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Abstract:

We produce everyday thousands of gigabits of data, exchanged over the internet network.
These data are processed thanks to computation clusters, which are responsible of the
large amount of energy consumed by the internet network. In this work, we study an
architecture made of photonic components, to get rid of electronic components that
are power consuming. Thanks to components that are currently used in the internet
network, we build an artificial neural network made of a VCSEL and a feedback loop
that can process telecommunication data. The complex behavior of this system is used
to feed the artificial neurons that are distributed along the fiber.

We first present the basics of the physics of semiconductor lasers. We first briefly remind
the principle of the lasing effect. A laser can be realized with semiconductor materials,
and we can distinguish lasers emitting light from the edge (EEL) and lasers emitting
from the surface (VCSEL). This last kind of laser has several advantages which makes
it largely used in different fields, such as telecommunication networks, in biology or
in smartphones. A semiconductor laser can exhibit different complex dynamics while
submitted to feedback or injection for instance. This complex dynamics is already used,
to mimic natural phenomena, or to process signals for instance.

We secondly present the basic knowledge of reservoir computing. We first introduce
the artificial neural network, and two topologies of network: the feedforward and the
recurrent neural network. Reservoir computing paradigm has been proposed to simplify
training procedure, and consists in using a fixed recurrent neural network, and training
only a readout layer thanks to simple regression algorithm. In reservoir computing,
we focused more specifically on the time-delay reservoir computing. This architecture
is composed of a single physical neuron with a feedback loop, along which virtual
neurons are distributed. We also present examples of reservoir computing device. We
finally present the tasks we use to benchmark our reservoir computing device. After
introducing the basic knowledge required to understand our work, we present the
performance on single task processing of our reservoir computing device made of a
VCSEL and single mode silica fiber, based on time-delay reservoir computing paradigm.
We used the spin-flip model (SFM) to simulate the system and explore the space of
parameters of the system by either injecting the input electrically or optically. We also
explore the influence of the polarization of the optical feedback. We draw two main
conclusions: the input injected optically leads to better and faster performance and
using polarization-rotated optical feedback allows doubling the memory capacity of the
reservoir computer, hence potentially reaching better performance on applied tasks.
The experimental confirmation of this last observation is detailed, after presenting the
experimental setup. We finally compare the numerical and experimental performance
of our device.



We finally explore the performance of our proposed architecture processing two tasks
simultaneously. We adapt the model to be able to inject two tasks: each task is
injected in a different polarization mode of the VCSEL. We test the influence of some
internal parameters of the VCSEL on the memory capacity of the reservoir, and on its
performance when processing telecommunication tasks, and we also prove that the ratio
of the injection power between the two polarization modes can be used to tune the
splitting of performance between the two processed tasks. This last conclusion is also
demonstrated experimentally. We finally compare experimental results with numerical
simulations.



Résumé:

Nous produisons chaque jour de grandes quantités de données, que nous échangeons grâce
à Internet. Ces données sont traitées grâce à des clusters de calcul, responsables de la
consommation énergétique d’internet. Dans cette thèse, nous étudions une architecture
faite de composants photoniques, pour se débarrasser des composants électroniques
consommant de l’énergie. Grâce aux composants actuellement utilisés dans le réseau
Internet (laser et fibre optique), nous réalisons un réseau neuronal artificiel capable de
traiter les données de télécommunication. Le réseau de neurones artificiel est constitué
d’un laser et d’une fibre optique qui renvoie la lumière dans ce laser. Le comportement
complexe de ce système est utilisé pour alimenter les neurones artificiels qui sont répartis
le long de la fibre.

Nous présentons d’abord les bases de la physique des lasers à semi-conducteurs. Nous
rappelons le principe de l’effet lasant. Un laser peut être réalisé avec des matériaux
semi-conducteurs, et nous pouvons distinguer les lasers émettant par la tranche (EEL) de
ceux émettant par la surface (VCSEL). Ce dernier type de laser présente des avantages
qui le rend largement utilisé dans différents domaines, tels que les réseaux télécom,
la biologie ou dans les smartphones. Un laser à semi-conducteur peut révéler des
dynamiques complexes lorsqu’il est soumis à rétroaction ou à injection par exemple.
Cette dynamique est déjà utilisée entre autres pour imiter des phénomènes naturels ou
pour traiter des signaux.

Nous présentons ensuite les bases du reservoir computing. Nous présentons d’abord
le réseau de neurones artificiels, et deux topologies de réseau : le réseau de neurones
à propagation avant et le réseau récurrent. Le reservoir computing, apparu pour
simplifier la phase d’entrainement, consiste à utiliser un réseau récurrent fixe, et à
entraîner uniquement une couche de lecture grâce à une régression. Au sein du reservoir
computing, nous étudions plus particulièrement le réservoir à retard. Cette architecture
est composée d’un seul neurone physique avec une boucle de rétroaction, le long
de laquelle sont distribués des neurones virtuels. Nous présentons des exemples de
reservoir, ainsi que les tâches que nous utilisons pour évaluer notre dispositif de calcul
de réservoir.

Après les éléments de théorie, nous présentons les performances de notre reservoir
computer composé d’un VCSEL et d’une fibre de silice monomode, basé sur le principe
du reservoir à retard. Nous avons utilisé le modèle de spin-flip (SFM) pour simuler
le système et explorer l’espace des paramètres du système en injectant l’entrée soit
électriquement soit optiquement. Nous explorons également l’influence de la polarisation
de la rétroaction optique. Nous tirons deux conclusions principales : l’injection optique



de l’entrée conduit à des meilleures performances et l’utilisation de la rétroaction
optique à rotation de polarisation permet de doubler la mémoire du système, permettant
d’atteindre potentiellement de meilleures performances. Nous détaillons la confirmation
expérimentale de cette dernière observation, après avoir présenté l’expérience. Nous
comparons enfin les performances numériques et expérimentales de notre dispositif.

Enfin, nous testons les performances de notre système pour le traitement deux tâches
simultanées. Nous adaptons le modèle pour pouvoir injecter deux tâches : chaque tâche
est injectée dans un mode de polarisation différent du VCSEL. Nous testons l’influence
de certains paramètres internes du VCSEL sur la capacité mémoire du réservoir, et
sur ses performances lors du traitement de tâches télécom, et nous prouvons également
que le rapport de puissances d’injection entre les deux modes de polarisation peut être
utilisé pour régler la répartition de performances entre les deux tâches traitées. Cette
dernière conclusion est également démontrée expérimentalement, avant de comparer les
performances des systèmes numériques et expérimentaux.
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1
Background and Motivation

Alice: Would you tell me, please, which way I ought to go from here?
The Cheshire Cat: That depends a good deal on where you want to get to.
Alice: I don’t much care where.
The Cheshire Cat: Then it doesn’t much matter which way you go.
Alice: ...So long as I get somewhere.
The Cheshire Cat: Oh, you’re sure to do that, if only you walk long enough.
Lewis Caroll, Alice in Wonderland



2 1. Background and Motivation

T
hirty three billions of terabits. This is the amount of data produced by the
whole world in 2018. These is the same amount of data contained in 660 billion
of Blue-Ray disc. This data are produced by our computers, smartphones

and other smart objects. The recent explosion of the number of this small computers
in the network also led the explosion of data production. The new trends for home
automation also tend to connect even more objects to the network, each producing
data. This amount of data is forecasted to grow even more in the next few years with
the upcoming 5G network used with the connected objects from Internet of Things
[1].

All these data need to be processed, which often requires a high computing power
due to the complexity of the related algorithms. These computational resources can
be found in data centers. Data centers occupy huge building containing thousands
of super computers, each composed of several central process unit (CPU), and each
composed of several computational units (core).

Figure 1.1: Picture of a Google Data center

These data centers process data from everywhere to offer even more functionali-
ties to the end user: Internet search (Google currently processes on average 70,000
searches/second), recover of the transmitted data over the internet network, helping
industries with precise statistics and market prediction, weather forecasting, simulating
complex physical problems (such as mapping the dark matter halo in the Milky Way),
just to name a few.

However, Von Neumann architectures (classical computer performing algorithms)
struggle with performing some tasks that are highly complex [2], such as decisional
problems (e.g. is that object a pear or an apple? What should I do based on what I
heard?). Our brain is however able to process such decisional tasks very efficiently
while we are not able to execute efficiently algorithms, when compared to a computer.
Our brain records and processes all the sensorial signals around us, which trigger a
neuronal activity leading to a reaction. The efficiency of our brain is based on the
nearly hundred billions of neurons that are all connected together. This internal brain
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structure inspired a novel processing approach called artificial neural network, which
is a concept of machine learning.

The data processing approach in machine learning is radically different from the Turing
machine method. In the Turing machine, an analog signal to be processed is converted
to a digital signal. The processing of this signal is predefined in an algorithm made
of logical blocks. After processing, the resulting digital signal is converted back to
an analog signal to be used in the physical world. Machine learning offers instead
to process analog signals without coding explicitly the transformation that must be
operated. The analog signal can be processed analogically or converted to a numerical
signal depending on the architecture considered. Before processing signals, the system
must be trained with examples, as a child is taught at school. This learning phase
can be supervised or unsupervised. With supervised learning, the system learns the
processing thanks to sets of examples of inputs and the corresponding target signals.
With unsupervised learning, the system learns from a large number of examples to
separate the input signals in classes, which groups similar inputs together. The system
learns from the similarity that can exist between different input signals. Once the
system is trained, it can process signals that have never been seen by the system, but
that have the same properties. Machine learning is currently used to class images or

1   Training 2   Testing

What is it?

An apple
An apple

What is it?

An apple

An apple

Figure 1.2: Processing signal with machine learning approach in case
of supervised learning: the system is first trained. During this step, the
system learns how to realize a task (here recognizing an apple). The
system is then tested. During this step, other inputs are shown to the
system and the system responds using the method learned during the
training (here the system recognizes an apple as he has been trained to
recognize apples).

recognize shapes [3], recognize spoken words [4], or even to translate texts [5]. Artificial
neural network is one of the numerous machine learning technique. It is inspired from
the architecture of the human brain, as it is composed of neurons that are linked
together. The training consists of adapting the strength of the links between the
neurons (similarly to the training phase of the human brain).

Another limitation encountered with data centers is the power consumption. A data
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center use around 100 MW to work properly, which represent 10% of the energy
production of a nuclear reactor. This high energy consumption is mainly due to the
heat of electronic components, and the cooling systems used to evacuate this energy.
Replacing electronic components with photonic components has thus been studied
to perform some of the tasks in place of electronic devices. Photonic components
such as semiconductor lasers require only low energy to work properly, and also suffer
from lower loss, thanks to a better power efficiency. As a result, these semiconductor
lasers do not require powerful cooling systems, which further contribute to a lower
power consumption. Where a classical computer uses about 1 kW, a semiconductor
laser-based system would require only few watts. Realizing computational system
using photonic component has recently been proved to be feasible [6].

While thinking of photonic artificial neural network, one may think about a network of
lasers connected together, each laser being a neuron. D. Brunner and I. Fischer realized
experimentally such a network by coupling semiconductor lasers in a matrix thanks
to a diffractive element [7]. However, coupling a large number of lasers remains a
technical challenge. It is the reason why a new type of neural network, called time-delay
reservoir computing came to birth. This new type of artificial neural network is made
of one dynamics component (e.g. a laser) and a delay-line. The neurons are now
virtual, distributed along the delay-line [8], and their number can be easily increased
by lengthening the delay-line, or bringing the neurons closer together. L. Larger
et. al. reported the first realization of such an architecture, using opto-electronic
components [9], quickly followed by Y. Paquot et. al. [10]. However, the speed of such
an architecture is limited by the length of the delay-line: the longer the delay-line is,
the slower the neural network performs computation. A key issues is to find dynamical
component allowing to bring closer the neurons. To this end, several architectures have
been proposed, made of an optical amplifier [11], a semiconductor laser [12, 13, 14, 15],
or an electro-optic modulator [16].

The goal of this thesis is thus to realize a computational device made of photonic
components, which aims at being used for telecommunication applications, implying
reaching fast computational speed. Our challenge will be to use mainly telecommunica-
tion components to realize this reservoir, such as vertical-cavity surface emitting laser
(VCSEL), and single mode optical fiber. It appears that this specific laser exhibits an
interesting polarization dynamics that we want to harness to achieve the best possible
computational performance. We will realize the system on the basis of numerical
simulation and experimental tests. Each concept is first explored numerically to choose
the components properly and find the best set of parameters that leads to an efficient
computational device. This allows exploring more parameters quickly, and to have an
insight of the role of each parameter on the working properties of the system. The
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relevant data found numerically are exploited to build the corresponding experimental
setup, and to validate the numerical hypothesis experimentally. In this thesis, we do
not aim at creating new dynamics but rather at exploiting these known dynamics to
perform computation with optimal performance.

Outline

This dissertation is divided in four chapters.

In a first chapter, we present the basics about semiconductor lasers. We introduce the
lasing effect and how to realize lasers with semiconductor materials. The structures
of two different lasers are introduced: the conventional semiconductor laser so-called
edge-emitting laser (EEL) and the vertical-cavity surface-emitting laser (VCSEL).
VCSELs exhibit several advantages, which make them widely used in the industry.
Some of their properties are presented in this chapter. We then present the main
dynamics achievable with a system made of semiconductor lasers, and we introduce
the specific polarization dynamics of VCSELs. We finally propose some examples of
use of laser dynamics, including reservoir computing.

In a second chapter, we present the basic knowledge on artificial neural networks (ANN)
and reservoir computing (RC). We introduce what is a feedforward neural network and
a recurrent neural network (RNN), and we focus on a specific recurrent neural network
called reservoir computing. We then introduce the concept of time-delay reservoir
computing, which is a particular architecture to implement reservoir computing. We
also provide several examples of ANN, before presenting the tasks we will use to
benchmark our photonic architecture.

These two first chapters explain all the basic concepts required to understand our
thesis work.

In a third chapter, we present our proposal for a reservoir computer architecture made
of telecommunication components. The architecture is based on time-delay reservoir
paradigm, using a VCSEL and single-mode optical fiber. In this chapter, we focus
on the performance of the reservoir when processing a single task. We first explore
numerically the performance of the system with electrical or optical input and describe
the steps toward an experimental setup and test its performance. We finally compare
the numerical and experimental results to assess on the validity of our theoretical
model.

In a fourth chapter, we show how our architecture can be used to process two tasks
simultaneously while exploiting multimode optical properties of a VCSEL. Two optical
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signals linearly polarized are injected in each polarization mode of a VCSEL, and the
response of the reservoir is used to train it to perform the two tasks corresponding
to the inputs. As in the third chapter, we first present the adapted model and the
results of the exploration of the parameter space. The numerical performance is then
checked experimentally, and we finally compare the numerical predictions with the
experimental performance.

We finally propose in the last chapter an overview of the thesis work and draw
perspectives for future work.

Publications and conferences
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T
he massive use of optics in the telecommunication network has been made
possible thanks to the development of the semiconductor laser. Compared
to other light sources such as gas lasers or solid-state lasers, semiconductor

lasers are very low cost and compact devices with a long life expectancy and a high
efficiency. These advantages made this component suitable for an industrial use in
telecommunication networks. More specifically, the work presented in this thesis is
based on the use of a VCSEL.

Before presenting the use we are making of such components in the context of photonic
computing, we will first introduce the physics underlying the semiconductor laser.
In a first section 2.1, we present the basics about lasers, and how to achieve lasing
with semiconductor lasers. In a second section 2.2, we focus on a specific type of
semiconductor laser emitting light from the surface and called vertical-cavity surface-
emitting laser. We then present how to achieve complex dynamics with semiconductor
lasers 2.3, before presenting some applications of these dynamics 2.4.

2.1 Semiconductor lasers

The word "laser" is now approved in the dictionary. We can find for instance in the
Cambridge dictionary that a laser is a "device that produces a powerful, narrow beam
of light that can be used as a tool to cut metal, to perform medical operations, or
to create patterns of light for entertainment" [23]. LASER is nevertheless in its first
definition an acronym which stands for "light amplification by stimulated emission of
radiation". Therefore, to understand how a laser works, we first need to understand
the stimulated emission of light.

2.1.1 Basic principle of lasing effect

The stimulated emission of radiation was theoretically predicted by A. Einstein in
1916 [24]. However, the first component using this property came to birth in 1960
thanks to T. Maiman [25]. To briefly explain this effect, let us consider a system with
two levels of energy E1 and E2 as depicted in Fig. 2.1. We also consider a particle
which can exhibit one of the two energy states. The particle is said excited when it has
the energy of the higher level E2. We define the energy of the photon as Ephot = hν,
where h is the Planck constant, and ν is the electromagnetic frequency of the photon.
There are three different ways for this particle to interact with photons.

• The first phenomenon presented in Fig. 2.1.(a) is called absorption. The particle
absorbs the energy of the photon, which allows it to reach its excited state.
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Figure 2.1: The three interaction light-matter. An electron can get
excited from the lower level of energy to the higher by absorbing the
energy of a photon (a). An electron can relax from the higher level
of energy E2 to the lower one E1 emitting a photon having an energy
E2 − E1. This phenomenon can be spontaneous (b) or stimulated by
another photon with the same energy E2 −E1 (c). In the second case,
the emitted photon has the same properties as the stimulating photon.

• The second one presented in Fig. 2.1.(b) is called spontaneous emission. The
excited particle spontaneously relaxes from the upper level of energy E2 to
the lower level E1. During this process, a photon is emitted which energy
hν = E2 − E1 corresponds to the difference of energy between the two levels.

• The last possibility, depicted in Fig. 2.1.(c) is called stimulated emission. A
photon with an energy hν = E2 − E1 is present in the system. This stimulates
the transition of the particle from the upper level of energy to the lower level,
creating another photon with the same energy. The newly created photon has
therefore the same properties as the incoming photon (same energy, therefore
same frequency or wavelength and the two photons exhibit the same phase).
This incoming photon has then been amplified thanks to stimulated emission.

If we keep creating photons thanks to stimulated emission, and when the losses are
compensated, we obtain light amplification, producing a gain in the medium. This
phenomenon is the dominant process when most of the particles are excited. The
configuration in which a maximum of particles are in the excited energy state is
called population inversion, which can be obtained thanks to a process called pumping.
Pumping can be achieved by sending a light source with an energy higher than E2−E1

to the gain medium, which energy is absorbed, as for the first laser presented by T.
Maiman, or by applying an electrical current to the active medium, as it is commonly
done with helium-neon laser [26], or semiconductor lasers [27].

The energy hν we presented can be either discrete (the number of reachable energies is
countable) or continuous (a range of energies is achievable) depending on the considered
materials. In case of semiconductors (presented in the next section), the reachable
energies are continuous, allowing thus producing a continuous range of wavelengths
(unless if the bulk semiconductor is replaced by quantum wells, dots, ...). However, a
laser is wavelength-selective. This is done by placing the active medium in a resonant
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cavity. The simplest one is a cavity made of two parallel mirrors, with the active layer
in between. This is called the Fabry-Perot cavity. These mirrors impose boundary
conditions. Only the electromagnetic waves satisfying these conditions can propagate
in the cavity. These waves are called modes of the lasers. They are separated by a
frequency difference ∆ω such as:

∆ω = c

2Lng
, (2.1)

with c = 299792458 m.s−1 the light velocity, L the length of the Fabry-Perot cavity,
and ng is the group velocity in the considered material. The two edge mirrors allow
preserving part of the photons inside the cavity, which reduces the required pumping
power to reach the population inversion state.

If stimulated emission is a mechanism creating more and more photons, Mechanisms
for photon losses are inevitably created the cavity, for examples the natural absorption
of the active medium, and the photons exiting the cavity. Because mirrors are partially
reflective, we note indeed that the beam we are considering as an output of the laser is
made of photons leaving the cavity, which are thus also considered as lost photons. The
laser starts emitting a laser beam when the amplification effect of the cavity overcomes
the losses. The specific point where the stimulated emission equals the losses is called
laser threshold. Figure 2.2 shows a typical light-pump curve. When the energy brought
to the cavity is too low, the dominant radiation effect is the spontaneous emission.
After the threshold, the dominant radiation effect is the stimulated emission, and the
laser starts emitting a powerful coherent light beam.

Three ingredients are thus required to have a laser:

• a gain medium in which gain results from stimulated emission

• a cavity to select frequencies and to control the losses

• a pump to provide energy for the gain and therefore to overcome the losses.

2.1.2 Semiconductor edge-emitting laser (EEL)

The lasing amplification effect can be obtained with semiconductor materials, which
is rather convenient as it allows producing compact devices [28]. Moreover, semicon-
ductors are largely used in electronic systems, and therefore the industrial process is
well mastered. According to their name, semiconductors are neither conductors nor
insulators. They can be both depending on their operating point. In terms of energy,
electrons moving inside semiconductors can exhibit an energy inside the conduction
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Figure 2.2: Typical light pump curve of a laser. when the energy
brought to the cavity is too low, the dominant effect is the spontaneous
emission. After the threshold on the contrary, the losses are compen-
sated, the dominant phenomenon is the stimulated emission, and the
laser starts emitting light.

band (high energy) or inside the valence band (low energy). These two bands of energy
are separated by a band-gap in which no quantum state with such an energy can be
found. When all the electrons have their energy in the valence band, the semiconductor
behaves as an insulator. But thanks to the temperature, some electrons can get enough
energy to access the conduction band, leaving a hole (a positive charge) in the valence
band. Electrons and holes can be brought respectively in the conduction and valence
band thanks to a bias electrical current. By combining different semiconductors, we can
create what is called a double heterostructure [29], which energy diagram is depicted
in Fig. 2.3. On both sides of the structure, the same semiconductor material is doped
with donors on one side (n-doped) and with acceptors on the other side (p-doped).
This allows changing the energy levels, keeping a constant energy band-gap. Between
these two doped materials, a different semiconductor is introduced with a smaller
band-gap. When the different semiconductors are in contact, a diffusion of carrier
occurs, in which electrons move from the n-doped region to the middle layer, and the
holes diffuse from the p-doped region to the middle layer. Applying a forward bias
current brings a constant flow of electrons to the n-doped region, and of holes to the
p-doped region. It also allows electrons to drift from the n-doped region to the middle
layer, and holes to drift from the p-doped region to the middle layer. Once in this
middle layer, electrons and holes are trapped due the double potential barrier. In
the middle layer, population inversion ensures that a large number of energy states
can be occupied by electrons in the conduction band and by holes in the valence
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Figure 2.3: Energy diagram of the double heterostructure. The dia-
gram shows the conduction band (higher level of energy) and the valence
band of energy (lower level of energy). Thanks to diffusion (natural
process) and drift (induced by the forward bias current), holes move
from the p-doped layer to the middle layer, and electrons from the
n-doped layer to the middle layer. Due to the double barrier of energy
surrounding the middle layer, electrons and holes are trapped in this
middle layer, allowing to reach population inversion.

band. Electrons can then relax from the conduction band to the valence band to
recombine with holes. This can be achieved by a spontaneous or stimulated process,
emitting photon during the transition. As the emission of photon happens in the
middle material (with a smaller bang-gap), this region of the component is called
active layer.

Although the double heterostructure is able to generate stimulated photons, a laser
requires a large number of stimulating photons to emit radiation with enough power.
This structure is achieved by adding mirrors that reinject enough photons in the
active layer, so that enough power is achieved by stimulated emission. By cleaving
the semiconductor material, one can easily build a cavity. The interface between the
active layer and the air outside the structure acts as a semitransparent mirror that let
some photons leaving the structure. This structure thus keeps enough photons in the
active layer to encourage the stimulated emission. The photons leaving the structure
by the edge are highly coherent, and thus provide radiation with a high-power density.
This structure has been presented in 1970 by Z. Alferov [30] (cf Fig. 2.4) and is known
as the double heterostructure edge-emitting laser, so-called since the laser beam is
emitted from the edge.

The choice of the component of the active layer determines the wavelength of the
laser, since photons have energy close to the band-gap energy. For instance, an active
layer made of aluminum gallium arsenide (AlGaAs) will mainly emit light in red and
near infra-red (between 630 nm and 900 nm). An active layer made of indium gallium
arsenide phosphide (InGaAsP) mainly emits in middle infra-red (between 1000 nm
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Figure 2.4: Schematic of an edge emitting laser. The propagation in
the active layer is achieved horizontally. The beam is emitted from the
edge

and 2100 nm).

2.1.3 Verical-cavity surface emitting laser (VCSEL)

The vertical-cavity surface-emitting laser (VCSEL) has been introduced in 1979 by
Soda et. al. [31]. Contrary to the edge-emitting laser, the vertical-cavity surface-
emitting laser emits light from its surface. The length of the active layer has been
reduced from micrometers for the edge-emitting laser to few nanometers in the VCSEL,
which leads to lower threshold current, but also to a smaller gain. To further decrease
the loss, the active layer was placed between two gold mirrors. However, even if the
reflectivity of such mirrors is rather high (95%) the threshold current remains high,
around 900 mA.

Ogura et al. proposed in 1987 to replace the gold mirror with distributed Bragg
reflectors (DBR) [32]. A DBR mirror is a superposition of thin layers of semiconductors.
The constructive interference of light beam diffracting at the layer interfaces allows
reaching reflective as high as 99%. Thanks to these new mirrors, Jewel et al. have
been able to realize a VCSEL with a threshold current around 1 mA [33].

As the DBRs are made of semiconductor materials, they can be either p-doped or
n-doped to conduct the carriers to the active layer, and to trap them in the active
layer. A schematic of the structure of the VCSEL is presented in Fig. 2.5.

In addition to the low power consumption of the VCSEL, the specific geometry of
the laser allows shaping the beam to be quasi circular, which optimizes the coupling
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Figure 2.5: Schematic of a vertical-cavity surface-emitting laser. The
active layer is surrounded by two distributed Bragg reflectors. The
propagation of photons in the active layer is achieved vertically. The
beam is emitted from the upper surface.

efficiency to optical fibers and also removes any polarization preference. This round
shape also leads to interesting polarization properties that will be discussed later in
this chapter.

