
tent en jeux deux types de couplages, nous avons proposé un modèle semi-analytique
permettant de décrire les spectres de ce système et de comprendre l’origine des réso-
nances qui y apparaissent. Par la suite, nous nous sommes intéressés à deux structures
différentes. Tout d’abord, nous avons développé une méthode semi-analytique simple
pour prédire la réponse magnéto-optique d’un réseau périodique de nano-rubans de
graphène soumis à l’effet d’un champ magnétique statique dans lequel le graphène est
modélisé comme une couche anisotrope avec une épaisseur atomique et une permittivité
complexe dépendant de la fréquence. Enfin, nous avons étudié les propriétés magnéto-
optiques et non-réciproques d’une structure plasmonique constituée d’un réseau 2D de
nano-fentes perforant un film d’Or. En étendant le modèle approché 1D développé pour
la première structure, nous avons réussi à étudier et reproduire les spectres magnéto-
optiques de cette structure. Dans un premier temps, nous avons étudié la réponse
de la structure en absence de champ magnétique statique. Dans un deuxième temps,
nous avons ajouté un champ magnétique statique et rempli les fentes par un milieu
gyrotrope.
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Introduction

If the facts don’t fit the theory
change the facts

Albert Einstein

Over the last decades, the control of the behaviour of light as well as light-matter
interactions at the nanoscale, namely nanophotonics, has attracted intensive atten-
tion among the scientific community and became among the most important research
subjects of modern physics. Plasmonics, the central topic of this thesis, is an active
sub-branch of nanophotonics that focuses on the analysis, study and manipulation
of surface plasmons polaritons (SPPs) which are surface electromagnetic waves that
propagate at the interfaces between insulating and conducting media as a result of
the coupling between an external electromagnetic wave and collective oscillations of
free charged carriers [1]. Historically, the first description of (SPPs) dates back to
the beginning of the twentieth century by Wood in 1902 [2] who observed the spec-
tra of a continuous light source and diffracted by an optical diffraction grating. He
noticed a surprising phenomenon: "I was astounded to find that under certain con-
ditions, the drop from maximum illumination to minimum, a drop certainly from 10
to 1, occurred within a range of wavelengths not greater than the distance between the
sodium lines". These phenomena was called Wood’s anomalies. One century after the
Wood’s discovery, plasmonics has attracted a growing and considerable interest arising
from the unique and important properties of surface plasmons polaritons, including
strongly enhanced local fields at the subwavelength scale, tremendous sensitivity to
changes in the local environment, and the ability to localize energy to tiny volumes
not restricted by the wavelength of the exciting light. This makes them among the
most important forms of strong light matter interactions and gave rise to a wide range
of potential applications in many fields. For example, ultrasensitive biosensing [3, 4],
photonic metamaterials [5], photovoltaic devices [6, 7], integrated optical circuits [8],
subwavelength waveguides [9] and optical superlenses [10].

SPPs were first studied in the visible range over noble metals such as gold and sil-
ver that were among the first materials used to devise and study plasmonic structures.
Recently, the infrared (IR) and specifically the terahertz (THz) domains have become
attractive for their benefits in various applications such as medical imaging [11], bi-
ological studies, space exploration, communications [12] and security [13]. Therefore,
extending plasmonic properties to the THz and IR spectra can enable many new ap-
plications. However, in these frequencies ranges, the traditional plasmonic materials
suffer from very large losses and are hardly tunable which limits their applications and
affects the performances of the corresponding plasmonic devices. Hence, finding novel
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and alternative plasmonic materials able to manipulate and generate SPPs in the THz
and IR ranges constitutes a great challenge.

In this context, doped graphene, has emerged in the plasmonics field as a potential
and promising plasmonic material working in in the mid-infrared and terahertz (THz)
spectral windows. Graphene is a two dimensional 2D material made of carbon atoms
arranged in a honeycomb lattice. Since its discovery in 2004 by Geim and Novoselov
[14], this 2D material which, for decades, was predicted to be experimentally unviable,
has generated great interest in scientific studies and technological developments due
to its unusual and fascinating, electronic, optical, mechanical and thermal properties
which originate from its linear electronic dispersion around the so-called Dirac points
and to the massless nature of its charge carriers (Dirac fermions). Indeed, graphene dis-
plays a high theoretical electron mobility that can reach up to 200000cm2V 1s1 [15], high
thermal conductivity [16] and it also shows a good flexibility. Furthermore, graphene is
well known as a transparent material in the visible range where it absorbs only around
2.3% of the incident electromagnetic wave [17]. This property makes graphene suitable
for various optical devices such as touch-screens and light emitting diodes (LED)[18].
In addition to the aforementioned properties, graphene exhibits a wide range of elec-
tromagnetic properties stemming from its unusual optical conductivity which can be
dynamically tuned by electrostatic bias or chemical doping [19, 20, 21].

When graphene is doped via chemical or electrostatic doping , it behaves as an
ultra thin metal and can support surface plasmons polaritons similar to those guided
by noble metals. However, the graphene surface plasmons polaritons (GSPs) exhibit
many advantages compared to their counterparts in metals. In addition to the trans-
verse magnetic (TM) surface plasmons polaritons usually supported by noble metals,
graphene can support a new plasmonic mode in the transverse electric (TE) polar-
ization [22, 23]. This last mode is specific for graphene and cannot exist in noble
metals since the imaginary part of the conductivity is always positive. For graphene,
this mode can take place when the imaginary part of its optical conductivity becomes
negative i.e for frequencies above the interband threshold, the region of spectrum gov-
erned by the interband transitions. However, due to the Landau damping occurring at
the interband threshold, (TE-GSP) can only exist in a very narrow frequency window
(1.667 < ~ω/µc < 2, µc is the chemical potential of graphene). Moreover, these modes
are weakly bound to the graphene surface and their experimental excitation has not
been demonstrated. Furthermore, graphene TM- SPPs are reported to have a high con-
finement and relatively low losses [24]. Another crucial advantage of SPPs in graphene,
over those in noble metals, is their tunability stemming from the simplicity to control
of the chemical potential by electrical gating and doping. These extraordinary features
of SPPs in graphene have been exploited for devising a variety of tunable plasmonic
graphene-based devices in the mid-infrared and terahertz regions of the spectrum such
as optical switches [25], antennas [26], absorbers [27], modulators [28] and sensors [29].

On another hand, it is well known that the conductivity of graphene can be also
tuned by a magnetic bias. Indeed, when a static magnetic field is applied perpendicular
to the graphene sheet, a finite optical Hall conductivity appears and graphene becomes
anisotropic with an asymmetric conductivity tensor. It is also shown that a magnet-
ically biased graphene sheet can exhibit gyrotropic properties which leads to many
magneto-optical (MO) phenomena such as Giant Faraday rotation [30] and Kerr effect
[31]. These phenomena are shown to exhibit non reciprocal properties which may be
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useful and crucial for the development of ultra-thin non reciprocal devices operating at
the microwave and terahertz frequency ranges [32, 33]. Furthermore, in the presence of
the static magnetic field, plasmons and cyclotron excitations hybridise and lead to the
appearance of graphene surface magnetoplasmons polaritons (GSMPPs). These modes
display various important properties and have a great potential in a lot of plasmonic
non reciprocal applications thanks to the combination of the plasmonic properties of
graphene with the magneto-optics effects.

The purpose of this thesis is to explore light matter interactions in graphene in the
framework of plasmonics. The research presented throughout this manuscript focuses
on the theoretical and numerical study of graphene based plasmonic structures work-
ing in the infrared and terahertz ranges. This thesis is articulated around two main
axes. The first axis concerns the study of the behaviour of hybrid plasmonic struc-
tures containing graphene while in the second we investigate the magneto-optical and
non-reciprocal properties of structures based on graphene and metals subjected to an
external static magnetic field.

Dissertation outline
The present thesis is structured into three parts, the first part can be viewed as an
introduction that gives the Theoretical and numerical tools, the second part is devoted
to the investigation of hybrid plasmonic structures based on graphene and finally the
last one is dedicated to the study of magneto-optical and non-reciprocity properties of
structures based on graphene and metals. Below, we provide a brief description of the
content of each chapter.

chapter 1 | Theoretical Background
In this first chapter, we provide the theoretical background necessary for under-
standing this thesis. We begin with an overview of the electronic properties of
graphene. Then, we describe the magneto-optical conductivity model of graphene
characterizing its optical response. After a brief introduction on the foundations
of plasmonics, we discuss the different plasmonic modes that can propagate along
a graphene sheet and their existence conditions. Finally, we review the basic
properties of these modes

chapter 2 | Numerical Tools
This chapter is dedicated to the description of the numerical tools that will be
used in the analysis of the structures studied in this thesis. After presenting the
generic multigrating structure, we describe and explain the different numerical
methods used for modelling it. In the last section of this chapter, a comparative
study will be made between these methods in terms of convergence and stability
to identify the most suitable one for each structure.

chapter 3 | Metallic slit grating-Graphene composite structure
In this chapter we present a semi-analytical model of the resonance phenomena
occurring in a hybrid system made of a 1D array of periodic sub-wavelength slits
deposited on an insulator/graphene layer. We show that the spectral response of
this hybrid system can be fully explained by a simple semi-analytical model based
on a weak and a strong couplings between two elementary sub-systems. The first
elementary sub-system consists of a 1D array of periodic sub-wavelength slits
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viewed as a homogeneous medium. In this medium lives a metal-insulator-metal
lattice mode interacting with surface and cavity plasmon modes. A weak coupling
with surface plasmon modes on both faces of the perforated metal film leads to
a broadband spectrum while a strong coupling between this first sub-system and
a second one made of a graphene-insulator-metal gap leads to a narrow band
spectrum. We provide a semi-analytical model based on these two interactions
allowing to efficiently access the full spectrum of the hybrid system.

chapter 4 | Basic concepts
This chapter reviews the theory and the basic concepts of the third part of this
thesis, we will present the notions of reciprocity and non reciprocity in general and
in particular, we will focus on the non reciprocity caused by a static magnetic
field. In the next part of this chapter, we will investigate graphene under the
presence of an external static magnetic field with focus on its gyrotropic and non
reciprocal properties.

chapter 5 |Propagation properties of a magnetically biased array of graphene
ribbons
This chapter is devoted to the theoretical study of the magneto-optical prop-
erties of a magnetically-biased sub-wavelength graphene strip grating. For this
purpose, we propose a simple and fast semi analytical model that allows to suc-
cessfully compute its transmittance and reflectance. It is based on the effective
medium approach where the graphene is modelled as an anisotropic layer with
atomic thickness and a frequency dependent and complex permittivity tensor.
The accuracy of the proposed model will be validated by comparing it on the one
hand with The PMM method and on the other hand with the effective medium
approach proposed in [34].

chapter 6 | Theoretical analysis of Optical Hall effect in a 2D nano-cross-
slits grating
In this last chapter, We theoretically demonstrate the nonreciprocal behaviour,
for circularly polarized electromagnetic waves, of a 2D crossed-grating made of
nano-slits filled with a gyrotropic material. We provide closed-form expressions
for the reflection and transmission of the system, allowing one to fully describe
and understand the extraordinary optical transmission (EOT) mechanism occur-
ring in the system. When the slits are filled with a gyrotropic material, the struc-
ture exhibits non-reciprocal unidirectional light transmission in the frequency
range where the EOT occurs. This will be fully explained through the proposed
modal analytic analysis.
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Chapter 1
Theoretical Background

If learning the truth is the
scientist’s goal, then he must
make himself the enemy of all
that he reads.

Ibn Al-Haytham
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In this chapter some fondamentals on graphene physics will be given. First, we
will present a brief overview of the electronic properties of graphene including the
lattice and the electronic configuration resulting from that lattice. After that, we will
review the basic properties of the optical conductivity of graphene and introduce the
fundamental concepts of plasmonics. These concepts will be used to investigate the
electromagnetic behavior of the surface plasmons polaritons guided by the graphene
and outline their properties

1.1 Fundamentals of graphene

1.1.1 Electronic properties
In this section, The electronic properties of graphene will be presented. First, we
describe the crystal structure of graphene and the graphene carbon bonding. We then
apply these concepts to derive the electronic band structure of graphene by using the
tight binding model and explain the relativistic behavior of the charge carriers near
the Dirac point.
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Crystal structure

atom A 

atom B 

Figure 1.1: (a)Graphene honeycomb lattice, made out of hexagonal primitive cells. ~a1 and
~a2 are lattice unit vectors and ~δ1,~δ2 and ~δ3, are the closest neighbours vectors (b) Brillouin
zone: reciprocal lattice of graphene with reciprocal lattice vectors ~b1 and ~b2. Γ, M ,K and K ′
are the high symetry points in the recipcal space

Graphene is a single two dimensional sheet made up of carbon atoms arranged on
a honeycomb lattice. This structure can be thought of as a hexagonal Bravais lattice
with two carbon atoms per unit cell represented as A and B in figure 1.1. The direct
lattice vectors of the hexagonal Bravais lattice are given as:

~a1 = a

2
(√

3, 3
)

~a2 = a

2
(
−
√

3, 3
)

(1.1)

With a = 1.42Å is the interatomic distance and the nearest neighboring atoms are
represented by the vectors :

~δ1 = a

2
(√

3, 1
)
, ~δ2 = a

2
(
−
√

3, 1
)
and ~δ3 = a

2 (0,−1) (1.2)

The reciprocal lattice of graphene has also a hexagonal lattice but rotated 90◦ with
respect to the direct lattice (see figure 1.1. The reciprocal basis vectors can be expressed
as :

~b1 = 2π
3a
(√

3, 1
)

~b2 = 2π
3a
(
−
√

3, 1
)

(1.3)

As shown in Figure 1.1 (b) the first brillouin zone (BZ) of the reciprocal lattice
has a hexagonal shape. The six points of the corners of this zone are called the Dirac
points. Every second corner is equivalent, because they differ only by the addition
or subtraction of a basic vector. Only two points K = (2π/3a, 2π/3

√
3a) and K ′ =

(2π/3a,−2π/3
√

3a) of these points are inequivalent.
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The high symetry points are also presented in figure 1.1 (b). These points are Γ at
the center, M the center of an edge and inequivalent hexagonal corners K et K ′ of the
Brillouin zone. The position of the M and K can be given by:

~ΓM = 2π
a

(√
3, 0

)
~ΓK = 2π

a

(
1/
√

3, 3
)

(1.4)

Carbon bonds in graphene

The carbon atom, the unique and principal constituent of graphene, has four valence
electrons with an atomic configuration 2s22p2. In the crystalline phase, these four
valence electrons give rise to four valence orbitals (2s, 2px, 2py, 2pz ), which can
be mixed in many different ways in spn, n = 1, 2, 3 hybridizations to form a variety
of carbon materials with different bonding configurations. In graphene, the valence
orbitals (2s, 2px, 2py) mix to produce three identical sp2 hyprid orbitals, which form
120◦ angles in the plane of graphene (see Figure 1.2). These sp2 orbitals form three
strong, covalent σ bonds in the xy plane as shown in Figure 1.3. These bonds are
responsible for the rigidity and the mechanical stability of graphene. However, since the
σ band in graphene is completly filled, its electrons do not contribute to the electronic
properties of graphene. Around the Fermi energy, the remaining pz-orbitals, which
have a small overlap, give rise to weak delocalized covalent π bonds. It is this bonding
that are responsible for the electronic transport and optical properties of graphene.
That is why, in the next section , in order to calculate the electronic band structure of
graphene, we will adopt the tight binding method to model only the π band.

𝑠𝑝2

2𝑝𝑧

Figure 1.2: Graphical representation of the sp2 and spz orbitals in graphene. Adapted from
[1]

The electronic Band Structure: Tight binding model

In the present section, we will use the tight-binding approximation to derive the elec-
tronic dispersion relation of graphene. According to work done by Wallance [2], this
method provides a good description of the band structure of graphene, where the over-
lap of the 2pz orbitals is small. In this model and using the Bloch theorem, the wave
function of the electron in graphene is described as a linear combination of the 2pz
orbitals and can be written as the superposition of the orbitals of the carbon atoms A
and B:
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Figure 1.3: σ and π bonds in graphene. For forming the graphene’s honeycomb lattice, each
sp2 orbital overlaps with an sp2 orbital of a neighboring atom to create a σ bond, while the
remaining pz orbitals gives rise to a π bound. Adapted from[1]

Ψ(~k, ~r) = CA(~k)ΦA(~k, ~r) + CB(~k)ΦB(~k, ~r) (1.5)

where ΦA(~k, ~r) and ΦB(~k, ~r) are the Bloch wave functions given by:

Φj(~k, ~r) = 1√
N

N∑
~Rj

ei
~k ~Rjφ(~r − ~Rj) (j = A or B) (1.6)

~RA and ~RB are the vectors position of A and B sites, respectively and φ(~r) is the
wave function of the 2pz orbital. The energy states are determined by solving the
shrodinger equation:

ĤΨ = E(~k)Ψ (1.7)
with Ĥ being the Hamiltonian of the crystal. By inserting electron wave function

to Eq 1.7 and integrating over the entire lattice, we obtain the following two equations:

HAACA +HABCB = ESCA

HBACA +HBBCB = ESCB
(1.8)

Here Hjj′ =< Φ|H|Ψ > (j, j′ = A,B) and S =< Φ|Ψ > are the transfer integral
and the overlap integral matrices, respectively. The entire problem can be reduced to
a eigenvalue problem and equation 1.8 can be written as:(

HAA(~k) HAB(~k)
HBA(~k) HBB(~k)

)(
CA(~k)
CB(~k)

)
= E(~k)S

(
1 0
0 1

)(
CA(~k)
CB(~k)

)
(1.9)

the energy eigenvalues are therefore obtained by solving :

det(H − ES) = 0 (1.10)

which gives the electron band structure of graphene as:
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E ± (kx, ky) = ±γ
√

3 + f(kx, ky) (1.11)

f(kx, ky) = 2cos(
√

3aky) + 4cos(
√

3
2 aky)cos(

3
2akx) (1.12)

where γ = 2.8eV refers to the nearest neighbor hopping energy [3] . A (+) sign
corresponds to the conduction (π) band and a (-) sign to the valence(π∗) band. The
electronic dispersion relation of Eq 1.12 is shown in Figure 1.4. We can see two sym-
metrical energy bands around energy 0. The upper one is the conduction band and the
lower is the valence band. These two bands meet at six distinct points in the Brillouin
zone and creat the zeros band gap . As pointed out above, due to the symmetry, only
two points (K,K ′) are inequivalent and are called Dirac points. Since there are two π
electron per unit cell (for intrinsic graphene) and taking into account spin degeneracy,
the valence band is completly filled and the conduction band is completly empty. This
means that graphene can be seen as a zero gap semiconductor (the density of electronic
states (DOS) is zero at Fermi level) or even as a semi metal.

(a) (b)

Figure 1.4: Electronic band structure of graphene calculated by using the tight binding model
for the whole first brillouin zone.(a) The electronic energy dispersion of graphene: Valence
and conduction band are symmetrical around E = 0 and touch each other in six points in
the Brillouin zone, which are called Dirac points. (b) Projected color plot of the conduction
band

Band structure close to the K and K ′ points

As mentioned above, the two bands touch at Dirac points K and K ′. Near these
points and with a simple Taylor development, the electronic relation dispersion is
approximated by the linear symmetric Dirac cone equation:

E(~k) = ±~vf | ~δk| (1.13)
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where ~k = ~K + ~δk with | ~δk| � | ~K| and ~δk is the 2D wave vector mesured from
Dirac point. vf denotes the Fermi velocity defined by vf = 3aγ

2~ ' 106ms−1.

Figure 1.5: Dirac cones at K point

Unlike conventional 2D materials, which have a quadratic dispersion relation, the
electron dispersion relation in graphene shows linear behavior and is independant of
the electron mass and energy. This relation is similar to the dispersion of relativis-
tic particles with vanishing mass like photons in free space. In other words, elec-
trons in graphene near the Dirac points behave like ultra-relativistic massless Dirac
Fermions and follow the 2D Dirac equation. This unique band structure in graphene
leads to important properties such as high electron mobility that can reach up to
200000cm2V−1s−1[4], high thermal conductivity [5] and broadband transparency. One
of the most important consequences of this unique energy spectrum is the tunibility of
its properties stemming from the dependance of its optical conductivity on the chem-
ical potential which can be varied by applying a backgate voltage on the graphene.
Another intreresting consequence of this band structure is the ability to provide unsual
conductivity with negative imaginary part induced by the dominance of the interband
transitions.This leads as we will investigate below to exotic effects such as the appear-
ance of a new plasmon mode in TE polarization.

1.1.2 Graphene doping
We have pointed out in the previous section that, one of the important consequences
of the unusual electronic band structure of graphene is the tunability. Indeed, the
chemical potential (Fermi Level) that defines the density of charge carriers and thus
the conductivity of graphene can be controlled by doping. For pristine graphene, the
Fermi Level is located at the Dirac point. This means that the conduction band is
completly filled while the valence band is fully empty. When a doping is applied,
the Fermi level can be moved up or down and then some holes (electrons) can be
created in the valence (conduction) band (see figure 1.6). The common methods used
to modify the fermi level on graphene are namely chemical doping and electrostatic
doping (electric field effect). The chemical doping consists of adding other atoms,
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π band 

π∗ band 

𝐸𝐹  

π band 

π∗ band 

𝐸𝐹  

π band 

π∗ band 

𝑘𝑥 𝑘𝑦 

𝐸 

𝐸𝐹  

π band 

Figure 1.6: Variation of Fermi level in graphene as a function of doping: Band structure of
pristine graphene (EF = 0 eV),n-doping (EF > 0) and p-doping (EF < 0), respectivily.

known as adatoms, which will become either donor dopant or acceptor dopant. The
created carriers are then free to move and will participate in the conduction. For
graphene, many molecules and absorbant atoms have been used to modify the doping
concentration such as Bi, Sb, Au,H2O,NH3, NO2, F4− TCNQ.... [6].

Si

Si𝑂2

𝑉𝑔

(a) (b)

Figure 1.7: (a) Electrostatic doping device.(b) Variation of resistivity plotted as a function
of gate voltage Vg (Adapted from [7]).

The second method: the elctrostatic doping has usually been explored to control
the electronic and magnetic properties of graphene. This method allows to modify the
charge density and consequently the chemical potential without increasing the level of
disorders and defects in graphene [8, 9]. It is based essentially on applying of a potential
difference between two terminals to induce capacitance in a device (which usually
behave as a parallel-plate capacitor). The basic device used to achieve electrostatic
doping in graphene is shown in figure 1.7 (a). It consists of a graphene sheet deposited
on an insulating layer of silicon dioxide (SiO2) that act as a dielectric spacer. The
whole structure is deposited on a heavily doped silicon substrate serving as back gate.
Applying a gate voltage Vg between the graphene and the back gate induces a surface
charge density which can be given as follows:
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n = ε0εr
te

Vg = αVg (1.14)

Such that εr is the permittivity of the SiO2 layer that is set here to be equal to
3.9, t is its thickness and e being the electron charge. One can clearly see from this
equation that changing the gate voltage leads to directly modify the charge carrier
density in graphene and then its Fermi level which can be calculated throught the
relation µc = ~vf

√
πn. Figure 1.7 (b) displays the behaviour of graphene resistivity as

a function of gate voltage for a graphene devise on Si/290nm. For pristine graphene,
The Femi level is located at the Dirac point where the density of states vanishes. This
point corresponds to a peak of resistivity for Vg = 0 V. When, the Fermi level is shifted
away from the Dirac point by varying the back gate voltage, the resistivity decreases
with the increase of gate voltage.

1.1.3 Electromagnetic properties of graphene: Conductivity
Model

In this section, we are going to describe the Magneto-optical Conductivity Model of
graphene in its most general form, which we will use to study interactions of elec-
tromagnetic waves with graphene. The graphene Conductivity will also be used in
the next section to derive the dispersion relation of the surface plasmons polariton on
graphene and in chapter 5, to study the surface magnetoplasmons under the presence
of a static magnetic field.

Due to its gapless electronic band structure and its monoatomic thickness, the elec-
tromagnetic properties of graphene can be characterized by its surface conductivity. In
the general case and when a uniform static magnetic field is applied perpendicularly to
the graphene sheet, graphene becomes anisotropic with an asymmetric 2×2conductivity
tensor of the form:

σ =
(
σxx σxy
σyx σyy

)
=
(
σL σH
−σH σL

)
(1.15)

Where σL and σH are the longitudinal and Hall conductivities of the graphene,
respectively. For typical magnetic fields B ≤ 15T when the Zeeman effect is negligible,
these conductivities can be obtained through a quantum mechanical analysis using the
equation of motion approach (EOM) [10]:

σL(H)(ω) = e2

h

∑
n6=m

ΛL(H)
nm

iEnm

nF (En)− nF (Em)
~ω + Enm + iΓ (1.16)

with e being the charge of the electron, h is the Planck constant, Γ is a phenomeno-
logical scattering rate which represents the loss mechanisms in graphene, nF (En) =
1/(1 + exp((En − µc)/kBT )) is the Fermi-Dirac distribution where µc is the chemical
potential, kB is the Boltzmann constant and T is the temperature . Enm = En − Em
stands for the Landau Level (LL) energy transtion with En = sign(n)(~υf/lB)

√
2|n|

is the energy of the n-th LL, n = 0,±1,±2.... , lB =
√
~/(eB) denoting the magnetic

length and υf = 106ms−1 is the Fermi velocity. By using the selection rule of LLs
transition, the longitudinal and Hall transition matrix elements can be respectively
given by:
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ΛL
nm =

~2υ2
f

l2B
(1 + δm,0 + δn,0) δ|m|−|n|,±1 (1.17)

ΛH
nm = iΛL

nm

(
δ|m|,|n|−1 − δ|m|−1,|n|

)
(1.18)

It is of fundamental importance to notice that, in graphene, light/ matter interaction
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Figure 1.8: Real and imaginary parts of the longitudinal magneto-optical conductivity σL as
a function of photon energy computed using the full quantum model for B = 7T , µc = 0.2
eV ,T = 17K and Γ = 6.8meV

involves two main transition mechanisms wchich explain its magneto-optical response:
the first being the interband contribution and the second is the intraband contribu-
tion. For doped graphene, the intraband transitions occur within the same band and
dominate at low photon frequencies i.e for photon energies below the interband thresh-
old. While, the interband transitions, connecting LLs in the valence and conduction
bands, arise at frequencies close or above the interband threshold. Hence, the graphene
magneto-optical conductivity can be written as the sum of these two contributions Fig-
ure 1.8 shows the real (blue) and imaginagy (red) parts of the longitudinal component of
the magneto optical conductivity of graphene computed from equation 1.16 for B = 7
T, µc = 0.2 eV ,T = 17 K and Γ = 6.8meV. One can see that the conductivity of
graphene presents a set of absorption peaks. At low frequencies, we can observe a peak
which is called intraband peak and as its name indicates is due to the intraband transi-
tion. While, the remaining absorption peaks occurring at high frequencies specifically
above the intraband threshold (ω = 2µc/~) correspond to the different allowed LLs
interband transitions.

It can be seen from equation 1.16, that the components of the conductivity tensor
depend significally on the frequency, magnetic field and chemical potential. Based to
the strength of the applied magnetic field and the doping of the graphene in question,
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Figure 1.9: Real and imaginary part of the longitudinal magneto-optical conductivity σL in
units of e2/h as a function of photon energy computed using the full quantum model for
µc = 0eV . The Other parameters are the same as in figure 1.8 (Quantum Hall regime)

we can explore two different regimes that characterize the magneto-optical response of
graphene:(i) the semiclassical regime, given by low fields and/or high electronic density
and (ii) the quantum hall regime of strong fields and /or low electronic density.

For lowly doped graphene where no intraband transitions can take place, the
magneto-optical conductivity is fully described by interband transitions and graphene
is in the quantum Hall regime. Whereas, in the limit of no interband transition and for
high doping i.e µc >> ~ω and µc >> kBT , graphene is in the semiclassical regime and
its conductivity is dominated by the intraband contributions . In this case, the general
quantum mechanical conductivity reduces to the semiclassical Drude model form [10]:

σL = e2τµc
~2π

1− iωτ
(1− iωτ)2 + (τωc)2 (1.19)

σH = −e
2τµc
~2π

τωc
(1− iωτ)2 + (τωc)2 (1.20)

Such that τ = 1/Γ being the relaxation time and ωc = eBυ2
f/µc is the graphene’s

cyclotron frequency.
Figure 1.9 depicts the longitudinal conductivity of graphene in units of e2/h versus

the photon energy in the absence of gate voltage when the chemical potential is equal
to zero(µc = 0 eV). Similar to figure 1.8, a sequence of absorption peaks are observed.
However, in this case, there is no intraband contribution and only interband transitions
are allowed. it can be also seen that the conductivity never vanishes even for very low
chemical potential µc = 0eV.

An example of the longitudinal conductivity of graphene in the semiclassical regime
using equation 1.20 is shown in figure 1.10 where the semi classical result is plotted
with solid line and the full quantum solution with the dashed line. We can clearly
observe an excellent agreement between the two Models.
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Figure 1.10: Real and imaginary parts of the longitudinal magneto-optical conductivity σL in
units of e2/h as a function of photon energy for B = 5 T, µc = 0.6 eV , T = 17K and Γ = 1.3
meV . The solid lines represent the semiclassical model and the dashed lines represent the
full quantum results.

Let us now consider the limiting case when the magnetic field is low(B → 0). In
this limit, the landau levels become dense and very close to each other. Therefore,
these discrete levels turn out to a continuum and then the series shown in equation
1.16 converge into integrals, which yields:

σL(ω, µc,Γ) = −iσ0(ω + 2iΓ)
π

×
(

1
(ω + 2iΓ)2

∫ ∞
0

ε

(
∂nF (ε)
∂ε

− ∂nF (−ε)
∂ε

)
dε

−
∫ ∞

0

nF (−ε)− nF (ε)
(ω + 2iΓ)2 − 4(ε/~)2 dε (1.21)

and

σH(ω, µc, B0,Γ) =
−σ0v

2
feB0

π

(
1

(ω + 2iΓ)2

∫ ∞
0

(
∂nF (ε)
∂ε

+ ∂nF (−ε)
∂ε

)
dε+∫ ∞

0

1
(ω − 2iΓ)2 + 4(ε/~)2 dε (1.22)

where σ0 = e2/(4~) is called the universal conductivity of graphene [11] .
At zero magnetic field (B = 0) (which is the case of our studies in the second part

of the thesis), the Hall conductivity vanishes and graphene can be considered to be
isotropic. In this situation, the conductivity is given by its longitudinal component
and as shown in equation 1.21 is independent on the magnetic field [12, 13, 14].

