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Résumé

Le problème d’équilibrage des lignes d’assemblage consiste à affecter un ensemble
d’opérations à un ensemble de stations placées le long d’une ligne tout en respectant
un certain nombre de contraintes et en minimisant certains objectifs. Le problème
est ancien et la littérature est bien fournie dessus. Cependant, peu de travaux con-
sidèrent ce problème conjointement avec d’autres problèmes qui paraissent bien jus-
tifiés au regard de la nouvelle ère de l’Industrie 4.0. En effet, de nos jours les tâches
sur les lignes d’assemblage sont le plus souvent réalisées par des robots, l’opérateur
humain ne se contentant que de superviser les opérations. La robotisation fait ap-
paraître deux nouveaux problèmes de décision : le problème d’affectation des robots
aux stations et le problème de séquencement des opérations sur chacune des sta-
tions. Le premier est justifié par le fait que la durée des opérations dépend du robot
utilisé dans la station alors que le second est induit par des temps de setup entre
deux opérations qui se suivent sur une station. Ces temps de setup sont notamment
nécessaires pour réaliser des changements d’outils sur les robots où pour réaliser des
manipulations sur le produit.

Dans un premier temps nous avons étudié le problème d’équilibrage conjointement
avec le problème de séquencement des opérations. Le problème est noté SDSALBP
(Sequence-Dependent Simple Assembly Line Balancing Problem). Plus précisément,
nous avons étudié une généralisation de ce problème qui existe dans la littérature :
le problème de l’équilibrage des lignes de transfert reconfigurables, noté RTLB (Re-
configurable Transfert Line Balancing Problem). Il consiste à affecter des opérations
nécessaires pour fabriquer un produit à des stations de travail placées en série. Les
stations peuvent être équipées de plusieurs machines qui opèrent en parallèle et des
temps de setup inter-opératoires au passage d’une opération à une autre sur une
même machine sont considérés. L’objectif est de minimiser le nombre de machines
utilisées avec un temps de cycle fixé. La contrainte sur le temps de cycle doit être
respectée (pour chaque station, la somme des temps opératoires et des temps inter-
opératoires de la séquence des opérations qui lui sont affectées ne doit pas dépasser
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le temps de cycle multiplié par le nombre de machines affectées à cette station).
Des contraintes de précédence sur les opérations doivent aussi être respectées. Nous
prenons également en compte d’autres contraintes industrielles (inclusion, exclusion,
accessibilité).

Trois types d’approches ont été proposées pour ce problème :

• Approche intégrée où la répartition des opérations sur les stations de travail
et le séquencement des opérations sont faits en même temps. Pour ce type
d’approche, nous avons proposé un programme linéaire en nombre entiers.

• Approche de type BFSL (“Balance First, Sequence Last”): Lahrichi et al.
(2020b). Elle consiste à faire la répartition des opérations entre les stations
de travail d’abord puis à procéder au séquencement des opérations sur cha-
cune des stations. Dans cette méthode, la répartition des opérations aux
stations est faite à l’aide d’un programme linéaire en nombres entiers alors
que le séquencement des opérations sur chacune des stations est faite à l’aide
de la programmation dynamique. Nous démontrons une garantie de perfor-
mance pour cet algorithme (algorithme d’approximation) et l’utilisons comme
algorithme de construction dans une matheuristique à base de recuit simulé.

• Approche de type SFBL (“Sequence First, Balance Last”): Lahrichi et al.
(2020a). Elle consiste à faire le séquencement des opérations d’abord puis à
procéder à la répartition des opérations entre les stations de travail. Dans
ce type de méthodes, nous considérons une «séquence géante» de toutes les
opérations qu’il convient de découper (split) afin d’affecter chacune des sous
séquences à une station de travail. Notre principale contribution se situe
au niveau d’un algorithme polynomial pour la résolution exacte de ce sous-
problème. Une recherche locale itérée sur l’espace des séquences géantes a été
proposée où l’algorithme de split a été utilisé pour construire et évaluer les
séquences. Une méthode exacte de type Branch and Bound utilisant le split
a également été proposée. Les expérimentations réalisées sur des instances de
benchmark montrent une nette amélioration par rapport à certaines méthodes
de la littérature.

Encouragés par les résultats obtenus par la dernière approche, nous avons ajouté
une décision supplémentaire à adresser conjointement avec les deux décisions précé-
dentes : le problème d’affectation des robots aux stations. Nous étudions ainsi le
Robotic Assembly Line Balancing Problem-2 (RALBP-2) qui comprend la décision
d’équilibrage et la décision d’affection des robots puis le Sequence-Dependent Robotic
Assembly Line Balancing Problem-2 (SDRALBP-2) qui comprend en plus des deux
décisions précédentes, le séquencement des opérations sur les stations de travail.
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Pour ces deux derniers problèmes, les durées des opérations ainsi que les temps de
setup dépendent du type de robot choisi sur la station. Nous considérons l’objectif
de minimiser le temps de cycle avec un nombre maximum de stations donné.

Le RALBP-2 et le SDRALBP-2 ont été étudiés sous deux hypothèses différentes
identifiées dans la littérature :

• Les robots sont typés et chaque type de robot peut être sélectionné plusieurs
fois sur des stations différentes.

• Les robots sont individualisés et chaque robot peut être affecté à au plus une
station.

Nous proposons pour ces problèmes des méthodes de type Sequence-First Balance-
And-Select-Last: Lahrichi et al. (2020c). Ce type de méthodes représente une exten-
sion des méthodes de type Sequence-First Balance-Last proposées pour le RTLBP.
Ces méthodes reposent sur un algorithme polynomial que nous avons proposé pour
résoudre le cas particulier où la séquence des opérations est donnée. Cet algorithme
dynamique a été intégré dans une méthode à voisinage. Les résultats sur des in-
stances de la littérature sont prometteurs.

Pour les trois problèmes étudiés dans la thèse, la contribution majeure est le split.
Cet algorithme résout le cas particulier de la séquence géante fixée en s’appuyant
sur la recherche d’un chemin optimal dans un graphe auxiliaire (Table 1). Nous
notons que le cas particulier a aussi été résolu pour d’autres problèmes dans la
thèse, notamment le SALBP-2 qui représente le problème d’équilibrage de base où
il convient de minimiser le temps de cycle avec un nombre de stations maximum
fixé. n représente le nombre d’opérations.

Problème Problème de graphe sous-jacent Complexité en temps
RTLBP Plus court chemin contraint O(n4)
RALBP-2 Chemin min-max contraint O(n4)

SDRALBP-2 Chemin min-max contraint O(n4)

Table 1: Problème de graphe sous-jacent et complexité

Le cas particulier de la séquence géante fixée est posé de manière récurrente dans
la littérature car il permet la réduction de l’espace de recherche dans une méthode
à voisinage où une solution est codée par une séquence géante. L’utilisation du
split permet de préserver une solution optimale. A notre meilleure connaissance, ce
cas particulier n’avait été résolu auparavant que par des heuristiques (sans garantie
de performance) et par un modèle mathématique (complexité exponentielle) dans
Borisovsky, Delorme, and Dolgui (2013) pour ce qui est du RTLBP. Le même constat
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est observé pour le RALBP-2, le cas particulier correspondant a été résolu par une
méthode exponentielle dans Levitin, Rubinovitz, and Shnits (2006). Cette dernière
a été reprise notamment par Nilakantan et al. (2015).

Étant donnés les résultats de la thèse, nous envisageons deux principales perspec-
tives :

• L’optimisation multi-objectif intégrant la minimisation du coût et la maximi-
sation du rendement des lignes d’assemblage robotisées peut être considérée.
En particulier, le split peut être adapté pour déterminer toutes les solutions
optimales au sens de Pareto respectant une séquence géante, une hybridation
avec une métaheuristique multi-objectif est alors envisageable.

• L’intégration du facteur humain dans les lignes d’assemblage robotisées est une
perspective intéressante d’un point de vue industriel. Les opérateurs humains
peuvent collaborer avec des robots pour réaliser des opérations à forte valeur
ajoutée. Des considérations ergonomiques peuvent alors être envisagées.
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Introduction

The assembly lines first appeared at the beginning of the 20th century in the
factories of Ford Motor. They introduced an important innovation in how to organize
the work in a workshop. Indeed, the operations are divided between the operators
who are placed along a flow line. The economic interests of assembly lines are
considerable, among which, an important increase in productivity. This allowed a
rapid development of assembly lines all along the 20th century. These were often
used for mass-production of inexpensive products. Even today, with the change in
the economic model, assembly lines continue to adapt to new societal and industrial
challenges.

Operational researchers and optimization scientists begin to take an interest in
assembly lines early since the development of operational research. Salveson (1955)
was the first to raise the issue of assembly line balancing, it was then defined as
a combinatorial optimization problem by Baybars (1986) under the name: simple
assembly line balancing problem (SALBP). This has given rise to several studies on
the subject during the last decades. SALBP is concerned with assigning a set of
operations linked with precedence constraints to a set of workstations placed along
the flow line while minimizing some objective. Many SALBP extensions, that are
of industrial relevance, were defined for which many optimization algorithms were
suggested. Even though SALBP is now a well-established and well-investigated
combinatorial optimization problem, the new industrial challenges give rise to new
interesting extensions. Research on line balancing problems remains today a hot
topic in operations research. Three extensions of SALBP are studied in the frame
of this thesis.

During the last century, industrial revolutions have followed one another. The
third industrial revolution was characterized by the use of electronics and IT to
automate manufacturing. The fourth industrial revolution saw the rise of cyber-
physical systems. A cyber-physical system (CPS) is a system of machines with
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software and memories capable of executing programs, part of whose execution is
characterized by movement in space, storage and analysis of data.

Nowadays, manufacturers are faced with a highly volatile market bringing a grow-
ing variety in demand. The modern manufacturing system should be able to be
reconfigured to adapt to the new market demand within low cost and time. In this
context, two issues must be tackled:

• The variability in production size: the ability of the production line to increase
or decrease production size according to market demand. This property is also
known as scalability Koren, Wang, and Gu (2017).

• The variability in the product specifications: the ability of the production line
to adapt quickly and cost-effectively to a new product that belongs to the
same product family Koren and Shpitalni (2010).

To address this issue, Koren et al. (1999) suggested in late 1990s the novel concept
of Reconfigurable Manufacturing System (RMS). They give the following definition:
A Reconfigurable Manufacturing System (RMS) is designed at the outset for rapid
change in structure, as well as in hardware and software components, in order to
quickly adjust production capacity and functionality within a part family in response
to sudden changes in market or in regulatory requirements.

The RMS stands out from the two previous known production systems/paradigms
both in terms of cost and efficiency:

• Dedicated Manufacturing Systems (DMS): DMS are production systems that
are designed for mass-production. In this context, the production line is de-
signed for a single product. Any change can require significant time and cost.
The machines are rigidly sequenced and the production capacity is expected to
be high. DML remain cost effective as long as demand is high and no change
in product specifications is expected.

• Flexible Manufacturing Systems (FMS): FMS are basically designed for a va-
riety of products. Different products with different volumes are to be manu-
factured within the same line. FMS use CNC (computer numerical controlled)
machines equipped with a single tool that can change according to the product
to be manufactured. FMS require high setup cost and their throughput is low.
FMS can however quickly adapt to a new demand despite their relatively high
cost.
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We assist for years to the growing robotization of production lines. According to
the international federation of robotics, a 14% increase is observed each year in terms
of operational industrial robot jobs. Robots are replacing increasingly humans in
repetitive manufacturing tasks. The World Economic Forum finds out that the total
task hours performed by human operators is to drop by 13% by 2022. According to
Oxford Economics, 20 million jobs in manufacturing will disappear for the benefit
of robots by 2030. Robots offer many benefits in the context of manufacturing:

• Accuracy: the more and more manufacturing tasks require cutting edge pre-
cision beyond the reach of a human operator.

• Quality: robots allow better monitoring of quality to help reduce the quantity
of waste and inconsistent products.

• Cost: despite higher setup cost, robots give a higher return on investment
since their performance is much higher. Besides, robots do not require any
training/learning cost.

However, we are less-likely going to see the total replacement of all human oper-
ators. In the modern factory, human operators work in collaboration with robots
to perform operations with high added value. According to the International Fed-
eration of Robotics, the world’s 345 million human operators are cooperating with
some 1.7 million robots in factories all around to world. The same federation also
reports that about 70% of workers see automation as an opportunity rather than a
threat for their job.

In the frame of the thesis, we are interested with some assembly lines and corre-
sponding problems that may arise with reconfigurability or robotization.

The first class of problems concerns Reconfigurable Transfer Lines and more pre-
cisely the Reconfigurable Transfer Line Balancing Problem (RTLBP). The objective
is to study the balancing problem jointly with the sequencing problem arising with
the sequence-dependent setup times. This problem has been defined about a decade
ago. To the classical characteristics from Assembly Line Balancing Problems, two
main characteristics are added:

• parallel workstations: the workstations can be equipped with several machines
working in parallel in order to achieve better efficiency.

• industrial constraints: these constraints arise in the context of machining
which is the the process of removing material from a blank part so as to
obtain the desired shape and dimensions.

CHAPTER 0. INTRODUCTION 3
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Two main arguments can be formulated to situate the RTLBP in the context of
RMS:

• workstations can be equipped with multiple machines. This way, the produc-
tion capacity can be easily monitored by adding or removing a machine in
order to meet any change in demand.

• the considered machines are mono-spindle head CNC (Computer Numerical
Control) machines equipped with tool magazines. The machines can handle a
large set of operations at the cost of sequence-dependent setup times. A new
product belonging to the same product family can then easily be processed by
the system.

More details justifying the reconfigurability of the considered system can be found
in Essafi (2010). We note that the problem is of industrial importance since it has
been suggested by a French automotive company, more details could be found in
the same reference.

The second class of problems concerns Robotic Assembly Lines where differ-
ent robots are available to perform the operations. The durations of the opera-
tions depend on the type of robot selected for the workstation. Robotic Assem-
bly Lines are situated at the heart of the robotization trend and therefore in In-
dustry 4.0. Two problems are identified: the Robotic Assembly Line Balancing
Problem-2 (RALBP-2) and the Sequence-Dependent Robotic Assembly Line Balanc-
ing Problem-2 (SDRALBP-2). The RALBP-2 raises the balancing and the (robot)
selection decisions to be tackled jointly. The objective of minimizing the cycle time
is considered. We consider the problem under two different assumptions:

• Many robots per type: each type of robot can be assigned to multiple work-
stations at the same time.

• One robot per type: each (type of) robot can be assigned to at most one
workstation.

The Sequence-Dependent Robotic Assembly Line Balancing Problem-2 (SDRALBP-
2) generalizes the RALBP-2 by considering the sequence-dependent setup times.

According to the problems, two or three decisions are considered: balancing,
sequencing and robot selection decisions. To solve a combinatorial optimization
problem involving several decisions or sub-problems, a natural and quite intuitive
approach would be to solve each subproblem separately one after the other. Each
subproblem is based on the solution of the subproblem solved before. Such a tech-
nique is known as a sequential approach and has been applied successfully to a wide
range of optimization problems. We propose three main kinds of approaches:
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• Integrated approaches: all the decisions are simultaneously considered.

• Balance-First Sequence-Last (BFSL) approaches: balancing decision is taken
before the other decisions.

• Sequence-First Balance-Last (SFBL) approaches: sequencing decision is taken
before the other decisions.

The manuscript is organized in five chapters.

Chapter 1: going from the Simple Assembly line Balancing Problem (SALBP), we
define balancing problems in Reconfigurable Transfer Lines and in Robotic
Assembly Lines. For each problem, we give its components, a short state
of the art and an illustrative example. Mathematical models are proposed.
Complexity and lower bounds are also discussed. Research gap and goals of
the thesis are given as a conclusion.

Chapter 2: a Balance-First Sequence-Last (BFSL) approach for the RTLBP is
suggested. At first, a two-step iterative method piloted by a constraint gen-
eration algorithm is described to compute a feasible solution. We prove that
this method is a 2-approximation algorithm under some assumption. Then
a matheuristic, combining simulated annealing and dynamic programming, is
proposed to improve a feasible solution.

Chapter 3: before defining the Sequence-First Balance-Last (SFBL) approach we
consider the particular case of a fixed giant sequence of operations. The bal-
ancing decision is modeled as a routing problem in an acyclic graph. The
graphs and the routing problems are detailed for each balancing problem. In
most cases, the routing problem and the corresponding balancing problem
are solved thanks to a polynomial algorithm that we call split (inspired from
vehicle routing problems).

Chapter 4: a Sequence-First Balance-Last approach (SFBL) approach for RALBP-
2 and SDRALBP-2 is suggested. The split algorithm is used in an hybrid
metaheuristic and in a branch and bound algorithm. Neighborhood and per-
turbation operators, and building of initial solution are detailed for the meta-
heuristic. Branching, exploration and bounding strategies are given for the
branch and bound.

Chapter 5: an experimental study is conducted on literature instances. Exact
methods are tested and compared with heuristics on small-size RTLBP in-
stances. Heuristics and metaheuristics are tested on large-size RTLBP in-
stances. Only split-based methods are experimented on RALBP-2 and SDRALBP-
2 instances.
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In the conclusion, we summarize contributions of this thesis and give perspective
research directions.
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1.4.2.1 Illustrative example . . . . . . . . . . . . . . . 39

1.4.2.2 An adapted mathematical model . . . . . . . . 39

1.4.2.3 Complexity and lower bounds . . . . . . . . . 42

1.5 Research gap and goals of the thesis . . . . . . . . . . . . . . . . 43

1.1 Introduction
The objective of this chapter is to introduce assembly line balancing problems

in the context of Industry 4.0. We distinguish two types of lines: reconfigurable
transfer lines and robotic assembly lines.

In the context of a reconfigurable transfer line (RTL), workstations can be equipped
with multiple machines. The considered machines are homogeneous mono-spindle
head CNC machines that can handle a large set of operations at the cost of sequence-
dependent setup times.

In the context of robotic assembly lines (RAL), different heterogonoeus robots
are available to perform the operations. The processing times of the operations and
the sequence-dependent setup times depend on the type of robot selected for the
workstation.

These 2 types of lines lead to the following balancing problems:

• The Reconfigurable Transfer Line Balancing Problem (RTLBP): it subsumes
two decisions, namely, assigning the operations to the workstations (balanc-
ing decision) and sequencing the operations in each workstation (sequencing
decision).

• The Robotic Assembly Line Balancing Problem (RALBP). It subsumes the
decision of assigning the robots to the workstations (selection decision) in
addition to the balancing decision.

• The Sequence-Dependent Robotic Assembly Line Balancing Problem (SDRALBP).
It is an extension of the Robotic Assembly Line Balancing Problem where
sequence-dependent setup times are considered. The sequencing decision is
raised in addition to the balancing and selection decisions.
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Since we deal with assembly line balancing problems, we first give a short tax-
onomy of these problems in the next section. Then, the RTLBP, the RALBP and
the SDRALBP are detailed and situated in relation to the Simple Assembly Line
Balancing Problem (SALBP) and some of its relevant extensions. For each of these
problems, we give an illustrative example and a mathematical model. Novel math-
ematical models for the RTLBP and the RALBP are suggested. Complexity and
lower bounds are discussed. Research gaps and goals of the thesis are given in the
last section of the chapter.

1.2 An overview of assembly line balancing prob-
lems

Assembly lines are typically composed of a series of workstations connected by
a material handling system. The product is processed in each workstation, then is
moved to the next workstation thanks to a conveyor. A set of assembly operations
is assigned to each workstation. The workload of some workstation designates the
sum of the processing times of the operations assigned to it. The cycle time is often
used as a KPI (Key Performance Indicator) of the assembly line, it represents the
largest workload among all workstations. In other words, the cycle time is the dura-
tion separating the exit of two assembled products from the last workstation of the
assembly line. The smaller the cycle time is, the more products are processed by the
line. For this reason, the cycle time is considered as an indicator of efficiency. On
the other hand, the higher the number of workstations is, the more expensive the
line is to operate. The number of workstations is an indicator of cost. Balancing an
assembly line refers to the decision problem of assigning the operations to the work-
stations. In practice, some constraints must be respected. Precedence constraints
are frequently encountered. They link pairs of operations such that one operation
must precede another, which means that it must be assigned either to a workstation
placed before on the line or to the same workstation.

The objective of this subsection is not to give an exhaustive classification of as-
sembly line balancing problems. Such a study can be found in Battaïa and Dolgui
(2013). We only highlight on some classic characteristics of assembly lines that may
affect the balancing problem.

1.2.1 Line layouts and products

Different assembly line layouts exist:

• Straight line: also called I-line. The workstations of the assembly line are
placed one after the other within a serial straight line. The product being

CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS 9
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assembled is processed by each workstation in the order it is placed in the
line. A straight assembly line is represented in Figure 1.1. Operations 2,1 and
3 are performed in the first workstation, operations 4 and 5 are performed
in the second workstation and operations 7 and 6 are performed in the third
workstation.

Figure 1.1: Straight assembly line.

• U-line: such assembly lines are arranged within the form of a "U". Worksta-
tions facing each other often share resources like human operators or robots:
Miltenburg and Wijngaard (1994), Şahin and Kellegöz (2017). A U-assembly
line is represented in Figure 1.2. The assembly product goes through work-
station 1 (operations 2 and 1) then workstation 2 (operations 4 and 5) then
returns to workstation 2 (operations 3 and 6) and finally workstation 1 (oper-
ation 7).

Figure 1.2: U-assembly line.

• Parallel workstations: In this context, some workstations are enhanced by
duplicating the resources whether they are robots or human operators. Each
time the resources are duplicated, the workload is divided by two: Vilarinho
and Simaria (2002), Tiacci (2017). In Figure 1.3, the second workstation is
duplicated.

10 CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS



Thesis Manuscript - 2020 Youssef Lahrichi

Figure 1.3: Parallel workstations.

• Parallel lines: Two or more lines could be parallelized to enhance efficiency.
We call it crossover when two lines share the same workstation. The resources
are placed between the lines, they are used either on a single line or alternately
on one and the other. A product type is assigned to each line. Crossover can
be useful for optimizing resource usage: Gökçen, Ağpak, and Benzer (2006),
Özcan (2019).

We can distinguish three types of assembly line balancing problems according to
the number of products being assembled within the line (Figure 1.4):

• Single model: A single type of product is considered.

• Multi model: Multiple products are considered. The products are processed
sequentially: a number of required items of some product a is assembled then
the line is setup to process another product b (van Zante-de Fokkert and de Kok
(1997), Boysen, Fliedner, and Scholl (2008)).

• Mixed model: Multiple products are also considered but within the same
product mix. Mixed model requires high similitude between products in order
to process them within the same product mix: Merengo, Nava, and Pozzetti
(1999), Vilarinho and Simaria (2006), Kara et al. (2011).

Three classes of problems can be derived based on the characteristics of the process-
ing times:

• Deterministic times: processing times are known and given input of the prob-
lem.

• Stochastic times: processing times follow a stochastic distribution Sotskov,
Dolgui, and Portmann (2006), Dolgui and Kovalev (2012).

• Dynamic times: processing times can change during the assembly process
Cohen and Ezey Dar-El (1998), Toksarı et al. (2010).

CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS 11
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Figure 1.4: Single-model, multi-model and mixed-model lines (Becker and Scholl (2006))

We consider in the remainder of the thesis single model and deterministic times.

1.2.2 The Simple Assembly Line Balancing problem

The Simple Assembly Line Balancing Problem (SALBP) is a well-established
combinatorial optimization problem. It was defined by Salveson (1955).

In the context of SALBP, we are given a set of operations each of which has
a processing time and a set of workstations that are organized within a straight
line. A set of precedence constraints is also given. It consists of a set of couples
of operations (i, j) such that the workstation to which the operation i is assigned
is not placed after the one of j. Precedence constraints are often represented by a
precedence graph (Scholl and Klein (1999)).

SALBP consists in assigning each operation to a workstation while respecting
precedence constraints. Several objectives are considered in literature:

• SALBP-1 is concerned with minimizing the number of workstations used while
respecting the so-called cycle time constraint: for each workstation, the sum
of the processing times of the operations assigned to this workstation does not
exceed a given cycle time.

• SALBP-2 is about minimizing the cycle time (maximum workload among the
workstations) while using no more than a given number of workstations.

• SALBP-E is concerned with minimizing the product of the cycle time and the
number of workstations.

• SALBP-F is concerned with finding a feasible solution with given cycle time
and maximum number of workstations.
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The SALBP has been extensively studied during the last decades. It has been
tackled with different kinds of methods: Integer Linear Programming, Metaheuris-
tics, Branch and Bound...

The website: https://assembly-line-balancing.de contains all the well-
known benchmark instances of the problem.

The branch and bound algorithm suggested in Sewell and Jacobson (2012), Mor-
rison, Sewell, and Jacobson (2014) is a major breakthrough in the assembly line bal-
ancing literature. Indeed, the method is very efficient. It has solved some benchmark
instances that has remained open for years. The method is developed for SALBP-1.
The authors introduce a new operations research’ method called "Branch and Bound
and Remember". The suggested method has the usual structure of a branch and
bound algorithm enhanced with some memory-based dominance rules (and remem-
ber). A node is pruned if it is dominated by a node that has already been processed.
The method requires delicate management of memory since all the processed nodes
are stored. Dolgui and Gafarov (2019) present some instances that cannot be solved
by the method efficiently.

SALBP remains until today a hot topic in operations research on which many
researchers are working around the world.

The SALBP-1 is stated as follows:

• Data:

– A set N of n operations: N = {1, 2, . . . , n} and their processing times
such that di denotes the processing time of operation i.

– A set P of precedence relations: (i, j) ∈ P means that i must be per-
formed before j in the line.