The VCSEL we will use in this thesis emits light at 1550 nm. Its active layer is made of
indium gallium arsenide (InGaAs). The two DBRs are a superposition of layers made
of indium aluminum gallium arsenide (InAlGaAs) and indium aluminum arsenide
(InAlAs). A picture of the structure of this VCSEL is presented in Fig. 2.6.

2.2 The use of VCSELs today

VCSELs are largely used, mainly due to their advantages in terms of laser properties
and of manufacturing.

2.2.1 Industrial advantages of the VCSEL

The manufacturing of the VCSEL presents several advantages compared to the classical
edge-emitting lasers. The light is emitted in a direction parallel to the growth direction,
contrary to the EEL which emits light perpendicularly to the growth direction. This
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(a) Vertical cut (b) Microscopic picture

Figure 2.6: Pictures of the vertical-cavity surface-emitting laser used
in our experimental work. Pictures provided by Raycan, seller of the
VCSEL [34].

characteristic allows manufacturing 2D-wafers of lasers and testing each lasers directly
on the wafer. A picture of such a wafer is presented in Fig. 2.7. Moreover, as presented
in the previous chapter, the use of mirrors with higher reflectivity for VCSELs reduced
its current threshold, allowing lowering its power consumption.

Figure 2.7: Pictures of a wafer of vertical-cavity surface-emitting lasers.
Picture provided by Raycan, seller of the VCSEL [34].
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Figure 2.8: Schematic of an optical telecommunication line. The signal
is emitted thanks to a modulated laser diode. It is then transmitted
through optical fiber and is amplified multiple times during the trans-
mission. The signal is finally recorded at the output of the line thanks
to photodiode to be interpreted.

2.2.2 VCSELs in telecommunication system

One of the principal use of VCSELs today might be in optical communication networks.
Optical communication is the core technology of today’s internet network, allowing
us to exchange more than 29 Pb each second. This network is based on four main
components:

• a coherent light source

• a low loss optical channel

• an amplifier

• an optical receiver

The data exchanged thanks to internet are digital. That means they are encoded
thanks as binary digits or bits (0 or 1). Bits are encoded in the light. This encoding is
called modulation. We can think to the trivial modulation: we send a 1 by sending
light, and a 0 by sending nothing. In order to reach higher transmission speed, the
modulation is in fact more complex, to encode many bits at once. One of the most used
modulation formats in the internet network is the quadratic amplitude modulation
(QAM). These bits modulated together are called symbols. Thanks to this modulation
format we are now able to reach transmission speed about terabits per seconds [35].

Using a semiconductor laser to transmit the bits shows several advantages. As we
already explained, these light sources are power efficient, which allows transmitting
signals at a low power cost. Moreover, the spectrum of a laser source is narrow thanks
to the wavelength selectivity of the cavity, hence making possible to multiplex several
wavelengths in one channel without overlapping the data. The discovery of VCSELs
brought new advantages. The spectrum is even narrower allowing multiplexing more
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wavelengths, and the typically circular aperture limits the divergence of the beam.
This property leads to better coupling efficiency in the optical fiber.

The optical fiber is the key discovery that made the optical communication possible.
Charles K. Kao has been awarded in 2009 the Nobel prize for discovering a low-loss
optical fiber (0.2 dB/km) [36]. This fiber is made of silica, which is transparent for
wavelengths between 500 nm and 1900 nm, with a minimum of attenuation around
1550 nm. This is specifically convenient as the manufacturing of VCSEls emitting in
this range of wavelength is feasible, as presented previously, and inexpensive. Thanks
to this fiber, the amplitude of the signal is divided by two after 15 km, which allows
propagating the signals over 150 km before having to amplify the signal.

As the data have to be transmitted most of the time over thousands of kilometers,
the signals have to be amplified in the line, each 150 km. The most used amplifier in
telecommunication network is the erbium doped fiber amplifier (EDFA). This amplifier
exploits nonlinear mechanisms of the erbium doped fiber. The system is pumped with
a laser at 980 nm. This pumping stimulates the emission of photons at 1550 nm [37].

The optical signal is finally recorded with a photodiode. In a photodiode, the photons
are absorbed to create pairs of electrons and holes, hence modifying the voltage at the
output of the device.

2.2.3 VCSELs in biology

The specificities of the VCSEL also found applications in biology. For instance, A.
Birbecket al. published in 2003 a work showing that they have been able to use an
array of VCSELs to manipulate cells [38]. They shape a Laguerre-Gaussian beam (in
shape of a donut) to trap and manipulate cells. The advantage of the VCSEL in this
application is that VCSEL is smaller than the other semiconductor lasers, and that
arrays of VCSELs can easily be manufactured thanks to their growth direction, as
presented in the previous section. Both compactness and ease of fabrication allows
meeting the requirements of building microchips in biology applications.

Another example of the use of VCSELs in biology as been presented in 2008 by T.
Svensson et al. [39]. In their work, they present how they use VCSELs to perform
oxygen spectroscopy, and thus measure the porosity of biological tissues. The use of
VCSELs simplifies the spectroscopy system by using a single laser diode to perform the
measurement, instead of a dual laser system when using conventional semiconductor
lasers. The resulting improvement is significant in terms of simplicity, robustness, cost
and speed.
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2.2.4 VCSELs in our everyday life

We can also find VCSELs in many devices we are using every day. The computer mouse
is one of them. A VCSEL now substitutes the LED used to detect the displacement
of the mouse [40]. The VCSEL brings several advantages to the manufacturing of
computer mouse. The power efficiency of the VCSEL makes it specifically interesting
for mouse working on batteries. Moreover, the movement detection with VCSELs
provides a better accuracy.

Another application of VCSEL can be found in Apple Iphone, or other smartphones
from Huawei or Xiaomi. In these smartphones, VCSELs are used to perform 3D sensing
thanks to structured light [41]. For structured light, a light source emits a pattern on
a surface. The distortion of this pattern while reflected toward the projecting device
is recorded and helps deducing the 3D-shape of the observed object. This is used in
smartphones mainly for face recognition and fingerprint detection. The advantage of
VCSELs for this application is related to the better accuracy of the detection, and the
low power consumption which makes the components suitable for embedded devices.

The accuracy of LIDAR has also been improved thanks to the use of VCSELs. LIDAR
is the acronym for light detection and ranging. Short pulses at nanoseconds scales are
emitted thanks to a light source. These pulses are reflected by an object. The distance
between the light source and this object is calculated thanks to the delay between the
emission and the reception of a pulse. The use of VCSEL allows not only improving
the accuracy of the detection but also reducing the cost of the device [42]. LIDAR are
used in a large range of application, such as threat detection for defense, detecting
obstacles for robots and autonomous cars, or measuring the shape of the earth.

2.3 Complex Dynamics of lasers

Semiconductor lasers exhibit a rich dynamics as evidenced by an extensive research
over the past 40 years [43]. We will briefly present the different dynamics that can
be exhibited by a semiconductor laser in this section. This section does not aim
at being exhaustive as this thesis is not focused on the study of the dynamics of
the semiconductor laser, but rather at presenting the characteristics of the dynamics
required to understand the observed phenomena in Chaps. 4 and 5.
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Figure 2.9: Schematic of a laser diode with optical feedback (a) and
of a laser diode with opto-electronic feedback(b).

2.3.1 Laser submitted to feedback

Adding a feedback to a laser can unlock a rich dynamics, that would not be achieved
with the free-running laser. There are two main configurations of feedback, that are
depicted in Fig. 2.9:

• optical feedback: the light emitted by the laser is injected back in its cavity.
This can be achieved deliberately with a mirror for instance, but also occurs
spontaneously when coupling light into fiber. Fig. 2.9.(a)

• opto-electronic feedback: the light emitted be the laser is converted to an electrical
signal thanks to a photodiode. This electronic signal is used to modulate the
bias current of the laser. Fig. 2.9.(b)

Since the design of the system analyzed in this thesis is based on optical feedback, we
will solely present the dynamics of the laser with optical feedback. We can define two
parameters to measure the amplitude of the optical feedback: The feedback ratio (in
%) which corresponds to the ratio of the emitted power that is reinjected in the laser
cavity, and the feedback rate (in Hz) that is often used for numerical simulation. The
feedback rate (noted η in this work) is defined as [44]

η = 1− r2

τin

r0

r
, (2.2)

with r the reflectivity of the of the facet of the cavity, r0 is the reflectivity of the
external mirror, and τin is the roundtrip time in the cavity.

Tkach and Chraplyvy has in 1986 analyzed the dynamics of such a setup [45]. Two
parameters are considered: the length of the external cavity L, which is the distance
travelled by light along the feedback, and the feedback ratio, which is ratio of optical
power injected back to the cavity over the emitted optical power. When varying these
parameters, different dynamical regimes are observed and presented in Fig. 2.10:
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Figure 2.10: The different regime of dynamics of a laser with feedback,
depending on the length of the external cavity end the feedback ratio.
Taken from [45]

• Regime I (very weak feedback ratio, less than 0.001%): the spectrum of the laser
broadens or narrows depending on the phase of the feedback.

• Regime II (weak feedback ratio, less than 0.01%): the laser exhibits external
cavity modes. These modes are stationary solutions for which the wavelength of
the laser is shifted by n c

2L , with n an integer. The laser can hop between the
different solutions, which leads to a fluctuation of the output power of the laser.

• Regime III (∼ 0.01%) the laser restabilizes, favouring one external cavity mode.

• Regime IV (moderate feedback ratio, about 1%), side peaks appear on the
optical spectrum of the laser, separated from the emission peak by the relaxation
oscillations. The laser exhibits chaotic dynamics while increasing the feedback.

• Regime V (strong feedback ratio, higher than 10%), the high feedback ratio
makes the external cavity behaves as the internal laser cavity. The laser thus
restabilizes and emits one laser mode.

The classification presented here does not provide a deep study of the different dynamics
that a laser can exhibit. The regime that will be under interest in this manuscript is
the third regime, when the first chaotic behavior appears. To present more in depth
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Figure 2.11: Numerical examples of dynamics exhibited by a semi-
conductor laser with feedback (L = 20 cm): (a) steady-state for a
feedback rate of 0.5 GHz, (b) periodic for a feedback rate of 1.5 GHz,
(c) chaotic for a feedback rate of 2.5 GHz. (d) Bifurcation diagram of a
semiconductor laser with feedback, while varying the feedback rate.

that specific dynamics, we show in Fig. 2.11.(d) a typical bifurcation diagram obtained
numerically for a semiconductor laser with feedback, while sweeping the feedback
ratio. To realize this diagram, we used the same numerical model as the one used for
numerical simulations in Chaps. 4 and 5. A bifurcation diagram shows the extrema of
the temporal dynamics while varying a so-called bifurcation parameter. It is a useful
tool for dynamics analysis. We observe on the bifurcation diagram that for low value
of feedback rate, the system is in a steady state (Fig. 2.11.(a)), as demonstrated in the
work of Tkach and Chraplyvy. The emitted power is constant. For a higher value of
feedback rate (about 1 GHz), the emitted power begins oscillating. This specific point
where the dynamics of the laser changes is called "bifurcation point". The laser exhibits
periodic dynamics (Fig. 2.11.(b)). Keeping increasing the feedback rate leads to chaotic
dynamics (Fig. 2.11.(c)): The power emitted by the laser oscillates irregularly and
is highly sensitive to changes in the laser initial conditions. The dynamics that will
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Laser diode a Laser diode b

J J

Figure 2.12: Schematic of laser injection. Laser diode b (slave laser)
is injected optically by laser a (master laser)

be under consideration in the next chapters of this thesis is the steady state, just
before the first bifurcation point. This dynamics is referred as edge of instabilities or
edge of chaos, and it has been proved that it is suitable to perform computation with
dynamical systems.

2.3.2 Laser submitted to injection

Complex dynamics can also be unlocked by injecting a semiconductor laser into another
one (Fig. 2.12). The injecting laser is called master laser, and the injected laser is
called slave laser. There are two parameters that drive the dynamics of the slave
laser: The frequency detuning, which is the difference between the emission frequency
of the master laser and the one of the slave laser, and the injection strength, which
corresponds to the optical power emitted by the master laser, that is injected into the
slave laser.

The dynamics of such a system has been largely studied since 1980, and a rich variety
of dynamics has been documented [46]. One of them, called "injection locking" has
drawn the interest of laser diode community as it allows enhancing the performance of
a laser diode. In this specific dynamics, the frequency of the slave laser is locked to
the one of the master laser [47]. Injection locking leads for instance to enhancement
of the modulation bandwidth of the slave laser, and a reduction of its emission noise
[48, 49].

A semiconductor laser can also exhibit much more complex dynamics, such as periodic
and chaotic dynamics, due to optical injection [50]. The sequence of dynamics is very
similar to the one presented with optical feedback. As for optical feedback, we can
define the "edge of instabilities", which corresponds to the point just before the onset
of oscillations of the optical power of the slave laser. The slave laser is thus still locked
to the master laser. It is also important to note that if the detuning is too large, the
slave laser can not be locked to the master laser and one cannot reach this "edge of
instabilities" condition.
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Figure 2.13: Schematic of a Mach-Zehnder modulator. The phase of
the light going through the bottom arm is modulated thanks to the
two electrodes. The amplitude is modulated thanks to the interferences
happening between the beams outing the two arms of the modulators.

2.3.3 Laser submitted to modulated injection

We briefly explained previously that a laser diode can be directly modulated, by
modulating the bias current of the laser. We can also modulate a laser diode by
injecting a modulated laser in a slave laser. As we want in this work to reach high
modulation frequency, we will present the Mach-Zehnder modulator, which allows
modulating externally the optical power of a laser. A scheme of this kind of modulator
is presented in Fig. 2.13. This modulator acts as an interferometer. We express the
electrical field of the input beam as:

Ei = E0e
iω0t, (2.3)

where |E0|2 is the optical power of the input beam, and ω0 is the pulsation of the
electro-magnetic field. This beam is split in two and propagates in two different arms.
In the first arm, the beam simply propagates, and in the second arm, a delay is applied
to the beam thanks to a specific crystal. The modulator we are using in this thesis
uses a crystal of lithium niobate (LiNbO3) as it acts on laser beam with a wavelength
around 1550 nm. Two ports are present on the crystal to apply both a continuous
bias voltage v0 and a RF voltage v(t). The beam at the end of this second arm can be
expressed as:

Em = E0√
2
ei(ω0t+πv(t)

2Vπ
+φ′), (2.4)

where Vπ corresponds to the voltage to apply in order to have a phase shift of π, and φ′

the phase induced by the bias voltage. The output beam of the modulator is obtained
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Figure 2.14: Optical spectra of semiconductor laser externally modu-
lated thanks to optical injection. (a) The slave laser is locked to the
master laser. (b) the slave laser is not locked to the master laser

by summing the two beams outing the two arms of the modulator.

Eo = E0

2 eiω0t
(

1 + ei(
πv(t)
2Vπ

+φ′)
)

(2.5)

The crystals used to modulate the light act only along a preferential axis, that depends
on the crystal used and on its crystallographic properties. This formula applies only if
the polarization of the beam sent to the modulator is aligned with this preferential
axis.

We can optically modulate a slave laser by injecting the modulated beam outing the
modulator in the slave laser. We present two different cases:

• The slave laser is locked on the master laser which is modulated (Fig. 2.14.(a)). It
thus emits light at the same wavelength as the one of the master laser. Due to the
modulation, the spectrum of the slave lasers broadens. The frequency bandwidth
equals the frequency of the modulation. As presented by T.B. Simpson, this
configuration allows enlarging the modulation bandwidth of the slave laser [50].

• The slave laser is not locked to the master laser (Fig. 2.14.(b)). However, the
spectral bandwidth of the master laser reaches and overlaps the optical frequency
of the slave laser thanks to the modulation. In these conditions, the slave laser
reacts to the modulation of the master laser, and its spectral bandwidth broadens.
However, the enlargement of the spectrum is smaller than the one of the locked
laser.

These two regimes are used in this work to inject data optically in our photonic
computational device. We show in Chap. 4 that the first regime is suitable to perform
computation and makes the photonic device produce an efficient response [51]. However,



2.3. Complex Dynamics of lasers 27

in Chap. 5, we aim at injecting two input signals in two modes of a laser that are
separated in frequency, and using only one modulated master laser. We thus use the
second regime as a compromise to inject both modes of the laser at the same time.

2.3.4 Specific properties of VCSELs

VCSELs exhibit specific dynamics not found in conventional edge-emitting lasers. In
most of the VCSELs, the polarization of the emitted beam is not pinned and depends
on the laser parameters. Since its first study by Soda et al. [31], it appeared that the
polarization of a VCSEL was hard to predict, and that the polarization properties of
two VCSELs grown on the same wafer can differ [52]. Therefore, the polarization of
the emission of one VCSEL can change by varying its operating parameters, such as
the bias current or the temperature [53].

Two effects set the polarization of the emission in a VCSEL: the elasto-optic effect
and the electro-optic effect [54]. The elasto-optic effect is responsible of creating
electro-magnetic field at the different interfaces (due to growth-defects) existing in the
cavity. These fields induce birefringence in the active region [55]. The electro-effect
also induces birefringence, due to the voltage applied to the cavity [56].

This birefringence is typically linear and favors two main polarization axis. The two
so-called polarization modes thus experience different refractive indices and are lasing
at two different frequencies. These two modes are arbitrarily referenced as mode X
(noted LPx) and Y (noted LPy). The mode X is often the mode that emits light when
reaching the threshold. It is also called parallel or dominant polarization mode. The
other mode is referred as orthogonal or depressed polarization mode. The two emitted
polarization modes can be observed on the optical spectrum of a VCSEL from Raycan,
used in this thesis (Fig. 2.15.(a)).

A free-running VCSEL mainly emits light along one of these two presented polarization
axes. However, these axes can vary with the bias current as explained previously, and
as presented in Fig. 2.15.(b). This is called polarization switching. The switching can
take place between linear polarization modes or more complex polarization states [57].

Two different theories tend to explain this polarization selectivity. In 1994, Choquette
et al. deduced that the two polarization modes do not experience the same gain due
to the birefringence of the active layer [58]. His theory has been later completed by
Ryvkin et al. [59]. The VCSEL emits solely the polarization mode that benefits from
the higher gain to loss ratio. Changing the bias current or the temperature of the
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Figure 2.15: Experimental polarization properties of a VCSEL. (a)
Optical spectrum of a free running VCSEL for a bias current close to the
threshold current (1.5 × threshold current. (b) Optical power emitted
by LPX polarization mode (orange) and LPY polarization mode (blue)
of a VCSEL. A polarization switching occurs for a bias current of 5 mA.

VCSEL modifies the gain to loss ratio relative to each polarization mode, and thus
can change the polarization of the emitted light.

Another approach has been proposed by M. San Miguel et al. in 1995 with the spin-flip
model [60]. This model suggests to account for the spin of the carriers in the active
layer. There are thus 4 levels of energy instead of the only 2 considered in previously
proposed model. The emission of photons can occur by either a recombination of
electrons and holes of spin up, or of spin down. These two different recombinations emit
photons with a different frequency, explaining the difference of wavelength between
the two polarization modes. The two carrier populations with opposite spins are
microscopic coupled thanks to spin-flip relaxation processes, which tend to equilibrate
both populations. Moreover, due to the birefringence of the active layer, the two
polarization modes do not experience the same amplification. The complex interplay
between nonlinear coupling through carrier spin flip relaxations and linear birefringence
explains then the polarization selectivity.

The two explanations of the polarization selectivity proposed by K. Choquette and
M. San Miguel are complementary. They have both been observed in VCSELs [57].
Besides explaining polarization selectivity, the San Miguel-Feng-Moloney mechanism
is also responsible for generating polarization chaos, as it has been recently observed
experimentally [57].
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(a) Picture of a rogue
wave taken by the chief
engineer of the Stolt Surf
in 1977

(b) Optical emission of a VCSEL with feed-
back. The dashed line coresponds to the de-
tection threshold of a rogue wave. Taken from
[62]

Figure 2.16: Pictures of rogue waves

2.4 Use of complex waveforms

We presented in the previous section that semiconductor lasers can exhibit complex
dynamics resulting in different waveforms for the power emitted by the laser. These
waveforms drew interest thanks to their possible applications. Some of these uses are
presented in this section.

2.4.1 To mimic

The complex dynamics of laser allows reproducing behaviors observable in the nature.
This is called biomimetics when it mimics living systems. This can be useful to study
in a laboratory complex behaviors that are hardly analyzed in the nature directly, and
that share some properties when analyzed in different physical systems.

2.4.1.1 Rogue waves

A first example can be found in extreme events such as rogue waves. Those waves
are characterized by an enormous height and can appear in from calm and flat sea.
The first reliable report of such a wave has been made in 1933 by the crew of an US
tanker [61]: a wave with height of 34 m and a width between 300 and 450 m, for a
total duration of 14.8 s. To be considered as a rogue wave, the amplitude of a wave
should be twice higher than the so-called significant wave height, which is a statistical
measure over a large number of observed waves. Due to their rarity, a rogue wave is
hard to be observed.

Such behavior can be reproduced with photonic components. Solli et al. indeed
demonstrated in 2007 that they have been able to observe rogue waves during the
propagation of light in optical fiber [63]. Rogue waves have also been observed using
laser diodes: an edge-emitting laser with either conventional feedback [64](using a
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classical mirror), phase conjugated feedback [65](using a phase conjugated mirror),
or optical injection. More recently, vectorial rogue waves, i.e. rogue wave that one
observes only in polarized light, have also been observed in VCSELs with feedback
[62], and in optical fibers [66].

2.4.1.2 Chimera

Another example is in the study of so-called chimera states. In physics a chimera
is a group of identical coupled systems that experience at the same time coherent
and incoherent dynamics. A set of coupled oscillators can synchronize after a certain
time. One of the most striking natural example might be the flashing of fire flies
[67]. However, with the right initial conditions, a set of coupled oscillators can reach
state in which some oscillators are synchronized, and others are unsynchronized. The
experimental observation of this behavior has been realized with either chemical
oscillators [68] or opto-electronic oscillators [69]. This behavior has also been observed
with two coupled set of coupled mechanical oscillators such as metronomes. One set
was able to synchronize while the other one was exhibiting unsynchronized oscillations
[70].

This behavior has been observed in an all-optical setup in 2019, by realizing simultane-
ously two feedbacks, one rotating the polarization of pi/2 along the feedback and one
preserving the polarization along the feedback, on a laser diode [71]. This configuration
allows periodical polarization switching of the laser between two states: one which is
steady and the other one which is chaotic. The steady (chaotic) dynamics corresponds
to synchronized (unsynchronized) virtual oscillators. The time spent in one of the two
states and therefore the extension of the unsynchronized dynamics is controlled by the
second feedback.

2.4.1.3 Spiking dynamics

We finally present a last example in biomimetics field which is related to the model of
the biological neuron. The dynamics of a neuron is called "spiking". A neuron is an
excitable system [72]. That means the response of the neuron is a spike if the input
is higher than an activation threshold. Once the neuron has been activated, there
is a relaxation period during which it cannot be trigger again, even if the input is
higher than the threshold. Several models tend to reproduce this behaviour. One of
the historical model is the Fitzugh-Nagumo model, which is based on the working
properties of the squid giant axon [73] (cf Fig. 2.17). Other models have been proposed,
such as the leaky integrate-and-fire model [74], which solves some memory problems.

This spiking dynamics has been successfully reproduced with a two-section DFB laser
[75], which is composed of a smaller section with length 75 µm and larger section with
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Figure 2.17: Picture of the squid giant axon. Picture provided by the
National Institute of Health.

(a) Schematic of a optical neuron
made with a DFB laser. The two
electrical sources are used to bias
the two parts of the laser. The in-
put of the spikes is made electrically.
The output of the neuron is optical.
Taken from [75]

(b) Optical neuron made of a VC-
SEL. The input is made by inject-
ing spikes in the orthogonal polar-
ization mode of the VCSEL. Taken
from [76]

Figure 2.18: Pictures of optical neurons

length 125 µm, optically coupled but electrically independent (cf Fig. 2.18.(a)). The
input spikes are injected electrically in the larger part of the DFB laser.

The same behavior has been observed with VCSELs [77, 78, 76]. As presented in
Fig. 2.18.(b), this dynamics can be achieved with VCSELs while injecting optically
spikes to the orthogonal polarization mode of the VCSEL. We can also note that
inducing a perturbation in a semiconductor laser with a saturable absorber also
generate pulses with different amplitudes [79].

Realizing optical neurons has two advantages. If it can help studying the behavior of a
biological neuron, it is currently mainly used to design fast artificial neural networks,
since an optical neuron responds faster than the biological one.
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2.4.2 To process information

In a more applied use, this complex dynamics can also be used to process information.
We present some of these uses in this part.

2.4.2.1 Cryptography

As presented in the introduction, the growth of the amount of data requires new
processing techniques, including new secured communication method. Solutions using
the chaotic dynamics of semiconductor lasers to perform cryptography have been
explored [80, 81]. The working principle is based on the synchronization of chaos in
laser diodes [82, 83]. A transmitter laser diode is set in chaotic state. The chaotic
signal emitted is used as a carrier to transmit a signal. At the receiver, another laser
diode is synchronized with the transmitter laser diode. This synchronization is realized
by injecting the transmitter laser to the receiver laser. Added to that, if both lasers
are almost identical and operated in similar conditions (temperature, bias current),
the receiver laser exhibits the same chaos as the one emitted by the transmitter laser.
Having the transmitted signal and the chaotic carrier, a subtraction allows recovering
the transmitted data. The operating data and the type of laser thus play the role
of the private key, and the data cannot be recovered without these parameters. An
experimental encrypted transmission has successfully been performed in Greece in
2005 using this method [84].

