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Adaptation dans un monde en mouvement :
Adaptation des communautés et relations biodiversité-fonctionnement des

écosystèmes, hétérogénéité spatiale et évolution de la tolérance au stress, migration
pulsée et adaptation locale

Résumé

Le monde change à un rythme sans précédent sous de nombreux aspects interconnectés les uns
aux autres, et les écosystèmes sont parmi les premiers systèmes concernés. L’évolution actuelle
des conditions environnementales – en partie induite par les activités anthropiques – s’accompagne
d’une augmentation de la variabilité temporelle des processus environnementaux, qui vient s’ajouter
à la variabilité naturelle existante. Ce travail de thèse fait parti des études qui cherchent à compren-
dre comment la variabilité de certains processus environnementaux clés va impacter la composition
et les propriétés écologiques et évolutives des écosystèmes à différentes échelles. L’accent est mis
en particulier sur l’interaction entre cette variabilité et le processus d’adaptation par évolution, qui
est un aspect fondamental de la dynamique des écosystèmes. L’adaptation fait partie intégrante
du fonctionnement des écosystèmes, mais elle est encore relativement peu considérée. Dans cette
thèse, trois échelles biologiques sont considérées : l’échelle de la communauté, l’échelle de l’espèce
et l’échelle des populations. Une approche de modélisation théorique est utilisée pour introduire
certains aspects de la variabilité et étudier la façon dont les dynamiques écologiques et évolutives
sont impactées.

A l’échelle de la communauté, nous questionnons l’impact que des changements dans le niveau
de co-adaptation des espèces peuvent avoir sur certaines relations biodiversité-fonctionnement des
écosystèmes (BEF ; relations diversité-productivité, diversité-stabilité et diversité-réponse aux in-
vasions). Des communautés aléatoires et co-adaptées sont comparées à l’aide de méthodes de
dynamiques adaptatives. Les résultats montrent que la co-adaptation des espèces a un impact
sur la plupart des relations BEF, inversant parfois la pente de la relation. À l’échelle de l’espèce,
l’évolution de la tolérance au stress, dans le cadre d’un modèle de trade-off tolérance-fécondité,
est également explorée via des méthodes de dynamiques adaptatives. Les comportements évolutifs
de ce modèle sont déterminés pour différentes intensités de trade-off et différentes distributions de
stress. L’hétérogénéité du niveau de stress a un rôle plus important que le niveau de stress moyen
dans la détermination de la stabilité de l’équilibre évolutif (contrôlant le branching). L’inverse est
observé quant à la détermination de la valeur de la tolérance au stress à l’équilibre évolutif. En-
fin, à l’échelle de la population, nous nous intéressons au flux génétique entre des sous-populations
d’une même espèce, qui est un déterminant important de la dynamique évolutive. L’impact que des
schémas de migrations variables dans le temps peuvent avoir sur le flux de gènes et sur l’adaptation
locale est questionné en utilisant à la fois des analyses mathématiques et des simulations stochas-
tiques d’un modèle ı̂le-continent. Dans ce modèle, la migration se produit sous forme de “pulses”
récurrents. On constate que cette migratoire pulsée peut diminuer ou augmenter le taux de mi-
gration effectif selon le type de sélection appliquée. Globalement, la migration pulsée favorise la
fixation d’allèles délétères et augmente la maladaptation. Les résultats suggèrent également que la
migration pulsée peut laisser une signature détectable dans les génomes.

Pour conclure, ces résultats sont mis en perspective, et des éléments sont proposés pour tester
ces prédictions avec des données d’observations. Certaines conséquences pratiques que ces résultats
peuvent avoir pour la gestion des écosystèmes et la conservation biologique sont également dis-
cutées.

Mots clés : Dynamique adaptative, dynamique éco-évolutive, interactions entre espèces, génétique
des populations, migration variable dans le temps, flux génétique, adaptation locale, simulations
stochastiques, modélisation.
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Adaptation in an unsteady world:
Community adaptation and biodiversity-ecosystem functioning
relationships, spatial heterogeneity and the evolution of stress

tolerance, pulsed migration patterns and local adaptation.

Abstract

The world is changing at an unprecedented rate in many interconnected aspects, and ecosys-
tems are primarily concerned. The current shift in environmental conditions is accompanied by
an increase in the temporal variability of environmental processes, which is also driven by anthro-
pogenic activities. This work is part of the effort to understand how variability in key environmental
processes impacts ecosystem composition and ecological and evolutionary functioning at different
scales. The focus is made in particular on the interplay between such variability and the process of
adaptation, which is a key aspect of ecosystem dynamics. Adaptation is integral to the functioning
of ecosystems, yet it is still relatively little considered. In this thesis, three biological scales are
considered – the scale of the community, the scale of the species, and the scale of populations. A
theoretical modeling approach is used to introduce some aspects of variability and investigate how
ecological and evolutionary dynamics are impacted.

At the community scale, the impact that changes in the species co-adaptation level may have
on some biodiversity-ecosystem functioning (BEF) relationships (diversity-productivity, diversity-
stability and diversity-response to invasion relationships) is questioned. Random and co-adapted
communities are compared using adaptive dynamics methods. Results show that species co-
adaptation impacts most BEF relationships, sometimes inverting the slope of the relationship.
At the species scale, the evolution of stress tolerance under a tolerance-fecundity trade-off model
is explored using adaptive dynamics as well. The evolutionary outcomes are determined under
different trade-offs and different stress distributions. The most critical parameters in determin-
ing the evolutionary outcomes (ESS trait value, branching) are highlighted, and they evidence
that stress level heterogeneity is more critical than average stress level. At the population scale,
gene flow between sub-populations of the same species is an important determinant of evolution-
ary dynamics. The impact that temporally variable migration patterns have on gene flow and
local adaptation is questioned using both mathematical analyses and stochastic simulations of a
mainland-island model. In this model, migration occurs as recurrent “pulses”. This migration
pulsedness is found to not only decrease, but also increase, the effective migration rate, depending
on the type of selection. Overall, migration pulsedness favors the fixation of deleterious alleles
and increases maladaptation. Results also suggest that pulsed migration may leave a detectable
signature across genomes.

To conclude, these results are put into perspective, and elements are proposed for possible
tests of the predictions with observational data. Some practical consequences they may have for
ecosystem management and biological conservation are also discussed.

Keywords: Adaptive dynamics, Eco-evolutionary dynamics, Species interactions, Population ge-
netics, Temporally variable migration, Gene flow, Local adaptation, Stochastic simulations
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Introduction

Logic will get you from A to B.
Imagination will take you everywhere.

Albert Einstein

1 Ecological systems in an unsteady world

Trying to understand, explain and predict the world in which we live can be ap-
proached from many different perspectives and disciplines. A common challenge
often lies in the fact that multiple sources of variability may be difficult to grasp
and integrate, and the understanding of the living is no exception to the rule (Vasseur
& McCann, 2007). Environmental variation is an ubiquitous component of living
processes in the natural world. The physical and biological conditions that influence
life are continuously changing in time and space, what induces changes in many liv-
ing characteristics or processes as physiology, behavior, ecology, or also evolution
(Ruokolainen et al., 2009). Those many external sources of variability (of biologi-
cal or physical origin) are more or less predictable and modelizable depending on
their nature. In addition, the intrinsic variability of the living complexifies the ap-
proach, reducing the reproducibility and the possibility of predicting the outcome
of a biological process.

Variability is closely linked to the process of adaptation (Futuyma, 1998; Losos,
2017). Adaptation, and more generally evolution, participates in biological variabil-
ity, while variability is both a source and a trigger for ecosystem adaptation. A
trigger because the forces governing adaptation are more likely to be null without
existing changes or fluctuations affecting the system we consider, so that the system
would stay where it is. And a source, because adaptation can often be seen as the
selection of a beneficial existing variation for the system ; in other words, adapta-
tion relies on some variations to occur. The main interest of this manuscript will be
adaptation in living system in relation to variability. More specifically, we will be
interested in ecological systems adaptation, what means that we will consider indi-
viduals and populations, and not cells or organs within an individual. Before going
into the details of what we mean by ecological adaptation, we will first define the
relevant biological scales we will consider (from the population to the community),
and which variability they may encounter.

1.1 Biological systems and scales considered

Biological scales We are interested in adaptive changes that occur in biological
systems ranging from the population to the community, which are the typical focus

1
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of ecology, evolutionary biology and population genetics studies (Losos, 2017). We
will not specify which kind of ecosystem in particular, as our modeling approach
seeks to obtain general results. A population is a group of individuals which live
in a particular geographical area and belong to the same species, while a species
designates the ensemble of all the individuals (on earth) that are (really or poten-
tially) capable of interbreeding and to produce fertile offspring (Futuyma, 1998). A
population is sometimes hard to define properly when there exist migration between
populations of the same species. We precise here that by migration we mean disper-
sal, as usually the case in population genetics. Migration provokes a gene flow that
may homogenize genes and alleles in different populations, and allow the interbreed-
ing of individuals that come from geographically distinct places. A community is
a group of populations that all belong to different species, and that live in the same
geographical area. There is no possible mating between populations, and popula-
tions interact through ecological interactions as competition, mutualism, predation
(Futuyma, 1998). The community concept has a botanical origin, but is nowadays
largely used for both plant and animal populations interaction. In practice, it is not
always easy to define a community isolated from outside interactions, but some de-
limited systems can be approximated as so (islands, forests, grasslands, etc.). Both
the system of study and the question we want to ask will guide the relevant spatial
and time scales to consider.

The spatial scales They have to be large enough to contain populations or com-
munities, and small enough to match with the definitions of population or com-
munities (i.e. allowing interbreeding or ecological interactions). Defining a proper
spatial scale is often under debate as it may profoundly impact the patterns one
finds (Wiens, 1989; Henle & Grobelnik, 2014; Czarniecka-Wiera et al., 2020). Every
single study will have to properly define its relevant spatial scale, depending on the
organisms and questions considered. For instance, some microbial communities can
spread over only a few centimeters or even less (Green & Bohannan, 2006), while
a typical grassland community could be of the order of less than a hectare to a
few thousand of hectares (Czarniecka-Wiera et al., 2020). Also, a bird population
can spread over a few hundred or thousand of square kilometers like on some islands
distant from the mainlands (in the Mascarene Islands for instance Milá et al., 2010).
In this manuscript, we will not explicitly define any spatial scales as they will be
implicit within the definition of population and communities.

The temporal scales The temporal scale and time unit condition the type of
questions and evolutionary observations we can make (Gingerich, 2001). Of course,
it must be large enough to let changes occur from one generation to the next. Here,
we will focus on adaptive evolution occurring over temporal scales that are not
too large so that we will be able to see the details of changes, and not only their
average or effects over too long periods of time, or not only the results of successive
large but rare catastrophic events. In other words, we will be mostly interested in
what is classically called microevolution (the short term evolutionary changes within
population or species) rather than macroevolution (phenotypic changes usually great
enough to allocate the changed lineage and its descendants to a distinct genus or
taxon, Futuyma, 1998). We will thus consider time units from a few generation
up to a few hundred of generations depending on the questions asked (Gingerich,
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2001). Those timescales will then define the type of variable phenomena that have
a relevant impact for ecological adaptation. In the following paragraph, we will see
some of the several natural sources of variability and contemporary environmental
changes that operate on this timescale.

1.2 Variability encountered

In this section, we will briefly expose how variability may affect ecosystems, decom-
posing the latter into three schematic components. From a large point of view, an
ecosystem can be seen as a structure, that has different properties (or functions),
and the potentiality to evolve.

Variation affecting ecosystem structure. . .

An ecosystem is literally a system composed of several entities, which interact to-
gether, into an environment. When asking the question of the variability that may
affect ecosystems, once have to consider those three aspects: the environment, the
entities (ecosystem composition) and the interactions. They all three influence each
other, and may of course be impacted by external factors. Because of all the inter-
connected influences, the list would be long, and is not the purpose of this introduc-
tion. We just give here some examples of processes variation affecting the ecosystem
structure. Some reviews summarize some of them (Wrona et al., 2006; Miles et al.,
2019; Cao et al., 2020; Rogers et al., 2020; Leal Filho et al., 2021).

Global climate is likely to influence local meteorological condition, which in turns
affects habitat quality (the “ environment”) (Vermeulen et al., 2012; Leal Filho et al.,
2021). Habitat quality (soil and water quality) is also impacted by anthropic activ-
ities as urbanization, land use and pollution (Zari, 2014; Mahmoud & Gan, 2018;
Cao et al., 2020; Tanaka et al., 2021). In turn, habitat quality may affect ecosystem
composition (the “entities”) (Wrona et al., 2006), or even species and individuals
interactions (Cassidy et al., 2020). Ecosystem composition is also impacted by con-
nectivity which may bring new species or individuals into a specific environment.
Connectivity is impacted by many different kind of processes that are potentially
highly variable as various geographical barriers (Morris-Pocock et al., 2016) or sea
currents (Benestan et al., 2021), meteorological conditions (Jones & Harrison, 2004)
and water regimes (Carlton et al., 2017) or even urbanization and land use (Miles
et al., 2019) and anthropic transportation (Carlton & Cohen, 2003). Variability
affecting connectivity will be more detailed in Chapter 3.

All those processes are potentially highly variable. Any kind of variation in
ecosystem structure may then affect ecosystem properties and shape, and in turn,
evolution. The two next paragraphs provide some non-exhaustive examples of such
impacts.

. . . with impacts on ecological properties. . .

Environmental variance may both increase or decrease the long-term population
growth (Lawson et al., 2015). Individual growth (nestling growth and development
for avian for instance, Sauve et al., 2021) is also impacted by weather variations
like variations in wind speed, rainfall, solar radiation and air temperature. Grass-
land productivity is sensitive to soil-water content variability (Manea & Leishman,
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2018). And more generally, all crops productivity and food quality (nutrients) are
affected by many climatic factors potentially highly variable as CO2 concentrations,
precipitation, temperature or sunlight, inter-seasonal changes, or even sea level rise
(Giulia et al., 2020). Changes in some ecosystem components (as resources) im-
pact ecosystems stability (Olivier et al., 2020). The resilience of ecosystems are
also shown to be affected by variability in temperature. For instance, the resilience
of ant population is greater when the thermal variability is usually greater (Arnan
et al., 2015). On the contrary, Hernández-Padilla et al. (2021) found for instance
that the resilience of the southeastern Gulf of California ecosystem decreases under
high sea surface temperature variability. Moreover, they found that the trophic role
of species is changed and reorganized under periods of low or high variability.

. . . and evolution.

Not surprisingly, evolution is also found to be impacted by environmental variations.
Variation in the physical environment is found to impact the rate of diversification
in inland water for instance (Hebert, 1998), by altering the mutation rate and mod-
ifying the exposure to selection (through genotype by environment interactions).
Species as the ginseng are found to be locally adapted to inter-annual variation
in temperature, what could modify their adaptation potential to shift in thermal
niches (Souther & McGraw, 2011). On the contrary, a stochastic temperature vari-
ation may also impede adaptation, as for some RNA viruses (Alto et al., 2013).
Leaving in a variable environment may also participate in maintaining a genetic
diversity large enough to face future fluctuations or changes, as shown for marine
sticklebacks (Shama, 2017). Also, temporal variability in the environment is found
to favor generalists rather than specialists (see e.g. ?), provided that the period of
temporal changes is not too large compared to the generation time. The period of
time changes is critical, and is briefly discussed in the next paragraph.

About the patterns of variation

It is interesting to note the distinction between a change in mean environmental
conditions and a fluctuation around a mean. By change we mean the passage from
one state to another, without necessarily the possibility of a return. By fluctuation
we mean the move now in one direction and now in another, around a mean state.
A mean change over a small time period can appear to be part of a fluctuating
pattern over a larger timescale. Moreover, mean changes and fluctuations are not
disconnected from one another. Fluctuations may sometimes be the same order-of-
magnitude as that of changes, as the annual mean temperature from 1970 to 2000
for instance (Lawson et al., 2015). Natural patterns of environmental variations
are being modified by climate change (Masson-Delmotte et al., 2018). Fluctuations
are also found to interact with mean changes up to alter or even reverse the effects
of mean changes (Lawson et al., 2015) so that we need to understand fluctuations
consequences both in environment in which the mean conditions are changing or
not.
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2 Adaptation as a response to fluctuations and

changes

An ecosystem subject to fluctuations or changes can respond in different ways. The
two main categories of responses are demographic changes (changes in the absolute
and relative abundance of different species), includings migration processes, and
adaptation (changes in the traits/phenotypes of individuals and species) (Futuyma,
1998). We will focus here on the third mechanism, adaptation, and in particular on
adaptive evolution (evolution driven by genetic changes and natural selection).

2.1 Definition of adaptation

Adaptation has a relatively broad meaning. The process of adaptation can in-
volve different mechanisms as individual plasticity that is not heritable, or heri-
table changes of the genome (Futuyma, 1998; Hendry, 2020). We will briefly de-
scribe plasticity, before focusing on heritable changes that are the main focus of this
manuscript.

Plasticity The term “plasticity” regroups processes through which environmen-
tal conditions influence the expression of phenotypic traits for a given genotype.
It encompasses phenotypic plasticity, developmental plasticity, environmental in-
duction, acclimation, epigenetics, induced defenses, maternal effects, genotype-by-
environment interaction, or also indirect genetic effects (Hendry, 2020). Just to give
a few examples, we can cite the phototaxis behavioral response of Daphnia to the
presence of predators (Parejko & Dodson, 1991). This response to fish kairomones
is shown to be a plastic response, that is greater for Daphnia that live in lakes with
high levels of fish predation. Another example could be that of the morphological
plasticity of some plants which develop leaves with smaller area and larger mass in
response to an increase in temperature (Gratani, 2014).

Plasticity can be either adaptive as in the previous examples, or non-adaptive
when the plasticity process results in a mean phenotypic response that is far from
the favoured phenotypic optimum (Ghalambor et al., 2007). This distinction renders
more complex the answer to the question of the selective advantage of plasticity and
its contribution to adaptive evolution (Ghalambor et al., 2007).

Plasticity is often seen as a non-heritable response of individuals. It is worth to
notice that actually, some plasticity processes as epigenetic (genetic changes that
do not alter DNA sequences) can be heritable such as the survival of fish at high
toxicity levels (hydrogen sulfide–rich springs) due to a stable generational inheritance
of certain DNA methylation (Kelley et al., 2021). Those heritable processes could
fall under the scope of some of the present manuscript considerations (for Chapter 1
mostly).

Adaptive evolution The main focus of this manuscript remains that of adap-
tation through heritable changes in the genome, which (may) results in changes
in phenotype. Adaptive evolution involves the notion of fitness. The fitness of a
given genotype is defined as its contribution to the gene pool of the next generation
(Wright, 1931). Gentotypes may differ in fitness in many ways, e.g. viability, mat-
ing success, fecundity (Orr, 2009). There are several ways to describe and measure
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fitness (Endler, 2020). It is usually measured by quantities that are proportional to
the mean number of viable, fertile progeny produced by a genotype/phenotype, as
survival and reproductive success.

The curve or surface for individual fitness versus individual trait values is called
a fitness landscape (idea derived by Wright in 1937 and widely used afterwards; Orr,
2005). This surface may present several local maximum. Adaptation will involve
the walk up to the nearest fitness peak (even if not the global optimum). However,
adaptation might be a lot constrained by many factors so that most population have
their phenotype in some distance from the nearest fitness peak (Hendry, 2020).

This dynamical process involves four main evolutionary forces well described
in most of the textbooks about evolution (Endler, 2020; Futuyma, 1998; Losos,
2017). Mutation brings new alleles to a population and participates to genetic
variation. Migration creates gene flow between populations, brings new alleles
into a population, enhancing genetic variation. Genetic drift randomly changes the
frequency of an existing allele in a population (through stochastic death and mating).
And selection provokes a differential survival and/or reproduction of individuals,
guiding which alleles are more probable to be maintained or to disappear. Natural
selection is closely linked to the notion of fitness, which can be seen as a within-
generation measure of the process of natural selection. However, selection does
not always imply “adaptation” in the sense of improved fit between organism and
environment (Orr, 2005).

Those four forces are known to interact with each other, what makes all the
richness of this process, but also the difficulties to grasp it in all its dimensions.
To give just a few examples of such interactions: gene-flow may counteract selec-
tion, bringing deleterious alleles and hampering local adaptation (Lenormand, 2002;
Bürger, 2014), or being favorable for evolutionary rescue for instance (Tomasini &
Peischl, 2020). It also interacts with drift, preventing the random loss of some al-
leles into small populations (Lenormand, 2002; Blanquart et al., 2012). Similarly,
the mutation-selection balance specifies the relative forces of mutation and selection
in determining allele frequencies in a population (Crow et al., 1970; Lynch et al.,
2016).

Even if mutation is the ultimate source of genetic variation and the fundamental
aspect of several theory of evolution (Orr, 2005), it is not the only one. Adaptation
can for instance also occur from standing genetic variation1. In any way, genetic
variance is a prerequisite of adaptation. Such a genetic variation is actually found in
nature, but the reason why is a fundamental question that has long been unresolved
(Rice, 2004). Maynard-Smith highlighted that mutation should probably not be
sufficient (rate too low) for maintaining the observed genetic variation in nature.
And indeed, other processes as recombination and immigration of new alleles also
participate to genetic variation (Rice, 2004). Other mechanisms as habitat choice
can help maintaining polymorphism, but is not always necessary depending on the
joint effects of density regulation and viability selection (Ravigné et al., 2004). In
anyway, polymorphism maintenance requires in some way a frequency-dependent
selection2 conferring an advantage to rare phenotypes or genotypes (Ravigné et al.,

1Allelic variation that is currently segregating within a population; as opposed to alleles that
appear by new mutation events (Orr, 2005).

2Frequency-dependent selection occurs when the fitness of a phenotype or genotype depends on
its frequency in a population.
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2004).

2.2 Manifestations of adaptation

2.2.1 Adaptation in a single population or species

A population subject to perturbation or changes in its environment can adapt to
them. A lot of examples are reported in the literature, where some population or
species are seen to adapt (here, to evolve, in the sense of the acquisition of heri-
table traits) to new or fluctuating conditions. Examples are as diverse as species
evolutionary adaptation to urban environment (McDonnell & Hahs, 2015), to pes-
ticides (Hawkins et al., 2019), to altitude for human (Rupert & Hochachka, 2001),
to temperature for instance for bacteria (Bennett et al., 1992), or also to salinity
(Ahmadi et al., 2016). In the case of environmental variability, evolution is generally
expected to favor generalist species (see Wilson & Yoshimura, 1994, for a review),
or bet-hedgers (Jansen & Stumpf, 2005).

When considering heterogeneous environments, where several populations of the
same species evolve in different environments, we can observe what is called local
adaptation. A population is locally adapted when well locally suited compared to
other individuals/populations of the same species (Rice, 2004; Hendry, 2020). Many
examples exist as the local adaptation of disease vectors to temperature (Sternberg
& Thomas, 2014), or of tropical plants to drought (Barton et al., 2020). Local
adaptation implies in some way a trade-off, where a population well adapted to an
environment will be mal- or less-adapted to another one (Levins, 1968). A popula-
tion or species that would not be subject to any trade-off and would evolve without
any biological constraints is called a Darwinian Demon (Leimar, 2002). Local adap-
tation can be favored and protected by habitat choice (Johnson et al., 1996). On
the contrary, local adaptation might be eventually slowed down or even prevented
by gene flow between populations (Lenormand, 2002, but see for instance Walker
et al., 2017). For instance, mosquitoes from Corsica did not develop a strong pesti-
cide resistance as expected because of large gene flow from the mainland (Raymond
& Marquine, 1994), what is called gene swamping (Lenormand, 2002).

Adaptation (and a fortiori local adaptation) might eventually result in evolu-
tionary divergence and diversification, what participate in adaptive radiation and
speciation (Losos, 2017). This can occur when selection maintains (stabilizing se-
lection) or evolves (directional selection) phenotypic differences among populations.
Such an adaptive divergence in salt tolerance occurred for instance between coastal
perennial and inland annual ecotypes of a yellow monkey-flower in the Western
North America (Lowry et al., 2009).

Speciation can also occur in case of a disruptive selection, which increases the
variance of a trait and progressively forms two groups. If their exists a reproductive
isolation between the two groups, they will finally diverge to form two distinct species
(adaptive radiation). Darwin’s Finches for instance are supposed to have differen-
tiated through disruptive selection and assortative mating (a kind of reproductive
isolation) (Losos, 2017). There exist different types of reproductive isolation, either
geographic (potential mates do not meet; referring here to the case of local adapta-
tion), behavioral or sexual isolation, gametic incompatibilities, or hybrid inviability
or sterility (Futuyma, 1998; Kirkpatrick & Ravigné, 2002).
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2.2.2 Adaptation in an ensemble of populations within a community

Adaptive evolution is also found to affect community assembly (Ricklefs, 1987;
Vanoverbeke et al., 2016) as well as reorganization. Community adaptation refers
to the reorganization and modification of the traits of the species that belong to the
community, in response to a disturbance affecting the species trait (loss or invasion)
or the environment. For instance, bacterial communities adaptation examples are
numerous, in part because of the rapid generation time and possibilities of evolution.
They are shown to adapt to temperature (Pettersson & B̊åath, 2003), to nutrient
limitation (Hoyos-Santillan et al., 2018). Fungi communities are also found to adapt
to temperature (Bárcenas-Moreno et al., 2009) or to soil copper for instance (Chu
et al., 2010). At larger scales, there exist studies about adaptation in grasslands
communities (van Moorsel et al., 2018) or even within trophic levels (Loeuille, 2010).

What distinguish a community from a population or species is precisely the
presence of several species. Evolutionary change of one species is thus influenced
and constrained by the evolution of the other species, what is the notion of co-
evolution (Losos, 2017; Hendry, 2020). The more species the more constraints,
and some theoretical (Mazancourt et al., 2008) and experimental (terHorst et al.,
2018; Scheuerl et al., 2020) studies have argued that biodiversity may leave much
less room for adaptive evolution. However, other studies argued on the contrary
that high functional diversity may promote species diversification due to increased
competition (Jousset et al., 2016) in rich communities. The presence of strong co-
evolutionary dynamics is suggested to increase the ongoing evolutionary potential
because the adaptive peak for a population would be more mobile in a community
(Garant et al., 2007). Ecological interactions are known to interplay with evolution,
and are thus of great importance when considering adaptation to environmental
changes, as the nowadays gradual shift in temperature (Åkesson et al., 2021).

Ecological interactions are shown to be of great importance when considering
adaptive evolution. For instance, (Åkesson et al., 2021) highlighted that ecologi-
cal and evolutionary processes both interplay in adaptation to gradual shift in the
temperature.

2.2.3 How rapid is adaptation?

Evolution has long been considered as a slow process relatively to ecological time
scales, and therefore has not been considered in concert with ecological studies and
questions. However, evolution is now recognized to be relevant even on ecological
timescales (Carroll et al., 2007; Ellner et al., 2011; Hendry, 2020; Hart et al., 2019).
One famous example is the one of guppies. When moved from one predation en-
vironment (high or low) to the other, they experience evolutionary changes (color,
life history, behaviors) over only a few generations (Reznick et al., 1997). There are
many other examples as the contemporary adaptation of fungi to fungicide (Walker
et al., 2017), or of a kind of mosquitoes to variation in temperature (within 3 gen-
erations, Foucault et al., 2018). The rate of phenotype change per trait, in cases
reported as being rapid evolution cases, has been measured to be in average 1/4
(and up to 2/3) the rate of population change per generation (DeLong et al., 2016).

Some studies suggest that fluctuating selection and associated periods of con-
temporary evolution (i.e. rapid evolution) should probably be the norm rather than
exception throughout the history of life (Carroll et al., 2007). Rapid evolution is
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moreover found to especially occur after extreme meteorological events (Grant et al.,
2017) or in context of global variability such as the current anthropogenic changes
in selection and population structure (Carroll et al., 2007). Besides, anthropogenic
impacts induce a very particular type of variability at the world scale because it
is rather homogeneous across many places. Thus, rapid adaptations that have ap-
peared in some places can easily invade other places (Hufbauer et al., 2012).

Both ecological and evolutionary processes act in concert and for instance, con-
temporary evolution implies that the maintenance of species diversity may be gov-
erned by more than pure ecological processes (Hart et al., 2019). Diversity, in turns,
is found to impact rapid evolution outcomes in grassland communities (van Moorsel
et al., 2019). Species interaction as competitive population dynamics is also found
to be modified by the evolution in response to inter-specific competition (for instance
in aquatic plant species over 10–15 generations, Hart et al., 2019).

2.3 Tools for modeling adaptation

The classic Georges E.P. Box’s quote about modelling is not famous for nothing:
“All models are wrong, but some are useful”. Models are useful to understand the
mechanisms governing some processes, the interaction between parameters, the in-
teraction between forces driving the system changes. They are useful to support,
extend, revise or reject some of the narratives we mentally create to explain many
kinds of phenomena (Otto & Rosales, 2020) whether for instance physical, biologi-
cal, societal or financial. Models require that we make assumptions at some levels
in order to explore some aspects, forces and interactions acting at other levels. In
the following, we will briefly expose some theoretical approaches used to study evo-
lutionary dynamics.

2.3.1 Population genetics

In the early 20th century, Fisher, Wright and Haldane derived a model of evolution
whose approach consisted in assigning a fitness to each genotype, and then following
the temporal changes in allele frequencies (Rice, 2004; Otto & Day, 2011). This
approach works thanks to the relation that exists between genotypes and allele
frequencies, and that comes from the Mendel’s laws of inheritance. The simplest –
but strongly constrained – relations of this type are the well-known Hardy-Weinberg
equations. Introducing the influence of selection or mutation on allele frequencies
into their model, the precursors of population genetics fused Darwin’s vision of
gradual slight changes with Mendelenism.

Each genotype contributes to the next generation according to its fitness and
its frequency in the previous generation. Modeling changes in allele frequency (i.e.
evolution) involves the use of various mathematical approaches dealing with prob-
abilities (random sampling, Markov chains, random walk, diverse manipulation of
probabilities, diffusion theory, etc. ; see for instance Rice, 2004 for an general
overview).

In the case of a large population (to the limit of an infinitely large population),
we can neglect the stochastic effects due to genetic drift. This allows to study the de-
terministic variation of alleles frequencies under selection, mutation or migration, at
one or two loci, and to study deviations from the Hardy-Weinberg equilibrium. With
two loci, we can also study deviation from their independent frequency variation,
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what is called a linkage disequilibrium1 effects (Losos, 2017). From one generation to
the other, the change in allele frequencies is described using both the current allele
frequencies and fitness, along with mutation and migration rates when needed. This
allows to study the equilibrium allele frequencies as resulting from a balance of two
(or less often three) evolutionary forces. This is rather simple as we only consider
deterministic mechanisms.

When the population size is not large enough, we cannot anymore ignore some
stochastic changes in alleles frequencies as genetic drift. Stochastic changes are in
general more difficult to model because we must consider at each point the prob-
ability of all possible ways the system could change, and we cannot simply know
exactly the next (deterministic) step it will go. This is why genetic drift has first
been studied at neutral loci. Drift has been considered using different approaches
(Rice, 2004). For instance, Markov processes state that the probability to be in a
given state only depends on the immediately preceding step, and not on the others.
Another way involves Random walk which tells that the expected distance from the
starting point goes as the square root of time. A third way considers the covariance
between fitness and the number of alleles present in the first generation. This latter
approach is a first step to apprehend the joint effects of selection and drift: to form
the second generation, we randomly sample alleles in the first generation, with a
weight that depends on their fitness (Rice, 2004).

To combine selection and drift in the same model, i.e. both deterministic and
stochastic mechanisms, one of the most powerful method is diffusion theory2, intro-
duced to population genetic by Wright in 1945, and largely used since then (Kimura,
1983, in its neutral theory of evolution, Kimura, 1964; Gavrilets & Gibson, 2002).
This method initially comes from Adolf Fick in 1855 who derived the particle diffu-
sion equation that represents the macroscopic behavior of many micro-particles in
Brownian motion. The same equation has been widely used for different purposes in
different fields, but still with the same rationale: studying the collective movement
of particles in a medium caused by the random motion of each particle. The idea of
this theory is that some processes act as a force, acting on the average position of the
allele distribution (directional processes, e.g. selection, mutation, migration), while
some other processes are spreading factors (non-directional processes, e.g. genetic
drift). From those considerations, we can derive a Kolmogorov equation (Kimura,
1964). For this, we first express the probability ψ(p, t) of a given density population
with allele frequency p at time t as a function of the probability that a popula-
tion changes from allele frequency p to frequency p+ ε in a given infinitesimal time
interval. Then, expressing this probability of change as a function of the rate of
directional changes M(p) and the variance in allele frequency due to non directional
changes V (p), we end up with a Kolmogorov equation, for instance:

∂ψ(p, t)

∂t
=
∂ψ(p, t)M(p)

∂p
+

1

2

∂2ψ(p, t)V (p)

∂p2

Another form of this equation exists that explicitly takes into account the initial
density population p0, and that will be useful to derive alleles fixation probabilities
for instance (Kimura, 1962). The diffusion theory approach allows to consider var-

1Two alleles are in linkage disequilibrium if those two alleles at two loci are associated more
frequently (or less frequently) than predicted by their individual frequencies.

2Another one is branching processes (Dawson, 2017)
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ious questions as how much or how small must be each of the evolutionary forces
to gets strong or low effects, what is the maintenance of genetic variation through
the four evolutionary forces (Kimura & Crow, 1964), or also, what is the probability
of mutant fixation depending on its selection coefficient (Kimura, 1962; Gavrilets &
Gibson, 2002).

This approach is elegant and useful. But of course, like any model, it comes
with some assumptions. The diffusion approximation needs the population to be
large enough for two reasons. First, to be able to consider continuous changes in
the variable of interest (that is often discrete by essence, e.g. number of alleles,
individuals, etc.). Continuous changes will be more tractable than discrete ones
with differential equations. And second, to neglect high order terms (mutation and
migration thus must be of the order of 1/2N so that lower terms can be neglected
without removing the processes of interest ; Kimura, 1962). This is not realistic,
but this diffusion approach gives good approximations even under more biological
realistic conditions (Rice, 2004).