– A set S of smax workstations: S = {1, 2, . . . , smax}. smax is an upper
bound of the number of workstations (for example n).

– A cycle time C.

• Decision:

– Balancing decision: assign the operations to the workstations.

• Constraints:

– Respect precedence relations.

– Respect the cycle time constraint: the sum of the processing times of the
operations assigned to each workstation must not exceed the cycle time
C.

CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS 13
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• Objectives:

– Minimize the number of workstations.

Illustrative example

In order to help the understanding, we illustrate the SALBP-1 by an instance:

• A product requires the execution of 7 operations numbered from 1 to 7 (n = 7).

• Precedence relations are represented in Figure 1.5.

Figure 1.5: Precedence graph.

• Processing times are represented in Table 1.1.

i 1 2 3 4 5 6 7
di 1.5 1 3.5 1.5 2.5 3 1

Table 1.1: Processing times.

•• A cycle time is given: C = 9

The solution depicted in Figure 1.6 represents a solution with three workstations.
Operations 2 and 1 are assigned to workstation 1, operations 3 and 4 are assigned
to workstation 2 and operations 5, 7 and 6 are assigned to workstation 3. The
workloads are calculated as follows:

• Workload of workstation 1: w1 = d2 + d1 = 2.5.

• Workload of workstation 2: w2 = d3 + d4 = 5.

• Workload of workstation 3: w3 = d5 + d7 + d6 = 6.5.

14 CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS



Thesis Manuscript - 2020 Youssef Lahrichi

The cycle time is respected since w1, w2, w3 ≤ 9, the number of workstations is 3.

Figure 1.6: Example of feasible solution.

Mathematical model

A widespread and quite intuitive integer linear program for the SALBP-1 is that
proposed by Baybars (1986), it uses the following binary variables:

xi,s =

{
1 If operation i is assigned to workstation s.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s (workstation s is open).
0 Otherwise.

The objective of minimizing the number of workstations can be formulated as
follows:

Min
smax∑
s=1

ys

The constraints of the problem can be formulated as follows:

smax∑
s=1

xi,s = 1,∀i ∈ N (1.1)

ys+1 ≤ ys,∀s ∈ {1, . . . , smax − 1} (1.2)
smax∑
s=1

s.xi,s ≤
smax∑
s=1

s.xi′,s,∀(i, i′) ∈ P (1.3)

n∑
i=1

di.xi,s ≤ C.ys,∀s ∈ S (1.4)

The set of constraints (1.1) ensures that each operation is assigned to exactly one
workstation, these are known as occurrence constraints. The set of constraints (1.2)
ensures that no new workstation is opened unless all the preceding workstations are
open. The set of constraints (1.3) represents the precedence constraints. The set of
constraints (1.4) represents the cycle time constraints.
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The previous model can easily be adapted for SALBP-2 by replacing the objective
with: Min C.

As mentioned in Baybars (1986), some useless variables can be deleted from the
model by computing:

• e(i): A lower bound of the index of the workstation to which operation i can
be assigned.

• l(i): An upper bound of the index of the workstation to which operation i can
be assigned.

The calculation of e(i) and l(i) is based on the precedence constraints and the
cycle time. They are computed as follows:

e(i) =

⌈∑
i∈Pi di

C

⌉

l(i) = smax −

⌈∑
i∈Si di

C

⌉
+ 1

such that Pi = {i}∪ {j ∈ N ; (j, i) ∈ P} (i and its predecessors) and Si = {i}∪ {j ∈
N ; (i, j) ∈ P} (i and its successors). In this way, all the variables xi,s such that
s /∈ [e(i), l(i)] are set to 0.

1.3 Reconfigurable Transfer Lines
The particularity of the RTLBP is to consider simultaneously parallel machines,

setup times and transfer line environment constraints. These three components are
most often studied separately in literature. We first define each element indepen-
dently and describe the related balancing problems by illustrating them with an
example. Then we give an illustrative example for the RTLBP and a quick state of
the art about reconfigurable transfer lines balancing. Finally, a novel mathematical
model is suggested.

1.3.1 Components of the problem

We detail in this subsection sequence-dependent setup times, parallel workstations
and industrial constraints that arise in the machining industry.

16 CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS



Thesis Manuscript - 2020 Youssef Lahrichi

1.3.1.1 Sequence-dependent setup times

Sequence-dependent setups are encountered in many workshop problems (Al-
lahverdi et al. (2008)). Setups are necessary to provide for tool change or product
handling that can occur between two operations. Sequence-dependent setups in the
context of assembly line were only considered recently (Andres, Miralles, and Pastor
(2008)). Scholl, Boysen, and Fliedner (2013) cite some interesting situations where
sequence-dependent setup times are encountered:

• In many industries where large products are manufactured, the operations
are performed on different positions of the workpiece. This may require the
operator to move between the positions where the consecutive operations are
performed. Scholl, Boysen, and Fliedner (2013) reports that this walking dis-
tance can go up to 10 meters in the context of automotive industry. Alongside
with the walking distances of the operators, time to withdraw a part from
a container may be required. Scholl reports that for a major German car
manufacturer, this walking and withdrawal time takes about 15% of the cycle
time.

• Machine-tools often use a single tool at a time. Setup times depending on
the sequence of operations are required to change the tool if two consecutive
operations require different tools.

• In situations where operations require the workpiece to be put in a specific
position, setup is needed for handling the piece between two consecutive op-
erations requiring different positions.

• In many specific situations, a delay must be considered between two operations
(for example after gluing or painting).

These last elements justify that the setup times cannot be neglected. Besides, the
setup times very often depend on the sequence of operations.

Andres, Miralles, and Pastor (2008) define the Sequence-dependent simple assem-
bly line balancing problem (SDSALBP). SDSALBP raises the decision of sequencing
the operations in each workstation in addition to the balancing decision. The two
decisions are to be addressed jointly.

Scholl, Boysen, and Fliedner (2013) argues that the sequence-dependent setup
times must be differentiated between forward setup times and backward setup times.
A forward setup time ti,j is considered when operation i is performed just before
operation j in the same workstation within the same cycle. If operations i and j
are respectively the last and the first operations assigned to some workstation, a
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backward setup time ti,j is considered. The problem is very slightly different from
SDSALBP and is called SUALBSP (Setup Assembly Line Balancing and Scheduling
Problem). Even if we think that distinguishing between backward and forward
setups may be realistic from a real world perspective, the latter is not made in the
frame of the thesis for the sake of simplification.

Many recent studies consider sequence-dependent setup times in the context of
assembly lines: Essafi, Delorme, and Dolgui (2010b), Martino and Pastor (2010),
Janardhanan et al. (2019).

The Sequence-Dependent Simple Assembly Line Balancing Problem:

Compared to the SALBP-1, SDSALBP-1 has an additional data: the sequence-
dependent setup times. They take the form of a matrix of size n×n: (ti,j) where ti,j is
the setup time to be considered when operation i is performed just before operation j
in some workstation. The calculation of the workloads of the workstations is slightly
different since the induced setup times must be added to the processing times of the
operations.

The SDSALBP-1 is stated as follows:

• Data:

– As for the SALBP-1, a set N of n operations: N = {1, 2, . . . , n}, their
processing times (di), a set P of precedence relations, a set S of smax
workstations: S = {1, 2, . . . , smax} and a given cycle time C.

– The sequence-dependent setup times (ti,j).

• Decisions:

– Balancing decision: assign the operations to the workstations.
– Sequencing decision: sequence the operations in each workstation.

• Constraints:

– Respect precedence relations.
– Respect the cycle time constraint: the sum of the processing times of

the operations assigned to each workstation and the induced sequence-
dependent setup times must not exceed the given cycle time C.

• Objectives:

– Minimize the number of workstations.
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Illustrative example

We illustrate the SDSALBP on a small example derived from the previous SALBP
example (introduced in the previous section). Sequence-dependent setup times are
shown in Table 1.2.

ti,j j = 1 2 3 4 5 6 7
i = 1 0 0.5 1 1 1 1 1
2 1 0 0.5 1 1 1 1
3 0.5 1 0 1 1 1 1
4 1 1 1 0 0.5 1 1
5 1 1 1 0.5 0 1 1
6 1 1 1 1 1 0 0.5
7 1 1 1 1 1.5 0.5 0

Table 1.2: Setup times

The workload of the workstations are calculated as follows for the solution shown
in Figure 1.6:

• Workload of workstation 1: w1 = d2 + t2,1 + d1 + t1,2 = 4.

• Workload of workstation 2: w2 = d3 + t3,4 + d4 + t4,3 = 7.

• Workload of workstation 3: w3 = d5 + t5,7 + d7 + t7,6 + d6 + t6,5 = 9.

The cycle time is respected since w1, w2, w3 ≤ 9. We notice a non-negligible
increase in the workloads of the workstations due to the consideration of sequence-
dependent setup times. In workstation 3, a different sequence of operations, for
example (7, 5, 6), leads to a different workload, i.e. 9.5, which exceeds the cycle
time.

Mathematical model

The following formulation of SDSALBP-1 is due to Andres, Miralles, and Pastor
(2008). Compared to the formulation of the SALBP, Andres, Miralles, and Pastor
(2008) add an additional dimension j to the variable xi,s in order to decide in which
position (j) of the sequence of workstation s the operation i is assigned. Additional
variables are also needed to account for sequence-dependent setup times.
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The formulation uses the following binary variables:

xi,s,j =


1 If operation i is assigned to workstation s at the jth position of its

sequence.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

zi,i′,s =

{
1 If operation i is processed just before operation i′ at workstation s.
0 Otherwise.

wi,s =


1 If operation i is assigned to the last position of the sequence at

workstation s.
0 Otherwise.

The objective of minimizing the number of workstations is considered:

Min
smax∑
s=1

ys

The constraints of SDSALBP are formulated as follows: (1.5-1.14).

smax∑
s=1

n∑
j=1

xi,s,j = 1, ∀i ∈ N (1.5)

n∑
i=1

xi,s,j ≤ 1,∀s ∈ S,∀j ∈ {1, . . . , n} (1.6)

n∑
i=1

xi,s,j+1 ≤
n∑
i=1

xi,s,j,∀s ∈ S,∀j ∈ {1, . . . , n− 1} (1.7)

ys+1 ≤ ys,∀s ∈ {1, . . . , smax − 1} (1.8)
smax∑
s=1

n∑
j=1

(n.(s− 1) + j).xi,s,j ≤
smax∑
s=1

n∑
j=1

(n.(s− 1) + j).xi′,s,j,∀(i, i′) ∈ P (1.9)

n∑
i=1

n∑
j=1

di.xi,s,j +
n∑
i=1

n∑
i′=1

ti,i′ .zi,i′,s ≤ C.ys,∀s ∈ S (1.10)

xi,s,j + xi′,s,j+1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′,∀j ∈ {1, . . . , n− 1},∀s ∈ S (1.11)

xi,s,j −
∑

i′∈N ;i′ 6=i

xi′,s,j+1 ≤ wi,s,∀i ∈ N,∀s ∈ S,∀j ∈ {1, . . . , n− 1} (1.12)

xi,s,n ≤ wi,s,∀i ∈ N, ∀s ∈ S (1.13)
wi,s + xi′,s,1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′,∀s ∈ S (1.14)
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The set of constraints (1.5) ensures that each operation is assigned to exactly
one workstation at a unique position of its sequence. The set of constraints (1.6)
ensures that at each workstation at most one operation is assigned in each position
of the sequence. The set of constraints (1.7) ensures that at each workstation no
operation is assigned at a position j + 1 unless some operation is assigned at the
position j. The set of constraints (1.8) ensures that no workstation is used unless
its precedent workstation is also used. The set of constraints (1.9) ensures that
precedence constraints are satisfied. The set of constraints (1.10) ensures that the
cycle time is not exceeded at any workstation. The set of constraints (1.11) ensures
that if operation i is followed by operation i′ at workstation s then zi,i′,s is set to
1. Constraints (1.12) and (1.13) ensure that wi,s is set to 1 whenever operation i is
positioned at the last occupied position in the sequence of workstation s. The set
of constraints (1.14) ensures that if operation i is positioned at the last occupied
position in the sequence of workstation s and operation i′ is positioned at the first
position in the sequence of workstation s then zi,i′,s = 1 and consequently the setup
time ti,i′ is considered in (1.10).

1.3.1.2 Parallel workstations

In some situations, it is not possible to respect the cycle time constraint due to
some operations’ high processing times. Besides, the limitation in terms of work-
stations can make it impossible to reach a cycle time that is satisfactory from
the decision-maker perspective. For the two previous reasons, Buxey (1974) in-
troduced the Simple Assembly Line Balancing Problem with Parallel Workstations
(SALBPPW). In the latter, paralleling workstations is adopted to achieve better cy-
cle times. In this context, the layout of the line is organized within stages (Bukchin
and Rubinovitz (2003)). Each stage can contain several workstations. The work-
stations within the same stage perform the same set of operations and operate on
different units of the same product. This way, we can define the local cycle time
of some stage as the workload of the workstations that constitute it divided by the
number of workstations in the stage. The cycle time of the line is then the maximum
cycle time among the stages. Having the ability to add a workstation in some stage
reduces the local cycle time and therefore the cycle time of the line if the considered
stage is bottleneck.

Wang and Koren (2012) and Koren, Wang, and Gu (2017) highlight on the ben-
efits of parallel workstations in terms of reconfigurability. Indeed, they consider a
Reconfigurable Manufacturing System (RMS) which takes the form of flow line (for
example assembly line) composed of stages. Stages can contain several machines
operating in parallel. The studies show that having the possibility to add/remove a
machine in some workstation allows the decision-maker to monitor the production
capacity (cycle time in the case of assembly lines) with higher granularity. The latter
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allows to accommodate effectively with the changes in terms of market demand.

The Simple Assembly Line Balancing Problem with Parallel Worksta-
tions:

In the context of SALBPPW, the balancing decision stands for assigning the
operations to the stages. Compared to the SALBP, SALBPPW introduces a new
decision to address: the number of workstations in each stage. An additional data
is often considered: the maximum number of workstations per stage (Bukchin and
Rubinovitz (2003)).

The SALBPPW-1 is stated as follows (Bukchin and Rubinovitz (2003)):

• Data:

– As for the SALBP, a set N of n operations: N = {1, 2, . . . , n}, their
processing times (di) and a set P of precedence relations.

– A set S of smax stages: S = {1, 2, . . . , smax}.
– Mmax: the maximum number of workstations in a stage.

– A cycle time C.

• Decisions:

– Balancing decision: assign the operations to the stages.

• constraints:

– Respect precedence constraints.

– Respect the maximum number of stages.

– Respect the maximum number of workstations per stage.

– Respect the cycle time constraint in each stage: the sum of the processing
times of the operations assigned to the stage divided by the number of
workstations hosted by the stage must not exceed the cycle time.

• Objectives:

Different objectives can be considered for the SALBPPW:

– Minimize the number of workstations or the number of stages or any
aggregated function of both.

22 CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS



Thesis Manuscript - 2020 Youssef Lahrichi

Figure 1.7: Example of feasible solution.

Illustrative example

We illustrate the SALBPPW-1 on a small example derived from the previous
SALBP example (introduced in subsection 1.2.2).

For this example, we consider a fixed cycle time: C = 3. We note that to comply
with the cycle time constraint, we have to consider more than one workstation at
the stage where operation 3 is assigned. Indeed, the processing time of operation 3
is 3.5 which exceeds the cycle time.

Figure 1.7 illustrates a feasible solution. The solution has three stages which
contain respectively one, two and three workstations.

The cycle times are calculated as follows:

• Cycle time of stage 1: C1 = d2 + d1 = 2.5.

• Cycle time of stage 2: C2 = (d3 + d4)/2 = 2.5.

• Cycle time of stage 3: C3 = (d5 + d7 + d6)/3 ' 2.16.

There are two bottleneck stages (stages 1 and 2). The cycle time constraint is
respected since: C1, C2, C3 ≤ C.
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Mathematical formulation

We present a mathematical model for the SALBPPW. The model is due to
Bukchin and Rubinovitz (2003), it uses the following binary variables:

xi,s =

{
1 If operation i is assigned to stage s.
0 Otherwise.

vs,k =

{
1 If there are k workstations at stage s.
0 Otherwise.

The objective of minimizing the number of workstations can be formulated as
follows:

Min
smax∑
s=1

Mmax∑
k=1

k.vs,k

The constraints of the problem can be formulated as follows:

smax∑
s=1

xi,s = 1,∀i ∈ N (1.15)

Mmax∑
k=1

vs,k ≤ 1,∀s ∈ S (1.16)

smax∑
s=1

s.xi,s ≤
smax∑
s=1

s.xi′,s,∀(i, i′) ∈ P (1.17)

n∑
i=1

di.xi,s ≤ C.
Mmax∑
k=1

k.vs,k,∀s ∈ S (1.18)

The constraints (1.15) ensure that each operation is assigned to exactly one
stage. Constraints (1.16) ensure that at most a number of workstations is assigned
to each stage. Constraints (1.17) represent the precedence constraints. Constraints
(1.18) represent the cycle time constraints.

The model can easily be adapted for the objective of minimizing the cycle time.
In this situation, it is relevant to add a variable ys to decide whether to assign at
least one operation to some stage s and a constraint ys+1 ≤ ys to avoid empty stages
at the middle of the solution. In this case, constraints (1.16) would be replaced by∑Mmax

k=1 vs,k ≤ ys,∀s ∈ S.

In the remainder of the thesis (and as it is usually done), we won’t talk anymore
about stages. We consider that a stage is a workstation. A stage with multiple
workstations represents a workstation with multiple machines.
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1.3.1.3 Industrial constraints

The RTLBP supports some additional constraints which are specific to the ma-
chining industry: inclusion, exclusion and accessibility constraints. Balancing prob-
lems considering those constraints are known as transfer line balancing problems.
Firstly introduced in Dolgui, Guschinsky, and Levin (2000), some other authors
consider those constraints like Battaïa et al. (2012). More references can be found
in Battaïa and Dolgui (2013).

• Inclusion constraints link between two operations that must be assigned to the
same workstation. As for precedence constraints, they are given in the form
of set of couples that we denote I.

• Exclusion constraints consist in subsets (called exclusion subsets) of operations
that must not be assigned all to the same workstation. This means that at
least one operation is assigned to another workstation. We denote by E the set
of all exclusion subsets. For example, suppose we have 4 operations denoted
o1, o2, o3, o4 and an exclusion set {o1, o2, o3}. In this case, it is not acceptable
to have o1, o2 and o3 all assigned to the same workstation. However, it is
possible to have o1 and o2 assigned to the same workstation provided o3 is
assigned to a different workstation.

• Accessibility constraints are also considered. Each operation oi has a subset
Posi of possible part-fixing positions. An accessibility constraint is related
to a workstation. It imposes that all the operations assigned to the same
workstation must have at least one common part-fixing position. For example,
suppose we have 4 operations denoted o1, o2, o3, o4 and 3 possible part-fixing
positions Pos = {1, 2, 3} such that:

Poso1 = {1, 2}, Poso2 = {1, 2, 3}, Poso3 = {2, 3}, Poso4 = {3}

Operations {o1, o2, o3} could be assigned to the same workstation because the
position 2 is shared by o1, o2 and o3. However operations {o1, o2, o4} cannot
be assigned to the same workstation because they share no position.

1.3.2 The Reconfigurable Transfer Line Balancing Problem

In the context of RTLBP, we are given a set of operations and a serial straight
line of workstations. Each workstation is equipped with multiple identical machines
working in parallel. Sequence-dependent setup times are considered. Each product
goes through all the workstations of the line in the order. Each product is processed
by only one machine at each workstation. At each cycle time, a new product arrives
on the line on the first workstation, a processed product leaves the line from the
last workstation and in each workstation a product leaves to the next workstation
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and is replaced by a product coming from the precedent workstation. When a
workstation is equipped with k machines, the product remains k × cycle time on a
machine. The machines within the same workstation perform the same sequence
of operations. A maximum number of machines per workstation and a maximum
number of operations per workstation is considered.

The RTLBP is stated as follows:

• Data:

– As for the SDSALBP-1, a set N of n operations: N = {1, 2, . . . , n}, their
processing times (di), a set P of precedence relations, a set S of smax
workstations: S = {1, 2, . . . , smax} and the sequence-dependent setup
times (ti,j).

– Mmax and Nmax, respectively the maximum number of machines and the
maximum number of operations in a workstation.

– smax, maximum number of workstations.

– C, a given cycle time.

– I, a set of couples (i, j) ∈ N ×N linked with an inclusion constraint.

– E, a set of all subsets of operations that cannot be assigned to the same
workstation.

– Pos, a set of all possible part-fixing positions. Posi, the subset of possible
part-fixing positions for operation i.

• Decisions:

– Balancing decision: assign the operations to the workstations.

– Sequencing decision: sequence the operations in each workstation:

• Constraints:

– Precedence, inclusion, exclusion and accessibility constraints must be re-
spected.

– The cycle time constraint must be respected. For each workstation, the
workload (the sum of the processing times and the setup times induced
by the sequence allocated to the workstation) divided by the number of
machines allocated to the workstation must not exceed the given cycle
time.
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– The maximum number of machines per station, the maximum number of
operations per station and the maximum number of workstations must
be respected.

• Objectives:

– Minimize the number of machines.

1.3.2.1 Illustrative example

In order to help the understanding, we illustrate the RTLBP thanks to a small
example. The example is derived from the SDSALBP-1 example (subsection 1.3.1):

• At most 5 workstations can be used (smax = 5).

• Nmax = 3, maximum number of operations to be assigned to a workstation.

• Mmax = 3, maximum number of machines to be hosted by a workstation.

• C = 2.5, cycle time.

• Inclusion and exclusion constraints are given by I = {(1, 2)}, E = {{5, 6}}.

• Accessibility constraints are given as follows: Pos = {1, 2, 3, 4}, Pos4 = {1, 2},
Pos5 = {3, 4}, Posi = {1, 2, 3, 4},∀i ∈ {1, 2, 3, 6, 7}

A feasible solution is represented in Figure 1.8. This solution uses 5 workstations:

• The sequence of operations in workstation 1 is (1, 2): the workload is d1+t1,2+
d2 + t2,1 = 4. The number of machines used is: dd1+t1,2+d2+t2,1

C
e = d 4

2.5
e = 2.

• The sequence of operations in workstation 2 is (3): the workload is d3 = 3.5 .
The number of machines used is: d3.5

2.5
e = 2 .

• The sequence of operations in workstation 3 is (4): the workload is d1 = 1.5 .
The number of machines used is: d1.5

2.5
e = 1 .

• The sequence of operations in workstation 4 is (5): the workload is d5 = 2.5 .
The number of machines used is: d2.5

2.5
e = 1 .

• The sequence of operations in workstation 5 is (6, 7): the workload is d6 +
t6,7 + d7 + t7,6 = 5 . The number of machines used is: d 5

2.5
e = 2 .
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The number of machines is 8.

Figure 1.8: Example of feasible solution for the RTLBP.

1.3.2.2 State of the art

The particularity of the RTLBP is to consider simultaneously parallel machines,
setup times and transfer line environment constraints. These three components are
most often studied separately in literature. Few papers deal with the RTLBP, it has
been first introduced in Essafi, Delorme, and Dolgui (2010b) where a MIP approach
is suggested. The considered objective is to minimize the number of machines while
respecting a given cycle time.

In Essafi et al. (2010), an ant colony optimization algorithm is considered: every
ant creates a workstation and adds operations to it as long as it is possible. The
ants should decide which operation to add to the current workstation. This is done
thanks to the probability distribution given by pheromone trails.

In Essafi, Delorme, and Dolgui (2010a), a greedy construction algorithm is sug-
gested to give a solution. There is no guaranty however that the algorithm will give
a feasible solution. Its idea is to try to add operations from a list of candidate opera-
tions to the current workstation as long as it is possible. Once the workstation is full,
another workstation is created, and the process is repeated until all operations are
assigned. Since the greedy algorithm could output a solution that exceeds the num-
ber of workstations authorized, a second phase is developed to merge workstations
if possible.
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In Essafi, Delorme, and Dolgui (2012), a GRASP approach is introduced. Start-
ing solutions are generated using the greedy random heuristic of Essafi, Delorme,
and Dolgui (2010a) then a local search is performed using 4 neighborhood moves:

• Move a subset of operations from a workstation to another.

• Merge one or more workstations.

• Move operations from the most loaded workstations to the less loaded work-
stations.

• Optimize the subsequence of operations in each workstation (using heuristics
and a MIP).

In Borisovsky, Delorme, and Dolgui (2013), a genetic algorithm is suggested. A
chromosome is coded as a giant sequence of all operations and a heuristic decoder
is suggested to build a solution. Classical crossover moves for the TSP are used as
well as the following mutation moves:

• Swap 2 operations.

• Insert an operation into a different position.

An exact method is suggested in Borisovsky, Delorme, and Dolgui (2014): it uses
a set partitioning model coupled with a constraint generation algorithm.

1.3.2.3 A new mathematical model for the RTLBP

The ILP of SDSALBP does not stand for the RTLBP due to the additional con-
straints and the possibility of having multiple machines in each workstation. We
suggest a new formulation based on the SDSALBP model of Andres, Miralles, and
Pastor (2008). The model has been published in Lahrichi et al. (2020a).

