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Abstract

Automation of data-driven models for medical diagnosis can support the clinical decision process and increase the efficiency of healthcare delivery in clinical settings. Both clinicians and patients will benefit from personalized medicine by detecting critical events and defining new care pathways. However, although deep learning (DL) algorithms have shown high accuracy and exemplary performance in different clinical categories, very few have been integrated into intelligent medical systems. This type of system goes beyond the modeling process. It requires integrating technical and scientific innovation in a clinical setting, solving various technical and research problems to offer real solutions at the hospital level. Some of the most common barriers in the actual clinical setting are data privacy and interoperability, patient representation and multitask learning, the distributed methods to speed up the training models, and the efficient use of the computational resources available in hospitals.

This thesis proposes a modular deep learning framework optimized for medical diagnosis to create portable and scalable solutions over heterogeneous systems. The modules include data-driven representation learning and distributed deep learning methods to develop risk prediction models whit clinical outcomes such as hospital admissions, length of stay, and mortality. In this context in which the data comes from heterogeneous sources and requires intensive computing to gather and be statistically significant, the main contributions of this research thesis were divided into two components. The first component focuses on implementing unsupervised neural architectures to derive a general latent representation of the patients from electronic health records (EHRs) and apply it to different clinical tasks. The heterogeneous EHRs harmonization was based on the Fast Healthcare Interoperability Resources (FHIR) format, allowing model scalability built from EHRs of the hospital A to be replicated in hospital B with different information healthcare system formats. On the other side, the second component accelerates the training process and hyperparameter search to determine an optimal generalization model for a specific medical task using a mini-cluster of Jetson TX2 nodes. The primary approach has been a set of gradient computation modes that adapts the neural network according to the memory capacity, the number of nodes used, the coordination method between nodes, and the available inter-node communication protocol (e.g., GRPC or MPI).

We conducted different experiments using clinical descriptors collected during the first week of hospital stays of patients in the PACA region and using short ECG recordings of 30 to 60 seconds, obtained as part of the PhysioNet 2017 challenge. These experiments allowed us to evaluate the accuracy, convergence time, and scalability of our proposed Résumé L'automatisation de la modélisation basée sur les données pour le diagnostic médical peut soutenir le processus de décision clinique et accroître l'efficacité de la prestation des soins de santé dans les établissements cliniques. Tant les médecins que les patients en tireront profit, soit par la détection d'événements critiques, soit par l'émergence d'une médecine personnalisée, soit encore par une meilleure définition des parcours de soins. Cependant, malgré le fait que les algorithmes d'apprentissage profond (DL) ont montré une grande précision et de bonnes performances dans différentes catégories cliniques, très peu ont été intégrés dans des systèmes médicaux intelligents. Ce type de systèmes va au-delà du processus de modélisation et nécessite l'intégration de l'innovation technique et scientifique dans le contexte d'un cadre clinique, en résolvant divers problèmes techniques et de recherche pour offrir des solutions réelles au niveau de l'hôpital. Certains des obstacles les plus courants dans le contexte réel sont liés à la confidentialité des données et à l'interopérabilité ; à la représentation des patients et à l'apprentissage multitâche ; aux méthodes distribuées pour accélérer les modèles de formation et à l'utilisation efficace des ressources informatiques disponibles dans les hôpitaux.

Cette thèse propose un cadre modulaire d'apprentissage approfondi optimisé pour le diagnostic médical afin de créer des solutions portables et évolutives sur des systèmes hétérogènes. Ces modules comprennent des méthodes d'apprentissage approfondi basées sur les données, l'apprentissage par représentation et l'apprentissage approfondi distribué afin de développer un modèle de prédiction des risques avec des résultats cliniques tels que les admissions à l'hôpital, la durée du séjour et la mortalité. Dans ce contexte où les données proviennent de sources hétérogènes et nécessitent un calcul intensif pour être collectées et statistiquement significatives, les principales contributions de cette thèse de recherche ont été divisées en deux volets : le premier volet vise à mettre en oeuvre des architectures neuronales non supervisées pour dériver une représentation générale latente des patients à partir de dossiers de santé électroniques (EHRs) pouvant être appliqués à différentes tâches cliniques, et à harmoniser les HERs hétérogènes sur la base du format FHIR (Fast Healthcare Interoperability Resources), ce qui permet de reproduire l'extensibilité des modèles construits à partir des HERs de l'hôpital A dans un hôpital B avec différents formats de systèmes d'information sur les soins de santé. Le deuxième volet vise à accélérer le processus de formation et le réglage des hyperparamètres afin de déterminer un modèle de généralisation optimal pour une tâche médicale spécifique en utilisant un mini-groupe de noeuds Jetson TX2. La principale approche a consisté en un ensemble de modes de calcul de gradient permettant d'adapter le réseau neuronal en fonction de la capacité de mémoire, du nombre de noeuds utilisés, de la méthode de coordination entre les noeuds et du protocole de communication inter-noeuds disponible (par exemple GRPC ou MPI).

