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Chapter 1

Synthèse en français

Il y a une vingtaine d’années, la physique atomique et moléculaire a été révolutionnée
par des avancées conceptuelles et technologiques majeures. Le développement de méth-
odes de refroidissement et de piégeage telles que le refroidissement Doppler ou les mélasses
optiques a permis de refroidir des atomes à des températures sans précédent, de l’ordre
du millikelvin. Récompensées par le prix Nobel de physique en 1997, les recherches de
Claude Cohen-Tannoudji, William Daniel Phillips et Steven Chu ont propulsé sur le de-
vant de la scène internationale le domaine de la physique atomique froide et ultrafroide.
Quelques années plus tard, des températures encore plus basses de quelques centaines
de nanokelvins ont été atteintes grâce au développement de nouvelles techniques de re-
froidissement telles que le refroidissement par évaporation.

Les premiers gaz de molécules dipolaires ultra-froides préparées dans leur état fonda-
mental rovibronique ont été formés dans les années 2000. Au travers des expériences, les
physiciens ont constaté que quelque soit le caractère réactif ou non des molécules, des
processus à courte portée conduisent à la perte des molécules. Des solutions doivent être
trouvées pour réduire ces processus de perte afin de pouvoir atteindre expérimentalement
les densités requises à la formation de gaz quantiques dégénérés. Les solutions dévelop-
pées sont regroupées sous le terme général d’écrantage. Elles sont basées sur le contrôle
des collisions par l’application de champs externes. Actuellement, il existe quatre méth-
odes principales pour réduire ces pertes à courte portée. La première méthode utilise des
réseaux optiques de différentes dimensions pour confiner les molécules loin les unes des
autres. La seconde méthode est l’écrantage par champ électrique statique. En appliquant
une valeur de champ électrique statique bien définie, on peut créer une barrière de po-
tentiel à longue portée dans la voie incidente en profitant des propriétés de l’interaction
dipôle-dipôle à longue portée. Les molécules sont alors maintenues éloignées les unes
des autres et protégées des pertes à courte portée. La troisième méthode est l’écrantage
par champ micro-onde. L’idée est également de contrôler les interactions dipôle-dipôle à
longue portée en appliquant un champ micro-onde polarisé circulairement. La dernière
méthode est l’écrantage optique, où le champ micro-onde est remplacé par un champ
optique. Le mécanisme repose alors sur le couplage d’états électroniques plutôt que sur
des états rotationnels.
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L’un des objectifs de cette thèse est de développer une méthode pour écranter des
molécules initialement préparées dans leur état rotationnel fondamental. Pour ce faire,
je vais suivre la méthode d’écrantage optique initialement développée pour des atomes et
l’adapter aux molécules. Un des défis est d’implémenter le champ électromagnétique dans
un formalisme indépendant du temps et de trouver les paramètres du champ (fréquence
et intensité) pour lesquels l’écrantage est efficace. Un deuxième objectif est de trouver des
solutions pour réduire les pertes à trois corps tout en maintenant un écrantage efficace à
deux corps. Avant de passer à l’étude des trois corps, je dois réduire autant que possible
la complexité du problème à deux corps, car le nombre d’états augmente considérable-
ment lorsqu’on passe à trois corps. Ensuite, je dois comprendre comment fonctionnent
les collisions à trois corps et comment les étudier. Il existe différentes coordonnées hyper-
sphériques, mais chacune présente des avantages et des inconvénients. Les coordonnées
les plus appropriées sont les coordonnées APH, car elles traitent toutes les configurations
atome-diatome de manière égale. En contrepartie, des termes divergents, également ap-
pelés singularités d’Eckart, apparaissent dans l’hamiltonien total. Ces termes divergents
sont très importants car s’ils ne sont pas traités correctement, des erreurs importantes
peuvent apparaître dans les résultats. Mon défi est de développer un code de collision
à trois corps utilisant ces coordonnées APH tout en traitant correctement tous les ter-
mes singuliers. Ensuite, je dois l’adapter et l’appliquer au cas de l’écrantage à trois corps.

Ce manuscrit sera séparé en deux parties. La première partie traite des techniques
d’écrantage appliquées aux collisions à deux corps. Le chapitre 3 passe en revue les
bases théoriques de l’étude des collisions ultra-froides entre deux molécules. J’explique
comment prendre en compte les pertes à courte portée et comment extraire les observables
dont j’ai besoin en utilisant la théorie de la matrice de diffusion S. Dans le chapitre 4,
j’applique ce formalisme pour décrire la méthode d’écrantage par champ micro-onde. Je
montre que le taux de perte peut être largement réduit en faveur du taux de collision
élastique pour un grand nombre de molécules dipolaires. Je présente également dans ce
chapitre une méthode permettant de contrôler la longueur de diffusion molécule-molécule
en ajustant l’intensité et la fréquence du champ micro-onde. Dans le chapitre 5, je montre
comment simplifier grandement l’étude de l’écrantage via le développement d’un modèle
simplifié. Je démontre que l’on peut obtenir des résultats similaires au calcul quantique
complet sous certaines conditions qui sont explicitement présentées.

La deuxième partie traite des collisions à trois corps. Le chapitre 6 présente le formal-
isme pour traiter les collisions en coordonnées hypersphériques. Je démontre comment
relier les différents types de coordonnées (Jacobi, Delves, Hypersphérique) et comment
traiter avec précision les singularités d’Eckart. Dans le chapitre 7, j’adapte ce formalisme
pour étudier la supression des pertes à trois corps. Dans le chapitre 8, je me concentre
sur les collisions Li+Li2 et utilise les résultats d’articles récents pour vérifier mon code à
trois corps. Enfin, je conclurai et donnerai quelques perspectives dans le chapitre 9.



Chapter 2

Introduction

About twenty years ago, atomic and molecular physics was revolutionized by major
conceptual and technological advances [1, 2, 3]. The development of cooling and trap-
ping methods such as Doppler cooling or optical molasses [4, 5] allowed to cool atoms
to unprecedented temperatures in the millikelvin range. Rewarded by the Nobel Prize
in Physics in 1997, the research of Claude Cohen-Tannoudji, William Daniel Phillips
and Steven Chu [4, 5, 6] has brought the field of cold and ultracold atomic physics to
the forefront of science. A few years later, even lower temperatures of a few hundred
nanokelvins were reached through the development of new cooling techniques such as
evaporative cooling [7].

When the velocity of a particle decreases, its wave function expands in space. Its
so-called de Broglie length, which provides an estimate of its spatial expansion, becomes
larger. When its value exceeds the mean distance between the particles in a gas, the
wave functions of the particles overlap and interfere. In this case, a classical description
of the system is no longer possible. Therefore, ultracold particles are ideal candidates
for testing quantum mechanics and validating phenomena that have been predicted for
many years. It is in this context that the first Bose-Einstein condensate [8, 9] and
the first degenerate Fermi gas [10] of atoms were produced. Nowadays, research has
been extended to the study of Rydberg atoms [11, 12, 13, 14, 15, 16, 17, 18], Rydberg
molecules [19, 20, 21, 22, 23, 24], ions [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] and
molecules [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. In this thesis, I will mainly focus on
diatomic molecules.

How to cool down atoms?

Laser cooling techniques applied to atomic ions and neutral atoms have been de-
veloped and improved over the past 40 years. Atoms can be cooled down to ultracold
temperatures by taking advantage of radiative optical forces. To illustrate this, consider
an atom moving toward a light source that is in resonance with a closed atomic transi-
tion. When the atom absorbs a photon, it receives a momentum kick in the direction
of propagation of the incident wave and is slowed down. The atom then de-excites by
spontaneous emission and is kicked back again, but this time in a random direction. After
a large number of absorption and emission cycles, the average recoil generated by the

17
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spontaneous emission is zero and does not affect the speed of the atom. However, as the
recoil due to the repeated absorption is always induced in the same direction, the atom
is slowed down. By adding three pairs of counter-propagating laser beams, one can cool
the molecules in all directions. These so-called optical molasses can be supplemented by
deeper cooling methods if necessary.

How to form ultracold molecules?

The previous cooling method is particularly complicated to transpose to molecules
because it is not easy to identify an appropriate level scheme to achieve a closed cycle
of absorption and emission. Indeed, once the molecules are excited, they desexcite in a
large number of vibrational states following the Franck-Condon principle [47]. A solution
would be to use a number of pumping lasers equivalent to the number of levels accessible
by spontaneous emission, but this is not experimentally reasonable. For most molecules,
new cooling methods have to be developed. Some direct methods [48] are based on
the production of supersonic beams obtained either by adiabatic expansion or cryogenic
processes and do not require any laser. Such beams can then be cooled by means of Stark
or Zeeman decelerators [49, 50, 51, 52]. However, these techniques only allow to reach
temperatures too far above the desired ultracold regime. In response to this problem,
the idea of producing molecules from initially ultracold atoms has emerged. Nowadays,
two subsequent methods are used to form ultracold molecules in a given internal state:

• The first is magneto-association [53, 54, 55] and is illustrated in Fig. 2.1 (Left). Two
atoms prepared in their ground state collide with a relative kinetic energy Ek (blue).
Consider a second potential energy curve (red) with a bound state (green) that is
energetically closed. By applying a magnetic field, one can bring the incident state
into resonance with the molecular bound state. If a coupling exists between the
two states, one can efficiently transfer the pair of atoms into the desired molecular
bound state by what is called a Fano-Feshbach resonance.

• The second method is called Stimulated Raman Adiabatic Passage (STIRAP) [36,
38, 39] which is illustrated in Fig. 2.1 (Right). Let us consider a system with
three levels: the first one |1〉 represents the initial continuum state, the second one
|2〉 is an intermediate state and the final one |3〉 represents in general the ground
rovibronic state. A first pumping laser couples the states |1〉 and |2〉, while a second
Stokes laser couples the states |2〉 and |3〉. With this method, one can completely
transfer the population from state |1〉 to |3〉 without ever populating state |2〉 by
precisely controlling the delay and the duration of the two lasers. In this way, all
the problems associated with spontaneous emission are avoided.

Note that historically, photo-association [56, 57, 58, 59] has been widely used in ex-
periments. However, the control of the final populated vibrational and rotational states
due to spontaneous emission is hard and not quite usable for most applications. Other
methods such as Sisyphus cooling [60, 61, 62], optoelectrical cooling [63, 64], direct laser
cooling [65, 66, 67] can work for some specific molecules but will not be discussed here.
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Figure 2.1: Left: Schematic view of the magneto-association method where Ek is the rel-
ative kinetic energy, B is a magnetic field and A and B are two initially separated atoms.
Right: Schematic view of the STIRAP method where Ωp and Ωs are the Rabi frequencies
of the pump and Stokes laser. The states |1〉, |2〉 and |3〉 correspond respectively to the
initial continuum state, an intermediate state and the final state.

How to trap ultracold molecules?

As molecules have similar light shifts to atomic ones, they can also be trapped with
optical dipole traps. That means we can benefit from the many years of experience and
improvement acquired during their development for atoms. If one apply a non-resonant
field on atoms, we induce a light shift on the atomic energy levels proportional to the
light intensity. Consequently, a force proportional to the light intensity gradient appears.
For a red detuned laser, the induced force attracts the atoms towards the maximum
intensity of the laser. If the beam is highly focused, the atom remains confined at the
focal point of the laser beam: this is the principle of optical tweezers [68, 69]. When two
continuous counter-propagating beams are used, a standing wave is formed. The atoms
immersed in this wave form a one-dimensional lattice [70]. If a second pair of lasers is
added along a second axis, the trapped atoms can only move along the unrestricted axis:
a two-dimensional pancake-shaped optical lattice is then created [71]. Finally, if a third
pair of lasers is added in the third spatial axis, the trapped atoms are completely confined
in a three-dimensional optical lattice [72]. It should be noted that laser frequencies must
be tuned far from any allowed transitions to avoid heating the atoms by recoil kicks.

There are many other types of traps, such as magnetic [73], electric [74] or magneto-
optical traps [75] which can trap molecules for several seconds. I will not go into details
but more sophisticated models [76, 77] have also been developed recently and allow much
longer trapping times, of the order of 60 seconds.

Short-range losses: a common issue for reactive and non-reactive molecules

The first gas of ultracold dipolar molecules prepared in their rovibronic ground state
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was realized by Ni et al. [36] at JILA in 2008. Through their experiments [36, 78, 38],
they showed that a large number of particles were lost due to the short-range exothermic
chemical reaction KRb + KRb→ K2 + Rb2 [79, 80, 81]. They confirmed that barrierless
reactive collisions occur when two reactants are sufficiently close to each other. In other
words, the loss rate coefficients are universal, i.e. they do not depend on the short-
range part of the potential (where molecules are lost with unit probability), but rather
on the long-range part. To illustrate this process, they placed the molecules in a three-
dimensional optical lattice with a distance between two sites large enough that molecules
could not chemically react. They showed that the lifetime of the gas was greatly improved
because short-range losses were strongly suppressed [82].

Nowadays, one of the main challenge is to reach the quantum degeneracy regime
which requires much higher densities than those existing in optical lattices. Non-reactive
molecules seem to be ideal candidates to obtain long-lived gases, since losses due to
reactive collisions no longer exist. This is why, many experiments have been initi-
ated to produce ultracold non-reactive dipolar molecules such as 87Rb133Cs [40, 43],
23Na40K [41, 83, 44, 45], 23Na87Rb [42, 84], 6Li23Na [85]. Unfortunately, short-range losses
with loss rate coefficients similar to those obtained with chemically reactive molecules
were observed. Some theoretical calculations [86, 87] later predicted, for non-reactive
molecules with a large density of Fano-Feshbach resonances around their collision thresh-
old, that the molecules could stick together and form a tetramer complex at short-range.
The exact way that tetramer complexes are lost remains an open question. A first hypoth-
esis is that the tetramer lifetime is long enough to lead to two-body collisions (between
a diatom and a tetramer) to occur and lead to losses. A second hypothesis suggested
by recent experiments [88, 89] and theoretical calculations [90, 91] proposed that the
complexes are lost due to trapping-laser-induced losses.

A solution to reduce short-range losses: the shielding

Whether the molecules are chemically reactive or not, solutions must be found to re-
duce these loss processes: the proposed solutions are grouped hereafter under the general
term of shielding. They are based on the control of collisions through the application of
external fields. The objective is to suppress the quenching (inelastic + loss) rate coef-
ficients in favor of the elastic ones. At present, there are four main methods to reduce
short-range losses:

• The first uses optical lattices of different dimensions to confine the molecules far
from each other [92, 93, 94, 95, 82]. This method has already proved its efficiency
experimentally but is not suitable to obtain degenerate quantum gases as explained
before.

• The second is the static electric field shielding [96, 97, 98]. By applying a magic
static electric field, one can create a long-range potential barrier in the incident
channel by taking advantage of the long-range dipole-dipole interaction properties.
The molecules are then kept far from each other and protected from short-range
losses. It has recently been proven that this technique works experimentally in a
two-dimensional gas [99] or not [100].
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• The third is the microwave shielding [101, 102, 103, 104, 105, 106]. The idea is
also to control the long-range dipole-dipole interactions by applying a circularly
polarized microwave field. A first experiment observed this phenomenon recently
on CaF molecules [107]. I have demonstrated that the control of the molecule-
molecule scattering length is also possible for a large range of molecules [103].
The control of this quantity is very important because it defines the stability and
lifetime of a degenerate quantum gas. Unlike atoms whose scattering length could
be controlled via Fano-Feshbach resonances, no method of scattering length control
existed before my investigations for molecules.

• The fourth is the optical shielding method [108] based on similar grounds, except
that the microwave field is replaced by an optical field and the mechanism relies on
excited electronic states rather than excited rotational states.

Now that shielding techniques have proven to be experimentally successful, the race
to create the first condensate has begun. In 2019, the JILA group produced the first
degenerate Fermi gas of dipolar molecules [109], paving the way of many-body studies in
the years to come.

Applications with ultracold molecules

Molecules have degrees of freedom (rotation, vibration) that do not exist in atoms.
These unique properties provide new interesting tools to control both their interactions
and their dynamics. These qualities make them ideal candidates for a wide range of
applications.

Once placed in optical lattices, the position of the molecules and thus the control of
their interactions can be finely tuned. The field of quantum simulations takes advantage
of this set-up for simulating complex N-body systems that are currently insoluble by
numerical simulations. With these studies, we can understand more deeply phenomena
of condensed matter physics, quantum magnetism or many-body physics [110, 111, 112,
113, 101, 114, 115, 116]. Moreover, the possibility to induce dipole moments via the
application of electric fields and therefore to control some long-range interactions opens
the way to the creation of different quantum gate schemes, notably used in quantum
computing [117, 118, 119, 120, 121, 122].

Thanks to major experimental advances such as the production of molecules in well-
defined states (with well defined collision energies, orientation, alignment, internal states)
and to major theoretical advances (the computation of accurate potential energy sur-
faces...), we can understand and follow every step of a chemical reaction. This is the
objective of cold and ultracold chemistry to accurately determine the initial reactants,
the intermediates states and the final products by calculating and measuring relevant
quantities such as cross sections and elastic/inelastic collision rate coefficients [123, 124,
125, 126, 127, 128, 37, 129, 130, 131]. Recently, the formation of a single molecule from
only two atoms trapped by optical tweezers has been observed [132].

Finally, ultracold molecules are excellent candidates for fundamental tests. The cool-
ing methods increase both the interrogation and coherence time of the molecules. They
also reduce the number of levels that can be thermally populated and thus increase
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the number of molecules in the state of interest. This allows one to realize very pre-
cise measurements with reduced uncertainties compared to hot molecules. This is why
ultracold molecules are used for testing temporal variations of fundamental constants
such as the fine structure constant or the mass ratio between the proton and the elec-
tron [133, 134]. Molecules, by their adjacent rotational states possessing opposite parities,
are well adapted for testing the violations of the P symmetry via the extraction of anap-
olar magnetic moment contributions [135]. Measurements on CP symmetry violations
are also carried out via the search for a permanent electric dipole moment of the elec-
tron [136, 137, 138, 139].

Objectives and structure of the thesis

One of my objectives is to develop an alternative method to shield molecules that
are initially prepared in their ground rotational state. To do this, I will follow the
optical shielding method initially developed for atoms [140, 141, 58, 142] and adapt it
to molecules. One of the challenge is to implement the electromagnetic field in a time-
independent formalism and to find the parameters of the field (frequency and intensity)
for which the shielding is effective.

A second objective is to find solutions to reduce three-body losses while maintaining
an effective two-body shielding. Before moving to the three-body study, I need to reduce
the complexity of the two-body problem as much as possible because the number of states
increases dramatically when moving to three bodies. Then, I need to understand how
three-body collisions work and how to study them. Different hyperspherical coordinates
exist [143, 144, 145, 146, 147, 148, 149, 150, 151] but each has advantages and disadvan-
tages. The most suitable coordinates are the APH coordinates [148, 149, 150] because
they treat all atom-diatom configurations equally. In return, divergent terms, also called
Eckart singularities, appear in the total Hamiltonian. These divergent terms are very
important because if they are not treated correctly, significant errors can appear in the
results [152]. My challenge is to develop a three-body collisional code using these APH
coordinates while treating accurately all the singular terms. Then, I must adapt and
apply it to the case of the three-body shielding.

This manuscript will be separated in two parts. The first one deals with the shielding
techniques applied to two-body collisions. The chapter 3 reviews the theoretical basis for
the study of ultracold collisions between two molecules [153]. I explain how to consider
short-range losses and how to extract the observable I need using the S-matrix theory.
In chapter 4, I apply this formalism to describe the microwave shielding method. I
show that the loss rate coefficient can be largely reduced in favor of the elastic one for
a large range of dipolar molecules. I also present in this chapter a method to control
the molecule-molecule scattering length by adjusting the intensity and frequency of the
microwave field. This chapter is largely inspired by my paper [103]. Chapter 5 starts
from the results in [96, 97, 98] on the static electric field shielding. I show how to greatly
simplify the study of shielding via the development of a simplified model. I demonstrate
that one can obtain results similar to the complete quantum calculation under certain
conditions which are explicitly presented. Our results have been verified experimentally
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with the JILA team with which I have contributed in a joint paper [100].
The second part deals with three-body collisions. Chapter 6 presents the formalism

for treating collisions in hyperspherical coordinates [150, 151, 152]. I demonstrate how
to relate the different types of coordinates (Jacobi, Delves, Hyperspherical) and how to
accurately treat Eckart singularities [152]. In chapter 7, I adapt this formalism to study
the shielding of three-body losses. In chapter 8, I focus on Li+Li2 collisions and use the
results from [154] to check my three-body code. Finally, I will conclude and give some
perspectives in chapter 9.
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Part I

Two-body collisions
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Chapter 3

General formalism

This chapter lays the foundations of the time-independent formalism used to describe
two-body collisions of diatomic molecules. Unlike atoms, molecules have a rich inter-
nal structure (rotation, vibration) which provide additional tools to control both their
interactions and collisions. We will focus on dipolar molecules which are excellent can-
didates for a wide range of application because long-range interactions (dipole-dipole,
quadrupole-dipole etc...) can be controlled using external fields. The formalism pre-
sented here is based on the partial waves expansion of the wave functions and is specially
suited for ultralow collision energies because only few partial waves are required to per-
form the collisional study of the system. We start in section 3.1 with a description of
the different kinds of collisions and present the different loss processes we must consider.
We continue with a brief reminder about the Schrödinger equation for one (section 3.2)
and two molecules (section 3.3). Then, section 3.4 describes the general collision formal-
ism starting from the description of the asymptotic wave function and ending with the
derivation of a system of coupled equations. These equations describe the behaviour of
the wave function in the region where the molecules highly interact. This is also where
we expand the scattered wave function in terms of partial waves. In section 3.5, we
present the numerical method of propagation of the logarithmic derivative matrix of the
wavefunction. We show how to obtain the reactance, scattering, and transition matrices
and how to extract the observables we need. Finally, we give the general laws describing
their behavior in the ultracold regime. For more details, refer to the book chapter [153].

3.1 Types of collisions and loss processes

During a collision, the total energy is conserved. Such as a harmonic oscillator where
the potential energy can be converted into kinetic energy, the internal energy of the
molecules can be converted into kinetic and potential energy. Internal states whose en-
ergies are lower than the total energy are accessible during the collision and are called
open states. On the other hand, states whose energies are greater than the total energy
are inaccessible and are called closed states.

In Fig. 3.1, we represented the schematic representation of elastic and inelastic pro-

27
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Figure 3.1: Schematic representation of elastic and inelastic processes. The total energy
Etot is conserved during collisions. The initial internal energy and relative kinetic energy
are given by εi and Eki . The final internal energy and relative kinetic energy are given
by εf and Ekf . If the molecules remain in the same internal state after collision then the
kinetic energy is conserved: these are called elastic collisions. If the molecules change their
internal states then the kinetic energy is modified: these are called inelastic collisions.

cesses where εi and εf are the initial and final internal energies and where Eki and Ekf
are the initial and final relative kinetic energies. Since Etot is conserved during a collision,
we have:

Etot = Eki + εi = Ekf + εf . (3.1.1)

Therefore, among the open states we can distinguish two types of collisions:

• Elastic collisions where the internal state is conserved (i.e. Eki = Ekf ). This type of
collision has no influence on the lifetime of ultracold molecular gases as there is no
modification of the internal structure of the molecules. Indeed, if we set Eki = Ekf
in Eq. 3.1.1, the internal energies before and after the collisions are unchanged
εi = εf .

• Inelastic collisions where the kinetic energy is no longer conserved (i.e. Eki 6= Ekf ).
If εf > εi then a part of the kinetic energy has been used to excite the molecules: this
is called excitation. If εf < εi then the lost internal energy has been transformed
into kinetic energy: this is called relaxation. These kinds of collisions are harmful
because we usually want to keep the molecules in their initial state.

In some cases, interatomic bonds can be broken and/or formed during collisions: these
are called reactive collisions. As explained in chapter 2, these collisions lead to the loss of
the molecules in the short-range region. If the reactive process is exothermic, the reactive
collisions can occur even without initial collision energies. For example, in an ultracold
KRb gas, molecules can be lost via the transformation [155, 156]:

KRb + KRb→ K2 + Rb2

where the bonds between the K and Rb atoms have been broken to form two homonuclear
molecules K2 and Rb2. If the reactive process is endothermic, the reactive collisions can
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occur only if a sufficient amounts of collision energy is available. At ultralow energies,
these reactions generally can’t occur, but it has been demonstrated that non-reaction
molecules are still lost via another process: the long-lived sticky collisions [87, 86, 157,
158, 159]. This mechanism is not yet fully understood but some theoretical investigations
predict that the molecules can form long-lived tetramer complexes at short-range. For
example, collisions of 23Na87Rb molecules in their absolute ground state are endothermic
at ultralow energies such that reactive collisions like:

23Na87Rb + 23Na87Rb 6→ 23Na2 + 87Rb2

cannot occur. However, it has been observed that these molecules are still lost with col-
lision rate coefficients whose behaviors are similar to that of reactive collisions [42].

In the following, we will group under the term of quenching all the processes leading
to the loss of molecules or to the change of their internal states (i.e. short-range losses
and inelastic collisions). This term contains all the harmful processes for the creation
of degenerate quantum gases which requires high densities of molecules remaining in the
same internal state to be formed. The objective of the following sections is to introduce
the quantum formalism to include all these processes in the case of two-body collisions.

3.2 Schrödinger equation for a particle
When a particle of mass m is placed in a potential characterized by the operator

V̂ = V (~r, t), the time evolution of its wave function Ψ(~r, t) ≡ 〈~r |Ψ(t)〉 is governed by the
Schrödinger equation:

i~
∂

∂t
|Ψ(~r, t)〉 =

[
T̂ + V̂

]
|Ψ(~r, t)〉 (3.2.1)

with T̂ ≡ − ~2

2m
∇2
~r the kinetic energy operator. If the potential energy operator is time-

independent V̂ (~r, t) = V (~r), the solutions |Ψ(~r, t)〉 are separable into a product of a
spatial and temporal part:

|ΨEtot(~r, t)〉 = e−i
Etott

~ |ψEtot(~r)〉 (3.2.2)

and are called stationary states. The spatial parts |ψEtot(~r)〉 are solution of the time-
independent Schrödinger equation:

Ĥ |ψEtot(~r)〉 =

[
− ~2

2m
∇2
~r + V (~r)

]
|ψEtot(~r)〉 = Etot |ψEtot(~r)〉 (3.2.3)

and have for eigenvalues Etot. This time-independent formalism is usually used for colli-
sions study and it still applies when static external fields are used.

3.3 Schrödinger equation for two particles
In this section, we will present the Jacobi coordinates and derive the Schrödinger

equation for a system composed of two molecules.
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3.3.1 Jacobi coordinates

Figure 3.2: Sets of coordinates required to describe a system composed of two diatomic
molecules. The vectors ~ρ1 and ~ρ2 describe the motion of the two atoms composing
respectively the first and the second molecule. The vectors ~r1 and ~r2 give the position
of the center of mass of each molecule relative to an arbitrary point O. The vector ~r
describes the relative motion between the two molecules for which G is the total center
of mass. The axis of quantization is chosen along ~eZ for the body-fixed frame and along
~ez for the space-fixed frame.

Consider two diatomic molecules τ = 1, 2 defined by their mass m1 and m2. Let ~r1

and ~r2 be the position vectors of their center of mass with respect to an arbitrary point
O and let ~ρ1 and ~ρ2 be the position vectors describing the relative position of the two
atoms composing them. We can define the center of mass

−→
OG and the total mass M :

−→
OG =

m1~r1 +m2~r2

M
M = m1 +m2 (3.3.1)

as well as the relative position of the two molecules ~r and the reduced mass µ:

~r = ~r1 − ~r2 µ =
m1m2

m1 +m2

. (3.3.2)

As shown in Fig 3.2, it is possible to define two different frames:

• The body-fixed frame (~eX , ~eY , ~eZ) whose origin coincides with the centre of mass G
with ~eZ oriented along the vector ~r.

• The space-fixed frame (~ex, ~ey, ~ez) whose origin is a point O randomly chosen in
space with ~ez arbitrarily placed in space.

As we will study molecules in presence of external fields which are polarized along a fixed
direction in the laboratory (along ~ez by convention), we will only consider the space-fixed
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frame. Consequently, the Oz axis is chosen as the quantization axis.

From an angular point of view, we will use spherical coordinates to describe the vectors
(~r, ~ρ1, ~ρ2). Let us note:

r̂SF = (θSFr , φSFr ) ρ̂SF1 = (θSFρ1
, φSFρ1

) ρ̂SF2 = (θSFρ2
, φSFρ2

) (3.3.3)

their angular components in the space-fixed frame. For better visibility, we will omit the
label SF hereafter. The momentum operators associated with these three vectors are:

~̂p = −i~∇~r ~̂P1 = −i~∇~ρ1
~̂P2 = −i~∇~ρ2 (3.3.4)

and the momentum angular operators are given by:

~̂l = ~̂r × ~̂p ~̂j1 = ~̂ρ1 × ~̂P1. ~̂j2 = ~̂ρ2 × ~̂P2. (3.3.5)

We note l̂z, ĵ1z and ĵ2z their projection on the Oz axis and ml, mj1 and mj2 their

associated quantum numbers. The total angular momentum ~̂J and the quantum number
MJ related to its projection on the Oz axis are given by:

~̂J = ~̂l + ~̂j1 + ~̂j2
MJ = ml +mj1 +mj2 . (3.3.6)

Usually, both of these quantities are conserved during collisions. However, in the presence
of a static electric field or an electromagnetic field, only MJ is conserved.

3.3.2 Schrödinger equation

The two-body Hamiltonian which fully describes the system is given by:

Ĥ = − ~2

2m1

∇2
~r1
− ~2

2m1

∇2
~ρ1
− ~2

2m2

∇2
~r2
− ~2

2m2

∇2
~ρ2

+ V (~ρ1, ~ρ2, ~r1, ~r2). (3.3.7)

The first four terms correspond respectively to the external and internal kinetic energies
of the individual molecules and V is the total potential energy. At long distance, the
two molecules do not interact with each other. Then, the asymptotic potential energy is
composed of the internal potential energy of each molecule v̂intτ (~ρτ ) plus their individual
interactions with possible external fields v̂extτ (~ρτ ). When the molecules approach to each
other, they start to interact via many interactions (van der Waals, dipole-dipole, etc...)
that we group without distinction in a total potential energy operator Uint(~ρ1, ~ρ2, ~r ) called
potential energy surface (PES). Note that Uint does not depend on the absolute position
of the molecules but only on their relative position. This term is generally determined by
ab initio calculations under the Born–Oppenheimer approximation [160]. This amount to
separating the electronic dynamics from the nuclear one because nuclei are much heavier
than electrons (mn/me � 1). Hence, the total potential energy can be decomposed as:

V (~ρ1, ~ρ2, ~r1, ~r2) = Uint(~ρ1, ~ρ2, ~r ) + v̂int1 (~ρ1) + v̂int2 (~ρ2) + v̂ext1 (~ρ1) + v̂ext2 (~ρ2) (3.3.8)
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where the two-body interaction term vanishes at long-range because the molecules are
too far from each other to interact:

Uint(~ρ1, ~ρ2, ~r ) →
r→∞

0. (3.3.9)

We can introduce the internal eigenvalue equation for the molecule τ :

ĥτ |φατ 〉 =

[
− ~2

2mτ

∇2
~ρτ + v̂intτ (~ρτ ) + v̂extτ (~ρτ )

]
|φατ 〉 = εατ |φατ 〉 (3.3.10)

where |φατ 〉 and εατ represent respectively the eigenstates and the internal energies of
the molecule τ in presence of an external field. In the following, we consider the distance
between the two atoms composing the molecules as fixed and we neglect any coupling
between rotations and vibrations. Under this so-called rigid rotor approximation, the
rotational energies (without external fields) are given by:

ĥrotτ |jτ ,mjτ 〉 =

[
− ~2

2mτ

∇2
~ρτ

]
|jτ ,mjτ 〉 = B jτ (jτ + 1) |jτ ,mjτ 〉 (3.3.11)

with B the rotational constant of the molecule. The states |jτ ,mjτ 〉 are the usual spher-
ical harmonics Ymjτjτ

(θSFρτ , φ
SF
ρτ ) in the

〈
θSFρτ , φ

SF
ρτ

∣∣ representation.
If we consider a system composed of two molecules, the state describing the internal

states of the two molecules can be written in the tensorial form |φα〉 = |φα1〉 |φα2〉. To
simplify the notations, we will note εα = εα1 + εα2 , the total asymptotic energies associ-
ated to the state |φα〉.

As the potential depends only on the relative position of the particles and as the inter-
nal motion of the molecules is described by the internal Hamiltonian given in Eq. 3.3.10,
it is more convenient to rewrite the two-body Schrödinger equation (Cf. Eq. 3.3.7) in
terms of relative coordinates:[
− ~2

2µ
∇2
~r + Uint(~ρ1, ~ρ2, ~r ) + ĥ1(~ρ1) + ĥ2(~ρ2)

]
|ψ(~ρ1, ~ρ2, ~r )〉 = Etot |ψ(~ρ1, ~ρ2, ~r )〉 (3.3.12)

where Etot = εα +Ek is expressed in term of the relative motion Ek which will be called
collision energy in the following. The term∇2

~r can be express in terms of radial derivatives
and angular momentum:

∇2
~r =

1

r

(
∂2

∂r
r +

1

r2
l̂2
)

(3.3.13)

with:

l̂2 = − ~2

sin θr

∂

∂θr
sin θr

∂

∂θr
+

l̂2z
sin2 θr

l̂2z = −~2 ∂
2

∂φ2
r

. (3.3.14)

In the next section, we will present the primitive basis in which we will express the matrix
elements of the Hamiltonian.
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3.4 Collision formalism of two molecules

By studying the asymptotic form of the total wave function (where molecules are
considered free), we will show that the total wave function can be developed in terms of
partial waves. Using even at short distances these partial waves as primitive basis, we
will show that the collisional study can be reduced to the resolution of a set of coupled
equations.

3.4.1 Asymptotic study

zO

θr

Φr

Uint

μ

scattered wave
(k α

wave unaffected 
by the potential

incident plane wave
kα=(kα,kα)

r=(r,r)̂

^

,r) x e
ikα'r/r^f+

α→α'

Figure 3.3: Effect of the potential on the radial wave function. The vector ~kα corresponds
to the wave vector of the initial state and ~kα′ corresponds to the one for the final state.
The vector ~r corresponds to the relative distance between the two molecules and µ is the
reduced mass.

Let’s consider the scattering on any central potential of a fictitious particle of reduced
mass µ and initially prepared in the state φα. If the particle has not yet interacted with
the potential, it can be considered as a free particle. Therefore, its wave function is given
by:

ψinc(~ρ1, ~ρ2, ~r ) ∝ ei
~kα.~rφα(~ρ1, ~ρ2) (3.4.1)

with kα =
√

2µEk
~2 . As shown in Fig. 3.3, after scattering and quite far from the effect of

the potential, we can imagine two scenarios:

• The wave has not been affected by the potential and remains a plane wave.

• The wave has been affected by the potential. Since the scattering process is gener-
ally anisotropic, the isotropic part of the wave eikα′r

r
is multiplied by the amplitude

f+
α→α′(~kα, r̂) which depends on the direction we consider. Due to inelastic collisions,
the internal state α can change during the collision, hence α→ α′ in the scattered
amplitude.
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In short, the asymptotic wave function can be defined as:

ψrel(~ρ1, ~ρ2, ~r ) =
r→∞

N

[
ei
~kα.~rφα(~ρ1, ~ρ2) +

∑
α′

f+
α→α′(~kα, r̂)

eikα′r

r
φα′(~ρ1, ~ρ2)

]
= ψinc + ψdiff

(3.4.2)

where N is a normalization factor. Let’s note that the wave function is a linear combi-
nation of all accessible internal states φα′ .

3.4.2 A partial wave expansion

Now that we have explained how the radial wave function can be described asymp-
totically, we will discuss how to describe it when the molecules start to interact and
collide. We have shown in Eq. 3.3.12 that the angular part of the kinetic energy opera-
tor is entirely included into the two operators {~̂l 2, ~̂lz}. The spherical harmonics are the
eigenfunctions of these two operators and satisfy:

~̂l 2 Ymll = l(l + 1)Ymll
~̂lz Ymll = ml Ymll . (3.4.3)

Therefore, using the spherical harmonic addition theorem, we can expand the incident
plane wave (given in Eq. 3.4.2) in terms of spherical harmonics:

ψinc = N ei
~kα·~rφα (~ρ1, ~ρ2)

= N 4π
∞∑
l=0

l∑
ml=−l

iljl (kαr)
[
Y ml
l

(
k̂α

)]∗
Y ml
l (r̂)φα (~ρ1, ~ρ2)

(3.4.4)

where jl are the regular spherical Bessel functions. We can demonstrate that the asymp-
totic behavior of ψinc is given by:

ψinc →
r→∞

∞∑
l=0

+l∑
m=−l

N inc
αlml

(~kα)ψinc
αlml

(~ρ1, ~ρ2, ~r ) (3.4.5)

where N inc
αlml

(~kα) is a normalization factor independent of ~r and where the functions ψinc
αlml

:

ψinc
αlml

(~ρ1, ~ρ2, ~r ) ≡ f inc(r)

r
Ymll (r̂)φα(~ρ1, ~ρ2) (3.4.6)

are called the partial waves. The incident radial wave function is given by

f inc(r) = (e−i(kαr−lπ/2) − ei(kαr−lπ/2))/k1/2
α (3.4.7)

and schematically described an incoming spherical wave which converges to r = 0 and
which is distorted and reflected by the potential giving rise to an outgoing spherical wave
out of phase by lπ. The total wave function is then described as a linear combination of
spherical waves for which the phase shifts are different as they depend on the value of l.
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This expansion over the quantum numbers l and ml is called the partial wave expansion
and illustrates how molecules collide in terms of orbital angular momentum. For exam-
ple, for the case l = 0, the spherical harmonics are isotropic which means that no angular
direction is favored during collisions while for the case l = 1 and ml = 0, the spherical
harmonics are mainly oriented along the z-axis.

Finally, we can extend this partial wave expansion to any r for the total wave function:

ψEtot

α,~kα
(~ρ1, ~ρ2, ~r ) =

∞∑
l=0

+l∑
m=−l

Nαlml(
~kα)ψEtot

αlml
(~ρ1, ~ρ2, ~r ) (3.4.8)

where ψEtot
αlml

(~ρ1, ~ρ2, ~r ) is a linear combination of all accessible states:

ψEtot
αlml

(~ρ1, ~ρ2, ~r ) =
∑
α′

∞∑
l′=0

+l′∑
m′=−l′

fα′l′m′
l,αlml

(r)

r
Ym

′
l

l′ (r̂)φα′(~ρ1, ~ρ2). (3.4.9)

The radial wave function fα′l′m′
l,αlml

(r) contains the phase shift δl accumulated during the
passage of the wave through the potential. It depends both on the partial wave studied
l but also on the total energy. Subsequently, the set formed by the quantum numbers
i = (α, l,ml) will be called channel.

3.4.3 Coupled equations

If we insert Eq. 3.4.9 into Eq. 3.3.12, multiply on the left-side by
[
Y
m′′
l

l′′ (r̂)φα′′ (~ρ1, ~ρ2)
]∗

and integrate over the angular part, we obtain the usual system of coupled equations:

∑
α′

∞∑
l′=0

+l′∑
m′=−l′

[{
− ~2

2µ

d2

dr2
+

~2l′(l′ + 1)

2µr2
+ εα′ − Etot

}
δα′,α′′δl′,l′′δm′

l,m
′′
l

+U int
α′′l′′m′′

l ,α
′l′m′

l
(r)
]
fEtot
α′l′m′

l,αlml
(r) = 0

(3.4.10)

which describe the radial evolution of the wave function. Roughly speaking, when r
is small the molecules are colliding and interacting and when r is large the collision is
finished. The coupling matrix elements U int

α′′l′′m′′
l ,α

′l′m′
l
(r) are given by:

U int
α′′l′′m′′

l ,α
′l′m′

l
(r) =

∫
d~ρ1d~ρ2dr̂

[
Ym

′′
l

l′′ (r̂)
]∗
φ∗α′′(~ρ1, ~ρ2)Uint(~ρ1, ~ρ1, ~r )

Ym
′
l

l′ (r̂)φα′(~ρ1, ~ρ2)

(3.4.11)

and describe the couplings between the individual channels. This matrix is symmetric,
real and generally non-diagonal. Let’s note

U cent
i′′,i′ (r) =

~2l′(l′ + 1)

2µr2
δα′,α′′ δl′,l′′ δm′

l,m
′′
l

(3.4.12)
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the diagonal centrifugal matrix elements. Finally, it is possible to rewrite the actual
potential as:

U eff
i′′,i′(r) = U cent

i′′,i′ (r) + U int
i′′,i′(r) + εα′δi′,i′′ . (3.4.13)

If only the diagonal elements are plotted, the so-called diabatic curves are obtained. On
the other hand, if we diagonalize the matrix for each value of r then we obtain the so-
called adiabatic curves. The angular eigenfunctions Φt(θ

SF
r , φSFr ; r) obtained are called

surface functions. The subscript t is used to identify the surface functions because they
can no longer be identified to a particular initial channel but in a linear combination of
them. The comparison of the two curves gives us a good idea of the effect of the coupling
induced by the potential, especially in the vicinity of avoided crossings. Asymptotically,
the diabatic and adiabatic curves tend to the total internal energies εα′ (calculated from
Eq. 3.3.10) as the molecules no longer interact.

In the following chapters, we want to control the long-range part of the interactions
to prevent the molecules to come at short-distances where loss processes occur. A series
expansion of the potential, called multipolar expansion, gives the asymptotic behaviour
of the potential surface [161]:

Umult =
1

4πε0

∑
λ1λ2λ

∑
ωλ1

ωλ2

(−1)λ1

(
(2λ1 + 2λ2 + 1)!

(2λ1)!(2λ2)!

)1/2 Qλ1ωλ1
Qλ2ωλ2

rλ+1

× δλ,λ1+λ2

∑
mλ1

mλ2
mλ

A(ρ̂1, ρ̂2, r̂)

(3.4.14)

with λ = λ1 + λ2. The angular part is given by:

A(ρ̂1, ρ̂2, r̂) =

(
λ1 λ2 λ
mλ1 mλ2 −mλ

)
× [Dλ1

mλ1
ωλ1

]∗[Dλ2
mλ2

ωλ2
]∗[Dλ

−mλ0]∗. (3.4.15)

The symbol ( : : ) corresponds to a 3j symbol and is non-zero only if mλ = mλ1 +mλ2 .
We note Qλτωλτ

the generalized multipole of the molecule τ . λτ is an angular momentum
and refers to the order of the multipole (monopole, dipole. . . ). We call mλτ = [−λτ ,+λτ ]
the projection of λτ on the space-fixed axis and ωλτ = [−λτ ,+λτ ] the projection of λτ on
the intermolecular axis. The potential energy surface can also be noted:

Umult =
∑
i

Ci
Ri

(3.4.16)

which clearly separates the contribution of the different multipoles according to their
scope of interaction:

• the terms ∝ R−1 describe the interactions between two total charges,

• the terms ∝ R−2 describe the interactions between a total charge and a dipole
moment,
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• the terms ∝ R−3 describe the interactions between two dipoles or between a charge
and a quadrupole,

• etc.