We note that there already exists a mathematical formulation for the RTLBP
suggested by Essafi et al. (2010). It is significantly different from the model described
in this subsection. The model of the literature is based on a variable xi,j (=1, if
operation i is assigned to the jth position of the sequence). The latter variable is
used to build an overall sequence of operations. Another variable is used to decide
the positions where to cut the sequence and therefore to determine the sequence of
operations in each workstation. The model suggested here does not use this second
variable since the variable xi,j is replaced by xi,s,j (=1, if operation i is assigned to
the jth position of the sequence of workstation s). This latter variable addresses
simultaneously the balancing decision (decide whether i is assigned to workstation
s) and the sequencing decision (decide whether i is placed in the jth position of the
sequence of workstation s).
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The suggested formulation uses the following binary variables:

xi,s,j =


1 If operation i is assigned to workstation s at the jth position of its

sequence.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

vs,k =

{
1 If k machines are assigned to workstation s.
0 Otherwise.

zi,i′,s =

{
1 If operation i is processed just before operation i′ at workstation s.
0 Otherwise.

wi,s =


1 If operation i is assigned to the last position of the sequence at

workstation s.
0 Otherwise.

us,a =

{
1 If position a is chosen for workstation s.
0 Otherwise.

We consider the objective of minimising the number of machines used:

Min
smax∑
s=1

Mmax∑
k=1

k.vs,k

under the constraints: (1.19-1.33).

smax∑
s=1

Nmax∑
j=1

xi,s,j = 1,∀i ∈ N (1.19)

n∑
i=1

xi,s,j ≤ 1,∀s ∈ S,∀j ∈ {1, . . . , Nmax} (1.20)

n∑
i=1

xi,s,j+1 ≤
n∑
i=1

xi,s,j,∀s ∈ S,∀j ∈ {1, . . . , Nmax − 1} (1.21)

Mmax∑
k=1

vs,k = ys,∀s ∈ S (1.22)

ys+1 ≤ ys,∀s ∈ {1, . . . , smax − 1} (1.23)
smax∑
s=1

Nmax∑
j=1

(Nmax.(s− 1) + j).xi,s,j ≤
smax∑
s=1

Nmax∑
j=1

(Nmax.(s− 1) + j).xi′,s,j,∀(i, i′) ∈ P

(1.24)
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n∑
i=1

Nmax∑
j=1

di.xi,s,j +
n∑
i=1

n∑
i′=1

ti,i′ .zi,i′,s ≤ C.

Mmax∑
k=1

k.vs,k,∀s ∈ S (1.25)

xi,s,j + xi′,s,j+1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′,∀j ∈ {1, . . . , Nmax − 1},∀s ∈ S
(1.26)

xi,s,j −
∑

i′∈N ;i′ 6=i

xi′,s,j+1 ≤ wi,s, ∀i ∈ N,∀s ∈ S,∀j ∈ {1, . . . , Nmax − 1} (1.27)

xi,s,Nmax ≤ wi,s, ∀i ∈ N,∀s ∈ S (1.28)
wi,s + xi′,s,1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′,∀s ∈ S (1.29)

smax∑
s=1

Nmax∑
j=1

s.xi,s,j =
smax∑
s=1

Nmax∑
j=1

s.xi′,s,j,∀(i, i′) ∈ I (1.30)

∑
i∈ES

Nmax∑
j=1

xi,s,j ≤ |ES| − 1,∀ES ∈ E,∀s ∈ S (1.31)∑
a∈Pos

us,a ≤ 1,∀s ∈ S (1.32)

Nmax∑
j=1

xi,s,j −
∑
a∈Posi

us,a ≤ 0,∀i ∈ N,∀s ∈ S (1.33)

The set of constraints (1.19) ensures that each operation is assigned to exactly
one workstation at a unique position of its sequence. (1.20) ensures that at each
workstation at most one operation is assigned in each position of the sequence.
(1.21) ensures that at each workstation no operation is assigned at a position j + 1
unless some operation is assigned at the position j. (1.22) ensures that only one
number of machines is chosen for every used workstation. (1.23) ensures that no
workstation is used unless its precedent workstation is also used. (1.24) ensures that
precedence constraints are satisfied. (1.25) ensures that the cycle time is not ex-
ceeded at any workstation. (1.26) ensures that if operation i is followed by operation
i′ at workstation s then zi,i′,s is set to 1. Constraints (1.27) and (1.28) ensure that
wi,s is set to 1 whenever operation i is positioned at the last occupied position in the
sequence of workstation s. (1.29) ensures that if operation i is positioned at the last
occupied position in the sequence of workstation s and operation i′ is positioned at
the first position in the sequence of workstation s then zi,i′,s = 1 and consequently
the setup time ti,i′ is considered in (1.25). (1.30) ensures that inclusion constraints
are satisfied while (1.31) insures that exclusion constraints are satisfied. (1.32) and
(1.33) ensure that accessibility constraints are satisfied.
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1.3.2.4 Complexity and lower bounds

It is well-known that the SALBP is NP-Hard since Bin-Packing (which is NP-
Hard in the strong sense) can be reduce to it: Wee and Magazine (1982), Scholl and
Klein (1999).

SDSALBP is also NP-Hard since SALBP is reduced to it. It can be seen by
reducing the Travelling Salesman Problem to the SDSALBP. Indeed, a SDSALBP
with smax = 1 is a TSP where cities represent operations and distances between
cities represent setup times.

RTLBP is also NP-hard since it subsumes SDSALBP as a special case when
Mmax = 1, I, E = ∅ and Ai = A, ∀i ∈ N .

A well-known lower bound for SALBP can be given as follows (Scholl and Klein
(1997)):

• Lower bound on the cycle time:

⌈∑
i∈N di
smax

⌉

• Lower bound on the number of workstations:

⌈∑
i∈N di
C

⌉

We adapt the lower bounds for the RTLBP (and the SDSALBP) as follows (in-
spired from Essafi et al. (2010):

• Lower bound on the cycle time:

⌈∑
i∈N di+λ1+n−smax

smax

⌉

• Lower bound on the number of workstations:

⌈∑
i∈N di+λ1+n−smax

C

⌉

where λ1+n−smax,r denotes the sum of the 1 + n − smax smallest setup times if
n > smax and 0 otherwise.

1.4 Robotic Assembly Lines
We have considered so far that there is only one type of resources available to

perform the operations in the workstations.
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The latter assumption cannot be considered realistic in the real world assembly
lines. Indeed, in many situations, the decision-maker has to choose between dif-
ferent types of equipment or between workers with different skills to perform the
operations: Battaïa and Dolgui (2013). Such a situation can occur in the context
of the Robotic Assembly Line Balancing Problem (RALBP).

We describe in the two next subsections respectively the Robotic Assembly Line
Balancing Problem (RALBP) and the Sequence-Dependent Robotic Assembly Line
Balancing Problem (SDRALBP). For clarity, only the -2 variant of the balancing
problem is presented in this section.

1.4.1 The Robotic Assembly Line Balancing Problem

The Robotic Assembly Line Balancing Problem (RALBP) is a combinatorial opti-
mization problem that is concerned with simultaneously assigning a set of operations
to a set of workstations placed among a serial assembly line and assigning to each
workstation a type of robot. The processing time of an operation i depends on the
type of robot r used and is denoted by dri . The RALBP-2 can be stated as follows:

• Data:

– As for SALBP, a set N of n operations: N = {1, 2, . . . , n}, a set P of
precedence relations and a set S of smax workstations: S = {1, 2, . . . , smax}
such that smax is a given maximum number of workstations.

– A set R = {1, 2, . . . , nr} of types of robots.
– The processing times such that dri is the processing time of operation i

on a robot of type r.

• Decisions:

– Balancing decision: As for the SALBP, assign the operations to the work-
stations.

– (Robot) Selection decision: Select a type of robot to each workstation.

• Constraints:

– Respect precedence relations.
– Respect the maximum number of workstations constraint.

• Objectives:

– Minimize the cycle time which is the maximum workload on a worksta-
tion.
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1.4.1.1 Illustrative example

We illustrate the RALBP thanks to a small example. The example is built from
the previous examples: the number of operations (n = 7) and the precedence rela-
tions do not change (Figure 1.5). We consider 4 types of robots. The processing
times type per type are represented in Table 1.3.

We consider a unlimited number of available robots per type.

r
i 1 2 3 4 5 6 7

dri r = 1 1.5 1 3.5 1.5 2.5 3 1
r = 2 1.5 0.5 3 2 1.5 2 1
r = 3 1 1 3 2 1 1 0.5
r = 4 2 2 4 1.5 2 1 1

Table 1.3: Processing times.

A solution is represented in Figure 1.9.

Figure 1.9: Example of feasible solution for the RALBP problem.

The solution uses 3 workstations. The cycle time is computed as follows:

• Workstation 1 is equipped with robot type 3. The workload is d32 + d31 + d33 =
3 + 1 + 1 = 5 .

• Workstation 2 is equipped with robot type 1. The workload is d14 + d15 =
1.5 + 2.5 = 4 .

• Workstation 3 is equipped with robot type 2. The workload is d27+d26 = 2+1 =
3 .
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From the above calculations we can deduce the cycle time: C =Max(5, 4, 3) = 5.

1.4.1.2 State of the art

The RALBP has been first introduced in Rubinovitz, Bukchin, and Lenz (1993).
The RALBP has gained great importance due to its industrial relevance and due to
the academic challenge it raises.

Two different assumptions are identified in literature:

• Many robots per type: in this assumption we are given a set of types of
robots. Each type of robot can be assigned to multiple workstations with-
out any limitation: Rubinovitz, Bukchin, and Lenz (1993), Yoosefelahi et al.
(2012), Nilakantan et al. (2015), Çil, Mete, and Ağpak (2016), Borba, Ritt,
and Miralles (2018).

• Only one robot per type: in this assumption we are given a set of robots each
of which can be assigned at most to one workstation: Levitin, Rubinovitz, and
Shnits (2006), Gao et al. (2009), Janardhanan et al. (2019).

The first assumption is the original assumption of RALBP as defined by Rubi-
novitz, Bukchin, and Lenz (1993). It is more studied in literature than the second
assumption.

The second assumption can be of industrial relevance when the decision-maker
has a limited fleet of robots. It is more constrained than the first assumption. Both
assumptions are studied in the frame of the thesis.

The incompatibility between a robot and an operation can be addressed by con-
sidering that the corresponding processing time is infinite.

Even if the seminal paper (Rubinovitz, Bukchin, and Lenz (1993)) considers min-
imizing the number of workstations with a given cycle time (RALBP-1), most paper
considers the objective of minimizing the cycle time: Levitin, Rubinovitz, and Shnits
(2006), Nilakantan et al. (2015), Borba and Ritt (2014), Janardhanan et al. (2019).
Some authors consider the latter objective jointly with minimizing the robots’ cost
(Yoosefelahi et al. (2012)) or the number of workstations (Çil, Mete, and Ağpak
(2016)).
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Many authors deal with the problem by means of metaheuristics: for example
Levitin, Rubinovitz, and Shnits (2006) suggest a genetic algorithm for the RALBP-
2, a solution is represented by three vectors: a vector that represents a sequence of
operations, a vector that represents the workstations and a vector that represents
the robots. However, only the first vector is involved in the genetic algorithm. An
heuristic is suggested to build a solution from a sequence of operations. The same
encoding/decoding procedure is adopted in Nilakantan et al. (2015)

The Assembly Line Worker Assignment and Balancing Problem

The Robotic Assembly Line Balancing Problem is similar to existing problems
from the manual-manned assembly line literature where a double assignment of
operations and workers to the workstations is encountered. There can be several
reasons justifying that the two latter assignments must be tackled jointly. For ex-
ample, the processing times of the operations may depend on the worker: in this
particular context, the problem is (mathematically) equivalent to the RALBP. It
is known as the Assembly Line Worker Assignment and Balancing Problem (AL-
WABP), it has been defined in Miralles et al. (2008). They consider the balancing
problem alongside with the assignment of a set of workers with different characteris-
tics (processing times) to the workstations. In the context of ALWABP, the worker
is a limited resource: each worker can be assigned at most once.

A mathematical model is suggested in Miralles et al. (2007). The latter is similar
to the model a model for RALBP once we consider that workers stand for robots.
Other constraints which depend on the industrial context can be considered. In
Miralles et al. (2007) and Miralles et al. (2008), the case of disabled workers is
investigated. In this particular context, some workers cannot carry out certain
operations. Besides, some a priori operation-worker and worker-station assignments
must be considered due to therapeutic reasons. The authors consider minimizing
the cycle time (ALWABP-2). Social benefit is also considered by making all workers
having at least one operation to perform. Many recent papers have since considered
ALWABP: Blum and Miralles (2011), Moreira et al. (2012), Vila and Pereira (2014),
Borba and Ritt (2014), Akyol and Baykasoğlu (2019).

1.4.1.3 A new mathematical model for RALBP

Levitin, Rubinovitz, and Shnits (2006) suggested a mathematical formulation for
the RALBP that uses a variable xi,s to decide whether operation i is assigned to
workstation s and a second variable vs,r to decide whether robot r is selected for
workstation s. This formulation has the disadvantage of not being linear, the cycle
time is computed in some workstation s by:

∑
i d

r
i .xi,s.vs,r.
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Borba, Ritt, and Miralles (2018) suggested a linear model using the same vari-
ables. The cycle time constraint in some workstation s is formulated as follows:

n∑
i=1

dri .xi,s ≤ C +M(1− vs,r)

where M is a big number. This formulation has the disadvantage of using the big
M technique which is known to be numerically unstable.

We suggested in the following a linear formulation, that uses no big M con-
straints. The formulation uses the following variables:

xi,s,r =


1 If the operation i is assigned to the workstation s and

performed by a robot of type r.
0 Otherwise.

vs,r =

{
1 If a robot of type r is assigned to workstation s.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s.
0 Otherwise.

C = Cycle time

The constraints can be formulated as follows:

∑
s∈S

∑
r∈R

xi,s,r = 1,∀i ∈ N (1.34)∑
i∈N

xi,s,r ≤ vs,r,∀s ∈ S,∀r ∈ R (1.35)∑
r∈R

vs,r = ys,∀s ∈ S (1.36)

ys+1 ≤ ys,∀s ∈ S − {smax} (1.37)∑
s∈S

∑
r∈R

s.xi,s,r ≤
∑
s∈S

∑
r∈R

s.xi′,s,r,∀(i, i′) ∈ P (1.38)∑
i∈N

∑
r∈R

dri .xi,s,r ≤ C.ys,∀s ∈ S (1.39)

The set of constraints (1.34) ensures that all operations must be assigned once
and only once. (1.35) ensures that an operation is carried out by a robot of type r
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on a workstation s only if the workstation s is equipped by a robot of type r and
(1.36) ensures that no more than one type of robot can be selected for a workstation.
(1.37) ensures that a workstation is only used if the previous workstations are also
used. (1.38) ensures that the precedence constraints are respected. (1.39) ensures
that the cycle time constraints are respected on all workstations.

The minimization of the cycle time can simply be formulated:

Min C

1.4.1.4 Complexity and lower bounds

RALBP is NP-hard since the SALBP can be reduced to the RALBP by assuming
that there is only one type of robot (nr = 1).

Remark 1. The RALBP with the assumption (only one robot per type) is a gener-
alization of the RALBP with many robots per type (basic RALBP). In other words,
any algorithm than can solve the RALBP with this new assumption can also solve
the basic RALBP. In terms of complexity theory, we say that the basic RALBP is
reduced to the RALBP with only one robot per type. Indeed, given an instance of
the basic RALBP, we can map it to an instance of the RALBP with the assumption
"only one robot per type" where the set of robots is composed of all types of robots
duplicated as many times as authorized workstations. The processing times on a
robot are the processing times on the type of robots it belongs to.

The previous lower bounds can easily be adapted for the RALBP (Borba and Ritt
(2014)):

• Lower bound on the cycle time:

⌈
Minr∈R

∑
i∈N dri

smax

⌉

• Lower bound on the number of workstations:

⌈
Minr∈R

∑
i∈N dri

C

⌉

1.4.2 The Sequence-Dependent Robotic Assembly Line Bal-
ancing Problem

The Sequence-Dependent Robotic Assembly Line Balancing Problem (SDRALBP)
is the generalization of RALBP where sequence-dependent setup times are consid-
ered.
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Sequence-dependent setup times tri,i′ should be considered if operation i is per-
formed just before operation i′ in some workstation equipped by a robot of type
r. We note that the setup times depend on the robot type. Compared to RALBP,
sequence-dependent setup times raise an additional decision: three decisions must
be addressed jointly:

• Balancing decision.

• (Robot) Selection decision.

• Sequencing problem.

Despite their industrial importance, sequence-dependent setup times have been
rarely considered in literature in the context of RALBP. To the best of our knowl-
edge, it has only been studied once in the literature by Janardhanan et al. (2019).

1.4.2.1 Illustrative example

The same example as the RALBP is considered. We give the sequence-dependent
setup times in Table 1.4

Let us consider the same solution as the RALBP. The cycle time is computed as
follows:

• Workstation 1 is equipped with robot type 3. The workload is d32 + t32,1 + d31 +
t31,3 + d33 + t33,2 = 8.5 .

• Workstation 2 is equipped with robot type 1. The workload is d4,1 + t14,5 +
d5,1 + t15,4 = 4.75 .

• Workstation 3 is equipped with robot type 2. The workload is d7,2 + t27,6 +
d6,2 + t26,7 = 4 .

From the above calculations we can deduce the cycle time: C =Max(8.5, 4.75, 4) =
8.5.

1.4.2.2 An adapted mathematical model

To clarify the definition of the problem, we give a linear formulation based on the
one of Janardhanan et al. (2019). The latter considers a limited number of robots
per type of robot, it can be adapted for the case of an unlimited number of robots by
type. The formulation of Janardhanan et al. (2019) is itself adapted from Andres,
Miralles, and Pastor (2008).

We use i to index an operation, s to index a workstation, j to index a position in
the sequence of operations assigned to a workstation and r to index a type of robot.
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(a) Setup times of robots of type 1

j 1 2 3 4 5 6 7
t1i,j i = 1 0 1 0.5 1.5 0.5 1 1

i = 2 1.5 0 0 2 0.5 0.5 1
i = 3 1 1 0 2 1 1 0.5
i = 4 0.5 0.5 0.5 0 0.5 1 1
i = 5 1.5 0.5 0.25 0.25 0 0.25 1
i = 6 1.5 0.5 0.5 2 0.5 0 1
i = 7 0.5 1 0.5 0.5 0.5 1 0

(b) Setup times of robots of type 2

j 1 2 3 4 5 6 7
t2i,j i = 1 0 1 0.25 1.5 0.25 0.5 1

i = 2 1.5 0 0.25 0.25 0.25 0.25 1
i = 3 1 0.5 0 0.25 1 1 0.5
i = 4 0.25 2 4 0 2 1 1
i = 5 1 1 1 2 0 1 0.5
i = 6 1 1 1 2 1 0 0.5
i = 7 1.5 0.5 0.5 2 0.5 0.5 0

(c) Setup times of robots of type 3

j 1 2 3 4 5 6 7
t3i,j i = 1 0 1 0.75 1.5 0.75 0.75 1

i = 2 0.75 0 0.75 2 1.5 0.75 1
i = 3 1 1 0 2 1 1 0.5
i = 4 2 0.5 0.75 0 0.75 1 1
i = 5 1 0.5 0.25 0.25 0 1 0.5
i = 6 1.5 0.5 0.5 2 0.5 0 1
i = 7 1 0.5 0.25 0.25 1 1 0

(d) Setup times of robots of type 4

j 1 2 3 4 5 6 7
t4i,j i = 1 0 1 0.75 0.5 0.5 1 1

i = 2 1.5 0 3 2 1.5 2 1
i = 3 1 1 0 2 1 1 0.5
i = 4 2 1 0.5 0 2 1 1
i = 5 1.5 0.5 0.5 2 0 0.5 1
i = 6 1 0.5 0.25 0.25 1 0 0.5
i = 7 0.5 0.5 1 2 1 0.5 0

Table 1.4: Sequence-dependent setup times
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The model has been published in Lahrichi et al. (2020c). The following variables
are used:

xi,s,j,r =


1 If the operation i is assigned to the workstation s at the jth

position of its sequence and performed by a robot of type r.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s.
0 Otherwise.

vs,r =

{
1 If a robot of type r is assigned to workstation s.
0 Otherwise.

zi,i′,s,r =


1 If operation i is performed just before operation i′ at

workstation s by a robot of type r.
0 Otherwise.

wi,s =


1 If the operation i is assigned to the last position in the

sequence of station s.
0 Otherwise.

C = Cycle time

The objective of minimizing the cycle time is considered: Min C

∑
s∈S

∑
j∈N

∑
r∈R

xi,s,j,r = 1,∀i ∈ N (1.40)∑
i∈N

∑
r∈R

xi,s,j,r ≤ 1,∀s ∈ S,∀j ∈ N (1.41)∑
i∈N

xi,s,j,r ≤ vs,r,∀s ∈ S,∀j ∈ N,∀r ∈ R (1.42)∑
r∈R

vs,r = ys,∀s ∈ S (1.43)∑
i∈N

xi,s,j+1,r ≤
∑
i∈N

xi,s,j,r, ∀s ∈ S,∀j ∈ N − {n},∀r ∈ R (1.44)

ys+1 ≤ ys,∀s ∈ S − {smax} (1.45)
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∑
s∈S

∑
j∈N

∑
r∈R

(n.(s− 1) + j).(xi′,s,j,r − xi,s,j,r) ≥ 0,∀(i, i′) ∈ P (1.46)∑
i∈N

∑
j∈N

∑
r∈R

dri .xi,s,j,r +
∑
i∈N

∑
i′∈N

∑
r∈R

ti,i′,r.zi,i′,s,r ≤ C.ys,∀s ∈ S (1.47)

xi,s,j,r + xi′,s,j+1,r ≤ 1 + zi,i′,s,r, i, i
′ ∈ N2, i 6= i′, j ∈ N − {n}, s ∈ S, r ∈ R (1.48)

xi,s,j,r −
∑

i′∈N ;i′ 6=i

xi′,s,j+1,r ≤ wi,s,∀i ∈ N,∀s ∈ S,∀j ∈ N − {n}, ∀r ∈ R (1.49)

xi,s,n,r ≤ wi,s,∀i ∈ N, ∀s ∈ S,∀r ∈ R (1.50)
wi,s + xi′,s,1,r ≤ 1 + zi,i′,s,r∀i ∈ N, i′ ∈ N, i 6= i′,∀s ∈ S,∀r ∈ R (1.51)

The set of constraints (1.40) ensures that all operations must be assigned once
and only once. The set of constraints (1.41) ensures that at most one operation
can be assigned to the same position. The set of constraints (1.42) ensures that an
operation is carried out by a robot of type r on a workstation s only if the workstation
s is equipped by a robot of type r. The set of constraints (1.43) ensures that no
more than one type of robot can be assigned to a workstation. The set of constraints
(1.44) ensures that a position is only occupied by an operation if all of its previous
positions are also occupied. The set of constraints (1.45) ensures that a workstation
is only used if the previous workstations are also used. The set of constraints (1.46)
ensures that the precedence constraints are respected. The set of constraints (1.47)
ensures that the cycle time constraints are respected on all workstations. The set
of constraints (1.48) ensures that zi,i′,s,r = 1 when i and i′ follow each other on
the workstation s (equipped by the robot r). The set of constraints (1.49) - (1.51)
verifies that zi,i′,s,r = 1 when i is the last operation assigned to the workstation s
and i′ the first operation assigned at the workstation s (equipped by the robot r).

1.4.2.3 Complexity and lower bounds

SDRALBP is NP-hard since the SALBP can be reduced to the SDRALBP by
assuming that the setup times are null and that nr = 1 (only one robot).

We adapt the bounds for the SDRALBP:

• Lower bound on the cycle time:

⌈
Minr∈R

∑
i∈N dri+λ1+n−smax,r
smax

⌉

• Lower bound on the number of workstations:

⌈
Minr∈R

∑
i∈N dri+λ1+n−smax,r

C

⌉

where λ1+n−smax,r denotes the sum of the 1 + n − smax smallest setup times on
robot type r if n > smax and 0 otherwise.
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1.5 Research gap and goals of the thesis
From an academic perspective, the motivation of the thesis is to study the balanc-

ing problem jointly with the sequencing and the robot selection problems. Those
problems are of industrial relevance in the context of industrial 4.0 as previously
explained.

We first study the balancing problem jointly with the sequencing problem: the
problem is known in the literature as the Sequence-Dependent Simple Assembly Line
Balancing Problem (SDSALBP). A review of the literature allowed us to identify the
Reconfigurable Transfer Line Balancing Problem (RTLBP). This problem has the
advantage of being a generalization of the SDSALBP. Besides, it considers additional
industrial constraints and the problem fits into the context of reconfigurability which
is fundamental in Industry 4.0. The RTLBP has been rarely considered in literature.
We identified two research gaps:

• When dealing with joint resolution of two optimization problems (for example,
the balancing and sequencing problems), a natural approach would be to inves-
tigate the sequential methods (Balance-First Sequence-Last and Balance-First
sequence-Last methods). Such approaches are well known in combinatorial op-
timization and have been applied to a wide variety of problems (for example
the vehicle routing problems Prins, Lacomme, and Prodhon (2014)). To the
best of our knowledge, such a study has never been conducted for the RTLBP
or more generally for the SDSALBP.

• In Borisovsky, Delorme, and Dolgui (2013) and Delorme, Malyutin, and Dol-
gui (2016), a useful case is identified: the case where an overall sequence of
operations is imposed (the precedence graph is a path containing all the oper-
ations). This special case is very useful since in most metaheuristic resolution
approaches, a sequence is used to encode a solution. No polynomial algo-
rithm was known to solve optimally this special case. Borisovsky, Delorme,
and Dolgui (2013) and Delorme, Malyutin, and Dolgui (2016) were content
to use integer programming (exponential resolution) or heuristic to solve the
problem. This could cause that the optimal solution is not reached (in the
case of an heuristic decoder) or that the resolution time is prohibitive (in the
case of an ILP decoder).