Nous avons mené différentes expériences en utilisant des descripteurs cliniques recueillis au cours de la première semaine de séjour des patients à l'hôpital dans la région PACA ou en utilisant de courts enregistrements ECG de 30 à 60 secondes, obtenus dans le cadre du défi PhysioNet 2017. Ces expériences nous ont permis d'évaluer les performances en termes de précision, de temps de convergence et d'évolutivité du cadre que nous proposons. Ce cadre, disponible en open-source, est appelé DiagnoseNET pour le diagnostic médical. Il automatise en une seule API la définition de l'architecture neurale, la recherche d'hyperparamètres, la distribution des données sur les différents noeuds de calcul ainsi que la définition des lots de traitement. Son moteur d'exécution est chargé d'orchestrer les calculs de gradient sur les différents noeuds selon différentes stratégies de coopération.

Mots-clés : Modèles de prédiction clinique, apprentissage par représentation, réseaux neuronaux profonds distribués, informatique verte. [20000,1420,768] records to generate [START_REF] García | Pascal Staccini and Michel Riveill Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare[END_REF]59,110] gradient updates by epoch respectively. . . . . . . . .

3.14 Impact of GPU idle status generated by large data batch partition, consider the power consumption in a window of 6 minutes for the previous experiment.

3 .15 Early convergence comparison between different groups of workers and task granularity for distributed training with 10.000 records and 11.466 features. 

Clinical risk prediction models

Health researchers along with computer scientists are widely adopting deep learning methods and computer technologies, whose contributions make it possible to compose the next Intelligent Medical Systems (IMS) to improve the quality of care and facilitate the clinical decision support as well as to determine who will be hospitalized, what procedures they will prioritize and what results will get the best performance. The main challenges facing the IMS are generating accurate patient profiles and predictive models from large volumes of healthcare data. In which only the United States produced 153 Exabytes of health data in 2013 and 2,314 Exabytes are estimated for 2020, showing an annual growth rate of 48% [Stanford Medicine 17] However, a 2016 systematic review by Goldstein et al. in the medical literature that evaluates clinical studies that used Electronic Healthcare Records (EHR) to develop risk prediction models, identifying that many studies did not fully utilize the depth of information on the patients available in the EHR, using a median of only 27 variables and most used extensions of traditional generalized linear models [ Goldstein 16]. In contrast to recent studies that use deep neural networks and machine learning algorithms to extract more patient characteristics as input to implement risk prediction models, have reported promising results in clinical outcomes such as hospital admissions to prioritize patients for preventive care uses, length of stay, and discharges to determine the release time and mortality for high-risk warning patient of in-hospital mortality before their death.

In hospital admission outcomes, a recent study reports that machine learning models as random forest (RF) and gradient boosting classifier (GBC) have higher performances than the Cox proportional hazards (CPH) model in predicting the risk of emergency hospital admission, comparing the ROC curves by the three models with different predictor sets extracted from EHRs of 4.6 million patients, including patient demographics, lifestyle factors, laboratory tests, currently prescribed medications, selected morbidities, and previous emergency admissions [ Rahimian 18].

In the length of stay outcomes, a recent study compares the performance of Multilayer Perceptron Network (MLP) and Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict patients' length of stay at intensive care units after cardiac surgery, reporting that the ANFIS resulted in the creation of a more precise model than the MLP, in which the neural network hyperparameter search for a generalized model to be compared is a limitation [ Maharlou 18].