This interaction term Umult will then be included in the matrix elements U int
α′′l′′m′′

l ,α
′l′m′

l
(r)

from Eq. 3.4.10 to describe the interactions between molecules at large distances.

3.5 Propagation and Observables
In the previous section, we derived a set of coupled equations describing the dynamics

of the radial wave function. To obtain the different observables we need (cross sections,
rate coefficients, ...), we need to solve this set of coupled equations for any value of
r. In this section, we will describe how to numerically perform the propagation of the
radial wave function over the intermolecular distance while including the short-range loss
processes. Finally, we will show that by matching the propagated radial wave function
with its asymptotic part, we can extract the observables we want.

3.5.1 Numerical propagation

Let’s rewrite the system of coupled differential equations (given in Eq. 3.4.10) in the
matrix form:{

I
d2

dr2 −
2µ

~2

[
Ueff(r)− IEtot

]}
F(r) =

{
D2(r) + W(r)

}
F(r) = 0 (3.5.1)

with I the identity matrix and:

D2(r) = I
d2

dr2
W(r) = −2µ

~2

[
Ueff(r)− IEtot

]
F(r) = fEtot

i′,i (r). (3.5.2)

Several methods exist to solve this type of system of coupled differential equations. There
are two main approaches:

• The system of coupled equations is solved numerically, in its differential or integral
form, in this case we talk about an approximate-solution approach [162, 163, 164,
165].

• The potential matrix is approximated in a sufficiently acceptable way and the sys-
tem of coupled equations is solved exactly, in this case we talk about an approximate-
potential approach [166, 167, 168].

In both cases, either the wave function or the logarithmic derivative of the wave func-
tion or its inverse (R-matrix) is propagated (i.e. the functions are followed step by step
from the inner region to the asymptotic region). In all our calculations, we will use the
approximate-solution approach described by Johnson [162] defining and propagating over
r the logarithmic derivative matrix:

Z(r) = F’(r)F−1(r). (3.5.3)
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This method is convenient because it imposes only one condition at rmin, it removes any
factor of normalization and it avoids numerical instabilities of the radial wave functions
when reaching a classically forbidden region. Depending on the imposed conditions at
rmin, this matrix can be either real or complex. To propagate this function, we apply
a diabatic-by-sector technique (see Fig. 3.4). We perform a numerical separation by
partitioning the intermolecular distance r into ns sectors. Let’s consider the sector ξ
defined between [rlξ, r

r
ξ ] and centered on rmξ . The superscripts l, r, m identify respectively

the left, right and middle part of the sector. We solve the angular part of the problem
at the center of each sector by obtaining the surface functions Φt(θ

SF
r , φSFr ; rmξ ). By

initially knowing Z(rlξ; r
m
ξ ) (which means Z(rlξ) expressed in the basis centered on rmξ ),

the Z-matrix is obtained at rrξ using the following recurrence relations:

Z(rmξ ; rmξ ) = Ŷ4(rlξ, r
m
ξ )− Ŷ3(rlξ, r

m
ξ )−

[
Z(rlξ; r

m
ξ ) + Ŷ1(rlξ, r

m
ξ )
]−1

Ŷ2(rlξ, r
m
ξ ) (3.5.4)

Z(rrξ ; r
m
ξ ) = Ŷ4(rmξ , r

r
ξ)− Ŷ3(rmξ , r

r
ξ)−

[
Z(rmξ ; rmξ ) + Ŷ1(rmξ , r

r
ξ)
]−1

Ŷ2(rmξ , r
r
ξ) (3.5.5)

with Ŷ1, Ŷ2, Ŷ3 and Ŷ4 given by Johnson [162]. They depend on the width of the
sector and on W(r; rmξ ). Since the relation Ŷ2 = Ŷ3 is true all along the propagation,
then Z(r) stays symmetric. As the adiabatic bases change from one sector to another,
we must transform Z(rrξ ; r

m
ξ ) into the following sector Z(rlξ+1; rmξ+1) using the unitary

transformation:
Z(rlξ+1; rmξ+1) = OZ(rrξ ; r

m
ξ )O−1 (3.5.6)

with the overlap matrix elements given by:

Ot,t′ =
〈
Φt(θ

SF
r , φSFr ; rmξ )

∣∣Φt′(θ
SF
r , φSFr ; rmξ+1)

〉
. (3.5.7)

This matrix is not symmetric but must be close to the unit matrix. If the sectors are
chosen too large, then a lot of information is lost in the avoided crossing zones (or when
the adiabatic energy curves strongly vary) and the overlap matrix deviates from the unit
matrix.

3.5.2 Initial condition on the Z-matrix at rmin

Nowadays, constructing potential energy surfaces describing molecule-molecule colli-
sions of alkali metal dimers is a major challenge [169]. For heavy alkali metal dimers,
it is not yet possible to obtain these short-range potential energy surfaces. Therefore, a
model has been developed to simplify what happens in the short-range domain [97]. In
this section, we demonstrate how this model has been obtained and how it imposes an
initial condition on the Z-matrix at rmin.

Let’s replace the real potential energy by a square well potential (Fig. 3.5). We can
split the potential into two parts. The first one (I) contains the short-range potential
(r ∈ [0, rmin]) and the second one (II) contains the long-range part (r > rmin). Solving
the Schrödinger equation in the part I gives:

ΨI = N [e−ik1r − e+ik1r] (3.5.8)
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0 rmax

rξl rξ r rl
ξ+1 ≡

rξm rξ+1
mrξ-1

m

sector ξ

Z(rξ+1)=OZ(rξ)O-1rl

Figure 3.4: Representation of the diabatic-by-sector technique. The total distance of
propagation [rmin, rmax] is split into sectors. The left, middle and right part of a given
sector (ξ) are represented respectively by rlξ, rmξ and rrξ . To switch from the sector (ξ) to
the next one (ξ + 1), the Z-matrix is transformed at rrξ ≡ rlξ+1 using Eq. 3.5.6.

with k1 = 2µ
~2 (E − V (rmin)) and N a normalization term. Now, let’s assume that the

short-range potential is not well known for r < rmin and has two major effects:

• The wave function has a probability PSR to be absorbed and to be lost. In other
words, it corresponds to the probability of losing the molecules via reactive or sticky
collisions.

• The potential modify the phase of the wave function. We note δSR the accumulated
phase.

By properly choosing PSR and δSR, we can reproduce the effect of any real potential on
the wave function. Once out of the interaction area, the reflected wave function can be
described by:

e+ik1r −→
√

1− PSR e2iδSR e+ik1r. (3.5.9)
The term

√
1− PSR corresponds to the part of the wave function that comes out of the

potential without being lost and e2iδSR is the phase accumulated during the round trip
of the wave function in the potential. If we compute the log-derivative function at rmin,
we get:

Z(r = rmin) =
4k1sc

√
1− PSR

c2(
√

1− PSR − 1)2 + s2(
√

1− PSR + 1)2

−i k1PSR

c2(
√

1− PSR − 1)2 + s2(
√

1− PSR + 1)2

(3.5.10)

with c = cos(k1r + δSR) and s = sin(k1r + δSR).

Let us now imagine the following extreme case: any probability flux penetrating the
potential at a given distance rmin is totally lost (PSR = 1). This idea comes from the fact
that short-range losses are unitary either the molecules are chemically reactive or not.
This translates into a diagonal and purely imaginary log-derivative at rmin [97]:

Zi,i(rmin) = −ik1. (3.5.11)
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Energy

r

E

k1

rmin

-V0

I II

0

Figure 3.5: The potential well model used to described short-range losses. The potential
is characterized by a well of depth −V0 between [0, rmin] (region I). The wave vector is
described by k1 in this region. For r > rmin (region II), the potential is considered as
zero.

Under these conditions, collision rate coefficients and cross sections become independent
of the accumulated phase. This is expected because if the molecules are lost with a unit
probability, then when they come too close to each other, no reflected wave comes back
from the short-range part. Consequently, the accumulated phase is no longer meaningful.

In conclusion, short-range effects are included in the initial condition of the log-
derivative matrix Z(rmin). As a result, we don’t need the potential energy surface of the
tetramer (i.e. for r < rmin). We only need the potential at long-range (i.e. for r > rmin)
which is given by the multipolar expansion defined in the previous part. Some results
have shown that this model reproduces well experimental data [155, 99, 100].

3.5.3 Asymptotic matching and observables

At the matching point rmax, we obtain the Z-matrix at a sufficient large distance
where the potential reaches its asymptotic behavior. We can connect the short-range
part to the external part solving the asymptotic part of Eq. 3.4.10 given by:[

− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ εα − Etot

]
fEtot
αlml,αlml

(r) = 0. (3.5.12)

Let’s note F(1) and F(2) the general solutions:

F(r) = F(1)A + F(2)B
∣∣
r=rmax

(3.5.13)

where:
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f
(1)Etot
i,i′ (r) = r

√
kα jl(kαr)δi,i′ f

(2)Etot
i,i′ (r) = r

√
kα nl(kαr)δi,i′ (3.5.14)

are expressed in function of the well known Ricatti-Bessel (jl) and Ricatti-Neumann
functions (nl) [170]. We can notice that these terms are diagonal because asymptotically
the molecules do not interact anymore and the channels are thus uncoupled. The non-
radial prefactors in Eq. 3.5.14 are chosen so that the Wronskian matrix:

W = F(1)F
′(2) − F(2)F

′(1) (3.5.15)

equal to the identity matrix (i.e. the solutions are independent). We can also write
Eq. 3.5.13 as:

F(r) = FK(r)NK
∣∣
r=rmax

(3.5.16)

with
FK(r) =

{
F(1) − F(2)K

}
. (3.5.17)

NK ≡ A is a real normalisation matrix and K ≡ −BA−1 is the reactance matrix (K-
matrix). Using matrix algebra, we can relate the K-matrix to the Z-matrix via:

K =
{
ZF(2) − F

′(2)
}−1 {

ZF(1) − F
′(1)
}∣∣∣∣

r=rmax

. (3.5.18)

By construction, this matrix is symmetric and if Z is real (complex) then K is also real
(complex). Its off-diagonal matrix elements give an indication of the character of the
other final channels (due to the couplings from the interaction potential energy) in the
wave function of a given incident initial colliding channel. The usual scattering matrix
(S-matrix) is obtained from the K-matrix using:

S =
I + iK
I− iK

. (3.5.19)

This matrix, strong in physical meaning, is symmetric and complex. Indeed, the element
|Si′,i|2 corresponds to the transition probability of going from an incident channel i to
a final channel i′ (i.e. inelastic collisions). The diagonal term |Si,i|2 corresponds to the
probability of staying in the same channel i (i.e. elastic collisions). With the imposed
short-range loss condition, the S-matrix is no longer unitary and:

1−
∑
i

|Si,i′|2 ≡ Ploss 6= 0 (3.5.20)

gives the probability of the incident radial wave function to be lost at short-range.
Finally, the transition matrix T = S − I gives all the observables we need. For

example, we can extract the total accumulated phase shift δl or go back to more general
observables such as cross sections:

σα→α′(Ek) = κ× π

k2
α

∑
l

∑
ml

∑
l′

∑
m′
l

|Tα′l′m′
l,αlml

(kα)|2 (3.5.21)

where κ is a coefficient appearing when applying the permutation operator to the wave
function. If the two particles are indistinguishable κ = 2, on the other hand if the
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particles are distinguishable κ = 1 [171]. Subsequently, we will mostly use collision rate
coefficients:

βα→α′(Ek) = σα→α′(Ek)× v (3.5.22)

where v =
√

2Ek
µ

is the relative velocity of the particles. In the following, rate coefficients
are expressed in cm3.s−1.

3.5.4 Behavior at very low energy

When the collision energy Ek → 0, the system of coupled Schrödinger equations
(Eq. 3.4.10) becomes independent of the collision energy. Therefore, the radial function
and the log-derivative are also no longer collision energy dependent. In this section, we
will show that under these conditions, the observables can all be expressed from a single
quantity full of physical meaning: the scattering length. To simplify the discussion, let’s
consider the case of structure-less particles (i.e. we drop the α index).

Using the fact that Kl = tan(δl), we obtain, after some mathematical manipulations,
an expression connecting collision energy and the phase accumulated by the wave function
in contact of the potential:

tan(δl) =
k→0
−Lk2l+1. (3.5.23)

In the framework of our study, we will be interested in collisions of bosonic molecules
where only the l = 0 wave is relevant at ultralow energy. Hense, the constant L has the
dimension of a length. We define the scattering length:

a = lim
k→0
− tan δ0(k)

k
(3.5.24)

the relevant quantity which describes the distance from which a fictitious particle is
affected by the potential. The larger this quantity, the more the potential is considered
to affect the wave function at long range. Cross sections can be expressed from this using:

σl=0(k) =
4π

k2
sin2 δ0(k) →

k→0
4πa2. (3.5.25)

We can see that cross sections are described by a sphere of radius a. We can assimilate
this isotropic potential to the model of hard sphere: the potential is equal to 0 outside
of this sphere (r > a) and infinite inside (r ≤ a). The scattering length is therefore, at
very low energy, the physical quantity describing completely ultracold collisions.

The Bethe–Wigner laws [172, 173] summarize the behaviour of cross sections and
collision rate coefficients at very low energy. The elastic cross sections σell and the elastic
collision rate coefficients βel

l are expressed as:

σell ∝
k→0

k4l ∝
k→0

E2l
k βel

l ∝
k→0

k4l+1 ∝
k→0

E
2l+1/2
k (3.5.26)

while inelastic and reactive cross sections σin/rel and inelastic and reactive collision rate
coefficient βin/re

l are given by:

σ
in/re
l ∝

k→0
k2l−1 ∝

k→0
E
l−1/2
k β

in/re
l ∝

k→0
k2l ∝

k→0
El

k. (3.5.27)
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In the case l = 0, we can extract the real part are and the imaginary part aim from the
scattering length such that a = are − iaim (aim > 0). Cross sections and collision rate
coefficients can be expressed exclusively as a function of the scattering length:

σel = 4π|a|2κ σin/re =
4πaim
k

κ (3.5.28)

βel =
4π~k|a|2

µ
κ βin/re =

4π~aim
µ

κ (3.5.29)

with κ = 2 if the two particles are indistinguishable and κ = 1 if the particles are distin-
guishable. Note that only aim is related to inelastic collisions and loss processes.

The scattering length also appears in the Gross-Pitaevskii equation [174, 175]:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2
~r + V (r) +

4π~2a

m
|Ψ(r, t)|2

)
Ψ(r, t) (3.5.30)

which describes the dynamics of a gas of bosons. If a < 0, the average effect of the
interactions of the N-1 other bodies is an attractive interaction: the condensate collapses
and disappears. If a > 0, the interaction is repulsive: the gas is stable. As a consequence,
both the real and the imaginary part play a central role in the creation of degenerate
gases. We will present in chapter 4, a method to control the scattering length using a
microwave electromagnetic field.

3.6 Permutation symmetry

In the next two chapters, we will only study collisions of identical molecules. There-
fore, the total wave function must be symmetrize with respect to the permutation of the
two molecules. If we apply the permutation operator P̂12 on the total wave function, we
have:

P̂12 ψ
Etot = εP ψ

Etot (3.6.1)

with εP = +1 if the molecules are identical bosons and εP = −1 if the molecules are
identical fermions. To find the definition of εP , we must study the effect of the permuta-
tion operator on the internal wave functions and on the spherical harmonics respectively.
Let’s note that the permutation of the two particles is equivalent to the transformation
(~ρ1, ~ρ2, ~r) → (~ρ2, ~ρ1,−~r). Since the internal wave functions depend only on the coordi-
nates (~ρ1, ~ρ2), we have:

P̂12 φα (~ρ1, ~ρ2) = P̂12 φα1 (~ρ1)φα2 (~ρ2) = φα2 (~ρ1)φα1 (~ρ2) . (3.6.2)

We can then form a properly symmetrized internal wave function:

φα,η (~ρ1, ~ρ2) =
1√

2 (1 + δα1,α2)

{
φα1 (~ρ1)φα2 (~ρ2) + ηφα2 (~ρ1)φα1 (~ρ2)

}
(3.6.3)
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where η = ±1 gives respectively a symmetric and anti-symmetric internal wave function.
Since ~r → −~r is equivalent to (r, θr, ϕr) → (r, π − θr, ϕr + π), we have for the spherical
harmonics:

P̂12 Y
ml
l (~r) = Y ml

l (−r̂) = (−1)lY ml
l (r̂) (3.6.4)

and Eq. 3.6.1 becomes:

P̂12 ψ
Etot = εP ψ

Etot = η(−1)l ψEtot . (3.6.5)

Therefore, we have εP = η(−1)l. In the following, we will only study collisions of indis-
tinguishable molecules. Therefore only η = +1 exists otherwise the symmetrized internal
wave function cancels. The sign of εP depends only if the quantum number l is even or
odd:

• In the case of identical bosons εP = +1, only even partial waves l = 0, 2, 4 . . . are
required.

• In the case of identical fermions εP = −1, only odd partial waves l = 1, 3, 5 . . . are
required.

The lowest partial wave for bosons is then the s-wave (l = 0) for which the centrifugal
term is zero while for fermions it corresponds to a p-wave (l = 1).



Chapter 4

Microwave shielding

Over the last decade, several methods for controlling molecular collisions have been
developed. Some methods, based on the confinement of molecules [92, 93, 94, 95, 82],
are particularly effective for shielding molecules against short-range losses. They force
the molecules to collide in configurations where the dipole-dipole interaction is most
repulsive to keep the molecules apart. Another method, described in chapter 5, uses a
static electric field to reduce short-range losses and, by definition, the imaginary part
of the molecule-molecule scattering length [97, 98, 99, 100]. The other methods usually
used for atoms cannot be applied to molecules because of a very high density of tetramer
bound states in the vicinity of the collisional threshold.

In this chapter, we present a method, using a circularly polarized microwave field,
to control both the real and the imaginary part of the molecule-molecule scattering
length for molecules initially prepared in the ground rovibronic state. First, we present
in section 4.1 the physical principle of the microwave shielding method. The general
formalism presented in the previous chapter (reactive collisions, internal Schrödinger
equation, coupled equations) is extended for collisions in presence of an electromagnetic
field. In section 4.3, we show the effect of the microwave field polarization on the adiabatic
energy curves. Then, we show that we can engineer a long-range potential barrier which
shields the molecules from short-range losses. The consequences on the rate coefficients
are presented in section 4.3. We also explain how we can precisely control both the
real and imaginary part of the molecule-molecule scattering length [103]. In section 4.4,
we present an adimensional formalism to illustrate the effects of the microwave field
on collisions of fictitious molecules. By changing the parameters describing the fictitious
molecules, we can study every alkali metal dimers collisions and select the good candidates
for the microwave shielding. Moreover, we show that for a lot of molecules, we can tune
the molecule-molecule scattering length which will certainly open a new regime of strongly
interacting and correlated physics with ultracold dipolar molecules.

4.1 Physical principle

Let’s imagine two molecules prepared in their fundamental rotational state j = 0.
They approach to each other with a relative kinetic energy Ek following their molecular

45
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potential energy curve. An electromagnetic field couples the fundamental molecular ro-
tational state (j = 0 + j = 0) with the first repulsive rotational state (j = 0 + j = 1)
as illustrated in Fig. 4.1. In the Fock representation, this translates by dressing the
fundamental state by the energy of one photon. If the laser frequency is blue-detuned
(~ω > 2B), the fundamental state becomes above the excited state. When the microwave
field is turned off, the molecules follow the black attractive diabatic energy curve and are
lost at short-range. However, when the microwave field is turned on, the molecules follow
the red adiabatic potential energy curves. As a two level system, the stronger the cou-
pling, the more repulsive will be the upper state. This is through this mechanism that
appears a barrier at long-range in the incident channel. If the barrier is higher than Ek,
the major part of the radial wave function will be reflected. Therefore, the barrier shields
the molecules and protects them from short-range losses.

The basis of this method comes from the idea of atomic optical shielding [140, 141,
142, 58] which uses the transition between an s to a p electronic state of an atom. This
has also been recently adapted for molecular optical shielding [108].

Figure 4.1: Schematic process of a collisional shielding of ground state rotational
molecules j = 0, using a blue-detuned, circularly polarized microwave field. ∆ > 0
is the detuning between the energy of the microwave field ~ω and 2B, the energy level
of the first excited rotational state j = 1 of a molecule. The dipole-dipole interaction
creates an effective repulsive adiabatic curve in the j = 0 + j = 0 corresponding curve,
preventing the molecules to approach at short-range.
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4.2 Time-independent formalism

In this chapter, the electromagnetic field is quantified according to the principle of sec-
ond quantization [142, 176, 177]. It will thus be described by a quantum state describing
the number of photon contained in the mode of the electromagnetic wave. The formalism
used is equivalent to the Flocket formalism [178, 179, 180] describing the periodic time
dependence of the electric field of an electromagnetic wave.

4.2.1 Quantization of the electromagnetic field

Let’s consider a single-mode electromagnetic field characterized by an angular fre-
quency ω and an energy Ephot = ~ω. The quantized field can be represented by the
state [181]:

|n̄+ n〉 (4.2.1)

where n̄ ∈ N is a constant corresponding to the average number of photons in the cavity
and n ∈ Z corresponds to the number of photons lost or gained by the mode (via absorp-
tion or emission of photons by the molecules). In the semi-classical limit, this mode is
populated by a large number of photon (i.e. n̄ � n). In the following, we will only deal
with the deviations n around n̄:

|n̄+ n〉 −→ |n〉 . (4.2.2)

The Hamiltonian of the field is the same as the one of a harmonic oscillator of natural
frequency ω:

hf = ~ω (â†â+
1

2
) (4.2.3)

where â† and â correspond respectively to the creation and annihilation operators. Physi-
cally, the operator a describes the absorption of a photon by a molecule, while the operator
a† describes the emission of a photon by a molecule. Mathematically, this translates into:

â† |n〉 =
√
n+ 1 |n+ 1〉 (4.2.4)

â |n〉 =
√
n |n− 1〉 . (4.2.5)

The associated energies are given by:

hf |n〉 = εn |n〉 = ~ω(n+
1

2
) |n〉 . (4.2.6)

Let’s remark that if the mean value of photons n̄ was kept, an additional constant energy
term ~ω(n̄ + 1

2
) would have appeared. We ignored this term because this is a constant

that can be set to 0. Finally, we add this new quantum state |n〉 to the basis set functions.
Thanks to this, we remain in a time-independent formalism.
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4.2.2 Interaction of a molecule with the electromagnetic field

An other term to consider is the interaction ĥmτ .f [177] of a dipolar molecule τ with
the electric field E of the electromagnetic wave. For linear polarization (p = 0), this is
given by:

ĥmτ .f = − ~Ω

2
√
n̄

(â+ â†) cos θSFρτ (4.2.7)

where θSFρτ is the angle between the electric dipole moment and the polarization axis of
the electric field. Therefore, the propagation of the electromagnetic wave is perpendicular
to the quantization axis. We note:

Ω =
dE

~
(4.2.8)

the Rabi frequency expressed in function of the permanent electric dipole moment d of the
molecule and the electric field E of the electromagnetic wave. In the basis |jτ ,mjτ 〉 |n〉,
the matrix elements of the Hamiltonian are:

〈jτ ,mjτ , n|H
p=0
mτ .f

∣∣jτ ′,m′jτ , n′〉 = −~Ω

2
(δn,n′−1 + δn,n′+1)bpjτ mjτ ,jτ ′ m′

jτ

δmjτ ,m′
jτ

(4.2.9)

with the elements bpjτ mjτ ,jτ ′ m′
jτ

determined by the Wigner-Eckart theorem [182]:

bkjτ mjτ ,jτ ′ m′
jτ

= (−1)mjτ
√

(2jτ + 1)(2j′τ + 1)

(
jτ 1 jτ

′

0 0 0

)(
jτ 1 j′τ
−mjτ k m′jτ

)
. (4.2.10)

It can be noted that δn,n′−1 represents the absorption of a photon by the molecule and
δn,n′+1 represents the emission of a photon by the molecule. According to the 3j symbol,
if p = 0, then ∆mjτ = m′jτ − mjτ = 0. As the photon does carry a zero polarization,
rotational quantum numbers with same projections are coupled. Consequently, mjτ is a
good quantum number for the individual molecule.

For circular polarization p = ±1, the Hamiltonian is given by:

ĥp=±1
mτ .f = − ~Ω

2
√
n̄

(
4π

3

) 1
2

[∓âYp1 (ρ̂SFτ )± â†Y−p1 (ρ̂SFτ )]. (4.2.11)

For this case, the axis of quantization is chosen to be the axis perpendicular to the plane
in which the electric field circularly rotates. The propagation of the electromagnetic wave
is now parallel to the quantization axis. Its matrix elements in the basis |jτ ,mjτ 〉 |n〉 are:

〈jτ ,mjτ , n|h
p=±1
mτ .f

∣∣jτ ′,m′jτ , n′〉 = −~Ω

2
(∓δn,n′−1b

p
jτ mjτ ,jτ

′ m′
jτ

± δn,n′+1b
−p
jτ mjτ ,jτ

′ m′
jτ

). (4.2.12)

In this case, we have ∆mjτ = ±1 for both p = +1 and p = −1. Then, mjτ is not a
good quantum number anymore. The total angular momentum of the system {molecule
+ field} is given by:

mtot = mjτ + n× p. (4.2.13)
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To conserve the total angular momentum of the system, the condition ∆mtot = 0 must be
fulfilled which implies that ∆n×p = −∆mjτ . If ∆n = n′−n = +1, the molecule absorbs
a photon and wins the projection p = ±1 of the photon while the quantum number m′jτ
loses the value of p.

Regardless of the polarisation used, the symbols 3j couples angular moments of rota-
tion ∆j = ±1.

4.2.3 Schrödinger equation for one molecule in the presence of
an electromagnetic field

The internal Schrödinger Eq. 3.3.10 in the uncoupled basis |jτ ,mjτ 〉 |n〉 is given by:

ĥτ |jτ ,mjτ 〉 |n〉 = [ĥrotτ + ĥf + ĥmτ .f] |jτ ,mjτ 〉 |n〉 (4.2.14)

where ĥrotτ (given in Eq. 3.3.11) is diagonal in n. Due to the non-diagonal elements of
ĥmτ .f, the eigenvectors obtained after diagonalization are a linear combination of the bare
states |jτ ,mjτ 〉 |n〉. In the case p = 0, the electromagnetic field lifts a partial degeneracy
of the rotational levels into (jτ + 1) levels because mjτ remains a good quantum number.
The eigenvectors noted

∣∣j̃τ ,mjτ

〉
|ñ〉 are given by:∣∣j̃τ ,mjτ

〉
|ñ〉 =

∑
jτ

∑
n

Cjτ ,mjτ ,n |jτ ,mjτ 〉 |n〉 . (4.2.15)

In the case p = ±1, the electromagnetic field mixes a bigger number of states because
mjτ is no longer a good quantum number. The eigenstates, noted

∣∣j̃τ , m̃jτ

〉
|ñ〉, are given

by: ∣∣j̃τ , m̃jτ

〉
|ñ〉 =

∑
jτ

∑
mjτ

∑
n

Cjτ ,mjτ ,n |jτ ,mjτ 〉 |n〉 . (4.2.16)

For both cases, Cjτ ,mjτ ,n depends on the value of the electric field of the electromagnetic
wave. Hereafter, we will note the dressed states and their associated energies respectively
|α̃〉 ≡ {|jτ ,mjτ 〉 |n〉} and εα̃ regardless of the polarization studied. If the electric field is
turned off (E = 0 kV cm−1), the eigenstates naturally tend to the (2j + 1) degenerate
states:

{|jτ ,mjτ 〉 |n〉} →
E=0
|jτ ,mjτ 〉 |n〉 (4.2.17)

with their corresponding eigenenergies:

εα̃ →
E=0

εα = [B jτ (jτ + 1) + εn]. (4.2.18)

where εn is the energy given in Eq. 4.2.6 which describes the energy of the field for a
given number of photon n and B is the rotational constant of the molecule.

We show in Fig. 4.2 the effect of the electric field E on the energy levels of a bosonic
23Na87Rb molecule in the case p = 0 (top panel) and p = +1 (bottom panel). The energy
of a photon is Ephot = 204 mK, that is almost in resonance with the jτ = 0 ↔ jτ = 1
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Figure 4.2: Energy of a bosonic 23Na87Rb molecule as a function of the electric field E
of an electromagnetic wave for Ephot = 204 mK. Top: linear polarization p = 0, bottom:
circular polarization p = +1. The dressed states are labeled as {|jτ ,mjτ 〉|n〉}.

transition, but slightly blue detuned. We use B = 2.089 662 8 GHz [84] so that the
resonance energy is at 2B/kB = 200.6 mK → ∆ = 3.4 mK. In the following, we will
omit the division by kB in the notations for the quantities expressed in Kelvin. We used
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n = 0,±1 for the calculations. The color of the curves indicates the value of mtot = 0,±1
for p = 0 and mtot = 0,±1,±2 for p = +1. The solid lines correspond to a rotational
basis set jτ = 0, 1 while the dashed curves correspond to a rotational basis set jτ = 0, 1, 2.
One can see that the jτ = 0, 1 is sufficient to converge the energies for E < 1 kV cm−1,
considered later in the chapter. For E = 0 kV cm−1, the eigenenergies tend well to the
energies εα given in Eq. 4.2.18. Moreover, from the zoom on the plots, it is clear that the
state |1, 0〉 |−1〉 is slightly below the state |0, 0〉 |0〉 because the molecules have absorbed a
photon slightly blue-detuned. Let’s focus now on the {|0, 0〉 |0〉} state for E 6= 0 kV cm−1:

• For p = 0, the state {|0, 0〉 |0〉} is shifted to higher energies as the value of the
electric field increases. It is mainly repelled by the lower state {|1, 0〉 |−1〉} with
which it is coupled by the microwave field. The states {|1,±1〉 |−1〉} are not directly
coupled with it (by conservation of mtot) and are not too much affected by the field.

• For p = +1, this state is also repelled but in this case this is via its coupling with
{|1,+1〉 |−1〉}. A calculation with p = −1 would give the same curve but the
coupling would be with {|1,−1〉 |−1〉}. These differences are a consequence of the
conservation of mtot.

A change of p will therefore entail different composition of the dressed states, hence
different dynamics properties of the molecules during the collision.

4.2.4 Collisions of two molecules in an electromagnetic field

Asymptotic basis

The Hamiltonian for two molecules is given by:

ĥ = ĥrot1 + ĥrot2 + ĥpm1.f
+ ĥpm2.f

+ ĥf . (4.2.19)

As we will study collisions of identical molecules, we will use the symmetrized internal
wave function given in Eq. 3.6.3 whose expression is recalled below:

|j1,mj1 , j2,mj2 ; η〉 |n〉 =
1√

2(1 + δj1,j2δmj1 ,mj2 )

[
|j1,mj1 , j2,mj2〉

+ η|j2,mj2 , j1,mj1 ]

]
|n〉 (4.2.20)

with η = ±1 for respectively symmetric and anti-symmetric combinations of the initial
rotational states and where the quantum state |n〉 has been added. With this basis set,
the eigenvectors are

∣∣j̃1, m̃j1 , j̃2, m̃j2 ; η
〉
|ñ〉 and will be noted {|j1,mj1 , j2,mj2〉± |n〉}. The

projection of the angular momentum of the symmetrized state is given by:

m1+2+f = mj1 +mj2 + n× p (4.2.21)

and is a good quantum number. This dressed state picture can be used asymptotically
as the characteristic time of the Rabi oscillations is much shorter than the characteristic
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time between two collisions as explained in details in appendix. A.1.

We show in Fig. 4.3 the energy of two separated bosonic 23Na87Rb molecules as a
function of the electric field E, for the same conditions than in Fig. 4.2. We can see that
for p = 0, the dressed state {|0, 0, 0, 0〉+ |+1〉} is highly coupled with {|0, 0, 1, 0〉+ |−1〉}
while for p = 1 it is highly coupled with {|0, 0, 1,+1〉+ |−1〉}. This change will cause the
adiabatic energy curves to behave differently in function of the polarization chosen (cf.
discussion in section 4.3).

Collisional study

When the molecules are getting closer, the centrifugal energy and the long-range
interactions must be treated using the collisional formalism described in the previous
section. The collisional channels are then defined by:

|i〉 ≡ |α̃〉 |l,ml〉
= |j̃1, m̃j1 , j̃2, m̃j2 ; η〉 |ñ〉 |l,ml〉
=

{
|j1,mj1 , j2,mj2〉± |n〉

}
|l,ml〉. (4.2.22)

The projection of the total angular momentum of the system is described by the quantum
number:

MJ = m1+2+f +ml = mj1 +mj2 + n× p+ml (4.2.23)

which is conserved during the collision. As demonstrated in the previous chapter, the
symmetrization of the total collisional basis gives:

P̂12{|j1,mj1 , j2,mj2〉± |n〉} |l,ml〉 = η(−1)l{|j1,mj1 , j2,mj2〉± |n〉} |l,ml〉 . (4.2.24)

In the following, we will only deal with identical bosons then only even values of the
orbital moment (l = 0, 2, 4, ...) are considered. This time-independent formalism can be
safely employed even during a collision as the time of a collision is much longer than the
period time of the Rabi oscillations as shown in appendix A.1 (see supplemental material
of [103]).

Finally, the total Hamiltonian is given by:

Ĥ = T̂ + V̂ + ĥrot1 + ĥrot2 + ĥm1.f + ĥm2.f + ĥf (4.2.25)

with T̂ = − ~2

2µ
∇2
~r and V̂ is composed by:

V̂ = V̂dd + V̂el. (4.2.26)

The first term V̂dd is derived from the multipolar expansion (Cf. Eq. 3.4.14) and describes
the dipole-dipole interaction:

〈i| V̂dd |i′〉 = 〈α̃|
(

1− 3 cos2 θSFr
4πε0r3

)
d̂1d̂2 |α̃′〉 δn,n′ =

C3

r3

ζi,i′(l,ml, l
′,m′l;E) (4.2.27)
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Figure 4.3: Energy of two separated bosonic 23Na87Rb molecules as a function of the
electric field E of an electromagnetic wave for Ephot = 204 mK. Top: linear polarization
p = 0, Bottom: circular polarization p = +1. Some of the dressed states are labelled as{
|j1,mj1 , j2,mj2〉± |n〉

}
.

with C3 = d̂1d̂2

4πε0
and ζi,i′(l,ml, l

′,m′l;E) a geometrical coefficient depending on the orbital
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angular momentum as well as the rotational angular momentum via the dressed states.
It also depends on the value of the electric field. We could include the quadripolar
and octupolar terms but it was shown [97] that they are totally negligible at low energy.
Moreover, for some convenient reasons, we do not take into account of the entire electronic
structure of the molecules. We use an effective isotropic and dispersive potential ∝ r−6

whose matrix elements are given by:

〈i| V̂el |i′〉 =
Cel

6

r6
δi,i′ (4.2.28)

with Cel
6 < 0 the electronic van der Waals coefficient theoretically determined [183].

4.3 Shielding of NaRb + NaRb collisions
Now, we consider bosonic 23Na87Rb molecules prepared in their ground electronic

state 1Σ+, ground vibrational state v = 0 and ground rotational states j = 0 [184]. We
want to apply an electromagnetic wave so that the j = 0 and j = 1 are coupled together.
As in the previous part, we use a mode of the field with a corresponding photon energy
Ephot = 2B+0.034B = 204 mK, using B = 2.0896628 GHz [84]. This is a photon slightly
blue detuned with the j = 0↔ j = 1 transition as the detuning:

∆ = Ephot − 2B (4.3.1)

amounts to 0.034B in this case and is positive (∆/2B ' 0.01). The typical value of
Ephot is characteristic of an electromagnetic wave in the microwave domain. To converge
the results, we take the rotational quantum numbers jτ = 0, 1, the photon numbers
n = 0,±1,±2, the orbital quantum numbers l = 0, 2, 4, and the total projection MJ = 0.
We choose rmin = 5 a0, a full loss condition Eq. 3.5.11 at short-range, and we propagate
Z up to rmax = 35000 a0 to get converged rate coefficients for the elastic, inelastic, loss
and quenching processes.

In appendix A.3, we have shown that the effects related to hyperfine interactions can
be neglected if we apply a sufficiently large magnetic field. For NaRb, we have estimated
that this value is B = 100 G. We will consider that this magnetic field is always on for
all the calculations made in this chapter so that we neglect all the effects related to the
hyperfine structure.

Adiabatic energy curves

First, let’s look what happens when the electric field is not yet swiched on. In Fig 4.4,
we have represented the adiabatic energies as a function of r for E = 0, p = 0, MJ = 0
and Ephot = 204 mK.

When the field is zero, the quantum numbers n, jτ and mjτ are good quantum num-
bers. Therefore, we can identify each adiabatic energy curve by a well defined set of
quantum numbers. We represented the n = 0,+1,−1,+2,−2 curves respectively in
black, blue, red, orange, green. The states whose internal states are identical but for
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Figure 4.4: Adiabatic energies as a function of r for the bosonic 23Na87Rb + 23Na87Rb
system for E = 0, p = 0, η = +1, MJ = 0 and Ephot = 204 mK. The n =
0,+1,−1,+2,−2 curves are plotted in black, blue, red, orange, green. The values j1, j2 ;n
of
{
|j1,mj1 , j2,mj2〉+ |n〉

}
labels the dressed states asymptotically. The box indicates

what is shown in more details in Fig. 4.5-a.

which the quantum number n is different have the same adiabatic energy curves that
shifted in energy via the presence of the term εn in the asymptotic energies given in
Eq. 4.2.18. As Ephot is chosen so that it is almost in resonance with the j = 0 ↔ j = 1
transition, then one can see that the states

{
|0, 0, 0, 0〉+ |0〉

}
,
{
|0, 0, 1, 0〉+ | − 1〉

}
and{

|1, 0, 1, 0〉+ | − 2〉
}

are really close to each others, as indicated by the box. We have
verified that they tend well asymptotically to the energies presented in Fig. 4.3.

If we zoom on the incident channel (Fig. 4.5-a), we observe the usual behavior of
the centrifugal potential energy. Indeed, potential energy curves mainly composed of
the s-wave partial wave (l̃ = 0) have no centrifugal barrier and are attractive, whereas
the potential energy curves mainly composed of the d-partial wave (l̃ = 2) have a small
centrifugal barrier before being attractive due to the van der Waals term. In these
conditions, if two molecules start to collide with a low relative kinetic energy, their radial
wave functions see the attractive l̃ = 0 curve and are lost in the short-range domain. If
the electromagnetic wave is turned on (E = 0.2 kV cm−1, Fig. 4.5-b-c), the states start to
be enough coupled to observe the shielding mechanism. n is not a good quantum number
anymore and the curves have lost their color code. Let’s distinguish the two cases:

• For p = 0, we observe that for the incident state, the corresponding l̃ = 2 channel
has become totally repulsive while the l̃ = 0 channel remains attractive.
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• For p = +1, we observe that for the incident state, both the channels l̃ = 0, 2
become repulsive.

This difference is due to the specific selection rules in the matrix elements of the coupling
matrix in Eq. 4.2.19, as found for Na + Na collisions [142]. Therefore, for p = 0 the
shielding will not be efficient due to the presence of the attractive s-wave behavior in the
l̃ = 0 channel. On the contrary, the p = 1 polarization is a good candidate for shielding
because the incident radial wave functions will see barriers at long-range in both l̃ = 0, 2.
The barriers are very high (∼ K) compared to the collision energy (∼ nK). As a result,
we expect them to prevent the molecules to come into the short-range region (and the
loss rate coefficient will decrease).

If one increases E to E = 0.05 kV/cm (Fig. 4.5-d), we observe that the more we
increase the electromagnetic field the more the partial waves corresponding to our initial
state move away from the curves corresponding to other states. We therefore expect
a decrease in the inelastic collision rates to the other de-excitation channels when E
increases.

4.3.1 Rate coefficients

The set of coupled equations (Eq. 3.4.10) adapted in the Flocket formalism are given
by: [

− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ εα̃ − Etot

]
fi(r) +

∑
i′

Vi,i′fi′(r) = 0 (4.3.2)

where Vi,i′ includes the dipole-dipole interaction and the van der Waals interaction. Af-
ter propagation of the log-derivative matrix (cf. section 3.5), we obtained the different
rate coefficients. We present in Fig. 4.6 the elastic (red), inelastic (green), loss (black)
and quenching (blue) rate coefficients as a function E for Ephot = 204 mK, p = +1 and
Ek = 720 nK (on the order of the temperatures reached in the CUHK NaRb experi-
ment [184, 84, 157]). For the calculations, we used MJ = 0,±1,±2,±3,±4. Only the
different contributions of MJ for the elastic rate coefficients are plotted (for visibility)
and are represented by dashed lines. The solid lines represent the sum of the different
contributions.

First, we can see that MJ = 0 is the main contribution for elastic collisions. This
can be explained by the fact that the incident channel {|0, 0, 0, 0〉± |0〉}

∣∣0̃, 0〉 has its
main couplings with {|0, 0, 1,+1〉± |−1〉}

∣∣0̃, 0〉 and {|0, 0, 1, 0〉± |−1〉}
∣∣2̃,+1

〉
which are

responsible of the repulsion of the incident channel (and they both correspond toMJ = 0).
For low values of the electric field (E < 0.02 kV cm−1), the quenching rate coefficient is
high because the barrier in the channel l̃ = 0 has not yet appeared. For higher electric
fields (E > 0.02 kV cm−1), the barrier appears and becomes higher as the electric field
increases. This is why the loss rate coefficients in this electric field range decrease.

Secondly, we can note that for E = 0 kV cm−1, the inelastic collisions are zero because
without field there is no coupling between the states and therefore no inelastic collisions
are possible. As predicted in section 4.3, we can observe that as the field increases, the
inelastic collision rate coefficients decrease. Indeed, the probability to go in an open
channel which is moving away decreases.
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Figure 4.5: Same as Fig. 4.4. Panel a): E = 0 kV/cm and p = 0. Panel b): E =
0.02 kV/cm and p = 0. Panel c): E = 0.02 kV/cm and p = +1. Panel d): E =
0.05 kV/cm and p = +1. The content of the box in panel d) is shown in more details in
Fig. 4.9.
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Figure 4.6: Rate coefficients for the bosonic 23Na87Rb + 23Na87Rb system for p = +1
and Ek = 720 nK. Red curve: elastic process βel, green curve: inelastic process βin,
black curve: loss process βls, blue curve: quenching process βqu (inelastic + loss). The
MJ = 0,±1,±2,±3,±4 components of the elastic process have also been shown as dashed
lines. Top panel: as a function of E for Ephot = 204 mK. Bottom panel: as a function of
Ephot for E = 0.02 kV/cm. The resonance energy is at 2B = 200.6 mK.
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When the electric is turned on, first the inelastic rate coefficient increases and then
it decreases with E. As explained in section 4.3, when we increase the electric field, the
energy gap between the channels increases. Therefore, the probability to go in a open
channel which is moving away decreases.

Finally, for E ≥ 0.05 kV cm−1 a ratio γ = βel/βqu ≥ 103 can be reached. This repre-
sents favorable conditions for evaporative cooling purpose. Note that at E = 0 kV/cm,
the quenching rate coefficient tends to the value ∼ 3.4 10−10 cm3/s, showing that we have
calibrated well our short-range condition to the zero field experimental data. Note that
for this range of microwave field intensity, the optical dipole trap remains deep enough
to trap the molecules as shown in appendix A.2.