This population genetic approach, by faithfully describing inheritance, can how-
ever become very untractable with more than two loci, and many fitness-related
characters are known to be coded by several loci, possibly linked (Futuyma, 1998).
The next modelling approach, which has some common points with the previous
macroscopic description of microscopic things, will propose a way to overcome this
issue.

2.3.2 Quantitative genetics, or dealing with continuous variation of char-
acters

To deal with the previously mentioned limitations, other approaches have been pro-
posed. Quantitative genetics (Falconer, 1996; Rice, 2004), which knew a boom in
the 70’s and 80’s, takes phenotypes rather than genotypes as main focus. A phe-
notypic trait may be controlled by a large number of loci whose exact description
is neglected, as the whole effect is captured by the phenotype value. It is R.A.
Fisher in 1918 who first proposed this vision, reconciling Mendelian and biometrical
genetics. The latter indeed argued that single loci with large effect governed by the
Mendelian principles could not explain the inheritance of continuous traits (Visscher
& Goddard, 2019).

Moreover, in quantitative genetics, the phenotypic trait is represented as a con-
tinuous rather than a discrete variable. This description is particularly interesting
for species traits that do not present sharply demarcated qualitative types (like dif-
ferent colors), but rather a quantitative continuum as many traits if interest (like
sizes, life-span, etc.). Despite this difference, inheritance works the same for both
qualitative or quantitative traits, and quantitative genetics is thereby an extension
of Mendelian genetics, keeping its principle at its foundation. Indeed, the premises
of quantitative genetics are (i) that genes are subject to Mendelian laws of transmis-
sion, and may have any of the properties known from Mendelian genetics, and (ii)
that the expression of the genotype in the phenotype is modifiable by non-genetic
causes. The genetic variance indeed comprises various genetic and non-genetic ef-
fects as for instance mutations, recombination, epistasis1, mating success, or also,

1Epistasis is an effect of the interaction between two or more gene loci on the phenotype or
fitness, whereby their joint effect differs from the sum of the loci taken separately.
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variations due to the environment. The phenotype is thus divided into two compo-
nents: the genotype (set of genes possessed by the individual) and the environment
(all non genetic circumstances that influence the phenotypic value, or in other words,
the environmental deviation from the genotypic value). Moreover, genotype and en-
vironment can interact together, modifying the phenotype expected through the
addition of genotypic and environmental effects.

Phenotypes, genotypes and environment are represented as continuous variables
(called the “phenotypic value”, “genotypic value” and “environmental deviation”),
and the population as the statistics (mean and variance usually) of the distribution
of phenotypes.

Quantitative genetics has its roots in agriculture, where it has been first proposed
to respond to the need to maximize the efficiency of artificial selection for desirable
traits (Falconer, 1996; Rice, 2004). The breeder’s equation, whose name reveals its
origin, gives the variation of the averaged species trait xi with time:

dxi
dt

= βxi,xoS

with S the selection differential, which is the change in mean phenotype due to only
selection prior to reproduction. It is equivalent to what will be called the selection
gradient in the next section. The term βxi,xo refers to a linear relationship between
xi (the species trait) and xo (the parent mean trait), and is the additive genetic
variance of the trait (Rice, 2004). This term is also called the heritability and noted
h2, and represents the genetic part in the phenotypic variation. The mean changes
in phenotype per generation is often called R, the response to selection, so that the
breeder’s equation is also noted R = h2S.

This equation appears to be a version of the Price’s theorem, which gives the
mean and variance of the phenotypic change in a population as a function of (i)
the differences between the mean phenotypes of offspring and parents’ phenotype,
and (ii) the covariance between phenotypes and number of descendant (fitness of
parents).

In this model, genetic variance has an important role in controlling the rate of
evolution. If large enough, it affects the fitness of the offsprings compared to the
one of the parents, and doing so, it modifies the magnitude of phenotypic changes
from one generation to another.

This model presents some limitations due to the assumptions made. In par-
ticular, the contributions of the different loci on the phenotype must add up (no
epistasis between loci), and there must not have linkage disequilibrium between the
different loci encoding the same trait in the population (Falconer, 1996; Rice, 2004).
In practice, these conditions are often unverifiable, but the breeder’s equation has
been useful, especially for predicting the short-term response to agronomic selection
on crops or livestock.

2.3.3 Adaptive dynamics, or simplify inheritance to more easily con-
sider ecology

Another approach is to consider that phenotypes are fully defined by the average
genetic value, with essentially no variance around this mean. In other words, this
implies that little genetic variation for the phenotype exists in the population at
any given time, and also that environmental variance is averaged out. This is the
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approach taken by adaptive dynamics (Metz et al., 1995; Dieckmann & Law, 1996;
Geritz et al., 1997, 1998), which has its roots in evolutionary game theory. The latter
arose in the mid 20th century, and is designed to deal with situations in which what
an individual should do to increase its payoff (modifying its “strategy”) is function of
what others are doing. This is interesting for evolutionary biology, where fitnesses
are similar to the payoffs and phenotypes to the strategies. Adaptive dynamics
specify species traits (as a continuous variable) and a population dynamical model
that describes the rules of ecological interactions between the species. From this,
one can determine the fitness consequences for a trait to change its value by a very
slight amount. This would correspond to the occurrence of a rare mutation with
little phenotypic effect within the population of individuals sharing this strategy.

For this we define the invasion fitness F (or selective value, or invasion function),
which is the exponential growth rate of a small (mutant) population introduced
into a large resident population. A resident at ecological equilibrium has a null
invasion fitness. A rare mutant will be able to invade the community and replace
the resident species if its invasion fitness is positive. Depending on the slope of the
mutant invasion fitness around the resident trait, the species trait will evolve (though
successive mutational steps) towards higher or lower values. This is captured by the
selection gradient, defined as the first derivative of the invasion fitness F of a rare
mutant with respect to the mutant trait. The species trait xi will then vary the
following way as a function of the selection gradient:

dxi
dt

= b
∂F (xm)

∂xm

∣∣∣∣
xm=xi

where the proportionality coefficient b is proportional to the mutation rate and
the phenotypic variance associated to the mutation. We observe that the species
trait varies the same way as in quantitative genetics, proportionally to the selection
gradient. Species trait increases if the selection gradient is positive and decreases
in the opposite case. The evolutionary equilibrium is reached when the selection
gradient cancels, and has reach a singular strategy (Geritz et al., 1997). In that
case, where the singular strategy was reachable by successive mutational steps, this
strategy is said to be stable by convergence (Christiansen, 1991). Still, singular
strategies that are not reachable this way may exist, and are thus unstable by
convergence.

In the adaptive dynamics approach, the evolutionary course may not stopped
here, at a singular strategy stable by convergence, especially if the selection gradient
cancels on a fitness minimum. In that case, the selection is said to be disruptive,
the evolutionary equilibrium is unstable and called a branching point (Geritz et al.,
1997). Mutants can invade both side of the evolutionary point, and we may assist
to diversification and emergence of polymorphism. For such a diversification to
occur, the phenotypic variance around the species trait must be null (or to the limit
very low). In quantitative genetics, diversification is seen as a strong increase in
population variance, but not as a separation into two distinct species. The notions
of evolutionary singular strategies (ESS ; in case of a stable evolutionary point ;
see Maynard-Smith, 1976) or branching points will be mathematically defined in
more details throughout the manuscript when needed, and can be found in some
references (e.g. Metz et al., 1995; Geritz et al., 1997). All of this holds also for the
co-evolution of several species, with the same mathematical considerations and tools,
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so that we are able to derive the co-evolutionary state of an ensemble of population,
each defined by their own trait (a community).

The hypotheses of this approach appear rather drastic regarding the reproduc-
tion and transmission of characters. Contrarily to population genetics, and in a
lesser extent to quantitative genetics, the complexity of character transmission is
almost brushed aside. Individuals are considered to have a clonal reproduction and
the genetic architecture to have no effect on traits evolution, what questions the
realism of some results (branching in particular Dieckmann, 1997; see Barton &
Polechová, 2005, for limitations dues to the consideration of small mutation effect
in the local fitness gradient). This being said, on the one hand, this allows to ques-
tion the effects of selection alone, without the potential effect of genetic architecture
affecting allele transmission. On the other hand, the benefit of such hypothesis also
lies in the extreme simplification of the modeling of evolution, that allows to con-
sider more easily the complexity of population dynamics and bring more realism in
the ecological interactions between individuals. Also, it is an appropriate approach
to consider the long term course of evolution with the possibility of evolutionary
diversification (branching).

Those three approaches, even though not covering the entire spectrum of ex-
isting methods, represent the three major mathematical formalization of adaptive
evolution used in an ecological context. Each of these three approaches emphasizes
a particular aspect of the evolutionary process, while making assumptions about the
other processes. Population genetics describes precisely the inheritance of genes but
it most of the time ignores demography and this approach is limited to one or two
loci. Quantitative genetics makes it possible to consider that the traits under selec-
tion are determined by many genes, but uses approximations for this purpose that
are not always satisfied. Adaptive dynamics makes it possible to consider the long
term course of evolution as well as more complex ecological interactions between
individuals, but neglects the complications linked to the transmission of genes. In
this manuscript, we will investigate different evolutionary questions using either of
these approaches as needed, most importantly population genetics and adaptive
dynamics.

3 Questions addressed in the thesis

In this thesis, we are interested in the processes and consequences of adaptation un-
der environmental variability. The environment (and a fortiori its variation) impacts
both evolution and ecological processes, and this does impact also both ecological
and evolutionary outputs in a kind of “eco-evo” feedback loop. The scheme 1 roughly
sketches those interactions between ecology, evolution, and the environment, as well
as where the question addressed in this thesis will fit into this scheme. All questions
will be addressed in a theoretical way, using some of the modeling tools presented
in the previous section.

The first chapter is based on the observation that in nature, communities may
harbor various levels of co-adaptation. On the one hand, many kinds of environmen-
tal variability may disturb communities environment, composition and structure, so
that communities (or single populations) are likely to move far from their evolution-
ary equilibrium ((co-)adapted state). On the other hand, contemporary evolution
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Figure 1: Sketch of the interactions between ecology, evolution and the environment.
An arrow between A and B indicates “A impacts B”, so therefore, variability in A
impacts B. The numbers indicate the chapters which deal with the corresponding
interaction. This sketch does not distinguish between temporal or spatial variability.

may allow a disturbed or newly formed system to rapidly (re)-reach a “more co-
adapted” state. Rapid evolution is moreover found to especially occur in context
of global variability (see paragraph 2.2.3), what participates in a kind of fluctu-
ating pattern in between different levels of co-adaptation. The first chapter then
proposes to ask the question of the ecological impact caused by such differences in
community co-adaptation levels. We will regard the impact of community adapta-
tion on some biodiversity-ecosystem functioning (BEF) relationships (see fig. 1), i.e.
biodiversity–productivity, biodiversity–stability and biodiversity–invasion relation-
ships (e.g. Tilman et al., 1996; Elton, 1958; Levine, 2000, see Chapter 1 for a more
complete description). As evolution affects ecosystems functioning (through trait
modification), and as diversity potentially influences evolutionary course (Mazan-
court et al., 2008; Jousset et al., 2016; terHorst et al., 2018; van Moorsel et al.,
2019; Scheuerl et al., 2020), we expect some non-linear impacts on ecosystem func-
tioning with diversity levels. Several experimental and a few theoretical studies
highlighted potential evolution impacts on BEF relationships (van Moorsel et al.,
2018; Zuppinger-Dingley et al., 2014; Fiegna et al., 2014, 2015). However, the nature
and extent of such impact remains poorly understood. Here, we will not consider
the direct impact of fluctuations in between different levels of co-adaptation (that
would be a whole other question). Rather, in a simplified way, we will explore the
differences brought by two distinct levels of co-adaptation (two extreme cases): us-
ing adaptive dynamics methods, we will model both random communities, with no
trait evolution, and co-adapted communities, whose traits reached an evolutionary
equilibrium (the two extreme cases). The three type of BEF relationships will be
compared for both type of communities formed. We will consider various scenarios
for trait interaction mechanisms such as niche competition, life-history trade-off or
trophic interactions (Doebeli & Dieckmann, 2000; Tilman, 1994; Calcagno et al.,
2006; Loeuille & Loreau, 2005). We will demonstrate a clear impact of the co-
adaptation level on biodiversity-productivity and biodiversity-response to invasion
relationships, and in a lesser extent to biodiversity-stability relationships. Biodi-
versity–productivity relationships will generally be less positive among co-adapted
communities. Invasion resistance will show modest impacts, but the invasion toler-
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ance to the contrary will greatly benefit from community co-adaptation, remaining
high even at high diversity levels. We will discuss of the potential implication of such
a contingency of BEF relationships on the history of ecosystems and their degree of
community adaptation.

The first chapter focuses on the consequences of changes in adaptation, and not
on the causes of such changes. The second chapter will regard this latter aspect,
exploring how different spatial distribution in stress conditions will affect evolution
in a specific co-existence model (see fig. 1). Variability will be encountered at two
levels: first, in the spatial environmental variability in stress level, with more or less
variance. And second, in term of potential temporal change in this stress distribu-
tion, which would be likely to affect evolutionary processes. We will focus here on
the tolerance-fecundity trade-off (TFT, a model proposed a little bit more than 10
years ago as an alternative to the competition-colonization trade-off, Muller-Landau,
2010; D’Andrea et al., 2013; Haegeman et al., 2014), which has never been consid-
ered under an evolutionary perspective. We will study how a given environmental
stress distribution may impact the evolutionary outcomes of this co-existence model
for one species (see fig. 1), as a function of the TFT intensity. For this, we will first
introduce a generalization of the TFT model, that allows the use of adaptive dynam-
ics methods, before investigating evolutionary equilibria, ESS stress tolerance levels,
and the possibility of diversification (branching). While the stress distribution will
be found to have a minor impact on the evolutionary equilibrium point for stress
tolerance, which is mainly driven by the trade-off function slope, it will impact much
more its stability (ESS vs. branching point). The stress distribution variance itself
will show larger impacts: a loss of variance greatly reduces the probabilities for eco-
logical coexistence and for adaptive radiation. Bimorphic evolutionary equilibrium
will not be found in cases the monomorphic equilibrium was stable. Moreover, the
possibilities to achieve a bimorphic equilibrium through adaptive radiation will be
more restricted than to maintain it. All of this will be discussed in term of ecological
restoration.

In the last chapter, we will consider to which extent adaptation may be impacted
by temporal variability in demographic processes, and in particular in migration (see
fig. 1). As mentioned in this introduction and widely exposed in the third chapter, it
is recognized that migration is a process governed by highly variable phenomena, re-
sulting in fluctuating, intermittent or pulsed migration. However, it has rarely been
considered as so in theoretical studies (Peniston et al., 2019), and some theoretical
results suggest that it may have some impact on evolution (Nagylaki, 1979; Latter &
Sved, 1981; Whitlock, 1992; Gaggiotti & Smouse, 1996; Yamaguchi & Iwasa, 2013;
Peniston et al., 2019). To extend those results to unexplored cases, we will ques-
tion the impact that a temporally variable migration may have on allele fixation,
using population genetics approaches. We will consider a mainland-island system
(Felsenstein, 1976; Bürger, 2014) in which migration will be modeled in a pulsed
way, and will translate the impact of migration pulsedness on allele fixation rate
in terms of effective migration rate. We will show that migration variability can
either decrease or increase the effective migration rate depending on the selection
pressure imposed on alleles. More precisely, a beneficial allele fixation will be fa-
vored by migration variability while a strongly deleterious allele will benefit from a
continuous migration. This difference will be found to result in the homogenization,
with migration variability, of fixation rate across loci harboring different selection
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values, what may leave a migration variability genomic signature. Those results will
be discussed in terms of population management and conservation. We will extend
this study, in an appendix of this chapter, to the case of two populations connected
by migration, what will allow to question the impact of migration pulsedness on the
two populations genetic divergence.

These three chapters will be presented as three self-contained articles, two of
which (the first and third) have been published in or submitted to a scientific journal,
and one (the second) is still under preparation. The bibliography corresponding to
each article will be given at the end of each chapter for easier access. The thesis
conclusion will at the end go back to the main results of those three chapters in
relation to the problematic of the thesis, and some perspectives will be discussed.
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Kirkpatrick, M. & Ravigné, V. (2002) Speciation by natural and sexual selection:
models and experiments. the american naturalist, 159, S22–S35.

Latter, B.D.H. & Sved, J.A. (1981) Migration and Mutation in Stochastic Models
of Gene Frequency Change. II. Stochastic Migration with a Finite Number of
Islands. J. Math. Biology, 13, 95–104.

Lawson, C.R., Vindenes, Y., Bailey, L. & van de Pol, M. (2015) Environmental
variation and population responses to global change. Ecology Letters, 18, 724–
736.

Leal Filho, W., Azeiteiro, U.M., Balogun, A.L., Setti, A.F.F., Mucova, S.A., Ayal,
D., Totin, E., Lydia, A.M., Kalaba, F.K. & Oguge, N.O. (2021) The influence
of ecosystems services depletion to climate change adaptation efforts in Africa.
Science of The Total Environment, p. 146414.

Flora Aubree 23



Adaptation in an unsteady world

Leimar, O. (2002) Evolutionary change and Darwinian demons. Selection, 2, 65–72.

Lenormand, T. (2002) Gene Flow and the Limits to Natural Selection. Trends in
Ecology and Evolution, 17, 183–189.

Levine, J.M. (2000) Species diversity and biological invasions: relating local process
to community pattern. Science, 288, 852–854.

Levins, R. (1968) Evolution in changing environments. Princeton University Press.

Loeuille, N. (2010) Consequences of adaptive foraging in diverse communities. Func-
tional Ecology, pp. 18–27.

Loeuille, N. & Loreau, M. (2005) Evolutionary emergence of size-structured food
webs. Proceedings of the National Academy of Sciences USA, 102, 5761–5766.

Losos, J.B. (2017) The Princeton guide to evolution. Princeton University Press.

Lowry, D.B., Hall, M.C., Salt, D.E. & Willis, J.H. (2009) Genetic and physiological
basis of adaptive salt tolerance divergence between coastal and inland Mimulus
guttatus. New Phytologist, 183, 776–788.

Lynch, M., Ackerman, M.S., Gout, J.F., Long, H., Sung, W., Thomas, W.K. &
Foster, P.L. (2016) Genetic drift, selection and the evolution of the mutation rate.
Nature Reviews Genetics, 17, 704–714.

Mahmoud, S.H. & Gan, T.Y. (2018) Impact of anthropogenic climate change and
human activities on environment and ecosystem services in arid regions. Science
of the Total Environment, 633, 1329–1344.

Manea, A. & Leishman, M.R. (2018) Soil water content variability drives productiv-
ity responses of a model grassland system to extreme rainfall events under elevated
CO 2. Plant Ecology, 219, 1413–1421.
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Adaptation in an unsteady world

There is no love of the earth; there
is only usage of the earth.

Jiddu Krishnamurti

Abstract

Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem
functioning (BEF) relationships. However the nature of such impacts remains poorly
understood. Here we use a modelling approach to compare random communi-
ties, with no trait evolutionary fine-tuning, and co-adapted communities, where
traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-
stability, and biodiversity-invasion relationships. Community adaptation impacted
most BEF relationships, sometimes inverting the slope of the relationship compared
to random communities. Biodiversity-productivity relationships were generally less
positive among co-adapted communities, with reduced contribution of sampling ef-
fects. The effect of community-adaptation, though modest regarding invasion re-
sistance, was striking regarding invasion tolerance: co-adapted communities could
remain very tolerant to invasions even at high diversity. BEF relationships are thus
contingent on the history of ecosystems and their degree of community adaptation.
Short-term experiments and observations following recent changes may not be safely
extrapolated into the future, once eco-evolutionary feedbacks have taken place.

Keywords: Adaptive dynamics; Eco-evolutionary dynamics; Species interac-
tions; Species traits; Productivity; Stability; Invasion
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Chapter 1. How community adaptation impacts biodiversity-functioning
relationships

1.1 Introduction

Diversity, most classically defined as the number of constituent species in a com-
munity, plays an essential role in many aspects of ecosystem functioning (Hooper
et al., 2005, 2012; Isbell et al., 2011). Understanding how species composition af-
fects ecosystem properties is a fundamental question in basic and applied ecology,
and renewed practical importance given the accelerating biodiversity crisis (Pimm
et al., 2014).

Observational data, controlled experiments and theoretical developments have
converged in identifying ecosystem properties that exhibit systematic responses to
diversity. Three types of so-called biodiversity-ecosystem functioning (BEF) rela-
tionships are most commonly described, even though all three are seldom considered
in the same study. (i) First, the biodiversity-productivity relationship, historically
investigated in grassland communities (Tilman et al., 1996; Loreau & Hector, 2001),
has been explored in several other taxa and ecosystems (Abramsky & Rosenzweig,
1984; Naeem et al., 1994; Hooper et al., 2005; Gamfeldt et al., 2015). It is often
assumed that more diverse ecosystems are more productive, in agreement with the-
oretical predictions (Loreau, 1998; Tilman, 1999). (ii) Second, biodiversity-stability
relationships have also received a lot of attention (Elton, 1958; Tilman, 1999; Mc-
Cann, 2000), both theoretically (May, 1973; Loreau & Mazancourt, 2013) and ex-
perimentally (Gross et al., 2014; Renard & Tilman, 2019). The intuitive view that
diverse ecosystems are more stable in the face of environmental fluctuations ap-
peared contradicted by early theoretical models suggesting the opposite (McCann,
2000). In fact, predictions may differ importantly depending on the type of sta-
bility metric, with negative relationships expected at the level of individual species
(dynamical stability: May, 1973; Tilman et al., 1996; Ives & Carpenter, 2007), and
positive relationships expected for aggregate metrics (ecosystem stability: May, 1973;
Tilman et al., 1996; Ives et al., 1999; Barabás & D’Andrea, 2016; Pennekamp et al.,
2018). (iii) Last, biodiversity-invasion relationships have also attracted much atten-
tion, since native diversity has long been regarded as a key attribute determining
the susceptibility of communities to invasions. It is generally considered that more
diverse ecosystems should be less susceptible to invasions, and should suffer from
fewer adverse impacts (e.g. secondary extinctions) following an invasion (Levine,
2000; Hector et al., 2001; Davis, 2009).

Ecosystem functioning is driven, beyond the sheer number of species, by commu-
nity composition in terms of key functional trait (Gagic et al., 2015). Communities
with the same diversity, but different trait compositions, might possess different
functioning characteristics. Communities probably harbor very different traits de-
pending on whether they are recent assemblages drawn from the regional pool, or
if species have adapted to the local environment and to the other species, through
various mechanisms including plasticity, niche-construction and evolution (Kylafis
& Loreau, 2011; Hendry, 2016; Meilhac et al., 2020). In particular, evolutionary
changes may be important on ecological timescales (Davis et al., 2005; Hendry,
2016), and there is mounting evidence that species can adapt rapidly to environ-
mental changes and to the presence of competitors or predators (Thompson, 1998;
Faillace & Morin, 2016; Kleynhans et al., 2016; Hart et al., 2019; Meilhac et al.,
2020). By altering species trait composition, such community adaptation may im-
pact the existence, magnitude and shape of BEF relationships.
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Even though BEF studies are traditionally conducted from an ecological perspec-
tive, long term grassland experiments (Reich et al., 2012; Meyer et al., 2016) and
microbe experiments (Bell et al., 2005) found that biodiversity-yield relationships
change through time. The most recent studies have explicitly highlighted a role
of evolution in modifying biodiversity-yield relationships: in grasslands (Zuppinger-
Dingley et al., 2014; van Moorsel et al., 2018) and with microbes, using experimental
evolution (Fiegna et al., 2014, 2015). However, results have proven quite variable,
prompting a plea for more theoretical investigations (Fiegna et al., 2015).

Here we propose a theoretical evaluation of the consequences community adapta-
tion may have for BEF relationships. We use a general modeling approach to address
the three types of BEF relationships highlighted above (biodiversity-productivity,
biodiversity-stability, and biodiversity-invasion). We compare two contrasted types
of communities: (i) random communities, in which only ecological processes con-
trol species trait composition, with no evolutionary dynamics, and (ii) co-adapted
communities, in which species traits composition have further been shaped by mi-
croevolution (species adaptation to the environment and to other species). Specif-
ically, species have adjusted their traits and are at (co)evolutionary equilibrium
(Christiansen, 1991). Real-life communities would harbour various degrees of co-
adaptation in between these two limiting cases. Recently-founded or perturbed
ecosystems, such as artificially assembled communities, are probably closer to the
random case. In contrast, ecosystems that have long remained in relatively con-
stant conditions, such as primary old-growth forests, may be closer to co-adapted
communities.

As species coexistence and eco-evolutionary dynamics depend on the type of
ecological interactions (Mouquet et al., 2002; Chave et al., 2002; Calcagno et al.,
2017), we model communities governed by four contrasted scenarios of ecological
interactions, representative of classical coexistence mechanisms (Doebeli & Dieck-
mann, 2000; Calcagno et al., 2017): two scenarios based on resource competition
(one symmetric, one asymmetric), one life-history trade-off scenario, and a trophic-
chain scenario. In each case, several functioning metrics are computed to evaluate
BEF relationships. This general approach allows to evaluate the extent to which the
consequences of community adaptation are general or depend on particular types of
metrics and ecological interactions.

We report clear influences of community adaptation on each of the three BEF
relationships investigated, highlighting how co-adaptation impacts species trait dis-
tribution and, in turn, functioning properties. Although conclusions may depend
importantly on the type of ecological interaction scenario considered, general pre-
dictions regarding the consequences of community adaptation are formulated, and
discussed in light of available experimental evidence.

1.2 Material and methods

1.2.1 Ecological scenarios and traits

In natural ecosystems species are engaged in various interactions, within the same
trophic level (horizontal interactions) and among different trophic levels (vertical
interactions), at different spatio-temporal scales. The dominant form of species in-
teraction may differ across communities (Chave et al., 2002), and some studies have
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Figure 1.1: (a) Ecological parameters for the four scenarios considered: intrinsic
growth rate r(x) (green), mono-specific abundance k(x) (orange) and competitive
impact a(x, xs) (purple) of species xs over species x as a function of species trait x
for the four scenarios. By definition the intra-specific competition is a(xs, xs) = 1.
Red dots indicate the optimum ecological trait, i.e. trait that maximizes mono-
specific abundances. (b) Community formation. Species are sampled from a species
pool within a given distribution. An ecological filter is then applied so that only
the ecologically existing communities are kept (with no null abundance), and form
the random communities. Then, species evolution towards their evolutionary equi-
librium filters out some species, leading to co-adapted communities. (c) For each
community (random or co-adapted), we measure two species trait metrics (mini-
mum distance to optimum trait, and average interval between trait values) and the
three types of functioning properties: (i) productivity measured by species abun-
dances time species growth rates, (ii) stability, with asymptotic resilience (return
rate to equilibrium) and ecosystem stability (reflecting changes in abundances over
time), and (iii) response to invasion, with invasion resistance (probability of non-
establishment of a foreign species) and tolerance to invasion (probability of non
resident extinction following an invasion).

argued that generalist predation, exploitative competition and simple three-species
food chains compose the common backbone of interaction networks (Mora et al.,
2018). To reflect this diversity, we here considered a set of four contrasted ecological
scenarios (Fig. 1.1a), based on classical species coexistence models, and spanning
the range from completely horizontal symmetric interactions to completely vertical
asymmetric interactions. The first two scenarios describe competition for resources.
The Niche scenario is a classical model of symmetric competition along an axis of
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niche differentiation (Doebeli & Dieckmann, 2000; Calcagno et al., 2017). The Body-
size scenario introduces interference and asymmetric competition, based on e.g. size
differences (Rummel & Roughgarden, 1985; Doebeli & Dieckmann, 2000). The third
scenario (LH-tradeoff ) models a life-history trade-off, describing the strongly asym-
metric competition between species good at colonizing empty habitat and species
locally dominant, along a competitive hierarchy (Tilman, 1994; Calcagno et al.,
2006, 2017). Last, the fourth (Trophic) scenario describes a size-structured trophic
chain, based on the model introduced by Loeuille & Loreau (2005).

In each interaction scenario, species are characterized by one key trait, denoted
x (Fig. 1.1a). In the Niche scenario, the trait represents niche position along the
continuum of resources, and interspecific competition thus decreases with trait dif-
ference (niche differentiation). In the Body-size scenario, the trait is body size:
species with similar size compete more intensely, and bigger species have a com-
petitive advantage over smaller ones. In the LH-tradeoff scenario, species trait is
the colonization rate: species with greater trait value are more apt at colonizing
empty patches, but also more susceptible to be competitively displaced from occu-
pied patches (Calcagno et al., 2006). Last, in the Trophic scenario, species trait is
body mass: body mass influences growth and metabolic rates, and species preferen-
tially consume species that are smaller, with some optimal mass difference (Loeuille
& Loreau, 2005).

After appropriate reformulations (Supporting information (S.I.) Section A.1), all
models can be set in the common Lotka-Volterra form:

dni
dt

= nir(xi)

(
1−

∑
j

nja(xi, xj)

k(xi)

)
(1.1)

with ni the abundance of species i, that denotes, depending on scenario, either a
number of individuals (Niche), a biomass (Body-size and Trophic) or a fraction of
occupied sites (LH-tradeoff ).

The three functions included in equation (1.1) allow to describe species demog-
raphy and inter-specific interactions: r(xi) is the intrinsic growth rate of species
i that governs the ecological timescale; a(xi, xj) is the impact that a variation in
species j abundance has on the per capita growth rate of species i, normalized by
the intra-specific interaction (see S.I., Section A.1.1); and k(xi), usually called the
carrying capacity, quantifies the resistance to density dependence of species i. In
all scenarios but the Trophic one, it is also the equilibrium abundance reached by
the species if growing alone in the community, or in other words the mono-culture
abundance (Loreau & Hector, 2001). The shape of the functions for each scenario
differ in important ways, as represented in Fig. 1.1a. See S.I. Section A.1 for a
complete description of each scenario.

Evolution would often favor certain trait values that are better adapted to
the current habitat; this is described by the mono-specific abundance function
k(x), which defines the optimum trait value, as represented by the red dots in
Fig. 1.1a. The relationship between trait value and mono-specific abundance may
have an intermediate optimum (Niche, Body-size and Trophic) or be open-ended
(LH-tradeoff ), see red dots positions in Fig.1.1a. Sometimes, inter-individual inter-
actions and competition may counteract evolution towards optimal trait values, in
particular in the LH-tradeoff scenario, in which evolution effectively results in traits
with comparatively low mono-specific abundances (Calcagno et al., 2017).
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Species traits, through functions r, k and a, determine species interactions and
overall ecosystem and evolutionary dynamics. Note that we consider here species
that coexist stably and have distinct ecological traits. For each scenario, one or
two parameters controlling the shape of the functions were systematically varied
to ensure that conclusions were robust to parameter changes (all details and the
parameter ranges explored are provided in S.I., Section A.2).

In the Niche scenario, we varied the width of the competition function (Fig.
1.1a) keeping the width of the mono-specific abundance function constant (Doebeli
& Dieckmann, 2000). In the Body-size scenario, we varied both the width of the
competition function and its skew (level of competitive asymmetry; see Rummel
& Roughgarden, 1985; Doebeli & Dieckmann, 2000). In the LH-tradeoff scenario,
we varied the intensity of the tradeoff, and the level of competitive preemption
(Calcagno et al., 2006). Finally, in the Trophic scenario, we varied the level of
interference competition and the width of the consumption function (Loeuille &
Loreau, 2005). In the figures, for clarity, only three contrasted and representative
parameter sets are presented per scenario.

1.2.2 Random and co-adapted communities

The process of community formation is sketched Fig. 1.1b. For diversity levels (N)
between 1 and 10, sets of species were drawn randomly from a regional pool. The
ecological equilibrium with N species was computed from equation (1.1), and the
community was retained if all species persisted at equilibrium (see S.I. Section A.3
for details). This was repeated until obtaining, for each diversity level, 1,000 such
random communities. The distribution of species trait values in the regional pool
was chosen to minimize information content (maximum entropy; Jaynes, 1957), while
being representative of typical trait values expected for the corresponding ecological
scenario and parameter set. This is a generic approach but, of course, there are many
ways in which diversity gradients can be generated in nature and experiments. We
tried alternative methods to assemble random communities, and conclusions were
little affected (see S.I. Section A.3). For some scenarios and parameter sets, no
feasible community could be found beyond some diversity level, in which case we
stopped at the highest feasible level.

Whereas random communities are only constrained by ecological processes (re-
gional pool and local competitive exclusion), co-adapted communities met the addi-
tional constraint that species traits are at (co)evolutionary equilibrium (”evolution-
ary filter”; Fig. 1b). We computed, for each species in a community, the selection
gradient (Christiansen, 1991), defined as

∇(xi) =
ds(xm)

dxm

∣∣∣∣
xm=xi

(1.2)

where s(xm) is the fitness (growth-rate) of a rare phenotype xm. Note that fitness is
density- and frequency-dependent and varies with community composition (species
trait and abundances).

If ∇(xi) > 0, selection acts to increase the trait value, whereas if ∇(xi) < 0
smaller values are selected for. When all selection gradients are simultaneously
cancelled in a community, species have attained an evolutionary attractor and are at
equilibrium with respect to first-order selection (Christiansen, 1991). This approach
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assumes heritable trait variation and sufficiently small phenotypic variance within
each species. We thus generated, for each scenario, parameter set and diversity level,
all possible co-adapted communities (most often, only one), in the sense of eq. (1.1)
and (1.2). See S.I. Section A.3 for detailed methods.