The first term in 1.21 corresponds to the intraband contributions and it can be
analytically evaluated as:

25



CHAPTER 1. THEORETICAL BACKGROUND

σintra = i8σ0kBT

π(~ω + i~γ) ln
(

2 cosh( µc
2kBT

)
)

(1.23)

In general, the second term which is due to the interband contributions cannot
be evaluated analytically. However, it can be put into a more appropriate form for
numerical calculations as follows:

σinter = σ0

G(~ω2 ) + i4~ω
π

∫ ∞
0

G(ε)− G(~ω2 )
(~ω)2 − 4ε2 dε

 (1.24)

With G(x) = sinh(x/kBT )
cosh(µc/kBT ) + cosh(x/kBT ) .

At low temperatures when the conditions (kBT � |µc|, ~ω) are fulfilled, the intra-
band conductivity follows the usual Drude form that describes the collective behavior
of free electron :

σintra = σD = i4σ0µc
π(~ω + i~γ) (1.25)

In this limit, the interband term can be approximated as [12]

σinter = σ0

(
θ(ω − 2µc)−

i

π
ln

∣∣∣∣∣ω + 2µc
ω − 2µc

∣∣∣∣∣
)

(1.26)

where θ denotes the Heaviside step function presenting the condition necessary for
interband electron transitions at low temperatures.
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Figure 1.11: the real (blue line) and the imaginary(red line) part of the graphene conductivity
in units of σ0 versus dimensionless frequency ω = ~ω/µc for B = 0T T = 10K, µc = 0.2eV
et γ = 3.3 meV

The isotropic total, intraband and interband conductivities, when the magnetic
field vanishes, are respectively represented in figures 1.11 and 1.12. The conductivity
is normalized to the universal conductivity σ0, while the frequency is normalized to
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Figure 1.12: Real and imaginary parts of (a) the intraband conductivity and (b) the interband
conductivity calculated at zero magnetic field.

ωn = µc/~. As the anisotropic case, one can see that the total conductivity as well as
the interband part show a threshold frequency in ωs = ~ω/µc = 2, it is the threshold for
interband transitions which marks the limit between two transitions regions:(i) Drude(
intraband transitions) region and (ii) interband transitions region) which corresponds
to the onset of the interband transitions in graphene. Indeed, at low frequencies i.e
for frequencies below ωs the conductivity is governed by its intraband contributions
described by the Drude conductivity. Within this region of the spectrum, typically
from the Terahertz to the far infrared region, the imaginary part of the conductivity
is positive. In the vicinity of the threshold frequency, the real part which determines
the optical loss in graphene, shows a step and it increases drastically towards the
universal value, while the imaginary part changes sign to become minimal and negative.
For photon frequencies above the threshold frequency ω � ωs, where the interband
transitions are dominant, the real part remains equal to σ0 and the imaginary part is
still negative but it is almost equal to zero. It is for this reason that , within the near
infrared and visible region, the graphene monolayer is considered to be a transparent
material. It transmits almost all visible light and absorbs only πα = 2.3% of the
incident light (α being the fine-structure constant) [11, 15]. The imaginary part, as
we will see in the next section, plays a crucial role for describing the characteristics
of surface plasmons on graphene as well as their conditions of existence. It is also
important to notice that throughout this thesis we are interested in structures in the
range of frequencies lying in the far-infrared and terahertz bands where the conductivity
is well represented by the Drude conductivity. Having presented the general electronic
properties of graphene and decribed the magneto-optical conductivity model, we now
turn to study the surface plasmons on graphene.

1.2 Theory of graphene surface plasmons polari-
tons (SPPs)

In the previous section of this chapter, we have shown that the optical response of
graphene under the influence of external electromagnetic fields is characterized by its
optical surface conductivity described within a quantum approach based on the EOM
method. In the isotropic case when B = 0, this model will be used in this section to
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study the surface plasmons polaritons propagating along a single graphene monolayer
and to explaind some of their properties. Specifically we are interested in deriving their
dispersion relation which relates the frequency of (SPPs) to its wave vector. However,
before going into the details of graphene (SPPs), we need to provide a brief review
on the fondamentals of plasmonics. In particular, we focus on the properties of the
(SPPs) propagating at metal-dielectric interfaces .

1.2.1 Surface plasmons polaritons at planar interfaces
Drude Model of a Metal: Plasmons and Surface Plasmons

Noble metals play an important role in the field of plasmonics and they can be con-
sidered as the building blocks for several plasmonic structures. Their optical response
characterized by their electric permittivity can be well described by the Drude Model
(proposed by Paul Drude in 1900 [16]). In this Model, the metal is considered to be
as a gas made up of free conduction electrons moving against a fixed background of
positively charged ions: a dense gas of charged particles called plasma. Collective os-
cillations of this plasma can propagate in the volume of the metal forming the so called
plasma oscillation (see figure 1.13(a)). The quantum of plasma oscillations is called
plasmon and its energy is given by ~ωp where ωp is the plasma frequency:

ωp =
√
Nee

2

ε0me

(1.27)

Ne is the electron density, e the elementary charge, ε0 the permitivity of the vaccum
and me the electron free mass.

This model is based on the kinetic theory of electrons in a metal which assumes that
the microscopic behaviour of electrons may be treated within a classical approach and
only simple collisions of electrons with the ionic lattice are allowed. As a consequence,
the dielectric permittivity can be written as:

εDrude(ω) = 1−
ω2
p

ω(ω + iγ) (1.28)

where γ is a damping constant that takes into account the electrons scattering
inside the metal.

(a) (b)

Figure 1.13: Schematic illustration of electronic charge density oscillations of (a) a bulk
plasmon in a Metal (b) a surface plasmon at the interface between a dielectric and a metal
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There are two kinds of plasmons: the first one is the bulk or volume plasmon which
corresponds to the oscillation of three-dimensional (3D) eletron gas occurring inside
the metal. When the Metal is not infinite but limited by a surface, a second kind of
plasmons is allowed: surface plasmons: the surface waves propagating at the interface
between a metal and a dielectric. These collective oscillations can couple to light,
creating hybrid modes which are referred to as Surface Plasmons Polaritons(SPPs).
The illustration of both bulk plasmons and surface plasmons are shown on Figure 1.13.
Let us underline that, for the work presented within this thesis, we are only interested
in the SPP modes.

Existence conditions and dispersion relation

SPPs are surface modes that arise as special solutions of Maxwell’s equations. In order
to understand their physical properties and discuss their existence conditions, we have
to apply these equations to the flat interface between a metal and a dielectric and
obtain the field profile and the dispersion relation . Let us consider a planar interface
separating two semi infinite, homogeneous and isotropic media. One medium is a metal
characterized by its permittivity ε(ω) given by the Drude Model stated above (z < 0).
The other meduim is a dielectric with dielectric constant εd at z > 0. Figure 1.14
depicts a schematic representation of the structure under study. The interface between
the two media is located in the xoy plane (infinite along y) and the z axis is assumed
to be perpondicular to it. In this geometry, we assume that the SPP wave propagates
along the x direction with a wavevector ksp and there is no variation in the y direction
(∂y = 0).

Figure 1.14: Schematic description of a SPP propagating along a metal dielectric interface.

Assuming a harmonic form of Maxwell’s equations and adopting the temporal con-
vention e−iωt, the y component of the electric (TE) and magnetic (TM) fields can take
the form: u(x, z) = U(z)eiαx. In each medium, the field u(x, z) satisfies the folowing
Helmholtz equation:

4u+ k2
0εpu = 0 (1.29)

Here εp is the permitivity in each meduim (p = d,m) and k0 = ω/c is the wave
vector of the propagating wave in vacuum. We will now distinguish the two sets of
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polarization modes of the electromagnetic field, The TM (transverse magnetic or p-
polarized) mode corresponding to a magnetic field perpendicular to the incidence plane
and TE(transverse electric or s-polarized) mode corresponding to a magnetic field lying
in the plane of incidence. In the case of TM polarization, only the Ex,Ez and Hy will
be non-zero, u(x, z) = Hy(x, z) and the equation 1.29 becomes:

∂2Hy

∂z2 + (k2
0εp − α2)Hy = 0 (1.30)

We are looking for bound solutions that propagate along the interface and decay
away from it. Thus, they can be expressed as :{

Hmy = Aeiαxeγmz z < 0
Hdy = Beiαxe−γdz z > 0 (1.31)

where α indicates the parallel component of the wave vector corresponding to the
propagation of the wave along the x direction.γd/m =

√
α2 − k2

0εd/m are the components
of the wave vector perpondicular to the interface and since the field evanescently decays
in this direction, they must have positive real part. A and B represent the amplitudes
of the field in each of the two media. Applying the following boundary conditions at
the interface z = 0:

Hmy(z = 0) = Hdy(z = 0)

1
εm

∂Hmy

∂z
(z = 0) = 1

εd

∂Hdy

∂z
(z = 0)

(1.32)

Yields: 
A = B

γ′mA = −γ′dB
(1.33)

with γ′d(m) = γd(m)

εd(m)
, which gives :

γ′m + γ′d = 0 (1.34)

Let us analyze equation 1.34 to obtain the conditions which have to be fulfilled
for surface plasmons under TM polarization. One can see that since γd et γm have
positive real parts, this equation requires that εm et εd must have opposite signs. That
means the permittivity of metal must be negative (εm < 0). This requirement is largely
fulfilled by many metals in the visible and near infrared ranges.

By following, a similar approach for TE polarization, the boundary conditions at
the interface lead to γm + γd = 0, which cannot be satisfied and consequently TE SPP
modes cannot exist and this set of solutions is thus discarded.

Replacing γd et γm by their expressions in equation 1.34, we obtain the SPP dis-
persion relation:

ksp = α = k0

√
εdεm
εd + εm

(1.35)

It is worth noting that in addition to the condition stated above, this relation
imposes a second condition on the permitivities of both media. Indeed, to have a prop-
agative wave, ksp must have a real part. Since the product of the dielectric fonctions
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is negative (εdεm < 0), the sum in the denominator of equation 1.35 should be also
negative. This condition implies that:

ω < ωsp = ωp√
1 + εd

(1.36)

From this, we conclude that The SPP exists when εm is negative and larger in
magnitude than the dielectric permittivity εd and only for frequencies below the surface
plasmon resonant frequency ωsp.
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Surface Plasmon

Volume Plasmon

Figure 1.15: Dispersion relation of a surface plasmon polariton (SPP) at an air-gold interface
. The gold dispersion is described by the Drude Model when the damping constant is assumed
to be equal to zero ( ωp = 9 eV and γ = 0). The light line is shown in solid black line. The
horizontal red dashed lines correspond , respectivily, to the normalized surface plasmon fre-
quency ωsp and the volume plasmon frequency. The frequency and the propagation constant
are normalized to the plasma frequency of gold

Note that the above calculations are carried under the assumption that the losses
are negligible in the metal. In the case of a real metal (with losses), where the dielectric
function of the metal is complex εm(ω) = ε′m(ω)+ iε′′m(ω). The surface wave associated
to the SPP will be attenuated by the presence of losses in the metal, which lead to a
complex ksp = k′sp + ik′′sp constant propagation. Assuming that |ε′m| � ε′′m , the real
and imaginary parts of ksp will be given by :

k′sp = k0

(
ε′mεd
ε′m + εd

)1/2

(1.37)

k′′sp = k0

(
ε′mεd
ε′m + εd

)3/2
ε′′m

2ε′m2 (1.38)

Let us now examine the properties of (SPP) by considering the dispersion relation
given by equation 1.35. At this point, it is instructive to introduce dimensionless
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parameters. For that, we normalize the frequency and the wave vector according
to gold’s plasma frequency: ω = ω/ωpAu and α = αc/ωpAu. Figure 1.15 shows the
dispersion relation for a surface plasmon polariton in the interface between vacuum
(εd = 1) and a metal, where, we use the Drude Model without loss (ωp = 9 eV
corresponding to fpAu = 2.176× 1015Hz and γ = 0) to calculate the gold permittivity.
The free space dispersion relation of equation ω = α is also presented.

We can distinguish two energy branches in the dispersion relation curve. The first
branch for which ω < ωsp, (ωsp = 1/

√
1 + εd = 1/

√
2) corresponds to a surface plasmon

polariton (SPP), while the second one for which ω > 1 represents the propagation of
bulk modes inside the metallic plasma. In this latter case, the metal is transparent
(i.e εm > 0) and thus γd et γm become imaginary allowing then the propagation of
unbound radiation. For ω < ωsp < 1, the dispersion relation curve shows a gap for
which no propagative mode can exist, since α is imaginary in this frequency region.
At low frequencies, the dispersion relation follows closely the light line, so in this
region the SPP possesses a photon like nature. When ω approaches gardually ωsp, the
dispersion curve starts to depart from the light line. In the limit where ω → ωsp, the
group velocity vg = ∂ω/∂α vanishes and the surface plasmon resonance can occur at
this frequency. In this case, the surface plasmon polariton ( that is a hybrid mode)
becomes a pure surface plasmon.

As can be observed from figure 1.15, the SPP dispersion curve is always below that
of light and they do not cross at any point. In other words, for a given frequency
the wavevector of the SPP is always higher than that of light. As a result of this
wavevector mismatch, a direct excitation of SPPs with an electromagnetic wave is not
possible and we say that the SPP is a non radiative mode. To overcome this limitation,
various special excitation techniques have been proposed to deal with the wavevector
mismatch allowing then the coupling between light and SPPs. Having understood
the properties of SPPs guided by a metallic interface, we are now ready to study the
properties of the surface plasmons polariton supported by a graphene sheet.

1.2.2 Surface plasmons polaritons on graphene (GSP)
Owing to its semi-metallic nature, graphene can support electronic collective oscilla-
tions similar to that guided by the conventional 2D electron gases and noble Metals
(see figure 1.16). These modes are called graphene surface plasmons which hereafter
will be named simply GSP. In this section, we review the basic properties of graphene
surface plasmons including their dispersion relation, localization and propagation.

Electrodynamic models of graphene

Before delving into calculations details of the dispersion relation of the GSPs modes, it
is useful to present the different methods for electromagnetic modeling of graphene. In
this section we present the two popular models encountered in the literature [17] and
we perform a comparaison between them by calculating the transmittance, reflectance
and absorbance through a single graphene layer surrounded by two dielectric media.

First approach: This approach, called Single Sheet Approach or Zero Thickness
Model (ZTM), has been employed in several works [18, 19, 20]. Within this model,
graphene is considered as a (2D) conductive sheet characterized by its surface conduc-
tivity σg (see figure 1.19a).

Second approach: In this second model, graphene is treated as an extremely thin
film with a very small finite thickness ag, which later we will tend it towards zeros
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Magnetic (TM), Electric (TE) Field 

Figure 1.16: Schematic representation of the plasmon polariton mode on a graphene sheet:
The charge density oscillations for TM(TE) waves can be represented in terms of electric
(magnetic) dipole waves.
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Figure 1.17: Schematic representation of the two configurations considered for modeling of
graphene.

(ag −→ 0). For this thick layer, we define a volume conductivity that can be deduced
from its surface conductivity:

σg,v = σg
ag

(1.39)

Thus, the volume current density in graphene can be given by:

~Jv = σg,v ~E (1.40)

The Ampere-Maxwell equation states that:

~∇× ~H = ~Jv + ∂ ~D

∂t
= σg,v ~E − iωε0εr ~E (1.41)

where ~D = ε0εr ~E is the electric displacement field of graphene. Using this equation,
we can obtain the effective dielectric permittivity of graphene as:

εg(ω) = 1 + iσg(ω)
ωε0ag

(1.42)
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So, by assuming a small (sub-nanometer) thickness ag, graphene can be considered
as a bulk material layer with an equivalent permittivity εg (see figure 1.19b). This
model can be named as Thin film’s effective thickness approach or bulk Model [21].

Now, in order to test the validity and efficiency of each model, we make a compara-
ison between the two approaches by applying them to study the optical properties of
a single graphene layer embedded by two dielectric media with permittivities ε1 and
ε2. Let us start by deriving the expressions of the reflectance, transmittance and the
absorbance using the single sheet Model. We Consider the structure depicted in Figure
1.18a where a single graphene sheet is located on the xy plane and a plane wave falls
onto it from the lower region (z < 0).

𝑥 

I R 

𝜎𝑔(𝜔) 

𝑧 

T I’ 

(a) Single graphene sheet

𝑥 

I R 

𝑧 

𝜀𝑔 𝑎𝑔 

T I’ 

𝑎1 𝑏1 

(b) Thin film

Figure 1.18: Light propagation through a system composed of a single graphene layer which
is surrounded by two dielectric media. The graphene layer is considered as 2D conductive
sheet characterized by its conductivity in (a) and as a thin film with a thickness ag and an
effective permittivity εg in (b). R and T are the outgoing amplitudes and I and I ′ are the
incoming ones. a1 and b1 are the amplitudes in the graphene layer for the case of the film
model.
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Figure 1.19: Transmittance and reflectance versus wavelength of a single layer of graphene
for TM polarization at normal incidence. The results calculated using the ZTM Model are
shown in the right panel and those obtained within the bulk Model are given in the left panel.
The permittivities of the dielectric mediums are ε1 = 3.9 (SiO2) and ε2 = 1. The parameters
of graphene are µc = 0.6eV, γ = 1.1meV, ag = 0.34nm.

The first thing to do for finding the transmittance and the reflectance of this struc-
ture is to write the electromagnetic fields in the two dielectric mediums for both TM
and TE polarizations and then apply the right boundary conditions that include the
surface conductivity of graphene at z = 0. For the TM polarization, the reflection and
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the transmission coefficients can be obtained as:

RTM = k0γ
′
1 + γ′1γ

′
2Z0σg − k0γ

′
2

k0γ′1 + γ′1γ
′
2Z0σg + k0γ′2

(1.43)

TTM = 2k0γ
′
1

k0γ′1 + γ′1γ
′
2Z0σg + k0γ′2

(1.44)

And for the TE polarization case, we find:

RTE = γ1 − γ2 − k0Z0σg
γ1 + γ2 + k0Z0σg

(1.45)

TTE = 2γ1

γ1 + γ2 + k0Z0σg
(1.46)

The reflectance and the transmittance are then calculated as :

rTM = |RTM |2 and rTE = |RTE|2 (1.47)

tTM = γ′2
γ′1
|TTM |2 and tTE = γ2

γ1
|TTE|2 (1.48)

Finally, the absorbance can be readily deduced from:

A = 1− r − t (1.49)

We turn now our attention to the second approach where the graphene layer can
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Figure 1.20: Absorbance as a function of the wavelength obtained using the Bulk Model (Red
dashed line) and the ZTM Model (Black solid line). The parameters are the same as in figure
1.19.

be seen as a slab with equivalent permittivity εg and thickness ag. In this case, the
transmission and reflection coefficients can be given by the following Fresnel coefficients:

R = r1 + φ1r2φ2

1 + r1r2φ1φ2
(1.50)

T = t1t2φ2

1 + r1r2φ1φ2
(1.51)
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Figure 1.21: Reflectance versus the thickness of graphene ag obtained for λ = 202.3694µm
and θ = 0◦. The Others parameters are the same as in figure 1.19.

Where φ1 = φ2 = eiγgag , γg =
√
k2

0εg − α2, r1/2 and t1/2 are the Fresnel coefficients at
the two interfaces.

Let us now compare the results of the two approaches. We consider a graphene
surrounded by the fused silica (SiO2) of permittivity ε1 = 3.9 and the vaccuum (ε2 =
1). The parameters of the graphene layer are µc = 0.6eV, γ = 1.1meV and for the
Bulk Model the thickness of graphene is taken to be 0.34nm. Figures 1.19a,1.19b and
1.20 display the transmittance, reflectance, absorbance, respectivily, as a function of
wavelengths calculated at normal incidence. The results are computed with the single
sheet Model from eqs 1.47,1.48 and 1.49 (fig 1.19a and black solid line in fig 1.20) and
with the Bulk Model from eq 1.51 (fig 1.19b and red dashed line in fig 1.20). We can
clearly see that the results obtained from the two aproaches are in very good agreement.

In order to test the validity of the Thin film’s effective thickness approach and
identify the range of the thickness of graphene in which this model still valid, we
present in Figure 1.21 the reflectance computed for λ = 202.3694µm as a function of
thickness of graphene. It can be seen from this figure that for ag . 1nm, the reflectance
is almost a constant and it converges towards the reflectance value calculated with the
ZTM Model rsε −→ rσ ' 0.4007. Then for ag ' 1nm, it begins to increase rapidly as
the thickness increases and moves away from rσ. As a consequence, this Model is only
valid for thicknesses ag less than 1nm.

Note that, in this section, we have only shown the isotropic case. A more detailed
explanation on the two approaches and the validity of each model in the anisotropic
case can be found in [17].

Existence conditions and dispersion relation

Let’s now begin by deriving the dispersion relation of GSPs. We consider the struc-
ture depicted in figure 1.22, where a graphene layer is placed in the xoy plane at an
interface between two dielectric media with dielectric constants ε1 for z < 0 and ε2
for z > 0. The graphene sheet is treated as a conducting surface characterized by its
surface conductivity σ(ω) and we assume that the electromagnetic wave propagates in
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the x direction and confined to the xoy plane. The whole structure is invariant in the
y direction (∂y = 0) and a time dependence of the form e−iωt is assumed. To obtain

D1 

D2 

graphene 

x 

z 

Figure 1.22: Sketch of the studied structure: a graphene sheet is surrounded by two semi-
infinite dielectric media D1 and D2. The surface plasmon mode(red) is propagating along
the graphene surface in the x direction

the dispersion relation of graphene surface plasmons that relates the frequency to the
wavevector (ω(α)) as well as their existence conditions, we will follow an approach sim-
ilar to that decribed in section 1.2.1 by solving the Maxwell’s equations and matching
the appropriate boundary conditions taking into account the surface conductivity of
graphene. Since the structure is invariant along the y direction, Maxwell’s equations
can be decomposed into two separate sets with different polarizations: TE and TM
polarizations. We treat first the case of TM polarization, then in a second step that of
TE polarization.

- Transverse magnetic graphene SPPs (TM-GSP)

Consider first the case of TM polarisation where the magnetic field of the electro-
magnetic wave is polarized along the y direction. Using the wave equation given by
equation 1.29, the magnetic field in each medium can be expressed as follows:{

H1y = Aeiαxeγ1z z < 0
H2y = Beiαxe−γ2z z > 0 γ1/2 > 0 (1.52)

The tangential component of the electric field Ex is deduced from Maxwell’s equa-
tions :

Ex(x, z) = −iZ0

k0εp
∂zHy(x, z) (1.53)

where Z0 =
√
µ0/ε0 indicates the impedance of free space. This allows us to write:

E1x = −iZ0γ
′
1

k0
Aeiαxeγ1z z < 0

E2x = −iZ0γ
′
2

k0
Beiαxe−γ2z z > 0

(1.54)

with γ′1/2 = γ1/2/ε1/2. The continuity of the x-component of the electric field at
z = 0 gives:
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γ′1A = γ′2B ⇒ B = γ′2
γ′1
A (1.55)

Due to the surface current density Jx = σEx that flows along the graphene layer,
the magnetic field becomes discontinuous at z = 0:

H1y −H2y = σE1x (1.56)

which leads to:

B = (1 + −iZ0γ
′
1

k0
)A (1.57)

Combining Eqs 4.11 and 4.12, we get the dispersion relation of graphene surface
plasmons for TM modes:

1
γ′1

+ 1
γ′2

+ iσ(ω)Z0

k0
= 0 (1.58)

As mentioned above, the optical conductivity of graphene is a complex quantity
that can be written σ(ω) = σr(ω) + iσi(ω), this leads to:

1
γ′1

+ 1
γ′2

= −iσr(ω)Z0

k0
+ σi(ω)Z0

k0
(1.59)

Since γ′1/2 are real and positive, we must have:{
σr(ω) = 0
σi(ω) > 0 (1.60)

The conditions for the existence of graphene surface plasmons under TM polar-
isation are given by 1.60. In order to obtain a bound waves that are exponentially
decaying in both directions away from the graphene sheet, we require that the normal
wave vectors (γp , p = 1, 2) are positive in both media. This can only be achieved if
the imaginary part of the graphene conductivity is positive and its real part is equal
to zero. These conditions are fulfilled in the Drude regime (i.e ω � ωs = 2), when the
intraband conductivity is dominant (see Figure 1.23 )

Figure 1.24 displays the dispersion curve of the surface plasmon on graphene for
TM polarisation calculated for ε1 = 1 and ε2 = 2. One can clearly see that this curve
is largely below the light line. In other words, for a given frequency, the wave vector of
the GSP is much larger than that of the incoming light i.e kGSP � k0. Therefore, the
excitation of those modes is not possible by direct illumination due to a huge mismatch
between the parallel wave vectors components.

Let us now analyse the influence of the different parameters acting on the dispersion
relation of the GSP which are mainly the optical contrast between the two semi infinite
dielectric media surrounding the graphene and the chemical potential of graphene. We
begin first by the influence of the optical contrast which is depicted in figure 1.25
(a), we observe that increasing the contrast between the dielectrics in contact with
graphene brings the dispersion curve downwards. Now, in order to understand how the
dispersion relation curve is affected by the variation of the doping, we keep ε1 = ε2 = 1
and calculate the dispersion curve for different chemical potential µc = 100, 200, 300
and 400 meV. The corresponding results are shown in figure 1.25(b).When the chemical
potential increases from 100 to 400 meV, the dispersion relation curve moves upwards.
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Figure 1.23: illustration of the existence zones of the graphene surface plasmon for both
TE and TM modes. When ω < 1.667, the imaginary part of the graphene conductivity is
positive and graphene can support TM electromagnetic SPP surface wave(TM GSP). While,
TE surface plasmons can only exist when 1.667 < ω < 2 where the imaginary part of the
conductivity becomes negative.

As a results, changing the optical contrast or the doping can be used to manipulate
the surface plasmons polaritons in graphene.

- Transverse electric graphene SPPs (TE-GSP)

Let us now find the form of the surface wave propagating on graphene under TE
polarization. For this case, the electric field has the form:{

E1y = Aeiαxeγ1z z < 0
E2y = Beiαxe−γ2 z > 0 (1.61)

The tangential magnetic field Hx is determined from Maxwell’s equations:

Hx = iZ0k0∂zEy (1.62)
The Boundary conditions at z = 0 read:{

E1y(z = 0) = E2y(z = 0)
H2x(z = 0)−H1x(z = 0) = σ(ω)E1y(z = 0) (1.63)

which leads to: 
A = B

(γ1 + γ2)A = iσ(ω)
k0Z0

(1.64)

The dispersion relation is then given by:
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Figure 1.24: Dispersion relation cuve of the TM-GSP of graphene surrounded by two dielectric
media with dielectric constants ε1 = 1 and ε2 = 2 respectively. The parameters of graphene
are µc = 200 meV and γ = 0 eV.

γ1 + γ2 −
iσ(ω)
k0Z0

= 0 (1.65)

The term γ1 + γ2 is always positive, which means that we must have:{
σr(ω) = 0
σi(ω) < 0 (1.66)

Consequently, graphene can support a TE GSP only if the imaginary part of the
conductivity is negative and its real part is zero [19, 18]. Note that, this mode cannot
exist in the traditional plasmonic materials since the imaginary part of the conductivity
is always positive. We have shown in section 1.1.3, that, unlike Drude materials, the
conductivity of graphene can take a negative imaginary part for frequencies above the
interband threshold, the region of sepectrum governed by the interband transitions.
However,due to the Landau damping that occurs at ω = 2 (for T=0K and T=300K)
with ω = ~ω

µc
), TE SPPs can only exist in a very narrow frequency range, defined by

1.667 < ω < 2 (see Figure 1.23).
In the general case of different dielectric media, the analytical resolution of equa-

tion 1.65 is quite difficult. However, in the simple case, when the two media above
and below the graphene sheet are the same (ε1 = ε2 = ε), the TE dispersion relation
can be reduced to kGSPTE ' ω

√
ε/c ( Note that, in this case, we can neglect the third

term in equation 1.65 because in this frequency range the real part of the conductivity
is equal to its universal value). Then, in the case of free standing graphene where
ε1 = ε2 = ε = 1, the spectrum of TE waves almost coincides with that of free wave in
vaccum kGSPTE ∼= k0. That is why, as we can see from figure 1.26, the dispersion rela-
tion of TE GSP is very close to the light line. As a consequence, TE modes are weakly
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Figure 1.25: Influence of (a) the contrast ε2 − ε1 and (b) the chemical potential when (ε1 =
ε2 = 1), on the dispersion curve of the TM-GSP.

bound to the graphene surface[19]. Nevertheless, it has been predicted that, they ex-
hibit very low propagation loss and have ultrahigh sensitivity to the optical contrast
between the two dielectric media surrounding the graphene layer [19, 22]. This new
surface electromagnetic (TE GSP) mode guided by graphene and characterized by its
plasmonic response has been theoretically predicted in several works. A TE-plasmonic
gas-sensor was proposed theoretically in ref [22] to achieve a high refractive index sen-
sitivity that surpasses the sensitivity of traditional SPR (Surface Plasmon Resonance)
sensors. Moreover, it was suggested numerically in [23, 24], that the Attenuated Total
Reflection technique (ATR) in the Otto geometry could be used for the excitation of
this kind of mode. However, these modes remain purely theoretical objects because
so far, their experimental excitation has not been demontrated. For that reason, our
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Figure 1.26: Dispersion relation of surface plasmons for TE polarized waves (TE GSP
for a free standing graphene layer (red circles). The blue solid line corresponds to the

light line in vacuum. The parameters of graphene are µc = 200 meV et γ = 0.

interest in the following chapters, will focus on the case of TM-GSP.

Properties of Graphene surface plasmons

Let us now pass to the discussion of the main physical properties of SPPs in graphene.
But before that, we need first to provide some of the length scales that are important
for characterizing SPPs. For that, we shall consider the case of a real conducting
medium with a complex dielectric function εm(ω) = ε′m(ω) + iε′′m(ω) which leads to a
complex parallel wavevector ksp = k′sp + ik′′sp.