So far, we have studied the shielding mechanism for a fixed detuning. However, we
believe that there is also an optimal value for the detuning, because the smaller the
detuning, the closer will be the three states represented in Fig. 4.5 and the stronger the
coupling between the states will be. This will affect the height of the potential barrier
created and therefore the collision rate coefficients. In Fig. 4.6, we have plotted the
collision rate coefficients as a function of the detuning for a fixed value of the microwave
field E = 0.02 kV cm−1. The transition j = 0↔ j = 1 is at 2B = 200.6 mK. Therefore,
when Ephot < 200.6 mK, we are in the case of a red detuned laser and no molecular states
are below the incident ones. Our state will simply be pushed down by the states above
and become even more attractive. This is why we observe that for this range of detuning,
the elastic and quenching rate coefficients have similar values which is not interesting in
term of shielding. When Ephot > 200.6 mK, we are in the case of a blue detuned laser
and the effects of shielding start to appear in the collision rates. Indeed, we observe
that the quenching rate coefficient drops drastically compared to the elastic ones when
the field intensity increases. One can reach a ratio γ of 105 for the appropriate value
of Ephot. When we move away from the crossing, one gets back to the normal situation
where the photon is so off-resonance that the dressing has no effect on the molecules, and
they collide as if they were no effect of the microwave field.

To produce molecular Bose-Einstein condensates, reaching temperatures in theWigner
regime is crucial. We have represented in Fig. 4.7 the evolution of the collision rate co-
efficient as a function of the collision energy Ek. We identify the Wigner regime area by
looking to the laws of evolution of the different rate coefficients. Indeed, if we refer to
the equations 3.5.26 and 3.5.27, the Wigner regime is characterized by inelastic collisions
and loss rate coefficients which are independent of the collision energy whereas the elastic
collision rate coefficients must be ∝ E

1/2
k . These behaviors are found in an area between

Ek = 10−12−10−9 K which is represented by a blue box on the graph. Although shielding
is very effective for NaRb molecules, if one wishes to study and use its dipolar properties
in the ultracold range, very low temperatures must be reached.

4.3.2 Scattering length

We have seen that one can find values of E for which the quenching processes are
suppressed, more exactly where the ratio γ gets large. This is an important value for
the evaporative cooling process. However, another important quantity to control is the
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Figure 4.7: Rate coefficients for the bosonic 23Na87Rb + 23Na87Rb system for p = +1 in
function of Ek for different value of the electric field E. Red curve: elastic process βel,
green curve: inelastic process βin, black curve: loss process βls. The green and black
dotted lines are superimposed. For E = 0 kV cm−1, inelastic rate coefficients are 0 and
are not represented here. The blue box represents the Wigner regime.

scattering length, more especially the real part of it, to form stable quantum degenerate
gases such as Bose–Einstein condensates.

We have represented in Fig. 4.8, the evolution of the scattering length (real and imag-
inary part) as a function of the electric field for Ek = 10−12 K. As we can see on the
insert, the imaginary part decreases with the electric field. As shown in Eq. 3.5.29, the
imaginary part is only related to the quenching. The results are therefore in agreement
with the behavior of the rate coefficients. However, we notice two resonance peaks in
the real and imaginary part of the scattering length which were not transcribed in the
collision rate coefficients calculated previously. By choosing properly the value of the
electric field, we can control both the sign and the amplitude of the real part of the scat-
tering length. The resonances are large enough to select a value of the scattering length
allowing the formation of stable many-body gas.

Why do these resonance peaks appear?
The resonant features are explained by the apparition of a long-range, isolated shallow

potential well in the entrance channel (indicated by a box in Fig. 4.5-d) when the intensity
of the field is increased. The more intense the applied field, the deeper the well becomes.
The resonances appear each time that the potential well can carry an additional bound
states.

In Fig. 4.9, we zoomed in and plotted the long-range well for different values of E. For
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Figure 4.8: Scattering length as a function of E for the bosonic 23Na87Rb + 23Na87Rb
system for Ephot = 204 mK and Ek = 1 pK. Black curve: real part, red curve: imaginary
part.

E < 0.02 kV cm−1, the shielding is not yet activated as the long-range potential barrier
is not yet formed. For E > 0.2 kV cm−1, we observe the presence of a small potential
well whose depth increases with the field intensity. While the repulsive character comes
from the electromagnetic wave dressing, the attractive character of the well at even more
longer range comes from the unavoidable coupling between the l̃ = 0 and higher l̃ curves
of the same initial state. Indeed, the partial waves l̃ = 2 and l̃ = 4 are the only two
channels above the partial wave l̃ = 0 which can push it down.

We know that the scattering length depends on the position of the last bound state
present in the potential well. It becomes large and positive (a→ +∞) when the energy
of the last bound state tends towards the dissociation limit. When the last bound state
"comes out" of the potential and is lost, the scattering length becomes large and negative
(a → −∞). Then, the resonances in Fig. 4.8 appear each time that the potential well
can carry an additional bound states. To identify these bound states, I developed a
numerical procedure based on the renormalized Numerov method [185]. As expected, for
E = 0.5 kV cm−1 (after the first peak) and E = 0.15 kV cm−1 (after the second peak)
the potential well contains respectively one and two bound states. These resonances are
reminiscent of the so-called field-linked states [186, 187] in collisions of dipolar molecules
in a static electric field.
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4.4 Adimensional study

The aim of this part is to treat the microwave shielding through an adimensional
approach. In a first part, we derive the parameters and equations that govern the dy-
namics of the system. In a second part, we present the results obtained and determine
the molecules for which the shielding is effective. It is based on the formalism of [98] and
adapted for collisions in presence of an electromagnetic field [103]. The transformation
between atomic units and SI units are given in the caption of Table. A.1.

4.4.1 Quantum formalism

The shielding mechanism is based on the long-range dipole-dipole interaction. Its
characteristic length [188] is given by:

sr3 ≡
2µC3

~2
=

2µ

~2

d2

4πε0
= 2(µ/a.u.)(d/a.u.)2 (4.4.1)

and the corresponding characteristic energy [188] is:

sE3 ≡
~2

2µs2
r3

=
~6

(2µ)3(d2/4πε0)2
= [8(µ/a.u.)3(d/a.u.)4]−1. (4.4.2)
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Theses quantities scale up respectively as µ and µ−3, then if the fictitious molecules are
heavier, we expect the barrier appear at a longer distance and will be higher if their
permanent dipole moment are similar. It is then possible to rescale the distance r and
all the energies ε = {Etot, εα̃, Ek} with respect to these characteristic quantities such as:

r̃ =
r

sr3
ε̃ =

ε

sE3

. (4.4.3)

One can derive an adimensional set of coupled equations given by:

∑
i

[{
− d2

dr̃2
+
l′(l′ + 1)

r̃2
+ ε̃α̃ − Ẽtot

}
δi,i′

+

{
ζi”,i(l”,ml”, l

′,m′l;E)

r̃3

}]
f Ẽtoti′,i (r̃) = 0 (4.4.4)

with Etot = εα̃ + Ek so that Ẽtot = ε̃α̃ + Ẽc, then ε̃α̃′ − Ẽtot = (ε̃α̃′ − ε̃α̃) − Ẽc. By
multiplying and dividing (ε̃α̃′ − ε̃α̃) by B, one gets ((εα̃′ − εα̃)/B) × (B/sE3), then we
obtain:

∑
i′

[{
− d2

dr̃2
+
l′(l′ + 1)

r̃2
+

(
εα̃′ − εα̃

B

)
B̃ − Ẽc

}
δi′,i′′

+

{
ζi′′,i′(l

′′,m′′l , l
′,m′l ; Ẽ)

r̃3

}]
f Ẽtoti′,i (r̃) = 0. (4.4.5)

From the equation above, we can extract four key parameters. The first parameter is
a rescaled rotational constant B̃ and is simply expressed as a function of the rotational
constant, the electric dipole moment and the reduced mass of the system:

B̃ =
B

sE3

=
8Bµ3

~6

(
d2

4πε0

)2

= 8(B/a.u.)(µ/a.u.)3(d/a.u.)4. (4.4.6)

In short, this quantity contains all the information necessary to describe a molecule.
Another parameter is:

εα̃′ − εα̃
B

. (4.4.7)

It represents the difference between the energy εα̃′ of a molecular state |α̃′〉 dressed by
the quantized field and the energy εα̃ of the initial one |α̃〉, rescaled by the rotational
constant. We introduced B in this parameter because the rescaled energies εα̃/B are
obtained directly by dividing Eq. 4.2.19 by the rotational constant B on both sides:

ĥ

B
=
ĥrot1 + ĥrot2 + ĥpm1.f

+ ĥpm2.f
+ ĥf

B
. (4.4.8)

As the result, the two first Hamiltonians are independent of B. The molecule-field in-
teractions ĥpm1.f

+ ĥpm2.f
give terms in ~Ω/B = dE/B. Therefore, the rescaled energies
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εα̃/B are implicit functions of dE/B ≡ Ẽ. Or equivalently, in term of the rescaled Rabi
Frequency:

Ω̃ =
Ω

B/~
=
dE

B
≡ Ẽ (4.4.9)

which becomes the second parameter and identifies with the rescaled electric field. Finally,
the quantized field hamiltonian ĥf gives terms in ~ω/B = Ephot/B. Then, the rescaled
energies are also implicit functions of Ephot/B ≡ Ẽphot. Equivalently, they are functions
of a rescaled detuning (relative to the j = 0↔ j = 1 transition):

∆̃ =
∆

B
=
Ephot − 2B

B
= Ẽphot − 2 (4.4.10)

which becomes the third parameter. In the following, we fix this third parameter to an
arbitrary positive constant of ∆̃ = 0.034 (blue-detuned). We choose the values of ∆̃
and Ω̃ appropriately so that the blue-detuned microwave radiation does not lead to an
anti-trapping effect of the molecules, see Appendix A.2. Finally, the fourth parameter is
the rescaled collision energy:

Ẽc =
Ek

sE3

. (4.4.11)

4.4.2 Adding the electronic van der Waals interaction

As seen in the previous chapter, we must include the attractive van der Waal inter-
action in our calculations. In contrast to the dipole-dipole interaction, this interaction is
∝ r−6. Its characteristic length [188] is given by:

sr6 =

(
2µCel

6

~2

) 1
4

6= sr3 . (4.4.12)

As a result, if we try to rescale V̂ el, we cannot express it only in function of the previously
defined adimensional quantities because the reduced mass and the dipole moment remain.
Therefore, we cannot end up in general with a strictly adimensional study, i.e. without
dependence on molecular parameters. Neglecting the electronic van der Waals term is
also not possible given that in some cases the geometrical factor ζi,i′ vanishes in the
diagonal element of 〈i|Vdd|i′〉, such as for an incoming and outgoing s-wave l = l′ = 0.
As a consequence, instead of having an attractive s-wave in our adiabatic energy curves,
we would have a curve equal to 0 for any value of r. However, the electronic van der
Waals interactions play a negligible role for a lot a systems [98]. Roughly, this is valid
for molecules for which:

Crot
6 � Cel

6 . (4.4.13)

This is why we solved the dimensional coupled equations for a fixed fictitious electronic
coefficient Cel

6 6= 0 chosen in the same order or magnitude as for the molecules studied
(Cf. section 4.5). Then, we appropriately come back to adimensional rescaled quanti-
ties. It turns out that for the sytems for which the shielding is efficient, this is a good
approximation.
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4.4.3 Adimensional observables

We consider the Bethe–Wigner regime as Ek → 0 and where the scattering length is
independent of the collision energy. We can express the adimensional scattering length
as [98]:

ã = ãre − i ãim =
ã

sr3
. (4.4.14)

It is then possible to reconstruct the cross sections and collision rate coefficients via the
relations:

σ̃el = |ã|2κ, σ̃qu =
ãim

k̃
κ, (4.4.15)

β̃el = k̃|ã|2κ, β̃qu = ãimκ, (4.4.16)

with k̃ =
√
Ek/sE3 and κ the coefficient related to the indiscernibility of the molecules.

Finally, it is possible to express the ratio γ of the elastic collision rate coefficient to
the total loss rate coefficient via:

γ =
βel

βqu
=
|ã|2

ãim
k̃. (4.4.17)

4.5 Numerical results
In the next two sections, we consider molecules initially prepared in their ground ro-

tational state |0, 0, 0, 0〉+|0〉. Only the symmetric states η = +1 exist for same, indistin-
guishable states and are coupled to other symmetric states. To get converged results, we
use jτ = 0, 1, n = 0,±1,±2, l = 0, 2, 4 and MJ = 0. We will solve the dimensional equa-
tions for a fictitious molecule (XY )∗ for which we fix the rotational constant B∗ = 10−7

a.u. (∼ 0.022 cm−1) and electric dipole moment d∗ = 1 a.u. (∼ 2.54 Debye) while the
mass µ∗ is varied. In this way, the parameter B̃ = 8(B∗/a.u.)(µ∗/a.u.)3(d∗/a.u.)4 in
Eq. 4.4.6 only varies with µ∗. Fixing B∗ and d∗ is also convenient for varying the rescaled
field Ẽ = d∗E/B∗, since it is sufficient to vary the electric field E only. We consider the
scattering properties at collision energies E∗c = 100 nK so that the third parameter Ẽc
is fixed. We used rmin = 5 a0 and rmax is chosen so that k∗ r∗max ∼ 5. As the mass µ∗ is
changed here to vary the parameter B̃, k∗ changes accordingly, and so does r∗max. Most
of the systems investigated in experiments are diatomic dipolar molecules of alkali atoms
for which the electronic Cel

6 coefficients belongs to the range 3000 ≤ Cel
6 ≤ 20000 a.u

[189, 190, 183, 191]. In this study we use a fixed value of Cel,∗
6 = 10000 a.u. between two

molecules (XY )∗.

4.5.1 Ratio γ

In Fig. 4.10, we present the quantity |ã|2/ãim which represents the ratio γ when k̃ = 1,
that is at a typical collision energy of Ek = E3. To get the ratio at Ek > E3, one has to
multiply this quantity by k̃. For evaporative cooling techniques, γ has to reach a factor
of 103 or more for the process to be highly efficient. Therefore, the regions of the graph
in yellow, orange and red correspond to favorable conditions for evaporative cooling.
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Figure 4.10: |ã|2/ãim ≡ γ/k̃ as a function of B̃ and Ω̃ for a constant rescaled detuning of
∆̃ = 0.034. The color scale, presented at the right of the picture, goes from 10−4 to 106.
The B̃ values of some characteristic dipolar molecules are reported on the figure. Edited
from [103].
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The regions in green and blue correspond to unfavorable conditions. The rescaled Rabi
frequency is plotted in abscissa and represents the amount of the field applied. The
rescaled rotational constant is plotted in ordinate and uniquely characterizes a molecule,
see table A.1 in appendix A.4. The values of the dipolar alkali molecules have been
reported. For indication, we also report values for 2Σ+ molecules of experimental interest
[192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204]. Looking at the general
feature of the figure, one can distinguish two main regions for the dipolar molecules: a
region for which B̃ > 108 where the ratio can globally reach 103 or more, and a region
for which B̃ < 107 where the ratio barely reach 102. The former region includes the
molecules RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, LiCs and determines the good
candidates for the microwave shielding. The latter region includes the molecules KRb
and LiNa for which the microwave shielding will be not efficient for the present range of
Ω̃. This is due to an unfortunate combination of µ, d and B yielding a too low value of
B̃.

These previous results are in agreement with the ones given for NaRb molecules in the
previous section. To be convinced of this, we have represented in Fig. 4.11-a the rescaled
adiabatic energy curves as a function of the rescaled distance r̃ between the molecules,
for B̃ = 1010 and Ω̃ = 0.18. We find the strong repulsive curves arising in the initial
entrance channel {|0 0, 0 0〉+ |0〉} (indicated by an arrow) which prevents the molecules
to come close to each other and being lost at short-range. This explains the decrease of
the quenching rate coefficients and the increase of the ratio γ.

Let’s note that the hyperfine structure of the 1Σ molecules and that the fine and
hyperfine structure of the 2Σ molecules have not been included in our calculations. In-
deed, it is not possible to consider them while keeping an adimentional study approach.
However, neglecting the fine or hyperfine structure of the molecules is a good assumption
as far as the electronic and the nuclear spins act as spectators, or in other words when
they are decoupled enough from the rotational structure. This can be done applying a
magnetic field as explained in appendix A.3.

4.5.2 Scattering length

In Fig. 4.12-a, we plot ãre and ãim as a function of Ω̃ for a value B̃ = 1010 (∼NaRb).
There are values of Ω̃, hence of the field, for which the real part ãre can take large positive
and negative values while the imaginary part ãim remains low. Then, the elastic cross sec-
tions which are proportional to ãre (see Eq. 3.5.28 and Eq. 3.5.29 in chapter 3) if aim → 0
can be tuned to any desired values up to the maximal value given by the unitarity limit
2× π/k2 for indistinguishable molecules. The imaginary part globally decreases when Ω̃
increases, confirming that the quenching rate coefficients, which are proportional to ãim,
also decreases. The resonant features are explained by the apparition of a long-range,
isolated shallow potential well in the entrance channel when Ω̃ is increased. This is illus-
trated in Fig. 4.11-b which is a close-up of the lowest entrance channel of Fig. 4.11-a. At
Ω̃ = 0.18 (black curve), the well can support three bound states shown on the figure. If Ω̃
is decreased, the depth of the well also decreases and those bound states can disappear.
For example down at Ω̃ = 0.08 (red curve), the well supports now only two bound states
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Figure 4.11: Left panel: Long-range rescaled adiabatic energies as a function of the
rescaled distance between the molecules for B̃ = 1010, Ω̃ = 0.18, and σ+ circularly
polarized field p = +1. The region in the red box is shown in the right panel. The
notation {j1mj1 , j2mj2 ;n} is used to represent the asymptotic dressed states with η =
+1. The labels in black (resp. red, blue, green, magenta) corresponds to values of
m1+2+f = mj1 +mj2 + n× p = 0 (resp. -1, -2, -3, -4). Right panel: Close-up of the long-
range potential well in the lowest entrance channel for B̃ = 1010 and Ω̃ = 0.18 (black),
Ω̃ = 0.08 (red), Ω̃ = 0.03 (blue) together with the corresponding bound states energies
they can support. Edited from [103].



CHAPTER 4. MICROWAVE SHIELDING 69

Ω
~

0 0.1 0.150.05

-10-2

-100

100

10-2

10-4

10-6

10-8

B
rot
=1010~a)

-102

α
re

α
im

~

~

α=
α/
α 3

~

Ω
~

0 0.1 0.150.05

-10-4

-100

100

10-2

10-4

10-6

102b)

-10-2

10-8

-10-6

B
rot

=107~

B
rot

=109~

B
rot

=1011~

solid: α
re

~

dashed: α
im

~α=
α/
α 3

~

Figure 4.12: Top panel: Rescaled scattering length ã as a function of Ω̃ for B̃ = 1010
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and at Ω̃ = 0.03 (blue curve), it supports only one. When the bound states are localized
at the zero energy threshold, typically for values of Ω̃ slightly below 0.18, 0.08, 0.03, ãre

turns from a large and positive value to a large and negative value, as seen in Fig. 4.12-a.

We present in Fig. 4.12-b the trend of the scattering length for increasing values of
B̃ = 107, 109, 1011. For a small value of B̃ = 107 (∼KRb, black curves), one cannot see
any resonant features of ã for the present range of Ω̃. When B̃ is increased, typically for
B̃ ≥ 108, the long-range wells are deep enough to support bound states, and resonant
features appear in the scattering length as in Fig. 4.12-a. This is shown for B̃ = 109

(∼NaK, KCs, red curves) and B̃ = 1011 (∼NaCs, blue curves). These long-range bound
states are actually reminiscent of the field-linked states [186, 187] in collisions of dipolar
molecules in a static electric field as I mentioned above. The presence of these microwave
field-linked states in the long-range wells, when the condition B̃ ≥ 108 is satisfied, is
therefore responsible for the control of the scattering length of dipolar molecules.

In contrast to the static electric field shielding method that we will introduce in the
next chapter, this method provides two tools to control both the real part of the scattering
length (i.e. the stability of the Bose-Einstein condensate) and its imaginary part (i.e. the
short-range losses). The detuning can be used to bring the states into resonance, and
thus control the shielding process, while the field intensity can be used to increase the
depth of the potential well, and thus control the real part of the scattering length.

For that purpose, we have used recently the NaRb molecule as an example (espe-
cially Fig. 4.8). Applying in addition a static electric field, we can control both the real
and imaginary part of the scattering length as well as the dipolar length. This is very
important when the density increases for many-body physics and new states of matter
(quantum droplets, super-solid states). We are currently preparing a draft on that [205].



Chapter 5

Simplified static electric field shielding

In the presence of a static electric field, dipolar molecules orient themselves along the
applied electric field. Therefore, their dipole moments in the laboratory-fixed frame are
no longer zero and can be controlled varying the strength of the applied electric field.
Through the control of these so-called induced dipole moments, one can control the long-
range dipole-dipole interaction and by extension short-range losses. This method was
proposed initially in 2006 [96] for non-lossy molecules, using a non-absorbing repulsive
hard wall at short-range. It has been extended to lossy molecules in 2015 [97] and
generalized in 2017 [98] using an adimensional approach similar to that developed in
chapter 4. Recently, static electric field shielding has been observed experimentally in a
quasi two-dimensional geometry [206] and then in a three-dimensional molecular quantum
gas of KRb molecules [100]. One of my goals is to extend this shielding method to three-
body collisions. However, the complete quantum calculations require a large number of
rotational levels and partial waves which are numerically too cumbersome when switching
to three-body collisions.

In this chapter, we will start with a brief summary of the results already obtained for
the static electric field shielding. Then, we will simplify the existing model by extracting
the essential physics while preserving a moderate and exploitable numerical effort. We
will present the different simplifications used and we will compare them to the complete
quantum calculations.

To illustrate our point, we will consider KRb molecules prepared in their ground
electronic X1Σ+ and vibrational v = 0 states.

5.1 Complete quantum calculation and formalism

In this section, we will describe the main lines of the two-body shielding using a
static electric field: we will make the link between the formalism presented in the last
two chapters and the one used here, then we will report the main results obtained in the
last years with this method while identifying its drawbacks.

71
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5.1.1 Theoretical formalism

The collision formalism used is broadly the same as the one used in the chapter 4.
The electric field is treated in a semi-classical way and is no longer quantified (i.e. we
drop the |n〉 states). As a result, the collision channels are given by:

|i〉 ≡ |j̃1,mj1 , j̃2,mj2 ; η〉 |l,ml〉 . (5.1.1)

As in the microwave shielding case, the tildes correspond to a certain admixture of differ-
ent rotational quantum numbers due to the interaction of the molecules with the electric
field. This interaction is described by the stark effect VS = −~d. ~E whose matrix elements
are given by:

〈jτ ,mjτ |VS
∣∣j′τ ,m′jτ〉 = −dE δmjτ ,m′

jτ
(−1)mjτ

√
2jτ + 1

√
2j′τ + 1

×
(
jτ 1 j′τ
0 0 0

)(
jτ 1 j′τ
−mjτ 0 m′jτ

)
.
(5.1.2)

In this study, the total Hamiltonian (Eq. 4.2.25) is given by:

Ĥ = T̂ + V̂ + ĥrot1 + ĥrot2 + VS (5.1.3)

where T̂ , V̂ , ĥrot1 and ĥrot2 have already be defined in the previous chapters. The set of
coupled equations obtained is very similar to the one given in Eq. 4.3.2 and are solved
using the short-range loss condition given in Eq. 3.5.11 and by propagating the Z-matrix.

To understand the next results, it is useful to define the induced dipole moment along
the electric field direction in the laboratory-fixed frame:

dind(E0) =
〈
j̃τ ,mjτ

∣∣ ~d.ẑ ∣∣j̃′τ ,m′jτ〉∣∣∣
E0

= −dεα̃τ
dE

∣∣∣∣
E0

. (5.1.4)

This represents the mean value of the projection of the permanent dipole moment on the
axis of quantification ẑ between the dressed state

∣∣j̃τ ,mjτ

〉
at a given electric field E0.

The larger its value, the more the dipole is oriented along the electric field. If the dipole
moment is positive then the dipole is oriented in the same direction as the electric field
and oppositely if its sign is negative. Note that this quantity is equal to to the opposite
of the derivative of the energy with the electric field at E0. This equality is known as the
Hellmann-Feynman theorem [207, 208].

To be consistent with the article [97], we use the experimental values of the rotational
constant B = 1.113 950 GHz from Ospelkaus et al. for the fermionic 40K87Rb molecules
and B = 1.095 362 GHz from Aikawa et al. for the bosonic 41K87Rb molecules. We use
the experimental value of the dipole moment d = 0.574D [209] and the theoretical van
der Waals coefficient Cel

6 = 12636 a.u [183].
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Figure 5.1: The figures have been taken from [97, 98]. (top-left) Energy of
41K87Rb+41K87Rb as a function of the electric field. (top-right) Lowest incident channel
taken from the adiabatic energies for the initial colliding state

∣∣1̃, 0〉 +
∣∣1̃, 0〉 at various

electric fields (relative to the initial threshold energy) for bosonic collisions. (bottom-left)
Rate coefficient for the inital colliding state

∣∣1̃, 0〉 +
∣∣1̃, 0〉 at various electric field. The

collision energy if fixed at Ek = 500 nK (bottom-right) |ã|2/aim = γ/k̃ as a function of B̃
and F̃ . The white area corresponds to values γ > 106.

5.1.2 Physical principle and results

As seen in chapter 4, three conditions must be met to achieve an effective shielding.
Firstly, we must be able to put two molecular states in quasi-resonance using an external
field. Secondly, the coupling elements of the dipole-dipole interaction between the two
molecular states must be large enough to create a long-range barrier. Thirdly, we have to
check that the inelastic collisions do not become too large compared to the elastic ones.

The first condition can be investigated by looking at Fig. 5.1 (top-left panel). We
represented the Stark effect on the asymptotic bosonic molecular states. In contrast to the
microwave shielding case, the state

∣∣0̃, 0〉+∣∣0̃, 0〉 doesn’t cross any other state. As a result,
it cannot be used as the incident channel. On the other hand, the states

∣∣1̃, 0〉 +
∣∣1̃, 0〉

cross three states:
∣∣0̃, 0〉 +

∣∣2̃,±2
〉
,
∣∣0̃, 0〉 +

∣∣2̃,±1
〉
and

∣∣2̃, 0〉 +
∣∣1̃, 0〉 at respectively
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E∗1 ∼ 10.5 kV cm−1, E∗2 ∼ 11.5 kV cm−1 and E∗3 ∼ 12.3 kV cm−1 for bosons. A similar
behaviour is obtained for fermions but for E∗1 ∼ 10.6 kV cm−1, E∗2 ∼ 11.7 kV cm−1 and
E∗3 ∼ 12.5 kV cm−1. The first condition is then fulfilled with

∣∣1̃, 0〉 +
∣∣1̃, 0〉 as incident

channel because it can be brought into resonance with other states for reasonable electric
field values.

The second condition can be checked by looking at the adiabatic energy curves. On
Fig. 5.1 (top-right panel), the l̃ = 0 partial wave of the incident channel for different
values of the electric field E ∼ E∗3 is plotted. When the electric field is higher than E∗3 ,
the adiabatic energy curves become fully repulsive. This means that the dipole-dipole
interaction is sufficiently strong compared to the attractive van der Waals term. By
varying the value of the applied electric field, we can control the height of the barrier
and by extension the collision rate coefficients. As the barriers (∼ 800 µK) involved are
much higher than the typical collision energy Ek = 500 nK, we expect the short-range
losses to be strongly reduced but the propagation and the extraction of the different rate
coefficients must be performed.

In Fig. 5.1 (bottom-left), we can observe three different peaks in the elastic, inelastic
and loss rate coefficients by varying the electric field. The first one at E ∼ E∗1 result from
the crossing between the incident channel and the state

∣∣0̃, 0〉 +
∣∣2̃,±2

〉
. The impact of

the resonance on the different rate coefficients is weak because there is no direct coupling
between the two states. The next two peaks are obtained at E∗2 and E∗3 as expected.
It was shown that it is possible to get a maximum ratio of elastic over quenching rate
coefficients γ = βel

βqu
= 7 at E = 12.4 kV cm−1 for 41K87 Rb collisions (Bosons) and γ = 20

at E = 12.65 kV cm−1 for 40K87Rb collisions (Fermions). For these optimal values of the
electric field, we can see that the quenching rate coefficient is quasi equal to the loss
rate coefficient. As a result, we can easily neglect inelastic collisions for these values of
electric field. However, this is no longer the case closer to the resonance where inelastic
collisions are dominant. It can be noted that the range of electric field for which the
shielding is optimal is quite small but can be reached experimentally. These sharp and
rapidly changing structures confirm that shielding is a resonant process whose collision
rate coefficients are uniquely driven by the barrier height in the incident channels.

An adimensional point of view, similar to the one used in chapter 4 has been used to
illustrate the effect of the static electric field on different molecules as shown in Fig. 5.1
(bottom-right). The y-axis and the color labels correspond to the same quantities as the
ones defined in chapter 4, i.e. they represent respectively a parameter identifying the
molecules and the elastic to quentching ratio. The coordinate on the x-axis describes
the applied electric field strength. The shielding is considered effective when yellow, or-
ange, red and white colored regions are plotted. We can see that for a large number of
molecules, one can find a value of the electric field for which the shielding is efficicent.

This method seems to be very efficient for a large number of molecules, however, to
obtain the collision rates presented above, several hundred of channels must be propa-
gated. If one wishes to extend this study to three-body collisions, one must find some
simplification as illustrated in the next section.
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5.2 A simplified model

The previous calculations [97, 98] have been carried out taking no restrictions on the
rotational structure. They used j = [0, 5] with l = 0, 2, 4 for bosons and l = 1, 3, 5 for
fermions which corresponds to 956, 923 and 857 channels for respectively Mtot = 0, 1, 2.
Extending this study to three-body collisions would be impossible because the number of
channels would be too large to be solved numerically. For this reason, we have developed
a simplified model that we first checked on two-body collisions (by comparing the results
obtained with our model to the one given by the complete calculations) before extending
it to three-body systems.

5.2.1 The mj1 = mj2 = ml = 0 approximation

The two molecular states of interest are
∣∣0̃, 0〉 ∣∣2̃, 0〉 and

∣∣1̃, 0〉 ∣∣1̃, 0〉 whose angular
projections mj1 and mj2 are both zero. For bosons, the partial wave l = 0 dominates the
physical behavior of the rate coefficients at ultralow energies (especially in the shielding
process because it is the only partial wave without a centrifugal barrier). For fermions,
the lowest partial wave l = 1, ml = 0 corresponds mainly to head-to-tail collisions while
the projections ml = ±1 correspond mainly to side-by-side collisions. As we can see on
Fig. 5.7, if the molecules are both oriented along the same direction, the head-to-tail con-
figuration is intuitively more attractive (Cf. discussion in section. 5.2.2). Consequently,
the losses are mainly due to the head-to-tail configuration, i.e. the one described by
ml = 0. For these reasons, we will perform our first calculations withmj1 = mj2 = ml = 0
(i.e. Mtot = 0) as explored in [98, 210]. Under this approximation, we can reduce the
number of states to 63. The adiabatic energy curves obtained are plotted in red in Fig. 5.2
(bosons) for the optimal value of the electric field E = 12.4 kV cm−1. As expected, we
can see that the red curves are less numerous than the black ones which correspond
to the complete quantum calculations. We then expect to underestimate the inelastic
collision rate coefficients compared to the complete calculation. Let’s now focus on the
two resonant states (zoom in on the graph). We note that in both cases, the partial
wave l̃ = 0 remains repulsive. The black and red curves overlap perfectly at long-range
but a mismatch appears when the intermolecular distance decreases. Indeed, the barrier
seems to be more quickly repulsive in the complete calculation when r decreases. This
is because when all mjτ projections are considered, there is a larger density of states
(not taken into account in our model) below and near the incident channel that push
our channel upwards. However, as we work with very low collision energy Ek = 500 nK,
the collision rate coefficients are mainly sensitive to the long-range part of the potential
(where the overlap is good). As a result, we expect to have elastic and loss collision rate
coefficients similar to the complete calculation.

On Fig 5.3–5.4 , we superimposed the elastic, inelastic and loss collision rate coeffi-
cients obtained with the mj1 = mj2 = ml = 0 approximation (dashed lines) and with the
complete calculation (solid lines) for collisions of respectively identical bosons (Fig. 5.3)
and fermions (Fig. 5.4). Note that the complete calculations showed a very good agree-
ment with a recent experimental observation of the shielding for a three-dimensional gas
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Figure 5.2: Adiabatic energy curves as a function of the inter-molecular separation for
the M = 0 component. Solid black lines: complete treatment. Solid red lines: Simplified
model with only mj1 = mj2 = ml = 0 Insert: Zoom in on the two states

∣∣1̃, 0〉 +
∣∣1̃, 0〉

and
∣∣2̃, 0〉+

∣∣0̃, 0〉. Taken from [98].

of fermionic 41K87Rb molecules (see Fig.2 from [100]). With our model, the two peaks at
E∗1 and E∗2 do not appear because they correspond to states whose projections mjτ = ±1
±2 6= 0 which are not considered in our model. We can notice that the inelastic collision
rate coefficients are identical at resonance because the closest and most coupled state∣∣2̃, 0〉+

∣∣0̃, 0〉 is conserved in our model. When we move away from the resonance, inelas-
tic collisions are slightly underestimated as expected. Note that the elastic and loss rate
coefficients are almost identical between the two models because the curves for the lowest
partial waves l̃ = 0 (bosons) and l̃ = 1 (fermions) are mostly unchanged at long-range.
For electric fields E > 14 kV cm−1, the curves of the two models match perfectly because
we are far from any avoided crossings. The incident channel can be considered as isolated
and is mainly gouverned by the van der Waals interaction. The rate coefficients follow
the threshold laws developed in [211, 212, 213]:

βel ∝ d4
ind For Bosons and Fermions

βin ∝ βqu ∝ d2
ind For Bosons

βin ∝ βqu ∝ d6
ind For Fermions

(5.2.1)

which depend on the value of the induced dipole moments. Although this approximation
M = 0 allows to drastically reduce the number of states used, it remains unusable when
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studying a three-body system because the number of states remains too large. In the
following section, we will present a model that is limited to the study of only two molecular
states.
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Figure 5.3: Rate coefficients as a function of the electric field for bosonic 41K87Rb for a
collision energy Ek = 500 nK. Black line: reactive process, red line: elastic process, green
line: inelastic process. Solid lines: complete treatment, dashed lines: complete treatment
but with all mjτ = 0.
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Figure 5.4: Same as Fig. 5.3 but for fermionic 40K87Rb.



CHAPTER 5. SIMPLIFIED STATIC ELECTRIC FIELD SHIELDING 79

5.2.2 A two-level model

The idea is to develop a two-state model that qualitatively reproduces the shielding
mechanism while preserving the orders of magnitude of the collision rate coefficients
previously obtained. First, we will present the notations used and show how to separate
the internal structure from the collisional angular part. We will explain how to reduce
the problem to the study of a two-level system. Before integrating on the partial waves,
we will diagonalize the potential matrix and show why the two eigenenergy surfaces V+

and V− are useful to understand the core of the shielding mechanism. We will show that
by integrating these diagonalized energy surfaces on only the first partial wave, we can
reduce the complete study to a single channel problem. We will conclude by comparing
our model to the complete quantum calculation.

Notations and removal of the rotational structure

The approximation mjτ = 0 having been previously verified and validated, we will
compact the notation so that we omit the mjτ quantum numbers in the following:∣∣j̃1, 0

〉 ∣∣j̃2, 0
〉
→
∣∣j̃1, j̃2

〉
. (5.2.2)

We will deal only with the two symmetrized molecular states of interest, the initial one:∣∣1〉 =
∣∣1̃, 1̃〉

+
=
∣∣1̃〉 ∣∣1̃〉 (5.2.3)

and the resonant one: ∣∣2〉 =
∣∣0̃, 2̃〉

+
=

1√
2

{∣∣0̃〉 ∣∣2̃〉+
∣∣2̃〉 ∣∣0̃〉} (5.2.4)

whose corresponding energies E1̃1̃(E) = ε1̃ + ε1̃ and E0̃2̃(E) = ε0̃ + ε2̃ depend on the
applied electric field.

To remove the rotational structure from the formalism and to simplify (future) calcu-
lations of three-body collisions, we employ the definition of a generalized induced dipole
moment (whose derivation is given in appendix B) between a state j̃ and tilde j̃′, that
includes as well the transition dipole moments [214]:

dj̃τ→j̃
′
τ = dτ ×

∑
jτ ,j′τ

〈jτ | j̃τ 〉 〈j′τ | j̃′τ 〉
√

2jτ + 1
√

2j′τ + 1

(
jτ 1 j′τ
0 0 0

)2

, (5.2.5)

where dτ is the permanent dipole moment of the molecule τ , jτ and j′τ represent the index
of the bare rotational states, 〈jτ | j̃τ 〉 and 〈j′τ | j̃′τ 〉 are the coefficients of development of
the dressed states onto the bare states for a given electric field E. When j = j′ these are
the induced dipole moments and when j = j′ these are the transition dipole moments.
We represent in Fig. 5.5 the induced and transition dipole moments as a function of the
electric field for different transitions j̃ = 0, 1, 2 → j̃′ = 0, 1, 2. For the optimal value of
the electric field, we see that the two induced dipole moments for the incident channel are
both negative, hence oriented in the opposite direction of the electric field (↓↓) while the
induced dipoles corresponding to the second state are not oriented in the same direction
(↑↓). The effects of the non-diagonal terms are described in the next section.
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Figure 5.5: Induced (j = j′) and transition (j 6= j′) dipole moments as a function of the
electric field for different values of j → j′.

Definition of two potential energy surfaces V + and V −

We can now use a classical dipole-dipole expression [97, 212], even for collisions in-
volving inelastic transitions, such as the ones in the collisional shielding [206]. Using the
definition in Eq. 5.2.5, the classical expression of the dipole-dipole interaction between a
dressed rotational state j̃ and j̃′ for molecule 1 and for molecule 2 (Cf. appendix B) can
be written as:

V
j̃1→j̃′1,j̃2→j̃′2
dd (r) =

dj̃1→j̃
′
1 dj̃2→j̃

′
2

4πε0 r3
(1− 3 cos2 θ) (5.2.6)

and includes now the off-diagonal elements, responsible for the inelastic transitions.

In the specific conditions of the collisional shielding, the physical picture is rather a
strong dipolar interaction first (this can persist at long-range as the two energy levels
of the molecular states become more and more degenerate), then a subsequent coupling
between partial waves. It is therefore physically intuitive to first look at the effect of
the dipolar interaction (mediated by the rotational levels), then to treat the effect on
the orbital motion at a second stage, as a pertubation. This is in essence what was
proposed and employed in [102] where Born-Oppenheimer-like potentials were introduced
to investigate similar studies of shielding. Therefore, we first diagonalize the following
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Figure 5.6: Potential model V+ (top) and V− (bottom) as a function of the polar coor-
dinates x = r sin θ and z = r cos θ. They are calculated for fermionic 40K87Rb molecules
at respectively E = 12.7 kV cm−1 and E = 12.5 kV cm−1. They include the dipole-dipole
interaction, the van der Waals interaction and the l = 1 centrifugial barrier.

matrix:[
d1̃→1̃ d1̃→1̃

4πε0 r3 (1− 3 cos2 θ) + E1̃1̃

√
2 d1̃→0̃ d1̃→2̃

4πε0 r3 (1− 3 cos2 θ)
√

2 d1̃→2̃ d1̃→0̃

4πε0 r3 (1− 3 cos2 θ) d0̃→0̃ d2̃→2̃+d0̃→2̃ d0̃→2̃

4πε0 r3 (1− 3 cos2 θ) + E0̃2̃

]
(5.2.7)
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and obtain two surface functions of eigenvalues in r and θ:

E±(r, θ) =
1

2
(Ea + Eb)±

1

2

√
(Ea − Eb)2 + 4W 2, (5.2.8)

with:

Ea ≡
d1̃→1̃ d1̃→1̃

4πε0 r3
(1− 3 cos2 θ) + E1̃1̃

Eb ≡
d0̃→0̃ d2̃→2̃ + d0̃→2̃ d0̃→2̃

4πε0 r3
(1− 3 cos2 θ) + E0̃2̃ (5.2.9)

W ≡
√

2
d1̃→2̃ d1̃→0̃

4πε0 r3
(1− 3 cos2 θ).

To get a more accurate picture of what is going on, we include the van der Waals inter-
action and the centrifugal barrier of the lowest partial wave such that:

V+(r, θ) = E+(r, θ)− C6

r6
+

C2

2µr2
V−(r, θ) = E−(r, θ)− C6

r6
+

C2

2µr2
. (5.2.10)

To illustrate the discussion, we consider the case of fermions in the following so:

C2 = ~2l(l + 1) =
l=1

2~2. (5.2.11)

When E1̃1̃ > E0̃2̃, the model potential curve for the initial state will be V (r, θ) ≡
V+(r, θ). We represented in Fig. 5.6 (top panel), the potential energy surface V+(r, θ) in
polar coordinates defined as:

z = r cos(θ) x = r sin(θ) (5.2.12)

for E = 12.72 kV cm−1 > E∗3 . For a fixed intermolecular distance r0, the potential V (r0, θ)
corresponds to a circle of radius r0 on the potential energy surface. Then, we observe
that in the short-range domain (circle of small radius), the van der Waals interaction
dominates the physical process and the interaction is purely attractive. If we focus on
the long-range part, we observe four repulsive peaks which are signatures of the dipole-
dipole interaction. The two peaks along z = 0 are coming from side-by-side collisions (i.e.
θ = π/2) whereas the two peaks along x = 0 are coming from the head-to-tail collisions
(i.e. θ = 0). The difference in height between the two configurations will be explained in
Sec. 5.2.2. For θ ≈ 54°, we have a zero because 1− 3 cos2 θ = 0. As we will average our
potential energy surface over the partial wave l = 1, hence over θ, then for a circle whose
perimeter hits all four peaks, the interaction remains globally repulsive.

When E1̃1̃ < E0̃2̃, the model potential curve becomes V (r, θ) ≡ V−(r, θ). We repre-
sented this potential energy surface in Fig. 5.6 (bottom panel) for E = 12.5 kV cm−1.
We obviously obtain an attractive potential at short-range because of the attractive van
der Waals interaction. The small repulsive parts are coming from the centrifugal l = 1
barrier for the configuration where 1 − 3 cos2 θ = 0. Unfortunately, these small barriers
are not high enough to prevent losses in average.



CHAPTER 5. SIMPLIFIED STATIC ELECTRIC FIELD SHIELDING 83

Figure 5.7: Side-by-side and head-to-tail configurations. An external electric field is
applied along ~ez where the induced dipole moments are oriented.

Illustration of the PES’s angular dependence

By looking at the Fig. 5.7, it is intuitive to understand that the side-by-side config-
uration is more repulsive than the head-to-tail configuration. Indeed, in the first case,
the dipole moments approach pointing in the same direction, whereas in the second case
they approach pointing in opposite directions.

