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L'épilepsie est un trouble neurologique causé par une activité neuronale anormale dans le cerveau. Environ 1% de la population mondiale en est affectée. De nombreuses manifestations motrices (incluant des convulsions, des modifiations toniques, cloniques, hyperkinétiques) peuvent s'observer et sont une source de handicap majeur pour les patients. La motivation de cette recherche est de développer des méthodes basées sur des techniques récentes d'apprentissage automatique pour fournir une analyse objective des vidéos de crises cliniques.

Dans cette thèse, nous proposons trois contributions principales á l'analyse automatisée des vidéos de crises. Dans la première contribution, nous explorons des crises d'épilepsie hyperkinétiques en analysant les trajectoires du mouvement de la tête des patients. Les résultats fournissent une base pour étudier la corrélation entre le modifications spectrales de l'EEG et la fréquence des mouvements de la tête.

Néanmoins, l'épilepsie n'est pas la seule cause qui donne lieu á des crises. Par exemple, les crises psychogènes non épileptiques (PNES) en font partie. Ce sont des événements ressemblant á une crise d'épilepsie (ES), mais sans les décharges électriques caractéristiques associées á l'épilepsie. Bien les distinguer est donc important pour un diagnostic précis et des traitements de suivi. Les signes cliniques ou sémiologiques, sont évalués par les neurologues, mais leur interprétation subjective est susceptible de variabilité inter-observateur. Par conséquent, il est urgent de créer un système automatisé pour analyser les vidéos de crises. Dans cette recherche, nous proposons deux autres contributions pour classer ES et PNES uniquement sur la base des vidéos. Notre deuxième contribution utilise des informations issues de l'apparence et de points clés du corps et du visage des patients. En introduisant aussi un mécanisme de distillation des connaissances, les performances du score F1 et la précision sont de 0,85 et 0,82.

Puis sur la base de cette approche, nous menons une expérience parallèle pour distinguer ES avec émotion/non-émotion et dystonie/non-dystonie en fonction des composantes visage ou corps de la méthode. La validation LOSO donne des résultats satisfaisants, indiquant que notre modèle peut capturer des caractéristiques spatio-temporelles efficaces pour le visage et le corps pour l'analyse des crises. Dans notre troisième contribution, nous proposons un modèle en deux étapes qui est d'abord pré-entraîné sur de grandes vidéos contextuelles puis ce modèle est affiné pour la classification des types de crises.

Le modèle est basé sur l'encodeur du modèle Transformer. Étant donné qu'il est coûteux d'obtenir de grandes bases de données étiquetés par des médecins, nous cherchons á exploiter des données volumineuses non étiquetées pour initialiser les poids du modèle, puis le modèle est affiné sur la tâche cible en aval. Ce modèle traite uniquement les caractéristiques d'apparence par contre il implique plus de cas que ceux de la première étude. Le score F1 et la précision de la validation LOSO sont de 0,82 et 0,75. Grâce aux résultats très encourageants de cette recherche, nous proposons une base pour une direction de recherche prometteuse dans le domaine de l'analyse vidéo automatisée des crises.
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The first proposed CNN for digit recognition. The image is adapted from [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF].

2.4 An unrolled recurrent neural network. The image is adapted from [START_REF]Understanding lstm networks[END_REF] . . . 2.5 A denoising autoencoder encodes a noisy image, and then reconstructs a clean image through the decoder. The image is adapted from [START_REF]Building autoencoders in keras[END_REF] . . . . . . 2.6 An encoder-decoder architecture can be suitable for machine translation tasks. The image is adapted from [START_REF]Understanding the hype around transformer nlp models[END_REF] . . . . . . . . . . . . . . . . . . . . . 2.7 Illustration of two examples of the marker-based seizure analytic systems.

(a) The system attaches reflective markers on patients keypoints for seizure motion analysis, and in (b), a color-based limb detection is applied with customized outfits. The images are adapted from [START_REF] Li | Movement quantification in epileptic seizures: a new approach to video-EEG analysis[END_REF] and [START_REF] Lu | Quantifying limb movements in epileptic seizures through color-based video analysis[END_REF]. . . . . . . .

Illustration of examples of the marker-free seizure analytic systems. (a)

Given a face image, the developed 3D face model is used to conduct facial expression analysis on patients with epileptic seizures. As for visionbased body motion analysis, (b) the optical flow features and (c) spatiotemporal interest point detectors (STIPs) are used. The images are adapted from [START_REF] Maurel | 3d model fitting for facial expression analysis under uncontrolled imaging conditions[END_REF], [START_REF] Cuppens | Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy[END_REF], and [START_REF] Cuppens | Using spatio-temporal interest points (STIP) for myoclonic jerk detection in nocturnal video[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 The task and the proposed architecture in [START_REF] Achilles | Convolutional neural networks for real-time epileptic seizure detection[END_REF]. The model uses CNN to learn features on depth and IR images for seizure detection. The image is adapted from [START_REF] Achilles | Convolutional neural networks for real-time epileptic seizure detection[END_REF] [START_REF] Ahmedt-Aristizabal | Deep facial analysis: A new phase i epilepsy evaluation using computer vision[END_REF]. After cropping the face region, the model uses CNNs to learn spatial features and a LSTM network to learn the temporal relation. The image is adapted from [START_REF] Ahmedt-Aristizabal | Deep facial analysis: A new phase i epilepsy evaluation using computer vision[END_REF]. . . . . . . . . 15 2.11 Achilles et al. collected videos via depth sensors and a motion capture system. The data is used to train a pose estimation model based on a CNN-RNN framework. On the right side is the pose estimation without and with blanket occlusion. Green/red skeletons denote the ground-truth/prediction. The image is adapted from [START_REF] Achilles | Patient MoCap: Human pose estimation under blanket occlusion for hospital monitoring applications[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.12 Sample images from a large-scale in-bed pose collection dataset. The image is adapted from [START_REF]SLP dataset for multimodal in-bed pose estimation[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 annotate the keypoints of the patient. We labelled 11 keypoints, including nose, eyes, ears, shoulders, elbows, wrists, and hips, for selected frames. . . 25 3.8 A demonstration of face region, body region, and (2D/3D) upper-limb keypoint estimation on selected hyperkinetic seizures recorded in different illumination conditions and camera systems. . . . . . . . . . . . . . . . . . . 26 3.9 The contextual videos cover the daily behaviors of patients in the Video-SEEG/Video-EEG monitoring unit, except for the onset seizure events. They include (a) eating food, (b) interacting with their family, (c) sleeping, (d) using laptops/smartphones, (e) reading books, (f) being checked by the clinical staff. The empty settings are possibly recorded if patients leave the room, as like (g). (h) shows some night conditions. . . . . . . . . . . . . . . [START_REF] Achilles | Patient MoCap: Human pose estimation under blanket occlusion for hospital monitoring applications[END_REF] 4.1 Samples of the characteristic antero-posterior rocking movement from the selected 3 patients. In this study, the patients from top to down are called 'patient 1', 'patient 2', and 'patient 3'. . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Workflow of the proposed approach for head movement trajectory analysis. [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF] 4.3 Selected samples of the head detection and the head movement trajectory from the cases in Fig. 4.1. For each demonstration, the first row is the image sequence of the seizure video with head detected. The second/third rows represent the horizontal/vertical coordinates of the center of the detected bounding box throughout the whole seizure event. Cyclic patterns are more obvious in the vertical directions, as the antero-posterior rocking movements are mainly perpendicular to the camera. . . . . . . . . . . . . . normal, excessive neuronal activity in the brain [START_REF] Fisher | Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE)[END_REF]. Globally, there are estimated five million people being diagnosed with epilepsy each year. People with epilepsy often experience negative impacts on their quality of life, such as less mobility, social interactions, learning or school attendance. Thus, how to perform an effective diagnosis of epilepsy and its monitoring are crucial towards a better quality of life for the patients.

Epilepsy is also known as a seizure disorder. It is usually diagnosed after a person has had two seizures, or one seizure with the tendency to have more. Seizures happen when the brain nerve cells fire more rapidly with less control than usual, affecting how a person feels or acts. Nevertheless, not all seizures are epileptic in origin. Some are caused by psychological reasons, and such type of seizures are called psychogenic non-epileptic seizures (PNES), which are not associated with an epileptic discharge. To determine if a seizure is caused by epileptic discharges, Video-EEG/Video-SEEG monitoring is used to check the existence of simultaneous culprit brain EEG rhythms during the seizure. Fig. 1.

1
shows examples of how Video-EEG/Video-SEEG monitoring records the semiology and the real-time neuron activities for assessment. Despite the different cause of epileptic seizures (ES) and PNES, these two types of seizure could be similar in terms of the semiology, i.e.

the clinical signs. Even for experienced neurologists, it could be challenging sometimes for them to correctly distinguish them. In addition, the evaluation could be subject to inter-observer variability. Hence, a computer-aided diagnosis is naturally considered as a way to improve the quality of the assessment.

Semiological signs play an important role in analyzing the clinical symptoms regarding a seizure event. It relates to multiple informative sources from the patients in a tempo- 

Challenges

As opposed to conditions within a highly controlled environment, the automated visionbased seizure analysis system is aimed at dealing with real-world seizure videos. To build such a system, there are several challenges we could encounter:

The complicated conditions in videos

For seizure videos, there is usually a complicated condition involved. Patients might be partially occluded by bed sheet, clinical staff, or even themselves due to hyperkinetic behavior. The occlusion could affect the performance of some automatic detection process, like region or key-points detection. In addition, low camera resolution or inadequate light could also incur poor performance. Fig. 1.4 shows some challenges in real conditions.

Insufficent data

For AI applications in the medical domains, doctor's annotation is usually time-consuming.

So one of the major challenges for machine learning for medical applications is the fact that the scale of the labeled data are small compared to other problem domains. Seizure video analysis is no exception. Nevertheless, on the bright side of this challenge, recently some approaches are proposed to address this issue by self-supervised learning (SSL). In SSL, a learning machine captures the dependencies between variables, and learns representations of the data without requiring human-provided labels. The methodology usually first pre-trains on large volume of unlabeled data, and then fine-tunes the pre-trained model on downstream tasks, which usually have smaller labeled dataset. The SSL-based methods have revolutionized natural language processing (NLP) and is making very fast progress for speech and image recognition.

Model explainability

Model explainability means being able to explain model's predictions. As like the insufficient labeled data issue, the model explainability is another important topic for AI in medical applications. Doctors would favor an explainable model more than a blackbox model. Nevertheless, how to better leverage the trade-off between performance and ex- In addition, (d) illumination changes could also happen and affect the performance of some pre-processing procedures.

plainability is still an unsolved research topic. Related to our study, some video prediction models visualize the attention map as an indicator for "what the model sees". Yet as more and more research on the combination of vision and language, perhaps it is another good way towards explainable AI. So the model could provide both a prediction and an explanation. These could provide inspirations for models in medical applications.

Contribution of this study

The innovation of this thesis is the investigation of how deep learning can be exploited in the presence of limited data and complex conditions towards automated seizure video analysis. In this thesis, we propose several contributions as follows:

Head movement analysis for hyperkinetic seizures

For hyperkinetic seizures, in which high amplitude and/or rapid movements are involved in the ictal phase, we propose a method to analyze the trajectories of the head movements of the patients. This analysis provides a basis for investigating the correlation between the frequency of head movement and that of the EEG signals.

A multi-stream framework for seizure classification

We propose a multi-stream deep learning architecture in order to characterize semiological patterns from epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES), based on the semiological signs from patients' motor manifestations and facial expressions.

A self-supervised learning framework for seizure classification

We propose a self-supervised learning framework to classify ES and PNES. The proposed transformer-based method is pre-trained on large unlabeled clinical contextual videos.

Then the pre-trained model is fine-tuned on labeled datasets for the seizure type classification task.

Structure of the thesis

The chapters of this thesis are structured as follows:

Chapter 2 will conduct a literature survey on recent vision-based seizure analysis works.

Chapter 3 elaborates the data collection process and specification.

