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Abstract

Human robot interaction requires the robot to have an accurate knowledge of
its environment, especially who is present, and where, to enable an interactive
conversation. In this context, this thesis proposes to exploit image informa-
tion recorded by the embedded camera to perform Multiple Object Tracking
(MOT), leveraging localization and identification by exploiting temporal and
spatial proximity to produce ID-exploitable trajectories. State-of-the-art meth-
ods rely on deep learning approaches, which are known to heavily depend on
the training data, and suffer from poor generalization ability. More specifi-
cally, most of MOT implementations embed a person re-identification model
to use as appearance cue, while those are widely known to be sensitive to
background changes and illumination conditions. Consequently, this work fo-
cuses on investigating adaptation strategies to new domains for MOT and re-
ID models. A probabilistic generative model is first proposed to derive a MOT
implementation which, combined with a deep appearance model updated with
past track annotations, is able to adapt to the target domain on the fly, and
is suitable for robotic application. It is quantitatively evaluated on a stan-
dard MOT dataset while a robotic implementation provides qualitative results.
Then, inspired by the domain adaptation literature, a camera-wise adversarial
strategy is proposed to address unsupervised person re-ID, and demonstrates
competitive performance compared to state-of-the-art re-ID models. It is then
further investigated in the novel framework of clustering and finetuning. A
conditional adversarial approach is proposed to address the negative transfer
problem caused by the non-uniform distribution of IDs across cameras. This
strategy is implemented on two state-of-the-art unsupervised re-ID models,
and shown to outperform them, thus yielding state-of-the-art performance. Fi-
nally, the adversarial domain adaptation framework is further investigated in
the context of MOT. The interest for unsupervised domain adaptation MOT is
demonstrated, and combined with a tracking and finetuning strategy, an adver-
sarial training scheme is derived and shown to outperform simpler adaptation
strategies.
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Résumé

L’interaction homme-robot nécessite que ce dernier ait une connaissance
précise de son environnement, tout particulièrement qui est présent et où, afin
de permettre une conversation réaliste et interactive. À cette fin, cette thèse
propose d’exploiter l’information contenue dans les images récoltées par la
caméra du robot afin de réaliser du suivi multi-partie, utilisant la proximité
temporelle et spatiale afin de produire des trajectoires exploitable à des fins
d’identification. L’état de l’art est basé sur des approches d’apprentissage pro-
fond, qui sont connus pour dépendre grandement des données utilisées lors
de l’entraı̂nement, et ont donc une mauvaise capacité de généralisation à de
nouveaux domaines. Une grande partie des modèles de suivis utilisent no-
tamment des modèles de ré-identification de personnes comme descripteur
d’apparence, alors que ceux-ci sont connu comme étant très sensible aux
changements d’arrière plan, ou de conditions d’illumination. Ce travail se
concentre donc sur l’investigation des stratégies d’adaptation à de nouveaux
domaines pour les modèles de suivis et de ré-identification de personnes. Un
modèle probabiliste est d’abord proposé pour implémenter un algorithme de
suivi multi-partie qui, combiné avec un modèle d’apparance profond mis à jour
en utilisant les annotations des trajectoires passées, est capable de s’adapter au
domaine cible en temps réel, ceci dans un contexte robotique. Cette stratégie
est quantitativement évaluée sur un dataset standard de suivi multi-partie, et
une implémentation sur une plateforme robotique fournit des résultats quali-
tatifs. Ensuite, inspiré de la littérature de l’adaptation aux nouveaux domaines,
une stratégie d’entraı̂nement adversaire basée sur l’information de caméra est
proposée dans le cadre de la ré-identification de personne non supervisée.
Cette approche démontre une performance compétitive comparé à l’état de
l’art en ré-identification. Cette approche est davantage explorée à travers la
nouvelle stratégie de partitionnement et d’entraı̂nement. Une variante con-
ditionnelle est explorée pour atténuer le problème de transfert négatif, causé
par la répartition non uniforme des identités d’entraı̂nement sur les caméras.
Cette idée est implémentée sur deux modèles de l’état de l’art, et permet de les
améliorer. Enfin, le cadre de l’adaptation de domaine adversaire est explorée
dans le contexte du suivi multi-partie, et combiné avec une stratégie de suivi
et d’entraı̂nement, un algorithme d’apprentissage est proposé, et sa supériorité
vis à vis des stratégies d’adaptation concurrentes est démontrée.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL CONTEXT

Robotic systems have seen significant development in the last decade, motivated by hard-
ware improvement, and industrial growing interests (Boston Dynamics, SoftBank Robotics
or PAL robotics). Combined with the success of Deep Learning architectures [59, 90]
leveraging the possibility to extract information from dense raw input data captured by
cameras or microphones arrays, it paved the road for a more natural Human-Robot In-
teraction. Humanoid Robots are nowadays employed in a wide variety of places, such
as hospitals, nursing homes, museums and even stores. However, their applications have
very limited interactivity: they are often limited to providing information or directions,
taking orders via a standard graphical interface, or running predefined routines to enter-
tain patients or the audience. Progress needs to be done to increase the adaptability of the
robot to conversational situations, and to the speakers.

This PhD takes place in the framework of multi-party conversations. Such conversa-
tions are particularly challenging due to a varying number of speakers, and to the com-
plexity arising from the multiplication of possible addressees. The first and crucial task
a robot has to perform to ensure a fully interactive conversation, is then to answer the
following questions: ’Who is speaking?’, ’To whom?’, ’When?’ and ’Where?’. Answer-
ing those questions gives the robot the ability to associate information to each specific
speaker, know whose turn it is to speak, and thus detect when it is spoken to and when
to speak. In addition to help the interactivity of the conversation, this information is a
prerequisite for the robot to have a socially and culturally acceptable discussion. This
thesis specifically aims to answer the questions ’Who?’ and ’Where?’: identifying and
retaining the position of encountered potential speakers exploiting visual cues provided
by the robot camera is a critical step for credible robot-interaction.

To answer those questions, Multiple Object Tracker (MOT) has been explored in order
to exploit temporal and spatial proximity to transform noisy and anonymous detections
into ID-exploitable trajectories. Appearance models based on person re-identification
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12 CHAPTER 1. INTRODUCTION

(Re-ID) models can also be used to assist tracking, especially in the case of mutual or
prolonged occlusions in order to reduce the risk of ID switches and track fragmentation.
However, most recent development of MOT and re-ID models build upon Deep Learn-
ing frameworks, yielding impressive tracking and re-ID performance, but require a large
amount of labeled data to generalize well, which often lead to poor performance when
transferred to new domains. This is of critical importance when it comes to actually im-
plementing such systems in real-life settings: potential users rarely have the resources to
create custom datasets on which to finetune their models for every use-case. Furthermore,
long-term tracking/re-ID can see its target domain shifts significantly from the original
training domain: illumination conditions can change with time, weather or location, the
robot can also move or be moved, leading to potential significant background and view-
point changes. This motivates the central question of this thesis: How can tracking and
re-ID systems be adapted to new domains, without requiring a tedious and costly labeling
step?

A first strategy addresses MOT by using a probabilistic setting based on a generative
model, i.e. not requiring training, and adapts its appearance model to the target environ-
ment on the fly (chapter 2). Another approach pretrains a model within the unsupervised
domain adaptation framework (UDA), that is using labeled source data and unlabeled tar-
get data during training to optimize performance on the target domain. More specifically,
this framework can be applied in the context of unsupervised person re-ID (chapters 3 and
4), or to domain adaptive MOT (chapter 5).

1.2 SCIENTIFIC CONTEXT AND MOTIVATION

This thesis was caried out at Inria Grenoble Rhône-Alpes in the Perception team, and su-
pervised by Dr. Radu Horaud and Dr. Xavier Alameda-Pineda, and is part of the Vision
and Hearing in Action (VHIA) project supported by the ERC Advanced Grant obtained
by Dr. Radu Horaud. The aim of VHIA and the team research interest lies in developing
methods to improve human-robot interaction in multi-party conversations. The typical tar-
get situation is the ’cocktail party’ scenario, where people move and discuss freely in front
of the robot, in an indoor environment. The robot is equipped with one or two (stereo)
cameras and an array of microphones. Its goal is to recover high level information of the
discussion, such as who is present, or whose turn it is to speak. It led the team to thor-
oughly investigate methods to extract high-level information from audio-visual cues such
as audio-visual tracking, sound source localization and audio-visual speech enhancement.

In such scenarios, since the camera field of view is limited, the robot must often choose
which person to look at and adapt its position accordingly. Doing so, it might lose sight
on a person of interest from whom identity information must be retained in order to grasp
the overall conversation. Also, the environment might be cluttered and people can easily
disappear from the robot field of view. Therefore, one must develop robust techniques
to retrieve and retain ID information using visual information in particular. In addition,
the typical scenario can greatly vary in terms of illumination condition (time of the year,



13

day/night) or background (office, common room, corridors...), it must also be able to adapt
easily to new and previously unseen domains, hence the focus of this thesis.

In recent years, Deep Learning attracted a lot of focus to extract information from
raw and dense data, especially in computer vision, outperforming many traditional com-
puter vision tasks such as object detection [38, 86], Classification[90] and Recognition
tasks[49]. It particularly impacted the MOT community, leveraging deep appearance de-
scriptors such as person re-ID models [71, 91] or detectors with higher detection per-
formance [76]. The person re-ID community was also deeply impacted [119, 62], and
despite the relative small training datasets to learn on, deep re-ID models showed sur-
prisingly good performance, even surpassing human re-ID ability in some cases [116].
However, these models showed poor generalization ability when transferred to new do-
mains [25, 28], thus limiting their interest in the context of MOT. In parallel, and due
to deep learning hunger for labeled data, the field of unsupervised domain adaptation in-
troduced new methods[34] to leverage unannotated datasets, but initially focused only on
classification models. This thesis aims to close the gap between MOT, person re-ID and
domain adaptation.

This thesis benefited from two robots in the team, namely NAO and LITO. They are
equipped with cameras and microphone array. NAO is a humanoid robot platform de-
veloped by Aldebaran Robotics. It is equipped with a pair of stereo cameras, four mi-
crophones and several joint motors for moving head, arms and legs. LITO, developed
by Samsung, is a robot-head equipped with one camera, a set of microphones, and two
motors for moving the robot head. Both NAO and LITO are research prototypes manu-
factured to make progress on the research topics of the team.

1.3 DATASETS

Deep Learning frameworks are known to depend on the labeled data they train on: also
training and testing datasets are extensively used in this thesis for experimental evaluation.
Two kind of datasets are used: the first are MOT datasets, constituted by a few sequences
recorded on a (possibly moving) camera and labeled with ID and bounding box posi-
tions at every frame; the second are person re-ID datasets, providing person detections,
recorded over a dozen of fixed cameras, on a short period of time.

MOT Challenge Datasets Pedestrians tracking has been studied for years in the MOT
community. The MOT Challenge datasets thus provides a standard benchmark for track-
ing pedestrians. It is comprised of the MOT17 [76] dataset and MOT20 [24] dataset, the
former being constituted of 7 training sequences and 7 testing sequences, while the latter
has 4 training and 4 testing sequences. MOT17 has 517 Ground Truth training tracks,
and 759 testing tracks, while MOT20 has 2332 Ground Truth training tracks, and 1507
testing tracks. They involve various settings such as the static camera or moving camera,
indoor scenario or outdoor scenarios. Noticeably, the MOT20 dataset is much closer to
what could be expected from a camera surveillance video sequence, with very crowded
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(a) MOT17 Dataset (b) MOT20 Dataset

(c) Market-1501 (d) DukeMTMC-reID

(e) MSMT17

Figure 1.1: Datasets used in this thesis: (a) and (b) are MOT datasets, (c), (d) and (e) are re-ID datasets.

scenarios from a top view, while the MOT17 dataset is much closer to the floor level, and
is close to what a robot navigating in the crowd could experience. Both datasets have
ground truth trajectories provided along the training sequences, along with official public
detections produced by standard person detectors (DPM [30], FRCNN [38], SDP [107]).
Two tracking settings are then possible: public detection where no extra detection is used
to generate tracks, or private detection where custom detections are provided to generate
tracks. The MOT16 dataset is also used in this thesis, and refers to the same sequences as
MOT17, but using detections provided by only the DPM detector.

Person re-ID datasets Market-1501 (Mkt) [120], DukeMTMC-reID (Duke) [89] and
MSMT17 (MSMT) [101] are used to benchmark person re-ID models. In all three cases,
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the dataset is divided into three parts: training, gallery, and query. The query and the
gallery are never available during training and only used for testing. Mkt is composed of
1, 501 (half for training and half for testing) different identities, observed through 6 differ-
ent cameras (viewpoints). The deformable parts model [30] is used for person detection.
Duke is composed of 1, 404 (half for training and half for testing) identities captured from
8 cameras. In addition, 408 other ID, called “distractors”, are added to the gallery. Detec-
tions are manually selected. MSMT is the largest and most competitive dataset available,
with 4, 101 identities (1, 041 for training, and 3, 060 for test) on 15 cameras, with a much
higher temporal coverage and background changes than previous ones .

1.4 CONTRIBUTIONS

The contribution this thesis are the following:

• The problem of MOT adaptability in robotic settings is first investigated: a proba-
bilistic framework is leveraged to derive a generative model, which does not require
pretraining and thus adapts easily to new target domains. It can be seen as a gener-
alization of Kalman filtering to MOT, combined with a variational approximation to
make the model tractable. It continuously updates an appearance model to the tar-
get experiment, by using a deep siamese network trained with a constrative loss and
self-supervised with past detections annotated by the tracker. This MOT strategy is
implemented on a real robotic platform to provide qualitative tracking results, and is
further validated on MOT16 and MOT17 to obtain quantitative results. Importantly,
the robotic implementation runs in a real-time setting, reaching an average of 10FPS.

• The problem of Unsupervised Person re-ID is investigated in the framework of Un-
supervised Domain Adaptation: the source labeled Re-ID dataset and target unla-
beled Re-ID dataset are both used during training to improve re-ID performance on
the target domain. A camera-adversarial strategy is derived to perform camera-wise
distribution alignment instead of domain-wise distribution alignment. The adapta-
tion method is evaluated on standard unsupervised re-ID settings, Market1501 →
DukeMTMC and DukeMTMC → Market1501, demonstrating competitive perfor-
mance compared to state-of-the-art methods at the time, and an extensive ablation
study is performed to compare with alternative adversarial strategies.

• The problem of Unsupervised Person re-ID is then investigated within the Cluster-
ing and Finetuning framework, a setting closer to standard unsupervised learning.
A camera-adversarial strategy is leveraged to guide the clustering step while ensur-
ing camera-wise distribution alignment. The impact of negative transfer is investi-
gated, that is the impact of non-uniform ID distribution across cameras when using
a camera-adversarial strategy. A conditional adversarial strategy is developed to
address negative transfer. The effectiveness of the method is demonstrated by im-
proving two state-of-the-art Clustering and Finetuning re-ID models on Market1501,
DukeMTMC and MSMT re-ID datasets, and an extensive ablation study is provided
to assess the role of conditional adversarial learning.
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• Domain Adaptive MOT is investigated to tackle domain-shift problems when trans-
ferring Deep MOT models to new illuminations conditions, background or camera
viewpoint. A Deep Tracker, jointly performing detection and re-ID within a unified
model, is adapted using a proposed tracking and finetuning framework. The domain
adaptive object detection framework is leveraged to finetune the detection branch.
The interest of Domain Adaptive MOT is demonstrated on the MOT17 and MOT20
datasets, and the effectiveness of the proposed architecture is demonstrated on the
MOT17→MOT20 and MOT20→MOT17 settings, while extensive ablation study is
conducted to assess the role of each adaptation module.

1.5 MANUSCRIPT STRUCTURE

The manuscript is organized as follows. In chapter 2 the MOT robotic tracking system is
described. In chapter 3 a camera-adversarial strategy is proposed to address the problem
of unsupervised person re-ID. In chapter 4, the previous idea is further explored within
the clustering and finetuning framework, and a conditional approach is proposed to ad-
dress negative transfer. In chapter 5, a domain adaptive strategy for MOT is explored. In
appendix A, a theoretical derivation is provided to justify the use of multi-class discrimi-
nator in adversarial learning.



CHAPTER 2

ONLINE APPEARANCE LEARNING FOR

ROBOTIC PERSON TRACKING

2.1 INTRODUCTION

Multiple object tracking (MOT) is a well studied problem in the computer vision commu-
nity [14, 76, 4, 91, 5], and the task is relevant for many applications, going from active
surveillance to social robotics as detailed in Chapter 1. Several paradigms can be used to
tackle that problem, and a large body of the literature is based on the tracking-by-detection
philosophy, consisting on the use of a person bounding box detector [107, 30, 87], fol-
lowed by a tracking model aggregating the detections over time, thus producing tracks.
Such tracking models can be based on deep learning approaches [91, 21] or Bayesian [4,
14] models. This latter approach leverages generative models to tackle MOT, thus re-
ducing the domain-dependency problem that learned discriminative frameworks might
encounter, as developed in Chapter 5.

In this chapter, we are interested in endowing a domain-agnostic autonomous system
with the ability of tracking multiple persons in an online setting, and in particular to update
its appearance description model to the persons in the scene. This is challenging because
of four main reasons: (i) the method can only use causal information, since the system
does not have access to future bounding boxes; (ii) the method must be computationally
light, in the sense that the system must track people using consumer technology; (iii) the
model update must be done online in an unsupervised manner, since the system does not
have access to ground truth annotations of the tracked people; and (iv) the overall system
must account for visual clutter e.g. visual occlusions and image noise due to the system’s
ego-motion.

To that aim, we propose a probabilistic model combined with a deep appearance
model. While the probabilistic model sets the relationship between the latent variables
(e.g. people’s position) and the observations (bounding boxes), the appearance model
based on a deep siamese neural network allows to robustly discriminate images belong-
ing to different people. Most importantly, and this is the main contribution of the chapter,

17
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the probabilistic-deep siamese combination allows to update the deep appearance model
with the supervision generated by the probabilistic model, avoiding the necessity of anno-
tated data. This combination is the key that allows the update of supervised discriminative
models in unsupervised settings, such as the task at hand.

Up to our knowledge, we are the first to propose a MOT method able to update a
deep appearance architecture demonstrating its capabilities running in an autonomous
robot. Indeed, we benchmarked our method with the state-of-the-art on standard datasets
and standard evaluation procedure, and under two different settings: moving surveillance
camera and robot navigation in crowded scenes. In addition, we provide qualitative re-
sults obtained on a real robotic platfom. The reported experiments validate our initial
thoughts and confirm that updating the appearance model with the supervision from the
probabilistic model is a good strategy. Indeed, the proposed method exhibits a significant
performance increase when compared to the use of a fixed deep appearance model, and
to the state-of-the-art. Our strategy appears to be effective for learning a discriminative
appearance model on the fly, while tracking multiple people and accounting for clutter at
the same time.