For the risk of mortality outcomes, a recent study compares RF, XGBoost, Support Vector Machine (SVM), LASSO, and K-nearest neighbors to calculate the risk score of mortality for each inpatient day during the in-hospital episode and use the quintiles of these calibrated risk scores to stratify risk groups, in which RF has been proven to have high accuracy as it overcomes overfitting by selecting random subsets of features to build smaller trees and can handle potential errors caused by unbalanced case-control datasets [Ye Chengyin 19].

Patient phenotype representation

To derive patients' phenotypes, it is necessary to extract their medical data (demographics, medical diagnoses, procedures performed, cognitive status, etc.). Although possible, the evolution of this information over time must be extracted. A used method is vector based representation in which, for each medical target is constructed a matrix correlation between patients and medical group features [ Wang 14], The generation of the different vectors generally takes a critical time. A couple of other possibilities are non-negative matrix factorization, and non-negative tensor factorization for extracting phenotypes as a set of matrices, tensor candidates that show patients clusters linked on specific medical features and their date [Ho 14,Perros 17,Perros 18]. Other approaches use non-negative vectors for embedding the clinical codes and use word representations as (skip-gram or Glove) to generate the corresponding visit representation [Choi 16b].

Unsupervised representation learning, after the success of unsupervised feature learning for training unlabeled data to dimensionality reduction and learn good general features representations and used either as input for a supervised learning algorithm [Bengio 14], the application of employ it to produce patient phenotype representations can 1.1. RESEARCH CONTEXT significantly improve the predictive clinical model for a diverse array of clinical conditions as it was shown in deep patient approach [Miotto 16]. Other derivative approaches use a record into a sequence of discrete elements separated by coded time, which uses the unsupervised embedding Word2Vec to pre-detected the continuous vector space, them uses a convolution operation which detects local co-occurrence and pools to build a global feature vector, which is passed into a classifier [ Nguyen 17]. Another approach trains a recurrent neural network with an attention mechanism to embed patients' visit vector to visit the representation, which is then fed to a neural network model to make the final prediction [Choi 16c].

However, these approaches to derive patients' phenotypes algorithms demand considerable effort in deploying preprocessing pipelines and data transformation, which are built without considering the response time. In this perspective, a large number of authors have explored scaling up deep learning networks, well-known training datasets focused on the impact of synchronization protocol, and state gradient updates [Dean 12a,Keuper 16,Suyog Gupta 17]. At the same time, other groups have been working on high-level frameworks to quickly scale out to multiple machines to extend libraries for parameter management to allow more agile development, faster and fine-tuning hyper-parameter exploration [Dünner 18]. However, not all of these developments are applied to medical care and do not consider energy consumption.

Nevertheless, most of these approaches focus on a single medical task for customizing their models and patient representations for a specific outcome. Instead, this thesis implements the unsupervised neural architecture that Miotto et al. Whose objective is to derive a general latent representation of the patients from the clinical data warehouse that can be applied to a different number of clinical tasks. [Miotto 16]. In addition, we harmonize the EHR in a single format based on the clinical document architecture (CDA) [Mandel 16], to allow the scalability of models built with EHRs from a hospital "1" to be replicated in a hospital "2" with different information healthcare system formats [Rajkomar Alvin 18].

Distributed deep neural network

On the other hand, generative models or translation models that use encoder-decoder methods to generate a latent representation that will be used as input for a second model is an expensive task that generally requires extreme hyperparameter exploration and massive parallelization to determine an optimal generalization model for a multiple medical tasks [Stanley Kenneth O. 19]. Furthermore, scale deep learning workflows over a wide range of emerging heterogeneous system architecture increases the programming expressiveness complexity for model training and computing orchestration. In addition, with the beginning of an open era of instruction set architecture, the HPDA applications require abstracting a variety of domain-specific architectures and languages. For example, the Nvidia embedded computing family (Jetson) uses a hybrid processor on-chip, with an ARM processor coupled with one streaming multiprocessor, delivering computing capabilities similar to a GPU workstation under low power consumption [ Boggs 15].