However, when we look at the V+(r, θ) surface presented earlier, the barriers corre-
sponding to the head-to-tail configuration are the most repulsive. To understand this
difference, we have plotted on Fig 5.8 the diabatic potential energy surfaces (then before
diagonalization of the matrix 5.2.7) and the adiabatic ones as a function of the inter-
molecular distance for the two configurations θ = 0 and θ = π/2. To understand the
difference between the diabatic curves, we recall here the two terms describing the upper
and the lower diabatic states:

Ea ≡
d1̃→1̃ d1̃→1̃

4πε0 r3
(1− 3 cos2 θ) + E1̃1̃ (5.2.13)

Eb ≡
d0̃→0̃ d2̃→2̃ + d0̃→2̃ d0̃→2̃

4πε0 r3
(1− 3 cos2 θ) + E0̃2̃. (5.2.14)

For:

• the incident channel Ea, the term d1̃→1̃d1̃→1̃ is obviously positive. The overall sign
of the expression then depends only on the sign of (1 − 3 cos2 θ) which is positive
when θ = π/2 and negative when θ = 0. This is why the black curves corresponding
to the incident channel are attractive for θ = 0 and repulsive for θ = π/2 on Fig 5.8.

• the lowest channel Eb, the term d0̃→0̃ d2̃→2̃ is large and negative while the term
d0̃→2̃ d2̃→0̃ is small and positive (cf. Fig 5.5): the total is then negative. Following
the same reasoning as before, the diabatic energies for this state must be repulsive
for θ = 0 and attractive for θ = π/2.

We end up with two diabatic curves which are crossing for the head-to-tail configuration
while the two curves do not cross for the side-by-side configuration. After diagonalization
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of the total matrix, an avoided crossing appears for the θ = 0 case due to the off-
diagonal element W . As a consequence, at the beginning of the collisional process,
the two molecules are aligned in the same direction. When they are enough close to
each other, the incident channel is strongly mixed with the channel bellow and takes on
its character. Then, the induced dipole of one of the molecule changes to an opposite
direction which prevents the molecules to approach to each other due to the creation of
a repulsive barrier. When molecules move back apart, the molecules orient themselves
again in the same direction. When the molecules collide via a side-by-side configuration
(θ = π/2), the two molecules stay aligned along the same direction during the entire
collisional process.

Finally, the difference in the height of the barriers between the two configurations
explained by the fact that W is proportional to (1− 3 cos2 θ) which is two times stronger
for θ = 0 than for θ = π/2.

Average over the orbital angular momentum

To obtain a more quantitative comparison, we will present in this section the adia-
batic energy curves obtained after averaging over the partial waves and we will compare
them to those obtained with the complete quantum calculation.

As seen in the theoretical part, partial waves are just spherical harmonics whose polar
and azimuthal angular parts are separable Ymll (θ, φ) = Θml

l (θ) Φml(ϕ) . The integral of
the model potential over the partial wave Ymll (θ, φ) is given by:〈

V (r)
〉
l,ml

=
〈
l,ml

∣∣V (r, θ)
∣∣l′,m′l〉 =

∫
[Ymll (θ, φ)]∗ V (r, θ)Ym

′
l

l′ (θ, φ) sin θ dθ dφ.(5.2.15)

Note that this is not analytical anymore, one cannot use 3-j symbols, but for each inter-
molecular distance r one must numerically compute the integrals. We will only consider
the first partial wave in our model so l = l′ = 0 for bosons and l = l′ = 1. Moreover, since
the potential is independent of φ, ml = m′l and we can simply perform a one-dimensional
integral over θ: 〈

V (r)
〉
l,ml

=

∫ π

0

[Θml
l (θ)]∗ V (r, θ) Θml

l (θ) sin θ (5.2.16)

with

Θml
l (θ) = (−1)ml

√
2l + 1

2

√
(l −ml)!

(l +m)!
Pml
l (θ) with: ml ≥ 0 (5.2.17)

Θml
l (θ) = (−1)|ml|Θ|ml|l (θ) with: ml < 0. (5.2.18)

To compute the integral in Eq. 5.2.16, a Gauss-Legendre quadrature is well suited be-
cause the barriers are located at the edges of the integration domain of θ. For symmetry
considerations, we have realized the quadrature only on θ ∈ [0, π/2]. We used 200 points
for the quadrature.
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Figure 5.8: PES for θ = 0 (top) and θ = π/2 (bottom) as a function of the intermolecular
distance r for E = 12.4 kV cm−1.

For bosons, the first parial wave |0, 0〉 is not degenerate. Then, we only have a one
channel problem:

〈
V (r)

〉
0,0

=
〈
0, 0
∣∣V (r, θ)

∣∣0, 0〉 =

∫ π

0

1

2
V (r, θ) sin θ dθ. (5.2.19)
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For fermions, the partial wave l = 1 has three corresponding projections ml = 0,±1:〈
V (r)

〉
1,0

=
〈
1, 0
∣∣V (r, θ)

∣∣1, 0〉 =

∫
3

2
V (r, θ) cos2 θ sin θ dθ (5.2.20)

and: 〈
V (r)

〉
1,±1

=
〈
1,±1

∣∣V (r, θ)
∣∣1,±1

〉
=

∫
3

4
V (r, θ) (1− cos θ)2 sin θ dθ. (5.2.21)

Now, we can compare the adiabatic potential energy curves obtained to the previous
model mj1 = mj2 = ml = 0. We have superimposed in Fig. 5.9 the adiabatic energies of
the lowest partial wave for the two models for different values of the electric field. The top
panel corresponds to collisions of identical bosons while the bottom panel corresponds to
identical fermions collisions. We can note that a long-range potential barrier is obtained
so from a qualitative point of view, the physics of the shielding mechanism is preserved.
From a quantitative point of view:

• For bosons, the barrier obtained for E = 12.3 kV cm−1 is too large compared to the
previous model. We can explain this difference by the fact that we are too close to
the resonance. As a result, the partial waves l̃ = 2, 4 of the incident state couple
strongly with the partial waves of the other state and acquire their character. As
these partial waves are strongly coupled to the partial wave l̃ = 0 of the incident
channel, the latter is pushed down. As our model uses only the partial wave l = 0,
it is out of touch with reality under these conditions. However, for electric fields
close to the optimum field, the barrier sizes are relatively well respected: partial
waves act as perturbation. Furthermore, the curves match perfectly at long-range
so we expect to obtain similar collision rate coefficients.

• For fermions, we remain in the same situation. The curves match relatively well
except for the electric field E = 12.55 kV cm−1 too close to the resonance and for
the electric field E = 12.85 kV cm−1 where the states are too far apart to use a
two-level model.

We can note that the barriers presented in Fig. 5.9 in the adiabatic energy curves are
much smaller than the barriers presented in Fig. 5.6. This is because one type of barriers
are averaged over the angles, including the presence of a sin θ term in the Jacobian of the
integral in Eq. 5.2.16 and the other type of barriers come directly from the PES, with no
averaging over the angles.

We then found a way to reproduce well the barriers for the optimal values of the
electric field.

Rate coefficients

In this part, we use the model adiabatic barriers to compute the rate coefficients.
The idea of our model is to realize the dynamics on only the incident channel: we neglect
any transition between the two surfaces V+ and V−. That’s reminiscent to a Born–
Oppenheimer-like approximation and we can compare with the complete calculation to
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Figure 5.9: Adiabatic energy curves as a function of the inter-molecular separation for
different electric fields for the M = ml = 0 component. Solid lines: model, dashed
lines: complete treatment with all mjτ = 0. Upper panel: bosonic 41K87Rb, lower panel:
fermionic 40K87Rb.

estimate its validity. Moreover, this approximation seems legitimate because we have
previously shown that the inelastic collision rate coefficients are negligible at the optimal
electric field. On the other hand, we know that if we are too close to resonance, our
model will break down and will not reproduce reality.
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Figure 5.10: Rate coefficients as a function of the electric field for bosonic 41K87Rb (top
panel) and fermionic 40K87Rb (bottom panel) at Ek = 500 nK. Black line: reactive
process, red line: elastic process, green line: inelastic process. Solid lines: complete
treatment with all mjτ = 0, dashed lines: model.

Let’s focus on Fig. 5.10 (top panel) on which we represented the rate coefficients as a
function of the electric field for the bosonic case. As shown above, very close to resonance,
the potential barrier is overestimated, resulting in loss rate coefficients that are too low
with our model. Moreover, inelastic collisions are not considered anymore as explained
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before. On the other hand, for electric fields close to the optimal field for which the
ratio γ is maximum, the loss and elastic rate coefficients are almost identical if they are
computed using our model or using the complete calculations with mj1 = mj2 = ml = 0.
For higher electric fields, the rate coefficients are identical and follow the threshold laws
(Cf. Eq. 5.2.1) because we can consider the incident channel as isolated. For fermions
(bottom panel), our model match also very well with the complete calculations with
mj1 = mj2 = ml = 0 for a large range of values of the applied electric field especially for
the values for which the ratio γ is maximum.

Without electric field, the characteristic time between two events of two-body colli-
sions leading to losses (Cf. appendix C) is τ2B = 0.03 s for bosons and τ2B = 1.9 s for
fermions. When the shielding is turn on and for the the electric field value for which the
shielding is optimal, τ2B = 0.90 s for bosons and τ2B = 36 s. These values depict how the
gas lifetime increases when the shielding is activated. Experimentally, these electric field
values are feasible and will provide favorable conditions for efficient evaporative cooling.

As a conclusion, the agreement between the complete calculations with mj1 = mj2 =
ml = 0 and the model is good in both magnitude and electric field dependence in the place
where the shielding is efficient. Because the agreement between the complete calculation
and the one with mj1 = mj2 = ml = 0 (see Fig. 5.3) is semi-quantitatively good, then our
model is also semi-quantitatively good when compared with the complete calculation. To
get a correct estimation of the processes involved, it is then enough to treat the shielding
problem with only the lowest collisional channel, provided that the PES has been pre-
obtained after diagonalization. This model confirms that shielding is a resonant process
where the dipole-dipole interaction plays the leading role. It was then correct to consider
the effect of the orbital moment as perturbative. This model will serve as a strong basis
for the more complicated shielding study of three-body collisions.
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Chapter 6

Quantum reactive scattering theory for
three-body collisions

Over the last twenty years, techniques for cooling and trapping atoms and molecules
have progressed at a remarkable pace [1, 2, 3, 7, 53, 36]. Now, it is possible to prepare
ultracold gases of molecules (T < 1 µK) in a well defined rovibronic state [78, 40, 41, 42].
The development of new shielding methods [96, 97, 98, 99, 100, 103, 106, 107, 108]
renewed the interest for reactive di-alkali-metal molecules where reactive collisions can
occur even at ultralow energy [79]. As experimental techniques improve to accurately
measure state-to-state differential cross sections and rate coefficients [215, 216, 217], three-
body theoretical studies on these reactive molecules must be investigated.

For a long time, three-body calculations have been limited to ultracold collisions,
where only a single partial wave is required. The studies were carried out on increasingly
heavy systems as the computing capacities increased: H+D2 [218] (2000), Na+Na2 [219]
(2002), K+K2 [220] (2005), Li+Li2 [221, 222, 154] (2005, 2007), K+KRb [223] (2017),
Rb+K2 [224] (2017), Li+LiNa [225] (2021). However, for higher collision energies, the
calculations are much more difficult because several partial waves must be included.
Therefore, three-body models have been improved and can now include several partial
waves even for heavy alkali metal systems [152, 225]. The formalism is now well estab-
lished to describe reactive or non-reactive processes such as:

A+BC → B + AC (Reactive collisions)
A+B + C → A+BC (Three-body recombination)

A+BC → A+B + C (Collision-induced dissociation)

As we can see in the above equations, bonds can be formed and/or broken during
a collision. For example, in the case of the first reaction equation shown above, the
initial bond between atoms B and C has been broken whereas a bond between atoms A
and C has been created. In the following, we will call arrangement, every atom-diatom
combinations that can be formed during a collision. As shown in Fig. 6.1, we can only form
three arrangements that we will label hereafter with the letters τ = A,B,C. Therefore,
the scattering wave function is now expressed as a linear combination of the existing
internal states of each arrangement. If the initial and final arrangements remain identical
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Figure 6.1: The three possible arrangements in Jacobi coordinates

during a collision, then we talk about a non-reactive collision whereas for a collision where
the arrangements change, we talk about a reactive collision. We can note that for both
cases, we can have a modification of the internal structure of the diatom (i.e. inelastic
reactive collisions or inelastic non-reactive collisions). Various coordinate systems can be
used to handle all these processes. Each has advantages and disadvantages that depend
on the spatial configuration of the particles and on the system studied. However, they
are all required for performing three-body studies, especially for the matching process.

In this chapter, we will present the different systems of coordinates: the mass-scaled
Jacobi coordinates, the Delves hyperspherical coordinates [143, 144] and the principal
axes hyperspherical coordinates (APH) developed initially by F. T. Smith and R. C.
Whitten [146, 147] and employed by B. R. Johnson [148, 226, 227], R. T. Pack and
G. A. Parker [150, 228], A. Kupperman [229] and J.-M. Launay [230]. Then, we will
develop the time-independent formalism developed by B. Kendrick [152, 218] improving
the accuracy of the calculations for any partial waves and adapt it for the case of three
identical particles. Then, we will describe the matching procedure using mixed boundary
conditions [231, 232] to extract the observables we want for atom-diatom collisions as well
as for three-body recombination or collision-induced dissociation. This chapter is largely
inspired by the PhD thesis of G. Quéméner [151] and by different papers [148, 150, 152].
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6.1 Mass-scaled Jacobi coordinates
In the previous section, the two-body collisions were treated using Jacobi coordinates.

We have shown that these coordinates are very convenient because they give a simple
expression of the Hamiltonian in terms of the relative coordinates of the two particles.

In this section, we will introduce and adapt the Jacobi coordinates for the study of
three-body systems. We will follow the same steps as in chapter. 3, i.e. we will give
the three-body Hamiltonian, then the primitive basis on which the total wave function
will be developed and finally we will present the set of coupled equations to be solved to
extract the desired observables.

Jacobi coordinates

Figure 6.2: Jacobi coordinates for the arrangement τ . The vectors xτ , xτ+1 and xτ+2

give the absolute position of the three particles from an arbitrary point O. The absolute
position of the total center of mass G from the point O is given by ~RG. The Jacobi
vectors ~rτ describes the relative position between the two atoms τ + 1 and τ + 2. The
Jacobi vector ~Rτ gives the relative position between the center of mass of the diatom G′

and the atom τ . The internal angle ητ corresponds to the angle between the two Jacobi
vectors ~rτ and ~Rτ . The space-fixed frame is defined by (~ex, ~ey, ~ez).

Consider a system of three particles τ = A,B,C of mass mτ described with individual
position vectors ~xτ given from an arbitrary point O (Fig. 6.2). Following the example of
the two-body formalism, we can build three sets of Jacobi coordinates (~rτ , ~Rτ ) step by
step. First, we can define the relative position ~rτ between atoms1 τ + 1 and τ + 2 and
their center of mass G′τ by:

1We obtain the atoms τ , τ + 1 and τ + 2 by doing a cyclic permutation of the three particles A, B
and C.
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~rτ = ~xτ+2 − ~xτ+1
−→
OG′τ =

mτ+1~xτ+1 +mτ+2~xτ+2

mτ+1 +mτ+2

. (6.1.1)

Then, we can build the relative position ~Rτ between the intermediate center of mass G′τ
and the atom τ and obtain the final center of mass G (which is by definition independent
of the initial arrangement τ) such that:

~Rτ = ~xτ −
mτ+1~xτ+1 +mτ+2~xτ+2

mτ+1 +mτ+2

−→
OG =

1

M

∑
τ

mτ~xτ (6.1.2)

with M = mτ +mτ+1 +mτ+2 the total mass of the system. Physically, ~rτ corresponds to
the vibration (or dissociation) of the diatom and ~Rτ corresponds to the distance from the
center-of-mass of the diatom to the atom. They describe respectively the position of a
fictitious atom-atom particle of mass µτ+1 τ+2 and the position of a fictitious atom-diatom
particle of mass µτ − τ+1 τ+2 given by:

µτ+1 τ+2 =
(mτ+1mτ+2)

(mτ+1 +mτ+2)
µτ − τ+1 τ+2 =

mτ (mτ+1 +mτ+2)

M
. (6.1.3)

Because we will consider potentials that do not depend on the individual position of the
particles, we can separate the center of mass from the relative coordinates. As a conse-
quence, we will work in the center-of-mass frame (i.e.

−→
OG = ~0).

From an angular point of view, we will use spherical coordinates to describe the vectors
(~rτ , ~Rτ ). Let us note (r̂SFτ , R̂SF

τ ) their angular components in the space-fixed frame (SF).
Jacobi’s coordinates are then fully described by two three-dimensional vectors:

~rτ = {rτ , r̂SFτ = (θSFrτ , φ
SF
rτ )} ~Rτ = {Rτ , R̂

SF
τ = (θSFRτ , φ

SF
Rτ )}. (6.1.4)

The associated momentum operators are given by:

~pτ = −i~∇~rτ ~Pτ = −i~∇~Rτ
(6.1.5)

and the angular momentum operators related to these two vectors are:

~̂jτ = ~̂rτ × ~̂pτ ~̂lτ = ~̂Rτ × ~̂Pτ (6.1.6)

where we omit the label SF in the angular momentum terms for more readability. At the
end, we obtain the total angular momentum ~̂J = ~̂jτ +~̂lτ and the total angular momentum
projection quantum number M (eigenvalue of ~̂Jz) which are both conserved for collisions
without external fields.

Mass-scaled Jacobi coordinates

To simplify future calculations, let’s introduce the mass-scaled Jacobi vectors (~sτ , ~Sτ )
defined such that:
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~sτ = d−1
τ ~rτ ~Sτ = dτ ~Rτ (6.1.7)

with:

dτ =

[
mτ

µ

(
1− mτ

M

)]1/2

µ =

(
mτmτ+1mτ+2

mτ +mτ+1 +mτ+2

)1/2

. (6.1.8)

The scale factor dτ changes the length of the position Jacobi vectors but not their ori-
entation (r̂SFτ = ŝSFτ and R̂SF

τ = ŜSF
τ ). As a result, Eq. 6.1–6.1.6 remain valid for the

mass-scaled Jacobi coordinates. The set of mass-scaled Jacobi coordinates ~xSF is there-
fore given by:

~xSF ≡ sτ , Sτ , θ
SF
Sτ , φ

SF
Sτ , θ

SF
sτ , φ

SF
sτ . (6.1.9)

Total Hamiltonian

As a consequence of Eq. 6.1.7, the kinetic energy operators ∇2
~sτ

and ∇2
~Rτ

both have
the same reduced mass µ. The total Hamiltonian can then be written simply as a function
of a single six-dimensional vector ~Rτ = (~sτ , ~Sτ ):

Ĥ = − ~2

2µτ+1−τ+2

∇2
~rτ −

~2

2µτ−τ+1τ+2

∇2
~Rτ

+ V (~rτ , ~Rτ )

= − ~2

2µ
(∇2

~sτ +∇2
~Sτ

) + V (~sτ , ~Sτ )

= − ~2

2µ
∇2

~Rτ + V ( ~Rτ )

(6.1.10)

where ∇2
~Rτ

can be express in terms of radial derivatives and angular momenta:

∇2
~Rτ =

1

Sτsτ

(
∂2

∂S2
τ

+
∂2

∂s2
τ

+
1

S2
τ

l̂2τ +
1

s2
τ

ĵ2
τ

)
Sτsτ (6.1.11)

with:
l̂2τ = − ~2

sin θSFSτ

∂

∂θSFSτ
sin θSFSτ

∂

∂θSFSτ
+

l̂2zτ
sin2(θSFSτ )

l̂2zτ = −~2 ∂2

∂φSF 2
Sτ

ĵ2
τ = − ~2

sin θSFsτ

∂

∂θSFsτ
sin θSFsτ

∂

∂θSFsτ
+

ĵ2
zτ

sin2(θSFsτ )
ĵ2
zτ = −~2 ∂2

∂φSF 2
sτ

.

(6.1.12)

In this way, we can study the motion of only one fictitious super-particle of given reduced
mass µ and described by a generalized six-dimensional vector ~Rτ . As a consequence,
a much more symmetric expression of the Hamiltonian is then obtained. Moreover,
mass-scaled Jacobi coordinates are convenient because, to be transformed in another
arrangement (i.e. ~sτ , ~Sτ → ~sτ ′ , ~Sτ ′), it is only required to perform a single kinematic
rotation:

~Rτ+1 = T(χτ→τ+1) ~Rτ . (6.1.13)



98 Chapter 6. Quantum reactive scattering theory

Here T(χτ→τ+1) is a 6× 6 matrix2 which depends on the skew angle χτ→τ+1 between the
arrangements τ and τ ′ such that:(

~Sτ+1

~sτ+1

)
= T(χτ→τ+1)

(
~Sτ
~sτ

)
=

(
cosχτ→τ+1I sinχτ→τ+1I
− sinχτ→τ+1I cosχτ→τ+1I

)(
~Sτ
~sτ

) (6.1.14)

with I a 3× 3 diagonal unit matrix. The skew angle between two adjacent arrangements
τ and τ + 1 is the negative obtuse angle3 given by:

tanχτ→τ+1 =
mτ+2

µ
χτ→τ+1 ∈ [−π,−π/2]. (6.1.15)

The sum of the skew angles is then:

χτ→τ+1 + χτ+1→τ+2 + χτ+2→τ = −2π (6.1.16)

or conversely:
χτ+1→τ + χτ+2→τ+1 + χτ→τ+2 = 2π. (6.1.17)

One can be convinced of Eq. 6.1.14 looking at Fig. 6.3, where Sτ+1 can be expressed as a
linear combination of Sτ and sτ . In the case of three identical particles, the three angles
must be equal for obvious reasons of symmetry:

χτ→τ+1 = χτ+1→τ+2 = χτ+2→τ = tan−1

(
m

µ

)
= tan−1

(√
3
)

= −2π

3
. (6.1.18)

Note also that for three identical particles, the reduced mass reduces to µ→ m/
√

3 and

dτ →
√

2/
√

3 ≈ 1.07457. As a consequence, Jacobi coordinates slightly differ from the
mass-scaled ones but their use greatly simplifies the formalism.

Jacobian

The Jacobian is given by:∫ ∫
d~sτd~SτF =

∫ ∞
0

S2
τdSτ

∫ ∞
0

s2
τdr

∫
dŝSFτ

∫
dŜSF

τ F

=

∫ ∞
0

S2
τdSτ

∫ ∞
0

s2
τdsτ

∫ π

0

sin θSFsτ dθ
SF
sτ

∫ 2π

0

dφSFsτ

×
∫ π

0

sin θSFSτ dθ
SF
Sτ

∫ 2π

0

dφSFSτ F

(6.1.19)

for any arbitrary function F = F (~sτ , ~Sτ ).
2We used a passive rotation convention. To get the equivalent formulas from an active point of view,

one must replace χτ→τ+1 = −χτ→τ+1.
3In [151] , it was defined as a positive obtuse angle then the sum of the three angles is equal to 4π.

However, this does not affect the rest of the formalism.
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Figure 6.3: Skew angles for the three arrangements of a three-body linear configuration.

Partial waves expansion

As in the two-body formalism, it is possible to develop the total wave function for a
given total energy E in terms of partial waves. To explain the basis functions on which
the partial waves will be expanded, let us make the internal Hamiltonian of the diatom
ĥτ explicit in Eq. 6.1.10:

Ĥ = − ~2

2µ

[
1

Sτsτ

(
∂2

∂S2
τ

+
∂2

∂s2
τ

+
1

S2
τ

l̂2τ +
1

s2
τ

ĵ2
τ

)
Sτsτ

]
+ V (~sτ , ~Sτ )

=

{
− ~2

2µ

[
1

Sτ

(
∂2

∂S2
τ

Sτ

)
+

1

S2
τ

l̂2τ

]
+ U(ŝτ , Ŝτ )

}
+

{
− ~2

2µ

[
1

sτ

(
∂2

∂s2
τ

sτ

)
+

1

s2
τ

ĵ2
τ

]
+ v(sτ )

}
=

{
− ~2

2µ

[
1

Sτ

(
∂2

∂S2
τ

Sτ

)
+

1

S2
τ

l̂2τ

]
+ U(ŝτ , Ŝτ )

}
+ ĥτ

(6.1.20)
where we separated the potential of the diatomic in the arrangement τ to the other two-
body potential energies and to the non-additive three-body interaction terms that we
have regrouped indiscriminately in U(ŝτ , Ŝτ ) such that:

V (~sτ , ~Sτ ) = v(sτ ) + U(~sτ , ~Sτ ). (6.1.21)

We will use the eigenfunctions of the operators {l̂2τ , ĵ2
τ , Ĵ

2, Ĵz, ĥτ} to form the angular
basis functions on which the partial waves will be expanded. The eigenfunctions of the
total angular momentum Ĵ are also eigenfunctions of the angular momentum ĵτ and l̂τ .
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We then note YJMjτ lτ (Ŝ
SF
τ , ŝSFτ ) the coupled spherical harmonics of the arrangement τ which

can be expressed as a linear combination of Ymjτjτ
(ŝτ ) and Ymlτlτ

(Ŝτ ) such that:

YJMjτ lτ (Ŝ
SF
τ , ŝSFτ ) =

+jτ∑
mjτ=−jτ

〈jτ , lτ ;mjτ ,M −mjτ | JM〉 Y
mjτ
jτ

(
ŝSFτ
)
YM−mjτlτ

(ŜSF
τ ) (6.1.22)

where 〈jτ , lτ ;mjτ ,M −mjτ | JM〉 are the well known Clebsch–Gordan coefficients [182].
On one hand, the angular momentum verifies

ĵ2
τY

mjτ
jτ

= ~2jτ (jτ + 1)Ymjτjτ
ĵτzY

mjτ
jτ

= ~mjτY
mjτ
jτ

l̂2τY
mlτ
lτ

= ~2lτ (lτ + 1)Ymlτlτ
l̂τzY

mlτ
lτ

= ~mlτY
mlτ
lτ

Ĵ2YJMjτ lτ = ~2J(J + 1)YJMjτ lτ ĴzYJMjτ lτ = ~MYJMjτ lτ

(6.1.23)

and on the other hand, the Hamiltonian ĥτ has for solutions:{
− ~2

2µ

[
1

sτ

(
∂2

∂s2
τ

sτ

)
+

1

s2
τ

ĵ2
τ

]
+ v(sτ )

}
χvτ jτ (sτ )

sτ
= εvτ jτ

χvτ jτ (sτ )

sτ

so that: {
− ~2

2µ

∂2

∂s2
τ

+
~2j(j + 1)

2µs2
τ

+ v(sτ )

}
χvτ jτ (sτ ) = εvτ jτχvτ jτ (sτ ). (6.1.24)

These functions describe the rotational and vibrational motion of the diatom. To illus-
trate the shape of the χvτ jτ (sτ ) functions, we have represented in Fig. 6.4 the χ00(sτ ),
χ10(sτ ) and χ20(sτ ) functions, taking the 7Li2 dimer as an example. The eigenfunc-
tions and eigenenergies have been calculating solving Eq. 6.1.24 using the Numerov al-
gorithm [185] already described in chapter 4. We can observe that the eigenfunctions are
localized functions that are centered approximately at the same position as the minimum
of the two-body potential well, i.e. at about sτ = 7.5 a0 as described in chapter 8. We
can note that the vibrational quantum number v gives directly the number of nodes of
the wave functions.

The basis functions on which the partial waves will be expanded are then composed by
the functions given in Eq. 6.1.22 and Eq. 6.1.24 such that:

ΦJME
τvjl (ŜSF

τ , ~sτ ) =
1

sτ
χvj(sτ )YJMjl (ŜSF

τ , ŝSFτ ) (6.1.25)

where τvjl ≡ τvτjτ lτ and where Etot ≡ E for more readability. The total nuclear wave
function can be expanded in function of these basis functions via:

ψJME
τvjl (~Sτ , ~sτ ) =

∑
τ ′′v′′j′′l′′

1

Sτ ′′
ΦJME
τ ′′v′′j′′l′′(Ŝ

SF
τ ′′ , ~sτ ′′)F

JME
τ ′′v′′j′′l′′,τvjl(Sτ ′′). (6.1.26)

As previously seen, J and M are conserved during the collision and are therefore good
quantum numbers. For a given energy Etot, the expansion of the total wave function is
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Figure 6.4: Normalized rovibrational eigenfunctions of the 7Li2 dimer in function of the
interatomic distance sτ . The black solid curve, the red dashed curve and the blue dashed
curve correspond respectively to χ00(sτ ), χ10(sτ ) and χ20(sτ ).

term of partial waves is therefore given by:

ΨE
τvjmj

(~kτvj, ~sτ , ~Sτ ) =
∑

JMlmljmj

NJMlmljmj(
~kτvj)ψ

JME
τvjl (~sτ , ~Sτ ) (6.1.27)

where NJMlmljmj(
~kτvj) is a normalization factor and the wave vector kτvj is given by:

kτvj =

√
2µτ−τ+1τ+2(Etot − ετvj)

~2
. (6.1.28)

Note that these equations are very similar to the one given in chapter 3 because the
three-body wave functions are developed in terms of functions describing the collision of
a diatom and an atom (which is very similar to a two body system: atom-diatom).

Coupled equations

If we insert the total wave function (Eq. 6.1.26) into the total Hamiltonian (Eq. 6.1.10),
multiply on the left by

[
ΦJME
τvjl (ŜSF

τ , ~sτ )
]∗

and integrate over the angular part, we get a
set of coupled equations. By solving it numerically, we obtain the radial wave function
F(R) (or the Z matrix) from which we can extract the different observables we need.
These coupled equations are given by:
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[
− ~2

2µ

d2

dS2
τ ′

+
~2l′ (l′ + 1)

2µS2
τ ′

+ ετ ′v′j′ − Etot

]
F JME
τ ′v′j′l′,τvjl (Sτ ′)

+
∑
v′′j′′l′′

UJMEτ ′

v′j′l′,v′′j′′l′′ (Sτ ′)F
JME
τ ′v′′j′′l′′,τvjl (Sτ ′)

+
∑
τ ′′ 6=τ ′

∑
v′′j′′l′′

WJME
τ ′v′j′l′,τ ′′v′′j′′l′′F

JME
τ ′′v′′j′′l′′,τvjl (Sτ ′) = 0 (6.1.29)

with the coupling matrix elements:

UJMEτ ′

v′j′l′,v′′j′′l′′(Sτ ′) = 〈ΦJME
τ ′v′j′l′|U |ΦJME

τ ′v′′j′′l′′〉ŜSF
τ ′ ŝ

SF
τ ′

=

∫∫
dŜSF

τ ′ d~sτ ′Φ
JME
τ ′v′j′l′(Ŝ

SF
τ ′ , ~sτ ′)U(~Sτ ′ , ~sτ ′)Φ

JME
τ ′v′′j′′l′′(Ŝ

SF
τ ′ , ~sτ ′)

(6.1.30)

and:

WJME
τ ′v′j′l′,τ ′′v′′j′′l′′F

JME
τ ′′v′′j′′l′′,τvjl (Sτ ′) = Sτ ′

∫∫
dŜSF

τ ′ d~sτ ′Φ
JME
τ ′v′j′l′(Ŝ

SF
τ ′ , ~sτ ′)(H − E)

1

Sτ ′′
ΦJME
τ ′′v′′j′′l′′(Ŝ

SF
τ ′′ , ~sτ ′′)F

JME
τ ′′v′′j′′l′′,τvjl (Sτ ′′) . (6.1.31)

This set of coupled integro-differential equations are impossible to solve numerically be-
cause the terms WJME

τ ′v′j′l′,τ ′′v′′j′′l′′F
JME
τ ′′v′′j′′l′′,τvjl (Sτ ′) require to know the radial functions

F JME
τ ′′v′′j′′l′′,τvjl (Sτ ′′) whose dependence on dŜSF

τ ′ d~sτ ′ is too complex. In fact, the mass-
scaled Jacobi coordinates are not well adapted in the short-range region where the three
arrangements coexist (τ ′ 6= τ ′′) or when the atoms are all far from each others.

However, the mass-scaled Jacobi coordinates will be useful for the matching procedure
even if the Z-matrix will be obtained in another set of coordinates. In addition, these
coordinates will help us to understand how less intuitive coordinates work such as the
the Delves hyperspherical ones described in the next section.

6.2 SF-Delves Coordinates
As shown in the previous section, the mass-scaled Jacobi coordinates cannot be used

during the propagation process. In this section, we will introduce another set of three-
body coordinates, known as Delves hyperspherical coordinates. These coordinates are
essential to make the link between the mass-scaled Jacobi coordinates and more subtle
hyperspherical coordinates (as the ones used in section 6.4). We will follow the same
structure as in the previous section: we will present the coordinates, the three-body
Hamiltonian and the partial wave expansion of the total wave function.

SF-Delves Coordinates

For a given arrangement, we can define the hyperradius ρ and the Delves angle ωτ
such that:
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ρ =
(
S2
τ + s2

τ

)1/2

ωτ = arctan

(
sτ
Sτ

)
(6.2.1)

with ρ ∈ [0,+∞[ and ωτ ∈ [0, π/2]. Note that the hyperradius is independent of the
arrangement τ because the kinematic transformation from one arrangement to another
is a unitary transformation and therefore:

ρ ≡ S2
τ + s2

τ = S2
τ+1 + s2

τ+1 = S2
τ+2 + s2

τ+2. (6.2.2)

The relationship between Delves and mass-scaled Jacobi coordinates are similar as that
of polar to Cartesian coordinates:

sτ = ρ sinωτ Sτ = ρ cosωτ . (6.2.3)

To complete the collective set of Delves coordinates, noted ~xSF
τ , we must add the four SF

angles of the τ arrangement such that:

~xSF
τ ≡ (ρ, ρ̂SF

τ ) ≡ (ρ, ωτ , θ
SF
Sτ , φ

SF
Sτ , θ

SF
sτ , φ

SF
sτ ) ≡ (ρ, ωτ , Ŝ

SF
τ , ŝSF

τ ). (6.2.4)

Thus, for a fixed value of ρ, Sτ and sτ are varied by changing the value of the Delves angle.
As a consequence, a part of the radial variation has been transformed into an angular
dependence (i.e. into the basis functions) which will simplify the final set of coupled
equations. However, all the five angles presented here are those of one of the arrangement:
the different arrangements are therefore not treated equivalently. For these reasons, we
will only use Delves coordinates at large ρ, where the arrangement τ is approximately a
good quantum number.

Total Hamiltonian

In the SF-Delves coordinates, the total Hamiltonian is given by:

Ĥ = − ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

Λ̂2
(
ρ̂SF
τ

)
2µρ2

+ V
(
ρ, ρ̂SF

τ

)
(6.2.5)

with:

Λ̂2
(
ρ̂SF
τ

)
= − ~2

sin2 (2ωτ )

∂

∂ωτ
sin2 (2ωτ )

∂

∂ωτ
+

l̂2τ
cos2 ωτ

+
ĵ2
τ

sin2 ωτ
(6.2.6)

the grand angular momentum operator. This operator, common to the different hyper-
spherical coordinates, has hyperspherical harmonics Yλ as eigenfunctions and its eigen-
values are given by:

Λ̂2Yλ = λ(λ+ 4)Yλ (6.2.7)

with λ = 0, 1, 2, ... and are highly degenerate [152].
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Jacobian

The Jacobian is given by:

∫∫
d~Sτd~sτF =

1

4

∫ ∞
0

ρ5dρ

∫ π/2

0

sin2 (2ωτ ) dωτ

∫
dŜSF

τ

∫
dŝSF

τ F

=
1

4

∫ ∞
0

ρ5dρ

∫ π/2

0

sin2 (2ωτ ) dωτ

∫ π

0

sin θSF
Sτ dθ

SF
Sτ

×
∫ 2π

0

dφSF
Sτ

∫ π

0

sin θSF
sτ dθ

SF
sτ

∫ 2π

0

dφSF
sτ F (6.2.8)

for any arbitrary function F = F (~xSF
τ ).

Partial waves expansion

One could use hyperspherical harmonics as basis functions, however it has been
demonstrated that they are a poor basis set for representing localized functions. The
basis functions usually used are rather:

ΦJME
τvjl

(
ρ̂SF
τ ; ρ

)
=

2χτvjl (ωτ ; ρ)

sin 2ωτ
Y JM
jl

(
ŜSF
τ , ŝSF

τ

)
(6.2.9)

where the functions Y JM
jl (ŜSF

τ ) have already been defined in Eq. 6.1.22. The χτvjl (ωτ ; ρ)
functions are solution of:[
−~2

2µρ2

(
d2

dω2
τ

− jτ (jτ + 1)

sin2 ωτ
− lτ (lτ + 1)

cos2 ωτ

)
+ v (ωτ ; ρ)

]
χτvjl (ωτ ; ρ)

= ετvjl(ρ)χτvjl (ωτ ; ρ) (6.2.10)

with v(ωτ ; ρ) the potential of the diatom in the arrangement τ . This equation admits
solutions ετvjl(ρ) < 0 which correspond to bound states well identified by the quantum
numbers τvjl. Since sτ = ρ sinωτ , for large values of ρ and small finite values of sτ ,
we have sτ ≈ ρωτ . By replacing sτ by ρωτ in Eq. 6.1.24 and after some mathematical
manipulations [233], we have:

1
√
ρ
χτvjl (ωτ ; ρ) −→

ρ→+∞
χτvj(ρωτ ) (6.2.11)

ετvjl(ρ) −→
ρ→+∞

ετvj, (6.2.12)

which show that the Delves functions tend to the Jacobi ones at large distances. This
can be verified by looking at Fig. 6.5 (a), where Delves wave functions (rescaled by a
1/
√
ρ factor) match perfectly with Jacobi functions for 7Li2 diatom at ρ = 60 a0.

The Eq. 6.2.10 also admits positive solutions ετvjl(ρ) > 0 that can describe:
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• quasi-bound states where ετvjl(ρ) −→
ρ→+∞

constant. These are manifestations of shape

resonances because the centrifugal terms are at the origin of barriers that allow the
existence of metastable states.

• continuum states (also called three-body breakup adiabats) where the distances
between any two particles can approach infinity. Contrary to quasi-bound states,
their energy approach 0 when ρ increase following:

ετvjl(ρ) −→
ρ→+∞

(λ+ 2)2

2µρ2
(6.2.13)

with λ = 2vτ + jτ + lτ . In this case, vτ no longer refers to any vibration mode but is
used to count the wave functions [231]. In Fig. 6.5 (b), we represented the two first
positive solutions ετvjl for j = 0 and l = 0. We can see that they are non-localized
functions and it has been demonstrated that when the potential is fixed to 0, they
correspond to hyperspherical harmonics [231].

The expansion of the partial waves are then given by:

ψJME
τvjl =

2

ρ5/2

∑
τ ′′v′′j′′l′′

χτ ′′v′′j′′l′′ (ωτ ′′ ; ρ)

sin 2ωτ ′′
Y JM
j′′l′′

(
ŜSF
τ ′′ , ŝ

SF
τ ′′

)
F
JME(1,2)
τ ′′v′′j′′l′′,τvjl(ρ). (6.2.14)
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Figure 6.5: Left panel: Comparison of Delves renormalized functions
1√
ρ
χτv00 (ωτ ; ρ = 60 a.u) (solid lines) and Jacobi functions χτv0(ρωτ ) (dotted lines)

of 7Li2 bound states with v = 0 (black), v = 1 (red) and v = 2 (blue). Right panel:
Delves continuum functions χτv00 (ωτ ; ρ = 60 a.u) for v = 0 (black) and v = 1 (blue).
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6.3 BFτ-Delves Coordinates
As we can see in the Jacobian given in Eq. 6.2.8, there are four integrals over ŝSFτ and

ŜSF
τ which are numerically heavy. The passage to a mobile BFτ -frame implies a slightly

more complicated formalism but the appearance of Wigner rotation matrices with well-
known algebraically integrals alleviate numerical calculations. This is why we present the
BFτ -Delves Coordinates in this section. As in the previous sections, we will present the
coordinates, the three-body Hamiltonian, the partial wave expansion of the total wave
function and the set of coupled equations describing the dynamics of the three-body
system.

BFτ -Delves Frame

Sτ

sτ

G

Figure 6.6: Passage from the space-fixed frame (Gxyz) to the body-fixed frame
(GXτYτZτ ). The axis x′ and y′ are the intermediate axis after the rotation of an an-
gle ατ around the axis z. The x′′ axis comes from the rotation βτ around the axis y′.

Let us note (GXτYτZτ ) the body-fixed (BFτ ) frame shown in Fig. 6.6 [143, 144, 150,
151]. The (GZτ ) axis is oriented along the ~Sτ vector and the plane (GXτZτ ) contains
the ~sτ vector. In Cartesian coordinates, the two vectors are given by:

~S BF
τ =

 SBF
Xτ

SBF
Yτ

SBF
Zτ

 =

 0
0
Sτ

 ~sBF
τ =

 sBF
Xτ

sBF
Yτ

sBF
Zτ

 =

 sτ sin ητ
0

sτ cos ητ

 (6.3.1)

with:

ητ = arccos

(
~Sτ · ~sτ
Sτsτ

)
(6.3.2)
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the angle between ~Sτ and ~sτ . For η = (0, π), the three particles are aligned while for
η = π/2 the vectors ~Sτ and ~sτ are orthogonal. In the following, we note the spherical
components of the two mass-scaled Jacobi vectors in the BFτ frame as:

~Sτ =
{
Sτ , Ŝ

BF
τ =

(
θBF
Sτ , φ

BF
Sτ

)}
~sτ =

{
sτ , ŝ

BF
τ =

(
θBF
sτ , φ

BF
sτ

)}
(6.3.3)

with more specifically:(
θBF
Sτ , φ

BF
Sτ

)
= (0, 0)

(
θBF
sτ , φ

BF
sτ

)
= (ητ , 0). (6.3.4)

Let R(BFτ ← SF)4 be the ordinary spatial rotation operator that carries the initial
space-fixed frame to the body-fixed one. This 6 × 6 matrix depends on the three Euler
angles (ατ , βτ , γτ ) such that:

R1→2(ατ , βτ , γτ ) =

(
R 0
0 R

)
(6.3.5)

with:

R =

 cosατ cosβτ cos γτ − sinατ sin γτ sinατ cosβτ cos γτ + cosατ sin γτ − sinβτ cos γτ
− cosατ cosβτ sin γτ − sinατ cos γτ − sinατ cosβτ sin γτ + cosατ cos γτ sinβτ sin γτ

cosατ sinβτ sinατ sinβτ cosβτ

 .

As we want the Zτ -axis to be along ~Sτ and as we want ~sτ to be in the (GXτZτ ) plane,
we need:

ατ = φSF
Sτ βτ = θSF

Sτ γτ = ϕτ (6.3.6)

with ϕτ chosen to get φsτ = 0.

If we regroup the internal coordinates (ρ, ωτ , ητ ) with the Euler angles (ατ , βτ , γτ ), we
form the BFτ -Delves hyperspherical coordinates:

~xBF ≡ (ρ, ωτ , ητ , ατ , βτ , γτ ). (6.3.7)

Total Hamiltonian

In the BFτ -Delves coordinates, the total Hamiltonian is given by:

Ĥ = − ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

Λ̂2
(
ρ̂BF
τ

)
2µρ2

+ V
(
ρ, ρ̂BF

τ

)
(6.3.8)

with:

Λ̂2
(
ρ̂BF
τ

)
= − ~2

sin2 (2ωτ )

∂

∂ωτ
sin2 (2ωτ )

∂

∂ωτ
+

l̂2τ
cos2 ωτ

+
ĵ2
τ

sin2 ωτ
(6.3.9)

with this time l̂2τ and ĵ2
τ expressed in the BFτ -frame [151].