2.4.2.2 Random number generation

The random number generation is also a critical issue in secured communication. It
is used to generate private keys to encrypt data. In 2008, A. Uchida et. al. realized
a random bit generation at 1.7 Gb/s using semiconductor lasers [85]. The stream of
random bit is generated thanks to two chaotic semiconductor lasers whose output
beams are first recorded and converted to a bit stream separately. A final exclusive
OR (XOR) logic operation recombines the two generated bits streams, into one
random bits stream. In 2010, K. Hirano et. al. enhanced the random bits generation
speed to 12.5 Gb/s thanks to an increase of the chaos bandwidth generated by the
semiconductor laser. A first chaotic laser is injected in a second laser. The final bit
stream is obtained by sampling the light emitted by the second laser and setting as an
input of a XOR operation the signal of the second laser and the same signal delayed.
Other architectures demonstrated interesting performance and simple implementation,
such as an integrated semiconductor laser with external cavity allowing random bit
generation up to 140 Gb/s [86], or a semiconductor laser with rotated optical feedback
generating random bit stream at 4 Gb/s [87]. In 2014, M. Virte et al. proved that
they were able to generate random numbers using a free-running VCSEL at 100 Gb/s
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[88]. The generation of these numbers on a chaotic polarization switching exhibited
by a quantum-dot VCSEL. More recently, G. Bouchez also proposed a system based
on phase conjugated feedback generating wide-band chaos that extends over more
than 40 GHz of bandwidth [89]. This wide band chaos can be used to generate a more
complex series of random numbers, at a higher bit rate.

2.4.2.3 Sensors

There have been many reports of uses of the dynamical properties of semiconductor
laser to performs sensing. For instance, erbium doped fiber lasers have been successfully
applied for detection of intrusion [90], or gas detection [91]. These sensors are based
on the high sensibility of the cavity of the laser. Small perturbations such as acoustic
waves or the presence of gas can create transient dynamics in the cavity of this kind of
laser, made of erbium doped fiber. The transient dynamics can be analyzed to perform
sensing.

Laser diodes submitted to frequency shifted optical feedback have also been studied to
perform small amplitude-vibration sensors[92]. By vibrating, an object is modifying
the optical spectrum of the beam emitted by a laser which is injected back in the laser
thanks to feedback. This modification of spectrum is extracted from the dynamics of
the laser, which allows deducing the vibration frequency of the object.

2.5 Conclusion

In summary, we introduced in this chapter the basics of semiconductor lasers. We first
presented that a laser is made of three main components: a gain medium, a cavity,
and a pump. Lasers can be made of semiconductors. We presented two different
semiconductor lasers, the edge-emitting laser, and the vertical-cavity surface emitting
laser, both having their own properties. More specifically, VCSELs have several
advantages that make them largely used today. We also presented briefly the different
dynamical regimes that can exhibit a semiconductor laser in different configuration of
feedback, injection or modulation. These different dynamical regimes are already in
use, to mimic biological behavior, or to process data for instance.

As we presented in this chapter, the dynamical regime of a laser can be used in many
different ways. In this thesis, we focus on how using this dynamics to perform reservoir
computing: a machine learning technique that allows performing computation with
dynamical system. Before presenting the system studied in the thesis, we present in
the next chapter the basics of artificial neural networks, and more specifically reservoir
computing, more in depth.
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pretty wild. But you’re not the father of this strange looking child. You see, there still
is some question about the child’s gender, but we think that its father is a microwave
blender.
Tim Burton, The Melancholy Death of Oyster Boy and Other Stories
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A
s introduced in the general introduction, this thesis focuses on building a
hardware VCSEL-based time-delay reservoir computer, based on the time-
delay reservoir architecture proposed by L. Appeltant et al. [8]. Now that the

different components and their properties have been presented, we will now focus on
fundamental machine-learning part and shall introduce the mathematical formalism
required to perform computation with photonic components.

We will first introduce the neural network in Sec. 3.1, before presenting the concept
of reservoir computing, based on recurrent neural network in Sec. 3.2. Finally, in
Secs. 3.3 and 3.4, we present some examples of time-delay reservoir computer using
photonics with their specific properties as well as the different benchmark tasks we
will use to assess the performance of our system in the next chapters.

3.1 The artificial neural network

An artificial neural network (ANN) is a system that is made of several small inter-
connected devices. Each of them has inputs and outputs, and computes a function
of the input. The response of a network depends on the operation that each device
realizes, and also to the way they are linked one with the others. One can "teach" the
network how to perform a specific task by tuning the link between each neuron, like a
real brain would basically do. This is called the training of the neural network.

3.1.1 Different models of neuron

The proposal to study neural networks has been first introduced in Ref. [93] with a
simple model of a neuron, with several inputs xi, entering the neuron through weighted
connections of weights wi. The response y of the neuron was considered as the sum of
the weighted inputs combined with the heaviside transfer function, as follows:

y = h
(∑

(wixi)
)
, (3.1)

h(x) =

0 if x < 0,
1 otherwise.

(3.2)

However, such a mathematical description does not raise any explicit solution to
train the system. Learning methods were proposed afterwards, leading to a trainable
network.
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Figure 3.1: Schematic of a neuron, with transfer function f , weighted
inputs wixi and output yj

The model of a neuron can be generalized to any given transfer function f :

aj =
∑
i

wixi + b, (3.3)

yj = f(aj), (3.4)

where the wi are the weights applied to the inputs xi. aj is called the pre-activation
of the jth neuron. In the literature, we encounter very often the following transfer
function:

• hyperbolic tangent: f(a) = tanh(a)

• logistic function: f(a) = 1
1+exp(−a)

• rectified linear unit: f(a) = max(a, 0)

• softmax: f(a) = log(1 + exp(a))

To create a neural network, we usually combine neurons with the same activation
function. Different types of architecture can be distinguished, beginning with the
feedforward neural network.

3.1.2 Feedforward neural network

The feedforward neural network (first introduced in [94]) is made of an input layer,
one or several hidden layers, and an output layer, as presented in Fig. 3.2. In this
architecture, the input signal enters in the network at the input layer, propagates in
the system through the different layers, one after the other, until reaching the output
layer. In this topology, there is no inner loop in the network, and the signal cannot
go through a same neuron twice. All the connections are weighted and trainable.
There are several ways to train such a system, but the historical method is the error
backpropagation algorithm [95]: The error made by the network from the output to
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Figure 3.2: Topology of the feedforward neural network. The signal
propagates from one layer to another from the input layer to the output
layer, in only one (here forward) direction

the target is retro-propagated, and the weights are adjusted accordingly to reduce the
error of the system. The algorithm stops when the error is smaller than a threshold
defined at the beginning of the training process.
However, due to its topology, this kind of network is not the most suitable to process
data with time dependence. At each processing step, the only data available in the
output layer always corresponds to the last injected input. This architecture has been
first used to process fixed patterns or images [96].

3.1.3 Recurrent neural network

Let us consider the problem of time-dependent information. We need to maintain
the information corresponding to several inputs in the system. This can be done by
creating loops inside the network. This allows creating a memory effect in the network.
The output of the system then not only depends on the current input, but also on the
previous inputs still present in the network. An example of such an architecture is
presented in Fig. 3.3.
However, the recurrence of the system makes it harder to train: Training methods
still exist, such as real-time recurrent learning (RTRL) or backpropagation through
time (BPTT), but require a high computing power [97, 98]. Recurrent neural networks
are specifically suitable to process data set that present a time dependency (such as
speech signals). The neural network can learn the time dependency of the of the input
data to generate the correct output.

Another paradigm recently appeared, allowing separating the recurrent network and
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Figure 3.3: Topology of the recurrent neural network. The loop in the
network allows current signals crossing previous ones

the trained layer. This new paradigm is called reservoir computing and will be discussed
in Sec. 3.2.

3.1.4 Network of spiking neurons

Spiking neural networks considers neurons with an activation function different from
the one presented in Sec. 3.1.1. In these networks, neurons communicate by sending
spikes over the network, similar to biological neurons. Such a neuron produces a spike
if the input is higher than a threshold and the the spike has the same amplitude
as the input. Once the neuron has fired a spike, there is a relaxing time during
which the neuron is not able to respond to any input. Such a dynamical behavior
is called excitability [99]. Several models exist to reproduce excitability, such as the
one presented by A. Hodgkin and A. Huxley, copying the giant squid axon properties
[100].

As presented in the previous chapter, this excitability behavior can be produced with
laser-based systems, such as graphene excitable lasers [101], DFB lasers [75] or VCSELs
[76, 77, 78]. It has also been observed in micro-ring resonators [102], in some simple
electronic circuits [103] or and with memristors [104]. Such neurons can then be
coupled together in order to form a network [105, 106].

Spiking networks, which are explored to recognize pattern [107], require a totally
different approach to be trained. A biological mechanism has been identified to adapt
the synaptic weights in such a network, called spike-timing dependent-plasticity (STDP)
(studied in [108]). Several training algorithms has been adapted from STDP, such as
synaptic weight association training (SWAT) [109], or an adapted backpropagation
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algorithm [110]. It will not be further explained in this thesis since this architecture is
not used in the thesis work.

3.2 Reservoir computing

A solution to simplify the training of a recurrent neural network has been given by
the framework of reservoir computing, which has been recently presented in [111, 112,
113].

3.2.1 What is reservoir computing?

Reservoir computing bring together two groups of recurrent neural networks, called
echo state network (ESN) [114] and liquid-state machine (LSM) [111].

Echo state networks are a recurrent neural network, whose topology is randomly set,
as well as the weights defining the connection between neurons. Input data are fed in
the network, and the responses of the different neurons are transfered unidirectionally
to an output layer. All the connections to this last layer are trainable with a regression
algorithm. Nevertheless, we keep the ability of the network to mix the information
from different inputs, responsible of the fading memory of the network, which means
that the data relative to one input remains in the system a certain amount of time
before vanishing. After this time, the network returns to its steady state.

Liquid state machines are similar to echo state networks in sense that they are also
composed of a randomly defined network, and a unidirectional output layer in which the
training is performed. The network is however a spiking neural network, as presented in
Sec. 3.1.4. This system draws its performance from the separation property (different
inputs are following different routes in the network) and the approximation property
(different trajectories produce different outputs).

Reservoir computing thus extends echo state network and liquid state machine in a
unified model. It maps an original problem to a higher dimensional space thanks
to a fixed neural network. The training is realized in a unidirectional readout layer,
meaning that there is no feedback connection from the readout layer to the network.
As presented in Fig. 3.4, a reservoir computer is composed of an input layer in which
the input signal is injected, a fixed neural network called "reservoir", and an output
layer, also called readout layer, reading the state of the neuron of the neural network
to perform the training.
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Input layer Output layer
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Figure 3.4: Topology of the reservoir computing network. The topology
of the reservoir is the same as the one of the recurrent neural network.
We add an output layer to perform the training.

According to the topology of the reservoir computing, we can express the state
x(k) ∈ Rn of the reservoir at a discrete time step k when injected with an input
u(k) ∈ Rp by:

x(k) = f
(
W inu(k − 1) +Wx(k − 1)

)
, (3.5)

and then express the value of the output of the reservoir ŷ(k) ∈ Rm

ŷ(k) = W out

x(k)
u(k)

+ b, (3.6)

whereW in ∈ Rn×p are the fixed input weights,W ∈ Rn×n is the fixed matrix of weights
applied to the linked between neurons, W out ∈ Rm×(n+p) are the output weights, and
b is a bias. Training the reservoir is finding the coefficient of W out, which translates
into solving a linear optimization problem. This learning can be achieved online [115],
meaning the weights in W out are progressively adapted until reaching the desired
output y, or offline, meaning the weights are calculated in one shot using a sufficient
number l of input samples. We used in this work this last approach, which can be
achieved in the simplest way by minimizing the mean square error ||W outX − y||2,
where X gather the states of the reservoir over l time steps. One can compute W out

using the Moore-Penrose pseudo-inverse of X which is defined as [116]:

X† = (XXT )−1X. (3.7)
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Figure 3.5: Example of linearly solved problem. Separating linearly
gray and black points. The original problem (left) cannot be solved
linearly. Adding one dimension allows finding linear solution.

We obtain:
W out = X†y. (3.8)

Reservoir computing with ESNs uses the nonlinear properties of the neurons to turn
a low-dimensional linear or nonlinear problem into a high-dimensional one that can
be solved linearly. Let us consider a problem in p dimensions. Once injected in the
reservoir, each neuron responds differently, depending on the input. There is a nonlinear
transformation from a vector space with p dimensions, to n� p dimensions.

We can then draw benefits of these additional dimensions to solve linearly a problem, as
shown by the example in Fig. 3.5. We cannot draw one line (hyper plane) to separate
the gray and black balls. However, while adding one dimension to the problem, we
can find a plane to separate those points. The same principle is applied by using a
reservoir. In addition, we can easily design systems with a large number of neurons,
therefore increasing the corresponding number of dimensions when compared to the
original problem.

Reservoir computing is a suitable approach to apply machine learning techniques to
hardware design. Designing a physical RNN with fixed topology and weights simplify
considerably the implementation. The first reported system to apply this principle
was a bucket of water and 8 mechanical actuators driving small weights [117]. These
weights, when activating the corresponding actuators, produce ripples pattern at the
surface of the water that can be used to calculate. The original problem has been
changed (from eight punctual sources to water surface). These patterns have been
used to solve different tasks, such as speech recognition task, or exclusive OR (XOR)
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task. The small waves at the surface of the water are also a transient phenomenon,
which would provide the fading memory.

However, designing an artificial neural network with a large number of nodes still
remains a technical challenge. That is why another architecture has been proposed,
in which only one physical node is used, but with a time-delay feedback, therefore
generating so-called virtual nodes distributed in the feedback loop. This architecture
is detailed in the next section.

3.2.2 Time-delay reservoir computing

3.2.2.1 Single node reservoir computer

The time-delay reservoir computing proposes to use only one physical device submitted
to feedback. Its dynamics can be described with delay differential equation (DDE):

dx(t)
dt

= F (t, x(t), x(t− τ))) , (3.9)

with F a linear or nonlinear function describing the system, x the state variable and τ
the time-delay. Such a system can exhibit the high dimensional attractors and fading
memory [118], which can be exploited to perform reservoir computing.

Instead of having physical neurons spatially distributed, such an architecture uses
virtual neurons timely spread along the delay line. It has been firstly introduced in [8]
and further described in [119]. A scheme of this architecture is presented in Fig. 3.6.

This architecture provides the required properties to perform computation [8]. Added
to that, the delay architecture can scale easily: Resizing the reservoir computer is now
made by simply changing the length of the delay line. That is why such an architecture
is highly suitable for experimental implementations.

3.2.2.2 Pre-processing: the masking procedure

Even if there is only one nonlinear device in the system, the training approach remains
similar to the classical reservoir computer. The virtual neurons are N equidistant
points, separated by an inter-delay of θ = τ/N , where τ is the propagation time in
the delay-line. These virtual neurons are fed after a specific pre-processing of the
input stream: Each value of the input stream (which can be a discrete time series u(k)
or a continuous input waveform discretized u(t)) is held during τ to feed the whole
delay-line, giving the signal noted uhold(t). The resulting signal is then multiplied by
a mask m(t), a signal τ -periodic in which each value is held during θ, to create the
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Figure 3.6: Topology of the time-delay reservoir computing archi-
tecture. The neurons are distributed along a delay-line which has a
length τ . They are separated by a length of θ. The input stream is
pre-processed before sending the input signal in the nonlinear physical
node. The training is realized once the signal has propagated in the
delay-line thanks to the output layer.

input signal of the reservoir s(t), leading to s(t) = uhold(t) ·m(t). This procedure,
called masking procedure, allows creating the virtual nodes and is presented in Fig. 3.7.
The mask can take different shapes, which influences the processing performance of
the reservoir [120]. The mask commonly used is the binary mask, made of 0 and 1
randomly taken. It can also have a more complex shape, such as a multi-level signal, a
white noise or a chaotic signal. Adapting the values of the mask is similar to adapting
the weights between an input layer and the virtual nodes.

The choice of θ is critical on the performance of the reservoir computer. We want to
correctly chose this parameter to properly interconnect all the virtual neurons and
draw benefits from the nonlinearity of the physical node. If we consider T the response
(relaxation) time of the physical node, we can identify two different behavior.

First, if θ � T , the physical node reaches its steady state for each virtual node. The
response of the node is then only determined by the instantaneous value of the input
signal s(t) and the state of the physical node. The strength of the connection between
the virtual nodes remains low, and a self-coupling effect is induced by the delayed
feedback, as shown in Fig. 3.8.

The dashed red signal corresponds to the masked input stream s(t), and the blue
signal the response of the physical node. In this example, the driving input is held
long enough to let the physical node reaching its steady state. The complexity of the
response of the reservoir is then solely determined by the complexity of the mask.



3.2. Reservoir computing 45

Input 
signal

𝜏𝜏

𝜏
mask

×

𝜃

Input stream

𝑢(𝑘)

𝑢(𝑡)

𝑢ℎ𝑜𝑙𝑑(𝑡) 𝑠(𝑡)

Figure 3.7: Masking procedure. The input stream can be either a
discrete time series u(k) or a continuous signal discretized u(t). The
signal v(t) is obtained by holding each value of the input data. v(t) is
then multiplied by a mask which has a total length of τ and in which
each value is hold during θ. This gives the input signal s(t) which is
send in the nonlinear physical node.
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Figure 3.8: Interconnection topology in case of large spacing between
virtual neurons (θ � T ). The dashed red signal represents the driving
input signal s(t) and the blue line is the response of the physical node.
The node is able to reach its steady state for each input value. Its
response only depends on the instantaneous value of s(t) and on the
instantaneous state of the reservoir. There is no connection between
the virtual neurons. Adapted from L. Appeltant et al. work [8]
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Figure 3.9: Interconnection topology in case of small spacing between
virtual neurons (θ < T ). The dashed red signal represents the driving
input signal s(t) and the blue line is the response of the linear node.
The node does not have enough time to reach its steady state for each
input value. Its response depends on the instantaneous value of s(t) and
on the previous states of the reservoir. There are connections between
the virtual neurons. Adapted from L. Appeltant et al. work [8]

If θ < T , the physical node does not have the time to reach its steady state before
receiving the next driving input value. The response of the virtual neurons is then
determined by the instantaneous value of the input signal s(t), and the state of the
previous virtual neurons as presented in Fig. 3.9. The complexity of the response of
the reservoir computer draw benefits from the complexity of the nonlinearity arising
from the physical node.

3.2.2.3 Training

To train a time-delay reservoir computer, we will process similarly to the classical
reservoir computing system, based on Eq. (3.6):

ŷ(k) = W out

X(k)
u(k)

 , with X(k) =



x (kτ)
x
((
k − 1

N

)
τ
)

...
x
((
k − i

N

)
τ
)

...
x ((k − 1) τ)


, (3.10)
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as the nodes are temporally distributed. In practice, we will only use the states of
the reservoir X(k) and not the input u(k) to train the reservoir. We can rewrite the
training equation as follows:

ŷ(k) =
N∑
i=1

wix
(
kτ − i τ

N

)
. (3.11)

As previously, a weight is attributed to the state of each virtual neuron to build the
desired output. This formula also shows the intrinsic speed limitation of such a system:
Time-delay τ limits the speed of the system since the response of the physical node
should propagate in the whole delay line before injecting new information. All the
working steps are summarized in Fig. 3.10.

3.3 Examples of physical reservoir computing

As presented in the previous section, reservoir computing is specifically suitable to
design neural network with physical components. We will present a non-exhaustive
overview of reservoir computers in this section.
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Figure 3.10: Complete working principle of time-delay reservoir com-
puting. The input stream is first pre-processed with the masking
procedure. The signal is sent in the nonlinear node; once its response
has propagated in the delay-line, the values of the neurons are collected
to perform the training.
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3.3.1 Physical reservoir computing

The first experimental realization of a reservoir has been reported by C. Fernando et.
al. in [117]. In this work the reservoir is made of a bucket full of water. The input of
the reservoir is realized thanks to weights creating waves in the water. The output
of the neurons is the pattern made at the surface of the water. This system exhibits
the required properties to perform time-dependent tasks. The waves produced by
the moving weights obviously depend on its location in the bucket. Moreover, once
produced, the waves remain a small time at the surface and propagate, so that the
different wave patterns are mixed, before vanishing. This creates the vanishing memory
of the system. Other mechanical systems have been used to perform computation,
such as a soft octopus robot [121], or a tensegrity structure [122]. Unfortunately, the
working properties are based on mechanical behavior, which is rather slow. An original
proposal considered using a cat brain [123] as physical device to prove its ability to
perform computation. However, the performance was not has high as required. Other
proposals use photonic components to build artificial neural networks because of their
ability to perform fast computation thanks to their intrinsic short time constant.

Reservoir computers of different nature have also been proposed: electronic using for
instance memristive components [124], spintronic using spin torque oscillators [125]
or even biological, using the brain of a cat [123]. We can also note that L. Appeltant
realized the first experimental time-delay reservoir computer with an electronic version
of Mackey-Glass oscillator [8]. This list is non exhaustive, and the review of G. Tanaka
et. al. present in more details all the recent works realized in the field of physical
reservoir computing [126].

3.3.2 Photonic reservoir computing

The possibility to build small, cheap and fast components makes photonic components
good candidates to explore new functionalities, and to some extend replace electronic
devices. Different approaches exist to build reservoir computers: free space reser-
voir computer, fibered systems largely represented with time-delay architecture, and
integrated on photonic chips.

3.3.2.1 Spatial reservoir computing

Building large reservoir computer based on the same principle as the one presented
previously is possible with photonic components. The first reported architecture was
an array of 8x8 VCSELs, coupled thanks to the diffraction realized by a spatial light
modulator (SLM) that is also used to define the weights [7]. Similar work has been
realized with an array of 9 by 9 neurons made of groups of pixels on a SLM [127].
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Figure 3.11: Scheme on the optoelectronic reservoir. taken from Y.
Paquot et al. work [10]

More recently, free-space setup have been proposed to realize even larger network, with
2025 nodes made with a SLM, each neuron being a group of pixels on the SLM [128],
with 16,384 nodes [129], or with an even larger number of nodes (up to 106 nodes)
[130, 131], also realized thanks to a SLM.

An integrated photonic reservoir has also been proposed recently. This system is
made of integrated optical waveguides, and integrated components, allowing to design
a reservoir with 16 nodes. Each neuron can be either a nonlinear node (integrated
micro-ring resonator), or a linear node (simple waveguide or integrated semiconductor
amplifier). This system is completely passive, which leads to a fast reservoir computer
with really low power consumption [132, 133, 134, 135].

3.3.2.2 Time-delay reservoir computing

The complexity of coupling a large set of photonic components motivated to use the
time-delay reservoir approach to build a computational device. We report two main
categories of photonic time-delay reservoir computers:

Optoelectronic time-delay reservoir computing

Two different research teams, composed of researchers from different research teams
(ULB, UGhent, FEMTO-ST, VUB, IFC and IFISC) realized the first experimental
time-delay reservoir computer using a Mach-Zehnder modulator as a physical node
[10, 9, 136]. A scheme of their setup is shown in Fig. 3.11. This system is referred
to as an optoelectronic reservoir computer since there is a conversion from optical to
electronic power in the delay line.
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Figure 3.12: Scheme of the photonic reservoir. Taken from F. Duport
et al. work [11]

This system was able to perform computation efficiently. But the intrinsic time constant
of the electronic components produced low computational speed, (around 100 kHz).
Further study of this setup have been performed, such as P. Antonik et al. studying
the online computation of the output signal [137], or L. Larger et al. exploring the
possibility to fasten the computation of such a system, reaching processing speed up
to 500 MHz [16]. There has been some proposals to use faster components, such as
photonic components, to perform computation at even higher speed.

Photonic time-delay reservoir computer

The main difference between the photonic time-delay reservoir and the optoelectronic
reservoir lays in the nature of the signal in the feedback loop. As we saw previously,
in the opto-electronic reservoir, the signal in the feedback is first generated optically,
and then converted to an electronic signal. In the photonic reservoir, the signal in the
feedback loop is optical from the beginning to the end. Different systems have been
proposed. The first one was proposed by F. Duport et al. and is using a semiconductor
optical amplifier (SOA) as a physical node [11].

A reservoir computer using an edge-emitting laser (EEL) as a physical node has also
been reported and explored to process time signals in [12, 136] and more recently in
[138], as well as an architecture using a semiconductor ring laser (SRL) [139].

Similar architectures are continuously proposed. For instance, integration on chip has
been possible thanks to an integrated laser [140]. We can also report the use of a
quantum cascade laser as a physical node [141]. These different architectures benefit
from the time constants (direct modulation bandwidth and relaxation-oscillation time)
of photonic components, and therefore can generally perform computation faster than
the previously shown optoelectronic reservoir computer: as the dynamics of the system
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Figure 3.13: Scheme of the edge-emitting laser-based reservoir.
Adapted from D. Brunner et al. work [136]
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Figure 3.14: Scheme of the semiconductor ring laser-based reservoir.
Adapted from R. Nguimdo et al. work [139]

is faster, the length of the delay-line can be reduced for a same number of nodes. L.
Larger et al. have nevertheless realized successfully an experimental opto-electronic
reservoir that was able to compute as fast as all-optical ones [16]. The system we will
present in the next chapter uses a vertical-cavity surface-emitting laser (VCSEL) as a
physical node. Such a system has been chosen to benefit from its specific polarization
dynamics.

3.4 Tasks and metrics

Before presenting our new architecture, we will focus on the different tasks and metrics
we will use in the next chapters to test the performance of our reservoir computer.
We can split them in two categories. First the computational ability and the memory
capacity, which are task-independent, allow evaluating the intrinsic performance of
the system. Secondly all the other tasks such as Santa-Fe prediction task and the
nonlinear channel equalization task, allow testing the performance of our architecture
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Figure 3.15: Measuring procedure of the kernel quality. N different
input streams are sent in the reservoir computer. The response of each
last input is recorded in a matrix. Adapted from L. Appeltant Ph. D.
thesis [143]

on applied tasks that are presented below.