Chapter 4 shows the study on head movement analysis for hyperkinetic seizures.

Chapter 5 presents our multi-stream framework for seizure classification.

Chapter 6 illustrates the proposed self-supervised framework for seizure classification.

Chapter 2

Related Work

This chapter presents a survey of the development of automated methods for analyzing seizure motions. Some of the methods are based on traditional machine learning techniques and some are built on recent deep learning models. We will first have a quick review of the idea of machine learning and deep learning, and then dive into the related works on seizure motion analysis. 

Traditional machine learning and deep learning methods

Machine learning is a field of studies that focus on using data and trying to imitate how human learns, and gradually improve the task performance. 

Recurrent Neural Networks (RNN)

The recurrent neural network is another type of ANN. As shown on the left side of Fig. 2.4, there is a loop within recurrent neural networks, which make the time-evolving information of the sequential data be kept. Specifically, in the Fig. 2.4, we have a main neural network block A, dealing with some input x t , and outputs h t . If we unroll RNN as like the right side Fig. 2.4, we can see the module A is copied and reused for different timesteps. This chain-like architecture turns out to be effective in handling sequential data. Based on the concept of RNN, there are several variants of RNN, like

Long Short-Term Memory (LSTM) [6] and gated recurrent units (GRU) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. They have achieved great success in applications like speech recognition [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF]. The Encoder-Decoder Architecture

In deep learning, the encoder-decoder architecture is widely used. It usually consists of an encoder and a decoder. The encoder is responsible for encoding the input into a representation, and by feeding it into the decoder, we can decode the representation and so have the desired output. One popular implementation is the Denoising Autoencoder, as shown in Fig. 2.5. It encodes a noisy image, and then reconstructs a clean image through the decoder. Besides, combined with RNNs, the encoder-decoder architecture can be powerful for tasks like language translation. As shown in Fig. 2.6, it encodes the input sentence from source language by RNNs, and then decodes the representation by the decoder into target sentence in the desired language. 

Seizure motion analysis with traditional machine learning methods

Compared to using EEG signals, there are relatively limited studies working on seizure motion analysis. An early review of seizure motion analysis with traditional machine learning methods is done by Pediaditis et al. [START_REF] Pediaditis | Vision-based motion detection, analysis and recognition of epileptic seizures-a systematic review[END_REF]. In general, previous methods are proposed under one of the two conditions: it is either a marker-based or a marker-free system. A marker-based system usually requires patients to attach sensors, such as inertial sensors [START_REF] Joo | Spectral analysis of acceleration data for detection of generalized tonic-clonic seizures[END_REF] or reflective markers [START_REF] Li | Movement quantification in epileptic seizures: a new approach to video-EEG analysis[END_REF], on their bodies or wear customized outfits to effectively detect patients' limbs [START_REF] Lu | Quantifying limb movements in epileptic seizures through color-based video analysis[END_REF]. The recorded limb motion trajectories can be transformed into metrics like velocity, acceleration, and angular speed for motor seizure analysis. Nevertheless, these approaches may be inconvenient for the patients and subject to sensor detachment when patients are having violent behaviors due to an onset seizure.

On the other hand, a marker-free system requires no body-attached sensors, and video cameras are usually used as sensors to record patients' behaviors. Different types of camera have been used, such as single, stereo, and depth cameras. Single camera system is the most widely used one.

In the previous pioneering studies of marker-based systems, Li et al. [START_REF] Li | Movement quantification in epileptic seizures: a new approach to video-EEG analysis[END_REF] As for marker-free systems, Pediaditis et al. [START_REF] Pediaditis | Vision-based absence seizure detection[END_REF] proposed a method for vision-based seizure detection. The proposed work detect patients's faces and then extract the facial features with dense optical flow [START_REF] Farnebäck | Two-frame motion estimation based on polynomial expansion[END_REF] and discrete Fourier transform. Based on those features, five hand-crafted values are designed to discriminate facial expressions for seizure detection via a decision tree algorithm [START_REF] Salzberg | C4.5: Programs for machine learning by j. ross quinlan[END_REF]. Maurel et al. [START_REF] Maurel | 3d model fitting for facial expression analysis under uncontrolled imaging conditions[END_REF] developed a 3D head model given a face image, and utilize the model for facial expression analysis for patients with epileptic seizures. For vision-based body motion analysis, some studies use optical flow and clustering analysis [START_REF] Karayiannis | Extraction of temporal motion velocity signals from video recordings of neonatal seizures by optical flow methods[END_REF][START_REF] Karayiannis | Automated detection of videotaped neonatal seizures based on motion segmentation methods[END_REF][START_REF] Cuppens | Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy[END_REF]. Some combined spatio-temporal interest point detectors (STIPs) and histograms-of-flow features [START_REF] Cuppens | Using spatio-temporal interest points (STIP) for myoclonic jerk detection in nocturnal video[END_REF][START_REF] Mandal | Non-intrusive head movement analysis of videotaped seizures of epileptic origin[END_REF]. Fig. 2.8 shows examples of marker-free systems.

Vision-based seizure video analysis with deep learning methods

Deep learning has excelled in many computer vision tasks. More and more healthcare applications are introducing deep learning into their systems for better performances [START_REF] Esteva | A guide to deep learning in healthcare[END_REF].

Nevertheless, in the context of automated seizure video analysis, there are still relatively limited studies and few datasets are dedicated for the topic. Here we present some deep learning-based seizure video analysis studies.

Achilles et al. [START_REF] Achilles | Convolutional neural networks for real-time epileptic seizure detection[END_REF] proposed a system to detect seizures by using CNNs to learn features The system attaches reflective markers on patients keypoints for seizure motion analysis, and in (b), a color-based limb detection is applied with customized outfits. The images are adapted from [START_REF] Li | Movement quantification in epileptic seizures: a new approach to video-EEG analysis[END_REF] and [START_REF] Lu | Quantifying limb movements in epileptic seizures through color-based video analysis[END_REF]. • Four imaging modalities: RGB (regular webcam), long-wave infrared (FLIR LWIR camera), Pressure Map (Tekscan Pressure Sensing Map), and depth sensor (Kinect v2).

• Three cover conditions: No cover, bed sheet (cov1), and blanket (cov2).

• Fully labeled poses with 14 joints.

Concluding remarks and discussion

According to the literature reviewed, research on seizure motion anlaysis can be divided into three main directions: marker-based systems, marker-free systems, and deep learning based systems. The first two kind of systems usually apply traditional machine learning Figure 2.12: Sample images from a large-scale in-bed pose collection dataset. The image is adapted from [START_REF]SLP dataset for multimodal in-bed pose estimation[END_REF].

techniques and need domain expertise for desigining a good feature for the target tasks.

On the other hand, deep learning provides a data-driven option to learn features end-toend and thus needs less human intervention. With deep learning, the choices of video sensors for vision-based seizure analysis can be more flexible, from single cameras to infrared and depth cameras. In spite of the motivations, using deep learning for seizure video analysis is still much under-explored, not only exhibited in the limited numbers of studies in this field, but also the model architectures used. Current architecures used in this field are mostly combinations of CNNs and RNNs. Indeed, those two neural nets are among the most famous building blocks in deep learning, and they seem able to give promising results in the literature. However, deep learning field is evolving extremely fast, and since the success of CNNs and RNNs, there have been several powerful models proposed, such as Graph Neural Networks (GNNs) [START_REF] Zhou | Graph neural networks: A review of methods and applications[END_REF] and the Transformer model [START_REF] Vaswani | Attention is all you need[END_REF].

Given that, in this thesis, we include the GNNs and the Transformer model into our seizure video analysis, aiming to provide some concrete results with these state-of-the-art models.

Besides, deep learning usually needs large volumes of labeled data to train, and it is usually difficult and expensive to get large volume of labeled seizure videos. This could be a reason hindering deep learning from being developed in seizure video analysis. As a silver lining, recently deep learning researchers proposed a work [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] showing how large volume of unlabeled data can be helpful for target tasks whose labeled data scale is much smaller. In this research, we also introduce this idea into our seizure video analysis. In short, after giving a short summary of the literature, we present some complementary viewpoints and implement them in this thesis. We hope this can provide some inspirations for the research community working on automated seizure video analysis.

Chapter 3

Data Collection

Overview

In this section, we introduce how we collect the seizure video dataset for this research.

This part will cover the patient selection criteria, the context about video recording, ethical approval process and codification of the data. In addition, we will show how we use some data labelling tools and detectors to localize important body parts for better semiology analysis. In addition to the videos containing seizure events, we also collected a large volume of videos without seizures. They are called as 'contextual videos', aiming to provide contexutal information of where seizure is occurring. Finally, we compare our dataset to the ones collected by other related works, which shows that our dataset is moderately large in the field of video-based seizure motion analysis.

Introduction of the curated seizure video dataset

It is important to have a seizure video dataset containing semiology for vision-based seizure motion analysis. To our best knowledge, there is no such dataset that is publicly available. To conduct experiments and evaluate our proposed methods, we curated The seizure video clips are segmented from the untrimmed video recordings during a

Video-SEEG or Video-EEG monitoring procedure. The video segmentation is purely based on the seizure semiology, where we keep the main expression of semiology of a seizure event. For example, for a tonic-clonic seizure, there are usually three phases involved: a tonic phase (stiffening), a clonic phase (jerking), and a post-ictal confusional fatigue phase (relaxation). In this case, we only look to the first two phases.

For patients who participated in this research, there were no external or additional activities involved other than the regular monitoring procedures. We aim to collect as much data as possible. In addition to the clinical data from patients under active treatments, we also analyze the data in a retrospective way, as to include videos dating back to September, 2000. Besides, all the videos are in real conditions. There is no specific device or settings catering to this research. With the considered points, we are able to develop a challenging and representative dataset at a moderately large scale in the field.

More details about the seizure video dataset

The developed seizure video dataset aims to support and evaluate the proposed methods in this research. The main task in this research is to distinguish ES from PNES, simply based on the visual information. The motivation is from the importance of the correct diagnosis of whether a seizure belongs to ES or not, which makes considerable difference for the follow-up treatments. In this section, we present more details about the curated seizure video dataset, including some specification, statistics, and codification of the data.

In addition, we show how we use semi-automated tools to annotate ground-truth for better region-of-interest (ROI) detection.

The collected seizure videos

As mentioned, our seizure video clips are segmented from the video recordings in the EMUs. Since the time span within our database is across more than 20 years, there were several camera system changes. As shown in Fig. 3.5, before 2006, the camera system provided a focus on patient's face overlapped on the main content of the video frame. For the system after 2006 and before 2012, the location of the face focus had been parallel to the whole view. As for videos recorded after 2012, there is no more focus on the frame.

Although zooming in gave a better visualization for clinicians to assess the semiological features, it might increase the difficulty for preprocessing the videos as clean data for developing automated methods. Later in this section, we will show how we utilize semi-automated labelling tools to improve the ROI detection in our dataset.

As could be expected due to different recording systems, there is no unified video format and specification for the untrimmed video recordings in the EMUs. After segmenting out each seizure for a new video clip, we saved the new clip as its original format, including the MPG, MP4, AVI, and ASF. We then converted the trimmed clips into image sequences

for each clip at a frame rate of 25 frames per second, while keeping the resolution unchanged, inlcuding 352 × 576, 352 × 288, 704 × 576, 720 × 576, and 1280 × 720.

We resize the aspect ratio until the frames were fed into the developed models. 

De-identify patient data via semi-anonymization

To protect the personal information of patients from being identified, we carried out a semi-anonymization on the collected video data. The naming rule for each seizure video is AaBbXXM _Y Y Y Y , where

• Aa: The first two characters of the surname of the patient.

• Bb: The first two characters of the first-name of the patient.

• XX: Two digit number indicating the ordinal of the seizure.

• M : This is either a S or E. A S in this position denotes the seizure is from a SEEG monitoring (ES), while a E indicates a scalp EEG monitoring (PNES).

• Y Y Y Y : Year when the seizure was recorded.