In a second time, we study the robot selection problem jointly with the balancing
and sequencing problems which take us to the Sequence-Dependent Robotic Assem-
bly Line Problem (SDRALBP). The problem fits into the context of the growing
robotization of assembly lines and therefore in Industry 4.0. We consider the objec-
tive of minimizing the cycle time. Two research gaps are identified:
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• Even if the Robotic Assembly Line Balancing Problem (RALBP) is well-
established, the study of sequence-dependent setup times in the context of
RALBP has rarely been addressed. To the best of our knowledge, there is
only one study addressing the problem: Janardhanan et al. (2019). Besides,
there is no comparative study between the two assumptions considered in
RALBP (one or many robots per type).

• In many researches dealing with robotic assembly lines by means of meta-
heuristics, a sequence of operations is used to encode a sequence. To decode
the sequence, most authors (for example Nilakantan et al. (2015)) use a heuris-
tic suggested by Levitin, Rubinovitz, and Shnits (2006). The greedy procedure
is called consecutive assignment procedure. It is exponential and does not
guaranty optimally. To the best of our knowledge no polynomial procedure
was known in literature to solve this special case where the giant sequence
is given. Many authors were content to use heuristic decoders which deprive
them from accessing the optimal solution.

The thesis aims to fill the previous identified research gaps.

Figure 1.10 shows the positions of the RTLBP, the RALBP and the SDRALBP in
relation to SALBP. These problems are generalizations of the SALBP. RTLBP is a
generalization of the Sequence-Dependent Simple Assembly Line Balancing Problem
(SDSALBP) since it considers further industrial constraints and the possibility of
having several machines on the same workstation. SDRALBP is a generalization of
SDSALBP and RALBP. It contains the three decisions: balancing, sequencing and
selection.

To solve a combinatorial optimization problem involving several decisions or sub-
problems, a natural and quite intuitive approach would be to solve each subproblem
separately one after the other. Each subproblem is based on the solution of the
subproblem solved before. Such a technique is known as a sequential approach and
has been applied successfully to a wide range of optimization problems: Vecchi et al.
(2016). Sequential approaches have multiplied in recent years with the appearance
of new optimization problems merging several subproblems. These problems are
often very challenging to solve. An integrated approach that would attempt to solve
the problem without taking advantage of the subproblems can be ineffective or time-
consuming. A sequential approach makes use of the solutions of the subproblems to
build up a solution for the master problem. The subproblems are often smaller than
the master problem which makes them computationally solvable. The latter gives a
major advantage of sequential approaches over integrated approaches. Nevertheless,
we must highlight that breaking a combinatorial optimization problem into several
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problems solved separately generally result in some optimality loss. A successful
sequential approach would minimize this optimality loss.

Different sequential approaches are suggested in the remainder of the thesis. Next
chapter is devoted to Balance-First Sequence-Last approach for the RTLBP. We
emphasis afterwards on Sequence-First Balance-Last approch for the RTLBP and
Sequence-First Balance-And-Select-Last approach for the RALBP and the SDRALBP.

We describe in Table 1.5 the notations used in the remainder of the thesis.

(a) General notations
n Number of operations
N Set of operations, indexed on {1, 2, . . . , n}
smax Maximum number of workstations
S Set of workstations, indexed on {1, 2, . . . , smax}
P Set of couples (i, j) ∈ N ×N such that

i precedes j (also denoted i << j)
C Cycle time
ws Workload of station s

(b) Specific notations to RTLBP
Mmax Maximum number of machines in a workstation
Nmax Maximum number of operations in a workstation
smax Maximum number of workstations/robots to be used
S Set of workstations, indexed on {1, 2, . . . , smax}
di Processing time of operation i.
ti,j Setup time to be considered when operation i is

performed just before operation j in some workstation
I Set of couples (i, j) ∈ N ×N linked with an inclusion constraint
E Set of subsets of operations that cannot

be assigned to the same workstation
Pos Set of all possible part-fixing positions.
Posi Subset of possible part-fixing positions for operation i.

(c) Specific notations to SDRALBP
nr Number of robot types available
R Set of robot types, indexed on {1, 2, . . . , nr}

dri , i ∈ N, r ∈ R processing time of operation i on a robot of type r
tri,i′ , i, i

′ ∈ N, r ∈ R Setup time between operations i and i′ on a robot of type r

Table 1.5: Notations

46 CHAPTER 1. ASSEMBLY LINE BALANCING PROBLEMS



Chapter 2
A Balance-First Sequence-Last Approach
for the RTLBP

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Heuristic BFSL (H-BFSL): an approximation algorithm of type
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2.1 Introduction
As previously discussed, the RTLBP includes two decisions (the balancing and

the sequencing decisions), two sequential approaches are then possible:

• Balance-First Sequence-Last (BFSL): The sequencing step is done after
the balancing step.

• Sequence-First Balance-Last (SFBL): The balancing step is done after
the sequencing step.
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This chapter is dedicated to BFSL approach.

An algorithm of type BFSL works within two consecutive steps:

• Balancing step: the operations are assigned to the workstations. The sequence-
dependent setup times are ignored (or underestimated). In this step, some
constraints of the problem must be respected including precedence, inclusion,
exclusion, accessibility and the maximum number of operations per worksta-
tion constraint. It is not relevant to consider the cycle time and the maximum
number of machines per workstation constraint in the balancing step since the
exact workloads of the workstations and the number of machines to be hosted
in each workstation remain unknown at this level.

• Sequencing step: the operations are sequenced in each workstation. The bal-
ancing solution from the previous step is considered as input. The sequencing
step must account for the precedence relations.

After performing the sequencing step, the workloads of each workstation can be
computed. This allows to determine the number of machines to be hosted in each
workstation so that the cycle time constraint is respected. We know that at this
level only the maximum number of machines per workstation constraint remains to
be verified, all the other constraints have already been taken into account in the
balancing and sequencing steps. If we ever end up with a solution that violates
the latter constraint, then either the balancing or the sequencing decision must be
questioned. For this reason, designing an algorithm of type BFSL can be delicate
in the case of such a constrained problem as the RTLB. Careful management of the
constraints is required to yield a feasible solution of good quality.

To define properly an algorithm of type BFSL, one have to define the methods
used for the balancing and sequencing steps as well as the technique used to ensure
the feasibility and the quality of the obtained solution. This is the objective of the
next sections.

We propose an heuristic of type BFSL (H-BFSL). We show that the algorithm
approximates the optimal solution when the setup times are bounded by the pro-
cessing times, an approximation ratio is given. The approximation algorithm is
based on linear programming, constraint generation and dynamic programming. A
matheuristic (M-BFSL) is then suggested, it is made of a constructive phase and
an improvement phase. H-BFSL is used as a constructive phase and an adaptive
simulated annealing algorithm hybridized with dynamic programming is used as an
improvement phase. The following two sections are respectively dedicated to the
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approximation algorithm H-BFSL and the matheuristic M-BFSL. This work has
been published in Lahrichi et al. (2020b).

2.2 Heuristic BFSL (H-BFSL): an approximation
algorithm of type BFSL

The approximation algorithm is a two-step iterative method piloted by a con-
straint generation algorithm:

• Balancing generation: The first step consists in solving the line balancing
problem with only a partial consideration of the sequence-dependent setup
times. Only a lower bound of the setup times is considered. In this step, the
balancing decision is the only decision to make with the objective of minimizing
the number of machines. We solve this problem thanks to an ILP.

• Operations sequencing: In the second step, we consider sequence-dependent
setup times. This implies the decision of sequencing the operations in each
workstation taking as input the solution of the first step. The sequencing
problem is optimally solved thanks to a dynamic programming algorithm.

Due to the consideration of sequence-dependent setup times in the second step,
the load of the workstations increases. This can result in exceeding the maximum
number of machines authorized in some workstation. For this reason, constraints
are iteratively generated and added to the model of the first step. Those constraints
aim at forbidding solutions where the maximum number of machines authorized in
the workstations is exceeded.

Each of these three points are explained separately in the following 3 subsections.
The general scheme of H-BFSL is described in Figure 2.1.
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Figure 2.1: General scheme of H-BFSL algorithm

2.2.1 Balancing generation

The model of the RTLBP, described in chapter 1 (subsection 1.3.2.3), cannot
be used to solve medium to large size instances. In order to limit the number of
variables and constraints, we propose to use a relaxed version in which the sequence
of operations in each workstations is not taken into account. As a consequence,
variables xi,s,j of the RTLBP model become xi,s since we don’t need to deal with
the position in the sequence. Moreover, the variables zi,i′,s and wi,s are no longer
useful. All the constraints that use these variables are modified and we propose a
simplified model described below. If the sequence-dependent setup times are not
considered, the total workload computed for each workstation may be significantly
inferior to the real value. In order to give a better lower bound, we consider for each
operation i a setup time tmini equal to the smallest setup time to or from operation
i:

tmini =Min(Minj∈N,j 6=i{ti,j},Minj∈N,j 6=i{tj,i})

And so a better lower bound for workstation s is given for the total workload by
the formula:
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• If at least 2 operations are assigned to workstation s:∑
i∈N

(di + tmini ).xi,s

• If only one operation is assigned to workstation s:∑
i∈N

di.xi,s

A setup time tmini is considered for an operation i in a workstation s only if
operation i is assigned to s and if another operation is also assigned to s. For this
reason, we consider a variable x̃i,s to decide whether an operation i is assigned to
workstation s with another operation and a variable w̃s to decide if at least two
operations are assigned to workstation s.

We use the following decision variables:

xi,s =

{
1 If operation i is assigned to workstation s.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

vs,k =

{
1 If k machines are assigned to workstation s.
0 Otherwise.

us,a =

{
1 If position a is chosen for workstation s.
0 Otherwise.

w̃s =

{
1 If at least 2 operations are assigned to workstation s.
0 Otherwise.

x̃i,s =


1 If operation i is assigned to workstation s and i is not the only

operation assigned to workstation s.
0 Otherwise.

We consider the objective of minimizing the number of machines used:

Min

smax∑
s=1

Mmax∑
k=1

k.vs,k

under the constraints:

smax∑
s=1

xi,s = 1,∀i ∈ N (2.1)
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Mmax∑
k=1

vs,k = ys,∀s ∈ S (2.2)

n∑
i=1

xi,s ≤ ys.Nmax,∀s ∈ S (2.3)

ys+1 ≤ ys,∀s ∈ S − {smax} (2.4)
smax∑
s=1

s.xi,s ≤
smax∑
s=1

s.xi′,s,∀(i, i′) ∈ P (2.5)

2.w̃s ≤
n∑
i=1

xi,s,∀s ∈ S (2.6)

n∑
i=1

xi,s − 1 ≤ w̃s.Nmax,∀s ∈ S (2.7)

xi,s + w̃s ≤ x̃i,s + 1,∀i ∈ N, ∀s ∈ S (2.8)

x̃i,s ≤
n∑

i′=1,i 6=i′
xi′,s,∀i ∈ N,∀s ∈ S (2.9)

x̃i,s ≤ xi,s,∀i ∈ N,∀s ∈ S (2.10)
n∑
i=1

(di.xi,s + tmini .x̃i,s) ≤ C.
Mmax∑
k=1

k.vs,k,∀s ∈ S (2.11)∑
s∈S

s.xi,s =
∑
s∈S

s.xi′,s,∀(i, i′) ∈ I (2.12)∑
i∈ES

xi,s ≤ |ES| − 1,∀ES ∈ E,∀s ∈ S (2.13)∑
a∈Pos

us,a ≤ 1,∀s ∈ S (2.14)

xi,s −
∑
a∈Posi

us,a ≤ 0,∀i ∈ N,∀s ∈ S (2.15)

Constraints (2.1) ensure that each operation is assigned to exactly one worksta-
tion. Constraints (2.2) ensure that only one number of machines is chosen for every
used workstation. Constraints (2.3) ensure that the maximum number of opera-
tions to be allocated to a workstation is respected. Constraints (2.4) ensure that
no workstation is used unless its precedent workstation is also used. Constraints
(2.5) ensure that precedence constraints are satisfied. Constraints (2.6) and (2.7)
ensure that w̃s = 1 if and only if at least 2 operations are assigned to workstation
s. Constraints (2.8) to (2.10) ensure that x̃i,s = 1 if and only if at least 2 opera-
tions including i are assigned to workstation s. Constraints (2.11) ensure that the
cycle time is not exceeded in any workstation. Constraints (2.12) ensure that inclu-
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sion constraints are satisfied. Constraints (2.13) ensure that exclusion constraints
are satisfied. Constraints (2.14) and (2.15) ensure that accessibility constraints are
satisfied.

We denote by ILP(C) the ILP mentioned above under the set of constraints C
(C = (2.1)− (2.15)).

2.2.2 Operation sequencing

From balancing generation, we are given the assignment of operations to the work-
stations, we are now concerned with sequencing the operations in every workstation.

The sequencing problem is an ATSP (Asymmetric Traveling Salesman Problem)
where operations represent cities and setup times distances between cities. However,
we must consider precedence constraints within the same workstations, the problem
induced is an ATSP with precedence constraints sometimes cited in the literature
as the Precedence Constrained Traveling Salesman Problem (PCTSP) as stated in
Bianco et al. (1994), Salii (2019).

To solve this problem we consider the well-known Held and Karp algorithm Held
and Karp (1962). The resulting algorithm is of complexity within O(n2

s.2
n
s ) where ns

is the number of cities. We apply this algorithm to every workstation. The number
of operations in each workstation is limited to Nmax therefore the complexity is
within O(N2

max.2
Nmax). Even for large industrial instances Nmax rarely exceeds 15

which make the approach reasonable to use (for Nmax = 15 we have N2
max.2

Nmax =
7, 372, 800).

We suppose we are placed in some workstation s to which ns operations are
assigned. We number the operations from 1 to ns. We want to construct a tour
starting from operation 1 and returning to 1 passing by all the operations such that
precedence constraints are respected and such that the total sum of setup times over
the tour is minimized. We put T = {1, . . . , ns}. Given a subset U ⊂ T such that
1 ∈ U and an operation i such that i ∈ U and i > 1, the idea is to use the following
dynamic programming formula:

c(U, i) =Minj∈U−{i}(c(U − {i}, j) + tj,i) (2.16)

where c(U, i) is the minimum cost of a path going from 1 to i and passing by each
one of the other operations of U exactly once. The dynamic programming formula
is initialized as follows:

c(U, 1) = +∞;∀U ⊂ T such that 1 ∈ U and |U | ≥ 2 (2.17)
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c({1}, 1) = 0 (2.18)

To take precedence constraints into consideration, we must put:

c(U, i) = +∞;∀(U, i) such that i ∈ U and i has a successor in U (2.19)

(2.16)-(2.19) give the dynamic programming formula in order to compute all the
c(U, i),∀(U, i) such that i ∈ U . We do not use a recursive function to avoid the
computation of the same c(U, i) several times. We compute C(U, i), i ∈ U starting
from the sets U such that |U | = 2 to |U | = ns (increasing cardinality). We then
compute the cost of the optimal solution as follows:

c∗ =Minj∈T−{1}(c(T, j) + tj,1) (2.20)

This guaranties the optimality and the feasibility of the solution. The algorithm
is depicted in Algorithm 1.

Algorithm 1 Dynamic programming sequencing algorithm

INPUT: An instance of the RTLBP. A subset T of ns operations numbered from
1 to ns.
OUTPUT: A sequence of the operations of T minimizing the sum of the setup
times.

1: c({1}, 1) = 0
2: for k = 2 to ns do
3: for each U ⊂ T such that |U | = k and 1 ∈ U do
4: c(U, 1) = +∞
5: for i ∈ U such that i > 1 do
6: if i has a successor in U then
7: c(U, i) = +∞
8: else
9: c(U, i) =Minj∈U−{i}(c(U − {i}, j) + tj,i)
10: end if
11: end for
12: end for
13: end for
14: c∗ =Minj∈T−{1}(c(T, j) + tj,1)
15: Decode the solution of cost c∗ to build an optimal sequence.
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2.2.3 Constraint generation scheme

After solving the ILP from balancing generation, the sequence-dependent setup
times are taken into consideration by running the dynamic programming algorithm
from operations sequencing in each workstation. Since sequence-dependent setup
times were not accounted for exactly in the balancing generation, we can end up
with a solution exceeding the maximum number of machines allowed in some work-
station after operations sequencing. To tackle this issue, constraints are iteratively
added to C. Those constraints aim at forbidding the assignment of the set of opera-
tions leading to the violation of the Mmax constraint to the same workstation. More
formally, let us denote by X the solution obtained after applying balancing genera-
tion and operations sequencing. If X is feasible then the algorithm terminates. If X
is unfeasible, there must exist a workstation s where more machines than Mmax are
required to respect the cycle time. Let σ = (σ1, σ2, . . . , σns) be the optimal sequence
of the operations in s. We have:

dσ1 + tσ1,σ2 + dσ2 + tσ2,σ3 + · · ·+ dσns + tσns ,σ1 > Mmax.C

To obtain a feasible solution, we must make sure that the set of operations in σ
is not authorized in any workstation. For this reason, we iterate through balancing
generation by adding the following constraints to the ILP:∑

u∈T

xu,s −
∑

u∈N−T

xu,s ≤ |T | − 1, ∀s ∈ S (CT )

Two situations are possible:

• A proper subset of T is assigned to s:∑
u∈T

xu,s −
∑

u∈N−T

xu,s =
∑
u∈T

xu,s ≤ |T | − 1

• A superset of T or a set containing at least one operation outside T is assigned
to s:∑
u∈T

xu,s −
∑

u∈N−T

xu,s <
∑
u∈T

xu,s ≤ |T | =⇒
∑
u∈T

xu,s −
∑

u∈N−T

xu,s ≤ |T | − 1

All in all, H-BFSL is a constraint generation algorithm. It is depicted in Algo-
rithm 2. In the beginning only constraints (2.1)-(2.15) are considered. If we end up
with an unfeasible solution, then constraints CT cutting the unfeasible solution are
iteratively generated:

Theorem 2.2.1. H-BFSL terminates and outputs a feasible solution within a finite
number of iterations (provided the instance admits at least a feasible solution).
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Algorithm 2 H-BFSL

INPUT: An instance of RTLBP.
OUTPUT: X, A feasible solution.

1: Initialize the set of constraints: C := (2.1)− (2.15)
2: repeat
3: Solve the ILP of balancing generation: X = solve[ILP(C)]
4: Run Algorithm 1 of operations sequencing in each workstation (X is modified)
5: for all T set of operations assigned to a workstation where the Mmax con-

straint is violated do
6: C = C ∪ CT
7: end for
8: until X is feasible

Proof. In the worst case, H-BFSL forbids all sets T that leads to exceeding the
maximum number of machines Mmax. It has then at most as many iterations as
the number of sets T it forbids plus one (this number is bounded by the number of
combinations of at most Nmax elements among n). The solution outputted is feasible
since all the constraints exceptMmax constraint were taken into consideration in the
balancing generation step and the Mmax constraint is considered in the constraint
generation.

Theorem 2.2.2. H-BFSL is a 2-approximation algorithm if we assume that:

ti,j ≤ min(di, dj) ∀(i, j) ∈ N2 (2.21)

Proof. The solution outputted by the algorithm is feasible and its overall cost (de-
noted c) is given by the cost of the solution outputted by the balancing generation
(denoted c1) plus the number of machines added following operations sequencing
due to the consideration of setup times (denoted k), i.e c = c1+k. Besides we have:
c1 ≤ c∗ where c∗ denotes the optimal solution of the RTLBP. Thanks to (2.21) we
have k ≤ c1 because the number of setup times for each workstation is less or equal
to the number of operations. Then the workload induced by the setup times in each
workstation is less or equal to the workload induced by the operations times. Those
two inequations (c1 ≤ c∗, k ≤ c1) finally give:

c ≤ 2.c∗

which shows the approximation ratio.

Even if both subproblems (balancing and sequencing) are solved to optimality
in H-BFSL, the given solution is not guaranteed to be optimal because the two
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subproblems are not solved jointly. It is a heuristic with guaranteed performance
that can be used to build a first feasible solution for iterative improvement methods
such as the one described in the next section.

2.3 M-BFSL: A matheuristic of type BFSL
Matheuristics are efficient optimization procedures that take simultaneously ad-

vantage of the accuracy of exact methods and the scalability of heuristics. We
suggest in this section a matheuristic of type BFSL called M-BFSL. Its general
scheme is depicted in Figure 2.2.

From a feasible initial solution computed thanks to H-BFSL and denoted by X,
the matheuristic improves the solution using a simulated annealing coupled with
three different neighborhood moves.

The neighborhood moves first perturb the balancing solution (balancing perturba-
tion) then performs optimal sequencing of the operations within each workstation
(operations sequencing). The three neighborhood moves only differ by the balanc-
ing perturbation. The operations sequencing is always done thanks to the optimal
dynamic programming algorithm described in subsection 2.2.2. In this way, a neigh-
boring solution Y is computed.
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Figure 2.2: General scheme of the proposed matheuristic

An acceptance criterion is defined in order to choose which of X or its neighbor
Y will be kept for the next iteration.

Moreover, we indicate in Figure 2.2 which components come from the field of
mathematical programming, and which ones come from the field of metaheuristics.

We describe next the building blocks of the matheuristic, namely the encoding
scheme, the neighborhood moves and the metaheuristic scheme.

58 CHAPTER 2.



Thesis Manuscript - 2020 Youssef Lahrichi

2.3.1 Solution’ encoding

A solution X is encoded as a list of sequences:

X = [σ1, σ2, . . . , σp]

where σs is the sequence of operations allocated to workstation s. If ns operations
are allocated to workstation s, then σk is represented as follows:

σk = (σ1
k, σ

2
k, . . . , σ

ns
k )

where σik is the operation assigned to the ith position in the sequence of workstation
s.

2.3.2 Neighborhood moves

We use 3 neighborhood moves:

• V1 Insertion (of an operation from a workstation to another workstation).

• V2 Merger (of two workstations).

• V3 Split (of one workstation to two workstations).

Insertion move V1 aims to move an operation from a workstation to another. The
source and the destination workstations are re-sequenced optimally using Algorithm
1. To respect precedence constraints, the destination workstation must be chosen
carefully. We may need to displace more than one operation in order to respect
inclusion constraints. The insertion move is described in Algorithm 3.

Algorithm 3 Principle algorithm for insertion move

INPUT: X, a feasible solution of the RTLBP.
OUTPUT: Y, a random neighbor of X with respect to insertion move

1: Select randomly and uniformly an operation i (the workstation of i is called the
source workstation).

2: Select randomly and uniformly a destination workstation. This workstation is
chosen between the last workstation containing an operation that precedes i and
the first workstation containing an operation that succeeds i.

3: Move the operation i and all the operations that are linked by an inclusion con-
straint with operation i from the source workstation to the destination worksta-
tion.

4: Run the sequencing algorithm (Algorithm 1) in the source and destination work-
stations.
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Example 2.3.1. Let’s consider the following solution with 8 operations and 3 work-
stations: X = [(3, 5), (6, 1, 2), (4, 7, 8)]. We suppose that operations 1 and 2 are
linked with an inclusion constraint. We give a random neighbor Y ∈ V1(X) as fol-
lows: Y = [(3, 5), (6), (4, 7, 2, 8, 1)]. Operations 1 and 2 have been moved from work-
station 2 to workstation 3. It is assumed that (4, 7, 2, 8, 1) is the optimal sequencing
of operations 1, 2, 4, 7 and 8, and that precedence constraints are respected.

Merger move V2 aims to merge two workstations into one. The number of work-
stations is reduced by one. It is equivalent to move all the operations of some
source workstation to a destination workstation. The destination workstation must
be chosen so as the precedence constraints are respected. The resulting worksta-
tion (destination) is re-sequenced optimally using Algorithm 1. The merger move is
described in Algorithm 4.

Algorithm 4 Principle algorithm for merger move

INPUT: X, A feasible solution of the RTLBP.
OUTPUT: Y, A random neighbor of X with respect to merger move

1: Select randomly and uniformly a source workstation.
2: Select randomly and uniformly a destination workstation. This workstation

is chosen between the last workstation containing an operation that precedes
an operation of the source workstation and the first workstation containing an
operation j that is preceded by an operation from the source workstation.

3: Move all the operations of the source workstation to the destination workstation.
4: Run the sequencing algorithm (Algorithm 1) in the destination workstation.

Example 2.3.2. Let’s consider the following solution with 8 operations and 4 work-
stations: X = [(3, 5), (6, 1, 2), (4, 7), (8)]. We give a random neighbor Y ∈ V2(X)
as follows: Y = [(3, 7, 5, 4), (6, 1, 2), (8)]. The first and the third workstations have
been merged into the first workstation. It is assumed that (3, 7, 5, 4) is the optimal
sequencing of operations 3, 4, 5 and 7, and that precedence constraints are respected.

Split move V3 aims to split one workstation into two consecutive workstations.
An operation from the split workstation is taken as pivot to cut the workstation.
Two resulting workstations are obtained, they are re-sequenced optimally using Al-
gorithm 1. The split move is described in Algorithm 5.
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Algorithm 5 Principle algorithm for split move

INPUT: X A feasible solution of the RTLBP.
OUTPUT: Y A random neighbor of X with respect to split move

1: Select randomly and uniformly an operation i (The workstation of i is called
W ).

2: Partition the workstation W into 2 workstations W1, W2: if an operation j
is placed before i, it is placed with all its inclusive operations in W1. All the
remaining operations form W2.

3: Run the sequencing algorithm (Algorithm 1) in the two resulting workstations
(W1 and W2).