3.4.1 Computational ability

The computational ability measures the ability of the system to perform computa-
tion. This ability is influenced by two different factors: the kernel quality and the
generalization property.

3.4.1.1 Kernel quality

The kernel quality measures the ability of the system to represent the different input
streams properly. A reservoir computing system maps a problem from low-dimension
space to one with a high dimensionality. This transformation should map different
input streams to different states in the high-dimensional space. The kernel quality
measures if the reservoir’s response for different input streams are well separated, in
other words how the reservoir contributes to simplify the classification. This has been
originally introduced in [111] and a measurement procedure has been proposed in
[142]. Let us suppose we fill a matrix with the states of the neurons of the reservoir
for different input streams. If the reservoir separates properly the different streams,
this matrix should be linearly separable.

To study the kernel quality on a reservoir of N nodes, we build N different input
streams, each composed of k different random samples. For each stream, the k − 1
first inputs are used to warm up the system, so that its original state does not impact
the dynamics of the reservoir. Then, for each of the N input streams, the response of
each node to the kth input are ordered in a matrix, as illustrated in Fig. 3.15.

We finally compute the rank of the matrix previously made, and call that value rkq.
As explained previously, if the reservoir separates the inputs properly, the matrix
rank should be maximal rkq = N . The rank of the matrix should thus be as high as
possible.
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3.4.1.2 Generalization property

Having two inputs that are not identical does not mean that they are different: For
instance, they can slightly differ because of the noise. Thus, these two inputs should
be mapped by the reservoir closely in the high-dimensional space. The generalization
property measures the ability of the system to consider these two non-identical inputs
as close inputs. This is in fact the ability of the readout layer to read properly the
states of the reservoir in order to be able to generalize the behavior learned during the
training phase to the testing phase.

To study the generalization property of a reservoir computer with N nodes, we build N
input streams with k inputs. The last l inputs are all identical, and the first k − l are
different. Only the response of the reservoir computer to the last l input are gathered
to fill a matrix, as illustrated in Fig. 3.16. As for the kernel quality, we compute the
rank of the matrix, and call that value rgp. The first inputs are used to warm up the
system, placing the system in a different state for each stream. The last l inputs being
identical, the reservoir should map all the streams to a same state. That is why the
rank of this matrix should remain as low as possible rgp = 0.

3.4.1.3 Computational ability

As explained at the beginning of this section, the computational ability is linked to the
kernel quality and the generalization property. It is given by the difference between
the ranks of the matrices constructed in the two previous subsections:

rc = rkq − rgp (3.12)

This property is composed of two contradictory phenomena. We can easily imagine
cases maximizing the kernel quality or minimizing the generalization property. In the
first case, a chaotic system would map all the inputs to different states of the reservoir,
and thus maximizing the kernel quality (i.e. rkq = N). However, it is impossible to
also map two similar inputs to the same state of the reservoir in this condition. This
would thus minimize the generalization property (i.e. rgp = N), and finally produce a
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Figure 3.16: Measuring procedure of the generalization property. N
different input streams are sent in the reservoir computer, before sending
a same input series. The response of each last input is recorded in a
matrix. Adapted from L. Appeltant Ph. D. thesis [143]
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poor computational ability. On the other hand, it would be also easy to maximize the
generalization property for sure, by rending the reservoir computing device insensitive
to the input. In this case, two similar inputs would be mapped on the same state of
the reservoir. But this is also true for two different inputs, which would result once
again to a poor computational ability.

3.4.2 Memory capacity

We have explained previously that the time-delay reservoir computer is well designed
to process temporal signals. There are many tasks that require to remember several
consecutive inputs to produce the proper response. In order to learn the time de-
pendency of the input data, the reservoir computer have to remember these values
during a time longer than the round-trip of the feedback. There is thus a second
task-independent property which is called memory capacity. It measures how well the
system can remember the past inputs sent to the reservoir [97].

To compute the memory capacity, we generate a random signal u(k) between 0 and
0.5, as the input of the reservoir at time k and we train it to reproduce the input
signal delayed by i steps. We can compute the memory function for a given delay i by
calculating the normalized correlation between the trained output of the reservoir ŷ(k)
and the delayed output u(k − i):

m(i) = corr(ŷ(k), u(k − i)). (3.13)

m(i) is taking its value in [0; 1]. It indicates how well the system is able to keep the
data at a given delay. In Fig. 3.17, function m(i) is computed for the VCSEL-based
time-delay reservoir computing system, introduced in Chap. 4.

The memory capacity can then be obtained as follows:

µc =
∞∑
i=1

m(i) (3.14)

It corresponds to the depth of memory reachable by the reservoir computer. If this
value is too low, some tasks requiring several consecutive past inputs might not be
satisfyingly processed by a reservoir computer.

3.4.3 The Sante Fe time series prediction

This first task is extracted from the Santa Fe Time Series Prediction and Analysis
Competition led by the Santa Fe Institute in 1991 [144]. This competition aimed
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Figure 3.17: Exemple of memory function for VCSEL-based time-delay
reservoir computer (numerical results presented in Chap. 4). This curve
displays the different value of the memory coefficients, depending on
the delay i.

at providing to researcher an overview of the new computer networks, and of their
accuracy on analyzing data from different scientific fields. The data set we are using
is the first time series proposed in this competition, made of the data of the chaotic
fluctuation of a far-infrared laser. This series is presented in Fig. 3.18.

The goal of this task is, given the current state of the laser, to predict the next one.
The difficulty on this task is due to the erratic drops of amplitude, which are poorly
represented in the series, thus providing only a few instances of this power drops to
train the reservoir computer correctly. However, the value of the next state of the
laser is highly correlated to the value of the current state and does not requires a
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Figure 3.18: First thousand points of the Santa Fe time series
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large amount of memory to be solved. This task is largely used to test performance of
reservoir computers.

The error on this task is computed using the normalized mean square error (NMSE),
which corresponds to the mean distance between the estimation of the reservoir and
the expected response, normalized by the variance of the time series. Mathematically,
this reads:

NMSE = 1
m

∑m
i=1(ŷ(i)− y(i))2

σ2(y) , (3.15)

where m is the total number of points in the series, ŷ is the trained reservoir output,
y is the target signal, and σ2(y) is the variance of the target signal.

3.4.4 The Nonlinear channel equalization task

The other task studied in this thesis is the nonlinear channel equalization task, which
is a problem typically encountered in telecommunication networks. Many physical
communication channels exhibit nonlinear properties which induce distortion during
the transmission, and a temporal shift due to reflections at different objects. The
goal of this task is to reconstruct the original signal from the transmitted signal as
illustrated in Fig. 3.19.

We will test two different nonlinear channels, which are presented below.

NL 
Channel

Reservoir

Original signal

Original signal

Received signal 

Received signal

Figure 3.19: Principle of the nonlinear channel equalization task. The
transmitted signal is distorted due to the nonlinear channel. This
distorted signal is set as the input of the reservoir computer. The
reservoir is trained to predict the original signal.
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Figure 3.20: Example of wireless signal. The line in dotted blue is an
example of signal at the input of the channel. The line in grey is the
corresponding output of the channel.

3.4.4.1 WI-FI channel

The first channel presented is commonly used as a benchmark task for time-delay
reservoir computer and has been presented in [145]. The input signal d(n) is a sequence
of symbols, independent and identically distributed among the values {-3; -1; 1; 3}.
This signal is transmitted through a nonlinear channel, which can be modeled by a
system linearly mixing consecutive inputs, followed by a memoryless nonlinear system.
The linear part of the channel is given below:

q(i) = 0.08d(i+ 2)− 0.12d(i+ 1) + d(i) + 0.18d(i− 1)
−0.1d(i− 2) + 0.091d(i− 3)− 0.05d(i− 4) (3.16)
+0.04d(i− 5) + 0.03d(i− 6) + 0.01d(i− 7).

The signal is then modified by the nonlinearity given by:

u(i) = q(i) + 0.036q(i)2 − 0.011q(i)3 + v(n), (3.17)

where v(n) is a Gaussian noise. An example of signals is given in Fig. (3.20).

The linear part of the channel involves the inputs from the current step up to the
7th delayed step. That means memory capacity has to be at least 7 in order to
process this task correctly. Moreover, it also involves two steps beyond the current
one. These data have never been presented to the reservoir at the moment the
input is being recovered. The system will have to somehow compensate this lack of
information. The performance on this task is computed thanks to the symbol error rate
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(SER): The number of miss-reconstructed symbols over the total number of symbols
reconstructed.

3.4.4.2 Single mode optical fiber

The other channel studied in this thesis is one of the most used telecommunication
channels in the current internet network: the single mode optical fiber SMF-28 made
of silica [35]. We send a two-level pulse amplitude modulation (PAM) signal made of
random bits in the fiber at a rate of 25 Gb/s. PAM modulation consists in encoding
data in the amplitude of pulses, and is currently used for instance for fast Ethernet
communication. This signal is filtered to take into account the rising time of the bit.
An example of such a signal is given in Fig. 3.21.(a).

To simulate numerically the channel, we use the nonlinear Schrödinger equation [146]:

i
∂E(z, t)
∂z

= −iα2E(z, t) + β2

2
∂2E(z, t)
∂t2

− γ|E(z, t)|2E(z, t), (3.18)

where E(z, t) is the slowly varying envelop of the optical field, α is the attenuation of
the fiber, β2 is the second order coefficient of dispersion, and γ refers to the nonlinearity
of the fiber. The values of the different parameters are chosen so that we simulate the
SMF-28 fiber [147]: α = 0.2 dB.km−1, β2 = −21.4 ps2.km−1, and γ = 1.2 W−1.km−1.

There are three different effects that make this task complex: First the attenuation
that increases the impact of the noise on the signal, making it more difficult to
distinguish the signal. The second one is the Kerr effect, which results from the
nonlinear optical properties of the fiber and induces a change in the refractive index
of the fiber depending on the optical signal. However, keeping a low amplitude for
signals avoids triggering this effect. Using low power signals is thus the solution used
nowadays in telecommunication networks to avoid nonlinear effects. We have thus used
an amplitude of 4 mW at the input of the channel. The last effect is the chromatic
dispersion, which is the one impacting the most the performance of the reservoir. It
is responsible of the time-broadening of the bit. This means that the information of
one bit are distributed on several steps of the input signals. Because of the chromatic
dispersion, a large amount of memory is necessary.

The performance on this task is measured thanks to the bit error rate (BER), which is
the number of miss-reconstructed bits over the total number of bits reconstructed.



3.4. Tasks and metrics 59

(a)

(b)

(c)
0

1

2

3

4

0 0.4 0.8 1.2 1.6 2
time [ns]

p
o
w

e
r 

[m
W

]

0

1

2

3

4

0

1

2

3

4

p
o
w

e
r 

[m
W

]
p
o
w

e
r 

[m
W

]

Figure 3.21: Example of optical signals. (a) Signal sent at the input
of the fiber. (b) Received signal after 25 km of fiber. (c) Received signal
after 50 km of fiber.
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3.5 Conclusion

In this chapter, we have presented the basics of artificial neural networks and their
different types of architectures and topologies. If the feedforward neural network is
easy to train, it does not allow processing temporal signals due to the lack of memory.
Creating loops inside the network allows keeping residual information in the network,
and thus creating a memory effect. Nevertheless, it makes the training of the system
more complex. Reservoir computing helps to tackle this problem, by considering a fixed
recurrent neural network and by training only a readout layer with linear regression.
The time-delay reservoir computing is specifically interesting as it allows creating
experimental reservoir computer with a large number of virtual nodes, but only one
physical node. In this paradigm, only one physical node is required, while the other
neurons are timely distributed over a delay-line. Several tasks are used to test the
performance of this architecture. We decided to keep the computational ability and
the memory capacity to test the intrinsic capacity of the system, and the chaotic time
series prediction and the nonlinear channel equalization as specific applied tasks.

In the next chapters, we will present a time-delay reservoir computer using a VCSEL
as a physical node, and its computational performance. We will show that the specific
properties of VCSEL can be used to enhance the performance and the speed of a
time-delay reservoir computer.
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I know there’s a proverb which that says ’To err is human,’ but a human error is
nothing to what a computer can do if it tries.
Agatha Christie, Hallowe’en Party
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T
he photonic time-delay reservoir computer has progressed significantly over the
past few years regarding the processing of time-dependent signals. However,
as presented in the previous chapter, this architecture still suffers from its

"slow" processing time, since the different neurons are activated sequentially. This
chapter aims at studying the performance of a time-delay reservoir computer made of
a VCSEL. As presented in chapter 2, the VCSEL has several advantages compared
to the classical semiconductor laser, such as higher modulation frequency and lower
power consumption. We also aim at drawing benefits from its specific polarization
dynamics to enhance the computational performance of the reservoir computer.

After a short summary of the different architecture of time-delay reservoir computing
existing, and their performance in Sec. 4.1, we will present in detail our architecture
and its simulated performance in Sec. 4.2.1. These numerical simulations have been
realized in order to prepare the realization of an experimental setup, which performance
are presented in Sec. 4.3, and confront the experimental results to the numerical
simulations. We will finally capture the essential part of this work in Sec. 4.4.

Most of the results presented in this chapter have been published in peer-reviewed
journals [17, 18].

4.1 Current performance of time-delay reservoir computing

As explained in Chap. 3, the first reference to a reservoir computer made of a single
dynamical node was made by L. Appeltant et. al. in 2011 [8]. In their work, a
Mackey-Glass oscillator is used to perform spoken digit recognition task with an
error rate of 0.2 %. The suggested architecture performs well, but the processing
speed is limited by the slow dynamics of the system. The same team proposed a
year later an opto-electronic architecture based on the same working principle [9]. A
Mach-Zehnder modulator is used to realize the nonlinear node. This system remains a
reference in terms of performance. In their first work it has been used to recognize
spoken digits, but also to predict the Sante Fe time series. The performance was
comparable to their previous work concerning the speech recognition, but the speed of
the system was increased by three order of magnitude thanks to the use of photonic
components. The Santa Fe time series prediction was successfully performed with a
NMSE of 1.2× 10−4. The same architecture has also been used by Y. Paquot et. al. to
perform telecommunication task for the first time [10]. The system was able to recover
experimentally WIFI signals with a symbol error rate of 10−4. The opto-electronic
reservoir has been recently optimized to be able to process information at gigabit per
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second speed rate. The system was used to classify millions spoken digit words per
second [16].

Simultaneously, other architectures of time-delay reservoir computer were reported. The
first all-optical time-delay reservoir computer reported was made with a semiconductor
optical amplifier [11]; it was performing WIFI channel equalization with a symbol error
rate twice larger compared to the architecture previously introduced but operating
twice faster. The same task has also been performed using a passive fiber cavity [148].
This architecture achieved an error rate of 10−5 both in numerical simulation and in
experiment, which are the best performance on this task up to date, but at rather low
computational speed.

The laser-based architecture was also proposed and is still under study as the use
of laser allows to easily reach gigabit per second processing speed due to the fast
modulation possibility. The first reservoir made of a conventional edge-emitting laser
was presented in 2013 by D. Brunner et. al. [136], and was used for time series
prediction and spoken digit recognition. This system has been further explored, and
tested with several benchmarking tasks [12, 14, 149], such as exploring the memory
capacity of the system, or testing the nonlinear channel equalization task.

The use of a semiconductor ring lasers has also been proposed by R. Nguimdo et. al.
[139, 13, 150] to predict the Santa Fe time series. Different conditions of the two modes
dynamics of the semiconductor ring laser were proposed to optimize the performance
of the reservoir.

K. Takano et. al. demonstrated in 2018 the possibility to use photonic integrated
circuit (PIC) made of an integrated DFB laser, a semiconductor amplifier and a
feedback to perform Santa-Fe time series prediction [140].

4.2 Numerical simulations

Using a VCSEL as single dynamical node in a time-delay reservoir computer (TDRC)
is motivated by the VCSEL intrinsic properties: (i) The VCSEL’s high modulation
speed can speed up the reservoir processing and (ii) the two-mode VCSEL polarization
dynamics allows for the generation of more information per unit of time. In addition
to that, the VCSEL is largely used for the data communication in the Internet, which
would make a VCSEL-based reservoir computer suitable to perform telecommunication
tasks and being seamlessly integrated with existing hardware. In this section, we
present our VCSEL-based architecture, and the numerical analysis of the performance
in the parameter space. Numerical simulations shall confirm our first insight, i.e. that
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Tunable

Laser
MZ

VCSEL
Attenuator P.C.

P.C.

Figure 4.1: Scheme of the VCSEL-based reservoir computer taken
from [17]

a VCSEL-based reservoir allows getting a faster computation device, while keeping (or
even improving) the computational performance.

4.2.1 Presentation of the model

The architecture studied in this chapter is presented in Fig. 4.2. and is very similar
to the one presented by K. Hicke et al. [12], except that an EEL is substituted by
a VCSEL. The reservoir itself is made of the VCSEL and a feedback loop. In the
loop, an attenuator and a polarization controller control the feedback strength and
the polarization of the light at the output of the feedback, respectively. The number
N of virtual nodes spread along the delay-line can be adjusted with the delay of the
optical line τ . These two parameters fix the inter-delay θ between two consecutive
virtual nodes such that: τ = N × θ.

The system can be either injected or modulated electrically (via the pumping current).
The optical input stage is composed of a master laser, and a Mach-Zehnder modulator
to embed the data stream in the VCSEL dynamics.

In order to simulate our system, we consider the SFM model [60] with a feedback term
and an optical injection term:

Ėx = κ(1+iα)[(N−1)Ex+inEy]− (γa+iγp)Ex
+Φx(t)+κAinj(t)e(ωinj−ω0)t+Fx(t), (4.1)

Ėy = κ(1+iα)[(N−1)Ey−inEx]+(γa+iγp)Ey
+Φy(t)+Fy(t), (4.2)

Ṅ = −γN [N−µ+N(|Ex|2+|Ey|2)+in(EyE∗x−ExEy∗)], (4.3)
ṅ = −γsn−γN [n(|Ex|2+|Ey|2+iN(EyE∗x−ExE∗y)], (4.4)

where Ex and Ey are the slow-varying amplitude of the two orthogonal linearly polarized
optical fields LPx,y, N is the population difference between conduction and valence
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bands. n is the population difference between the carrier densities with positive and
negative spin values. µ is the injection current normalized to threshold. κ is the field
decay rate, α is the linewidth enhancement factor, γN is the decay rate of the carrier
population and γs is the decay rate which influences the mixing of carrier populations
between the two different spins. γa and γp are used to model the linear dichroism
and the linear birefringence of the active medium, respectively. ω0 = 2πf c

λ
is the

angular frequency of the free-running laser (with λ the wavelength of the laser, and f
the frequency of the electrical field), and η is the feedback strength (cf Eq. 2.2). The
output of the Mach-Zehnder modulator Ainj , which corresponds to the injected optical
field is calculated thanks to the following formula:

Ainj(t) =
√
Pinj/2× (1 + eiV (t)/Vπ), (4.5)

where Pinj is the optical power of the tunable laser and V (t) is the voltage relative
to the input taken within [−πVπ; πVπ]. ωinj is the angular frequency of the master
laser. The electric input is made by modulating the bias current µ around its mean
value. Hence, we can write µ(t) = µ0 + γI(t), where µ0 is the mean bias current, γ is
a scaling factor, and I(t) the current proportional to the input.

Fx and Fy are two Langevin noise sources modeling the spontaneous emission noise
[151], and are given by:

Fx =
√
βsp
2
(√

N + nξ1(t) +
√
N − nξ2(t)

)
, (4.6)

Fy = −i
√
βsp
2
(√

N + nξ1(t)−
√
N − nξ2(t)

)
, (4.7)

where ξ1(t) and ξ2(t) are complex Gaussian white noise, and βsp is the spontaneous
emission rate. We first consider a deterministic case i.e. βsp = 0.
Finally, Φx(t) and Φy(t) are the feedback terms. They can be expressed as follows:

Φx(t) = η (cos(Θ)Ex(t−τ)− sin(Θ)Ey(t−τ)) e−iω0τ , (4.8)
Φy(t) = η (sin(Θ)Ex(t−τ) + cos(Θ)Ey(t−τ)) e−iω0τ (4.9)

where η is the feedback strength and Θ is the polarization orientation of the delayed
optical field induced by the polarization controller, with respect to the LPx mode.

There are multiple tunable parameters, and therefore the dimension of the parameter
space to explore becomes too large to be completely studied with fine resolution. We
will first split the parameters in two categories: the internal parameters of the VCSEL,
and the operating parameters, i.e. tunable and accessible by a user. We have split
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VCSEL parameters Values
κ 300 GHz
α 3
γa -0.1 GHz
γp 6 GHz
γN 1 GHz
γs 50 GHz
λ 1550 nm
βsp 10−12

Table 4.1: Values of the VCSEL parameters.

them in the chart below:

VCSEL parameters Operating parameters
κ η

α Pinj

γa γ

γp Θ
γN θ = τ

N

γs µ0

ω0

Because we aim at building an experimental setup that corresponds to this simulated
system, we will rather focus on exploring the operating parameters. Therefore, the
VCSEL’s internal parameters are fixed, with the commonly encountered values in the
literature [151]. The values used for the VCSEL parameters are presented in Tab. 4.1.

The operating parameters have been chosen as the one that can be easily tuned
experimentally. The bias current µ0 can be set thanks to the power supply of the
laser diode. The feedback strength η can be set thanks to an attenuator placed in
the feedback loop, and the polarization orientation of the delayed optical field Θ can
be adjusted thanks to a polarization controller also placed in the feedback loop. The
optical power of the master laser Pinj is set with its power supply. Finally the delay
between two nodes θ and the scaling factor γ can be adjusted while pre-processing the
input signal.

We will also limit ourselves to only two different values for Θ:

• Θ = 0: In this case, the polarization is maintained along the feedback. The
main polarization mode of the VCSEL at the end of the feedback loop is injected
parrallelly to the main emitted polarization mode. The depressed polarization
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Figure 4.2: The two configurations of feedback. For isotropic feedback,
the main polarization mode of the VCSEL at the end of the feedback loop
is injected parrallely to the main emitted polarization mode, and so is
the depressed polarization mode. For polarization rotated feedback, the
polarization orientation is rotated perpendicularly during the feedback:
the dominant VCSEL polarization mode LPx at the end of the feedback
loop is injected parrallelly to the depressed polarization mode LPy, and
the depressed polarization mode LPy is injected to the opposite of the
dominant polarization mode −LPx.

mode at the end of the feedback loop is injected parrallelly to the depressed
emitted polarization mode. This case is called isotropic feedback (IF) with the
following expression:

Φx(t) = ηEx(t−τ)e−iω0τ ,Φy(t) = ηEy(t−τ)e−iω0τ . (4.10)

• Θ = π
2 : In this case, the polarization orientation is rotated perpendicularly in

the feedback loop. The dominant VCSEL polarization mode LPx at the end
of the feedback loop is injected parrallelly to the depressed polarization mode
LPy, and inversely for the depressed polarization mode. This is what we refer as
polarization rotated feedback (RF) and its mathematical expression reads:

Φx(t) = −ηEy(t−τ)e−iω0τ ,Φy(t) = ηEx(t−τ)e−iω0τ . (4.11)

This model has been used to perform numerical simulations, and the details of the
numerical method are presented in Appendix A.

4.2.2 Reservoir with an electric input

We first study the performance of the reservoir with an electric input, with no optical
injection. We examine the influence of the inter-delay θ between the virtual nodes,
the bias current µ0, the scaling factor γ and the feedback strength η. The results
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Figure 4.3: Temporal response of the system subitted to a step. The
bias current is set at µ0 = 1.5 before t = 0 ns. At t = 0 ns, the bias
current is set at µ = 1.55. τ = 8 ns, η = 0.2 GHz

presented in this part are preliminary, and not exhaustive since, as explained below,
this electrical input method has not been selected.

4.2.2.1 Raw performance of the system

Before studying the performance of the system, to know how it responds to a step
input current allows us to determine the range of time scales to explore and find a
suitable operating point. The response to a step is given in Fig. 4.3, when the bias
current µ changes from 1.5 to 1.55 at t = 0. The length of the feedback has been set at
τ = 8 ns. The feedback strength is chosen to be at η = 0.2 GHz. We can observe that
the VCSEL oscillates towards a new steady state at t = 0 ns. The response oscillates
with a frequency around 3 GHz until stabilizing. The response fades away after ∼ 4
ns, and at t = 8 ns, we can see the influence of the feedback on the temporal response:
an echo of the previous response is visible. To benefit from the transient dynamics
of the system for our reservoir computer, we need to chose θ smaller than the time
response of the dynamical system as explained in Chap. 3. The values of θ we explore
are thus smaller than 0.3 ns.