For example, if a patient is named Timothy Roberts (a hypothetical name), and he had his first ES in 2015. Then the semi-anonymized name for the seizure video clip would be RoT i01 S_2015 . This simple nomenclature not only covers enough private information for developers, but also provides an easier way for clinicians to decode the target patient for clinical discussion in case.

Semi-automated labelling tools for ROI detection

Our dataset is challenging because it involves different camera systems, changes of illumination, occlusion issues, etc. To more effectively detect the ROI for semiology analysis, we utilized some graphical image annotation tools to manually label some ROI in our dataset for better detection. As shown in Fig. 3.6, we used LabelImg [START_REF]Labelimg: a graphical image annotation tool[END_REF] to annotate the bounding box of face and full body of the target patient. As for keypoint annotation, as shown in Fig. 3.7, we utilized Visipedia [START_REF]Visipedia: Annotation toolkit for editing keypoints and bounding boxes[END_REF] to help label the joints on our patients, which are exported as a COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] style format. With the annotated images, we fine-tuned some pre-trained detectors to fit better on our dataset. Fig. 3.8 demonstrates some selected samples of the detection results. More details about the ROI detection can be found in Chapter 5.

The contextual video dataset

After a routine Video-SEEG or Video-EEG monitoring, there could be several video recordings at hours for the entire session. If seizures occurs during the session, the medical staff will identify and extract the video segments afterward, and then save them in the database of the hospital. As for parts where no seizure events are involved, these recordings will be erased weeks later, because they could be bulky for storage yet not informative in terms of medical viewpoints. Nevertheless, from the side of machine learning, these 'meaningless' seizure-free videos might be useful. The reason is that they can provide the visual information of the surroundings/environments of how seizures are captured. In addition, we can have a large quantity of them, and the mainstream deep learning/machine learning models usually favors big data. Given that, in this research, we intentionally collected more than 1000 hours seizure-free videos, and we call them as 'contextual videos' in this research. The behavior in these contextual videos can be as diverse and natural as those in daily routines, such as eating, sleeping, chatting with their families, and interaction with clinicians. The recording conditions include both daytime and night. Some selected samples are shown in Fig. 3.9. With these seizure-free data, we can utilize some modern algorithms benefiting from training large unlabeled data [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]. More details about how we exploit these videos for seizure type classification can be found in Chapter 6.

Concluding remarks

In this section, we present the details about the definition and the collection process of our seizure video dataset. Chapter 4

Head Movement Analysis for Hyperkinetic Seizures

This study investigates the time-evolving frequency of head movement of an charateristic hyperkinetic behavior during epileptic seizures. Two research journal papers have been published based on this study [START_REF] Hou | Rhythmic rocking stereotypies in frontal lobe seizures: A quantified video study[END_REF][START_REF] Zalta | Neural correlates of rhythmic rocking in prefrontal seizures[END_REF].

Introduction

Rhythmic movement patterns constitute typical functional motor behaviors across species and across the lifespan [START_REF] Gallistel | The organization of action : a new synthesis[END_REF], and are considered to arise from subcortical central pattern generators [START_REF] Grillner | Biological pattern generation: The cellular and computational logic of networks in motion[END_REF][START_REF] Marder | Central pattern generators and the control of rhythmic movements[END_REF]. Stereotyped non-functional rhythmic movements are observed in sleep disorders [START_REF] Manni | Rhythmic movements during sleep: a physiological and pathological profile[END_REF], movement disorders [START_REF] Deuschl | Consensus statement of the movement disorder society on tremor[END_REF][START_REF] Edwards | Stereotypies: A critical appraisal and suggestion of a clinically useful definition[END_REF], and epilepsy [START_REF] Tassinari | Neuroethological approach to frontolimbic epileptic seizures and parasomnias: The same central pattern generators for the same behaviours[END_REF]. To date, very little data exist quantifying the time-evolving frequencies of these movement sequences, which is unfortunate as these may help in elucidating the mechanisms underlying such pathological behaviors. Semiological "fingerprints" of similar rhythmic movements occurring in both epileptic seizures and sleep disorders have led to speculation of possible shared mechanisms [START_REF] Tassinari | Neuroethological approach to frontolimbic epileptic seizures and parasomnias: The same central pattern generators for the same behaviours[END_REF]. However, understanding of these is limited, notably in terms of how higher cortical circuits might interact with subcortical components of the motor system to produce similar clinical expressions in conditions with different physiopathologies [START_REF] Edwards | Stereotypies: A critical appraisal and suggestion of a clinically useful definition[END_REF][START_REF] Mcgonigal | Prefrontal seizures manifesting as motor stereotypies[END_REF][START_REF] Tassinari | Neuroethological approach to frontolimbic epileptic seizures and parasomnias: The same central pattern generators for the same behaviours[END_REF], even though the neural circuitry involved in repetitive behaviors is increasingly well characterized from animal models, notably in terms of defining the corticostriatal circuitry involved. Methods allowing more precise documentation of clinical and physiological phenomena involving complex motor patterns might facilitate further investigation and understanding of this relatively unknown domain [START_REF] Chauvel | Emergence of semiology in epileptic seizures[END_REF][START_REF] Mcgonigal | Prefrontal seizures manifesting as motor stereotypies[END_REF]. Rhythmic movements are a common feature of epileptic seizures, the best-known example being clonic jerk movements in the context of generalized tonic-clonic seizures [START_REF] Gastaut | Epileptic seizures; clinical and electrographic features, diagnosis and treatment[END_REF][START_REF] Marchi | Postictal electroencephalographic (EEG) suppression: A stereo-EEG study of 100 focal to bilateral tonic-clonic seizures[END_REF]. Other seizure-related rhythmic movements involve multi-segmental motor behaviors, which can involve the axial segment (e.g. rocking movements of the trunk) [START_REF] Rheims | Analysis of clinical patterns and underlying epileptogenic zones of hypermotor seizures[END_REF] or upper or lower limbs (e.g. bicycling-like movements of the lower limbs, hand tapping) [START_REF] Bonini | Frontal lobe seizures: From clinical semiology to localization[END_REF].

Oro-alimentary automatisms may also occur rhythmically [START_REF] Aupy | Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures[END_REF][START_REF] Meletti | Rhythmic teeth grinding induced by temporal lobe seizures[END_REF]. Amongst possible methods of movement quantification in neurological disorders (for comprehensive review, see [START_REF] Do | Movement quantification in neurological diseases: Methods and applications[END_REF]), there is increasing interest in video analysis techniques, including those based on deep learning or machine learning, for automated analysis of movements in epileptic seizures [START_REF] Abbasi | Machine learning applications in epilepsy[END_REF][START_REF] Ahmedt-Aristizabal | Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey[END_REF][START_REF] Cunha | NeuroKinect: A novel lowcost 3dvideo-EEG system for epileptic seizure motion quantification[END_REF][START_REF] Cunha | Movement quantification in epileptic seizures: A feasibility study for a new 3d approach[END_REF][START_REF] Rémi | Quantitative movement analysis differentiates focal seizures characterized by automatisms[END_REF] and for motor stereotypies (e.g., in autism [START_REF] Großekathöfer | Automated detection of stereotypical motor movements in autism spectrum disorder using recurrence quantification analysis[END_REF]). However, such studies have tended to focus on detection and categorization of movement patterns; quantification of multi-segmental rhythmic behaviors in terms of time-evolving movement frequencies has not yet been reported. Here, we describe a series of prefrontal seizures characterized by highly stereo-typed rhythmic antero-posterior body rocking movements, analyzed using quantitative video methods as well as electroencephalography (EEG).

Methods

Clinical data

Videos recorded in the context of presurgical epilepsy evaluation in Timone University Hospital, Marseille, France were studied. All patients provided written informed consent for use of data. From a series of 220 cases of frontal epilepsy, 3 patients demonstrated a 

Video method

Videos of seizures with rocking movements were analyzed using a head tracking method.

Recorded seizures in which rocking movements were not clearly visible were excluded.

Each seizure video was converted into an image sequence under 25 frame-per-second and resized to 512 × 512 pixels dimension.

As shown in Fig. 4.2, video processing consisted of four parts: head detection, trajectory denoising, peak detection, and frequency analysis. First, the head of the patient was detected in each video by utilizing a robust detector: the Single Shot Multibox Detector (SSD) network [START_REF] Liu | SSD: Single shot MultiBox detector[END_REF], a deep learning-based model. We opted for this approach as partial occlusions and changing environmental lighting conditions, could have jeopardized the performance of simpler head detection approaches. The location of the head was manually annotated for 10-15% of the image samples per video, selected randomly, then SSD was used for head detection. The SSD network is pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], a largescaled image recognition dataset. The pre-trained weights were used as the initialization weights for the SSD network while the network was retrained with the manually labelled samples for fine-tuning the network. After head detection throughout the whole video, the head movement trajectory was computed in the horizontal and vertical direction. • The number of extrema and the number of zero-crossings must either be equal or differ at most by one.

• The mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero. 

Results

Clinical and neurophysiological results

Localization

Video analysis

Six seizure videos with antero-posterior rocking movement from the 3 patients were included. Duration of rocking within seizures lasted 15-40 sec (mean 16.5). Mean frequency of rocking movements was 0.37-1.00 Hz (median 0.67) (Table 4.1). Each seizure was characterized by a stable frequency of rocking throughout its duration, with a mean coefficient of variation 8.3% (Table 4.1, Fig. 

Discussion

The directionality and regularity of rhythmic axial rocking movements were highly stereotyped across seizures and patients, without goal-directed or habitual behavior [START_REF] Singer | Motor control, habits, complex motor stereotypies, and tourette syndrome[END_REF]. Body rocking also occurs in sleep-related movement disorder [START_REF] Mayer | Sleep related rhythmic movement disorder revisited[END_REF], or "self-stimulatory behaviors" [START_REF] Lovaas | SELF-STIMULATORY BEHAVIOR AND PERCEPTUAL REINFORCEMENT[END_REF] e.g., in autism, as well as in normal infant development [START_REF] Thelen | Kicking, rocking, and waving: Contextual analysis of rhythmical stereotypies in normal human infants[END_REF]. Anteroposterior spinal rocking is relatively uncommon in epileptic seizures and has only been seen by us in a context of prefrontal epilepsy; such a pattern occurs in only a small proportion of seizures involving prefrontal cortex (around 1% in our series). The 3 cases reported here represent the only ones with this characteristic semiological pattern seen in our Epilepsy

Unit over decades of recording.

The repetition, rhythmicity, cyclicity and topographical similarity suggest a pathophysiological role for a temporal assembly of neural structures acting as an oscillator [START_REF] Graybiel | Habits, rituals, and the evaluative brain[END_REF][START_REF] Lewis | A NEUROBIOLOGICAL AL-TERNATIVE TO THE PERCEPTUAL REINFORCEMENT HYPOTHESIS OF STEREO-TYPED BEHAVIOR: A COMMENTARY ON "SELF-STIMULATORY BEHAVIOR AND PERCEPTUAL REINFORCEMENT[END_REF],

with clinical expression reflecting interaction between nervous system activity and biomechanical dynamics of the musculoskeletal system [START_REF] Hatsopoulos | Coupling the neural and physical dynamics in rhythmic movements[END_REF]. Rocking frequency varied between individuals and between seizures, within a mean range (0.37-1.0 Hz) overlapping with but slightly lower than that associated with most physiological rhythmic behaviors (0.8-2 Hz) [START_REF] Morillon | Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception[END_REF] and those occurring in sleep disorders (0.5-2 Hz) [START_REF] Manni | Rhythmic movements during sleep: a physiological and pathological profile[END_REF]. Despite the short durations available for calculation, each sequence showed a stable frequency throughout, in keep- ing with the reduced variability typically associated with stereotyped movements [START_REF] Yamada | Nature of variability in rhythmical movement[END_REF].