1.2.3 Biodiversity-functioning relationships

For each generated community, we computed several properties of interest (Fig. 1.1c;
full list in S.I. Section A.4) to investigate the three BEF relationships. We present
results based on the properties describe herefter, as conclusions were similar based
on the others. First, community productivity (Tilman, 1999; Loreau & Hector,
2001) was measured as the species average rate of production (positive contribu-
tion to growth rate) in the community. Second, ecological stability was assessed
in two ways. We computed the classical asymptotic resilience (May, 1973; Arnoldi
et al., 2016), i.e. asymptotic rate of return to equilibrium of the community after
a perturbation, and the community stability (May, 1973; Ives et al., 1999), i.e. the
inverse of the coefficient of variation of total community abundance under sustained
environmental noise. Finally, to study the response to invasions, we also used two
properties. The first is the resistance to invasion (Elton, 1958; Hector et al., 2001),
i.e. the probability that a random alien species, introduced at low abundance, fails
to establish in the community. The second was the tolerance to invasion (Elton,
1958), i.e. the proportion of species that, following a successful invasion, were not
driven to extinction. Details on the mathematical computation of each metric are
presented in S.I. Section A.4.

For each metric, diversity level, scenario and parameter set, we computed the
average value over the 1,000 random communities, and over the few (or, most often,
the unique) co-adapted communities. To ensure that average differences represented
large effect sizes, we further computed the percentile, in the distribution of values
over random communities, corresponding to the value of co-adapted communities.
Our results showed that co-adapted communities often lie in the tail of the dis-
tribution of random communities, for all metrics (see S.I. Section A.5). Average
differences between co-adapted and random communities were thus large relative
to the variability of random communities. For this reason we only present average
values in the Figures.

The above metrics were correlated to species richness to produce BEF rela-
tionships and compare random and co-adapted communities. Since the impacts of
co-adaptation are mediated by changes in trait values, we compared the structure
of co-adapted and random communities. We then computed the average absolute
difference in trait space between the two, as a measure of the strength of the evo-
lutionary filter. We summarized trait compositions using two additional quantities
(Fig. 1.1c). The first was the minimum distance to the optimal trait value (red
dots in Fig. 1.1a), that reflects how well the better performing species is adapted to
the habitat. The second was the average trait interval between species (trait range
divided by number of species minus one), that indicates how “packed” species are
in trait space. More details are provided in S.I. Section A.4.
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1.3 Results

1.3.1 Biodiversity-Productivity
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Figure 1.2: Productivity as a function of diversity under the the four scenarios and
the two community adaptation levels. Three sets of parameters are used for each
scenario, represented by the three different line types. Parameter values are given
in S.I. Section A.2 together with other explored parameter sets (not shown for the
sake of clarity). Each point represents an average over 1000 random communities
or the only or few co-adapted communities.

Random and co-adapted communities differed in productivity at low diversity
levels, but at higher diversity levels, differences were more modest (Fig. 1.2). More-
over, in all scenarios except the LH-tradeoff, the effect of community adaptation
was to increase productivity. Those two observations explain the quantitative dif-
ferences in biodiversity-productivity relationships between random and co-adapted
communities.

Qualitatively, co-adaptation affected the biodiversity-productivity relationship in
all four scenarios (Fig. 1.2). The impact could be as spectacular as a slope inversion.
For instance, the LH-tradeoff scenario, unlike the other scenarios, generated mildly
negative biodiversity-productivity relationships in random communities (see also
Loreau, 2010), while in co-adapted communities, they switched to markedly positive
for all parameter sets (Fig. 1.2c). Conversely, the Trophic scenario generated a
classical positive biodiversity-productivity relationship in random communities, but
the relationships switched to negative in co-adapted communities (with oscillations
between odd and even diversity levels, caused by trophic cascades; Fig. 1.2d). The
possibility of such inversions of biodiversity-production relationships has, to the best
of our knowledge, never been reported so far.

In the remaining scenarios, those based on resource competition, biodiversity-
productivity relationships were always positive – at least slightly – irrespective of co-
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adaptation (Fig. 1.2a,b). However, the shape of the relationships differed markedly
between random and co-adapted communities: the increase in productivity with
diversity was close to linear or gradually slowed down with diversity, whereas in
co-adapted communities, the relationships saturated very quickly, reaching almost
maximum productivity at low diversity levels and then plateauing, especially in the
Body-size scenario (Fig. 1.2b).

1.3.2 Species trait composition
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Figure 1.3: Comparative structures of random and co-adapted communities, in the
four ecological scenarios. For each diversity level, species were ranked by trait value,
and trait values at each species rank were averaged over all communities. The aver-
age trait values at each species rank in co-adapted communities was plotted against
the corresponding values in random communities, and connected with colored lines
for each diversity level (see legend). As a consequence, lines close to the first diag-
onal indicate very similar trait compositions in the two community types. Slopes
smaller than one indicate greater trait dispersion in random than in co-adapted com-
munities, while slopes greater than one indicate the opposite. Only one parameter
set was showed in each scenario (the one corresponding to the wide dotted lines in
other figures), for clarity, as patterns are similar in other parameter sets. Optimal
trait values (see Fig. 1.1) are also shown on both axes (red dots). In inserts, we
represented the strength of the evolutionary filter as a function of diversity, for all
three parameter sets (each with a different line type). This was computed as the
absolute trait difference between random and co-adapted communities, per species
rank, averaged over all ranks and all communities.
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Figure 1.4: Minimum distance to optimum trait (a-d) and average interval between
trait values (e-h) as a function of diversity under the four scenarios and the two types
of communities. Three sets of parameters are used for each scenario, represented by
the three different line types. Parameter values are given in S.I. Section A.2 together
with other explored parameter sets (not shown for the sake of clarity). Each point
represents an average over 1000 random communities or the only or few co-adapted
communities.

As shown in Fig. 1.3, random and co-adapted communities exhibited systematic
differences in their trait composition and structure. The specifics differed across
ecological scenarios, but general trends can be identified. First, random communities
are generally less packed than co-adapted ones, as can be seen by the slopes lower
than one in Fig. 1.3), indicative of broader trait ranges in random communities.
Second, the difference was maximal at low diversity and tended to vanish as diversity
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increases. Increasing diversity made random and co-adapted communities converge
to similar trait distributions on average (aligning on line x = y in Fig. 1.3), with one
exception in the Trophic scenario. As a result, the impact of community adaptation
on community structure, i.e. the strength of the evolutionary filter, globally declined
with the number of species (insert panels in Fig. 1.3).

More specifically, in random communities, the chance to find a highly performing
species inevitably increased with the number of species, so that the minimum trait
distance to the optimum decreased with diversity in all scenarios (Fig. 1.4a-d).
Concomitantly, the average distance between species decreased sharply with species
richness (Fig. 1.4e-h), reflecting the greater species packing. In contrast, a close-to-
optimal species was always present in co-adapted communities (constant minimum
distance to optimum trait Fig. 1.4a,b,d), except for the LH-tradeoff scenario in
which evolution did not drive species to the optimum trait (Fig. 1.4c). Community
adaptation also made the level of species packing virtually constant irrespective of
species number (Fig. 1.4e-h; see also Fig. 1.3).

1.3.3 Biodiversity-Stability

Asymptotic resilience, in all four ecological scenarios, declined with diversity (Fig. 1.5a-
d). Moreover, the biodiversity-stability relationships were similarly negative, regard-
less of community adaptation, even though co-adapted communities were generally
more stable than random ones.

Ecosystem stability, was also higher overall in co-adapted than in random com-
munities (Fig. 1.5e-h). However, unlike asymptotic resilience, it had different re-
sponses to diversity depending on ecological scenario. It increased with species
richness in the two scenarios based on resource competition (Niche and Body-size),
but decreased with species richness in the LH-tradeoff and Trophic scenarios. In all
cases, unlike asymptotic resilience, the variation of ecosystem stability with species
richness was strongly affected by co-adaptation, and the patterns were quite consis-
tent with those observed for total productivity (Fig. 1.2), except for the LH-tradeoff.

1.3.4 Biodiversity-Invasion

Resistance to invasion (Fig. 1.6a-d) presented consistent trends in the four ecological
scenarios. First, it increased with species richness, reflecting classical expectations.
Second, co-adapted communities were generally more resistant to invasion than ran-
dom ones, at any species richness level, reflecting the concentration of species around
trait optima, which leaves only more peripheral niches available for potential inva-
sive species. This difference was also quite in line with common expectations, but
it could vanish, or even reverse for some parameter values, in the LH-tradeoff sce-
nario (Fig. 1.6c). Overall, the biodiversity-invasion relationships were thus similar
regardless of co-adaptation.

The effects of co-adaptation were much more dramatic and consistent when look-
ing at tolerance to invasion (Fig. 1.6e-g), with a pronounced interaction between the
effects of diversity and community adaptation. In random communities tolerance
to invasion steeply declined with species richness, meaning that successful inva-
sions were more and more harmful (in terms of diversity loss) as diversity increased
(Fig. 1.6e-g). In contrast, co-adapted communities were in all cases more tolerant
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Figure 1.5: Asymptotic resilience (a-d) and ecosystem stability (e-h) as a func-
tion of diversity under the four scenarios and the two community adaptation levels.
Asymptotic resilience is represented in log-scale, which does not modify the inter-
pretation on co-adaptation effect and allows to better visualize the consequences of
co-adaptation. Three sets of parameters are used for each scenario, represented by
the three different line types. Parameter values are given in S.I. Section A.2 together
with other explored parameter sets (not shown for the sake of clarity). Each point
represents an average over 1000 random communities or the only or few co-adapted
communities.

to invasion than random communities: they retained their almost perfect tolerance
to invasion as diversity increases, the biodiversity-invasion relationship being essen-
tially flat.

Flora Aubree 41



Adaptation in an unsteady world

2 4 6 8 10

0
.4  

0
.6

0
.8

1
.0

1 2 3 4

Diversity

c)

d)

Diversity

g)

h)

f)

2 4 6 8 10

e)

2 4 6 8 10

1 2 3 4

2 4 6 8 10

2 4 6 8 10

0
.9

6
0

.9
7

0
.9

8
0

.9
9

1
.0

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

0
.9

8
0

.9
9

1
.0

b)

a)

2 4 6 8 10

0
.8

5
0

.9
0

0
.9

5
1

.0
0

co-adapted communities

random communities

 N
ic

h
e

B
o
d
y
-s

iz
e

L
H

-tra
d
e
o
ff

T
ro

p
h
ic

Invasion resistance

 

Invasion tolerance

 

 

0
.9

8
0

.9
9

1
.0

0
0

.2
0

.4
0

.6
0

.8
1

.0
0
.8

0
.4

0
.6

1
.0

Figure 1.6: Probability that a foreign species does not get installed into a community,
i.e. resistance to invasion (a-e), and proportion of resident species that do not
undergo a secondary extinction, i.e. tolerance to invasion (f-j), as a function of
diversity, under the four scenarios and the two community adaptation levels. Three
sets of parameters are used for each scenario, represented by the three different line
types. Parameter values are given in S.I. Section A.2 together with other explored
parameter sets (not shown for the sake of clarity). Each point represents an average
over 1000 random communities or the only or few co-adapted communities.

1.4 Discussion

Natural and anthropized ecosystems present tremendous variation in their diversity
and composition (species richness and trait values), and also in the degree to which
component species are adapted to the local environmental conditions and to one
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another, here referred to as community adaptation. While it is clear that diversity
is an important determinant of ecosystem functioning, we still know little about
how the level of community adaptation might impact BEF relationships (Fiegna
et al., 2015; Hendry, 2016). In this study we addressed this question with a general
modelling approach, systematically comparing random and co-adapted communi-
ties with respect to three BEF relationships (biodiversity-productivity, biodiversity-
stability and biodiversity-invasion) and across four classical scenarios of ecological
interactions.

We found that community adaptation had an impact on all BEF relationships,
but that the nature and extent of the impact depend on both the metrics and the
scenarios considered for species interactions. Overall, the biodiversity-productivity
and biodiversity-invasion relationships were strongly impacted by community adap-
tation, while the biodiversity-stability relationships were much less so. Indeed, co-
adapted communities, at any species richness, tended to be more dynamically stable
in terms of asymptotic resilience than random ones, but there was little interaction
with diversity: BEF relationships looked qualitatively very similar in random and
co-adapted communities. This suggests that the connection between diversity and
dynamical stability is a rather universal property in such systems of interacting
species, largely insensitive to the details of species interactions and to community
adaptation. Co-adapted communities were more dynamically stable, which likely
reflects the fact that co-adaptation brings traits closer to optimal values (Fig. 1.4a-
d), entailing faster returns to equilibrium (see also Loeuille, 2010). Consistent with
this interpretation, the only case where co-adapted communities were on average
less dynamically stable than random ones occurred at low diversity in the LH-
tradeoff (Fig. 1.5c), a case where co-adaptation pushes traits away from the optimum
(Fig. 1.1a and 1.3). When looking at ecosystem stability (May, 1973; Ives et al.,
1999; Arnoldi et al., 2016), BEF relationships differed more importantly between
co-adapted and random communities, but these differences closely mirrored those
observed for biodiversity-productivity relationships (Fig. 1.5e-h). This suggests that
variation in ecosystem stability were linked to variation in total productivity and
the total biomass of species, but, beyond that, were little impacted by community
adaptation in a direct manner (see Ives et al., 1999), especially for the Niche, Body-
size and Trophic scenarios. Consistent with this interpretation, overall Spearman
correlation coefficients between productivity and ecosystem stability were, across all
communities, 0.97, 0.97, 0.65 and 0.79 for the Niche, Body-size, LH-tradeoff, Trophic
scenarios, respectively.

Biodiversity-productivity relationships were both quite variable across ecologi-
cal scenarios and strongly impacted by community adaptation. The impact could
be as pronounced as a slope inversion between random and co-adapted communi-
ties, with switches from positive to negative (Trophic scenario; Fig. 1.2d) or from
negative to positive (LH-tradeoff scenario; Fig. 1.2c). In all cases, changes in the
shape of biodiversity-productivity relationships were mostly driven by low diver-
sity levels, at which co-adapted communities differed importantly for random ones,
while at higher diversity levels community adaptation had modest impact on aver-
age (Fig. 1.2). Theoretical (Mazancourt et al., 2008) and experimental (terHorst
et al., 2018; Scheuerl et al., 2020) studies have found that biodiversity inhibits the
evolution of species traits (but see Jousset et al. (2016), and our Trophic scenario;
Fig. 1.3d). This can be attributed to the strong constraints on species trait distri-
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butions in rich communities, due to species interactions and persistence conditions
(ecological filter), which leaves adaptive evolution much less room to alter species
traits. As a result, co-adapted and random communities are more and more similar
as the number of species increases, i.e. the strength of the evolutionary filter de-
creases (see Fig. 1.3: its presence makes less and less of a difference for ecosystem
functioning.

In most ecological scenarios (Niche, Body-size and Trophic), co-adapted com-
munities at low diversity levels were more productive than random ones on av-
erage (Fig. 1.2a,b,d). Therefore, community adaptation weakened the positive
biodiversity-productivity relationships observed in random communities, making
those shallower, or even reversing them to negative (Trophic). In the LH-tradeoff
scenario, low diversity co-adapted communities were on the contrary less produc-
tive than random ones, so that the effect of community adaptation was opposite:
co-adapted communities exhibited a positive biodiversity-functioning relationships,
whereas a slightly negative relationship is predicted in random communities (see
also Loreau, 2010).

The qualitative effect of community adaptation on biodiversity-productivity re-
lationships could thus be determined, to a large extent, from the overall direction
of selection in isolated species (monocultures), either towards higher productivity
(Niche, Body-size, Trophic scenarios), weakening positive relationships or switching
them to negative, or towards lower productivity (LH-tradeoff scenario), switching
negative relationships to positive.

Community adaptation also affected the mechanisms underlying biodiversity-
productivity relationships. In the two scenarios describing competition for resources
(Niche and Body-size) and in the Trophic scenario, low diversity co-adapted com-
munities were more productive because adaptive evolution favoured traits that were
close to the optimum (Fig. 1.4a,b,d). At higher diversity levels, more and more
species were kept farther away from the optimal trait value, and thus intrinsically
less productive. Such a change in the intrinsic productivity of species as diver-
sity increases is often called a “selection effect” (Loreau & Hector, 2001), but here,
following Zuppinger-Dingley et al. (2014), we will call it a “sampling effect” to
avoid confusion. In random communities, this sampling effect was positive, as usu-
ally expected, and contributed importantly to the positive biodiversity-productivity
relationship: richer communities were more likely, by chance, to harbor species
that were intrinsically more productive in the habitat (Fig. 1.4a,b,d, blue curves).
In co-adapted communities, the sampling effect was much reduced or entirely ab-
sent, owing to the effect of co-adaptation explained above. In contrast, the average
trait distance between adjacent species (the level of niche packing) declined sharply
with diversity in random communities, but much less so in co-adapted communities
(Fig. 1.4e-h). Therefore, the level of species trait complementarity was less sen-
sitive to diversity with community adaptation. Altogether, this suggests positive
biodiversity-productivity relationships should be more driven by complementarity
effects, and less by sampling effects, in co-adapted communities compared to random
communities.

There is good experimental evidence that biodiversity-productivity relationships
do change over time. In grassland experiments, the positive biodiversity-productivity
relationships were reported to become steeper (Reich et al., 2012), or sometimes flat-
ter (Meyer et al., 2016, for most of its biomass-related metrics), over several years.
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A study of decomposing microbial communities observed a decline in productivity
and a flattening of the biodiversity-productivity relationship over several days (Bell
et al., 2005). Several of these studies (Bell et al., 2005; Reich et al., 2012; Meyer
et al., 2016) deal with short timescales and are not directly relevant to address
community adaptation, since observed changes are generally attributed to transient
ecological mechanisms, such as below-ground feedbacks or resource depletion. Di-
rect comparison with our results, in which transient dynamics have been sorted out,
is thus difficult. Fortunately, more recent analyses of the longest grassland exper-
iments have looked for, and found, evidence of character displacement and evolu-
tion of niche differentiation, even on relatively short timescales (Zuppinger-Dingley
et al., 2014; van Moorsel et al., 2018). This suggests that the evolutionary effects
analyzed in this work might have begun to play a role. Interestingly, it was observed
that biodiversity-productivity relationships assembled from co-selected species were
higher at low diversity, but saturated faster with diversity, thus being more concave
(van Moorsel et al., 2018). This is strikingly reminiscent of our predictions in the
standard “resource competition” scenarios (Niche and Body-size; see Fig. 1.2a,b).
Furthermore, it was found that species evolving in mixed assemblages (thus ap-
proaching a state of community adaptation) elicited more complementarity effects,
and less sampling effects, than assemblages of non-co-adapted species (Zuppinger-
Dingley et al., 2014). This too is quite consistent with our findings. In a more direct
approach, Fiegna et al. (2014, 2015) used experimental evolution to demonstrate
that biodiversity-productivity relationships are impacted by co-adaptation in bac-
teria. They further showed that these changes involved an evolutionary component
in species interactions, not just of individual species performances, even though the
overall impact on biodiversity-productivity relationships was quite variable among
experiments. These studies thus clearly support a role for community adaptation in
the dynamics of BEF relationships as highlighted here.

Regarding the biodiversity-invasion relationships (Fig. 1.6), the effects of com-
munity adaptation were much more consistent across ecological scenarios than for
biodiversity-productivity relationships. Resistance to invasion increased, and toler-
ance to invasion decreased, with diversity under all scenarios, which conforms well
to general expectations (Levine, 2000; Hector et al., 2001; Davis, 2009). The impact
of community adaptation was moderate for resistance to invasion (probability of es-
tablishment) but spectacular for tolerance to invasion (number of secondary extinc-
tions) (Fig. 1.6e-h), highlighting that different invasion properties can behave quite
differently. Indeed, resistance to invasion was only slightly impacted by community
adaptation, the latter generally increasing invasion resistance, but with almost no
interaction with diversity. In contrast, biodiversity-tolerance relationships markedly
differed with community adaptation (Fig. 1.6e-h): while tolerance to invasion grad-
ually decreased with species diversity in random communities, it remained virtually
constant with community adaptation.

This can be understood in terms of changes in species trait distributions. In co-
adapted communities, species traits were more concentrated around the optimal trait
(Fig. 1.3 and Fig. 1.4e-h orange curves) and more evenly spaced (see S.I. Section A.6
Fig. A.2), so that successful invaders tended to occupy peripheral niches at either
tail of the trait distribution, which did not cause resident extinctions. However, this
is not the case in random communities in which an invader might find vacant niche
space anywhere along the trait spectrum, possibly very close to a resident species,
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thus potentially excluding the latter and triggering further secondary extinctions.
Beyond BEF relationships, these results have interesting implications for com-

munity assembly dynamics. With the possibility of species (co)evolution, invasion
resistance and tolerance would both increase in between species colonization events.
In other words, successful invasions would be rarer, but also more constructive in
terms of community assembly: invaders would more often add to the community
without driving many resident species extinct. With trait co-evolution, assembly
trajectories should therefore be less eventful (fewer invasions and fewer extinctions),
and more steadily progressing or ”efficient”, compared to pure invasion-assembly.
Although this prediction deserves further exploration, it nicely complements some
earlier studies of community assembly (Rummel & Roughgarden, 1985).

Unfortunately, empirical evidence is even scarcer regarding the role of community
adaptation for invasion properties than for productivity. Most studies focus on
documenting the impact of invasions on the evolutionary dynamics of communities,
not the other way round; yet, evolutionarily immature (e.g. insular) communities or
recently assembled ecosystems such as anthropized habitats are known to be more
sensitive to invasions than old species assemblages. Although this is suggestive of a
protective role of co-evolution, the diversity-invasion relationship is difficult to relate
to evolutionary history, as most long-co-evolved communities are highly diverse while
recently assembled ones are usually species-poor (David et al., 2017).

Our approach was a first attempt at combining eco-evolutionary theory ad BEF-
relationships. It could be extended and improved in several ways. One important
simplification was the assumption of one single trait that structures communities
and is subject to evolution. It would be interesting to describe species interactions
as governed by multiple traits, which is probably more realistic and might result in
more complex eco-evolutionary dynamics (Vasconcelos & Rueffler, 2020). Similarly,
we assumed no upper limit on the amount of phenotypic change a species can un-
dergo. Trait changes between random and co-adapted communities may sometimes
be quite large, especially at low diversity levels (Fig. 1.3). However, since genetic
variation is usually not infinite, species responses to selection can be constrained.
Such limits on evolution would probably weaken some of the reported effects, even
though preliminary analyses suggest that results are quite robust to this (see S.I.
Fig. A3 Section A.7).

Overall our work highlights some potentially important consequences of evolu-
tionary dynamics for biodiversity-functioning relationships. Through its action on
species trait values, community adaptation can profoundly change the expected re-
lationship between diversity and various ecosystem functioning properties, even in
qualitative terms. This occurs because of the differential magnitude and direction
of species trait evolution in poor versus rich communities, so that the ecological
impact of species number interacts with the evolutionary history of communities.
Therefore, BEF relationships derived from short-term experiments or observed fol-
lowing recent habitat perturbations might not be safely extrapolated into the future,
once eco-evolutionary feed-backs have played out. This may have consequences for
our understanding and prediction of the way ecosystems respond to species loss
and environmental perturbations, and for ecosystem management and restoration.
Eco-evolutionary theory definitely calls for more long-term and evolution-oriented
studies of BEF relationships.
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(IDEX “Investissements d’Avenir UCAJEDI”, project reference n◦ANR-15-IDEX-01). The

authors thank the GDR TheoMoDive for interesting discussions.

53



Adaptation in an unsteady world

Everyone is right from their own point of view,
but it is not impossible that everyone is wrong.

Gandhi

Abstract

The tolerance-fecundity trade-off (TFT) model describes a trade-off between the
number of seeds produced (plant fecundity) and their tolerance to stress. This
model has received significant theoretical interest in the past 10 years, as a gen-
eral alternative to competition-colonization trade-offs. However, it has only been
studied from an ecological perspective, and no attention has been yet given to the
evolutionary dynamics of stress tolerance under a TFT. Here we introduce a gen-
eralization of the TFT model, that incorporates explicit stress-tolerance traits, an
explicit relation between fecundity and stress tolerance, and a dose-response curve
commonly used in empirical studies. On top of facilitating parametrization, this
allows the use of adaptive dynamics methods. We study the evolution of stress
tolerance as a function of trade-off intensity parameters and of the distribution of
stress level across patches. We investigate the value of evolutionary equilibria and
their evolutionary stability (with in particular the possibility of diversification or
branching). Stress tolerance is found to evolve to a single evolutionary attractor,
whose value is mainly determined by the steepness and height of the fecundity func-
tion. Evolutionary stability, in contrast, is mostly determined by the dose-response
function. The evolutionary attractor turns from ESS to branching point when the
later becomes steep enough. Branching is also more frequent when the advantage of
very tolerant species over less tolerant but more fecund ones is higher, which occurs
when the dose-response function is asymmetrical. The probability of coexistence is
found to be maximized for some intermediate trade-off intensity, characterized by
an intermediate-to-high dose-response steepness and a shallow fecundity function.
Greater spatial heterogeneity in stress levels promotes branching, whereas interme-
diate heterogeneity maximizes coexistence. Further diversification can occur, but
requires more stringent conditions than for one species, and can be asymmetric or
symmetric.

Keywords: Adaptive dynamics, ESS, Branching point, Coexistence, Stress level
distributions, Dose-response curves
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2.1 Introduction

The stable coexistence of a diversity of species is not always straightforward, because
of possible competitive exclusion (Levin, 1970). In this context, several coexistence
mechanisms have been proposed (Chesson, 2000), and many involve trade-offs. The
competition-colonization trade-off (CCT; Calcagno et al., 2006) is one of them, and
has often been proposed as an explanation for plant species coexistence in particular
(Tilman, 1994) and also used to explore species coexistence in general (Thompson
et al., 2020). However, the CCT involves a competitive hierarchy that often seems
too strong in the light of empirical observations of plant communities (Coomes &
Grubb, 2003; Muller-Landau, 2010). This has thus motivated the search of other
possible general trade-off mechanisms in plant communities. The tolerance-fecundity
trade-off (TFT) model has first been proposed by Muller-Landau (2010) as an alter-
native to the CCT. Muller-Landau (2010) replaced competitive dominance (ability
of a species to displace another locally) with the maximum stress level, at the site of
germination, that a species can survive or resist to (stress tolerance). The trade-off
is described by the fact that the more tolerant species are also the less fecund, so
that the number of seeds they actually send in the environment is lower. The coexis-
tence of species that possess different stress tolerance levels is allowed in this model
by the heterogeneity of stress levels in the environment. If there is no heterogeneity
(i.e. the same stress conditions everywhere), the one species with the lowest toler-
ance acceptable would exclude all other due to its higher fecundity (D’Andrea &
O’Dwyer, 2021). Muller-Landau (2010) proposed that tolerance might be driven by
seed size (the larger a seed the more stress tolerant), but this can be generalized to
other tolerance-mediating traits that can yield a cost in terms of fecundity (such as
various quantitative trait loci for seed tolerance during germination, see for instance
Sayama et al., 2009; Thabet et al., 2018).

The appropriateness of this coexistence mechanism has been experimentally as-
sessed several times. Ben-Hur et al. (2012) designed an experiment to specifically
test the impact of a negative correlation between seed size and seed number on
species richness. They found that the results were coherent with theory (i.e. that
coexistence is favored by this negative correlation) and that it could not be at-
tributed to a CCT, but possibly to a TFT. Their result is, according to them, the
first experimental evidence for this mechanism to promote coexistence. Villellas &
Garćıa (2013) experimentally tested an intraspecific version of this model, and some
of their results suggest a the existence of a TFT interaction. More recently, Maron
et al. (2021) experimentally showed that large seeds are more tolerant than small
ones. Exploring the interaction between tolerance and fecundity, they evidenced that
a tolerance-fecundity trade-off may contribute to the observed coexistence. Even if
not considering TFTs as their main topic, several other studies have also invoked
this model as a possible mechanism to explain their observations (de la Riva et al.,
2016; Lebrija-Trejos et al., 2016; Alstad et al., 2018).

Theoretically, Muller-Landau (2010) found that the TFT model allows for the
coexistence of a large number of species, even in the presence of seed limitation. Sub-
sequently, theoretical studies proposed some modification of Muller-Landau’s model,
in order to improve its realism and test the robustness of the conclusions. In the
initial model (Muller-Landau, 2010), the probability that a seed survives is either 0
or 1 depending on species tolerance, resulting in an infinitely sharp probability func-
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tion. However, in addition to being very unlikely in nature (Muller-Landau, 2010;
Barabás et al., 2013; D’Andrea et al., 2013), such infinitely sharp thresholds are
shown to have a strong impact on species coexistence predictions (Barabás et al.,
2013). D’Andrea et al. (2013) thus proposed a modification of the TFT model,
enabling the probability to survive a given stress level to be smooth. While the dis-
continuous transition from Muller-Laudau’s model allowed for a robust continuous
coexistence (possibility of an infinite number of species over a continuum of traits),
they found that removing this discontinuity suppressed the continuous coexistence
itself. Species coexistence was then lead by the classical limiting similarity condi-
tions (proposed by Macarthur & Levins, 1967, and largely used as a thinking tool to
understand coexistence since then). Haegeman et al. (2014) gave a generalization
of the TFT model of Muller-Landau (2010), allowing low site recruitment (namely
the existence of empty sites). They provided a graphical tool to assess the necessity
for coexistence of a trade-off between the two life-history parameters, and proposed
a derivation of the model in both discrete and continuous time. Later on, with the
same idea of increasing this model realism, D’Andrea & O’Dwyer (2021) introduced
space explicitly in the model simulations. They questioned the impact of spatial
homogeneity and seed limitation on coexistence. They showed that coexistence de-
pends both on dispersal limitation and environmental variations, evidencing that
coexistence in a patchy landscape is higher under short dispersal scales relative to
the scale of environmental variation.

The TFT model is an interesting mechanism that has been mostly – if not only
– used to explain ecological patterns of coexistence, but there has been no consider-
ation of the evolutionary behavior of this model. It is clear that evolution has a role
in shaping ecological communities, determining the type and number of species that
coexist (Lankau, 2011; Hart et al., 2019), and thus a role in determining ecological
properties of ecosystems (Loeuille, 2010; Gagic et al., 2015; van Moorsel et al., 2018;
Aubree et al., 2020). Moreover, evolution appears to be relevant even on ecological
timescales (Carroll et al., 2007; Ellner et al., 2011; Hart et al., 2019), making this
process important to consider from an ecological perspective, and almost insepara-
ble from ecological studies. Among others, trade-offs in general are of particular
interest in understanding evolutionary outcomes, like evolutionary rescue (Liukko-
nen et al., 2021), ecological limiting similarity in co-adapted communities (Bonsall
et al., 2004), emergence and maintenance of specialist-generalist coexistence (Egas
et al., 2004; Ravigné et al., 2009), or also patterns of diversity in a meta-community
(Laroche et al., 2016). In the CCT model in particular, trait evolution has been
theoretically considered to question the evolution of viruses virulence (Ojosnegros
et al., 2010) or diversification (Calcagno et al., 2017). It would thus seem relevant
to analyze the evolutionary behavior of the TFT model, and the present study is a
first step in that direction.

This paper aims at studying the evolutionary behavior of an ecological model
that builds a community starting from one species, using the framework of adaptive
dynamics (Metz et al., 1995; Geritz et al., 1997; Dieckmann & Doebeli, 1999; Geritz
et al., 1999). To this end, we need to extend the model in a way that allows the
use of adaptive dynamics. In particular, we must explicitly describe the evolving
phenotypes (species traits) and express fecundity and stress tolerance as smooth
functions of the traits. Previous studies on the TFT model have only considered
a negative correlation between stress tolerance and fecundity, without specifying a
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mathematical expression linking the two (Muller-Landau, 2010; D’Andrea et al.,
2013; Haegeman et al., 2014). This prevents modelling the continuous evolutionary
change of stress tolerance as a quantitative trait. Our model formulation makes
this possible, enabling us to determine the evolutionary equilibrium, the type of
evolutionary point (ESS, branching point) and the coexistence zones. Furthermore,
it is more explicit in how it relates to measurable quantities such as fecundity costs
and dose-response curves.

Using this model, we explore then how the fecundity and the survival probability
(the two components that shape the trade-off) influence the evolution of stress tol-
erance. The survival probability as a function of species stress tolerance is described
using a dose-response curve that is commonly used in experimental studies. We use
a flexible function that allows to take response asymmetry (about the stress level in
the environment) into account (Liao & Liu, 2009). Such kind of asymmetry is poorly
considered in the literature, despite its potentially high relevance (Van der Graaf &
Schoemaker, 1999). Furthermore, a special attention is given to the seed germina-
tion conditions, that are described by a distribution of the stress levels present on
each micro-site (i.e. the different micro-site do not carry the same level of stress,
so that the environment is spatially heterogeneous regarding the stress conditions).
Many sites can present some heterogeneity in various properties and composition
such as in soil moisture (Moran et al., 2004; Wilson et al., 2004; Liang & Wei, 2021),
nitrogen (Austin et al., 2004; Wang et al., 2021), carbon (Wang et al., 2019; Cao
et al., 2020) and water availability (Austin et al., 2004) or also in soil organisms,
and in many kind of pollutant as various types of metals (Ginocchio et al., 2004).
Depending on their level, these various components may present a stress or a toxi-
city that impedes germination or development, and the heterogenities are found to
impact for instance seed germination, fitness and species richness (Jordan et al.,
2020; Kaur et al., 2021). There are plenty of ways to distribute those stress levels
across patches. The type (e.g. Gaussian or not, heavy tail or not, etc.), the variance
and the mean of stress distribution themselves may possibly have an impact on the
results. This has not yet been studied under the TFT model, even within an ecolog-
ical perspective. In the present study, we question the impact that the environment
– represented by the stress distribution – may have on both coexistence and evolu-
tionary behavior. Quite obviously, we expect the variance to impact the coexistence
possibilities, because the limit of the null variance is the limit of an homogeneous
environment in which no coexistence is possible.