Once we know more about the response time of the system, we will focus on the task
independent performance metrics of the system, i.e. the computational ability and the
memory capacity, to find the best operating point. We map the space of parameters
(γ, θ) and (µ0, η), to compute these two metrics. The maps showing the computational
ability normalized by the number of nodes are provided in Fig. 4.4, for a number of
neurons N = 400. Figure 4.4.(a) presents the computational ability depending on the
scale factor γ, and the delay between nodes θ, with fixed µ0 = 1.5 and η = 0.23 GHz.
The map shows an area in which the computational ability is close to 1: This provides
an evidence that the system can perform computation properly. The best level of
performance is achieved for an inter-delay around θ ∼ 0.1 ns, which is consistent with
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Figure 4.4: Computational ability of the system with electrical input
depending on (a) the scaling factor γ and the delay between nodes θ, and
(b) on the feedback strength η and the bias current µ0. Computational
ability has been normalized by the number of nodes.

with the fact that θ must be smaller than the typical time response of the system.
The scaling factor has to be chosen around γ ∼ 0.1. This provides an information
about the required difference of amplitude to map differently two close inputs by the
reservoir computer. We will thus fix θ = 0.2 ns and γ = 0.05 to compute the second
map presented in Fig. 4.4.(b), which explores the dependence of the computation
ability on two other parameters: the bias current µ0 and the feedback strength η. The
area of best performance is larger while varying these parameters. There is still a
smaller region providing even better performance for µ0 ∼ 1.5 and η ∼ 0.15. These
results provide evidence that some parameters combinations are more suitable than
others to perform computation. However, a proper reservoir computer not only needs
to demonstrate good computational ability, but also a good memory capacity. The
same method has been applied to compute the memory capacity, as shown in Fig. 4.5.
The system is trained with 800 samples (reaching a satisfying trade-off between good
learning and over-fitting), and the test is made on 1800 samples. We observe that
depending on the scale factor and the delay between nodes, there is a region providing
a memory capacity of 18. However, keeping the same values as previously (θ = 0.2 ns
and γ = 0.05) to compute the memory capacity depending on the feedback strength
and the bias current provides a lower memory. In this case, the set of parameters
providing the best memory capacity does not corresponds to the one giving the best
computational ability. One might choose the parameters depending on the task that
should be performed by the reservoir. If the tasks requires a large memory and the
different inputs can be distinguished easily, then the memory capacity of the reservoir
should be favored. On the contrary if the task requires a small memory capacity and
the different inputs are close one from each other, the computational ability might be
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Figure 4.5: Memory capacity of the system with electrical input de-
pending on (a) the scaling factor γ and the delay between nodes θ, and
(b) on the feedback strength η and the bias current µ0

a priority.

4.2.2.2 Applied performance of the system on the Santa-Fe prediction task

The maps presenting the performance for the Santa Fe tasks are depicted in Fig. 4.6.
We used a training set with 3000 samples, and a testing set with 1000 samples. The
maps have been computed only while sweeping η and µ0. Two sets of parameters have
been chosen:

• θ = 0.15 ns and γ = 0.05, which maximize the computational ability (Fig. 4.6.(a)).
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Figure 4.6: NMSE on Santa-Fe prediction task of the system with
electrical input depending on on the feedback strength η and the bias
current µ0 for (a) θ = 0.15 ns and γ = 0.05 the scaling factor γ, and (b)
θ = 0.25 ns and γ = 0.03.
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• θ = 0.25 ns and γ = 0.03, which maximize the memory capacity (Fig. 4.6.(b)).

We observe that in both cases, the system can exhibit its best performance, with a
NMSE of 3× 10−3. However, it is still an order of magnitude higher (worse) than the
performance obtained by the opto-electronic reservoir computer [9].

As explained at the beginning of this section, this input method has not been selected
for our experimental setup, mainly because of speed reasons: the laser mount we
will use for the experiment (TCLD-9 from Thorlabs) cannot achieve RF modulation
beyond 600 MHz.

4.2.3 Reservoir with an optical input

This section presents the performance of the reservoir submitted to optical injection.
From now on, the bias current µ is a fixed parameter. The scaling factor γ thus
does not play any role. Except otherwise is stated, the injection is made with a zero
detuning, hence ωinj = ω0

4.2.3.1 Dependence of the intrinsic performance of the system on operating parameters

We will first study the response of the system to a step of optical injection. Figure 4.7.(a)
shows the response of the VCSEL with isotropic feedback. An optical step with an
amplitude of Pinj = 0.1 mW is sent at t = 0 ns, inducing an oscillating behavior of the
laser at 5 GHz. The oscillations are strongly damped, before reaching the new steady
state. At t = 8 ns, we can observe the influence of the feedback: Echoes of the initial
response which have larger amplitude with the optical input compared to the electric
input. We can still distinguish the echo of the response after several roundtrip times.
This is mainly because injecting the laser stabilizes its dynamics. The feedback strength
can be thus set higher without destabilizing the VCSEL. Figure 4.7.(b) presents the
response of the VCSEL with rotated feedback. We observe in this configuration that
both polarization modes of the VCSEL are lasing, and both polarization modes show
echoes of the step response, even if the optical injection is aligned with the main
polarization mode. We have thus two choices to build the output layer: We can either
train the reservoir with the total output power |E2

x|+ |E2
y |, and having only one piece

of information per node, or can measure separately the power of each polarization
mode |E2

x| and |E2
y |, which gives two pieces of information per node. In the second

configuration, we build an output layer with twice more nodes, while keeping the same
feedback duration τ . The echoes are damped more quickly compared to the isotropic
feedback case. For both configurations, the response is faster compared to using an
electric input, hence making possible to reduce the inter-delay θ between virtual nodes,
and therefore to increase the processing speed.
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Figure 4.7: Temporal response of the system submitted to a step for
the system with (a) isotropic feedback and (b) for the system with
rotated feedback. The blue (red) line presents the power emitted by the
dominant (depressed) polarization mode. There is no injected power
before t = 0 ns. At t = 0 ns, the injected power is set at Pinj = 0.1 mW.
τ = 8 ns, η = 30 GHz. A zoom on the oscillating response is providing
for both figures.

The study of the bifurcation diagram given in Fig. 4.8 adds information to the one
gained from the analysis of the time response. The observed dynamical behavior is
common for semiconductor laser submitted to feedback [45]: We observe the first Hopf
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Figure 4.8: Bifurcation diagram of the reservoir computer with optical
injection. The emitted power is measured while varying the feedback
strength η. Pinj = 0.1 mW, τ = 8 ns.
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Figure 4.9: Computational ability plot as a function of the injection
current µ, the node inter-delay θ for an injection power Pinj = 0.1 mW,
and a feedback strength η = 10 GHz. Adapted from [17].

bifurcation point at η ≈ 32 GHz, and successive bifurcations at higher feedback rates
that lead to a chaotic dynamics. This information helps finding the operating point
of the reservoir. As it has been demonstrated in 2012 by J. Dambre et. al. [152],
the question for a dynamical system is not whether the system is able to perform
computation, but rather what the parameters of the reservoir leading to the best
performance are. This question has been studied: A dynamical system used as reservoir
computing device performs better when it is set at the edge of the instabilities [153, 154].
Indeed, while getting closer to the edge of the instabilities, the response of the system
shows more complex transient, while remaining stable. This complexity will contribute
to better separating the states of the reservoir. Therefore, we assume that the best
operating point will be found before, and near the first bifurcation (here for η close to
32 GHz).

We will now focus on the task-independent performance metrics of the reservoir. As
these are not sensitive to the configuration of the output layer (i.e. using the total
output power or the power of each polarization mode separately), we will only present
the results obtained with the total output power. First, we present the computational
ability. The results of this test as a function of the delay between nodes θ and of the
bias current µ is presented in Fig. 4.9. The results are similar for the two feedback
configurations, therefore only one map is given. The optical injected power is kept
fixed at 0.1 mW, and the feedback strength is set at 10 GHz. The map highlights
that there is a region of parameters that exhibits a better computational ability. As
expected, this region is located for smaller values of the inter-delay. (θ ∈[0.01 ns, 0.04
ns]). This region is also located for a bias current close to the threshold current (µ ∈
[1.2, 1.5]). It appears that for smaller bias current, the VCSEL is more sensitive to the
optical injection, which allows a better separation of the different inputs. Taking into
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Figure 4.10: Computational ability as a function of the injection power
Pinj and the feedback strength η. (a) Isotropic feedback configuration
(b) Rotated feedback configuration. µ = 1.3 and θ = 0.02 ns. Adapted
from [17].

account these results, we will keep for the rest of this work µ = 1.3 and θ = 0.02 ns.

The computational ability map as a function of the feedback strength and the injected
power is given in Fig. 4.10. We observe that the results are similar, no matter the
feedback configuration. The area region providing the best computational ability in the
(η, Pinj) plane is large, which means this region is easily reachable experimentally.

We have also evaluated the memory capacity of the reservoir in the (η, Pinj) plane,
keeping µ = 1.3 and θ = 0.02 ns. We chose to use 400 nodes in the output layer. The
training is realized with 800 samples (reaching a satisfying trade-off between good
learning and over-fitting), and the testing with 3,200 samples. The maps presenting
the memory capacity are given in Fig. 4.11. If the difference of performance between
the two feedback configurations is not significant, the impact of the feedback is more
important on the memory capacity. The region giving the highest memory is globally
obtained in the same region of the (η, Pinj) plane. However, the memory is twice higher
with a rotated feedback (with a memory capacity of ∼ 16) than with an isotropic
feedback (with a memory capacity of ∼ 8). We have not been able to clarify why
the memory capacity is higher with the rotated feedback configuration. However, we
assume this might be due to the dynamical response of the VCSEL which is different
when using the rotated feedback in comparison with isotropic feedback. The two
polarization modes "exchange information" via the carrier population in the laser in
case of rotated feedback. This phenomenon being slower than the response of one
polarization mode to optical injection, data last longer in the reservoir.
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Figure 4.11: Memory capacity as a function of the injection power
Pinj and the feedback strength η. (a) Isotropic feedback configuration
(b) Rotated feedback configuration. µ = 1.3 and θ = 0.02 ns. Adapted
from [17].

Moreover, the computational performance and the memory capacity of the system
can be interpreted with the dynamics of the reservoir. The maps of task-independent
performance are superimposed with the limit of chaos in Fig. 4.12. The dynamics
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Figure 4.12: Comparison between the dynamics of the reservoir and
its (a) computational ability and (b) memory capacity in case of rotated
feedback, depending on the injection power Pinj and the feedback
strength η. µ = 1.3 and θ = 0.02 ns. The black line shows the border
between stable and chaotic dynamics.
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Figure 4.13: Memory capacity depending on the rotation of the feed-
back Θ and the feedback strength η. Pinj = 0.1 mW, µ = 1.3 and
θ = 0.02 ns.

of the reservoir is compared with the computation ability in Fig. 4.12.(a), and with
the memory capacity in case of rotated feedback in Fig. 4.12.(b). We observe that
the region of parameters giving the best computational ability and the best memory
capacity are really close to the edge of chaos, as discussed previously. The figure also
allows identifying the parameters giving simultaneously the best memory capacity
and the best computational ability. There is only a narrow region of parameters that
leads to best performance for both computational ability and memory capacity, but it
does not mean though that only this region will provide satisfactory performance on
applied tasks.

4.2.3.2 Dependence of the memory capacity on VCSELs parameters

We finally realize additional simulations to assess the quality of the choice we have
made at the beginning of this section.

We first perform a more systematic study of the influence of the rotation of the
polarization on the memory capacity. The maps showing the performance is provided
in Fig. 4.13. For this map, the injected power has been fixed to 0.1 mW. We notice
that the region showing the highest memory capacity is centered around Θ = π/2
and Θ = 3π/2. On the contrary, the lowest memory capacity is obtained when
Θ = 0 or Θ = π. This observation sustains our choice of studying the two feedback
configurations, either isotropic or rotated feedback.

We also checked the influence of the frequency detuning on the memory capacity of the
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Figure 4.14: Memory capacity depending on the detuning ∆ν and the
injected power Pinj . η = 10 GHz, µ = 1.3 and θ = 0.02 ns.

reservoir, similarly to the work of J. Bueno et. al. on an EEL-baser time-delay reservoir
computer [51]. The detuning ∆ν = νinj − ν0 is the difference between the injected
optical frequency and the VCSEL free-running frequency. The memory capacity
depending on the detuning and the injected power in the case of rotated feedback is
presented in Fig. 4.14. For this study, the feedback strength is fixed at 10 GHz. The
map is closely related to the injection dynamics of the VCSEL. The region providing
a memory capacity higher than one has the same shape as the injection locking region.
The memory capacity is however higher at the limit of the region having a positive
detuning. While injecting VCSEL, this limit is known to lead to a richer dynamics
than the region of negative detuning values, which is characterized by a more stable
dynamical response [155].

We finally study the influence of the parameters of the VCSEL on the memory capacity.
For these simulations, all the parameters of the VCSEL are kept fixed at the values
given in Tab. 4.1, except one which is analyzed. Only the results for rotated feedback
are provided.

Figure 4.15 shows the different maps of memory capacity as a function of the feedback
strength and of the injected power, for different values of α, the linewidth enhancement
factor. This parameter quantifies the amplitude-phase coupling of the VCSEL. A higher
value leads to a stronger coupling. Added to that a non-zero linewidth enhancement
factor causes a chirp, i.e. the laser frequency gets modulated when modulating its
amplitude [156]. We observe that each map is similar to the one presented in Fig 4.11.
However, it seems that for a value of α about 2, the reservoir exhibits a higher memory
capacity. The area providing the best memory capacity shifts to higher values of
injected power while increasing α. This behavior can be interpreted as a consequence
of the change of dynamics of the VCSEL with feedback. When increasing α, the
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VCSEL destabilize more easily. The edge of chaos is then reached for lower values of
the feedback strength and higher injected power.

The second VCSEL parameter being studied is γa. The maps are presented in Fig. 4.16.
A positive value of γa leads to a lower threshold for the depressed polarization mode
(LPy) and inversely a negative value leads to a lower threshold for the dominant
polarization mode (LPx) [157]. The figure presents three of the memory capacity maps
as a function of the feedback strength and the injected power for γa = −0.5 GHz
(4.16.(a)), γa = 0 GHz (4.16.(b)) and γa = 0.5 GHz (4.16.(c)) (the value commonly
used for γa is -0.1 GHz [151]). The last figure presents the best achievable memory
capacity depending on γa. The region providing the best memory capacity remains
the same while sweeping γa. The memory capacity is nevertheless higher when one
polarization mode is strongly enhanced compared to the other (γa = ±1 GHz), or when
both polarization modes have the same threshold (γa = 0 GHz). We also notice that
the curve is approximately symmetric to 0, which is expected since the two polarization
modes of the VCSEL play symmetrical roles in the dynamics.
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Figure 4.15: Memory capacity depending on the injection power Pinj
and the feedback strength η for (a) α = 1, (b) α = 2, (c) α = 3, (d)
α = 4, (e) α = 5, (f) α = 6. µ = 1.3 and θ = 0.02 ns.
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Figure 4.16: Memory capacity depending on the injection power Pinj
and the feedback strength η for (a) γa = −0.5 GHz, (b) γa = 0 GHz,
(c) γa = 0.5 GHz. µ = 1.3 and θ = 0.02 ns. (d) Best achievable memory
capacity depending on γa

Finally, we study the influence of γp on the memory capacity. The results are presented
in Fig 4.17. This parameter is directly related to the frequency difference between the
two polarization modes (LPx) and (LPy), leading to a frequency difference of γp/π
[157]. Figures 4.17.(a)-(f) present the maps of memory capacity for different values of
γp, and Fig. 4.17.(g) presents the evolution of the best achievable memory capacity
depending on γp. The memory capacity seems to oscillate while sweeping γp. However,
the memory capacity tends to increase as γp increases. The memory capacity thus
oscillates when sweeping γp, while globally increasing with γp.

4.2.3.3 Applied performance of the system

We will present in this section the performance of the reservoir on benchmarking tasks.
Considering the numerical results already obtained, we will consider θ = 0.02 ns and
µ = 1.3. The results will be presented depending on the feedback strength η and the
injected power Pinj . We will also compare the performance of the reservoir when using
either isotropic or rotated feedback configuration. We will test our reservoir computer
with the Santa-Fe chaotic series prediction task. Yet the system is rather suitable to
perform telecommunication tasks, as explained at the beginning of this section. This
is why we also present the performance on nonlinear channel equalization task, using
either the WIFI channel or the optical fiber channel.

We fist present the results for the Sante Fe time series prediction. We use separately



80
4. Performance of VCSEL-based time-delay reservoir computing device

on single task processing

lo
g

(P
in

j) 
[m

W
]

-2

-1

(a)

0

0

-2

-1

0

-2

-1

0

log(η) [GHz] log(η) [GHz]

lo
g

(P
in

j) 
[m

W
]

lo
g

(P
in

j) 
[m

W
]

10

20

30

(b)

(d)(c)

(e) (f)

20

30

40

1 10 20 30 40 50 60 70 80 90 95

γp [GHz]

m
e
m

o
ry

 c
a
p

a
ci

ty

(g)

50

60

0 0.5 1 1.5 1.90 0.5 1 1.5 1.9

5

15

25

45

50

55

40

35

m
e
m

o
ry

 c
a
p

a
ci

ty

Figure 4.17: Memory capacity depending on the injection power Pinj
and the feedback strength η for (a) γp = 11 GHz, (b) γp = 21 GHz,
(c) γp = 41 GHz, (d) γp = 50 GHz, (e) γp = 70 GHz, (f) γp = 87
GHz. µ = 1.3 and θ = 0.02 ns. (f) Best achievable memory capacity
depending on γp. The blue line corresponds to the real values, and
the red dotted line corresponds to the moving average of the memory
capacity.
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Figure 4.18: Sante Fe time series prediction (a) NMSE after prediction
for isotropic injection. (b) NMSE after prediction for rotated injection.
(c) Example of prediction of chaotic signal: the original signal(blue) and
the predicted signal (red crosses). From [20]

the power of each polarization mode |E2
x| and |E2

y | as an output for the reservoir.
Therefore, it allows having much information per node. The training is realized
with 3,000 samples, and the testing is made with 1,000 samples, using 400 nodes
(hence a computational speed of 25 MHz). The NMSE exhibited by the reservoir
computer with both feedback configurations are given in Fig. 4.18. We observe that
the shape of the region with the best NMSE is similar to the one providing the best
computational ability. We are able to reach a NMSE of 5× 10−3 with the isotropic
feedback configuration. In the case of rotated feedback, we are able to decrease further
the NMSE to 2× 10−3. Figure 4.18.(c) presents an example of prediction in that best
case. It seems that the increase of memory capacity helps improving the performance
of the reservoir. However, as this task does not require a lot of memory (the next value
of the series being highly correlated to the current one), the NMSE is only divided by
2. We can highlight that this performance is the best achieved numerically with an
all-optical reservoir computer with optical feedback [11], even if the opto-electronic
reservoir is still more accurate [10].

As we design the system for solving telecommunication problems, we have tested the
system with nonlinear channel equalization task and we will explore the influence of
the feedback configuration on the performance. We assume that using the rotated
feedback configuration should provide a better performance, similarly to our previous
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observation. Nevertheless, we severely decreased the length of the feedback loop, using
only 32 nodes (hence a computational speed of 1.56 GHz). This choice is made to meet
the speed requirement of telecommunication networks. We used 20,000 samples to
perform the testing since this value is a threshold beyond which the performance of the
reservoir on this task does not significantly increase. We used 40,000 samples for the
training to record significantly small error rate (up to 2.5× 10−5). The performance is
presented in Fig. 4.19. We first use a signal without noise, and we study the influence
of three different configurations:

• isotropic feedback using the total emitted power as a node state,

• rotated feedback using the total emitted power as a node state,

• rotated feedback using separately the emitted power of the two polarization
modes. In this last configuration, there are twice more data available since each
node is represented by two polarization states.

The maps of performance in the η− Pinj plane in case of a SNR of 28 dB are depicted
for the three different configurations in Figs. 4.19.(a)-(c). In each of the three cases, the
region providing the best performance corresponds to the one with the best memory
capacity. This observation is foreseen as this task requires a lot of memory (cf Sec. 3.4).
However, we observe that the region showing the best performance is larger when
using the rotated feedback than when using the isotropic feedback. It is even larger
when using the two polarization modes separately. With the isotropic feedback, we can
reach a minimum SER of 5× 10−4, and 1× 10−4 is achievable with rotated feedback.
Further improvement down to 1.5× 10−5 is possible if training the reservoir computer
is done with the two polarization modes separately. We have been able to divide by
5 the SER by optimizing the dynamics linked to the feedback, and to further divide
the SER by 10 by exploiting the specificity of the two-modes dynamics of the VCSEL,
doubling the number of virtual nodes with a fixed delay-line. The best achieved SER
corresponds to state-of-the-art performance, and with the fastest computation speed
so far (3.12 Gb/s versus 236 kb/s in for [10]).

This test is commonly realized when degrading the SNR of the received signal. We
compare the best achievable SER with the three reservoir configurations as a function
of this SNR in Fig. 4.19.(d). As the task gets more complex with a higher SNR, the
best achievable SER increases as the SNR decreases. The conclusion drawn without
noise remains unchanged: Using rotated feedback improves the performance of the
reservoir and using the two polarization modes separately when analyzing the node
states further improves the performance.
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Figure 4.19: Nonlinear channel equalization. The performance of the
reservoir is presented as a function of the feedback strength η and the
injected power Pinj with (a) the isotropic feedback, (b) the rotated
feedback configuration using the total emitted power |E|2 as a node state,
and (c) with the rotated feedback configuration using separately the
emitted power of each polarization mode |Ex|2 and |Ey|2. (d) Symbol
error rate for different signal-to-noise ratio. 2 : single-mode system. � :
dual mode system using both |E|2. 4 : dual-mode system using |Ex|2
and |Ey|2. (e) Example of reconstruction of a signal with SNR = 24 dB:
the signal sent in the channel (dotted blue), the non-linearly modified
signal at the output of the channel (grey), the reconstructed signal (red).
The arrow points to the single error in this data sequence. Adapted
from [17]
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Figure 4.20: Illustration of the preprocessing method for the optical
channel equalization, using 5 consecutive bits. The signal at the output
of the fiber is averaged at twice the frequency of the input data stream,
giving symbols b(1)

n and b(2)
n for each bit bn. Each symbols is hold during

the duration of the delay line τ . The 10 values b(1)
n−4, b

(2)
n−4, to b

(1)
n and

b
(2)
n are masked with a 10 different masks of N values (resulting in a
global mask 10 × N values) and used as an input of the reservoir to
reconstruct bn−2

We also tested the influence of different forms of noise in the reservoir: the spontaneous
emission noise of the VCSEL βsp, and the detection noise. We used βsp = 4.5× 10−4,
and 8-bit quantization noise. In both cases, the performance of the reservoir is globally
unchanged with respect to noiseless scenario. It seems that the training of the reservoir
compensates the noise produced in the reservoir computer.

We finally changed the nonlinear channel to test our reservoir computer on the recovery
of a signal being distorted by an optical fiber, as explained in Sec. 3.4. Considering the
results on the compensation of the WIFI distortion, we only compare the performance
of the reservoir with isotropic feedback and the one with rotated feedback and using
separately the power of the two polarization modes of the VCSEL. Since the signal
distortion introduced by the fiber is complex and tends to distribute the information
of one bit in to several consecutive bits, the input signal is processed in order to feed
the reservoir with the data from these several bits simultaneously, similarly to the
method presented in [14]. An illustration of the method is presented in Fig. 4.20. For
each bit, we associate two features values b(1)

n and b(2)
n , which are the time-average

values of the upper half and the lower half of the distorted signal for the duration of
one bit. The input of the reservoir is realized by masking each feature value for three
consecutive bits, therefore using 6 different masks (one per feature) made of N values,
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Figure 4.21: Nonlinear optical channel equalization. The BER of the
reservoir is presented depending on the feedback strength η and the
injected power Pinj with (a) the isotropic feedback configuration, (b)
the rotated feedback configuration

which are then summed together. The masked input of the reservoir Jn−1(t) at the
step n− 1 reads:

Jn−1(t) =
2∑
i=0

(
b

(1)
n−i ×M2i(t)b(2)

n−i ×M2i+1(t)
)
, (4.12)

where Mi(t) is one of the 6 different masks.

We present in Fig. 4.21 the performance of the reservoir in recovering the signal after
propagating over 25 km of fiber for the two configurations of feedback. The training
has been performed using 20,000 samples and the testing with 40,000 samples. It
appears that the reservoir is able to recover perfectly the signals without any error
with both isotropic and rotated feedback. We nevertheless observe that the region
providing zero error is larger in the case of rotated feedback than in the case of isotropic
feedback. This observation is consistent with what we observed for the WIFI nonlinear
channel equalization. However, this task is not complex enough to conclude for sure
that the reservoir computer with rotated feedback brings better performance than
with isotropic feedback.

We thus perform a more complex task by recovering a signal after 50 km of fiber. As
previously, the training set is made of 20,000 samples, and the testing set of 40,000
samples. Figure 4.22.(a) presents the performance of the reservoir with isotropic
feedback; we observe that the location of the area providing the best performance
is similar to the one obtained when recovering WIFI signals. The best performance
achieved with this configuration of feedback is a BER of 2×10−2. For rotated feedback,
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Figure 4.22: Nonlinear channel equalization. The BER of the reservoir
is presented depending on the feedback strength η and the injected
power Pinj with (a) the isotropic feedback configuration, (b) the rotated
feedback configuration

the region providing the best BER is slightly shifted toward higher feedback strength
(see in Fig 4.22.(b)). The best SER achieved with this configuration of feedback is
1.25× 10−2. The results obtained with this task lead to the same conclusion to that
of the WIFI channel equalization task: polarization rotated feedback improves the
performance of the reservoir.

4.3 Experimental results

The numerical simulations in the previous section 4.2.1 have been presented to motivate
an experimental realization. The simulations help finding the best operating point for
the experimental setup, and also bring insight into the experimental performance of
the system.

In this section, we will detail the experimental setup and the components used, and
then present the method used to test the experimental system. The experimental
performance will be detailed as well as the comparison with the results obtained
numerically.

Most of the results presented in this section have been published in [18].

4.3.1 Presentation of the experimental setup

We first present some pictures of the experimental setup in Fig. 4.23. These pictures
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(a) Vertical view of the experimen-
tal setup. The oscilloscope and the
AWG are on the shelf.

(b) Horizontal view of the setup. The reservoir and the
input layer are fixed on the optical table.

(c) Zoom on the reservoir computer. 1) Variable optical at-
tenuator, 2) Polarization controller, 3) VCSEL, 4) circulator,
5) splitter

Figure 4.23: Pictures of the experimental setup
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Figure 4.24: Scheme of the setup. The signal loaded in the AWG is
made by multiplying the input signal by a mask. MZ: Mach-Zehnder
madolator, P.C.: polarization Controller, AWG:Arbitrary Waveform
Generator, att: attenuator, Oscillo: Oscilloscope, ampl: amplifier,PD:
photodiode, BOSA: brilloin scattering optical spectrum analyser. Adap-
tated from [18]

show all the components used to realize the experiment. For the sake of clarity, the
corresponding scheme is provided in Fig. 4.24.