The Chapter is structured as follow: Section 2.2 does a review of the related work,
Section 2.3 introduces the notations and the tracker’s probabilistic model, Section 2.4
details the appearance model and how it is updated, and Section 2.5 discusses the prac-
tical implementation of the tracker on a robotic platform. Finally, Section 2.6 details the
experimental evaluation of the algorithm.

2.2 RELATED WORK

Tracking by detection is the most popular paradigm in the MOT community. Causal
tracking is generally performed by elaborating robust similarity measures between known
tracks and current detections, and by using data association methods to obtain optimal
track-to-detection assignments. The major differences rely in the similarity measure used,
which strongly depends on the visual cues that are used (e.g. spatio-temporal, appearance,
interaction models).

Spatio-temporal similarity generaly assumes linear motion model [4, 14, 9]. The recent
introduction of deep learning has leveraged the use of reliable appearance descriptors, al-
lowing causal tracking models to robustly evaluate appearance similarities [60, 5]. The
introduction of person Re-ID models [10, 71, 91] has allowed tracking algorithms to take
advantage of external dataset to improve their generalization ability. Several strategies are
developped to aggregate those similarity measures: [4] takes advantage of the probabilis-
tic formulation to merge different cue information, while some [91, 21] propose a deep
formulation where cues are merged early in the network which is directly trained to out-
put the desired similarity measure. Single object tracking strategies [21, 5, 31] have also
been exploited to perform multiple object tracking, especially [21, 5] using the siamese
formulation which allows for an online finetuning of the appearance model to the target
visual domain.
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While the progress in MOT is quite significant, methods able to perform online MOT
on autonomous robots are much more scarce. Computational complexity and moving
cameras are two of the main difficultes most methods have trouble overcoming. One ex-
ample of a MOT method fully adapted to robotic platforms is [7], where the authors pro-
pose a probabilistic model and a variational approximation to solve the tracking problem,
while using the motor position to improve the tracking results. However, the appearance
model used in [7] is based on color histogram descriptors, which lack or robustness and
description power, specially in challenging visual conditions and for unseen identities.

We propose to exploit the same tracking formulation, to provide supervision for train-
ing a deep appearance models. Indeed, we exploit a Siamese deep network and use a
soft-label formulation within the deep metric learning paradigm, to update the deep ap-
pearance model while tracking multiple people.

2.3 ONLINE MULTI-PERSON TRACKING

The proposed multi-person joint tracking and appearance model and its online robotic
implementation, are built on the probabilistic tracking framework described in [4, 7]. In
this section, we shortly describe the tracking model, so as to set up the discussion of the
appearance model in Section 2.4.

2.3.1 EGOMOTION-AWARE MULTI-PERSON TRACKING MODEL

In this chapter, let N denotes the maximum number of people to be tracked. n = 0
represents the clutter track.

State dynamics We want to infer the kinematic state for each person: Xtn = (L>tn,U
>
tn)
>,

where Ltn ∈ R4 is the person’s bounding box (2D position, width and height) and
Utn ∈ R2 is the person’s velocity. Xt ∈ R6N is the person-wise concatenation of Xtn. The
dynamic model writes: p(Xt|Xt−1) =

∏N
n=1 p(Xtn|Xt−1n) where each person follows a

Gaussian distributions:

p(Xtn|Xt−1n) = N (Xtn; DXt−1,n − Et,Λn)

being D the dynamics operator adding the velocity to the previous position, and Λn

accounting for dynamics noise. In order to compensate for the ego-motion of the au-
tonomous system, we denote by Et, the impact of the motion of the system on the image
plane at time t. See Section 2.6 for details on estimating Et.

Observation likelihood We assume thatKt bounding boxes are detected at time t. ytk ∈
R4 denotes the coordinates (2D position, width, height) of the k-th bounding boxes at
time t, and htk ∈ Rwk×hk×3 denotes its image content. We also write otk = {ytk,htk}
and Ot = {ot1 . . .otk . . .otK}. We assume that each bounding box is either generated
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by a person or clutter, and denote by Ztk ∈ Zt ⊂ {0, . . . , N} the assignment variable
associated to otk. The likelihood writes:

p(Ot|Zt,Xt) =
Kt∏
k=1

p(ytk|Ztk,Xt)p(htk|Ztk).

The geometric likelihood is expressed as:

p(ytk|Ztk = n,Xt) = U(ytk)δ0nN (ytk; PXtn,Σ)1−δ0n ,

meaning that if an observation is generated from a person, it follows a Gaussian distribu-
tion centered on the projection of the kinematic state using P = [I4, 04×2], and otherwise
it follows an uniform distribution noted U .

The appearance likelihood operates on φw(htk) ∈ RA:

p(htk|Ztk = n) =(U(φw(htk))
δ0n× (2.1)

(N (φw(htk);mn, s
2
nIA)1−δ0n ,

where φw(·) denotes a feature extractor with parameters w and output dimension A, e.g.
a CNN. Moreover, mn ∈ RA represents a mean feature vector, and sn > 0 is the concen-
tration factor of the co-variance matrix. Both parameters need to be further estimated.

Finally, the prior distribution of the assignment variables decomposes as p(Zt) =∏Kt

k=1 p(Ztk) with:

p(Ztk = n) = ρtkn and
N∑
n=0

ρtkn = 1, (2.2)

where ρtkn represents the prior probability of Ztk = n, and is a parameter that needs to be
estimated.

2.3.2 VARIATIONAL ONLINE MULTI-PERSON TRACKING

The goal is to track multiple persons exploiting a probabilistic formulation. Since we
pursue an online tracking algorithm, the model is constrained to use causal observations:

p(Xt|O1:t) =
∑
Zt

p(Zt,Xt|O1:t), (2.3)

p(Zt,Xt|O1:t) ∝ p(Ot|Zt,Xt)p(Zt) p(Xt|O1:t−1). (2.4)

The equation (2.4) is called filtering distribution, and all of the terms are already defined
except for p(Xt|O1:t−1), known as the predictive distribution.

The exact form of the filtering distribution leads to a computationally prohibitive strat-
egy, and inspired by [7] we opt for a variational approximation:

p(Zt,Xt|O1:t,Θ
◦) ≈ q(Zt,Xt) = q(Zt)q(Xt), (2.5)
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which operates on the filtering distribution. It can be proven, that if the predictive distribu-
tion, the last term of (2.4), is a person-separable Gaussian distribution, then the predictive
distribution at next time step will also be.

The optimal values for the variational distribution q(Ztk = n) and q(Xt) are obtained
by minimizing the Kullback-Leibler divergence with respect to the exact filtering distri-
bution. For the assignment variable we obtain:

αtkn = q(Ztk = n) =
ηtknρtn∑
m ηtkmρtm

, (2.6)

where

ηtkn =

{
U(ytk)U(htk) if n = 0

N (ytk,Pµtn,Σ)e−
1
2

tr(P>Σ−1PΓtn)N (φw(htk),mn, snIH) otherwise
(2.7)

µtn and Γtn are the parameters of q(Xt), which turns out to be a Gaussian distribution,
and are recursively computed using:

Γtn =

(
Γ̃−1t−1n + P>Σ−1P

Kt∑
k=1

αtkn

)−1
, (2.8)

µtn=Γtn

(
Γ̃−1t−1nDµt−1n + P>Σ−1

Kt∑
k=1

αtknytk

)
, (2.9)

where Γ̃t−1n = DΓt−1nD
> + Λn.

While (2.6) reminds of the E-step of an EM for GMM, (2.8) and (2.9) are the equivalent
of the recurrent update of N parallel Kalman filters. The parameters of the model can be
updated, as described in [7].
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2.4 JOINT TRACKING AND APPEARANCE MODELING

In the previous section, we introduced the use of a non-linear mapping φw(·), which pro-
vides an embedding of appearance information using a CNN. Although CNN features for
describing person appearances are already available, we expect that a higher representa-
tion performance will be exhibited if an already trained CNN is being fine-tuned using
the bounding boxes and associated appearance information of those persons being actu-
ally tracked. In this section we describe a framework for coupling CNN fine-tuning with
the proposed online tracker.

2.4.1 UNSUPERVISED DEEP METRIC LEARNING

Metric learning consists in learning a distance such that similar elements are close, and
dissimilar ones are far apart. Siamese networks became a common framework for metric
learning, also in the tracking community [48, 12, 60]. However, how to jointly update the
parameters of the tracker and of the deep neural network is still an open question [60].
We first introduce the basics of Siamese networks in the context of tracking, to further on
discuss the joint optimization.

Differently from classification problems, training Siamese networks requires a data set
of triplets (hi,hj, cij), where i, j ∈ {1, . . . , I}. The two bounding box images are feed-
forwarded with the same weightsw, thus obtaining φw(hi) and φw(hj) respectively. The
label is cij = 1 if the two images hi, hj belong to the same person, and cij = −1
otherwise. A popular loss for training Siamese networks is a variant of the contrastive
loss [41], introduced in [47]:

J(w) =
1

2

I∑
i,j=1

g(cij(τ − ‖φw(hi)− φw(hj)‖2)), (2.10)

with g(x) = max(0, 1− x) and τ > 0 is a parameter.

Traditionally, (2.10) is optimized with stochastic gradient descent, thus forcing the
squared distance between elements from a negative pair to be higher than τ + 1, and
between a positive pair lower than τ − 1. At test time, one can use the distance between
the embedding vectors to gauge whether two appearances belong to the same person or
not.

The metric learning framework has proven to be useful for a variety of tasks, but
requires an annotated dataset. Our original motivation was to fine-tune the appearance
model with the appearances of the people being tracked. By definition, such annotated
dataset does not exist in our scenario. Therefore we need to adapt the deep metric learning
methodology to our unsupervised setting.

In order to do that, we resource the deep metric learning problem with the information
extracted by our online multi-person Bayesian tracking formulation. Indeed, (2.6) pro-
vides the posterior probability of the observation-to-person assignments: αtkn = q(Ztk =
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n) embodies the probability of observation k to be generated from the n-th target at time
t. For any given two past observations ki and kj , from time frames ti and tj , we can
compute the probability to be both generated by the same person:

γij = p(Ztiki = Ztjkj) =
N∑
n=1

p(Ztiki = Ztjkj = n)

=
N∑
n=1

q(Ztiki = n)q(Ztjkj = n) =
N∑
n=1

αtikinαtjkjn.

(2.11)

Once the γij are computed, we sample pseudo-positive pairs from those with γij > η
and pseudo-negative pairs from those with γij < 1− η, respectivelyH+ andH− sets. We
optimize the following soft-weighted contrastive loss:

J(w) =
1

2

∑
ij∈H+

g(γij(τ − ‖φw(hi)− φw(hj)‖2))

− 1

2

∑
ij∈H−

g((1− γij)(τ − ‖φw(hi)− φw(hj)‖2)). (2.12)

2.4.2 PROBABILISTIC APPEARANCE MODEL UPDATE

Simultaneously to the training of the Siamese network, one needs to update the appear-
ance parameters of the probabilistic model, i.e. mn and s2n, as defined in (2.1). As is
the case for the parameters of the Siamese network, there is no annotated dataset, and this
update must be done in an unsupervised manner. However, we still have access to the pos-
terior probability of the observation-to-track assignments, and easily obtain the following
updates:

mn =
t∑

t′=t−w

Kt′∑
k=1

αknt′φw(ht′k)
/ t∑

t′=t−w

Kt′∑
k=1

αknt′ (2.13)

s2n =
t∑

t′=t−w

Kt′∑
k=1

αknt′‖φw(ht′k)−mn‖2
/
A

t∑
t′=t−w

Kt′∑
k=1

αknt′

with w being a moving window parameter. Updating these parameters at each time step
allows the appearance model to be more flexible to sudden appearance variations and to
better adapt the internal track appearances to the observations.
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2.5 OVERALL TRACKING SYSTEM

In this section we describe the implementation of the method for joint tracking and ap-
pearance update, within a generic robotic platform operating under ROS.

2.5.1 DEEP APPEARANCE MODEL UPDATE

We instantiate our appearance model with a generic CNN backbone, consisting on several
convolutional layers (see details below). In order to minimize (2.12), we use stochastic
gradient descent with RMS [36] with a learning rate of λ = 0.001. The use of the entire
training set H+ and H− is prohibitive in terms of memory, and mini-batch SGD must be
used. To construct batches, we randomly sample a track, one positive pair (from H+)
and two negative pairs (from H−) associated to this track. This is done so as to respect
the positive-negative balance [5, 21]. This strategy is repeated B times, obtaining a batch
annotated with γij .

φw is pretrained to perform an ID classification similarly to [71]. Thus, the appearance
model update can now be seen as a domain adaptation problem, where we need to learn
the appearance shift (different people, background and illumination changes) between
the pre-training dataset and the tracking data. To achieve this adaptation, only the top
layers of φw are updated during tracking. The amount of layers to be trained depends on
the computation power of the system, allowing the best trade-off between generalization
ability and computation complexity. In our case, we perform an update of the last 2 layers.
We split the update into two steps. First, the feature extraction corresponds to the feed-
forward through the frozen layers of φw. Second, the update of the trainable layers from
the extracted features and γij .

2.5.2 BIRTH AND VISIBILITY PROCESSES

New tracks (e.g. people coming in the field of view) are initialized using a birth process
that testes for consistency the observations previously assigned to the clutter virtual track.
We compare two hypothesis: (i) the previous L geometric observations ytk0 , . . . ,yt−LkL
assigned to clutter correspond to an undetected track, and (ii) the very same observations
belong to clutter and are uniformly distributed. If the first hypothesis wins, a new track is
initialized using detected bounding box, and its appearance model is initialized with the
content of the bounding boxes using (2.13).

We used an additional hidden Markov model visibility process to determine whether or
not a track has been lost. The observation of this binary visibility process arises from the
output of the variational EM algorithm, in particular we set: νtn =

∑
k ρtkn, representing

whether a given track n is assigned to a current detection or not. The estimation of the
latent variable probability p(Vtn|ν1:t) is done using standard HMM inference algorithms,
and informs us about the visibility state of the considered track.
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while tracking do
t← t+ 1;
Update {αtkn}k∈[1,Kt],n∈[1,N ] with (2.6);
Update {µtn,Γtn}n∈[1,N ] with (2.8) and (2.9);
Update {mn, sn}n∈[1,N ] with (2.13);
if tu = T then

tu ← 0 // Reset frame counter;
while φw not converged do

γij ← compute with (2.11);
H+,H− ← sample pair sets, section 2.5.1;
Optimise (2.12) with RMS;

end
end
tu ← tu + 1;
Birth/visibility update, section 2.5.2;
Output {µtn}n∈[1,N ];

end
Algorithm 1: Overall tracking algorithm. Updates are performed with the various
equations and strategies already described. The frame update counter tu allows to
update the φw every T frames. The algorithm outputs the position of all tracks at
every frame t.

2.5.3 ROBOTIC IMPLEMENTATION WITH ROS

The overall tracking algorithm is presented in Algorithm 1. While tracking, the algorithm
uses the various updates derived from the variational EM algorithm (see Section 2.3).
Every T frames, the system updates the appearance model with the equation updates of
Section 2.4 and the sampling strategies and implementation details of Section 2.5.1. The
birth and visibility processes of Section 2.5.2 are then used to set up new tracks and freeze
non-visible tracks.

Algorithm 1 is implemented on a moving robotic platform using the ROS middleware.
ROS does not only allow a platform-independent implementation (feature that will be
used in our benchmark presented in Section 2.6), but also provides a unified framework
to distribute the computation when and where needed. We use this property to exploit
the computational power of an external GPU, devoted to execute the face detector [1]
and to extract CNN appearance features. All other computations, including the update
of the Siamese network, are ran on the CPU of the robot. We use a Intel(R) Xeon(R)
CPU E5-2609 and a NVIDIA GeForce GTX 1070, and exploit the native camera of the
robot. The system runs under Ubuntu 16.04 and ROS Kinetic version. Thanks to these
implementation choices, our online tracker runs at 10 FPS. A schematic representation of
the overall tracking system is shown in Figure 2.1.

ROS makes use of a distributed network of Nodes (ROS processes), which use topics
to communicate. Typically, the drivers nodes control the low level communication with
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Figure 2.1: The robotic software architecture is composed of several nodes: an image is produced by the
video driver, fed to the face detector which produces both face detections and appearance features, then
transmitted to the tracker node (alongside motor position information). The tracking results are exploited
by the robot control to move the robot’s head exploiting the motors drivers.

robot’s sensors and produce Topics containing images and motor positions. Camera’s top-
ics are processed by the face detection and feature extraction Nodes to produce detections
and deep appearance descriptors transmitted to the tracker Node. The tracker Node takes
advantage of the motor information and detections to update the appearance model and
produce track information following (2.8), transmitted to the behavioral control, which
uses it to update the motors’ position, depending on the predefined policy.

In the algorithm previously described, the appearance model update is done every
few frames. Since this update is time consuming, the tracker cannot wait for the model
update to finish before keep on tracking. The appearance model update will run in the
background, and the tracker will use the latest appearance model update available.
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2.6 EXPERIMENTS

We evaluate our joint tracking and appearance model update robotic architecture in dif-
ferent settings. First, we provide quantitative results following the standard evaluation
protocol on the MOT16 dataset. Then, we provide quantitative evaluation under the “ac-
tive surveillance camera” and the “robot navigation in crowded scenes” application, using
MOT17 training set. Finally, we provide qualitative evaluation under the social conversa-
tion application.

2.6.1 QUANTITATIVE EVALUATION

Dataset For the sake of reproducibility and in order to be able to compare different track-
ing systems in the exact same conditions, we use the well-known MOT16 and MOT17
datasets [76] using the public detection setting. The MOT16 dataset is composed of a
dozen of videos taken in various conditions, and provides detections obtained with one
detector (DPM [30]), while MOT17 use the same video sequences but exploit additional
detections obtained with two extra detectors (FR-CNN [87] and SDP [107]). They both
provide ground truth on the training set. On MOT17, the standard protocol is to report the
results averaged over the three detectors.

Importantly, two kinds of videos are available: recorded with a surveillance camera,
and with a camera mounted on an autonomous robot navigating in crowded scenes. Both
scenarios are of interest for us. Indeed, the first scenario allows us to simulate the motion
of a surveillance camera, and to gauge the robustness of the proposed tracking system
against ego-motion noise. The second scenario provides the opposite case in which the
ego-motion is completely unknown and must be inferred from visual information.

The first scenario (moving surveillance camera) consists on emulating that the surveil-
lance camera only sees half of the image width, and then moving the emulated field of
view accordingly to a pre-defined trajectory. The ego-motion vector Et is then contami-
nated with Gaussian noise with a standard deviation of η pixels in a uniformly sampled
direction. The second scenario (robot navigating in the crowd) consists on using the full
field of view of the camera, and estimate the ego-motion vector Et with an optical-flow-
based strategy.