SPPs length scales

• Surface plasmon polariton wavelength λsp: Surface plasmons are char-
acterized by several parameters. The first one is their wavelength λsp, which
corresponds to the spatial period of the surface charge density oscillation . This
parameter can be derived from the complex dispersion relation by taking the
real part of the parallel wavevector. Under the assumption |ε′m| � ε′′m, it can be
expressed as:

λsp = 2π
k′sp

(1.67)

It should be noted that λsp is always much smaller than the free space wavelength
λ0 which is obviously a consequence of the bound nature of the SPP modes.

• SPPs propagation length Lsp: Due the dissipation in the metal, the SPP is
attenuated during its propagation. As the decay is linked to the term exp(−2k′′spx),
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the propagation distance Lsp can be defined as the distance over which the in-
tensity of the mode reduces to 1/e of its initial value:

Lsp = 1
2k′′sp

(1.68)

• SPP penetration depth δ: Another important parameter of SPPs is the
penetration depth that characterizes the degree of confinement of the mode into
its supporting material. In each medium, it can be given by

δp = 1
2|k′′z |

p = m, d (1.69)

where m(d) stands for metal(dielectric). This parameter is directly related to the
imaginary part of the transverse component of the wave vector k′′z and is defined
as the distance where the exponentially decreasing evanescent field drops to 1/e
of its maximum amplitude.

For doped graphene and within the Drude regime (where the conductivity is well
described by the drude conductivity), the later parameters can be expressed as:

λsp = 2π
k′sp

= λ0
4αµc

~ω(ε1 + ε2) (1.70)

Lsp = 1
2k′′sp

= λ0
ταµc

π~(ε1 + ε2) (1.71)

and

δsp = 1
2|k′′z |

= λsp
2π (1.72)

It should be mentioned that in order to minimize losses and avoid those caused
by the interband transitions, we will work in the frequency window just below the
threshold of interband transition i.e for graphene with high doping.

Relatively low loss for GSPs

Noble metals such as gold and silver have usually been used in traditional plasmonic
structures as plasmonic materials in the visible and near IR frequencies. However,
in the terahertz frequencies, these materials suffer from very large losses which limits
their applications and performances in this frequencies range. To circumvent this
drawback, graphene, has been proposed as a potential alternative plasmonic material.
A comparaison of the plasmonic properties between metals and graphene has been
made in Ref [25]. It was shown that for frequencies above 20 THz (visible and infrared
spectrum), graphene has a SPP propagation length smaller than that of a 30-nm thin
Au film. This makes graphene less attractive in this frequency range. However at lower
frequencies (THz region), the loss as well as the penetration depth in metals increase
dramatically as the frequency decreases. In this frequency range, graphene exhibits
less losses [26]. It was also demonstrated that in the case of highly doped graphene,
Landau damping becomes weak and does not contribute to the losses processes. As a
result, the effective mode index δsp/λsp will increase as the frequency decreases in the
THz region and can achieve 2000 when f = 1 THz for a free-standing graphene sheet
[27].

43



CHAPTER 1. THEORETICAL BACKGROUND

Figure 1.27: Comparaison of plasmonic properties of graphene and gold: Lsp/λspp as a
function of the frequency of the incident light [25]. The results for Au are for a 30-nm thick
film at room temperature while the results for graphene are for a highly doping case and are
calculated from the experimental data in Ref [28] and from theoretical data in Ref [29].

High confinement of GSPs

As stated above, the confinement of SPPs into plasmonic materials is characterized by
its penetration depth. The comparaison between graphene and silver(which is consid-
ered as the best metallic plasmonic material) has shown that the penetration depth
in graphene is a few orders smaller than that in silver [27]. In the other hand, the
effective SPP index λ0/λsp in metals is only slightly larger than √εd and since εd of
common dielectric does not exceed 10, the SPP index for metals are relatively small.
For graphene, this index which is given by ~ω(ε1 + ε2)/4αµc is largely greater than 1.
Therefore, GSPs are excellently confined to the surface of graphene with a SPP wave-
length λsp much smaller than in free space. To summarize, the comparaison between
highly doped graphene and metals gives that metals are potential plasmonic materials
in the visible and near infrared region while highly doped graphene is more suitable
for the far infrared and the THz region.

The tunability of GSPs

One of the great advantages of SPPs in graphene over those in noble metals is their
tunability. We have shown in previous the sections that the conductivity of graphene
as well as the GSP dispersion relation are highly sensitive to some parameters such as
the chemical potential. We have also shown that the Fermi level in graphene can be
easily tuned by changing the carrier charge density by electrostatic gating or chemical
doping. This is not possible with SPPs in noble metals. In the same way, the threshold
of interband transitions which defines the working frequency of graphene plasmons
strongly depends on doping which makes it highly tunable by varying the graphene
chemical potential [28, 30]. Although the working frequency of GSPs is in the THz
region because of the Landau damping at higher frequencies, it can be extended to the
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mid infrared range by increased doping. For example, the working frequency can reach
up 80 THz for µc = 0.246 eV and increase to achieve 250 THz for µc = 0.8eV [26].

1.3 Conclusions
In this first chapter, we have presented the basic concepts that are important for un-
derstanding this thesis. We have presented the direct and reciprocal lattice of graphene
and described its electronic band structure using the Tight binding model. Next, ac-
cording to a quantum approach based on the EOM method, we have also determined
and explained the magneto-optical conductivity model of graphene characterizing its
optical response. Using this model, we have then investigated the different plasmonic
modes that can propagate along a graphene sheet and their existence conditions. Fi-
nally, we have reviewed the basic properties of these modes.
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Chapter 2
Numerical Tools

In every branch of knowledge
the progress is proportional to
the amount of facts on which to
build

James Clerk Maxwell
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This chapter is devoted to the introduction of the numerical tools that will be used
in the analysis of the structures studied in this thesis. Since all these structures have
the common property of being either periodic or aperiodic diffractive structures, their
dynamics will be studied in the framework of the Fourier Model Method (FMM). In
the first section, we will present the generic multigrating structure that can contain
graphene gratings. Then in the next section, we will describe in detail the different
standard numerical methods used for modelling the diffraction preoperties of electro-
magnetic waves on this structure. After that, we will introduce the concept of perfectly
matched layers (PML) and combine it with the FMM Method to solve the problem of
the aperiodic structures. Finally, we conclude with the last section by applying these
methods that take into account graphene for solving the problem of light diffraction
by two types of graphene grating systems. A comparative study will be made between
these methods in terms of convergence and stability to identify the most suitable one
for each structures.
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2.1 Generic Physical Structure
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Figure 2.1: Geometry of the diffraction problem: A graphene based multilayers structure in
which each layer can be either a homogeneous medium or a garting with the period d

Before we start to develop and explain the different numerical methods, we first
present the system which is investigated. The general graphene based multilayered
grating structure under study is schematically depicted in figure 2.1. It consists of
a stack of N layers where each of which can be either a periodic lamellar grating or
a homogenous layer or vertical strip grating. This structure is embbeded between
two homogeneous dielectric media with permittivities εin and εout. All gratings share
the same period d and the graphene can be inlayed in this strucrure under three
configurations: either continuous graphene layers or horizontal or vertical graphene
strip gratings. The whole structure is assumed to be invariant in the y direction and is
illuminated from below by a monochromatic plane wave under the angle of incidence θ.
The corresponding wavenumber is denoted k0 = 2π/λ, λ being the vaccum wavelength
and the time dependence will be assumed to be e−iωt. Here, we adopt the Thin film’s
effective thickness approach explained in the previous chapter for modelling graphene
in which the graphene layer is taken into account by its equivalent relative permittivity.

2.2 Numerical Methods

2.2.1 Standard Fourier Modal Method (FMM)
The Fourier Modal (FMM) Method, also known as the rigourous coupled analysis
(RCWA), is one of the most popular methods used for modeling diffraction from grat-
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ings and in particular is considered as a simple and efficient tool for one-dimensional
(1D) gratings analysis [1, 2, 3]. In this section, we provide a step by step presentation
of this method. The departing point will be the use of curl Maxwell’s equations in
cartesian coordinates which can be expressed as follows:

∂yEz − ∂zEy = iωµ0Hx

∂zEx − ∂xEz = iωµ0Hy

∂xEy − ∂yEx = iωµ0Hz


∂yHz − ∂zHy = −iωε0εrEx
∂zHx − ∂xHz = −iωε0εrEy
∂xHy − ∂yHx = −iωε0εrEz

(2.1)

Since the structure is completly invariant in the y direction and since we are in the
classical diffraction case (the plane of incidence corresponds to the plane of invariance
of the structure), all the partial y derivatives vanish and thus the latter system de-
couples into two independent sub-systems one of which corresponds to the so called
TE-polarization: 

∂zEy = −iωµ0Hx

∂xEy = iωµ0Hz

∂zHx − ∂xHz = −iωε0εrEy

(2.2)

and the other one to the TM-polarization:
∂zHy = iωε0εrEx
∂xHy = −iωε0εrEz
∂zEx − ∂xEz = iωµ0Hy

(2.3)

The First step in the FMM is to split the computational domain into layers. For our
diffraction problem, as shown in Figure 2.1, the physical space is divided into N + 2
regions : the two media in the regions 0 and N+1 that are assumed to be homogeneous
and the N different layers which constitute the so called modulated region. After
that, the second step is to solve the wave equations everywhere and find the general
expressions of the different fields before applying the boundary conditions. We consider
first the TE polarization and treat afterwards the TM polarization problem.

TE polarization

Under TE polarization, the electromagnetic field is such that ~E = (0, Ey, 0) and ~H =
(Hx, 0, Hz). In this case, the Electric field is expressed through its non null y component
and in each layer q, it satisfies the following wave equation:

∂2Eqy
∂x2 + ∂2Eqy

∂z2 + k2
0εq(x)Eqy = 0 (2.4)

In the lower and upper homogeneous regions labeled by 0 and N + 1, the permittivity
εq is constant and thus, the field can be written as Rayleigh expansions:

E0y(x, z) =
∑
n

(
Ine

iγin,nz +Rne
−iγin,nz

)
eiαnx z < 0 (2.5)

E(N+1)y(x, z) =
∑
n

(
Tne

iγout,n(z−zN ) + I ′ne
−iγout,n(z−zN )

)
eiαnx z > zN (2.6)

where αn = α0 + Kn with α0 = k0
√
εinsinθ and K = 2π/d denotes the spatial wave

vector . In = δ0n and I ′n = 0 where δ0n stands for the Kronecker symbol. The
normal components of the wave vectors γin,n/out,n are deduced from α2

n + γ2
in,n/out,n =

k2
0εin/out and Rn and Tn are the complex amplitudes of the n’th reflected or transmitted

diffraction order.
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Let us now continue by considering the fields inside the modulated region 0 <
z < zN . Using the Floquet-Bloch theorem, the electric field Eqy can be expanded in
generalized Fourier series under the form:

Eqy(x, z) =
∑
n

Eqn(z)eiαnx ∀ q ∈ [1, . . . , N ] (2.7)

where Eq
n are the Fourier coefficients in the qth layer. Moreover, since the permittivity

εq(x) is periodic, it can be expanded in Fourier series as follows:

εq(x) =
∑
p

εqpe
iKpx ∀ q ∈ [1, . . . , N ] (2.8)

Substituting (2.7) and (2.8) into equation 2.4, one can find:

∑
n

(
d2Eqn
dz2 − α

2
nEqn + k2

0
∑
p

εqn−pEqp

)
eiαnx = 0 ∀ q ∈ [1, . . . , N ] (2.9)

Projecting on the (eiαnx)n∈Z basis, we get:

d2Eqn
dz2 − α

2
nEqn + k2

0
∑
p

εqn−pEqp = 0 ∀n ∈ Z ∀ q ∈ [1, . . . , N ] (2.10)

Eigenvalue problem

So far, the Fourier series used in the above equations to describe the electric field
and the permittivity are assumed to be infinite. At this stage and for the numerical
implementation, it is necessary to work with Fourier series truncated between −M and
+M where M will be called the trunction order. Thus, in this case, equation 2.10 can
be written in Fourier space as:

d2Eq(z)
dz2 =

(
α2 − k2

0‖εq‖
)
Eq(z) (2.11)

which can be put in the following form:

E ′′q (z) = ATEq Eq(z) (2.12)

where ATEq = α2− k2
0‖εq‖, α2 = diag(α2

n) and Eq = [..., Eq,−1, Eq,0, Eq,1, ...]t is a column
vector of size (2M + 1)× 1 that contains the Fourier components of the electric field.
‖εq‖ denotes the Toeplitz matrix of the permittivity in the qth layer whose elements are
given by ‖εq‖ij = εq,(i−j). This equation has the standard form of a matrix eigenvalue
problem and can be considered as the master equation of the Fourier modal method
for the case of TE polarization. We seek solutions of the form:

Eq(z) = eXqzE0q (2.13)

Inserting this solution into equation 2.12 leads to:

Eq(z) = eXqzE0q ⇒ X2
q = ATEq (2.14)

Then, by diagonalizing the matrix AqTE for each layer, one can obtain:

ATEq = PqD
2
qP
−1
q ⇒ Xq = ±

√
PqD2

qP
−1
q = ±PqDqP

−1
q (2.15)
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Where Dq is a diagonal matrix containing the complex square roots of the eigenvalues
of ATEq and Pq is the matrix of the corresponding eigenvectors. According to this result,
two solutions are possible:

E1,2
q (z) = Pqe

±DqzP−1
q E0q = Pqe

±DqzE ′0q (2.16)

The first solution represents a mode that propagates and decays in the forward direction
while the second solution represents a mode in the backward direction. The total field
in the qth layer can then be written as a linear combination of these two latter solutions:

Eq(z) = Pq
(
eDq(z−zq−1)aq + e−Dq(z−zq)bq

)
(2.17)

where aq = [..., aq,−1, aq,0, aq,1, ...]t and bq = [..., bq,−1, bq,0, b0,1, ...]t are the amplitudes of
forward and backward propagating modes, respectively. Finally, by combining equa-
tions (2.7) and (2.17), one gets the general expression of the total field in each layer:

Eq
y =

∑
n

[∑
p

Pq,np
(
eDqp(z−zq−1)aq,p + e−Dqp(z−zq)bq,p

)]
eiαnx (2.18)

It worth mentioning here that the eigenvalues Dqp are chosen in such a way that
Re(Dqp) + Im(Dqp) < 0.

TM polarization

Let us now pass to the formulation of the FMM in the TM polarization case. For that,
we follow a methodology similar to that laid out above. In this case, the y component
of the magnetic field in each layer q fulfil the following wave equation:

~∇.
[

1
εq(x)

~∇Hqy(x, z)
]

+ k2
0Hqy(x, z) = 0 (2.19)

Since εq is a function of x only, one can readily find:

∂x

(
1

εq(x)∂xHqy

)
+ 1
εq(x)

∂2Hqy

∂2z
+ k2

0Hqy = 0 (2.20)

Similarily to the TE polarization case, the magnetic fields for the homogeneous regions
0 and N + 1 can be given by:

H0y(x, z) =
∑
n

(
Ine

iγin,nz +Rne
−iγin,nz

)
eiαnx z < 0 (2.21)

H(N+1)y(x, z) =
∑
n

(
Tne

iγout,n(z−zN ) + I ′ne
−iγout,n(z−zN )

)
eiαnx z > zN (2.22)

After having written the magnetic field as well as the permittivity for each layer inside
the modulated region as a pseudo-Fourier series and a Fourier series respectively and
projecting into Fourier space, we get the following matrix equation:

d2Hq(z)
dz2 = ‖εq(x)‖

(
α‖ 1
εq(x)‖α− k

2
0Id

)
Hq (2.23)

H′′q (z) = ATMq Hq(z) (2.24)
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Where α is a diagonal matrix whose elements are αn, Id is the identity matrix and
‖εq(x)‖ and ‖ 1

εq(x)‖ are The Toeplitz matrices associated with εq and its inverse.
Unfortunately, the numerical results obtained from this formulation have shown very
slow convergence and severe numerical instabilities problems, especially in the case
of metallic gratings [4]. This problem owed its origin to the inadequate formulation
of the eigenvalue problem and was related to the truncation process of the Fourier
series which is as mentionned above inevitable for the numerical implementation of the
method. In fact, this process does not preserve the continuity of certain components of
the electromagnetic field at the points of discontinuity of the permittivity. Furthermore
in 1996, it was found that the covergence has been improved by taking the inverse of
the Toeplitz matrix of the permittivity function [5, 6]. In the same year, based on this
finding, Lifeng Li investigated this problem and established a theory called Fourier
factorization[7, 8].

Fourier Factorization Rules

Let us now briefly discuss the factorization rules of Li. Consider first two periodic piece-
wise continuous functions f(x) and g(x) such that their product is h(x) = f(x)g(x).
In the Fourier space, their truncated Fourier coefficients are related by the so called
Laurent’s rule as:

hn =
p=M∑
p=−M

fn−pgp (2.25)

In order to rewrite equation 2.25 in a simple manner, let us introduce the following
matrix notations. We denote by [g] the vector composed of the fourier coefficients of
g(x) and by ‖f‖ the Toeplitz matrix whose element are given by the (m−n)th Fourier
coefficient of function f . Using these notations the latter equation becomes:

[h] = ‖f‖[g] (2.26)

The present rule has been applied without precautions for years and as pointed out
above it was the main cause of the slow convergence in the TM case. The problem
is that in some cases, the usual truncated Laurent Fourier series induce errors on the
reconstruction of the product function h. For these special cases, Li has described three
theorems of considerable importance:

• if f(x) is discontinous and g(x) is continuous in others words if f and g have
no concurrent discontinuities then the Fourier coefficient of the product h can be
derived using the above Laurent’s rule.

• if both f(x) and g(x) are discontinuous but h(x) is continuous, in this case, the
product h should be constructed in Fourier space by the inverse rule

[h] = ‖1/f‖−1[g] (2.27)

• if the three functions are discontinued at the same point, neither laurent’s rule
nor its inverse can be used.

Let us now return to the TM case and apply the correct rules in order to reformulate the
eigenvalue problem. For that, taking into account the inverse rule and the continuity
of the fields, the matrix AqTM can be written in a slighly different form as:

ATMq = ‖ 1
εq(x)‖

−1
(
α‖εq(x)‖−1α− k2

0Id
)

(2.28)
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Figure 2.2: Convergence of the zeroth order diffraction efficiency of a metallic lamellar grating
for TM polarized wave. the parameter are θ = 30◦, d = h = λ, filling factor f = 1/2 and
εm = (0.22 + 6.71i)2,εin = εout = 1

This is the empirical expression previously established by [5, 6] as a numerical
solution to achieve a fast convergence rate in the analysis of lamellar gratings with
the Fourier modal method. It is interesting to notice that in an infinite Fourier space,
expressions 2.23 and 2.28 are equivalent. Whereas, in the case where the Fourier series
are truncated, the new formulation ensures better convergence. To show the efficiency
of this new formulation, we plot in Figure 2.2 the convergence behavior of the zeroth
order diffraction efficiency using both the old formulation and the new one. It can be
clearly seen that this new formulation allows to improve considerably the convergence
of the FMM method.

Amplitudes of the diffracted fields

After solving the eigenvalue problem and deriving the general expression of the total
field in each layer, the next step is to determine the unknown amplitudes of the modes
that appear in the fields expressions. We start first by applying the boundary conditions
at the interfaces between the different regions. This leads to a linear system of algebraic
equations linking the unknown coefficients that are then determined by solving this
system by using the so called S-matrix algorithm.

Boundary conditions

In the Fourier modal method enforcing the boundary conditions consists of imposing
the continuity of the tangential components of the fields at each interface. First of
all, we need to recall the expressions of the fields in each region for both TE and TM
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Figure 2.3: Shematic representation of the modes and the scattering matrices in a stratified
meduim

polarisation:
U0(x, z) =

∑
n

(
Ine

iγin,nz +Rne
−iγin,nz

)
eiαnx z < 0 (2.29)

UN+1(x, z) =
∑
n

(
Tne

iγout,n(z−zN ) + I ′ne
−iγout,n(z−zN )

)
eiαnx z > zN (2.30)

Uq =
∑
n

[∑
p

Pq,np
(
eDqp(z−zq−1)aq,p + e−Dqp(z−zq)bq,p

)]
eiαnx 0 < zq < zN (2.31)

where Uq(x, z) stands for Eqy(x, y)(Hqy(x, y)) in the TE (TM) polarization case.
The other tangential component, the x component of the field, needed for the above
boundary conditions, is deduced from Maxwell’s equations :

TE TM
Hx = (i/k0Z0µ)∂zEy Ex = −iZ0/(k0ε)∂zHy

(2.32)

For z = 0:

TE
{
E0y(x, 0) = E1y(x, 0)
H0x(x, 0) = H1x(x, 0) TM

{
E0x(x, 0) = E1x(x, 0)
H0y(x, 0) = H1y(x, 0) (2.33)

Replacing with the field expressions stated above, we obtain in matrix notation:{
(I +R) = P1(a1 + b1φ1)
iγin(I −R) = P ′1(a1 − b1φ1) (2.34)

with φ1 = eD1z1 and P ′1 = P1D1 for TE polarisation and P ′1 = ‖ 1
ε1(x)‖P1D1 for TM

Polarization. For z = zq, we get:{
Pq(φqaq + bq) = Pq+1(aq+1 + φq+1bq+1)
P ′q(φqaq − bq) = P ′q+1(aq+1 − φq+1bq+1) (2.35)
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where φq = eDq(zq−zq−1) and φq+1 = eDq+1(zq−zq+1). P ′q = PqDq for TE polarization and

P ′q = ‖ 1
εq(x)‖PqDq for TM Polarization .

And for z = zN : {
PN(φNaN + bN) = (T + I ′)
P ′N(φNaN − bN) = iγout(T − I ′)

(2.36)

With φN = eDN (zN−zN−1).
Note that here R = [. . . , R−1, R0, R1 · · · ]t and T = [. . . , T−1, T0, T1 · · · ]t are the

vectors composed of amplitudes of the reflected and transmitted diffraction orders.
While I = [. . . , 0, 1, 0 · · · ] and I ′ = [. . . , 0, 0, 0 · · · ] are the vectors composed of the
amplitudes of incident waves. Thus, we end up with a set of 2N+2 algebraic equations
linking 2N + 2 unknown coefficients aq and bq. Many algorithms can be used to solve
this system. Among these, the most efficient and stable one is the S-matrix algorithm
that will be described in detail hereafter.

Scattering matrix Formalism

In this section, we will adopt the S-matrix formalism for our general multilayered
grating problem in order to calculate the amplitudes of the diffracted field and show how
to construct the global scattering matrix of the whole structure from the combination
of the transition matrices obtained for each interface z = zq by the use of a cascading
process (see figure 2.3). By definition, the scattering matrix provide a relation between
the outgoing amplitudes and the incoming ones and is given as follows:(

bq
aq+1

)
= Sq

(
aq
bq+1

)
(2.37)

From equation (2.34), one can deduce the scattering matrix corresponding to the in-
terface z = z0:(

b0
a1

)
=
(
−P0 P1
P ′0 P ′1

)−1 (
P0 −P1
P ′0 P ′1

)(
Id 0
0 φ1

)(
a0
b1

)
(2.38)

(
b0
a1

)
= S0

(
a0
b1

)
(2.39)

S0 =
(
−P0 P1
P ′0 P ′1

)−1 (
P0 −P1
P ′0 P ′1

)(
Id 0
0 φ1

)
(2.40)

In the same way, from (2.35), we can get:(
bq
aq+1

)
=
(
−Pq Pq+1
P ′q P ′q+1

)−1 (
Pq −Pq+1
P ′q P ′q+1

)(
φq 0
0 φq+1

)(
aq
bq+1

)
(2.41)

(
bq
aq+1

)
= Sq

(
aq
bq+1

)
(2.42)

Sq =
(
−Pq Pq+1
P ′q P ′q+1

)−1 (
Pq −Pq+1
P ′q P ′q+1

)(
φq 0
0 φq+1

)
(2.43)

For z = zN , we find:(
bN
aN+1

)
=
(
−PN PN+1
P ′N P ′N+1

)−1 (
PN −PN+1
P ′N P ′N+1

)(
φN 0
0 Id

)(
aN
bN+1

)
(2.44)
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(
bN
aN+1

)
= SN

(
aN
bN+1

)
(2.45)

SN =
(
−PN PN+1
P ′N P ′N+1

)−1 (
PN −PN+1
P ′N P ′N+1

)(
φN 0
0 Id

)
(2.46)

Therefore, the global S-matrix connecting the reflection and transmission coefficients
can be expressed as: (

R
T

)
= S

(
I
I ′

)
(2.47)

S = S0 ? S1 ? .... ? SN (2.48)
where the ? product S = Sa ? Sb between two matrices Sa and Sb is given by:

S11 = Sa11 + Sa12(1− Sb11S
a
22)−1Sb11S

a
21

S12 = Sa12(1− Sb11S
a
22)−1Sb12

S21 = Sb21(1− Sa22S
b
11)−1Sa21

S22 = Sb22 + Sb21(1− Sa22S
b
11)−1Sa22S

b
12

(2.49)

Finally, once this calculation is achieved and thereby the amplitudes of the diffracted
fields are obtained, one can readily have access to the quantities of interests such as
the diffraction efficiency and fields distributions

2.2.2 Fourier Modal Method with spatial adaptative resolu-
tion (FMM-ASR)

In the previous section, we have shown that the Fourier Modal method suffers from a
slow convergence problems in the case of TM polarisation. This has been overcome by
applying the correct Fourier factorisation rules for discontinuous functions. Although
this implementation has tremendously improved the convergence of the FMM method,
there remained the problem of so called Gibbs phenomenon at the discontinuity points
which inhibit the convergence of the Fourier series yielding to a slow convergence,
especially in the case of metallic gratings. To tackle this latter limitation and accelerate
the convergence, Granet suggested in 1999 [9] to employ a new coordinate system
that increases the spatial resolution in the neighborhood of the discontinuities of the
permittivity profile by stretching the coordinate around them. This concept is known
as Adaptative Spatial resolution (ASR). In 2001, the original approach proposed by
Granet, was extented and reformulated for treating multilayered gratings with different
transitions [10]. This latter modified approach involved two main steps, the first one
is to solve the eigenvalue problem for each layer with its own transformed coordinate
system and the second step is to bring all the fields back to the original space for solving
the boundary conditions. Despite the effectiveness of this modified formulation, it had a
major drawback : the computation of transformation matrices for each layer destroys
the stability of the S-matrix and it requires a nonnegligible additional computation
time. Later, in [11, 12], a numerical improvement of the FMM ASR was obtained by
introducing a much more stable formulation of the eigenvalue problem. They proposed
an elegant and smart way consisting of solving merely the eigenvalue problem for only
one homogeneous region and deducing then the solution of all the eigenvalue problems
corresponding to remainning homogeneous regions from this one. This allowed to
avoid to solving the eigenvalue problem in all the homogeneous regions leading to
drastic reduction of the computational load. In this section, we are going to describe
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the mathematical foundations of the FMM ASR Method following the derivation of
[11, 12] but we will slightly reformulate the eigenvalue problem and apply a few minor
modifications to achieve a more stable formulation for modelling multigrating systems.

Foundations of the Method

Let us begin by the description of the general concepts and the Foundations of the FMM
ASR method. We have mentionned above that the classical formulation of the FMM
method is known to be slowly converging. The main reason of this slow convergence
is that this latter is directly related to the permittivity contrast in the grating region.
To solve this problem, we introduce the parametric representation by choosing a new
coordinate system in such a way that the mapping space corresponds to the variations
of the periodic function of the dielectric permittivity. For that, we need first to define
a function x = x(u) which here is chosen to be in accordance with what is proposed in
[10]:

x(u) = F (u) = a1 + a2u+ a3

2πsin2π
(
u− ul−1

ul − ul−1

)
ul−1 ≤ u ≤ ul (2.50)

such that:

a1 = ulxl−1 − ul−1xl
ul − ul−1

(2.51)

a2 = xl − xl−1

ul − ul−1
(2.52)

a3 = G(ul − ul−1)− (xl − xl−1) (2.53)

Where G = f(ul−1) = f(ul) with f(u) denoting the resolution function and is deter-
mined by the dependance between x and u as f(u) = ∂x/∂u. (G is an almost zero
constant and is generally taken equal to 10−4 or 10−5). The xl are the transition points
in the x space and ul are their counterparts in u space. Figure 2.4 represents the above
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Figure 2.4: Dependance between x and u (a) Profile of the grating dielectric permittivity.
(b) change of variable x = x(u)

coordinate transformation function. One can clearly see that around the transition
points a given variation ∆u of u result in a smaller variation ∆x of x. We can also no-
tice that this change of variable does not keep the same discontinuity positions. Indeed,
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the discontinuities in the new basis can differ from the old basis and their positions are
given by dividing the period d into equal parts according to the number of transitions.
Furthermore, the new function is a periodic function with the same period as the di-
electric permittivity of the grating and its derivative is minimal at the discontinuities
points.

Eigenvalue problem

We apply now the above variable change, then we get :

∂

∂x
→ ∂u

∂x

∂

∂u
= 1
f

∂

∂u
(2.54)

Using this notation equations 2.4 and 2.20 become:

1
f

∂

∂u

(
1
f

∂Eqy
∂u

)
+ ∂2Eqy

∂z2 + k2
0εq(u)Eqy = 0 (TE) (2.55)

1
f

∂

∂u

(
1

εq(u)
1
f

∂Hqy

∂u

)
+ 1
εq(u)

∂2Hqy

∂z2 + k2
0Hqy = 0 (TM) (2.56)

In the u space the fields Ey and Hy are also pseudoperiodic with period d and thus
they can be expressed as a pseudo-Fourier series:

Uq(u, z) =
∑
n

Uqn(z)eiαnu (2.57)

Where U q represents either the transverse electric field for the TE polarization or
transverse magnetic field for the TM polarization. Now, inserting the expansion (2.57)
into (2.55) and (2.56), written in Fourier space and using the correct rules of Fourier
factorization and the matrix notations, we obtain the desired eigenvalue problem:

d2Eq(z)
dz2 =

(
‖ 1
f
‖α‖ 1

f
‖α− k2

0εq

)
Eq(z) = ATEq Eq(z) (TE) (2.58)

d2Hq(z)
dz2 = ‖ 1

εq(x)‖
−1
(
‖ 1
f
‖α‖εq(x)‖−1‖ 1

f
‖ α− k2

0Id

)
Hq = ATMq Hq (TM) (2.59)

With ‖ 1
f
‖ being the Toeplitz matrix formed from the fourier coefficients of 1/f . Having

chosen a fitting coordinate u and solving the corresponding eigenvalue problem, the
fields in each region q can be written in the same way as for the FMM method as:

Uq =
∑
n

[∑
p

Pq,np
(
eDqp(z−zq−1)aq,p + e−Dqp(z−zq)bq,p

)]
eiαnu q ∈ [0 . . . N + 1] (2.60)

where aq,p and bq,p are the unknown amplitudes that are to be determined by match-
ing boundary conditions. It is important at this stage to emphasize that the exact
eigenvalues do not depend on the chosen coordinates. While, the eigenvectors depend
on the choice of the coordinate system and should therefore be projected on the same
basis for applying the boundary conditions.