The data-distributed methods that use iterative-convergent Machine Learning (ML) algorithms for training, such as Bosen [ Xing 15] and [Konecný 16,Bonawitz 19] who have extended these approaches to Federated Learning (FL). They can be applied generically to any ML method if data samples are independent and identically distributed. The Bosen platform provides a distributed version for some well-known ML algorithms (for example, Deep Learning, Sparse Coding, K-means clustering, Random forests or Multi-class Logistic Regression), while the FL approach is designed to be efficient in setups with many users and unreliable or slow connections. Final classification or prediction models represent a weight matrix that is stored across a large number of clients. The local weight matrix is calculated in the initial step and refined over the rounds, where updates are based on the exchange of parameters with local neighbors or a single master node.

The model-distributed approaches such as Strads platform [Xing 15] require ML specialized systems that perform a partition of ML algorithms into a set of parallel tasks, in general, scheduled by master node(s) and executed by a set of workers. Schedulers' task is to separate the problem into a non-overlapping set of sub-problems, divide a workload and synchronize the updates amongst the workers. This setup admits non-conflicting model updates that lead to convergence. Numerous algorithms can be deployed in this framework, such as Latent Dirichlet Allocation, Matrix Factorization, Support Vector Machine or Deep Learning algorithm based on Caffe, called Poseidon, to name a few.

The model and data-distributed algorithms for classification and prediction problems. In the literature, there exist only a few works. A hybrid distributed platform known as Angel [Jiang 17] appropriately combines data partitioning, scheduling, and parameter synchronization tasks and demonstrates accuracy improvement in comparison with a Petuum-based data or model distribution. In addition, there exist many parallelization methods, such as FlexFlow [Jia 18]. It is a hybrid data and model parallel (non-distributed) approach worth exploring in a distributed setup because it performs an automated search of parallelization strategies that incorporate data, attribute, parameter, and operator parallelization for DNN algorithms.

RESEARCH CONTEXT

Green artificial intelligence

The remarkable precision of deep neural networks to solve general tasks in various domains, such as computer vision, speech recognition, and natural language processing, is largely due to increased complexity in the neural architecture and the number of experiments carried out to adjust its hyperparameters. Consequently, developing a generalizable model with deep neural networks is an expensive process due to the time of cloud computing or the cost of hardware and electricity required to power modern computing systems and its environmental impact to process large and multiple models. [Strubell 19]. To estimate the total cost to develop deep neural network models, [Schwartz 20] proposes a processing cost equation Cost(R) ∝ E * D * H. In which, they illustrate three factors that linearly influence the total cost to produce a result R, the cost of executing a single model E, the size of the training dataset D and the number of hyperparameter experiments H.

Therefore, we consider two methods to train neural networks : The first method is based on human designs to improve a neural architecture through the evolution of state of the art in a specific domain, which often involves building deeper models with more sophisticated layers, among other techniques, increasing the cost of execution E per model and at the same time reduces the number of models to explore. While the second method is based on the neural architecture search to automate the design of neural architectures through search strategies such as reinforcement learning or evolutionary algorithms with policies to select a subgraph that maximizes the validation set's expected reward, increasing exponentially, the hyperparameter space H to explore by each model generate E.

Neural architectures by hand design, Since AlexNet achieved a 5.3% error in the top 5 in the ImageNet challenge by using two GPUs to calculate convolution operations with 60 million parameters of the neural network [Krizhevsky 12]. This allows designing deeper neural networks, including mixed layers with convolutions, dropout, and others, which allowed achieving an error of 1% in 2017. While the amount of compute used to train deep neural learning models has increased 300.000X in 6 years.

In medical images, initializing the weights using pretrained models with ImageNET are widely adopted, facilitating the hyperparameter search space and fast convergence ; as the case of skin cancer classification from dermatology images [Esteva Andre 17] ; prediction of cardiovascular risk factors from eye images [Poplin Ryan 18] ; and among others [ Raghu 19]. Nevertheless, transferring knowledge or benefit from a pretrained model to a new medical task is not always possible.

In these situations, designing a neural architecture like Inception, ResNet, and Den-seNet from scratch requires exploring many candidates and finetune each one to discover a well-performing model, which is a scientific process of trial and error.