The coefficient of variation was similar to that reported for healthy gait [START_REF] Hollman | Age-related differences in spatiotemporal markers of gait stability during dual task walking[END_REF]. It is of interest that patient 1, who presented 4 seizures with rocking, showed slight differences in rocking frequency between seizures, suggesting that these were not caused by rigidly predetermined rhythmic generators. The observation that the rocking frequency differed somewhat between seizures may reflect individual differences, as for spontaneous natural rocking [START_REF] Richardson | Rocking together: Dynamics of intentional and unintentional interpersonal coor-dination[END_REF]. Seizure-specific factors may also have played a role, for example, variations in frequency of cortical seizure discharge, and degree of synchrony between key structures, may contribute to differences in clinical output. Higher rocking frequencies were related to smaller amplitudes (e.g. upper trunk rocking rather than whole body), in keeping with known biomechanical effects of inertia [START_REF] Bonini | Frontal lobe seizures: From clinical semiology to localization[END_REF]. Antero-posterior directionality remained the same throughout each seizure.

Repetitive, rhythmic movement patterns in frontal lobe seizures may be characterized as stereotypies [START_REF] Bonini | Frontal lobe seizures: From clinical semiology to localization[END_REF][START_REF] Edwards | Stereotypies: A critical appraisal and suggestion of a clinically useful definition[END_REF], whose segmental distribution was previously shown to be correlated with localization of the epileptogenic zone along a rostro-caudal axis: axial/proximal motor stereotypies were associated with more posterior frontal regions and distal stereotypies with anterior prefrontal regions [START_REF] Mcgonigal | Prefrontal seizures manifesting as motor stereotypies[END_REF]. All seizures here showed prefrontal cortex epileptic discharge, but with different sublobar localization across patients. Thus, the here observed movement patterns were not directly related to epileptic activity within a single specific cortical region [START_REF] Bonini | Frontal lobe seizures: From clinical semiology to localization[END_REF], but suggested an effect involving associative motor regions that might project to a "final common pathway" underlying the repetitive movements. Clinical expression would likely depend on subcortical circuits triggered by different possible cortical localizations of epileptic activity [START_REF] Vaugier | Hyperkinetic motor seizures: a common semiology generated by two different cortical seizure origins[END_REF] and probably specific temporal (frequency, synchrony) conditions of discharge [START_REF] Aupy | Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures[END_REF][START_REF] Chauvel | Emergence of semiology in epileptic seizures[END_REF].

From a hierarchical perspective of nervous system organization, abnormal triggering of innate movement patterns may occur by top-down "release" due to transiently altered dynamics within topographically organized cortico-subcortical motor control circuits [START_REF] Schmahmann | Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems[END_REF],

as has been suggested for some other seizure patterns involving "programmed" behaviors (e.g. rhythmic movements related to locomotion or mastication). From an ontogenetic perspective, fetal somersaults around the transverse axis occur from around 12 weeks' gestation [START_REF] Vries | The emergence of fetal behaviour. i. qualitative aspects[END_REF]; in addition, rhythmic stereotypies seem to play a specific developmental role in normal infants, with rhythmic trunk movements occurring mainly between 6 and 12 months of age [START_REF] Thelen | Kicking, rocking, and waving: Contextual analysis of rhythmical stereotypies in normal human infants[END_REF]. Phylogenetically, rhythmic spinal flexion underlies rectilinear locomotion in some limbless vertebrates [START_REF] Gaymer | New method of locomotion in limbless terrestrial vertebrates[END_REF].

In previous SEEG work on seizure-related oroalimentary automatisms, the authors suggested that functional coupling between cortical structures during seizures may be responsible for a top-down effect on outflow pathways from masticatory cortex [START_REF] Aupy | Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures[END_REF]. Similarly, specific synchronization dynamics created during certain prefrontal seizures might allow expression of subcortical generators of regular, stereo-typed, rhythmic movement, in this case involving spinal musculature.

Following the research interests on the intersection of neuronal activity and ictal behavior, we extend this study with the inclusion of SEEG. In particular, the four seizures with the corresponding SEEG signals of the patient 1 are analyzed. A finding of spectral correlation between head movement trajectory and SEEG singals is discovered, suggesting a neural signature during expression of motor semiology incorporating both temporal features associated with rhythmic movements and spatial features of seizure discharge [START_REF] Zalta | Neural correlates of rhythmic rocking in prefrontal seizures[END_REF].

Limitations of our work include the use of a single camera, which allowed 2-D video analysis. More data allowing more detailed characterization of movements could have been achieved using a 3-D video approach, through recording with multiple cameras placed at different angles to the subject. A novel 3-D method, NeuroKinect, has recently been used

to successfully record and quantify movements in epileptic seizures [START_REF] Cunha | NeuroKinect: A novel lowcost 3dvideo-EEG system for epileptic seizure motion quantification[END_REF]. One specific advantage of a multi-camera approach in the present series would have been a lateral view of these movements, which could have allowed assessment of their amplitude. However, since the present data came from a retrospective series recorded in the conventional way in our videotelemetry unit, we were obliged to work with the available video data. The other major limitation is the small number of cases (due to the rarity of this specific semiological pattern), and the possibility that including several seizures from the same patient was a source of bias in determining the mean rocking frequency of the whole group.

Conclusion

Automated video analysis confirmed stable frequency throughout rocking sequences in the prefrontal seizures, suggesting a mechanism involving intrinsic oscillatory generators.

Since localization of seizure onset varied within prefrontal cortex across patients, altered dynamics within a "final common pathway" involving cortico-subcortical movement circuits is hypothesized. The results provide a basis for studying the correlation between the spectrum of EEG and the head movement frequency. Further work on time-evolving frequencies of stereotyped movements across a range of pathologies could help shed light on possible shared pathophysiological mechanisms; to this end, documentation of kinematic properties of stereotypies using automated video analysis could be a useful tool. Future studies could focus on a larger series of seizures with complex motor behaviors, aiming to identify clinical subgroups based on automated video analysis (including a control group), and to correlate these with intracerebral EEG signal analysis.

Chapter 5

A Multi-Stream Framework for Seizure Classification

In this study, we investigate semiology-based seizure classification problems with a deep learning-based method. The proposed method utillzes information from keypoints and appearance, from both face and body pose. Knowledge distillation is introduced for regulating the model learning. Two tasks are explored: epileptic/non-epileptic seizure classification, and recognition of limb dystonia and emotion in epileptic seizures.

Introduction

As stated in Chapter 1, seizures can be categorized as epileptic seizures (ES) or psychogenic non-epileptic seizures (PNES), based on the presence of epileptic discharges in the brain. The clinical management of ES and PNES is different and as such, accurate diagnosis is crucial to avoid therapeutic errors. To diagnose the type of seizure, one important information comes from semiology [START_REF] Seneviratne | How good are we at diagnosing seizures based on semiology?[END_REF], i.e., the clinical signs that occur during the seizure, independently from auxiliary information such as EEG or neuroimaging. The gold standard diagnostic method is to record habitual events on video-EEG, with simple visual analysis by an expert in epileptology. Nevertheless, distinguishing between ES and PNES may be challenging, with low accuracy rates for less experienced clinicians, especially when seizures of either type involve complex hyperkinetic motor behavior [START_REF] Seneviratne | How good are we at diagnosing seizures based on semiology?[END_REF]. There have been many works trying to deal with seizure classification problems with machine learning based on either EEG signals [START_REF] Kaya | 1d-local binary pattern based feature extraction for classification of epileptic EEG signals[END_REF][START_REF] Samiee | Epileptic seizure classification of EEG timeseries using rational discrete short-time fourier transform[END_REF] or visually observed semiology [START_REF] Hubsch | Clinical classification of psychogenic non-epileptic seizures based on video-EEG analysis and automatic clustering[END_REF][START_REF] Maurel | 3d model fitting for facial expression analysis under uncontrolled imaging conditions[END_REF].

However, to our knowledge, none so far have specifically focused on distinguishing ES from PNES.

In this study, we take advantage of recent deep learning frameworks in computer vision for directly analyzing patients' semiology, focusing particularly on the body pose and face regions. Several related works have been proposed recently [START_REF] Ahmedt-Aristizabal | A hierarchical multimodal system for motion analysis in patients with epilepsy[END_REF][START_REF] Ahmedt-Aristizabal | Deep motion analysis for epileptic seizure classification[END_REF][START_REF] Karacsony | A deep learning architecture for epileptic seizure classification based on object and action recognition[END_REF]. In [START_REF] Ahmedt-Aristizabal | A hierarchical multimodal system for motion analysis in patients with epilepsy[END_REF], the authors use semiological signs from face, body, and hands to classify epilepsy with convolution neural networks (CNNs) and recurrent neural networks (RNNs). The work in [START_REF] Ahmedt-Aristizabal | Deep motion analysis for epileptic seizure classification[END_REF] also utilized similar strategy with pre-trained CNN features combined with RNNs for analyzing and fusing the information from face and body pose. The method proposed in [START_REF] Karacsony | A deep learning architecture for epileptic seizure classification based on object and action recognition[END_REF] used a I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] backbone to extract spatio-temporal features followed by RNNs as the classifier.

Rather than using the standard combination framework like CNN-RNN architectures, in this work, we propose to leverage the recent powerful graph convolutional networks (GCNs) for seizure classification. The GCN model [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF], which operates convolution on graphs, have been adopted in various tasks, such as skeleton-based human action recognition [START_REF] Shi | Two-stream adaptive graph convolutional networks for skeleton-based action recognition[END_REF][START_REF] Pan | Spatio-temporal graph for video captioning with knowledge distillation[END_REF] and facial landmark-based emotion recognition [START_REF] Ngoc | Facial landmark-based emotion recognition via directed graph neural network[END_REF][START_REF] Xu | Facial expression recognition based on graph neural network[END_REF]. In this study, we apply a novel, adaptive GCN (AGCN) [START_REF] Shi | Two-stream adaptive graph convolutional networks for skeleton-based action recognition[END_REF] in which the topology of the graph can be learned, on the detected body joints and facial landmarks for seizure classification.

In addition, inspired by [START_REF] Pan | Spatio-temporal graph for video captioning with knowledge distillation[END_REF], we introduce a knowledge distillation (KD) mechanism from the complementary appearance stream for regulating the keypoint features leaned by AGCN. To obtain further improvement, we combined the prediction from each AGCN separately trained on body pose keypoints and facial landmarks with the knowledge distillation mechanism. To our best knowledge, this work is the first attempt to utilize GCNs for seizure type classification (ES versus PNES) based on semiological information. The next section will describe the proposed methodology, followed by experimentation and conclusion.

Methodology

Overview

In this section, we describe our proposed multi-stream framework for classifying two types of seizures, i.e. ES and PNES. The overall architecture is shown in Fig. 5.1. After converting the seizure video into an image sequence, we detected and cropped the region of patient's body and face, followed by keypoint detectors for joint and facial landmark localization. The detected keypoints were then fed into separated AGCN for classification, which are viewed as Keypoint Streams. The cropped detected region of patient and face were fed into their corresponding feature extractor, and adopted temporal convolutional networks (TCNs) for temporal reasoning. The outputs of these streams, termed as Appearance Streams, were then used to transfer the learned knowledge to the Keypoint Streams.

The predictions by AGCN from the pose and face streams were further combined for better performance. The following are the details for each stream. 

Region of interest and keypoint detection

We adopted a fast SSD network [START_REF] Liu | Ssd: Single shot multibox detector[END_REF] with MobileNet [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] backbone for region of interest (ROI) detection, i.e. detecting patients and their faces. The SSD model was pretrained on Imagenet dataset [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF] and fine-tuned on our dataset. For body joint localization, we detected the 2D keypoints of upper-limb on the detected patient with Keypoint-RCNN [START_REF] He | Mask r-CNN[END_REF][START_REF] Massa | New person keypoint detection models in pytorch domain libraries[END_REF], which is pretrained on MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] and fine-tuned on our dataset. The 

The appearance stream

After the ROI detection on a video with T frames, we have the detected cropped region for patient as R P = {r p1 , r p2 , • • • , r pT } and for detected face as

R F = {r f 1 , r f 2 , • • • , r f T }, with r pt ∈ R Wp×Hp×3 and r f t ∈ R W f ×H f ×3
. W p and W f are normalized width, and H p and H f are normalized height for detected regions for pose and face streams respectively.