Now, To find the unknown coefficients and afterwards the total fields expressions in
all the regions, we proceed as follows: First, we still work completly in the transformed
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space u using only one coordinate system x(u) for all the regions of the structure. In
this situation, it is necessary to solve the eigenvalue problem in each layer and even
in the incident and transmission regions. Let us begin with the incident region. The
eigenvalue equation corresponding to this region can be given for both TE and TM
polarisation by the following equation:

d2U0(z)
dz2 =

(
‖ 1
f
‖α‖ 1

f
‖α− k2

0εinId

)
U0(z) = A0U0(z) (2.61)

A0 = ‖ 1
f
‖α‖ 1

f
‖α− k2

0εinId (2.62)

Then, After solving this eigenvalue problem , we can get U0 in terms of the eigenvalue
matrix D0 and the corresponding eigenvector matrix P0 as follows:

U0 = P0(eD0za0 + e−D0zb0) (2.63)

Consider now another homogeneous layer labeled by q and caracterized by its permit-
tivity εq. The Aq matrix that corresponds to this medium can be written as:

Aq = ‖ 1
f
‖α‖ 1

f
‖α− k2

0εqId (2.64)

Subtracting (2.64) and (2.62), One gets :

Aq = A0 + k2
0(εin − εq)Id (2.65)

Left multiplying by P0 and right multiplying by its inverse gives:

P0AqP
−1
q = D2

0 + k2
0(ε0 − εq)Id (2.66)

From this equation, one can clearly see that P0 can be also an eigenvector of Aq
associated to the eigenvalues D2

0 + k2
0(ε0 − εq)Id. As a result, all the homogeneous

regions are equivalent to the incident one since they share the same eigenvectors. Once
the eigenvalues for all layers are solved and all field expressions are determined in
space u, by following the same way as we did in the classical FMM such that applying
the boundary conditions and using the S-matrix algorithm, one can easily find the
distribution of the fields and then all diffraction efficiencies. The final step in our
strategy is to transformed back the fields to the original space x. To this end , it is
necessary to projet the term eiαnu on the Fourier basis in x space. This can be achieved
by the help of the transformation matrix [K] , whose elements (p,m) are given by:

[K]pm = 1
d

∫ d

0
f(u)exp(−iαpx(u) + iαmu) du (2.67)

Hence, all vectors Uu defined in the new coordinate system (u, y, z) can be straightfor-
wardly transformed in the originate cartesien system (x, y, z) as follows:

Ux = [K]Uu (2.68)

In the end, it should be pointed out that this way of proceeding has the great advan-
tage of using the same Fourier basis for all layers. This allows to write the continuity
equations of the electromagnetic field through the interfaces without projecting this
one on the common basis of the original x space leading to a significant reduction of
the computational cost. Another advantage for this strategy is that it allows to avoid
the instability problems coming from the transformation matrix [K].
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2.2.3 Aperiodic Fourier Modal Method: FMM with PML
So far, we have shown that the FMM method is a versatile and poweful tool for mod-
elling periodic structures. However, several systems in nanophotonics are non-periodic
structures such that optical resonators [13], photonic crystal fibers [14], individual
metallic nano-particles [15] and photonic crystal waveguides [16]. Hence, it is of great
importance to investigate the optical properties of non-periodic structures. One simple
and efficient way to simulate a general aperiodic structure by the use of the FMM
method, is to insert artificial absorbing layers in the boundaries between adjacent peri-
ods in order to truncate the infinite periodic system volume to a finite volume. These
absorbing layers should completely inhibit the interactions between neighboring peri-
ods by minimizing backward parasitic reflections of light into the structure. In fact, the
scattered light in a period is absorbed by these layers without reflection and the fields
at the period boundary should decrease to zero. In this way, the single periods can be
considered as isolated systems (see Figure 2.5). Such layer is called perfectly matched

Figure 2.5: Schematic illustration of a aperiodic structure (a single rectangular groove) and
it equivalent artificially periodized system

layer (PML) and was first proposed by Berenger [17] in 1994 for the finite-difference
time domain (FDTD) method. Later, the original aproach was extented to three di-
mensions by Katz and al [18] and to anisotropic media by Sacks and al [19]. Another
interesting formulation of The (PML) technique was introduced by Chew and al [20]
through the complex coordinate stretching concept which is essentially the analytical
extension of the electromagnetic field in the complex space. It is on this last approach
that we will focus in the following.

In practical computations, the PML can be introduced in the computational domain
using a coordinate transformation. By this coordinate transformation, the boundaries
exist in a complex space providing absorbing boundary conditions without reflection.
Furthemore, the new absorbing coordinate system does not change Maxwell’s equations
as well as the wave propagation equation into the PML layer. An example of a complex
coordinate transformation can be given by:

S(x) =
{

1− iη if x ∈ [0, ePML] ∪ [d− ePML, d]
1 otherwise (2.69)

Inside the PML, the complex variable change x̃ is expressed as:

x̃ =
∫ x

0
S(x) dx (2.70)
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Where ePML is the thickness of the PML layer and η the attenuation factor of the
PML. By Applying the above variable change, the partial derivative in the complex
coordinates reads:

∂

∂x̃
= ∂x

∂x̃

∂

∂x
= 1
S(x)

∂

∂x
(2.71)

Now, to combine the FMM with the PML, we will follow the same reasoning as the one
used in the case of The FMM-ASR. First, we begin by solving the eigenvalue problem in
the new coordinate x̃, then second we bring back all to the original coordinate x. Using
this transformation, written in Fourrier space and using the correct rules of Fourier
factorization, the matrices ATE and ATM resulting from the eigenvalue problems for
the TE and TM polarisations are written as:

ATE =
(
‖ 1
S
‖α‖ 1

S
‖α− k2

0εq

)
(TE) (2.72)

ATM = ‖ 1
εq(x)‖

−1
(
‖ 1
S
‖α‖εq(x)‖−1‖ 1

S
‖ α− k2

0Id

)
(TM) (2.73)

Finally, once the eigenvalues and their corresponding eigenvectors are calculated, we
can determine the total fields expressions by following a prodcedure similar to that
described above for the FMM-ASR case i.e by using the S-matrix algorithm after
matching the boundary conditions.

𝑧 

𝑥 𝑑 
𝑙 

𝑒𝑝𝑚𝑙 0 𝑑 − 𝑒𝑝𝑚𝑙 

Figure 2.6: the diffraction problem of an electromagnetic plane wave by a perfectly conductive
infinite rectangular bar.

We illustrate the efficiency of the PML technique by considering the example of
the diffraction of an electromagnetic plane wave by a perfectly conductive infinite
rectangular bar. As shown in Figure 2.6, a monochromatic plane wave falls on a bar
of width L = λ from the vaccum (z < 0) under normal incidence. Figure 2.7 plotted
the maps of the diffracted field obtained for d = λ, ePML = 4λ, η = 2. The upper
panel in this Figure shows the results with PMLs layers while the lower one shows
those without PMLs. It can be, clearly, seen that there are interferences in the absence
of PMLs stemming from interactions between the different fields scattered from each
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Figure 2.7: Maps of a diffracted field by a perfectly conductive infinite rectangular bar
computed by the use of FMM with PMLs (the upper panel) and without PMLs layers (the
lower panel). The parameters are d = λ,L = λ, ePML = 4λ and η = 2.

elementary period. These spurious fields are completly absent when the PML technique
is used.
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2.3 Numerical Examples involving graphene:
Graphene-Strip Gratings

This section attempts to answer the question of the suitability of the above described
numerical methods for the modelling of diffraction properties of graphene based peri-
odic structures. For doing so, we apply these methods to two different structures. The
first structure consisting of a periodic arrangement of horizontal graphene strips and
the second structure is an infinite periodic array of graphene vertical strips. Numerical
tests of all methods with respect to convergence and stability is also provided in order
to test the validity and efficiency of each one.

2.3.1 Graphene horizontal strips grating

z 

x 

Figure 2.8: sketch of the studied structure: a periodic grating of graphene ribbons of width
w and period d. The gating is inlayed between two dielectric media with permittivities ε1
and ε2

Let us start by illustrating the first structure which is depicted in Figure 2.8. It
consists of a 1D graphene ribbons array with width w and period d surrounded by
two dielectric media with permittivities ε1 and ε2. The graphene array is located on
the xy plane and the whole structure is invariant in the y direction. Note that here,
we are only interested to treat the TM polarization case. In order to test and verify
the validity of each method, we consider the example of an array of graphene with
the following parameters: d = 8µm , w = d/2, ε1 = 3,ε2 = 4, τ = 1/Γ = 0.25ps and
µc = 0.6eV. Figure 2.9 shows the absorption of the given structure as a function of
wavelength calculated at normal incidence. The results are obtained using the FMM
method (blue solid line) and the FMM equipped with the concept of adaptative spatial
resolution(ASR)(cirles) for a fixed truncation order M = 100. We observe a resonance
peak around λ = 78µm and we can clearly see a good agreement between the two
methods.

To show the convergence behavior of each method, we plot the absorption of the
structure at the resonance wavelengh (λ = 78µm) for different truncation orders as
shown in Figure 2.10. The results obtained using the technique of adaptative spatial
resolution are compared against those computed by the use of the conventional FMM
with the correct Fourier factorization method. Red solid line shows the convergence
rate of the FMM method and the results of the FMM-ASR are shown by the blue
solid line. One can observe a very good convergence rate with the FMM-ASR method.
Indeed, the curve corresponding to this latter method converges rapidly and for a
rather small truncation order M ' 10. Whereas, the FMM curve tends towards that
of the FMM-ASR, but converges rather slowly from a truncation order M ' 50. This
comparison shows that both methods can deal with this kind of diffraction problems
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Figure 2.9: Absorption versus wavelength for a periodic array of graphene ribbons in TM
polarisation with normal incidence. The parameters are ε1 = 3,ε2 = 4, µc = 0.6eV and
τ = 1/Γ = 0.25ps. The results are obtained by using The FMM method (blue solid line) and
the FMM-ASR Method (circles).
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Figure 2.10: Convergence curves versus the truncation order obtained for λ = 78µm. Red
solid line shows the FMM method and the blue line shows the FMM-ASR results.The pa-
rameters are the same as figure 2.9
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but the FMM-ASR is more suitable since it brings an improvement and enhancement
of the computational efficacy in this case.

2.3.2 Graphene Vertical strips grating
Let us pass now to the second diffraction problem. We consider the structure shown
in Figure 2.11 in which the space is divided into three regions. Region 1 (z ≤ 0) and
Region 3 (z ≥ h) are assumed to be dielectric and homogenous with relative dielectric
permittivities ε1 and ε3. Region 2 is the grating region. It consists of identical vertical
strips periodically inlayed in a homogeneous dielectric meduim of relative dielectric
permittivity ε2. The period and the height of the grating are d and h, respectively. A
TM-polarized monochromatic plane wave is obliquely incident on the structure from
the lower meduim and the graphene grating is assumed to be invariant along the
y direction. Similarly to the first case, we consider a numerical example with the
parameters d = 8µm, h = 1µm, µc = 0.6eV and θ = 50◦.

z 

x 

Figure 2.11: Structure geometry: a periodic grating of vertical strips of graphene

It should be noted that this configuration, could constitute a pathological case
because of its extremely small filling ratios f which is given by f = δg/d = 0.34 ×
10−9/d ∝ 10−3. This would lead to use a high truncation number M and thus large
computational times.

This is why in such a situation, we choose to use the FMM-ASR. Figure 2.12 shows
the absorption versus the wavelength. As in the previous case a resonance peak is
observed around λ = 19.82µm which probably corresponds to the excitation of surface
plasmons polaritons over graphene strips. Let us now study the convergence of this
method for the structure. The convergence of the absorption computed by the help of
the FMM-ASR as the truncation order increases is plotted in the Figure 2.13. It can
be seen that the absorption converges remarkably fast with truncation order as low as
20. We can also clearly see that it remains stable even for large truncation orders. As
a result, we can conclude that the FMM with the ASR concept can provide accurate
and stable results which makes it promising and suitable for studying these kind of
pathological structures. After checking the rapidity of the convergence of the FMM-
ASR and being ensured of its stability. We use it now to plot the spatial distribution of
the electromagnetic field for a better understanding of the nature of the mode. Figure
2.14 shows the spatial distribution of the mode corresponding to the resonance peak
where the real part of the y component of the magnetic field is drawn and where the
different interfaces z = 0 and z = h are indicated by dashed white lines. From this
figure, one can see that the field is mostly localized at the graphene vertical strips
which confirms our above assumption that the mode corresponds to a GSP mode.
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Figure 2.12: Absorption versus wavelength for a free standing graphene periodic vertical
strips grating in TM polarization whose parameters are d = 8µm ,h = 1µm, ε1 = ε2 = ε3 = 1
µc = 0.6eV and θ = 50◦. The resuts are obtained using the FMM-ASR method for truncation
order M = 100
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Figure 2.13: Convergence behavior of the absorption in terms of truncation order at λ =
19.82µm. The structure is the same in Figure 2.12
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Figure 2.14: Map of the y component of the magnetic field for the mode corresponding to
the resonance peak seen in Figure 2.12
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2.4 Conclusions
In conclusion, we have presented the Fourier modal method (FMM) under its classical
form as well as the Fourier modal method equipped with the concept of adaptive spatial
resolution (FMM-ASR) in order to adapt them for investigating general multilayered
gratings structures comprising graphene gratings. The FMM method is demontrated
to be a poweful tool that enables to calculate the reflectance and transmittance spectra
for periodic structures as well as the fields distributions in these structures. However,
it is shown that when the permittivity function is discontinuous, the latter method
is known to converge slowly in the case of TM polarization, especifically for metallic
gratings. This problem was attributed to the use of wrong Fourier factorization rules.
We have shown also that even the corret rules of Fourier factorization are applied,
there remained a problem which is originated from the uniform spatial resolution of
the Fourier expansion around the discontinuities points of the permitivity that does
not take into account the genuine profil of the permittivity. This problem has been
overcome by the help of the concept of adaptative spatial resolution that allows to
increase the spatial resolution at the level of the discontinuities points using a new
coordinate system. We have seen that the implementation of this technique led to a
drastic and significantly improvement in the performance of the FMM method in term
of convergence and stability. We have then extented the FMM method to aperiodic
structures by placing perfectly matched layers at the lateral sides of the computational
domain. Finally, in the last section, in order to test the reliability of these methods for
treating graphene gratings, we have applied them to two different configurations: the
first structure was a 1D graphene ribbon array and the second one a periodic grating
of vertical strips of graphene. The comparison between the results obtained using the
classical FMM with the correct Fourier factorization method and those computed by
the FMM-ASR have shown that a better convergence rate has been achieved with
the FMM-ASR method for both configurations. This point makes it best suited for
modeling these kind of structures.
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Chapter 3
Metallic slit grating-Graphene composite
structure

The knowledge of anything,
since all things have causes, is
not acquired or complete unless
it is known by its causes.

Avicenna
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Extraordinary optical transmission (EOT) [1, 2, 3] through an opaque metallic
film perforated with subwavelength slits has received great interest over the past two
decades because of its numerous applications in optoelectronics such as mid-infrared
spatial light modulators, linear signal processing or biosensing. Many theoretical and
experimental works were carried out in order to understand and predict EOT and, espe-
cially, to highlight the role of surface waves [4, 5, 6, 7]. More recently K.Edee provided,
in [8], a simple and versatile model, for this phenomenon, involving only a specific mode
living in an equivalent homogeneous medium and a phase correction to account for sur-
face waves. The proposed semi-analytical model is valid from the visible to the infrared
frequencies ranges. On the other hand, significant efforts have been made to create
active or tunable plasmonic devices operating from THz to mid-infrared frequencies.
Thanks to its extraordinary electronic and optical properties, graphene, a single layer
of arranged carbon atoms has attracted much attention in the last years. This mate-
rial can support both TE and TM SPPs and can exhibit some remarkable properties
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such as flexible wideband tunability that can be exploited to build new plasmonic de-
vices. The main challenge when designing a graphene-plasmon-based device is how to
efficiently excite GSPs with a free space electromagnetic wave since there is a huge mo-
mentum mismatch between the two electromagnetic modes. Generally two strategies
are used. The first one consists in patterning the graphene sheet into nano-resonators
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In this case a surface plasmon of the ob-
tained structure which is very similar to the GSP is excited and an absorption rate close
to 100% can be reached. In particular, in [15], the authors presented an electrically
tunable hybrid graphene-gold Fano resonator which consists of a square graphene patch
and a square gold frame. They showed that the destructive interference between the
narrow- and broadband dipolar surface plasmons, which are induced respectively on the
surfaces of the graphene patch and the gold frame, leads to the plasmonic equivalent
of electromagnetically induced transparency (EIT). However patterning a graphene
sheet requires sophisticated processing techniques and deteriorates its extraordinary
mobility. The second strategy consists in using a continuous graphene sheet instead of
undesirable patterned graphene structures[22, 23, 24, 25, 26, 27]. In this approach, the
graphene sheet is coupled with nano-scatterers such as nano-particles, or nano-gratings.
Gao et al. proposed [22] to use diffractive gratings to create a guided-wave resonance
in the graphene film that can be directly observed from the normal incidence trans-
mission spectra. In [27] Zhao et al. studied a tunable plasmon-induced-transparency
effect in a grating-coupled double-layer graphene hybrid system at far-infrared frequen-
cies. They used a diffractive grating to couple a normally incident wave and plasmonic
modes living in a system of two graphene-films separated by a spacer. Zhang et al.
[24] investigated optical field enhancements, in a wide mid-infrared band, originating
from the excitation of GSPs, by introducing a dielectric grating underneath a graphene
monolayer. Usually, the optical response of all grating-graphene based structures listed
above is performed thanks to the finite difference time domain method (FDTD) or to
the finite element method (FEM). However the features of these hybrid graphene-
resonators devices are often linked to a plasmon resonance phenomenon. Therefore a
modal method allowing for a full modal analysis of the couplings occurring in these
plasmonic systems seems more suitable. In this chapter, we investigate an optical tun-
able plasmonic system involving two fundamental phenomena: an EOT phenomenon
and a metal-insulator-graphene (M-I-G) cavity plasmon mode excitation. We propose
a semi-analytical model allowing to fully describe the spectrum behaviour of an hy-
brid plasmonic structure, made of a 1D periodic subwavelength slits array deposited
on an insulator/graphene layers. The spectrum of the proposed hybrid system ex-
hibits Lorentz and Fano-like resonances and also other broadband and narrow band
resonances that are efficiently captured by our simplified model. In order to explain
the origin of this particular behaviour, we first split the hybrid system into a couple
of sub-systems. Second, thanks to a modal analysis through the polynomial modal
method (PMM: one of the most efficient methods for modeling the electromagnetic
properties of periodic structures and available in our laboratory) [28, 29, 30, 31] and
the FMM-ASR presented in chapter 2, we demonstrate that the scattering parameters
of each sub-system can be computed through a concept of weak and strong couplings.
Finally we provide analytical expressions of the reflection and transmission coefficients
of the structure and describe the mechanisms leading to Lorentz and Fano resonances
occurring in it.
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3.1 Extraordinary optical transmission
For decades, it has been known in classical electromagnetics theory that when an
electromagnetic wave is impinging on an aperture whose dimension is larger than the
wavelength of the light, it will be transmitted through it. Whereas a subwavelength
aperture diffracts light in all direction leading to a very low transmission [32]. In
1998, Ebbesens et al [1] found that a 2D subwavelength metal aperture array exhibits
unusual high transmission at a certain frequency. This phenomenon has been called
extraordinary optical transmission (EOT). One year later, Porto et al [33] theoretically
investigated the transmission through one dimensional subwavelength metallic gratings
with very narrow slits. In this case, they proved that the EOT phenomenon find
its physical origin in the surface plasmons polaritons resonances. In particular, they
distinguished two different mechanisms of SPP resonances which are responsible for
this enhancement of the transmission. The first mechanism is the excitation of a
cavity resonant mode located in the slit (Vertical surface resonance) and the second
one is related to the resonnant coupling between horizontal plasmons on both sides.
The goal of this section is to explain and present the basic physical mechanisms behind
the EOT phenomenon taking place in a one dimensional metallic slit grating.

z 

x 

y 

Figure 3.1: Schematic of EOT through a subwavelength metal slit array: The horizontal
surface plasmons on the upper and lower surfaces of the metallic film (red) can be excited by
the waves diffracted by the grating. The vertical surface plasmons (blue) couple to form the
fondamental TM mode guided in the slits. When the thikness of the slit grating is sufficient,
vertical resonnaces can occur which correspond to Fabry-Perot-like resonnaces of this guided
mode.

In order to highlight the(EOT) and understand the different mechanisms contribut-
ing to this phenomenon, we consider the structure depicted in Figure 3.1 which is
similar to the one presented by Porto et al [33]. It consists of a subwavelength 1D
metallic slit grating made of gold and surrounded with air. The period of the grating
is d = 3.5µm, the width of the slit is set to be w = 0.5µm and the thichness h takes
the values 0.2− 1.2− 3µm.

3.1.1 Extraordinary transmission : Two resonant mechanisms
The Figure 3.1 plotted the transmission spectra of a TM wave incident onto the struc-
ture shown in Figure 3.1. One can clearly see two transmissions peaks for sufficiently
large thickness (h = 3µm). In ref [33], Porto and al suggest the existence of two dif-
ferent mechanisms responsible for the appareance of these peaks in the transmission
spectra: the Horizontal and Vertical SPPs resonances. Hereafter, we will explain these
two resonances mechanisms.
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Figure 3.2: Transmission spectra for a 1D gold slit array at normal incidence. The period of
the grating is d = 3.5µm and the width of the slit is w = 0.5µm. The results are calculated
for three values of the thikness of the grating h : h = 0.2µm (black line), h = 1.2µm (blue
line) and h = 3µm (red line)

Horizontal SPP resonance (Periodic structure resonance)

As we can see from Figure 3.2, the grating can support horizontal SPPs (in red) which
can propagate on its upper and lower sides. When a TM polarized wave is incident
into the grating, the latter will generate different diffraction orders and one of those
diffracted waves can couple to the horizontal SPPs. This is achieved when the following
condition is fulfilled:

ksp = kxn = kx0 + 2πn
d

(3.1)

Where kxn is the parallel wavevector of the nth diffracted wave and k0
x is the incident

parallel wavevector. We can see from this equation that the horizontal surface res-
onances depend strongly on the period d of the grating and on the incident parallel
wavevector.

Vertical surface plasmon resonance (Fabry -Perot like resonance)

The slits that constitute the grating can be considered as independent planar 1D waveg-
uides. In the case where the width of the slit is very narrow, only the fundamental
mode can propagate in the waveguide. In ref [34], it has been predicted that this mode
is composed of two coupled surface plasmons polaritons propagating along both the
metallic walls of the slit (see Figure 3.3). Surface waves are then reflected at the upper
and lower ends of the slit and consequently the obtained vertical resonances can be
seen as Fabry perot like resonnaces of the TM fundamental mode inside the slit.

Transmission mechanism through the structure

To summarize, the mechanism of extraordinary transmission through a metallic sub-
wavelength grating is as follows: the incident wave couples to the fundamental guided
mode inside the slit partly directly and partly via the horizontal surface plasmons
on the top metal surface (upper surface). On the lower surface, the waveguide mode
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z 

x 

Figure 3.3: Shamatic representation of a 1D planar metallic waveguide with very narrow
width. Inside the waveguide only the fundamental TM mode is propagative and is composed
of two surface plasmons waves

couples with a propagative wave partly directly and partly via the horizontal surface
plasmons on the bottom metal surface. As a result, the coupling between the upper
and lower surface plasmons is achieved by the guided mode in the slit. This coupling
is more effective in the case of symmetrical structure i.e when the permittivities of the
surrounding media are equal.

3.2 Coupling between subwavelength nano-slits lat-
tice modes and metal-insulator-graphene cavity
modes: A semi-analytical model

3.2.1 Physical system
The hybrid structure under study is presented in Fig. (3.4). It consists of two sub-
systems. The first sub-system earlier studied in [8] is a sub-wavelength periodic array of
nano-slits with height h1 = 800nm, period d = 165nm << λ and slits-width s = 15nm.
The relative permittivity of the material filling the slits is denoted by ε(s) while the
dispersive relative permittivity of the metal (gold) is denoted by ε(m) and described by
the Drude-Lorentz model [35, 8, 36]. This first sub-structure is deposited on a dielectric
spacer (with relative permittivity ε(2) = 1.542 and hight h2 = 10nm) itself deposited on
a continuous graphene sheet. Here, the monolayer graphene is modeled as a thin film
within the Thin film’s effective thickness approach described previously in chapter 1.
This hybrid structure is excited, from the upper medium (having relative permittivity
ε(0)) by a TM polarized plane wave (the magnetic field is parallel to the y axis). The
wave vector of the incident wave is denoted by ~K0 = k0 (α0~ex + β0~ey + γ0~ez), where
k0 = 2π/λ = ω/c denotes the wavenumber, λ being the wavelength and c the light
velocity in vacuum. The relative permittivity of the lower region is denoted by ε(3).

As mentioned above in the introduction, the spectrum behaviour of the studied
hybrid plasmonic structure is performed through the FMM-ASR and PMM methods.
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Figure 3.4: Sketch of hybrid structure made of a dispersive metal film perforated with a
subwavelength periodic array of 1D nano-slits deposited on a dielectric spacer ended by a
continuous graphene sheet.
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Figure 3.5: Reflection, transmission and absorption spectra of the hybrid system for computed
with (a) FMM-ASR (b) PMM. Parameters: ε1 = ε3 = εslit = 1, ε(2) = 2.3716, µc = 1eV
incidence angle= 0o, h = 800nm, d = 165nm, s = 15nm.

Figure 3.5 shows the transmission (blue solid line), reflection (red solid line) and absorp-
tion (black solid line) spectra computed using the FMM-ASR and the PMM methods
for a normally incident plane wave. The chemical potential of the graphene layer is set
to µc = 1eV . From this figure, we can clearly see that both methods can efficiently and
successfully predict the electromagnetic and plasmonic response of the structure. We
can also observe an excellent agreement between the results obtained with the FMM-
ASR method and those computed using the PMM method. In the following, we choose
to use only the PMM method for computing the optical spectra and as a method to
validate and test our proposed semi analytical approach.

We report in Figure 3.6, the spectra of the hybrid structure for two values of the
chemical potential: µc = 1eV and µc = 1.5eV . These curves display both broadband
and narrow bands resonance phenomena. It has been shown in [8] that a Lorentz-like
resonance corresponding to an EOT phenomenon can occur in the first sub-system
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Figure 3.6: Reflection, transmission and absorption spectra of the hybrid system for (a) µc =
1eV and (b) µc = 1.5eV . The hybrid structure exhibits both broadband and tunable narrow
band resonances with respect to the chemical potential. Parameters: ε1 = ε3 = εslit = 1,
incidence angle= 0o, h = 800nm, d = 165nm, a = 15nm.

i.e. the dispersive metal film perforated with a subwavelength periodic array of 1D
nano-slits excited by a plane. In the current case, this EOT occurs around λ = 3.37µm
and as pointed out in [8] it is related to the excitation of a particular eigenmode
of the slit grating structure : the so-called lattice mode. The broadband resonance
is related to the EOT phenomenon outlined later, while the narrow band resonance
phenomena are due to Fabry-Perrot-like resonances of a cavity mode living in the
metal/spacer/graphene gap. For example, for µc = 1eV , a first two narrow resonances
are observed around λ = 4.17µm and λ = 7.3µm as shown in the insets.

(a) (b)

Figure 3.7: Real part of the magnetic fieldHx(x, z) at (a) λ = 4.17µm and at (b) λ = 7.30µm.
Parameters: ε1 = ε3 = εslit = 1, incidence angle= 0o, h = 800nm, d = 165nm, a = 15nm.

The real parts of the magnetic field plotted in Figure 3.7(a) at λ = 4.17µm
and in Figure 3.7(b) at λ = 7.30µm, for µc = 1eV , support the fact that the nar-
row band resonances are linked to the resonance of a cavity mode of the horizontal
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metal/insulator/graphene sub-system. As the effective index of this mode strongly
depends on the chemical potential µc, the resonance frequencies of this hybrid cavity
mode shift with increasing µc. Comparing the reflection spectrum of the first sub-
system with that of the hybrid structure, we can interpret the latter spectral response
as a weak or strong coupling between the lattice mode of the former sub-system with
the cavity mode of the metal/insulator/graphene gap. We propose in the following, a
simple single mode model allowing to efficiently describe, and understand the mecha-
nism of this vertical-to-horizontal cavity modes coupling.

3.2.2 Modal analysis of the system

Figure 3.8: Sketch of the mechanism of the coupling between cavity lattice modes of the
periodic array of nano-slits and the metal/insulator/graphene gap plasmon modes. Strong
and weak couplings between three modes are responsible of the resonance phenomena of the
hybrid structure.

The sketch of vertical-to-horizontal cavity modes coupling outlined in the pre-
vious section is presented in Fig. (3.8), where γ

(1)
0 denotes effective index of the

periodic slits array lattice mode in the z-direction while α
(3)
0 denotes that of the

metal/insulator/graphene cavity mode in the x-direction. The effective indices α(1)
0

and α
(2)
0 will be introduced later. Modal methods are very suitable to deal with the

current problem since it is related to mode resonances. Thus, all required effective
indices are computed as eigenvalues of the generic operator L(k):

L(k)(ω)|H(k)
q (ω)〉 = (γ(k)

q (ω))2|H(k)
q (ω)〉 (3.2)

with
L(k)(x, ω) =

(
c

ω

)2
ε(k)(x, ω)∂x

1
ε(k)(x, ω)∂x + ε(k)(x, ω).