To sum up, we will explore the impact that the trade-off intensity, the environ-
mental conditions (led by the stress distribution function), and the dose-response
curve asymmetry may have on the evolutionary behavior of the TFT model. To do
so, because of the large amount of parameters to consider, we will first perform a
sensitivity analysis to get a first general overview of the evolutionary behavior of
this model, before focusing on particular points to understand it in greater detail.
We end by exploring the possibility of branching in a two-species community.

The slope of both the fecundity function and the survival probability function
with respect to species tolerance (the two parameters that shape the trade-off) are
found to play an essential role in determining the evolutionary behavior of this
model, but does not have the same qualitative and quantitative effects. The evo-
lution of stress tolerance (evolutionary equilibrium point) is found to be mainly
driven by the fecundity function. Branching points are found to arise for steep sur-
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vival probability functions, but mostly occur for low-to-intermediate values of the
fecundity function slope. We also show that the coexistence surface is maximized by
a given trade-off intensity, characterized by an intermediate-to-high survival prob-
ability slope and a smooth fecundity function. Concerning spatial conditions, the
variance of the stress distribution contributed more than the mean, favoring branch-
ing when broader, and the averaged coexistence surface when intermediate. Finally,
we show that a bimorphic evolutionary equilibrium is impossible when the monomor-
phic one was stable (ESS). Bimorphic evolutionary equilibrium can present evolu-
tionary instabilities (branching points), but this occurs under even more restricted
conditions than for monomorphic equilibrium.

2.2 Model and Method

2.2.1 Model definition

Our model is based on the model described by Muller-Landau (2010), which was also
studied by D’Andrea et al. (2013); Haegeman et al. (2014); D’Andrea & O’Dwyer
(2021). Here, we modify it in order to make it suitable for the study of adaptive
dynamics. The model is of patch-occupancy type, in which patches are local micro-
sites in which one plant at most can germinate and establish as an adult. Patches
harbor different stress levels. Stress level is spatially distributed according to a
stationary continuous probability distribution p(y) of possible stress levels y, so
that p(y) is the probability density of patches with stress level y. Adults cannot be
displaced by incoming seeds until they die. This occurs at rate m: when an adult dies
its patch becomes vacant and incoming seeds Immediately engage in a competitive
lottery for settlement in that patch. For simplicity, a patch does not retain a fixed
stress level over consecutive adult replacements, but instead has it drawn from the
stationary probability distribution p(y). In other words, there are continuous (and
rapid relative to m) spatio-temporal fluctuations of the stress level across patches.
It is only at the time of germination that this stress level matters (since adults are
otherwise immune to the stress), so that over consecutive recolonization of a given
patch, the stress levels are effectively sampled from the stationary distribution.
Making patches have a fixed stress level through time would increase the number of
equations needed to describe the dynamics. Following previous models, the mortality
rate m is supposed to be the same for all patches, i.e. once an adult has installed
into a patch, its death does not depend on the patch stress-level it has experienced
or on the species tolerance level. This model is here described in continuous time.
As we consider an implicit spatial distribution (as often the case; Muller-Landau,
2010; D’Andrea et al., 2013; Haegeman et al., 2014), it would remain the same to
consider an discrete time version. This would not be the case with an explicit spatial
distribution.

We assume that a species is characterized by some tolerance level x, which is
the evolving phenotype of interest. Contrary to previous tolerance-fecundity trade-
off models, we give an explicit form to the trade-off, describing the fecundity as a
decreasing function c(x) of stress tolerance x (species are thus characterized by only
one trait). This modification allows the use of adaptive dynamics methods to track
continuous changes in species traits. According to their fecundity level, each adult
produces seeds that will compete for the free patches. Seed production is supposed
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to be proportional to the occupancy fraction ni (the proportion of sites occupied
by species i whose stress tolerance is xi) and to species i fecundity. Conversely,
a species with trait x landing in a patch with stress level y has a probability to
survive the stress given by some increasing function b(x− y). Finally, among all the
surviving seeds, a competitive lottery is then engaged to determine which seed will
germinate (see also Muller-Landau, 2010; D’Andrea et al., 2013; Haegeman et al.,
2014; D’Andrea & O’Dwyer, 2021). In a patch with stress level y, the effective
number of seeds engaged in the competitive lottery from species i will be:

f(xi − y) = c(xi)b(xi − y)

The proportion ni of species i in the environment thus varies with time as:

1

ni

dni
dt

= m

(∫ +∞

−∞
p(y)

f(xi, y)∑
j f(xj, y)nj + ε

dy − 1

)
(2.1)

The ratio f(xi,y)ni∑
j f(xj ,y)nj+ε

represents the competitive lottery in between surviving seeds

in a patch with stress level y (Muller-Landau, 2010). The ε term represents a
background level of competition that all seeds are experiencing in all patches. This
may represent, for instance, other species not considered in the guild of interest.
This background level is considered small, and thus it will typically not affect the
competitive lottery in an important manner. But when a species is the only one
able to exploit a patch, and is very poor at using this patch, the background level
of competition prevents the species from acquiring the patch with probability one,
regardless of the number of seeds sent. This unpleasant property was absent in the
Muller-Landau’s model, because of her step survival probability function, set to 0
below a given tolerance level. We integrate this ratio over all stress levels y whose
distribution is p(y). The mortality rate m scales the unit time and the turnover
speed of species occupancy.

2.2.2 Analysis

2.2.2.1 Invasion fitness

The fitness F (xm) of a mutant trying to invade a community writes:

F (xm) = lim
nm−→0

(
1

nm

dnm
dt

)
= lim

nm−→0
m

(∫ +∞

−∞
p(y)

f(xm, y)∑
j(f(xj, y)nj) + ε

− 1

)
(2.2)

where all species are at their respective equilibrium abundance (Metz et al., 1995;
Geritz et al., 1997).

In the following, we will only consider the case of one resident species invaded by
a rare mutant, so that the sum over j in the integral only contains two terms. The
probability to survive a given stress may cancel for high stress levels. Let’s imagine
that b(xi−y) (and therefore f(xi, y)) cancels for y > y1 for the resident species, and
that b(xm − y) (and therefore f(xm, y)) cancels for y > y2. If y2 > y1 then:
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F (xm) = lim
nm−→0

m

(∫ y1

−∞
p(y)

f(xm, y)

f(xi, y)ni + f(xm, y)nm + ε
dy

+

∫ y2

y1

p(y)
f(xm, y)

f(xm, y)nm + ε
dy + 0− 1

)
= m

∫ y1

−∞
p(y)

f(xm, y)

f(xi, y)ni + ε
dy +m

∫ y2

y1

p(y)
f(xm, y)

ε
dy −m

If y2 −→ y1 (i.e. the mutant is close to the resident, as the case in the following)
it simplifies as

F (xm) = m

∫ y1

−∞
p(y)

f(xm, y)

f(xi, y)ni + ε
dy −m

If y1 > y2 it is directly:

F (xm) = lim
nm−→0

m

(∫ y2

−∞
p(y)

f(xm, y)

f(xi, y)ni + f(xm, y)nm + ε
dy

+

∫ y1

y2

p(y)
0

f(xi, y)ni + ε
dy + 0− 1

)
= m

∫ y2

−∞
p(y)

f(xm, y)

f(xi, y)ni + ε
dy −m

In the end, we only have to calculate the integral from −∞ to ym = min(y1, y2).
In case b cancels for some stress levels, this would allow to simplify the numerical
integration of the model.

2.2.2.2 Viability condition

For the first species trying to invade an empty environment (with no species from
the guild of interest), the fitness simply writes:

F (xm) = lim
nm−→0

m

(∫ ym

−∞
p(y)

f(xm, y)

f(xm, y)nm + ε
dy − 1

)
with ym the stress level from which the probability to survive cancels (it can be
finite or infinite). Taking the limit we obtain:

F (xm) = m

(
1

ε

∫ ym

−∞
p(y)f(xm, y)dy − 1

)
in which we recognize the average over all possible stress levels of the number of
seeds (from species with trait xm) engaged in the competitive lottery: 〈f(xm, y)〉 =∫ ym
−∞ p(y)f(xm, y). The fitness F (xm) has to be positive for the xm trait individual

to invade. Then, the viability condition writes:

〈f(xm, y)〉 > ε (2.3)

This condition allows us to determine the viable traits located in the interval [xmin, xmax],
and to carry out the analysis only within this range. In the following, we will con-
sider that c(x) tends to zero when x → +∞, that b(x − y) tends to zero when
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x→ −∞, and that they are both bounded by a finite value. Thus, f(x, y) tends to
zero both when x → −∞ and when x → +∞, so that xmin and xmax will always
take finite values.

2.2.2.3 Adaptive dynamics and types of evolutionary equilibria

The ecological abundance at equilibrium neq is simply obtained searching for the
equilibrium point of equation (2.1). Here, we only have one species and thus only
one equation to solve. Then, the evolutionary equilibrium is characterized by the
trait value at equilibrium x∗, the abundance at equilibrium neq and the type of
evolutionary point. The trait value at equilibrium is obtained using the selection
gradient. xm being a rare phenotype, the selection gradient writes (Geritz et al.,
1997):

∇(xi) =
∂F (xm)

∂xm

∣∣∣∣
xm=xi

=
∂

∂xm

(
m

∫ ym

−∞
p(y)

f(xm, y)

f(xi, y)ni + ε
dy −m

)∣∣∣∣
xm=xi

Putting the derivative inside the integral we simply get:

∇(xi) = m

∫ ym

−∞

p(y)

∂f(xm,y)
∂xm

∣∣∣
xm=xi

f(xi, y)ni + ε

 dy

= m

∫ ym

−∞

(
p(y)

c(xi)b
′
(xi − y) + c

′
(xi)b(xi − y)

b(xi − y)c(xi)ni + ε

)
dy

(2.4)

with b
′

and c
′

the first derivative of b and c with respect to x. When the selection
gradient is positive (resp. negative), selection tends to increase (resp. decrease) the
trait value. It cancels when the trait value reaches an equilibrium value x∗. For
every evolutionary point we calculate, we verify that it is stable by convergence,
what means that it may be reachable in practice. The condition for convergence
stability is (Geritz et al., 1997):(

∂2F

∂x2m
− ∂2F

∂x2i

)∣∣∣∣
xm=xi=x∗

< 0

The evolutionary stability is determined using the curvature of the fitness:

∇2(xi) =
∂2F (xm)

∂x2m

∣∣∣∣
xm=xi

Similarly to the gradient, the curvature writes:

∇2(xi) = m

∫ +∞

−∞

(
p(y)

c(xi)b
′′
(xi − y) + c

′′
(xi)b(xi − y) + 2c

′
(xi)b

′
(xi − y)

b(xi − y)c(xi)ni + ε

)
dy

(2.5)
When ∇2(x∗) > 0 (resp. < 0), the evolutionary point is unstable (resp. stable). In
the case of convergence stability (namely that the point is reachable, see above), the
evolutionary point is called a branching point when unstable (fitness minimum). It
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means that a resident can coexist with a similar mutant under disruptive selection.
This cannot occur when the evolutionary point is stable (fitness maximum), in which
case the evolutionary point is called an evolutionary singular strategy (ESS).

We also calculate the mutual invasibility, which informs whether a pair of neigh-
boring phenotypes on either side of the evolutionary equilibrium can invade each
other or not. A set of two species characterized by their trait x and y are said to
be able to invade mutually if F (x) > 0 knowing that the resident is y and F (y) > 0
knowing that the resident is x. The condition for mutual invasibility is (Geritz et al.,
1997): (

∂2F

∂x2m
+
∂2F

∂x2i

)∣∣∣∣
xm=xi=x∗

> 0

We define Minv =
(
∂2F
∂x2m

+ ∂2F
∂x2i

)∣∣∣
xm=xi=x∗

. If the equilibrium is a branching point,

Minv is always positive. At an ESS, it can have any sign.
In order to get an idea of the average performance (in term of tolerance) a species

has at the evolutionary equilibrium, we also compute the mean survival probability
at x∗, over all patches, that we call the species performance:

bx∗ =

∫
y

p(y)b(x∗, y)dy (2.6)

This informs on the ability of that species to tolerate stress in the environment,
independently of its fecundity. This quantity is easy to evaluate experimentally
from seed survival experiments.

2.2.2.4 Pairwise Invasibility Plots

The above evolutionary characteristics can also be visualized on a pairwise invasi-
bility plot (PIP; Geritz et al., 1997). To obtain the PIP we first determined the
viability zone (xmin and xmax) by numerically solving relation (2.3). Then, for 100
resident traits contained in [xmin;xmax], we numerically search the abundance equi-
librium solving equation dni

dt
= 0. This enables us to integrate the invader fitness

for each of the 100x100 pair of traits (resident-invader) of a grid whose minimum
is xmin and maximum xmax. The sign of the fitness were reported on the grid (in
black when positive in all the PIP encountered in this manuscript).

From the PIP, we graphically derived a coexistence plot (sometimes called a mu-
tual invasibility plot). This consists in mirroring the PIP over the main diagonal,
and then, overlapping the region from the PIP and its mirrored version. The re-
sulting positive zone corresponds to the coexistence region (in dark in all the next
coexistence plot encountered). The latter informs on the pairs of species trait that
can coexist together, and allows us to calculate the relative surface of coexistence
Scoex (i.e. the proportion of pair of species that can coexist over all possible pairs of
viable species).

We derived the PIP and different metrics using either Mathematica 11.3 or Java.
The differential equation (2.1), which is the basis of all subsequent mathematical
derivations, involves an integral that renders the calculation more difficult to handle.
Mathematica allows very accurate integral computations (through the use of the
NIntegrate function) but is rather slow. We use it to calculate the PIP, evolutionary
equilibria and the other metrics used in the sensitivity analysis (see next paragraph).
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For the rest of the analyses, we used custom Java and R codes. We coded in Java
a trapezoidal integration algorithm to evaluate the integrals, that is much faster
than Mathematica, at the cost of a loss in precision. To search for the evolutionary
equilibrium, we then used function runsteady from R to compute the equilibria. The
same methods in R and Java were used to compute the evolutionary equilibrium
and other metrics with two species (last part of this study).

2.2.2.5 Sensitivity analysis

The evolutionary analysis of the model gives several output variables: the trait at
equilibrium x∗, the boundaries of the viability zone(xmin and xmax), the equilibrium
abundance n∗ at x∗, the relative coexistence surface Scoex, the curvature ∇2 at
x∗, the mutual invasibility Minv, and the performance bx∗ at x∗. There may have
many input parameters that will depend on the definitions of functions c, b, p. In
order to get a first general idea of the relative impact and importance of each of
the input parameters on the output values, we first realize a sensitivity analysis on
the vector containing all the output variables mentioned above. We then further
analyse in more details some of the relationships and interactions highlighted by the
sensitivity analysis.

The sensitivity analysis was done using R version 3.4.4, with the package multi-
sensi and the eponymous function, that allows to calculate the Sobol indices (here
referred to as the sensitivity indices or SI). The sensitivity indice gives the per-
centage of the variation in the output variable that is explained by a given input
variable. This function also provides the total sensitivity indices (tSI) that account
for the interactions between the given input variable and all the other up to 95% of
the variance (Bidot et al., 2018).

In addition to the analysis provided by the function multisensi, whenever the
percentage of the variance explained by a given variable exceeds 5%, we reported
the direction of the effect (positive or negative impact) with colors added on the
sensitivity analysis plot.

2.2.3 Specific definition and functions for numerical analy-
ses

2.2.3.1 Stress tolerance

We will characterize here the seed tolerance level as the level (or dose) of stress
at which the species has 50% of chance to survive. This level of stress is typically
described as a concentration. It is also called the LD50, for Lethal Dose at 50%, and
is a metric of usually practical interest (Liao & Liu, 2009). Following the notation of
dose-response studies, we will express the LD50, as well as the stress concentration,
in log scales. We will use the following notation: y (refereed as stress level) refers to
the logarithm log(Y ) of a toxic substance(stress) concentration Y . Species tolerance
trait x corresponds to the LD50 in log scales.

2.2.3.2 The distribution of stress levels in the environment

On a log scale, the stress level is distributed over ] − ∞,+∞[. We choose two
contrasted forms: a Normal distribution, very often considered in the literature,
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and a Gumbel distribution, which allows to consider heavy tails scenarios for some
parameters (fig. 2.1a):

p1(y) =
1

σ
√

2π
exp

(
−(y − µ)2

2σ2

)

p2(y) =
ez .z

β
with z = exp

(
−x− α

β

)
The Normal distribution is the equivalent of a Log-Normal distribution on the scale
of concentration, while the Gumbel is equivalent either to an exponential (for β = 1)
or a Weibull distribution (for β 6= 1). If the scale parameter β of the Gumbel
distribution is greater than one, it refers to a heavy-tailed distribution on the scale
of concentration (in the sense that it exhibits a large skewness relative to that of
the exponential distribution ; Rolski et al., 2009). Parameter β is related to the
variance of the Gumbel distribution: β = σ2 6

π2 . We will vary the variance σ of those
distributions, and keep its mean µ = 1. The averaged stress level felt by a species
will be varied thanks to another parameter (see next paragraph).

2.2.3.3 Fecundity function

The fecundity function c(x) is the trade-off function. It decreases with species
tolerance x. We chose a function whose height and slope can be varied independently
one from another (fig. 2.1b):

c(x) = c0 e−ca(e
x)cb

with c0 the maximal fecundity (obtained in case x → −∞, or in other words, for
a null stress concentration X = ex = 0). ca and cb are two parameters that scale
the slope and height of this function. When parameter cb = 1, it corresponds to an
exponential function in concentration scales (instead of log concentration scales). It
is steeper (resp. less steep) when cb > 1 (resp. cb < 1).

In addition, we define cs as the slope of the fecundity function at the point
x1/2 such that c(x1/2) = 1

2
c0. In term of the function parameters it is equal to

cs = −1
2
cbc0log(2) (see the supplementary information (S.I.) section B.1). In the

following, we will call cs the slope of the fecundity function, without mentioning
every time that it refers to the slope at the point x1/2. We also define cµ = c(µ)

c0
,

which is the relative fecundity at µ (i.e. the relative height of the function). Varying
cµ (keeping cs constant) is equivalent to vary µ itself. Indeed, varying cµ, we translate
the whole fecundity values toward larger or lower tolerance values. This is equivalent
to shifting the whole stress distribution toward larger or lower stress values.

2.2.3.4 Survival function

The logistic function is often used in the literature to describe tolerance to stress.
We used a generalized function described by (Liao & Liu, 2009) to fit dose-response
curves in bioassay experiments. It has been proposed to address the lack of flexibility
imposed by the symmetrical logistic curve usually used, that often appears to be
limiting to catch the entirety of the process (Van der Graaf & Schoemaker, 1999).
It allows to adjust the asymmetry level of the function, and thus to explore broader
scenarios than the simple symmetric logistic curve (fig. 2.1c):
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b(x, y) = 1− 1

(1 + (21/g − 1) e(y−x).B)
g

with x the species LD50, y the log concentration of the toxic substance, and B and g
two parameters each controlling both the slope and the asymmetry of the function.
When g = 1, we get the symmetric logistic curve.

We define βs as the slope of b(x, y) at the inflexion point x = y in the symmetric
case. It simply writes βs = B

4
(see S.I. section B.1). We want to construct two

asymmetric versions of the logistic function for each value of βs: one for which
the survival probability of low-tolerance species (x < y) is decreased compared to
the symmetric case (asymmetry to the left case; see fig. 2.1c) and one for which
the survival probability of high-tolerance species (x > y) is increased compared
to the symmetric case (asymmetry to the right case; see fig. 2.1c). For this, we
skew the symmetric function either to the left or to the right, through both B
and g parameters (see S.I. section B.2 for more details). We reference the kind of
asymmetry that results from this manipulation using a single qualitative parameter
called γas. As we only explore one level of asymmetry to the left and one level
of asymmetry to the right per βs value, we say that γas is 1 in the asymmetry
to the right case, −1 in the asymmetry to the left case, and 0 in the symmetric
case. Of course, changing the asymmetry modifies the slope at the point x = y.
To help qualitatively categorize the nine different functions formed (3 symmetric
forms and two asymmetric deviations per symmetric form), we keep parameter βs
to characterize the asymmetric forms formed from a specific symmetric case (e.g.
with a given βs). We thus define βs as being also the “slope” of those asymmetric
cases as well, even if the real slope at the inflexion point in the asymmetric case
would rigorously be slightly different.

2.2.3.5 Parameter values considered

Table 2.1 describes the parameters used and their range of variation when needed.
For each of the two stress distributions, we explore three different variances σ2 such
that σ1 = σ2/2 and σ3 = 2σ2 (fig. 2.1a). The variance σ2

2 = π2

6
is chosen such

that the Gumbel distribution refers to the exponential distribution in concentration
scales.

The mean of the stress distribution is kept constant, as the average level of
stress felt by species is governed by the fecundity function: we adjust the fecundity
function parameters in order to get cases in which species are rather either very
tolerant in average (corresponding to low stress environment, cµ = 0.95), mildly
tolerant in average (cµ = 0.5), or very few tolerant to stress (corresponding to high
stress environment, cµ = 0.1). We also vary the slope cs of the fecundity function
(see fig. 2.1c) that we chose to be either −0.1, −0.3 or −0.75. This slope will be
later varied continuously on a range that incorporates those values (see table 2.1).
Parameter c0 is chosen relatively to ε, as they are exclusively linked through the
ratio c0

c0+ε
. This ratio corresponds to the probability that a species get installed in a

patch where the stress level is −∞ in log scales. We fixate ε = 0.001, and we chose
c0 = 1 and 0.3.

The survival probability function parameters are chosen relatively to environ-
ment. For the symmetric logistic case (when g = 1), we choose the slopes βs such
that the survival probability increases by a given percentage ξ (1e−5, 0.05 or 0.3) of
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Parameter Description Values

x species tolerance trait (the logarithm of the LD50) within the vi-
ability zone

x∗ stress tolerance evolutionary equilibrium value

y the logarithm of the stress concentration Y

c(x) the fecundity function

cs the fecundity function slope (one of the two pa-
rameter shaping the trade-off intensity)

[−0.75,−0.01]

c0 the fecundity function height {0.3, 1}

cµ fecundity for a theoretical species whose trait
would be x = µ. It represents the average stress
level in the environment.

{0.1, 0.5, 0.95}

b(x− y) the dose-response curve (probability for a species
with trait x to survive a stress y)

βs the dose-response curve slope (one of the two pa-
rameter shaping the trade-off intensity)

[0.01, 2.7]

γas dose-response asymmetry level {−1, 0, 1}

pi(y) the stress distribution (Normal for i = 1 and Gum-
bel for i = 2)

σ variance of the stress distribution { π
2
√
6
, π√

6
, 2π√

6
}

xmin lower boundary of the viability zone

xmax upper boundary of the viability zone

Scoex the relative coexistence surface

bx∗ the mean survival probability at the evolutionary
equilibrium point x∗

∇2 the curvature at the evolutionary equilibrium
point

ε background competition level 0.001

Table 2.1: Description of model parameters, and range of values explored in numer-
ical simulations.
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Figure 2.1: (a) The two stress distribution form considered (Normal and Gumbel).
y denotes the stress level in log scale concentration. µ is the average stress level
in the environment. (b) The fecundity function as a function of the species trait
x (the LD50), for the different slopes considered. For each slope, c(µ) is widely
varied in order to represent environment in which species are more or less tolerant
in average. (c) The survival probability as a function of x, shown for the symmetric
case (symmetric about y) and three slopes considered. The sub-panel illustrates the
asymmetric version of this function: an asymmetry to the right and another one to
the left. Such asymmetric versions are considered for all three slopes represented.

the maximum when, for a given species with tolerance x, the stress level goes from
x+ σ2 to x− σ2. In term of slopes this gives βs = 2.7, 0.6 or 0.2. This slope is later
varied on a continuous range (see table 2.1).

In fine, the input variables used in the sensitivity analysis are pi (2 levels), c0 (2
levels), σ (3 levels), cµ (3 levels), cs (3 levels), βs (3 levels) and γs (3 levels). They
form a complete plan for the sensitivity analysis.

2.3 Results

2.3.1 Overview of model behavior through sensitivity anal-
ysis

The sensitivity analysis made on the nine output variables represented figure 2.2
gives a first idea of the model behavior. In the following, we will briefly expose the
results obtained with this sensitivity analysis, before exploring in more details some
of the points raised.
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Figure 2.2: Sensitivity indices. Light colored or light grey bars stand for the sen-
sitivity indices without interaction, and dark (colored or grey) bars stands for the
total sensitivity indices (with interactions). The difference between the two indi-
cates to what extent the input variable influences the output variable in interaction
with other input parameters. Green (resp. blue) bars stand for a positive (resp.
negative) impact of the input variable on the output variable. Orange bars stand
for input variable that can have both a positive or a negative impact on the output
variable depending on other parameters. Bars are kept grey when the input/output
variables are qualitative, or when the impact is less than 5%.

Viability zone The two variables delimiting the viability zone (xmin and xmax) are
not impacted by the same parameters (fig. 2.2, xmin and xmax). The upper limit of
the viability zone is affected by the fecundity, while the lower limit is affected by the
dose-response curve and the stress distribution variance. This is coherent with the
fact that xmin and xmax are determined with condition (2.3). Fecundity c regulates
xmax, because it becomes small at large values of x. And survival probability b
regulates xmin, because it becomes small at small values of x (see figure 2.1). More
precisely, with a shallower fecundity function (cs decreases) or a higher fecundity at
µ (cµ increases), the fecundity of larger traits becomes large enough, what renders
them viable. Thus, xmax increases. And for lower traits, it is the tolerance to stress
that becomes critical: at some point, it is simply too small for species to survive the
given stress. This is controlled by both the the dose-response curve and the stress
distribution. The shallower the dose-response, the more traits available, and thus,
the lower limit is pushed toward smaller values. Similarly, the broader the stress
distribution, the more site available for low tolerance species, and the lower xmin.

Evolutionary equilibrium Similarly to xmax, the evolutionary equilibrium x∗ is
mainly driven by the fecundity (fig. 2.2, x∗). A species trait tends to evolve toward
the highest tolerance it can achieve as long as fecundity remains at an acceptable
value. An increase in the fecundity of the larger traits thus displaces the evolutionary
equilibrium toward higher trait values (more tolerant).
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Species performance at the evolutionary equilibrium Because species per-
formance bx∗ monotonically increases with x∗ and does not explicitly depend on
fecundity, it varies the same way as x∗ with fecundity (fig. 2.2, bx∗). On the con-
trary, the steepness βs of the dose-response does not impact x∗ and bx∗ in the same
direction. This point is later explored.

Species abundance As the performance, species abundance (fig. 2.2, n∗) is found
to increase with cµ, which is a proxy for the inverse of the average stress level in the
environment. On the contrary, species abundance is negatively impacted by both the
slope of the dose-response and the variance of the stress distribution. In any case,
the abundance of a single species is relatively little impacted and is almost always
close to 1. The background competition level ε introduced is the only parameter that
prevents a single species to occupy the whole environment (and get abundance 1).
As ε is very small, a more tolerant species will not gain much abundance compared
to a lower tolerant species.

Evolutionary stability and mutual invasibility The relative impact of model
parameters on the two metrics that characterise the type of evolutionary point (the
curvature ∇2 and the mutual invasibility Minv) is almost the same (see fig. 2.2).
They both are mostly determined by the slope βs of the dose-response curve (fig. 2.2).
Dose-response asymmetry also impacts both metrics, and this can be at first sight
explained by the fact that asymmetry also slightly modifies the dose-response slope.
This is explored in more details in the following. Fecundity slope (cs) and height
at µ (cµ) have a negative impact on the mutual invasibility, while its effect on the
curvature depends on other parameters. This is also later explored.

Relative coexistence surface The relative coexistence surface (Scoex) is also led
by βs (fig. 2.2). The steeper the dose-response, the larger the coexistence zone.
Indeed, a steep slope of the dose-response functions allows a niche differentiation
conducive to coexistence (D’Andrea et al., 2013). As expected, the coexistence
zone surface is also positively impacted by the variance of stress distribution, which
controls the level of heterogeneity into the environment. Less intuitive but not negli-
gible, the steepness of the fecundity function is also found to impact the coexistence
zone surface, but in a direction that depends on other parameters.

Parameters with small impact The type of stress distribution function pi has,
comparatively to other parameters, a very small influence on the metrics considered
(fig. 2.2). However, its variance σ and the average stress level in the environment
(lead by cµ) both have some impact. It is interesting to note that they each impact
their own metrics, and rarely the same. The maximum height of the fecundity func-
tion c0 has also very small influences, as it mainly acts as a scaling factor.

In the following, we will explore in more details some of the parameter impacts.
We will focus on the impact of the two parameters shaping the trade-off intensity (cs
and βs), on the impact of the mean and variance of the stress distribution function,
and on the role of the dose-response asymmetry. And we will finish with the study
of two species communities.
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2.3.2 Evolutionary equilibrium of stress tolerance x∗
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Figure 2.3: (a) The evolutionary equilibrium (x∗) and the mean survival probability
at evolutionary equilibrium (bx∗) as a function of the slope βs of the dose-reponse
curve. The relation is plotted for different slopes cs of the fecundity function. (b)
The PIP and surface of coexistence plot corresponding to two slopes fecundity cs
and three survival probability slopes βs. Parameters: pi = p1 (Normal distribution),
σ = π/

√
6, cµ = 0.5, c0 = 1, γs = 0.

Consistent with the sensitivity analysis, the tolerance level at evolutionary equi-
librium x∗ is almost constant with βs, except for low βs (fig.2.3a). In those cases
of shallow dose-response curve (low βs), x

∗ is found to either decrease or increase
with βs: it increases for steep fecundity functions, but decreases for shallow enough
fecundity functions (low cs ; fig.2.3a). For steep dose-response curve (large βs), x

∗

is mainly driven by the fecundity slope cs. In any case of βs, the shallower the
fecundity function, the higher x∗.

Similarly, for large βs, the species performance (the mean survival probability
over all patches at the evolutionary equilibrium bx∗) is almost constant with βs. It
thus mainly depends on the fecundity steepness cs and the shallower the fecundity
function, the higher bx∗ . For low βs, contrary to x∗, bx∗ does always increase with
βs. The evolutionary equilibrium (x∗) and the species performance (bx∗) do not vary
the same way with βs for shallow fecundity functions (low cs).

Unless the fecundity function is very shallow (low |cµ|), the stress distribution
variance (σ, i.e. the level of heterogeneity in the environment) has relatively few
impacts on the tolerance level at the evolutionary equilibrium (fig. 2.4a). On the
contrary, the average level of stress (proportional to the inverse of cµ) impacts the
tolerance level at the evolutionary equilibrium (fig. 2.4b). The lower the stress level,
the greater x∗. Unless the dose-response curve is very shallow (low βs), the absolute
value of this impact hardly depends on the two trade-off intensity parameters (cµ
and βs).
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2.3.3 The evolutionary stability

Figure 2.3b gives contrasted examples of the PIP and coexistence surface plots
that have been obtained. For low βs (shallow dose-response) the PIP presents an
ESS, which turns progressively into a branching point as βs increases (PIP fig.2.3b).
While cs has a large impact on the evolutionary equilibrium, it has less impact on
the stability of the evolutionary point (PIP fig.2.3b). Nonetheless, the PIP presents
different shape depending on the steepness of the fecundity function. This is even
more visible on the relative surface coexistence plot (fig.2.3b). They look like a
swallow going to the bottom left in case of a shallow fecundity function (cs = −0.01),
and a swallow going to the top right in case of a steep fecundity function (cs = −0.5).

To better understand the role of the two trade-off intensity parameters (cs and
βs) in the evolutionary stability and their interactions with germination condition
distribution (stress distribution), we summarized information on figure 2.5. We
find the not surprising property that a steeper survival probability function favors
evolutionary branching. Increasing βs, we move from an ESS point with no mutual
invasibility (small green zone) to an ESS with mutual invasibility, then to a branching
point (fig. 2.5).

We also observe that, consistently with the sensitivity analysis and figure 2.3, cs
(fecundity function steepness) has less impact than βs (dose-response steepness) on
the evolutionary stability. However, the impact of cs is not null, and it is particularly
interesting to note that the change in evolutionary stability is monotonic with βs, but
not with cs. Branching is more likely to occur for low-to-intermediate steepness of
the fecundity function. This evidences that those two trade-off intensity parameters
(cs and βs) do not play the same role in the evolution of stress tolerance, and could
not easily be aggregated in a single trade-off metric.

The observed patterns for the evolutionary stability depend on the stress distri-
bution (see the nine different panels figure 2.5): there are more branching when (i)
the stress distribution is broader (more heterogeneous environment) and (ii) the av-
erage stress level is lower (see the values for the branching surface zone Sbr indicated
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Figure 2.5: Type of evolutionary point as a function of the trade-off parameters (cs
and βs) and of the environmental conditions (the mean stress level, reflected by cµ,
and the stress distribution variance σ). The contour lines indicates the relative sur-
face of coexistence and the black points indicates where its maximum stands. This
figure is made with a symmetric survival probability function. The environmental
conditions are described by the variance of the stress distribution (σ is respectively
equal to σ1, σ2 and σ3 for the narrow, intermediate and broad distributions), and
by the averaged stress level which is inversely proportional to cµ (cµ is respectively
equal to 0.1, 0.5 and 0.95 for the high, medium and low stress). Sbr stands for
the relative surface in which branching is possible (within the trade-off parameter
zone explored), and S stands for the averaged coexistence surface over the trade-off
parameter zone explored. The panel in the center (middle column, middle row) is
the one that corresponds to the plots in figure 2.3.

in the sub panels). We also note that the average stress level has less impact than
the stress variance on the branching zone surface. However, a change in the stress
distribution seems to solely shift the patterns, and to not qualitatively change their
forms. The higher cµ and narrower the stress distribution, the more zoomed is the
pattern. What we get for a low stress with low variance (large cµ and low σ, bottom
left panel) is a zoom of the lower left part of the pattern we obtain for a high stress
with large variance (low cµ and large σ, top right panel).
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2.3.4 The relative coexistence surface for two species

We could have expected the relative coexistence surface (grey lines fig. 2.5) to follow
the evolutionary point type zones. This is not as simple, even if the coexistence
surface is almost null for low βs, and increases while moving toward the branching
point pattern (fig. 2.5). Inside the branching point zone, the coexistence surface
presents a maximum (indicated by a black point) for an intermediate-to-large value
of βs and a low value of cs (at least when the stress distribution is broad enough). The
coexistence surface is thus maximized by a given trade-off intensity characterized by
a shallow fecundity function and a rather steep dose-response curve.