Implementation details In all scenarios, the appearance model is updated every 5 frames
for 2 epochs. We create the appearance training set by sampling 50 images per identity,
and then sample the image pairs as described in Section 2.5.1. Weight decay with a factor
λ = 10−4 is used to regularize the training process. The appearance model CNN is in-
stantiated by a ResNet [43] architecture, where the last layer was replaced by a two layer
perceptron with 500 and 100 units activated with ReLu. This CNN is pre-trained for the
person re-identification task on the Market-1501 [120] and DukeMTMC [123] datasets,
following [126].

Optical flow (OF) is extracted [29] and is used in two different ways. First, in the robot
navigating in the crowd settings, the OF is used to estimated the ego-motion vector Et, by
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Table 2.1: Results on the MOT16 test set, and standard evaluation setting.

Model
Detection Tracking ID

Rcll Prcn MOTA MOTP IDF1 IDsw

CH [7] 45.4 87.8 38.4 75.4 37.8 1,321
ODA-UP 40.4 91.6 36.3 75.6 48.0 757

averaging the OF over the entire image. In both scenarios the average optical flow within
one detection bounding box, provides an estimate of the velocity of the track (after the
ego-motion vector is subtracted). In order to get stable results we set s2n to a fixed value:
once φw is trained, we know the that the squared radius of the clusters in that space is
τ − 1. We then set the value of s2n accordingly.

Evaluation protocol We compare our online deep appearance update (ODA-UP) based
method with the state-of-the-art in multi-person tracking for social robotics [7]. While
the tracking model is very similar, the appearance model previously used in the litera-
ture is based on color histograms (CH). We first compare MOT performance on MOT16
test set using the standard evaluation procedure where unmodified sequences are used,
as [7] is originally benchmarked on MOT16. We then compare tracking performance
on MOT17’s training set using the moving surveillance camera and robot navigating in
the crowd scenarios to better assess their performance in a robotic setting. Since the
tracking framework on which both trackers are derived from are generative probabilistic
models, and are thus not preliminary trained, we can leverage training data and anno-
tations in a fair comparison. Additionally, and in order to provide a full evaluation of
the necessity of the on-line appearance model update, we compare the proposed tracker
with the exact same architecture without updating the weights of the deep appearance
model, and refer to it as ODA-FR, for frozen. In that case, the appearance likelihood is
provided by computing the cosine similarity between appearance templates and current
detections. For the moving surveillance camera scenario, we evaluate under different val-
ues of η ∈ {0, 0.8, 1.6, 3.2}. We report standard multiple object tracking metrics: the
recall (Rcll), the precision (Prcn), the number of identity switches (IDsw), the fragmenta-
tion (FM), the multiple object tracking accuracy (MOTA) and precision (MOTP). These
metrics are well known and were introduced in [11]. The ID consistency of the tracks is
further evaluated with identity recall (IDR), precision (IDP) and F1 measure (IDF1), see
[89].

Discussion Table 2.1 reports results on MOT16 test set, using the standard evaluation
protocol. We note that CH achieves better overall tracking performance (+2.1%), which is
mainly explained by a high track recall (+5%). However, our proposed strategy achieves
significantly higher performance in terms of tracks identity consistency: +10.2% in IDF1,
which translates into nearly half less identity switches (IDsw). ODA-FR is not reported
here because MOT16’s test server doesn’t allow multiple submissions. This higher per-
formance in re-identification is not surprising since our approach uses a more powerful
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Table 2.2: Results on MOT17’s moving surveillance camera setting .

η Model
Detection Tracking Identities

Rcll Prcn MOTA MOTP IDP IDR IDF1

0
CH [7] 49.4 88.2 42.5 84.5 70.3 39.4 50.5

ODA-FR 49.5 88.7 43.0 84.8 66.7 37.2 47.8
ODA-UP 54.7 86.7 45.6 84.0 75.4 45.7 56.0

0.8
CH [7] 49.6 88.0 42.5 84.4 69.9 39.4 50.4

ODA-FR 49.7 88.7 43.1 84.7 67.1 37.6 48.2
ODA-UP 54.4 86.3 45.0 83.8 71.2 44.9 55.1

1.6
CH [7] 49.1 88.2 42.2 84.2 70.3 39.1 50.2

ODA-FR 49.5 88.6 42.8 84.5 66.3 37 47.5
ODA-UP 54.5 86.4 45.3 83.7 73.3 46.2 56.7

3.2
CH [7] 49.2 88.2 42.3 83.2 68.1 38.0 48.8

ODA-FR 49.1 88.4 42.4 83.3 66.8 37.1 47.7
ODA-UP 54.2 86.1 44.8 82.8 71.5 45.0 55.2

Table 2.3: Results on MOT17’s robot navigating in the crowd settings.

Model
Detection Tracking Identities

Rcll Prcn MOTA MOTP IDP IDR IDF1

CH [7] 45.8 91.8 41.2 80.7 74.1 37.0 49.3
ODA-FR 45.8 93.1 42.0 81.0 73.8 36.3 48.6
ODA-UP 52.3 90.5 46.2 81.5 79.0 45.7 57.9

appearance model, and we argue that in the context of social robotics, re-ID tracking
performance is a more relevant measure. We explain our poor performance in MOTA
by the relative invariance of this metric to ID switches, and also by the high number of
non moving sequences in the dataset, which reduces the risk of track fragmentation and
thus interest for a discriminative appearance model, and is therefore not representative of
robotic settings. This motivates us to investigate further the impact of a moving robotic
head in MOT in the scenarii moving surveillance camera and robot navigating in the
crowd.

Table 2.2 and 2.3 report the results in the two scenarii on MOT17. Regarding the
moving surveillance camera setting in Table 2.2, we first observe that our approach sig-
nificantly outperforms both the frozen (FR) and the color histogram (CH) models, by
more than +3% and +2% respectively in MOTA. Unsurprisingly, the pretrained appear-
ance model outperforms color histogram based model by roughly +0.5% in MOTA. While
different levels of ego-motion noise lead to different scores, the ranking between the meth-
ods stays the same. The difference in MOTP is quite small, meaning that the quality of the
output bounding boxes (only the tracked ones) is roughly the same. The slight decrease
for ODA-UP is due to the fact that ODA-UP is able to track people that are harder to
track, and for which estimating good bounding boxes is more challenging. This is sup-
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ported by the relative position of the methods in the other metrics. Indeed, the recall and
precision metrics are another proof that ODA-UP is able to track significantly more peo-
ple in the context of a moving camera. Regarding the identity measures, we can see that
ODA-UP exhibits by far the highest performance, putting forward the advantage of the
adaptive strategy. Indeed, the ODA-UP model outperforms the other two. Interestingly,
ODA-FR is outperformed (in identity measures) by the color histograms, demonstrating
that complex deep models are useful only if trained in relevant data or, as we propose in
this chapter, if they are adapted online.

A similar situation is found in Table 2.3 for robot navigating in the crowd setting:
our approach outperforms the histogram model and the pretrained model by respectively
+5.0% and +4.4% in MOTA. The rest of the metrics follow the same ranking as in the
previous setting. Very importantly, the findings in Table 2.2 are further confirmed by
larger advantage margins in Table 2.3. In both experiments, we observe how that update
of the deep appearance model brings two main advantages. First, the tracking recall
increases, and thus MOTA does, because leveraging appearance information becomes
crucial in the case of a moving camera. Second, and more important, the consistency of
the tracks’ ID exhibits a significant increase when updating the model online.

2.6.2 QUALITATIVE RESULTS

We qualitatively evaluate the performance of the tracker on a real robotic platform, as
described in Section 2.5.3, and provide them as videos alongside the chapter: results are
available at https://team.inria.fr/perception/research/oda_track/.
In that case, the procedure in [7] is used to compute the ego-motion vector from the motors
velocity. Only faces’ bounding boxes are extracted from the images using [1]. Example
of the tracking results are displayed in Figure 2.2, using CH and ODA-UP. We note that
since our deep metric formulation has a higher discriminative power than color histogram
based appearance model, it is able to better distinguish ID 2 and ID 4, even if they are
close and that both detections could be generated by a unique ID. Also, we note that the
ID labels of the tracks differ significantly when comparing both methods, which is caused
by the high number of identity switches in the CH setting.

2.7 CONCLUSION

In this chapter, we address the problem of online multiple object tracking in a domain-
agnostic robotic setting, using a joint probabilistic and deep appearance model that al-
low the update of the appearance embedding simultaneously to tracking multiple people,
while accounting for the robot ego-motion. We demonstrate its performance quantita-
tively using the standard evaluation protocol on MOT16 and in two modified scenarios on
MOT17, and qualitatively onboard of a consumer robot.

https://team.inria.fr/perception/research/oda_track/
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(a) Tracking result using CH [7]

(b) Tracking result using ODA-UP

Figure 2.2: Tracking qualitative results using CH and ODA-UP. Detections are displayed on the left panel
(blue), and tracking results are available on the right panel (green) in 2 settings.
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CHAPTER 3

CAMERA ADVERSARIAL

UNSUPERVISED RE-ID

3.1 INTRODUCTION

Person re-identification (Re-ID) is a well-studied retrieval task that consists in associating
images of the same person across cameras, places and time. Given a query image of
a person, we aim to recover his/her identity (ID) from a set of identity-labeled gallery
images. The person Re-ID task is particularly challenging for two reasons. First, the query
images correspond to IDs never seen before (i.e. during training). Second, the gallery
and the query images are captured under a variety of background scenes, illumination
conditions, and viewpoints.

Most Re-ID models assume the availability of heavily labeled datasets, and focus on
improving their performance on the very same datasets [126, 123, 121, 120, 119, 62].
However, datasets are recorded in specific places and time, and consequently, can be
severely biased in terms of background and illumination conditions. These biases par-
tially explain why many Re-ID methods available in the literature generalize poorly to
other datasets [28, 25], and as seen in chapter 2. Clearly, this reduces their deployabil-
ity and usability in real-world scenarios like practical multiple person tracking. In order
to overcome these limitations, several methods were recently proposed attempting to ad-
dress unsupervised person Re-ID [99, 112, 28, 25, 83, 57]. These methods assume the
availability of a source dataset annotated with person IDs and another unlabeled target
dataset, and aim to optimize the target re-ID performance. In that sense, unsupervised
Re-ID is formulated as a domain adaptation problem rather than an unsupervised learning
problem.

In parallel, and since generative adversarial networks (GANs) [40] were proposed,
adversarial learning has gained popularity in the domain adaptation field [97, 34, 13].
The underlying intuition is that learning a feature generator robust to the domain shift

33
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Figure 3.1: We propose an adversarial method to learn a feature extractor defining an embedding space
where the different camera distribution match, and are not distinguisible. To achieve that, we extend the
classic adversarial domain adaptation method to a multiple domain formulation, by using a camera-classifier
as discriminator, instead of the usual binary classifier. At the same time, we ensure that our features are
ID-discriminative by using a standard classification loss.

between source and target would improve the target performance. The adversarial learn-
ing paradigm has been successfully used for person Re-ID, mostly for data augmenta-
tion, in both the supervised (standard) [126, 123] and the unsupervised (domain adapta-
tion) [25, 70] learning paradigms.

In this chapter, we explore unsupervised re-ID to improve at the pretraining stage the
person re-ID model leveraged in chapter 2 as appearance model backbone for MOT, in the
case where the target domain is known and unlabeled training data available. We propose
a new method exploiting adversarial strategies for person Re-ID. Our approach is summa-
rized in Figure 3.1. The intuition behind the core hypothesis in this chapter is that camera
information, i.e. which camera acquired which image, can be used to learn features that
are robust to camera changes and, as a consequence, robust to illumination, background
and viewpoint changes. This hypothesis can then be used to transfer information from a
labeled person Re-ID source dataset to an unsupervised target dataset. Towards this aim,
we propose a method referred to as camera adversarial transfer (CAT). We report exper-
iments on the DukeMTMC-ReID [123] and Market-1501 [120] datasets and discuss the
impact of different architectural and methodological choices.
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3.2 RELATED WORK

3.2.1 SUPERVISED PERSON RE-ID

Most Re-ID models are supervised and employ a single dataset for both learning and test-
ing. A plethora of techniques was proposed in order to improve the performance obtained
in this standard setting [119, 62, 53, 19]. These methods fall into two categories. First,
metric learning based approaches obtain an optimal representation by adequately opti-
mizing the distance between pairs of images [62, 53, 58, 122, 103, 67, 114, 19]. Second,
a classifier is trained to return the index of the visible persons [119, 85, 18, 102, 63].
However, independently of the approach employed, these methods perform poorly when
the training and the test sets differ significantly in terms of lighting conditions or image
quality, as it is the case in cross-dataset experiments [25, 28].

3.2.2 UNSUPERVISED PERSON RE-ID

To face the generalization ability issue, unsupervised cross-dataset person Re-ID meth-
ods were recently proposed [28, 112, 83, 25, 99, 57]. By jointly learning on a labeled
source dataset and an unlabeled target dataset, these methods exploit the relatively simple
process of gathering unlabeled detections from a target camera network. For instance,
clustering techniques are used in [28, 112, 70] to infer information about the target IDs
and to incorporate the estimated IDs into the training procedure. In [83, 57], dictionary
learning approaches are proposed in order to learn a dataset-shared representation. Inter-
estingly, some other works [99, 94] employ attribute information available with the source
dataset, e.g. gender, haircut or clothing style. They show how exploiting these pieces of
information improves the performance in the context of unsupervised person Re-ID, at the
cost of manually annotating all these attributes. Recently [72, 78] used spatio-temporal
constraints on the target camera network to improve the Re-ID performance.

3.2.3 ADVERSARIAL FOR UNSUPERVISED RE-ID

Some recent work investigated generative adversarial networks (GANs) for learning per-
son Re-ID as a data augmentation/transformation technique. [123] showed that the use
of GAN generated images trained on person Re-ID datasets can improve baseline mod-
els. In parallel, an image-to-image translation technique is employed in [126] to augment
the training dataset by learning the style of each camera in the supervised Re-ID setting.
However, such a strategy suffers from a scalability problem when applied to unsupervised
person Re-ID, since the number of learned style translations increases exponentially with
the number of target cameras. A similar approach is employed in the framework of un-
supervised person Re-ID in [25] in order to transfer a target style onto labeled source
detections: by learning the target’s image distribution while preserving the source ID in-
formation, they train a generator to match the target data distribution in the image domain
and use the transferred images to learn a baseline Re-ID model. Intuitively, our proposed
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Figure 3.2: Architecture of our camera adversarial transfer strategy. The generator is first updated using
source’s indentity labels, and minimize the performance of the camera discriminator, using losses (3.8) and
(3.9). The discriminator is then updated to recognize from which cameras the feature vectors are extracted
with (3.10).

method is similar to this approach: we match domain distributions directly in the feature
domain instead of the image domain. In this way, we remove the data generation step,
and we unify the learning procedure. More recently, [124] has been proposed to learn
each camera style independently and use metric learning approaches to make use of the
generated examples and train a Re-ID model.

Adversarial learning for domain adaptation has recently emerged [34, 97, 13]. It aims
to train a discriminator to distinguish between source and target features, such that a fea-
ture generator is trained to find a domain-invariant and discriminative representation for
the target task. The effectiveness of adversarial domain adaptation for unsupervised per-
son Re-ID has been showed in [34], where a coarse discriminator is trained to distinguish
between source and target features, as if they were real and fake samples with a standard
GAN.

In order to achieve robustness across camera networks, we propose to cast the prob-
lem in the adversarial framework. Considering a standard person Re-ID model, we take
advantage of the adversarial loss to learn an embedding space where the different camera
feature distributions match, i.e. they are indistinguishable. To do so, we extend the clas-
sic adversarial domain adaptation method to a multiple domain formulation, by using a
camera-classifier as discriminator, instead of the usual binary classifier. At the same time,
we ensure that our learned features are ID-discriminative by using a classification loss.
We demonstrate its interest in the context of unsupervised person re-ID with a standard
baseline. To the best of our knowledge, ours is the first attempt to exploit adversarial
learning to directly tackle the data distributions discrepancies related to camera changes
in the context of person Re-ID.
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3.3 CAMERA ADVERSARIAL TRANSFER (CAT)

As previously mentioned, the aim of CAT is to understand whether a camera-wise ad-
versarial strategy could be useful in the context of unsupervised person Re-ID. More
formally, let S denote a source ID-annotated person Re-ID dataset, containing NS im-
ages corresponding to MS different identities captured by KS cameras. We write S =
{(xSn ,pSn , cSn)}N

S
n=1, where each three-tuple consists of a detection image, xSn , a person ID

one-hot vector, pSn ∈ {0, 1}M
S and a camera index one-hot vector, cSn ∈ {0, 1}K

S . Simi-
larly, we define T = {(xTn , cTn )}N

T
n=1 a target person Re-ID dataset, with KT cameras and

NT element, without ID labels.

Let φ be a convolutional neural network front-end (e.g. ResNet-50 to fix ideas) con-
sidered as our feature extractor. The goal of person Re-ID is to be able to discriminate
between identities, and therefore an identity classifier CID is required. The cross-entropy
loss is usually employed:

LSID(φ,CID) = −E(xS ,pS)∼S
{
log
〈
CID(φ(x

S)),pS
〉}
, (3.1)

where E denotes the expectation and < ·, · > denotes the scalar product, in this case
between the output of the ID discriminator CID(φ(x

S)) and the ground-truth ID vector
pS . Training person Re-ID systems with LID loss alone in a supervised setting has been
widely studied and can be considered a well-established methodology [25, 123, 126].

In this context, we investigate how to use camera index information to improve the
transferability of the learned visual features to a camera-only supervised dataset. One
of the main issues is that the features learned with the classical strategy discussed above
describe a combination between the identity of the person and camera specifics (such as
background, illumination conditions, viewpoint..). Because in the cross-dataset setting the
datasets are recorded with different cameras, it results in a significant discrepancy between
the two learned feature distributions, and has a strong negative impact on the performance.
Formally, this distribution shift can be measured according to the generalized Jensen-
Shannon divergence [68],

JSD
1≤c≤KS+KT

(p(φ(X)|C = c)) 6= 0 (3.2)

This is confirmed empirically: we show that when φ is trained using (3.1) only, we can
then train a classifier to predict the true camera index from the features of φ (see the
experimental section).

Recent works in domain adaptation and adversarial learning [40, 34] show that this
framework can be used for matching the source’s and target’s feature distribution. They
do so, first by training a dataset classifier on top of the feature extractor, and then adding
an adversarial term in the loss. We get inspired from this strategy to propose a multi-
ple domain (camera) discriminator, mixing camera and ID-labels from the source target
together with camera-only labels from the target domain, to match camera embedding
distribution and minimize the divergeance in Eq. (3.2).
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To implement this, we require a camera index discriminator DCam (see Figure 3.2 for a
complete overview of the architecture) and we define a camera index (cross-entropy) loss:

LS+Tcam (φ,Dcam) = −E(x,c)∼S+T {log 〈Dcam(φ(x)), c〉} (3.3)

On one side, the feature extractor must minimize the person Re-ID loss LID at the same
time as making the problem more challenging for the camera discriminator. On the other
side, the camera discriminator tries to learn to identify the camera from which the gener-
ated feature φ(xS/T ) has been extracted :

min
φ,CID

max
Dcam
LSID(φ,CID)− µLS+Tcam (φ,Dcam), (3.4)

where µ > 0 is a parameter with two possible interpretations. From a domain adapta-
tion perspective, it can be seen as a regularization parameter [34]. From an adversarial
learning perspective, µ adjusts the impact of the discriminator’s gradient when training
the generator.