CHAPITRE 1. INTRODUCTION

Neural architecture search, To overcome these limitations, automated methods and processes are increasing ; in which it is common to use a controller to generate model descriptions of neural architectures and train each model while maximizing the expected precision of generated models in a validation set [Elsken 18]. For example, in image classification with CIFAR-10, using the same number of parameters (27.6M), DenseNet achieves an error rate of 3.74%, while NASNet automated architecture achieves an error rate of 2.4%. Although this last is computationally expensive and time-consuming, it was necessary to train 20000 models with 500 GPUs (Nvidia P100) in 4 days at 2000 GPU-hours [ Zoph 17], and in a previous architecture search was used 800 GPUs (Nvidia k40) in 28 days resulting 22400 GPU-hours [ Zoph 16].

Consequently, designing deep neural networks with automatic methods to generate a population of models during the search space enables extreme exploration and massive parallelization, which translates into energy consumption in a long-time window [Stanley Kenneth O. 19]. Taking all these concepts into account, In this thesis, we used a green artificial intelligence term as an integrative evaluation criterion to reduce the environmental impact of developing deep neural networks, whose essential evaluation criteria comprises two optimization challenges :

1. Automating the exploration strategy to reduce the model trade-offs space ;

2. Tailoring each model generated to exploit the computing platform and minimize the energy consumption.

Objective and Motivations of this Thesis

This thesis aims to develop green neural networks and scale them in heterogeneous systems to accelerate the construction of clinical models for predicting multitask risks with an effective balance between accuracy and energy consumption. The main tasks that we have studied are not limiting concern ; the care purpose of hospital admissions and the prediction of the major clinical category to answer the question : in which service will the patient be rereferred after admissions ? Then the prediction of the length of stay to answer the question : How long will the bed be occupied ? Furthermore, finally, we try to predict mortality risk in the hospital. The available data relating to hospitalized patients in the Provence-Alpes-Côte d'Azur region (PACA), could make it possible to predict many other targets : the patient's destination at the end of their stay (home, care-home, hospital transfers, and death), as well as the primary medical procedures that will be performed, the risk of emergency readmission, etc.

CONTRIBUTIONS AND THESIS OUTLINE

The construction of all these models requires a high computing power to operate and train the unsupervised network to generate dense patient profiles that represent the state of health (patient phenotype representation) and then retrain the different prediction risk models. The confidentiality of the data requires data anonymization, which loses quality in the data by adding blur by grouping specific terms in more generic terms. The volume of data processed is relatively large, and the patient records are fully anonymized with an average of more than 670,000 records per year, to compose the Inpatient dataset from the PMSI PACA from patients hospitalized between 2006 to 2011.

The overriding question of this research is related to : is it possible to efficiently use a platform of GPU embedded nodes to build multitask predictive risk models with an appropriate level of performance ?. The first underlying idea is that if the answer is positive, it would then be possible to deploy this platform of embedded GPU nodes within the services-producing the data in order to be able to process them in-situ of hospitals, to free themselves from the problems of anonymization necessary to export the data outside of their place of production. The second idea is that if one wishes to process complex and voluminous problems using processors with low capacity, whether in terms of memory, execution speed, or throughput, between the different components, it is then necessary to distribute the data set as adequately as possible, to minimize memory movements and to determine precisely the best hyper-parameters to minimize the ratio : relevance of the result concerning its cost, which may be the response time or energy consumption. The two are often linked.

Contributions and Thesis Outline

The main contribution of this thesis is the automatization and the harmonization of distributed processing and coordination methods for training and finetuning neural networks over heterogeneous systems, avoiding to the researchers the necessitate to writing the new coordination gradient codes abstracting the complexity to data placement and memory management over several nodes for each architecture (X86 and ARM) or test new models in the hyperparameter search process. Likewise, DiagnoseNET made a workload characterization, which collects the GPU, CPU, memory tracks, and energy consumption metrics. At the same time, the DNN model is executed on the target platform, whose information is synthesized in terms of accuracy and energy ratio for the programmer or the scheduler, could be used to adjust the task granularity : model dimension and batch partition, according to the memory capacity and the number of nodes in the subsequent execution.