Note here that the coexistence surface is a global metric derived from the whole
PIP, while the mutual invasibility exposed in the method is a local metric, at the
equilibrium point. Thus, an ESS with mutual invasibility always imply that coexis-
tence is possible (at least on a small zone), but the reverse is not always true.

The coexistence surface is impacted by the stress distribution: both cµ and σ
are found to influence the coexistence surface (see the values for the average surface
coexistence S over all possible trade-off combination indicated in the sub panels
figure 2.5). However, S is not maximized by the broader stress distribution, as was
the branching surface Sbr, but by an intermediate stress variance.

2.3.5 Impact of the dose-response curve asymmetry
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Figure 2.6: Impact of the dose-response curve asymmetry level (γas) on (a) the
relative coexistence surface and (b) the curvature at the evolutionary equilibrium.
All the parameters varied to obtain (a) and (b) are those used for the sensitivity
analysis in figure 2.2. (c) PIP and coexistence surface plot for the case βs = 0.57
and for the three asymmetry levels considered. Parameters for (c): pi = p1 (Normal
distribution), σ = π/

√
6, cµ = 0.5, c0 = 1.

The sensitivity analysis showed that dose-response asymmetry does impact the
evolutionary point stability (∇2) and the surface of coexistence (see fig. 2.2). Adding
an asymmetry to the function indeed increases its slope (in both asymmetry cases
considered), and we furthermore found that the slope of the survival probability
function greatly impact the evolutionary stability and the coexistence surface (see
previous paragraphs). Introducing an asymmetry to the left however has more
impacts than introducing a comparable asymmetry to the right (fig. 2.6a,b), even
if in both cases, the slope remains the same: the coexistence surface is greater
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and the chance of having an unstable evolutionary equilibrium is larger. This is
also visible on the PIP (fig. 2.6c) where the relative surface of coexistence in the
asymmetry to the left case is larger. On the other hand, this asymmetry to the left
case presents a branching pattern where the two other not, which is consistent with
the fact that branching occurs when the coexistence surface is larger. All else being
equal, adding an asymmetry to the left makes branching occur for lower βs (i.e. for
shallower dose-response curves).

2.3.6 Evolutionary dynamics with more than one species
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Figure 2.7: Evolutionary stability for two species. The colored zones correspond to
the cases where the monomorphic evolutionary equilibrium was unstable (branch-
ing). With two species, the evolutionary equilibrium can present a branching point
for either the two, only one or no species. The white area corresponds to the stable
monomorphic evolutionary equilibirum. In this area, we verified that no dimorphic
evolutionary equilibrium can exist. The nine panels stand for the same parameters
as figure 2.5.

In case of a branching point, a resident species and a rare mutant similar to the
resident can coexist under disruptive selection. This means that both can coexist
and evolve separately, possibly settling at a joint co-evolutionary equilibrium (Metz
et al., 1995; Geritz et al., 1997). Alternatively, we saw that even in the case of an
ESS, pairs of strategies could coexist (fig. 2.3 and 2.5). A dimorphic state could
thus also be brought up by large-effect mutations or invasions from outside the focal
community. In either case, one can ask whether further diversification could occur.

For all the parameter sets that presented an unstable monomorphic evolution-
ary equilibrium (branching point for one species), we searched for the evolutionary
equilibrium traits for two species using the selection gradient. We then looked at
the evolutionary stability of those two species communities, and discriminated cases
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in which both species were at branching points, only one was at a branching point,
and none of them was at a branching point (see colored zone figure 2.7). Results
show that bimorphic unstable evolutionary equilibria occur for even more restricted
conditions than for monomorphic ones (fig. 2.7).

When the monomorphic evolutionary equilibrium was stable (ESS), we plotted
some flowfields and nullclines which indicate the direction of the selection gradient
and their cancellation points. We found no existence of a bimorphic evolutionary
equilibrium (stable or unstable) in cases of a stable monomorphic evolutionary equi-
librium (white zone figure 2.7).

2.4 Discussion

This paper is a first attempt at characterizing the adaptive dynamics under a
TFT model (Muller-Landau, 2010; D’Andrea et al., 2013; Haegeman et al., 2014;
D’Andrea & O’Dwyer, 2021). We studied the evolution of stress tolerance of a single
species, the possibility of diversification (branching), and then explored the possi-
bility of further diversification. To that purpose, we proposed a new formulation of
the model that is amenable to adaptive dynamics, and is based on explicit traits and
continuous trade-off functions that can be more easily related to real-world measure-
ments. We investigated the impact of trade-off parameters, and of the distribution
of stress levels across patches, on evolutionary equilibria and diversification. We will
discuss here the main results obtained.

How the evolutionary equilibrium depends on the steepness of the fe-
cundity and dose-response functions. Within the viability zone, the model
presents a single evolutionary attractor, and the stress tolerance at evolutionary
equilibrium is mainly driven by the fecundity cost of tolerance (the shallower the
fecundity function, the more tolerance traits can be high). The dose-response curve
has comparatively less impact, unless it becomes quite shallow: when the steepness
of the transition from low to high survival (steepness of the dose-response curve)
exceeds a given threshold (around βs = 0.5 − 0.6; see fig. 2.3a), it does not impact
stress tolerance evolutionary equilibrium any more. Indeed, in that case (βs higher
than the threshold), the survival probability tends to be either 0 or 1. A change in
βs has almost no impact on this pattern, and the fecundity is then the only driver
of evolution. Below the threshold however, the dose-response is shallower, and two
cases are encountered depending on fecundity steepness. They are both illustrated in
the S.I. figure B.1, and explained bellow. If fecundity (which is a decreasing function
of stress tolerance) is steep enough, the stress tolerance equilibrium can reach lower
values while maintaining a high fecundity. In addition, because the dose-response is
shallow (i.e. relatively high for a large proportion of possible stress tolerance), the
stress tolerance can be even lower while maintaining a relatively high survival prob-
ability for a large proportion of sites. Thus, the shallower the dose-response curve,
the lower x∗, giving a positive relationship between βs and x∗. On the contrary, if
fecundity slope is very shallow, the sign of this relationship switches to negative.
This is surprising at first sight (the same explanation as above could hold), but is
understandable. In those cases, the fecundity function is so shallow that it seems
almost constant for all traits. The trade-off is very weak. Thus, the species trait
has the freedom to evolve to very high values and reach the point where it achieves

Flora Aubree 75



Adaptation in an unsteady world

maximal survival probability (close to one) over all patches. Then, when βs increases
(but still bellow the threshold), the dose-response curve becomes steeper, and the
species trait does not have to go as far to achieve this maximal response, which
explains the observed negative relationship between x∗ and βs.

What is a steep dose-response curve? The dose-response slope threshold,
found around βs = 0.5−0.6, separates the βs values for which a variation in βs does
impact the tolerance level at evolutionary equilibrium from those for which it does
not. It corresponds to the blue curve figure 2.1c. This curve was not considered to
represent a very sharp transition in a previous study (D’Andrea et al., 2013). The
shallowest slope considered by D’Andrea et al. (2013) is 2.8 (their ν = 5), while this
value corresponds to our steepest slope. The threshold we found around 0.6 suggests
that some transitions may occur at even lower slopes, and the fact that we already
have branching at 2.8 (implied, for higher values as well) tells that βs = 2.8 may still
fall in the “steep functions category” regarding evolutionary behavior. Nevertheless,
D’Andrea et al. (2013) found ecological differences (in terms of coexistence) brought
by their “steep” function (with 2.8). All of this suggests that a “steep” function
may not have the same meaning from an ecological or an evolutionary perspective.
It would seem that ecological predictions are more sensitive than evolutionary ones
with respect to the steepness of the dose-response curve, but this would be an
hypothesis that would need further investigations.

Species performance versus species tolerance. It is interesting to note that
the performance of a species at an evolutionary equilibrium (bx∗) is not always
increasing with x∗ (fig. 2.3a, comparison between the two panels), as we could have
expected at first sight. Indeed, all else being equal, bx∗ is a priori an increasing
function of x∗. But the steepness of the dose-response curve (βs) is not constant
across the different situations compared. Let us explain what occurs. To obtain bx∗ ,
we perform the integral (over all patches) of b(x∗, y) that is weighted by the stress
distribution whose mean is µ. This means that the larger values of the weighting
coefficient p(y) are found around µ (at least for the Normal distribution). The
survival probability b(x∗, y), as for it, is a decreasing function of y, and is equal
to 0.5 for y = x∗. Thus, if x∗ is higher than µ, the steeper the dose-response,
the more the high survival values are weighted by large coefficients, and thus the
higher bx∗ . On the contrary, if x∗ is lower than µ, the steeper the dose-response,
the less the high survival values are weighted by large coefficients, and thus the
lower bx∗ . We provide an illustration of those two cases in the S.I. figure B.2. We
can thus distinguish three patterns in the presented results. First, in cases where
x∗ is higher than µ and increases with βs, both effects go in the same direction:
bx∗ increases with βs and x∗ increasing also with βs, participating to this increase.
In that case, x∗ and bx∗ are de facto positively correlated. Second, in cases where
x∗ is higher than µ and decreases with βs (for very shallow fecundity functions),
the increase in bx∗ with βs is slowed down by the fact that x∗ decreases with βs.
In that case, x∗ and bx∗ are negatively correlated. In the limit of completely flat
fecundity function (no trade-off), bx∗ → 1 for all βs so that bx∗ will never be found
to decrease with βs. And third, in cases where x∗ is lower than µ and increases
with βs, the a priori decrease in bx∗ with βs is compensated by the fact that x∗

increases with βs, resulting in a low-increasing relationship between bx∗ and βs. In
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that case, x∗ and bx∗ are positively correlated. What is interesting to remember
from all those considerations is that the absolute value of x∗, as long as with βs,
is crucial in determining the correlation between x∗ and the performance. x∗ being
mostly determine by the fecundity function steepness cs, we can say that there exists
a strong interaction between the two parameters shaping the trade-off intensity (cs
and βs), one determining the consequences of varying the other one.

The dose-response curve steepness impacts evolutionary stability. . .

Changes in the steepness of the two functions that determine the trade-off intensity
(c and b) can modify the evolutionary stability from ESS to branching points. It is
interesting to note that even when a change in the dose-response steepness βs does
not impact the position of the evolutionary attractor x∗ any more (βs higher than
the above mentioned threshold), it does impact its stability (fig. 2.5). A steeper
dose-response curve has more chance to result in an unstable evolutionary attractor
(branching point). Such a steep transition indeed favors disruptive selection because
close individuals (in trait value) may harbor very different responses to stress: an
increase in dose-response steepness is nothing else than an increase in the survival
advantage of high-tolerance seeds over closely lower-tolerance seeds (around the
inflection point). We can note that such an adaptive radiation pattern from a single
species is not always predicted. For instance, it was not predicted in a competition-
colonization trade-off model, which required at least two species for diversification
to be possible (Calcagno et al., 2017).

. . . because of the advantage of tolerant species over less tolerant species.
The relative increase in survival advantage is illustrated by the study of the dose-
response asymmetry consequences (fig. 2.6 ; Liao & Liu, 2009). We have observed
that introducing an asymmetry to the left (i.e. decreasing the survival probability of
low-tolerance seeds) has more impacts on the coexistence surface and evolutionary
stability than adding an asymmetry to the right (i.e. increasing the survival proba-
bility of already high-tolerance seeds). Yet, in both cases, the dose-response slope is
modified the same way. But the advantage of high-tolerance seeds over low-tolerance
seeds increases more in the case where the survival probability of low-tolerance seeds
is decreased (all else being equal; i.e. asymmetry to the left), rather than in the
case where the survival probability of high-tolerance seeds is increased (i.e. asym-
metry to the right). Indeed, in that case (low-tolerance seeds survival probability
decreased), the relative difference in survival between low and high tolerance seeds
is larger. Geritz et al. (1999) observed a similar effect of the survival advantage of
high-tolerance seeds over low-tolerance seeds on evolutionary stability in a trade-off
between seed size and seedling competitive ability.

The role of the dose-response slope in evolutionary stability is also consistent
with the work of Egas et al. (2004) who studied adaptive dynamics in a general
trade-off model. They found that branching occurs when the probability to enter
habitat (similar to our dose-response function) presents a sharp transition. They
also showed that the efficiency in an habitat (the trade-off function, similar to our
fecundity function) has no impact on the possibility of branching. This is consistent
with our finding that the trade-off function (fecundity) has much less impact than
the dose-response steepness.
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The small, but non-zero, role of fecundity function for evolutionary sta-
bility. Still, this impact of the fecundity function steepness is not null in our study
(fig. 2.5), and fecundity has also a – smaller but still existing – role in shaping se-
lection. In general, a shallow fecundity function favors branching, except when too
smooth. This is rather counter intuitive at first sight, as we could have expected
a steep fecundity function (strong trade-off) to favor niche differentiation. But ac-
tually, the species that can survive are the ones whose fecundity is not too small.
In the case of a steep fecundity function, those “surviving” species all arbor almost
the same large fecundity. On the contrary, in the case of a shallow fecundity func-
tion, the species that can survive arbor a broader range of possible fecundity values.
Thus, the shallowness of the fecundity function allows for niche differentiation, and
the possibility of coexistence. This observation was here made possible by the ex-
plicit mathematical expression of the trade-off relationship between fecundity and
stress tolerance.

The probability that two random species coexist. Evolutionary stability
zones were found to be relatively well aligned with the relative coexisting surface
level lines (fig. 2.5). Our metric of coexistence surface describes the probability for
two species randomly chosen to coexist, and is thereby different from the coexistence
metric explored in the TFT model literature (Muller-Landau, 2010; D’Andrea et al.,
2013; D’Andrea & O’Dwyer, 2021). The latter questioned the maximum number of
species that are able to ecologically coexist. We thus cannot directly link our metric
to previous results about coexistence. Indeed, that the probability of having two
species is greater for an intermediate level of βs is interesting to note, but does not
necessarily correlate with the probability of coexistence of more species. This would
be interesting to explore, such as Calcagno et al. (2006) did for the competition-
colonization trade-off model. Ecological coexistence (maximum number of species)
has been found to be greatly impacted by the dose-response slope βs (D’Andrea
et al., 2013; D’Andrea & O’Dwyer, 2021). The steeper their dose-response, the
more species coexistence (i.e. a higher number of species can coexist). This is
interpreted in term of niche occupancy and limiting similarity among competing
species. The fact that the higher βs, the highest species diversity is consistent with
our results that the higher βs the more branching (and globally the more coexistence
surface), because branching would generally promote the formation of more diverse
communities through adaptive radiation (Geritz et al., 1997).

Further adaptive diversification. While possibly any trade-off intensity allows
a two (and potentially more) species polymorphims (coexistence surface not null),
the conditions to form communities through gradual evolution are rather restricted.
The slope of the dose-response must be steep enough, and the stress distribution
must be rather broad. And the more species, the strongest those conditions. This
reminds us the results from Ravigné et al. (2009). In a trade-off on local adapta-
tion, they demonstrated that stronger trade-offs (convex trade-off function) restrict
the conditions under which a polymorphism can emerge through gradual evolution,
though it does not restrict the maintenance of polymorphism.

The role of spatial heterogeneity and its consequences for site regener-
ation. Since evolutionary dynamics can often occur even on ecological timescales
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(Carroll et al., 2007; Hendry, 2020; Hart et al., 2019), our results can have potential
consequences for site regeneration. Indeed, we found that a decrease in spatial het-
erogeneity can first minimize the probability that two species randomly chosen can
coexist, and second, minimize the probability for species to evolve through adaptive
radiation and form new communities this way. Third, it also reduces the possibility
for two (or potentially more) species to reach a dimorphic evolutionary attractor
through evolutionary processes, and to not collapse to a single monomorphic equi-
librium. Thus, site formation or regeneration might be easiest in case of high stress
heterogeneity. Yet, spatial heterogeneity is for instance found to decrease after a fire
(Wang et al., 2021), what may reduce the chance of site regeneration based only on
this TFT coexistence mechanism.

Conclusion. To summarize our main findings, this study demonstrates that the
evolution of stress tolerance and its stability are not driven by the same parameters.
The evolution of stress tolerance is mainly driven by the fecundity function and the
average stress level in the environment, but barely affected by the spatial hetero-
geneity level. On the other hand, the possibility of evolutionary diversification (the
evolutionary stability of the equilibrium) mostly depends on the survival function,
and is more affected by the spatial heterogeneity level than by the average stress
level: the highest the advantage of high-tolerance seeds over low-tolerance and the
broader the stress distribution, the more possibility of evolutionary diversification.
Then, dimorphic evolutionary equilibrium is only possible when the monomorphic
equilibrium was unstable (i.e. resulting in a possible diversification). Further evo-
lutionary diversification occurs in even more restricted conditions.

Our results suggest that the patterns of species coexistence obtained from an
ecological perspective (Muller-Landau, 2010; D’Andrea et al., 2013; D’Andrea &
O’Dwyer, 2021) are likely to be modified if one also considers the evolutionary dy-
namics of communities. Most of those results would not be easy to be directly tested
experimentally, because they are mostly based on differences between trade-off in-
tensities. This would require the use of different systems (i) who are governed by a
TFT, and (ii) who present various steepness for their dose-response and fecundity
functions. Both conditions are not easily identifiable in nature or in specific organ-
isms. Nevertheless, testing whether and how species tolerance and performance are
affected by evolution should remains more feasible, and could be a first logical step.
This study calls for future consideration of the evolution of communities governed
by a TFT, and more generally, of evolution in any coexistence mechanism scenario.
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Great things are not done by impulse, but by
a series of small things brought together.

Vincent Van Gogh

Abstract

Gene flow, through allele migration and spread, is critical in determining patterns of
population genetic structure, divergence and local adaptation. While evolutionary
theory has typically envisioned gene flow as a continuous connection among pop-
ulations, many processes can render it fluctuating and intermittent. We analyze
mathematically a stochastic mainland-island model in continuous time, in which
migration occurs as recurrent “pulses”. We derive simple analytical approximations
regarding how migration pulsedness affects the effective migration rates across a
range of selection and dominance scenarios. Predictions are validated with stochas-
tic simulations and summarized with graphical interpretations in terms of fixation
probabilities. We show that migration pulsedness can decrease or increase gene
flow, respectively above or below a selection threshold that is s ' − 1

N
for additive

alleles and lower for recessive deleterious alleles. We propose that pulsedness may
leave a genomic detectable signature, by differentially affecting the fixation rates of
loci subjected to different selection regimes. The additional migration created by
pulsedness is called a “pulsedness” load. Our results indicate that migration pulsed-
ness, and more broadly temporally variable migration, is important to consider for
evolutionary and population genetics predictions. Specifically, it would overall be
detrimental to local adaptation and persistence of small peripheral populations.

Keywords: Temporally variable migration, Effective migration rate, Stochastic
simulations, Gene flow, Genomic signature, Migration load
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3.1 Introduction

Gene flow between populations, as a major determinant of evolutionary dynamics,
has received a large interest since almost a century. Depending on its intensity and
interactions with other evolutionary forces, gene flow has a range of contrasting
effects (e.g. Felsenstein, 1976; Lenormand, 2002; Bürger, 2014; Tigano & Friesen,
2016). In a focal population, it can enhance genetic diversity, prevent inbreeding,
or on the contrary hamper local adaptation (Gomulkiewicz et al., 1999; Garant
et al., 2007; Bürger & Akerman, 2011). Across populations, it controls the spatial
spread of novel mutations, the maintenance of polymorphisms, the level of popula-
tion divergence and, eventually, the possibility of speciation (e.g. Maynard-Smith,
1966; Johnson et al., 2000; Yeaman & Otto, 2011; Mailund et al., 2012; Rousset,
2013; Feder et al., 2019). These effects have been studied in a range of spatial con-
figurations, such as simply two interconnected populations (Maynard-Smith, 1966;
Yeaman & Otto, 2011), mainland-island systems (Johnson et al., 2000; Bürger &
Akerman, 2011) or metapopulations (Slatkin, 1981; Rousset, 2013; Feder et al.,
2019).

However, temporal variability in the flows of propagules is rarely investigated
in theoretical studies (Peniston et al., 2019): the process of migration (here used
in the sense of dispersal) is usually considered as constant, even though it is gov-
erned by time-fluctuating and potentially highly variable phenomena. As causes of
temporal variability of migration rates, the most frequently cited phenomena can
be classified in three categories. A first category relates to environmental varia-
tions. Geographical barriers can change depending on land bridges (Morris-Pocock
et al., 2016; Keyse et al., 2018), sea levels fluctuations (Hewitt, 2000) or habitat
fragmentation (Peacock & Smith, 1997).

Dispersal can also be affected by variation in oceanic and atmospheric (Renner,
2004; White et al., 2010; Smith et al., 2018; Benestan et al., 2021; see also Catalano
et al., 2020 for a recent attempt to quantify dispersal variability). Last, but not
least, dispersal is also affected by extreme meteorological or climatic events such as
floods and storms (Reed et al., 1988; Boedeltje et al., 2004) that can provoke raft-
ing events (Garden et al., 2014; Carlton et al., 2017). These extreme phenomena
are bound to become more prevalent with climate change (Masson-Delmotte et al.,
2018). A second category includes variations caused by behavioral processes, such as
ballooning (Bishop, 1990) or various forms of group or clump dispersal (Soubeyrand
et al., 2015). And finally, a third category encompasses variation related to dispersal
by animal vectors (Yamazaki et al., 2016; Martin & Turner, 2018) or human activ-
ities (through ballast waters for instance, see Carlton & Cohen, 2003). All three
categories are known to result in variable dispersal rates, in the form of random
fluctuations (Yamazaki et al., 2016), intermittent flows (Hewitt, 2000; Keyse et al.,
2018) or episodic bursts of migration (Peacock & Smith, 1997; Reed et al., 1988;
Carlton & Cohen, 2003; Reiners & Driese, 2004; Morris-Pocock et al., 2016). The
latter form is particularly common and is often referred to as “pulsed migration”
(Boedeltje et al., 2004; Bobadilla & Santelices, 2005; Folinsbee & Brooks, 2007;
Smith et al., 2018; Martin & Turner, 2018).

Despite the strong evidence for temporally variable migration patterns, compar-
atively little has been done theoretically to explore their consequences for popula-
tion genetics and adaptation. Nagylaki (1979), Latter & Sved (1981) and Whit-
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lock (1992) have all used discrete-time island models and considered neutral genetic
variation only (infinite alleles model). All three concur in predicting that temporal
variability in migration rates should decrease effective gene flow, and thus increase
differentiation among populations (see also Rousset, 2013). In a two-population
model, Yamaguchi & Iwasa (2013), and following papers, studied the fixation of
incompatible mutations and the progress to allopatric speciation, and found that
speciation occurred faster with variable migration. Some studies have investigated
non-neutral cases in spatially heterogeneous environments, in particular in the con-
text of source-sink population systems. Gaggiotti & Smouse (1996) found that
spacing out migration events, while keeping the mean number of migrants constant,
decreases the level of genetic variation in the sink population. Rice & Papadopoulos
(2009) studied a mainland-island model and suggested that neglecting migration
stochasticity would generally lead to overestimating the impacts of migration on
adaptation. More recently, Peniston et al. (2019) extended the results of Gaggiotti
& Smouse (1996), investigating the impact of temporally pulsed migration on the
level of local adaptation in the sink population. They found that spacing out mi-
gration events (with a constant mean number of migrants) can either hamper or
facilitate adaptation in a harsh sink environment, depending on genetic scenarios.
In a different context, Matias et al. (2013) studied specific diversity in a metacommu-
nity model, and found that with randomly fluctuating migration rates, larger mean
dispersal values were needed to produce the same local species richness. Overall,
these studies seemingly converge on a negative impact of dispersal variability on
effective migration rate. However they remain few and limited in their scope. Most
of them underline the need for more attention being given to the consequences of
migration variability.

The present study aims at providing a more comprehensive appraisal of the con-
sequences of temporal variability in migration, considering both neutral, beneficial
and deleterious alleles, under various forms of selection and levels of dominance. We
will consider a mainland-island system where a small island population receives mi-
grants from a large mainland population (Wright, 1931; Felsenstein, 1976; Bürger,
2014). In the island population, we will model the dynamics of allele fixation in
continuous time, at one locus, in diploid individuals. We will focus on the case
of “pulsed” migration patterns, i.e. gene flow from the mainland occurs as bursts
of migration of variable size and frequency (Rice & Papadopoulos, 2009; Peniston
et al., 2019, e.g.). We explore the range of migration “pulsedness” from continu-
ous migration (independent migration of individuals) to very pulsed migration (rare
migration of groups of individuals).

A simplified mathematical model using a low-migration limit is introduced and
analyzed. We derive a simple graphical criterion that allows to predict how the level
of migration pulsedness affects the effective migration rate. Predictions are vali-
dated with Monte-Carlo simulations that relax timescale separations and explicitly
describe the stochastic demography of the island population.

We show that in the neutral case, migration pulsedness reduces the effective
migration rate (negative impact), decreasing the rate of allele fixation. However,
with selection, this conclusion can change quantitatively and even reverse. When
the selection coefficient falls below some threshold value, we show that the qualita-
tive impact of migration pulsedness can switch sign, so that the effective migration
rate increases for deleterious alleles. This threshold is approximated as s = − 1

N
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for co-dominant alleles, and becomes lower for recessive deleterious alleles. More-
over, for sufficiently recessive deleterious alleles, migration pulsedness can have a
non monotonous effect on the effective migration rate. The interplay of selection,
dominance and drift is thus found to play an essential role in determining the effect
of migration variability on effective migration rate.

Our results indicate that the effect of migration pulsedness is not uniform across
loci subject to different selection regimes and dominance levels. The predictions
obtained generalize several earlier theoretical results derived for specific contexts.
More practically, we show migration pulsedness effectively homogenizes the fixation
rate across the genome. This impacts the dynamics of genetic load and creates an
additional migration load that we call the “pulsedness” load. Migration pulsedness
thus leaves a characteristic signature across the genome, which could be detected
using available genomic data. Overall, our results highlight migration variability as
an important aspect of gene flow to be taken into account. Specifically, pulsed mi-
gration patterns would overall be less conducive to local adaptation and persistence
of small peripheral populations.

3.2 Methods

3.2.1 Mainland-island model

A very large mainland population is supposed to send migrant individuals into a
small island population of finite size N . Individuals are diploid (so that we consider
2N alleles) and mate randomly within the island population. We consider an arbi-
trary locus at which some allele A is fixed in the mainland whereas some other allele
a is fixed, initially, in the island population. The three possible genotypes AA, Aa
and aa have fitness values 1+s, 1+hs and 1 in the island population, with h ∈ [0, 1]
the degree of dominance as usually defined (Thurman & Barrett, 2016). Note that
our results also apply to haploids if one considers genic selection (h = 0.5) and takes
the number of genes to be N rather than 2N . For simplicity, mutation is neglected.
The system is modelled in continuous time (overlapping generations, Moran, 1962),
with a stochastic logistic demography that is assumed to bring populations back to
their carrying capacity following a migration event.

Migration occurs as discrete migration events (pulses of migrants) corresponding
to the arrival of n individuals into the island population, which (transiently) takes
the total population size to N + n (see Yamaguchi & Iwasa, 2013, for a similar
description of migration). The overall intensity of migration is controlled by the
migration rate m, the mean number of migrants per unit of time. We impose that
the more individuals arrive per migration event (the larger n), the less frequent are
migration events, such that the mean number of migrants per unit of time m stays
constant. The frequency of migration events is thus m/n. For a given migration
rate m, we consider increasing migration pulsedness levels, from n = 1 to larger
and less frequent packs of migrants reaching the island (n > 1). The case n = 1,
corresponding to the steady and independent migration of individuals (“continuous
migration”), is taken as a reference against which the consequences of migration
pulsedness will be evaluated.

The degree of migration pulsedness is thus quantified by parameter n. The
number of migration events occurring over a period of time Te is assumed to follow
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Figure 3.1: Number of migrants as a function of time in the continuous case (n = 1,
independent migration of individuals) and in a pulsed migration case (n = 15). The
left panel averages the number of migrants over 1 generation. The right panel is
a close-up over 5 generations, showing the arrival of individual migrants at each
migration event.

a Poisson distribution with ratem/n so that a mean ofmTe/nmigration events occur
per unit time, with variance also equal to mTe/n. The variance in the number of
migrants (n×mTe/n) over that period is then n2mTe/n = nmTe. Parameter n thus
quantifies the degree of overdispersion (variance inflation) in the number of migrants
per unit of time, relative to the continuous case. Under this model, migration events
thus range from very frequent and of small intensity, with minimal temporal variance
in the number of migrants per generation (low n), to very infrequent and intense,
with large temporal variance in the number of migrants per generation (large n; see
Fig. 3.1b).

To reflect the isolation of the island population and avoid regimes in which its
dynamics is entirely overtaken by migration (in which case genetic homogenization
is a trivial matter), the migration rate m should have small enough values. More
precisely, if the average generation time (here intended as the average time for N
selective deaths to occur, see Moran, 1962) is T , then mT should be no greater than
roughly 1–10. This corresponds to the “one migrant per generation rule” (Mills &
Allendorf, 1996, see also Blanquart et al., 2013).

We are interested in how the fixation of mainland alleles on the island varies
with the pulsedness level n, across population sizes (N) and selection parameters (s
and h). In both the following mathematical analysis and stochastic simulations, we
will derive and calculate this fixation rate. Then, to facilitate comparisons across
parameter values, we will compute, in both methods too, the effective migration rate
me, defined as the migration rate that would produce exactly the same allele fixation
rate if migration were continuous (i.e. n = 1). This definition is a variant of other
definitions (Wang & Whitlock, 2003; Kobayashi et al., 2008; Rice & Papadopoulos,
2009) adapted to our study of migration pulsedness. The value of me is m when
n = 1, and deviates from m for larger n. If, for some level of migration pulsedness,
me is larger (resp. lower) than m, we will say that the effect of pulsedness is positive
(resp. negative).

The next two paragraphs describe (i) the deterministic mathematical model with
its related assumptions, and (ii) the stochastic simulation model, in which some of
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these assumptions can be relaxed.

3.2.2 Mathematical analysis

To render the model analytically tractable, we make the usual assumption that
demography (population regulation) is relatively fast, so that population size is
effectively constant at N in the island. However we cannot employ, as is also usual
in population genetics, a diffusion approximation. The latter would imply making
n very small relative to N , de facto preventing the investigation of pulsed migration
patterns (see Kimura, 1962; Yamaguchi & Iwasa, 2013). Instead, we use another
approximation, by assuming that migration events are sufficiently rare (m/n is small
enough), so that genetic drift and selection would typically result in fixation or
loss before the next migration event occurs. Formally, this time scale separation
holds if the average time between two migration events (n/m) is much larger than
the average time to fixation after one migration event. From classical population
genetics theory (Kimura & Ohta, 1969; Whitlock, 2003; Otto & Whitlock, 2013), we
can show that, in the case of n = 1 and s = 0 (the most disfavorable case in terms
of fixation time), this holds if m � 1

4NT
(see S.I. section C.1.1). This condition is

conservative: the time scale separation is more easily satisfied when s 6= 0 or n > 1.
We can see that this mathematical constraint is smaller than the “one migrant per
generation rule” constraint introduced above (mT < 1–10) by a factor 4N (i.e. by
2–3 orders of magnitude for the N values we will consider).

Under these assumptions, at each migration event, n homozygous AA individuals
arrive into the island population containing N aa individuals. The initial frequency
of the incoming allele is f = 2n

2n+2N
= n

N+n
and the fast population regulation

quickly takes population size back to N . There are two possible outcomes after such
a migration event: either the mainland allele goes to fixation (the migration event
is said to be a success), or it disappears and we revert to the initial state (failure)
(see also Yamaguchi & Iwasa, 2013). The mainland allele ultimately gets fixed in
the island population, as soon as the first successful migration event occurs. The
probability that the mainland allele has not yet gotten fixed decreases exponentially
in time depending on the rate of migration events (m/n) and on the probability
of success of each particular event. The latter is well described by the fixation
probability of an allele with initial frequency f in an isolated population of size
N , written u (f,N, s, h). Expressions of u can be readily obtained from classical
diffusion approximations (Kimura, 1962; Whitlock, 2003). To simplify notations,
we write interchangeably u (f) or u (f,N, s, h).

3.2.3 Simulations

In addition to the analysis of the mathematical model presented above, we also
performed simulations to validate predictions. We simulated an island population
receiving migrants from the mainland as a continuous time birth-death-immigration
process, using a Gillespie algorithm. The population dynamics of the island popu-
lation follows a stochastic logistic model with carrying capacity K (Goel & Richter-
Dyn, 1974). Each diploid individual has some basal death rate d, birth rate b = d,
and density dependence acts through a larger increase in death rate than in birth
rate with population density (the death rate is equal to dN

2

K
while the birth rate
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is equal to bN). Selection occurs at reproduction (fertility selection). See S.I. sec-
tion C.1.2 for a detailed description of the model.

The island is initially fixed for allele a and at carrying capacity N = K. At the
beginning of a simulation it starts receiving AA migrants from the mainland under
the stochastic migration process described above. A simulation ends when allele
A gets fixed in the island. We conducted 10,000 replicates per parameter set to
capture the stochasticity in migration times, population size, and genetic drift. To
speed up simulations, we optimized the Gillespie algorithm as explained in the S.I.
section C.1.2. Effective migration rates were calculated from the realized fixation
times using a pre-calculated abacus that returns me as a function of fixation time
(see S.I. section C.4 for details and examples).