Under mild hypothesis, we can show (Annex A) that minimizing the loss (3.4) is equiv-
alent to the following optimization problem

minφ,CIDLSID(φ,CID) (3.5)

s.t. JSD(p(φ(x)|c = 1), .., p(φ(x)|c = KS +KT )) = 0

Although this adversarial loss could directly be applied to our problem, we empirically
show its limitations (cf table 3.2 in the experimentation section), and propose methods to
alleviate its problems in the following sections.

3.3.1 DOMAIN CONFUSION LOSS

The adversarial loss as formulated in (3.4) suffers from convergence problems [40, 3],
since the discriminator converges quickly at early stages of the training leading to vanish-
ing gradient problems. The solution usually adopted [40, 97] is to train the generator with
a binary crossentropy loss and inverted labels, considering generated images as if their
were sampled from the true distribution.

In addition, in the context of our camera adversarial learning, when updating the gen-
erator, the adversarial loss encourages lower probability values for the true camera labels
but does not constrain all the other camera label probabilities to simultaneously increase.
Consequently, it is likely that the generator favors the visually closest cameras. Since
the visually closest camera usually belongs to the same dataset, this standard adversarial
formulation would not force feature distribution matching between the source and target
datasets.

To alleviate this problem and inspired by [97], we propose a camera confusion loss
by imposing that features extracted from φ result in a uniform distribution labelisation
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according to the camera-discriminator:

LRcam-conf(φ,Dcam) = −E(x,c)∼R {log 〈Dcam(φ(x)),u〉}

whereR ∈ {S, T } and u =
1

KS +KT
(3.6)

Note thatR is equal to either S or T depending on the current training step as detailed in
Sec.3.3.3. When updating φ according to (3.6), we take into account all the discriminator
outputs and therefore encourage the model to match feature distributions across datasets.

It is also close to the alternative adversarial loss described earlier, in the sense that we
encourage φ to increase all cameras output probabilities instead of only diminishing the
true cameras probability output.

3.3.2 LABEL SMOOTHING REGULARIZATION FOR OUTLIERS

The identity distributions across datasets do not have overlapping support (ie the datasets
do not share identity labels). Solving the optimization problem (3.5) might end up pro-
ducing features discriminative in terms of source identities, invariant to camera changes,
and to target’s identities. This problem is refered to as negative transfer. It would drasti-
caly hurt target’s re-ID performance. To mitigate this problem, we propose to use Label
Smoothing Regularization for Outliers (LSRO) [123] for ID supervision of target’s im-
ages.

LTID-LSRO(φ,CID) = −ExT ∼T
{
log
〈
CID(φ(x

T )),uMS
〉}

uMS = 1/MS (3.7)

It has two interpretations: similarly to [123], it acts as a regularization term, introducing
appearance variations when evaluating the ID loss, preventing the ID classifier to focus
on under-represented visual features correlated with identities. Second, it prevents the
feature distribution matching to crush target’s ID-specific features, by incorporating the
information that no target IDs are present in the source dataset, and therefore should lie far
for from source’s ID decision boundaries, thus mitigating the negative transfer problem.

3.3.3 OVERALL TRAINING

In practice, both the identity classifier and the camera discriminator are implemented
as classification layers within the neural architecture. The difference between them lies
on how their weights are updated, i.e. with which information are the classifier and the
discriminator trained. From the two optimization problems stated above, we can clearly
see that, while the feature extractor is updated with both the identity and the camera
losses, the ID classifier and the camera discriminator are updated with the person and
camera index information respectively. Even if both the classifier and the discriminator
are classifying/discriminating, only the second is a discriminator within the adversarial
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philosophy. We end up jointly solving the following optimization problems

min
φ,CID
LS(φ,CID, Dcam) =

LSID(φ,CID) + µLScam-conf(φ,Dcam), (3.8)

min
φ,CID
LT (φ,CID, Dcam) =

λLTID-LSRO(φ,CID) + µLTcam-conf(φ,Dcam), (3.9)

min
Dcam
LS+T (φ,CID, Dcam) = LT +Scam (φ,Dcam), (3.10)

where µ and λ are relevant only when training φ.

We optimize those losses iteratively, alternating between the three. We call our method
Camera Adversarial Transfer (CAT).

3.4 EXPERIMENTS

3.4.1 PROTOCOL

Datasets. The proposed adversarial transfer strategies are evaluated mainly on two datasets:
Market-1501 (Market) [120] and DukeMTMC-reID (Duke) [89, 123]. In both cases, the
dataset consists on three parts: a training set, a gallery set and a query set. The query
and gallery subparts are never available during training, and only used for testing pur-
poses. The Market dataset is composed of M = 1, 501 (half for training and half for
test) different identities, observed through K = 6 different cameras (viewpoints). The
deformable parts model [30] is used to detect people in the images. As a consequence
we obtain N = 12, 936 images for training and 19, 732 for the gallery images. The query
subparts consists of 3, 368 hand-drawn bounding boxes. The Duke dataset is composed
of M = 1, 404 (half for training and half for test) identities captured from K = 8 dif-
ferent cameras. In addition, 408 other ID, called “distractors”, are added to the gallery.
Detections are manually selected, leading to N = 16, 522 images for train, 17, 661 for
the gallery and 2, 228 queries. Transfer experiments trained on Market and evaluated on
Duke are noted Market→ Duke, and reversely Duke→Market.

Evaluation metrics. In order to provide an objective evaluation of the performance of
the adversarial strategies, we employ two classical metrics in person Re-ID [120]: Rank-1
(R1) and mean average-precision (mAP). In more details, for each query image, we ex-
tract the visual features employing the adversarially learned generator φ, and we match
them to the features extracted from the images of the gallery using cosine distance. Im-
portantly, the features corresponding to the gallery images captured with the same camera
as the query image are not considered. For R1, a query is well identified if the closest
gallery feature vector corresponds to the same identity. In the case of mAP, the whole list
of gallery images (except those taken with the same camera) is considered, and the preci-
sion of those rank positions in which a positive match is found is averaged. See [120] for
details. For both metrics, the mean over the query set is reported.
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Implementation and training details. The feature extractor φ used in our study corre-
sponds to a recent variant [126] of the well know IDE [121] and denoted by IDE+. IDE is
often used as baseline to conduct experimental evaluations for the task of person Re-ID,
see [121, 126, 123, 25, 28, 110]. Both architectures are based on ResNet-50, which we
implicitly assume pre-trained on ImageNet unless otherwise specified.

In detail, The IDE+ baseline consists in adding the ID classifier after the last pooling
layer of ResNet-50 (usually denoted as pool5). The ID classifier consists of a hidden
fully connected layer of 1,024 units, a batch normalization layer activated with ReLU, a
dropout regularization layer (with rate at 0.5), and a fully connected classification layer
activated by a softmax function. The number of units of the classification layer depends
on the number of training person identities. The overall architecture is trained end-to-end
using Stochastic Gradient Descent (SGD).

The camera discriminator consists of one hidden layer of 256 units each, with ReLU
activations regularized with weight decay (with rate at 0.01). The camera classification
layer is activated with softmax and the number of units depends on the number of cameras
of the dataset. An ablation study on the number of units per layer is presented later
on in this experimental section. Besides, we faced a pratical issue when training the
discriminator: it is not a balanced classification problem. In other words, the number
of detections per camera strongly depends on the camera, and therefore if we do not
carefully address this issue, we will be biasing the discriminator towards those cameras in
which more people are detected. In order to tackle this problem, we sample evenly across
cameras when gathering a batch.

We resize the input images to 256 × 128 pixels to keep the aspect ratio. We use
mirroring and a batch size of 64 (for the sake of the stability of the results). The pre-
training is inspired from [126]. The model is initialized on ImageNet and pre-trained for
20 epochs in the supervised setting (using only source information). The camera matching
training is then conducted for 10 epochs, using the same optimization settings. We use a
fixed learning rate for all the experiments (η = 0.01), and use a learning rate multiplier
when training the ID branch, which multiplies by 10 the ID classifier’s gradient.

For inference, we use local max pooling (LMP), introduced in [25], which consists
in removing the final global average layer of ResNet, and replace it with 2 local max
pooling, one pooling from the half-top of the picture, the other pooling the other part. We
therefore obtain a feature vector of dimension 2 × 2048.

3.4.2 COMPARISON TO STATE OF THE ART

We compare our results with two hand-crafted feature-based classical strategies: Bag
of Words (BoW) [120] and local maximal occurence (LOMO) [67]. We also compared
against clustering and finetuning (PUL) [28] as well as transferable joint attribute-identity
deep learning (TJ-AIDL) [99]. Importantly, this method exploits extra labeled data (i.e.
attributes) which must be manually annotated and that the rest of the methods do not
employ. Results of Bottom-Up Clustering Approach [70] (BUC) are also reported. We
compare to the closest work in the literature: SPGAN [25] and HHL [124].
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Table 3.1: R1 and mAP measures on both datasets. The first part of the table is extracted from the litera-
ture. All the results are obtained under the same experimental protocol. † refers to unsupervised settings
exploiting extra annotations (attributes). Overall best results are shown in bold, second best results are in
italic.

Method Duke→Market Market→ Duke

R1 mAP R1 mAP

LOMO [67] 27.2 8.0 12.3 4.8
BoW [120] 35.8 14.8 17.1 8.3
PUL [28] 45.5 20.5 30.0 16.4

TJ-AIDL [99] † 57.1 26.2 39.6 22.0
TJ-AIDL [99] † 58.2 26.5 44.3 23.0

SPGAN [25] 51.5 22.8 41.1 22.3
SPGAN + LMP [25] 58.1 26.9 46.9 26.4

HHL [124] 62.2 31.4 46.9 27.2
BUC [70] 66.2 38.3 47.4 27.5

IDE+ 45.6 19.8 32.4 16.8
IDE+ + LMP 53.5 25.4 41.2 23.2
CAT + LSRO 54.9 26.2 45.9 24.6

CAT + LSRO + LMP 57.8 27.8 50.9 28.7

All these results are copied directly from the literature. Table 3.1 reports the results
when using Duke and Market as source and target (left) and vice versa (right).

From Table 3.1 we can see that deep learning based methods (including ours) out-
perform hand-crafted features, confirming once more the interest of deep learning for
unsupervised person Re-ID. We see that our method yields competitive results compared
to the state of the art, getting the best results for the Market→ Duke (+3.5% in R1, and
+ 1.2% in mAP), and third best for Duke →Market. We also note that our approach is
significantly simpler than SPGAN [25] and HHL [124] (our closest competitive methods)
to train, since those methods require first to train a GAN inspired generator to fit target’s
image distribution, generate a transfered dataset and then train the baseline on top of it. In
a practical point of view, our method is therefore more practical and scalable, since it only
requires a few epochs of training from a pretrained network to get competitive results on
a new unlabeled dataset.

3.4.3 ABLATION STUDY

Adversarial learning variants We use the adversarial framework to train the model
with different training settings. We use the adversarial loss (3.4) that we denote by adv,
to compare with our domain confusion objective (see section 3.3.1). It best performs for
µ = 0.01 and 5 epochs.

We also experiment the classic adversarial domain adaptation setting, when the dis-
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criminator is only trained to recognize source’s and target’s features. We call this variant
Domain Adversarial Transfer (DAT). Since the task of the discriminator is easier than
in the CAT setting, we use a simpler architecture (1 layer, 64 neurons and weight decay
at 0.1) to prevent the model to overfit on identities. The best global performances are
reported, for µ = 0.01 and 5 epochs.

Finally, we experiment the adversarial setting exploiting only source’s information: the
discriminator is only fed source’s detections, and φ is updated using only source’s image,
ID and camera labels. We refer to this method as Fully Adversarial Training (FAT). When
training this method, we use a 2 layer discriminator of 512 neurons and train it from
scratch (pretrained imagenet weights), and train it for 20 epochs. The results of those
different variants are reported in table 3.2. Results with LMP are included for the sake of
completeness, but not considered in the following analysis.

All experiments demonstrate asymetric performances when switching dataset’s role.
It generally performs better when considering Duke as target (+13.5% vs +10.3% in best
scenarios). An explanation might come from the fact that ID information is closely linked
to the camera index information in the Duke dataset, in comparison to the Market. This
is backed by the mutual information measure between identities and camera index in
each domain: 0.84 for Duke, and 0.14 for Market. It means that providing camera index
information will give the model much more identity information in the Duke than in the
Market. Therefore, it is more difficult for the model to learn features not dependent on
cameras specifics (background/illumination) while being ID-discriminative, thus making
the features less transferable. It is also confirmed by robustness experiments, developed
in the next section.

Second, FAT slightly improves the Re-ID performance compared to our baseline in
both cases (+2.7% and 3.8% respectively), without exploiting target information. It con-
firms the interest for adversarial learning in the context of domain generalization [64].

Interestingly, CAT experiments yield better results than DAT (+7% and +5%). Al-
though DAT experiments use a simpler discriminator, and explicitly enforce a strong reg-
ularization, we show that using a labelization less dependent on identities for the dis-
criminator, like camera index, encourages the discriminator to exploit features less ID
dependent, and thus yield better re-ID performance.

Finally, we demonstrate the interest of the camera confusion loss in the context of
person Re-ID (+3.1%,+0.9%) and of LSRO (+2.8%,+2.7%).

Robustness assessment The robustness of the features learned can be easily evaluated,
to have a sense of how well camera’s feature distributions match. We split the Gallery
(test set) of each dataset into a gallery-training set and a gallery-test set (2/3-1/3). We
then train a camera-discriminator (same implementation as in 3.4.1). We evaluate its
camera accuracy performance (the lower the better). Note that the dataset split is done
making sure that there is no ID overlap between the 2 gallery sub-datasets, to ensure that
we do not use ID-dependent information during the camera classification task.
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Table 3.2: Adversarial strategies variants. FAT uses only source data at training with Lcam-conf, DAT’s
discriminator is supervised only with dataset’s labels, and adv refers to a standard adversarial loss.

# exp. setting Duke→Market Market→Duke

R1 mAP R1 mAP

IDE+ 45.6 19.8 32.4 16.8
FAT 48.3 20.9 36.2 19.3
DAT 45.1 19.6 37.3 19.8

CAT + adv 49.0 21.6 42.3 22.2
CAT 52.1 24.3 43.2 23.6

CAT + LSRO 54.9 26.2 45.9 24.6
CAT + LSRO + LMP 57.8 27.8 50.9 28.7

Table 3.3: Feature’s robustness evaluation: we extract features from the gallery images of a given dataset,
split them into a testing and training set, and train a camera classifier with the latter on top of the frozen
evaluated model. We report the camera accuracy performance on the testing set of each re-ID dataset. Better
camera robustness results are in bold. Refer to the text for detail.

# exp. setting Camera classifier’s accuracy

Duke→Market Market→Duke

IDE+ 85.5 67.6 68.2 91.0

FAT 45.5 62.0 42.7 88.0
DAT 77.6 64.4 62.8 84.4

CAT + adv 56.4 49.1 48.1 68.1
CAT 61.0 27.9 45.4 68.6

CAT + LSRO 71.0 33.2 50.1 68.2

First of all, we notice that baseline (IDE+) robustness performance is limited, since
we manage to train a camera-classifier with good accuracy. It has been the preliminary
experiment motivating our adversarial approach. The ID-supervised datasets have better
robustness measures, meaning that a classic supervised technique already enforce some
kind of robustness, which explain their good performance in a supervised setting.

Second, the Duke dataset consistently has higher accuracy scores across experiments.
The camera robustness is tougher to achieve for this dataset, and it comforts our strong
ID-camera relationship hypothesis explaining the poorer performance in Duke→Market.

All adversarial experiments encourage camera robustness for both source and target
datasets. It is noticeable that FAT achieves it without having access to target information.
CAT does a better job than CAT+adv in Duke → Market, which might explain why it
outperforms it significantly in Re-ID performance (see table 3.2). We also note that using
LSRO increases the accuracy performance of the camera classifier, indicating that its use
mitigates the adversarial strategy impact in order to preserve ID-related information.
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Table 3.4: CAT + LSRO R1 and mAP performance for different number of neurons for the discriminator
and µ. We note acc the accuracy performance of the camera discriminator at the end of the training.

# units Duke→Market Market→Duke

R1 mAP acc R1 mAP acc

128 52.9 24.1 35.9 44.7 23.9 30.1
256 54.9 26.2 31.4 45.9 24.6 33.2
512 50.0 22.7 43.9 43.4 23.0 32.6

1,024 51.7 23.7 33.3 42.8 23.0 34.6

µ
Duke→Market Market→Duke

R1 mAP acc R1 mAP acc
0.01 45.0 19.4 64.3 41.4 22.2 62.3
0.05 48.5 21.7 44.1 45.5 24.4 40.3
0.1 54.9 26.2 31.4 45.9 24.6 33.2
0.2 52.9 24.8 26.5 45.3 24.7 25.6

Impact of camera variability. We train CAT with different target dataset sizes to un-
derstand the impact of the variability of the target dataset on the Re-ID performance. The
only modification on the experimental protocol is that the target dataset consists on what
is captured from cameras 1 to K̃, making K̃ vary from 1 (only one camera) to KT (all
cameras). In these experiments we use Market as source dataset, and Duke as target. The
gain in performance over the IDE+ baseline is shown in Figure 3.3.

We first notice that the IDE+ baseline is respectively better, equivalent and worse
when using one, two or more than two cameras. Generally, we observe that the Re-ID
performance regularly increases with the number of cameras. The regular increase in
performance when adding more and more cameras is a clear trend in Figure 3.3. Our
understanding is that the adversarial strategy is good at capturing and exploiting the intra-
dataset variability, and satisfactorily exploits the different viewpoints to learn more robust
and discriminative person Re-ID features. CAT do not only learn to match feature dis-
tributions across datasets, but also takes full advantage of the target camera network by
matching the different camera distributions.