4To be consistent with Eq. 6.1.13, we keep a passive rotation convention.
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Jacobian

The Jacobian is given by:

∫∫
d~Sτd~sτF =

1

4

∫ ∞
0

ρ5dρ

∫ π/2

0

sin2 (2ωτ ) dωτ

∫
dŜBF

τ

∫
dŝBF

τ F

=
1

4

∫ ∞
0

ρ5dρ

∫ π/2

0

sin2 (2ωτ ) dωτ

∫ π

0

sin ητdητ

×
∫ 2π

0

dατ

∫ π

0

sin βτdβτ

∫ 2π

0

dγτF (6.3.10)

for any arbitrary function F = F (~xBF
τ ).

Partial wave expansion

The surface functions are given by [151]:

ΦJME
τvjΛτ (ρ̂

BF
τ ; ρ) =

2χτvj(ωτ ; ρ)

sin 2ωτ
Y JM
jΩτ (R̂BF

τ , r̂BF
τ ) (6.3.11)

where Λτ is the projection of ~̂J on the (GZτ ) axis. The expansion of the partial waves
are given by:

ψJME
τvjl =

2

ρ5/2

∑
τ ′′v′′j′′Λ′′

τ ′′

χτ ′′v′′j′′ (ρ;ωτ ′′)

sin 2ωτ ′′
Y JM
j′′Λ′′

τ ′′

(
R̂BF
τ ′′ , r̂

BF
τ ′′

)
F
JME(1,2)

τ ′′v′′j′′Λ′′
τ ′′ ,τvjl

(ρ). (6.3.12)

Coupled Equations

In the BFτ -Delves coordinates, the set of coupled equations are given by:

{
− ~2

2µ

∂2

∂ρ2
−
[
Etot +

~2

8µρ2

]}
Ffi(ρ)

+
∑
n

〈
f

∣∣∣∣− ~2

2µρ2

[
∂2

∂ω2
τ

− jτ (jτ + 1)

sin2 ωτ
− lτ (lτ + 1)

cos2 ωτ

]
+ V (ρ, ωτ , ητ )

∣∣∣∣i〉Fni(ρ) = 0 (6.3.13)

where i = {ντ , jτ , `τ}i are the initial quantum numbers, n = {ντ , jτ , `τ}n are intermediate
quantum numbers, and finally f = {ντ , jτ , lτ}f are the final quantum numbers. Moreover,
the total potential V (ρ, ωτ , ητ ) is composed of the pairwise sum of two-body interaction
terms and the non-additive interaction ones.

To solve this set of coupled equations, we can use a diabatic-by-sector representation
where the surface functions ΦJME

τvjl (ωτ ; ρmax) are evaluated in the middle of each sector
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ρ lχ, ρ

r
χ

]
. In Eq. 6.3.13, if we multiply the elements in the sum by (ρmχ /ρ

m
χ )2 and if we

add and subtract to the equation the term
[
(ρmχ /ρ

m
χ )2 Vτ (ρ sinωτ )

]
, we have:{

− ~2

2µ

∂2

∂ρ2
−
[
Etot +

~2

8µρ2

]}
Ffi(ρ)

+
∑
n

〈
f

∣∣∣∣∣−
(
ρmχ
ρ

)2 ~2

2µρm 2
χ

[
∂2

∂ω2
τ

− jτ (jτ + 1)

sin2 ωτ
− lτ (lτ + 1)

cos2 ωτ

]
+ V (ρ, ωτ , ητ ) + (ρmχ /ρ

m
χ )2 Vτ (ρ sinωτ )− (ρmχ /ρ

m
χ )2 Vτ (ρ sinωτ )

∣∣∣∣i〉Fni(ρ) = 0. (6.3.14)

We can make appear the energies ετvjl(ρmχ ) using Eq. 6.2.10:{
− ~2

2µ

∂2

∂ρ2
−

[
Etot −

(
ρmχ
ρ

)2

ετvjl(ρ
m
χ ) +

~2

8µρ2

]}
Ffi(ρ)

+
∑
n

〈
f

∣∣∣∣V (ρ, ωτ , ητ )−
(
ρmχ
ρχ

)2

Vτ (ρ sinωτ )

∣∣∣∣i〉Fni(ρ) = 0. (6.3.15)

In this way, the coupled equations are simpler to solve because the terms of the kinetic
operator are included in the energies ετvjl(ρmχ ) which are calculated at the same time as
the basic functions. The overlap matrix elements:

OJME
τvjl ,τ ′v′j′l′ =

〈
ΦJME
τvjl (ŜSF

τ , ~sτ ; ρχ)

∣∣∣∣ΦJME
τvjl (ŜSF

τ , ~sτ ; ρχ+1)

〉
(6.3.16)

and the coupling matrix elements:〈
f

∣∣∣∣V (ρ, ωτ , ητ )−
(
ρmχ
ρχ

)2

Vτ (ρ sinωτ )

∣∣∣∣i〉 (6.3.17)

which are required for the propagation, are evaluated by numerical quadratures.

However, as we have seen previously, this kind of coordinates does not allow to treat all
arrangements in an equivalent way and provides inaccurate results for many scattering
calculations. We will use these coordinates only during the matching procedure or to
realize propagation at large distances where the quantum number τ is a good quantum
number.

6.4 Principal axes hyperspherical coordinates (APH)
In this section, we will describe the APH coordinates which are mainly used to describe

three-body collisions. These coordinates are more subtle than the previous ones and
involve, in particular, a BF-frame that is oriented along the main axes of inertia of the
triatomic system. These coordinates are well-suited to describe collisions in the region
where the three particles strongly interact. On the other hand, we will see that at larger
distances, these coordinates are no longer adapted to describe atom-diatom collisions.
This is why at large distances an intermediate propagation step can be realized in Delves
coordinates.
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6.4.1 Definition of χτ
The main idea of the APH coordinates is to find a frame which is independent of the

initial set of coordinates chosen [150, 148, 151]. This is the reason why we want to create
two vectors ~Q and ~q that obey the following equalities:(

~Q
~q

)
= T (χA)

(
~SA
~sA

)
= T (χB)

(
~SB
~sB

)
= T (χC)

(
~SC
~sC

)
, (6.4.1)

where T(χτ ) is the 6 × 6 transformation matrix given in Eq. 6.1.14 and χτ is now a
continuous variable whose label τ defines only its origin. As we want the three arrange-
ments to be treated equivalently, it is important that Eq. 6.4.1 remains valid regardless
of the set of coordinates initially chosen. To express the angle χτ with an origin from an
arrangement different from that originally chosen, we must use:

χτ = χi − χi→τ (6.4.2)

with χi the total angle formed from the initial arrangement i. To illustrate the previous
equations, let’s take an example that we have represented on Fig. 6.7. By definition,
~Q = cosχτ ~Sτ +sinχτ ~sτ can be expressed as a combination of the two mass-scaled Jacobi
vectors. As we have not yet described how χτ is defined, let’s place ~Q on the diagram in
an arbitrary way. If we consider the arrangement A as the initial arrangement, then the
corresponding angle between ~SA and ~Q is that given by the angle χA. On the contrary,
if the arrangement B is the initial arrangement then the corresponding angle is given by
χB. The above equations simply tell us that ~Q can be obtained either via an appropriate
combination of ~SA and ~sA or via a combination of ~SB and ~sB. The two methods to obtain
~Q are equivalent because ~SB and ~sB can also be decomposed as a function of ~SA and ~sA
as shown in Eq. 6.1.14. This can be verified mathematically by starting from the initial
arrangement B and by expressing χB as a function of the initial angle χA:

T (χB)

(
~RB

~rB

)
=

(
cosχB sinχB
− sinχB cosχB

)(
~RB

~rB

)
=

(
cos (χA − χA→B) sin (χA − χA→B)
− sin (χA − χA→B) cos (χA − χA→B)

)(
~RB

~rB

)
=

(
cosχA sinχA
− sinχA cosχA

)(
cosχA→B − sinχA→B
sinχA→B cosχA→B

)(
~RB

~rB

)
=

(
cosχA sinχA
− sinχA cosχA

)(
cosχB→A sinχB→A
− sinχB→A cosχB→A

)(
~RB

~rB

)
=

(
cosχA sinχA
− sinχA cosχA

)(
~RA

~rA

)
=

(
~Q
~q

)
.

(6.4.3)
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Q

χB

χAχA→B

sA

SA

SC

SB

sC sB

Figure 6.7: The vector ~Q in terms of kinematic rotation angles defined from different
initial arrangements

As a result, whatever the initial arrangement chosen, we will find the same vectors ~Q
and ~q at the end. If these two vectors are orthogonal, they will form, with a third vector
perpendicular to the plane formed by ~Q and ~q, a new body-fixed frame noted (BFQ)
oriented along the principal axes of inertia of the system. Under this condition, the χτ
angle is no longer a parameter but a variable which fulfill the condition:

~Q · ~q = (cosχτ ~Sτ + sinχτ~sτ ) · (− sinχτ ~Sτ + cosχτ~sτ ) = 0 (6.4.4)

and whose solutions are given by:

tan(2χτ ) =
2~sτ · ~Sτ
S2
τ − s2

τ

(6.4.5)

with χτ ∈ [−π/2,+π/2]. Note that unlike [150, 148, 230], we keep the natural definition
of χτ and we don’t double its domain of definition to prevent half-integer problems5.
Finally, we will use φ = 2χτ with φ ∈ [−π,+π] in the following to be consistent with the
choice of B. Kendrick [152]. Note that we have omitted the subscript τ because it simply
refers to the arrangement chosen as origin.

5We will come back to this problem further.
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We can also show that using this definition of φ leads to maximizing the amplitude
Q2 of ~Q:

dQ2

dφ
= 2 cosφ~Sτ · ~sτ + sinφ

[
s2
τ − S2

τ

]
= 0 (6.4.6)

because Eq. 6.4.6 leads to the same solutions as the ones given in Eq. 6.4.5. As a con-
sequence, the BFQ will adapt itself in function of the spatial configuration of the three
particles. For example, if an atom τ ′ goes away from the other ones (i.e. Sτ ′ � sτ ′) then
the ~Q vector gets closer to ±~Sτ ′ (which belongs to the set of Jacobi coordinates, appro-
priate to use in this configuration). However, we can mention that ~q can’t approach ~sτ ′ as
the vector ~q is orthogonal to ~Q while the angle between the two vector ~Sτ and ~sτ is given
by ητ 6= π/2 in general. As a conclusion, the BFQ is well adapted for the short-range
domain but it is not physically relevant for asymptotic atom-diatom configurations (i.e.
for Sτ →∞). This is why, we will rather use the three BFτ at long-range (especially at
matching distances).

6.4.2 Construction of the BFQ

Zτ

Xτ

Yτ

Sτ

sτ

G

ητ

Zτ

Xτ

Yτ

Sτ

sτ

G

XQ≡Q

YQ≡q

ZQ Z'

ητ

Z' Y'

X'

Y'

X'

Figure 6.8: Transformation of the BFτ into the intermediate frame (GX ′Y ′Z ′) (left).
Transformation of the intermediate frame (GX ′Y ′Z ′) into the BFQ (right).

As previously explained, we will use a new body-fixed frame BFQ represented on
Fig. 6.8. We will follow B. Kendrick’s convention [152] using the unit vectors {~uXQ , ~uYQ , ~uZQ} ≡
{~uQ, ~uq, ~uZ} as basis with:

~uQ =
~Q

Q
~uq =

~q

q
. (6.4.7)

To transform the BFτ into the BFQ, we can decompose the process into two steps:

• Let’s transform first the BFτ into an intermediate (GX ′Y ′Z ′) frame whereXτ → Y ′,
Yτ → Z ′ and Zτ → X ′. To do this, one must apply the rotation operator
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R(π/2, π/2, π) defined in Eq. 6.3.5 to the BFτ axes. This transformation is repre-
sented in Fig. 6.8 (left).

• Then, one must do a rotation γ′ around the axis Z ′ of the intermediate frame. As
a consequence, the new XQ axis will be superimposed on ~Q and the new YQ axis
will be superimposed on ~q as illustrated in Fig. 6.8 (right).

These two steps can be combined by applying an unique rotation given by: ~uQ
~uq
~uZQ

 = R(π/2, π/2, π + γ′)

 ~uXτ
~uYτ
~uZτ

 . (6.4.8)

To get the definition of the γ′ angle, let’s express the vector ~Q in the intermediate
(X ′, Y ′, Z ′) frame:

~Q =

 QX′
QY ′
0

 =

 Sτ cos(φ/2) + sτ sin(φ/2) cos ητ
sτ sin(φ/2) sin ητ

0

 (6.4.9)

and in the BFQ:

~Q =

 Q
0
0

 . (6.4.10)

By writing the transformation equation to go from one representation to the other:

~Q =

 Q
0
0

 =

 cos γ′ sin γ′ 0
− sin γ′ cos γ′ 0

0 0 1

 QX′
QY ′
0

 (6.4.11)

we can deduce the definition of the angle γ′:

sin γ′ = sτ sin(φ/2) sin ητ
Q

cos γ′ =
Sτ cos(φ/2) + sτ sin(φ/2) cos ητ

Q
(6.4.12)

which gives:

tan γ′ = sτ sin(φ/2) sin ητ
Sτ cos(φ/2) + sτ sin(φ/2) cos ητ

. (6.4.13)

These relations are very important for the following because they make the link be-
tween the Jacobi, Delves and APH axis and are especially used in the matching procedure.
Other conventions for the choice of the axes of the BFQ can be chosen (such as choosing
the YQ axis as being perpendicular to the plane formed by the three particles). To under-
stand the difference between our choice and the other conventions, refer to the discussion
in section 6.4.5.
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6.4.3 Hyperspherical coordinates

In the orthogonal frame {~uQ, ~uq, ~ZQ}, we can define6:

ρ =
(
Q2 + q2

)1/2
q = ρ sin(θ/4) (6.4.14)

θ = 4 arctan

(
q

Q

)
Q = ρ cos(θ/4) (6.4.15)

with respectively ρ ∈ [0,+∞[, θ ∈ [0, π] and φ ∈ [−π, π]. These coordinates turn out to
be very similar to the Delves hypersherical coordinates. Indeed, they both use equivalent
definitions for ρ and the expression of the θ angle is very similar to what was done for ωτ .
As a result, while ρ describes the overall size of the ABC system, the bending angle θ and
the arrangement angle φ describe its shape. These three variables (ρ, θ, φ) are commonly
called internal coordinates.

To these three variables, we will add the three external coordinates (αQ, βQ, γQ) so
that the set of hyperspherical coordinates we will use in the next are given by:

~x ≡ (ρ, ρ̂BF
τ ) = (ρ, θ, φ, αQ, βQ, γQ) (6.4.16)

with the Euler angles given by:

αQ = ατ + π/2 βQ = βτ + π/2 γQ = γτ + γ′+ π (6.4.17)

with αQ ∈ [0, 2π], βQ ∈ [0, π] and γQ ∈ [0, 2π]. Because we consider all the spatial
configurations and arrangements equivalently, these hyperspherical coordinates are called
democratic to differentiate them from the Delves hyperspherical coordinates.

6.4.4 Passage relations

In summary, the relations for going from hyperspherical to mass-scaled Jacobi coor-
dinates are given by7:

ρ =
(
~S 2
τ + ~s 2

τ

) 1
2

θ = 4 arctan




(S2

τ + s2
τ )−

[
(S2

τ − s2
τ )

2
+
(

2~Sτ · ~sτ
)2
]1/2

(S2
τ + s2

τ ) +

[
(S2

τ − s2
τ )

2 +
(

2~Sτ · ~sτ
)2
]1/2


1/2


φ = arctan

(
2
−→
Sτ · −→sτ
S2
τ − s2

τ

)
(6.4.18)

6Our angle θ is doubled compared to [150, 148, 230] to follow B. Kendrick’s convention.
7Note that there is a typo in [151] for the second equation.
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and the inverse relations:

Sτ =
ρ√
2

[1 + cos(θ/2) cos (φ)]1/2

sτ =
ρ√
2

[1− cos(θ/2) cos (φ)]1/2

cos ητ =
cos(θ/2) sinφ

[1− cos2(θ/2) cos2 (φ)]1/2
.

(6.4.19)

We note that if θ = π (i.e. ητ = π/2), the system corresponds to an oblate top triangular
configuration whereas if θ = 0 (i.e. ητ = 0), it corresponds to a collinear configuration.
This is why θ is also called the configuration angle. All these expressions are particu-
larly useful to express potential energy surfaces, usually given in Jacobi coordinates, in
hyperspherical coordinates or during the matching procedure as show in section 6.6.

6.4.5 Instantaneous principal axes of inertia

In this part, we will demonstrate that our BFQ axis is well oriented along the instan-
taneous principal axes of inertia. To do this, let’s express the Jacobi vectors (~Sτ , ~sτ ) in
the BFQ inverting Eq. 6.1.13 and using the fact that T−1(φ/2) = T(−φ/2):

SτQ =
(

cos(φ/2) ~Q− sin(φ/2) ~q
)
· ~uQ sτQ =

(
sin(φ/2) ~Q+ cos(φ/2) ~q

)
· ~uQ

= Q cos(φ/2) = Q sin(φ/2)

= ρ cos(θ/4) cos(φ/2) = ρ cos(θ/4) sin(φ/2)

Sτq =
(

cos(φ/2) ~Q− sin(φ/2) ~q
)
· ~uq sτq =

(
sin(φ/2) ~Q+ cos(φ/2) ~q

)
· ~uq

= −q sin(φ/2) = q cos(φ/2)

= −ρ sin(θ/4) sin(φ/2) = ρ sin(θ/4) cos(φ/2)

SτZQ = 0 sτZQ = 0

(6.4.20)

where we well find that the two mass-scaled Jacobi vectors are in a plane perpendicular
to the ZQ axis. The inertia tensor in the BFQ is derived using standard methods [234]:

IQ = µ
{(
S2
τq + S2

τZQ

)
+
(
s2
τq + s2

τZQ

)}
IZQQ = −µ

{
SτZQSτQ + sτZQsτQ

}
Iq = µ

{(
S2
τZQ

+ S2
τQ

)
+
(
s2
τZQ

+ s2
τQ

)}
IQq = −µ

{
SτQSτq + sτQsτq

}
IZQ = µ

{(
S2
τQ

+ S2
τq

)
+
(
s2
τQ

+ s2
τq

)}
IqZQ = −µ

{
SτqSτZQ + sτqsτZQ

}
.

(6.4.21)
This gives a diagonal tensor matrix of inertia: IQ IQq IQZQ

IqQ Iq IqZQ
IZQQ IZQq IZQ

 =

 µq2 0 0
0 µQ2 0
0 0 µ (Q2 + q2)

 (6.4.22)
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which shows that the BFQ is always oriented along the principal axes of inertia for a given
(ρ, θ, χτ ) spatial configuration. As the three particles stay in the plane perpendicular to
the (GZQ) axis then IZQ = IQ + Iq is the axis of largest inertia. The axis of least inertia
is IQ because q2 is minimized while Iq is the intermediate axis of inertia because Q2 is
maximized (according to the initial definition of χτ chosen). We then have generally
0 ≤ q ≤ Q <∞ which corresponds to an asymmetric rotor. When Q� q, which occurs
when the three atoms are close to a linear configuration (i.e. when θ approaches 0) or
when one of the atoms is very far from the two others (as in the asymptotic zone), one
has:

IQ � Iq ≈ IY (6.4.23)
and the system approaches a prolate symmetric top with the axis (GQ) as axis of sym-
metry. When Q ≈ q (i.e. when θ approaches π/2), we get:

IQ ≈ Iq < IY (6.4.24)

and the system approaches an oblate symmetric top (T-shaped configuration)8 whose
axis (GY ) is the axis of symmetry.

As a conclusion, these coordinates describe more directly the inertia tensors of the
system (which adiabatically adjust to follow any atom which leaves the other two) than
its coordinates. This is why they are called Principal Axes Hyperspherical (APH) coor-
dinates.

R. T. Pack and Parker [150] and J.-M. Launay [230, 151] use the GYQ as the perpen-
dicular axis to the plane of the three particles whereas we follow the convention of B.
Kendrick [152] which uses GZQ as the perpendicular one. This choice will have a strong
impact on the matrix elements of the grand angular moment operator which depend on
the projections of ~J on the three axes XQ, YQ and ZQ. As the quantization axis can be
chosen along a single axis, the matrix elements of the grand angular momentum opera-
tor will be defined differently. This will affect the scattering results if the singularities
which appear in the grand angular momentum operator are not treated perfectly (Cf.
section 6.5.2). However, if the calculations of the grand angular moment matrix elements
are exact (as shown in our method) the scattering results will be similar regardless of
the initial BFQ axis chosen. However, our choice of BF is particularly convenient to (i)
implement the inversion parity (Cf. section 6.5.1) (ii) optimize the parallelization of the
calculations as explained in [152].

6.4.6 Total Hamiltonian

In APH coordinates, the total Hamiltonian looks like the ones in hyperspherical Delves
coordinates:

Ĥ = − ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

Λ̂2

2µρ2
+ V (ρ, θ, φ). (6.4.25)

8The T-shaped configuration corresponds to an equilateral triangle for equal mass particles.
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However, the grand angular momentum operator is now expressed in terms of the APH
coordinates [226, 227]:

Λ̂2

2µρ2
=
−8~2

µρ2

[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

2(1 + cos θ)

∂2

∂φ2

]
+

1

µρ2

[
J2
X

(1− cos θ/2)
+

J2
Y

(1 + cos θ/2)

+
J2
Z

(1 + cos θ)

]
+

4 sin θ/2

µρ2(1 + cos θ)
JZ

~
i

∂

∂φ
(6.4.26)

with JX ≡ JQ, JY ≡ Jq and JZ ≡ JZQ the components of the total angular moment

operator ~̂J in the BFQ. If we take a closer look of Eq. 6.4.26, we can see that many terms
contain singularities [235] either when θ → 0 or either when θ → π. These so-called Eckart
singularities are characteristic of all instantaneous principal axes systems and must be
treated carefully to get correct results. Indeed, B. Kendrick [152] demonstrated that
some scattering calculations done by A. Kuppermann and Y.-S. M. Wu [236, 237, 238],
J.-M. Launay [230] and R. T. Pack and Parker [150] didn’t reproduce experimental data
for high collision energies where partial waves J > 0 are required. Indeed, the basis sets
used were not adapted to perform accurate numerical cancellations of these singularities.

To prevent these errors, C. Eckart [239] proposed to use another body-fixed frame
oriented along the principal axes of the equilibrium configuration [240]. In fact, this
idea is well adapted for non-linear molecules executing small vibrations. However, for
the other configurations the singularities remains and this is why we didn’t choose this
option.

Another solution could have been to use directly the hyperspherical harmonics as
basis set but it is not convenient for three reasons. First, a simple analytic functional
form of the hyperspherical harmonics (HHs) is still unknown9 (for every partial waves
J). Secondly, HHs are non-localized functions and are not efficient to represent localized
wave functions such as dimer bound states. Thirdly, HHs are not a direct product basis
of θ and φ which prevents the use of discrete variable representations which alleviate
numerical calculations (Cf. next section).

For all these reasons, B. Kendrick has developed a basis set treating all Eckart’s
singularities in an accurate way. For more details, see [152]. If we define the axes of the
BFQ in a different way [150, 230, 151], then the terms JX ≡ JQ, JY ≡ Jq and JZ ≡ JZQ
are switched. Therefore, the singular terms are distributed differently and the method of
B. Kendrick is no longer valid and must be adapted.

6.4.7 Jacobian

The Jacobian is given by:∫
d~Sd~sF =

1

32

∫ ∞
0

ρ5dρ

∫ π

−π
dφ

∫ π

0

sin θdθ

∫ 2π

0

dα

∫ π

0

sin βdβ

∫ π

0

dγF (6.4.27)

9However some numerical procedures exist such as the one developed by L. Wolniewicz [241] but they
are very complicated to implement.
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for any arbitrary function F = F (~x).

6.4.8 Coupled equations

The total nuclear wave function10 is expanded as:

ΨJMp q
i (x) = 4

√
2
∑
t

ρ−5/2ψJp qit (ρ)ΦJMp q
t

(
ω; ρmξ

)
(6.4.28)

with ΦJMp q
t

(
ω; ρmξ

)
the angular five-dimensional surface functions explicitly given in the

diabatic-by-sector representation and ψJp qit (ρ) the radial wave functions. p refers to the
inversion parity and q refers to the particle exchange symmetry. As in the previous
part, if we insert the total wave function into the Schrodinger equation, multiply by
[ΦJMp q

t

(
ω; ρmξ

)
]∗ on the left and integrate over the angular part, we obtain the following

set of coupled equations:[
∂2

∂ρ2
+

2µ

~2
E

]
ψJp qit (ρ) =

2µ

~2

∑
t′

〈
ΦJMp q
t

∣∣Hc

∣∣ΦJMp q
t′

〉
ψJp qit′ (ρ) (6.4.29)

with:〈
ΦJMp q
t

∣∣Hc

∣∣ΦJMp q
t′

〉
≡ 〈ΦJMp q

t

∣∣ (ρmξ
ρ

)2

EJp qt

(
ρmξ
)

+ V (ρ, θ, φ)

−
(
ρmξ
ρ

)2

V
(
ρmξ , θ, φ

) ∣∣ΦJMp q
t′

〉
. (6.4.30)

The five-dimensional surface functions ΦJMp q
t

(
ω; ρmξ

)
are evaluated at the center of each

sector via:[
Λ̂2

2µρm 2
ξ

+
15~2

8µρm 2
ξ

+ V
(
ρmξ , θ, φ

)]
ΦJMp q
t

(
ω; ρmξ

)
= EJp qt (ρmξ )ΦJMp q

t

(
ω; ρmξ

)
(6.4.31)

where EJp qt (ρmξ ) are the adiabatic energies and the term 15~2/8µρm 2
ξ comes from the sec-

ond derivative of Eq. 6.4.28.

Now that the main equations are established, we must:

• Choose a basis set on which we will extend the ΦJMp q
t

(
ω; ρmξ

)
surface functions.

This set must treat accurately the Eckart singularities and it must give quickly
converged calculations.

• Solve Eq. 6.4.31 obtaining the angular surface functions and the adiabatic energies.

• Compute the coupling matrix elements in Eq. 6.4.30 and the overlap matrix using
the surface functions previously obtained.

• Propagate until ρmax and do the matching11.
10The term ρ−5/2 is used to only keep second derivative terms in ρ in the set of coupled equations.

The prefactor 4
√
2 cancels with the one in Eq. 6.4.27 to give orthonormal surface functions.

11In some systems, we must perform an intermediate propagation in Delves (ρDelves
max ≥ ρmax) before

doing the matching.
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6.5 Correct basis set and numerical methods
As seen previously, the initial choice of the axes forming the BFQ distribute the singu-

larities differently on the terms JX , JY and JZ . If the primitive basis functions on which
the surface functions will be expanded are not carefully chosen, the Eckart singularities
should strongly affect the matrix elements and the scattering results. However, for some
systems, singularities are well treated without making any particular effort on the choice
of primitive basis functions. For example, for equilateral configurations (i.e. θ = π/2 ),
the system approaches an oblate symmetric top where the ZQ axis is the symmetry axis
of the top. Thus, for molecules which favor this configuration (such as Li3) the matrix
elements of JZ are diagonal as the quantization axis is chosen along ZQ for our choice of
BFQ. If we truncate the number of Ω values used to express the total Hamiltonian, we
reduce the impact of the singularities coming from the non-diagonal term coming from JX
and JY and the solutions obtained are quite accurate. For linear geometries (i.e. θ = 0),
the system approaches a prolate symmetric top with the XQ axis being the symmetry
axis of the top. Thus, for molecules which favor this configuration (such as HD2) the
matrix elements of JX are diagonal for the choice of BFQ axes used by [150, 230] as their
quantization axis is chosen along XQ. If they use the same procedure as the one described
above, they can get quite accurate results for these systems. Thus, the choice of the BFQ
axes made in the past was directly related to the kind of system one wanted to study.

In this section, we will develop a method that treats all singular terms accurately so
that all configurations are treated perfectly. We will present the primitive basis functions
that we will use to expand the surface functions, then we will show how to treat Eckart
singularities and finally we will present some numerical methods to solve the three body
problem as optimally as possible.

6.5.1 The basis set

In the first studies of three-body collisions [150, 230, 238], the surface functions were
expanded in terms of a direct product basis of Legendre polynomials in θ and cosine/sine
functions in φ. But as we will show later, these basis sets can’t give an accurate represen-
tation of all the HHs and can lead to errors in the scattering results. As a consequence,
we will expand the five-dimensional surface functions in terms of the following orthonor-
malized basis set [152]:

ΦJMp
t (ω; ρξ) =

lmax∑
l=µ

mmax∑
m=−mmax

Ωmax∑
Ω=−Ωmax

blmΩ
t d lµ,ν(θ)

eimφ√
2π
D̃J

ΩM(α, β, γ) (6.5.1)

where the functions d lµ,ν(θ) are expressed in terms of Jacobi polynomials [170]:

d lµ,ν(θ) =

√
2l + 1

2

[
(l + µ)!(l − µ)!

(l + ν)!(l − ν)!

]1/2

(cos θ/2)µ+ν(sin θ/2)µ−νP (µ−ν,µ+ν)
l−µ (cos θ).

(6.5.2)

The two indices (µ, ν) will be appropriately chosen to treat the singularities at the two
poles θ = 0 and θ = π as explained in section 6.5.2. The renormalized Wigner functions



120 Chapter 6. Quantum reactive scattering theory

D̃J
ΩM(α, β, γ) can be expressed in terms of the usual Wigner functions via:

D̃J
ΩM(α, β, γ) =

√
2J + 1

8π2
DJ

ΩM(α, β, γ) (6.5.3)

so that:∫ 2π

0

dα

∫ π

0

sin β dβ

∫ 2π

0

dγ D̃J1∗
Ω1M1

(α, β, γ)D̃J2
Ω2M2

(α, β, γ) = δJ1J2 δΩ1Ω2 δM1M2 . (6.5.4)

Moreover, if we apply the inversion operator on the D̃ functions, we have:

ID̃J
ΩM = (−1)ΩD̃J

ΩM . (6.5.5)

Therefore, to get well defined inversion parity surface functions, Ω must take only even
values for even parity (i.e. p = 1) and only odd values for odd parity (i.e. p = 0). In the
following, all sums over Ω (such as the one in Eq. 6.5.1) will be done either on the even
or on the odd blocks according to the superscript p in the surface function studied.

By combining all the previous equations with the Jacobian from Eq. 6.4.27, we obtain
orthonormalized surface functions:

∫ π

−π
dφ

∫ π

0

sin θdθ

∫ 2π

0

dα

∫ π

0

sin βdβ

∫ π

0

dγ

×
[
ΦJMp
t

(
ω; ρmξ

)]∗
ΦJMp
t′

(
ω; ρmξ

)
= δtt′ . (6.5.6)

6.5.2 How to treat Eckart singularities?

To treat the Eckart singularities, one must appropriately choose the different sets
(µ, ν) so that the singularities at the two poles θ → 0 and θ → π vanish. To illustrate
the method, let’s consider the grand angular momentum operator when we approach to
a linear configuration:

Λ̂2(θ → π) ≈ −16~2

[
∂2

∂θ2
+ cot θ

∂

∂θ

]
+

2

(1 + cos θ)

(
JZ − i2~

∂

∂φ

)2

. (6.5.7)

If we split the integral over θ to separate the two poles from the well defined parts:∫ π

0

sin θdθ =

∫ θ0

0

sin θdθ +

∫ θπ

θ0

sin θdθ +

∫ π

θπ

sin θdθ (6.5.8)

and if we use the fact that the functions d lµ,ν(θ) satisfy:[
∂2

∂θ2
+ cot θ

∂

∂θ

]
d lµ,ν(θ) =

[
1

sin2 θ

(
µ2 + ν2 − 2µν cos θ

)
− l(l + 1)

]
d lµ,ν(θ) (6.5.9)
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then the matrix elements of Eq. 6.5.7 are given by:

Λ2(θ → π)JMp
ll′mm′ΩΩ′ ≈ −8~2

∫ π

θπ

sin θ dθ d lµν(θ)
1

(1 + cos θ)
d l

′

µν(θ)

×

[
(µ+ ν)2 −

(
Ω

2
+m

)2
]
δmm′δΩ Ω′ . (6.5.10)

To prevent the term 1
(1+cos θ)

in Eq. 6.5.10 from diverging, they are two possibilities.
Either, the term d lµν(θ) × d l

′
µν(θ) cancels the term that diverges when we replace the

functions d lµν(θ) by their definition given in Eq. 6.5.2 (but this is not always the case).
Or, the term in brackets must be zero:[

(µ+ ν)2 −
(

Ω

2
+m

)2
]

= 0 (6.5.11)

and cancels the diverging matrix element. By separating the two squared terms in
Eq. 6.5.11 and applying a square root to each side, we get the following condition:

|µ+ ν| =
∣∣∣∣Ω2 +m

∣∣∣∣ . (6.5.12)

Since the functions dlµ,ν can be expanded exactly in terms of dl′µ′,ν′ where µ′ = µ (mod2)
and ν ′ = ν (mod2) by definition, we can separately treat the cases for which |µ + ν| is
even or odd, i.e. one can only consider |µ+ ν| = 0 or 1 (mod2).

If |µ+ν| = 0, the functions d lµ,ν(θ) −→
θ→+π

constant and do not cancel the singular term.
As a consequence, Eq. 6.5.12 must be satisfied which implies:∣∣∣∣Ω2 +m

∣∣∣∣ = 0 (mod 2). (6.5.13)

In other words, the quantity
(

Ω
2

+m
)
must be even.

If |µ+ν| = 1, the term d lµ,ν(θ)×d l
′
µ,ν(θ) −→

θ→+π
1+cos θ cancels naturally the singularities.

Therefore, no condition on Ω and m seems necessary. However, if we allow even values
of
(

Ω
2

+m
)
, we get for the off-diagonal matrix elements in µµ′ and ν ν ′:

Λ̂2(θ → π)JMp
µµ′νν′ll′mm′ΩΩ′ ≈ −8~2

∫ π

θ̃π

sin θ dθ d lµν(θ)
1

(1 + cos θ)
d l

′

µ′ν′(θ)

×

[
(µ′ + ν ′)

2 −
(

Ω

2
+m

)2
]
δmm′ δΩΩ′ . (6.5.14)

If |µ + ν| = 1 and |µ′ + ν ′| = 0, we are in the same case than Eq. 6.5.13 and then(
Ω
2

+m
)
must be even. On the contrary, if |µ + ν| = 0 and |µ′ + ν ′| = 1, the Eckart
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singularities are no longer naturally canceled and
(

Ω
2

+m
)
must be odd. Therefore,

although no condition on µ and ν must be used for the diagonal matrix elements µµ and
ν ν, we impose to use |µ + ν| = 1 for

(
Ω
2

+m
)
odd to cancel the divergent terms in the

non-diagonal elements. As a conclusion, the singularities are perfectly canceled using:

|µ+ ν| = 0 for
(

Ω

2
+m

)
even |µ+ ν| = 1 for

(
Ω

2
+m

)
odd. (6.5.15)

When approaching to an equilateral configuration, the grand angular momentum
operator is given by:

Λ̂2(θ → 0)JMp
ll′mm′ΩΩ′ ≈ −8~2

∫ θ0

0

sin θdθdlµν(θ)
1

(1− cos θ)
dl

′

µν(θ)

×

[
(µ− ν)2δΩΩ′ −

〈
D̃J

ΩM

∣∣∣∣∣J2
XQ

~2

∣∣∣∣∣ D̃J
Ω′M

〉]
δmm′ (6.5.16)

and involves matrix elements of the squared projection JXQ of the total angular momen-
tum on the XQ axis. If we follow the same procedure than for the linear configuration
case, the condition which must be satisfied to cancel the singular terms is given by:

|µ− ν|δΩΩ′ =

∣∣∣∣∣
〈
D̃J

ΩM

∣∣∣∣∣J2
XQ

~2

∣∣∣∣∣ D̃J
Ω′M

〉∣∣∣∣∣
1/2

(mod2). (6.5.17)

However, this term is not diagonal in Ω and cannot be satisfied for all values of J . The
Eckart singularities cannot therefore be perfectly canceled. However, as demonstrated
in section 8.1.2, the singular terms are numerically treated (but not perfectly canceled)
using adapted values of (µ, ν). B. Kendrick showed that we need in total four different
sets (µ, ν) to treat all the singularities [152]. In order to show the J , Ω and m dependence
on (µ, ν), we replace the labels (µ, ν) by the parameter kaΩ which depends explicitly on
Ω and where a = E when m is even and a = O when m is odd. The parameter kaΩ can
then take four values kaΩ = [1− 4] corresponding to the four sets (µ, ν) which have been
chosen to cancel the singularities. To know which value of kaΩ = [1− 4] to use for a given
value of J , Ω and m, we must refer to the table 6.1. Then, to know to which values of
(µ, ν) corresponds the number kaΩ = [1− 4], we must refer to the table 6.2. For example,
if we consider the case of J = 2, Ω = 4 and m = 1, then we must look on table 6.1 the
column corresponding to even J and to odd m and note the number corresponding to
the line Ω = 4 (i.e. kaΩ = 2). Finally, we check on table 6.2 the function corresponding to
the number 2. Then, we must use the dl1/2,1/2(θ) as primitive basis functions for J = 2,
Ω = 4 and m = 1. In the following we will use d lkaΩ(θ) instead of d lµ,ν(θ) to explicitly show
that the functions used are the chosen ones to treat the singularities.

It should be noted that for p = 0, the values of m are half-integers while there are
integers for p = 1. Thus, we did not double the domain of definition for the angle φ
(contrary to [148, 150, 230]) because these half-integer numbers are required to treat
Eckart singularities for odd parities. As a result, according to Eq. 6.5.1, there are (lmax−
µ+ 1) values of l and (2mmax + 1) values of m when p = 1 and (2mmax) values of m when
p = 0.
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Even J Odd J
Even m Odd m Even m Odd m

Ω kEΩ kOΩ kEΩ kOΩ
...

...
...

...
...

+4 1 2 3 4
+2 2 1 4 3
+0 1 2 3 4
−2 2 1 4 3
−4 1 2 3 4
...

...
...

...
...

...
...

...
...

...
+3 4 3 2 1
+1 3 4 1 2
−1 4 3 2 1
−3 3 4 1 2
...

...
...

...
...

Table 6.1: For a given value of J , the choice of d function depends upon the value of Ω and
whether m is even or odd. The number kaΩ labels the type of d function (see Table 6.2).
Even and odd Ω correspond to even and odd inversion parity, respectively. For odd Ω,
evenm refers tom = −1/2,+3/2,−5/2, ... and oddm refers tom = +1/2,−3/2,+5/2, ....
This table is edited form [152].

|µ− ν| = 1 |µ− ν| = 0
|µ+ ν| = 1 dl1,0(4) dl1/2,1/2(2)

|µ+ ν| = 0 dl1/2,−1/2(3) dl0,0(1)

Table 6.2: The appropriate d functions which are needed to remove the Eckart singu-
larities are determined by the values of |µ + ν|(mod2) and |µ − ν|(mod2). The value
|µ + ν| = 0 correspond to even m and the value |µ + ν| = 0 correspond to odd m. The
value |µ− ν| = 0 correspond to even Λ (the eigenvalue of Jx) and |µ− ν| = 1 correspond
to odd value of Λ (Cf. [152]). The numbers in parenthesis label each type of d function
(see Table 6.1). This table is edited form [152].
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6.5.3 A Finite Basis Representation (FBR)

In the finite basis representation, the five-dimensional surface functions are given by:∣∣∣ΦJMp
t

(
ρmξ
)〉

=
∑
lmΩ

blmΩ
t |l〉kaΩ ⊗ |m〉 ⊗ |JΩM〉. (6.5.18)

In the 〈θ| ⊗ 〈φ| ⊗ 〈α, β, γ| representation, the surface functions are given by:

ΦJMp
t

(
ω; ρmξ

)
≡ 〈θ| ⊗ 〈φ| ⊗ 〈α, β, γ | ΦJMp

t

(
ρmξ
)
〉

=
∑
lmΩ

b lmΩ
t d lµν(θ)

eimφ√
2π
D̃J

ΩM(α, β, γ).
(6.5.19)

To obtain the coefficients b lmΩ
t , one must express the matrix elements of Eq. 6.4.31 in the

primitive base |l〉kaΩ |m〉 |JΩM〉 and then diagonalize the total matrix. As, J,M , and p
are good quantum numbers, we can diagonalize each block (J,M, p) independently. For
a given block (Ω,Ω′), the matrix elements, noted 5DHJMp

ΩΩ′ , are given by:

5DHJMp
ΩΩ′ =

(
kEΩKθ ⊗ EIφ 0

0 kOΩKθ ⊗ OIφ

)
δΩΩ′ +

(
kEΩBθ ⊗ EKφ 0

0 kOΩBθ ⊗ OKφ

)
δΩΩ′

+

(
kEΩk

E
Ω′KJ2 ⊗ EIφ 0

0 kOΩk
O
Ω′KJ2 ⊗ OIφ

)
+

(
kEΩCθ ⊗ ECφ 0

0 kOΩCθ ⊗ OCφ

)
δΩΩ′

+
15

8µρm 2
ξ

(
EIθ ⊗ EIφ 0

0 OIθ ⊗ OIφ

)
δΩΩ′ +

(
EE
Ω V EO

Ω V
OE
Ω V OO

Ω V

)
δΩΩ′ (6.5.20)

with:

kaΩK l′

θ ≡ −
8~2

µρ2
ξ

〈
dlkaΩ

∣∣∣∣ ∂2

∂θ2
+ cot θ

∂

∂θ

∣∣∣∣ dl′kaΩ
〉

aK
mam′

a
φ ≡ ~2m2

aδmam′
a

kaΩC ll′

θ ≡
4

µρ2
ξ

〈
dlkaΩ

∣∣∣∣ sin θ/2

(1 + cos θ)

∣∣∣∣ dl′kaΩ′

〉
~Ω aC

mam′
a

φ ≡ ~maδmam′
a

aI ll
′

θ ≡ δll′
aI

mam′
a

φ ≡ δmam′
a

kaΩBll′

θ ≡
4

µρ2
ξ

〈
dlkaΩ

∣∣∣∣ 1

(1 + cos θ)

∣∣∣∣ dl′kaΩ
〉
kaΩk

a
Ω′ .

(6.5.21)

The term:

K ll′

J2 ≡
1

µρ2
ξ

[〈
dlkaΩ

∣∣∣∣ 1

(1− cos θ/2)

∣∣∣∣ dl′kaΩ′

〉 〈
D̃J

ΩM

∣∣J2
X

∣∣ D̃J
Ω′M

〉
+

〈
dlkaΩ

∣∣∣∣ 1

(1 + cos θ/2)

∣∣∣∣ dl′k′Ω′

〉
×
〈
D̃J

ΩM

∣∣J2
Y

∣∣ D̃J
Ω′M

〉
+

〈
dlkaΩ

∣∣∣∣ 1

(1 + cos θ)

∣∣∣∣ dl′kaΩ
〉
~2Ω2δΩΩ′

]
(6.5.22)
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depends on J2
X and J2

Y for which the matrix elements with respect to the Wigner func-
tions are well known analytically [182]. All the terms in Eq. 6.5.21–6.5.22 are computed
using a Gauss-Legendre quadrature with 500 points whatever the system studied as rec-
ommended by B. Kendrick [152]. These matrix elements can be computed only once and
are re-used for each sector.