Example 2.3.3. Let’s consider the following solution with 8 operations and 2 work-
stations: X = [(3, 5, 6, 1, 2), (4, 7, 8)]. We give a random neighbor Y ∈ V3(X) as
follows: Y = [(3, 5), (6, 2, 1), (4, 7, 8)]. The first workstation has been split into two
workstations taking 6 as pivot.

V1, V2 and V3 have been chosen so that the accessibility property is achieved as
shown by the following theorem:

Theorem 2.3.4. (Accessibility) Given two solutions X and Y of the RTLBP, Y is
accessible from X by applying a succession of moves within V1, V2 and V3.

Proof. To access Y = [σ′1, σ
′
2, . . . , σ

′
q] from X = [σ1, σ2, . . . , σp], we can apply the

following:

• If p = q, for s going from 1 to q, transform σs to σ′s as follows:

– Move the operations within σ′s − σs to σs by applying V1.

– Displace the operations within σs − σ′s from σs by applying V1.

• If p < q, apply V3 to build new workstations.

• If p > q, apply V2 to delete workstations.

The previous theorem shows that the optimal solution can be accessible from any
starting solution.

CHAPTER 2. 61



Youssef Lahrichi Thesis Manuscript - 2020

We note that the moves are performed in such way that:

• For V1, V2 and V3: precedence and inclusion constraints are respected.

• For V3: exclusion constraints are respected.

If the obtained solution does not respect the other constraints then a new solution
is generated (Algorithm 6).

2.3.3 Adaptive simulated annealing

Simulated annealing is a widespread metaheuristic that has been applied success-
fully to a wide range of optimization problems (Van Laarhoven and Aarts (1987)).
Besides, it is simple and offers enough diversification and intensification: two fun-
damental ingredients in a successful metaheuristic.

More precisely, we use an adaptive homogeneous simulated annealing algorithm to
improve the solution returned by H-BFSL. The general scheme of the improvement
method is depicted in Algorithm 6. In the latter, H(X) stands for the number of
machines used by the solution X.

The adaptive aspect is derived from the following: a random neighborhood move
is chosen among {V1, V2 ,V3} according to the following probability distribution
{p1 = w1

w1+w2+w3
, p2 = w2

w1+w2+w3
, p3 = w3

w1+w2+w3
} where w1, w2 and w3 are weights

associated respectively with V1, V2 and V3. Each time a neighborhood move Vi gives
a strictly improving solution, wi is relatively increased.

The initialization of the different parameters (temperature and weights), the tem-
perature cooling procedure, the weights update, and the stopping conditions are
discussed in the experimentation chapter (Chapter 5).
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Algorithm 6 Adaptive simulated annealing algorithm

INPUT: X A feasible solution of the RTLBP given by H-BFSL.
OUTPUT: Best A local optimal solution of the RTLBP.

1: Best := X
2: Initialise the temperature T and the weights w1, w2 and w3

3: while Stopping condition of outer loop is not met do
4: while Stopping condition of inner loop is not met do
5: repeat
6: Select randomly a neighbourhood move Vi, i ∈ {1, 2, 3} with probability

pi =
wi

w1+w2+w3

7: Generate randomly and uniformly a candidate solution Y : Y = Vi(X)
8: until Y is feasible
9: if H(Y ) ≤ H(X) then
10: Accept: X = Y
11: if H(Y ) < H(Best) then
12: Best := X
13: Increase the weight wi of Vi
14: end if
15: else
16: Accept with probability exp(−H(Y )−H(X)

T
): X = Y

17: end if
18: end while
19: Decrease the temperature T
20: end while

2.4 Conclusion
H-BFSL, an heuristic algorithm of type Balance-First Sequence-Last has been

suggested in this chapter. The algorithm relies on linear programming, constraint
generation and dynamic programming. The balancing subproblem is solved thanks
to an ILP, then the sequencing subproblem is solved thanks to dynamic program-
ming. The two steps are piloted thanks to a constraint generation algorithm. An
approximation ratio of 2 is proven.

M-BFSL, a matheuristic of type Balance-First Sequence-Last has been suggested
in this chapter. H-BFSL is used to compute an initial feasible solution. The so-
lution is improved thanks to an hybridization of an adaptive simulated annealing
with dynamic programming. Three neighborhood moves are used. They perform a
balancing perturbation followed by operations sequencing in the workstations.
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The reverse approach : Sequence-First Balance-Last (for the RTLBP) and Sequence-
First Balance-And-Select-Last (for the RALBP and the SDRALBP) methods, is
investigated next for both reconfigurable transfer lines and robotic assembly lines.
This approach is based on a novel algorithm called split solving the polynomial case
where the giant sequence is given. To the best of our knowledge, this latter result
is new. All the next chapter will be devoted to it. Split will be later used as a
decoding procedure in a metaheuristic and in a branch and bound.
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3.1 Introduction
In Borisovsky, Delorme, and Dolgui (2013), Delorme, Malyutin, and Dolgui (2016),

Levitin, Rubinovitz, and Shnits (2006) and Nilakantan et al. (2015), a particular case
is identified: the case where an overall sequence of operations is imposed.

This chapter is intended to solve this particular case of a given giant sequence
thanks a novel polynomial algorithm called split.

Split is inspired to us from an homonym method developed by Beasley (1983) for
a particular case of the Vehicle Routing Problem (VRP). The VRP is concerned
with assigning a set of costumers to a set of vehicles initially located within a depot.
The objective is to minimize the total distance traveled by the vehicles. Beasley
considers a fixed "giant tour" of costumers. He proves that finding an optimal
solution respecting a given giant tour is polynomial. It is equivalent to a shortest
path problem in some auxiliary graph. Prins (2004) has then used split as decoding
procedure in a metaheuristic which led to the best known method for the VRP for
many years. Similar researches were conducted afterwards: Prins, Lacomme, and
Prodhon (2014).

Split is an efficient method in a Sequence-First Cluster-Second approach, because
it allows to optimally determine the clusters, given an initial giant tour. We propose
here an original way to adapt ideas from VRP to balancing problems. In this
chapter, split is used to solve the particular case of a given giant sequence for
various balancing problems. Then, it is used in approaches of type Sequence-First
Balance-Last and Sequence-First Balance-And-Select-Last in the next chapter.

In the next sections, split is first described for SALBP-2 then it is derived for
the considered balancing problems. For each of these problems, we describe the
auxiliary graph, give a polynomial algorithm to solve the path problem and give a
small illustrative example.

3.2 Split approach: an illustrative example
We consider the SALBP-2 to illustrate the split approach in this section. SALBP-

2 is concerned with minimizing the cycle time while respecting a maximum number
of workstations (smax). Before presenting the general scheme of split, we give some
definitions.

Definition 3.2.1. (Giant sequence) Given an instance with n operations, a giant
sequence is a permutation of all the operations: σ = (σ1, σ2, . . . , σn) where σi is the
operation at position i of the sequence.
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Definition 3.2.2. (A solution satisfying a giant sequence) A solution X is said to
satisfy a giant sequence σ = (σ1, σ2, . . . , σn) if for all σi, σj such that i < j either σi
and σj are assigned to the same workstation in X or the workstation to which σi is
assigned, is situated before the workstation to which σj is assigned.

Definition 3.2.3. (Compatible giant sequence) A giant sequence σ is said to be
compatible with respect to an instance if there exists at least one feasible solution
satisfying σ.

Given a giant sequence σ and an instance I, the optimal solution satisfying σ
can be obtained thanks to the search of an optimal path in an appropriate auxiliary
graph denoted HI(σ). We describe next the construction of HI(σ).

Auxiliary graph

The graph HI(σ) = (V,A) is a directed graph, composed of the set of nodes V
and the set of arcs A. The set of nodes is given by the set of operations plus an
additional node corresponding to a fictitious operation, i.e. V = N ∪ {0}. An arc
(i, j) from operation i to operation j refers to a workstation to which the subsequence
(i + 1, i + 2, . . . , j) is assigned. A is composed of all the arcs (i, j) such that i < j.
Besides, HI(σ) is weighted. For the SALBP-2, the weight of the arc (i, j) is given
by:

ci,j =

j∑
k=i+1

dk

ci,j corresponds to the time required to perform the subsequence (i + 1, . . . , j),
i.e., the workload of the corresponding workstation.

Optimal path

In the graph thus constructed, a path from the node 0 to the node σn corresponds
to a solution of the problem.

Indeed, a path {(0, σo1), (σo1 , σo2), (σo2 , σo3), . . . , (σok−1
, σok), (σok , σn)} corresponds

to the solution where the subsequence (σ1, σ2, . . . , σo1) is assigned to the first work-
station, (σ1+o1 , . . . , σo2) is assigned to the second workstation,. . . and (σ1+ok , . . . , σn)
is assigned to the last workstation (k + 1th workstation). More precisely, there is
a one-to-one correspondence between the space of feasible solutions satisfying the
giant sequence σ and the paths from 0 to σn in HI(σ). Besides, the objective value
of a solution (the cycle time for SALBP-2) matches the maximum weight of an arc
in the corresponding path in HI(σ). Consequently, an optimal solution respecting
a giant sequence σ can be obtained by computing the path from 0 to σn in HI(σ)
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containing an arc with maximum weight and using no more than smax arcs. This
problem corresponds to the search for a minmax path (Chechik et al. (2016)), it can
be solved thanks to polynomial algorithm described later.

Remark 2. To solve SALBP-1 for a given giant sequence, the following algorithm
is optimal:

(1) s = 1 (open an initial workstation)

(2) For i = 1 to n

(a) If (ws + dσi ≤ C) (workload of s + processing time of i ≤ cycle time C):

i. Add the operation σi to s

(b) else:

i. Open a new workstation: s = s+ 1

(3) EndFor

The latter algorithm is not applicable for SALBP-2 or any type 2 problem since the
cycle time remains unknown for those problems. Besides, it is no more optimal for
type 1 problems considering either sequence-dependent setup times, robot selection
or any industrial case. In any of those cases, the greedy heuristic can be used as an
heuristic as it is the case in Borisovsky, Delorme, and Dolgui (2013). We suggest in
this chapter an optimal polynomial algorithm to solve the problem that is applicable
for all these situations.

Remark 3. Throughout the remainder of this chapter, we supposed that a giant
sequence of operations σ is given. To simplify the description of the algorithms,
we suppose without loss of generality that σ = (σ1, σ2, . . . , σn) = (1, 2, . . . , n). We
also suppose that σ respects precedence constraints. If σ is compatible, split returns
an optimal solution respecting σ, otherwise split does not return a solution. Thus,
split can be used to test the compatibility of a giant sequence respecting precedence
constraints.

Each of the following subsections is dedicated to the adaptation of split to a
different problem.

3.3 RTLBP
We adapt in this section split for the RTLBP with the calculation of the arcs

weight in the auxiliary graph and the resolution of the underlying optimization
problem.
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3.3.1 Auxiliary graph

HI(σ) is a weighted directed graph with the same set of nodes than SALBP-2
(set of operations plus an additional fictitious vertex 0).

The weight of an arc (i, j) is given by:

ci,j =



⌈∑j
k=i+1 dk+(

∑j−1
k=i+1 tk,k+1)+tj,i+1

C

⌉
If j > i+ 1 (at least 2 operations)⌈

di+1

C

⌉
If j = i+ 1 (one operation: no setup)

which could be interpreted as the number of machines necessary to perform the
subsequence i+ 1,. . . ,j such that the given cycle time is respected.

The set of arcs (i, j) is composed of all the arcs (i, j) such that i < j. However,
some of the arcs must be deleted if the constraints are violated. All the cases are
listed below:

• The maximum number of operations per workstation is exceeded:
An arc (i, j) violating the maximum number of operations per workstation
constraint can be detected by the following condition:

j − i > Nmax

• The maximum number of machines per workstation is exceeded:
Likewise, an arc (i, j) violating the maximum number of machines per work-
station constraint can be detected by the following condition:

ci,j =

⌈∑j
k=i+1 dk + (

∑j−1
k=i+1 tk,k+1) + tj,i+1

C

⌉
> Mmax

• Inclusion constraints are not satisfied: An arc (i, j) violating the inclusion
constraints can be detected by the following condition:

∃(a, b) ∈ I / 1{i+1,...,j}(a)
1 + 1{i+1,...,j}(b) = 1

• Exclusion constraints are not satisfied: An arc (i, j) violating the exclu-
sion constraints can be detected by the following condition:

∃ES ∈ E /
∑
a∈ES

1{i+1,...,j}(a) = |ES|

11X(a) is the indicator function, equals 1 if a ∈ X and 0 otherwise.
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• Accessibility constraints are not satisfied: An arc (i, j) violating the
accessibility constraints can be detected by the following condition:

∩k∈{i+1,...,j}Posk = ∅

3.3.2 A constrained shortest path

Finding an optimal balancing respecting the giant sequence σ is equivalent to
finding the shortest path between 0 and σn in the graph HI(σ), of length lower
than (or equal to) smax arcs (i.e. the shortest path constrained not to exceed smax
arcs). This is because an arc stands for a workstation and the solution cannot use
more than smax workstations. The existence of such a path between the starting
node and the ending node implies the compatibility of the giant sequence. If there
is no path having smax arcs or less between 0 and σn in HI(σ), then there exists no
feasible balancing solution respecting the giant sequence σ. We note that the more
the problem is constrained, the less arcs are contained in the graph and the easier
is the problem to solve.

We propose Algorithm 7 in order to compute a shortest path constrained not
to exceed smax arcs in the graph HI(σ). The algorithm uses labels on nodes to
encompass information on the system state. The labels keep track of the number
of machines and the number of arcs (workstations). A label l is representative of a
partial solution, it has two components:

l = (a, b)

where a and b denote respectively the number of machines and the number of work-
stations used so far by the partial solution.

We define a set of labels Li for each node i. Every label in Li corresponds to a
path (partial solution) between 0 and i.

The algorithm uses a dominance rule in order to avoid combinatorial explosion:

Definition 3.3.1. (Dominance rule) (a, b) is dominated by (a′, b′) if:

a′ ≤ a and b′ ≤ b

Algorithm 7 starts with fictitious node 0 labeled {(0, 0)} (i.e. L0 := {(0, 0)})
and continues with the other nodes following the order of the giant sequence. For
every node t and every label (at, bt) ∈ Lt, the algorithm explores every outgoing arc
(t, i) and tries to propagate it (i.e. add a label to the set of labels of node i denoted
Li) if:

(at + ct,i, bt + 1) is not dominated by a label of Li (Propagation rule)
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If so, the label (at + ct,i, bt + 1) is added to Li and all labels dominated by (at +
ct,i, bt + 1) are deleted from Li. The shortest path cost is stored in a∗.

Lemma 3.3.2. The dominance rule limits the number of labels per node to smax.

Proof. Suppose by contradiction that we have more than smax labels for some node
i. Then, necessarily there must exist two labels (a, b), (a′, b) ∈ Li (i.e. with same
number of workstations), because for every label (x, y) we have:

y ∈ {1, 2, . . . , smax}

The coexistence of (a, b) and (a′, b) is impossible due to the dominance rule.

Theorem 3.3.3. The algorithm runs in O(n4) where n is the number of operations.

Proof. The algorithm performs dominance tests for each 3-uplet (label of origin
node, arc, label of destination node). Thus, it runs in O(m.s2max) where m is the
number of arcs in the graph. Since smax ≤ n and m ≤ n+(n− 1)+ ...+1 = n(n+1)

2
,

split runs in O(n4).

Remark 4. The tests of lines 11 and 13 can both be done in a single scan of the
list Li by exploiting the transitivity of the dominance relation: we browse the list Li
and as soon as a label is dominated by (ai, bi) we can conclude that the condition of
line 11 is satisfied and thus add (ai, bi) to Li and delete all the remaining labels of
Li that are dominated by (ai, bi).

3.3.3 Illustrative example

We recall the RTLBP example introduced in the first chapter:

• A part requires the execution of 7 operations numbered from 1 to 7 (n = 7).

• At most 4 workstations can be used (smax = 4).

• Precedence relations are represented in Figure 3.1.

Figure 3.1: Precedence graph.
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Algorithm 7 Split algorithm for the RTLBP

INPUT (I,σ) where I is an instance of the RTLBP and σ is a giant sequence
respecting precedence constraints.
OUTPUT X: An optimal solution (with the minimal number of machines )
respecting σ if there exists a feasible solution

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t=1 to n do
4: Lt := ∅
5: end for
6: for t=0 to n-1 do
7: for all (t, i) ∈ A (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: if (bt < smax − 1 or i = n) then
10: (ai, bi) := (at + ct,i, bt + 1)
11: if (ai, bi) is not dominated by an element of Li then
12: Li := Li ∪ {(ai, bi)}
13: if (ai, bi) dominates some elements (a′i, b′i) ∈ Li then
14: Li := Li\{(a′i, b′i)}
15: end if
16: end if
17: end if
18: end for
19: end for
20: end for
21: if Ln 6= ∅ then
22: a∗ :=Min(ai,bi)∈Ln(ai)
23: Decode the path of length a∗ to build X
24: end if
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• Nmax = 3, maximum number of operations to be assigned to a workstation.

• Mmax = 3, maximum number of machines to be hosted by a workstation.

• The processing times and setup times are given respectively in Tables 3.1, 3.2.

i 1 2 3 4 5 6 7
di 1.5 1 3.5 1.5 2.5 3 1

Table 3.1: Processing times.

ti,j j = 1 2 3 4 5 6 7
i = 1 0 0.5 1 1 1 1 1
2 1 0 0.5 1 1 1 1
3 0.5 1 0 1 1 1 1
4 1 1 1 0 0.5 1 1
5 1 1 1 0.5 0 1 1
6 1 1 1 1 1 0 0.5
7 1 1 1 1 1 0.5 0

Table 3.2: Setup times

••• C = 2.5, cycle time.

• Inclusion and exclusion constraints are given by I = {(1, 2)}, E = {{5, 6}}.

• Accessibility constraints are given as follows: Pos = {1, 2, 3, 4}, Pos4 = {1, 2},
Pos5 = {3, 4}, Posi = {1, 2, 3, 4}, ∀i ∈ {1, 2, 3, 6, 7}

We consider the giant sequence σ = (1, 2, 3, 4, 5, 6, 7). An illustration of the graph
HI(σ) is given in Figure 3.2.
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Figure 3.2: Auxiliary graph

Arcs violating the considered constraints have been deleted. For example, arcs
(0,1), (1,2) and (1,3) are deleted due to the violation of the inclusion constraint
"(1,2)". The arc (3,5) is deleted due to the violation of the accessibility constraint:
operations 4 and 5 do not share a common position. Arc (4,6) is deleted due to the
violation of the exclusion constraint "{5,6}". Arcs (0,4), (0,5), (0,6) and (0,7) are
deleted due to exceeding the maximum number of machines (Mmax) and operations
(Nmax) per workstation.

Remark 5. The graph could be disconnected despite the existence of a balancing
solution: in the example of Figure 3.2, the disconnectivity comes from the fact that
operations 1 and 2 must be assigned to the same workstation due to the inclusion
constraint.

In Figure 3.3, we represent in red the shortest path not exceeding 4 workstations.
The corresponding optimal solution is given in the figure. The path is of length 7,
i.e. 7 machines and has 4 arcs, i.e. 4 workstations.
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Figure 3.3: Constrained shortest path and corresponding solution.

3.4 RALBP
The cases of RALBP-1 and RALBP-2 are respectively similar to SDRALBP-1

and SDRALBP-2. It suffices to consider that the setup times are null. For this
reason, we are content to describe SDRALBP-1 and SDRALBP-2.

3.4.1 RALBP-1/SDRALBP-1

We consider in this subsection SDRALBP-1. Many types of robots are available
to perform the operations. The same type of robot can be selected for multiple
workstations without any limitation. The cycle time C is fixed and the number of
workstations is to be minimized.
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3.4.1.1 Auxiliary graph

We remove from A all the arcs (i, j) such that the workload induced by the
subsequence (i + 1, i + 2, . . . , j) on all the types of robots exceeds the given cycle
time. In other words, we remove all the arcs (i, j), i < j satisfying the following
condition:

Minr∈R

j∑
k=i+1

drk +

j−1∑
k=i+1

trk,k+1 + trj,i+1 > C

Besides, all the weights of the arcs are equal to 1: ∀ (i, j) ∈ A, ci,j = 1.

Theorem 3.4.1. The construction of the auxiliary graph can be done within a time
complexity of O(n3.nr).

Proof. For a couple of operations (i, j) such that i < j, the workloadMinr∈R
∑j

k=i+1 d
r
k+∑j−1

k=i+1 t
r
k,k+1 + trj,i+1 can be computed in O(n.nr) and there are O(n2) couples.

3.4.1.2 A shortest path

Since we want to minimize the number of workstations, the underlying problem
is a shortest path problem. The shortest path from 0 to σn can be obtained thanks
to Algorithm 8 (it can be seen as a Bellman algorithm), it runs in O(|A|) = O(n2)
(without taking into account the construction of the graph).

Algorithm 8 Split for SDRALBP-1

INPUT (I,σ) where I is an instance of the SDRALBP problem and σ is a giant
sequence respecting precedence constraints.
OUTPUT X: An optimal solution among solutions satisfying σ.

1: Build the graph HI(σ)
2: l0 := 0
3: for t = 1 to n do
4: lt :=∞
5: end for
6: for t = 0 to n− 1 do
7: for all (t, i) ∈ A (Propagate arcs from t) do
8: li :=Min(li, lt + 1)
9: end for
10: end for
11: Decode the path of length ln to build up X.
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Algorithm 8 stores the distance from node 0 to the node i in li. The initialization
is done in lines 2-5. Then for each node t, following the order of the giant sequence,
and for each outgoing arc (t, i), li is updated if lt + 1 < li. As a result of this,
ln stores the length of the shortest path from 0 to σn. The instruction of line 11
can easily be done by firstly retrieving the path of length ln then by allocating the
subsequence (i + 1, . . . , j) corresponding to the kth arc of the shortest path to the
kth workstation. Finally, the type of robot that minimizes the workload is chosen
for each workstation.

3.4.1.3 Illustrative example

We illustrate the split for SDRALBP-1 thanks to a small example. We consider
an instance with 5 operations (n = 5) and 4 types of robots (nr = 4).

The precedence relations, the processing times and the sequence-dependent setup
times are represented respectively in Figure 3.4, Table 3.4 and Table 3.4.

The given cycle is C = 6 .

Figure 3.4: Precedence graph.

i 1 2 3 4 5
dri r = 1 1.5 1 3.5 1.5 2.5

r = 2 1.5 0.5 3 2 1.5
r = 3 1 1 3 2 1
r = 4 2 2 4 1.5 2

Table 3.3: Processing times.
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(a) Setup times on robots of type 1 (b) Setup times on robots of type 2

i 1 2 3 4 5
t1i,j j = 1 0 1 0.5 1.5 0.5

j = 2 1.5 0 0 2 0.5
j = 3 1 1 0 2 1
j = 4 0.5 0.5 0.5 0 0.5
j = 5 1.5 0.5 0.25 0.5 0

i 1 2 3 4 5
t2i,j j = 1 0 0.5 0.5 1 0.25

j = 2 1.5 0 0.25 0.25 0.25
j = 3 0.25 1 0 0.5 1
j = 4 0.25 2 4 0 2
j = 5 1 1 1 2 0

(c) Setup times on robots of type 3 (d) Setup times on robots of type 4

i 1 2 3 4 5
t3i,j j = 1 0 1 0.5 1.5 0.75

j = 2 0.75 0 0.5 2 1.5
j = 3 1 1 0 2 1
j = 4 2 0.5 0.75 0 0.5
j = 5 1 0.5 0.25 1.5 0

i 1 2 3 4 5
t4i,j j = 1 0 1 0.75 0.5 0.5

j = 2 1.5 0 3 2 1.5
j = 3 1 1 0 2 1
j = 4 2 1 0.5 0 2
j = 5 1.5 0.5 0.5 2 0

Table 3.4: Sequence-dependent setup times

We consider the fixed sequence σ = (1, 2, 3, 4, 5). It respects precedence con-
straints. HI(σ) is represented in Figure 3.5. In this graph, the following arcs have
been deleted because they correspond to violated constraints:

{(0, 4), (0, 5), (1, 4), (1, 5), (2, 5)}

For all these arcs, the minimum workload exceeds the given cycle time. A short-
est path is shown in red on the figure. It represents a solution with 2 workstations.

Subsequence (1, 2, 3) is assigned to the first workstation and (4, 5) is assigned the
second workstation.

The type of robot assigned to the first workstation is given by Argminr∈R dr1 +
tr1,2 + dr2 + tr2,3 + dr3 + tr3,1= 2. The type of robot assigned to the second workstation
is given by Argminr∈R dr4 + tr4,5 + dr5 + tr5,4= 3.
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Figure 3.5: Auxiliary graph and optimal solution for SDRALBP-1

3.4.2 RALBP-2/SDRALBP-2

We adapt split to SDRALBP-2. In this case, we have a given maximum number
of workstations smax and the cycle time C is to be minimized. The RALBP-2 case
can be derived by considering that the setup times are null.

3.4.2.1 Auxiliary graph

We only detail the steps that differ from SDRALBP-1. The set of nodes V of the
graph HI(σ) = (V,A) does not change. The set of arcs A is given by all the arcs
(i, j) such that i < j. Besides, HI(σ) is weighted. The weight of the arc (i, j) is
given by:

ci,j =Minr∈R {
j∑

k=i+1

drk +

j−1∑
k=i+1

trk,k+1 + trj,i+1}

ci,j corresponds to the minimum time required to perform the subsequence (i+
1, . . . , j). We point out that we could take any robot that minimizes the workload.
The auxiliary graph can be constructed in O(n3.nr).