Impact of the hyper-parameter µ and discriminator architecture. We evaluate the
impact of the value of µ on the overall performance of the system in table 3.4. First
of all, we observe that the Re-ID performance is relatively stable when changing the
training parameters, although the Duke→ Market is less stable, more specifically when
µ is too low. The Re-ID performance first increases with the adversarial loss weight, and
then decrease when it is too strong. Considering the final accuracy of the discriminator,
it is conform to intuition. The stronger the adversarial weight gets, the less accurate
our discriminator becomes. When comparing the different architectures, we see that an
optimal discriminator is found for 258 neurons, and that the Re-ID performance is quite
robust to a change of architecture.
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Figure 3.3: Performance variation with the number of cameras in the setting Market→Duke

Embedding visualization We use the feature embedding to compute a PCA projection
of the learned space, and use the first 2 dimensions for visualization. In Figure 3.4 both
source and target datasets are used to compute the projection, while in Figure 3.5, 3.6,
3.7, 3.8, and 3.9, only the target dataset is used. We use PCA projection to preserve
global structure, which is not guaranteed in other dimensionality reduction methods like
t-SNE. The Market→ Duke training setting is used for both, and we use the training sets
of each respective datasets. In dataset-wise visualization, we observe that in the IDE+
setting, using only source information, both distributions visually differs. It fits our strong
dataset-shift hypothesis, and motivates our approach. The features learned with CAT have
a distribution discrepancy significantly lower, which indicates that our approach actively
helps to match the 2 domain distributions. Similarly, in the camera-wise visualization,
we observe a stronger separation between cameras when trained with IDE+ than when
trained with our adversarial approach. This analysis is backed by the accuracy measures
reported in table 3.3, where we show that we can’t train a generalizable camera-classifier,
comforting the fact that feature distributions are less separated when learned with CAT. It
visually confirms that a camera-based approach improves the results not only because it
pushes source and target distribution together, but also matches each camera distribution,
especially target’s cameras.

3.5 CONCLUSION

In this chapter we address the problem of unsupervised person Re-ID in the setting of
unsupervised domain adaptation. More precisely, we propose to use camera index infor-
mation within an adversarial paradigm that we name camera adversarial transfer. The
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(a) PCA projection of S + T learned with
IDE+.

(b) PCA projection of S + T learned with
CAT.

Figure 3.4: Source dataset is in red and target is in blue. Best viewed in color.

proposed strategy are compared to several baselines and adversarial variants inspired from
the domain adaptation literature, on the Duke→Market and Market→Duke experimental
settings, thus demonstrating the interest and benefits of exploiting camera index informa-
tion within an adversarial framework for person Re-ID. We also evaluate these strategies
in terms of camera robustness, discuss the influence of the structure of the camera dis-
criminator as well as the number of cameras and the hyper-parameter µ.
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(a) PCA of T with IDE+ baseline. (b) PCA of T with CAT (Ours).

Figure 3.5: The PCA is only done with all target’s cameras.

(a) PCA projection of T with IDE+. (b) PCA projection of T with CAT.

Figure 3.6: The PCA is only done with target’s 7th (purple) and 8th (blue) camera. Best viewed in color.
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(a) PCA of T with IDE+ baseline. (b) PCA of T with CAT (Ours).

Figure 3.7: The PCA is only done with 1st and 2nd target’s cameras.

(a) PCA of T with IDE+ baseline. (b) PCA of T with CAT (Ours).

Figure 3.8: The PCA is only done with 1st and 3rd target’s cameras.
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(a) PCA of T with IDE+ baseline. (b) PCA of T with CAT (Ours).

Figure 3.9: The PCA is only done with 2nd and 3rd target’s cameras.



CHAPTER 4

CONDITIONAL ADVERSARIAL

NETWORK FOR UNSUPERVISED RE-ID

4.1 INTRODUCTION

As seen in the previous chapter, person re-identification (re-ID) is a well-studied retrieval
task [111, 74, 52] that consists in associating images of the same person across cameras,
places and time. Most re-ID models assume the availability of labeled datasets and focus
on improving their performance on the very same dataset, see for instance [89, 120]. The
limited generalization capabilities of such methods [25, 28] lead researchers to overcome
this limitation by investigating a new person re-ID task, where there is a source dataset
annotated with person IDs and another unlabeled target dataset. This is called unsuper-
vised person re-ID. Contrary to the framework investigated in chapter 3, we investigate
the clustering and finetuning strategy: this recent trend uses a pretrained architecture to
extract visual features, cluster them, and use the cluster assignments as pseudo-labels to
re-train the base architecture using standard supervised re-ID loss functions [32, 35].

In parallel, and as seen in chapter 3, adversarial learning has gained popularity in the
domain adaptation field [97, 34, 13]. The underlying intuition is that learning a feature
generator robust to the domain shift between source and target would improve the target
performance. The adversarial learning paradigm has been successfully used for person re-
ID in both the supervised [126, 123], and, as investigated previously, the unsupervised [28,
70] learning paradigms.

In this chapter, we propose to unify these two trends in unsupervised person re-ID.
Naturally, one would expect that an adversarial game between a generator (feature extrac-
tor) and a discriminator (camera classifier) should suffice, as seen previously. However,
because the ID presence is not uniform in all cameras, such simple strategy implies some
negative transfer and limits – often decreases – the representational power of the visual
feature extractor. In this chapter, we aim to investigate the impact of Negative Transfer
in Unsupervised Person re-ID, and propose to use conditional adversarial networks to ad-
dress it, by providing an additional identity representation to the camera discriminator.

51
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Since in the target dataset, the ID labels are unavailable, we exploit the pseudo-labels.
More precisely, we provide, as conditioning vector, the centroid of the cluster to which
the image belongs. The contributions of this chapter are the following:

• We investigate the impact of a camera-adversarial strategy in the unsupervised per-
son re-ID task within the clustering and finetuning framework.

• We realize the negative transfer effect, and propose to use conditional adversarial
networks.

• The proposed method can be easily plugged into any unsupervised clustering-based
person re-ID methods. We experimentally combine CANU with two clustering-
based unsupervised person re-ID methods, and propose to use their cluster centroids
as conditioning labels.

• Finally, we perform an extensive experimental validation on four different unsuper-
vised re-ID experimental settings and outperform current state-of-the-art methods
by a large margin on all settings.

The rest of the chapter is organized as follows. Section 4.2 describes the state-of-
the-art. Section 4.3 discusses the basics of clustering-based unsupervised person re-ID
and sets the notations. The proposed conditional adversarial strategy is presented in Sec-
tion 4.4. The extensive experimental validation is discussed in Section 4.5 before drawing
the conclusions in Section 4.6.

4.2 RELATED WORK

4.2.1 UNSUPERVISED PERSON RE-IDENTIFICATION

Unsupervised person re-identification (re-ID) has drawn growing attention in the last few
years, taking advantage of the recent achievements of supervised person re-ID models,
without requiring an expansive and tedious labeling process of the target data set. A very
important line of research starts from a pre-trained model on the source data set and is
based on clustering and fine-tuning [28, 70, 32, 35, 115]. It alternates between a cluster-
ing step generating noisy pseudo-labels, and a fine-tuning step adapting the network to the
target data set distribution, leading to a progressive label refinement. Thus, these meth-
ods do not use the source data set during adaptation. A lot of effort has been invested in
improving the quality of the pseudo-labels. Sampling from reliable clusters during adap-
tation [28], gradually reducing the number of clusters and merging by exploiting intrinsic
inter-ID diversity and intra-ID similarity [70], or performing multiple clustering on visual
sub-domains and enforcing consistency [32] have been investigated. More recently, [35]
investigated the interaction of two different models to assess and incorporate pseudo-label
reliability within a teacher-student framework.

A different approach is directly inspired by Unsupervised Domain Adaptation (UDA) [25,
124, 16, 84, 93, 125]: using both the source and target data sets during adaptation. These
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methods aim to match the distributions on the two data sets while keeping its discrim-
inative ability leveraging source ground truth ID labels. A first strategy learns to map
source’s detections to target’s style detections, and train a re-ID model in a supervised
setting using those only those transferred detections [25], or in combination with the orig-
inal target detections [124]. More standard UDA strategies use adversarial learning to
match the source and target distributions [34, 84].

4.2.2 NEGATIVE TRANSFER

Negative Transfer has been investigated in unsupervised domain adaptation [96], espe-
cially for Partial Domain Adaptation (PDA) [118, 15, 113], where target labels are only a
subset of the source’s. Negative transfer is defined as the inability of an adaptation method
to find underlying common representation between data sets and is generally caused by
the gap between the distributions of the two data sets being too wide [100] for the algo-
rithm to transfer knowledge. Weighting mechanisms are generally employed to remove
the impact of source’s outliers class on the adaptation process, either for the matching
part [113, 15, 108], the classification part [100], or both [118]. Interestingly, [100] uses
a domain discriminator conditioned by source label to perform conditional distribution
matching. Investigating negative transfer is not limited to UDA settings. For example, a
similar method has been proposed for domain generalization [64], implementing a condi-
tional discriminator to match conditioned domain distributions. By doing so, the impact of
the difference between prior label distributions on the discriminative ability of the model
is alleviated.

Within the task of unsupervised person re-ID, different cameras could be considered
as different domains, and standard matching strategies could be used. However, they
would inevitably induce negative transfer as described before for generic domain adap-
tation. Direct application of PDA methods into the person re-ID tasks is neither simple
nor expected to be successful. The main reason is that, while PDA methods handle a
few dozens of classes, standard re-ID data sets contain a few thousands of IDs. This
change of scale requires a different strategy, and we propose to use conditional adversar-
ial networks, with a conditioning label that describes the average sample in the cluster,
rather than representing the cluster index. In conclusion, different from clustering and
fine-tuning unsupervised person re-ID methods, we propose to exploit (conditional) ad-
versarial networks to learn visual features that are camera independent and thus more
robust to appear changes. Different from previous domain adaptation methods, we pro-
pose to match domains (cameras) with a conditioning label that evolves during training,
since it is the centroid of the cluster to which the visual sample is assigned, allowing
us having a representation that is independent of the number of clusters and the cluster
index.
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4.3 CLUSTERING BASED UNSUPERVISED PERSON RE-ID

Figure 4.1: Pipeline of our method: alternatively (1) clustering target’s training data set using φ represen-
tation, producing noisy pseudo-label ID p̃n alongside centroids φp, and (2) conditional adversarial training,
using a Camera-Discriminator DCAM conditioned by φp to enforce camera invariance on a per identity
basis to avoid negative transfer. Pseudo-label ID are used to train an ID classifier CPS−ID alongside the
discriminator.

We propose to combine conditional adversarial networks with the clustering and fine-
tuning framework for unsupervised person Re-ID. To detail our contributions, we first set
up the basics and notations of existing methods for unsupervised person re-ID.

Let S denote a source ID-annotated person re-ID dataset, containing NS images cor-
responding to MS different person identities captured by KS cameras. We write S =
{(xSn ,pSn , cSn)}N

S
n=1, where each three-tuple consists of a detection image, xSn , a person ID

one-hot vector, pSn ∈ {0, 1}M
S and a camera index one-hot vector, cSn ∈ {0, 1}K

S . Simi-
larly, we define T = {(xTn , cTn )}N

T
n=1 a target person re-ID dataset, with KT cameras and

NT element, without ID labels.

Source pre-training Let φ be a convolutional neural network backbone (e.g. ResNet-
50 [43]) served as a trainable feature extractor. The goal of person re-ID is to be able
to discriminate person identities, and therefore an identity classifier CID is required. The
output of CID is a MS-dimensional stochastic vector, encoding the probability of the in-
put to belong to each of the identities. The cross-entropy and triplet losses are usually
employed:

LSCE(φ,CID) = −E(xS ,pS)∼S
{
log
〈
CID(φ(x

S)),pS
〉}
, (4.1)

LSTRI(φ) =E(xS ,xSp ,xSn)∼PS{max(0, ‖φ(xS)− φ(xSp )‖
+m− ‖φ(xS)− φ(xSn)‖)}, (4.2)

where E denotes the expectation, 〈·, ·〉 the scalar product, ‖.‖ the L2-norm distance, xSp
and xSn are the hardest positive and negative example for xS in PS the set of all triplets
in S, and m = 0.5. We similarly denote LTCE and LTTRI the cross-entropy and triplet losses
evaluated on the target dataset. However, in unsupervised reID settings, target ID labels
are unavailable, and therefore we will need to use alternative pseudo-ID labels. The re-ID
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feature extractor φ is typically trained using:

LSID(φ,CID) = LSCE(φ,CID) + λLSTRI(φ), (4.3)

for a fixed balancing value λ, achieving competitive performance on the source test set
[44]. However, they notoriously lack generalization power and perform badly on datasets
unseen during training [25], thus requiring adaptation.

Target fine-tuning As discussed above, target ID labels are unavailable. To overcome
this while leveraging the discriminative power of widely-used losses described in Eq. 4.3,
methods like [32, 35] use pseudo-labels. The hypothesis of these methods is that the
features learned during the pre-training stage are exploitable for the inference of target’s
ID labels to a certain extent. Starting from the pre-trained model, these methods alternate
between (i) pseudo ID label generation {p̃Tn }N

T
n=1 using a standard clustering algorithm

(k-means or DBSCAN [27]) on the target training set {φ(xTn )}N
T

n=1 and (ii) the update of
φ using losses similar to Eq. 4.3 supervised by {p̃Tn }N

T
n=1. Since our approach is agnostic

to the ID loss used at this step, we choose to denote it by LPS-ID(φ,CPS-ID), CPS-ID being an
optional classifier layer for the pseudo-labels, and develop it further in the experimental
section.

4.4 CANU-REID: A CONDITIONAL ADVERSARIAL NETWORK FOR

UNSUPERVISED PERSON RE-ID

In this section we discuss the main limitation of clustering-based unsupervised re-ID
methods: we hypothesize that viewpoint variability can make things difficult for clus-
tering methods and propose two alternatives. First, an adversarial network architecture
targeting re-ID features that are camera-independent. This strategy could, however, in-
duce some negative transfer when the correlation between cameras and IDs is strong.
Second, a conditional adversarial network architecture specifically designed to overcome
this negative transfer.

Camera adversarial-guided clustering We hypothesize that camera (viewpoint) vari-
ability is one of the major limiting factors for clustering-based unsupervised re-ID meth-
ods. In plain, if the embedding space variance explained by camera changes is high, the
clustering method could be clustering images from the same camera, rather than images
from the same ID. Therefore, φ will produce features that can very well discriminate the
camera at the expense of the ID. To alleviate this problem, we propose to directly enforce
camera invariance in φ’s representation by using an adversarial strategy, where the dis-
criminator is trained to recognize the camera used to capture the image. Consequently, the
generator, in our case φ, is trained to remove any trace from the camera index (denoted by
c). Intuitively, this should reduce the viewpoint variance in the embedding space, improve
pseudo-labels quality and increase the generalization ability of φ to unseen IDs.
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To do so, we require a camera discriminatorDCAM (see Fig. 4.1 for a complete overview
of the architecture). The generator φ and the discriminator DCAM will be trained through
a min-max formulation:

min
φ,CPS-ID

max
DCAM

LTPS-ID(φ,CPS-ID)− µLTCAM(φ,DCAM), (4.4)

where µ > 0 is a balance hyper-parameter that can be interpreted as a regularization
parameter [34], and LTCAM is defined via the cross-entropy loss:

LTCAM(φ,DCAM) = −E(xT ,cT )∼T
{
log
〈
DCAM(φ(x

T )), cT
〉}

(4.5)

On one side, the feature extractor φ must minimize the person re-ID loss LPS-ID at the
same time as making the problem more challenging for the camera discriminator. On the
other side, the camera discriminator tries to learn to recognize the camera corresponding
to the input image.

Adversarial negative transfer It has been shown [64] that minimizing (4.4) is equivalent
to the following problem:

min
φ,CPS-ID

LTPS-ID(φ,CPS-ID) (4.6)

s.t. JSDT (p(φ(x)|c = 1), . . . , p(φ(x)|c = K)) = 0,

where JSDT stands for the multi-distribution Jensen-Shanon divergence [68] on the target
set T , and we drop the superscript T in the variables to ease the reading.

Since the distribution of ID labels may strongly depend on the camera, the plain ad-
versarial strategy in (4.6) can introduce negative transfer [100]. Formally, since we have:

p(p|c = i) 6= p(p|c = j), i 6= j

then solving (4.6) is not equivalent (see [64]) to:

min
φ,CPS-ID

LTPS-ID(φ,CPS-ID) (4.7)

s.t. JSDT (p(φ(x)|p, c = 1), . . . , p(φ(x)|p, c = K)) = 0,

which is the problem we would implicitly want to solve. Intuitively, negative transfer
means that the camera discriminator learns p(c|p) instead of p(c|x,p), exploiting ID to
infer camera information and decreasing the representation power of φ due to the adver-
sarial loss.

Conditional adversarial networks We propose to directly solve the optimization prob-
lem in Eq. 4.7 to alleviate the negative transfer. Similar to the original conditional GAN
formulation [79], we condition the adversarial discriminator with the input ID p. Given
that ID labels are unavailable on the target set, we replace them by the pseudo-labels
obtained during the clustering phase.
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However, since we are handling a large number of IDs (700 to 1500 in standard re-ID
datasets), using a one-hot representation turned out to be very ineffective. Indeed, such
representation is not permutation-invariant, meaning that if the clusters are re-ordered, the
associated conditional vector changes, which does not make sense. We, therefore, need a
permutation-invariant conditioning label.

To do so, we propose to use the cluster centroidsφp which are provided by the cluster-
ing algorithms at no extra cost. This conditioning vectors are permutation invariant. Im-
portantly, we do not back-propagate the adversarial loss through the ID-branch, to avoid
using an ID-dependant gradient from the adversarial loss. This boils down to defining
LC-CAM as:

LTC-CAM(φ,DC-CAM) = −E(x,p,c)∼T

{
log
〈
DC-CAM(φ(x),φp), c

〉}
(4.8)

and then solving:

min
φ,CPS-ID

max
DC-CAM

LTPS-ID(φ,CPS-ID)− µLTC-CAM(φ,DC-CAM). (4.9)

4.5 EXPERIMENTAL VALIDATION

In this section, we provide implementation details and an in-depth evaluation of the pro-
posed methodology, setting the new state-of-the-art in four different unsupervised person
re-ID experimental settings. We also provide an ablation study and insights on why con-
ditional adversarial networks outperform existing approaches.

4.5.1 EVALUATION PROTOCOL

We first describe here the baselines, on which our proposed CANU is built and tested.
The used datasets and the evaluation metrics are then introduced.

Baselines The proposed CANU can be easily plugged into any clustering-based unsu-
pervised person re-ID methods. Here, we experimentally test it on two state-of-the-art
clustering-based unsupervised person re-ID methods, as baselines.

First, self-similarity grouping [32] (SSG) performs independent clustering on the upper-
, lower- and full-body features, denoted as φU, φL and φF. They are extracted from three
global average pooling layers of the convolutional feature map of ResNet-50 [43]. The
underlying hypothesis is that noisy global pseudo-label generation can be improved by
using multiple, but related clustering results, and enforcing consistency between them.
The triplet loss is used to train the overall architecture.

To implement CANU-SSG, we define three different camera discriminators, one for
each embedding, DU

C-CAM, DL
C-CAM andDF

C-CAM respectively, each fed with samples from the
related representation and conditioned by the global embedding φF. In the particular case
of CANU-SSG, the generic optimisation problem in Eq. 4.9 instantiates as:
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min
φ

max
DU,L,F

C-CAM

LTSSG(φ)− µLTC-CAM(φ
U, DU

C-CAM) (4.10)

− µLTC-CAM(φ
L, DL

C-CAM)− µLTC-CAM(φ
F, DF

C-CAM).