Finally, the potential matrix elements are given by:

ab
Ω V̄

ll′

mm′ ≡
∫ +π

0

dθ sin θ

∫ +π

−π
dφd lkaΩ(θ)

e−imaφ√
2π

V
(
ρmξ , θ, φ

) eimbφ√
2π

d l
′

kbΩ
(θ) (6.5.23)

where a = E,O and b = E,O label the even and odd m blocks of V. However, the double
integrals involved are too heavy numerically. For this reason, B. Kendrick proposed to
use a FBR method in φ and a discrete variable representation in θ (Cf. next section).
This so-called Hybrid FBR/DVR representation greatly reduces the calculation time of
the potential matrix elements12.

6.5.4 The Discrete Variable Representation

In this section, we will explain what is the Discrete Variable Representation (DVR)
that we will use in the next section [242]. We will consider a one-dimensional system to
simplify the discussion.

Usually, we use a set of N basis functions {φi} in which the different operators can
be expressed. The vectors satisfy the orthonormality and closure relations:

〈φi|φi′〉 =

∫
φ∗i (x)φi′(x)dx = δii′

N∑
i=1

|φi〉 〈φi| = 1. (6.5.24)

To evaluate an integral numerically, we will use the Gauss quadrature method [170],
transforming the continuous integral into a discrete sum:

〈φi|φi′〉 ≈
N∑
α=1

ωα φ
∗
i (xα)φi′(xα) (6.5.25)

where the continuous variable x is now a set of N points {xα} and where 〈xα|φi〉 ≡ φi(xα).
In our case, we will use more precisely a Gauss-Legendre quadrature [170] where the N
points xα are the roots of the N-th Legendre polynomial and where the weights ωα are
given by:

ωα =
2

(1− x2
α)
P ′n(xα). (6.5.26)

The idea of the discrete variable representation is to use the N points {xα} as primitive
basis. The associated state vectors in the DVR representation are given by:

|x̃α〉 =
√
ωα |xα〉 (6.5.27)

12A full DVR method for both φ and θ can’t be used because the matrix elements of the Hamiltonian
become complex and consequently, it doubles the size of the matrices used [152].
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and verify the closure and orthogonality relations:

〈x̃α|x̃α′〉 = δα,α′

N∑
α=1

|x̃α〉 〈x̃α| = 1. (6.5.28)

If we rewrite Eq. 6.5.24 by making the DVR vectors appear:

〈φi|φi′〉 = 〈φi|

[
N∑
α=1

|x̃α〉 〈x̃α|

]
|φi′〉 =

N∑
α=1

ωα 〈φi|x̃α〉 〈x̃α|φi〉

=
N∑
α=1

ωα φ
∗
i (xα)φi′(xα),

(6.5.29)

we then find back Eq. 6.5.25 and make appear the passage matrix that relates the FBR
representation to the DVR one:

Tαix = 〈x̃α|φi〉 =
√
ωα φi(xα) (6.5.30)

where the superscripts α and i are the indices of the matrix. We have chosen this notation
to be consistent with the one used by B. Kendrick [152]. The inverse passage matrix is
given by:

[Tαix ]−1 = T iαx = 〈φi|x̃α〉 =
√
ωα φ

∗
i (xα). (6.5.31)

The advantage of using a DVR basis is that the potential V is diagonal in this represen-
tation and does not involve any integral:

〈x̃α|V (x) |x̃α〉 ≈ V (xα)δαα′ . (6.5.32)

This is the reason why we will apply a DVR representation for the hyperangle θ.

6.5.5 The Hybrid representation

In the Hybrid representation, the five-dimensional surface functions are given by:∣∣∣ΦJMp
t

(
ρmξ
)〉

=
∑
imΩ

b̃imΩ
t

∣∣∣θ̃i〉⊗ |m〉 ⊗ |JΩM〉 (6.5.33)

where b̃imΩ
t are the coefficients in the Hybrid representation and

∣∣∣θ̃i〉 is the new state in
the DVR representation expressed in terms of the Gauss-Legendre weights:∣∣∣θ̃i〉 =

√
ωi

∣∣∣θi〉. (6.5.34)

To obtain the matrix elements 5DH̃JMp
ΩΩ′ of Eq. 6.5.20 in the new Hybrid representation,

we must express the matrix Kθ, Bθ, KJ2 ,Cθ, Iθ and V in the new representation using
the passage matrix:

kaΩT ilθ =
√
ωi d

l
kaΩ

(θi). (6.5.35)
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We do not compute these elements directly in the hybrid representation because some
terms have angular derivatives. We then obtain for the matrix elements of the grand
angular momentum:

kaΩK̃ii′

θ =
∑
ll′

kaΩT ilθ (k
a
ΩK ll′

θ ) k
a
ΩT i

′l′

θ
kaΩB̃ii′

θ =
∑
ll′

kaΩT ilθ (k
a
ΩBll′

θ ) k
a
ΩT i

′l′

θ

kaΩk
a
Ω′ K̃ii′

J2 =
∑
ll′

kaΩT ilθ (k
a
Ωk

a
Ω′K ll′

J2) k
a
ΩT i

′l′

θ
kaΩC̃ii′

θ =
∑
ll′

kaΩT ilθ (k
a
ΩC ll′

θ ) k
a
ΩT i

′l′

θ

kaΩ Ĩ ii
′

θ = δii′

(6.5.36)

and for the potential energy matrix elements:

abṼ ii′

mm′ ≡
∫ +π

−π

dφ

2π
e−imaφV

(
ρmξ , θ̃i, φ

)
eim

′
bφδii′ . (6.5.37)

Note that switching to the DVR representation has transformed the double integral into
a single integral which considerably reduces the calculation time. On the other hand, we
must use the same number of quadrature points as the number of functions d lkaΩ which
may involves a large basis set for highly localized states.

To obtain the five-dimensional surface functions, we first compute the FBR elements
of Eq. 6.5.21 with 500 quadrature points (omitting the ρmξ terms). Then, we transform
these matrix elements into the DVR representation using Eq. 6.5.36. These elements are
independent of the hyper-radius and are only computed once. Then, we compute the
total matrix at the center of each sector ρmξ . Using parallel programming (OPENMP), 40
sectors can be diagonalized simultaneously by assigning a single thread to each sector13.
Once the diagonalization is done, we store the energy independent eigenenergies and
eigenvectors in binary files that can be reused later.

6.5.6 The Sequential Diagonalization Truncation (SDT)

Another advantage of using the Hybrid FBR/DVR approach is that we can perform a
Sequential Diagonalization Truncation (SDT) to reduce the size of the total Hamiltonian
before diagonalization. The first step is to compute an one-dimensional Hamiltonian
1DĤ(θi) for each value θi such that:

1DĤ(θi) ≡ −
4~2

µρm 2
ξ (1 + cos θi)

∂2

∂φ2
+ V (ρmξ , θi, φ). (6.5.38)

As we can see, we keep only the term of the grand angular momentum for which
(J,M, p, l,Ω) are good quantum numbers. As a consequence, we need to compute the
matrix elements which involve an integral over φ:

〈m′| 1DĤ(θi) |m〉 =
4~2

µρm 2
ξ (1 + cos θi)

m2δm′m + 〈m′|V (ρmξ , θi, φ) |m〉 . (6.5.39)

13One could easily adapt the code with a hybrid parallel approach using both OPEN-MP and MPI on
supercomputers.
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The first term is analytically obtained whereas the second one involves integrals which
have already been computed and stored. For each possible value of θi, we diagonalize
1DĤ(θi): (

Qi
)T 1DĤ(θi) Qi = 1DEi (6.5.40)

where Ei are the eigenenergies and Qi are their corresponding eigenvectors. The second
step is to keep the ni eigenvectors whose energies are below a cut-off energy 1DEcut defined
via convergence studies:

1DEi
n 6 1DEcut. (6.5.41)

In total, we obtain (lmax−µ+1) truncated vectors stored in N1D×ni rectangular matrices.
The third step is to transform the total Hamiltonian into a truncated Hamiltonian, noted
5DH

JMp

ΩΩ′ii′ obtained via the transformation:

5DH
JMp

ΩΩ′ii′ =
(
Qi
)T 5DH̃JMp

ΩΩ′ii′ Q
i′ . (6.5.42)

We then have a new Hamiltonian whose dimensions are highly reduced (by a factor of
about two). Moreover, the computation time of the whole SDT procedure is much lower
than the total Hamiltonian diagonalization, then this method is indispensable, especially
for large values of J .

Finally, we can express the five-dimensional surface functions in the new SDT-Hybrid
representation: ∣∣∣ΦJMp

t

(
ρξ̃
)〉

=
∑
inΩ

b̄inΩ
t |θi〉′ ⊗ |n〉i ⊗ |JΩM〉 (6.5.43)

where |n〉i are the truncated states. We can express them in terms of the initial ones via:

|n〉i ≡
∑
m

Qi
mn|m〉. (6.5.44)

We can express the coefficients b̃imΩ
t of the Hybrid representation to those of the truncated

representation b̄inΩ
t by inserting Eq. 6.5.44 into Eq. 6.5.43:

b̃imΩ
t =

∑
n

b̄inΩ
t Qi

mn. (6.5.45)

This equation is useful to calculate the overlap matrix elements for which the truncated
eigenvectors do not have the same size from one sector to another.

6.5.7 Identical particle permutation symmetry

It is complicated to symmetrize the primitive basis set before diagonalization while
preserving an accurate cancellation of Eckart singularities. It is then preferable to di-
agonalize the total Hamiltonian and then extract the symmetrized surface functions by
applying a projection operator. In our studies, we will deal with collisions of three iden-
tical particles and it is here that our formalism deviates from B. Kendrick’s which deals
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with A+B2 collisions.

Let PAB, PBC and PCA be the two-body permutation operators and PABC and P−1
ABC

be the cyclic and anti-cyclic three-body ones. We can show that they only affect the
hyperangle φ and the three Euler angles such that:

PBC : (θi, φ, α, β, γ)→ (θi,−φ, π + α, π − β,−γ)

PAB : (θi, φ, α, β, γ)→ (θi,−φ+ 4π/3, π + α, π − β,−γ)

PCA : (θi, φ, α, β, γ)→ (θi,−φ− 4π/3, π + α, π − β,−γ)

PABC : (θi, φ, α, β, γ)→ (θi, φ+ 4π/3, α, β, γ)

P−1
ABC : (θi, φ, α, β, γ)→ (θi, φ− 4π/3, α, β, γ).

(6.5.46)

We can show that the PBC operator inverts the ZQ and YQ axis:

XQ → XQ YQ → −YQ ZQ → −ZQ (6.5.47)

which can be verified explicitly by substituting the above transformation of the Euler
angles into Eq. 6.3.5. The other transformations involve an additional kinematic rotation
that enables us to move from one arrangement to another. The symmetrization opera-
tions are then very easy to set up in this choice of hyperspherical coordinates.

We must apply the operator σ±:

σ± =
1

6
(1± PBC ± PAB ± PCA ± PABC ± P−1

ABC) (6.5.48)

on the surface functions:

ΦJMPq=±
t (ω; ρmξ ) = σ±ΦJMp

t (ω; ρmξ ) (6.5.49)

to extract fully symmetric (+) or anti-symmetric (-) surface functions. For example, to
extract the surface functions of symmetry q = +, we must apply σ+ on every surface
functions ΦJMp

t (i.e. every t). However, every non-symmetrized surface functions t can’t
form a q = + surface function. We must then test each function ΦJMpq

t formed by
computing their norm: 〈

ΦJMpq
t

∣∣∣ΦJMpq
t

〉
. (6.5.50)

If the norm = 1 then we keep the surface function because it has good symmetry. If the
norm = 0, this means that the surface functions t correspond to another symmetry and
is not kept. Since the surface functions are linear combinations of Wigner functions, the
following symmetry property:

D̃J
ΩM(π + α, π − β,−γ) = (−1)J D̃J

ΩM(α, β, γ) (6.5.51)

are used to simplify the calculations of the elements in Eq. 6.5.50.
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6.5.8 Propagation

To solve the set of coupled equations (Eq. 6.4.29), we use the same method as for the
two-body part. We propagate the logarithmic derivative Z of the radial wave function
over [ρmin, ρmax] by dividing the total interval into sub-sectors. The distance ρ = ρmax

is the distance at which the matching is performed and is chosen large enough so that
the different channels have reached their asymptotic behavior. At ρ = ρmin, we are in
the classically forbidden zone where the wave functions is zero. Therefore the initial
condition of the Z-matrix is given by:

Zt,t′(ρmin) =∞ δtt′ . (6.5.52)

We can note that this condition can be applied if the potential energy surface is known
at short distance and if no loss conditions similar to the ones used in chapters 4 and 5
are applied.

Finally, to complete the propagation process, we evaluate the overlap matrix elements:

OJp±
tt′ ≡

〈
ΦJMp±
t

(
ρmξ
) ∣∣∣ΦJMp±

t′

(
ρmξ+1

)〉
(6.5.53)

and the potential coupling matrix elements:〈
ΦJMp±
t (ρmξ )

∣∣∣V (ρ, θ, φ)−
(ρmξ
ρ

)2

V (ρmξ , θ, φ)
∣∣∣ΦJMp±

t′ (ρmξ+1)
〉

(6.5.54)

by paralleling the integral over φ. The matrix elements of the overlap matrices and ofthe
potential coupling matrices are computed once (for all value of ρ) and can be re-used for
studies in function of the collision energy Ek.

6.6 Matching

Once the propagation has been carried out to a distance large enough so that the
potential has reached its asymptotic form, the boundary conditions on the radial wave
functions can be applied. As in Delves coordinates (Cf. section 6.2), we can distinguish
three kinds of state asymptotically. The first two correspond to bound and quasi-bound
states whose adiabatic energy curves:

EJp qt (ρ) −→
ρ→+∞

ετvjl (6.6.1)

where ετvjl are the solutions of Eq 6.2.10. The bound states are characterized by negative
energies ετvjl < 0 while the quasi-bound states are characterized by positive energies
ετvjl > 0 (which are manifestations of shape resonances of a free diatomic molecule in an
excited rotational state). These two states correspond to the configuration where Sτ −→

ρ→+∞
+∞ while sτ remains finite. Physically, they correspond to the simple continuum of an
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atom and a diatom. This is why they are usually called simple continuum states. The last
kind of states are the ones whose adiabatic energy curves vanish asymptotically following:

EJp qt (ρ) −→
ρ→+∞

λ(λ+ 4) + 15/4

2µρ2
(6.6.2)

where λ = 0, 1, 2, ... as explained in section 6.2. These states correspond to the case where
the three particles are all far from each others, i.e. the two conditions Sτ −→

ρ→+∞
+∞ and

sτ −→
ρ→+∞

+∞ are both satisfied. This is why they are usually called double continuum
states.

As explained in the discussion below Eq. 6.4.6, APH coordinates are not adapted
when Sτ � sτ (i.e. asymptotic atom-diatom configurations) because the vector ~q does
not match with the vector ~sτ by definition. Therefore, we will apply a mixed-boundary
condition [231, 232] where the asymptotic atom-diatom radial wave functions will be
given in Jacobi coordinate while the asymptotic continuum functions will be given in
APH coordinates.

6.6.1 Asymptotic boundary conditions for simple continuum states

The asymptotic form of the radial wave functions in mass-scaled Jacobi coordinates is
obtained by solving the asymptotic form of Eq. 6.1.29. At large distances, these equations
are no longer coupled and are similar to Eq. 3.5.12 (obtained in the two-body part) where
we changed r → Sτ and where the reduced mass used here is the three-body one:[

− ~2

2µ

d2

dS2
τ

+
~2l (l + 1)

2µS2
τ

+ ετvj − Etot

]
F JME
τvjl,τvjl (Sτ ) = 0. (6.6.3)

The general solutions F of Eq. 6.6.3 are a combination of two independent solutions F(1)

and F(2) such that:
F = F(1)A + F(2)B

∣∣
ρ=ρmax

(6.6.4)

where A and B are normalization factors. For open channels (i.e. E > ετvj), their matrix
elements are similar to Eq. 3.5.14:

F
(1) JME
τ ′v′j′l′,τvjl (Sτ ′) = Sτ ′

√
kτ ′v′j′ jl′(kτ ′v′j′Sτ ′) δτ ′v′j′l′,τvjl

F
(2) JME
τ ′v′j′l′,τvjl (Sτ ′) = Sτ ′

√
kτ ′v′j′ nl′(kτ ′v′j′Sτ ′) δτ ′v′j′l′,τvjl

(6.6.5)

where k2
vjl = 2µ(Etot−ετvj)/~2. As in the two-body study, they are expressed in function

of the Ricatti-Bessel (jl) and Ricatti-Neumann (nl) functions [170]. For closed channels,
one must replace jl by il and nl by kl which are the modified Bessel functions of integer
order [170].

However, since the Z-matrix is obtained in APH coordinates, we must transform the
asymptotic mass-scaled Jacobi radial wave functions into APH coordinates following two
steps.
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From mass-scaled Jacobi coordinates to SFτ–Delves coordinates

The first step consists in transforming the asymptotic functions F(1) and F(2) given in
Eq. 6.6.5 into the SFτ–Delves coordinates. For a given atom-diatom channel {τ, v, j, l},
the partial wave in mass-scaled Jacobi coordinates (Eq. 6.1.26) is given by:

ψJME
τvjl =

∑
τ ′′v′′j′′l′′

1

Sτ ′′
ΦJME
τ ′′v′′j′′l′′

(
Ŝ SF
τ ′′ , ~s

SF
τ ′′

)
F
JME(1,2)
τ ′′v′′j′′l′′,τvjl (Sτ )

∣∣∣∣∣
ρ=ρmax

=
1

Sτ

χτvj (sτ )

sτ
Y JM
jl

(
Ŝ SF
τ , ŝSF

τ

)
F
JME(1,2)
τvjl,τvjl (Sτ )

∣∣∣∣
ρ=ρmax

=
2

ρ2

χτvj (sτ )

sin 2ωτ
Y JM
jl

(
Ŝ SF
τ , ŝSF

τ

)
F
JME(1,2)
τvjl,τvjl (Sτ )

∣∣∣∣
ρ=ρmax

.

(6.6.6)

In the SFτ–Delves coordinates, the same partial wave is given by Eq. 6.2.14:

ψJME
τvjl =

2

ρ5/2

∑
τ ′′v′′j′′l′′

χτ ′′v′′j′′l′′ (ωτ ′′ ; ρmax)

sin 2ωτ ′′
Y JM
j′′l′′

(
ŜSF
τ ′′ , ŝ

SF
τ ′′

)
F
JME(1,2)
τ ′′v′′j′′l′′,τvjl(ρ). (6.6.7)

By multiplying Eq. 6.6.6 and Eq. 6.6.7 on the left by
[
χτ ′v′j′l′ (ωτ ′ ; ρmax)Y JM

j′l′

(
ŜSF
τ ′ , ŝ

SF
τ ′

)]∗
,

then integrating over all the angular coordinates and finally after identifying them, we
obtain for the radial wave functions:

F
JME(1,2)
τ ′v′j′l′,τvjl (ρ; ρmax) = ρ1/2

〈
χτ ′v′j′l′ (ωτ ′ ; ρmax)

∣∣∣χτvj (sτ )F
JME(1,2)
τvjl,τvjl (Sτ )

〉
ωτ

∣∣∣∣
ρ=ρmax

× δj′jδl′lδτ ′τ (6.6.8)

where the index ωτ means that we must perform an integral over the ωτ angle. For the
radial derivatives functions, we have:(

F
JME(1,2)
τ ′v′j′l′,τvjl (ρ; ρmax)

)′
=

∂

∂ρ

{
ρ1/2

〈
χτ ′v′j′l′ (ωτ ′ ; ρmax)

∣∣∣χτvj (sτ )F
JME(1,2)
τvjl,τvjl (Sτ )

〉
ωτ

}∣∣∣∣
ρ=ρmax

δj′jδl′lδτ ′τ

=

〈
χτ ′v′j′l′ (ωτ ′ ; ρmax)

∣∣∣ ∂
∂ρ

{
ρ1/2χτvj (sτ )F

JME(1,2)
τvjl,τvjl (Sτ )

}〉
ωτ

∣∣∣∣
ρ=ρmax

δj′jδl′lδτ ′τ . (6.6.9)

For Eq. 6.6.9, the surface functions in Delves coordinates are evaluated at a fixed value
of ρ = ρmax whereas the Jacobi internal wave functions and the radial wave functions
depend respectively on sτ and Sτ which have a dependence on ρ. This leads to non-zero
radial derivative terms. They are calculated using the following expression:

∂

∂ρ

{
ρ1/2χτvj (sτ )F

JME(1,2)
τvjl,τvjl (Sτ )

}
= ρ1/2

{
cosωτχτvj (sτ )

∂F
JME(1,2)
τvjl,τvjl (Sτ )

∂Sτ

+ sinωτ
∂χτvj (sτ )

∂sτ
F
JME(1,2)
τvjl,τvjl (Sτ )

}
+

1

2ρ1/2
χτvj (sτ )F

JME(1,2)
τvjl,τvjl (Sτ ) .

(6.6.10)



Chapter 6. Quantum reactive scattering theory 133

From SFτ–Delves coordinates to APH coordinates

The second step consists in projecting the Delves functions onto the symmetric func-
tions of the hyperspherical surfaces defined in Eq. 6.4.31. B. Kendrick defines the trans-
formation matrix to go from APH coordinates to Delves coordinates in [218]:

UJpq
τvjl,t ≡

4
√

2

2

∫ π/2

0

dωτ sin (2ωτ )

∫ +π

0

dητ sin (ητ )χτ ′v′j′l′ (ωτ ′ ; ρmax)

×
√

2l + 1

2J + 1

∑
Λ

(
1 + (−1)p+j+l+1

)
C(jlJ ; Λ0Λ)P̂jΛ (ητ )F

Jpq
Λt (ωτ , ητ ) (6.6.11)

where

F Jpq
Λt (ωτ , ητ ) ≡

(−1)p+1

√
2π

∑
lmΩ

blmΩ
t dlµν (θ (ωτ , ητ )) × dJΩΛ(π/2)iΛFΛ

mΩ (ωτ , ητ ) (6.6.12)

and

FΛ
mΩ (ωτ , ητ ) =


NΛ cos [mφ (ωτ , ητ ) + ΩγQ]

(q + Λ even )

iNΛ sin [mφ (ωτ , ητ ) + ΩγQ]
(q + Λ odd )

(6.6.13)

with NΛ = 2 for Λ > 0 and N0 = 1. The integer Λ denotes the projection of J along the
BFτ–Delves Zτ axis. The C(jlJ ; Λ0Λ) are Clebsch-Gordan coefficients [170] and the P̂jΛ
are given by:

P̂jΛ(ητ ) ≡
√

2πYjΛ(ητ , 0) (6.6.14)
where the YjΛ are spherical harmonics. The dJΩΛ(π/2) term and the ΩγQ term come from
the rotation to go from the BFQ to the BFτ [218].

To transform the SFτ–Delves radial wave function into APH coordinates, one must
use the inverse matrix U−1 whose elements will be noted UJpq

t,τvjl. We then obtain:

F
JME(1,2)
t,τvjl (ρ; ρmax) =

∑
τ ′v′j′l′

UJpq
t,τ ′v′j′l′F

JME(1,2)
τ ′v′j′l′,τvjl (ρ; ρmax) (6.6.15)

and: (
F
JME(1,2)
t,τvjl (ρ; ρmax)

)′
=
∑
τ ′v′j′l′

UJpq
t,τ ′v′j′l′

(
F
JME(1,2)
τ ′v′j′l′,τvjl (ρ; ρmax)

)′
(6.6.16)

which are the non-diagonal elements that we will use in Eq. 6.6.18 for the matching.

6.6.2 Asymptotic boundary conditions for double continuum states

For the open continuum channels [243, 231, 232], the asymptotic radial functions are
given by:

F
JME(1,2)
t′,t (ρ; ρmax) = δfi

√
πρ

2
Jλf+2 (kfρ)

F
JME(1,2)
t′,t (ρ; ρmax) = δfi

√
πρ

2
Yλf+2 (kfρ)

(6.6.17)
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where λf = 2νf + jf + `f [231, 232] and k2
f = 2µEtot/~2. The functions Jn are the regular

Bessel function of integer order, and Yn are the irregular Bessel function of integer order.

The closed channels are obtained by replacing Jτf+2 by Iτf+2 and Yτf+2 by Kτf+2

which are the modified Bessel functions of integer order [170].

6.6.3 K-matrix and S-matrix

As in the two-body part, we relate the K-matrix to the Z-matrix via:

K =
{
ZF(2) − F

′(2)
}−1 {

ZF(1) − F
′(1)
}∣∣∣∣

ρ=ρmax

. (6.6.18)

The S-matrix is obtained from the K-matrix using:

S =
I + iK
I− iK

. (6.6.19)

and the T-matrix is given by:
T = S− I. (6.6.20)

6.7 Observables
The elastic cross sections between atom-diatom are given by [151]:

σel = στvj→τvj =
π

(2j + 1)k2
τvj

∑
J,l

(2J + 1)
∣∣T Jτvjl,τvjl∣∣2 . (6.7.1)

The (2j + 1) term come from the fact that we have averaged the cross sections over the
initial magnetic states mj. The inelastic cross sections between bound states are given
by:

σin =
∑

τ ′v′j′ 6=τvj
στvj→τ ′v′j′

=
∑

τ ′v′j′ 6=τvj

π

(2j + 1)k2
τvj

∑
J,l,l′

(2J + 1)
∣∣T Jτ ′v′j′l′,τvjl∣∣2

=
π

(2j + 1)k2
λvj

∑
J,l,l′

(2J + 1)
(

1−
∣∣SJλvjl,λvjl∣∣2) .

(6.7.2)

The elastic βel and inelastic βin collision rate coefficients are given by:

βel = σel · v = σel

√
2Ek

µτ − τ+1 τ+2

βin = σin · v = σin

√
2Ek

µτ − τ+1 τ+2

(6.7.3)

where v denotes the relative velocity of the two particles, µτ − τ+1 τ+2 is the atom-diatom
reduced mass defined in Eq. 6.1.3 and Ek is the relative kinetic energy.
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The three-body recombination rate coefficient, usually noted K3, is given by [244]:

K3 =
∑
i,f

192(2J + 1)π2

µk4

∣∣SJf←i∣∣2 (6.7.4)

where i and f label the incident (three-body continuum) and outgoing (two-body recom-
bination) channels with k2

f = 2µE/~2 and where µ is the three-body reduced mass.
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Chapter 7

Three-body static electric field
shielding

In the two-body part, we studied two techniques for reducing short-range losses. Both
methods aim to create a long-range potential barrier in the incident channel by taking
advantage of the properties of the dipole-dipole interaction. The first method uses a
circularly polarized electromagnetic wave while the second one uses a static electric field.
Although the first method allows an interesting control of the scattering length, the num-
ber of states involved is much larger due to the additional quantum number n which must
be considered. In this chapter, we focus on the static electric field shielding, which seems
easier to implement numerically for three-body collisions.

Do three-body collisions really matter in ultracold experiments?

Since the shielding techniques have proven to be experimentally effective, the next
challenge is to reach quantum degeneracy regimes. Although evaporative cooling ejects
the hottest molecules, the densities involved increase and three-body collisions can be-
come significant. Let’s take the example of the experience at JILA [100]. They can
cool down gases of KRb molecules to typical temperatures T ≈ 500 nK with densities
n0 ≈ 2.5 × 1011 molecules/cm3. As the characteristic time between two events of three-
body collisions scales as τ 3B ∝ n−2

0 (Cf. appendix C), three-body loss processes can
become significant, preventing the creation of degenerate quantum gases. In addition, if
we reach quantum degeneracy regimes, some many-body states (droplets or many exotic
supersolid states) can only appear in density ranges where three-body collisions domi-
nate [245]. For all these reasons, it is crucial to find a method to reduce three-body losses
while preserving two-body shielding.

In this chapter, we study the asymptotic three-body energies and show that two
three-body internal states are resonant for the same electric field value as the one used
for two-body shielding. We show that the number of states required for a complete study
is too large to get converged results. Hence, we present a simplified model adapted from
chapter 5 to extract the three-body rate coefficients. Finally, we discuss the results and
present the validity domain of the model.

137
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7.1 Asymptotic three-body rotational states
The general principle of the three-body shielding remains identical to that of the two-

body one: only the mathematical formalism must be adapted to consider the effect of
the third molecule. The objective is to create a long-range potential barrier by exploiting
the dipole-dipole-dipole interaction. In the following, we only consider collisions between
three identical bosonic 40K87Rb molecules.

The first step is to find two three-body rotational states that can be brought to
resonance by applying an external static electric field. In Fig. 7.1, we represent the
evolution of the asymptotic energies (i.e. when rA, rB and rC → ∞) as a function of
the electric field. We restrict to the projections mjτ = 0 for more visibility. Since the
molecules are considered as isolated, the total internal energy εα̃ can be divided as a sum
of the individual energies of each molecule dressed by the electric field εα̃ = εα̃1 +εα̃2 +εα̃3 .
If we consider a third molecule excited in its first rotational state, this implies shifting
all two-body energy levels by the same constant εα̃3 . The three-body asymptotic states
{
∣∣1̃, 0〉 ∣∣1̃, 0〉} ⊗ ∣∣1̃, 0〉 and {∣∣0̃, 0〉 ∣∣2̃, 0〉} ⊗ ∣∣1̃, 0〉 therefore cross at the same electric field

value as if the third molecule was spectator, i.e. E∗3 = 12.3 kV cm−1. Therefore, a
simultaneous two-body and three-body shielding seems to be feasible.

We can observe a second crossing (purple box) for an electric field E < E∗3 . This
crossing could have been interesting from an experimental point of view since it requires
a weaker electric field. Nevertheless, it corresponds to the intersection between the two
states

∣∣1̃, 0〉 ∣∣1̃, 0〉 ∣∣2̃, 0〉 and ∣∣0̃, 0〉 ∣∣0̃, 0〉 ∣∣3̃, 0〉 which cannot be used because it is hard in
an experimental point of view to prepare molecules in different states.

7.2 Complete three-body problem
In this section, we apply and adapt the formalism presented in chapter 6 to three-

body shielding. First, we present the basis set and the potential used. Then, we show
through the adiabatic energy curves that we are not able to get converged results, even
using an adapted SDT method.

7.2.1 Formalism

Symmetrization of the internal states

As we consider indistinguishable molecules, one must symmetrize the internal states∣∣j̃1, 0
〉 ∣∣j̃2, 0

〉 ∣∣j̃3, 0
〉
with respect to the permutation operators previously presented. In

this study, we only consider the two states
∣∣1̃, 0〉 ∣∣1̃, 0〉 ∣∣1̃, 0〉 and

∣∣0̃, 0〉 ∣∣2̃, 0〉 ∣∣1̃, 0〉. The
first one corresponds to the special case of three indistinguishable states (i.e. j̃1 = j̃2 = j̃3)
then only internal states that are fully symmetric with respect to each permutation
operator exist:∣∣1̃, 1̃, 1̃〉

+
=

1

6

[ ∣∣1̃, 1̃, 1̃〉+
∣∣1̃, 1̃, 1̃〉+

∣∣1̃, 1̃, 1̃〉+
∣∣1̃, 1̃, 1̃〉+

∣∣1̃, 1̃, 1̃〉+
∣∣1̃, 1̃, 1̃〉 ]

=
∣∣1̃, 1̃, 1̃〉 (7.2.1)
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Figure 7.1: Energy of three bosonic 41K87Rb molecules as a function of the electric
field. Only the curves corresponding to mjτ = 0 are represented. Red curve: the initial
state

∣∣1̃, 0〉 ∣∣1̃, 0〉 ∣∣1̃, 0〉, Green curve: the resonant state
∣∣0̃, 0〉 ∣∣2̃, 0〉 ∣∣1̃, 0〉. The blue box

indicates the crossing at E∗3 = 12.3 kV cm−1 between the two states we are interested.
Purple box: Crossing not interesting from an experimental point of view.

where we omit mj = 0 in the notations. We analogously form a fully symmetric state for
the second internal state:∣∣0̃, 1̃, 2̃〉

+
=

1√
6

[ ∣∣0̃, 1̃, 2̃〉+
∣∣0̃, 2̃, 1̃〉+

∣∣1̃, 0̃, 2̃〉+
∣∣1̃, 2̃, 0̃〉+

∣∣2̃, 0̃, 1̃〉+
∣∣2̃, 1̃, 0̃〉 ]. (7.2.2)

To simplify the notations for the matrix elements, the state
∣∣1̃, 1̃, 1̃〉

+
will be identified

by the index i = 1 while the second state
∣∣0̃, 1̃, 2̃〉

+
will correspond to the index i = 2.

Coupled Equations

The total Hamiltonian is given by:[(
T̂ 0

0 T̂

)
+

(
V11 V12

V21 V22

)](
ψ̃1

ψ̃2

)
= E

(
ψ̃1

ψ̃2

)
(7.2.3)

where the first diagonal term is the diabatic kinetic energy operator and Vij are the
potential matrix elements that couple the two internal states i = 1, 2 and j = 1, 2 via the

dipole-dipole-dipole interaction. The total nuclear wave function Ψ =

(
ψ̃1

ψ̃2

)
is expanded

within a given sector (see Eq. 6.4.28) as:

ΨMpq
i (ρ, θ, φ, α, β, γ) = 4

√
2
∑
t

ρ−5/2ψp qit (ρ)ΦMpq
t (ω; ρξ) (7.2.4)
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where J is no longer a good quantum number because the dipole-dipole-dipole interaction
couples different partial waves (Cf. the section Potential energy surface). The surface
functions kΦMpq

t (ω; ρξ) are now a linear combination of the two internal states:

ΦMpq
t (ω; ρξ) = 1ΦMpq

t (ω; ρξ)⊗
∣∣1̃, 1̃, 1̃〉+ 2ΦMpq

t (ω; ρξ)⊗
∣∣0̃, 1̃, 2̃〉 (7.2.5)

In the hybrid representation, these five-dimensional surface functions are given by (see
Eq. 6.5.18):

kΦMpq
t (ω; ρξ) =

∑
imΩJ

kbimΩJ
t |θi〉′ ⊗ |m〉 ⊗ |JΩM〉 (7.2.6)

where a sum over the quantum number J is now required and where the subscript k = 1, 2
differentiates the two internal states.

Potential energy surface

The total potential can be accurately approximated by a pairwise sum of two-body
interactions:

Vij = vij(rτ ) + vij(rτ+1) + vij(rτ+2) (7.2.7)

where i = 1, 2 and j = 1, 2 represent the two internal states and where

vij(rτ ) = vijdd(rτ ) + vvdw(rτ ) (7.2.8)

is composed by the two-body dipole-dipole and van der Waals interactions. As in the
two-body case, we employ the generalized definition of the induced dipole moment given
in Eq. 5.2.5. To make the transition into hyperspherical coordinates easier, we express
the dipole-dipole matrix elements in terms of spherical harmonics:

vijdd(rτ ) = − 2

4πε0r3
τ

d2
ij

√
4π

5
Y20(r̂SFτ ) (7.2.9)

where the symmetrized matrix elements d2
ij are given by:

d2
11 = d1̃→1̃d1̃→1̃

d2
22 =

1

3

[
d0̃→0̃d1̃→1̃ + d0̃→1̃d1̃→0̃ + d0̃→0̃d2̃→2̃ + d0̃→2̃d2̃→0̃

+d1̃→1̃d2̃→2̃ + d1̃→2̃d1̃→2̃
]

d2
12 =

√
6

3

[
d1̃→0̃d1̃→2̃

]
.

(7.2.10)

Then, we apply the renormalization relation rτ = d−1
τ sτ and use the inverse relations from

Eq. 6.1.7. The mass-scaled Jacobi coordinates are convenient because a simple kinematic
rotation φ → φ ± 4π/3 allows to switch from one arrangement to another. Finally, we
apply the spatial rotation:

Y20(ŝSFτ ) =
+2∑

ωλ=−2

D2
ωλ0(α, β, γ)Y2ωλ(ŝBFQ

τ ) (7.2.11)
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to express the angular part of ~sτ in the BFQ. By combining all these steps, we obtain:

vijdd(rτ ) = −
2d2

ij

4πε0

d3
τ2

3/2

ρ3 [1− cos(θ/2) cos (φ)]3/2

√
4π

5

+2∑
ωλ=−2

D̃2
ωλ0(α, β, γ)Y2ωλ(ŝBFτ )

vijdd(rτ+1) = −
2d2

ij

4πε0

d3
τ+123/2

ρ3
[
1− cos(θ/2) cos

(
φ+ 4π

3

)]3/2
√

4π

5

+2∑
ωλ=−2

D̃2
ωλ0(α, β, γ)Y2ωλ(ŝBFτ+1)

vijdd(rτ+2) = −
2d2

ij

4πε0

d3
τ+223/2

ρ3
[
1− cos(θ/2) cos

(
φ− 4π

3

)]3/2
√

4π

5

+2∑
ωλ=−2

D̃2
ωλ0(α, β, γ)Y2ωλ(ŝBFτ+2)

(7.2.12)
where dτ = dτ+1 = dτ+2 ≈ 1.07457 for three identical molecules. Be careful, it corre-
sponds to the renormalization coefficient to obtain the mass-scaled Jacobi vectors (see
Eq. 6.1.7) and should not be confused with the dipole moment. In the BFQ, the angular
part of ~sτ is given by:

θsτ = π/2 φsτ = tan−1

(
tan(θ/4)

tan(φ/2)

)
θsτ+1 = π/2 φsτ+1 = tan−1

(
tan(θ/4)

tan(φ/2 + 2π/3)

)
θsτ+2 = π/2 φsτ+2 = tan−1

(
tan(θ/4)

tan(φ/2− 2π/3)

) (7.2.13)

where θsτ = π/2, θsτ+1 = π/2 and θsτ+2 = π/2 because the particles lie in the plane per-
pendicular to the ZQ axis. Notice that the potential depends on the Euler angles (which
is never the case for collisions without electric field) which leads to couplings between
different partial waves J . This was predictable because the dipole-dipole interaction is
an anisotropic interaction that depends on the orientation of the plane formed by the
three molecules with respect to the orientation of the electric field. On Fig. 7.2, we took
the example of three dipoles placed in an equilateral configuration for two different sets
(α, β, γ) and for fixed values of (ρ, θ, φ). In the first case (left), two molecules collide in
a side-by-side configuration while a third is coming from above. In the second case, we
just applied β → β + π/2 and the three molecules all collide in a side-by-side configu-
ration. We can show the same behavior with the other angles, so it is natural that the
dipole-dipole interaction depends on the three Euler angles.

If we follow the above procedure for the van der Waals interaction, we obtain:

vvdw(rτ ) = −C6

ρ6

8 d6
τ

[1− cos(θ/2) cos (φ)]3

vvdw(rτ+1) = −C6

ρ6

8 d6
τ+1[

1− cos(θ/2) cos
(
φ+ 2π

3

)]3
vvdw(rτ+2) = −C6

ρ6

8 d6
τ+2[

1− cos(θ/2) cos
(
φ− 2π

3

)]3 .
(7.2.14)
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E E
β→β+π/2

Figure 7.2: Orientation of three dipoles for two spatial configurations.

Unlike the dipole-dipole interaction, this interaction is isotropic and does not depend on
the Euler angles: it is diagonal in J and Ω. However, the van der Waals matrix elements
are non-diagonal in m and require to perform an integral in φ.

It is important to point out that the dipole-dipole and van der Waals interactions are
derived from a multipole expansion of the potential. These equations remains valid at
large distances, more precisely for intermolecular distances larger than the Leroy radius.
This distance separates the region where the interacting particles keep their identity,
i.e. their wave functions do not overlap, from the short distance region [246, 247]. In
addition, we have shown through the two-body shielding studies that the long-range
potential barrier prevents molecules from reaching short distances. The two-body short-
range configurations are then considered as forbidden and are excluded by applying a
cut-off condition for distances rτ < rcut. This cutoff is chosen as the position of the barrier
maximum in the two-body adiabatic energy curves. This choice is arbitrary because we
do not know exactly where the two-body wave function vanishes in the potential barrier.
However, the barrier height becomes to be higher than the typical collision energies
involved in this study at larger distances than the position of the barrier maximum. We
then take into consideration some configurations that should be forbidden, which increases
the loss rate coefficients. Indeed, the loss rate coefficients will be slightly overestimated
because the larger the cut-off distance, the less we consider the short distance region
where the attractive van der Waals interaction dominates. Therefore, the model will
provide an estimate of the lower value of the ratio γ = βel

βqu
but we will show that it has

no real impact on the final results. As we do not have any information on the short-range
part, we will set the initial short-range loss condition at ρmin ≈ rcut, i.e. at the position
where the three additive terms are not considered anymore by the cut-off condition. If
the wave function reaches distances ρ < ρmin, it will be considered as completely lost,
which will increase the loss rate coefficients.

SDT

As we saw previously, the potential depends on the three Euler angles. The standard
SDT method can therefore no longer be used because it is developed for a one-dimensional
Hamiltonian. A first idea was to exclude the dipole-dipole-dipole interaction from the
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SDT Hamiltonian:

1DĤ(θi) ≡ −
4~2

µρm 2
ξ (1 + cos θi)

∂2

∂φ2
+ vvdw(rτ ) + vvdw(rτ+1) + vvdw(rτ+2). (7.2.15)

A second idea was to define an one-dimensional Hamiltonian based on the terms which
are diagonal in Ω:

1DHΩ (θi) ≡ 1DĤ(θi) +
1

µρm 2
ξ

[
J2
Z

(1 + cos θi)
+

4 sin θi/2

(1 + cos θi)
JZ

~
i

∂

∂φ

]
. (7.2.16)

The Ω term coming from the JZ term shifts all energies upwards. After the application
of the cutoff energy, more states are then excluded and the size of the total Hamiltonian
decreases. Applying this method, we managed to achieve an additional decrease of about
15 % in the size of the total Hamiltonian compared to the first method.

Results

In Fig. 7.3, we show the adiabatic energy curves in the case of three-body 41K87Rb
collisions. They are computed for J = 0−2, lmax = 40 andmmax = 25. The grand angular
matrix elements in Eq. 6.5.21 are computed in FBR with 500 Gauss-Legendre quadrature
points in θ, and then transformed into the DVR representation with the transformation
matrix Eq. 6.5.30. Since its angular and radial parts are separable, the elements of the
grand angular momentum are calculated once and reused for each sector. The potential
matrix elements are computed with 400 quadrature points in φ and are diagonal in θ.
As we deal with three-identical molecules, we can reduce the integral of φ on [0, 4π/3]
instead of [−π,+π]. The integral over the Euler angles are given analytically by:∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγDJ3

M3M ′
3
(α, β, γ)DJ3

M2M ′
2
(α, β, γ)DJ1

M1M ′
1
(α, β, γ)

=
8π2

2J3 + 1
CJ3M3
J1M1J2M2

C
J2M ′

3

J1M ′
1J2M ′

2
(7.2.17)

where CJkMk
JiMiJjMj

are the Clebsch-Gordan coefficients [182] given by:

CJkMk
JiMiJjMj

= (−1)ji−jj+mk
√

2jk + 1

(
ji jj jk
mi mj −mk

)
. (7.2.18)

Using this equation, we have shown that only states satisfying the condition J ′ − J =
±2,±4... can be coupled. Without SDT, we had 9840 states while the implementation
of the SDT divided the size of the total Hamiltonian by about a factor 2. The other
parameters used for the numerical calculation are grouped in Table 7.1.