Figure 3.9 illustrates the different configurations used for the computation of the re-
quired effective indices. Recall that these effective indices are computed as eigenvalues
of equation (3.2). The first configuration (config.1) is used for the computation of the
modes of periodic arrays of nano-slits in general and particularly for the computation
of the cavity lattice mode effective index γ

(1)
0 . The second configuration (config.2)

is used for the computation of the plasmon mode effective index α(2)
0 while the cav-

ity plasmon mode effective index α(3)
0 is computed thanks to the third configuration
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(config.3). Practically, the PMM is used to solve numerically the eigenvalue equation
Eq. (3.2). For that purpose, the structure is divided into sub-intervals I(k)

x , in the
x-direction: k ∈ {1, 2} for config.1 while k ∈ {1, 6} for config.2 and config.3. At this

Figure 3.9: Configurations used for the computation of the required effective indices (eigen-
values of equations 3.2). config.1 is used for the computation of the modes of periodic arrays
of nano-slits in general and in particular for the computation of the cavity lattice mode ef-
fective index γ

(1)
0 . config.2 is used for the computation of the effective index α

(2)
0 of the

plasmon mode. The gap plasmon mode effective index α(3)
0 is computed thanks to config.3.

stage, we split the hybrid system into two coupled sub-systems:

• a weakly coupled sub-system sketched in figures 3.10 and 3.11 which leads to the
broadband resonances.

• a strongly coupled sub-system sketched in figures 3.13 and 3.14 leading to a
narrow bands dispersion curves.

Let us now analyse each coupled sub-system and provide semi-analytical models allow-
ing to describe them.

Weakly coupled sub-system

A semi-analytical model for the weakly coupled system has been already described in
[8]. This system consists of a periodic array of subwavelength nano-slits encapsulated
between media with relative permittivities ε(0) and ε(3). As pointed out in [8], the
electromagnetic response of the system to an incident plane wave excitation, in the
static limit (d << λ), is equivalent to that of a slab with equivalent permittivity
ε(1) = 〈1/ε(m,s)(x)〉−1 and height h1.

Its reflection and transmission coefficients R12 and T12 are then given by :

R12 = r1 + φ1r2φ2

1 + r1φ1r2φ2
(3.3)

and
T12 = t1t2φ2

1 + r1φ1r2φ2
(3.4)
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Figure 3.10: Sketch of the weak coupling sub-system consisting of a periodic array of nano-
slits encapsulated between ε(0) and ε(3) media. The lattice mode γ(1)

0 is assumed to live in
an
√
ε(1) effective homogeneous medium. Two plasmon modes α(0)

sp and α(2)
0 ensure the phase

matching with the plane waves in media ε(0) and ε(3)

Figure 3.11: The sketch of α(2)
0 plasmon mode computation.

where r1, t1 and r2, t2 are the Fresnel coefficients at the interfaces ε(0)/ε(1) and ε(1)/ε(3)

under TM polarization:

r1 = 1− n01(ω)

1 + n01(ω)
, r2 = 1− n13(ω)

1 + n13(ω)
, (3.5)

t1 = 2
1 + n01(ω)

, t2 = 2
1 + n13(ω)

. (3.6)

where

n01(ω) = γ
(1)
0 (ω)/ε(1)(ω)
γ

(0)
0 (ω)/ε(0)(ω)

, and n13(ω) = γ
(3)
0 (ω)/ε(3)(ω)
γ

(1)
0 (ω)/ε(1)(ω)

, (3.7)

and

φ1 = e−ik0γ
(1)
0 h1φ(0)

c , φ2 = e−ik0γ
(1)
0 h1φ(2)

c (3.8)

with

φ(0)
c = e−ik0α

(0)
sp a

(0)
, φ(2)

c = e−ik0α
(2)
0 a(2)

. (3.9)

Phase correction terms are introduced in order to take into account the phase
matching between the lattice mode with effective index γ(1)

0 and the incident plane wave

(see [8]). In equation Eq. (3.9), α(0)
sp =

√
ε(0)ε(m)

ε(0) + ε(m) is the effective index of the surface

plasmon propagating along the upper interface, a(0) = a

4

√
ε(0)

ε(s) and a(2) = a

4

√
ε(3)

ε(s) . We
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compare in Fig (3.12 (a)) the spectrum of the reflectivity |R12|2, with the reflectivity
of the hybrid system. As expected, the |R12|2 curve perfectly matches the broadband
resonance of the hybrid structure. The impact of the phase correction terms φ(0),(2)

c on
the results is not significant since the omission of these terms only induces a little shift
of the |R12|2 curve. This is why we consider the coupling between the γ(1)

0 -effective
index-slit-mode and the α(2)

0 -effective index-plasmon-mode as a weak coupling.
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Figure 3.12: Comparison between the reflection spectrum of the hybrid structure and the
responses of the weakly coupled sub-system (a) and the strongly coupled sub-system (b).
As expected, the weakly coupled sub-system reflection spectrum |R12(λ)|2 perfectly matches
the broadband resonances of the hybrid structure. On the other hand, the strongly coupled
sub-system spectrum characteristic function |S11(λ) + S12(λ)|2 perfectly matches the narrow
band resonances of the hybrid structure. Parameters: λ ∈ [2, 10]µm, ε(1) = ε(3) = ε(s) = 1,
ε(2) = 1.542, incidence angle= 0o, µc = 1eV .

Strongly coupled sub-system

Consider now the strongly coupled sub-system sketched in Figs. (3.13) and (3.14).
Since the transverse geometrical parameters of the grating are smaller than the incident
field wavelength λ (d << λ), we can introduce for the lattice mode an effective index
α

(1)
0 along the x-axis as follows:

α
(1)
0 =

√
ε(1) − γ(1)2

0 , (3.10)

where α(1)
0 has a positive real part and a negative imaginary part. The S-parameters

of the equivalent two ports network of Fig. (3.13) are then given by :[
S11 S12
S21 S22

] [
a1
a2

]
=
[
b1
b2

]
(3.11)

where 
S11(ω) = S22(ω) = [1− n2(ω)] [1− φ2(ω)]

[1 + n(ω)]2 − [1− n(ω)]2 φ2(ω)

S12(ω) = S21(ω) = 4n(ω)φ(ω)
[1 + n(ω)]2 − [1− n(ω)]2 φ2(ω)

, (3.12)

87



CHAPTER 3. METALLIC SLIT GRATING-GRAPHENE COMPOSITE
STRUCTURE

Figure 3.13: Sketch showing the strong coupling between the gap plasmon mode α(3)
0 living

in an
√
ε(2) homogeneous medium and α(1)

0 lattice mode in an
√
ε(1) effective homogeneous

medium.

Figure 3.14: The sketch of α(3)
0 plasmon mode computation.

with 
n(ω) = α

(3)
0 (ω)/ε(3)(ω)
α

(1)
0 (ω)/ε(1)(ω)

φ = e−ik0α
(3)
0 d.

, (3.13)

The resonances of this system are obtained by finding the zeros of the determinant
∆(ω) of the matrix S(ω) of equation Eq. (6.5) :

∆(ω) = S11(ω)S22(ω)− S12(ω)S21(ω) = [S11(ω)− S12(ω)] [S11(ω) + S12(ω)] = 0.
(3.14)

Then we have two classes of solutions:
S11(ω)− S12(ω) = 0
or
S11(ω) + S12(ω) = 0

. (3.15)

As shown Figure 3.12(b) the resonance frequencies defined by the class of solutions
satisfying to S11(ω)+S12(ω) = 0 match with the narrow band resonances of the hybrid
structure. Let us set

r13(ω) = − (S11(ω) + S12(ω)) . (3.16)
Coefficient r13 corresponds to the reflection coefficient of the strongly coupled system
where the output and input ports are excited by two fields of equal amplitudes a1 = a2.
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Therefore the reflection spectrum of the whole system can take the following form :

R = r1 + φ1r13r2φ2

1 + r1φ1r13r2φ2
(3.17)

and
T = t1r13t2φ2

1 + r1φ1r13r2φ2
. (3.18)

By using the approximate model of Eqs. (3.17) and (3.18), we provide some numerical
simulations (In Figs. (3.15a), (3.15b), (3.15c) and (3.15d)) for different values of µc.
In these figures, we compare the spectra of the hybrid-structure with the reflection
and transmission curves obtained from rigorous PMM computations. The chemical
potential is set to µc = 1eV , in Figs. (3.15a) and (3.15b), while µc = 1.5eV , in Figs.
(3.15c) and (3.15d). All these results fit very well the rigorous numerical simulations
obtained with the PMM. Our model captures very well all resonances occurring in the
hybrid system namely Lorentz and Fano resonances and thus confirms that couplings
between some fundamental modes of elementary sub-structures are of fundamental
importance in these phenomena. Armed with this model, we are now ready to deepen
the explanation of the curves of Figure 3.6.

3.2.3 Analysis of the Lorentz and Fano resonances of the sys-
tem

Analysing the reflection |R|2, transmission |T |2 from Eqs. (3.17), (3.18), it is possible
to provide justifications for the curves shapes in Figure 3.6. From these figures, we
remark that:

1. In the frequency range close to the resonance frequencies of the weak sub-system,
the reflection and transmission spectra generally exhibit asymmetric Fano-like
shapes while the absorption presents Lorentz-like shapes (left inserts of Figure
3.6.

2. When the resonance frequency of both strongly and weakly coupled systems
match each other, it results in an exaltation of the reflection and annihilation
of both transmission and absorption. This can be seen as a sort of induced
reflection.

3. In the frequency range far from the resonance frequencies of the weakly coupled
sub-system, a Lorentz-like absorption enhancement can be observed (right inserts
of Figure 3.6). The scattering efficiency vanishes and the absorption takes its
maximum value close to unity.

Before commenting on the first point raised above, let us recall that, in general, the
Fano resonance occurs when a narrow band resonance sub-system interferes with a
continuum or a broadband resonance sub-system. The signature of this resonance in
the spectrum is the presence of two closed critical points corresponding to a vanishing
value of the amplitude followed or preceded by an enhancement. In the current case,
the zeros of the transmission T , in Eq. (3.18), are the zeros of the coefficient r13 and
these frequency values are always followed or preceded by great or little transmission
enhancements. Therefore the Fano resonance shape becomes obvious.
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Figure 3.15: Comparison between the spectra of the hybrid-structure with the reflection and
transmission curves obtained from the PMM for two values of the chemical potential µc. The
chemical potential is set to µc = 1eV , in Figs. (3.15a) and (3.15b), while µc = 1.5eV , in Figs.
(3.15c) and (3.15d). All these results fit very well with the rigorous numerical simulations
obtained with the PMM. Our model captures very well all resonances occurring in the hybrid
system namely Lorentz and Fano ones. Parameters: λ ∈ [2, 10]µm, ε(1) = ε(3) = ε(s) = 1,
ε(2) = 1.542, incidence angle= 0o

For the second point, let us recall the resonance condition of the first sub-system. It is
obtained from the zeros of the reflection coefficient R12, in Eq. 6.8, as soon as:

φ1r2φ3 ' −r1 and 1 + r1φ1r2φ2 6= 0, (3.19)

There is an extinction of the reflection without any annihilation of the transmission.
Knowing that the resonance condition of the strongly coupled system is given by

r13(ω) ' 0, (3.20)

when the latter resonance condition Eq. (3.20) meets the former Eq. (3.19), it results

r13φ1r2φ3 ' 0 (3.21)
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which leads to an exaltation of reflection, and an annihilation of the transmission ( see
Eq. 3.18) and the absorption. The spectral responses of the structure are shown to be
highly tunable by changing a gate voltage applied to the graphene sheet. The height h2
of the horizontal cavity influences the system through the effective index α(3)

0 . The dis-
persion curves of the effective index α(3)

0 are plotted in Fig. 3.16a for different values of
h2 while µc is kept constant and equal to 1eV . It can be seen that increasing h2 leads to
a decrease of the real part of α(3)

0 . Since the x dependance of the electromagnetic field
in the cavity may be approximated by Hy(x) = A+exp(ikα(3)

0 x) + A−exp(−ikα(3)
0 x),

(k = 2π/λ), for a given d-length cavity, the resonance wavelengths can be approx-
imately obtained through a phase condition on the term A±sin(2πdα(3)

0 /λr). When
α

(3)
0 decreases, the resonance wavelength λr brought by the strongly coupled sub-system

also decreases. Consequently increasing spacer height pushes the resonance wavelengths
resulting from the strongly coupling sub-system towards the visible wavelengths range.
The same behavior can be observed when the height h2 is kept constant while increas-
ing the chemical potential µc (see figure 3.16b). This time it is µc that influences the
system through the effective index of the horizontal cavity. Increasing µc decreases α(3)

0
and thereby leads to a decrease of the resonance wavelengths.
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Figure 3.16: Dispersion curves of the effective index α(3)
0 for different values of h2, (µc = 1eV )

(Fig. (3.16a)) and for different values of µc (h2 = 10nm) (Fig. (3.16b)). Increasing the
chemical potential µc or the spacer width h2, the real part of α(3)

0 decreases. Parameters:
ε2 = 1.542.

By tuning the potential µc, one can realize the condition of Eq. (3.21) leading to an
induced reflection phenomenon. For the last raised point, the Lorentz resonance shape
of the absorption is provided by the poles of the scattering parameters of the system i.e.
when 1 + r1φ1r13r2φ2 ' 0 leading to weak values of both reflection and transmission.
Besides, the exaltation of the absorption always occurs around frequencies where both
reflection and transmission are weak and equal and these frequencies are different from
the zeros of the coefficient r13. Therefore in the frequency range far from the resonance
frequency of the EOT sub-system, the hybrid structure behaves as a tunable perfect
absorber.

Finally, it is worth noticing that the present model works very well for normal
incidence and reasonably well for angles of incidence up to twenty degrees. For large
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angles of incidence, some new resonances appear in the spectra and are not captured
by our model

3.3 Conclusions
In conclusion, we have proposed a simple model, allowing to deepen the comprehension
of the resonance phenomena involving the EOT phenomenon and a (M-I-G) gap plas-
mon excitation. We consider a hybrid structure that consists of a 1D array of periodic
subwavelength slits ended by a gap.

For our analysis, this hybrid structure is split into two sub-systems. Each sub-
system is driven by eigenmodes operating in an appropriate coupling regime. The
study of the first sub-system, characterised by modes operating in a weak coupling
regime, allows to understand the broadband resonance of the hybrid system. We
provided an analytical expression of the reflection and transmission coefficients of this
first sub-system. The behavior of the second sub-system, characterized by modes
acting in a regime of strong coupling allows to understand the narrow-band nature
of the hybrid system. Here, the resonance frequencies directly depend on the metal-
insulator-graphene horizontal Perot Fabry cavity effective index. Since the real part of
this effective index decreases by increasing the graphene sheet chemical potential, the
resonance wavelengths of the system become perfectly tunable ; better yet an induced
reflection phenomenon or perfect absorption can be achieved with suited values of the
graphene sheet Fermi level. We proposed a spectral function allowing not only to
characterize the resonance frequencies of this second sub-system, but also showed that
introducing this spectral function into the reflection and transmission coefficients of the
first sub-system, we obtain an analytical expression of the reflection and transmission
coefficients of the global hybrid system which are successfully compared with those
obtained with rigorous numerical simulations (through the PMM approach). Finally,
armed with these analytical expressions, we provided a full description of the resonance
phenomena occurring in the system.

Our analysis in terms of simple modes couplings can be extended to study the
coupling of the lattice modes with a substrate made by a non-reciprocal photonic
topological materials, of particular interest for energy management and transport [37]
and for atomic manipulation [38]. The analysis of such complex hybrid configurations
involving diffraction gratings coupled to hybrid graphene multilayer structures could
also be applied to study and to estimate more complicated phenomena, like the Casimir
effect [39] and the radiative heat transfer [40].
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Chapter 4
Basic concepts

Symmetry is what we see at a
glance.

Blaise Pascal

Contents
4.1 Electromagnetic reciprocity and non reciprocity . . . . . . 101

4.1.1 Time reversal symmetry of Maxwell’s equations . . . . . . . . 102
4.1.2 Reciprocity Theorem in Electromagnetism . . . . . . . . . . . 103
4.1.3 Non reciprocity with magnetic field . . . . . . . . . . . . . . . 104

4.2 Graphene under a static magnetic bias . . . . . . . . . . . 115
4.2.1 Landau Levels in monolayer graphene . . . . . . . . . . . . . 115
4.2.2 Reflection and transmission properties of a magnetized

graphene sheet . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Surface magnetoplasmons polaritons on magnetically biased

graphene sheet (GSMP) . . . . . . . . . . . . . . . . . . . . . 123
4.2.4 Nonreciprocity and gyrotropy of graphene . . . . . . . . . . . 125

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

This chapter is intended to provide the theoretical background that forms the basis
for the following chapters of this part. In the first place, we introduce the reciprocity
and non reciprocity notions with focus on the concept of non reciprocity with magnetic
fields. In particular, we explain the optical Hall effect in the general case and give
a detailed analysis of wave propagation and dispersion characteristics of gyrotropic
media. These concepts are applied in the next part of this chapter to investigate
graphene under the presence of a static external magnetic field.

4.1 Electromagnetic reciprocity and non reciprocity
The notion of reciprocity and non reciprocity is a fundamental and crucial scientific
concept that occurs in many different branches of physics such as condensed-matter
physics, classical mechanics, optics, thermodynamics, quantum mechanics, electro-
magnetism and particle and nuclear physics. From an etymological point of view,
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reciprocity stems from the adjective reciprocal which comes from the Latin word re-
ciprocus, build on the phrase recus-procus ("re"(backward)) and (" pro" (forward). As
a consequence, the term reciprocal means "going the same way backward as forward".
Reciprocity is a fundamental symmetry in electromagnetism, which implies that the
amplitude of a wave created by a source and scattered from an objet does not change
when the source and the detector are interchanged [1] (see Figure4.1). Historically, the
first study of reciprocity in electromagnetism was given by stokes [2] in 1849 in which he
was derived the equation that related the reflection and transmission of light through
an interface between lossless optical media. This concept was later extented to describe
more complex systems in the field of electromagnetic waves in 1866 by Helmhotz [3] and
in 1905 by lorentz [4] which leads to the so called Stokes-Helmholtz-Lorentz reciprocity
principle. Recently, electromagnetic reciprocity becomes an important technological

Figure 4.1: Schematic illustration of the reciprocity principle

concept and it is extensively used for analyzing antenna systems. In Fact, if an an-
tenna is an excellent transmitter, then based on the reciprocity principle, it will also
serve as an excellent receiver.

4.1.1 Time reversal symmetry of Maxwell’s equations
Now, in order to understand the electromagnetic reciprocity in a simple and easy way,
let’s consider the concept of the time reversal symmetry of Maxwell’s equation which
is closely related to the reciprocity. Time reversal inversion of the Mawell equations
such that ~∇′ = ~∇ are:

~∇× ~E = −∂
~B′

∂t′
(4.1)

~∇× ~H = −∂
~D′

∂t′
+~j′ (4.2)

Assuming that under time reversal, the electric charge q , charge density ρ and coordi-
nate ~r do not change. Hence, the speed ~v, electric current ~j and magnetic field ~B are

100



CHAPTER 4. BASIC CONCEPTS

odd with respect to time reversal. While, the electric field ~E and displacement ~D are
time reversal even(see table 4.1). Under these assumptions, we get:

~∇× ~E = −∂(− ~B)
∂(−t) (4.3)

~∇× (− ~H) = − ∂( ~D)
∂(−t) + (−~j) (4.4)

or by simplifying:

~∇× ~E = −∂
~B

∂t
(4.5)

~∇× ~H = ∂ ~D

∂t
+~j (4.6)

These equations are identical to the original Maxewell equations. Thus, we can con-
clude that the Maxwell equations are invariant under time reversal transformation. We
pass now to introduce the Lorentz reciprocity theorem which plays a very central role
in the electromagnetic reciprocity .

Physical Quantity Time Reversal Parity
Charge density ρ(t)→ +ρ(−t) even
Current density ~j(t) → −~j(−t) odd
Displacement ~D(t) → + ~D(−t) even
Electric field ~E(t) → + ~E(−t) even
Magnetic field ~H(t) → − ~H(−t) odd
Magnetic induction ~B(t) → − ~B(−t) odd
Magnetization ~M(t) → − ~M(−t) odd
Polarization density ~P (t) → +~P (−t) even
Poynting vector ~S(t) → −~S(−t) odd

Table 4.1: Transformation properties of the main electromagnetic quantitues under time
reversal [5].

4.1.2 Reciprocity Theorem in Electromagnetism
In this section, we shall derive the Lorentz reciprocity theorem for electromagnetic
fields. Let us Consider a volume V containing a current distribution j1 which gives rise
to an electric fiels E1 and a magnetic field H1, where all three have time dependance
eiωt. Using the time harmonic Maxwell’s equations form, we get:

~∇× ~E1 = −iωµ ~H1 (4.7)

~∇× ~H1 = iωε ~E1 +~j1 (4.8)
Similary, consider a second current distribution j2 which is completly contained within
the same volume V . This new current distribution produces fields E2 and H2 that are
related by the following equations:

~∇× ~E2 = −iωµ ~H2 (4.9)
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~∇× ~H2 = iωε ~E2 +~j2 (4.10)
Now, let us take the dot product of H2 with each side of equation 4.7:

~H2.(~∇× ~E1) = −iωµ ~H1. ~H2 (4.11)

Similarly, let us take the dot product of E1 with each side of equation 4.10:

~E1.(~∇× ~H2) = iωε ~E1. ~E2 + ~E1.~j2 (4.12)

By subtracting Equation 4.11 from equation 4.12, we obtain:

~E1.(~∇× ~H2)− ~H2.(~∇× ~E1) = ~E1~j2 + iωε ~E1. ~E2 + iωµ ~H1. ~H2 (4.13)

Using the vector identity, the left side of this equation is written as:

~E1.(~∇× ~H2)− ~H2.(~∇× ~E1) = ~∇( ~H2 × ~E1) (4.14)

So, equation 4.13 becomes:

~∇( ~H2 × ~E1) = ~E1~j2 + iωε ~E1. ~E2 + iωµ ~H1. ~H2 (4.15)

Next, by following the same process, we find:

~∇( ~H1 × ~E2) = ~E2~j1 + iωε ~E1. ~E2 + iωµ ~H1. ~H2 (4.16)

Finally, subtracting equation 4.33 from equation 4.15, we obtain:

~∇( ~H2 × ~H1 − ~H1 × ~E2) = ~E1.~j2 − ~E2~j1 (4.17)

This equation is commonly known as the differential form of the Lorentz reciprocity
theorem. To obtain the associated form of this theorem which is applied to contiguous
regions of space, we should integrate both sides of equation 4.17 over the volume V ,
thus we get:∫ ∫ ∫

V

~∇( ~H2 × ~H1 − ~H1 × ~E2) dv =
∫ ∫ ∫

V
( ~E1.~j2 − ~E2.~j1) dv (4.18)

Using the divergence theorem to transform the left side, this equation can be expressed
as: ∫ ∫

S
( ~H2 × ~H1 − ~H1 × ~E2) ~ds =

∫ ∫ ∫
V

( ~E1.~j2 − ~E2.~j1) dv (4.19)

where S is the closed mathematical surface which bounds V . If we now confine the
sources to finite region of space, while allowing V to grow infinitely large, expanding to
include all space. In this situation, the closest distance between any point containing
non-zero source current and S is infinite. Since field magnitude diminishes with distance
from the source, all the fields are zeros on S. Thus the left side of (4.19) is zero and
we obtain: ∫ ∫ ∫

V
( ~E1.~j2 − ~E2.~j1) dv = 0 (4.20)

which can be written as follows:∫ ∫ ∫
V

~E1.~j2 dv =
∫ ∫ ∫

V

~E2.~j1 dv (4.21)

This equation provides the intergral form of the lorentz reciprocity theorem which
relates fields on the bounding surface to sources within the volume. The question now
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is why do we refer to this relationship as reciprocity? the answer is simply because
the expression remains the same by interchanging the subscripts "1" and "2". In other
words, a reaction of a reciprocal system is insensitive of the interchange of source and
measurement locations.

The notion of non reciprocity refers to the absence of reciprocity and it requires
to break and violate the Lorentz theorem. In general, nonreciprocity in a system is
based on breaking the time reversal symmetry of light-matter interaction (time reversal
becomes asymmetric). This time reversal symmetry breaking can be achieved by an
external bias for linear systems or by a combination of self-biasing and structural
asymmetry for nonlinear systems [5].

4.1.3 Non reciprocity with magnetic field
We have shown above that one way to achieve non reciprocity is by introducing an ex-
ternal bias, for example by applying a static magnetic field. This applied magnetic field
breaks the time reversal symmetry of Maxwell equations as well as the reciprocity the-
orem leading to the creation of an anisotropy and gyrotropic behavior in the medium.
The interaction of a polarized light with such a meduim, also called gyrotropic media,
affects its polarisation state yielding various magneto-optical effects. In the following,
we first make a description of the Optical Hall effect to explain the occurence of the
anisotropy in materials subjected to an external magnetic field. Then, we focus our
attention to the investigation of characteristics of electromagnetic waves propagation
in gyrotropic meduim. Lastely, we introduce and define magneto-optical effects.

Optical Hall effect (OHE)

In this section the Optical Hall effect (OHE), an essential tool that we use throughout
this part of the thesis, is discussed. First, we begin by giving a brief description of
the static electric Hall effect. Next, we present the theoretical model that can able to
explain these phenomena.

The Optical Hall effect, developed by Mathias Schubert [6, 7], is a physical phe-
nomenon that describes the external magnetic field induced optical anisotropy in con-
ductive materials caused by the non-time-reciprocal response of electric charge carriers.
This induced magneto optic anisotropy results from the motion of the free charge car-
riers (FCCs) under the influence of the Lorentz force. The OHE is the equivalent of
the classical static electric Hall effect at the optical frequencies, hence the name "op-
tical". So, for a deeper understanding of this phenomenon, let us start by describing
and explaining its electrical analogous.

The static electric Hall effect, discovered by the American physicist Edwin Hall
in 1879 [8], is a phenomenon resulting from the interaction between the electric and
magnetic fields and moving charge carriers in a conducting medium. This effect is
considered as an important and useful tool for the characterization of materials espe-
cially semi conductors and metals and it permits easy and direct determination of the
density and sign of the charge carriers in these materials. Hall found that when an
electrical current passes through a conductor material placed in a transverse magnetic
field, a potential difference is appeared across the material in a direction perpendicular
to both the current and to the magnetic field. This voltage is called Hall voltage and is
proportional to the product between the current and the magnetic field. A schematic
representation of this effect in a thin conducting material is depicted in Figure 4.2.
It shows a strip of conducting material placed in xoy plane where a magnetic field is
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Figure 4.2: Schematic representation of the electrical Hall effect in a thin conducting material.

applied perpendicular to its surface along z direction. A constant electric current Ix
flows through the conductor in the x direction caused by the application of an electric
field Ex. Assume that the conductor has charge carrier q which can be either positive
or negative or both (in the following we take (q = −e)), charge carrier number density
n (number of carriers per unit volume) and charge carrier drift velocity ~v (average
velocity of the charge carriers over the volume of the conductor). Under the influence
of the electric and magnetic fields, the charge carrier(−e) will experience a Lorentz
force which is given by:

~FL = −e( ~E + ~v × ~B) (4.22)

As seen in Figure 4.2, this force acts on the moving charge carriers (electrons) by
deflecting them toward one side of the strip. This deflection leads to an accumulation
of charges along one side of the strip which produces a transverse electric field Ey
that tends to counteract the force of Lorentz and opposes the migration of further
charge. This process continues until a steady-state situation is reached and then a
steady potential difference VH is established between the two faces in the y direction.

After having described the principle of the Hall effect, we will now give a model
for electric currents under electric and magnetic fields in order to provide physical
explanation of this effect. Generally, the most commonly used models are: the classical
Model and the quantum mechanics approach. Here, Our discussion will be limited to
the classical approach.

Extended Drude Model

The equation of motion of an electron subjected to an electric and magnetic fields
reads:

m
d~v

dt
= −e( ~E + ~v × ~B)− m

τ
~v (4.23)

where τ is the scattering time, e and m are respectively the charge and the mass of the
electron. The First term on the right hand side of this equation is the above described
force of lorentz and the second term is a retarding force resulting from scattering of
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electrons with impurities. At steady-state, the time derivative of v vanishes which leads
to:

vx = −eτ
m

(Ex + vyBz) (4.24)

vy = −eτ
m

(Ey − vxBz) (4.25)

vz = −eτ
m

Ez = 0 (4.26)

The current densities Jx and Jy are given by:

Jx = −nevx (4.27)
Jy = −nevy (4.28)

Jz = 0 (4.29)

Using the definition of the cyclotron frequency ωc = eB

m
, we can write:

(
1 ωcτ
−ωcτ 1

)(
Jx
Jy

)
= e2nτ

m

(
Ex
Ey

)
(4.30)

Ohm’s Law that relates the current density with the electric field is :

J = σE (4.31)

with σ is the conductivity. Thus Eq 4.30 can be written as the following form:(
Jx
Jy

)
=
(
σxx σxy
σyx σyy

)(
Ex
Ey

)
(4.32)

where
σ =

(
σxx σxy
σyx σyy

)
= e2nτ

m

1
1 + ω2

cτ
2

(
1 ωcτ
−ωcτ 1

)
(4.33)

By comparing with Eq 4.33, it is found that:

σ =
(
σxx σxy
−σxy σxx

)
=
(
σL σH
−σH σL

)
(4.34)

It is clearly seen from Eq 4.34 that the presence of the static magnetic field gives rise
to a finite optical Hall conductivity σH which leads to generate an anisotropy in the
material. Note that while the longitudinal optical conductivity is related to the light
absorption, the optical Hall conductivity is the basic of the Magneto-optical effects,
the subject of our next discussion. Hence studying the optical Hall effect is one of the
key tools for exploring magneto optical applications.