3.4.2.2 A constrained minmax path

An optimal solution respecting the giant sequence σ can be obtained by computing
a path from 0 to σn in HI(σ) that minimizes the maximum weight of an arc and
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that uses no more than smax arcs. In graph theory, the problem is known as a
bottleneck path or min-max path (Chechik et al. (2016)) which consists in finding a
path between a pair of vertices such as the weight of an arc of maximum weight
is minimized. This problem is polynomial since a shortest path algorithm can be
adapted to compute a min-max path. We are dealing with a constrained min-max
path because the path should not exceed smax arcs.

We propose Algorithm 9 in order to compute a shortest path constrained not
to exceed smax arcs in the graph HI(σ). The algorithm is based on labels that
keep track of the cycle time and the number of arcs. As for the RTLBP, a label
l = (a, b) represents a partial solution. In the case of the SDRALBP-2, a and b
denote respectively the number of machines and the number of workstations used
so far by the partial solution.

The same dominance rules as for RTLBP are used here. Only the propagation
rule differs. The propagation of label (at, bt) through the arc (t, i) gives the label
(Max(at, ct,i), bt + 1): the maximum between at and ct,i gives the cycle time, the
number of workstations bt is incremented by 1.

We can prove similarly that the algorithm runs in O(n4).

3.4.2.3 Illustrative example

We illustrate the split for SDRALBP-2 thanks to a small example. We consider
the same instance as the previous subsection. Since we deal with SDRALBP-2, we
must give the maximum number of workstations: smax = 3.

We consider the same fixed giant sequence σ = (1, 2, 3, 4, 5). HI(σ) is represented
in Figure 3.6.
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Algorithm 9 Split for SDRALBP-2
INPUT (I,σ) where I is an instance of the SDRALBP-2 problem and σ is a giant
sequence respecting precedence constraints.
OUTPUT X: An optimal solution (with the minimal cycle time C∗) respecting σ
if there exists a feasible solution
1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t=1 to n do
4: Lt := ∅
5: end for
6: for t=0 to n-1 do
7: for all (t, i) ∈ A (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: if (bt < smax − 1 or i = n) then
10: (ai, bi) := (Max{at, ct,i}, bt + 1)
11: if (ai, bi) is not dominated by an element of Li then
12: Li := Li ∪ {(ai, bi)}
13: if (ai, bi) dominates some element (a′i, b′i) ∈ Li then
14: Li := Li\{(a′i, b′i)}
15: end if
16: end if
17: end if
18: end for
19: end for
20: end for
21: if Ln 6= ∅ then
22: C∗ :=Min(ai,bi)∈Ln(ai)
23: Decode the path of cost C∗ to build X
24: end if
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Figure 3.6: Auxiliary graph for SDRALBP-2

A min-max path not exceeding 3 arcs is shown in red in Figure 3.7. It represents a
solution with 3 workstations. Subsequence (1, 2) is assigned to the first workstation,
(3) is assigned the second workstation and (4, 5) is assigned the third workstation.

Figure 3.7: Min-max path not exceeding 3 arcs and corresponding solution.
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The type of robot assigned to the three workstations are given respectively by
Argminr∈R dr1 + tr1,2 + dr2 + tr2,1= 3, Argminr∈R dr3= 2 and Argminr∈R dr4 + tr4,5 +
dr5 + tr5,4= 3.

We notice that this solution is no more feasible if we suppose the assumption
"only one robot per type" because robot type 3 is used twice (in workstation 1 and
3). We’ll see in the next subsection how to adapt split to this assumption.

3.4.2.4 Extension to one robot per type

We adapt in this subsection split for the assumption "one robot per type". We
assume that each robot can be assigned to at most one workstation. In other words,
we no longer allow the possibility of assigning several robots of the same type to dif-
ferent workstations. In this context, the input is slightly changed. Instead of having
a set of types of robots, each of which can be assigned to multiple workstations, we
now have a set of robots, each of which can be assigned at most to one workstation.
We keep the same notations R and nr respectively for the set of robots and the
number of robots. All other components of the SDRALBP (input, output, decision
to be maid) are preserved. This assumption is more general than the previously
studied and make the problem more difficult as seen in the complexity section in
the first chapter (section 1.4.1.4). We will see in this subsection that split can be
adapted for this assumption. But since it is harder, the simple graph approach is no
longer relevant and we have to consider multi-graphs to model the problem. Besides,
the polynomiality of split is lost. For this reason, heuristics and bounds are used to
speed up split.

Auxiliary graph

HI(σ) = (V,A) is a directed weighted multi-graph defined by its set of vertices
V , its multiset2 of arcs A. The set of vertices is given by V = N ∪ {0}, 0 being
a fictitious operation and N being the set of operations numbered from 1 to n.
As it is a multi-graph, the same arc (same source and same destination) can be
present more than once in the graph. A contains nr arcs (i, j) such that i < j, the
same occurrences of an arc (i, j) are labeled from 1 to nr and we denote (i, j)r ∈ A
the occurrence number r of arc (i, j), i.e, the occurrence representing the robot r.
The arc (i, j)r represents a workstation to which the operations from i+ 1 to j are
assigned and are performed by the robot r. The weight of an arc (i, j)r is given by:

w((i, j)r) =

j∑
k=i+1

drk +

j−1∑
k=i+1

trk,k+1 + trj,i+1

2In a multiset, an element can be present more than once, the multiplicity defines the number
of copies of an element in the set
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which represents the time required to perform the sub-sequence (i + 1, . . . , j) on
robot r.

A constrained shortest path

In this way, a path from 0 to n in HI(σ) is representative of a feasible solution
provided the path does not pass through two arcs (i, j)r, (i′, j′)r′ such that r =
r′ to respect the constraint raised by the assumption "only one robot per type".
The related problem becomes a constrained min-max path. This latter consists in
finding a path from 0 to n in HI(σ) that minimizes the maximum weight of an arc
constrained not to:

• Exceed smax arcs.

• Go through two arcs (i, j)r, (i′, j′)r′ such that r = r′.

We suggest Algorithm 10 to compute such a path.

The labels used in Algorithm 10 differ from the previous versions of split. Each
node i of the graphHI(σ) is associated with a list of labels Li. A label (ai, bi, δi) ∈ Li
represents a path between the fictitious node 0 and the node i modeling a partial
solution of bi workstations and a cycle time of ai. δi : R −→ {0, 1} is a function
that defines the robots used in the path, i.e.:

δi(r) =

{
1 If robot r is used on the path
0 Otherwise

Thus, by using the third label δi, we can ensure that each robot is used at most
once. The propagation and domination rules must be slightly adapted:

• The label (at, bt, δt) ∈ Lt is propagated through the arc (t, i)r if δt(r) = 0 by
adding to Li the label (Max[at, w((t, i)r)], bt + 1, δ′t) such that δ′t is defined as
follows:

δ′t(r
′) =

{
δt(r

′) If r′ 6= r
1 If r′ = r

• We say that the label (a, b, δ) dominates the label (a′, b′, δ′) if:

(a ≤ a′ and b ≤ b′ and δ ≤ δ′3)

• We suggest Algorithm 10 in order to compute a constrained min-max path.
3Let δ : R −→ {0, 1} (a, b, δ), δ′ : R −→ {0, 1} (a, b, δ) two applications. The notation δ ≤ δ′

means that ∀r ∈ R, δ(r) ≤ δ′(r) and the notation δ < δ′ means that δ ≤ δ′ and that ∃r ∈ R, δ(r) <
δ′(r).
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Algorithm 10 split for SDRALBP-2

INPUT (I, σ) where I is an instance of the SDRALBP-2 problem and σ is a
giant sequence respecting precedence constraints. We suppose without loss of
generality that σ = {1, 2, ..., n}
OUTPUT X: optimal solution with respecting σ

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t = 1 to n do
4: Lt := ∅
5: end for
6: for t = 0 to n-1 do
7: for all (t, i)r ∈ A(Propagate labels from Lt) do
8: for all (at, bt, δt) ∈ Lt do
9: if (bt < smax − 1 or i = n) and δt(r) = 0 then
10: δ′t := δt
11: δ′t(r) := 1
12: (ai, bi, δi) := (Max[at, w((t, i)r)], bt + 1, δ′t)
13: if (ai, bi, δi) is not dominated by an element of Li then
14: Li := Li ∪ {(ai, bi, δi)}
15: if (ai, bi, δi) dominates some element (a′i, b′i, δ′i) ∈ Li then
16: Li := Li\{(a′i, b′i, δ′i)}
17: end if
18: end if
19: end if
20: end for
21: end for
22: end for
23: Decode the label within Ln to build X.
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The algorithm starts with the label (0, 0,0) at the node 0 such that 0 is the
application that equals 0 everywhere on R. The algorithm then propagates labels
node by node and arc by arc using dominance tests.

Lemma 3.4.2. The number of labels on each node is limited by n.2nr where nr is
the number of robots.

Proof. There are at most smax ≤ n possibilities for the second component of the
label and at most 2nr possibilities for the third component of the label. So using
the dominance rule, we have |Li| ≤ n.2nr for each node i.

Theorem 3.4.3. Algorithm 10 runs in O(n3.nr.2
nr).

Proof. Algorithm 10 performs dominance tests for all the couples (label, arc). The
number of labels being bounded by n.2nr (following the previous lemma) and the
number of arcs being less than n2.nr, the complexity of the algorithm is within
O(n3.nr.2

nr).

Speeding up the split algorithm by means of heuristics and bounds

When dealing with the assumption "only one robot per type", split gets exponen-
tial. In this condition, split cannot be integrated into metaheuristics that require
the execution of split several times. A solution to this issue is to speed up split.

We aim in this section at introducing a technique in order to speed up split. We
suppose in the remainder of this section that a maximum number of workstations
smax is given and that the cycle time C is to be minimized. Its principle is as follows:

• Compute an upper bound Cub of the cycle time for the problem thanks to an
heuristic yielding a solution respecting the given giant sequence σ.

• Use the previously obtained upper bound twice for:

– Eliminating arcs whose weights exceed the upper bound at the time of
the construction of the graph, i.e., all arcs (i, j)r such that w((i, j)r)(=∑j

k=i+1 d
r
k +

∑j−1
k=i+1 t

r
k,k+1 + trj,i+1) > Cub.

– During the execution of the algorithm, a label (a, b, δ) is pruned if a > Cub.

We note that the speeding up technique preserves the optimality of split for the
following two reasons:

• All the arcs deleted during construction of the graph cannot be part any
optimal solution.

• All the labels deleted during the execution of split cannot yield any optimal
solution.
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We introduce next an heuristic in order to compute Cmax. The described algorithm
could be seen as an heuristic to obtain a solution respecting a giant sequence. The
heuristic is made up of several steps described below:

(1) Compute an optimal balancing solution S respecting σ not necessarily respect-
ing the assumption "one robot per type". It can be obtained by applying the
split algorithm from the previous subsection.

(2) If there are robots being assigned more than once, transform the solution S
to a solution respecting the assumption "one robot per type":

(a) Sv = ∅
(b) For each robot being assigned more than once, add all the workstations

where this robot is assigned to Sv expect the workstation with the max-
imum workload.

(c) Build a permutation S̃v of all the workstations in Sv.
(d) For each workstation s ∈ Sv following the order given by S̃v: assign to s

a robot that is not already assigned and that minimizes the workload of
the workstation.

(e) Repeat step (d) with a permutation S̃v′ obtained through an insertion
move while it leads to an improving solution.

3.5 Conclusion
We suggested in this chapter a polynomial algorithm to solve the particular case

where the giant sequence is given. The split algorithm is suggested to solve this
polynomial case. split is applied for SALBP-2, RALB-1/SDRALBP-1, RALB-
2/SDRALBP-2 and RTLBP. Table 3.5 summarizes the underlying graph problems
and time complexities. split was inspired to us by the homonym approach from Ve-
hicle Routing Problems. This establishes a link between two different problems but
which are of the same nature since both routing problems and balancing problems
can be considered as "packing problems". This rapprochement is yet to investigate
in order to make the balancing problems benefit from the cumulative experience on
VRP.

Problem Underlying graph problem Time complexity
SALBP-2 Constrained min-max path O(n4)
RTLBP Constrained shortest path O(n4)

RALBP-1/SDRALBP-1 Shortest path O(n2)
RALBP-2/SDRALBP-2 Constrained min-max path O(n4)

Table 3.5: Underlying graph problems and complexity
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split has many advantages among which its low complexity and its simplicity of
implementation. We adapted it for the assumption "one robot per type". Under
this particular assumption, the polynomiality of split is lost. Optimal algorithms
are obtained in O(n2.nr.2

nr) and O(n3.nr.2
nr) respectively for RALB-1/SDRALBP-

1 and RALBP-2/SDRALBP-2. The latter complexities are still reasonable if nr is
not too big. However, in order to tackle big-size instances we suggest a speeding
technique based on heuristics and bounds. The latter preserves the optimality of
split.

The split algorithm integrates very well in methods of type Sequence-First Balance-
Last or Sequence-First Balance-And-Select-Last intended respectively for reconfig-
urable transfer lines and robotic assembly lines. Indeed, the second step can be
solved optimally thanks to split in both approaches. Therefore, all that remains to
design such approaches is the sequencing part. Two different schemes are suggested
in the next chapter for the sequencing part:

• Approximate: a giant sequence of good-quality is obtained thanks to a meta-
heuristic that explores the space of giant sequences and uses split as a decoding
procedure.

• Exact: the best giant sequence, and therefore the best solution, is obtained
thanks to a branch and bound algorithm. The latter explores a tree repre-
senting all the giant sequences. Split is used to compute a lower bound on the
nodes (subsequences).
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4.1 Introduction
We introduce in this chapter split-based resolution methods for the RTLBP, the

RALBP-2 and the SDRALBP-2. This approach can be seen as the reverse approach
to the Balance-First Sequence-Last approach introduced in chapter 2. The objective
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is first to build a sequence and secondly to determine an optimal balancing for this
sequence. A split-based metaheuristic and a split-based branch and bound are
suggested. For both methods, split is used as a building block.

In regards to the split-based metaheuristic, a giant sequence is used to encode a
solution and split is used as a decoding procedure. The space of giant sequences is
explored using a metaheuristic. This split-based encoding-decoding scheme signif-
icantly reduces the search space. Split acts as an aggressive and efficient guidance
technique which allows, for a given sequence, to solve in polynomial time all the
other decision sub-problems. Indeed, approximate resolution methods from litera-
ture use either an heuristic or a exponential algorithm to decode a giant sequence
(Borisovsky, Delorme, and Dolgui (2013), Nilakantan et al. (2015)) or use a com-
plete encoding of the solution including robot assignment vector and/or operations
to workstations assignment vector (Janardhanan et al. (2019)) which yields a larger
search space. The general scheme of the split-based metaheuristic is independent
from the considered problem, only the algorithm to compute a compatible giant is
problem-dependent.

In regards to the split-based branch and bound resolution methods, split is used
as a procedure to compute a lower bound in a branch and bound algorithm. It is
still in development phase, partial results are given in the experimental section.

The two next subsections are devoted respectively to the split-based mataheuristic
and the split-based branch and bound.

4.2 A split-based metaheuristic
This section is devoted to the split-based metaheuristic. We describe in the follow-

ing subsections the general scheme of the method, the local search and perturbation
moves and finally the algorithm to compute a compatible giant sequence.

4.2.1 General scheme

The general scheme of the split-based metaheuristic is depicted in Figure 4.1.
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Figure 4.1: Scheme of the split-based metaheuristic

An initial giant sequence σ is computed first, the corresponding (optimal) solution
is given by split X = split[σ]. A neighboring giant sequence σ′ of σ is computed
thanks to an insertion move (described later in the section). The corresponding
(optimal) solution is given by split Y = split[σ′]. An acceptance criterion, corre-
sponding to the solution with the lowest objective value, is considered to choose
which giant sequence to take for the next iteration.

We describe next the encoding-decoding scheme and some of its properties.
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4.2.1.1 Encoding-decoding scheme

Sequence-first methods work within two steps. The first step aims to solve the
sequencing problem which can be done by giving a sequence of all operations (giant
sequence). The second step aims to solve the balancing problem and the balancing
and the selection problem (if relevant) while respecting the giant sequence. For this
reason, we call sequence-first methods for the RTLBP: Sequence-First Balance-Last
(SFBL) methods, that of RALBP Sequence-First Select-Last (SFSL) methods and
that of SDRALBP: Sequence-First Balance-And-Select-Last (SFBSL) methods. In
those methods, split is used as a black-box algorithm (Figure 4.2) to evaluate a giant
sequence.

Figure 4.2: Split is a decoding procedure, mapping each sequence into a solution of the problem.

Many metaheuristics resolution approaches in literature use a giant sequence to
encode a solution. Only heuristics or exponential algorithms have been used so far to
decode a giant sequence (Borisovsky, Delorme, and Dolgui (2013), Nilakantan et al.
(2015)). In other publications, additional sequences are used together with the giant
sequence to encode a solution (complete encoding) which significantly enlarges the
search space (Janardhanan et al. (2019)). To design a split-based metaheuristic, we
use a giant sequence to encode a solution and split to decode it. We denote this
encoding-decoding scheme by [σ, split]. This way, the search space is significantly
reduced while preserving the optimal solution:

Theorem 4.2.1. The encoding-decoding technique: [σ, split] preserves an optimal
solution.

Proof. Any optimal solution X can be represented by a giant sequence σX . The
execution of split on σX yields either X or any other solution with equivalent ob-
jective value since it has been shown in the previous chapter that split returns an
optimal solution corresponding to a giant sequence.

The previous theorem shows that the set of optimal solutions has non-empty
intersection with the set of solutions given by split (Figure 4.3).
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Figure 4.3: Split versus heuristic decoder

In Figure 4.3, the space of giant sequences is voluntarily represented smaller than
the space of solutions. Split gives an optimal solution when the giant sequence
encode an optimal solution. An heuristic decoder does not guarantee the same. All
what remains is searching for a "good" giant sequence by means of metaheuristics.
The following subsection explains the metaheuristic scheme chosen.

4.2.1.2 Metaheuristic scheme

Unlike local search that is trapped in a local optimum, iterated local search (ILS)
introduces diversification by applying a perturbation to the local optimum and iter-
ating the local search. It exploits the idea that performing local search from a pretty
good solution (perturbed local optimum) is more effective than starting from a ran-
dom solution. ILS has proven to be efficient for various combinatorial optimization
problems: Lourenço, Martin, and Stützle (2010), Stützle (2006), Dong, Huang, and
Chen (2009).

Once having computed a starting giant sequence, we perform an iterated local
search in the space of the giant sequences, the split is used to evaluate each giant
sequence. The general scheme is depicted in Algorithm 11. In this algorithm, H(X)
denotes the cost of solution X, i.e., the number of machines of RTLBP or the cycle
time for RALBP-2 and SDRALBP-2.
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Algorithm 11 split-based ILS algorithm

INPUT: An instance of SDRALBP or RTLBP.
OUTPUT: X∗, best found solution.

1: Compute a compatible giant sequence: σ
2: Perform split: X = split(σ)
3: Record the best known sequence: (X∗, σ∗) = (X, σ)
4: while Stopping criterion ILS is not met do
5: while Stopping criterion LS is not met do
6: Choose a random neighbor of σ: σ′
7: Perform split: X ′ = split(σ′)
8: if H(X ′) ≤ H(X) then
9: (X, σ) = (X ′, σ′)
10: end if
11: end while
12: if H(X) ≤ H(X∗) then
13: (X∗, σ∗) = (X, σ)
14: end if
15: (X, σ) = Perturbation[(X∗, σ∗)]
16: end while

We start with computing a compatible giant sequence σ (giant sequence corre-
sponding to a feasible solution). Then a local search is performed from σ (lines
5-11): a random neighbor σ′ is selected and evaluated thanks to split. σ is updated
if H(X ′) ≤ H(X) where X and X ′ denote the solutions corresponding respectively
to σ and σ′ (lines 8-10). The local search terminates when the stopping criterion
of the local search is met. The best known solution X∗ is updated after each local
search (lines 12-14), this acceptance criterion is called Better Walk in Lourenço,
Martin, and Stützle (2010). A perturbation is applied from the giant sequence
yielding the best known solution σ∗ (line 15). The procedure (local search + pertur-
bation) is iterated while the stopping criterion of the ILS is not met. We consider
a maximum number of iterations as stopping criterion for the iterated local search
and the local search. The giant sequence yielding the overall best solution across
the ILS is returned by the algorithm.

Each ingredient of the ILS is detailed next: the local search move, the perturbation
operator and the method to build a compatible giant sequence are described next.
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4.2.2 Local search and perturbation moves

Neighborhood move

We use a simple insertion neighborhood that inserts an operation in a different
position of the giant sequence. This neighborhood is applied in such way that the
precedence constraints are respected. Given the giant sequence σ = (σ1, . . . , σn), a
random neighbor is obtained by selecting a random operation σi, 1 ≤ i ≤ n. Once
this operation selected, two operations must be identified σl(i) and σf(i) such that

l(i) = max{j; j < i and (σj, σi) ∈ P}, the position of the last predecessor of σi in σ

and

f(i) = min{j; i < j and (σi, σj) ∈ P}, the position of the first successor of σi in σ

Then a random position is selected between positions l(i) and f(i) (uniform
selection in {l(i) + 1, . . . , f(i)− 1}) to (re)insert operation σi.

Remark 6. During the local search process, a new auxiliary graph must be built for
each new neighbor. To accelerate the process, only parts of the graph that are subject
to change are reprocessed. Since we use an insertion move, when an operation at
position i is moved to some position j:

• If j > i: Arcs (σa, σb) such that (b ≤ i−1) or (a ≥ j) or (a ≥ i and b ≤ j−1)
remain unchanged.

• If i > j: Arcs (σa, σb) such that (b ≤ j−1) or (a ≥ i) or (a ≥ j and b ≤ i−1)
remain unchanged.

Perturbation move

The perturbation operator in the iterated local search stands for applying the
neighborhood operator 3 times. Each of the three neighborhood moves is repeated
until a compatible giant sequence is found. In other words, after the application of
each operator, we test the compatibility of the resulting giant sequence by applying
split: if it is not compatible, we reject it and apply the operator again.

4.2.3 Computing a compatible giant sequence

We recall that a compatible giant sequence is a giant sequence for which there
exist a feasible solution (split returns a solution in this case). A compatible giant
sequence necessarily respects precedence constraints.
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The procedure for computing a compatible giant sequence is problem-dependent.
The following subsection is devoted to the case of RALBP-2 and SDRALBP-2, then
the case of RTLBP is detailed separately.

4.2.3.1 RALBP-2 and SDRALBP-2

Theorem 4.2.2. A compatible giant sequence with respect to an instance of RALBP-
2 and SDRALBP-2 is a giant sequence respecting precedence constraints.

Proof. Given a giant sequence respecting precedence constraints, a feasible solution
satisfying this giant sequence can be obtained by allocating all the giant sequence
to a single workstation.

A compatible giant sequence respecting precedence constraints can be obtained
thanks to Algorithm 12. An alternative approach to Algorithm 12 would be to
organize the operations within successive levels. The operations within each level
do not have any predecessors in the next levels.

Algorithm 12 Algorithm to build a giant sequence respecting precedence con-
straints

INPUT: An instance of SDRALBP-2 or RALBP-2.
OUTPUT: A giant sequence σ respecting precedence constraints.

1: σ = ∅
2: while |σ| < n do
3: Select randomly and uniformly i an operation without predecessor or such

that all predecessors have already been included in σ.
4: Append i to the end of σ: σ := (σ; i)
5: end while

4.2.3.2 RTLBP

If no inclusion, exclusion, accessibility, Mmax, Nmax or smax constraints are taken
into consideration, then it is easy to compute a compatible giant sequence. Indeed,
any giant sequence respecting the precedence constraints is compatible in this case.
Yet, if we consider some combination of those constraints, any sequence respecting
the precedence constraints is no longer guarantied to be compatible.

Theorem 4.2.3. Given an instance I of the RTLBP, the problem of finding a
compatible giant sequence is NP-Hard.
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Proof. We show that the TSP (Traveling Salesman Decision Problem) is reduced
to the considered problem. Indeed, the TSP is the task of deciding whether there
exists a "tour" visiting a given set of nc cities and returning to the initial city
such that the total distance traveled is less or equal to a given constant B. Then,
an instance of the TSP could be mapped with an instance of the RTLBP where
operations represent cities, the setup times between operations represent distances
between cities and such that I = N,E = ∅, Pos = {0}, Posi = {0} (∀i ∈ N), smax =
1,Mmax = 1, Nmax = nc, di = 0 (∀i ∈ N) and C = B. This is a polynomial time
reduction which justifies the NP-Hardness of our problem.

Corollary 4.2.4. The problem of finding a feasible solution for the RTLBP is NP-
Hard.

Definition 4.2.5. (Weakly compatible giant sequence) We define a weakly compatible
giant sequence as a giant sequence for which there exists a balancing solution that is
feasible with relaxing the maximum number of workstations constraint (smax).

Theorem 4.2.6. Given an instance I of the RTLBP, the problem of finding a
weakly compatible giant sequence is NP-Hard.

Proof. The same reduction as Theorem 4.2.3 can be performed without considera-
tion of smax.

In order to compute a compatible giant sequence, we proceed in two steps:

• Computing a weakly compatible giant sequence.

• Repairing the giant sequence to make it compatible.

Computing a weakly compatible giant sequence

Even the problem of determining a weakly compatible giant sequence being NP-
Hard, we are content to propose an exponential algorithm (but quite fast in practice)
to obtain such a sequence (Algorithm 13). Then, a repair procedure is suggested
to obtain a compatible giant sequence from a weakly compatible giant sequence
(Algorithm 15).