We leverage pretrained models for feature extraction followed by a temporal convolution layer. For pose stream, we used R(2+1)D model [START_REF] Tran | A closer look at spatiotemporal convolutions for action recognition[END_REF] pretrained on Kinetics [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] with the last classification layer removed as backbone to extract spatio-temporal features on a L-frame snippet, by 

v t = M odel R(2+1)D (r pt , r p(t+1) , • • • , r p(t+L-1) ) (5.1)
u t = V GG(r f t ) (5.2) 
With the extracted spatio-temporal feature sequence

V = {v 1 , v 2 , • • • , v T } and facial fea- ture sequence U = {u 1 , u 2 , • • • , u T },
we feed them into respective temporal convolutional networks for video-level temporal reasoning as the following,

c p = sof tmax(T CN p (V )) (5.3) 
c f = sof tmax(T CN f (U )) (5.4) 
T CN p and T CN f represent the TCNs used for the pose and face streams respectively.

Both of them are composed by stacks of the temporal convolutional block, as shown in 

The keypoint stream

In the keypoint streams, we processed the spatio-temporal dynamics of detected keypoints for pose and face with their respective AGCN. The used AGCN is the one proposed in [START_REF] Shi | Two-stream adaptive graph convolutional networks for skeleton-based action recognition[END_REF],

in which the topology of the graph can be optimized while training for specific tasks. This property hence increases the flexibility of the model for graph construction and brings more generality to adapt to various data samples, such as the highly complex behavioral patterns in our case. For pose stream, we have detected upper-limb keypoint sequence

K P = {k p1 , k p2 , • • • , k pT }, with k pt ∈ R Cp×Vp
where C p and V p represent the number of channels and joints respectively. With pre-defined adjacency matrix A p ∈ R Vp×Vp , describing the connection relation between the keypoints, we have output logits after sof tmax operation as

o p = AGCN p (K P , A p ) (5.5) 
Likewise for face stream, we have a facial landmark sequence

K F = {k f 1 , k f 2 , • • • , k f T }, with k f t ∈ R C f ×V f
where C f and V f represent the number of channels and facial landmarks respectively. With adjacency matrix A f ∈ R V f ×V f , we can have its output likewise by,

o f = AGCN f (K f , A f ) (5.6) 
Instead of computing the cross-entropy for o p and o f , we introduced the learned knowledge in the Appearance Streams as addressed in the following part.

Knowledge distillation and ensemble

We have demonstrated how to process the appearance and keypoint information for both pose and face streams. For many multi-stream video analysis cases, it is usual to explicitly combine the learned knowledge from appearance and keypoint sources for a performance boost. Nevertheless, in this work we argue the keypoints should be the main information source for distinguishing seizures. First, we have decent fidelity of the keypoint detection throughout the whole videos. For the appearance stream, on the other hand, occlusions often occur in our dataset and so make the information less reliable. Besides, in medical scenarios like our study cases, privacy and confidentiality are important issues. To align these concepts, the strategy we adopted was to utilize both the appearance and keypoint information while training and only use keypoint information during testing. In addition to the cross-entropy loss, we introduced a standard knowledge distillation mechanism (KD) [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF] while training the keypoint streams. It was implemented by minimizing the KL divergence between the probability distributions from the pretrained appearance streams and the keypoint streams. The overall objective losses for pose and face keypoint branches are hence as follows:

L CE,pose = - 1 N N i=1 y i • log(AGCN p (K i p , A p )) + (1 -y i ) • log(1 -AGCN p (K i p , A p )) (5.7) 
L KD,pose = 1 N N i=1 D KL (T CN p (V i )||AGCN p (K i p , A p )) (5.8) 
L CE,f ace = - 1 N N i=1 y i • log(AGCN f (K i f , A f )) + (1 -y i ) • log(1 -AGCN f (K i f , A f )) (5.9) 
L KD,f ace = 1 N N i=1 D KL (T CN f (V i )||AGCN f (K i f , A f )) (5.10) 
L T otal,pose = L CE,pose + λ p L KD,pose (5.11) 
L T otal,f ace = L CE,f ace + λ f L KD,f ace (5.12) 
where D KL (P ||Q) = j P j log P j Q j , denoting the KL divergence. The λ p and λ f are tradeoff hyper-parameters, and y i is the label for the i-th example. We train the AGCN p and AGCN f separately. For the final prediction, we combined the prediction from pose and face streams for performance improvement, as shown in Fig. 5.5. 

Experimentation

Dataset

In this work, we aimed to differentiate between ES and PNES, and tackle the problem in a real-world setting, as in Fig. 5.6, rather than a highly controlled environment. We 

Data preprocessing

All seizure videos were converted to image sequence by 25 fps, and for each video, T frames were equally sampled for analysis. For video frame length shorter than 

accuracy = T P + T N T P + F N + T N + F P (5.17) 
and TP, TN, FP, and FN denote true positive, true negative, false postive, and false negative, respectively. We take ES as a positive case. As shown in Table 5.1, we can see that AGCN P performs better than T CN p , indicating that keypoint-based feature is more informative than appearance when correlating body pose to seizure classification. On the other hand, T CN f slightly outperforms AGCN f , inferring that for seizure analysis based on face, the appearance could provide more characteristic information than facial landmarks. Besides, for both the pose and face streams, we can have significant performance gain by introducing the knowledge distillation on the keypoint branch. This indicates the importance of utilizing complementary information (i.e. from keypoints and appearance) for seizure analysis. Lastly, combining the prediction from pose and face stream with our proposed ensemble method, the performances of the F1-score and the accuracy are 0.89 and 0.87, respectively. This performance improvement shows the effectiveness of integrating multi-stream information. [START_REF] Karacsony | A deep learning architecture for epileptic seizure classification based on object and action recognition[END_REF] 0.64 0.58 [START_REF] Ahmedt-Aristizabal | A hierarchical multimodal system for motion analysis in patients with epilepsy[END_REF](pose) 0.70 0.62 [START_REF] Ahmedt-Aristizabal | A hierarchical multimodal system for motion analysis in patients with epilepsy[END_REF](face) 0.66 0.61 Table 5.3: We implement the methods in Karácsony et al. [START_REF] Karacsony | A deep learning architecture for epileptic seizure classification based on object and action recognition[END_REF] and Ahmedt-Aristizabal et al. [START_REF] Ahmedt-Aristizabal | A hierarchical multimodal system for motion analysis in patients with epilepsy[END_REF], and test the model in our task. The table shows the results of 10-fold cross validation and leave-one-subject-out (LOSO) validation.

task harder. Otherwise the overall result in Table 5.2 basically indicates the same trend and conclusion as that in the 10-fold cross validation. Besides, we also compare some deep learning based seizure classification studies with ours, as shown in Table 5.3 and Table 5.4. Table 5.3 shows how the methods in the related works performed in our task.

Table 5.4 present the results on their own work.

Recognition of limb dystonia and emotion in epileptic seizures

With our developed method, here we conduct a pilot test on recognizing the presence of limb dystonia and emotion in epileptic seizures. We divided the 19 patients with epileptic seizures in this study into sub-groups based on the presence of limb dystonia or emotion. For patients with limb dystonia, they usually have seizures featuring involuntary and prolonged muscle contractions that result in abnormal postures. The other patients As shown in Fig. 5.1, our proposed method consists of streams regarding pose and face.

To recognize if a seizure has limb dystonia, we adopt the pose stream of the proposed method to conduct a classification task, i.e. dystonia group v.s. non-dystonia group. On the other hand, the streams regarding face are used for recognizing if a seizure has emotion involved, i.e. emotion group v.s. non-emotion group. Previous deep-learning work on identifying dystonia use neuroimaging data (structural and functional MRI) [START_REF] Valeriani | A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform[END_REF], while we attempt to solely utilize the semiological signs. Besides, in spite of popularity in the research of automated facial emotion recognition [START_REF] Mellouk | Facial emotion recognition using deep learning: review and insights[END_REF], its use is aimed at normal conditions and still relatively under-investigated for medical applications, particularly when it comes to vision-based seizure analysis. Given that, we explore our proposed model for semiology-based dystonia and emotion recognition in the same dataset.

We conduct a LOSO validation and use the same experimental setup and configuration as stated in 5.3.4. The results can be seen in Table 5.5 and Table 5 

Conclusion

In this work, we propose a novel multi-stream framework with knowledge distillation for seizure classification, specifically for distinguishing between ES and PNES with hyperkinetic motor behavior. The contributions are twofold. First, we utilized multi-stream information from keypoint and appearance for both body pose and face streams. From experimental results, we give hints about which type of information should be used based on which stream information is being dealt with for seizure analysis, that is, for analysis based on body pose, keypoint-based features should be considered and for those based on face, appearance information seems more crucial. Second, by introducing a knowledge distillation mechanism, we show the importance of utilizing complementary information for keypoint-based seizure analysis. The performance obtained on real-world data for the challenging task of discriminating epileptic seizures from psychogenic non-epileptic seizures improve the state-of-the-art and are very encouraging with respective F1-score/accuracy 0.89/0.87 for seizure-wise cross validation and 0.75/0.72 for leave-one-subject-out validation.

In addition, we conduct a pilot test on recognizing the presence of limb dystonia and emotion in the same dataset based on our propopsed method. The F1-score/accuracy for limb dystonia and emotion presence recognition can be 0.83/0.81 and 0.84/0.80, respectively. We hope the pilot test can be inspiring for more semiology recognition research in vision-based seizure analysis.

Chapter 6

A Self-supervised pre-training framework for Seizure Classification

Introduction

Deep learning has shown its effectiveness in various applications and domains, spanning from computer vision, speech recognition to natural language processing (NLP). Nevertheless, one of the notorious traits in deep learning is the need for large labeled data to train. Yet practically, not every field can acquire large labeled data with ease. For example, for medical applications, it is often expensive to get doctor's data annotation.

Thus training a supervised model for medical applications with large data could be very The method needs no complex task-specific design and with just minimal modification of the model, our method can present promising results. In addition, we show an entrypoint of how to take advantage of large, cheap, and unlabeled videos into medical video analysis. To our knowledge, this is the first work utilizing large unlabeled videos to faciliate vision-based seizure video anlaysis. The following parts detail the proposed framework.

The Transformer model and the multi-head attention

Here we give a brief introduction of the Transformer model. The Transformer model shows state-of-the-art results on language translation tasks. The model introduces positional embeddings to avoid the recurrent procedures while dealing with sequential data, and thus be more parallelizable to train. The model is with an encoder-decoder architecture, as shown in Fig. 6.4. The encoder of the Transformer is adopted as the main architecture in our model. Besides, the proposed multi-head attention in the Transformer is another main contribution of the paper. As shown in Fig. 6.5, the proposed scaled dot-product attention is defined as:

Attention(Q, K, V ) = sof tmax( QK T √ d k )V (6.1) 
The matrix Q, V , and V denotes packed queries, keys and values, respectively. The input consists of queries and keys of dimension d k , and values of dimension d v .

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.

M ultiHead(Q, K, V ) = Concat(head 1 , . . . , head h )W O where head i = Attention(QW i Q , KW i K , V W i V )
Where the projections are parameter matrices 

W i Q ∈ R d model ×d k , W i K ∈ R d model ×d k , W i V ∈ R d model ×dv ,

Specification of the Transformer

Regarding the specification of the Transformer used in this work, the number of attention head h is 8. Model dimension d model is set as 1024. The maximum position is set as 256.

The number of encoder layer is 6. The number of total trainable parameters is about 78M.

Corrupt the input for pre-training

The video sequence as input for the Transformer while pre-training is corrupted, in terms of frame ordering and information masking. The input length of the model is set as 256. A span of consecutive 30 frames are randomly selected and relocated for frame permutation. As for frame masking, following BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], we replace 15% of frames with visual MASK tokens. The visual MASK and PAD tokens are tensors with the shape of image tensors but filled with fixed values of -1.0 and 0.0, respectively.