Second, Mutual Mean-Teaching [35] (MMT) reduces pseudo-label noise by using a
combination of hard and soft assignment: using hard labeling reduces the amount of
information given to the model, and using soft labeling allows the cluster’s confidence to
be taken into account. MMT defines two different models (φ1, C1

PS-ID) and (φ2, C2
PS-ID),

both implemented with a IBN-ResNet-50 [82] backbone, initialized with two different
pre-trainings on the source dataset. They are then jointly trained using pseudo labels as
hard assignments, and inspired by teacher-student methods, using their own pseudo ID
predictions as soft pseudo-labels to supervise each other. Soft versions of cross-entropy
and triplet loss are used.

To implement CANU-MMT, similar to CANU-SSG, we define two camera discrim-
inators D1

C-CAM and D2
C-CAM, each dedicated to one embedding, and train it using the fol-

lowing instantiation of the generic optimisation problem in Eq. 4.9:

min
φ1,2,C1,2

PS-ID

max
D1,2

C-CAM

LTMMT(φ
1, C1

PS-ID) + LTMMT(φ
2, C2

PS-ID) (4.11)

− µLTC-CAM(φ
1, D1

C-CAM)− µLTC-CAM(φ
2, D2

C-CAM).

While the clustering strategy used in SSG is DBSCAN [27], the one used in MMT is
standard k-means. For a fair comparison, we implemented CANU with DBSCAN, which
has the advantage of automatically selecting the number of clusters. We also evaluate the
performance of MMT using the DBSCAN clustering strategy without CANU, to evaluate
the impact of our method on a fair basis.

Datasets The proposed adversarial strategies are evaluated using three datasets: Market-
1501 (Mkt) [120], DukeMTMC-reID (Duke) [89] and MSMT17 (MSMT) [101]. In all
three cases, the dataset is divided into three parts: training, gallery, and query. The query
and the gallery are never available during training and only used for testing.

Mkt is composed of M = 1, 501 (half for training and half for testing) different iden-
tities, observed through K = 6 different cameras (viewpoints). The deformable parts
model [30] is used for person detection. As a consequence, there are N = 12, 936 train-
ing images and 19, 732 gallery images. In addition, there are 3, 368 hand-drawn bounding
box queries.

Duke is composed of M = 1, 404 (half for training and half for testing) identities
captured from K = 8 cameras. In addition, 408 other ID, called “distractors”, are added
to the gallery. Detections are manually selected, leading to N = 16, 522 images for train,
17, 661 for the gallery and 2, 228 queries.
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MSMT is the largest and most competitive dataset available, with M = 4, 101 identi-
ties (1, 041 for training, and 3, 060 for test), K = 15 cameras, with N = 32, 621 images
for training, 82, 161 for the Gallery and 11, 659 queries.

The unsupervised person re-ID experimental setting using dataset A as source and
dataset B as the target is denoted by A I B. We compare the proposed methodology in
four different settings: Mkt I Duke, Duke I Mkt, Mkt I MSMT and Duke I MSMT.

Evaluation metrics In order to provide an objective evaluation of the performance, we
employ two standard metrics in person re-ID [120]: Rank-1 (R1) and mean average-
precision (mAP). Precisely, for each query image, we extract visual features employing φ,
and we compare them to the features extracted from the gallery using the cosine distance.
Importantly, the gallery images captured with the same camera as the query image are
not considered. For R1, a query is well identified if the closest gallery feature vector
corresponds to the same identity. In the case of mAP, the whole list of gallery images is
considered, and precision at different ranking positions is averaged. See [120] for details.
For both metrics, the mean over the query set is reported.

Implementation details For both MMT and SSG, we use the models pre-trained on
the source datasets (e.g. For Mkt IDuke, we use the model pre-trained on the Market
dataset and provided by [32] and [35]). DBSCAN is used at the beginning of each train-
ing epoch, the parameters for DBSCAN are the same described as in [32]. The weight
for (conditional) adversarial losses µ is set to 0.1 for MMT and to 0.05 for SSG, cho-
sen according to a grid search with values between [0.01, 1.8] (see below). The used
conditional discriminator has two input branches, one as the (conditional) ID branch
and the other is the camera branch, both consist of four fully-connected layers, of size
[2048, 1024], [2048, 1024], [1024, 1024], [1024, number of cameras], respectively. Batch
normalization [51] and ReLU activation are used. For MMT, during the unsupervised
learning, we train the IBN-ResNet-50 [82] feature extractor with Adam [56] optimizer
using a learning rate of 0.00035. As default in [35], the network is trained for 40 epochs
but with fewer iterations per epoch (400 v.s. 800 iterations) while keeping a similar or
better performance. For SSG, we train the ResNet-50 [43] with SGD optimizer using a
learning rate of 6e-5. At each epoch, unlike MMT, we iterate through the whole training
set instead of training with a fix number of iterations.

After training, the discriminator is discarded and only the feature extractor is kept for
evaluations. For SSG, first, it combines the features extracted from the original image
and the horizontally flipped image with a simple sum. Second, the summed features
are normalized by their L2 norm. Finally, The full-, upper- and, lower-body normalized
features are concatenated to form the final features. For MMT, the features extracted from
the feature extractor are directly used for evaluations.

In the following, we first compare the proposed methodology with the state-of-the-
art (see Sec. 4.5.2). Secondly, we discuss the benefit of using conditional camera-adversarial
training in the ablation study (see Sec. 4.5.3), and include several insights on the perfor-
mance of CANU.
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Table 4.1: Comparison of the proposed CANU methodology on the Mkt I Duke and Duke I Mkt un-
supervised person re-ID settings. CANU-MMT establishes a new state-of-the-art in both settings, and
CANU-SGG outperforms SSG.

Method Mkt I Duke Duke I Mkt

R1 mAP R1 mAP

PUL [28] 30.0 16.4 45.5 20.5
TJ-AIDL [99] 44.3 23.0 58.2 26.5
SPGAN [25] 41.1 22.3 51.5 22.8
HHL[124] 46.9 27.2 62.2 31.4
CFSM [16] 49.8 27.3 61.2 28.3
BUC [70] 47.4 27.5 66.2 38.3
ARN [66] 60.2 33.4 70.3 39.4
UDAP [93] 68.4 49.0 75.8 53.7
ENC [125] 63.3 40.4 75.1 43.0
UCDA-CCE [84] 47.7 31.0 60.4 30.9
PDA-Net [65] 63.2 45.1 75.2 47.6
PCB-PAST [115] 72.4 54.3 78.4 54.6
Co-teaching [42] 77.6 61.7 87.8 71.7

SSG [32] 73.0 53.4 80.0 58.3
CANU-SSG (ours) 76.1 57.0 83.3 61.9

MMT [35] 81.8 68.7 91.1 74.5
MMT (DBSCAN) 80.2 67.2 91.7 79.3
CANU-MMT (ours) 83.3 70.3 94.2 83.0

4.5.2 COMPARISON WITH THE STATE-OF-THE-ART

We compare CANU-SSG and CANU-MMT to the state-of-the-art methods and we demon-
strate in Tables 4.1 and 4.2 that CANU-MMT sets a new state-of-the-art result compared
to the existing unsupervised person re-ID methods by a large margin. In addition, CANU-
SSG outperforms SSG in all settings. Since the MSMT dataset is more recent, fewer com-
parisons are available in the experiments involving this dataset, hence the two different
tables.

More precisely, the proposed CANU significantly improves the performance of the
baselines, SSG [32] and MMT [35]. In Mkt IDuke and Duke IMkt (Table 4.1), CANU-
SSG improves SSG by ↑3.1%/↑3.6% (R1/mAP, same in the following.) and ↑3.3%/↑3.6%
respectively, and CANU-MMT significantly outperforms MMT by ↑1.5%/↑1.6% and
↑3.1%/↑8.5% respectively. Moreover, for the more challenging setting (Table 4.2), the
improvement brought by CANU is even more evident. For SSG, for example, we in-
crease the R1/mAP by ↑13.9%/↑5.9% in Mkt IMSMT, and by ↑11.1%/↑4.6% in Duke I
MSMT. For MMT, CANU-MMT outperforms MMT by ↑7.3%/↑8.0% in Mkt IMSMT,
and by ↑8.7%/↑9.0% in Duke IMSMT. Finally, the consistent improvement in the four
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Table 4.2: Comparison of the proposed CANU methodology on the Mkt I MSMT and Duke I MSMT
unsupervised person re-ID settings. CANU-MMT establishes a new state-of-the-art in both settings, and
CANU-SGG outperforms SSG.

Method Mkt I MSMT Duke I MSMT

R1 mAP R1 mAP

PTGAN [101] 10.2 2.9 11.8 3.3
ENC [125] 25.3 8.5 30.2 10.2

SSG [32] 31.6 13.2 32.2 13.3
CANU-SSG (ours) 45.5 19.1 43.3 17.9

MMT [35] 54.4 26.6 58.2 29.3
MMT (DBSCAN) 51.6 26.6 59.0 32.0
CANU-MMT (ours) 61.7 34.6 66.9 38.3

settings of CANU-MMT over MMT (DBSCAN) and the inconsistent improvement of
MMT (DBSCAN) over standard MMT proves that the increase of the performance is due
to the proposed methodology. To summarize, we greatly improve the baselines using the
proposed CANU. More importantly, to our best knowledge, we outperform the existing
methods by a large margin and establish a new state-of-the-art result.

4.5.3 ABLATION STUDY

In this section, we first perform a study to evaluate the impact of the value of µ. Secondly,
we demonstrate the interest of the conditional strategy, versus its non-conditional coun-
terpart. Thirdly, we study the evolution of the mutual information between ground-truth
camera indexes and pseudo-labels using MTT (DBSCAN), thus providing some insights
on the quality of the pseudo-labels and the impact of the conditional strategy on it. Fi-
nally, we visualize the evolution of the number of lost person identities at each training
epoch, to assess the impact of the variability of the training set.

Selection of µ We ablate the value µ by comparing the performance (R1 and mAP) of
models trained within the range [0.01, 1.8]. From Tab. 4.3, µ = 0.1 (CANU-MMT) and
µ = 0.05 (CANU-SSG) yield the best person re-ID performance.

Is conditional necessary? From Table 4.4, we show that the camera adversarial network
can help the person re-ID networks trained with clustering-based unsupervised methods
better capture the person identity features: CANU and adding a simple adversarial dis-
criminator (+Adv.) significantly outperform the baseline methods in all settings. This is
due to the combination of the camera adversarial network with unsupervised clustering-
based methods. By doing so, the camera dependency is removed from the features of
each person thus increasing the quality of the overall clustering. However, because of the
negative transfer effect, the camera adversarial network cannot fully exploit the camera
information while discarding the person ID information. For this reason, the proposed
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Table 4.3: Impact of µ in the performance of CANU. When the mAP values are equal, we highlight the
one corresponding to higher R1.

Method µ
Mkt I Duke Duke I Mkt

R1 mAP R1 mAP

C
A

N
U

-S
SG

0.01 72.8 53.3 79.7 57.2
0.05 76.1 57.0 83.3 61.9
0.1 74.7 56.2 82.7 61.1
0.2 75.3 56.5 81.8 60.3
0.4 73.3 53.5 80.4 59.2
1.8 7.1 2.9 39.1 17.1

C
A

N
U

-M
M

T 0.01 81.3 68.9 92.6 79.2
0.05 82.4 70.3 93.0 81.3
0.1 83.3 70.3 94.2 83.0
0.2 82.7 70.3 93.4 82.5
0.4 82.5 70.3 93.8 82.0
1.8 82.8 69.9 93.1 81.3

method CANU improves the capacity of the camera adversarial network over the simple
adversarial strategy. In summary, we demonstrate that the camera adversarial network
can help improve the results of unsupervised clustering-based person re-ID. Moreover,
the proposed CANU further improves the results by removing the link between camera
and IDs.

4.5.4 IMPACT OF CANU ON CAMERA INFORMATION

Camera information on CANU-MMT Table 4.4 demonstrates that removing camera
information is globally positive, but that can also be harmful if it is not done with care.
In this section, we further demonstrate that the proposed adversarial strategies actually
reduce the camera dependency in clustering results and present some insights on why the
conditional strategy is better than the plain adversarial network. To do so, we plot the mu-
tual information between the pseudo-labels provided by DBSCAN, and the fixed camera
index information, at each clustering stage (i.e. training epoch) in Fig. 4.2. Intuitively, the
mutual information between two variables is a measure of mutual dependence between
them: the higher it is, the more predictable one is from knowing the other. We report the
results for MMT on Duke I Mkt and Mkt I Duke, CANU-MMT and the simple adver-
sarial strategy. We observe that the mutual information is systematically decreasing with
the training, even for plain MMT. Both adversarial strategies significantly outperform
plain MMT at reducing the camera-pseudo-ID dependency, CANU-MMT being slightly
less effective than MMT+Adv. This is consistent with our theoretical framework, since
matching ID-conditioned camera distribution in φ does not account for the ID-Camera
dependency, and thus is less effective in terms of camera dependency, but preserves iden-
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Table 4.4: Evaluation of the impact of the conditional strategy on SGG [32] and MMT [35] (using DSCAN).
When the mAP values are equal, we highlight the one corresponding to higher R1.

Method Mkt I Duke Duke I Mkt

R1 mAP R1 mAP

SSG [32] 73.0 53.4 80.0 58.3
SSG+Adv. 75.4 56.4 83.8 62.7

CANU-SSG 76.1 57.0 83.3 61.9

MMT (DBSCAN) 80.2 67.2 91.7 79.3
MMT+Adv. 82.6 70.3 93.6 82.2

CANU-MMT 83.3 70.3 94.2 83.0

(a) Mkt I Duke (b) Duke I Mkt

Figure 4.2: Mutual information between pseudo labels and camera index evolution for the MMT setting.
Ground-truth ID comparison is displayed in dashed lines for both datasets.

tity information, see Table 4.4. We also observe that there is a significant gap between the
target mutual information (i.e. measured between ground truth ID and camera index) for
all methods, which exhibits the performance gap between supervised and unsupervised
person re-ID methods.

Camera information on CANU-SSG From Fig. 4.3, we report the evolution of mutual
information between the pseudo-labels provided by DBSCAN [27], and the fixed camera
index information with SSG [32] over the clustering stages (i.e. training epochs). Similar
to MMT, based on Duke I Mkt and Mkt I Duke settings, we compare SSG, CANU-
SSG and, the simple adversarial strategy (+Adv). However, since SSG exploits different
embedding spaces (i.e. features) and generates a clustering result for each one of them
independently, we report the results for full-, upper-, and lower-body features. Moreover,
we report target mutual information between ground-truth IDs and camera index. Similar
to MMT [35], we observe that plain SSG handles pseudo-ID labels significantly more
dependant on camera labels than both adversarial methods, and for all representations. We
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(b) Duke I Mkt, based on full-
body features.
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(c) Mkt I Duke, based on
upper-body features.
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(d) Duke I Mkt, based on
upper-body features.
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(e) Mkt I Duke, based on
lower-body features.
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(f) Duke I Mkt, based on
lower-body features.

Figure 4.3: Mutual information between pseudo labels and camera index evolution for the SSG [32] setting.
Ground-truth ID comparison is displayed in dashed lines for both datasets.

also observe that CANU-SSG’s labels are slightly more camera dependant that SSG+Adv,
even if the difference is less clear than for MMT. We also note that the camera dependency
of the clustering results is much closer to the target mutual information.

4.5.5 IMPACT OF CANU ON LOST IDS

Lost IDs on CANU-MMT Since we train the target dataset using unsupervised tech-
niques, we do not use the ground-truth labels in the target dataset during training. Instead,
we make use of the pseudo labels provided by DBSCAN. DBSCAN discards the outliers
i.e. features that are not closed to others. It is natural to wonder how many identities are
“lost” at every iteration. We here visualize the number of lost ID (all those that are not
present in a training epoch) after each clustering step. We plot the evolution of this num-
ber with the training epoch for MMT, MMT+Adv. and CANU-MMT on Duke I Mkt in
Fig. 4.4. The dual experiment, i.e. on Mkt I Duke revealed that no ID was lost by any
method. In Fig. 4.4, we first observe that the loss of person identities decreases with the
clustering steps. It means that the feature extractor provides more and more precise fea-
tures representing person identities. Secondly, the use of camera adversarial training can
reduce the loss of person identities in the clustering algorithm, which reflects the benefit
of camera adversarial networks to the clustering algorithm and thus to the unsupervised
person re-ID task.
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Figure 4.4: Evolution of the number of lost person IDs during training using MMT on Duke I Mkt.
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(a) # lost IDs based on full-body
features.
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(b) # lost IDs based on upper-
body features.
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body features.

Figure 4.5: Evolution of the number of lost person IDs during training using SSG [32] on Duke I Mkt. In
SSG, DBSCAN clusters full- (a), upper- (b) and lower-body (c) features independently.

Lost IDs on CANU-SSG As discussed previously, we do not use the ground-truth labels
in the target data set during training: we make use of the pseudo labels provided by
DBSCAN. Since SSG [32] uses three different types of features: full-, upper- and, lower-
body features, we visualize in Fig. 4.5 the number of lost identities (the ground-truth
identities that are not present in pseudo labels given by DBSCAN, i.e. they are considered
as outliers.) respectively based on the clustering results from different features.

As in MMT, no IDs are lost in the Mkt I Duke setting. For Duke I Mkt, we observe
that only a very few IDs are lost (≤ 2 IDs). Precisely, the number of lost person IDs from
the clustering results on full-body features remains 0 except at the beginning of the first
epoch (1 lost ID). Moreover, for upper-body features, All settings lose less than 2 IDs
and remarkably, CANU-SSG loses no IDs during most of the training epochs and it has
a lower loss compared to SSG+Adv and SSG. Finally, for lower-body features, at most
1 ID is lost during the training procedure. In summary, (1) very few IDs have been lost
during on SSG using DBSCAN. (2)CANU-SSG has fewer losses compared to SSG+Adv
and SSG. (e.g. Fig. 4.5 (b)).
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4.5.6 EMBEDDING VISUALISATION

We use the re-ID features to compute a PCA projection of the embedding space for dif-
ferent pairs of cameras, and use the first 2 dimensions for visualization, in Figure 4.6. We
use PCA to preserve the global structure, which is not guaranteed in other dimensionality
reduction methods like t-SNE. We report the Mkt I Duke setting for MMT, MMT+Adv,
and CANU-MMT, using the train set of the target dataset. We observe that for all pairs of
cameras, the embedding vectors distributions overlap more for both adversarial strategies,
compared to the original implementation of MMT. It shows that our adversarial strategies
achieve distributions matching across cameras more reliably than MMT alone.
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4.6 CONCLUSION

In this chapter, we demonstrate the benefit of unifying adversarial learning with current
unsupervised clustering-based person re-identification methods. We propose to condition
the adversarial learning with the cluster centroids, being these representations indepen-
dent of the number of clusters and invariant to cluster index permutations. The proposed
strategy boosts existing clustering-based unsupervised person re-ID baselines and sets the
new state-of-the-art performance in four different unsupervised person re-ID experimental
settings.
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(a) MMT, camera 3 and 6 (b) MMT+Adv, camera 3 and 6 (c) CANU-MMT, camera 3 and
6

(d) MMT, camera 2 and 4 (e) MMT+Adv, 2 and 4 (f) CANU-MMT, 2 and 4

(g) MMT, camera 0 and 6 (h) MMT+Adv, camera 0 and 6 (i) CANU-MMT, camera 0 and
6

Figure 4.6: PCA visualization of the embedding for Mkt I Duke setting. Best viewed in color.