We have zoomed on the initial state
∣∣1̃, 1̃, 1̃〉, while the curves coming from the lower

part correspond to the continuum channels of the second internal state
∣∣0̃, 2̃, 1̃〉. It is

impossible to draw any conclusions from these curves because a small increase of lmax

changes radically the behavior of the adiabatic curves. This can be explained by the fact
that we use a DVR for θ and that the number lmax is related to the number of quadrature
points used if we were in a FBR. However, for long-range potentials, a large number of
quadrature points is required to get accurate results. In conclusion, a complete quantum
calculation is impossible and involves the development of a simplified model.
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Figure 7.3: Adiabatic energy curves as a function of the hyperradius ρ for three-body
bosonic 40K87Rb collisions obtained with J = 0 − 2, lmax = 40 and mmax = 25. The
curves are not converged with respect to these parameters.

mKRb (a.u.) µ2B (a.u.) µ (a.u.) B (a.u.) d (D) C6 (a.u.) E∗ (kV/cm) ρmin (a0)
233093 116547 134577 1.67.10−7 0.226 -12636 12.3 140

Table 7.1: Parameters of 41K87Rb molecules useful for three-body numerical calculations.
We provide useful conversion factors: 1 a.u. ' 1822.88 a.m.u.; 1 a.u. ' 219475 cm−1;
1 a0 ' 0.529× 10−10 m.

7.3 A simplified model

In the previous section, we have demonstrated that the complete calculation of three-
body shielding is not possible because too many states are required to get converged
results. The aim of this part is to adapt the simplified model presented in section 5 to
the three-body formalism. The characteristic parameters for 41K87Rb molecules are given
in table 7.1.

7.3.1 A two-level system

As in the simplified two-body model, we only keep the two symmetric states
∣∣1̃, 1̃, 1̃〉

+

and
∣∣0̃, 1̃, 2̃〉

+
. We can define the 2× 2 interaction matrix:[

V11(ρ, θ, φ, α, β, γ) + E1̃1̃1̃ V12(ρ, θ, φ, α, β, γ)
V21(ρ, θ, φ, α, β, γ) V22(ρ, θ, φ, α, β, γ) + E0̃2̃1̃

]
(7.3.1)
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where Vij(ρ, θ, φ, α, β, γ) are given by Eq. 7.2.7. Then, we diagonalize this matrix for each
value of (ρ, θ, φ, α, β, γ) and obtain two orthogonal six-dimensional surfaces analytically
given by:

E±(r, θ) =
1

2
(Ea + Eb)±

1

2

√
(Ea − Eb)2 + 4W 2 (7.3.2)

with:

Ea ≡ V11(ρ, θ, φ, α, β, γ) + E1̃1̃1̃

Eb ≡ V22(ρ, θ, φ, α, β, γ) + E0̃2̃1̃ (7.3.3)
W ≡ V12(ρ, θ, φ, α, β, γ).

To get a more accurate picture of the interaction, we also include the diagonal centrifugal
term of the lowest partial wave such that:

V±(ρ, θ, φ, α, β, γ) = E±(ρ, θ, φ, α, β, γ) +
λ(λ+ 4) + 15/4

2µρ2
(7.3.4)

where λ = 0 for bosons. Note that unlike two-body collisions, the centrifugal term is
non-zero for bosons.

7.3.2 A six-dimensional surface

To understand the role of the different angles, we plot the surfaces V+ and V− in
function of two coordinates while keeping the other four fixed. We are not going to show
and analyze all the possible combinations but only illustrative examples.

Internal coordinates

In Fig. 7.4, we show the surfaces V+ and V− in function of the two angles θ and φ for
ρ = 5000 a0 (top) and ρ = 500 a0 (bottom) with (α = 0, β = 0, γ = 0). We observe that
the three arrangements are centered on φ = 0, 2π/3 and −2π/3, i.e. for the kinematic
angles transforming sτ into sτ+1 and sτ+2. As we are in the case of three identical particles,
the potential is equal whatever the arrangement considered. As a result, the integral can
only be performed over φ ∈ [0, 2π/3] and then multiplied by 3. We can remark that
the smaller the hyperradius, the closer the arrangements. For hyperradius ρ < 500 a0,
the arrangement overlap and τ is no longer a good quantum number. The extremums of
the potential are mostly found around small values of θ because sτ → 0 when (θ → 0,
φ→ 0) as expected from Eq. 6.4.19. Hence, we use a Gauss-Legendre quadrature where
the integration points are more numerous at the boundaries of the integrals.

When the shielding is turned off, we have E1̃1̃1̃ < E0̃2̃1̃. The potential surface for
the initial state is therefore given by the lower attractive surface V (ρ, θ, φ, α, β, γ) ≡
V−(ρ, θ, φ, α, β, γ). In this case, the surface is pushed down by the state above and the
attractive Van der Waals interaction is dominant. The potential is then on average
strongly attractive, so the total wave function can reach short distances where losses
dominate.
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When the shielding is turned on, we have E1̃1̃1̃ > E0̃2̃1̃. The potential surface for
the initial state is therefore given by the upper repulsive surface V (ρ, θ, φ, α, β, γ) ≡
V+(ρ, θ, φ, α, β, γ). The barriers found by decreasing θ are the signatures of two-body
shielding where each of the three barriers corresponds to the shielding between two dif-
ferent molecules. Let us point out that their height is of the order of a few tenths of mK
(not shown on the figures), which is similar to those obtained for the two-body shielding
(Cf. Fig. 5.6). On average, the barrier created could be large enough to reduce losses
but the effect of the other angles (the Euler angles) has to be also investigated.

Figure 7.4: V+(ρ, θ, φ, α = 0, β = 0, γ = 0) and V−(ρ, θ, φ, α = 0, β = 0, γ = 0) for
ρ = 5000 a0 (top) and ρ = 500 a0 (bottom). They are obtained diagonalizing Eq. 7.3.1.

Effect of the Euler angles

If we take a closer look at the expression of the potential, it involves a sum over the
Wigner functions DJ

ωλ0(α, β, γ) = eiωλγdJωλ0(β) which do not depend on the variable α.
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Figure 7.5: Left: Potential surface V+(ρ = 500 a.u., θ, φ = 0, α = π/6, β, γ = 0) as a
function of θ and β. Right: Orientation of three dipoles in a linear configuration for two
configurations of β.
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Figure 7.6: Potential surfaces V+(ρ = 500 a.u., θ, φ, α = π/6, β = π/6, γ = 0) (top) and
V+(ρ = 500 a.u., θ, φ, α = π/4, β = π/6, γ = 0) (bot) in top view.

The numerical efforts are then minimized since there is one less integral to perform.
In Fig. 7.5 (left), we represent the potential surface V+ in function of θ and β for

ρ = 500 a.u, φ = 0 and γ = π/6. We observe two maximums at β = (0, π) and a
minimum at β = π/2. To understand the shape of this surface, let’s take the example of
a linear configuration (i.e. θ = 0) illustrated in Fig. 7.5 (right). In this configuration, the
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three molecules are aligned along XQ (Cf. Eq. 6.4.20) while the electric field is oriented
along the space-fixed axis z. If the ZQ axis is oriented in the same direction as the z
axis, i.e. β = (0, π), then the molecules collide in a head-to-tail configuration. On the
other hand, if the two axis are orthogonal, i.e. β = π/2, then the molecules collide in
a side-by-side configuration. In the simplified two-body model, we have shown that the
barrier is much higher in a head-to-tail collision than in a side-by-side collision. This is
why we find two maximums in Fig. 7.5(left) for β = (0, π) (head-to-tail collision) and a
minimum for β = π/2 (side-by-side collision). For symmetry reasons, the integral can be
performed on [0, π/2] and multiplied by 2. As the surface oscillates slowly, few quadrature
points are needed.

In Fig. 7.6, we represent V+ in function of θ and φ for γ = π/6 (top) and γ =
π/4 (bottom) in a top view. The red parts correspond to repulsive parts and the blue
parts to attractive ones. We see on both figures the anisotropic character of the dipole-
dipole interaction. By changing γ, we modify the combination of spherical harmonics in
Eq. 7.2.12 which changes the maximum and minimum positions. From another point of
view, this is equivalent to rotating the plane including the three molecules around the
axis Z and thus to modify the relative orientation of the molecules and by extension the
dipole-dipole interaction. As eiγωλ can be negative, purely attractive regions can appear
and counterbalance, the repulsive parts. One can show that the integral can be performed
only on [0, π] and multiplied by 2. As the surface oscillates slowly, few quadrature points
are needed.

7.3.3 A one channel propagation

Average over the first partial wave
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Figure 7.7: Energy curve 〈V 〉 as a function of ρ obtained after integration of the initial
potential surface on the partial wave λ = 0, for E < E∗ (black) and E > E∗ (red).

Once the energy surface corresponding to the initial state is conserved, we integrate it
over the lowest partial wave, i.e. over the first hyperspherical harmonics. As in the case of
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the two-body bosonic partial wave l = 0, it corresponds to an isotropic angular function
equal to a constant: no direction is privileged. We have demonstrated numerically that
it can be obtained by replacing J = 0, M = 0, Ω = 0 m = 0 and l = 0 in Eq. 6.5.19. As
in the two-body model, we obtain a single curve

〈
V
〉
:

〈
V
〉

=

∫ π

−π

dφ

2π

∫ π

0

sin θdθ

∫ 2π

0

dα

2π

∫ π

0

1

2
sin βdβ

∫ 2π

0

dγ

2π
V (ρ, θ, φ, α, β, γ)

=

∫ 2π/3

0

3

2π
dφ

∫ π

0

sin θdθ

∫ π/2

0

sin βdβ

∫ π

0

dγ

π
V (ρ, θ, φ, β, γ)

(7.3.5)

for each value of ρ. Note that the factors in the first line of Eq. 7.3.5 come from the
use of normalized Wigner functions. In the second line, the simplifications related to
the symmetry of the potential surfaces and presented in the previous section have been
applied. Unlike the complete quantum calculation, the integrals over the Euler angles
are no longer algebraic because the Wigner functions are contained in the square root
of Eq. 7.3.2. This implies numerically heavy integrals but in return, the selection rules
no longer prohibit the transition J = 0 → J ′ = 0. As in the two-body model, the
model neglects the coupling between partial waves because the resonant phenomenon
is considered as dominant. We computed the quadruple integral using Gauss-Legendre
quadratures for each angle. We have distributed the calculation over 40 threads via the
OPEN-MP library. We have used nθ = 350, nφ = 350, nβ = 10, nγ = 10 to get converged
collision rate coefficients.

On Fig. 7.7, we have represented the energy curve obtained
〈
V
〉
after integration for

two values of electric field. The first curve (in black) was obtained for an electric field
value E < E∗ where the internal state

∣∣1̃, 1̃, 1̃〉 is below ∣∣0̃, 1̃, 2̃〉. In this case, the shielding
is not yet activated and the curve is purely attractive. If three molecules collide with a
relative collision energy Ek > 0, the total wave function will reach the short-range region
and the losses will dominate.

The second curve (in red) was obtained for E = 12.4 kV cm−1, i.e. for the optimal
electric field value used in the two-body shielding. We observe the creation of a long-
range barrier with a height of 2 µK. As we study collisions between ultracold molecules,
the characteristic collision energy (Ek < 500 nK) is much weaker than the barrier size.
We then expect to strongly reduce the short-range losses. We can note that its height is
much weaker than the barrier obtained in the surfaces in Fig. 7.4–7.5 due to the presence
of the terms sin θ and sin β in the Jacobian which reduce the most repulsive parts. This
is also related to the presence of negative parts in the surface V+ as shown in Fig. 7.6.
To get an estimate of the loss reduction, we need to propagate the logarithmic derivative
on this single curve and extract the collision rate coefficients from the S-matrix.

Propagation and Results

The propagation of the 1 × 1 Z-matrix is performed between ρ ∈ [100, 40000] a0

using 60000 sectors for a collision energy Ek = 250 nK [100]. We apply the initial loss
conditions at ρmin. Therefore any part of the wave function reaching regions ρ < ρmin
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Figure 7.8: Elastic (red) and loss (black) collision rate coefficients as a function of the
electric field for three-body bosonic 41K87Rb collisions for a collision energy Ek = 250 nK.
The hashed area corresponds to electric fields too close to the resonance so that the model
can’t give results as we don’t consider inelastic collisions. The hatched region corresponds
to the electric field range for which our model cannot provide any information as it is the
region where inelastic collisions dominate.

will be considered as lost. Once the matching distance ρmax is reached, we compute the
K-matrix and the S-matrix via equations 3.5.18 and 3.5.19. As we have only one channel,
these matrices have only one element. The asymptotic radial wave functions used are
given by:

f
(1)
11 =

(πρmax

2

)1/2

J2(kρmax) f
(2)
11 =

(πρmax

2

)1/2

Y2(kρmax) (7.3.6)

where Jλ+2(kρ) and Yλ+2(kρ) are respectively the Bessel functions of the first and second
kind [243]. Their derivative are given by:

f
(1)
11 =

(π
2

)1/2
(

1

2
√
ρmax

J2(kρmax) +
√
ρmaxkJ

′
2(kρmax)

)
f

(2)
11 =

(π
2

)1/2
(

1

2
√
ρmax
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) (7.3.7)
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and give a unit Wronskian W = f
(′1)
11 f

(2)
11 − f

(2)
11 f

(′1)
11 = 1 because the two solutions are

independent. Three-body rate coefficients [248, 243] are extracted from the S-matrix via:

βel =
192π2

µk4
|T |2 βls =

192π2

µk4
(1− |S|2). (7.3.8)

with k =
√

2µEk
~ and µ the three-body reduced mass.

In Fig. 7.8, we represented the elastic rate coefficient βel (red) and the loss rate
coefficient βls (black) in function of the electric field. For electric fields E < E∗3 , we
are in the situation where the shielding is not yet activated. The main part of the
wave function reaches short distances and is lost, this is why the rate coefficients do
not vary too much with the electric field. The rate coefficients βel ∼ 10−22 cm6/s and
βls = 10−22 cm6/s obtained in this range of electric fields are not well estimated because
they depend strongly on the value of the cut-off distance (Cf. discussion below). In
Eq. C.2.3, we have linked the mean time between two events of three-body collisions
resulting in losses to the density and the loss rate coefficients. In the unitary limit
(S2 = 0), we have:

τ3B =
1

2βlsn2
0

= 0.02 s (7.3.9)

where βls = 2.8 × 10−22 cm6/s has been calculated setting S2 = 0 in Eq. 7.3.8 and the
density n0 = 2.5× 1011 molecules/cm3 is taken from [100].

When the shielding is activated around E ∼ E∗3 , there is an electric field interval
(hatched region) for which our model cannot provide any information on the rate coeffi-
cients because inelastic collisions, which are not considered in our model, are dominant
in this region.

Now we focus on E > E∗3 , especially at E = 12.4 kV cm−1, i.e. for the electric field
value where the two-body model gave accurate results. We observe that the loss rate
coefficient has been strongly reduced compared to the elastic collision rate coefficients.
To describe the evaporative cooling efficiency, we usually use the ratio γ between elastic
and loss rate coefficients. We consider that if it is greater than 102 then the losses are
negligible and evaporative cooling will be effective. In our study, we reach γ > 103 for
E = E∗, then we can consider that the shielding will be sufficient to protect bosonic
41K87Rb molecules.

We can note that for the two-body shielding, the ratio γ2B = 6 was much worse. This
can explained by the fact that for ρ < 500 a.u, the potential of the different arrangements
overlap and add up. The areas which are normally purely attractive when considering a
single arrangement (i.e. two molecules colliding and a third one far away) overlap with
the repulsive parts of the other arrangements. We then have on average a more repulsive
potential surface due to the non-additive nature of three-body collisions. In addition,
the partial wave λ = 0 has a repulsive barrier (Cf. the second term of Eq. 7.3.4) which
does not exist for the two-body case. The mean time between two events of three-body
collisions resulting in losses is now given by:

τ3B =
1

2βlsn2
0

= 160 s (7.3.10)
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with βls = 5.0 × 10−26 cm6/s is the rate coefficient obtained for E = 12.4 kV cm−1 and
the density n0 = 2.5× 1011 molecules/cm3 is taken from [100]. This time is much larger
than when the shielding is not activated and thus shows that the shielding reduces the
number of collisions leading to losses. For higher electric field values, we consider that
our model is less relevant because the two-level model is no longer valid.

The simplified three-body model has two major differences from the simplified two-
body model. First, when we vary θ and φ, we modify the position of the three molecules
for a given ρ. Thus, some configurations correspond to A+A2 collisions where the two
molecules A2 come too close to each other and must be considered as lost. On the other
hand, for the same value of ρ, but with different values of θ and φ, some A+A+A con-
figurations correspond to the case where all the distances rτ , rτ+1, rτ+2 are large enough
that none of the molecules can be considered lost. However, the loss condition is only
applicable for a given value of ρ, without differentiating the different configurations θ and
φ. We then chose a hyperradius ρmin large enough so that no configuration could be con-
sidered as lost beyond that. As a consequence, some of the configurations where ρ < ρmin

are considered lost when they should not be. On the other hand, no configuration that
should be counted as lost is ignored. Therefore, our model slightly overestimates the
losses and γ is expected to be higher than 103.

Moreover, the model implies the use of a cut-off function prohibiting the integral on
two-body configurations which do not exist. We have chosen as cut-off distance the po-
sition of the maximum of the barrier in the two-body energy curves while at low energy,
the wave function vanishes much further. We then integrate on forbidden configurations
which increases the attractive side of the potential. We then underestimate the height
of the three-body barrier and thus overestimate the losses. For the case E < E∗3 , we
have used the attractive lower surface V−(ρ, θ, φ, α, β, γ). In contrast to the case where
the shielding is activated, the short-range configurations are no longer forbidden and
must be considered. However, as we don’t know the potential energy surface at short-
range we keep the cut-off condition, and the estimated rates now depend somewhat on it.
Nonetheless, we are not interested in computing the exact value of the rate coefficients
there because we know that even the two-body shielding doesn’t work for this range of
electric fields. This is the reason why we have taken the unitary limit as the maximum
value for our life-time estimation τ3B in the unshielded part.

In conclusion, through this model, we have shown that the losses were highly reduced
(γ > 103) for the same electric field value as the one used for the two-body shielding.
This coefficient is still a pessimistic estimate that overestimates the losses, so shielding
should be much more effective. This is an important result because it appears that
evaporative cooling will be very efficient. This will allow to reach high enough densities
to fill optical lattices (used in quantum simulation) or for the creation and the study of
stable Bose-Einstein condensates.



Chapter 8

Application of the three-body
formalism

For most of the ultracold molecular systems studied so far, inelastic and reactive
collisions of a molecule with an atom or with another molecule follow universal rate
laws which are independent of the short-range part as described in the experimental
studies [249, 250, 251, 252, 253]. Indeed, in these cases, molecules are lost with unit
probability in reactive or inelastic channels because too many open channels (or tetramer
states) are energetically accessible. However, collision rate coefficients can behave differ-
ently from these universal laws if the density of open channels is low enough that inelastic
and reactive collisions are no longer dominant. This scenario can occur with light atom-
diatom systems as H + H2 [254], He + H2 [255], He + Li2 [256], and Li + Li2 [154], where a
non-universal behavior for vibrational quenching has been theoretically predicted. How-
ever, the first experimental observation of non-universal rotational state dependence of
chemical reactions has been observed in 2019 [257] for Li + Li2 collisions and renewed the
interest for three identical atomic collisions.

As sufficient product state resolution for collision energies below 1 K will become fea-
sible in the next years, recent studies on heavier system and involving several partial
waves are currently investigated. For example, many (non-universal) shape resonances in
rotationally resolved rate coefficients have been predicted for Li + LiNa collisions [225].
The three-body numerical code we have developed can help to investigate these collisional
systems involving three atoms.

The objective of this chapter is to apply our three-body numerical code to different
systems. In a first part, we will verify that the Eckart singularities are well treated for
partial waves J ≥ 0 as in [152]. Then, we will study reactive and recombination collisions
of three identical bosonic particles, taking a fictitious system with an arbitrary mass
and potential. We will present the adiabatic energy curves and show how to extract the
surface functions corresponding to three identical bosonic symmetries. Then, we will give
the collision rate coefficients as a function of the collision energy and present the criteria
to be checked to obtain well converged results. Finally, we will show that the code can
extend to realistic studies such as Li + Li2 collisions.

153
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8.1 Eckart singularities and J ≥ 0 Hyperspherical Har-
monics

To demonstrate that the primitive basis in Eq. 6.5.33 correctly treats all the singular-
ities, we will compute the adiabatic energies for different values of J where we dropped
the 15~2/2µρ2

ξ term and set V = 0 in Eq. 6.4.31 and where we use an arbitrary mass.
Under these conditions, the surface functions correspond to the well-known hyperspher-
ical harmonics, with which we will compare them. This comparative study is important
because without potential, no configuration of θ is privileged and the Eckart singularities
at both poles θ = 0 and θ = π are fully accessible. If they are badly treated, this will
affect the surface functions obtained after diagonalization as well as their corresponding
eigenenergies. We will compare the latter with the analytically known energies [152] given
by:

EJp qt (ρ) −→
ρ→+∞

λ(λ+ 4)

2µρ2
(8.1.1)

with λ = 0, 1, 2, 3, .... We also verify that the eigenfunctions match well with the hyper-
spherical harmonics (for the J = 0 case) but the results will not be presented here. If the
basis can accurately reproduce the eigenvalues for the V = 0 case, then we expect that
it will be the same for V 6= 0.

Without potential, the numerical efforts are lighter because there is no more term that
couples different values of m such as described in Eq. 6.5.20. Thus, we will consider m as
a good quantum number so each block m can be diagonalized independently. Moreover,
no integral over φ will be required because the grand angular momentum matrix elements
for a given value of m are known analytically. Consequently, the calculations will be done
in the FBR.

Since inversion parity means that even and odd blocks of Ω can be diagonalized
separately, there are NΩ = J + 1 values of Ω to consider for even J and NΩ = J for
odd J . As there are N θ = (lmax − µ+ 1) values of l to consider, the total size of the
Hamiltonian to diagonalize (for a block J , p and m) is given by:

N tot = NΩ ×N θ. (8.1.2)

Thus, we can calculate the HHs up to J = 55, i.e. N tot < 9000 which is the maximum
size that a typical personal computer can diagonalize (without using SDT).

To get well-converged results, all the following calculations are done with 500 quadra-
ture points for θ.

8.1.1 J=0 case

In the case J = 0, the functions dl00(θ) are used for even values of m and the functions
dl1/2 1/2(θ) are used for odd values of m (Cf. tables 6.1–6.2). In this case, the functions
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Figure 8.1: Adiabatic energies EJp qt (ρ) as a function of ρ (top) and the dimensionless
EJp qt (ρ) × 2µρ2 term as a function of ρ (bottom). The surface functions associated to
EJp qt (ρ)× 2µρ2 are the Hyperspherical Harmonics.

remove exactly the Eckart singularities at the two poles θ = 0 and θ = π. Indeed, for
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θ → 0, the conditions on µ and ν imposed to treat the singularities are given in Eq. 6.5.17:

|µ− ν| δΩΩ′ =

∣∣∣∣〈D̃J
ΩM

∣∣∣∣J2
x

~2

∣∣∣∣ D̃J
Ω′M

〉∣∣∣∣1/2 (mod2). (8.1.3)

Since J2
x = 0 (because J = 0), the condition 8.1.3 is simplified and becomes:

|µ− ν|δΩΩ′ = 0(mod2). (8.1.4)

This equation is always satisfied as |µ − ν| = |0 − 0| = 0 for even m and |µ − ν| =
|1/2− 1/2| = 0 for odd m (Cf. tables 6.1–6.2).

For θ → π, the conditions on µ and ν (already given in Eq. 6.5.15) are also simplified
as Ω = 0 and are given by:

|µ+ ν| = 0 for even m |µ+ ν| = 1 for odd m. (8.1.5)

These equations are always satisfied as |µ + ν| = |0 + 0| = 0 for even m and |µ + ν| =
|1/2 + 1/2| = 1 for odd m.

As the singularities are all perfectly removed, the eigenenergies are independent of lmax

and match exactly with the energies given in Eq. 8.1.1. We represented on Fig. 8.1 (top)
the adiabatic energies in function of the hyperradius for J = 0, m = 0 and lmax = 40.
We find that the lowest hyperspherical harmonic is zero (λ = 0) while the other curves
follow a 1/2µρ2 behavior. To convince ourselves of this, we have represented in Fig. 8.1
(bottom), the terms EJp qt (ρ) × 2µρ2 in function of ρ. We can clearly identify horizontal
curves at 0, 5, 12, 21... a.u. as obtained when replacing λ = 0, 1, 2, 3... in Eλ = λ(λ+ 4).

8.1.2 J=2 and p=1 case

For J 6= 0, the matrix elements of J2
X given in Eq. 8.1.3 are no longer diagonal. Indeed,

only the projection JZ is diagonal for our choice of BFQ axis (with Ω as associated
quantum number) since only the ZQ axis can be used as the quantization axis. As a
result, the condition on the µ and ν numbers cannot be satisfied for all values of J . The
Eckart singularities are then not exactly removed but B. Kendrick showed by a numerical
study that the functions given in tables 6.1–6.2 are sufficient to cancel accurately (not
perfectly) the singularities if lmax is large enough and if the same quadrature scheme is
used for all singular matrix elements. In this section, we verify that the singularities are
well canceled for J = 2 and p = 1 but a more complete study for other values of J is
given in [152]. In Fig. 8.2, we represented the fractional errors:

Fractional Error ≡

[
EJp qt (ρ)× 2µρ2

]
− Eλ

Eλ
(8.1.6)

in function of
[
EJp qt (ρ)× 2µρ2

]
for lmax = 80 (blue) and lmax = 160 (black). The energies

Eλ = λ(λ+4) are the analytic energies associated to the HHs and can be degenerate. The
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Figure 8.2: Fractional Errors in function of the exact eigenvalues Eλ = λ(λ + 4) for
lmax = 80 (blue) and lmax = 160 (black).

smaller the fractional errors, the better the Eckart singularities are treated. We can see
that for both values of lmax = 80, 160, all the fractional errors are smaller that 10−4 which
means that all the singular terms are pretty well treated. Moreover, the fractional errors
are smaller than 10−13 for about half of the eigenvalues because some terms are better
canceled than others. This comes from the fact that the functions given in tables 6.1–
6.2 allow a more accurate treatment of singularities associated with smaller values of Λ
(eigenvalues associated to JXQ) than for larger values of Λ. We note that for lmax = 160,
the singularities are better treated than for lmax = 80, which is in agreement with what B.
Kendrick demonstrated. As singularities are better treated when we increase lmax, then
we will know (when studying a real system) that the singularities no longer impact the
results obtained when the results will remain unchanged for values l > lmax. Kendrick
compared the surface functions for HD2 obtained using only the functions dl00 or using
the correct set of dlµν functions and showed that the singularities can significantly affect
the surfaces (and then the observables obtained), with differences which can reach few
percents.

In this section, we have shown that Eckart singularities are well treated for J = 0 as
well as for J = 2, p = 1 but a more detailed study [152] shows that the method works for
any value of J . For V = 0, the singular terms at θ → 0 and θ → π were fully accessible
whereas in studies of real systems, the potential V may be sufficiently repulsive for some
configurations of θ to limit the access to the wave functions at the singularities and thus
reduce the errors associated to them. We have shown that for our choice of BFQ axis, the
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singularities at θ = π are perfectly removed because it involved only the projection JZQ
in the grand angular momentum matrix elements which are diagonal in Ω. However for
θ = 0 the numerical cancellation is not perfect because the condition given in Eq. 6.5.17
involves the operator JXQ which is not diagonal in our basis. If we had chosen another
set of axes such as the one used by R. T. Pack and G. A. Parker or J.-M. Launay, then
the singularities at θ → 0 could be treated perfectly (because our XQ axis is chosen as
their quantization axis) but conversely as the term JZQ would no longer be diagonal, the
singular terms at θ → π would not be perfectly treated. A solution [152] could be to
use Wigner rotation functions D̃(α, β, γ, θ) depending on the hyperangle θ so that the
BFQ used is continuously optimal for each configuration θ, so that the choice of axis of
B. Kendrick is rather used at/near θ = π and the one of R. T. Pack and G. A. Parker
or J.-M. Launay is rather used at/near θ = 0. This proposed scheme will be important
for later numerical improvements of an optimal and adaptating choice of the BFQ axis,
related to corresponding "adaptating hyperspherical coordinates", to automatically treat
the Eckart singularities.

8.2 Towards three-body recombination and collision in-
duced dissociation

The objective of this part is to apply the formalism described in chapter 6 to study
three-body recombination and collision induced dissociation on a fictitious system. We
employ a fictitious system with a fictive mass and potential energy surface to investigate
those prosesses on a desktop personal computer. Through this example, we will present
all the steps to get well converged results. Later, one can use supercomputers to afford a
more thorough study, investigating those processes on realistic systems with appropriate
potential energy surface.

Let us consider a system composed of three identical bosons of arbitrary individual
masses m = 95 a.m.u.1. The mass is chosen relatively large because coupled with a short-
range and not too deep potential, the numbers of simple continuum state remains small
while the double continuum states tend quickly to their asymptotic 1/2µρ2 behavior.
Therefore, the matching can be done at small distances ρmax = 40 a0 for both reactive,
recombination, or collision induced dissociation studies. In the following, we will only
study the case where J = 0. As |J − jτ | ≤ lτ ≤ |J + jτ |, we will only consider jτ = lτ
states.

8.2.1 The potential energy surface

The potential energy surface used is a pairwise sum of two-body interactions given
by:

V = v2B(rτ ) + v2B(rτ+1) + v2B(rτ+2) (8.2.1)

with
v2B(rτ ) = D0 cosh(rτ/r0)−2. (8.2.2)

11 a.m.u. (atomic mass unit) = 1022.88 a.u.
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The distance r0 is a parameter that defines the position of the potential well (and therefore
its range) and D0 controls the depth of the well and thus the number of rovibrational
states of the diatom. We choose arbitrary values of r0 = 5 a0 and D0 = −3.480 × 10−5

a.u. (∼ −11 K). Let’s note that no three-body non-additive terms have been included in
the potential energy surface. The same steps as for Eq. 7.2.12 were followed to express
the potential energy surfaces in APH coordinates.

8.2.2 The simple continuum states

Jacobi coordinates

In Fig. 8.3 (top), we have represented the term v2B(r) + j(j+1)
2µr2 from Eq. 6.1.24 in

function of the distance between the two atoms composing the molecule. For the case
j = 0, the potential energy surface has a depth of about 10 K. Using the same Numerov
algorithm as the one used in section 4.3.2, we found that the vibrational quantum numbers
range from v = 0, 1, 2, 3, 4, 5 and the maximum associated rotational quantum numbers
are j = 6, 4, 4, 2, 0, 0 (only even values of j are considered). There are a total of 14
rovibrational states whose energies and wave functions are computed once and stored for
the matching procedure. The energies are grouped in table 8.1.

In Fig. 8.3 (bottom), we have zoomed in on the long-range part of the curves. As
j increases, the long-range barriers are higher. These barriers come from the centrifu-
gal term j(j+1)

2µr2 and allow the existence of quasi-bound states. The red line at 0.103 K

represents the only quasi-bound state (j = 6, v = 1) of our system.

v j Energy (K)
0 0 -8.473
0 2 -5.493
0 4 -2.933
0 6 -0.856
1 0 -5.629
1 2 -3.231
1 4 -1.289
2 0 -3.358
2 2 -1.557
2 4 -0.256
3 0 -1.670
3 2 -0.473
4 0 -0.566
5 0 −2.939× 10−2

Table 8.1: Energies of the asymptotic bound states.
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Figure 8.3: Total energy curve as a function of the interatomic distance r (top and
bottom). The black curve corresponds to j = 0, the blue one to j = 2, the purple one
to j = 4 and the green one to j = 6. The lower figure corresponds to a zoom on the
long-range part. The red line corresponds to a quasi-bound state in the j = 6 potential
energy curve.
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Figure 8.4: Top: Total energy curve obtained at ρ = 40 a0 (black) and at ρ = 20 a0

(blue) as a function of the Delves angle ωτ . Bottom: (v = 5, j = 0) simple continuum
state in function of ωτ . The solid lines have been calculated via Eq. 6.2.10 at ρ = 15 a0

(purple) and at ρ = 40 a0 (blue). The dotted lines have been calculated via Eq. 6.1.24
and rescaled using Eq. 6.2.11 with ρ = 15 a0 (red) and with ρ = 40 a0 (green).
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Delves coordinates

In Fig. 8.4 (top), we represented the term from Eq. 6.2.10:

−~2

2µρ2

(
−jτ (jτ + 1)

sin2 ωτ
− lτ (lτ + 1)

cos2 ωτ

)
+ v (ωτ ; ρ) (8.2.3)

in function of ωτ for ρ = 20 a0 (blue dashed lines) and for ρ = 40 a0 (black solid lines).
Note that unlike the Jacobi states, the Delves ones depend on the quantum number lτ .
This is explained by the fact that rτ and Rτ are separable for the Jacobi coordinates
while for the Delves ones rτ = ρ sinωτ and Rτ = ρ cosωτ are mixed and are no longer
separable.

Asymptotically, the Delves wave functions match with the Jacobi wave function fol-
lowing Eq. 6.2.11–6.2.12 because:

lτ (lτ + 1)

cos2 ωτ
−→
Sτ→∞

0.

This is illustrated in Fig 8.4 (top) where we see that the more ρ increases, the more the
potential is situated in a small zone close to ωτ = 0. But if ωτ → 0 then ρ2 cos2 ωτ →∞
asymptotically (i.e. for ρ→∞) and the term in lτ vanishes.

In Fig. 8.4 (bottom) we represented the first (v = 5, j = 0) wave functions obtained
solving Eq. 6.2.10 in Delves coordinates for ρ = 40 a0 (solid blue lines) and for ρ = 15 a0

(solid purple lines). The Jacobi wave functions have been calculated via Eq. 6.1.24 and
rescaled using Eq. 6.2.11 with ρ = 15 a0 (dotted red lines) and with ρ = 40 a0 (green
dotted lines). We can note that the wave function in Delves and Jacobi coordinates match
perfectly only at ρ = 40 a0 because for lower distances (e.g. ρ = 15 a0), the potential
has not yet reached is asymptotic form. Therefore, by calculating the bound states wave
functions in Delves and comparing them to the Jacobi ones we can have an estimate of
the distance ρmax that we will have to use in the calculations in APH coordinates. This
is very important because if we choose a matching distance that is too small then we
can find a number of bound states in Delves larger than the one asymptotically because
asymptotic double continuum states can still have negative energies at these distances.
This makes it impossible to compute the transformation matrix of Eq. 6.6.11 leading to
errors in the matching process.

8.2.3 APH Adiabatic energies

In Fig. 8.5, we represented the adiabatic energies in function of the hyperradius. They
are obtained solving Eq. 6.4.31 with J = 0, lmax = 51 and mmax = 85. As we use an
adiabatic representation, we can observe a large number of avoided crossings, i.e. no
curve ever crosses. These crossings are the consequence of coupling between states and
are the source of the inelastic collisions.

We have represented the simple continuum states in blue, the double continuum states
in black and the quasi-bound state in red. As expected, there are 14 bound states and one
quasi-bound states whose asymptotic energies match with the ones given in table. 8.1.
This is a good indication to know if the values of lmax and mmax are sufficient. For
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Figure 8.5: Top: Adiabatic energy curves as a function the hyperradius. Botton: A zoom
on the double continuum channels. The blue curves correspond to the 14 bound states
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more complicated system, we can chose different values of lmax and mmax in function of
the sector studied because we usually need less values of lmax and mmax at short-range.
This can be explained by the fact that APH coordinates are not well suited for large
distances. Indeed, when ρ becomes large, the regions of θ and φ corresponding to typical
vibrational distances sτ become small and the wave function become highly localized.
Since the primitive basis is composed of not well localized functions, one must do a
bigger linear combination to reproduce the wave function in these regions. Moreover, as
we use a DVR in θ, the number lmax refers directly to the number of quadrature points
in θ. However, if the potential becomes concentrated on a very small area, we need a
larger number of points in this zone: we must therefore increase lmax. We can note that
the lowest adiabatic energy curve has a depth of −25 K which corresponds to about three
times the depth of the two-body potential well. This is consistent with the fact that we
did the sum of the two-body potentials and that no three-body interactions are used.

If we look on Fig. 8.5 (bottom), we observed that the double continuum states go to 0
asymptotically following a 1/2µρ2 behavior. Moreover, we can see that for low distances
(for example ρ = 20 a0), there are double continuum channels with negative energy. This
means that the matching can’t be done at this distance as explained in the previous
section.

8.2.4 Discussion and results

How to get converged results?

The matching was done at ρmax = 60 a0. We took a total of 1200 sectors between
0.01 a0 and 60 a0. The size of a sector is then 0.05 a0. We propagate a total of 200 channels
to get well converged results (even when the study will be extended to recombination
calculations). However, if we want to study only atom-diatom collisions for a total energy
E < 0 then less channels could be used. This is what we will do in the next section where
we will apply our numerical code to a realistic system. To be sure that our calculations
are consistent, one must verify several things:

• The overlap matrix given in Eq. 6.3.16 must verify the property OTO = 1. This
matrix doesn’t need to be symmetric but the diagonal elements must be close to 1.

• The coupling matrix given in Eq. 6.3.17 must be symmetric.

• The Z-matrix must be symmetric for the sub-matrix part which will be used for
the matching. We must also verify that if we increase the number of channels
propagated that the part used for the matching is unchanged. If we increase the
collision energy, we must increase the number of channels propagated.

• The transformation matrix given in Eq. 6.6.11 must be close to a diagonal matrix
and must verify UTU = 1.

• The Delves wave functions computed at ρmax must overlap well with the Jacobi
wave functions renormalized using Eq. 6.2.11.
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• The Wronskian matrix of the asymptotic solutions given in Eq. 6.6.15 and 6.6.16
must be equal to the identity matrix.

• The S-matrix must be unitary and must be equal to its conjugate transpose.

Rate coefficients in function of the hyperradius

In this part, we check that the collision rates are well converged for ρ = ρmax. In
Fig. 8.6, we have represented the elastic (black curve) and inelastic (red curve) collision
rate coefficients as a function of the matching distance. The curves were obtained for
the initial state (v = 6, j = 0) with a collision energy Ek = 500 nK. We observe that
the elastic collision rate coefficients are between 3.10−13 cm3.s−1 and 4.10−13 cm3.s−1 and
remain relatively constant. For the inelastic collision rate coefficients, they are between
3.10−12 cm3.s−1 and 4.10−12 cm3.s−1. In conclusion, the collision rates do not vary much
with the hyperradius so we can consider that choosing ρmax = 60 a0 is relevant. Note
that if we do not perform the matching at a sufficiently large distance, we can observe
oscillations in the collision rate coefficients (and more generally in the matrix elements
of the S-matrix). In this case, it is possible to obtain a value close to the one obtained
asymptotically by averaging over several oscillation cycles [231, 232].
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Figure 8.6: Elastic (black curve) and inelastic (red curve) rate coefficients as a function
of the hyperradius. The initial channel chosen is (v = 6, j = 0) and the relative kinetic
energy is Ek = 500 nK.

Current calculations are underway to investigate three-body recombination as well as
collision induced dissociation with our numerical code. Future investigations will involve
studies of these processes on a realistic system with a given potential energy surface.
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8.3 Study of Li + Li2 collisions
In this section, we will study collisions of three-identical bosonic atoms 7Li (2S) +

7Li2 (3Σ+
u ) at ultralow collision energies. Many theoretical studies have already been

carried out on bosonic 7Li + 7Li2 or fermionic 6Li + 6Li2 collisions [221, 258, 154] as well
as on heteronuclear lithium systems such as 7Li + 7Li6Li [222]. The lithium atoms are
light enough (Cf. table 8.2) to get converged results while using a reasonable basis. In
addition, this system is of experimental interest as a strong (non-universal) rotational
dependence of the v = 9 state reaction rate coefficient has been recently observed [257].

In the following, we will limit our calculations on low initial rovibrational levels (v = 0
and v = 1) whose results will be compared with the existing theoretical ones, providing
a benchmark for our numerical code. As for the previous fictitious case, we will limit to
the partial wave J = 0.

8.3.1 Potential energy surface

system 7Li 7Li2
7Li3

reduced mass (a.u.) 12789.4 6394.7 7384.0
electronic spin S 1/2 1 3/2
nuclear spin I 3/2 3 9/2
total spin F 1, 2 2, 3, 4 3, 4, 5, 6

Table 8.2: Parameters of the 7Li atom and of the systems 7Li2 and 7Li3.

In contrast to shielding studies where no information on the short-range part of the
potential surface was required to perform dynamics calculations, studying reactive col-
lisions implies to know the total potential energy surface whose calculation is not as
trivial as for the previous fictitious system. In this section, we will describe the potential
energy surface that we will use in our calculations. It has been calculated in [259] and
has already been used in [151] to which we will compare our calculations. It corresponds
to the electronic quartet ground state of the lithium trimer and accounts for the conical
intersection resulting from the crossing between the states 4Σ+

u and 4Πg in linear config-
uration. To get the potential energy surface for any configuration, an interpolation and
extrapolation procedure [260] of ab initio points was used.

The potential energy surface can be developed into a sum of three terms:

Vtot (r1, r2, r3) = V1B + V2B (r1, r2, r3) + V3B (r1, r2, r3) . (8.3.1)

The term V1B corresponds to the dissociation energy of the three atoms (i.e. the sum
of the energies of the three atoms when they are asymptotically separated). This is a
constant set to zero in our calculations so that the double continuum states and the
quasi-bound states have positive energies and the simple continuum states have negative
energies. The term V2B (r1, r2, r3) corresponds to a pairwise sum of two-body interactions
such that:

V2B (r1, r2, r3) = v2B (r1) + v2B (r2) + v2B (r3) (8.3.2)
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Figure 8.7: Potential energy surface for equilateral configuration (top) and linear config-
uration (botton) in function of the hyperradius.

where v2B (ri) depends only on the interatomic distance between the two atoms consid-
ered. The ground electronic surface of the diatomic 3Σ+

u contains 11 vibrational levels
v = [0, 10]. The term V3B (r1, r2, r3) contains all the nonadditive three-body terms.
The leading one is the Axilrod-Teller-Muto interactions (dipole-dipole-dipole) which fol-
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lows a ∝ 1/(r3
1r

3
2r

3
3) behavior at long-range. Note that more accurate potential en-

ergy surfaces were developed later and include higher order multipole terms such as the
dipole-dipole-quadrupole, the dipole-quadrupole-quadrupole, the dipole-dipole-octupole,
the quadrupole-quadrupole-quadrupole interactions [258].