Training details

We pre-train the Transformer for 60 epochs. [START_REF] Wolf | Huggingface's transformers: State-of-the-art natural language processing[END_REF].

Experimental results

We perform a leave-one-subject-out (LOSO) validation. The F1-score and the accuracy are 0.82 and 0.75, respectively. As shown in Table 6.1, our results are comparable to other state-of-the-art seizure classification tasks given different class targets. For ES and PNES classificaiton, our method outperforms the best results proposed by the approach in Chapter 5. It is worth mentioning the dataset used in Chapter 5 is the subset of the one used in this section, and the method involves information from multi-streams. This indicates our proposed Transformer-based pre-training approach can learn robust and generalizable features for the downstream task. The video-wise confusion matrix is shown in Table 6.2.

Conclusion

In Chapter 7

Conclusion and Future Work

In this thesis we have proposed and evaluated several methods for video-based seizure analysis. The proposed methods utilize some of the latest concepts and architectures in the current deep learning research community. Our experiments demonstrated encouraging results compared to existing methods applied on vision-based seizure video analysis. We conclude our work by pointing out key contributions (section 7.1) and discuss short and long-term perspectives of our work (section 7.2).

Key Contributions

• Curation of a large-scale seizure video dataset -In collaboration with the Epileptology department in the Marseille University Hospital, we managed to build a large seizure video dataset aiming to automate semiology analysis. In our dataset, there are 283 seizure events in total and 81 patients involved. We have 235 epileptic seizures (52 patients) and 48 psychogenic non-epileptic seizures (29 patients). We are particulaly interested in hyperkinetic seizures, as the semiology is often complex yet charateristic. Among the 235 epileptic seizures, 101 seizures are regarded as hyperkinetic ones. As for psychogenic non-epileptic seizures, all of the collected ones 

Long-term Perspectives

• Improve model interpretability via vision-and-language learning -For AI in medical applications, doctors would like to know the reason why a model gives such predictions. Nevertheless, highly explainable models, such as Decision Trees, usually give poorer performance than those with low interpretability, such as deep neural network models. The trade of between performance and interpretability of machine learning models in healthcare applications is still an open topic. Given the recent success of vision-and-language research with Transformer [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF][START_REF] Tan | Lxmert: Learning cross-modality encoder representations from transformers[END_REF][START_REF] Chen | Uniter: Universal image-text representation learning[END_REF], it makes us rethink if we can improve the model interpretability via text/language. Language accounts for a large portion of how humans communicate. It would be interesting if we can have a model that can provide both a prediction (e.g. seizure type) and an explanation (e.g. clinical description of a seizure). The model then would not be a pure black-box for doctors, and doctors could have an idea of how data are perceived and how predictions are made by the model. • Applications for other behavioral disorders -One advantage of our proposed methods in this thesis is that they are not limited for seizure anlaysis. They also can be suitable for other video-based behavioral disorder analysis, such as Alzheimer's disease for the elder or ADHD for the children. These disorders may contain characteristic behaviors, which form a basis for correct diagnosis by clinicians. Yet subtle changes or features may be hard to recognize sometimes, and we think our proposed methods have potentials to be helpful regarding general behavioral disorder analysis based on vision information.
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 11 Figure 1.1: Samples of the Video-EEG/Video-SEEG recordings during seizures. The realtime neuron activities are used to determine if a seizure is caused by an epileptic discharge.

Fig. 1 .

 1 Fig. 1.2 and Fig. 1.3 show some examples. The motivation of this research is to develop methods based on recent machine learning progress to provide objective analysis for clinical seizure videos. This research aims to step towards the development of computer-based methodologies for seizure diagnosis considering the semiological information. The proposed approaches could be useful for developing related methodologies for monitoring other disease, such as dementia.
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 12 Figure 1.2: Selected video sequences of seizure events. The semiological signs might include the time-evolving changes of facial expressions.
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 13 Figure 1.3: Selected video sequences of seizure events. The semiological signs might include the repetitive lateral head turing movement, limb rigidity, anterior-posterior rocking movement, and irregular upper-limb postures.
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 14 Figure 1.4: In real-world seizure videos, occlusions of the patients are often observed, either by (a) medical staff, (b) bed sheets, or (c) themselves due to hyperkinetic behavior.In addition, (d) illumination changes could also happen and affect the performance of some pre-processing procedures.
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 21 Figure 2.1: A comparison of the flow of machine learning and deep learning methods.
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 22 Figure 2.2: The convolution operation in CNN.
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 23 Figure 2.3: The first proposed CNN for digit recognition. The image is adapted from [5].
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 24 Figure 2.4: An unrolled recurrent neural network. The image is adapted from [9]
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 2526 Figure 2.5: A denoising autoencoder encodes a noisy image, and then reconstructs a clean image through the decoder.The image is adapted from[START_REF]Building autoencoders in keras[END_REF] 

  proposed a system to analyze the motion trajectories of human body joints in videos, with the help of infrared reflective markers attached on patients bodies, as shown in Fig. 2.7 a. Lu et.al [15] developed a color-based system to track and analyze the limb trajectories, as shown in Fig. 2.7 b.
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 27 Figure 2.7: Illustration of two examples of the marker-based seizure analytic systems. (a)The system attaches reflective markers on patients keypoints for seizure motion analysis, and in (b), a color-based limb detection is applied with customized outfits. The images are adapted from[START_REF] Li | Movement quantification in epileptic seizures: a new approach to video-EEG analysis[END_REF] and[START_REF] Lu | Quantifying limb movements in epileptic seizures through color-based video analysis[END_REF].
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 28 Figure 2.8: Illustration of examples of the marker-free seizure analytic systems. (a) Given a face image, the developed 3D face model is used to conduct facial expression analysis on patients with epileptic seizures. As for vision-based body motion analysis, (b) the optical flow features and (c) spatio-temporal interest point detectors (STIPs) are used.The images are adapted from[START_REF] Maurel | 3d model fitting for facial expression analysis under uncontrolled imaging conditions[END_REF],[START_REF] Cuppens | Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy[END_REF], and[START_REF] Cuppens | Using spatio-temporal interest points (STIP) for myoclonic jerk detection in nocturnal video[END_REF].
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 29 Figure2.9: The task and the proposed architecture in[START_REF] Achilles | Convolutional neural networks for real-time epileptic seizure detection[END_REF]. The model uses CNN to learn features on depth and IR images for seizure detection. The image is adapted from[START_REF] Achilles | Convolutional neural networks for real-time epileptic seizure detection[END_REF].
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 2 Figure 2.10: A deep facial analysis work proposed in [27]. After cropping the face region, the model uses CNNs to learn spatial features and a LSTM network to learn the temporal relation. The image is adapted from [27].
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 211 Figure 2.11: Achilles et al. collected videos via depth sensors and a motion capture system.The data is used to train a pose estimation model based on a CNN-RNN framework. On the right side is the pose estimation without and with blanket occlusion. Green/red skeletons denote the ground-truth/prediction. The image is adapted from[START_REF] Achilles | Patient MoCap: Human pose estimation under blanket occlusion for hospital monitoring applications[END_REF].
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  seizure video dataset, which contains epileptic seizures (ES) and psychogenic nonepileptic seizures (PNES). The participated patients are selected by Prof. Fabrice Bartolomei and Dr. Aileen McGonigal, from the Epileptology department in the Marseille University Hospital (a.k.a. the Timone Hospital), France. The research associated with the collected data is approved by the Institutional Review Board (IRB) in the Marseille University Hospital, and the patients involved in the dataset have provided the informed consent statements.For epileptic seizures in our dataset, video recordings were carried out in the Epilepsy Monitoring Units (EMUs). The patients are with drug-resistant epilepsy, indicating the medication does not work well for them, and instead they need a brain surgery to remove the brain regions that cause the seizures for an improved cure. Before undergoing a brain surgery, the patients need to go through a pre-surgical evaluation, where clinicians will identify the culprit brain regions that cause the seizures. The evaluation procedures usually involve a Video-SEEG monitoring in the EMUs. Stereo-EEG (SEEG) is an invasive approach for monitoring the epileptic discharge within the brain, as shown in Fig.3.1.

Figure 3 .

 3 Figure 3.1: (a) Electrodes used in SEEG monitoring. (b) and (c) represent how multiple depth electrodes sample distributed neural systems in the brain. (d) is an example of the recorded multi-channel SEEG signals.
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 32 Figure 3.2: Video monitoring of epileptic patients. (a). Epilepsy monitoring units at Epileptology department in the Marseille University Hospital. (b). Samples of video recordings of patients under SEEG monitoring.

Fig. 3 .

 3 Fig. 3.2 shows how the clinicians monitor the patients in the EMUs, and some video samples from patients under SEEG monitoring. Besides, for the collected ES videos, we divide them into subgroups based on the presence of hyperkinetic motor movements. Neurologists are especially interested in seizures with hyperkinetic motor movements, as they usually have more complicated and characteristic semiology. The assessment of the existing of hyperkinetic motor movements are determined by trained clinicians. Some
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 33 Figure 3.3: Selected samples of epileptic seizure featuring hyperkinetic motor movements.
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 34 Figure 3.4: (a) Electrodes used and the placement for the scalp EEG monitoring. (b) Selected samples of patients under EEG monitoring.
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 35 Figure 3.5: Changes of camera view settings in the EMUs at the Marseille University Hospital. Before 2006, there was a zoom-in overlapped with the main frame, as in (a). After 2006 and before 2012, the focus was located parallel to the main frame, as in (b).
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 36 Figure 3.6: A demonstration of using LabelImg, a graphical image annotation tool, to annotate the bounding box of ROI, i.e. face and body.
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 37 Figure 3.7: A demonstration of using Visipedia, a graphical image annotation tool, to annotate the keypoints of the patient. We labelled 11 keypoints, including nose, eyes, ears, shoulders, elbows, wrists, and hips, for selected frames.
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 38 Figure 3.8: A demonstration of face region, body region, and (2D/3D) upper-limb keypoint estimation on selected hyperkinetic seizures recorded in different illumination conditions and camera systems.
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 39 Figure 3.9: The contextual videos cover the daily behaviors of patients in the Video-SEEG/Video-EEG monitoring unit, except for the onset seizure events. They include (a) eating food, (b) interacting with their family, (c) sleeping, (d) using laptops/smartphones, (e) reading books, (f) being checked by the clinical staff. The empty settings are possibly recorded if patients leave the room, as like (g). (h) shows some night conditions.
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 41 Figure 4.1: Samples of the characteristic antero-posterior rocking movement from the selected 3 patients. In this study, the patients from top to down are called 'patient 1', 'patient 2', and 'patient 3'.
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 42 Figure 4.2: Workflow of the proposed approach for head movement trajectory analysis.

Fig 4. 3 demonstrates

 3 some head detection results and the head movement trajectory. We can observe some cyclic patterns in the vertical direction, as the antero-posterior movements are mainly perpendicular to the camera. The trajectory was then normalized between 0 and 1 for further processing.To remove the jitter in the trajectory caused by the detector, the trajectory was denoised in both directions by filtering with Empirical Mode Decomposition (EMD)[START_REF] Zeiler | Empirical mode decomposition -an introduction[END_REF]. EMD breaks down signals into different components without leaving the time domain. The components are called Intrinsic Mode Functions (IMFs) and need to satisfy certain conditions as follows:

Figure 4 . 3 :

 43 Figure 4.3: Selected samples of the head detection and the head movement trajectory from the cases in Fig. 4.1. For each demonstration, the first row is the image sequence of the seizure video with head detected. The second/third rows represent the horizontal/vertical coordinates of the center of the detected bounding box throughout the whole seizure event. Cyclic patterns are more obvious in the vertical directions, as the antero-posterior rocking movements are mainly perpendicular to the camera.

Fig. 4 .