We systematically varied selection parameters h (from 0 to 1) and s (from −0.05
to 0.05, see Thurman & Barrett, 2016), the carrying capacity N (from 50 to 200,
see Palstra & Ruzzante, 2008; Peniston et al., 2019), and migration rate m. Having
chosen that the duration T of a generation is 1 (with d = N , see Moran, 1962), we
vary m from 0.001 (which fits the mathematical assumptions), to 10 (which deviates
from it by three orders of magnitude).

3.3 Results

3.3.1 A general criterion to predict the impact of migration
pulsedness

Under our simplifying mathematical assumptions, the fixation rate of the mainland
allele equals the product of the migration event rate (m/n) and the probability
of success u

(
n

N+n

)
of a particular migration event. By definition of the effective

migration rate, we thus have me

1
u
(

1
N+1

)
= m

n
u
(

n
N+n

)
. It follows that me > m (i.e.

pulsedness has a positive effect) if and only if:

u

(
n

N + n

)
> nu

(
1

N + 1

)
(3.1)

This amounts to comparing u
(

n
N+n

)
(the probability of fixation of 2n allele copies

immigrating in a single migration event) to n times u
(

1
N+1

)
(the mean number of

copies that would have fixed had they arrived as n independent events). In other
words, the criterion determines whether the probability of fixation (through genetic
drift and selection) from a group of migrants is sufficiently greater than that from
a single migrant to compensate for the reduced frequency of migration events.

The fixation probability u is a monotonically increasing function from zero to
one as n→∞ (Kimura, 1962). Compared to the linearly increasing term nu

(
1

N+1

)
(eq. 3.1), it is inevitably lower for large enough values of n, i.e. there is some n1

value beyond which pulsedness will always have a negative effect.
If function u is strictly concave, there is no other crossing point. This is true for

frequency-independent selection and non-additive allelic effects in diploids (Kimura,
1962; Whitlock, 2003). Therefore there are only two possibilities: either u

(
n

N+n

)
is

always below nu
(

1
N+1

)
, and migration pulsedness always has a negative effect, i.e.

it reduces the effective migration rate (case A, see fig. 3.2), or it can be initially
greater than nu

(
1

N+1

)
, and falls below at n = n1 (case B, see fig. 3.2). In that
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Figure 3.2: Graphical criterion to predict the effect of migration pulsedness (positive
or negative) on the effective migration rate. The three panels represent the three
possible situations. The effect is either always negative (case A) or depends on the
value of n (cases B and C). n1 and n2 corresponds to the pulsedness values which
have the same impact on fixation rate as a continuous migration. n+ (resp. n−)
corresponds to the pulsedness value which maximizes resp (minimizes) the effective
migration rate. f = n

N+n
.

case, migration pulsedness on the contrary has a positive effect, i.e. it increases the
effective migration rate, on (1, n1). The bifurcation from case A to case B occurs
when the initial slope of u(f) with respect to n becomes greater than u

(
1

N+1

)
.

More generally, function u can have an inflexion point and switch from convex to
concave. This can occur when there is negative frequency-dependent selection, e.g.
for recessive deleterious mutations in diploids (Kimura, 1962). In that case (case C,
fig. 3.2), a second crossing point n2 can exist, so that migration pulsedness can have
a positive effect (increase the effective migration rate) for an intermediate range of
pulsedness levels (n2 < n < n1). Bifurcations may occur from case C to case B (n2

collapses into n = 1) or from C to A (n1 and n2 annihilate each other). This is the
entire set of possibilities.

In addition to the threshold values n1 and n2, one value of interest is n+, the
pulsedness level that maximizes the effective migration rate me compared to m
(or mathematically, which maximizes the positive difference between u

(
n

N+n

)
and

nu
(

1
N+1

)
). It is different from 1 only in cases B and C (fig. 3.2). Similarly, we can

define n−, a value that minimizes me compared to m, which is different from +∞
in case C only.

This general criterion allows to determine the consequences of migration pulsed-
ness for any type of genetic variation, using simple graphical arguments. We will
apply it to specific cases just below.

3.3.2 Neutral alleles

The fixation probability for neutral alleles is known to be (Otto & Whitlock, 2013):

u (f) = f

In that case, it is clear that n
N+n

< n 1
N+1

for all n > 1. Thus, migration pulsedness
should invariably decrease the effective migration rate (case A, fig. 3.2a). Simulations
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(blue points fig. 3.3a) confirm this mathematical prediction (for m = 0.001 < 1
4NT

),
which continuous to hold when moving out of the mathematical limits (for m = 0.1).

Intuitively, this result can be explained by greater competition among A alleles in
the case of pulsed migration. The rate of migration events is inversely proportional
to n, but the initial frequency of migrant alleles (and thus the fixation probability)
increases less than linearly with n. As a result, the former effect dominates and the
effective gene flow drops as n increases. The less-than-linear increase of probability
of success is caused by n in the denominator of f : it represents the fact that with
pulsed migration, packs of immigrant alleles do not only compete with resident
alleles, but also among themselves, and more and more so as pulsedness increases.
It is therefore less efficient, per capita, for alleles to arrive in a clustered way, rather
than being more temporally interspersed.

3.3.3 Alleles under selection with co-dominance
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Figure 3.3: Neutral and co-dominance cases. (a) Effective migration rate (relative
to real migration rate m) as a function of n, for different selection coefficients s
and three migration rates. Solid lines are mathematical predictions and dots are
simulated values. Here, N = 100. The dashed line at 1 corresponds to case in which
the effective migration rate is equal to the real migration rate. Above this line,
the effect of migration pulsedness is positive, below it is negative. (b) Summary of
curves for any s. The green solid line represents the theoretically expected n1 curve
as a function of s, and the blue one shows n+. Dashed lines indicate the slopes of n1

and n+ at s = sl1. Note that the slopes are pretty high (this figure zooms around
s = −1/N), to the order of 100, 000. Here, N = 100.

With co-dominance (h = 1/2), or frequency-independent selection in haploids,
the probability of fixation can be expressed as

u(f) =
1− exp (2Nsf)

1− exp (2Ns)

This expression is derived from a diffusion approximation that requires large enough
population sizes (Kimura, 1962; Maruyama, 1970; Whitlock, 2003).

In this case, function u is concave, and criterion (3.1) thus follows either case
A (fig. 3.2a) or case B (fig. 3.2b), depending on the selection coefficient s. The
switch from case A (as for neutral alleles) to case B occurs for some negative value
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of s called sl1. Alleles that are sufficiently selected against (s < sl1) fall into case B:
migration pulsedness increases the effective migration rate, at least for small levels of
pulsedness (i.e. if n < n1). All other cases (slightly deleterious or beneficial alleles)
yield case A and the same qualitative predictions as for neutral alleles. Overall,
migration pulsedness favors the fixation of deleterious alleles and it disfavors the
fixation of beneficial alleles. Doing so, alleles least likely to establish (deleterious)
are favored, while alleles most likely to establish (beneficial) are disfavored. This
results in a homogenisation of responses across alleles which carry different selection
coefficients.

Through a local approximation around n = 1 and s = 0 (see S.I. section C.3 for
details), we can show that sl1 ≈ − 1

N
(fig. 3.3b). This indicates that counter selection

must be strong enough relative to drift for a positive effect of migration pulsedness to
arise (see also Wright, 1931; Lande, 1994). Furthermore, close to sl1, n1 ≈ 2n+ (see
S.I. section C.3) and both slopes are pretty steep, of the order of N2 (fig. 3.3b). The
transition is very sharp, and the value of n1 quickly becomes very high. This means
that case B will in practice correspond to a positive effect of migration pulsedness
for alleles with s < sl1, since the values of pulsedness required for the effect to
revert to negative are most of the time unrealistically elevated (n = 100 or more;
see fig. 3.3b).

These predictions were verified in stochastic simulations (fig. 3.3a). Simulations
made close to the mathematical limit (m = 0.001) show very good quantitative
agreement (see also S.I. section C.6.2), which remains rather good even 3 orders
of magnitude away from it (m = 1). It is only when reaching the “one migrant
per generation” limit (m = 10) that quantitative deviations appear, especially for
negative s values. As m increases beyond our mathematical assumptions, positive
effects of pulsedness are weakened or shifted to more negative s values (fig. 3.3a).
In all cases, mathematical predictions are qualitatively well supported.

An increase in population size influences the above predictions in two ways:
by making sl1 closer to zero, and by increasing the slopes of n1 and n+ (fig. 3.3b).
Therefore, larger population sizes make positive effects of migration pulsedness more
likely, all else being equal. Approximately, figure 3.3 becomes almost invariant to
population size if rescaling both axes by N , i.e. in terms of n/N and Ns (see S.I.
fig. C.4). This indicates that predictions are largely controlled by the relative level of
migration pulsedness n/N and the balance between selection and drift (Ns; Wright,
1931; Lande, 1994).

3.3.4 Introducing dominant and recessive alleles

An expression for function u in the general case of any dominance is

u(f) =

∫ f
0
G(x)dx∫ 1

0
G(x)dx

with G(x) = exp [2Ns((2h− 1)x2 − 2hx)] (Kimura, 1962).
As long as the level of dominance h is higher than a threshold value hc (fig. 3.4),

whose value is numerically found to be hc ' 0.326, predictions are qualitatively
identical to the case of co-dominance (i.e. a pattern involving cases A and B). The
main quantitative difference is that the value of sl1 gets closer to 0 as h increases
(sl1 depends on h): it is therefore slightly more likely to have a positive effect of
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Figure 3.4: The effect of migration pulsedness as a function of selection coefficient
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migration pulsedness for dominant deleterious alleles than for recessive deleterious
alleles.

In contrast, predictions differ qualitatively if h moves below hc: moving from
positive to negative s values, we first have a bifurcation from case A to case C (at
another threshold value sl2, that also depends on h), and then a bifurcation from
case C to case B (at sl1). The positive effect of migration pulsedness first appears (at
sl2) for intermediate values of n (A→ C bifurcation; orange line in fig.3.4) instead of
low n, i.e. it requires a minimal level of pulsedness to occur. When s < sl1 however
(after the C→ B bifurcation; purple line in fig.3.4), the positive effect occurs for any
n, as was the case for less recessive alleles. For deleterious mutations that are fully
recessive (h = 0), case C is the rule (when s < sl2). However, as the minimal level
of pulsedness required to get a positive effect is quite large (n2 = 40–100) in most
cases, the effect would always be negative in any practical sense. Overall, when
alleles are more recessive, positive effects occur under more restricted conditions
(greater pulsedness levels and/or stronger counter-selection).
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Figure 3.5: Genetic load (a) and pulsedness load (b) in the island population, as a
function of time after onset of migration, for different levels of migration pulsedness
(n). A large amount of unlinked loci were considered throughout the genome, with
a distribution of s values normal, centered on 0, and with standard deviation 0.01
(grey curve in (c)). Pulsedness load is first positive, when mostly non maladapted
alleles fixate, then negative, when mostly maladapted alleles are left to fixate, and
eventually tends to zero when all mainland alleles have fixed. (c) Genomic signature
of pulsedness. Continuous fits (assuming n = 1; dashed lines) of synthetic datasets
(probabilities of fixation of mainland alleles), as a function of s. Synthetic datasets
were generated from the mathematical model (i.e. in the limit m→ 0), for the same
distribution of s values (grey curve) as used in (a) and (b), and for three pulsedness
levels (5, 15 and 90). Population size was N = 60 and the time of observation tobs
was set so that three migration events or more have occurred on average in each
case. More (or less) dramatic differences can be observed for other choices of tobs.
Population size N and elapsed time tobs were treated as unknown and estimated
by maximum likelihood (see S.I. section C.8 for details). The best continuous fits
returned estimated parameters N ′ = 60 and t′obs = 14.2 (for n = 5), N ′ = 59 and
t′obs = 35.7 (for n = 15), and N ′ = 57 and t′obs = 58.2 (for n = 30). The best
continuous fit

3.3.5 Mean fitness and pulsedness load

An overarching result is that migration pulsedness homogenises fixation over loci
subjected to different types of selection (see previous section), and this has important
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consequences at the level of entire genomes. In particular, it impacts the dynamics of
genetic load. Genetic load at time t is defined as the relative difference in between
the maximum fitness value theoretically reachable and the mean absolute fitness
actually obtained at this time (see S.I. section C.7.2 for more details). Once an island
population is subjected to gene flow from the mainland, beneficial alleles establish
first (increasing the fitness), followed by neutral alleles, and eventually deleterious
alleles. To illustrate this, we consider a large number of independent (unlinked)
loci in the genome, whose selection coefficients follow a normal distribution centered
on s = 0. As expected, we observe that the genetic load initially declines and
eventually goes up again (fig. 3.5a). This dynamics will differ depending on the
level of migration pulsedness, because the latter affects allele fixation rate in different
ways depending on s. As migration is more pulsed, the initial decline of genetic load
is slower, the minimal load value is larger and its occurrence is delayed in time, and
the eventual increase is also slower (fig. 3.5a).

As a consequence, the level of genetic load at any time depends on the level
of migration pulsedness. This results in a “pulsedness load” (fig. 3.5b), i.e. an
additional component of genetic load brought about by the pulsed nature of migra-
tion (the difference in between the genetic load in the pulsed and in the continuous
cases). This pulsedness load may account for a non negligible part of the total
load (> 10% in the example of figure 3.5). Variations of the pulsedness load will
of course depend on the distribution of allelic effects among migrants (see fig. C.6
in S.I.). The positive part of pulsedness load will be most important if migrants
carry a large proportion of either beneficial (for which n decreases me, see fig.3.4)
or relatively strongly deleterious mutations (for which n increases me, see fig.3.4).
Thus, in most cases, migration pulsedness would promote maladaptation and coun-
teract local adaptation (see fig. C.6 in S.I.). Note that in the example presented
in figure 3.5, the pulsedness load becomes negative, reflecting the point at which
deleterious but still pulse-disadvantaged alleles (sl1 < s < 0) fix. See figure C.6
in S.I. for other examples with a different distribution of selection coefficients for
mainland alleles.

3.3.6 The genomic signature of pulsedness

As migration pulsedness has a negative effect on the effective migration rate for all
neutral and beneficial alleles (fig. 3.4), it would typically lower the overall genomic
migration rate. Obviously, if one had independent estimates of the migration rate
(m), it would be rather straightforward to detect migration pulsedness by comparing
observed fixation rates with those predicted under continuous migration. However, it
is notoriously difficult to estimate average migration intensity, and such information
is most often lacking (Wang & Whitlock, 2003). Even so, the inhomogeneous impact
of migration pulsedness across loci might leave a distinctive fingerprint in the genome
(a genomic signature), compared to continuous migration regimes. To detect this,
one would need genomic data to assess the fixation status (or frequency) of mainland
alleles in the island population, at many independent loci, at some point in time. In
addition, one should know, or have an indication of, the type of selection that those
loci experience (ideally, a range of h and s values). One could then compare the
fixation rates across loci in order to detect the homogenizing effect that migration
pulsedness introduces. This can be achieved by fitting the observed frequencies with
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a model that assumes continuous migration, and test whether the data deviate from
the model in the predicted direction.

The principle of this approach is illustrated in Figure 3.5c. We assumed a
Gaussian distribution of selection coefficients of mainland alleles, centered on s = 0,
across la large amount of independent biallelic loci in the genome. For simplicity,
all alleles were assumed co-dominant (h = 0.5). Using the mathematical model,
we generated artificial datasets (probabilities of fixation at each locus; see S.I. sec-
tion C.7.1) under different levels of migration pulsedness, and fitted these data with
the continuous (n = 1) model by maximum likelihood (see S.I. section C.8). Un-
known parameters were: population size N , migration rate m, and time since onset
of migration tobs (see S.I. section C.8 for details).

As shown in Figure 3.5c, for low levels of migration pulsedness (n = 5), simulated
datasets can be fitted quite well with a continuous migration model. However,
as migration gets more pulsed (n = 15 or 30), the best continuous fit obviously
deviates from the simulated data (in addition to yielding biased parameter estimates
for migration rate and time since onset of migration; Figure 3.5). Specifically, it
overestimates the fixation of beneficial alleles and underestimates the fixation of
deleterious alleles, as predicted (fig. 3.5). It might therefore be possible to construct
an operational statistical test that exploits this signal to detect migration pulsedness
from genomic snapshots.

3.4 Discussion

Temporal variability in migration is likely pervasive in nature. Plants, fungi, seashells,
birds and marine invertebrates are most represented in the literature about variable
dispersal, but there is no reason that other taxa would not be concerned, includ-
ing hominoids (Folinsbee & Brooks, 2007). Yet classical evolutionary theory largely
rests on the assumption of constant migration rates (Johnson et al., 2000; Yeaman
& Otto, 2011; Mailund et al., 2012; Rousset, 2013; Peniston et al., 2019, e.g.). Con-
sidering the growing evidence for non-constant migration processes, it is important
to gain a general theoretical understanding of their evolutionary consequences.

We here focused on pulsed migration patterns (Yamaguchi & Iwasa, 2013; Penis-
ton et al., 2019). Albeit a specific form of migration variability, it is arguably quite
common, and it allowed us to make significant analytical progress. Furthermore,
given our stochastic modelling framework, which makes migration pulses randomly
distributed in time, and based on our mathematical results, we can reasonably ex-
pect our predictions to apply more broadly to other forms of “variable” migration
patterns, intended as a temporal overdispersion in the number of migrants per gen-
eration.

Confirming this, our predictions for neutral alleles are consistent with the few
earlier population genetics analyses, which used modelling approaches entirely dif-
ferent from ours (Nagylaki, 1979; Latter & Sved, 1981; Whitlock, 1992; Rousset,
2013). Indeed, for neutral variation, we found higher levels of migration pulsedness
to decrease the effective migration rate, all else being equal. In our model, the inter-
pretation is that a larger initial frequency of immigrant alleles less than compensates
for the accompanying lower frequency of migration events, so that the overall effect
of pulsedness on fixation rate is negative. This is because migrant alleles arriving
clustered in time compete more among themselves, compared to when arriving more

Flora Aubree 101



Adaptation in an unsteady world

evenly spaced out in time.

Unlike earlier analyses though, our approach is able to address arbitrary forms
of selection, not just neutral alleles. Importantly, predictions were found to de-
pend quantitatively, but also qualitatively, on the type of selection. The qualitative
prediction that migration pulsedness negatively impacts gene-flow remains true for
beneficial alleles, even though the effect size increases with selection, and for slightly
deleterious alleles. This means that, for those selection scenarios, we overestimate
the consequences of migration if we omit to consider its variability (see also Rice
& Papadopoulos, 2009). However, for deleterious alleles, the effect weakens and at
some point switches sign. For sufficiently strong counter-selection (below s ≈ −1/N
for additive alleles, a value reminiscent of the selection-drift balance; Wright, 1931),
the effect of migration pulsedness switches to positive: pulsedness now increases
the effective gene flow. This prediction radically differs from predictions based on
neutral alleles.

Results with selection can be understood by the contribution of migrant alleles to
the mean fitness at their locus. Compared to neutral alleles, beneficial alleles arriving
in a more clustered way increase the mean fitness, thereby reducing their per-capita
advantage, which further reduces the effective gene-flow. In contrast, deleterious
alleles arriving in a pulsed manner lower the mean fitness, thereby alleviating their
per-capita selective disadvantage. For sufficiently counter-selected alleles, this posi-
tive effect of lowering the mean fitness exceeds the negative effect of competing with
identical alleles, switching the overall effect of the fixation probability to positive.

Selection was not the only genetic factor determining the impact of migration
pulsedness. The dominance level (h) was also found to impact the results, in qual-
itative terms. Results are qualitatively similar for dominant alleles, with a slight
tendency of positive effects of pulsedness to be more prevalent as h increases. In
contrast, results for recessive alleles, especially below h = 0.3, differ significantly. In
quantitative terms, stronger selection values are required to obtain the same results
as for co-dominant alleles, presumably due to the fact that recessive alleles are ’hid-
den’ in heterozygotes at low frequencies. Moreover, there is a qualitative difference
for recessive deleterious alleles: positive effects of migration pulsedness may also re-
quire migration to be sufficiently pulsed. In other words, migration pulsedness has
a non-monotonous effect on gene-flow for those alleles, and there exists a minimum
level of pulsedness above which the effect switches from negative to positive. This
result echoes those of Peniston et al. (2019), who found that pulsedness levels were
favorable to local adaptation in some intermediate pulsedness scenarios, in partic-
ular when considering density-dependent selection. It is interesting to note that
the threshold value of dominance we found (h = 0.3) is close to the average value
of dominance for mildly deleterious mutations in data and theory, as reported by
Manna et al. (2011).

Our mathematical results were derived from a low-migration limit and with con-
stant population size, but were found to hold in stochastic simulations with not-so-
low migration and population size fluctuations. In general, increasing the overall
migration rate shifted the predictions toward a negative effect of migration pulsed-
ness on gene-flow (Fig. 3.3). This is presumably caused by the direct contribution
of migration to fixation in those cases (a “mass effect”), which increases the relative
importance of selection/drift, and is unaffected by pulsedness. This mass effect,
i.e. the fact that migrant alleles persist and accumulate over consecutive migration
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events, can indeed explain the observed shift towards larger values of Ns. Mathe-
matically speaking, an increase in initial frequency of migrant alleles due to the mass
effect is equivalent to a decrease in population size (see S.I. section C.6.1). It thus
requires higher values of N (or s) to get the same effects of migration pulsedness
(see S.I fig. S4).

From a whole-genome perspective, the overarching result is that migration vari-
ability homogenizes the effective migration rate across alleles with different selection
coefficients: it increases it for counter-selected alleles, and reduces it for positively
selected alleles. As a consequence, throughout the genome, the fixation of beneficial
variation will be slowed down, while the fixation of deleterious and maladaptive
variation will be promoted. Obviously, the net impact on average population fitness
will generally be negative, with higher levels of genetic load. We call this additional
component of genetic load brought-up by the pulsed nature of migration the “pulsed-
ness load”. More pragmatically, the differential impact of migration pulsedness on
different loci might be used as a detectable signature in genomic data. One can dis-
tinguish loci with different selection pressures in the focal population. With a single
snapshot of allelic frequencies (or fixation probabilities) at those many different loci
across the genome provided, it may be possible to fit a continuous-migration model,
and detect the homogenization of fixation rates caused by migration pulsedness, as
exemplified in figure 3.5. Of course, building such a statistical test and evaluating
its power and applicability is beyond the scope of this article. Still, the approach
has the advantage of requiring allele frequency data only, e.g. pool-seq data and
Site Frequency Spectrums (SFSs), that are increasingly available for a broad range
of organisms. Existing methods to infer migration pulses would typically use indi-
vidual genome sequences or haplotypes to detect repeated admixture events, and
exploit neutral variation only (Marchi et al., 2021). The approach we sketched out
here could thus provide a way to improve our methodological arsenal to infer the
occurrence of pulsed migration from genomic data.

Our results have direct implications for biological conservation, population man-
agement and island biology. For instance, population reinforcement usually takes
the form of periodic releases of groups of individuals, whose frequency and intensity
must both be optimized. Our results suggest that rare introductions of relatively
large numbers of individuals, i.e. pulsed introduction patterns, would favor the
spread into the focal population of deleterious mutations, and disfavor the estab-
lishment of favorable mutations. In short, it is detrimental to population fitness and
local adaptation, relative to more continuous fluxes of individuals, possibly compro-
mising population viability and persistence. Of course, this impact would combine
with other effects, in particular demographical effects. It has been shown for in-
stance that in small populations subject to Allee effects, pulsed migration patterns
can be favourable to population establishment and persistence (Rajakaruna et al.,
2013; Bajeux et al., 2019). Similarly, Peniston et al. (2019) analyzed the impact of
migration pulsedness for small peripheral populations that are demographic sinks.
In the case most similar to our assumptions, Peniston et al. (2019) observed that mi-
gration pulsedness could promote local adaptation, in superficial contradiction with
our results for strongly deleterious alleles. However, to our results the population
was small but viable, whereas in theirs, the sink population was sustained through
gene-flow only. This implies that the overall migration rate, i.e. the “mass effect”,
had to be strong. Since for large values of m, we showed that predictions are shifted
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towards negative effects of pulsedness, the results of Peniston et al. (2019) are in
fact consistent with our predictions. These examples underline how complex it is to
determine an optimal management policy when demo-genetics effects are taken into
account.

Our conclusions extend to broader scenarios as well. For instance, it is relatively
easy to apply our approach to the case of two diverging populations, connected by
bi-directional migration, and undergoing mutation (not shown in this article). The
main conclusions are similar: more pulsed migration patterns would reduce the level
of local adaptation and hamper adaptive divergence, while promoting neutral genetic
divergence reducing the spread of commonly beneficial mutations. This shows how
migration variability may have important consequences for population divergence
(e.g. Mailund et al., 2012), and ultimately for the process of speciation (see also
Yamaguchi & Iwasa, 2013). Extending our reasoning to island communities (Cowie
& Holland, 2006), this also suggests that sporadic but potentially intense bouts of
immigration, as brought about by rafting and human-driven invasions, could favour
the establishment of relatively maladapted mainland species within communities
competing for similar resources.

We conclude by joining Peniston et al. (2019) in saying that it is time to test
existing predictions on migration pulsedness in empirical systems with well designed
experimental set-ups. We add that available data on migration flows, e.g. from
monitoring of oceanic rafting, individual tracking of dispersal routes, or marine
and aerial current models (Ser-Giacomi et al., 2015; Lagomarsino Oneto et al.,
2020), combined with genomics data, may also provide opportunities for testing such
predictions. Understanding the consequences of ecological variability is increasingly
important in the present context of climate and biodiversity change, and the spatio-
temporal variability in migration flows probably deserves to receive more attention.
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Conclusions & Perspectives

The highest function of ecology is the understanding
of consequences.

Remembering the words of Pardot Kynes
– Dune (Frank Herbert)

All along this manuscript, we have explored several questions related to ecosys-
tem adaptation and variability, using different scales and modeling approaches. It
is good at this point to remember the guideline of this thesis. Some environmental
variability may impact evolution and ecological/demographic processes. In return,
modifications in those processes are likely to impact both ecological and evolutionary
outcomes in a kind of “eco-evo” feedback loop (Hendry, 2020). In this manuscript,
we focused on questions related to both branches of this loop, at biological scales
from the community to the population.

Community adaptation and biodiversity-ecosystem function-
ing relationships

The first chapter of this thesis considered the fact that communities in nature may
harbor various levels of co-adaptation, either because of the many environmental
variations that may disturb the existing co-adapted state, or because of contem-
porary evolution that may allow a disturbed or newly formed system to rapidly
(re)-reach a more co-adapted state. Based on those facts, we decided to question
whether changes in the co-adaptation level of communities would have consequences
for some ecological properties, and in particular for some biodiversity-ecosystem
functioning (BEF) relationships. We have found a clear impact of the co-adaptation
level on biodiversity-productivity and biodiversity-response to invasion relationships,
and in a lesser extent to biodiversity-stability relationships. The ecological impact
of species number interacts with the evolutionary history because of a differential
magnitude and direction of species trait evolution in poor versus rich communities.
This may have implications for the way we consider and manage ecosystems facing
environmental perturbations and species loss/gain. In addition to illustrating that
evolution can have large consequences for BEF relationships, this chapter is one
more example that the study of ecological properties and behavior of ecosystems
would greatly benefit from the consideration of shorter term evolutionary processes.

A few studies written since the publication of this chapter confirm, illustrate or
soften certain assertions of our present work. First, because species loss is likely
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to be trait mediated and not purely random in nature, Wolf et al. (2021) studied
the impact of a realistic species loss, i.e. based on species trait, on some ecosystem
functioning (productivity and resistance to invasion). They found that such a re-
alistic loss leads to higher invasion resistance than expected with random loss, but
also to more productivity decline. Even if we didn’t explicitly study the impact of
biodiversity loss (random communities were not formed from losses of species from
larger communities), we still can intuit what would be the consequences of such
realistic loss on our results. In term of biodiversity-productivity relationships, Wolf
et al. (2021)’s results are likely to reinforce the differences between poorly adapted
(random) and completely co-adapted communities we highlighted in this chapter.
In term of biodiversity-resistance to invasion relationship, reducing the difference
in between random and co-adapted communities at low diversity level, it may even
create a difference where none was observed.

Second, in our eco-evolutionary dynamics modeling process, we kind of separated
evolutionary processes from ecological processes, applying first selection on species
traits, and then looking for the ecological equilibrium. If we would have liked to
form co-adapted communities that would have resulted from purely gradual evolu-
tionary processes (adaptive radiation), this method could have artificially formed
some communities that, at some point, would have not been ecologically suitable.
Nevertheless, an interesting study made by Cortez et al. (2020) showed that most
of the time, considering ecological and evolutionary processes alone does not change
the stability of the system compared to considering eco-evolutionary feedback to-
gether. This implies that our modelling assumptions regarding the separation of
ecological and evolutionary processes is somehow less restrictive than we could have
thought.

Third, new experimental studies continued to highlight the effect of what is called
the community history (past historical co-occurrence of species). van Moorsel et al.
(2021) recently showed, with a long term grassland experiment, that communities
having a past of co-occurrence (resulting in short term evolution) had temporally
more stable biomass than naive (random) communities, especially at low species
richness. This is coherent with our finding that low-diverse communities are more
sensitive to gain or loss in co-adaptation levels than high-diverse communities. In the
same idea they said “A history of co-occurrence can in part compensate for species
loss, as can high plant diversity in part compensate for the missing opportunity of
such adaptive adjustments”.

Finally, in this study, as for many ecological interaction models and experi-
ments, we modeled communities using well defined traits (what is useful to make
them evolve), only one type of ecological interaction at once, and a relatively low
diversity level. If we would like to consider higher diversity levels, it might be needed
to consider higher phenotype dimensions (Doebeli & Ispolatov, 2017). Doing so, of
course, would complexify the approach (increased number of equations). Barbier
et al. (2021) proposed an elegant approach based on statistical physics, looking for
some aggregated statistical metrics that would describe species interactions with a
minimum of constraints. Considering evolution in such a framework would be a
whole different approach from the trait based one, and would be interesting to ex-
plore. In particular, it would be interesting to see if the minimal statistical structure
that can describe coexisting species in communities would depend on the constraints
imposed on species interactions or on species past-history.
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Spatial heterogeneity and the evolution of stress tolerance

While the first chapter addressed the consequences of a change in the community
co-adaptation level on some ecological properties, the second chapter looked into
the adaptive process itself. It gave an example of how different environmental spa-
tial heterogeneities (stress level distribution) can impact the evolutionary outcomes
of a co-existence model (the tolerance-fecundity trade-off ; TFT). We found that
the stress tolerance evolutionary equilibrium is mainly impacted by the trade-off
function slope, and only little affected by the distribution of stress conditions in the
environment. However, its evolutionary stability showed greater sensitivity to the
stress distribution (ESS vs. branching point). The variance – more than the mean
– of the stress distribution had a large role: a loss of variance greatly reduced the
probabilities for ecological coexistence and for adaptive radiation. This can have
great impacts for site regeneration, which may be impeded or slowed down by a loss
in environmental stress variance due to any kind of perturbations as discussed in
the corresponding chapter.

This first exploration of the evolution of stress tolerance within this coexistence
model opens the way for the exploration of the impact of (co)-evolutionary pro-
cesses driven by a tolerance-fecundity trade-off. As in the first chapter, we could
for instance compare random (naive) versus co-adapted communities governed by
the TFT model. It would be interesting to compare those results with the first
chapter results, especially concerning the competition-colonization trade-off (CCT).
Indeed, the CCT had patterns that notably differed from the other three scenarios,
and it would be interesting to see if this was due to the presence of a trade-off,
or to some specificity of the CCT. Of course, the application does not restrict to
biodiversity-ecosystem functioning relationships but to any kind of ecological prop-
erties in communities governed by such a coexistence mechanism. Moreover, con-
sidering evolutionary processes governed by this coexistence mechanism could also
help in determining whether some coexistence observations can be explained by the
TFT or not.

Pulsed migration patterns and local adaptation

Contrarily to the two first chapters, which applied to average changes in environ-
mental conditions, the third chapter directly questioned the consequences of fluc-
tuations on evolution. It regarded the impact of a temporally variable migration
between sub-populations from the same species on allele fixation and genetic diver-
gence (namely on evolution). Another difference with the first two chapters, which
tackled the questions within a mean phenotype perspective, is that we used here a
population genetics approach. We have shown that migration variability can either
decrease or increase the effective migration rate depending on the selection pres-
sure imposed on alleles. More precisely, a beneficial allele fixation will be favored
by migration variability while a strongly deleterious allele will benefit from a less
variable migration pattern. This difference results in the homogenization, with mi-
gration variability, of fixation rates across loci harboring different selection values,
what may leave a migration variability genomic signature. This study showed that
considering the temporal variability of migration is likely to have consequences for
population management and conservation. The latter indeed needs to know which
is the best migration rate to impose in order to maintain sufficient genetic variation
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within a population.

All the above results are restricted to unlinked loci. As soon as two or more
loci are linked, linkage disequilibrium may modify the theoretical prediction as it
changes the expected ratio between the different possible genotypes (Losos, 2017).
Mathematically, we would have to consider more possible transition and fixation
probabilities: either the fixation of both loci, or only one, with a correlation that
depends on the recombination rate. With no recombination (i.e. fully linked loci) we
obviously expect the same as with only one locus. When recombination is allowed, is
migration pulsedness acting the same way on the mainland allele fixation? Prelim-
inary studies made with neutral alleles highlighted that, where we would expected
the effective migration rate to decrease with migration pulsedness within a single
locus scenario, it can actually increase within a two partially linked loci scenario.
This would be an interesting point to explore as it may modify the present expec-
tations, in a way that seems to reinforce the positive effect of migration pulsedness
encountered in this study.