In the healthcare research field, preserving patient privacy is a principal requirement. Figure 1.1 shows the high-level contributions of this thesis, which has been organized into two components that bring together the methods and techniques required to process the complete artificial intelligence workflow proposed. The first component is focused on implementing unsupervised neural architectures to derive a general latent representation of EHRs patients to be applied into multitasking clinical risk models. This part consists of the following chapters. Chapter 2 describes the learning healthcare systems and briefly describes the interoperability module for clinical data processing in the Fast Healthcare Interoperability Resource (FHIR) scheme to build the architecture of clinical documents per patient to develop predictive models, as well as presenting the patient flow 1.3. CONTRIBUTIONS AND THESIS OUTLINE in the Côte d'Azur healthcare system and defining the case study. Chapter 3 discuss patient phenotype extractions and apply them to predict different medical targets. It provides three high-level features : a complete deep learning workflow orchestration into stage pipelining for mining clinical data and using unsupervised feature representations to initialize supervised models and the data resource management for training parallel and distributed deep neural networks.

The second component is focused on speeding up the training process and finetune the hyperparameters to determine an optimal generalization model for the medical task using a mini-group of Jetson TX2 nodes. Chapter 4 combines the hardware and software perspectives to build scalable deep learning models on embedded low power systems. From the hardware perspective, practices and lessons learned from assembling a cluster of embedded GPU nodes, the standard of the implemented architecture, and the general cross-platform library to integrate two levels of parallel and distributed processing deep neural networks. In contrast, the software perspective is introduced the programming framework designed for scaling deep learning models over heterogeneous systems applied to medical diagnosis. It is designed as a modular framework to enable deep learning workflow management and allow neural networks' expressiveness written in TensorFlow. At the same time, its runtime abstracts the data locality, micro batching, and distributed orchestration to scale the neural network model from a GPU workstation to multi-nodes. Chapter 5 discusses qualitative and quantitive aspects to balance accuracy and energy-efficient to train deep neural networks on heterogeneous systems and describes the granularity of neural network tasks as a combination of data parallelism and mini-batch online learning with capabilities of platform memory as a factor for convergence model principles. Chapter 6 summarizes our conclusions, gives an overview to automatize artificial intelligence workflow applied in medical diagnoses produced as part of this research, and outlines ideas for future work based on this thesis.

Chapitre 2 Towards a Learning Healthcare Systems

Clinical informatics systems were designed primarily to obtain patient information and perform administrative healthcare tasks such as billing, administering procedures, and medications, among others. However, in the last decade, several investigations have been carried out based on the secondary use of electronic health records (EHRs), which has allowed advances in clinical research based on the massive analysis of patients and their integration with learning models for the development of personalized medicine.

In particular, given the increasing volume of data in healthcare, data-driven modeling based on machine learning and deep learning methods has become a powerful approach in medical research for the risk prediction model. -Some approaches for EHRs mining and generating patient new stratification principles and revealing unknown disease correlations [Miotto 16]. Others approach combining the EHRs with genetic data to give a more refined understanding of genotype-phenotype relationships [Sánchez-Valle Jon 20]. Nevertheless, there have been few implementations of risk prediction models in real clinical settings due to the complexity of standardized units and vocabulary among healthcare systems worldwide. In addition, some health systems present challenges and standardize multiple independent sub-systems in the same institution.

Learning Healthcare Systems

The learning healthcare system (LHS) has recently emerged as a potential solutionbased system to link routine healthcare systems, patient values, and the best available scientific information directly to healthcare practitioners to support the clinical decision making (CDM). Consequently, the LHS has been conceptualized from the paradigms of 2.1. LEARNING HEALTHCARE SYSTEMS evidence-based medicine (EBM) and translational research medicine, taking advantage of the ubiquitous use of electronic medical record systems and technological advances in the area of artificial intelligence to develop models according with the care target [ Delaney 15].

The EBM paradigma aim to incorporate knowledge generation processes based on hospital data collected from daily practice to provide feedback on their diagnoses, procedures and provide better medical care to their patients [ Ethier 18]. While the translational research medicine involves fundamental scientific principles for turning biomedical research into practical applications or for expanding knowledge in the field of medicine to improve human health and well-being [ Adithan 17].