The reservoir itself, presented in Fig. 4.23.(c), is composed of a VCSEL Raycan
RC32xxx1-FFA emitting at 1550 nm and an optical feedback loop. Along the feedback
loop, the light travels through an attenuator Keysight 81577A (att), that controls the
feedback strength and a polarization controller (P.C.), that adjusts the polarization of
the feedback and allows switching between the two different configurations: isotropic or
rotated feedback. Because of the optical fiber already present in the packaging of the
components used in the feedback loop, the optical delay line is minimum 11.7 m, then
the delay-time is minimum 39 ns. This length is reached by cutting at the shortest the
fibers of each component. The original length of the delay-line with the original length
of fibers was 24 m (80 ns), hence we divided by two the length of the feedback during
the shortening process. The length of the delay-line limits the processing speed at 25.6
MHz. According to the simulation realized in the previous section Sec. 4.2.1, the time
separation θ between two nodes for this system has to be around 20 ps to provide the
best performance. However due to the frequency limitation given by our oscilloscope
and our modulator, we have chosen to set this value to θ = 100 ps. This corresponds
to the highest frequency we can record with our oscilloscope, i.e. a Tektronix DPO
71604C 16 GHz bandwidth, and the fastest modulation speed of our Mach-Zehnder
modulator. This leads to N = 390 virtual nodes spread along the delay-line.
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The input layer comprises a continuous tunable laser Yanista Tunics T100S. Its
polarization is adjusted in order to be aligned with the principal modulation axis of
a Lithium Niobate Mach-Zehnder modulator. An additional polarization controller
(P.C.) is used to control the polarization of the injection. The input signals are
numerically generated. The mask is composed of 390 different values (as much as the
number of nodes). This mask is built by randomly generating values in {-1; 1}. This
mask is then multiplied by the different input values. These signals are loaded in an
Arbitrary Waveform Generator (AWG) Tektronix AWG 700002A and generated at 10
GSamples/s and sent to the RF port of the modulator.

The output layer has been modified compared to the numerically simulated system
due to power constraints imposed by the low level of optical power emitted by the
VCSEL. We thus add an EDFA-amplifier (ampl) in the output layer, to remain above
the detection threshold of the electronic equipments. A photodiode (PD) Newport
1544-B 12 GHz bandwidth is connected to the oscilloscope, recording the signal at
50 GSamples/s. The fiber splitter between the feedback loop and the output layer
yields 90% of the total power for the detection. The recorded signals are post-processed
using a computer. The optical spectrum of the output layer is also measured thanks to
a Brillouin scattering optical spectrum analyzer (BOSA). This device allows measuring
the optical spectrum of the reservoir with a high resolution of 10 MHz.

4.3.2 Finding the operating point of the reservoir

Realizing a fiber based setup has several advantages, including the easy way of
coupling the injecting laser, and connecting with the feedback loop. However, the
polarization gets harder to tune, by comparison to a free space experiment, in which
the polarization of the light remains fixed along the whole distance of propagation. In
the fiber, the polarization rotates randomly and depends on the wavelength and on the
room temperature. As a consequence, when we adjust the polarization properties in a
fibered setup, we do not set the polarization at the point of the polarization controller,
as it is done in free space setup, we rather set the polarization with the polarization
controller to ensure that the polarization properties are the right one at the point of
interest in the setup. For instance, in our setup, this point of interest is the input
connection of the VCSEL. The polarization controllers are used to set properly the
polarization properties of the feedback and the injecting laser so that the polarization
is the desired one at the input of the VCSEL. There is then a second problem which is
due to the fact that we cannot control the polarization properties in the fibered setup
directly. This control has to be done thanks to the dynamical analysis: We adjust
the polarization until the system exhibits the dynamic behavior corresponding to the
desired configuration.
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Figure 4.25: Experimental optical spectra in different conditions. (a)
free running VCSEL, (b) System with feedback and injection (0.3 mW
injection, 18 dB attenuation), (c) VCSEL with parallel feedback, 10 dB
attenuation, (d) VCSEL with rotated feedback, 10 dB attenuation.
From [18]

We first set the polarization properties of the feedback loop. This setting is done thanks
to the optical spectrum that are recorded with the BOSA. Examples of spectrum are
given in Fig. 4.25. The x-axis is centered on the wavelength of the main polarization
mode of the free running VCSEL, at 1552.88 nm. Figure 4.25.(a) presents the optical
spectrum of the free running VCSEL. The temperature of the VCSEL is controlled
at 21°C, and the injection current is set at 4.5 mA, which corresponds to 1.5× the
threshold current. In these conditions, we observe that the main polarization mode is
lasing, and that the depressed polarization mode also emits a small amount of power.
The ratio of emission between the two polarization modes is measured to be 54.23 dB,
and the detuning between the two polarization modes is measured to be 16.4 GHz.
The tuning of the feedback is done by setting the attenuator at the minimum, which is
10 dB in our case. In these conditions, the VCSEL exhibits totally different dynamics
when setting isotropic or rotated feedback. We thus use the optical spectrum to adjust
the feedback properties. The spectrum in the case of isotropic feedback is depicted
in Fig. 4.25.(c). The peak corresponding to the dominant polarization mode of the
VCSEL is narrower, and it exhibits two side modes separated from the main peak by a



4.3. Experimental results 91

frequency close to the relaxation oscillation of the VCSEL [158]. The spectrum of the
system with rotated feedback is given in Fig. 4.25.(d). The VCSEL in this case exhibits
several optical frequencies in the two polarization modes. The fact that the different
peaks are equally separated is typical of the time-periodic dynamics of VCSELs. This
means the first bifurcation has already been crossed. Once the polarization of the
feedback is set, we can increase the feedback value to its best operating value. We set
the total attenuation at 18 dB. According to the numerical results shown in Sec. 4.2.1,
there is a best operating point for each value of the feedback and a corresponding
injection power.

We then set the polarization of the input signal. This is done by sending a modulated
input in the laser and tuning the polarization of the input signal to maximize the
response of the VCSEL. We finally have to set the injection power Pinj and the detuning
∆ν. We concluded from the numerical results that the VCSEL needs to be locked to
the master laser, at the edge of the parameter region leading to chaos. There are then
two solutions two reach this operating point:

1. Set the injection power first and then sweep the detuning until destabilizing the
VCSEL. We set the detuning at the smallest value producing a stable dynamics

2. Set the detuning and decrease the injection power until destabilizing the VCSEL.
We choose the smallest value of injection strength producing the stable dynamics.

We choose the first option to set the parameter. We first set the injection power at
Pinj = 0.3 mW (corresponding to 50 µW at the surface of the VCSEL), which leads to
a detuning of ∆ν = 1.05 GHz. Figure 4.25.(b) shows the spectrum of the reservoir at
its operating point. We observe that the VCSEL is locked on the master laser since the
dominant polarization mode exhibits a narrow peak which is detuned with respect to
the free running mode [159]. The power emitted by the depressed polarization mode
is reduced.

We finally present experimental signals in Fig. 4.26. Figure 4.26.(a) presents an input
signal. It is made by modulating the mask with the consecutive values in the input
series. Figure 4.26.(b) presents the corresponding output of the reservoir. This complex
response contains the states of the different nodes.

4.3.3 Performance of the experimental system

In this section, we will prove experimentally that the reservoir with rotated feedback
performs better than the reservoir with isotropic feedback. This result will be proved
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Figure 4.26: Experimental signals. (a) masked signal for the input of
the reservoir computer. (b) corresponding response of the reservoir.

by testing the reservoir with several tasks, tuning the experimental setup following
the method explained previously.

We have tested this result the Santa Fe time series prediction. We use the total emitted
power of the VCSEL as the state for each node (i.e. |Ex|2 + |Ey|2), as we noticed that
the low and noisy emitted power in the depressed polarization mode degrades the
performance of the experiment. We use 6000 samples to train our system, performed
with a linear regression. The 2992 other samples are used for testing. We realized the
first test over 3 different trainings and testings for both feedback configurations. In
these conditions, we successfully reach a NMSE of 1.9× 10−2 with isotropic feedback.
Performance is slightly better with rotated feedback, with a NMSE of 1.6× 10−2. This
is also an order of magnitude lower than the results obtained with other laser-based
time-delay reservoir computer [136]. An example of prediction is given in Fig. 4.27: the
reservoir is able to predict the time series with only a small deviation from the target
signal even for the small amplitude values, thus leading to a low relative error. As we
explained in Chap. 3, this task is highly sensitive to the signal-to-noise ratio (SNR).
Considering this fact, we assume that the performance we reach is related to the SNR
we can achieve experimentally, which is estimated at about 12 dB. We have realized a
larger study with additional training iterations to draw more precise statistics on the
performance of the reservoir computer on the Santa Fe prediction task. The mask is
different for each iteration. The results obtained over 50 realizations are presented
in Fig. 4.28. We observe that for isotropic feedback, the reservoir is able to provide
a NMSE between 0.01 and 0.06, with a mean NMSE at 0.036. The NMSE reached
in the case of rotated feedback is lower, and is dispatched between 0.005 and 0.065,
with a mean NMSE at 0.033. Even if the difference of performance is relatively small,
the reservoir made with the rotated feedback configuration allows reaching a lower
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Figure 4.27: Example of Santa Fe series prediction: the original Santa-
Fe series (blue line and circles), and the predicted series (red line and
crosses). Adapted from [18]
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Figure 4.28: Histogram presenting the NMSE obtained with the reser-
voir with isotropic feedback configuration (blue) and rotated feedback
configuration (red) on the Santa Fe prediction task over 50 repetitions.
The mean values obtained with isotropic feedback (µNMSE,IF ) and
with the rotated feedback (µNMSE,RF ) are represented with the thinner
lines.
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NMSE. We can also observe that in running a larger study, the NMSE is significantly
higher than the first results obtained. This is mostly due to the fact that with further
iterations, the statistics also takes into account the fluctuation of the dynamics of the
system.

We have also tested our experimental setup with telecommunication tasks, which are
more complex tasks. We first tried the recovery of WIFI signals. The training is
realized with 10,000 samples, and the testing on 5,400 samples, using as previously the
total emitted power by the VCSEL. The results over nine different trainings for each
configuration of the feedback are presented on Fig. 4.33.(b). The mask is different
for each iteration. The mean SER obtained with the rotated feedback configuration
(µSER,RF ) is 1.5%, which is lower than the mean SER obtained with the isotropic
configuration (µSER,IF ), that has been measured to be 1.9%.

Considering the low SNR we can reach and the small number of repetitions we have
to compute the mean performance, these results have been statistically analyzed with
a one-sided t-test with a significance level of α = 2.5% to compare the averaged
SER obtained from series of SER measurement realized in the isotropic (µSER,IF )
and polarization-rotated feedback (µSER,RF ) configuration, respectively. The null
hypothesis H0: µSER,IF = µSER,RF is tested against the alternative hypothesis H1:
µSER,RF < µSER,IF . We first confirm the normality of the data using a Kolmogorov-
Smirnov test [160] and then apply the t-test. We find that the statistics of interest
computed from the data (and following a Student’s distribution with 15 degrees of
freedom) belongs to the rejection region of the test : (−∞,−2.131]. As a result, we
reject H0 in favor of H1 with significance level α = 2.5%. This implies that we have
strong statistical evidence in this low-SNR situation that the polarization rotated
feedback allows smaller SER in the nonlinear channel equalization task.

We also provide an example of reconstruction in Fig. 4.33.(a). It shows a sample of
the target signal and the estimated signals, in a case exhibiting a SER of 1.1%. In
this sample there is only one missreconstructed symbol.

As for the Santa Fe prediction task, we run a larger study, with more realizations to
confirm the statistical analysis. The results are presented in Fig. 4.30. We observe
that for isotropic feedback, the reservoir provides a SER between 0.015 and 0.04, with
a mean SER at 0.0245. The SER reached in the case of rotated feedback is lower, and
is scattered between 0.01 and 0.03, with a mean SER at 0.021. We observe that the
difference between the SER obtained with the rotated feedback configuration and the
one obtained with the isotropic feedback configuration is similar to the separation
obtained in the previous study, even if the averaged performance is slightly worse. The
reservoir with the rotated feedback configuration reaches a lower SER.
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for the parallel feedback (blue) and the perpendicular feedback (red). (b)
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Adapted from [18]
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Figure 4.30: Histogram presenting the SER obtained with the reservoir
with isotropic feedback configuration (blue) and rotated feedback con-
figuration (red) on the wifi channel equalization task over 50 repetitions.
The mean values obtained with isotropic feedback (µSER,IF ) and with
the rotated feedback (µSER,RF ) are represented with the thinner lines.

Finally, we performed the optical telecommunication channel equalization with our
reservoir in both feedback configurations. We still use the total emitted power as
the state of one node, and we use 20,000 samples for the testing, and 5,380 for the
testing. The signal has been preprocessed using the same method as the one used for
the numerical simulations, using the data over 5 consecutive bits instead of 3 bits. The
results over 50 realizations are presented in Fig. 4.31, for the equalization of 25 km and
50 km of fiber. The histogram showing the performance obtained when recovering the
signal at the output of 25 km of fiber is presented in Fig. 4.31.(a). The system exhibits
a BER between 10−4 and 1.4× 10−3, with a mean BER at 6× 10−4, in the case of the
isotropic feedback configuration. For the rotated feedback configuration, the reservoir
is able to recover the signal without any mistake. We conclude that the error provided
in thus below 2× 10−4, as the testing is realized with 5380 samples. An example of
prediction in this case is provided in Fig. 4.32. There is a real enhancement in rotating
the polarization of the feedback. The performance of the recovery of a signal after
50 km is presented in Fig. 4.31.(b). The mean BER exhibited by the reservoir with a
rotated feedback is at 7× 10−3, compared to 1.5× 10−2 with isotropic feedback. The
same conclusion therefore holds for the equalization of 50 km of fiber when compared
to the equalization of 25 km of fiber and is even clearer. We also observe that the two
histograms are clearly separated, which supports statistically the fact that the rotated
feedback configuration enhances the performance of the reservoir.
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Figure 4.31: Histogram presenting the BER obtained with the reser-
voir with isotropic feedback configuration (blue) and rotated feedback
configuration (red) on the optical channel equalization task over 50
repetitions using (a) 25 km of fiber and (b) 50 km of fiber. The mean
values obtained with isotropic feedback (µBER,IF ) and with the rotated
feedback (µBER,RF ) are represented with the thinner lines.
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Figure 4.32: Experimental prediction for the optical channel equaliza-
tion task for a 25 km-long fiber: the target signal (blue lines and circles)
and the predicted signal (red crosses) in case of polarization rotated
feedback.
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Figure 4.33: Histogram presenting the SER obtained depending on
the level of noise in the output layer of the reservoir with the reservoir
with isotropic feedback configuration (purple) and rotated feedback
configuration (yellow) on the wifi channel equalization task over 50 rep-
etitions. The mean values obtained with isotropic feedback (µNMSE,IF )
and with the rotated feedback (µNMSE,RF ) are represented with the
thinner lines. Adapted from [18]

4.3.4 Link between numerical and experimental results

The numerical simulations have been realized taking into account the devices available
to realize experimentally the reservoir computer. However, we notice that the perfor-
mance obtained with the experimental setup is significantly lower than the theoretical
prediction. This is mainly due to the lack of modeling of the many noise sources,
especially the noise in the output layer, which is caused by the amplifier. We thus run
other simulations to have an insight of the influence of the noise in the output layer
of the reservoir. The performance on the WIFI channel equalization task is depicted
in Fig. 4.33 depending on the noise in the output layer for both configurations of
feedback. The first observation is expected: increasing the SNR in the output layer
leads to a better performance of the reservoir computer. We presented in the last
section that the SNR in our reservoir was around 12 dB which is really low. Yet if
we compare the performance given by the numerical simulations at 12 dB and the
experimental results, we notice that the results are matching. It provides supportive
evidence of that the model we were using to produce the preliminary results is suitable
to simulate the behavior of the experimental system.

We can also compare the performance obtained with the nonlinear optical channel
equalization. Recovering the signal after 25 km of optical fiber seems to be an easy
task. When considering the reservoir with polarization rotated feedback, both the
simulated and experimental systems provide a perfect recovery of the signal. However,
in the case of isotropic feedback, the experimental system shows a remaining error.
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The comparison is more surprising when recovering the signal after 50 km of fiber: We
observe that for both numerical and experimental results, the polarization rotated
feedback case exhibits a better SER compared to the isotropic feedback case. However,
with both configurations of feedback, the experimental results outperform the numerical
results. We can think that, due to the complexity of the task, adding noise to the
output of the reservoir simplifies the processing of the task.

4.4 Conclusion

To conclude, we have presented in this chapter the performance of a time-delay VCSEL
based reservoir computer. We studied how to harness the polarization dynamics of
the VCSEL to enhance the performance of a reservoir computing device. We first
presented numerical simulations of the system, which brought a first insight of the
intrinsic and applied performance of the reservoir. These results have been confirmed
experimentally afterwards. Thanks to the experimental and numerical results, we
have been able to prove that the rotated optical feedback configuration improves
the computational performance of the reservoir, compared to other configurations of
optical feedback, and that we can access twice more information for the same number
of nodes with rotated feedback, improving further the performance of the reservoir.
The model has finally been confronted to the experimental findings.

We have studied in this chapter how to use the specific polarization dynamics to
enhance the performance of the reservoir. However, we could imagine that we would
also take advantage of the two-mode dynamics of the VCSEL to speed up the processing.
This point will be discussed in the next chapter.





5
Performance of VCSEL-based

time-delay reservoir computing
device on multi-task processing

- Tu sens quelque chose de bizarre toi ?
- Bizarre, peut-être pas. Je dirais plutôt cocasse ou simplement inattendu, voire
impromptu, quoiqu’un tantinet insolite disons-le, dans la mesure du saugrenu, tout
en étant singulièrement fantasque, presque excentrique si l’on y songe, et qui sait ?
Extravagant en diable...
- Caracole ! Alain Damasio, La Horde du Contrevent

Contents

5.1 Time-delay reservoir and dual task processing . . . . . . . . 102

5.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Presentation of the new model . . . . . . . . . . . . . . . . 103

5.2.2 Memory properties of the system . . . . . . . . . . . . . . . 106

5.2.3 Applied performance of the system . . . . . . . . . . . . . . 109

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Presentation of the complete experimental setup . . . . . . . 115

5.3.2 Preparing the setup to perform computation . . . . . . . . . 119

5.3.3 Experimental performance . . . . . . . . . . . . . . . . . . . 120

5.3.4 Comparison numerical and experimental results . . . . . . . . 126

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



102
5. Performance of VCSEL-based time-delay reservoir computing device

on multi-task processing

W
e detailed until now how to perform computation of a single task with
a VCSEL-based time-delay reservoir computer. The main conclusion is
that we can get benefits from the polarization dynamics of the VCSEL to

improve the computational performance of the reservoir device.

However, we can also imagine using the multimode polarization dynamics to perform
several tasks simultaneously (one task per mode for instance). We will study more in
depth this possibility in this chapter.

The results presented in this section have been published in [19].

5.1 Time-delay reservoir and dual task processing

The idea of using the multimode dynamics for optical computing is relatively novel and
has been studied theoretically with only few photonic device. The first architecture
reported performing two tasks simultaneously was a time-delay reservoir computer using
an edge emitting laser as a physical node [136]. Two tasks are injected simultaneously
in the reservoir by modulating the bias current of the laser, and injecting a modulated
optical beam in the cavity. The experimental setup was able to recognize two series of
spoken digit recognition with an error rate of 0.014% for the task injected optically
and 0.64% for the task injected electrically.

In 2015, R. NGuimdo et al. proposed a reservoir computer using a semiconductor
ring laser as a physical node [13]. Each task is processed by either the clockwise or
counterclockwise mode of the laser. The system is used to perform either the Santa Fe
prediction task (best NMSE at 4× 10−2) or the nonlinear channel equalization (best
SER at 10−3). That work also studies the influence of coupling the two modes through
the feedback on the computational performance of the reservoir. They concluded that
coupling the two modes creates interferences between the two tasks, and therefore
decreases the performance.

Even more recently, it has been reported a time-delay reservoir computing architecture
performing two tasks simultaneously, using two longitudinal modes of a semiconductor
laser [161]. This system has been used to perform in parallel two Santa Fe prediction
tasks, each task being encoded in a different longitudinal mode of the laser. This
system is able to reach a NMSE below 0.01.

We will thus present in this chapter our proposal to perform multi-tasking using the
multimode dynamics of the VCSEL.
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Figure 5.1: Scheme of the setup. The dominant (depressed) polariza-
tion mode is represented by the blue (orange) arrow. The polarization
controller in the feedback loop preserves the polarization state along
the fiber. The ones in the input layer are used to align the polarization
of both signals with the dominant and depressed polarizations of the
VCSEL. MZ: Mach-Zehnder modulator, P.C.: polarization controller,
att.: attenuator

5.2 Numerical simulations

We will in this section present the new model and the numerical performance of the
reservoir computing system performing simultaneously two tasks.

5.2.1 Presentation of the new model

The system we are now considering is presented in Fig. 5.1. We consider a system
identical to the one of the previous chapter. The reservoir is still composed of the
VCSEL and a delay line. The output layer also remains the same: the powers of each
polarization mode of the VCSEL are recorded separately. The input layer is however
slightly different. The power emitted by the master laser is split in two, in order to be
modulated by two Mach-Zehnder separately. The two Mach-Zehnder modulators are
fed with the input data of two different tasks. The polarization of each signal at the
output of the Mach-Zehnder modulator is finally aligned with each polarization mode
of the VCSEL. We use the SFM model with two terms of injection and one term of
feedback to simulate this system:

Ėx = κ(1+iα)[(N−1)Ex+inEy]− (γa+iγp)Ex
+Φx(t)+κAinjx(t)e(ωinj−ω0)t, (5.1)

Ėy = κ(1+iα)[(N−1)Ey−inEx]+(γa+iγp)Ey
+Φy(t)+κAinjy(t)e(ωinj−ω0)t, (5.2)

Ṅ = −γN [N−µ+N(|Ex|2+|Ey|2)+in(EyE∗x−ExEy∗)], (5.3)
ṅ = −γsn−γN [n(|Ex|2+|Ey|2+iN(EyE∗x−ExE∗y)], (5.4)
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VCSEL parameters values
κ 300 GHz
α 3
γa -0.1 GHz
γp 6 or 50 GHz
γN 1GHz
γs 10 GHz or ∞
λ 1550 nm

Table 5.1: Values of the VCSEL parameters.

The injected optical field Ainjx,y corresponding to the task Ti can be expressed as:

Ainjx,y =
√
Pinjx,y/2× (1 + eiSx,y(t)+Φ0) (5.5)

where Pinjx,y is the power of the tunable laser modulated in the Mach-Zehnder modu-
lator MZx,y and Sx,y(t) is the normalized signal of the input used in the respective
modulator, Φ0 is the bias voltage of the modulator.

We will test our reservoir with rotated and isotropic feedback configurations, as done
in the previous chapter. However, R. Nguimdo et al. proved in his work that crossing
the modes of the laser along the feedback (and therefore increasing the mixing of the
two tasks) reduces the performance of the reservoir. We thus assume that the isotropic
feedback should provide better performance than the rotated feedback here.

We will keep the same values for the parameters of the VCSEL as in Sec. 4.2.1 except for
the decay rate influencing the mixing of the two carrier populations with different spin
γs, and the birefringence of the active layer γp. Indeed, we want to infer the influence
of the coupling of the two polarization modes inside the VCSEL and therefore choose
different values of these two parameters. γp can take its value in {6 GHz; 50 GHz},
and γs in {10 GHz; ∞}. As explained in the previous chapter, a lower value of γp
reduces the frequency difference between the two polarization modes of the VCSEL,
and thus increases the coupling between the two polarization modes. A higher value
for γs leads to a lower coupling between the two polarization modes. Taking γs =∞
is equivalent to having ṅ = n = 0, which means having two polarization modes not
coupled through spin-flip relaxation mechanisms. A summary of the parameters of the
VCSEL used for the simulations is presented in Tab. 5.1.

We will also study in this chapter the influence of the injected power in the main
polarization mode Pinjx , the injected power in the depressed polarization mode Pinjy ,
and the feedback strength η. Since we already presented the performance of the
reservoir depending on the injected power and on the feedback strength, we will
rather present the influence of the ratio between the two injection powers Pinjy/Pinjx .
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Figure 5.2: Method used to produce the figures. For each value of
the ratio of infected power Pinjy

Pinjx
, we look for minimizing the mean of

the BER of both tasks Tx and Ty. We take the values of the BER and
report them in the next figures.

However, as this parameter may impact on the best operating point of the reservoir
when varying the injected power and the feedback strength, we run each simulation
with a sweep of both η and Pinjx . The value of Pinjy is fixed by the ratio. The best
performance is kept and reported in our figures. We consider that the best performance
corresponds to the one maximizing the performance on both tasks simultaneously.
The method is illustrated in Fig. 5.2.

We assume that as the inter-delay θ between virtual nodes, and the bias current µ
is relative to the dynamics of the VCSEL. Processing two tasks instead of one will
not change the values of these two parameters that leads to the best operating point.
Hence, we keep θ = 0.02 ns and µ = 1.3 as found in the previous chapter.