Gyrotropic medium

When passing through a meduim in the presence of a static magnetic field, the plane of
polarisation of light can be rotated to the left or right. This effect is known as optical
gyrotropy and the medium is said to be gyrotropic. The noun ’Gyrotropy’ refers to
this rotating motion and is composed of the prefix ’gyro’ which comes from the Ancient
Greek word guros ’a circle’ and the suffix ’tropy ’ coming from Ancient Greek word
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tropía and meaning ’a turn’ or in science ’exhibiting a behavior’. Thus, the etymo-
logical meaning of "gyrotropy" is ’exhibiting a rotational behavior’. As pointed out in
the previous section, a gyrotropic material is an anisotropic meduim whose optical and
magneto-optical properties are described within its relative permettivity and perme-
ability tensors ε and µ . In the presence of a magnetic field, the components of these
tensors cease to be symmetric. The generalized symmetry of the kinetic coefficients
requires that:

εik( ~B) = εki(− ~B) (4.35)
For lossless material, the tensor should be hermitian:

εik = ε∗ki (4.36)

Equation 4.36 implies that the real and imaginary parts of εik must be respectively
symmetrical and antisymmetrical:

ε′ik = ε′ki (4.37)
ε′′ik = −ε′′ki (4.38)

Using Eq 4.35, we find that:

ε′ik( ~B) = ε′ki( ~B) = ε′ki(− ~B) (4.39)
ε′′ik( ~B) = −ε′′ki( ~B) = −ε′′ki(− ~B) (4.40)

This gives the condition that in a lossless medium, the real and imaginary parts of the
permittivity tensor are even and odd functions of the applied field respectively. The
inverse tensor ε−1

ik = ηik has the same symmetry properties.

ε−1
ik = ηik = η′ik + iη′′ik (4.41)

Since η′′ik is an antisymmetrical tensor of rank two, it should have an equivalent axial
vector. Let consider ~G this vector. The relation between η′′ik and Gi is:

η′′ik = eiklGl (4.42)

where eikl is the antisymmetrical unit tensor. Thus, the relation between the electrical
field and electric displacement becomes:

Ei = (η′ik + ieiklGl)Dk = η′ikDk + i( ~D × ~G)i (4.43)

This is the characteristic equation of a gyrotropic meduim. The gyrotropic medium
is said to be electrically gyrotropic or gyroelectric if the relative permittivity tensor is
written as the following form:

ε = ε1(I − ~b0~b0) + iε2(~b0 × I) + ε3~b0~b0 (4.44)
µ = µ0I (4.45)

~b0 is the direction of the applied magnetic field ~B. The gyrotropic meduim becomes
magnetically gyrotropic or gyromagnetic if the relative permeability tensor is:

µ = µ1(I − ~b0~b0) + iµ2(~b0 × I) + µ3~b0~b0 (4.46)
ε = ε0εrI (4.47)
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Assuming that the magnetic field is along z direction ( ~B = B~ez), the relative permit-
tivity tensor and the relative permeability are given by the following matrix form:

ε =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3

 (4.48)

µ =

µ1 −iµ2 0
iµ2 µ1 0
0 0 µ3

 (4.49)

The off diagonal components, which contain the gyration term ε2, are at the origin of
the magneto-optical effects.

If the meduim is a lossless metal which is a geroelectric meduim, the permitivity
tensor components can be expressed as:

ε1 = 1−
ω2
p

ω2 − ω2
c

(4.50)

ε2 =
ωcω

2
p

ω(ω2 − ω2
c )

(4.51)

ε3 = 1−
ω2
p

ω
(4.52)

In the following subsections, we will analyze the propagation characteristics of an
(EM) wave in a gyrotropic medium. Since all the structures studied in this part are
gyroelectric media, we will give a detailed analysis of wave propagation and dispersion
characteristics in a gyroelectric medium.

Dispersion relation for Gyrotropic meduim

First, we have to derive the dispersion relation for an electrically gyrotropic medium.
Let us Consider the structure depicted in Figure 4.3 where a plane wave is incident on
the surface of a gyroelectric medium with a wave vector k and a static magnetic field
is applied along the z direction ( ~B = B~ez). The gyroelectric medium is characterized
by its relative permitivity and permeability tensors given above by the equation 4.47.
The angle between k and B is θ and the incident wave vector is defined as ~k = α~ex +
β~ey + γ~ez = ~kρ + γ~ez where ~kρ = α~ex + β~ey, α = k sin θ cosφ, β = k sin θ sinφ and
γ = kcosθ such that (α2 + β2 + γ2 = k2). Since under the influence of the magnetic
field, carriers move in cyclotron orbits, all the components of the electric and magnetic
fields are present: ~E = (Ex, Ey, Ez) and ~H = (Hx, Hy, Hz). These components satisfy
the following time harmonic Maxwell equations(with e−iωt dependance):

~∇× ~E = iωµ0 ~H (4.53)
~∇× ~H = −iωε0ε ~E +~j (4.54)

In the source free region (~j = ~0), we find:
∂yEz − ∂zEy = iωµ0Hx

∂zEx − ∂xEz = iωµ0Hy

∂xEy − ∂yEx = iωµ0Hz

(4.55)
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Gyrotropic medium 

z 

x 

y 

𝑘𝑖  

Figure 4.3: Wave propagation in a gyroelectric medium


∂yHz − ∂zHy = −iωε0(ε1Ex − iε2Ey)
∂zHx − ∂xHz = −iωε0(iε2Ex + ε1Ey)
∂xHy − ∂yHx = −iωε0ε3Ez

(4.56)

We look for the solution of the plane wave of the form:
~E = ~E0e

i(αx+βy+γz) (4.57)
~H = ~H0e

i(αx+βy+γz) (4.58)

where ~E0 = (E0x, E0y, E0z) and ~H0 = (H0x, H0y, H0z). Inserting (4.58) in (4.55) and
(4.56) and performing straightforward calculations, gives:k0ε1 − β2 − γ2 αβ − iε2k

2
0 αβ

αβ + iε2k
2
0 k2

0ε1 − α2 − γ2 βγ
αγ βγ k2

0ε3 − α2 − β2


E0x
E0y
E0z

 = ME

E0x
E0y
E0z

 = 0 (4.59)

With ME being the electric wave matrix. This system has non trivial solutions if the
determinant of ME vanishes:

|ME| =

∣∣∣∣∣∣∣
k0ε1 − β2 − γ2 αβ − iε2̨02 αβ
αβ + iε2k

2
0 k2

0ε1 − α2 − γ2 βγ
αγ βγ k2

0ε3 − α2 − β2

∣∣∣∣∣∣∣ = 0 (4.60)

which yields:

γ4k2
0ε3 +γ2[k2

0k
2
ρ(ε1 + ε3)− 2k4

0ε1ε3] + [k6
0ε3(ε2

1− ε2
2)−k4

0k
2
ρ(ε2

1− ε2
2 + ε1ε3) +k4

0k
4
ρε1] = 0
(4.61)

This equation provide the dispersion relation of an electrically gyrotropic or gyroelectric
medium and has two solutions in γ2 as:

γ2
1 = k2

0

[
2ε1ε3 −

k2
ρ

k2
0
(ε1 + ε3)

]
+
[
k4
ρ

k4
0
(ε1ε3)2 + 4ε2

2ε3

(
ε3 −

k2
ρ

k2
0

)]′1/2
2ε3

(4.62)

γ2
2 = k2

0

[
2ε1ε3 −

k2
ρ

k2
0
(ε1 + ε3)

]
−
[
k4
ρ

k4
0
(ε1ε3)2 + 4ε2

2ε3

(
ε3 −

k2
ρ

k2
0

)]′1/2
2ε3

(4.63)

Equations(4.62)and (4.63) represent the wave numbers corresponding to the eigen-
modes of wave propagation in gyroelectric meduim.
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Propagation in Gyrotropic media

This subsection is dedicated to the investigation of the waves propagation in a gyro-
electric meduim. First of all, it is important to emphasize that when the angle between
the magnetic field and the wave propagation θ is equal to 0 or π/2, the waves propa-
gating within the medium will be named as principle waves. Hence, we can distinguish
two type of propagation: when θ = 0 i.e the direction of propagation is parallel to the
direction of the magnetic field, the wave propagation is called longitudinal propaga-
tion. When the direction of wave propagation is perpendicular of the direction of the
magnetic field θ = π/2, the wave propagation is called transverse propagation.

Longitudinal Propagation (θ = 0) : Considering now the longitudinal propa-
gation when θ = 0, in this case (4.62)and (4.63) reduce to:

k1 = γ1 = k0
√
ε1 + ε2 (4.64)

k2 = γ2 = k0
√
ε1 − ε2 (4.65)

From Maxwell equations and the helmotz equation we can deduce that the compo-
nents of the electric field for θ = 0 satisfy the following equations:

E0x
(
k2

0ε1 − k2
)
− iε2E0y = 0 (4.66)

−iε2k
2
0E0x + E0y

(
k2

0ε1 − k2
)

= 0 (4.67)
E0zk

2
0ε3 = 0 (4.68)

One can clearly see that for a longitudinal propagation there is no electric field
component in the z direction i.e in the direction of propagation. While, the magnetic
field H is transverse to the direction of propagation. Therefore, the two waves that
propagate parallel to B are transverse electromagnetic waves. Substituting (4.64) in
(4.68),gives:

E0x

E0y
= −i (4.69)

This equation corresponds to a right handed circularly polarized (RCP) wave. Now
when (4.65) is substituted in (4.68) , we find:

E0x

E0y
= i (4.70)

Which corresponds to the left handed circularly polarized(LCP) wave. The electric
fields associated with the two waves can be expressed as:

~E1 = (~ex + i~ey)Aeiγ1z RCP (4.71)
~E2 = (~ex − i~ey)Beiγ2z LCP (4.72)

Where A and B are arbitrary amplitudes. So, we can conclude that when an electro-
magnetic wave propagates through a gyroelectric meduim with a vector wave parallel
to the direction of B, the eigenmodes of propagation are right and left circularly po-
larized waves. Let us consider now a linearly polarized electric field given by the sum
of both circularly waves when A = B:

~E = ~E1 + ~E2 =
(
eiγ1z + eiγ2z

)
~ex +

(
ieiγ1z − ieiγ2z

)
~ey (4.73)
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The polarisation of this wave can be obtained by:
Ex
Ey

= −i1 + ei(γ2−γ1)z

1− ei(γ2−γ1)z = −cot
(
γ2 − γ1

2 z
)

(4.74)

From equation 4.74, it is found that the polarisation of the polarized wave rotates as
the wave propagates along the z direction by an angle θF :

θF = cot−1
(
γ2 − γ1

2 z
)

= −
(
γ2 − γ1

2 z
)

(4.75)

The rotation angle per unit of distance has the form:

ΘF = −
(
γ2 − γ1

2

)
(4.76)

This rotation angle is called Faraday rotation.

Transverse Propagation (θ = 0) : As pointed out earlier, for this kind of
propagation, the direction of wave propagation is perpondicular to the direction of the
magnetic field i.e (θ = 90◦). By assuming a plane wave propagating along y direction
equations (4.62)and (4.63) reduce to:

k1 = β1 = k0

√
ε2

1 + ε2
2

ε1
(4.77)

k2 = β2 = k0
√
ε3 (4.78)

In this case, from Maxwell equation we can obtain:

E0x
(
k2

0ε1 − k2
)
− iε2k

2
0E0y = 0 (4.79)

−iε2k
2
0E0x + E0y

(
k2

0ε1
)

= 0 (4.80)
E0z(k2

0ε3 − k2) = 0 (4.81)

By substituting (4.78) into (4.81), it is found that Eox and Eoy are equal to zeros and
the electric field has only one component along the z direction. Since the propagation
constant given in (4.78)is equal to the propagation constant of a wave propagating in
a isotropic meduim and is independent of the magnetic field, this wave is called as
ordinary wave. Thus, we can see that the obtained wave is a linearly polarized wave
whose electric vector is parallel to B and is given by:

~E2 = Aeiβ2y~ez (4.82)

With A is an arbitrary amplitude. Now, when (4.77) is substitued in (4.81), we obtain:
E0x

E0y
= i

ε1

ε2
(4.83)

The electric vector corresponding to this wave, known as extraordinary wave, has the
following form:

~E1 =
(
i
ε1

ε2
~ex + ~ey

)
Ceiβ1y (4.84)

Where C is an arbitrary constant. Finally, to summarize, in both cases θ = 0◦ and
θ = 90◦, which correspond to longitudinal and transverse propagation, there exist two
uncoupled waves wchich are known as principal waves. For the longitudinal propaga-
tion, they are the right circularly polarized wave and the left circularly polorized wave.
While for the transverse propagation, they are the ordinary wave and extraordinary
wave.
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Magneto-optical (MO) effects

Magneto-optical effects are phenomena referring to changes in the polarisation state of
light after interacting with a magnetic material. Historically, the first magneto-optical
effect was discovred by Michael Faraday in 1846 [9]. He found that the plane of linearly
polarized light was rotated after passing through a glass rod subjected to an external
magnetic field parallel to the direction of the path of the light. This rotation was
known as Faraday rotation. Thirty years later (1877), kerr found the corresponding
magneto-optical effect in reflection performed by a magnetized metallic iron mirror [10].
According to the interaction of incident light with matter, the basic magneto-optical
can be classified into three categories

• MO effects in reflection

• MO effects in transmission

• MO effects in absorption

For the last two categories of MO effects, we can distinguish two basic geometries
according to the orientation between the wave vector of light and the magnetic field.

• Faraday geometry: the light propagates parallel to the magnetic field (~k ‖ ~B)

• Voigt or Cotton-Mouton geometry: the light travels perpondicular to the direc-
tion of the magnetic field (~k ⊥ ~B)

x 
z 

y 
E 

k 

E 

k 

Figure 4.4: Schematic representation of the Faraday effect

As shown in the previous subsection, In Faraday geometry (longitudinal propagation),
the eigen modes are left and right circularly polarized light and in Voigt geometry
(transverse propagation) the eigenmodes are linearly polarized light. The symmetry is
broken and violated by the magneto-optical effects, which leads to induce an asymmetry
of the propagation of the eigenmedes. For example, in Faraday geometry, left and right
circularly polarized wave propagate differently. The difference between eigenmodes
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propagation can be explained by the effects of birefringence and dichroism. Circular
Birefringence results from the difference between phase velocities for left and right
circularly polarized light. As shown above This difference causes a rotation of the
plane of polarisation of the wave by an angle ΘF . A shematic representation of the
faraday effect is shown in Figure 4.4 .
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k 

(a) MCD: Farady Geometry
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k 

(b) MLD: Voight Geometry

Figure 4.5: Magneto-optical effects in Absorption depending on the geometry:(a) Magnetic
circular dichroism (MCD).(b) Magnetic linear dichroism (MLD)

Dichroism arises when the two eigenmodes are absorbed differently by the magnetic
medium. In the Fraday geometry, circular magnetic dichroism (MCD) is produced
from the difference in absorption coefficients for left and right circularly polarized
EM wave. While, in the case of the Voigt geometry, dichroism, known as magnetic
linear dichroism (MLD), is related to the difference between the absorption of the
components polarized parallel and perpendicular to the magnetic field (see Figure 4.5).
MCD changes an incident linearly polarized EM wave into elliptically one and the MLD
rotates an elliptically polarized wave by and angle.

We turn now our attention to the magnetooptical effects in reflection often known
as Kerr effects. These effects occur when an EM wave is reflected from a magnetized
medium and are related to the change of the polarisation state of the reflected light.
First, it is important to underline that when working in reflection, the polarisation
state is defined with respect to the plane of incidence. According to that, we can
distingiush two linear polarizations: a linear polarisation ”s”, where the electric field is
perpondicular to the plane of incidence, and a linear polarization ”p” where the electric
field is parallel to plane of incidence. These two linear polarizations are orthogonal
and thus they can form a basis. Let us consider a magnetic medium subjected to a
linearly polarized (s or p) wave. After reflection, an orthogonal polarisation appears
and we will have both s and p components. As a consequence, the reflected wave
becomes elliptically polarized which causes the rotation of the polarisation plane. This
evolution of the polarisation state of light can be described in the framework of the
Jones formalism. The Jone vector J is defined as:

~J =
(
Es
Ep

)
(4.85)
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Where Es and Ep represents the s and p polarized components of light. The total
intensity of the wave can be expressed as:

I = JJ∗ = (EsE∗s + EpE
∗
p) = (|Es|2 + |Ep|2) (4.86)

The change of the polarization state caused by the reflection can be described by the
reflection matrix R:

R =
(
rss rps
rsp rpp

)
(4.87)

where the coefficients are defined as the ratio between reflected and incident electro-
magnetic waves:

rss = Er
s

Ei
s

rpp =
Er
p

Ei
p

rsp = Er
s

Ei
p

rps =
Er
p

Ei
s

(4.88)

Using these reflections coefficients, we can define the Kerr rotation Θs,p and ellipticity
εs,p for s and p incident polarized light:

Θs + iεs = rsp
rss

Θp + iεp = rps
rpp

(4.89)

4.2 Graphene under a static magnetic bias
In this section, we are going to investigate and exploit the gyrotropic and propagation
properties of graphene in the presence of a magnetic bias. We start by describing
the quantized Landau levels in magnetically biased graphene which are important to
understand and explain the magneto-optical conductivity model presented in chap-
ter 1. Next, the reflection and transmission coefficients through a single anisotropic
monolayer graphene will be calculated. These calculations will be then used to de-
rive the dispersion relation of surface magnetoplasmons polaritons propagating along
a magnetized graphene sheet.

4.2.1 Landau Levels in monolayer graphene
Under the influence of a perpendicular magnetic field, the relativistic carriers in graphene
are deflected by the Lorentz force and move in cyclotron orbits. At sufficiently high
fields, the continuum Dirac quasiparticle spectrum becomes a discrete spectrum of
degenerated Landau levels (LLs) (see Figure 4.6) with energies given by [11, 12]:

En = sign(n)(~υf
lB

)
√

2|n| = sign(n)υf
√

2e~B|n| n = 0,±1,±2,±3... (4.90)

Where lB =
√
~/(eB) denotes the magnetic length and n is the LL index. Note that

this index can be positive or negative. The positive values correspond to electrons in
conduction band. While the negative values correspond to the holes in valence band.
From equation 4.90, one can see that the spectrum of quantized levels in graphene is
different from the usual landau quantization. In fact, in a conventional two dimensional
electron gas, Landau quantization produces equidistant energy levels with energy dif-
ference ~ωc [13], where ωc being the cyclotron frequency. While, in graphene as shown
in Figure 4.7, the quantized landau energies are proportional to the square root of the
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Figure 4.6: Schematic representation of the dispersion diagram of graphene when a static
magnetic field is applied. Due to this field, the linear dispersion relation of graphene (purple
curve) is quantized into landau levels (blue dots lines) according to the landau quantization.
The red arrows represent the allowed interband transitions between energy levels and the
blue arrow stands for the intraband transition.

magnetic field and are unequally spaced. Furthemore, the gap between two successive
Landau levels is ∆n = En+1 −En ∝ 1/

√
(n) and it descreases as the energies increase.

As a result, the largest energy separation in graphene ∆0 is between the zeros and
the first Landau level and is much higher than kBT , (∆0 � kBT ' 26meV) which al-
lows the observation of unusual quantum Hall effect (half-integer quantum Hall effect)
in graphene at room temperature. This phenomenon was first observed in exfoliated
graphene flakes [14, 15] and later in graphene epitaxially grown on silicon carbide(SiC)
[16, 17]. For high energies, the Landau levels become very close to each other and
therefore in this case the discrete energy spectrum can be treated as a continuum.

Another interesting fact of the landau levels is the appearance of an anomalous
landau level (n = 0) at zero energy (Dirac point) owing from the exceptional band
structure of graphene. This level is independant of the magnetic field and is shared by
electrons and holes. The transitions between landau levels give rise to the cyclotron
resonance. In graphene, the cyclotron resonance frequency corresponds to the difference
between the Landau levels ENF and ENF+1 and is given by:

ωc = ENF+1 − ENF
~

= sign(NF )( υf
√

2e~B
~
√
|NF + 1|+

√
|NF |

) (4.91)

withNF denotes the index of the last occupied LL and is defined asNF = int [(µc/E1)2][11].
For high doped graphene where µc � kBT (semiclassical region where only intraband
transitions can occur), NF � 1 and as a consequence since the landau levels around µc
become very close to each other i.e NF ' NF+1, we get ENF ' EF+1 ' µc. Therefore,
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Figure 4.7: Energies calculated for the first four landau levels of graphene as a function of
magnetic field.

in this limiting case, the cyclotron frequency of graphene is given by: [18]

ωc =
υ2
feB

µc
(4.92)

Note that this
√
B dispersion of transitions between Landau levels has been experi-

mentally observed in infrared transmission spectroscopy (see Figure 4.8) [19, 20, 21, 22]

Figure 4.8: Landau Levels transitions in monolayer graphene.(a) relative transmission ob-
served at B=0.4T and T=1.9K. This spectrum shows four transitions: A: L1 −→ L2,B:
L0 −→ L1(L−1 −→ L0), C: L−2 −→ L1(L−1 −→ L2),D:L−3 −→ L2(L−2 −→ L3).(b) The
observed transitions as a function of magnetic field B. Adapted from ref [22]
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4.2.2 Reflection and transmission properties of a magnetized
graphene sheet

we shall now investigate the optical properties of a single anisotropic graphene sheet
in the presence of an external static magnetic field, such as the reflectance and the
transmittance. For this purpose, we consider the structure shown in Figure 4.9 where
a graphene sheet is surrounded between two homogeneous and isotropic dielectric media
with dielectric constants ε1 and ε2 and an external static magnetic field ~B is applied
perpondiculary to the graphene (along z direction). A plane wave is impinging onto
the graphene sheet under an angle θ from the lower half space (z < 0). In order to

D1 

D2 

graphene 

z 

x 
y 

𝑘𝑖  

Figure 4.9: Schematic representation of the studied structure: a graphene sheet sandwiched
between two homogeneous and isotropic dielectric media D1 and D2 and biased with a static
magnetic field B0. The external magnetic field is applied perpondicular to the graphene
plane along z direction. A plane wave is obliquely impinging with angle θ on graphene from
medium D1 toward medium D2

calculate the reflectance and the transmission, we need to solve the Maxwell’s equations
in each meduim and match subsequently the boundary conditions across the graphene
interface. In cartesian coordinates, the components of the electromagnetic fields satisfy
the following Maxwell’s equations:

∂yEz − ∂zEy = iωµ0Hx

∂zEx − ∂xEz = iωµ0Hy

∂xEy − ∂yEx = iωµ0Hz


∂yHz − ∂zHy = −iωε0εrEx
∂zHx − ∂xHz = −iωε0εrEy
∂xHy − ∂yHx = −iωε0εrEz

(4.93)

⇒


∂zHx = ∂xHz − iωε0εrEy
∂zHy = ∂yHz + iωε0εrEx

Hz = 1
ik0Z0

(∂xEy − ∂yEx)
(4.94)


∂zHx = 1

ik0Z0
(∂2
xEy − ∂x∂yEx)−

ik0

Z0
εrEy

∂zHy = 1
ik0Z0

(∂y∂xEy − ∂2
yEx) + ik0

Z0
εrEx

(4.95)

The parallel components of the electric field in the meduim 1 can be written as follows{
Ex1 = (Ixeiγ1z +Rxe

−iγ1z)eiαxeiβy
Ey1 = (Iyeiγ1z +Rye

−iγ1z)eiαxeiβy (4.96)
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Similarly, in meduim 2 the x and y components of E are given by:{
Ex2 = Txe

iγ2zeiαxeiβy

Ey2 = Tye
iγ2zeiαxeiβy

(4.97)

The x and y components of the magnetic field in each meduim can be deduced from
4.95 and are expressed as:


Hx1 = − 1

k0Z0γ1
((αβ(Ixeiγ1z −Rxe

−iγ1z) + (β2 + γ2
1)(Iyeiγ1z −Rye

−iγ1z)) eiαxeiβy

Hy1 = 1
k0Z0γ1

(
αβ(Iyeiγ1z −Rye

−iγ1z) + (α2 + γ2
1)(Ixeiγ1z −Rxe

−iγ1z))eiαxeiβy

(4.98)
Hx2 = − 1

k0Z0γ2
(αβTxeiγ2z + (β2 + γ2

2)Tyeiγ2z) eiαxeiβy

Hy2 = 1
k0Z0γ2

(αβTyeiγ2z + (α2 + γ2
2)Txeiγ2z) eiαxeiβy

(4.99)

Let us now apply the boundary conditions at the interface which relate the electro-
magnetic fields in the two dielectric media. The first boundary condition imposes the
continuity of the tangential electric field at the interface of graphene while the second
condition relates the tangential components of the magnetic field at the interface to
the surface current density over the graphene layer :

~ez ∧ ( ~E2 − ~E1) = ~0
~ez ∧ ( ~H2 − ~H1) = ~J

(4.100)

Where ~J = σ ~E with σ is the conductivity tensor given in chapter 1. This leads us to
find: 

Ex1 = Ex2
Ey1 = Ey2
Hx2 −Hx1 = Jy = σLEy − σHEx
Hy2 −Hy1 = −Jx = −(σLEx + σHEy)

(4.101)

Enforcing these conditions at z = 0, we obtain:

Ix +Rx = Tx
Iy +Ry = Ty
1
γ2

(αβTx + (β2 + γ2
2)Ty)−

1
γ1

((αβ(Ix −Rx) + (β2 + γ2
1)(Iy −Ry)) = k0Z0(σHTx − σLTy)

1
γ2

(αβTy + (α2 + γ2
2)Tx)−

1
γ1

((αβ(Iy −Ry) + (α2 + γ2
1)(Ix −Rx)) = k0Z0(−σLTx − σHTy)

(4.102)
This system of equations can be written in the following matrix form :

αβ

γ1
− αβ

γ2
+ k0Z0σH γ1 + β2

γ1
− γ2 −

β2

γ2
− k0Z0σL

γ1 + α2

γ1
− γ2 −

α2

γ2
− k0Z0σL

αβ

γ1
− αβ

γ2
− k0Z0σH


(
Ix
Iy

)
=


αβ

γ1
+ αβ

γ2
− k0Z0σH γ1 + β2

γ1
+ γ2 + β2

γ2
+ k0Z0σL

γ1 + α2

γ1
+ γ2 + α2

γ2
+ k0Z0σL

αβ

γ1
+ αβ

γ2
+ k0Z0σH


(
Rx

Ry

)
(4.103)
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(
Rx

Ry

)
=


αβ

γ1
+ αβ

γ2
− k0Z0σH γ1 + β2

γ1
+ γ2 + β2

γ2
+ k0Z0σL

γ1 + α2

γ1
+ γ2 + α2

γ2
− k0Z0σL

αβ

γ1
+ αβ

γ2
+ k0Z0σH


−1


αβ

γ1
− αβ

γ2
+ k0Z0σH γ1 + β2

γ1
− γ2 −

β2

γ2
− k0Z0σL

γ1 + α2

γ1
− γ2 −

α2

γ2
− k0Z0σL

αβ

γ1
− αβ

γ2
+ k0Z0σH


(
Ix
Iy

)
(4.104)

Therefore the reflected and incident fields can be connected by the Reflection Matrix
MR as follows:

(
Rx

Ry

)
=
(
Rxx Rxy

Ryx Ryy

)(
Ix
Iy

)
= MR

(
Ix
Iy

)
(4.105)

where:

MR =


αβ

γ1
+ αβ

γ2
− k0Z0σH γ1 + β2

γ1
+ γ2 + β2

γ2
+ k0Z0σL

γ1 + α2

γ1
+ γ2 + α2

γ2
− k0Z0σL

αβ

γ1
+ αβ

γ2
+ k0Z0σH


−1


αβ

γ1
− αβ

γ2
+ k0Z0σH γ1 + β2

γ1
− γ2 −

β2

γ2
− k0Z0σL

γ1 + α2

γ1
− γ2 −

α2

γ2
− k0Z0σL

αβ

γ1
− αβ

γ2
+ k0Z0σH

 (4.106)

In the simple case when ε1 = ε2, the reflection coefficients are expressed as:

Rxx = − 2(γ2 + β2)σL + 2αβσH + k0Z0γ(σ2
L + σ2

H)

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.107)

Rxy = − 2(γ2 + β2)σH − 2αβσL

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.108)

Ryx = 2(γ2 + α2)σH + 2αβσL

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.109)

Ryy = − 2(γ2 + α2)σL − 2αβσH + k0Z0γ(σ2
L + σ2

H)

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.110)

In addition, at normal incidence where α = β = 0, these expressions are simplified to:
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Rxx = − 2k2
0εσL + k0Z0γ(σ2

L + σ2
H)

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.111)

Rxy = −Ryx = − 2γ2σH

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.112)

Ryy = − 2γ2σL + k0Z0γ(σ2
L + σ2

H)

2(γ2 + k2
0ε)σL + 4γ k0

Z0
ε+ k0Z0γ(σ2

L + σ2
H)

(4.113)

Similary, the transmission coefficients are given by:(
Tx
Ty

)
=
(
Txx Txy
Tyx Tyy

)(
Ix
Iy

)
= MT

(
Ix
Iy

)
(4.114)

Where MT being the transmission matrix whose elements are deduced from those of
reflection matrix MR as: 

Txx = 1 +Rxx

Tyy = 1 +Ryy

Txy = Rxy

Tyx = Ryx

(4.115)
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Figure 4.10: Transmission and Reflection spectra of a magnetized monolayer graphene sur-
rounded by air under TM polarization at normal incidence. The parameters are: µc = 0.2eV,
T = 300K τ = 0.2ps and B = 2T

As an example, we plot in Figure 4.10, the transmittance and the reflectance spectra
of a TM wave incident onto a monolayer graphene in free space magnetically biased
with an external magnetic field B equal to 2T . In our calculations, we consider the case
of normal incidence and the parameters of the graphene layer are taken as: µc = 0.2eV,
T = 300K τ = 0.2ps. The results are computed using equations (4.110) and (4.115).
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One can see that there is a dip (peak) in the transmission (reflection) spectra arround
the frequency f = 1.49THz . This could be explain by the fact that at this frequency a
worst impedance matching occurs between the graphene characteristic impedance and
the air characteristic impedance.
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Figure 4.11: Transmission spectra of a monolayer graphene at normal incidence in the pres-
ence of different external magnetic fields: B = 0.5, 1, 1.5, 2, 2.5 and 3T

In order to understand how the optical properties of the graphene monolayer are
affected by the variation of an external magnetic field, we calculate the transmittance
for a normally incident plane wave in TM polarization for different magnetic fields
B = 0.5, 1, 1.5, 2, 2.5 and 3T as shown in Figure 4.11. We can see that when the
external magnetic field increases from 0.5 to 3T , the transmittance increases. In the
same manner, we can find that for the TE polarization case, the transmittance increases
with increasing B.