CHAPTER 5

DOMAIN ADAPTIVE MOT

5.1 INTRODUCTION

We propose to explore the domain adaptation framework leveraged in previous chapters to
solve domain adaptation for Multiple Object Tracking, instead of re-ID alone. While un-
supervised domain adaptation [33, 97, 13] and multiple object tracking [117, 127, 10, 106]
have been widely explored respectively in the literature, up to our knowledge, no strate-
gies have been proposed to deal with the domain shift problem in Multiple Object Track-
ing (MOT) in an unsupervised manner. We explore unsupervised domain adaptation for
MOT: a labeled source MOT dataset and an unlabeled target MOT dataset are leveraged
to optimize tracking performance on the latter. Tackling this specific problem is particu-
larly relevant to real-world applications: collecting tracking annotations to adapt a tracker
to new settings can be costly and troublesome, or using the same tracker for a long period
of time might see the target domain shift significantly from the initial training domain,
due to changing weather or illumination conditions.

Recent Multiple Object Tracking models rely on jointly solving the detection and the
tracking task [117, 127, 10, 106]: recent increase in performance can partly be attributed
to the detection recall improvement leveraged by such approaches. Importantly, previ-
ous works in the field of Domain Adaptative Object Detection [20, 92, 17, 104, 130, 81]
highligthed the drop in detection performance in the case of a significant domain shift
(due to changing weather or illumination conditions). As shown by Van Gool et al [20],
and similarly to Unsupervised Domain Adaptation (UDA) approches, this problem can
be adressed through Adversarial Domain Adaptive Detection, which casts it as a distribu-
tion alignment problem and solves it using an adversarial approach inspired by Ganin et
al [33].

In parallel, most modern trackers use re-identification models to limit track fragmen-
tation [127, 105] or exploit them as a cue, along with spatial information, to associate
detections across time [10, 117]. As shown in previous chapters, person re-identification
models lack generalization ability, especially when handling large visual variations (il-
luminations or background changes). This problem is generally being tackled in the

69
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unsupervised person re-identification (URID) field, which introduced the clustering and
finetuning framework as a possible solution.

We investigate for the first time the problem of unsupervised domain adaptation for
MOT, and address it through joint adaptation of the re-identification and detection em-
beddings, casting the clustering and finetuning framework into a tracking and finetuning
strategy, while leveraging adversarial strategies to perform adaptation.

Our contributions are the following:

• We demonstrate the domain-shift problem on standard MOT datasets via its impact
in tracking performance when transferring a tracker from one dataset to another.

• We introduce a tracking & finetuning (T&F) framework to jointly adapt the re-
identification and the detection embeddings: we alternate between generating pseudo-
tracks on the target dataset using the current weights of tracker, and finetune it by
leveraging adversarial strategies and pseudo-tracks to adapt the detection branch.

• We assess the MOT performance of our proposed T&F adaptation framework on
two unsupervised domain adaptation setting using two widely used MOT datasets,
namely MOT17→MOT20 and MOT20→MOT17, and demonstrate the superiority
of our approach compared to direct transfer and simpler adaptation strategies.

5.2 RELATED WORK

5.2.1 MULTIPLE OBJECT TRACKING

Initial works in the MOT community focuses on optimally associating detections provided
by standard detectors through a probabilistic framework [9, 88, 6]. Deep Learning meth-
ods initially propose to learn the association task by using Reccurent Network [77], and by
modeling appearance and interaction to better capture track dynamics [128]. Motivated
by the performance improvement in detection models, Tracktor [10] proposes to adapt
the FRCCN architecture to perform MOT, and casts it as a regression task. Incidentally,
it allows to refine public detections, and thus benefits from FRCCN’s improved detection
ability. Another familly of trackers [117, 127] builds upon the improved detection per-
formance of CenterNet [128], fetching detections through a dedicated branch trained to
perform heatmap regression. The detection-track association can be learned [127], or per-
formed through a dedicated re-ID branch combined with a probabilistic framework [117].
More recently, DETR [109] proposes to use a Transformer [98] architecture to perform
detection and paves the road for a new familly of transformer-based trackers [95, 75, 105].

Some methods use an external person re-ID network [10], or a re-ID branch as appear-
ance descriptor [106, 105] to boost tracking performance. This motivates [54] to explore
unsupervised MOT by finetuning a person re-ID network by using pseudo-label generated
through a pretrained tracker.
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5.2.2 DOMAIN ADAPTIVE OBJECT DETECTION

Deep learning methods draw regained interest and rapid improvement in the object detec-
tion field [87, 86, 38], especially thanks to the Region of Interest proposal framework [37]
combined with RoI pooling [38], as well as the use of RPN network to generate RoIs [87].
Adversarial development in the UDA community [33], combined with a need to develop
methods leveraging unlabeled data to improve real-world deployment led to the devel-
oppement of Domain Adaptive Object Detection. Van Gool et al [20] first proposes to use
adversarial domain adaptation for object detection, applied to a FRCNN [87] detector,
performing distribution alignment at both RPN/image-level and regressor/instance-level.
It paves the road for a Domain Adaptation Faster-RCNN family [92, 17, 104, 130, 81]:
[92] performs differentiated alignment at local and global scale, [17] introduces a Hierar-
chical Calibration Network to balance feature transferability and discriminability, [104]
trains an additional image-level categorical classifier to improve categorical consistency
when performing instance-level alignement while [130] use clustering methods at the
RPN level to adjust region-level alignment. Other line of works take advantage of Cycle-
GAN’s [129] ability to transfer image style to create and finetune the detector on a syn-
thetic dataset [50, 46], or cast the task as a robust learning problem [55].

5.2.3 UNSUPERVISED PERSON RE-ID

Unsupervised person re-identification (URID) takes advantage of recent achievements
in supervised person re-ID models without requiring the costly labeling process of the
target dataset. Recent works start from a pretrained model on the source dataset and
are based on the clustering and finetuning framework [28, 70, 32, 35, 115]. It alternates
between a clustering step generating noisy pseudo-labels, and a fine-tuning step adapting
the network to the target dataset, progressively refining pseudo-labels. A lot of focus has
been in improving the quality of the pseudo-labels [28, 70, 32, 35].

A different approach is directly inspired by Unsupervised Domain Adaptation (UDA) [25,
124, 16, 84, 93, 125] and uses both the source and target datasets during adaptation. It
aims at matching source and target distributions while keeping features discriminative
ability by leveraging source ground truth ID labels. A first exemple learns to map source’s
detections to target’s style detections, and train a re-ID model in a supervised setting us-
ing only those transferred detections [25], or in combination with the original target de-
tections [124]. Alternatively, some exploit standard UDA strategies based on adversarial
learning to match the source and target distributions [34, 84]. However, Negative Trans-
fer [23] induced by the strict ID separation between source and target datasets limits the
ability of such strategies.

An alternative approach exploits spatio-temporal consistency to re-construct tracklets
from the dataset and use them to finetune the model [73, 61]. We propose to get inspiration
from this strategy and combine it with Clustering and Finetuning strategies to propose a
Tracking and Finetuning framework.
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5.3 METHODOLOGY

Figure 5.1: Overview of our proposed Tracking and Finetuning framework: the first step generates pseudo-
tracks p̃s,t on all target sequences s using pretrained tracker weights. The second step finetunes the tracker
using source ground truth annotation ps,t and pseudo-tracks b̃s,t to perform i) Adversarial Sequence Align-
ment to adapt the detection branch, ii) finetune the ID branch, and iii) enforce Adversarial Detection &
ID Disentanglement: i) leverages annotations to extract detection and image features to perform adversar-
ial alignment using Dimage and Dins, ii) uses a standard classification loss to adapt the ID classifier, and
iii) uses a discriminator trained Ddis/ID to extract ID information from detection instances and improve
disentanglement. GRL are not displayed and considered as first layer of D∗.

We propose to address the problem of Domain Adaptation MOT with a tracking and
finetuning framework, while leveraging adversarial strategies to align source and target
datasets on the detection embedding. We first introduce the notations and the tracking
framework we choose to build upon.

5.3.1 NOTATIONS AND TRACKER OVERVIEW

Let S be a source tracking dataset constituted by MS sequences filled with images ISs,t
, and annotated with NS individual tracks denoted {bSs,n = {(x, y, w, h)Ss,n,t}

Ts,n
t=t0,n,s

}NSn=1,
x, y, w, h describing bounding box center position and size, s the sequence identifier of
the track, and t the time frame at which the bounding box is extracted. Similarly, we note
T a target tracking unannotated dataset, constituted by MT sequences filled with images
ITs,t. In order to smoothly merge a URID framework with a Domain Adaptative Object
Detector, we need to build upon a tracker which jointly performs person re-identification
and person detection. Furthermore, we focus on online trackers, since our main motiva-
tion is to investigate MOT in real world applications.

FairMOT [117] is a strong baseline illustrated in Figure 5.1 matching these require-
ments: a backbone φ first takes as input the current image (from source or target) and
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produces a feature heatmap thanks to a shared embedding. It is then fed to a detection
branch ψdet and a re-ID branch ψID: the detection branch is trained similarly to [128]
with the focal loss [69] to regress heatmaps containing tracks center positions. The re-ID
branch extracts ID features at (x, y)s,t positions from a feature heatmap and feed them to
an ID classifier trained with a standard cross-entropy loss supervised by the ID labels n.
Extra-branches such as Bounding Box size used in the original implementation are not
detailed for simplicity, and are trained as in [117] if not mentioned otherwise. Similarly
to state-of-the-art URID framework [23, 32, 35], we preliminarily pretrain FairMOT on
the source dataset using the original training strategy [117]:

LSpre(φ, ψdet, ψID) = LSfocal(φ, ψdet) + LSCE(φ, ψID) (5.1)

where LSfocal stands for the focal loss, and LSCE for the categorical cross-entropy loss.
Refer to [117] for training details. At inference and at each time step, the model uses
spatial proximity and appearance similarity to match detections at t with known tracks at
t-1, and Kalman filters to update track positions.

5.3.2 TRACKING AND FINETUNING

We draw inspiration from the clustering and finetuning framework developed in the URID
community, and adapt it to the MOT setting. The original formulation considers the
embedding proximity of T ’s detections to perform clustering with a clustering algorithm
and generates pseudo-ID labels that can be exploited to finetune the re-ID model. One
of the limitations of this approach is that the clustering process is noisy due to the fact
that the ID embedding has a limited knowledge of the target domain. Multiple iterations
must therefore be performed in order to alleviate the mislabelisation problem, as seen in
Chapter 4.

We propose to exploit spatial and temporal information in order to produce pseudo-ID
labels, and replace the clustering step by a tracking step. It both takes into considera-
tion the appearance similarity (by exploiting re-ID embedding when generating pseudo-
tracks), and spatio-temporal information, which improves the quality of the pseudo-ID
labels by forcing them to be temporally and spatially consistent. Namely, the tracking step
generates the pseudo-tracks on the whole target dataset {b̃Ts,ñ = {(x̃, ỹ, w̃, h̃)Ts,ñ,t}

Ts,ñ
t=t0,ñ

}ÑTñ=1

using the source pretrained tracker and the inference strategy described in [117].

To finetune the re-ID branch, we replace the original ID classifier by an ID classifier of
size NS + ÑT and define the associated re-ID loss as the mean source ID cross-entropy
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and target cross-entropy:

LS+TID (φ,ψID) = (5.2)
1

2
(LSID(φ, ψID) + LTID(φ, ψID))

with LMID(φ,ψID) =

−EIMs,t∼M


∑
ñ∈IMs,t

log
〈
(ψID(φ(I

M
s,t))bb̃s,ñ,tc), ñ

M
〉

where M ∈ {S, T }, and hbxc refer to the feature vector at position x in the feature
heatmap h.

5.3.3 ADVERSARIAL SEQUENCE ALIGNMENT

We adapt the adversarial framework proposed in [20] to finetune the detection branch, in
order to align source and target embedding distribution. Two domain discriminators are
introduced, an Instance-level discriminatorDins and an Image-level discriminatorDimage.
The former is fed with detection features extracted from the detection branch ψdet and the
latter with image features extracted from the shared embedding φ. They are equipped
with a Gradient Reversal Layer [33] (GRL) and were originally being trained to recover
domain information from input features.

Sequence Alignment As demonstrated in chapter 3, using a multi-class discriminator
to perform distribution matching lead to better alignment than standard two-class dis-
criminators. This is especially the case when the training dataset is constituted of images
extracted from a small number of distinguishible visual domains (cameras or sequence
ID). The underlying assumption is that breaking down intra-domain embedding struc-
ture facilitates inter-domain distribution alignment[84]. We note that MOT datasets, con-
trary to detection datasets, are constituted of recordings of a dozen of video sequences,
where each sequence has distinguishable and temporally consistent background, illumi-
nation conditions and camera viewpoints. Also, we propose to perform Instance-level and
Image-level alignment to align embedding distributions on a sequence basis. From an im-
plementation perspective, we change discriminators final layers by a classification layer
of size MS +MT activated with a softmax function, and use a categorical cross-entropy
loss to train Dimage and Dins.

Instance-level alignment The original approach is based on a FRCNN detector, and se-
lects instance-level features thanks to locations provided by the RPN block. The downside
of this strategy is that the RPN only provides rough estimates of the object position, and is
prone to produce noisy detections. The tracking and finetuning framework provides tem-
porally consistent pseudo-tracks annotation less noisy than detections. Thanks to the fully
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convolutional nature of FairMOT’s detection branch ψdet, instance-level features are ex-
tracted using pseudo-tracks positions in the heatmap features located right before the final
heatmap output of the detection branch. Once extracted, they are fed to the discriminator
Dins, trained using LS+Tins detailed in (5.3).

LS+Tins (φ,ψdet, Dins) = (5.3)

−EITs,t∼T


∑
ñ∈ITs,t

log
〈
Dins(ψdet(φ(I

T
s,t))bb̃s,ñ,tc), s

〉
−EISs,t∼S


∑
n∈ISs,t

log
〈
Dins(ψdet(φ(I

S
s,t))bbs,n,tc), s

〉
Image-level alignment We perform image-level alignment on the shared embedding
produced by φ by sampling random position to extract image features from the feature
heatmap. They are then fed to Dimage, which is trained with (5.4).

LS+Timage(φ,Dimage) = −EITs,t∼T ,fT ∼φ(I
T
s,t)

{
log
〈
Dimage(f

T ), s
〉}

−EISs,t∼S,fS∼φ(I
S
s,t)

{
log
〈
Dimage(f

S), s
〉}

(5.4)

In order to maintain the detection ability of the branch on the source dataset while
matching embedding distribution, we further supervise the detection branch with the focal
loss LSfocal(φ, ψdet) introduced in loss (5.1), evaluated on the data batch sampled from the
source.

Overall, the detection part of the model is trained using the loss (5.5):

LS+Tseq (φ, ψdet, Dins, Dimage) = −LS+Tins (φ, ψdet, Dins) (5.5)

−LS+Timage(φ,Dimage)+LSfocal(φ, ψdet)

5.3.4 ADVERSARIAL LEARNING FOR DISENTANGLEMENT

So far we considered adapting the detection and re-ID branches separately, that is per-
forming sequence alignment on the detection branch using losses (5.3) and (5.4), and
finetuning the re-ID branch using the IDs of pseudo-tracks and the loss (5.2). We propose
to also consider the influence of ID information on the detection branch when performing
distribution alignment. Since the backbone is shared to perform both tasks, it is reason-
able to assume that without strong supervision from target annotations, detection and ID
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information are not properly disentangled in the detection branch. Also, because ID infor-
mation is domain specific, improving disentanglement should improve the generalization
ability of the detection branch, and thus improve its transfer ability.

We propose to leverage ID or pseudo-ID associated to bounding box annotation (or
pseudo-annotation) in an adversarial setting: similarly to Instance level alignment, fea-
ture vectors are extracted from the feature heatmap produced by ψdet at position given
by track/pseudo-tracks annotations, and fed to an ID-discriminator Ddis/ID. Equipped
with a GRL, Ddis/ID is adversarially trained to recover ID information from the detection
features. By doing so, ID and detection embedding disentanglement is enforced, forcing
detection features to be ID invariant.

LS+Tdis/ID(φ,ψdet, Ddis/ID) = (5.6)

−EITs,t∼T


∑
ñ∈ITs,t

log
〈
Ddis/ID(ψdet(φ(I

T
s,t))bb̃s,ñ,tc), ñ

T
〉

−EISs,t∼S


∑
ñ∈ISs,t

log
〈
Ddis/ID(ψdet(φ(I

S
s,t))bbs,n,tc),n

S〉


5.3.5 OVERALL TRAINING

As illustrated in Figure 5.1 we solve the following adversarial problem:

min
ψ,ψID,ψdet

max
Dins,Dimage,Ddis/ID

LS+TID (φ, ψID)+ (5.7)

LS+Tseq (φ, ψdet, Dins, Dimage)− LS+Tdis/ID(φ, ψdet, Ddis/ID)
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5.4 EXPERIMENTAL RESULTS

5.4.1 IMPLEMENTATION DETAILS

The original FairMOT implementation is used to conduct experiments, along with the
original training strategy. The original DLA-34 [128] variant is used as backbone, and
pretraining strategy is kept exactly as described in [117]. For target adaptation, we use
the Adam optimizer [56], with a learning rate of 10−4 during 20 epochs, with a batch size
of 8 (4 from source, 4 from target). Standard augmentation techniques are used, such
as random rotation, scaling and color jittering, on both source and target input images.
To perform fair evaluation across adaptation settings and training strategies, different de-
tection threshold are considered and evaluated on the validation set, and best performing
MOTA is reported for each strategy and adaptation setting. We train the model on two
Titan X GPUs for about 10 hours.

5.4.2 EVALUATION PROTOCOL

Datasets and metrics We use standard MOT datasets MOT17 [76] and MOT20 [24]
along with their official splits. Two Domain Adaptation settings are considered: MOT17
→ MOT20 and MOT20→ MOT17, where MOT17 is the annotated source and MOT20
the unannotated target, and vice-versa. Because ground truth annotation is not available
on both test sets, the ablation study is performed on MOT17 and MOT20’s training sets
similarly to [117]: only the first half of both training sets are then used for training, the
validation performance being computed on target’s training second half. The official test
server is used to evaluate MOT performance on the test set.