Since processing two tasks simultaneously is more complex, we will choose to use
separately the emitted power of each polarization mode |Ex|2 and |Ey|2 to maximize
the number of features for the training. The training is realized by building the state
matrix S with the optical power of the two polarization modes |Ex|2 and |Ey|2 for
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each neuron, as follows:

S =



|E(1)
x,1|2 · · · |E(1)

x,N |2 |E(1)
y,1|2 · · · |E(1)

y,N |2
... ... ... ... ... ...

|E(i)
x,1|2 · · · |E(i)

x,N |2 |E(i)
y,1|2 · · · |E(i)

y,N |2
... ... ... ... ... ...

|E(Nt)
x,1 |2 · · · |E

(Nt)
x,N |2 |E

(Nt)
y,1 |2 · · · |E

(Nt)
y,N |2


, (5.6)

where Nt is the size of the training set, |E(i)
x,j|2 corresponds to the optical power of the

main polarization mode measured at the jth node corresponding to the ith input, and
|E(i)

y,j|2 corresponds to the optical power of the depressed polarization mode measured
at the jth node corresponding to the ith input. We then perform two linear regressions
using the same matrix S for both processed tasks Tx and Ty. This also ensures using
the useful data in both polarization modes, since they are mutually coupled, and
thus each polarization mode of the VCSEL contains information on both tasks. The
equations for the linear regressions are S × ωx = bTx and S × ωy = bTy where ωi is the
vector containing the readout layer weights obtained from linear regression, and bTi is
the vector containing the target output of the task Ti.

5.2.2 Memory properties of the system

As done in the previous chapter, we first checked the task independent properties of
the system. Since the computational ability measures how well the system is able to
separate the input in the parameter space, we assume that the computational ability
remains the same while processing two tasks since the input method does not change,
and we rather focus our study on the memory capacity. As we are processing two tasks,
we now define the memory capacity per input signal. Two independent signals are
injected in the reservoir and the two memory capacity tasks consists in estimating each
of the two delayed input signal. We use for this test 400 neurons, hence a delay line of
8 ns. We used 1000 samples for the training set, and 3000 for the testing set. We first
present in Fig. 5.3 an example of memory capacity corresponding to the two signals
injected in each polarization mode of the VCSEL in case of an isotropic feedback
configuration. We observe that the region leading to the best memory capacity is
roughly the same for the two polarization modes of the VCSEL. The two regions are
also similar to the region we observed in the previous chapter (Sec. 4.2.1) in case of
single-task processing. We nevertheless observe that with a ratio of injected power
Pinjy/Pinjx = 2, the memory capacity reached in the depressed polarization mode is
higher (∼ 11) compared to the one achieved in the dominant polarization mode (∼ 7).
Considering the fact that the dependency of the performance of the reservoir on η and
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Figure 5.3: Memory capacity of (a) the task injected in the dominant
polarization mode and (b) the task injected in the depressed polarization
mode, provided by the system with isotropic feedback configuration
plot as a function of the feedback strength η and the injected power in
the dominant polarization mode Pinjx . Pinjx/Pinjx = 2, γs = 10 GHz,
γp = 50 GHz.

on Pinjx is similar to the case of single task processing, we will focus on the study of
the memory capacity depending on the ratio of injected power Pinjy/Pinjx . We will
show that the difference of memory capacity between the two injected tasks is related
to this ratio.

The memory capacity of the reservoir with isotropic feedback configuration as a
function of the injection ratio is presented in Fig. 5.4. This figure also presents the
influence of the coupling between the two polarization modes through the parameters
γs and γp. It appears that the memory split between the two tasks is sensitive to
this ratio. Furthermore, we identified two different tendencies. In the case of a small
frequency splitting between the two polarization modes of the VCSEL (γp = 6 GHz),
the memory is higher in the task Tx when the injection power is higher in the dominant
mode (Pinjy/Pinjx < 1). The memory then gets higher in the task Ty when more
power is injected in the depressed polarization mode than in the dominant one. This
is due to a polarization switching that occurs at the crossing point. In the case of a
larger frequency spacing between both polarization modes, no polarization switching is
observed, and the memory capacity remains the highest in the depressed polarization
mode. The memory in task Tx decreases as the injection ratio increases. Linking the
two polarization modes through γs also slightly decreases the overall memory capacity
of the system. It seems that both tasks are cross-talking. Increasing the injected power
in the depressed polarization mode thus acts as increasing the perturbations in the
dominant one. This is the reason why with a higher value for γs, the total memory
capacity is higher as there is a decrease in the coupling between the two polarization
modes. Therefore, each mode reaches higher memory capacity. We finally observe that
the memory capacity in each polarization mode is lower than the one exhibited by
the reservoir processing only one task. The total memory capacity seems to be shared
when using the two polarization modes.
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Figure 5.4: Best memory capacity of the system with isotropic feedback
configuration plot as a function of the injection ratio between the two
polarization modes, for different set of parameters of the VCSEL. The
blue (orange) line corresponds to the memory of the task injected
in the dominant (depressed) polarization mode of the VCSEL. The
light color corresponds to the standard deviation. Parameters are
(a) γs = 10 GHz,γp = 6 GHz, (b) γs =∞, γp = 6 GHz, (c) γs = 10 GHz,
γp = 50 GHz, (d) γs =∞, γp = 50 GHz

We also run the same study in the case of rotated feedback configuration. The memory
capacity is presented in Fig. 5.5. We can draw similar conclusions to the one found
for the isotropic feedback case. Linking the two polarization modes through γs still
slightly decreases the overall memory capacity of the system, and a larger frequency
spacing allows reaching higher memory capacity. However, contrary to the isotropic
feedback case, the two curves of the memory capacity of the tasks Tx and Ty intersect
when using a VCSEL having a larger frequency spacing between its polarization modes
(i. e. with a larger γp). Finally, we observe that, similarly to processing a single task,
the system exhibits a higher memory capacity in the case of rotated feedback than
in the case of isotropic feedback. For instance, if we compare the performance of the
system using a VCSEL with γp = 6 GHz and γs = 10 GHz, the reservoir exhibits a
memory capacity up to 23 in the case of rotated feedback, compared to 14 in the case
of isotropic feedback.

It can be thought that there is a contradiction with the work realized on the semicon-
ductor ring laser [13]. However, there is none: having a higher memory capacity does
not ensure that the reservoir will perform better on an applied task. That is what we
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Figure 5.5: Best memory capacity of the system with rotated feedback
configuration plot as a function of the injection ratio between the two
polarization modes, for different set of parameters of the VCSEL. The
blue (orange) line corresponds to the memory of the task injected in the
dominant (depressed) polarization mode of the VCSEL. Parameters are
(a) γs = 10 GHz, γp = 6 GHz, (b) γs =∞, γp = 6 GHz, (c) γs = 10 GHz,
γp = 50 GHz, (d) γs =∞, γp = 50 GHz

will show in the next section.

5.2.3 Applied performance of the system

Following the test of the memory capacity, we benchmarked our reservoir with the
nonlinear channel equalization. We first tested the WIFI channel equalization. For
this task, we reduced the number of neurons to 32, which leads to a feedback length
of 0.64 ns. This allows a cumulated bitrate of 6.25 Gb/s. We used for this task
20,000 symbols for the testing set, and 40,000 for the training. The two series of
symbols drawn for the two tasks Tx and Ty are different, but the binary mask remains
the same. As for the memory capacity, we performed this task for either isotropic
or rotated feedback configuration, in order to verify if the conclusion drawn with
the semiconductor ring laser is also valid with the VCSEL. We present in Fig. 5.6
an example of reconstruction of two signals simultaneously. The recovery has been
performed when injecting the two polarization modes of the VCSEL with similar input
amplitudes Pinjx = Pinjy . In these conditions, the SER reached for each task is at
5× 10−3. Both samples of the processed signals only show one error. The confusion
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Figure 5.6: Example of performance on nonlinear channel equalization
for two different signals injected in the two different polarization modes
of the VCSEL. Parameters are γp = 6, γs =∞, Pinjy/Pinjx = 1. (a)-(b)
Example of symbols reconstruction on the task injected in the dominant
polarization mode (a) and in the depressed polarization mode (b). The
blue circles correspond to the original signal and the red crosses to
the predicted signal. The arrows point out the errors. (c) confusion
matrix of the task injected in the dominant polarization mode (LPX).
(d) confusion matrix of the task injected in the depressed polarization
mode (LPY ).
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Figure 5.7: Best SER on the nonlinear channel equalization task of
the system with isotropic feedback configuration plot as a function of
the injection ratio between the two polarization modes, for different
set of parameters of the VCSEL. The blue (orange) line corresponds to
the SER of the task injected in the dominant (depressed) polarization
mode of the VCSEL. The light color corresponds to the standard
deviation. Parameters are (a) γs = 10, γp = 6, (b) γs = ∞, γp = 6,
(c) γs = 10, γp = 50, (d) γs =∞, γp = 50

matrices show that the error made in the reconstruction are equally distributed on the
four symbols. Moreover, when an error is made, the estimated symbol is at a distance
2 from the desired output, i.e. the predicted symbol is just above or below the target
output.

The performance of the reservoir computing device with rotated feedback is presented
in Fig. 5.7. In the same figure we analyze the impact of different parameters on the
performance since these parameters influence the coupling between the polarization
modes. Some conclusions are similar to the observations made previously: (i) The ratio
of injections Pinjy/Pinjx plays an important role on how the performance is distributed
between the two tasks and (ii) the influence of γs is also similar. Increasing the value
of γs, (i.e. reducing the dependency between LPx and LPy) improves the averaged
performance of the reservoir computer. For a small value of γp, there is still the reversal
of performance between the two tasks when Pinjy/Pinjx = 1, due to the polarization
switching of the VCSEL.

However, the influence of γp on this task differs from what we concluded regarding
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the memory capacity. Narrowing the frequency splitting between the two polarization
modes indeed improves the computational performance, contrary to the observation
made for the memory capacity. This tells us that the memory capacity is not the prime
factor impacting the computational performance of the system. When enlarging the
frequency splitting, the nonlinear operation made by the VCSEL on the input stream
is less suitable for this task and prevents one from maintaining good computational
performance.

We also observe an upper level of performance that cannot be overcome, even by
increasing the injection ratio between the two polarization modes. In the best perfor-
mance case (Fig. 3.20.b), we are not able to further improve the SER below 2× 10−3

for a single-task operation with the sets of parameters under consideration. We have
to choose either which task has the best level of performance (in our case with a SER
at 2× 10−3), or have both tasks with a similar, but lower, level of performance (SER
at 5× 10−3).

We also processed two WIFI channel recovery with the reservoir made with rotated
feedback. The performance is presented in Fig. 5.8. γs and γp play the same role for the
reservoir with rotated feedback as for the reservoir with isotropic feedback. However,
as for the memory capacity, the polarization rotated feedback yields a polarization
switching for a larger value of γp. We also observe that the performance of the reservoir
made with polarization-rotated feedback is lower than the performance obtained with
isotropic feedback. For instance, when using a VCSEL with γp = 6 GHz and γs =∞
(which corresponds to the case providing the best performance for both configurations
of feedback), we are able to reach a mean BER of 5× 10−3 with the rotated feedback,
compared to 3× 10−3 with isotropic feedback. We reach the same conclusion as the
one presented in [13].

We also tested our reservoir with the optical channel equalization. Since we demon-
strated that the reservoir computer reaches better performance with isotropic feedback,
we have only performed this task with this configuration of feedback. We first present
the results for the recovery of signals distorted after 25 km of fiber, for the different sets
of parameters of the VCSEL under consideration. For this task, we used 20,000 samples
for the training, and 40,000 for the testing. Performance is presented in Fig. 5.9. It
seems that we can tune the splitting of performance between the two processed tasks
by changing the ratio of injection Pinjy/Pinjx . This can be mainly observed when the
two polarization modes are strongly linked through the spin relaxation parameter γs
and the birefringence parameter γp. As for the WIFI channel equalization, increasing
this ratio improves the performance on task Ty, lowering the performance of task Tx.
A polarization switching is observed for a ratio of injection Pinjy/Pinjx = 1, leading
to a reversal of the best processed task. Moreover, similarly to the previously tested
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Figure 5.8: Best SER on the nonlinear channel equalization task of
the system with rotated feedback as a function of the injection ratio
between the two polarization modes, for different set of parameters
of the VCSEL. The blue (orange) line corresponds to the SER of the
task injected in the dominant (depressed) polarization mode of the
VCSEL. Parameters are (a) γs = 10, γp = 6, (b) γs = ∞, γp = 6,
(c) γs = 10, γp = 50, (d) γs =∞, γp = 50

task, reducing the nonlinear effects coupling the two polarization modes enhances the
mean performance of the reservoir computer. However, it appears that, similarly to
the single-task operation, recovering a 25 km-distortion is an easy task, and does not
allow for discriminating the different cases. The reservoir is indeed able to recover the
two processed signals without any mistake in most of the parameter cases.

We thus tested our reservoir with the recovery of signals distorted after 50 km of fiber.
The testing and the training are realized in the same conditions as previously. The
performance is presented in Fig. 5.10. Since the task is more complex, we can better
observe the influence of the different parameters. We notice that, as previously, an
improvement of the mean performance is visible when increasing γp or γs. However, the
difference of performance is less pronounced than for the processing of WIFI channel
equalization. The averaged performance is a BER of ∼ 2.5% for each set of parameters.
The ratio of injection power Pinjy/Pinjx controls the splitting of performance in most
of the presented cases, except in the case γp = 50 GHz and γs =∞, which corresponds
to the situation for which the nonlinear effects coupling the two polarization modes
are the weakest. In this scenario, the two tasks provide similar BER for each value of
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Figure 5.9: Best BER on the nonlinear optical channel equalization
task after 25 km of fiber as a function of the injection ratio between the
two polarization modes, for different set of parameters of the VCSEL.
The blue (orange) line corresponds to the BER of the task injected in the
dominant (depressed) polarization mode of the VCSEL. Parameters are
(a) γs = 10 GHz, γp = 6 GHz, (b) γs =∞, γp = 6 GHz, (c) γs = 10 GHz,
γp = 50 GHz, (d) γs =∞, γp = 50 GHz

Pinjy/Pinjx . For the other set of parameters, we still observe that one task is better
processed than the other one, and that it exists a crossing point in the performance
curve, leading to an exchange of the best processed task. This point still corresponds
physically to a polarization switching of the VCSEL.

5.3 Experimental results

Considering that we are not able to choose the internal parameters of the VCSEL,
this section will rather focus on proving that we are indeed able to perform two tasks
simultaneously with an experimental VCSEL-based reservoir, and that we are able to
tune the split of performance between the two tasks by changing the ratio of injected
power Pinjy/Pinjx .

In this section, we will first present the experimental setup, before explaining how we
set up the different parameters of the reservoir. We will finally present the performance
obtained with our architecture.
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Figure 5.10: Best BER on the nonlinear optical channel equalization
task after 50 km of fiber as a function of the injection ratio between the
two polarization modes, for different set of parameters of the VCSEL.
The blue (orange) line corresponds to the BER of the task injected in the
dominant (depressed) polarization mode of the VCSEL. Parameters are
(a) γs = 10 GHz, γp = 6 GHz, (b) γs =∞, γp = 6 GHz, (c) γs = 10 GHz,
γp = 50 GHz, (d) γs =∞, γp = 50 GHz

5.3.1 Presentation of the complete experimental setup

The setup we use is structurally similar to the one presented in the previous chapter
(Sec. 4.3). The reservoir remains the same. Only the input and the output layers
have been changed to be able to process two tasks in parallel. The reservoir itself is
the same as the one we have previously studied in Sec. 4.3: It comprises a VCSEL
(Raycan) as a physical node, which emits light at 1552.75 nm for the dominant linear
polarization mode (LPx) and at 1552.89 nm for the depressed polarization mode (LPy).
The bias current of the VCSEL is set at 4.5 mA, which corresponds to 1.5 times
the threshold current. The feedback loop is made of a SMF-28 single mode fiber
(standard telecommunication fiber) resulting in a delay-line of τ = 39.4 ns. As only
one calculation step can be performed per round-trip, this length limits the processing
speed to 25.65 MHz per task, thus 51.3 MHz for two tasks. To optimize our use of the
VCSEL dynamics, we set the inter-nodes delay θ = 0.04 ns according to simulations run
in the previous chapter (Sec. 4.2.1) and to the frequency limitation of the experimental
components (i.e. oscilloscope, arbitrary waveform generator and modulators). We use
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for the training and testing of the reservoir only one every two nodes separated by
2θ = 0.08 ns due to the memory limitation of the computer performing the training,
thus leading to consider N = 492 nodes instead of N = 984. This choice was made as it
speeds up the reservoir’s training without impeding the performance. This choice also
does not reduce the connectivity between the neurons as the delay between nodes is
still shorter than the time required by the VCSEL to restabilize experimentally. There
is also a polarization controller (P.C.) to control the optical polarization along the
feedback loop. Finally, an optical attenuator Keysight 81577A (Att.) is used to control
the feedback strength. According to the results obtained in the previous section (cf
Fig. 5.3), there is an optimum operating point for each value of the feedback strength
while varying the injection power. This is why we set the feedback attenuation η to
17 dB, to guarantee that enough power is injected to find this best operating point.

The input layer is primarily composed of an arbitrary waveform generator (AWG)
AWG700002A from Tektronix, a tunable laser Tunics T100S from Yanista, and two
Mach-Zehnder modulators (MZx,y) with a bandwidth of 12.5 GHz. Both modulators
are working in their linear regime. The light emitted by the tunable laser is split in two
different beams and sent in the two different modulators. The two different masked
input streams, corresponding to the two tasks Tx,y to be processed are used to drive
both modulators, and are generated by the AWG at a symbol rate of 25 GS/s for each
stream. The output power of the modulator is controlled by an optical attenuator built
inside each modulator. This allows an independent control of the injected power Pinjx,y
for the two tasks Tx,y. At the modulators output, the optical polarization of the input
stream containing Tx is aligned with the main polarization mode (LPx) of the VCSEL,
and the one of the input stream containing Ty with the depressed polarization mode
(LPy). An example of input streams is given in Fig. 5.13.(a). Both beams are then
recombined and sent in the reservoir computer. Pictures of the setup are presented in
Fig. 5.11. The corresponding scheme is presented in Fig. 5.12.

The response of the reservoir is recorded at the output layer: The signal is first
amplified with an erbium-doped fiber amplifier (EDFA) from Lumibird. Then, the two
polarization modes of the VCSEL are separated and recorded with two photodiodes
Newport 1544-B 12 GHz bandwidth, connected to an oscilloscope Tektronix DPO
71604C 16 GHz bandwidth with two channels at 50 GS/s. Examples of the experimental
time series recorded for each polarization mode of the VCSEL are given in Fig. 5.13.(b).
The signal-to-noise ratio (SNR) has been experimentally measured to be 21 dB.
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(a) Vertical view of
the experimental setup.
The oscilloscope and the
AWG are on the shelf.

modulator
MZy

modulator
MZx

polarization 
controllers

driver of modulator
MZx

driver of modulator
MZy

(b) Zoom on the input layer. We can distinguish the
two modulators on the foreground, and the modulators
drivers with the polarization controllers used to set the
polarization in the input layer in the background

(c) Horizontal view of the optic table. We observe on the left
the input layer, and the reservoir on the right of the picture.

Figure 5.11: Pictures of the experimental setup
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Figure 5.12: Scheme of the experiment. The two masked signals are
sent on the two modulators. Each input signal is aligned with a different
polarization mode of the VCSEL. The blue and orange arrows show the
polarization of the light in the setup. MZ: Mach-Zehnder modulator,
P.C.: polarization controller, AWG: arbitrary waveform generator, Att:
attenuator, Osc: Oscilloscope, ampl: amplifier, PD: photodiode.
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Figure 5.13: Example of experimental signals. (a) Example of two
input streams generated by the AWG. The blue line corresponds to the
input stream injected in the dominant polarization mode (LPx), and
the red line to the stream injected in the depressed polarization mode
(LPy) of the VCSEL (b) Example of signals recorded at the output
of the reservoir computing system. The blue line corresponds to the
response of the dominant polarization mode (LPx), and the red line to
response of the depressed polarization mode (LPy) of the VCSEL.
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5.3.2 Preparing the setup to perform computation

Since we want to process two tasks simultaneously, there are more parameters to
set before being able to perform computation. As explained at the beginning of this
section, we only perform computation with isotropic feedback. We set the polarization
of the feedback as explained in the previous chapter (Sec. 4.3). Added to that, we
observe that there is an optimal operating point for each value of feedback strength as
soon as we inject enough power in the reservoir (cf. Fig. 5.3). The attenuation in the
feedback loop is thus set to 18 dB, to ensure that we can inject enough power from
the master laser.

We lastly set the master laser. We provide again the optical spectrum of the VCSEL
with optical feedback in Fig. 5.14.(a). The VCSEL is lasing at 1552.72 nm, the
wavelength of its dominant polarization mode. The dominant mode LPx of the VCSEL
has a spectral width of 5.72 GHz with an attenuation of 17 dB in the feedback loop.
The two smaller side peaks are induced by the undamped relaxation oscillations of the
VCSEL [158], which frequency is measured at 3.73 GHz.

The wavelength of this laser is set to 1552.82 nm so that its wavelength is equally
separated from the frequencies of the main and depressed polarization modes of the
VCSEL, as presented in Fig. 5.14.(b). By doing so, we ensure that, having the same
power in both linear polarization modes at the output of the modulators, the power is
equally distributed among the two linear polarization modes of the injected VCSEL.
Shifting the frequency of the master laser to one of the polarization modes of the
VCSEL leads to a more efficient optical injection in this mode, and therefore enhances
the response of this mode at the expense of the response of the other mode, for which
the optical injection is reduced.

We then align the linear polarization at the output of the two modulators with each
polarization of the VCSEL. The alignment is realized by turning on the output of only
one modulator and setting the injection power to a rather high value (around 4 mW).
An arbitrary signal is sent on the RF port of the modulator. We then turn the optical
polarization of this input until maximizing the amplitude response of the VCSEL.
Once the polarization of the first input is set, we adjust the polarization of the second
input similarly. We observe that in these conditions (Fig. 5.14.(b)) , the VCSEL is
emitting light only in its dominant mode, and exhibits wave-mixing dynamics.

When modulating the master laser, its spectrum broadens and overlaps the two
wavelengths of the VCSEL as shown in Fig. 4.25.(c)-(d). This allows the VCSEL to
react to the master laser, and to respond according to the modulated input. This
response also broadens the spectra of the two polarization modes of the VCSEL. The
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Figure 5.14: Optical spectra of the system under different operation
conditions. LPx: dominant polarization mode, LPy: depressed polar-
ization mode, ML: master laser. (a) VCSEL with isotropic feedback,
η = 17 dB. (b) reservoir computer with optical injection on both polar-
ization mode without modulation, Pinjx = Pinjy = 0.08 mW, η = 17 dB,
(c) reservoir computer with optical injection on both polarization mode
with modulation, Pinjx = Pinjy = 0.08 mW, η = 17 dB, (d) reser-
voir computer with optical injection on both polarization mode with
modulation, Pinjx = 0.08 mW, Pinjy = 0.4 mW η = 17 dB.

spectral width of the dominant polarization mode LPx detuned from the modulated
input by 9.45 GHz. We observe also that injecting more power in the depressed mode
LPy forces lasing in the depressed mode despite that mode is not lasing when the
VCSEL is free-running.

The experimental finding of the best operating point is then realized similarly to the
numerical method. Given a value for the ratio of injected power Pinjy/Pinjx , we sweep
the value of Pinjx and keep the value for which the reservoir computer exhibits its best
performance, as presented in Fig. 5.2.

5.3.3 Experimental performance

We tested our device with the nonlinear channel equalization task. We use for the
state of one node the optical power of the two polarization modes of the VCSEL
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separately, since we perform the training of the simulated system. We fill only one
state matrix to perform the training of the two different tasks (cf 5.2). As for the
numerical simulations, the two tasks processed by the reservoir consist of two different
signals drawn randomly. The masks used are the same for both tasks.

We first present the results of the WIFI channel equalization, where we use 12,000
samples for the training set, and 13,380 for the testing. Figure 5.15 presents an
example of the dependency on the injected power Pinjx , of the performance of the
reservoir on the WIFI channel equalization, for a fixed ratio Pinjy/Pinjx = 3. We
observe that the performance on both tasks performed simultaneously is influenced by
the injected power. Moreover, there is an optimal power of injection, which provides
the best performance of the reservoir. In this case, the lowest mean BER reached is at
4%, obtained for an injected power in the dominant mode of 0.1 mW (hence a total
injected power of 0.13 mW).

We studied the variation of this best averaged performance. The results are presented
in Fig. 5.16 and show the performance on both tasks with the ratio of injection. The
performance on task Tx decreases and the one on task Ty increases while increasing the
injection ratio. For a ratio lower than 0.7, task Tx is better performed than task Ty.
The trend is reversed for a ratio greater than 0.7. This inversion can be explained by
a polarization switching induced in the VCSEL by the optical injection. The reservoir
is able to exhibit a best SER for the task Tx of 2.5% when the dominant mode is
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Figure 5.15: Performance on wifi channel equalization task as a func-
tion of the injection power in the main polarization mode Pinjx for a
fixed ratio of injection power Pinjy

Pinjx
at 0.3. The blue curve corresponds

to the performance of the task Tx and the red one to the performance of
the task Ty. The dotted line corresponds to the choice of Pinjx reported
in figures 5.16 for this specific case.
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strongly injected. In this case, the SER reached for task Ty is at 8.5%. The reservoir
reaches a mean SER of 4%. The ratio of injected power in the polarization modes
can thereby be used to easily choose the splitting of performance between the two
performed tasks. The reservoir is able to reach a SER really close to the one obtained
for a single task when the dominant mode of the VCSEL is strongly injected. However,
the overall performance of the reservoir is lower when processing two tasks instead of
one, although the difference is not very significant.

We confirm this behavior of the reservoir by performing the nonlinear optical channel
equalization task for two lengths of fiber, 25 km and 50 km. We processed this task
as we did for the single task operation. The input of the reservoir is realized using a
sliding window of 5 bits (cf Sec. 4.20). We perform the training using 20,000 samples,
and the testing with 5,380 samples.