We pass now to analyse the influence of the incidence angle on the tansmission
spectra. Figure 4.12 shows the transmittance calculated under the TE and TM po-
larizations for different incident angles θ = 0o, 30o and 45o. It is shown, that for the
TE polarization case, the transmittance decreases with increasing the incident angle
while it increases for the TM polarization. According to [23], this can be explain as
follows: For the TE polarized wave, since the electric field is always parallel to the
graphene surface for all incident angles, graphene always interacts with the wave. This
interaction between the graphene and the incident wave enhances with increasing θ
which leads to decreases the transmission. While for the TM polarization, increasing
θ, leads to decrease the component of the electric field parallel to the graphene surface
which attenuate the interaction between the graphene and the incident wave. As a
consequence the transmission increases.

Having calculated the transmission and the reflection through a magnetically biased
graphene sheet, we will use them in the next section to derive the dispersion relation
of the surface magnetoplasmons polariton modes.
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Figure 4.12: Transmission spectra of a monolayer graphene biased with a magnetic field
B = 2T under the TE and TM polarized waves for different incident angles: θ = 0o, 30o and
45o

4.2.3 Surface magnetoplasmons polaritons on magnetically bi-
ased graphene sheet (GSMP)

When a magnetic field is applied perpondicular to the graphene sheet, plasmons and cy-
clotron excitations hybridize giving rise to surface magnetoplasmons polaritons modes
(GSMPs) [24, 25]. In this section, we investigate the characteristics of these modes.

Graphene Surface magnetoplasmons polaritons Dispersion relation

In order to study the properties of the GSMPs modes, we need to derive their dispersion
relation. Let us consider the structure described previously in Figure 4.9 where the
GSMP is indicated in red. The reflection matrix MR of this structure is introduced
above in equation 4.106. The condition of existence of plasmons requires that there are
outgoing waves without incoming waves. The modes are then given by the vanishing
of the determinant of the inverse of the matrix MR, that is:

(γ1 + γ2 + k0Z0σL)
[
(γ1 + γ2 + k0Z0σL) +

(
k2

1 − γ2
1

)( 1
γ1

+ 1
γ2

)]
=

2αβk0Z0σH

(
1
γ1

+ 1
γ2

)
+ k2

0Z
2
0σ

2
H (4.116)

Now, if we consider the case of electromagnetic modes propagating only along the x
direction, we obtain:

(γ1 + γ2 + k0Z0σL)
[(

1
γ′1

+ 1
γ′2

)
+ Z0

k0
σL

]
= Z2

0σ
2
H (4.117)

This equation provides the dispersion relation of a SPP propagating along a mag-
netically biased graphene. It should be noted that unlike the GSPs supported by the
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graphene sheet in the absence of a magnetic field which are pure TM or TE modes,
surface magnetoplasmons polaritons in graphene are hybrid TM-TE modes. These
hybrid modes result from the presence of the magnetic field that ensures the coupling
between the TM and TE modes.

It should also be noted that in the absence of an external field B, we find the
well-known dispersion relations of the decoupled TE and TM SPPs modes:

(γ1 + γ2 + k0Z0σL)
[(

1
γ′1

+ 1
γ′2

)
+ Z0

k0
σL

]
= 0 (4.118)

⇒


(γ1 + γ2 + k0Z0σL) = 0 TE-GSP(

1
γ′1

+ 1
γ′2

)
+ Z0

k0
σL = 0 TM-GSP (4.119)

Figure 4.13 shows the dispersion relation of surface plasmons propagating on graphene
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Figure 4.13: Dispersion relation of surface plasmons supported by a graphene sheet in free
space in the presence of an external magnetic field B = 2T . The parameters are taken to be
as: µc = 0.5eV, τ =

sheet surrounded by air when an external magnetic field B = 2T is applied. The
curve is computed from equation 4.117. In order to show the effect of the variation
of the magnetic field on the GSMP relation dispersion, we plot in Figure 4.14 the
dispersion curve for different magnetic fields. It is shown that Increasing B pushes
the dispersion curve upward. As a results, in addition to the chemical potential of
graphene, applying an external magnetic field can be used to tune the surface plasmon
polariton on graphene.
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Figure 4.14: Dispersion relation of surface plasmons supported by a graphene sheet in free
space for different external magnetic fields B = 0, 2, 2.5, 3, 4T

4.2.4 Nonreciprocity and gyrotropy of graphene
In this section we will exploit the transmission calculated above to explore the elec-
tromagnetic gyrotropic and non reciprocal properties of magnetically biased graphene.
In particular, we will show how graphene affects the right-handed circularly polarized
(RCP) and left-handed circularly polarized (LCP) and demonstrate that under certain
conditions, this magnetic circular dichroism can lead to non reciprocal polarisation
rotation phenomenon. Let us consider the structure of figure 4.9 where ε1 = ε2 = ε.

D1 

D2 

z 

x 

y 

LCP RCP 

graphene 

Figure 4.15: Same structure as 4.9 under circularly polarized waves.

Here we are interested to investigate the electromagnetic response of graphene under
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normally incident right-handed circularly polarized (RCP) and left-handed circularly
polarized (LCP) lights (see Figure 4.15). The electric fields corresponding to the right-
handred and left handred circularly polarized incident waves are:

~E±i = I±(~ex ± i~ey) (4.120)

where the (+) refers to the right-handed circularly polarized wave and (−) denotes
the left handred circularly polarized wave. Substituting (4.120) in (4.114) and 4.115,
we can deduce the transmitted waves which are also right-handed and left-handed
circularly polarized waves :

~E±t = 2

2 + Z0√
ε
σ±

(~ex + i~ey) = t±(~ex + i~ey) (4.121)

where t± are the transmission amplitudes and can be expressed as t± = |t±|eiφ± and
σ± = σL ± iσH . It is clearly seen from equation 4.121 that the amplitudes and the
phases of ~E+

t and ~E−t are not equal. Hence, we can deduce that when passing through a
graphene sheet the (RCP) and (LCP) waves are affected differently both in amplitude
and phase.

To investigate the gyrotropic properties of graphene, two main parameters will be
used: (i) the amplitude ratio t+

t−
and (ii) the phase difference ∆φ = φ+ − φ−. Figure

4.16 illustrates Ra and ∆φ as a function of frequency obtained for different magnetic
fields and at fixed µc = 0.2eV. One can see that by increasing B, both the amplitude
ratio and the phase diffrence increase which leads to increase the gyrotropy of graphene.
Consequently, applying a higher magnetic field results in larger gyrotropy. We pass
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Figure 4.16: (a) Amplitude ratio Ra and (b)Phase difference ∆φ between a right-handed and
a left handed polorized wave transmitted trough a free standing graphene sheet calculated
for different external magnetic fields: B = 0.5, 1, 1.5, 2T. The graphene parameters are:
T = 300K,µc = 0.2eV, τ = 0.1ps

now to test the effect of the chemical potential on the gyrotropic characteristics of
graphene. We set the magnetic field value to 1T and we plot in Figure 4.17 the
amplitude ratio Ra and the phase difference ∆φ as a function of frequency for different
chemical potentials. it is clearly shown that as µc increases, Ra and ∆φ increase. This
indicates that increasing µc leads to increase to gyrotropy in graphene. As a results, in
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addition to the magnetic field the gyrotropy in graphene can be controlled and tuned
by varing the chemical potential of graphene which presents an advantage for graphene
over other gyrotropic materials.
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Figure 4.17: (a) Amplitude ratio Ra and (b)Phase difference ∆φ between a right-handed and
a left handed polorized wave transmitted trough a free standing graphene sheet calculated
for chemical potentials: µc = 0.2, 0.4, 0.6eV and for B = 1T. The Other parameters are the
same as Figure 4.16

From 4.16, we can also see that for all frequencies below to the cyclotron frequency
ωc/2π ,Ra = 1, ∆φ > 0. In this range of frequencies and under these conditions for
Ra and ∆φ the polarization direction of a linearly polarized wave can be rotated by an
angle when it transverses a graphene sheet. As mentionned above on previous sections,
this phenomenon, known as Faraday rotation and the angle is called Faraday rotation
angle (see Figure 4.18).
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Figure 4.18: Schematic of the Faraday effect in graphene.

Let us consider a linearly x-polarized incident wave that can be written as a super-
position of a right handed wave and left handed wave with the same amplitude:

~Ei = I((~ex + i~ey) + (~ex − i~ey)) = 2I~ex (4.122)
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The trasmitted wave is given by:

~Et ∝ ei∆φ(~ex + i~ey) + (~ex − i~ey) = 2ei∆φ/2(cos(∆φ/2)~ex − sin(∆φ/2)~ey) (4.123)

From equations (4.123) and (4.121), we find the Faraday angle rotation as:

ΘF = 1
2(φ+ − φ−) = −arctan( Z0σH

2 + Z0σL
) (4.124)

As a consequence, the polarisation of the transmitted wave is rotated by an angle
ΘF = ∆φ/2 in the clockwise sense with respect to the z axis. Figure 4.19 shows
the Faraday angle rotation versus frequency for different magnetic fields and different
potential chemicals. It is seen that ΘF increases when both B and µc increase. It is
worth noting that gyrotropy in graphene is observed in a very broadband frequency
range (f < ωc/2π) where the phase difference and then the Faraday angle rotation is
almost a constant up to f = 200Ghz. For f > 200Ghz,Ra increases and ∆φ decreases
which implie that the transmitted wave becomes elliptically polarized. Furthemore, the
cyclotron frequency depends on both µc and B. This allows to tune and control the
working frequency of gyrotropy in graphene by varing the chemical potential and/or
changing the magnetic field.
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Figure 4.19: Faraday rotation angle (in degrees) for a light passes through a graphene sheet
calculated (a) for different external magnetic fields: B = 0.5, 1, 1.5, 2T (b) for different chem-
ical potentials: µc = 0.2, 0.4, 0.6eV

An additional important property of graphene is that this rotation of polarization
is nonreciprocal. To prove this statement , we consider a plane wave impinges normally
on graphene from medium 2 to medium 1 as depicted in figure 4.20. In this case the
transmission can be deduced from the case of figure 4.9 by inverting the z axis. After
some straightforward calculations, we find that MT 12 = MT 21. This means that in
the case of normal incidence the wave polarisation always rotates by an angle ΘF in
the same direction (the clockwise sense) with respect to the z direction. So , if we
assume that a transverse plane wave is impinging normally on graphene from medium
1 toward medium 2, after passing through the graphene sheet, the wave polarisation is
rotated by angle ΘF in the clockwise sense with respect to the z direction. Now if we
reverse the propagation direction ( backward direction( from medium 2 to medium 1)),
the polarisation is further rotated by an angle ΘF in the clockwise sense with respect
to the z direction. Hence, the polarisation of a wave transmitted through graphene
from medium 1 to medium 2 and then retransmitted from medium 2 to medium 1
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Figure 4.20: Non reciprocity in graphene: A transverse plane wave impindes normally on
graphene from medium 1 toward medium 2 and transmitted back to medium 1

undergoes a total rotation of 2ΘF . The nonreciprocal properties of graphene can be
explored to develop and design novel non reciprocal ultrathin nanodevices operating
at the microwave and terahertz frequency ranges such as optical isolators, which are of
crucial importance in optical systems, Faraday rotators and circulators.

4.3 Conclusions
For a good understanding of this part of the thesis, we have chosen to start with this first
chapter that summarizes the theory used in the following chapters. In the first part of
this chapter, we have presented the notions of reciprocity and non reciprocity in general.
This was followed by description of the non reciprocity caused by a static magnetic
field. In particular, we have explained the optical hall effect which is responsible of
the occurence of an anisotropy in a material subjected to a magnetic field. We have
given afterwards a detailed analysis of wave propagation and dispersion characteristics
in gyrotropic media. Magneto-optical effects such as Faraday and Kerr effects were
described subsequently. The second part of this chapter was dedicated to investigate
magnetostatic biased graphene layer properties .
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Chapter 5
Propagation properties of a magnetically
biased array of graphene ribbons

Following ancient customs and
traditions does not mean that
the dead are alive, but that the
living are dead.

Ibn Khaldun
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In chapter 1, we have shown that the conductivity of graphene and therefore its
electromagnetic and plasmonic properties can be dynamically tuned by changing its
chemical potential via electrostatic bias or chemical doping. We have also seen in chap-
ter 4 that a magnetic bias can be applied to control the conductivity of graphene. In
fact, when a perpendicular magnetic field is turned on, graphene becomes gyrotropic
and exhibits non reciprocal properties [1]. This leads to many magneto-optical (MO)
phenomena such as the half-integer quantum Hall effect[2], Giant Faraday rotation [3]
and Kerr effects[4]. Furthemore, in the presence of the static magnetic field, plasmons
and cyclotron excitations hybridize which leads to the appearance of graphene sur-
face magnetoplasmons (GSMPs). One of the great advantages of graphene over others
conventional plasmonic materials, is the high sensibility of magnetoplasmons to the
application of an external magnetic field stemming from the comparable cyclotron fre-
quency and plasmon frequency [5]. An additional advantage is that the cyclotron mass
of the charge carriers is small and can be tuned by doping. Moreover while cryogenic
temperatures are required to observe magneto-optical effect in 2DEGs, in graphene,
they already arise at room temperature. All This makes graphene the most promising
candidate for use in tunable plasmonic nonreciprocal devices in the microwave and
terahertz frequencies such as optical isolation[6] and absorbors[7].
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Recently, graphene surface magneto-plasmons have been widely studied in several
theoretical and experimental studies under various forms and configurations including
extended layers of graphene [8], nanoribbons [9, 10] and antidots[11]. It is shown that
the excitation of GSMPs enhance significantly the MO effects of graphene structures
and strong magnetoplasmonics resonances have been observed in a patterned array of
graphene antidots. As a result, it is a great interest to analytically and numerically
investigate the optical properties of patterned anisotropic graphene under magnetic
bias. Among these structures, periodic magnetically biased graphene ribbons array
has attracted a great deal of research interest and becomes one of the most studied
graphene based structures.

Several and various numerical methods have been employed for modelling this struc-
ture such that the Fourier Modal Method [10], the finite difference time-domain method
[12] and discontinuous Galerkin time domain (DGTD) [13]. However, it is shown that
due to the ultrathin nature of graphene, these numerical methods suffer from slow con-
vergence rate and require too much computational effort. In addition to these numerical
methods, an analytical method has been proposed in [14] to study the electromagnetic
behavior of strongly anisotropic metasurfaces implemented by a subwavelengh array
of graphene strips. It is based on the effective medium approach (EMA) which was
applied to the conductivity tensor of graphene by the help of electrostatic approach.
Nevertheless, this method provide an accurate results only for structures at the ex-
treme subwavelength regime (with infinitesimally small periodicity). More recently,
an analytical method has been performed in [15] to analyse magnetically-biased array
of graphene ribbons by solving the integral equations governing the induced surface
current on the graphene ribbons. The major drawback of this method is that it does
not take into account the interaction between neighboring ribbons which make it less
accurate when one is dealing with strip gratings with small gaps.

To the best of our knowledge, there is no analytical or semi analytical method has
been presented to predict the electromagnetic response of a one dimensional graphene
strip grating in the presence of an external magnetic field when the graphene is modeled
as a bulk material using an effective medium approach. Accordingly, in the present
work, we provide a simple and fast semi analytical model for investigation of the
propagation properties of a 1D magnetically biased graphene-strip-grating. It is based
on an effective medium approach and a cumulative phase technique. In our Model,
graphene is regarded as extremely thin anisotropic layer with a finite thickness and
unlike the approach proposed in [14] the effective medium approach will be applied
to its permittivity tensor. Note that the present approach has two main advantages
over the above reported methods: (i) although this method is developed to deal with
the general case of a 1D magnetically biased graphene-strip-grating, it still valid even
for a non magnetized structure where the magnetic bias is absent. (ii) this method
can efficiently and accurately treat subwavelength graphene strip gratings with small
gaps as well as large gaps. The chapter is organized as follows: In section 5.1.1, we
introduce the physical system. The proposed semi analytical method will be explained
and described in detail in the next section. Finally, some numerical results are given
and discussed in the last section to illustrate the effectiveness of this approach. The
accuracy of the proposed model will be validated by comparing it in the one hand
with The PMM method and on the other hand with the effective medium approach
proposed in [14].
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5.1 Semi-analytical model for the analysis of a mag-
netically Biased subwavelength graphene-strip-
grating

5.1.1 Physical system
The structure under study is depicted in figure 5.1.It consists of a periodic 1D graphene
ribbon array (along the x direction with width a and period d = a + s) biased with
magnetostatic field. The graphene ribbons array is suspended in free space and is
placed on the xy plane. A plane wave is normally incident on the structure from the
upper meduim (z > 0). Here we consider the Faraday geometry where the external
static magnetic field B is applied perpendicular to the array along the propagation
direction (z direction). As mentioned in the previous chapter, under the influence of
a magnetostatic bias, graphene will exhibit an induced anisotropy and thus its surface
magneto-optical conductivity will be described by an asymmetric tensor as: (see section
1.1.3 of chapter 1).

σ =
(
σxx σxy
σyx σyy

)
=
(
σL σH
−σH σL

)
(5.1)

For highly doped graphene i.e µc >> ~ω and µc >> kBT , the conductivity of graphene

𝑩 𝑑 

𝑎 𝑠 

𝑧 

𝑥 

𝑦 

𝑎𝑔 

𝜺𝒈 

Figure 5.1: Sketch of the studied structure: a magnetically-biased subwavelengh graphene
strip grating with width a and period d = a + s. The grating is surrounded by air and the
magnetic field is applied perpondicularly to the structure along the z direction ( ~B = B~ez).

is dominated by the intraband contribution and thus the general quantum mechanical
conductivity reduces to the semiclassical Drude model form previously given in section
1.1.3 as:

σL = e2τµc
~2π

1− iωτ
(1− iωτ)2 + (τωc)2 (5.2)

σH = −e
2τµc
~2π

τωc
(1− iωτ)2 + (τωc)2 (5.3)

In our calculations, we model the graphene as an extremely thin anisotropic layer with
a finite thickness ag = 0.34 nm and an effective dielectric permittivity tensor εg given
by:

εg =

 εxx εxy 0
−εxy εxx 0

0 0 εzz

 (5.4)
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Where εxx = 1 + i
σL

ωε0ag
, εxy = i

σH
ωε0ag

and εzz = 1. Note that, the whole structure is
invariant in the y direction and throughout this chapter, we assume a time harmonic
dependence of the form e−iωt. Having introduced the studied structure, we are now
ready to explain and describe our approach

5.1.2 Theoretical Method
The First step to model the electromagnetic response of the studied structure and to
undrestand its physical properties is to apply the effective medium approach which is an
intuitive and effective technique allowing to obtain in a simple manner the macroscopic
averaged response of an array of subwavelength resonators [16, 17, 18]. Since, the period
d of the graphene-strip grating is small compared to the wavelength of the incident
wave (d << λ), it can be approximated by a homogeneous anisotropic effective layer
with equivalent effective permittivity tensor ε̃. We seek in the following to calculate
the components of the effective permittivity tensor ε̃. For this purpose, let us start
by giving the constitutive relations that relate the displacement to the electric field
components:

Di(x) =
∑
j

εij(x)Ej(x) {i, j} ∈ {x, y} (5.5)

According to these relations, we can rewrite Dy and Ex with respect to Dx and Ey as:

[
Ex
Dy

]
=


1
εxx

−εxy
εxxεyx

εxx
εyy − εyx

εxy
εxx


[
Dx

Ey

]
(5.6)

Averaging all quantities involving local fields and densities over the period d, and
assuming that, electromagnetic fields and densities are continuous at any coordinate
curve x = constant, we obtain:

[
〈Ex〉
〈Dy〉

]
=

〈
1
εxx
〉 −〈εxy

εxx
〉

〈εyx
εxx
〉 〈εyy〉 − 〈εyx

εxy
εxx
〉


[
〈Dx〉
〈Ey〉

]
(5.7)

Treating the grating as effective medium require that these macroscopic fields satisfy
the above constitutive relationships given by equation 5.5, such that:

〈Di〉 =
∑
j

ε̃ij〈Ej〉, {i, j} ∈ {x, y} (5.8)

By comparing with equation 5.8, we can deduce the effective medium permittivity
tensor components as:

ε̃xx = 〈1/εxx〉−1 (5.9)
ε̃xy = 〈1/εxx〉−1〈εxy/εxx〉 (5.10)
ε̃yx = 〈1/εxx〉−1〈εyx/εxx〉 (5.11)

ε̃yy = 〈εyy〉+ 〈ε̃xy〉〈εyx/εxx〉 − 〈εyxεxy/εxx〉 (5.12)

At this stage, it is important to emphasize that, close to a single strip, the wave see
the latter as surrounded on both sides by an effective medium. Thus, the structure can
be regarded as a strip grating inlayed into an effective medium. For that reason and in
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order to take into account the resonance phenomena occuring in the grating, the de-
parture periodic structure will be modeled by a subwavelength periodic graphene strip
grating with the same dimensions but instead of vacuum the gaps between neighboring
strips will be filled by the effective medium (see Fig 5.2). Let us now take a look at
the different modes living in the new approximate structure. From Figure 5.2, one can
distinguish two kinds of modes: the first is the most slowly decaying evanescent mode
of the sub-wavelength periodic structure given by the couple (α̃, γ̃) and the second one
correspond to the surface magnetoplasmons polaritons of graphene (GSMP) guided by
the graphene strip (α, γ).

𝑎 𝑠 𝑑 

𝑎𝑔 
𝜶  𝜶 -𝜶 -𝜶  

𝜺  
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𝒂𝟏 
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𝒃𝟑 

𝒂𝟑 
𝜺  𝜺  

𝜺𝒈 

Figure 5.2: Shematic illustration of The mode coupling Model: (a) Coupling between the
effecive mode living in the gap and the GMSPPs propagating on the graphene strip. (b) the
Scattering matrix for one period.

The challenge now is to successfully introduce the coupling or the interaction be-
tween these modes. One powerful and insightful way to accomplish this is to adopt
an analysis based on a scattering parameters of a two-port network. In the proposed
analysis, we will use the scattering matrix formalism to describe the optical character-
istics of the structure (see references [19, 20] for further details). The total scattering
matrix associated to one period can be written as:(

S11 S12
S21 S22

)(
a1
b3

)(
b1
a3

)
(5.13)

Where:
S11 = S22 = r1

1− φ2

1− r2
1φ

2 , S12 = S21 = t1t2φ

1− r2
1φ

2 (5.14)

with
r1 = 1− νeff

1 + νeff
, t1 = 2

1 + νeff
, t2 = 2νeff

1 + νeff
. (5.15)

νeff = α

ε

ε̃

α̃
(5.16)

As montionned above, the α̃ denotes the in-plane effective index of the most slowly
decaying evanescent mode of the sub-wavelength periodic structure and it can be ap-
proximated by:

α̃ '
√
ε̃ (5.17)
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In the case of a periodic subwavelength strip grating with a small gap size (s << d),
we have ε̃ = ε̃xx >> εs this yields:

ε̃ = ε̃xx = 〈 1
εxx
〉 ' d

s
εs (5.18)

Thus, in this particular case the effective index νeff can be straightforwardly given by:

νeff '
αρ
ε

√
ε̃ = αρ

ε

√
d

s
εs (5.19)

In the proposed model, we assume that the phase φ appearing in equation 5.14 can be
given as the sum of two contributions:

φ = e−ik0αaeiθc(s/a) = φ1φc (5.20)

The first term φ1 handles the propagation along the a− width graphene strip. While
the second term φc is related to the contribution of the periodicity of the strips array. In
this term θc is a corrective phase required to take into account the phase delay. To get
an idea about the behavior of the phase of the electric field in the considered structure,
we plot in Figure 5.3 its spatial distribution calculated at the resonance wavelength.
One can clearly see that the phase of the electric field reveals a slot jump probably
due to the interface metal/dielectric (graphene/dielectric) which confirm our initial
assumption. Note that, unlike the phase φ1, the phase delay θc cannot be provided
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Figure 5.3: Spatial Distribution of the phase of the electric field calculated at the first reso-
nance frequency.(a) Map of the phase of the x component of the electric field (b) Electric field
phase Ex(x, 0) at the surface of the strip grating. The parameters are assumed: a = 0.7m,
s = a/4,µc = 0.3eV ,τ = 0.3ps and B = 1T

analytically. However it may be estimated thanks to a rigorous simulation. In this
context, several numerical simulations showed that this phase depends only on the
geometric parameters, through the ratio a/s. For example, for s/a = 1/4, it is found
that θc(s/a) = π/2 whatever the value of a and the magnitude of B. In the following,
we search to provide a robust estimation of this phase using a cumulative technique.
For this end, we suggest that θc can be approximated by the following model

θc(ζ) =


θ(1)
c (ζ) =

n=5∑
n=0

a(1)
n ζ1/n if ζ ≤ 0.5

θ(2)
c =

n=6∑
n=0

a(2)
n ζ1/n if ζ > 0.5

(5.21)
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Figure 5.4: Comparaison between the numerical results of the phase θc (red line) and the
results computed using the approximate model given by (5.21) and (5.22)(black dot line
for θ(1)

c and blue dasched line for θ(2)
c ). The parameters are: λ = 30.35µm, a = 0.735µm,

B = 0T , µc = 0.3eV )

where ζ = s/a. Then, The coefficients of the above series are obtained numerically as:

θc(ζ) =
{
θ(1)
c (ζ) = ζ1/5 + 1.05ζ1/4 + 0.2ζ1/3 − 0.1ζ1/2 + 0.05ζ − 0.018 if ζ ≤ 0.5
θ(2)
c (ζ) = ζ1/6 + 0.955 if ζ > 0.5

(5.22)
To show the reliability and the efficiency of the proposed approximate model, we plot in
Figure 5.4 the behaviour of θc as a function of the ratio s/a for the following numerical
parameters: λ = 30.35µm, a = 0.735µm, B = 0T , µc = 0.3eV . The numerical results
are compared to those computed by the approximate model. The red solid line shows
the results obtained numerically and the results obtained using the approximate model
are depicted by the blue dasched and the black dot lines. One can see that the blue
line that corresponds to θ(1)

c fits perfectly the red line for (s/a) ≥ 0.5. While the black
one corresponding to θ(2)

c matches with the latter for (s/a) > 0.5. Hence, we conclude
that in this case, the behavior of the phase delay θc can be efficiently predicted by the
above proposed approximate model. Note that, although we have presented here only
the case of the structure without magnetic bias, the model has been also verified for
B 6= 0 and it is found that it remains valid and efficient for all values of B less than
7T .

After having defined all the parameters required for determining the S-matrix.
Let us now find the resonances modes of the system which are obtained by setting
det(S−1) = 0, since the S matrix is calculated for symmetric structure (the input and
the output medium are the same), it is found that the zeros of det(S−1) are the same
as those of det(S):

det(S) = S12(ω)S21(ω)− S11(ω)S22(ω) = 0 (5.23)
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We get then two categories of solutions:

∆+ = S11(ω) + S12(ω) = 0, or ∆− = S11(ω)− S12(ω) = 0. (5.24)

To find out which one corresponds to the resonance modes of the system, we compare
each of them with the curves computed by the PMM method. As seen from Figure 5.5,
the resonance frequency defined by the class of solutions satisfying to ∆+ = S11(ω) +
S12(ω) matches with the resonant dip in the transmission spectrum of the structure.
Thus, we can set:

t(ω) = − (S11(ω) + S12(ω)) (5.25)
r(ω) = −(1− t(ω)) (5.26)

where t and r denote the transmissions and reflection coefficients resulting from the
resonnace phenomena. In addition to this contribution, we should add a second term
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Figure 5.5: Comparison between the transmittance spectra of the structure computed using
the PMM method and the one given by |∆+|2. The parameters are the same as Figure 5.3

that take into account the contribution of a single strip of graphene. Therefore the
transmission and the reflection spectrums of the system can take the following form:

T = 1
2 (t+ Ts) (5.27)

R = 1
2 (r +Rs) (5.28)

Where Ts and Rs are respectively the transmission and reflection coefficients through a
graphene monolayer. These coefficients are those calculated in the previous chapter and
given by equations (4.110) and (4.115). Now, our semi analytical model is completed
and in the next section, we will attempt to validate and test it.

5.1.3 Numerical Results and discussion
In this section, some numerical examples are provided to validate the proposed semi
analytical model and demontrate its viability. For this purpose, we investigate the
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transmission and reflection properties for two different cases: with an external magnetic
field and without magnetic field. Firsty, let us consider a graphene strip grating with
the following parameters: a = 0.9µm , s = 0.45µm, B = 3T, µc = 0.6eV,τ = 0.6ps. The
reflection and transmission spectra are shown in Figure 5.6. Their real and imaginary
parts are also plotted in Figure 5.7. These results are compared with the effective
medium given in the ref [14] and the PMM method. We can see a good agreement
between the PMM results and those obtained with our proposed model. By contrast,
the comparaison with the effective medium shows that the latter cannot reproduce the
magnetooptical properties of the studied graphene grating.
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Figure 5.6: Comparaison between the reflection and transmission spectra obtained from
our Model (red solid lines) and those obtained from the PMM (blue solid lines) and from
the effective medium approach [14] (dashed black lines). The results are calculated for a
magnetically biased graphene strip grating with ribbon width a = 0.9µm, gap s = 0.45µm
and B = 3T . Graphene parameters are µc = 0.6eV, T = 300K and τ = 0.6ps

As a second example, we consider the case of a graphene strip grating without
magnetic field. The strip width is a = 0.25µm and the periodicity is assumed to be
d = 0.35µm. The chemical potential of the graphene strips is set to µc = 0.4eV and the
relaxation time τ is taken to be 0.4ps. Figure 5.8 depicts the reflection and transmission
spectra of this structure as a function of wavelength. The results are obtained using the
proposed semi analytical model (red solid lines), the PMM model(blue solid lines) and
the effective medium approach [14] (dashed black lines). Similarly to the first example,
an excellent agreement is observed between our proposed model and the PMM results.
While the effective medium proposed in[14] is not able to predict the magnetooptical
response of this structure. From these results, we can conclude that the proposed semi
analytical Model can efficiently and successfully treat the general case of a graphene
strip grating biased with an external magnetic field as well as the particular case where
no magnetic field is applied.