In Fig. 8.7, we have represented the potential energy surface separating the different
interaction terms (Cf. Eq. 8.3.1) in function of the hyperradius for the equilateral (top)
and linear (bottom) configurations. For the equilateral configuration, we observe that
the total potential has a localized minimum (−5917 K) at ρ = 7.71 a0 while the two-body
term has a minimum (−1440 K) at ρ = 10.38 a0. This difference can be explained by
the fact that the three-body interaction is more than four times stronger than the two-
body interaction at the equilibrium distance. For the linear configuration, we observe
that the potential energy curves behave differently for both the two-body and three-body
parts compared to the equilateral configuration, leading to two distinct wells in the total
potential energy curve. The first well (−1225 K) is located at ρ = 9.92 a0 and the second
well, which is the deepest one (−1447 K), is located at ρ = 13.16 a0. The presence of this
double well is related to the behavior of the two-body curve which rises back up slightly
at ρ = 11.28 a0 and which comes from the fact that the two-body curves 3Σ+

u and 3Πu

intersect at r = 5.10 a0.

8.3.2 Adiabatic energies

If we follow the same steps than section 8.2.2, we found that the vibrational quantum
numbers of 7Li2 range from v = 0, 1, 2, ..., 10 and the maximum associated rotational
quantum numbers are j = 34, 32, 28, 26, 24, 20, 18, 14, 10, 6, 2. We consider atoms in their
spin streched states as in [219, 222, 154, 258]. The nuclear spin wavefunction is then
symmetric under interchange of two nuclei. The nuclear spatial part imposes a factor
(−1)j when two nuclei are permuted while the electronic spatial wave function in the
3Σ+

u state is anti-symmetric when two nuclei are permuted. As the atoms 7Li are bosons
(while the nuclei are fermions), the total wave function must be anti-symmetric under
the permutation of two nuclei. This is why we only deal with even values of j. Finally, we
find a total of 118 rovibrational states in agreement with [230, 151] (Cf. appendix D.1).

We have split the calculation of the potential energy surfaces into 6 distinct sectors
whose parameters lmax, mmax and the number of sub-sectors nρ are given in table 8.3. As
explained before, as ρ increases, the size of the base must be increased to represent the
simple continuum states which are more and more localized.

ρ (a0) lmax mmax nρ
[3, 13] 50 67 250
[13, 22] 40 76 225
[22, 26] 50 85 100
[26, 31] 60 103 125
[31, 34] 60 112 75
[34, 40] 80 148 100

Table 8.3: Parameters for the numerical calculations.
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In Fig. 8.8 (top) we represented the adiabatic energies as a function of the hyper-
radius. The curves in black correspond to simple continuum states while the blue ones
correspond to double continuum states. In red (dashed line), we have represented the
total potential Vtot in the equilateral configuration initially described in Fig. 8.7. We
notice that this configuration dominates at short-distance because the adiabatic energy
curves are centered on the well previously described and located at ρ = 7.71 a0. Note
that the lowest adiabatic energy curve is slightly higher at the equilibrium distance than
Vtot because on the one hand the other configurations disturb on average the effect of
the equilateral configuration and on the other hand there is the three-body centrifugal
energy to consider. We have also represented in purple the potential energy curve for the
linear configuration. The latter dominates at greater distances (around ρ = 14 a0) and
the adiabatic energy curves follow the potential energy curve behavior.

In Fig. 8.8 (bottom), we zoomed in on the long-range part of the adiabatic energy
curves. We find well 118 curves which tend to the rovibrational energies of the diatom.
We observe a large number of avoided crossings around ρ = 15 a0, which demonstrate
the complexity of three-body studies and the importance of using relatively tight sector
sizes to account for all these couplings (responsible for inelastic collisions).

8.3.3 Results

The matching was done at ρmax = 40 a0. We took a total of 875 sectors between 3 a0

and 40 a0. The size of the sectors is 0.04 a0. Indeed, we can increase the size of the sectors
once we are a bit far from the short-range part because the adiabatic energy curves do
not vary much anymore. We propagate a total of 200 channels but this number must be
increased if we study more exited vibrational states [151]. The matching is performed on
118 states because the highest ones were not necessary after convergence studies.

In Fig. 8.9 (top), we represented the elastic rate coefficient as a function of the collision
energy for the initial (v = 0, j = 0) state. For the initial collision energy Ek = 1 nK, the
elastic rate coefficient βel = 1.32× 10−13 cm3 s−1 match with the one calculated in [154].
We note that for the range of initial collision energies Ek ∈ [1 nK, 0.1 mK], the elastic
rate coefficient is linear on the logarithmic scale (it follows the red curve) with a slope of
1/2 in agreement with the Bethe-Wigner laws [172, 173] for elastic rate coefficients:

βel ∝ E
2l+ 1

2
k . (8.3.3)

For Ek = 20 mK and Ek = 80 mK, we observe drops in the elastic rate coefficient. As we
are in the case l = 0, the elastic rate coefficient is proportional to the squared sine of the
accumulated phase shift in the interaction zone:

βel ∝ sin2 (δ0) . (8.3.4)

When the phase shift is equal to 0 then the elastic rate coefficient goes to 0. This is
equivalent to the "zeros" of the Ramsauer-Townsend effect but for atom-atom collisions
in the s-wave (l = 0). However, these drops cannot be observed experimentally because
they appear at collision energies high enough that the contributions of J > 0 partial
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waves are large enough to wash them out.

In Fig. 8.9 (bottom), we represented the elastic (black) and the inelastic (pink) rate
coefficients as a function of the collision energy for the initial (v = 1, j = 0) state.
As in the previous figure, we note that the elastic and inelastic collision rates obtained
at collision energy Ek = 1 nK match with the ones calculated in [154]. We show that
inelastic processes dominate over elastic processes by two orders of magnitude at very
low energies. This means that the conditions for achieving evaporative cooling are not
favorable as the ratio γ < 102 (i.e. inelastic collisions highly contribute to trap loss). The
elastic rate coefficients have the same behavior as for the previous case at low energies
and we still observe drops at higher collision energies. However, in this case the phase
shift is complex (as there are inelastic processes), this is why the oscillations don’t go to
zero in contrast with case (v = 0, j = 0). For the inelastic rate coefficient, we observe
that they are constant up to collision energies Ek = 10 µK, which is consistent with the
Bethe–Wigner threshold law for inelastic collisions given by:

βin ∝ El
k. (8.3.5)

We observe that for high collision energies, the inelastic rate coefficients decrease because
it follows the unitary regime.

As a conclusion, we have studied reactive 7Li+ 7Li2 bosonic collisions. We have com-
puted the adiabatic energies curves and compared their behavior with the total potential
energy curves for the linear and equilateral configurations. We have found all the 118
single continuum states and a large number of double continuum states had to be used
to obtain well converged states. We have computed the elastic and inelastic rate coef-
ficients for the initial states (v = 0, j = 0) and (v = 1, j = 0) in function of the initial
collision energy. We have verified that our rate coefficients are in agreement with the
ones calculated in [154] and with the Bethe–Wigner’s threshold laws.

This study allowed us to verify that my numerical code works and gives consistent
results by comparing my results with previous studies. The implementation of the code
on supercomputers will allow us to explore other systems and may include several partial
waves.
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Figure 8.9: Top: Elastic (black curve) rate coefficients as a function of the collision energy
for 7Li+ 7Li2 (v = 0, j = 0). Bottom: Elastic (black curve) and inelastic (pink curve) rate
coefficients as a function of the collision energy for 7Li+7Li2 (v = 1, j = 0). For both plots,
the crosses represent the numerically calculated point and the red curves correspond to
linear fits of the elastic rate coefficients at low collision energies with a = 1/2 cm3.s−1.K−1.
The green circles are points taken from [154].



Chapter 9

Conclusions and perspectives

The work carried out in this thesis had two objectives. The first one was to de-
velop shielding methods to reduce short-range molecular losses. The second one was
to develop a numerical code involving collisions of three particles, suitable for studying
atom-diatom collisions, three-body recombination or collision-induced dissociation and
three-body shielding.

In the first part of the manuscript, I focused on two-body molecular collisions. In
chapter 3, I presented the time-independent formalism required to study ultracold colli-
sions. It is based on the expansion of the total wave function in terms of partial waves
and on the S-matrix theory. In chapter 4, I developed the formalism of the two-body
microwave shielding. First, I presented how to treat the electromagnetic wave from a
time-independent point of view. Then, I showed that if one applies a circularly polarized
microwave field whose frequency is slightly blue-detuned with respect to the transition
j = 0 → j = 1, one can engineer a long-range barrier by taking advantage of the
dipole-dipole interaction. I demonstrated that for bosonic NaRb molecules, the barrier is
high enough to prevent the total wave function from reaching short-range regions where
processes (reactive or complex formation collisions) lead to the loss of molecules. By
developing an adimensional approach, I showed that one can significantly reduce losses
for a large number of molecules. Ratios between elastic and loss rate coefficients γ > 103

can be reached, leading to favorable conditions for evaporative cooling. A tiny potential
well appears before the potential barrier at long-range. By varying both the intensity
and the frequency of the applied microwave field, one can vary the depth of this well and
make resonances appear in the real and imaginary parts of the scattering length. These
resonances are large enough to adjust experimentally the sign and the magnitude of the
scattering length. As the ability to control the molecule-molecule scattering length is not
an easy task, this new method opens the door for a rich many-body physics for ultra-
cold molecules, similar to that for ultracold atoms. We are preparing an article on the
many-body physics of molecular Bose-Einstein condensates with strong dipole-dipole in-
teractions [205]. By combining a microwave field with a static electric field, one can finely
tune the two-body scattering length as well as the dipolar length of an ultracold molec-
ular gas. This enables to set ideal conditions for the emergence of self-bound droplets,
and explore phase diagrams that feature a variety of exotic supersolid states.

173
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In chapter 5, I introduced the static electric field shielding method initially developed
in our team [97, 98]. One can finely tune elastic, inelastic and reactive rate coefficients
for a wide range of molecules prepared in their first rotational excited state. Our idea
was to use this method for three-body collisions, but the method becomes difficult to
implement because too many channels are required. Our objective was to develop a sim-
plified model which would reproduce the complete calculation results while reducing the
number of states used. First, I have shown that the two resonant states can be isolated
from the other ones. Then, I diagonalized the interaction matrix for each spatial config-
uration (r, θ) and integrated the surface corresponding to the initial state over the lowest
partial wave. After propagation of the single channel log-derivative matrix, collision rate
coefficients are extracted from the S-matrix. I have shown that the elastic and loss rate
coefficients, obtained for KRb molecular collisions, are in semi-quantitative agreement
with those obtained from the complete calculations at the magic electric field value. Our
simple model can then provide a good estimation of the elastic and loss rate coefficients,
requiring only one collisional channel. As the model does not provide any information on
the inelastic rate coefficients, it cannot reproduce well the results for other electric field
values. Static electric field shielding has been observed for the first time experimentally
in a three-dimensional gas and compared well with our model, as presented in our joint
paper with the KRb JILA team [100]. We will present our model and the content of
chapter 5 in a forthcoming paper.

In chapter 6, I developed the theoretical formalism required to study three-body col-
lisions. First, I introduced the mass-scaled Jacobi coordinates which are mainly used
at sufficiently large distances where all the arrangements are well separated. Then, I
presented the Delves hyperspherical coordinates and show that they can be used as an
intermediary between Jacobi coordinates and the APH coordinates. I showed that the
latter are less intuitive to use, but in return they treat all the different arrangements
equally even at short distances. They are closely related to the main axes of inertia of
the system which implies the presence of singularities (the so-called Eckart singularities)
in the grand angular momentum operator. Following the formalism developped by B.
Kendrick [152], I explained how the primitive basis functions to accurately treat these di-
vergent terms has been chosen. Then, I applied the SDT method to reduce the total size
of the Hamiltonian and explained how the surface functions for three identical particles
are extracted. Finally, I presented the matching method for the study of atom-diatom
collisions and for the study of three-body recombination as well as collision induced dis-
sociation.

In chapter 7, I illustrated that it is impossible to apply the three-body formalism from
chapter 6 to the case of static electric field shielding. I have shown that the number of
states involved is too large to get converged results. I have therefore applied and adapted
the two-body model from chapter 5 to hyperspherical coordinates. I have demonstrated
that one can get two five-dimensional surfaces via the diagonalization of the interaction
matrix. By keeping only the surface corresponding to the initial state and integrating it
over the first hyperspherical harmonics, one obtained a repulsive channel. After prop-
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agation, I showed that the shielding is effective for the same electric field value as for
the two-body shielding, which is very promising to achieve efficient evaporative cooling.
Within the model, I can estimate a lower value of γ = 103, encouraging for suppressing
three-body losses. All three-body results will be the subject of forthcoming articles.

In chapter 8, I applied my three-body numerical code for three systems. First, I
studied the adiabatic energy curves when V = 0. By comparing the adiabatic energies
obtained with my code with the analytic eigenvalues of the hyperspherical harmonics, I
have estimated the errors resulting from the Eckart singularities. I have shown that the
singularities are perfectly removed for J = 0 and the fractional errors do not exceed 10−4

in the worst cases for J = 2. These results are also valid for any value of J and the larger
lmax is, the better the Eckart singularities are treated. Secondly, I have studied the atom-
diatom collisions on a fictitious system for J = 0. I have shown how the adiabatic energy
curves of good symmetry are extracted and presented the rate coefficients in function of
the matching distance. Investigations are under way to apply the code for three-body
recombination and collision-induced dissociation. Finally, I have used my numerical code
for studying 7Li+7Li2 bosonic collisions. I have presented the elastic and inelastic rate
coefficients and showed that they were consistent with previous results. The numerical
code is ready to be used on supercomputers to perform more complex calculations in-
cluding partial waves J 6= 0.

As perspectives and now that I simplified the formalism of the static electric field
shielding study for both two-body and three-body collisions, it might be interesting to
see if this model can be applied to the microwave shielding case. Its implementation may
be more challenging because the electromagnetic field is treated from a time-independent
point of view, which implies more complicated interaction terms. Once set up, one must
check the validity domains of the model, i.e. the sets of values Eac and ∆ for which the
model best reproduces two-body complete calculations. Once the model is verified, it can
be extended to three-body collisions.

A more detailed study of three-body static electric field shielding will have to be car-
ried out. I plan to perform a comparative study between bosons and fermions in the
case of KRb molecular collisions. The physical phenomenon will be explored for different
systems by including molecules with a dipole moment larger than KRb, expecting the
suppression to be larger as expected for two-body [98]. For this purpose, an adimensional
study will be appropriate.

I developed during my PhD thesis a three-body code which can be brought to su-
percomputer platforms. We hope that the acquired skills on the development of coor-
dinates, the treatment of singularities and on the implementation of numerical methods
to reduce the computation time (SDT, hybrid representation) might open the way to
study four-body systems, for which more and more four-body potential surfaces are
developed [80, 261, 262, 263]. Since complex-mediated collisions are still not clearly
understood [264, 265], these four-body studies would provide an opportunity to under-
stand what happens in the short-range region when two reactive or non-reactive diatomic
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molecules collide.



Appendix A

Microwave Shielding

A.1 Characteristic times of the problem
In this study, there are different characteristic times that we now compare in this

section. The time-dependent microwave radiation applied to molecules initially prepared
in the ground rotational state j = 0 is nearly resonant with the first excited state j = 1,
with a detuning ∆. In this case, the time-dependent quantum state evolves between
the j = 0 and the j = 1 bare states periodically, following Rabi oscillations with the
generalized Rabi frequency:

Ωgen =
√

(∆/~)2 + Ω2 (A.1.1)

or in rescaled units:

Ω̃gen =
Ωgen

Brot/~
=
√

∆̃2 + Ω̃2. (A.1.2)

The characteristic time of a general process such as a stimulated emission or absorption
(which is behind the shielding process and the control of the scattering length here) is
on the order of the inverse of the generalized Rabi frequency [266]. A first characteristic
time is then the period of those Rabi oscillations given by tosc = 2π/Ωgen. If one looks
at Fig. 4.10, the smallest typical value of Ω̃ at which the microwave shielding is efficient
and the long-range potential wells in Fig. 4.11 appear, depends on the molecules. Taking
into account the typical rotational constants reported in table A.1, the fixed rescaled
detuning ∆̃ = 0.025 and the smallest typical values of Ω̃ of the different molecules, the
oscillations times are on the order of tosc ∼ 10−8 s or lower.

A second characteristic time is the time between collisions Tcoll = (β n)−1 [267, 266].
It depends on the density n of the gas and the two-body rate coefficients β. Typically,
the rate coefficients (elastic or loss) are about β ∼ 10−10 cm3/s for indistinguishable
bosons [268]. The densities reach in typical experiments are about n ∼ [1010 − 1012]
molecules/cm3 so that Tcoll ∼ [0.01− 1] s. The time between collisions is then far much
longer than the period time of the Rabi oscillations, Tcoll � tosc. Therefore far from the
collision, the dressed state picture {molecule + field} can be used. Asymptotically, the
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molecules are well characterized by stationary quantum dressed states and the asymp-
totic form of the time-independent scattering wavefunction is well defined.

A third characteristic time is the time of a collision tcoll [266]. In our study, it is the
time spent by two molecules in their intitial state when they go through the long-range
potential well Vwell(r) shown in Fig. 4.11. We use a classical estimation given by:

tcoll = 2×
∫ rout

rin

dr

v(r)
= 2×

∫ rout

rin

dr√
2[Etot−Vwell(r)]

µ

. (A.1.3)

v(r) is the local velocity of the molecules at distance r given by:

v(r) =
√

2Ek(r)/µ =
√

2[Etot − Vwell(r)]/µ. (A.1.4)

rin is the inner turning point given by the position of the wall of the potential and rout
is a typical distance at which the potential does not significantly change compared to
the collision energy. The factor of 2 accounts for the way in and out. If the energy
of the initial state of the molecules is taken as the zero of energy, Etot identifies with
the collision energy Ek. Taking into account the reduced mass µ and the potential well
of different molecules, and taking a typical value of the collision energy Ek = 500 nK,
we estimate tcoll to be on the order of 10−5 s or higher if the collision energy decreases.
For a given molecule, highest values of Ω means deeper wells and fastest molecules, but
also more distance to cover and at the end tcoll do not vary significantly with increasing
values of Ω. The time of a collision is then much longer than the period time of the Rabi
oscillations, tcoll � tosc. The rapid evolution in time of the quantum state between the
two bare states j = 0 and j = 1 can be averaged out during the collision, and therefore
the time-independent dressed state picture formalism can be safely employed in our study.

Finally, other characteristic times are the lifetimes of the j = 0 or j = 1 states in
the shielding mechanism. The advantage of the microwave shielding over the optical
shielding lies in the fact that the molecules in j = 1 have generally long spontaneous
emission times, on the order of ∼ 104 s [98]. In addition, black-body radiation driving
either rotational or vibrational excitations of the molecules at room temperature can be
neglected as the lifetimes are on the order of ∼ 102 s or more for alkali dipolar molecules
[269]. These characteristic times are far much longer than the other characteristic times
and those processes can be ignored.

A.2 Effect of the blue-detuned microwave radiation on
the trapping of the molecules

When an electromagnetic wave is applied to a molecule with a permanent electric
dipole moment in its ground rotational state j = 0, the energy level of the molecule will
undergo an ac Stark shift [176], as a function of the energy ~ω and the ac field E or
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similarly the intensity I of the radiation. Generally, E = E(ρ, z) or I = I(ρ, z) depends
on cylindrical coordinates (ρ, z) and are given by a Gaussian beam profile [270]:

I(~r) = I(0)× e−
2ρ2

w2

1 + (z/zR)2

where w = w0

√
1 + (z/zR)2 is the spot size, w0 is the beam waist and zR is the Rayleigh

parameter. In return, this gives rise to an effective dipolar potential Vdip(~r) = const.×I(r̃).
For a microwave field (MW), the potential has the form:

V MW (~r) = V MW
0 × e

− 2ρ2

(wMW )2

1 + (z/zMW
R )2

(A.2.1)

where V MW
0 corresponds to the ac Stark shift [176] at the corresponding ac field E or

intensity I. If the energy shift is negative, the potential is attractive and becomes a trap,
while if the energy shift is positive, the potential is repulsive. In our study, because of
the blue-detuned microwave, the potential is repulsive. In addition to the MW potential,
we consider that the molecules are trapped in an usual optical dipole trap (ODT). An
ODT has a similar form than Eq. A.2.1:

V ODT (~r) = V ODT
0 × e

− 2ρ2

(wODT )2

1 + (z/zODTR )2
(A.2.2)

where the energy shift V ODT
0 is negative due to a red-detuned optical radiation.

In Fig. A.1, we plot the total potential V ODT+V MW as a function of ρ (we fix z = 0 for
simplicity). We take typical experimental values of V ODT

0 ' −10µK [78], wMW
0 ' 10mm

[270], wODT0 ' 0.05mm [36]. To estimate V MW
0 , we perform an adimensional calculation

of the ac Stark shift energy levels of the alkali dipolar molecules for the parameters used
in our study: Ω̃ = 0.18, ∆̃ = 0.025, circular polarization p = +1. We find an energy
shift of V MW

0 ' 0.04Brot for the j = 0 state. We take as an example the LiK (resp.
RbCs) molecule for which the MW potential is the most (resp. less) repulsive, as LiK
(resp. RbCs) has the highest (lowest) value of Brot (we exclude LiNa since the system is
not appropriate for an efficient microwave shielding). This gives V MW

0 ' 17mK for LiK
and V MW

0 ' 1mK for RbCs. For RbCs, we can see on the figure that the MW potential
has no effect on the ODT trap as it remains 10µK deep. For LiK, one can see a change
of 20% in the depth of the ODT trap, from 10µK to 8µK, but this is still deep enough
for the molecules to be trapped. This is mainly due to the different scale of the beam
waists wMW

0 � wODT0 so that the MW potential looks like just an overall constant shift in
energy to the tiny ODT potential region. As the values V MW

0 of the other dipolar alkali
molecules lie in between, then the molecules will not be affected by the MW repulsive
potential for the range of Ω̃ = [0 − 0.18] and ∆̃ = 0.025 chosen in the study. The MW
potential can start to have an anti-trapping effect at some point if Ω̃ is further increased
and/or if ∆̃ is further decreased, since in both cases the energy shift V MW

0 will increase
and will lead to a more repulsive potential. In these conditions, the values of Ω̃ and ∆̃
would limit the efficiency of the shielding due to the anti-trapping effect that they can
create.
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Figure A.1: Total effective potential due to the interaction of the molecules with the
microwave and the optical radiation for the LiK and the RbCs system. The blue-detuned
microwave radiation leads to a repulsive potential while the red-detuned optical radiation
leads to an attractive potential. The insets show that the potentials remain deep enough
to trap the molecules.

A.3 Electronic and nuclear spin structure. Effect of a
magnetic field

The repulsive curve correlating to the j = 0 + j = 1 threshold in Fig. 4.1 is due to the
electric dipole-dipole interaction between the two molecules. The electric dipole moment
is carried along the molecular axis and the dipole-dipole interaction is mediated by the
rotational quantum numbers j of the molecules, more specifically in the present case by
the interaction between the j = 0 and j = 1 rotational states of the molecules. Then the
repulsive curve and hence the shielding mechanism is mediated only by the rotational
structure of the molecules. Neglecting the fine or hyperfine structure of the molecules is
a good assumption as far as the electronic and the nuclear spins act as spectators, or in
other words they are decoupled enough from the rotational structure.

For 1Σ molecules, the total electronic spin is s = 0 and there is no fine structure. But
1Σ molecules possess a hyperfine structure [271, 272]. One of the highest contribution is
the electric quadrupole term [273]:

VeqQk ∝
(eqQ)k

4
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where (eqQ)k is the coupling constant between the electric quadrupole of the nucleus
k = A,B and the gradient of the surrounding electric field in the molecule AB. The
coupling constants are on the order of MHz (∼ 50µK). The other hyperfine terms such as
the nuclear spin-rotation and the nuclear spin-nuclear spin interactions are generally
smaller, on the order of kHz (∼ 50nK) or Hz [271, 272]. An appropriate basis set
to describe the molecule-molecule quantum states is the uncoupled nuclear spin one
{j1 mj1 miA1

miB1
+ j2 mj2 miA2

miB2
}. ik,mik are the nuclear spin quantum numbers of

the nucleus k = A,B. Due to the unavoidable hyperfine structure, the sketch in Fig. 4.1
is somewhat modified. The threshold j = 0 + j = 1 is not degenerate anymore at long
range and splits following the three components mj = 0,±1 of the j = 1 state, due to the
presence of the hyperfine term VeqQk . However, the repulsive character of the curve in
Fig. 4.1 still remains. When an applied magnetic field B is zero or small, the individual
uncoupled hyperfine quantum numbers, characterized by iA miA iB miB , are not good
quantum numbers due to the presence of the electric quadrupole term (or the nuclear
spin-nuclear spin term). But by increasing the magnetic field, they become nearly good
quantum numbers due to the Zeeman term:

VZk ∝ −gk µN B

where gk is the nuclear g factor of the nucleus k = A,B and µN is the nuclear magneton.
Typically, when the Zeeman term is bigger than the electric quadrupole interaction term,
one can consider that the hyperfine states start to act as spectators and represent good
individual uncoupled quantum numbers. This yields an estimation of the magnetic field
B∗ (much) above which neglecting the hyperfine state is valid and the shielding will
remain unaffected. Then, B∗ is defined when |VZA| + |VZB | ' |VeqQA| + |VeqQB | and
implies a rough estimation of [103]:

B∗ ' |(eqQ)A|+ |(eqQ)B|
4 (|gA|+ |gB|)µN

' |(eqQ)A[MHz]|+ |(eqQ)B[MHz]|
|gA|+ |gB|

× 328 G/MHz. (A.3.1)

The corresponding values of B∗ are provided in table A.1. For example using Eq. A.3.1
for the RbCs system, we find a value of B∗ = 106 G. A similar study [104] explored the
effect of the hyperfine structure. The authors explicitely included the hyperfine structure
in their quantum calculation. They showed that for sufficiently high magnetic fields, the
hyperfine structure can be safely neglected as far as the rotational quantum number mj

becomes a nearly good quantum number. Our arguments about the decoupling between
the rotation and the spin structure then follow directly the conclusions of their work.
From their numerical calculations, they found that for B > 100 G the hyperfine struc-
ture can be neglected for the RbCs system. Our analytical value of B∗ = 106 G presented
above using Eq. A.3.1 seems then a good semi-quantitative estimation above which the
hyperfine-free regime starts to occur.

For 2Σ molecules, the electronic spin is s = 1/2 and the molecules also possess a fine
structure besides the hyperfine structure [274]. One of the highest contribution is the
electronic spin-rotation interaction term:

Vs.j ∝ γs.j
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where γs.j is the coupling constant between the electronic spin and the rotation. The cou-
pling constant is on the order of MHz. In the uncoupled spin basis set {j1 mj1 ms1 mi1 +
j2 mj2 ms2 mi2}, where s,ms, i,mi are now the electronic and nuclear spin quantum num-
bers of a molecule, similar arguments hold than for 1Σ molecules. For the spin states to
be spectators, the application of a magnetic field will decouple them from the rotational
structure. The Zeeman term is given by:

VZ ∝ −ge µB B

where ge ' −2 is the g factor of the electron and µB is the Bohr magneton. As above,
the Zeeman term VZ has to overcome the electronic spin-rotation interaction term Vs.j.
A rough estimation of the magnetic field B∗ for which |VZ | = |Vs.j| is:

B∗ ' |γs.j|
2µB

' |γs.j[MHz]| × 0.357 G/MHz. (A.3.2)

In the case where the electronic spin-nuclear spin interaction term:

Vs.i ∝ bs.i

is higher than the electronic spin-rotation interaction term, the uncoupled spin basis set is
not appropriate. It is then more convenient to use a coupled spin basis set {j1 mj1 f1 mf1+
j2 mj2 f2 mf2} where f is the total spin with |s − i| ≤ f ≤ s + i. This is just a change
of the spin states labelling from s,ms, i,mi to s, i, f,mf . In this case, the total spin
quantum number f has to be decoupled from the rotational one j. As f is coupled to j
via the Vs.j interaction, the magnetic field is still estimated by Eq. A.3.2.

A.4 Table of relevant parameters for different molecules
We provide in table. A.1 a summary of relevant parameters for different 1Σ and 2Σ

molecules. We use the values in [191, 275, 272] for the 1Σ molecules and [276, 55, 277,
278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 274] for 2Σ molecules.
µ is the reduced mass, Brot the rotational constant and d the permanent electric dipole
moment. sr3 and sE3 are respectively the characteristic length and energy of the dipole-
dipole interaction. B̃rot is the rescaled rotational constant. The systems are ordered in
increasing values of B̃rot. Ω and E are receptively the Rabi frequency and the ac electric
field needed to be applied for reaching the maximum value of Ω̃ = 0.18 taken in our
study. ∆ is the detuning corresponding to the value of ∆̃ = 0.025 fixed in our study.
Finally, B∗ is an estimation of the magnetic field (much) above which the fine or hyperfine
structure can be neglected. It is given by Eq. A.3.1 for 1Σ molecules and Eq. A.3.2 for
2Σ molecules, using the values (eqQ), g, γs.j of [272, 274, 287, 289, 290].
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μ

Table A.1: Relevant parameter for X1Σ and X2Σ molecules. We provide useful conversion
factors: 1 u. ' 1822.88 a.u.; 1 a.u. ' 219475 cm−1; 1 a.u. ' 2.5417D; 1a0 ' 0.529 ×
10−10 m; 1 a.u. ' 315775 K; 1 a.u. ' 2.80 × 10−17 cm2; 1 a.u. ' 6.126 × 10−9 cm3/s; 1
a.u. ' 5.1422× 106kV/cm.
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Appendix B

Simplified static electric field shielding

Let’s consider bi-alkali molecules prepared in their X1Σ+ electronic ground states and
in the same nuclear spin states. jτ represents the rotationnal quantum number of the
molecule τ = 1,2 and mjτ the quantum number associated to its projection onto the
quantization axis ẑ. l represents the orbital angular momentum quantum number of the
two molecules, and ml the quantum number associated to lz. The molecule-molecule bare
states are given by:

|j1,mj1 , j2,mj2 , l,ml〉 (B.0.1)

and the dipole-dipole interaction is defined as:

VDD =
~µ1 · ~µ2 − 3 (~µ1 · r̂) (~µ2 · r̂)

4πε0r3
(B.0.2)

where µτ the permanent electric dipole of the molecule τ . We can express the matrix
elements in the bare basis as:〈

j1,mj1 , j2,mj2 , l,ml |VDD| j′1,m′j1 , j
′
2,m

′
j2
, l′,m′l

〉
=
−
√

30µ1µ2

4πε0r3
(−1)ml+mj1+mj2

√
(2l + 1) (2l′ + 1)

√
(2j1 + 1) (2j′1 + 1)

×
√

(2j2 + 1) (2j′2 + 1)

(
1 1 2
p1 p2 −p

)(
j1 1 j′1
0 0 0

)(
j1 1 j′1
−mj1 p1 m′j1

)
×
(
j2 1 j′2
0 0 0

)(
j2 1 j′2
−mj2 p2 m′j2

)(
l 2 l′

0 0 0

)(
l 2 l′

−ml −p m′l

)
(B.0.3)

with: 
p = p1 + p2

p1 = mj1 −m′j1
p2 = mj2 −m′j2
p = m′l −ml.

(B.0.4)

In our studies, we consider molecules prepared in mτ = 0. Therefore, p1 = 0 and p2 = 0,
involving: {

p = p1 + p2 = 0
p = m′l −ml = 0 −→ m′l = ml.

(B.0.5)
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In the basis |j1, 0, j2, 0, l,ml〉 ≡ |j1, j2, l,ml〉, the matrix elements of the dipole-dipole
interaction are given by:

〈j1, j2, 0, l,ml |VDD| j′1, j′2, 0, l′,ml〉 =
−2µ1µ2

4πε0r3
(−1)ml

×
√

(2l + 1) (2l′ + 1)
√

(2j1 + 1) (2j′1 + 1)
√

(2j2 + 1) (2j′2 + 1)

×
(
j1 1 j′1
0 0 0

)2(
j2 1 j′2
0 0 0

)2(
l 2 l′

0 0 0

)(
l 2 l′

−ml 0 ml

)
. (B.0.6)

The general formula for the integral of three spherical harmonics∫ 2π

0

∫ π

0

Y m1
l1

(θ, φ)Y m2
l2

(θ, φ)Y m3
l3

(θ, φ) sin θdθdφ

=

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(B.0.7)

can be used and adapted for our study:∫ 2π

0

∫ π

0

Y ∗mll (θ, φ)Y 0
2 (θ, φ)Y ml

l′ (θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π

0

Y ∗mll (θ, φ)

[
1

4

√
5

π

(
3 cos2 θ − 1

)]
Y ml
l′ (θ, φ) sin θdθdφ

= (−1)ml

√
5(2l + 1) (2l′ + 1)

4π

(
l 2 l′

0 0 0

)(
l 2 l′

−ml 0 ml

)
. (B.0.8)

Using Eq. B.0.8 into Eq. B.0.6, we obtain:

〈j1, j2, l,ml |VDD| j′1, j′2, l′,ml〉 =

〈
l,ml

∣∣∣∣(1− 3 cos2 θ)

4πε0r3

∣∣∣∣ l′,ml

〉
× µ1µ2

√
(2j1 + 1) (2j′1 + 1)

√
(2j2 + 1) (2j′2 + 1)

(
j1 1 j′1
0 0 0

)2(
j2 1 j′2
0 0 0

)2

.

(B.0.9)

We have separated the internal rotation of the molecules from the orbital moment l of
the two molecules. However, this formalism is not adapted for molecules in a presence
of an external static electric field. The stark effect mixes the different rotational states.
So, we can define the dressed rotational states as

∣∣j̃τ〉 =
∑

n bjτ |jτ 〉 . Finally, the matrix
elements of the dipole-dipole interaction in the dressed molecule-molecule basis are given
by:〈

j̃1, j̃2, l,ml |VDD| j̃′1, j̃′2, l′,ml

〉
=

〈
l,ml

∣∣∣∣(1− 3 cos2 θ)

4πε0r3

∣∣∣∣ l′,ml

〉
×
∑
j1

∑
j2

∑
j′1

∑
j′2

bj1bj2bj′1bj′2µ1µ2

√
(2j1 + 1) (2j′1 + 1)

×
√

(2j2 + 1) (2j′2 + 1)

(
j1 1 j′1
0 0 0

)2(
j2 1 j′2
0 0 0

)2

(B.0.10)
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and then:

〈
j̃1, j̃2, l,ml |VDD| j̃′1, j̃′2, l′,ml

〉
=

〈
l,ml

∣∣∣∣(1− 3 cos2 θ)

4πε0r3

∣∣∣∣ l′,ml

〉
×
∑
j1

∑
j′1

bj1bj′1µ1

√
(2j1 + 1) (2j′1 + 1)

(
j1 1 j′1
0 0 0

)2

×
∑
j2

∑
j′2

bj2bj′2µ2

√
(2j2 + 1) (2j′2 + 1)

(
j2 1 j′2
0 0 0

)2

. (B.0.11)

One can define a generalized induced dipole moment [214] between a dressed rotation
state j̃ and j̃′ as:

dj̃→j
′
= µ

∑
j

∑
j′

b∗jbj′
√

(2j + 1) (2j′ + 1)

(
j 1 j′

0 0 0

)2

(B.0.12)

and express Eq. B.0.11 as:

〈
j̃1, j̃2, l,ml |VDD| j̃′1, j̃′2, l′,ml

〉
=

〈
l,ml

∣∣∣∣∣dj̃1→j̃
′
1dj̃2→j̃

′
2

4πε0r3

(
1− 3 cos2 θ

)∣∣∣∣∣ l′,ml

〉
. (B.0.13)

This comes back to take an effective classical dipole-dipole interaction

dj̃1→j̃
′
1dj̃2→j̃

′
2

4πε0r3

(
1− 3 cos2 θ

)
(B.0.14)

but with generalized induced dipole moments, including transition dipole moments re-
sponsible for inelastic transitions between rotational states.
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Appendix C

Loss rate equations

The evolution of the average number of molecules in a gas follows the rate equa-
tion [291]:

dn

dt
= −β3Bn3 − β2Bn2 − β1Bn (C.0.1)

where β3B, β2B and β1B corresponds respectively to the three-body, two-body and one-
body loss rate coefficients.

C.1 Two-body loss rates
In this section, we focus on the two-body collision rate equation:

dn

dt
= −β2Bn2 (C.1.1)

whose solutions are given by:

n(t) =
n0

1 + n0 β2B t
=

n0

1 + t
τ2B

(C.1.2)

with n0 the initial number of molecules. We can then extract the characteristic time
between two events of two-body collisions:

τ2B =
1

n0 β2B
. (C.1.3)

C.2 Three-body loss rates
In this section, we focus on the three-body collision rate equation:

dn

dt
= −β3Bn3 (C.2.1)

whose solutions are given by:

n(t) =
n0√

1 + 2n2
0 β

3B t
=

n0√
1 + t

τ3B

(C.2.2)
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We can then extract the characteristic time between two events of three-body collisions:

τ3B =
1

2n2
0 β

3B
. (C.2.3)



Appendix D

Simple continuum states Li2

j v Energy (K) j v Energy (K) j v Energy (K) j v Energy (K)
0 0 -434,194 0 3 -209,203 2 5 -103,335 28 2 -30,2395
2 0 -431,893 2 3 -207,391 4 5 -99,9298 6 7 -29,4962
4 0 -426,532 14 2 -207,134 14 4 -96,6858 18 5 -26,8108
6 0 -418,130 20 1 -205,480 6 5 -94,6144 22 4 -24,5779
8 0 -406,718 4 3 -203,173 24 2 -89,3275 8 7 -24,4205
10 0 -392,339 6 3 -196,572 20 3 -88,6510 14 6 -24,0927
12 0 -375,046 16 2 -187,680 8 5 -87,4357 34 0 -22,0180
14 0 -354,906 8 3 -187,624 28 1 -81,4268 10 7 -18,1873
0 1 -349,821 26 0 -179,691 16 4 -80,9037 0 8 -16,6046
2 1 -347,681 22 1 -177,338 10 5 -78,4608 26 3 -15,8104
4 1 -342,698 10 3 -176,381 12 5 -67,7785 2 8 -15,7822
6 1 -334,891 18 2 -166,035 0 6 -66,2020 4 8 -13,8893
16 0 -331,998 12 3 -162,908 22 3 -65,6705 16 6 -12,7484
8 1 -324,292 0 4 -152,496 2 6 -64,9295 6 8 -10,9917
10 1 -310,947 2 4 -150,853 32 0 -63,5680 12 7 -10,9612
18 0 -306,413 14 3 -147,288 18 4 -63,4966 20 5 -10,8378
12 1 -294,911 24 1 -147,159 4 6 -61,9750 32 1 -10,0995
20 0 -278,259 4 4 -147,032 26 2 -60,4241 8 8 -7,20402
14 1 -276,255 28 0 -142,665 6 6 -57,3743 0 9 -5,06478
0 2 -274,927 20 2 -142,324 14 5 -55,5040 2 9 -4,51313
2 2 -272,951 6 4 -141,056 8 6 -51,1859 24 4 -3,60018
4 2 -268,348 8 4 -132,968 30 1 -46,3223 4 9 -3,26695
6 2 -261,139 16 3 -129,620 20 4 -44,6449 14 7 -2,98528
16 1 -255,063 10 4 -122,823 10 6 -43,4933 10 8 -2,71272
8 2 -251,360 22 2 -116,697 16 5 -41,7845 6 9 -1,43702
22 0 -247,658 26 1 -115,120 24 3 -41,2997 18 6 -0,67973
10 2 -239,057 12 4 -110,698 0 7 -36,8163 0 10 -0,59317
18 1 -231,433 18 3 -110,026 2 7 -35,7559 2 10 -0,33494
12 2 -224,290 0 5 -104,799 12 6 -34,4109
24 0 -214,749 30 0 -103,877 4 7 -33,3003

Table D.1: The 118 simple continuum states for the Li+Li2 system.
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Résumé : Depuis plus de 20 ans, des avancées ma-
jeures ont été réalisées dans la formation, le refroi-
dissement et le piégeage de molécules dipolaires. Il
est maintenant possible de former des molécules dans
un état quantique bien défini à des températures de
l’ordre de quelques centaines de nanokelvins. Le pro-
chain défi expérimental est d’atteindre des régimes
de dégénérescence quantique pour créer des conden-
sats de Bose-Einstein ou des gaz de Fermi dégénérés
moléculaires, impliquant d’obtenir des densités plus
élevées et d’atteindre des températures plus basses.
Cependant, ces conditions sont difficiles à obtenir car
de nombreuses molécules sont détruites ou perdues
lors de collisions à deux corps ou trois corps. L’ob-
jectif de cette thèse est de développer des méthodes
d’écrantage pour supprimer ces processus de pertes.
Ces méthodes exploitent les propriétés à longue portée
de l’interaction dipôle-dipôle, qui peuvent être contrô-
lées par l’application de champs externes. En utili-
sant un formalisme quantique indépendant du temps,
basé sur les coordonnées de Jacobi ou sur les coor-

données hypersphériques, je montre que l’utilisation
d’un champ électrique statique est efficace pour ré-
duire les pertes à deux corps et à trois corps dans le
cas de molécules préparées dans leur premier état rota-
tionnel excité. Je démontre également que les pertes
à deux corps peuvent être fortement réduites pour
des molécules initialement préparées dans leur état
rotationnel fondamental en utilisant un champ micro-
onde. Cette dernière méthode offre des outils pour
contrôler la partie réelle et imaginaire de la longueur
de diffusion molécule - molécule, grandeur clé qui ca-
ractérise la stabilité et la contrôlabilité d’un condensat
de Bose-Einstein. Enfin, j’applique le code numérique
à trois corps que j’ai développé pour étudier des col-
lisions réactives atome - diatome. Ce code permettra
également d’explorer des phénomènes de recombinai-
son à trois corps et de dissociation induite par colli-
sions. Toutes ces méthodes laissent entrevoir un large
éventail d’applications pour les molécules ultra-froides
dans le domaine de la physique à N-corps, à l’instar
des atomes ultra-froids.

Title : Collisions of ultracold dipolar molecules controlled by electric and electromagnetic fields
Keywords : Collisions, Cold matter, Dipolar molecules, Quantum dynamics

Abstract : For more than 20 years, major advances
have been made in the formation, cooling and trap-
ping of dipolar molecules. It is now possible to form
molecules in a well-defined quantum state at tempe-
ratures on the order of a few hundreds of nanokelvins.
The upcoming experimental challenge is to reach for
the quantum degeneracy regime to create molecular
Bose-Einstein condensates or degenerate Fermi gases,
which require higher densities and much lower tempe-
ratures. However, these conditions are hard to achieve
because many molecules are destroyed or lost in two-
body or three-body collisions. The goal of this thesis is
to develop shielding methods that can suppress these
loss processes. These methods exploit the long-range
properties of the dipole-dipole interaction, which can
be controlled by applied external fields. Using a time-
independent quantum formalism, based on Jacobi or
hyperspherical coordinates, I show that a static elec-

tric field can be used to reduce the two-body and
three-body losses for molecules prepared in their first
excited rotational state. I also demonstrate that the
two-body losses can be strongly reduced for mole-
cules initially prepared in their ground rotational state
using a microwave field. This latter method also pro-
vides tools to control the real and imaginary part of
the molecule - molecule scattering length, which is
a key-parameter that characterizes the stability and
the controllabiity of a Bose-Einstein condensate. Fi-
nally, I apply the numerical code I have developed to
study reactive atom - diatom collisions. This code will
also enable studies of three-body recombination and
collision-induced dissociation phenomena. All these
methods open the door for a rich many-body physics
for ultracold molecules, similar to that for ultracold
atoms.
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