 4 Fig. 4.4 shows the procedure of extracting an IMF. The method is purely data-driven and suitable for non-stationary and nonlinear signals, which corresponds to the conditions for our movement trajectories. An application of EMD is denoising. It can be achieved by dropping the high frequency IMFs. Inspired by this, the head movement trajectory was decomposed into several IMFs. By adding the IMFs with lower frequency components, we can reconstruct and obtain the denoised trajectory signal, as can be seen in Fig. 4.5.Peaks of the trajectories in both directions were next detected for calculating the cyclic head movement frequencies. To identify peaks corresponding to real antero-posterior movements, we referred to the trajectories in both directions. We defined two functions f and g, such that f (n x ) and g(n y ) represent the trajectory value in the horizontal and vertical directions at time-sampled points n x and n y . In addition, n x and n y are denoted as n xp and n yp respectively, once f (n x ) and g(n y ) are viewed as peaks. If |n xp -n yp | < T where T is a threshold for deciding how close the peaks in the trajectories from both directions are to be considered as real peaks associated with antero-posterior head movement. The valid peaks are then used to calculate a moving average frequency based on the reciprocal of the peak-peak duration, in order to inspect the time-evolving frequency properties of the seizures. The results can be seen in Fig.4.6. Specifically, take the seizure 5 in Fig.4.6 as example, the 0-th detected peaks with a peak-peak frequency around at 0.35 Hz represents the reciprocal of the mean peak-peak duration of the next five antero-posterior rocking movement episodes from the first detected valid peak. Our medical interpretation of the results is in the following discussion section.

  by SEEG showed low voltage fast epileptic discharge in a widespread right dorsolateral prefrontal distribution for patient 1, and focally in the left orbitofrontal cortex for patient 2. Patient 3 did not require SEEG for presurgical work-up since non-invasive investigations including high resolution scalp EEG and positron emission tomography confirmed focal right prefrontal epilepsy organisation (right intermediate frontal sulcus). All 3 patients had normal neuroimaging. All 3 underwent subsequent cortectomy, with cure of epileptic seizures and disappearance of stereotyped behavior, with minimally 2 years'
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 44 Figure 4.4: (a) The procedure of extracting an IMF in EMD. (b) An illustrative signal x(t) for (a), and its upper/lower envelope and local mean in the first iteration of extracting an IMF.
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 45 Figure 4.5: On the left, a head movement trajectory (in red) and its seven derived intrinsic mode functions (IMFs) (in green). On the right, the same head movement trajectory (in red) and the two denoised trajectories by selecting different IMFs for reconstruction.

Figure 4 . 6 :

 46 Figure 4.6: Peak-peak frequency in hertz for each detected peak in each seizure video. The color represents individual patients.
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 47 and Fig. 4.6).
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 47 Figure 4.7: A. Ictal SEEG trace from patient 1 (10 seconds per page, 50 microV/mm). Note preictal spiking across a widespread right predominantly dorsolateral prefrontal distribution, followed by abrupt transition to a low voltage fast discharge in the gamma band (vertical red line), showing similar distribution as the preictal spikes. A less tonic and slightly later discharge is seen in electrodes exploring right premotor cortex (top of SEEG trace). The first semiological sign (sudden onset of antero-posterior rhythmic rocking and altered contact; vertical blue line) occurs approximately 3 seconds after electrical seizure onset, at which point slower diffuse rhythmic activity is seen on SEEG. Inset to panel A: schematic illustration of epileptogenic zone of Patient 1, with right dorsolateral prefrontal organisation projecting to premotor areas. B. Patient 2: focal left orbitofrontal organisation of epileptogenic zone, based on SEEG exploration. C. Patient 3: focal right intermediate frontal sulcus organisation of epileptogenic zone, based on non-invasive presurgical evaluation; here, source localisation of HR-EEG interictal data is shown.
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 51 Figure 5.1: Overview of the proposed framework.

  11 detected points include head, neck, left/right shoulders, left/right elbows, left/right wrists, left/right hips, and bottom of the spine. The detected 2D keypoints were fed into a 3D estimator[START_REF] Chen | 3d human pose estimation = 2d pose estimation + matching[END_REF] for 3D pose estimation. For face stream, we used a toolbox for extracting 2D facial landmarks with the detected face. There are 23 keypoints detected for each face, focusing on eyebrows, eyes, nose, and mouth. The toolbox was not optimized for our dataset. Fig.5.2 and Fig.5.3 show some illustrations and detection results.
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 52 Figure 5.2: (a) Illustration of detected upper-limb joints. (b) Samples of ROI detection and (2D/3D) upper-limb keypoints detection.
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 53 Figure 5.3: (a) Illustration of detected facial landmarks. (b) Samples of facial keypoint detection on our dataset.
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 54 Figure 5.4: Illustration of the temporal convolutional block. Conv1D represents the 1D convolution on the temporal axis, followed by a batch normalization (BN) layer, a ReLU layer, and a Dropout layer. Moreover, a residual connection was added for each block.
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 54 Fig. 5.4, followed by a linear layer as the classification layer. T CN p and T CN f are trained separately with standard cross-entropy loss for seizure classification. Later we used these pretrained models as teacher models to distill the learnt knowledge to the Keypoint Streams.
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 55 Figure 5.5: Illustration of the ensemble of the prediction from the pose and face streams in the testing phase, with the respective spatio-temporal graphs. The orange line denotes the temporal edges. AGCN+KD denotes AGCN network trained with additional knowledge distillation loss with the global context branches as teachers.
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 56 Figure 5.6: Seizure examples in a real-world setting during daytime and night.

  collected 38 ES videos from 19 patients and 23 PNES videos from 15 patients, resulting in total 61 seizures and 34 patients. These selected seizures are a subset of a larger curated video dataset, as depicted in Chapter 3 and Table 3.1. All patients have been recorded in the Video-EEG Epilepsy unit of the Epileptology department of the Marseille University Hospital. Both ES and PNES were selected according to presence of hyperkinetic motor behavior [104], which involve large amplitude, often explosive whole body movements. Due to the clinical challenges of localizing hyperkinetic ES seizures, and the challenges of discriminating between ES and PNES, this type of semiology is of great interest to neurologists [105, 106, 79]. The duration of the seizures ranged from 15 seconds to 120 seconds. Each patient had at least one and at most 6 recorded seizures. Both day and night conditions were included. All the seizure videos were collected from the video-EEG monitoring unit in the hospital. All patients had a firm diagnosis of either ES or PNES, established by expert epileptologists based on their video-EEG data. Patients gave informed consent for use of video-EEG data. Examples in Fig. 5.6 are from this dataset.
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 5 7 is the receiver operating characteristic (ROC) curve for different models in the 10-fold validation experiment. The ensemble model has the highest value of area under the ROC curve (AUC), indicating the best performance among the models. After the inclusion of knowledge distillation, AUCs of the keypoint branches can gain a significant boost.
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 57 Figure 5.7: The 10-fold cross validation result: the ROC curve for the binary seizure classification task. AGCN+KD denotes AGCN network trained with additional knowledge distillation loss with the appearance streams as teachers.
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 58 Figure 5.8: Samples of the selected seizures with limb dystonia. Seizures with limb dystonia usually features involuntary and prolonged muscle contractions that result in abnormal postures.
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 59 Figure 5.9: Samples of seizures without limb dystonia. The ictal behaviors tend to be more kinetic than those with limb dystonia in general.
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 510 Figure 5.10: Samples of the selected seizures with emotion. Seizures with emotion come with prominent facial expressions, and usually accompany vocal sounds.
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 511 Figure 5.11: Samples of the selected seizures without emotion. The selection criteria is based on the presence of less notable facial expressions, or cases where faces are mostly invisible during the seizures.

Fig. 5 .

 5 Fig. 5.10 and Fig. 5.11 show some samples of the seizures in the two conditions.

  difficult. Recently a popular learning diagram called self-supervised learning (SSL) has come to many research scientists' view scope. SSL uses data itself as its own supervision, and thus needs no external labels for learning. The mainstream SSL framework, i.e. the pretraining-finetuning paradigm, aims at learning effective representations with a large volume of unlabeled data, and take advantages of the learnt knowledge in the pre-trained model for fine-tuning downstream tasks. BERT[START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] is one of the iconic SSL model achieving success in NLP, as shown in Fig.6.1. The BERT model is pre-trained on large unlabeled corpus data, i.e. the wikipedia articles, with several learning objectives, and by simply fine-tuning the pre-trained BERT model, it achieves state-of-the-art results on 11 NLP tasks. Besides, there are also SSL-based research works gaining improvement in computer vision[START_REF] Lu | 12-in-1: Multi-task vision and language representation learning[END_REF] and speech processing domains[START_REF] Huang | Speech recognition by simply fine-tuning bert[END_REF]. In spite of the success of SSL model, it is still an under-explored area for SSL-based model to show its power in medical domains, in particular for the vision-based seizure video analysis. Our work makes the first attempt introducing deep learning-based SSL into the research topic in the literature.

Figure 6 . 1 :

 61 Figure 6.1: The BERT model pre-trains on large unlabeled corpus data with several learning objectives (left), and the pre-trained model is fine-tuned on several NLP downstream tasks (right). The image is adapted from [33].

Figure 6 . 2 :

 62 Figure 6.2: SSL-based pretraining on contextual videos: The input sequence is the "noised" version of the target sequence, where random frames are masked out and permutation is applied. We pretrain the encoder of Transformer to reconstruct the corresponding visual features.

Figure 6 . 3 :Figure 6 . 4 :

 6364 Figure 6.3: Finetuning phase for seizure type classification: In the fine-tuning phase, an uncorrupted seizure video sequence is fed into the pretrained model. A classification layer, i.e. multi-layer perceptron (MLP), is added on top of the pretrained model for the classification task.

Figure 6 . 5 :

 65 Figure 6.5: (Left) The proposed attention in the Transformer model, and its multi-head version (right). The image is adapted from [32].

Figure 6 . 6 :

 66 Figure 6.6: Patients in image frames are detected and cropped before feeding into the pre-trained Transformer model for the downstream seizure classification task.
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  are hyperkinetic. The video recording conditions are unconstrained and thus suitable for developing automated methods for analyzing real-world seizure cases. To our knowledge, our curated video dataset is the largest one by far in the vision-based seizure video analysis literature. In addition, we have high-quality detection results for all patients' body and head, and upper-body limbs for some of the seizures. The detection information can faciliate further research based on this dataset. Head trajectory analysis for hyperkinetic seizures -We proposed a simple workflow to analyze the head trajectory of 5 hyperkinetic epileptic seizures. The head of the patients in each frame of the video was first detected with the Single Shot Multibox Detector (SSD) network[START_REF] Liu | SSD: Single shot MultiBox detector[END_REF], and the trajectory of the head motion can be obtained. In particular, the analyzed seizures exhibit charateristic antero-posterior rocking movement, resulting in cyclic partterns in the head trajectory. The trajectories are then denoised by Empirical Mode Decomposition (EMD) through dropping high frequency intrinsic mode functions (IMFs). Time-evolving frequency are obtained with the moving-averaged reciprocal of peak-peak duration in the trajectories. Our results confirmed stable frequency throughout rocking sequences in the prefrontal seizures, suggesting a mechanism involving intrinsic oscillatory generators. The results can be a basis for further spectral investigation along with EEG signal[START_REF] Hou | Rhythmic rocking stereotypies in frontal lobe seizures: A quantified video study[END_REF][START_REF] Zalta | Neural correlates of rhythmic rocking in prefrontal seizures[END_REF].• A Multi-StreamFramework for Seizure Classification -We proposed a multistream framework for semiology-based seizure analysis. The proposed deep-learning method utillzes information from keypoints and appearance, from both face and body pose. We use Graphical Neural Networks (GNN) to handle the keypoint features, by treating the detected keypoints as a graph. As for the appearance stream, CNN-based spatio-temporal and facial features are utilized for representing the body and facial parts. The features are then fed into its Temporal Convolutional Networks (TCN) for classification. Besides, knowledge distillation from appearance to keypoint stream is introduced for regulating the model learning. Two tasks are explored for the proposed method: epileptic/non-epileptic seizure classification, and recognition of limb dystonia and emotion in epileptic seizures. For the first task, experimental results show our best method can outperform other existing methods used in the literature regarding seizure video anlaysis. As for the second task, it demonstrated encouraging results for subtype semiology recognition, indicating the generalizability of our method for the related tasks. • A Self-supervised framework for Seizure Classification -We proposed a pretraining-finetuning paradigm for seizure video analysis based on the widely used Transformer model. The Transformer was pre-trained with a denoising objective to reconstruct the correct feature on the pre-training data. This aims at learning contextual representation that is generalizable for downstream tasks. In this study, the downstream task is to discriminate between ES and PNES seizures on the full scale of data we collected. An additional classification layer is added on top of the pretrained Transformer for classification. By simply fine-tuning the pre-trained model, the experimental results show promising results compared to related vision-based seizure classification works.The pre-training data we used is the contexutal videos recorded in the EMU where no seizure events are involved. Utilizing these unlabelled, easily-accessible data is important for medical applications, as a large amount of annotation from doctors are usually costly or unavailable. This research direction aligns with the theme of unsupervised and self-supervised learning that use data itself as its own supervision. To our knowledge, in the context of video-based seizure analysis research, our work is the first attempt to take advantage of large-scale unlabelled data with self-supervised pre-training. Generalizing the pre-trained model for other seizure-related tasks -We have pre-trained a Transformer model with a large amount of unlabeled video data. It has shown that the learned contextual representations can be used for seizure classification task. A simple and expected extension of the model usage could be utilization for other vision-based seizure-related tasks, such as seizure detection or fine-grained semiology recognition. Improve the video dataset -Data is the fuel for deep learning, and there is never too much of them. A continual improvement of our dataset, in terms of quality and quantity, can be important for the seizure analysis research community. Thanks to the extensive experiences and patient cases with SEEG monitoring in the Marseille University Hospital, a conceivable next step is to add the brain region category for epileptic seizures. It may allow a new research aspect. Besides, more new and retrospective cases will be considered for collection once the semiology of the seizure are of interest.