In the following, we are going to test and check the performance and the accuracy
of our approach by examining it as a function of grating and graphene parameters
including the geometric parameter a/d, the chemical potential and the magnetic bias.
Let us begin by test it for different filling factor a/d. For doing so, we set d = 1.35µm
and we plot in figure 5.9 the wavelength of the first resonance as a function of filling
factor for two values of the magnetic field B = 0T and B = 3T . The results obtained
with our approach (red plus) are compared with those performed by the help of the
PMM method (blue asterisks). One can clearly see that the results correlate well with
each other for all filling factors. In particular, an excellent agreement is observed for
a/d smaller than 0.4 and for a/d greater than 0.7. For the remaining filling factors
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Figure 5.7: Real and imaginary parts of the reflection (the two upper panels) and transmission
(the two lower panels). the red lines represent our model, the blue lines represent the PMM
method and the black dashed lines represent those calculated using [14]. The parameters are
the same as those in figure 5.6.
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Figure 5.8: Comparaison between the reflection and transmission spectra obtained from our
proposed Model (red solid lines) and those obtained from the PMM (blue solid lines) and
from the the effective medium approach [14] (dashed black lines). The results are calculated
for a graphene strip grating with ribbon width a = 0.25µm and gap s = 0.1m, when the
magnetic bias is absent. Graphene parameters are µc = 0.4eV, T = 300K and τ = 0. = 4ps

0.4 < a/d < 0.7 the relative error does not exceed 4%. For example for a/d = 0.5736,
the relative error is equal to 2.04% for B = 0T and 3.12% for B = 3T . Hence, the
proposed model provides accurate results for all filling factors and can efficiently deals
with the grating with a small gap as well as a large gap. It is important to note that the
grating with a small gap constitute a critical case because in this case the interaction
between neighboring strips becomes strong and thus to obtain accurate results, it is
necessary to take into account this interaction.
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Figure 5.9: First resonance wavelength of the transmission spectrum as a function of filling
factor a/d for (a) B = 0T and (b) B = 3T . Other parameters are d = 1.35µm, µc =
0.6eV ,τ = 0.6ps

We look now at the accuracy of the proposed approach as a function of the magnetic
field. Figure 5.10 shows the wavelength of the first resonance as a function of the
magnetic field for three values of the filling factor a/d = 0.2, a/d = 0.5 and a/d = 0.8.
It is shown that for a/d = 0.2 the results obtained from our model are well matched with
those computed with the PMM method for all magnetic field between [0,10]T. While
for a/d = 0.5 and a/d = 0.8 the results correlate well up to 7T . For 7 < B < 10, they
shift away from those of the PMM method. This shift increases slightly with increasing
B. For instance for B = 8.421T, the relative error is equal to 2%(a/d = 0.9) and it
increases for B = 10T, to reach 3.41%. This could be explained by the fact that the
model proposed in (5.21) and (5.22) to approximate the phase decay θc is only valid for
B ≤ 7T . So, to remove or minimize the difference between the two methods, we should
numerically adjust the coefficients a(1)

n and a(2)
n to find the best fit model of the phase.

Obviously this will affect the accuracy of our model which becomes less accurate for
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Figure 5.10: First resonance wavelength of the transmission spectrum as a function of mag-
netic field B for three different filling factors a/d = 0.2, 0.5 and 0.8. The Other parameters
are ,d = 1.125µm, µc = 0.6eV ,τ = 0.6ps.

B > 7T . But, it does not pose a considerable and real problem since, from a practical
point of view, the magnetic bias usually used to magnetize graphene does not exceed
7T [21].
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Figure 5.11: First resonance wavelength of the transmission spectrum as a function of the
chemical potential of graphene µc. The Other parameters are the same as those of Figure 5.6

We end this section by examining the stability of the proposed model with varing
the chemical potential of the graphene strips. Figure 5.11 shows the wavelength of the
first resonance as a function of the chemical potential. The reflection and transmission
spectra for different chemical potential µc namely for µc = 0.4, 0.6 and 0.8eV are also
plotted in figure 5.12. In these figures , we compare the results computed by our model
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with those obtained from the PMM Method. We can see from figure 5.11 that for all
chemical potentials the first resonance is succefully predicted by the proposed method.
From figure 5.12, it is shown that the transmittance and the reflectance obtained
with the PMM are well fitted by the proposed approach. One can also see that by
decreasing µc, the accuracy of the proposed method with respect to the amplitude of
the transmittance and specifically of the reflectance is slightly decreased. This last
behavior is expected. In fact as seen from equation 5.26, in our calculations, we do
not take into account the absorption features within the structure. Therefore, when
the chemical potential decreases, the losses in graphene increase and then the model
becomes less accurate. However, it should be noted that the difference between the two
curves is relatively small and thus this cannot be considered as a significant limitation
of the proposed semi analytical approach.
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Figure 5.12: Reflection and transmission spectra calculated for different chemical potentials
µc = 0.4, 0.6 and 0.8eV. Other parameters are the same as those of Figure 5.6
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5.2 Conclusion
In conclusion, in this chapter, we have presented a simple and fast semi analytical
model to compute the transmittance and reflectance of a magnetically-biased subwave-
length graphene strip grating. It is based on the effective medium approach when the
graphene is modeled as an anisotropic layer with atomic thickness and a frequency-
dependent and complex permittivity tensor. The proposed model is validated against
the PMM method by numerical examples. The perfermance and the accuraty of this
method has been also tested and checked as a function of the graphene and grating
parameters. We have first showed that this proposed method is a general approach
that can efficiently treat the structure when the magnetic field is applied and still valid
even in the particular case of a structure without magnetic field which is not possible
with the analytical methods already encountered in the literature. In addition to that,
the study of the accuraty of the method as a fuction of the filling factor of the grating
revealed that the proposed model can efficiency deal with the grating with a small gap
as well as a large gap. Specifically, this method provides precise and reliable results in
the case of gratings with small gaps which constitute a complicated case to deal with.
Throught this last structure it is possible to achieve a strong reflection ( near 90%)
which could be of interest in devices that require high reflectivity such that reflectors
in certain frequency ranges.
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Chapter 6
Theoretical analysis of Optical Hall effect in
a 2D nano-cross-slits grating

There is nothing more deceptive
than an obvious fact.

Arthur Conan Doyle, The
Boscombe Valley Mystery
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As shown in chapter 5, the optical Hall effect can be considered as the physical
phenomenon related to the appearance of magnetically induced anisotropy in a mate-
rial’s optical properties. This induced anisotropy leads to a non-reciprocal magneto-
optical response of the anisotropic material. Significant efforts were made to create
optical materials allowing to combine both extraordinary optical transmission (EOT)
[1, 2, 3, 4, 5, 6] and magneto optical effects in order to enhance the magneto optical
activity, namely the Faraday and/or Kerr rotation(s), chirality for photonics materi-
als. In all these works, both 1D and 2D geometries combining non reciprocal surface
plasmon modes and magnetic effect are studied. The 1D base structure is consisted of
periodic array of nano-ribbons [7, 8, 9, 10, 11, 12] or sub-wavelength slits, while the 2D
structures are generally based on nano-holes with different shapes [13, 14, 15, 16]. To
the best of our knowledge, the EOT phenomenon involving a 2D structure consisting
of a periodic array of cross-slits grating has never been reported. Firstly, we show in
this chapter that, contrary to the case of periodic array of nano-holes, the 2D cross-
slits grating can support fundamental guided cavity super-modes which are two-degree
degenerate in the case of uniaxial slit-material and symmetrical geometry. Therefore,
the EOT phenomenon through this structure does not depend on the incident field po-
larization. Secondly, we investigate the magneto optical activity in this structure when
the slits are filled by an anisotropic gyroscopic material. The structure may support
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non reciprocal cavity super-modes exhibiting one way behavior. To begin with, we
provide analytical expressions of the reflection and transmission of the system allowing
to fully describe and deepen the EOT mechanism occurring in the system. Later, these
analytical expressions are extended the analytical model to explain the non reciprocal
unidirectional light transmission in EOT-range.

6.1 Statement

Figure 6.1: Sketch of 2D structure made of a dispersive gold metal film perforated with a 2D
periodic subwavelength array of nano-slits.

The structure under study consists of a metal film perforated with a 2D periodic
subwavelength array of nano-slits. See Fig. 6.1. The relative permittivity of the mate-
rial in the slits is denoted by ε(s). The relative permittivity of the dispersive metal (gold)
is denoted by ε(m) and described by the Drude-Lorentz model [17, 18]. See reference
[19] for the numerical parameters used to compute ε(m). This structure is excited, from
the upper medium (whose relative permittivity is ε(1) = ν2

1) by a monochromatic plane
wave with angular frequency ω and wave vector ~K0 = k0

(
α

(1)
0 ~ex + β

(1)
0 ~ey + γ

(1)
0 ~ez

)
,

where α(1)
0 = ν1 sin θ0 cosφ0, β(1)

0 = ν1 sin θ0 sinφ0 and γ
(1)
0 = ν1 cos θ0. θ0 and φ0 are

the polar and azimuth angles of incidence. k0 = 2π/λ = ω/c denotes the wavenumber,
λ being the wavelength and c the speed of light in vacuum. The amplitudes of the
transverse components of the electric field of the incident wave are:{

Einc
x = cosφ0 cos δ − sinφ0 sin δ

Einc
y = cos θ0 sinφ0 cos δ + cosφ0 sin δ (6.1)
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The parameter δ denotes the angle of polarization. In this work we use the following
numerical parameters: ε(1) = ε(3) = ε(slit) = 1, θ0 = φ0 = 0o, h = 500 nm, d = 165 nm,
a = 15 nm. We will consider materials such that the permittivity and permeability
have the following form

ε(x, y) =

ε
xx εxy 0
εyx εyy 0
0 0 εzz

 ;µ(x, y) =

µ
xx µxy 0
µyx µyy 0
0 0 µzz

 . (6.2)

It can be shown fromMaxwell’s equations that the transverse components of the electric
field satisfy

− k2
0γ

2
[
Ex
Ey

]
= Lµ,εLε,µ

[
Ex
Ey

]
, (6.3)

where the z dependence of the field is held by the e−ik0γz factor. The operators Lκ,τ ,
{κ, τ} ∈ {ε, µ} are given by: Lκ,τ = −k0κ

yx + 1
k0
∂x (τ zz)−1 ∂y −k0κ

yy − 1
k0
∂x (τ zz)−1 ∂x

+k0κ
xx + 1

k0
∂y (τ zz)−1 ∂y +k0κ

xy − 1
k0
∂y (τ zz)−1 ∂x

 .
In the current work we consider nonmagnetic materials (µxx = µyy = µzz = 1,

and µxy = µyx = 0), and a gyrotropic medium which off-diagonal relative permittivity
terms are of the form: εxy = −εyx = −i∆. In order to compute the spectral response
of the structure, we use the polynomial modal method (PMM) to solve the eigenvalue
Eq. (6.3) in the grating before writing the boundary conditions at the interfaces z = 0
and z = −h. This leads to an algebraic system whose solution gives the reflected and
transmitted amplitudes. It is important to stress that, in order to ensure the stability
of the approach, we make use of the scattering matrix algorithm.

6.2 Polarization independent EOT phenomenon through
2D cross-slits array

Let us first discuss the EOT through the structure when the slits-dielectric is not
magnetized and, therefore possesses only a diagonal dielectric tensor:ε(x, y, ω) 0 0

0 ε(x, y, ω) 0
0 0 ε(x, y, ω)

 . (6.4)

The structure is excited with a monochromatic plane wave with both right circular
polarization (RCP: ~Einc = E0(~ex + i~ey)) and left circular polarization (LCP: ~Einc =
E0(~ex−i~ey)), i2 = −1. Fig. 6.2 shows the reflected and transmitted spectra. A Lorentz-
like resonance corresponding to an EOT occurs around λ = 2.17µm; which, as pointed
in reference [20] in the case of 1D slits-grating, is due to the excitation of a particular
eigenmode (the most slowly decaying mode of the grating layer whose effective index
is denoted by γ(2)

0 ) which ensures the energy transfer through the structure
But contrary to the 1D case, and because of the symmetry properties of the struc-

ture, this mode is two-degree degenerate in the current 2D case. In the following, we
will first provide an extension of our simplified model for 1D structures (see chapter 3)
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Figure 6.2: Reflection and transmission spectra of the array of the 2D subwavelength nano-
slits in non magnetization configuration: illustration of EOT phenomenon. Comparison
between rigorous computation with the PMM and the semi analytical model.

Figure 6.3: Sketch of 1D structure made of a dispersive gold metal film perforated with a 1D
periodic subwavelength nano-slits. The structure is equivalent to an homogeneous layer of
thickness h with effective permitivity ε(2) when λ >> d. γ(i)

0 is the propagation constants in
each medium and ri and ti the reflection and transmission coefficients of each interface.

[20] to the present 2D case. Then we will explain why this phenomenon is polarization-
independent. A semi-analytic model describing the EOT phenomenon for a 1D periodic
array of sub-wavelength nano-slits encapsulated between ε(1) and ε(3) media is already
described in [19]. As pointed in that paper, the electromagnetic response of the 1D-
system to a linearly polarized plane wave excitation, when the period d << λ, is
equivalent to that of a slab with equivalent permittivity ε(2) = 〈1/ε(m,s)(x)〉−1 and
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height h. See Fig. 6.3. In chapter 3 , phase correction terms are empirically in-
troduced in order to take into account the phase matching between the lattice mode
with effective index γ(2)

0 and the incident plane wave. The phase correction formulas
were obtained from numerical experiments and no demonstration allowing to derive
them were provided. However in recent works presented in references [21] and [22] we
suggested another simplified and rigorous way to handle the influence of the surface
plasmons polaritons (SPPs) in the EOT phenomenon. In this model, the coupling be-

Figure 6.4: Sketch showing the coupling between the gap plasmon mode γ(2)
0 living in ε(2)

homogeneous medium and α(1) and α(3) surface plasmons mode traveling in medium ε(1) and
ε(3) respectively.

tween the SPPs and the gap plasmon cavity mode, schematized in Fig. 6.4 is analyzed
through the scattering parameters:[

B
D

]
=
[
S11 S12
S21 S22

] [
A
C

]
(6.5)

where 
S

(i)
11 = S

(i)
22 = r

(i)
1 + r

(i)
2 e−i2k0α

(i)
0 a

1 + r
(i)
1 r

(i)
2 e−i2k0α

(i)
0 a

S
(i)
12 = S

(i)
21 = t

(i)
1 t

(i)
2 e
−ik0α

(i)
0 a

1 + r
(i)
1 r

(i)
2 e−i2k0α

(i)
0 a

, (6.6)

with 
r

(i)
1 = α

(2)
0 /ε(2) − α(i)

0 /ε
(i)

α
(2)
0 /ε(2) + α

(i)
0 /ε

(i)
= −r(i)

2

t
(i)
1 = 2α(2)

0 /ε(2)

α
(2)
0 /ε(2) + α

(i)
0 /ε

(i)
, t

(i)
2 = 2α(i)

0 /ε
(i)

α
(2)
0 /ε(2) + α

(i)
0 /ε

(i)

, (6.7)

where α(i=1,3)
0 =

√
ε(i)ε(m)

ε(i) + ε(m) is the effective index of the SPP propagating along the

interface ε(m)/ε(i) and α(2)
0 =

√
ε(2) −

(
γ

(2)
0

)2
. The interaction between the cavity mode

with effective index γ(2)
0 and the upper and lower SPPs are handled by the reflection

coefficients s1 = S
(1)
12 − S

(1)
11 and s3 = S

(3)
12 − S

(3)
11 respectively. When d << λ, the
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Homogeneous Slab method (HSM) leads to the following reflection R and transmission
T coefficients: 

R = r1 + e−ik0γ
(2)
0 hs1r2s3e

−ik0γ
(2)
0 h

1 + r1e−ik0γ
(2)
0 hs1r2s3e−ik0γ

(2)
0 h

T = t1t2s1e
−ik0γ

(2)
0 h

1 + r1e−ik0γ
(2)
0 hs1r2s3e−ik0γ

(2)
0 h

. (6.8)

To extend this model to the current case of a 2D structure, we consider that the
two-degree degenerate cavity mode, lives in an homogeneous medium with ε(2) =
〈1/ε(m,s)(x)〉−1 = 〈1/ε(m,s)(y)〉−1. We successfully compare in Fig. 6.2 the spectrum
of the reflection and the transmission RRCP,LCP and TRCP,LCP respectively of the 2D
structure, obtained from Eq. (6.8) to the rigorous results (Reflection and Transmis-
sion) obtained from the PMM. The structure is excited with both Right (RCP) and
Left (LCP) circular polarized incident fields at normal incidence. This homogeneous
equivalent slab model reproduces the extraordinary transmission mechanism and thus
confirms that γ(2)

0 cavity mode is responsible for this enhancement. It should be empha-
sized that some numerical simulations, not reported here, show that the polarization
of the incident field does not influence the current 2D EOT phenomenon. This is be-
cause the geometry and the physical properties of structure are symmetrical, and this
property leads to the degeneracy of the fundamental mode with effective index γ(2)

0 ,
living in the 2D structure. Consequently any incident field with arbitrary polarization
state should excite some linear combination of the eigenfunctions associated with the
two-degree degenerate eigenvalue γ(2)

0 :

~Φ(η,χ) = η~Φ21 + χ~Φ22 (6.9)

where ~Φ21 and ~Φ22 are vectors which components are(
Φ(21)
x ,Φ(21)

y

)
and

(
Φ(22)
x ,Φ(22)

y

)
, (6.10)

respectively. Φ stands for E and/or H. Because of the properties of symmetry of
these linear combinations, they can be excited from both linear and circular polarized
incident plane waves. The vectors

[E(21)
x ;E(21)

y ]t, [E(22)
x ;E(22)

y ]t (6.11)

and
[H(21)

x ;H(21)
y ]t, [H(22)

x ;H(22)
y ]t (6.12)

being the eigenvectors of the operators LEHLHE Eq. (6.3) and LHELEH , respectively,
associated with the two-degree degenerate eigenvalue γ(2)

0 .
As shown in Fig.(6.5), for (η, χ) = (1, 1) and (η, χ) = (1,−1) the linear combination

of the degenerate eigenfunctions is polarized along (Ox) and (Oy) axis respectively.
Consequently these modes combinations can be excited by a linearly polarized incident
waves Einc~ex and Einc~ey. For (η, χ) = (1,±i) modes combination may be excited by
both RCP and LCP incident plane waves. The EOT phenomenon do not depend on
the incident field polarization.

The dispersion curves of the effective index γ(2)
0 is plotted in Fig 6.6 for different

values of s while d is kept equal to 165nm and B = 0. It can be seen that increas-
ing s leads to a decrease of the real part of γ(2)

0 and an increasing of its imaginary
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Figure 6.5: Modulus of H(η,χ)(x, y) for different values of (η, χ). Because of the properties
of symmetry of these linear combination, they can be excited from both linear and circular
polarized incident plane waves. Linear Einc(x, y)ex incident wave may excite (η, χ) = (1, 1)
modes combination, while a Einc(x, y)ey linear polarized wave may excite (η, χ) = (1,−1)
modes combination. (η, χ) = (1,±i) modes combination may be excited by both RCP and
LCP incident plane wave.

part. Since the z dependency of the electromagnetic field in the cavity may be approx-
imated by φ(z) = A+exp(ikγ(2)

0 z) +A−exp(−ikγ(2)
0 z), (k = 2π/λ), for a given h-length

cavity, the resonance wavelengths can be roughly approximately obtained through a
phase condition on the term A±sin(2πhγ(2)

0 /λr). When γ(2)
0 decreases, the resonance

wavelength λr also decreases. See Fig. 6.7. Consequently increasing the slit-width s
pushes the resonance wavelengths towards the visible wavelengths range, and simulta-
neously, the width of the resonance (FWHM) becomes narrower, because of the less
losses (imaginary part of γ(2)

0 ).
In the same manner, when h decreases (but still large enough), the resonance wave-

lengths are pushing towards the visible wavelengths range, while the width of the
resonance (FWHM) becomes narrower. See Fig. 6.8.
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Figure 6.6: Spectrum of the effective index γ(2)
0 for different values of s and for d = 165nm.

Increasing s leads to a decrease of the real part of γ(2)
0 and an increasing of its imaginary

part.
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6.3 Magneto-optical perturbation of the gap plas-
mon modes

Now let us discuss the Magneto-optical side of the problem by considering the pres-
ence of magnetization in the dielectric-slits. We consider the EuS material uniformly
magnetized in the polar configuration, i.e. the bias magnetic field is along (O, z) axis.
In the presence of magnetization EuS possesses a permittivity of the form [23]ε

xx(x, y, ω) εxy(x, y, ω) 0
εyx(x, y, ω) εxx(x, y, ω) 0

0 0 εzz(x, y, ω)

 (6.13)

where
εxx = εyy = ε∞ +

ω2
p

Ω2 − ω2 − 2iΓω

εxy = −εyx =
iβωω2

p

(Ω2 − ω2 − 2iΓω)2 = −i∆,
(6.14)

and modes conversion may take place in the grating array. β is a experimental parame-
ter proportional to the magnetic field [23]. In our study we use the following numerical
parameters β = 8.4×1018rad s−1, ε∞ = 4.125, Ω = 2.77×1015rad s−1, Γ = 2×1014s−1,
ωp = 4× 1014rad s−1. By solving the eigenvalue equation Eq. (6.3) in the case of uni-
formly magnetized slit-material, in the polar configuration, we observe numerically that
the degeneracy of the eigenvalue γ(2)

0 is removed or lifted. As shown in Fig. 6.9, the
polar bias magnetic field splits the fundamental mode into two non-degenerate eigen-
values denoted γLCP and γRCP . Since γLCP 6= γRCP , two resonance frequencies arise
in the system. In Fig. (6.10) we present the reflection and the transmission spectra
of the structure under a RCP and LCP polarized plane waves at normal incidence.
A shift between the RCP and LCP spectra can be clearly observed. In this figure,
Transmission RCP/LCP and Reflection RCP/LPC are rigorously computed with the
PMM.

Since the presence of the uniform polar magnetization impacts directly the effec-
tive index of the 2D Gap plasmon of the sub-wavelength structure, we can explore the
magneto-optical activity of the system by analyzing the EOT phenomenon of an elec-
trical homogeneous slab with relative permittivity ε(2) where live two modes γRCP and
γLCP . Regarding Fig. 6.9, it is interesting to note that these non-degenerate modes
can be derived from γ

(2)
0 by the following analytical relation :

γ+ ' γ
(2)
0 + s

2d∆ , and γ− ' γ
(2)
0 −

s

2d∆. (6.15)

that only depend on the medium’s gyration ∆ and the slit filing factor s/d. Now let’s
introduce

α± =
√
ε(2) − γ2

±, (6.16)
and let us define the analytical reflection RRPC/LCP and transmission TRPC/LCP coeffi-
cients by introducing γ± and α± in Eq. (6.8). We successfully compare in Fig. 6.10 the
analytical model RRCP/LCP and transmission TRCP/LCP to the rigorous computation
from PMM. Both EOT phenomenon and resonances shifting due to the MO activity
in the MO plasmonic system are well held by the current semi-analytical model. Re-
mark that the proposed structure is symmetric according to the (Oz) direction. By
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Figure 6.9: Dispersion curves of the degenerate effective index γ(2)
0 (dashed black line) and

of γRCP and γLCP . The polar bias magnetic field removes the degeneracy in splitting the
fundamental mode γ(2)

0 into two non degenerate eigenvalues γLCP and γRCP . The distance
between these new sub-levels is approximately equal to s

d
∆. Numerical parameters: β =

8.4×1018rad s−1, ε∞ = 4.125, Ω = 2.77×1015rad s−1, Γ = 2×1014s−1, ωp = 4×1014rad s−1.

tuning the gyrotropic parameter ∆, it is possible to shift the resonance wavelength of a
given circular polarized RCP or LPC such that, the current plasmonic MO structure is
transparent to the incoming forward wave whereas it is still reflective to the backward
incoming wave. See Fig. 6.11. According to the results shown in this figure, the LCP
and RCP EOT shift is even greater than ∆ is high. For λ = 3.409 µm, the structure
is transparent to the LCP polarization while it reflects the RCP one. This structure
acts as both a polarization-wavelength-filter and a polarization-isolator.
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nomenon. Comparison between rigorous computation with the PMM and the semi analytical
model. Numerical parameters: β = 8.4 × 1018rad s−1, ε∞ = 4.125, Ω = 2.77 × 1015rad s−1,
Γ = 2× 1014s−1, ωp = 4× 1014rad s−1.

158



CHAPTER 6. THEORETICAL ANALYSIS OF OPTICAL HALL EFFECT IN A
2D NANO-CROSS-SLITS GRATING

3 4 5 6 7
 ( m)

0

0.2

0.4

0.6

0.8

1

Transmission LCP
Transmission RCP
Reflection LCP
Reflection RCP

=9 1018

3 4 5 6 7 8
 ( m)

0

0.2

0.4

0.6

0.8

1

Transmission LCP
Transmission RCP
Reflection LCP
Reflection RCP

3.409 m

=9 1019

Figure 6.11: Illustration of EOT-MO phenomenon for β = 9× 1018rad s−1 and β = 9× 1019
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6.4 Conclusion
In conclusion, we have proposed a theoretical analysis of a magneto optic plasmonic
structure based on a magneto optical activity, namely the nonreciprocity around EOT
frequency range. We provide a semi-analytical model based on a modal analysis of
the system allowing efficient access to the full spectrum of the system. Our study
revealed that when the proposed structure is symmetric, the fundamental mode is
degenerate. That is why the EOT phenomenon through such a structure is independent
of the incident wave polarization. On the other hand, under a polar bias magnetic
field the degeneracy of the fundamental mode of the structure is removed. Two EOT
phenomena, each one associated with LCP and RCP polarizations, are then observed.
This results in the non-reciprocity behavior of the proposed structure.
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I am not always good and noble.
I am the hero of this story, but I
have my off moments.

P. G. Wodehouse

In this thesis, we have exploited the extraordinary and unusual electromagnetic,
optical and plasmonic properties of graphene for exploring and modelling graphene
based plasmonic structures of academic and technological interests. The research car-
ried out and presented in this work is articulated around two main parts. The first
part is focused on the study of hybrid plasmonic structures based on graphene while
the second part is aimed at investigating the magneto-optical properties of structures
based on graphene and metals subjected to an external static magnetic field. Let us, in
the following, summarize the main and important results obtained for these two parts.

After discussing and presenting the necessary basics and tools for this thesis in
chapter 1, 2 and 4, we proposed in chapter 3 to investigate a hybrid plasmonic sys-
tem consisting of a 1D array of periodic subwavelength metallic slits and a graphene
sheet separated by a dielectric gap. This system puts in play two fundamental and
important phenomena: an EOT phenomenon and a metal-insulator-graphene (M-I-G)
cavity plasmon mode excitation. By the use of the PMM method, we have plotted
the transmission and reflection spectra of the proposed structure. The obtained re-
sults revealed broadband and narrow band resonances. For a better understanding
of the origin of these band resonances, we have proposed a semi analytical method
that suggests to split the whole system into two coupled sub-systems. The first one
is a weakly coupled sub-system made of a periodic array of subwavelength metallic
nano-slits whose electromagnetic response can be merely predicted by replacing it by
a homogeneous slab with an equivalent permittivity. This allows us to analytically
obtain its corresponding reflection and transmission coefficients. By comparing the
analytical results with the spectrum of the structure obtained by the PMM method,
we showed that these approximated curves perfectly match the broadband resonances
of the hybrid structure. Additionally. it was shown that the narrow-band nature of
the hybrid system can be u nderstood by studying the behaviour of a second strongly
coupled sub-system. It was also demonstrated that these resonances modes are linked
to the resonances of a metal/insulator/graphene horizontal Perot-Fabry cavity modes.
Furthermore, we found that the effective index associated with these modes and then
the resonance wavelengths of the system can be controlled and tuned by changing the
chemical potential of graphene. By adjusting the chemical potential, we can achieve an
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induced reflection phenomenon or perfect absorption within the structure. This find-
ing may open up opportunities for various tunable applications such as reflectors and
absorbers. Finally, we provided analytical expressions for the reflection and transmis-
sion coefficients of the global structure allowing to describe the resonance phenomena
occurring in it. An interesting perspective is that our analysis can be extended to
study more complex hybrid structures such as the coupling of the lattice modes with a
substrate made of a non-reciprocal photonic topological material and hybrid configura-
tions involving diffraction gratings coupled to hybrid graphene multilayered structures.

In the second part of this work concerning the study of the magneto-optical proper-
ties of structures based on graphene and metals, we have been interested in investigating
two different structures. In chapter 5, we developed a simple and fast semi analytical
method to accurately predict the optical response of a one dimensional graphene strip
grating in the presence of an external static magnetic field, in which the graphene is
modelled as an anisotropic layer with atomic thickness and a frequency dependent and
complex permittivity tensor. The optical spectra are computed through an effective
medium approach and a scattering formalism. This model is computationally efficient
and can be readily applied to any graphene strip grating with different geometric pa-
rameters. In particular, we showed that the proposed model can efficiency deal with
gratings with small gaps as well as with large gaps, specifically, it provides precise and
reliable results in the case of gratings with small gaps which constitute a complicated
case to deal with. Moreover, we found that, although the proposed model can effi-
ciently treat structures with static magnetic fields, it is still valid even for structures
where the static magnetic field is absent. We further analysed the proposed approach
as a function of the static magnetic field and found that it can provide accurate results
for all fields smaller than 7T. As a future work, we propose to employ this structure
in the design of a spectrally and spatially tunable metasurface lens by exploiting the
tunability of graphene magnetoplasmons.

Finally, chapter 6 has been dedicated to the study of magneto optical properties of a
2D plasmonic structure composed of a periodic array of metal crossed-slits grating when
the slits are filled with an anisotropic gyrotropic material. Firstly, we have provided a
semi-analytical model based on a modal analysis of the system that allows to reproduce
the full spectrum of the system and describe the EOT mechanism occurring in it.
Secondly, we have employed these analytical expressions to explore the non reciprocal
unidirectional light transmission in the frequency ranges where EOT occures.
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