We first present the influence of the injected power on the performance of both tasks
Tx and Ty in Fig. 5.17. On this figure, the injection ratio Pinjy/Pinjx is fixed to 0.3.
We can observe that there is an optimal injected power that yields the best mean
performance at Pinjx = 0.09 mW for 25 km and at Pinjx = 0.2 mW for 50 km. We will
only report this best value in the figures of the next section.

The results for the channel equalization after 25 km of propagation in the fiber are
presented in Fig. 5.18.(a). We observe that the performance on tasks Tx and Ty

varies with the injection ratio Pinjy/Pinjx . If this ratio is smaller than 2, Task Tx

is better performed than Task Ty. When this ratio is greater than 2, the trend is
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Figure 5.16: Performance on wifi channel equalization task as a func-
tion of the ratio of injection Pinjy/Pinjx . The blue curve corresponds
to the performance of the task Tx, and the red curves corresponds to
the performance of the task Ty. The lighter area shows the standard
deviation of the performance. The dotted line shows the performance
of the reservoir performing the single task.
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Figure 5.17: Performance on nonlinear optical channel equalization
task as a function of the injection power in the main polarization mode
Pinjx for a fixed ratio of injection power Pinjy

Pinjx
at 0.3. (a) Performance

for a distortion due to 25 km of optical fiber. (b) Performance for a
distortion due to 50 km of optical fiber. The blue curve corresponds to
the performance of the task Tx and the red one to the performance of
the task Ty. The dotted line corresponds to the choice of Pinjx reported
in figures 5.18 and 5.19 for this specific case.

reversed, and the task Ty is better performed. We can explain this phenomenon by
a polarization switching in the VCSEL output induced by optical injection. This
phenomenon therefore increases the SNR of the task Ty injected in the depressed
polarization mode. The system is able to provide a BER of 0.04 % for the task Tx,
when the dominant mode is strongly injected (with an injection ratio Pinjy/Pinjx of
0.2). The other task is processed with lower performance in this case, with a BER
of 1.6 %. When the ratio of power is greater than 0.5, the average performance of
the reservoir reaches a threshold of performance with a BER of 0.35 %. The ratio
of injected power in the polarization modes can thereby be used to easily choose the
splitting of performance between the two performed tasks. When processing a single
nonlinear channel equalization task, the reservoir computer exhibits a BER of 0.06 %,
as presented in the previous chapter. This is comparable to the performance obtained
on task Tx when the dominant mode is strongly injected. However, as we observed
with the WIFI channel equalization, processing two tasks instead of one limits the
averaged performance of the system.

Considering that the input of the reservoir is strongly preprocessed, we analyze the
impact of the nonlinear transformation induced by our VCSEL based reservoir on the
task, by comparing it to a stand-alone linear regression (a linear classifier). Towards
this end, the linear classifier is operated in the same conditions as the reservoir
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Figure 5.18: Performance on nonlinear optical channel equalization
task after 25 km of optical fiber as a function of the ratio of injection
Pinjy/Pinjx . The blue curves correspond to the performance of the task
Tx, and the red curves corresponds to the performance of the task Ty
for (a) the reservoir computer and (b) the linear classifier. The lighter
area shows the standard deviation of the performance. The dotted line
shows the performance of the reservoir performing the single task.

computer: One classifier is used to process the two tasks with the same number of
neurons and similar injection power ratio to the one injected in the photonic reservoir
computer. We use also the same input features (two masked signals, using a mask
having the same size, and preprossing each input signal in the same manner as for the
photonic reservoir) with identical sizes for the training and testing sets (20,000 samples
for training and 5,380 for testing). Finally, similar SNR conditions are considered.
To meet this last condition, since the experimental VCSEL introduces additional
noise, we added white noise to the input signal to achieve 21 dB before performing a
stand-alone linear regression. With these similar operating conditions, a stand-alone
linear regression provides a BER slightly lower than 1 %, and the mean BER of the
two tasks is ∼ 3.2 % in the best operating point identified in our experiment (i.e. for
a ratio in the range of 0.6 to 3). The reservoir computer is thus able to improve the
performance on the two tasks by approximately one order of magnitude.

We also provide results on the dual channel equalization after propagating 50 km



5.3. Experimental results 125

in the single mode fiber. Since the distortion of the signal is more pronounced, the
mean performance of the reservoir computer is expected to be lower than the one
after a 25 km transmission. The performance of the reservoir computer is given in
Fig. 5.19.(a). We still observe a similar trend: The polarization switching of the
VCSEL appears for a ratio of injection Pinjy/Pinjx ∼ 1 and the best achieved BER for
one task is at 1.6 %. The best mean performance is at 2.2 %, achieved for a ratio
of injection at 0.7. The system performing this single task exhibits a BER of 1.5 %,
which is still comparable to the performance of task Tx when the dominant mode is
strongly injected, even if processing two tasks simultaneously slightly decreases the
mean performance of the system, when compared to processing a single task.

The performance of the stand-alone linear regression (linear classifier) is presented in
Fig. 5.19.(b). The test has been realized with the same condition as the one used for
the reservoir computer. The linear classifier is achieving a BER of 7.5 % as a best
performance. When both processed signals are balanced, the linear classifier exhibits
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Figure 5.19: Performance on nonlinear optical channel equalization
task after 50 km of optical fiber as a function of the ratio of injection
Pinjy/Pinjx . The blue curves corresponds to the performance of the task
Tx, and the red curves corresponds to the performance of the task Ty
for (a) the reservoir computer and (b) the linear classifier. The lighter
area shows the standard deviation of the performance. The dotted line
shows the performance of the reservoir performing the single task.



126
5. Performance of VCSEL-based time-delay reservoir computing device

on multi-task processing

its best mean performance, with a mean BER at 8.4 %. Using the nonlinear effects in
our VCSEL-based photonic reservoir computer in similar SNR conditions thus provides
a significant benefit, allowing to improve by a factor 5 the performance on the signal
recovery task.

5.3.4 Comparison numerical and experimental results

We presented in this chapter the numerical and experimental performance of our
reservoir architecture on several tasks. As we explained previously, the frequency
difference between the two polarization modes of the VCSEL we use is at 17.4 GHz,
which leads to γp = 54.7 GHz. Our reservoir is then close to γp = 50 GHz, and we
suppose that γs = 10 GHz as it is a standard value that we can find in the literature.

We observe that the performance obtained numerically without noise and experimen-
tally are closer in the dual task processing case than in the single task processing
case. When comparing the SER obtained on the WIFI channel equalization task, the
numerical results predicts a mean SER of 1.8%. The experiment provides a SER of
4%, which only differs by a factor 2. This might be due to the perturbation induced
by the injection of two different data streams in the reservoir. As explained in Sec. 5.2,
both tasks are cross talking and therefore each task can be seen as a perturbation for
the other one. Thus, increasing the ratio of injected power Pinjy/Pinjx increases the
perturbations in the reservoir, and the influence of the noise in the output layer is
largely reduced in the dual task processing scenario.

Same conclusions can be drawn from the nonlinear optical channel equalization task.
For a 25 km-distortion, the experimental reservoir exhibits a mean SER of 4× 10−4, to
compare with a mean SER of 0 for the simulated system. These results are really close
when we take into account that the lowest detectable SER is at 2× 10−4, due to the
size of the training set. A SER of 4×10−4 is equivalent to only two errors made during
the testing. For a 50 km-distortion, the experimental reservoir and simulated system
exhibit similar SER, about 2.5 × 10−2. As we explained, the good match between
the numerical and experimental performance is justified since processing two tasks
simultaneously greatly reduces the impact of the noise in the output layer on the
performance of the reservoir.

5.4 Conclusion

We demonstrated in this chapter how to use the polarization dynamics of the VCSEL to
process simultaneously two tasks. This possibility has been first explored numerically,
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and we found that the performance of the reservoir is influenced by the way we couple
the two polarization modes either by a suitable choice of the internal parameters of
the VCSEL or by rotating the polarization along the feedback loop. We also showed
that we can tune the performance of each task by changing the ratio of injection
power between the two tasks. These numerical simulations help to get an insight into
the upper limit for the performance of the reservoir. The mean SER reached by the
reservoir on the WIFI channel equalization is between 4× 10−3 and 2× 10−2, and the
mean BER for the optical channel equalization is between 4× 10−3 and 3.5× 10−2 for
25 km of fiber and about 2.2× 10−2 for 50 km of fiber, depending on the parameters
used for the VCSEL.

We then tested the performance of the experimental reservoir computer and have
been able to reproduce the same trends. We can use the ratio of injection power to
tune the performance of each task, and the reservoir exhibits similar performance
experimentally compared to the numerical results: a mean SER of 4× 10−2 for the
WIFI signal recovery, a mean BER of 0.3 % for the optical signal recovery with a
25 km-distortion, and a mean BER of 3 % for a 50 km-distortion. This error rate has
been achieved when processing the signal at a processing speed of 51.3 Mb/s (because
of the feedback length).

We observed yet that the performance reached while processing two tasks simultaneously
are slightly lower than the performance obtained while processing a single task. A
trade-off is needed therefore between the overall performance and the processing speed
of the data. It is interesting also to note that the speed of the experimental system
could be increased by reducing the length of the delay-line, which was not possible
with our setup.





6
Conclusion and perspectives

Stuff your eyes with wonder, he said, live as if you’d drop dead in 10 seconds. See the
world. It’s more fantastic than any dream made or paid for in factories.

Ray Bradbury, Fahrenheit 451
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T
hrough this thesis, we discussed the possibility to realize a photonic reservoir
computing device, made of telecommunication components. The architecture
we proposed is within the framework of time-delay reservoir computer using a

VCSEL as physical neuron and single mode silica fiber to realize the feedback loop.
The study of this system has been realized both numerically and experimentally. More
specifically, we studied the possible use of the polarization dynamics of the VCSEL to
enhance the computational performance of the photonic reservoir.
In this chapter, we propose a summary of this thesis, and more specifically of the main
results presented in this dissertation. We will then present the possible perspectives of
this work.

6.1 Summary of the dissertation

In Chapter 2, we have presented the basics of the physics of semiconductor lasers. We
first remind that a laser is composed of three main elements: a gain medium to amplify
light, a cavity to be wavelength selective, and a pump to compensate for the losses. A
laser can be realized with semiconductor materials, which allows realizing small and
cheap components. We can distinguish lasers emitting light from the edge (EEL) and
lasers emitting from the surface (VCSEL). This last kind of laser has several advantages
which makes it largely used in different fields, such as telecommunication networks, in
biology or in smartphones. A semiconductor laser can exhibit different dynamics while
submitted to feedback or injection. It can exhibit steady state, oscillating dynamics
or chaotic dynamics. The dynamics of a laser can also be modified while modulating
the optical injected beam. This complex dynamics is already used, to mimic natural
phenomena, or to process signals for instance.

In Chapter 3, we have presented the basic knowledge of reservoir computing. We
first introduce the artificial neural network, and the two main topologies of network:
the feedforward and the recurrent neural network. Due to its training complexity,
the reservoir computing paradigm has been proposed. This paradigm consists in
using a fixed recurrent neural network, and training only a readout layer thanks to
simple regression algorithm. In reservoir computing, we focused more specifically
on the time-delay reservoir computing. This architecture is composed of a single
physical neuron with a feedback loop, along which virtual neurons are distributed. We
presented several examples of reservoir computing device, using mechanical electronic
or photonic components. We finally presented tasks that are commonly used to
benchmark reservoir computing devices: memory capacity and computational ability
that are task independent, and the Santa-Fe time series prediction and the nonlinear
channel equalization.
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In Chapter 4, we have presented the performance of our reservoir computing device
processing a single task. We first introduced our architecture made of a VCSEL
and single mode silica fiber, based on time-delay reservoir computing paradigm. We
used the spin-flip model (SFM) to simulate the system and explore the space of
parameters of the system by either injecting the input electrically or optically. We
also explored the influence of the polarization of the optical feedback. We drew
two main conclusions: (i) the input injected optically leads to better and faster
performance, and (ii) using polarization-rotated optical feedback allows doubling
the memory capacity of the reservoir computer, hence potentially reaching better
performance on applied tasks. The experimental confirmation of this last observation
has been detailed, after presenting the experimental setup. We finally compared the
numerical and experimental performance of the reservoir computer and have been able
to demonstrate that both are consistent if we take into account the level of noise in
the output layer. This also allowed showing that this level of noise greatly impact the
performance of the reservoir computer.

In Chapter 5, we finally explored the performance of our proposed architecture
processing two tasks simultaneously. We adapted the model of the previous chapter
to be able to inject the two tasks: each task is injected in a different polarization
mode of the VCSEL. We tested the influence of the nonlinear coupling between the
two polarization modes via the polarization of the feedback, the spin relaxation, and
the birefringence parameter on the memory capacity of the reservoir, and on its
performance when processing telecommunication tasks. We have been able to prove
that coupling these two polarization modes decreases the performance of the reservoir,
implying also that isotropic feedback provides better performance in this case. We
also proved that the ratio of the injection power between the two polarization modes
can be used to tune the splitting of performance between the two processed tasks.
This last conclusion has also been demonstrated experimentally. We finally compared
the performance of the numerical and experimental systems. We prove thanks to this
observation that while processing two tasks, the level of noise in the output layer does
not play a significant role, contrary to what is concluded from the processing of a
single task.

6.2 Perspective for future work

We presented in this thesis the performance of a photonic time-delay reservoir computer
based on the VCSEL dynamics.

However, the training and the testing have been realized offline, meaning that all the
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inputs are sent at once, and the output is recorded in one measurement and processed
in a single process. A study focused on processing signals online can be interesting.
Online processing consists in processing the inputs one at a time and adapting the
learned weights online. This is closer to the use of the reservoir computing in real
conditions. However, due to the processing speed of photonic components, the online
application of the weights to produce the final output remains a technical challenge.
Such an approach has been proposed using an optical integrator and a high-speed
Mach-Zehnder modulator, for a reservoir made with an EEL [162]. Applying a similar
technique to our architecture can be interesting. Adding an adaptation of the weights
to take into account the ageing process of the components could also be an interesting
study.

Another interesting study would be to improve the experimental setup to reduce the
length of the feedback loop in order to assess if the setup is able to process signals at
the data rate predicted numerically (about 3 Gb/s).

We observed in this dissertation that the SNR is a crucial issue in the experiment, due
to the low emitted power of the VCSEL. Replacing the VCSEL with a more powerful
one (emitting about 2 mW when biased near the threshold) would also help reaching
significantly better SNR and might thus improve the overall performance of the system.
Even though such a VCSEL emitting at 1550 nm does not exist yet, we could test the
impact of a higher emitted power with a VCSEL emitting at 1310 nm or 850 nm. One
might also expect that a powerful VCSEL at 1550 nm could be developed in the next
few years.

We also focus our work on a specific architecture. We could imagine a time-delay
based architecture, cascading VCSELs instead of using only one. This would change
the overall dynamics of the reservoir computer. By adding a new physical device, we
can hope to improve the memory capacity of the system, and therefore to be able
to process more complex tasks, such as recovery of signal distorted by a longer fiber
(several hundreds of kilometers).
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A
Appendix 1: Code deployment on

CPU cluster

A.0 Computation method used for numerical simulations

We have simulated the VCSEL model presented in Sec. 4.2.1 using a C++ code
to ensure a fast and efficient integration of differential equations integration. The
integration is made with a second order of Runge-Kutta method (RK2). This method
is the best trade between the numerical accuracy, the possibility to take into account
the noise in the equations and a stable numerical simulations for small integration
step. The Heun method [163] which is derivated from the RK2 method ensure that the
statistic properties of the Langevin terms are properly included when integrating the
stochastic differential equations. This code has been optimized and prepared to run on
CPU clusters, using the vectorization properties of the processor. This C++ execution
is embedded in a Python code which is easier to use to perform matrix computation,
when we train and test the reservoir computer, and this step is not critical in terms of
computation time.

The code is then deployed on the different CPUs of the cluster to test in parallel
multiples sets of parameters. An illustration of the simulation method is presented in
Fig. A.1.
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CPU Cluster

f(𝑝11, 𝑝21)

f(𝑝11, 𝑝24)

f(𝑝11, 𝑝23)

f(𝑝11, 𝑝22)

f(𝑝12, 𝑝21)

f(𝑝12, 𝑝24)

f(𝑝12, 𝑝23)

f(𝑝12, 𝑝22)

Sets of parameters to test

P1 : 𝑝11, 𝑝12
P2 : 𝑝21, 𝑝22, 𝑝23, 𝑝24

Python code f(a,b)

C++ optimized code

Figure A.1: Principle of the numerical simulation method. The C++
code is embedded in an Python environment. The same code is run on
each CPU of the cluster using a different set of parameters
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Appendix 2: Résumé de la thèse

en français

Le but de cette thèse est donc de réaliser un dispositif de calcul composé de composants
photoniques, qui vise à être utilisé pour des applications de télécommunication, impli-
quant d’atteindre une vitesse de calcul rapide. Notre défi sera d’utiliser principalement
des composants de télécommunication pour réaliser ce réservoir, tels que le laser à
cavité verticale à émission de surface (VCSEL), et la fibre optique monomode. Il
semble que ce laser spécifique présente une dynamique de polarisation intéressante
que nous voulons exploiter pour obtenir les meilleures performances de calcul possi-
bles. Nous réaliserons le système sur la base de simulations numériques et de tests
expérimentaux. Chaque concept est d’abord exploré numériquement pour choisir les
composants correctement et trouver le meilleur ensemble de paramètres qui conduise à
un dispositif de calcul efficace. Cela permet d’explorer plus de paramètres rapidement,
et d’avoir un aperçu du rôle de chaque paramètre sur les propriétés de fonctionnement
du système. Les données pertinentes trouvées numériquement sont exploitées pour con-
struire le dispositif expérimental correspondant, et pour valider l’hypothèse numérique
de manière expérimentale. Dans cette thèse, nous ne visons pas à créer de nouvelles
dynamiques mais plutôt à exploiter ces dynamiques connues pour effectuer des calculs
avec des performances optimales.

Ce manuscrit peut être divisé en deux grandes parties. Nous présentons tout d’abord
dans les chapitres 2 et 3 les bases théoriques nécessaires pour comprendre les résultats
présentés dans les chapitres 4 et 5.

Dans le chapitre 2, nous présentons les bases de la physique des lasers à semi-
conducteurs. Nous rappelons tout d’abord qu’un laser est composé de trois éléments
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principaux : un milieu de gain pour amplifier la lumière, une cavité pour être sélectif
en longueur d’onde, et une pompe pour compenser les pertes. Un laser peut être
réalisé avec des matériaux semi-conducteurs, ce qui permet de réaliser des composants
petits et bon marché. On peut distinguer les lasers émettant de la lumière depuis le
bord (EEL) et les lasers émettant depuis la surface (VCSEL). Ce dernier type de laser
présente plusieurs avantages qui le rendent largement utilisé dans différents domaines,
tels que les réseaux de télécommunication, la biologie ou les smartphones. Un laser
à semi-conducteur peut présenter des dynamiques différentes lorsqu’il est soumis à
une rétroaction ou à une injection. Il peut présenter une dynamique stable, oscillante
ou chaotique. La dynamique d’un laser peut également être modifiée en modulant le
faisceau optique injecté. Cette dynamique complexe est déjà utilisée, pour imiter des
phénomènes naturels ou pour traiter des signaux par exemple.

Dans le chapitre 3, nous présentons les connaissances de base du calcul de réservoir.
Nous présentons d’abord le réseau de neurones artificiels, et les deux principales
topologies de réseau : le réseau de neurones à propagation vers l’avant et le réseau
de neurones récurrent. En raison de la complexité de son entrainement, le paradigme
du reservoir computing a été proposé. Ce paradigme consiste à utiliser un réseau
neuronal récurrent fixe, et à entrainer uniquement une couche de lecture en sortie
grâce à un algorithme de régression simple. Au sein du reservoir computing, nous nous
sommes concentrés plus particulièrement sur le reservoir computing à retard. Cette
architecture est composée d’un seul neurone physique avec une boucle de rétroaction,
le long de laquelle sont distribués des neurones virtuels. Nous présentons plusieurs
exemples de dispositif de reservoir computing, utilisant des composants mécaniques,
électroniques ou photoniques, ainsi que des exemples de reservoir à retard, incluant le
reservoir opto-électronique qui est la première réalisation de ce type d’architecture.
Enfin, nous présentons des tâches qui sont couramment utilisées pour évaluer les
dispositifs de calcul de réservoir : la capacité de mémoire et la capacité de calcul qui
sont indépendantes de la tâche, et la prédiction de la série temporelle Santa-Fe et
l’égalisation non linéaire des canaux.

Au chapitre 4, nous présentons les performances de notre dispositif de calcul de réservoir
traitant une seule tâche. Nous présentons d’abord notre architecture composée d’un
VCSEL et d’une fibre optique monomode en silice, basée sur le paradigme du reservoir
à retard. Nous avons utilisé le modèle spin-flip (SFM) pour simuler le système et
explorer l’espace des paramètres du système en injectant l’entrée soit électriquement
soit optiquement. Nous avons également exploré l’influence de la polarisation de la
rétroaction optique. Nous avons tiré deux conclusions principales : (i) l’injection
optique de l’entrée conduit à de meilleures et plus rapides performances, et (ii)
l’utilisation de la rétroaction optique avec rotation de polarisation permet de doubler
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la capacité mémoire du reservoir, et donc d’atteindre potentiellement de meilleures
performances sur des tâches applicatives. Nous détaillons la confirmation expérimentale
de cette dernière, après avoir présenté le montage expérimental. Plus précisément,
nous avons été en mesure grâce à notre reservoir expérimental d’obtenir un taux
d’erreur à 1.5% lors de l’égalisation de canal WIFI, et de récupérer parfaitement un
signal transmis par fibre optique. Nous avons finalement comparé les performances
numériques et expérimentales de notre système et avons pu démontrer que les deux
sont similaires si nous prenons en compte le niveau de bruit dans la couche de sortie.
Cela a également permis de montrer que ce niveau de bruit a un impact important sur
les performances du reservoir.

Dans le chapitre 5, nous explorons les performances de l’architecture que nous proposons
traitant deux tâches simultanément. Nous avons adapté le modèle du chapitre précédent
pour pouvoir injecter les deux tâches : chaque tâche est injectée dans un mode de
polarisation différent du VCSEL. Nous avons testé l’influence du couplage non linéaire
entre les deux modes de polarisation via la polarisation de la rétroaction, la relaxation
du spin et le paramètre de biréfringence sur la capacité mémoire du réservoir et
sur ses performances lors du traitement des tâches de télécommunication. Nous
avons pu prouver que le couplage de ces deux modes de polarisation diminue les
performances du réservoir, ce qui implique également que la rétroaction isotrope
fournit de meilleures performances dans ce cas. Nous avons également prouvé que
le rapport de la puissance d’injection entre les deux modes de polarisation peut être
utilisé pour régler la répartition des performances entre les deux tâches traitées. Cette
dernière conclusion a également été démontrée expérimentalement. Nous avons enfin
comparé les performances des systèmes numériques et expérimentaux. Nous prouvons
grâce à cette observation que, lors du traitement de deux tâches, le niveau de bruit
dans la couche de sortie ne joue pas un rôle significatif, contrairement à ce que l’on
conclut du traitement d’une seule tâche.

Perspectives :

Nous avons présenté dans cette thèse les performances d’un reservoir à retard pho-
tonique utilisant la dynamique du VCSEL. Cependant, l’entrainement de ce dernier
été réalisés hors ligne, ce qui signifie que toutes les entrées sont envoyées en même
temps, et que la sortie est enregistrée dans une mesure et traitée dans un processus
unique. Une étude axée sur le traitement des signaux en ligne peut être intéressante.
Le traitement en ligne consiste à traiter les entrées une à une et à adapter les poids en
temps réel. Cette méthode est plus proche de l’utilisation d’un reservoir en conditions
réelles. Cependant, en raison de la vitesse de traitement des composants photoniques,
l’ajustement des poids en temps réel pour produire le résultat final reste un défi
technique. Une telle approche a été proposée en utilisant un intégrateur optique
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et un modulateur Mach-Zehnder à grande vitesse, pour un réservoir réalisé avec un
laser émettant par la tranche. L’application d’une technique similaire à notre archi-
tecture peut être intéressante. L’ajout d’une adaptation des poids pour prendre en
compte le processus de vieillissement des composants pourrait également être une
étude intéressante.

Une autre étude intéressante consisterait à améliorer le dispositif expérimental pour
réduire la longueur de la boucle de rétroaction afin d’évaluer si le dispositif est capable
de traiter les signaux au débit de données prévu numériquement (environ 3 Gb/s).
Nous avons observé dans cette thèse que le SNR est une question cruciale dans
l’expérience, en raison de la faible puissance émise par le VCSEL. Remplacer le VCSEL
par un autre plus puissant (émettant environ 2 mW lorsqu’il est polarisé près du
seuil) permettrait également d’atteindre un SNR nettement meilleur et pourrait ainsi
améliorer les performances globales du système. Même si une telle VCSEL émettant
à 1550 nm n’existe pas encore, nous pourrions tester l’impact d’une puissance émise
plus élevée avec une VCSEL émettant à 1310 nm ou 850 nm. On pourrait également
s’attendre à ce qu’un VCSEL plus puissant émettant à 1550 nm soit développé dans
les prochaines années.

Nous concentrons également nos travaux sur une architecture spécifique. Nous pour-
rions imaginer une architecture à délai, en cascadant les VCSEL au lieu d’en utiliser
qu’un seul. Cela modifierait la dynamique globale de l’architecture. En ajoutant
un nouveau dispositif physique, nous pouvons espérer améliorer la capacité mémoire
du système, et donc être en mesure de traiter des tâches plus complexes, comme la
récupération de signaux déformés par une fibre plus longue (plusieurs centaines de
kilomètres).
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