Algorithm 13 works in three steps:

Step 1 Gather the operations according to inclusion constraints: we check easily
that the inclusion constraints define an equivalence relation (denoted by Inc).
Thus, we can compute the quotient set:

N/Inc = {S1, S2, . . . , Sk}
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In other words, Si are groups of operations, built such that if there exists an
inclusion relation between two tasks, then they are in the same Si.

Step 2 Sequence operations on each set: optimally sequence the operations in the
subsets Si, 1 ≤ i ≤ k while respecting precedence constraints: we solve an
Asymmetric Traveling Salesman problem (ATSP) where operations represent
cities and setup times represent distances between cities. This is performed
thanks to a dynamic program adapted from Held and Karp (1962) (Algorithm
1 from the previous chapter). In this way, the subsets Si become subsequences
denoted by S̃i.

Step 3 Build the weakly compatible giant sequence respecting the precedence con-
straints by concatenation of the subsequences.

Remark 7. Since Algorithm 13 uses the dynamic programming algorithm from Held
and Karp (1962) in step 2, it is exponential in the size of the subsets Si, 1 ≤ i ≤ k.
However, the size of every subset is bounded by Nmax which is usually much smaller
than the number of operations. In practice, Algorithm 13 is quite efficient both in
computation time and memory usage.

Algorithm 13 Pseudo-algorithm to compute a weakly compatible giant sequence

INPUT: An instance of RTLBP.
OUTPUT: σ giant sequence that is hopefully weakly compatible.

Step 1 Gather in subsets the operations according to inclusion constraints:
{S1, S2, . . . , Sk}

Step 2 Sequence the operations in each each subset Si (we use Algorithm 1 from the
previous chapter: Held and Karp (1962)).

Step 3 Build a weakly compatible giant sequence σ respecting the precedence con-
straints:

(a) σ = ∅.
(b) While (|σ| < n)

i. Select randomly a subsequence S̃i such that all predecessors of oper-
ations in S̃i are already contained in σ.

ii. Append S̃i to σ.

(c) End while
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Definition 4.2.7. (Triangular inequality) We say that the setup times respect the
triangular inequality if:

ti,j + tj,k ≤ ti,k,∀(i, j, k) ∈ N ×N ×N

Theorem 4.2.8. Given a feasible instance I of the RTLBP where the setup times
respect the triangular inequality, Algorithm 13 returns a weakly compatible giant
sequence.

Proof. Let us consider the solution where each subsequence S̃i, 1 ≤ i ≤ k is allocated
to a different workstation. This solution respects the giant sequence outputted by
Algorithm 13. Besides, it is easy to see that this solution is feasible with respect to
inclusion, exclusion, accessibility, precedence and Nmax constraints. It remains to
verify that the Mmax constraint is satisfied. To do this, we must check that for each
S̃i, W 1

S̃i
≤ C.Mmax . Since all the operations of each subsequence S̃i are linked

with inclusion constraints, they should all be included in the same workstation in
any feasible solution. In other words, for each subsequence S̃i, there must exist a
subsequence S̃ ′i such that:

(1) S̃i ⊂ S̃ ′i.

(2) WS̃′i
≤ C.Mmax.

Since the triangular inequality is satisfied, (1) implies that:

WS̃i
≤ WS̃′i

Therefore, (2) implies that WS̃i
≤ C.Mmax.

If the setup times do not respect the triangular inequality, Algorithm 13 remains
a good heuristic for computing a weakly compatible giant sequence.

Remark 8. The solution described in the proof of Theorem 4.2.8 can be obtained
by a modified version of split, we denote it by s̃plit. S̃plit is described in Algorithm
14, it allows solutions exceeding smax workstations. If feasible solutions with at most
smax workstations exist, s̃plit has the same behavior as split. Otherwise, it minimizes
the number of workstations.

1WS̃ where S̃ is a subsequence of operations defines the sum of the processing times and the setup
times induced by the subsequence. For example, if S̃ = (1, 2, 3),WS̃ = d1+t1,2+d2+t2,3+d3+t3,1.
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Algorithm 14 S̃plit algorithm for the RTLBP

INPUT (I,σ) where I is an instance of the RTLBP and σ is a giant sequence
respecting precedence constraints.
OUTPUT X: a feasible solution respecting σ that minimizes the number of
machines if such a solution exists, a solution violating the maximum number of
workstations constraint that minimizes the number of workstations otherwise.

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t=1 to n do
4: Lt := ∅
5: end for
6: for t=0 to n-1 do
7: for all (t, i) ∈ A (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: (ai, bi) := (at + ct,i, bt + 1)
10: if (ai, bi) is not dominated by an element of Li then
11: Li := Li ∪ {(ai, bi)}
12: if (ai, bi) dominates some elements (a′i, b′i) ∈ Li then
13: Li := Li\{(a′i, b′i)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: if Ln 6= ∅ then
20: if Min(ai,bi)∈Ln(bi) ≤ smax then
21: C∗ :=Min(ai,bi)∈Ln;bi≤smax(ai)
22: else
23: C∗ := a∗i such that (a∗i , b∗i ) = Argmin(ai,bi)∈Ln(bi)
24: end if
25: Decode the path of length C∗ to build X
26: end if

Computing a compatible giant sequence from a weakly compatible giant
sequence

After obtaining a weakly compatible giant sequence with Algorithm 13, an heuris-
tic (Algorithm 15) is designed to obtain a compatible giant sequence. The heuristic
works as follows: starting from a weakly compatible giant sequence, a local search

100 CHAPTER 4.



Thesis Manuscript - 2020 Youssef Lahrichi

with insertion neighborhood (introduced in the previous chapter) is applied to obtain
a compatible giant sequence. A neighbor is accepted if its split uses less worksta-
tions. In Algorithm 15, WS(X) denotes the number of workstations in solution
X.

Algorithm 15 Algorithm to compute a compatible giant sequence from a weakly
compatible giant sequence

INPUT: σ, a weakly compatible giant sequence and I an instance of the RTLBP.
OUTPUT: σ, a (hopefully) compatible giant sequence.

1: while (Stopping condition is not met) and (σ is not compatible) do
2: X = s̃plit(I, σ)
3: Choose a random neighbor of σ: σ′
4: if s̃plit(I, σ′) returns a solution then
5: X ′ = s̃plit(I, σ′)
6: if WS(X ′) ≤ WS(X) then
7: [X, σ] = [X ′, σ′]
8: end if
9: end if
10: end while

We just described an heuristic intended to compute a compatible giant sequence
which consists in building a weakly compatible sequence and then repairing it (Al-
gorithm 13 + Algorithm 15). By coupling it with split, the method builds a feasible
solution. It will be called "H-SFBL" in the remainder of the manuscript.

4.3 A split-based branch and bound algorithm
A brand and bound algorithm searches the solutions space using a tree structure.

Each node of the tree represents a set of partial solutions. All the nodes should
be explored in order to compute an optimal solution. Thankfully, pruning schemes
detect unpromising nodes and limit the search process. When an unpromising node
is detected, all the descendant nodes are pruned. Pruning schemes relies on an
upper bound computed at the beginning of the algorithm thanks to some heuristic.
Pruning schemes also relies on an efficient lower bound computed at each node in
order to evaluate the children solutions of the current node. The branching technique
describes the construction and the search of the graph.

In order to define a branch and bound algorithm, the three following steps must
be described:
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• Branching strategy: it defines the nodes, their signification and the structure
of the search tree. It defines in particular the paternity relationship between
the nodes (branching).

• Exploration (or search) strategy: it defines the priority according to which the
nodes are visited.

• Bounding strategy: it defines the computation of the lower bound in each
node.

A complete taxonomy of branch and bound algorithms can be found in Morrison
et al. (2016).

4.3.1 Branching strategy

The suggested algorithm exploits the idea that the problem becomes polynomial
once having fixed a giant sequence. It enumerates all possible giant sequences using
a tree structure.

Each node in the tree structure represents a subsequence of operations. From a
root node representing an empty subsequence, we perform branching to determine
an operation to add to the subsequence. Then in each node, we branch on all nodes
that have not yet been visited in the the path between the root and the node.

The branch and bound algorithm is more likely to be efficient when it starts with
the most promising nodes. We use the previously described split-based approximate
method as an upper bound. It is computed once at the beginning of the algorithm.
We use the giant sequence relative to the initial upper bound to guide the search in
the tree. This giant sequence is denoted by σ = (σ1, σ2, . . . , σn). The branching is
done with respect to the sequence σ (Figure 4.2).

Each leaf represents a sequence of all operations (giant sequence). The tree con-
tains 1 + n+ n(n− 1) + ...+ n! nodes and n! leafs. Its height is of n.

4.3.2 Exploration strategy

Different search strategies exist in the branch-and-bound literature, they are de-
scribed in Morrison et al. (2016). In this preliminary study, we use a depth-first
search.
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Figure 4.4: Tree structure for an instance of 4 operations. The subsequence represented by a node
and the sequence represented by a leaf are explicited.
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There are 3 scenarios where a node is pruned:

(1) The actual node is a leaf: in this case the node is representative of a giant
sequence and split is applied. The upper bound is updated if split returns a
better solution.

(2) The lower bound in the actual node is greater than the upper bound: in this
case, this node (and all its descendants) is pruned. We cannot improve the
upper bound solution from this node.

(3) The actual node is unfeasible: the subsequence cannot be respected, it can be
detected thanks to the split-based lower bound procedure (Theorem 4.3.2)

4.3.3 Split-based lower bounding technique

Each node is representative of a subsequence of operations. If the node is of depth
h, the subsequence contains h operations.

Let’s consider a node of depth h. We denote the subsequence of operations at
this node by :

δ = (δ1, δ2, ..., δh)

In order to compute a lower bound, we complete this subsequence with fictious
operations γh+1, ..., γn that are not included in the operations set. As a result of
this, we get the giant sequence:

δh = (δ1, δ2, ..., δh, γh+1, ..., γn)

Then, the lower bound is computed by performing the following steps :

(1) Build up the graph H̃I(δh) as follows:

H̃I(δh) has the same set of vertices and the same set of arcs than HI(δh), the
arc weights are however modified as follows:

c̃i,j =



ci,j If j ≤ h⌈∑h
k=i+1 dk+

∑h−1
k=i+1 tk,k+1+min th,.+min t.,i+1+dtmin(j−h)

C

⌉
If j > h and j > i+ 1⌈

minδ d.
C

⌉
If j > h and j = i+ 1

such that:

• min th,. = mink∈N−{h}th,k
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• min t.,i+1 = mink∈N−{i+1}tk,i+1

• dtmin(j − h) = minj−hδ d. +minj−h−1δ t.,. such that:

– minδ d. = mink∈N−{δ1,δ2,...,δh}dk

– minj−hδ d. is the sum of the j − h smallest completion times among
N − {δ1, δ2, ..., δh}.

– minj−h−1δ t.,. is the sum of the j − h− 1 smallest setup times among
{ta,b; a, b ∈ N − {δ1, δ2, ..., δh}}.

(2) Run the split algorithm in H̃I(δh)

Inclusion, exclusion and accessibility constraints are considered between opera-
tions within {δ1, δ2, ..., δh}. No inclusion, exclusion or accessibility constraints in-
volving operations within {γh+1, ..., γn} are considered

Theorem 4.3.1. Let s be the solution cost obtained when applying split in

H̃I(δ1, δ2, ..., δh, γh+1, ..., γn)

then s is a lower bound for all solutions obtained from node n.

Proof. Let f be a leaf node obtained from the node n. Let ω be the giant sequence
that f is representative of. Necessarily, ω starts with δ1, δ2, ..., δh.

We put:
ω = δ1, δ2, ..., δh, δh+1, ..., δn

The graphs H = H̃I(δ1, δ2, ..., δh, γh+1, ..., γn) and H′ = HI(ω) are isomorphic.
Besides, since edge weight is a non-decreasing function with respect to processing
times and setup times, for any edge (i, j) in H and its corresponding edge (i′, j′) in
H′, we necessarily have:

c̃i,j ≤ ci′,j′

Consequently any path in H has a smaller cost than its corresponding path in H′
and the application of split in H gives a lower bound.

Theorem 4.3.2. Let s be the solution cost obtained when applying split in

HI(δ1, δ2, ..., δh, γh+1, ..., γn)

then: s = +∞ if and only if the subsequence δ1, δ2, ..., δh is incompatible with respect
to I
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Proof. It is already known from the split algorithm that : s = +∞ if and only
if the subsequence δ1, δ2, ..., δh, γh+1, ..., γn is incompatible with respect to I. Since
operations γh+1, ..., γn does not intervene in any inclusion, exclusion, accessibility or
precedence constraints; we necessarily have (δ1, δ2, ..., δh, γh+1, ..., γn) incompatible
with respect to I if and only if (δ1, δ2, ..., δh) is incompatible with respect to I.

Remark 9. Split is applied in each node of the tree to obtain a lower bound. A new
auxiliary graph must be built in each node. To accelerate the process, only parts of
the graph that are subject to change are reprocessed.

4.4 Conclusion
We have described in this chapter, two methods based on split to solve the RTLBP,

the RALBP-2 and the SDRALBP-2:

• An split-based mataheuristic: a giant sequence is used to decode a solution
while split is used as decoding procedure in a metaheuristic. We proved that
this encoding-decoding technique significantly reduces the search space and
preserves an optimal solution. This method will be investigated in the exper-
imentation section for the RTLBP, the RALBP2 and for the SDRALBP-2. It
has been published in (Lahrichi et al. (2020a)) and (Lahrichi et al. (2020c)).

• An split-based branch and bound: split is used to compute a lower bound in
a branch and bound algorithm. It is still a preliminary work. First results for
the RTLBP are given next.

Next chapter is devoted to computer experiments. The suggest methods in this
chapter as well as BFSL (chapter 2) and the ILPs (chapter 1) are tested on instances
taken from literature. The focus will be made on the split-based metaheuristic. We
consider it is the major contribution of this thesis since it introduces a rupture
in relation to literature where only heuristics or exponential decoders are used to
decode a giant sequence.
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5.1 Introduction
We conduct in this chapter experiments in order to evaluate the methods sug-

gested in the thesis. We note that our code is available online at the following link:
https://github.com/YoussefLahrichi.

The chapter is organized as follows:

• We first consider reconfigurable transfer lines:

– The literature instances are presented. There are small-size and big-size
instances.

– The ILP and the branch and bound algorithm are evaluated on small-size
instances.

– The heuristics H-BFSL and H-SFBL both intended to build a feasible
solution are evaluated and compared.

– The matheuristic M-BFSL and the split-based metaheuristic are evalu-
ated and compared with a genetic algorithm from literature on big-size
instances.

• Robotic Assembly Lines:

– The literature instances are presented. There are instances without setup
times (RALBP-2) and instances with non-null setup times (SDRALBP-
2).

– On instances without setup times (RALBP-2), the split-based meta-
heuristic is evaluated and compared with two resolution approaches from
literature: a metaheuristic and a branch and bound algorithm.

– For instances with non-null setup times (SDRALBP-2), the only pub-
lished method in literature assumes "only one robot per type". The later
gives an upper bound for the split-based metaheuristic.

The experiments were held on a computer equipped with a 16GB RAM i7-4790
CPU. We used JAVA 8 to implement the algorithms. IBM’s CPLEX (v12.7.0) is
used to solve the ILP of the RTLBP and the ILP from H-BFSL.

5.2 Reconfigurable Transfer Lines
We recall that the Reconfigurable Transfer Line Balancing problem is concerned

with minimizing the number of machines.
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In this section, we first present the instances, then the results for exact methods
(ILP and branch and bound), the heuristics, the matheuristic and the split-based
metaheuristic.

5.2.1 Instances

We consider two types of instances from literature: small-size instances and large-
size instances.

5.2.1.1 Small-size instances

The small-size instances are taken from Essafi et al. (2010), they are organized
within three classes depending on their Scholl density. The Scholl density allows to
measure the density of the precedence graph: ds =

2∗100∗
∑
i∈N |Pi|

n∗(n−1) , where Pi denotes
the predecessors of operation i. All the instances contain 14 operations, they are
organized as follows:

• (p14-10-1)-(p14-10-10) are low-density instances. Scholl density is within
[5,15].

• (p14-25-1)-(p14-25-10) are medium-density instances. Scholl density is within
[15,25].

• (p14-40-1)-(p14-40-10) are high-density instances. Scholl density is within
[25,40].

The set of 30 instances are all feasible except p14-10-3.

5.2.1.2 Large-size instances

The large-size instances are taken from Borisovsky, Delorme, and Dolgui (2013).
They have the following characteristics:

• Number of operations: n = 200

• Maximum number of workstations: smax = 25

• Maximum number of operations per workstation: Nmax = 10

• Maximum number of machines per workstation: Mmax = 5

• Cycle time: C = 50

• Processing times: di ∈ [1, 10]

• Setup times: ti,j ∈ [0, 2]
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• Number of precedence constraints: |P | ∈ J50, 70K

• Number of inclusion and exclusion sets: |I|, |E| ∈ J7, 15K

• Number of possible part-fixing positions: |Pos| = 7.

The 15 instances are noted from A1 to A15.

5.2.2 Exact methods

The results of the ILP and the branch and bound are given in Table 5.1, Table
5.2 and Table 5.3. The notations used in the tables are as follows:

• ds: Scholl density.

• B&B: optimal objective value, i.e. the number of machines. It is obtained
thanks to the split-based branch and bound.

• zlb: the lower bound described in the first chapter (subsection 1.3.2.4).

• ILP: objective value given by the ILP out of 10.000 seconds at most.

• ILP time: CPU time (in seconds) needed to give the optimal solution or 10.000
seconds if the ILP cannot find the optimal solution.

• ILP GAP (%): optimality GAP given by CPLEX. It could be interpreted as
the distance from optimality.

• B&B time: CPU time (in seconds) needed by the Branch and bound to ter-
minate and obtain an optimal solution.

Table 5.1: ILP on small low-density instances.

Instance ds zlb ILP ILP time ILP Gap B&B B&B time

p14-10-1 8.76 9 11 4512 0 11 1372
p14-10-2 9.89 8 10 9558 0 10 79
p14-10-4 9.89 9 10 10000 17.04 10 809
p14-10-5 9.89 8 11 10000 26.06 11 940
p14-10-6 9.89 8 11 10000 25.29 10 256
p14-10-7 9.89 8 9 1482 0 9 374
p14-10-8 12.08 9 11 9491.69 0 11 147
p14-10-9 9.89 9 10 1021 0 10 374
p14-10-10 8.79 8 9 10000 0 9 269
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Table 5.2: ILP on small medium-density instances.

Instance ds zlb ILP ILP time ILP Gap B&B B&B time

p14-25-1 16.48 8 10 7336 0 10 598
p14-25-2 21.97 8 10 406 0 10 93
p14-25-3 21.97 8 10 585 0 10 74
p14-25-4 18.68 9 10 1543 0 10 27
p14-25-5 19.78 8 11 511 0 11 213
p14-25-6 25.27 8 10 498 0 10 13
p14-25-7 18.68 9 10 2772 0 10 51
p14-25-8 20.87 9 9 1822 0 9 31
p14-25-9 23.07 8 10 636 0 10 52
p14-25-10 17.58 8 10 2658 0 10 36

Table 5.3: ILP on small high-density instances.

Instance ds zlb ILP ILP time ILP Gap B&B B&B time

p14-40-1 36.26 8 11 229 0 11 2
p14-40-2 29.67 7 9 1778.32 0 9 15
p14-40-3 24.17 8 10 4006 0 10 163
p14-40-4 29.67 8 10 322 0 10 41
p14-40-5 26.37 8 10 838 0 10 30
p14-40-6 38.46 8 10 104 0 10 6
p14-40-7 26.37 7 9 1368 0 9 12
p14-40-8 26.37 8 9 491 0 9 13
p14-40-9 27.47 8 10 333.97 0 10 20
p14-40-10 29.67 8 9 409 0 9 10

The following conclusions can be drawn from the tables:

• ILP solves 26 instances out of 30. We remark that an optimal solution is found
for all the instances except p14-10-6.

• The branch and bound algorithm solves all the 30 instances within much
smaller CPU times than the ILP.

• We notice that the ILP and the B&B perform better on instances with higher
density. This can be understood since constraints reduce the combinatorics of
the problem.
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• We may not compare the ILP results with the ILP from Essafi et al. (2010)
since the solver technology has evolved since this publication. However, for
information, we note that in this latter publication only 17 out of 30 instances
have been solved to optimality.

• The computation times are quite high for such small instances which leads us
to consider hybrid methods to tackle larger instances.

5.2.3 Heuristics

We have suggested in the thesis two heuristics to compute a feasible solution for
the RTLBP, namely:

• H-BFSL is an approximation algorithm of type Balance-First Sequence-Last.
The balancing subproblem is solved thanks to an ILP then the sequencing
subproblem is solved thanks to dynamic programming. The two steps are
iterated thanks to a dynamic programming algorithm.

• H-SFBL is a split-based heuristic of type Sequence-First Balance-Last. A
compatible giant sequence is computed at first, then split is used to obtain a
solution.

The two precedent heuristics are not meant to be used as standalone resolution
approaches and are only used as construction methods. We evaluate in this subsec-
tion the ability of the heuristics to compute a starting feasible solution in reasonable
CPU time.

We first run the two heuristics on the instances: (p14-40-1)-(p14-40-10). Table
5.4 shows the results.

We indicate in the table the objective values and the CPU times (in seconds) of
H-BFSL and H-SFBL denoted respectively by # machines and time. H-BFSL is an
iterative algorithm, #iter indicates the number of iterations needed by H-BFSL to
converge, i.e. the number of constraints that has been added to the relaxed ILP.
B&B indicates the objective values of the optimal solutions.
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Table 5.4: Performance of heuristics H-BFSL and H-SFBL.

H-BFSL H-SFBL

Instance B&B # machines time #iter # machines time

p14-40-1 11 12 1.75 3 12 0.2
p14-40-2 9 12 0.39 1 10 0.2
p14-40-3 10 11 5.06 7 10 0.2
p14-40-4 10 12 0.77 2 11 0.2
p14-40-5 10 10 1.35 4 10 0.1
p14-40-6 10 11 0.30 2 11 0.2
p14-40-7 9 11 0.21 1 9 0.2
p14-40-8 9 10 0.86 2 9 0.2
p14-40-9 10 11 0.70 1 12 0.2
p14-40-10 9 12 0.85 1 10 0.2

We can infer the following from Table 5.4:

• Both heuristics are able to find a feasible solution for the ten instances within
reasonable computation time.

• CPU time of H-SFBL is apparently lower than that of H-BFSL. Much of the
CPU time of H-BFSL comes from the resolution of the relaxed ILP from the
balancing step.

• Few iterations are needed by H-BFSL to converge. This tendency will be
approved by the results on large-size instances.

• Even if H-BFSL is a 2-approximation algorithm, it seems that the solutions
given by H-SFBL are of lower objective value than those of H-BFSL. We
cannot conclude however that H-SFBL gives a better starting solution for a
metaheuristic compared to H-BFSL.

• H-SFBL can retrieve an optimal solution for 4 instances out of 10. It may
be seen as a good score for an heuristic but also justifies the use of some
metaheuristic-based improvement methods (next subsection).

We run the heuristics H-BFSL and H-SFBL on large-size instances. Table 5.5
shows the results. The objective value (# machines) is given for both BFSL and
SFBL. Regarding H-BFSL, the best solution out of 1200 seconds is taken from the
integer linear programming solver (Balancing step). The sequencing step time is neg-
ligible in comparison with the balancing step. Regarding H-SFBL, 10 independent
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runs are performed since the method is stochastic. The objective value correspond-
ing to the first random seed is given in # machines. This solution will be used to
initiate the experiments in the following subsection (split-based metaheuristic). The
mean and the standard deviation of the objective value over 10 independent runs
are given in Mean and Std deviation.

Table 5.5: Performance of heuristics H-BFSL and H-SFBL on big-size instances.

H-BFSL H-SFBL

Instance # machines #iter # machines Mean Std deviation

A1 42 1 37 39.3 1.41
A2 30 1 39 38.5 1.68
A3 37 1 38 39.1 1.29
A4 35 1 38 37.8 1.24
A5 42 1 41 39.4 1.74
A6 44 1 41 38.9 1.3
A7 46 1 41 39.9 1.13
A8 38 1 38 38.6 1.2
A9 39 1 40 38.5 1.36
A10 42 1 41 40.5 0.92
A11 37 1 40 38.6 0.79
A12 41 1 40 39 0.77
A13 45 1 38 40.4 1.56
A14 36 1 39 38.8 1.24
A15 38 1 39 39.2 0.74

The following conclusions can be drawn from the table:

• H-BFSL is able to find a feasible solution for all the instances within 1200
seconds. Besides, I-BSFL converges within a single iteration for these large-
size instances: the set-up times are low (compared to the processing times)
and homogeneous, which makes the estimate (given by the relaxed model) of
good quality.

• H-SFBL can compute a starting compatible giant sequence for all the instances
and for all the 10 random seeds used. Besides it converges in less than 1 min
for most instances and random seeds.

• In regards to the comparison of objective values between H-BFSL and H-SFBL,
no clear tendency could be inferred. However, we give a clear advantage to
H-SFBL due to the relatively low CPU time.

• The mean and low standard deviation demonstrate the robustness of H-SFBL.
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We use H-BFSL as the initial solution for M-BFSL because chronologically, we
developed the BFSL type approaches first and it was only in the second part of the
thesis that we developed the split-based approaches. H-SFBL is used as the initial
solution for the split-based metaheuristic.