In population genetics literature, the migration rate is often considered as a
proportion of migrants rather than as a number of migrants as we did (see for
instance Whitlock, 1992). In our study, we decided to consider a number instead
of a proportion, so that the intensity of migration is independent of the size of the
host population. Yet, we can wonder what would be the consequences of considering
the migration rate as a proportion. This would impact the frequency of migration
events. In our case, it is inversely proportional to n, the number of migrant per
migration event. In the case we consider the proportion of migrant being constant
within time, it would be inversely proportional to the proportion of migrant in the
host population n

N+n
. This would modify some of our expectations: mathematically,

two terms cancel each other so that the pulse has no longer an impact on a neutral
allele fixation rate, and the selection threshold found to s = − 1

N
becomes s = 0. In

other words, this would strengthen the positive effects of migration pulsedness on
effective migration rate we highlighted in this study.

We obtained several theoretical expectations in our study that it would be nice
to verify experimentally. For that, we would have to chose an organism with sexual
reproduction and with a relatively short life cycle. A relatively large knowledge
about this organism genome would also be needed, in order to consider loci or
SNPs for which we know the behavior in given environments and the potential
interactions with other genes. For that, well studied and documented organisms as
Drosophila could be suitable. The first and easiest step would be to test prediction
about the introduction of neutral alleles. We could verify for instance whether
a pulsed introduction reduces the frequency of the introduced allele in the focal
population or not with respect to less pulsed introduction. This frequency should
be measured at a time interval that should not be correlated to the migration events
(otherwise it would be automatically biased). These are first thoughts about possible
experimental studies, which it would be interesting to not limit to simple tests of
predictions in controlled environments, but to apply to concrete cases.

This leads us to two other main perspectives of this work that are intended to
prepare the ground for testing predictions on real data from the field. First, efforts
are needed to estimate the minimal data set that it would be necessary to get in
order to have a chance to detect a pulsedness genomic signature. How many loci are
needed, and distributed over how many selection coefficient? Indeed, the Chapter 3’s
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mathematical model allowed us to make a fit on an infinite number of loci distributed
over an infinite number of different selection coefficients. These are ideal conditions
to detect a signal, but in reality, we will never have such precision in the genetic data.
Our stochastic simulation could be helpful to answer the question of the minimal
genetic data set required. To fit simulation data points (and real genomic data) we
would also need a mathematical model that can represent those data. Indeed, the
model in Chapter 3, in addition to imposing strong constraints on migration rates,
only allows access to a probability of fixation at time t, not to the probability of
having a given proportion of a given mainland allele on the island. In Appendix D,
we propose such a model, which describes the change in mainland allele proportion
in the island with time. We consider that the system changes through a Markov
process that we represent with a Master equation. We compare this model with both
the mathematical model and the stochastic simulations described Chapter 3, before
proposing ideas for a protocol to estimate the minimal genomic data set needed to
detect a pulsedness signature. The latter would be interesting to determine before
looking at a real genomic data set from which we would like to infer the migration
pattern.

Second, to test those model predictions on real data sets and verify whether we
really can estimate migration variability, it would be interesting to actually know
the level of migration variability. Thus, we could compare our estimations to the
real migration patterns. Estimating the level of migration variability between some
distant sub-populations would then be a first step in that direction. Such pat-
terns are not often described in the literature, and studies mainly focus on spatial
connectivity patterns rather than on temporal connectivity patterns (conversations
with researchers from the field - J.O. Irisson and E. Ser-Giacomi). There are still
few quantitative evaluations of the temporal variability of gene flows and individual
flows between populations, and of the type of dynamics that this variability may
follow. Currents (oceanographic or atmospheric currents for instance) are useful to
get an idea of the potential biological routes in case of passive transportation (e.g.
for larvae). We had the chance to get at our disposal two datasets from Lagrangian
geophysical fluid mechanics simulation models: (i) simulations of marine currents
that could describe the passive dispersion of larvae of coastal species at the Mediter-
ranean scale (Ser-Giacomi et al., 2015), and (ii) simulations of atmospheric currents
modeling the dispersion of fungus spores at the North American continent scale
(Lagomarsino Oneto et al., 2020). The idea with those datasets would be to quan-
tify the temporal variations of connectivity patterns and exchanges of individuals
between populations, and to classify the variability profiles according to different
scenarios (constant, periodic, stochastic, pulsed, etc.). Preliminary analysis have
been done with the oceanographic currents dataset (see fig. 3.6), and let us think
that both continuous and pulsed patterns could be detected between different places.
In figure 3.6, we highlight the existence of both continuous and pulsed migration
patterns, either bilateral (from place A to place B and the other way around) or uni-
lateral. Further analyses would be needed to estimate in more details the patterns
of temporal variability between various places and their frequency of occurrence.
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Figure 3.6: Temporal connectivity between different places along the Mediterranean
coast (from Lagrangian current data simulated by E. Ser-Giacomi). Places denoted
A and B are not the same for the three panels. (a) Example of a continuous unilateral
connection, (b) example of a pulsed unilateral connection, and (c) example of a
pulsed bilateral connection.

Concluding words

Throughout this manuscript, we have addressed questions at different biological
scales, explored different types of variability, and used different evolutionary mod-
eling methods. A question that could arise is whether each of the questions could
have been addressed with a different model of evolution, and whether one model
of evolution would ultimately be more useful than the others. The simple answer
to this question is that each model focuses on a particular aspect of evolution, or
even a particular biological scale. They each have their strengths and weaknesses,
and they complement rather than replace each other. Population genetics is mainly
concerned with the scale of populations or the scale of a set of population belonging
to the same species. It focuses mainly on inheritance. On the other hand, adap-
tive dynamics is concerned with the scale of either a single population/species or
a community. While one of the strength of population genetics lies in inheritance,
the adaptive dynamics strength lies in the possibility to take into account ecolog-
ical interactions between these different populations (as well as within the same
population). Thus, the consequences of variabilities that affect the transmission of
traits are rather addressed by population genetics, while those affecting ecological
interactions are rather addressed by adaptive dynamics.

That said, the same initial disturbance may well impact either mating opportu-
nities or ecological interactions, or both at the same time. It would then also be
relevant, for example, to ask the question of the impact of the migration temporal
variability on ecological interactions between individuals and between populations
belonging to different species. This is likely to complement the predictions we have
obtained by considering only the inheritance part of the question (see for instance
Matias et al., 2013; Rajakaruna et al., 2013).

I see the different modeling approaches used in this manuscript as parallel layers
that are superimposed on top of the same general scheme. Each of them participates
in their own way to the understanding of evolutionary processes and consequences.
Discoveries and findings made with a specific approach will feed the intuitions and
questionings at the level of the whole picture. And these new questions could be
addressed with any appropriate method, independently of the origin of the intuition.
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At this time when science may have to answer more and more practical questions
about climate, ecology and social issues, no approach (among those existing) is a
priori to be favored. What must guide the choice of a particular method is obviously
the questions of interest, which need to be clearly identified, and the type of answer
we need.

Let me conclude highlighting that, as illustrated by the introductory scheme
presented in this manuscript introduction, the three studies presented here, despite
seeming relatively disparate, are just different bricks from the same pyramid. This
pyramid aims at understanding the complex interactions between living things and
the environment, from which many kind of temporal and spatial variabilities cannot
be separated. The latter comes to complexify those interactions, but also enrich, put
in movement, and in evolution. Around 500 years ago, Leonardo da Vinci poetically
illustrated part of this by leaving us his famous sentence ”Movement is the principle
of all life”.
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Appendix A

Supplementary information for
Chapter 1

A.1 Modelling of the four ecological scenarios

Preliminary remark: the first three ecological scenarios are models that have already
been used and presented in several earlier works, such as Calcagno et al. (2017).
More information on these can thus be found in the latter reference; only the main
elements will be provided here, for easier reading. The fourth scenario is a new
model derived from, and almost identical to, the size-structured trophic chain model
introduced by and studied by simulation methods in Loeuille & Loreau (2005).
Therefore we will provide here its mathematical derivation.

A.1.1 Niche scenario

This scenario represents the tendency of species to exploit different parts of a re-
source spectrum (Dieckmann & Doebeli, 1999; Calcagno et al., 2017). It models a
symmetric competition along a continuum of resources, such as a range of seed sizes
for granivorous birds. Trait x here represents the average position of a species along
that gradient, i.e. mean niche position (e.g. mean beak size). The model is usually
directly formulated under a Lotka-Voltera form represented by equation (A.1):

dni
dt

= rinifi = rini

(
1−

∑
j

njai,j
ki

)
(A.1)

where ai,j = a(xi, xj) is the impact that a variation in species j abundance has on
the per capita growth rate of species i ( 1

ni

dni

dt
), normalized by the intra-specific in-

teraction (so that ai,i = 1). The closer species traits (i.e. the more similar resources
species consume), the stronger competitive impact between them. It results that the
competition is a decreasing function of the trait difference between two species, tak-
ing maximum value 1 when the two species have identical niche position. Function
a(xi, xj) is following general practice taken to be Gaussian with width sa.

a(xi, xj) = exp

(
−(xi − xj)2

s2a

)
(A.2)
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The carrying capacity function ki = k(xi) describes the distribution of resources
available along the resource gradient, and is classically supposed to have a symmetric
dome-shaped distribution centered on some optimal trait value (0 for convenience).
Following Calcagno et al. (2017), in order to avoid some degenerate mathematical
properties we use a Lorentzian function of width sk

k(x) =
1

1 + x2/s2k
(A.3)

Last, ri = r(xi) is the intrinsic growth rate of species i that governs the ecological
timescale, and is taken to be proportional to the mono-specific abundance r(x) =
k(x). The shape of the three functions presented above are represented in Fig. 1a
in the main article.

Parameter sa is varied in the simulation, over the range presented in section A.2,
while parameter sk has been kept constant equal to 1.

A.1.2 Body-size scenario

This second scenario (Rummel & Roughgarden, 1985) is an extension of the niche
model in which asymmetric competition between species is used instead of symmetric
competition. In this case, species trait can represents for instance species body size.
It is represented by the same equation (A.1), with different competitive, carrying
capacity and intrinsic growth rate functions. As in Calcagno et al. (2017), we use a
log-normal carrying capacity function:

k(x) = exp
(
−log(x)2

)
(A.4)

and an asymmetric Gaussian competitive function:

a(xi, xj) = exp(d2/s2a) exp

(
−(xi − xj + d)2

s2a

)
(A.5)

with sa controlling the competitive function width, and d the level of asymmetry.
The intrinsic growth rate is also taken proportional to function k : r(x) = k(x).
The form of those functions are represented in Fig. 1a in the main article.

Parameters sa and d are varied in the simulation, over the range presented in
section A.2.

A.1.3 Life History Trade-off scenario

This scenario rests on a patch-occupancy model describing the competition between
species in a meta-community, arranged in a competitive hierarchy. There is a trade-
off between colonization ability at the regional scale and competitive dominance at
a local scale (Calcagno et al., 2006, 2017).

The patch-occupancy equation given in Calcagno et al. (2006) can easily be
rewritten under the same Lotka-Volterra form as in the two first scenarios (eq. A.1)
as detailed in Calcagno et al. (2017). The corresponding three functions a(xi, xj),
k(x) and r(x) are represented Fig. 1a of the main article and are defined as:

a(xi, xj) = 1 + xj
η(xj − xi)

xi − η(xi − xj)
(A.6)
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k(xi) = N − µ/xi (A.7)

r(xi) = xiN − µ (A.8)

with η a logistic function relating the probability to win competition for a patch
and the difference in colonization abilities; see Calcagno et al. (2017) for the full
derivation.

Parameters α (trade-off intensity, i.e. the steepness of the logistic function η)
and γ (the preemption level, i.e. the maximum value of function η) were both varied,
over the range presented in section A.2. Parameters N (total amount of patches in
the metacommunity) and µ (patch extinction rate) were kept fixed to N = 1 and
µ = 0.1.

A.1.4 Trophic scenario: derivation of the Lotka-Volterra
form

This scenario presents a vertical trophic interaction, with species arranged in a
trophic chain structured by body mass. Body mass is thus the species trait x. This
model is taken from Loeuille & Loreau (2005) and reads:

1

ni

dni
dt

= f(xi)
∑
j=0

γ(xi−xj)nj −m(xi)−
∑
j=1

β(xi−xj)nj −
∑
j=1

γ(xj −xi)nj (A.9)

with ni the biomass of species i. Index i = 0 corresponds to the basal resource, and
its trait x0 does not evolve. The first term in the right-hand side corresponds to the
consumption by species i of species lower into the trophic chain, and fourth term
of the consumption of species i by species higher in the chain. The consumption
rate function γ(xi − xj) is a Gaussian of width (standard deviation) s, and taking
maximum value when species biomasses differ by some interval d.

γ(xi − xj) =
γ0

s
√

2π
exp

(
−(xi − xj − d)2

s2

)
for xi > xj. Birth function f depends on species size. The second term of equation
(A.9) is mortality rate, also depending on species size. Following Loeuille & Loreau
(2005), the size dependence of the birth and mortality rates reads f(xi) = f0x

−0.25
i

and m(xi) = m0x
−0.25
i . Finally, the third term corresponds to competition by inter-

ference between species of similar size. Function β is the competition by interference
rate. It is a gaussian of width sa and height b (competition intensity):

β(xi − xj) = b exp

(
−(xi − xj)2

s2a

)
This model is a consumer-resource model with an abiotic compartment, but

using a mass balance hypothesis, i.e.
∑

j=0 nj = Ntot, (mass conservation: Leibold,
1996), it can be, as the previous scenarios, reformulated under the Lotka-Volterra
form (equation A.1). Starting from the original equation (A.9):
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1

ni

dni
dt

= f(xi)
∑
j=0

γ(xi − xj)nj −m(xi)−
∑
j=1

β(xi − xj)nj −
∑
j=1

γ(xj − xi)nj

in the first sum, we separate the first term (j=0) from the other ones (j¿0):

1

ni

dni
dt

= f(xi)(γ(xi−x0)n0+
∑
j=1

γ(xi−xj)nj)−m(xi)−
∑
j=1

β(xi−xj)nj−
∑
j=1

γ(xj−xi)nj

we then introduce the mass-balance constraint n0 = Ntot−
∑

j=1 nj and get, after a
few rearrangements:

1

ni

dni
dt

=f(xi)γ(xi − x0)(Ntot −
∑
j=1

nj)

+ f(xi)
∑
j=1

njγ(xi − xj)−m(xi)−
∑
j=1

β(xi − xj)nj −
∑
j=1

γ(xj − xi)nj

we rearrange to get all the term summing over j together:

1

ni

dni
dt

=f(xi)γ(xi − x0)Ntot −m(xi)

+
∑
j=1

nj [f(xi)(γ(xi − xj)− γ(xi − x0))− β(xi − xj)− γ(xj − xi)]

and finally we factorize by f(xi)γ(xi − x0)Ntot −m(xi) and get:

1

ni

dni
dt

= (f(xi)γ(xi − x0)Ntot −m(xi)) ∗(
1−

∑
j=1 nj [f(xi)(γ(xi − x0)− γ(xi − xj)) + β(xi − xj) + γ(xj − xi)]

f(xi)γ(xi − x0)Ntot −m(xi)

)
which can be recognized as a Lotka-Volterra form with

r(xi) = f(xi)γ(xi − x0)Ntot −m(xi) (A.10)

so that:

1

ni

dni
dt

=r(xi)

(
1−

∑
j=1 nj [f(xi)(γ(xi − x0)− γ(xi − xj)) + β(xi − xj) + γ(xj − xi)]

r(xi)

)
and using the hypothesis that ai,i = 1, we have:

a(xi, xi)

k(xi)
=

1

k(xi)
=
f(xi)(γ(xi − x0)− γ(0)) + β(0) + γ(0)

r(xi)

so that:
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k(xi) =
r(xi)

f(xi)(γ(xi − x0)− γ(0)) + β(0) + γ(0)
(A.11)

Equation (A.9) now writes:

1

ni

dni
dt

=r(xi)

(
1−

∑
j=1 nj [f(xi)(γ(xi − x0)− γ(xi − xj)) + β(xi − xj) + γ(xj − xi)]

k(xi) (f(xi)(γ(xi − x0)− γ(0)) + β(0) + γ(0))

)
so that function a(xi, xj) writes:

a(xi, xj) =
f(xi)(γ(xi − x0)− γ(xi − xj)) + β(xi − xj) + γ(xi − xj)

f(xi)(γ(xi − x0)− γ(0)) + β(0) + γ(0)
(A.12)

Those three functions are represented Fig. 1a in the main article. In this scenario,
following Loeuille & Loreau (2005), we set m0 = 0.1, sa = 1.5, γ0 = 1, f0 = 0.3,
d = 2, x0 = 0 and we varied b (interference intensity) and s (consumption function
width). Parameter values explored are given in section A.2 below.

A.2 Parameter sets explored and those plotted in

the main article figures

In each scenario, key parameters were varied in order to ensure that conclusions are
robust to parameters changes.

• In the Niche scenario, the width sa of the symmetric competition function
a(xi, xj) was varied from 0.5 to 1.5. In this scenario what matters is only the
ratio of sa over sk, hence the two parameters need not be both varied. A
value sa = 1 thus means that the widths of the competition kernel and of the
carrying capacity functions are identical (sa = sk).

• In the Body-size scenario, the width of the competition function (sa) and the
level of competitive asymmetry (d) were varied respectively from 1.2 to 2.4
and from 0.1 to 0.3.

• In the LH-tradeoff scenario, the preemption level (γ) and the trade-off inten-
sity (α) were respectively varied from 0.3 to 0.7 and from 2 to 12.

• In the Trophic scenario, the level of competition by interference (b) and the
width of the consumption function (s) were varied respectively from 0.10 to
0.19 and from 1.0 to 1.6.

The parameter ranges presented above have been explored from the minimum to
the maximum value. For clarity, in the main article, only three curves corresponding
to parameter combinations yielding representative and contrasted patterns were
selected and shown in figures. The parameter combinations corresponding to each
curve in Figures 2-5 are provided in table A.1.
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Legend Niche Body-size LH-tradeoff Trophic

sa = 0.5 sa = 1.2, d = 0.1 α = 2, γ = 0.3 s = 1.0, b = 0.10

sa = 0.9 sa = 1.5, d = 0.1 α = 4, γ = 0.7 s = 1.0, b = 0.13

sa = 1.5 sa = 1.8, d = 0.1 α = 12, γ = 0.7 s = 1.2, b = 0.10

Table A.1: Parameter sets used in the main text for the four scenarios. Legend line types
refers to the line types used in the figures.

A.3 Algorithm of community formation

Co-adapted communities We assume that each species is characterized by its
mean trait value x and possesses some (small) heritable variance around the latter.
In these conditions, the direction and intensity of natural selection on the species
trait can be determined by the selection gradient around the species trait value
(Christiansen, 1991). The selection gradient is computed at the first derivative of
the fitness (exponential rate of increase) of a rare variant with respect to its trait
value, evaluated at the trait value of the focal species. The fitness of a rare variant
with trait value xm is defined as, from equation (A.1):

F (xm) = lim
nm→0

(
1

nm

dnm
dt

)
= r(xm)

(
1−

∑
j

nja(xm, xj)

k(xm)

)
, (A.13)

where all species are at their respective equilibrium abundance (Christiansen, 1991;
Metz et al., 1995). The selection gradient for the i-th species in the community is
thus:

∇(xi) =
dF (xm)

dxm

∣∣∣∣
xm=xi

(A.14)

If the selection gradient is positive, adaptive evolution pushes the trait value to-
wards higher values, and if the gradient is negative, the trait moves to lower values,
at a speed approximately proportional to the value of the gradient. Fitness and
selection gradient are frequency- and density-dependent and change with the com-
position of the entire community. If the system reaches a state where the selection
gradient cancels for all species, then directional evolution ceases and the commu-
nity has reached a (co)evolutionary equilibrium (Christiansen, 1991; Abrams et al.,
1993). Note that at such an equilibrium individual species may be at an evolution-
ary maximum or at an evolutionary minimum. Evolutionary minima may under
appropriate circumstances and inheritance modes favor the splitting of a species
into two novel lineages (evolutionary branching) and thus an increase in the number
of evolving lineages (Metz et al., 1995; Dieckmann & Doebeli, 1999; Calcagno et al.,
2017). Since in this work we systematically consider all diversity levels, we can
remain agnostic to second-order selection and to the specific history of transitions
among diversity levels (that might involve branchings, invasions and extinctions).
We just need to identify, for every diversity level, all feasible co-evolutionary equi-
libria, characterized by:
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∇(xi) = 0 i ∈ [1, . . . , s] (A.15)

For computational efficiency, for each ecological scenario and diversity level, we
first identify the different coevolutionary equilibria that are attractors by iterating
the adaptive dynamics of traits (defined by the selection gradient (A.14)) forward in
time, starting from 100 random species trait values. From these we identify the one
or several coevolutionary equilibria. Then, by continuation, we track these equilibria
continuously through the range of parameter values, together with potential bifur-
cations (changes in the number or nature of equilibria). This provides an exhaustive
list of coevolutionary equilibria for all parameter combinations.

Random communities To assemble random communities, we randomly drew
each species trait value, independently, from a common probability distribution.
The latter distribution can be regarded as characterizing the available regional pool
of species and trait values. This species pool distribution was chosen in order to
allow all feasible trait values and to be as “random” as possible: specifically, it
was chosen to minimize information content, using the maximum entropy principle
(Jaynes, 1957). For each scenario, we first specified the support of the distribu-
tion, i.e. the range of possible values for species traits. We then specified only
one additional constraint, for each parameter set: the mean trait value, that had
to be representative of the species typically expected for the given parameter set.
Specifically, it was taken to be equal to the mean trait value λ that would be ob-
served in the full (saturated) community. In practice, the co-adapted communities
with maximum diversity levels were used as good approximations of the saturated
communities. This constraint ensured that there is no systematic (average) differ-
ence between the random species trait values and the traits that are expected in
the current environment, and thus to generate communities that remain of similar
nature across parameter sets. This also allows to perform comparisons between co-
adapted and random communities that are not biased by the fact that species in
random communities would be, intrinsically, ill-adapted. Of course, with only one
constraint on the mean value, max-entropy random distributions were quite broad
and all trait values had a fair chance to be picked.

In the Body-size, LH-tradeoff and Trophic scenarios, species trait values x could
take values in ]0,+∞[, and the entropy-maximizing distributions were thus expo-
nential distributions of mean λ defined as explained above. In the Niche scenario,
trait values can spread over ]−∞,+∞[ and the model is by construction symmetric
around x = 0. Thus the random trait distribution was a double exponential, cen-
tered on zero, and with width defined by the average deviation from zero observed
in the saturated community. Values for λ are given in table A.2. Remark that we
also used a much more classical and simpler approach consisting in using uniform
distributions for random traits, between some arbitrary defined minimum and max-
imum values. Results were similar, and are thus not qualitatively dependent on the
precise random distributions used.

In practice, for each parameter set and diversity level (N), random communities
were formed by picking N traits from the species pool defined in the previous para-
graphs. The ecological equilibrium obtained from equation (A.1) was computed,
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Legend Niche Body-size LH-tradeoff Trophic

1.52 7.63 7.35 5.10

3.35 9.65 3.71 5.15

6.48 11.9 1.17 5.33

Table A.2: Mean trait values λ of the saturated communities, taken to define the entropy-
maximising distributions. See table A.1 for the correspondence between legend line types
and the parameter sets used in the main text.

and the community was retained (ecological filter) if all N species persisted at equi-
librium with a positive abundance (i.e. had abundance above a threshold value of
10−5). The process was repeated until 1,000 such communities were obtained. Re-
mark that co-adapted communities (as defined in the previous section) are always
a specific subset of random communities, characterized by the additional constraint
(A.15), as illustrated in Fig. 1 of the main article.

A.4 Metrics used to quantify diversity-functioning

relationships

For each BEF relationship, we computed several alternative metrics that may be
used to quantify the corresponding ecosystem function. Several metrics gave iden-
tical or similar conclusions, and for clarity we retained only one or two metrics per
BEF relationship that are more commonly used. A summary of all metrics can be
found in Table A.3 to inform the reader that no different conclusion could be drawn
from those various metrics. Then, in the following, for each BEF relationships, we
describe the metric(s) effectively used for the results presented in the main text.

A.4.1 Productivity

Community productivity is the summed productivity of each of the N component
species.

Π =
N∑
i=1

nigi (A.16)

with gi the per capita production rate of species i in its community whose expression
depends on the ecological interaction and community composition.

For the Niche and Body-size scenarios, there is no explicit production rate since
the models are directly formulated in Lotka-Volterra form. We made the simple
choice of using the intrinsic growth-rate ri as the metric per capita productivity so
that :

ΠNiche =
∑
i

niri
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BEF
Metrics References

relationship

Production
Total abundance (1)

Productivity* (1)

Stability

Asymptotic resilience* (2) (3)

Stochastic invariability (3)

Initial Resilience (3)

Ecosystem stability* (4) (5)

Robustness (6)

Robustness heterogeneity (6)

Invasion

Deterministic invasion probability (7) (8)

Stochastic invasion probability* (7) (8)

Proportion of the invader (7)

Mean impact of an invader on abun-
dances

(7)

Proportion of species non extinct* (7)

* Metrics retained in the main article

Table A.3: Metrics measured on the two types of communities for different parameter
sets. Metrics in bold types are the one plotted and analyzed in the main article. Each
are representative of their categories of relationships. (1) Tilman et al. (1996) ; (2) May
(1973a) ; (3) Arnoldi et al. (2016) ; (4) May (1973b) ; (5) Ives et al. (1999) ; (6) Barabás
& D’Andrea (2016) ; (7) Elton (1958) ; (8) Hector et al. (2001)

ΠBody =
∑
i

niri

For the LH-tradeoff scenario, we consider the colonization of empty sites (N −∑
j nj) as a contributions to productivity. This leads to the per capita productivity:

gi,LH = nixi(N −
∑
j

nj)

and the total productivity is the sum over all species i:

ΠLH =
∑
i

nigi,LH =
∑
i

nixi(N −
∑
j

nj)
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Finally for the Trophic scenario, the net growth rate is straightforward, simply
referring to consumption by specie i of lower size species.

Πchain =
∑
i

ni

(
f(xi)

∑
j=0

γ(xi − xj)nj

)

A.4.2 Stability

Asymptotic resilience is taken as a measure of species stability (May, 1973a; Arnoldi
et al., 2016). It refers to the asymptotic return speed of the slowest species to
equilibrium after an external abundance perturbation.

R∞ = −<(λm(J)) (A.17)

with λm(J) the highest eigen value of the Jacobian matrix J of the ecological system
whose coefficient are given by (A.18).

Ji,j =
∂

∂nj

(
dni
dt

)∗
(A.18)

To get a measure of the all community stability, we consider the community
variance, namely in the variance of the sum of abundances. This measure differs
from individual direction stability metrics such as the asymptotic resilience. The
sum of abundances can return faster to its equilibrium value after a perturbation,
even if species abundances are still fluctuating into the community. It is commonly
expected (even if not general and depending on metrics) that species stability has
more often a negative relationship with diversity while community stability tends
to get a positive one. Mathematically,

var(NT ) =
∑
i

var(ni) +
∑
i,j,j 6=i

cov(ni, nj)

with NT =
∑S

i=1 ni the sum of each species abundance for a community with S
species. The variance-covariance matrix B is involved into the equilibrium distribu-
tion for population fluctuation in a stochastic environment (May, 1973b) and is the
solution of the Lyapunov matrix equation (A.19) (see also Wang et al. (2015) for a
similar derivation):

D = 1/2(BA+ ATB) (A.19)

with A = N−1JN and N the diagonal matrix containing the equilibrium abundances
of each species whose coefficients are Ni,i = n∗i . AT is A transpose, and D the
matrix containing Di,j coefficient which are the overall covariance between white-
noise fluctuations in the stochastic differential equation of species i and the one of
species j:

dni
dt

= rini

(
1−

∑
j

njai,j
ki

)
+
∑
k

ρi,kγk(t)nk (A.20)
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with ρi,k measuring the covariance between the environmental fluctuation for species
i and for species j, and γk(t) is environmental stochasticity in the growth rate of
population k at time t, taken as a white noise random fluctuation with variance σ2.
Di,j coefficients are the diffusion coefficient involved in the Fokker-Planck equation,
which is the differential equation for the probability of transition in between two
states of the system. In our case, we choose to put a perturbation in a white-noise
form that has no inter-species dependence: ρi,i = 1 (∀ i) and ρi,k = 0 (∀ i 6= k), and
D is a diagonal matrix. All individuals get the same amount of perturbation, so that
each species is perturbed with an intensity that depends on its abundance. More
precisely, the variance imposed on a given species is proportional to the squared of its
abundance: Di,i = σ2n2

i . This derivation assumes sufficiently small perturbations
around the equilibrium to get a local linearization of the system. To solve the
continuous Lyapunov matrix equation (A.19), we use the lyap() function from Scilab.
We then sum all the elements from the variance-covariance matrix B, and divide
this sum by σ2 (the variance of perturbation received by each individual, e.g. we
normalize by the per individual perturbation). The coefficient of variation CV is
defined by:

CV =

√∑
i,j Bi,j

σ2

NT

(A.21)

And the community stability metrics is defined by the inverse of CV . Actually, in
the calculation, the value of sigma has no importance because we finally divide by
the same quantity. We take it equal to 1.

A.4.3 Response to invasion

Two aspects of ecological invasion are considered: (i) the resistance to invasion and
(ii) the tolerance to invasion. Resistance to invasion is defined as the probability
that an alien species (randomly drawn from the regional pool and introduced at
low initial abundance) does not successfully establishes in the community. The
probability Pinstal that this alien species establishes is:

Pinstal =

∫ xmax

xmin

px(xe)Hst(xe)dxe (A.22)

with px(xe) the trait distribution probability, Hst(xe) =


s(xe)
b(xe)

ifs(xe) > 0

0 if not
, xe

the trait of the foreign species which is trying to invade, b(.) the growth rate and
s(.) the fitness function. The trait distribution probability is the same used to form
the random communities (see section A.3). Resistance to invasion is then defined
by

Rinv = 1− Pinstal

Tolerance to invasion Tinv (eq. A.23) is defined by the proportion of species,
following a successful invasion, that are not driven to extinction by the invader:
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Tinv =
Nfinal

Ninit

(A.23)

with Ninit the number of species into the community right after the invasion, thus
including the invasive species, and Nfinal the number of species into the community
once ecological equilibrium has been recovered.

A.4.4 Metrics for trait composition

A.4.4.1 Trait composition representation

We sort communities by trait values, and calculate the average trait per rank over
the 1000 random communities (or few co-adapted communities when needed). For
each diversity level with N specie, we thus obtain N random averaged trait, and N
co-adapted averaged trait. Values obtained for co-adapted and random traits are
ploted one against the other in Fig. 3 of the main article.

A.4.4.2 Strength of evolutionary filter

The strength of evolutionary filter is defined with trait difference in between ran-
dom and co-adapted communities. We sort communities by trait values. Then, for
each random community with N species, we calculated the trait difference between
random and co-adapted trait per rank, and we made the average over all N species
ranks

1

N

N∑
i=1

|xi,coadapt − xi,random|

where i denotes the rank and xi,coadapt (resp. xi,random) is the trait value for the ith

co-adapted (resp.random) species. In the case of multiple co-adapted communities
(Niche scenario), we calculated the difference to the closest co-adapted commu-
nity (which is likely to be the evolutionary attractor corresponding to this random
community).

A.4.4.3 Minimum distance to the optimum trait

In the Niche, Body-size, TF-tradeoff scenarios, the optimum trait value xo is defined
as the trait corresponding to the maximum of function k(x). In the TF trade-off
scenario, the trait value maximizing function k(x) is infinite. We thus take as
optimal value xo the 95th percentile of the species pool distribution defined for the
community formation. The minimum trait distance to the optimum is defined as:

N−1
min
i=1

(|xi − xo|)

A.4.4.4 Average interval between species trait values

The average interval between species traits is the average two-by-two trait distance:

N−1∑
i=1

|xi+1 − xi|
N − 1
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with xi the trait of species i and N the number of species into the community.
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A.5 Magnitude of the difference between random

and co-adapted communities

In order to ascertain that co-adapted communities can be considered as different
from random communities, we measured the percentile of the metric for random
communities in which the mean value of the metric for co-adapted communities is
(Fig. A.1). In all cases, co-adapted values stand above the 8th decile or bellow the
2nd decile of the random values distribution, for at least part of the BEF relation-
ship. This indicates that co-adapted communities are quite atypical, relative the
variability within random communities.
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Figure A.1: Quantile Qc of the metric for random communities in which the mean value
of the metric for co-adapted communities is. It is measured for the four scenarios and
5 metrics explored (productivity a-d, asymptotic resilience e-h, ecosystem stability i-l,
resistance m-p and tolerance q-t). The closest Qc to 0.5, the more similar co-adapted and
random communities regarding this metric. When Qc is larger (resp. lower) than 0.5, the
metric for co-adapted communities is larger (resp. lower) than for random communities.
Ecological interaction parameters set are varied in each scenario (three different line types).
Parameters values are given paragraph A.2, together with other explored parameters sets
(not shown for readability reasons).
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A.6 Coefficient of variation of the average interval

between trait values

In the main article, the average interval between trait values is plotted against
diversity (Fig. 4e-h), but it does not give information about how evenly might be
distributed traits among a particular community. To get this information, we plotted
the coefficient of variation of the average interval between trait values (Fig. A.2).
Species traits in co-adapted communities are found more evenly distributed (lower
coefficient of variation at any single diversity level) than in random communities.
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Figure A.2: Coefficient of variation of the average interval between trait values in the
four ecological scenarios. The smaller the value, the more evenly distributed are species
traits. Ecological interaction parameter sets are varied in each scenario (three different
line types). Parameters values are given paragraph A.2, together with other explored
parameters sets (not shown for readability reasons).
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A.7 Results with a limit on possible trait change

The model assumes possible unbounded changes of species traits, implying either
sufficient mutational supply or some kind of infinitely additive alleles. However,
genetic variation is usually not infinite, and the response to selection could at some
point slow down or stop. To investigate this point, we have sub-sampled the random
communities, excluding the ones where at least one species would have to undergo
too much trait change to reach the co-adapted state. More precisely, we have defined
a maximum trait displacement xmax, which corresponds to the amount of change
such that the interaction strength of evolved individuals with ancestral individuals
would fall to 1%. In other words, this means that traits can only undergo changes
that keep individuals in a similar ‘niche’ as their ancestors, in the sense that they
retain non-negligible interaction strength. In practice, this also prevents a species
from evolving more that the typical trait interval existing between coexisting species,
in species-rich communities. Having retained only the communities with no species
further from xmax, we recomputed all the metrics for the Niche scenario, with the
new set of communities (Fig. A.3).