•

  Multi-modal self-supervised pre-training with EEG/neuroimaging data -In this thesis we propose a self-supervised pre-training paradigm solely based on video data for vision-based seizure video analysis. It is natural to think if we can include other accessible medical data as a multi-modal framework. Data from different modalities usually contain complementary information, and thus have potential to improve the overall performance. In the context of seizure analysis, along with the video data, it would be interesting to inlcude auxiliary data such as EEG or neuroimages for multi-modal self-supervised pre-training. The learned contextual multi-modal features could be useful for downstream tasks where multi-modal data is involved, e.g. predicting seizure type with both video and EEG/neuroimages.
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			3.1
	shows some main statistics of our seizure video dataset.	
	Class name	ES	PNES
	Number of patients	52	29
	Number of seizures	235	48
	Average seizure duration [sec]	45	52
	Min. seizure duration [sec]	7	12
	Max. seizure duration [sec]	150	119
	Earliest date recorded	Jan. 2000	Oct. 2007
	Latest date recorded	Oct. 2020	Feb. 2021
	Number of HKNS	HKNS:101, non-HKNS:134	all

Table 3 .

 3 1: Some statistics about the seizure video dataset. HKNS denotes hyperkinetic seizures.

Table 3 .

 3 2: Comparison of the seizure video datasets used in the literature. MTLE, ETLE, FLE denotes mesial temporal lobe epilepsy, extra-temporal lobe epilepsy, and frontal lobe epilepsy, respectively.

	Research	Number of seizure videos	Number of patients
	Achilles [26]	52	10
	Ahmedt-Aristizabal [37] 52 (MTLE:40, ETLE:12)	18 (MTLE:12, ETLE:6)
	Karácsony [38]	126 (FLE:85, TLE:41)	35 (FLE:20, TLE:15)
	Maia [39]	143 (ETLE:107, TLE:36)	31
	Ahmedt-Aristizabal [40] 161 (MTLE:90, ETLE:71) 34 (MTLE:17, ETLE:17)
	Ours	283 (ES:235, PNES:48)	81 (ES:52, PNES:29)

To better analyze the semiology, we demonstrate some ROI detection results with the help of semi-automated tools. In our dataset, there are 283 seizure events and 81 patients involved in total. The numbers make it a moderately large scale compared to the ones used in other vision-based seizure anlaysis works, as shown in Table

.

3.2. In addition, to allow novel learning algorithms better adapt to our research problems, we also gather a large amount of non-seizure videos. As can be seen, the research and the dataset scale in this field are still limited. We hope our dataset can provide a good basis for successors to develop a larger and more comprehensive one for better facilitating vision-based seizure analysis.

Table 4 .

 4 1: Data for each video on frequency of rocking movements, as calculated using automated head tracking.

		Seizure 1	Seizure 2	Seizure 3	Seizure 4	Seizure 5	Seizure 6
		(patient 1)	(patient 1)	(patient 1)	(patient 1)	(patient 2)	(patient 3)
	Duration of seizure-related rocking (sec)	16	20	17	14	40	15
	Maximum (Hz)	0.49	1.23	0.76	0.97	0.42	0.79
	Minimum (Hz)	0.46	0.77	0.54	0.73	0.33	0.63
	Median (Hz)	0.48	1.01	0.63	0.92	0.36	0.72
	Standard deviation (Hz)	0.02	0.12	0.06	0.08	0.03	0.05
	Mean (Hz)	0.48	1.00	0.63	0.90	0.37	0.71
	Coefficient of variation (%)	4.17	12	9.52	8.89	8.11	7.04
	follow-up. Etiology of epilepsy was cryptogenic in patient 1 and due to focal cortical
	dysplasia in patients 2 and 3.						
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 5 1: The 10-fold cross validation result: comparison of F1-score and accuracy between different models. AGCN+KD denotes AGCN network trained with additional knowledge distillation loss with the appearance streams as teachers.

	T , the video

Table 5 .

 5 [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] shows the F1-score and accuracy of the leave-one-subject-out validation experiment. We can observe a performance drop compared to the 10-fold validation experiment, possibly due to that the inter-subject variance is considered in the setting and makes the

	model	F1-score accuracy
	AGCN p	0.68	0.62
	AGCN f	0.68	0.59
	T CN p	0.53	0.56
	T CN f	0.68	0.61
	AGCN p + KD	0.74	0.67
	AGCN f + KD	0.72	0.66
	Ensemble	0.76	0.72

Table 5 .

 5 2:The leave-one-subject-out validation result: comparison of F1-score and accuracy between different models. AGCN+KD denotes AGCN network trained with additional knowledge distillation loss with the appearance streams as teachers.

	model	F1-score (10-fold) accuracy (10-fold)
	[38]	0.80	0.71
	[40](pose)	0.82	0.79
	[40](face)	0.75	0.72
	model	F1-score (LOSO)	accuracy (LOSO)

Table 5 .

 5 .6. For limb dystonia recognition, AGCN p outperfoms T CN p , suggesting the pose keypoint can be more informative than the appearance regarding analyzing limb dystonia. With the knowledge distillation from the appearance stream, AGCN p can get a further boost in the performance, showing the effectiveness of knowledge distillation in this task. As for recognizing the presence of emotion in the epileptic seizures, we can observe T CN f has the best result, indicating the spatio-temporal appearance features of the face can be more crucial than the facial landmarks for the task. 6: Results on classifying if seizures have emotion involved based on our method regarding the face stream.

	The automated recognition of limb dystonia or emotion in a seizure event could be of
	great interest for neurologists, as the presence of these iconic subtype behavior is im-
	portant for the clinical evalutation. Further we may include more subtle ictal behavior
	for fine-grained recognition. Besides, our method may suit other clinical applications
	where behavior-based assessment is crucial, such as attention deficit hyperactivity disor-

  The initial learning rate is 0.01, with a linearly decreased scheduler. Weight decay for pre-training is set as 0.0001. The pre-training process takes 670 gpu-hours (roughly 14 hours on 48 V100 gpus across 6 nodes). We adopt AdamW[START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] as the optimizer. As for fine-tuning the Transformer, we train it for 50 epochs. Batch size is 16. Except for setting the initial learning rate as 0.005, other training settings are the same as those in the pre-training phase. We test the whole videos by temporally averaging the predictive results. A dropout rate of 0.5 in the final classifier layer is set. In addition, to mitigate the imbalanced dataset, a class weight (reciprocal of the number of class clips) is added in the cross entropy loss. The implementation of the Transformer model is based on the Huggingface library

Table 6 .

 6 this study, we propose a Transformer-based self-supervised pre-training framework for learning features suitable for the downstream task, i.e. classifying ES and PNES videos. The paradigm aligns with the research direction of self-supervised pre-training that takes advantage of large unannotated data and learns useful representations from it 1: Comparison of deep learning-based seizure classification studies. Our results can compete to other state-of-the-art seizure classification tasks with different class targets. For ES and PNES classification, our method outperforms the best results proposed by the approach in Chapter 5. MTLE, ETLE, and FLE denote mesial temporal lobe epilepsy, extra temporal lobe epilepsy, and frontal lobe epilepsy, respectively.

	for downstream tasks. This may be especially favored for medical applications where data
	annotations are usually costly. In our work, a Transformer-based model is pre-trained
	on a large volume of contextual videos with denoising pre-training objectives. By simply
	fine-tuning the pre-trained model with a minimum model modification, the experimental
	classification results can compete with methods from other state-of-the-art works for

Table 6 .

 6 2: Confusion matrix of the video-wise classification results by leave-one-subjectout validation. similar tasks. To our knowledge, this is the first deep learning work exploiting large unlabeled data for facilitating vision-based seizure analysis. We hope our study can inspire the research community regarding seizure video analysis to rethink how we can benefit from large unannotated data.

Chapter 7 summarizes this research and provides perspectives for future works.
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itself was concatenated to enough frame length for sampling. In this study, T is set to 300.

For image preprocessing, pixel values were normalized to 0 to 1.0, and normalized image size W p , H p , W f , H f are 112, 112, 48, and 48, respectively. For the 2D spatial coordinates of the detected keypoints, the values of the coordinates were normalized between -1.0 to 1.0 w.r.t the width and height of the cropped region. As for the third dimension in 3D pose estimation, the values were normalized with regards to the maximum and minimum values at the third axis across the video.

Quality of ROI and keypoint detection

As mentioned in section 5.2.2, we fine-tuned the ROI and keypoint detection with manually labeled data in our dataset. For the ROI detection, the intersection-over-union (IoU) is used for quantitative evaluation. The definition of IoU is as formula 5.13, where B gt and B pd represent the bounding box of ground-truth and prediction, respectively. The detection model used reached an average IoU of 0.89 for face detection and 0.94 for patient detection. As for the 2D body joint detection, the keypoint evaluation metric for MS COCO dataset is used. The mean average precision (mAP) at IoU of 0.50 is 0.82. As for facial landmark detection, the model used was not fine-tuned and we visually checked the quality of the results.

Experimental setup

We conducted both seizure-wise 10-fold cross validation and leave-one-subject-out validation on our datasets. Stochastic gradient descent (SGD) was applied as the learning optimizer. The initial learning rate for either of the four streams was 0.001, with linear learning rate decay scheduling used. The training epochs were set at 50, and we choose the weights at the epoch where the test sets had the highest accuracy for evaluation. The batch size was 4. The hyperparameters λ p and λ f are both set as 0.5, and the video snippet length L is 32. The configuration of AGCN p and AGCN f were the same as [START_REF] Shi | Two-stream adaptive graph convolutional networks for skeleton-based action recognition[END_REF]. The kernel size and the dropout rate for both T CN p and T CN f are 4 and 0.4.

Experimental results

Table 5. 

Where θ is the trainable parameters of the Transformer, and the Transformer output is expressed as h θ . We take ResNet152 [START_REF] He | Deep residual learning for image recognition[END_REF] as our CNN backbone to generate visual features.

The ResNet152 is pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], and we remove the last classification layer to generate a 2048-d feature. We denote it as r as the function for frame descriptor. 

Experimentation

In this section, we give the details of the implementation of the experimentation.

Dataset and pre-processing

For pre-training the Transformer model, there are about 13k 10-second clips in the