5.2.4 Metaheuristics

We experiment the matheuristic M-BFSL and the split-based metaheuristic on
the large-size instances. We also compare those methods with a genetic algorithm
from literature: Borisovsky, Delorme, and Dolgui (2013).

5.2.4.1 M-BFSL

Starting from the initial solution given by H-BFSL, the improvement phase (M-
BFSL) is performed with different values of δ (number of iterations for each tem-
perature). The different parameters are determined experimentally:

• Initial temperature is set to 10 and the decreasing scheme is as follows:{
T = T − 0.0036 If T > 1
T = T − 0.0004 Otherwise.

• Initial weights w1, w2, w3 of the neighborhood moves V1 (insertion), V2 (merger),
V3 (split move) are set to 1, then they are increased by adding one if the as-
sociated neighborhood move yields a neighbor improving the best recorded
solution.

• We perform δ iterations for each temperature (inner loop). Experiments are
done with different values of δ, δ = 1, 20, 50, 100. For δ = 1, it is an inhomo-
geneous simulated annealing.

Results are given is Table 5.6, Table 5.7, Table 5.8 and Table 5.9 with respectively
δ = 1, δ = 20, δ = 50 and δ = 100. Since M-BFSL is stochastic, 10 independent
runs are performed.

We use the following notations in the tables:

• Min: minimum number of machines obtained by the matheuristic over 10
independent runs.

• Max: maximum number of machines obtained by the matheuristic over 10
independent runs.
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• Mean: average number of machines obtained by the matheuristic over 10 in-
dependent runs.

• σ: Standard deviation of the number of machines obtained by matheuristic
over 10 independent runs.

• GA: best solution (with the minimum number of machines) obtained by the
genetic algorithm (Borisovsky, Delorme, and Dolgui (2013)) over 10 indepen-
dent runs. The algorithm uses a giant sequence to encode a solution. Either
an heuristic or a MIP is used to decode it.
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We notice from Tables 5.6, 5.7, 5.8 and 5.9 that increasing δ has an impact on the
objective values. Indeed, we notice that when δ increases, the min, max, mean and
standard deviation values get smaller. However, the improvement of results is at the
expense of CPU time. Indeed, experiments with δ = 1 (inhomogeneous simulated
annealing) only take 25 seconds of CPU time for each instance while experiments
with δ = 100 (100 iterations for each temperature) takes about 3000 seconds for
each instance.

Small values of the standard deviation (usually smaller than 1) demonstrate the
robustness of the proposed method.

Table 5.10 shows the average probability distributions of the neighborhood moves
(V1, V2, V3) after the run of the proposed matheuristic. The probability distributions
are denoted by (w1, w2, w3).

Table 5.10: Average probability distributions of neighborhood moves after the run of the proposed
matheuristic

w1, w2, w3

Inst. δ = 1 δ = 20 δ = 50 δ = 100

A1 (0.75, 0.16 , 0.08) (0.76, 0.17 , 0.07) (0.78, 0.15, 0.07) (0.78, 0.14 , 0.07)
A2 (0.35, 0.33, 0.33) (0.38, 0.33, 0.29) (0.39, 0.33, 0.28) (0.41, 0.33, 0.26)
A3 (0.49, 0.38, 0.13) (0.60, 0.29, 0.11) (0.61, 0.29, 0.10) (0.61, 0.29, 0.10)
A4 (0.58, 0.26, 0.15) (0.64, 0.24, 0.12) (0.65, 0.23, 0.12) (0.67, 0.21, 0.12)
A5 (0.76, 0.16, 0.08) (0.79, 0.14, 0.07) (0.78, 0.15, 0.07) (0.81, 0.12, 0.06)
A6 (0.77, 0.16, 0.07) (0.80, 0.14, 0.06) (0.80, 0.14, 0.06) (0.80, 0.14, 0.06)
A7 (0.80, 0.14, 0.04) (0.82, 0.12, 0.06) (0.83, 0.11, 0.06) (0.83, 0.11, 0.05)
A8 (0.64, 0.23, 0.13) (0.66, 0.23, 0.10) (0.69, 0.20, 0.10) (0.67, 0.23, 0.10)
A9 (0.57, 0.33, 0.10) (0.60, 0.32, 0.08) (0.60, 0.31, 0.08) (0.61, 0.31, 0.08)
A10 (0.78, 0.11, 0.10) (0.80, 0.11, 0.09) (0.79, 0.12, 0.08) (0.82, 0.09, 0.08)
A11 (0.56, 0.31, 0.13) (0.65, 0.25, 0.10) (0.65, 0.25, 0.10) (0.67, 0.23, 0.09)
A12 (0.54, 0.36, 0.10) (0.60, 0.32, 0.08) (0.61, 0.31, 0.08) (0.63, 0.29, 0.08)
A13 (0.77, 0.16, 0.06) (0.80, 0.14, 0.06) (0.80, 0.14, 0.06) (0.81, 0.13, 0.05)
A14 (0.39, 0.46, 0.16) (0.47, 0.41, 0.13) (0.45, 0.43, 0.12) (0.49, 0.39, 0.11)
A15 (0.51, 0.37, 0.12) (0.59, 0.31, 0.10) (0.62, 0.29, 0.10) (0.60, 0.31, 0.09)

Initially, the neighborhood moves have the same probability to be chosen in the
balancing perturbation. Table 5.10 shows that the neighborhood move V1 has the
greatest probability to be chosen then V2. The probability of V3 is close to 0.
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Since in our algorithm the probabilities are only increased if the neighborhood move
yields a neighbor strictly improving the best recorded solution, the table shows that
neighborhood move V1 then V2 are the most efficient for improving a solution. V3
almost never improves a solution, its purpose is above all to introduce diversity into
the search process.

Table 5.11 compares the performance of the suggested matheuristic with the ge-
netic algorithm from literature (Borisovsky, Delorme, and Dolgui (2013)). In this
last, only the minimum cost over 10 independent runs is reported. Therefore, we
report the min over 10 independent runs of the proposed matheuristic for different
values of δ.

Table 5.11: Comparison between the matheuristic and the genetic algorithm of the literature

GA (min) H-BFSL M-BFSL (min)

Instance δ = 1 δ = 20 δ = 50 δ = 100

A1 33 42 29 26 27 26
A2 33 30 28 26 25 25
A3 31 37 27 26 25 25
A4 29 35 28 25 25 25
A5 32 42 29 26 26 25
A6 32 44 28 26 25 25
A7 34 46 30 28 26 27
A8 31 38 30 27 27 27
A9 30 39 28 26 26 26
A10 32 42 31 29 28 28
A11 30 37 29 26 25 25
A12 31 41 30 27 26 27
A13 33 45 31 28 27 27
A14 31 36 29 27 26 26
A15 33 38 29 26 26 25

Table 5.11 gives a clear advantage to the proposed matheuristic compared to the
genetic algorithm of the literature Borisovsky, Delorme, and Dolgui (2013). Indeed,
H-BFSL usually gives a solution of superior objective value compared to the genetic
algorithm but this solution is rapidly improved with the M-BFSL. The results of the
genetic algorithm are already outperformed with δ = 1 which runs in 25 seconds.
With δ = 100 (3000 seconds), the improvement is even more drastic compared to
literature and approaches 20% for some instances. Besides, even the max is lower
than the min of GA for some instances.
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However, we must note that this very advantageous results are obtained at the
expense of CPU time. Indeed, the genetic algorithm runs in 900 seconds whereas
the constructive phase (H-BFSL) runs in 1200 seconds and the improvement phase
CPU time varies from 25 seconds (for δ = 1) to 3000 seconds (for δ = 100) as
shown in Table 5.12. The proposed matheuristic has a greater CPU time than
the genetic algorithm from literature because it embeds several components from
mathematical programming (integer linear programming, constraint generation and
dynamic programming). These components are an important source of the good
performance of the proposed method. Table 5.12 reports the average CPU times of
the algorithms.

Table 5.12: Average approximate CPU times on A1-A15 instances (in seconds)

Algorithm Average approximate CPU time

H-BFSL 1200
Improvement phase with δ = 1 25
Improvement phase with δ = 20 1000
Improvement phase with δ = 50 1700
Improvement phase with δ = 100 3000
Genetic algorithm from literature 900

We summarize the conclusions drawn from the experiments relative M-BFSL as
follows:

• H-BFSL can compute a feasible solution for all the big-size instances within
1200 seconds (at most).

• As expected, the higher number of iterations we perform for each temperature,
the better results we get.

• The insertion move gives better results than the merger and the split moves.
However, we believe that the merger and the split moves offer two additional
degrees of freedom and prevent to be stuck in a local optimum.

• The proposed method is robust since the standard deviation is low.

• Significantly better results are obtained compared to the genetic algorithm
from literature.

5.2.4.2 Split-based ILS

We present in this section the split-based iterated local search. The same set of
instances than previously is considered.
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Tables 5.13 and 5.14 show the results of the split-based ILS with different con-
figurations. ILS(x,y) means x iterated local searches of y iterations each (i.e. y
neighbors visited in each local search). Starting from an initial compatible giant
sequence, 10 independent runs of the iterated local search are performed. In these
tables, min refers to the minimum number of machines obtained by the split-based
ILS over 10 independent runs. This columns allows to compare with the genetic
algorithm from the literature, because in this last only the min is reported. The
maximum, mean and the standard deviation (denoted σ) are also given.
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Table 5.13 shows 3 configurations of the ILS with 100 iterated local searches. The
number of iterations in the local searches varies from 500 to 2000. Clearly, with a
fixed number of local searches, increasing the number of iterations in the local search
leads to improving the results (min, max, mean and standard deviation decreases).

The idea of Table 5.14 is to investigate the behavior of the ILS when running for
a long time by running ILS(100,10’000) and ILS(1’000,1’000). ILS(100,10’000) is
giving the best results when compared with all the configurations, but it requires
also a large CPU time: 5000". ILS(100,10’000) outperforms ILS(1’000,1’000) de-
spite ILS(1’000,1’000) taking more time to run: 6000". The table also contains
a configuration with small x and y (ILS(50,100)) to investigate the quality of the
solution when the number of iterations is low. This configuration runs in 250" and
already outperforms the algorithm of the literature. From Tables 5.13 and 5.14,
we notice that the standard deviation is very low (almost always below 0.5) which
demonstrates the robustness of the proposed method.

Table 5.15 compares the results obtained by the split-based ILS with the genetic
algorithm from literature.

Table 5.15: Performance of split-based metaheuristic vs literature.

Genetic algo. of the literature Split-based ILS

Instance after 900" of execution time after 250" after 1000" after 5000"

A1 33 30 29 28
A2 33 27 27 26
A3 31 29 27 26
A4 29 28 27 26
A5 32 29 28 27
A6 32 29 27 26
A7 34 30 29 28
A8 31 29 29 28
A9 30 28 27 27
A10 32 31 30 29
A11 30 28 27 26
A12 31 30 29 28
A13 33 30 29 28
A14 31 29 28 27
A15 33 28 28 27

In the column denoted "Split-based ILS", the best result out of 10 independent
runs is reported. Three configurations are reported: ILS(50,500) (running in 250”),
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ILS(100,1’000) (running in 1000") and ILS(100,10’000) (running in 5000"). Despite
the genetic algorithms runs in 900", a clear improvement is already observed from
250" of execution time of the split-based ILS.

Table 5.16 reports the CPU time of the different algorithms. We notice that the
perturbation takes about 9% of the total computation time of the ILS.

Table 5.16: Approximate CPU times of the algorithms with different configurations.

Configuration Average time

ILS(50,500) 250"
ILS(100,500) 450"
ILS(100,1’000) 1000"
ILS(100,2’000) 1300"
ILS(100,10’000) 5000"
ILS(1’000,1’000) 6000"
Genetic algo. of the literature 900"

The split-based ILS performs better than a genetic algorithm from literature. It
can be due to the reduction of the space search allowed by split. We develop the
same type of methods for RALBP-2 and SDRALBP-2 in the next section.
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5.3 Robotic Assembly lines
We present in this section experiments relative to the split-based ILS for the

RALBP-2 and the SDRALBP-2. We are content to authorize the selection of the
same type of robots to multiple workstations as it is done in Nilakantan et al. (2015)
and Borba, Ritt, and Miralles (2018). We recall that the objective is to minimize
the cycle time.

5.3.1 RALBP-2

We first experiment the split-based ILS for the RALBP-2 on instances taken from
literature. The objective to be optimized is the cycle time and sequence-dependent
setup times are null.

5.3.1.1 Instances

We take the instances for RALBP-2 from Gao et al. (2009). The set of instances
contain small-size, medium-size and big-size instances. The number of operations
varies from n = 11 to n = 148. For each number of operations, different number of
types of robots are considered.

The considered instances were used by two recent studies in literature about
RALBP-2:

• Nilakantan et al. (2015): the authors suggest sophisticated bio-inspired meta-
heuristics: Particle swarm optimization and an hybrid cuckoo search-PSO. A
solution is represented thanks to giant sequence, the consecutive assignment
procedure from Levitin, Rubinovitz, and Shnits (2006) is used to decode a
solution. Compared to split, the procedure has the disadvantage of not be-
ing polynomial. A special attention will be paid to the comparison with this
method in order to prove the relevance of using split as a decoding procedure
in a metaheuristic.

• Borba, Ritt, and Miralles (2018): the authors suggest a branch and bound and
remember algorithm. The suggested exact method tends to be very efficient
since many instances are optimally solved.

5.3.1.2 Split-based ILS

The experiments relative to RALBP-2 are shown on Table 5.17. The following
notations are used in the table:

• Nilakantan et al. (2015): obtained objective value C (cycle time) in Nilakantan
et al. (2015).
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• Borba, Ritt, and Miralles (2018): obtained cycle time in Borba and Ritt
(2014).

• LS: obtained cycle time with a split-based stochastic local search where 10 000
neighbors are visited.

• ILS: obtained cycle time with a split-based ILS of 10 iterated local searches
where 10 000 neighbors are visited in each.
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The two following conclusions can be drawn from the table:

• Compared to Nilakantan et al. (2015), we obtain far better solutions even with
the simple split-based local search (LS). This result is even more pronounced
for the split-based ILS (ILS).

• Even if the split-based ILS is only an approximate method, it can retrieve
many optimal objective values obtained by Borba, Ritt, and Miralles (2018).

• The split-based ILS (ILS) gives better results than the split-based local search
(LS) at the expense of 10 times higher CPU time.

The CPU times needed to obtain LS are comparable to those of Nilakantan et al.
(2015). The CPU time is proportional to the number of neighbors visited. It barely
equals to 10’000 times the CPU time needed to perform a single split run for LS
and 10 times more for ILS. For instances with n = 11 to n = 70, the CPU times are
quite reasonable, less than 5 microseconds are necessary to run the split algorithm.
We notice that the CPU times grow then drastically when increasing the value of
n but remain reasonable up to n = 148. For n = 148 and nr = 29, 0.1 seconds is
needed to perform a single split run. For instances with n = 297, this value can rise
up to 1.7 second for the biggest values of nr.

In conclusion, the split-based local search and the split-based ILS outperform
metaheuristics from literature (Nilakantan et al. (2015)) and retrieve many optimal
objective values obtained with a latest exact method from literature (Borba and Ritt
(2014)). This demonstrates the relevance of using split as a decoding procedure in a
metaheuristic instead of existing decoding procedures. split is very fast for instances
with n = 1..70 (small instances) and reasonably fast for instances with n = 89..148
(medium and big instances). However, for very big instances (n = 297) and high
number of possible robots, the CPU times of the split algorithm exceeds one second
which limits the number of neighbors that can be visited in some metaheuristic.

5.3.2 Sequence-dependent Robotic Assembly Line Balancing
Problem-2

We now experiment the split-based ILS for the Sequence-dependent Robotic As-
sembly Line Balancing Problem-2 on instances taken from literature. The objective
to be optimized is always the cycle time and sequence-dependent setup times are
now considered.
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5.3.2.1 Instances

To the best of our knowledge, Janardhanan et al. (2019) is the only study pub-
lished in literature dealing with SDRALBP-2. The authors suggest a new set of
instances that are derived from the instances of Gao et al. (2009) by adding sequence-
dependent setup times.

Two classes of instances are considered (Janardhanan et al. (2019)):

• Instances with low setup times: they correspond to the instances of Gao et al.
(2009) to which setup times are added and generated randomly and uniformly
within [0, 0.25 ∗mini,rdi,r].

• Instances with high setup times: they correspond to the instances of Gao et al.
(2009) to which setup times are added and generated randomly and uniformly
within [0, 0.75 ∗mini,rdi,r].

Unfortunately, Janardhanan et al. (2019) suppose the assumption "only one robot
per type". Their method gives only an upper bound for our problem since they don’t
allow themselves to use a type of robot several times in different workstations.

5.3.2.2 Split-based ILS

The experiments relative to SDRALBP-2 are shown on Table 5.18. We present
there the results for low setup and high setup instances. We do not have the results
of Janardhanan et al. (2019) for instances with n ≥ 89.
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In addition to the conclusions made in the previous subsection, the following can
be inferred:

• The cycle time LS (and ILS) is much smaller than the cycle time from Ja-
nardhanan et al. (2019) for most instances. We can deduce from it that the
assumption allowing the use of the same robot type in multiple workstations
yields better efficiency.

• By comparing the cycle times between the instances without setup, with low
setup and with high setup, we can deduce that the consideration of sequence-
dependent setup times has a real impact on the cycle time. This justifies that
the sequence-dependent setup times cannot be negligible and should be taken
into consideration in the modeling/optimization step of the Robotic Assembly
Line Balancing Problem.

Experiments relative to the assumption "one robot per type" are presently being
held. The results could then be compared with Janardhanan et al. (2019).

5.4 Conclusion
We have tested in this chapter the suggested resolution approaches for the RTLBP,

the RALBP-2 and the SDRALBP-2.

Benchmark instances have been used for the experiments. Some results from the
literature have been improved, namely Borisovsky, Delorme, and Dolgui (2013) in
regards to the RTLBP and Nilakantan et al. (2015) in regards to RALBP-2.

We can conclude from the experiments the following:

• In regards to Reconfigurable Transfer Lines:

– The ILP can solve 26 out of the 30 small instances but the computa-
tion time is quite high. The branch and bound algorithm solved all the
instances within fewer CPU time.

– H-SFBL is more efficient that H-BFSL since it can find a feasible solution
for all the large-size instances within much fewer CPU time.

– Both the matheuristic M-BFSL and the split-based metaheuristic out-
perform a genetic algorithm from literature.

• In regards to robotic assembly lines:
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– In regards to RALBP-2, the split-based metaheuristic clearly outperforms
bio-inspired metaheuristics from literature and retrieve most optimal cy-
cle times values obtained by a branch and bound algorithm.

– Unfortunately, no existing method for SDRALBP-2 allows to evaluate
the split-based metaheuristic. Janardhanan et al. (2019) gives only an
upper bound. Experiments show that the obtained cycle times are far
below this bound.

All in all, using split as a decoding procedure in a metaheuristic tends to be
efficient for the RTLBP, the RALBP-2 and the SDRALBP-2.
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Conclusion and perspectives

General conclusion
Assembly line balancing problems were studied in the frame of this thesis. They

consist in assigning a set of operations to a set of workstations placed along a line
while respecting some constraints and minimizing some objectives. The problem is
old-rooted; however, few studies consider this problem jointly with the (operations)
sequencing problem and the (robot) selection problem.

We first studied the balancing and the sequencing problems jointly. Besides,
further industrial constraints and parallel workstations are also considered, which
led us to the Reconfigurable Transfer Line Balancing Problem (RTLBP) which is
an existing problem from literature.

Since two decision problems are involved, the following three types of approaches
have been proposed for this problem:

• Integrated approach: the balancing and the sequencing decisions are addressed
at the same time. For this type of approach, we have proposed an integer linear
programming model.

• Approaches of type BFSL (“Balance-First, Sequence-Last”): Lahrichi et al.
(2020b). The balancing decision is addressed at first. The operations are
afterwards sequenced in each workstation. We suggest an approximation algo-
rithm and a matheuristic of this type. The approximation algorithm performs
the balancing step by means of ILP and the sequencing step by means of
dynamic programming. The two steps are piloted thanks to a constraint gen-
eration algorithm. The matheuristic uses the previous heuristic to compute
an initial solution and improves it thanks to an adaptive simulated annealing.
The three different local search moves used disturb the balancing solution then
resequence the operations in the modified workstations.
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• SFBL-type approach (“Sequence First, Balance Last”): Lahrichi et al. (2020a).
It is the reverse approach of BFSL. The sequencing problem is solved at first
by giving a “giant sequence” of operations. This balancing problem is then
solved while respecting the giant sequence. Our main contribution is at the
level: a polynomial algorithm called “split” for the exact resolution of this
second subproblem. An iterated local search exploring the space of giant se-
quences is proposed where the split algorithm is used to construct and evaluate
the sequences. A split-based Branch and Bound algorithm has also been pro-
posed. The experiments carried out on benchmark instances show a clear
improvement compared to certain methods in the literature.

The last approach has been retained for the remainder of the thesis to tackle an
additional decision: the robot selection problem. In the context of robotic assembly
lines, the processing times and the sequence-dependent setup times depend on the
type of robot assigned to the workstation. We study the Robotic Assembly Line Bal-
ancing Problem-2 (RALBP-2) which includes the balancing decision and the robot
selection decision then the Sequence-Dependent Robotic Assembly Line Balancing
Problem-2 (SDRALBP-2) which includes in addition to the two previous decisions,
the sequencing decision. We consider the objective of minimizing the cycle time
with a given maximum number of workstations.

RALBP-2 and SDRALBP-2 have been studied under two different assumptions
identified in the literature:

• Many robots per type: in this assumption, we are given a set of types of
robots. Each type of robot can be assigned to multiple workstations without
any limitation.

• Only one robot per type: in this assumption, we are given a set of robots each
of which can be assigned to at most workstation.

We tackle RALBP-2 and SDRALBP-2 thanks to methods of type Sequence-First
Balance-And-Select-Last (SFBSL): Lahrichi et al. (2020c). This type of method
represents an extension of the Sequence-First Balance-Last type approach proposed
for the RTLBP. The split algorithm, intended to solve the particular case where
the sequence of operations is given, is adapted for robotic lines. A split-based
metaheuristic is suggested. The results on literature instances are positive.

For the three problems studied in the thesis, the major contribution is the split
algorithm. This algorithm solves the particular case of a fixed giant sequence relying
on the search for an optimal path in some auxiliary graph (Table 5.19). We note
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that the particular case has also been solved for other problems in the thesis, in
particular for SALBP-2.

Problem Underlying graph problem Time complexity
SALBP-2 Constrained min-max path O(n4)
RTLBP Constrained shortest path O(n4)

RALBP-1/SDRALBP-1 Shortest path O(n2)
RALBP-2/SDRALBP-2 Constrained min-max path O(n4)

Table 5.19: Underlying graph problems and complexity

The particular case of a fixed giant sequence is often encountered in literature
because it allows the reduction of the search space in a metaheuristic where a solution
is encoded by a giant sequence. The use of split makes it possible to preserve an
optimal solution.

To the best of our knowledge, this particular case has only been solved in the
past by means of heuristics (without performance guarantee) or mathematical model
(exponential complexity) in Borisovsky, Delorme, and Dolgui (2013) for the RTLBP.
The same observation is observed for RALBP-2, the corresponding particular case
was solved by an exponential method in Levitin, Rubinovitz, and Shnits (2006) and
Nilakantan et al. (2015).

Short-term perspectives
Given the results of the thesis, the following short-term perspectives can be con-

sidered:

• Further improvements of the methods:

Split has been proven to integrate well in quite simple metaheuristics. We
can investigate its embedding in more sophisticated metaheuristics. The tun-
ing of the metaheuristics can also be considered. We can also consider many
improvement tracks for the split-based Branch and bound algorithm. In par-
ticular, the search strategy of the graph can be improved. We are also thinking
about a tighter lower bound. Once improved, we consider to test it for bigger
instances and for the other problems.

• Assumption "one robot per type":

We have seen in Chapter 4, that when dealing with the assumption "one
robot per type", the polynomiality is lost. To overcome this issue, speeding-
up heuristics were suggested. An alternative solution could be to consider
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another vector representing a permutation of robots. Thus, a polynomial
algorithm can be obtained to compute the optimal solution respecting a given
giant sequence and a given permutation of robots. The two encoding schemes
can be compared.

• Multi-objective Robotic Assembly Line Balancing Problem:

Optimization of assembly line is often driven by two contradictory objectives,
namely the efficiency and the cost. The efficiency can be represented by the
cycle time while the cost can be expressed as a weighted sum of the number
of workstations and the cost of the robots used. In this case, we consider that
each robot r ∈ R has a cost cr. A bi-objective robotic assembly line balancing
problem is formulated this way. We prove that split can be applied to compute
the set of all Pareto optimal solutions corresponding to a given giant sequence.
The split is then embedded in a metaheuristic of type NSGA-II. This work is
part of an international collaboration with Assistant Professor Jordi Pereira
from Aldofo Ibañez University in Santiago, Chile.

Long-term perspectives
The following three long-term perspectives can be considered, they are justified

from an industrial point of view:

• In many situations, robots and human operators should cooperate to perform
some high added value operations. For this reason, the robotic assembly line
balancing problem should integrate human operators to be more realistic. This
consideration can bring new elements to the problem such as ergonomics.

• Robots can perform cutting-edge operations and bring considerable benefits
in the context of assembly lines. However, their energy consumption is quite
critical. It can be beneficial to investigate the considered balancing problems
with energetic considerations.

• Reconfigurability is a major issue in Industry 4.0. In that direction, we can
consider studying multiple products by investigating the re-balancing problem
taking place when the line should be re-balanced for a new product.
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