The MOT17 test set contains 2,355 trajectories, scattered across 7 sequences and a
total of 17,757 frames, while MOT20 test set contains 1,501 trajectories, across 4 se-
quences of 4,479 frames. Noticeably, the trajectory density (ie the average number of
tracks present in each frame) is 31.8 for MOT17 and 170.9 for MOT20: in addition to
the large background and illumination condition changes between MOT17 and MOT20,
the model has also to consider a drastic detection distribution shift, making this setting
particularly interesting to investigate Domain Adaptation for MOT.

Standard MOT metrics are reported to evaluate the performance of our approach:
MOTA [11] (Multiple Object Tracking Accuracy) assesses how well proposed tracks
match GT annotation by taking into account FPs (False Positives), FNs (False Negatives)
and IDs (identity switches). MOTP assesses how far from matched GT tracks proposal
are. IDF1, IDR and IDP (ID F1, Recall and Precision), which assess how well the tracker
performs in terms of identification ability [89] are also reported. We perform the experi-
ments in the private detection setting as is FairMOT.
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Table 5.1: Domain Adaptation MOT test results for MOT17→ MOT20 setting: the official test set of the
MOT20 dataset is used. Direct Transfer refers to MOT performance of FairMOT trained on the full training
set MOT17. Best results are in bold.

MOT17→MOT20 IDF1 Rcll Prcn IDs MOTA MOTP

Direct Transfer [117] 42.1 48.3 91.1 4,659 42.7 77.0

LS+Tseq + LS+Tdis/ID 59.6 71.2 78.5 3,998 51.0 75.6

5.4.3 RESULTS AND DISCUSSION

Test set evaluation We report in Table 5.1 the performance of our approach under the
MOT17→MOT20 setting, using the official test set of MOT20, and the full MOT17 and
MOT20 training sets. We compare with a direct transfer strategy, where the tracker is
trained using the original training scheme on the whole MOT17 training set. We observe
that domain adaptive MOT significantly improves target tracking performance, by +8.3%
in MOTA and +17.5% in IDF1. We note that detection recall significantly improves with
the domain adaptive approach by +22.9%, leading to a higher track recall and thus ex-
plaining the higher MOTA. The higher identification performance is partly explained by
the lower number of identity switches, and is not surprising considering the poor general-
ization ability of pretrained re-ID models, as developed in chapter 3: using target’s noisy
pseudo-labels largely benefits the re-ID branch to adapt to the new domain.

Ablation Study We run adaptation experiments for both MOT17→MOT20 and MOT17
→ MOT20 in Table 5.2 and Table 5.3, using different training strategies to assess their
role: we first replace Adversarial Sequence Alignement LS+Tseq with Adversarial Domain
Alignment LS+Tdom as in [20], where the loss of the Dins and Dimage is replaced by a bi-
nary cross-entropy loss and supervised with domain labels, and train the model with-
out ID-disentanglement; we then assess Adversarial Sequence Alignment LS+Tseq without
ID-disentanglement; and finally train the model with both Sequence Alignment and ID-
disentanglement: LS+Tseq + LS+Tdis/ID. For the MOT17→MOT20 setting, the pseudo-tracks
are re-generated every 7 epochs, while for MOT20→MOT17 they are generated only
once.

We note thatLS+Tdom already improves target performance compared to direct transfer, in
MOTA by +3.8% and +3.2% respectively in MOT20 and MOT17, in IDF1 by +11.8% and
+1.9%. The large gap in IDF1 improvement is due to the larger track density in MOT20,
which yields a higher risk of ID switches and has a significant impact on IDF1. Similarly,
LS+Tseq improves tracking performance compared to LS+Tdom , by +3.7% and +1.4% in MOTA
and +3.3% and +0.8% in IDF1. Finally, we note that the addition of ID disentanglement
LS+Tdis/ID consistently improves results in MOTA, by +0.5% and +0.8%, but slightly lowers
IDF1 in MOT20 by -0.2%, while improving IDF1 for MOT17 by +0.7%. Compared to
Direct Transfer, the proposed approach improves MOTA by +8.0% and +5.4%, IDF1 by
14.9% and 3.4%.
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Table 5.2: Domain Adaptation MOT results for MOT17 → MOT20 setting: the second half of of the
MOT20 dataset is used as validation set. Direct Transfer refers to MOT performance of FairMOT trained
on MOT17. LS+Tdom , replacing Adversarial Sequence Alignement, refers to Adversarial Domain Alignment
as in [20]. Best results are in bold.

MOT17→MOT20 IDF1 IDP IDR Rcll Prcn IDs MOTA MOTP

Direct Transfer [117] 51.3 63.9 42.8 61.2 91.3 6952 54.4 24.4

LS+Tdom 63.1 71.9 56.2 68.4 87.6 3888 58.2 25.7
LS+Tseq 66.4 74.1 60.1 71.8 88.4 3303 61.9 25.4

LS+Tseq + LS+Tdis/ID 66.2 75.3 59.0 70.5 90.1 3085 62.4 23.8

Table 5.3: Domain Adaptation MOT results for MOT20 → MOT17 setting: the second half of of the
MOT17 dataset is used as validation set. Direct Transfer refers to MOT performance of FairMOT trained
on MOT20. LS+Tdom , replacing Adversarial Sequence Alignement, refers to Adversarial Domain Alignment
as in [20]. Best results are in bold.

MOT20→MOT17 IDF1 IDP IDR Rcll Prcn IDs MOTA MOTP

Direct Transfer [117] 64.6 81.1 53.7 60.1 90.7 188 53.6 22.4

LS+Tdom 66.5 84.2 54.9 61.2 93.9 212 56.8 25.6
LS+Tseq 67.3 83.0 56.5 63.3 93.0 209 58.2 25.9

LS+Tseq + LS+Tdis/ID 68.0 87.8 55.4 61.2 97.0 187 59.0 25.1

Pseudo-tracks generation analysis We further study the impact of the frequency of
pseudo-tracks generation in Table 5.4. Interestingly, we note that the MOT performance
does not behave similarly in both settings: in MOT17→MOT20, the more frequent the
pseudo-track generation is, the better MOT performance is, suggesting that gradually
improving the pseudo-tracks helps the model to converge to a better solution. On the
contrary, in MOT20→MOT17, the performance only gets worse as pseudo-track genera-
tion gets more frequent. We explain this by the fact that MOT20 has a track distribution
significantly different compared to MOT17. Per sequence track density for MOT20 goes
from 70 to 205 with an average of 170.9, when for MOT17, track density goes from 9.6
to 69.8 with an average of 31.8. Also, aligning the distribution of the detection branch
encourages the tracker to produce as many detections on MOT17 as in MOT20, and thus
produce FPs, as shown by the diminishing precision, which is detrimental to pseudo-
track generation. This is not the case in MOT17→MOT20, since matching track density
on MOT20 will only lead to FNs, which do not affect significantly our instance-level
alignment strategy and thus the adaptation performance. We argue that the more realistic
scenario is MOT17→MOT20, since a real-life source dataset should have lower-density
tracks (annotation being less work-intensive, and most existing MOT dataset have low-
density tracks) compared to the target dataset.
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Table 5.4: Domain Adaptation MOT results for MOT20→ MOT17 and MOT17→ MOT20 settings: the
second half of of the target dataset is used as validation set. We change the number of iterations of the
tracking and finetuning, ie the number of time η the pseudo-tracks are regenerated during adaptation. The
overall number of epochs remains fixed to 20 for all runs. Best results are in bold.

MOT17→MOT20 IDF1 IDP IDR Rcll Prcn IDs MOTA MOTP

η = 1 62.5 70.6 56.1 70.0 88.1 4316 60.0 22.7
η = 2 65.8 73.7 59.5 71.5 88.5 3602 61.7 23.1
η = 3 66.2 75.3 59.0 70.5 90.1 3085 62.4 23.8

MOT20→MOT17

η = 1 68.0 87.8 55.4 61.2 97.0 187 59.0 25.1
η = 2 65.9 79.3 56.3 63.3 89.1 195 55.2 31.4
η = 3 62.4 76.0 52.9 62.0 89.1 263 54.0 32.5

5.5 CONCLUSION

In this chapter, we investigate unsupervised domain adaptive MOT, and propose the track-
ing and finetuning framework to address it. We combine this approach with an adversarial
strategy to perform domain adaptation via sequence distribution alignment on the detec-
tion branch. The adversarial framework is further leveraged to perform ID and detection
disentanglement. We quantitatively demonstrate the efficiency of the proposed approach
on two standard MOT datasets and adaptation settings, namely MOT17 → MOT20 and
MOT20→MOT17, conduct an extensive ablation study to assess the impact of each loss,
and compare our proposal with simpler adaptation strategies.
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CONCLUSION

6.1 SUMMARY

This Thesis investigates different frameworks for MOT domain adaptability. First, a gen-
erative probabilistic model combined with an online appearance learning scheme is pro-
posed to perform MOT in robotic settings: the generative framework relaxes the domain
dependency problem that standard discriminative MOT systems might endure, while the
learned appearance model allows the system to adapt the tracker to the target domain on
the fly, while demonstrating better identification performance than standard appearance
model based on a pretrained fixed representation. Because state of the art MOT frame-
works make use of person re-ID models to improve identity consistency, domain adapt-
ability for re-ID models, namely Unsupervised Person re-ID, is then investigated. Inspired
by domain-adversarial strategies developed for domain adaptation in classification tasks,
a camera-adversarial strategy is devised, and demonstrates higher re-ID performance on
standard target re-ID datasets than standard domain-wise adversarial approaches, and
competitive performance with respect to state-of-the-art strategies. It further demonstrates
the ability of the adversarial framework to perform distribution matching for more than
two distributions. Then, the camera-adversarial strategy is investigated in a novel un-
supervised re-ID framework: clustering and finetuning, where only the target domain is
used during training. The camera-adversarial strategy reduces pseudo-labels mislabeling
during the clustering step, and thus improves ID discriminability and target re-ID per-
formance. The impact of negative transfer in such strategies is also demonstrated, that
is the non-uniform ID distribution over camera domains, and a conditional adversarial
approach to perform ID-conditioned camera distribution matching is proposed. Applied
on two state-of-the-art learning strategies, it demonstrates better target re-ID performance
against both their original performance and vanilla camera adversarial strategy, yielding
new state-of-the-art performance in unsupervised re-ID. Finally, the adversarial frame-
work is investigated to perform domain adaptation in MOT: the impact of the domain-
shift problem in MOT on standard datasets is demonstrated, and addressed by leveraging
adversarial methods inspired by domain adaptive object detection and a tracking and fine-
tuning training scheme is proposed. An adversarial ID-detection disentanglement strategy
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is also proposed to alleviate ID related features learning during detection branch finetun-
ing. The superiority of this strategy compared to simpler adaptation scheme is experi-
mentally demonstrated on two standard MOT datasets, and an extensive ablation study is
performed to assess the role of each losses.

6.2 FUTURE RESEARCH DIRECTIONS

From this thesis, several lines of future work could be explored:

• Chapter 2: The probabilistic model used to derive the presented MOT algorithm can
easily be extended for Audio-Visual tracking [8]. This setting has the advantage
that audio information is not limited by the field of view of the camera and thus can
track people all around the robot, and processing audio information is particularly
interesting to better understand conversations. A possible line of future work could
therefore be to implement a voice model similar to the appearance model developed
in chapter 2, and trained online with self-annotated recordings. Further, recent works
in the speaker recognition literature [80] demonstrated that visual information can
be leveraged when processing audio-recordings to improve accuracy: a complemen-
tary approach could investigate how to jointly model identity using both visual and
audio cues. Modeling those information together would be particularly interesting
when performing cross-domain re-ID (a previously seen person start speaking, or a
previously speaking person become visible).

• Chapter 3: Investigating the impact of camera-adversarial strategies highlighted
the camera-dependency of standard person re-ID model, even when trained with
ID supervision (i.e. in standard supervised person re-ID). However, preliminary
experiments did not show improvement in such framework: even though camera
embedding-invariance is enforced, it does not translate in improved re-ID perfor-
mance. This is counter-intuitive, and remains to be investigated.

• Chapter 4: The adversarial approach devised to guide the unsupervised learning of
person re-ID models could also be explored in the more general context of Unsu-
pervised Learning. Especially, adversarial approaches could be leveraged in order to
reduce embedding variability when heavy data-augmentation techniques are applied
to the training data. Similarly, self-supervision [26] could be explored through the
lens of adversarial proxy tasks: instead of solving tasks close to the aimed objec-
tive with labels generated from the training data, one could additionally solve tasks
designed to enforce model invariance, exploiting labels also generated directly from
training data.

• Chapter 5: The Domain Adaptive framework devised in this chapter could easily be
applied to any other tracker: also a possible future work could explore the impact this
strategy on trackers taking advantage of the higher detection ability leveraged by the
transformer architecture [98, 109], like Transcenter[105]. Also, as seen in chapter
4, a wide variety of unsupervised strategy can be leveraged to perform unsupervised
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person re-ID: an alternative idea could investigate how to integrate methods like
MMT [35] or SSG [32] within the clustering and finetuning framework to improve
pseudo-ID consistency and thus the ID-branch discriminative ability.

• More general questions common to all the chapters of this thesis could also be in-
vestigated: first, the computational aspect of domain adaptation is often overlooked:
most of the presented strategies are applied during training, while the backbone
model remains untouched. In order to enable robotic application, significant ar-
chitecture simplification should be performed to reduce computational cost[45], and
such changes could also benefit to adaptation performance since reducing modeling
ability might benefit generalization ability. Second, continuous adversarial adapta-
tion could be investigated to perform adaptation on the fly, for both detection and
identification modules, as done in chapter 2. In this setting, the temporal aspect of
adaptation should be taken into account, along with significant training simplifica-
tion to allow for real-time adaptation. Finally, robot spatio-temporal information,
leveraged by its ability to navigate its environment could also be exploited to further
guide visual adaptation in long-term tracking settings, where drastic illumination
conditions and background changes severely reduce the robot ability to keep ID
switches low.
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CHAPTER A

APPENDIX: ADVERSARIAL LEARNING

FOR MULTI-DOMAIN CLASSIFIER

In this appendix, we show that the adversarial formulation can be interpreted in terms of
Jenson-Shannon divergence minimization.

The goal is to prove that optimizing the adversarial loss is equivalent to minimizing the
Jensen- Shannon divergence (JSD) between feature distributions across cameras. It relates
to the second term of the loss (3.4) in chapter 3. This equivalence has been proved in the
original GAN formulation for binary discriminators [40]. We extend the derivation for an
arbitrary number of distributions, and to the JSD generalized to multiple distributions.

Let φ be our feature extractor, and Dcam our camera classifier. Let’s define D as our
person Re-ID dataset. It is composed of 3-tuples (xn, cn, pn)Nn=1, which correspond to the
images, the camera indexes, and the identities, respectively. We also denote with C the
number of cameras. Our problem of camera feature distribution matching can be written
as the adversarial optimization of

min
φ

max
Dcam

Ex,c∼D logDcam(φ(x))c (A.1)

During optimization, when the feature extractor φ is fixed, the camera classifier Dcam

is optimized according to:

max
Dcam

Ex,c∼D logDcam(φ(x))c = (A.2)∫
x

∑
c

p(φ(x), c) log(Dcam(φ(x))c)dx

For a given image input x, we seek an optimal camera classifier D∗cam with posterior
probability d∗, namely

d∗ = argmax
d

C∑
c=1

p(φ(x), c) log(d) (A.3)
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with the constraints d = (d1, . . . , dC) ∈ RC , ∀c, 1 ≤ c ≤ C, 0 ≤ dc ≤ 1,
∑C

c=1 dc = 1
that ensure that d describes a probability distribution. For the sake of notation simplicity,
we denote f(d) =

∑
c p(φ(x), c) log(d). We also define λ = (λ1, . . . , λC) and µ =

(µ1, . . . , µC).

The problem of (A.3) turns out to be the optimization of the generalized Lagrangian
[39], which is written as:

max
d

min
γ,(µ,λ≥0)

J (d, λ, µ, γ) =

f(d) +
∑
c

λcdc +
∑
c

µc(1− dc) + γ(
∑
c

1− dc) (A.4)

∇dcJ (d∗c) = 0⇔ p(φ(x), c)

d∗c
+ λc − µc − γ = 0

that leads to

d∗c =
p(φ(x), c)

µc − λc + γ

=
p(φ(x), c)(d∗c)(1− d∗c)

µc(d∗c)(1− d∗c)− λc(d∗c)(1− d∗c) + γ(d∗c)(d
∗
c − 1)

Using the Karush-Kuhn-Tucker property [39], we have µc(1−d∗c) = 0 and λcd∗c = 0, thus

d∗c =
p(φ(x), c)

γ
(A.5)

Due to the constraints of (A.3), when summing over the camera index c, we obtain:

∑
c

d∗c =
∑
c

p(φ(x), c)

γ
= 1 (A.6)

where γ =
∑

c p(φ(x), c) is a normalization factor. Therefore the optimal posterior prob-
ability is equal to:

d∗c =
p(φ(x), c)∑

i p(φ(x), c = i)
(A.7)

After injecting the optimal discriminator D∗cam from (A.7) above into (A.1), we obtain:
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min
φ
Ex,c∼D log

p(φ(x), c)∑
i p(φ(x), c = i)

(A.8)

=

∫
x

∑
c

p(φ(x)|c)p(c) log p(φ(x)|c)p(c)∑
i p(φ(x), c = i)

dx

=
∑
c

p(c)

∫
x

p(φ(x)|c) log p(φ(x)|c)dx︸ ︷︷ ︸
−

∑
c p(c)H(p(φ(x|c)))

+
∑
c

p(c)

∫
x

p(φ(x)|c) log p(c)dx︸ ︷︷ ︸
−H(p(c))

−
∫
x

∑
c

p(φ(x)|c)p(c) log

(∑
i

p(φ(x)|c = i)p(c = i)

)
dx︸ ︷︷ ︸

H(
∑

i p(c=i)p(φ(x)|c=i))

We recognize the definition of the JSD in the equation (A.8), and therefore conclude the
proof, solving (A.1) is equivalent to solving:

min
φ
JSDp(c)(p(φ(x)|c = 1), ..., p(φ(x)|c = C)) (A.9)

where JSD is the generalized Jenson-Shannon divergence between the C distributions
p(φ(x)|c). Note that each distribution p(φ(x)|c) is weighted by the prior distribution p(c)
in the computation of the generalized JSD.

To make sure that each camera distribution p(φ(x)|c) is considered equally, the prior
distribution for each camera should be uniform p(c) = 1

Nc
. It highlights the importance

of solving the unbalanced camera-classification problem in our problem. In practice, it is
realized by sampling evenly across cameras.
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