As expected, the difference between co-adapted and random communities tends
to erode. Low diversity levels are more impacted as random species were more
likely to stand far from the evolutionary point (see also Fig. 3 in the main text).
It follows that, for instance, the patterns for biodiversity-production relationships
is less pronounced (Fig. A.3f compared to Fig. A.3a). Interestingly, the pattern
for invasion tolerance (Fig. A.3j) is not affected at all, presumably because the
largest differences are observed at high diversity, where a restriction on evolutionary
change has little importance. In all cases, we still observe the general trends and
differences that sustain our conclusions. Even though a limit on the amount of
evolutionary change allowed would weaken the reported effects, it appears that the
general messages are rather robust to this.
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B.1 Equivalence between parameters

B.1.1 The fecundity steepness cs

The stress tolerance x1/2 such that c(x1/2) = c0/2 can be derived the following way:

c0
2

= c0 e−ca(e
x1/2)

cb

so that

x1/2 = log

[(
− log(2)

ca

)− 1
cb

]
Then, we derive c(x) with respect to x:

dc(x)

dx
= −c0cacb(ex)cb−1(ex) e−ca(e

x)cb

= −c0cacb(ex)cb e−ca(e
x)cb

and we replace x by the above expression of x1/2, what leaves us with:

cs =
dc(x)

dx

∣∣∣∣
x=x1/2

= −1

2
cbc0log(2)

B.1.2 The dose-response steepness βs

The derivative of b(x, y) with respect to x, taken at the point y = x gives

db(x, y)

dx

∣∣∣∣
y=x

= −
(
21/g

)−1−g (−1 + 21/g
)
Bg

This steepness being expressed with respect to the the symmetric case (g = 1), we
simply obtain:
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βs =
B

4

B.2 Complements for the dose-response parame-

ter choices

B.2.1 Symmetric versions

The parameters choice of the dose-response curve is based on the environmental
stress distribution. We decided to base parameters choice on the distribution with
intermediate variance: σ2

2.

We first look for symmetric logistic functions (when g = 1). We want the proba-
bility to survive to increase by a given percentage of the maximum when the stress
level goes from x − σ2 to x + σ2 (x being the LD50). In other words, we want the
probability to survive to increase by a percentage ξ/2 of the maximum when the
stress tolerance increases from x to x+ σ2. Solving the following equation:

b(x, x− σ2) = 0.5− ξ/2

leaves us with a simple expression for parameter B:

B =
log
(
−1 + 1

1−ξ/2

)
σ2

We take three different B for ξ to be 10−6, 0.90 and 0.4, and we end up with the
three values of βs = B/4 described in the main document.

B.2.2 Asymmetric versions

We then construct the asymmetric versions of the dose-response. For each of the
three symmetric version constructed above, we construct an asymmetric version to
the left and an asymmetric version to the right, so that we end up with 9 different
dose-response curve. The deviation to the right is made in order that the proba-
bility to survive bellow y (the stress level experienced) remains the same as in the
symmetric case, and that the probability to survive above y increases. We manually
adjust parameters B and g so that the stress tolerance x1 such that b(x1, y) = 0.8
in the symmetric case gives approximately b(x1, y) = 0.95 in the asymmetric to the
right case. The deviation to the left is made similarly. The probability above y
remains the same and the probability bellow y decreases. We manually similarly
adjust parameters B and g so that the stress tolerance x1 such that b(x1, y) = 0.2
in the symmetric case gives approximately b(x1, y) = 0.05 in the asymmetric to the
left case.
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B.3 Changes in x∗ with the steepness of the fe-

cundity and dose-response functions

The steepness of the fecundity and dose-response functions (respectively cs and βs)
are the two parameters controlling the intensity of the trade-off. Depending on their
values, different patterns occur. Figure B.1 illustrates what’s occurring in case of
low (or very low) βs (namely a shallow dose-response curve).
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Stress tolerance (x)

x*Stress tolerance (x)
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fecundity cannot be too low. 
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a large fecundity without 

loosing too much survival

Because fecundity is low, the 

survival cannot be too low.

x* the largest possible to keep a 

large survival without loosing 

too much fecundity

x

x

x

x

x* decreases

High fecundity requires too low tolerance :

Switch to more tolerant but less fecund species

Figure B.1: Changes in x∗ with the steepness of the fecundity and dose-response
functions in case of a shallow dose-response curve (βs bellow the threshold).
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B.4 Performance of the species at the evolution-

ary equilibrium

Depending on the values of the dose-response curve function steepness βs, the species
performance is not always increasing with species tolerance x∗. Figure B.2 illustrates
what’s occurring.

x*

x* x*

x*

x*<

x*>

Steep dose-response

(large     )

Shallow dose-response

(low     )

Stress level (y)

Distribution p(y) of stress level in the environment

Dose-response b(x*,y) as a function of stress level y

Stress level (y)Stress level (y)

Stress level (y)

>

>

bx* increases 

with 

bx* decreases 

with 

Figure B.2: Comparison of the four cases encountered in the calculation of species
performance bx∗ =

∫
y
p(y)b(x∗, y)dy. In case x∗ > µ (and x∗ remains constant),

bx∗ increases with the dose-response steepness βs. In case x∗ < µ (and x∗ remains
constant), bx∗ decreases with the dose-response steepness βs. Of course, x∗ does
not remain constant with βs. It is x∗ variation as long as with the above effect
of the performance with βs which gives the observed pattern figure 3a of the main
document.
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C.1 Complements to the method

C.1.1 Time scale separation for the mathematical analysis

The time scale separation needed for the mathematical analysis is respected if the
averaged time between two migration events tm = n

m
is large enough so that tm �

tc,fix, with tc,fix the averaged fixation time before fixation (after a unique initial
introduction of an allele into a population). According to Otto & Whitlock (2013),
this time is largest for neutral alleles. The general expression of fixation time for any
initial allele frequency f and any selection or dominance coefficient can be found in
Kimura & Ohta (1969); Whitlock (2003).

At most, tc,fix is the fixation time of one initial copy of the allele of interest in
a large population (f � 1). In that case, tc,fix ≈ 4N generations (see also Kimura
& Ohta, 1969). On the other hand, the smallest value of tm is 1/m. Thus, the time
scale separation is respected if 1/m � 4NT , namely for mT � 1

4N
, with T the

duration of one generation.

C.1.2 Gillespie algorithm for the simulations

We perform fully stochastic simulations of the island population partially connected
to a mainland population, using a Gillespie algorithm to model a logistic demography
of the island population with migration (Goel & Richter-Dyn, 1974).

There are three possible events: birth, death, and migration from mainland to
island (rate m/n), whose rates are reevaluated at every iteration step and are used
to weight the random choice of the next occurring event. To avoid too frequent
population extinctions during the simulations, birth rate is taken proportional to

the population size Nt at time t while death rate is taken proportional to
N2

t

N
(logistic

demography). The factor of proportionality d scales the time unit to a given number
of generation. A generation lasts N

d
units time in average, and d is taken equal to

N . When death occurs, an individual is randomly drawn and removed from the
population. At birth, two random individuals are drawn with replacement, with a
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probability that depends on their fitness (fertility selection), and one allele of each is
randomly chosen to form the newborn. Because our approach only models selection
at birth and not at death and to make our selection coefficient comparable to the
one classically used (Kimura, 1962), we multiplied by 2 the effect of selection felt by
individuals at birth. When a migration event occurs, 2n A alleles immigrate into
the island. After event application, time is incremented by a quantity drawn from a

Poisson distribution, whose rate is the sum of the three event rates (Nt +
N2

t

N
+ m

n
).

The first migration event occurs on average n
m

generations after the simulation
starts. This models the case when populations are physically connected, but where
stochasticity may not yet have allowed individuals to move from one to another.
We chose not to start time at the first migration event, because this would diminish
the effect of large pulses occurring less often (see Bajeux et al., 2019 for a similar
simulation start, or also Peniston et al., 2019).

C.1.3 Simulation time optimization

When migration is very rare compared to demographic events, simulations can take
a very long time to end (waiting for fixation). To reduce simulation time, we do not
simulate demographic events if the island population becomes monomorphic (namely
when stochastic birth or death will no longer impact genetic drift). In order not to
distort time, we must take into account the time that would have elapsed if we had
let the demography unfold.

For this, we increment time by a value drawn from the distribution of migration
event times (τm e−τmx, with τm = m

n
the migration event rate), which is truncated

from ∆t to infinity. ∆t is the elapsed time between the last migration event and the
point at which we stopped the simulation of demography.
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C.2 Selection values at transitions (figure 4 from

the main article)

To determine the boundaries for figure 4 in the main article, we use the mathematical

criterion. If α =
u( n

n+N )
n

is larger (resp. smaller) with n > 1 than for n = 1, it
means that migration pulsedness positively (resp. negatively) impacts allele fixation.

So if
u( n

n+N )
n

>
u( 1

1+N )
1

, namely if u
(

n
n+N

)
> nu

(
1

1+N

)
, the impact of migration

pulsedness is positive. Figure 2 in the main article illustrates this criterion.
The transition from A to B and from C to B is found with the following equa-

tion, which is given by the equality between the tangent to the fixation probability
function at n = 1 and the tangent of the comparison line nu

(
1

1+N

)
at n = 1:

∂u
(

n
n+N

)
∂n

∣∣∣∣∣
n=1

= u

(
1

1 +N

)
For a given h and N , we solve this equality for s with Mathematica (function Find-
Root) which leaves us with the selection value at the boundary.

The transition from A to C corresponds to the values of s and n such that two
conditions are respected:

u

(
n

n+N

)
= nu

(
1

1 +N

)
and

∂u
(

n
n+N

)
∂n

∣∣∣∣∣
n

= 0

We use Mathematica to solve those equation for s and n, using the FindRoot func-
tion. In the limit of n→ 1, we come close to the A to B transition (purple).

C.3 Finding sl1 and slopes of nl and n+ around it

C.3.1 Finding sl1 in frequency-independent selection case

To simplify the notation, in the following we write u(s, n) = u
(

n
n+N

, N, s, h
)
. The

limiting value of selection above which the effect is always negative, and bellow
which the effect can be positive depending on the value of n, is defined by:

u(sl1, 1) =
∂u

∂n

∣∣∣∣
(sl1,n=1)

In the case of frequency independent selection (genic selection),

u

(
s,

n

n+N

)
=

1− e−2Ns
n

n+N

1− e−2Ns
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and

∂u

∂n
=

e−2Ns
n

n+N

(
n2Ns

(n+N)2
− 2Ns

n+N

)
e−2Ns − 1

so that when we evaluate those quantities at n = 1 and equalize them we get:

e
−2Ns
1+N −1 = e

−2Ns
1+N

(
2Ns

(1 +N)2
− 2Ns

1 +N

)
Multiplying by e

2Ns
N+1 both side of the equation leaves us with:

1− e
2Ns
1+N =

(
2Ns

(1 +N)2
− 2Ns

1 +N

)
=

2Ns

1 +N

(
1

N + 1
− 1

)
=

2Ns

1 +N

(
−N
N + 1

)
We denote z = 2Ns

1+N
so that the above equation becomes 1− ez = z −N

N+1
. Assuming

that s � 1, we have that z � 1 and we can write the Taylor series ez = 1 + z +
1
2
z2 +O(z3). Thus,

1− (1 + z +
1

2
z2) = z

−N
N + 1

1

2
z2 + z(1− N

N + 1
) = 0

z(
1

2
z +

1

N + 1
) = 0

which yields z = 0 or z = −2
N+1

. The biologically relevant solution is z = −2
N+1

, which

leaves us with 2Ns
N+1

= −2
N+1

, and we finally get

sl1 = − 1

N

C.3.2 Finding the slope of n+ around sl1 as a function of s

There exists a value n+ of n that maximises the difference in fixation rate between
the continuous case and the pulsed case. Owing to the fact that fixation rate is
proportional to the ratio u(s,n)

n
, we can study the latter to find n+. Along a curve

(s, n+(s)) the following condition is verified:

∂

∂n

u(s, n)

n

∣∣∣∣
(s,n+(s))

= 0 (C.1)

Similarly to the previous paragraph, we differentiate equation (C.1) with respect
to s. We use the notation used in the previous paragraph.

d

ds

(
∂

∂n

u(s, n)

n

∣∣∣∣
(s,n+(s))

)
(s, n+(s)) = 0
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with

d

ds

(
∂

∂n

u(s, n)

n

∣∣∣∣
(s,n+(s))

)
(s, n+(s)) =

2u(s, n+(s))dn+

ds

n3
+(s)

−
2dn+

ds
un(s, n+(s)) + us(s, n+(s))

n2
+(s)

+
dn+

ds
un

2
(s, n+(s)) + us,n(s, n+(s))

n+(s)

Then we isolate the slope dn+

ds
and find:

dn+

ds
=

n+(s) (n+(s)us,n(s, n+(s))− us(s, n+(s)))

2u(s, n+(s))− 2n+(s)un(s, n+(s)) + n2
+(s)un2(s, n+(s))

As in the previous case, at this stage, the expression of the slope dn+

ds
is valid for

any shape of u. We can express this slope in the particular case of frequency inde-

pendent selection where u = 1−e−2Ns n
n+N

1−e−2Ns . In that case, we know that (sl1, n+(sl1)) '
(−1/N, 1), so we can know the slope around sl1. Using Mathematica, a Taylor
expansion for large N (N � 1) gives that

dn+

ds

∣∣∣∣
s=sl1

' −3

2
N2 (C.2)

Using the same method as in the previous case, we verify this result numerically
(see fig. C.1). We find that the slope of n+ as a function of s close to the limit sl1
is well approximated by −3

2
N2. We can notice that is is half the slope of nl as a

function of s.

C.3.3 Finding the slope of nl, knowing the slope of n+

Along a curve (s, nl(s)) the following condition is verified:

u(s, nl(s)) = nl(s)u(s, 1) (C.3)

Solving this condition, we can observe numerically that the slope of nl close to
sl is approximated by −3

2
N2 (see fig. C.1). It is twice the slope found for n+ :

dn+

ds

∣∣∣
s=sl1

' −3
4
N2 (see the previous paragraph). This means that, for a given s

close to sl1, the pulsedness value n = 2n+ should verify the condition for the effect
of pulsedness, i.e.

u(s, 2 ∗ n+(s)) = 2 ∗ n+(s)u(s, 1) (C.4)

Let’s verify this relationship. We note ∆c(s) = u(s, 2 ∗ n+(s))− 2 ∗ n+(s)u(s, 1),
and we want to verify whether or not it cancels close to sl1. We know that (sl1, n+(sl1)) '
(−2/N, 1). Thus, close to sl1, the equation of function n+(s) is

n+(s) = −3N4

2
s− 3N

2

Plugging this equation into ∆c gives:
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∆c(s) =

(
1 +

1

−1 + eNs

)(
1− e−

3Ns(2+Ns)
4+3Ns +3N +

3

2
N
(
Ns− e−

Ns
1+N (2 +Ns)

))
We then evaluate ∆c in s = sl1+ds = − 2

N
+ds, and look for the Taylor expansion

for ds� 1 and large N � 1. Neglecting the term of order O(ds2) we obtain that

∆c(sl1 + ds) ' 2

(e2−1)N
ds

Then

lim
ds→0

∆c(sl1 + ds) = 0

Note that this limit was already true without the Taylor expansion for small ds.
This limit means that close to sl1, the condition (C.4) is verified. Thus we have

nl = 2n+

close to sl1, and the slope of nl as a function of s is twice the slope of n+ (see
fig. C.1):

dnl
ds

∣∣∣∣
s=sl1

' −2
3

2
N2 ' −3N2 (C.5)
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Figure C.1: (a) nl and n+ as a function of s, found numerically solving equation (C.3)
for nl and equation (C.1) for n+. The limit value sl1 of selection bellow which the
qualitative effect of migration pulsedness depends on the value of n is indicated
with a red arrow. It has been analytically estimated to be equal to sl1 = − 1

N
.

Here N = 100. (b) Close to this selection limit value, the slopes of nl and n+ are
estimated both numerically (doted lines) and analytically (solid lines).
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C.4 Effective migration rate from simulation

Effective migration rates are calculated from fixation time using an abacus which
gives me as a function of fixation time.

To get the abacus, we record fixation times tf in simulations for n = 1 (constant
migration) and a large range of migration rates m. We then fit the relation between
log(m) and log(tf ) by a polynomial order 3 function, which allows to make the
correspondence between any measured fixation time (for any n and m) and an
effective migration rate. Figure C.2 gives an example of such an abacus.
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Figure C.2: Example of abacus with a polynomial order 3 function fit. For any
fixation time obtained in a simulation with the same parameters N , s and h, we can
derive the corresponding effective migration rate.
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C.5 Mean number of migration events before fix-

ation

To verify that a minimum of three migration events occur before fixation, we
recorded the mean number of migration events before fixation (fig. C.3).
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Figure C.3: Mean number of migration event before reaching fixation of the main-
land allele into the island in log scale, as a function of pulsedness level. Error bar
stands for standard deviation.
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C.6 Simulations without time-scale separation and

for different population sizes

C.6.1 Large m cases: the “mass” effect

If migration rate is large enough (such that the timescale separation is not respected),
mainland alleles might already be present on the island when a new migration event
occurs. We can see this “mass” effect as an artificial reduction of island population
size. Instead of frequency n

n+N
mainland alleles that remain are at frequency n+pN

n+N

with p the proportion of mainland allele that remains in the island at the beginning
of a new migration event. We have n

n+N
< n+pN

n+N
so that it is equivalent to a larger

propagule size. Also, looking for the mathematically equivalent population size Na

such that n
n+Na

= n+Np
n+N

, we find Na = nN−nNp
n+Np

and we can show that Na < N for any
n or p. Thus, mathematically, an increase in initial frequency of the mainland island
due to residual individuals in the island is equivalent to a decrease in population
size. This can explain the observed shift towards higher values of Ns: we would
need highest values of N to get the same effects of migration pulsedness.

C.6.2 Simulations for various m and N

Figure C.4 shows the observed effect of pulsedness (positive or negative) as a function
of n and N for different m and N .

More precisely, the curves are plotted against Ns, and for n up to N . This
highlights the fact that results are qualitatively almost invariant to population size
if rescaling both axes by N , i.e. in terms of n/N and Ns.
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Figure C.4: The impact (found in simulations), either positive or negative, of migra-
tion pulsedness n as a function of the product Ns, for different values of population
size N and migration rate m. We are here in a frequency-independent scenario
(h = 0.5).
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C.7 Probability that a mainland allele gets fixed,

mean fitness in the island and pulsedness load

C.7.1 Probability f1 that a mainland allele gets fixed

At a given selection value s and dominance degree h, the proportion of alleles
f1(n,N,mt, s, h, t) in the island that comes from the mainland follows:

∂f1
∂t

= β(1− f1)

with β = m
n
u(f,N, s, h) and u(f,N, s, h) the fixation probability of an allele arriving

in frequency f = n
n+N

. Solving this differential equation leaves us with

f1(n,N,m, t, s, h) = 1− (1− f1(0)) exp(−βt)

= 1− (1− f1(0)) exp

[
−m
n
u

(
n

n+N
,N, s, h

)
t

]
The proportion f1(n,N,m, t, s, h) can be seen as the probability that an allele from
the mainland with selection parameters s and h gets fixed in the island at a given
time t. To simplify the notation, f1(n,N,m, t, s, h) = f1 in the main article.

C.7.2 Genetic load and pulsedness load

We suppose that migrant pools from the mainland follow an allelic distribution
pm(s), so that an allele with a selection coefficient s has a probability pm(s) to be
found in the migrant pool. Mean fitness w(n, t) is thus defined at each time t and
each pulsedness level n by:

w(n, t) = 1 +
∑
s

sf1(n,N,m, t, s, h)pm(s)

Genetic load Lg(n, t) is defined bellow (Wallace, 1970), with wmax the maximum
fitness that can be reached in the island (corresponding to the hypothetical case of
the fixation of all mainland beneficial alleles, and the absence of all the mainland
deleterious alleles). It has been represented in the main article figure 5b.

Lg(n, t) =
wmax − w(n, t)

wmax

Pulsedness load Lp(n, t) is defined as the difference in between the genetic load
in a pulsed case and the genetic load in a continuous case. It corresponds to the
additional load brought about by the pulse, and can be either positive (a pulsed
migration provokes more genetic load than a continuous one) or negative (a pulsed
migration provokes less genetic load than a continuous one).

Lp(n, t) = Lg(n, t)− Lg(1, t)
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C.8 Likelihood and fitting the continuous model

on pulsed data

C.8.1 Methodology

To fit the continuous model on pulsed data, we look at the parameters N ′, m′ and
t′ which maximize the likelihood of a data set. In our case, a data set corresponds
to continuous values of f1 = f1(n,Ni,mi, ti, s, h) over s. Every s corresponds to
a locus, and loci are supposed to be independent of each other. In our examples,
we suppose h to be constant and equal to 1/2 (frequency independent selection
case), but it could be set to other value, too. Parameters n, Ni, mi and ti are the
“real” demographic parameters used to obtain the data set, and are supposed to be
unknown.

Given some parameters N , m and t, the logarithm of the likelihood of a pulsed
data point f1,d(s) for one given locus writes

Lh(f1,d(s), N,m, t) = f1,d(s) log(f1,f (s)) + (1− f1,d(s)) log(1− f1,f (s))

with f1,d(s) = f1(n,Ni,mi, ti, s, 1/2) the observed f1 in pulsed data for a given locus
(characterized by it’s selection s value), and f1,f (s) = f1(1, N,m, t, s, 1/2) the model
evaluated for this locus in a continuous case (n = 1) and at the given parameters
N , m and t.

Every locus being independent, the total likelihood for the whole data set is the
integral over s of the logarithm of the individual likelihood:∫

s

Lh(f1,d(s), N,m, t)

In practice, we chose to give different weight to the different loci, specifying a
migrant pool distribution of allelic frequency pm(s). Indeed, we can easily imagine
that neutral loci are more frequent than very highly counter selected or very highly
positively selected loci. In the main article, we give an example of a distribution
of allelic frequencies centered around neutral loci, and in the following section, we
illustrate the case of an allelic frequency centered on a weakly counter-selected locus.
With this distribution, the total likelihood of the data set reads

Lh,tot =

∫
s

Lh(f1,d(s), N,m, t)pm(s)

As m and t are not identifiable under the mathematical model, however we
simply fix m = 1 and estimate t. In practice, we use Mathematica 11.3 to evaluate
Lh,tot for a grid of N and t values. We then interpolate this grid (using function
Interpolation) which allows us to find the parameters N ′ and t′ which maximize the
interpolated function (using function FindMaximum).
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C.8.2 The case of a migrant pool distribution centered on
a negative value of s

In this example (fig. C.5), we considered an allelic distribution of the migrant pool
centered on s = −0.01 with standard deviation 0.010.
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Figure C.5: (a) and (b) Genetic load and pulsedness load in the island as a function
of time t in a continuous (n = 1) and in pulsed cases. (c) Continuous fit of pulsed
data, made on the probability of fixation f1 of a mainland allele as a function of
s. The fit is made on data weighted by the allelic distribution of the migrant pool
(here a normal distribution centered on s = −0.01 with 0.01 standard deviation).
Data correspond to pulsed migration with N = 60 and t = T = 3 ∗ n, so that at
least 3 migration events have had time to occur in average. The best continuous
fit gives N ′ = 60 and T ′ = 14.4 for n = 5, N ′ = 59 and T ′ = 37.4 for n = 15 and
N ′ = 57 and T ′ = 62.2 for n = 30.
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C.8.3 Pulsedness load depending on the allelic distribution
of the migrant pool

Figure C.6 shows the genetic load and pulsedness load for various distributions of
the migrant pool. We observe that pulsedness load is either positive or negative.
It is positive when the allelic distribution of the migrant pool is centered around
beneficial alleles, or around strongly deleterious alleles. Pulsedness load turns to
negative (namely pulse has a positive impact on genetic load) in cases where the
allelic distribution of the migrant pool is centered around a value between s = −1/N
and s = 0.
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Figure C.6: Genetic load and pulsedness load for various allelic distribution of the
migrant pool. From the top to the bottom, the mean of the distribution of s value
in migrant allele is respectively −0.05, −0.035, −0.01, 0, 0.01. Standard deviation
is 0.01 and island population size is N = 60.
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Appendix D

Inferring migration pulsedness
from a genomic dataset

Thinking about the possibility to detect the migration pulsedness genomic signa-
ture, two questions arise following the Chapter 3 study. First, if we deviate from the
limits of the mathematical model used in Chapter 3, will the genomic signature be
as pronounced and detectable? And secondly, what would be the minimum genetic
data set required to detect the signature in a real geneomic dataset? What sample
size, number of loci and external information would be needed? And what would be
the statistical power of the approach in practice? All these questions require specific
investigations to be addressed.

D.1 Type of data needed

We would need to consider a population (the “island”) that is known to be connected
by migration to another population (the “mainland”). The island population effec-
tive size N does not have obligatory to be known, but this information could improve
the quality of the analysis. Information on the date of contact of the two popula-
tions considered could also help, but is not mandatory either. The date of contact
is the date at which the connection was made possible (through land or sea bridge
for instance).

In this population, we would need to known the proportion of several alleles that
we know to originally come from another population. “Several” is pretty vague, and
this appendix is intended to provide a method that might help make this less vague.
All that we know for now is that those several alleles must belong to different loci,
and get different selection coefficient in the focal population. In other words, the
genetic data set will be here defined by a number of loci, and by the distribution
of mainland allele to each loci across selection coefficient. As we will perform a fit
of the proportion of mainland allele present in the island as a function of selection
coefficient, we must have sufficiently different selection coefficient represented, but
also sufficiently loci per selection coefficient (to reduce the noise).

To answer the questions asked, we need simulated data sets (that can violate
the mathematical assumptions of Chapter 3), and a suitable model that can fit
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those data. Indeed, imposing strong constraints on migration rates, the model in
Chapter 3 only allows access to a probability of fixation at time t, not the probability
of having a given proportion of a given mainland allele on the island. We need to
introduce a model that alleviates the hypothesis that fixation is fast relative to the
inter-migration interval.

We first present such a model that describes the change in mainland allelic
frequency in the island through time. We then compare this model with both the
mathematical model and the stochastic simulations described Chapter 3, before
exposing a method to estimate whether migration was pulsed or not.

D.2 Model description

As in Chapter 3, we consider a mainland-island system, in which there is a continuous
migration from the mainland to the island. The system state is described by the
number i of mainland alleles that are present in the island. We consider diploid
individuals and one locus (see Chapter 3), and the population to be at its carrying
capacity N = K, so that there are 2N + 1 possible states for this system: i ∈
{0, 1, 2, ..., 2N}.

The changes in the state of the system can be described as a Markov process.
The probabilities to move from one state to another (transition probabilities) are
controlled by migration, birth (selection) and death processes. Let’s imagine we have
two alleles: A from the mainland and a from the island. The possible transition are
(see also fig. D.1):

• i → i − 1 occurs if AA → Aa or if Aa → aa (birth-death). The transition
probability is denoted l1(i).

• i → i − 2 occurs if AA → aa (birth-death). The transition probability is
denoted l2(i).

• i → i + 1 occurs if Aa → AA (migration or birth-death) or if aa → Aa
(birth-death). The transition probability is denoted g1(i).

• i → i + 2 occurs if aa → AA (migration or birth-death). The transition
probability is denoted g2(i).

We note pi(t) the probability to be in state i at time t. The master equation
describing the change in state with time is:

dpi(t)

dt
=− pi(t)(l1(i) + l2(i) + g1(i) + g2(i))

+ pi+1(t)l1(i+ 1) + pi+2(t)l2(i+ 2)

+ pi−1(t)g1(i− 1) + pi−2(t)g2(i+ 2)

(D.1)

We note wi the relative fitness of the mainland allele compared to the island
allele, or in other words, the probability that a new gamete in the island is A.

wi =

(
i
N

)2
(1 + s) +

(
i
N

) (
1− i

N

)
(1 + hs)(

i
N

)2
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164 Flora Aubree



Appendix D. Inferring migration pulsedness from a genomic dataset

xx

xx
xx

xx

xx

xx

AA

xx

xx
xx

xx

xx

xx

Aa

xx

xx
xx

xx

xx

xx

aa
birth, death

birth, death

migration, death

b
ir
th

, 
d
e
a
th

b
ir
th

, 
d
e
a
th

m
ig

ra
ti
o
n

b
irth

, d
e
a
th

b
irth

, d
e
a
th

Possible transition 

from one state to another

Figure D.1: Possible transition of the system. The system state i is the number of
allele A in the island. A is the mainland allele and a the island allele. xx denotes
any kind of genotype, either AA, Aa or aa.

with s the selection coefficient applied on allele A in the island. If s = 0, then wi
is simply equal to i/N . If i = 0 or i = N then wi is respectively O or 1. We note
r the growth rate (probability of having a birth-death event per unit time) in the
island, and mr the migration rate (probability of having a migrant AA arriving on
the island per unit time). The four transition probability write:
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Figure D.2: Distribution of state i of the system for different times.

Here, we consider a continuous migration. Describing a pulsed migration this
way would be more fastidious as it would imply to consider much more possible
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transition. Finally precising an initial state (e.g. pi(0) = 0) completes the set of
equations that describes the distribution of allele A frequency in the island within
time. We use Mathematica to numerically solve the differential equations (function
NDSolve). Figure D.2 illustrates the distribution of allelic frequency for different
time and the probability to be in state i = N (“fixed”) within time.

D.3 Comparison with stochastic simulations and

Chapter 3’s mathematical model
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Figure D.3: Averaged state i expected with the Master equation and observed in
the stochastic simulations as a function of time for different selection coefficient s.
Here, N = 100 (equivalent to 50 individuals), mr = 0.1, r = 1/2, h = 0.5.
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Figure D.4: Average state and probabilities of the mainland allele fixation as a
function of s compared against each other. (a) and (b) are the same curves plotted
at two different times (t = 100 and t = 200). (c) compares the average state observed
in simulation and expected with the Master equation at time t = 50. Here, N = 200
(equivalent to 100 individuals), mr = 0.1, r = 1/2, h = 0.5.

166 Flora Aubree



Appendix D. Inferring migration pulsedness from a genomic dataset

Comparing those results with the stochastic simulations in the continuous case
shows a good concordance (see fig. D.3). It should thus in principle be possible to
use the master equation to fit some simulation outputs and estimate whether the
latter were realized under a pulsed or a continuous migration scheme.

Figure D.3 shows the averaged state i as a function of time. But in practice, we
will only have access to a temporally local sample, and could not use the temporal
dynamic to estimate parameters. Yet, as demonstrated in Chapter 3, it is possible
to use the differential impact of migration on various unlinked loci, and to consider
the averaged state as a function of selection coefficients. Figure D.4c illustrates this.
We remark the good agreement between simulation and the Markov model.

Figure D.4a and b compares the averaged state (from the Markov model) and
probability of the mainland allele fixation (from both the Markov model and the
Chapter 3 model). We observe that the probability f1 used in Chapter 3 is rather
close to the average state calculated with the Markov model, but does not perfectly
match it. It will therefore be preferable to use the model based on the Markov
process to fit the data.

D.4 Fit by a maximum likelihood method

Equipped with this equation, we can now fit data sets. For this we will use a
maximum likelihood approach.

Let’s imagine the following situation. We consider a sub-sample of size N ′ of a
population of size N (size not necessarily known). This population is referred here
as the “island” population. We know several unlinked loci of the organism that
composes this population, and we know that some of the alleles carried by those loci
come from another population (referred here as the “mainland” population). We
also know the selection coefficient applied, in the island, to each of the considered
mainland alleles. We can measure, for each locus, to the number k of mainland
alleles found in the sub-sample of size N ′. We know that the two population (island
and mainland) are connected by migration, but we don’t know the migration rate
m, and we don’t know the time t since they are in contact. We do not know the
pattern (pulsed or not) of this migration either.

We can make a guess of the different unknown parameters: N , m, t. By de-
fault, in the Master equation exposed above, the migration is considered as being
continuous (n = 1). We can calculate the likelihood of this guess for our data set:

L =
∏
x

Lx (D.2)

where x stands for one specific locus, which carries a mainland allele with selection
coefficient s in the island, and found in k copies in the sub-sample N ′. Lx is the
likelihood for this specific locus. We define the likelihood Lx as

Lx =
N∑
i=0

pi(t)Pbin(k,N ′, i, N) (D.3)

The sum is over the possible value of the system state i, and Pbin is the binomial
probability which gives the probability to find k copies in a sub-sample of size N ′

knowing that the probability to pick a copy in the total population is i
N

.
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Pbin(k,N ′, i, N) =

(
N ′

k

)(
i

N

)k (
1− i

N

)N ′−k
For a given data set, we calculate the likelihood L for several combination of

parameters N , m and t (several guess). The maximum likelihood obtained indicates
which parameters combination most fits the data.

We then can observe whether the obtained fit really fit the data set or not. To
render this observation more quantitative, we could for instance estimate the prob-
ability for the data set to have been generated by the model with the estimated
parameters. If the estimated parameters does not fit the data set, we can conclude
that the latter was generated by a pulsed migration process.

To estimate the minimal data set required to observe a pulsedness signature into
them, we would have to test different scenarios for the data set. A scenario is a set
of different selection coefficient, and a number of loci per selection coefficient value.
In principle, we would have a large number of different scenario to test. A possible
way to optimize the research could be to first determine the minimal number of loci
required per selection coefficient, before focusing on the set of selection coefficient
required.
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