Nevertheless, there is a wide variety of health systems around the world, with organizational structures designed according to their needs and resources to provide primary health care and public health. As a result, there are multiple useful frameworks for developing an LHS, but each framework has been targeted according to the requirements of your health systems [White 15,Smith 20]. For example, the Health Innovation Program (HIP) Model [Smith 20], proposed to build and implement effective LHS for complex case management health systems, are comprised of four process steps, including (1) identifying critical questions, (2) conducting research and evaluations, (3) sharing results, and (4) implement changes. While the TRANSFoRm Project [Delaney 15,Ethier 18], proposed an architecture for the LHS with respect to functional and interoperability requirements to support primary care, which describe a software ecosystem for building generic middleware components that provide essential shared functions for LHS applications, such as vocabulary services, secure data transport, authentication methods, and provenance services ; while in the second work the methods to access, process and operate the data are specified, classifying them in data warehousing and data federation. And the Heimdall Framework [ Mclachlan 18], proposed a classification of target care systems for LHS, whose main branches are cohort identification to determine the feasibility of studies such as risk modeling and decision-making as the first operational step of LHS ; and intelligent assistance to automate routine processes, such as pathology order pre-filling and surveillance monitors for disease outbreaks or treatment problems.

Based on the steps of these models and their main requirements, we composed a highlevel framework to develop a continuous LHS integrating artificial intelligence methods and computing techniques to manage access and develop the service of target care systems through a data warehouse or a data federation, for allowing the implementation of the EBM and translational research medicine paradigms, respectively, as shown in Figure 2.1. 

LHS Taxonomy of Medical Applications

Based on a qualitative meta-narrative study by [Mclachlan 18], whose study proposes a taxonomy to unify and reduce diversity and fragmentation to develop learning health systems. Therefore, here we describe six types of medical applications empowered by advances in artificial intelligence. Integrating them into a learning health system benefits both clinicians and patients by detecting critical events, such as the emergence of personalized medicine or a better definition of care pathways.

-Discrete-Event Simulation (DES) : Is a multi-method that discretizes the sequence of events over time to model the operation of a system. It is used in healthcare organizations to increase patient satisfaction and to reduce treatment costs. For example, DES is combined with design of experiment approach to simulate an emergency department and optimize the average waiting time of a patient to be attended [ Atalan 20].

-Predictive Patient Risk Modeling (PDRM) : Clinicians can use patient predictive risk modeling to estimate the likelihood that an individual will experience a triple failure event in a specific future period. Predictive patient risk modeling relies on patterns discovered in inpatient data sets to identify cohorts at increased risk for future adverse events [ Lewis 13].

-Clinical Decision Support Systems (CDSS) : The CDSS is an active healthcare system that matches patients' features against computerized algorithms to CHAPITRE 2. TOWARDS A LEARNING HEALTHCARE SYSTEMS generate patient-specific treatment patient-specific treatment recommendations.

The CDSS is one of many complex and challenging decision support systems, primarily because of the various measurable and non-measurable features involved in decision making and the complex relationships between those attributes. The CDSS algorithms can be practical tools to support the decision-making process, but the patient features entered into the algorithms must be measurable and quantifiable. The clinical decision systems involve various systems, including medical devices, applications, and a variety of other types of software. Are active knowledge systems where two or more characteristics of the patient are matched to computerised knowledge bases with algorithms generating patient-specific treatment recommendations [Sandeep Kumar 20].

- -Intelligent Assistance or Computer Aims Diagnosis (CAD) : The use of clinical data sources can be augmented with artificial intelligence (AI) to improve accuracy and efficiency while reducing unwanted variability. This can be achieved by training an AI system with annotated labels derived from high-quality reports from expert radiologists on a database of anonymized reports. The AI system can be used as a concurrent reader to aid a less experienced radiologist in making more accurate interpretations. The AI system can also be used as a pre-reader for a radiologist to improve efficiency and consistency of reports due to the anchoring of findings in the consistent results of the complementary AI [Winkel 21].

- 

The Interoperability Challenge in Healthcare Systems

The first difficulty for healthcare systems in transforming from data-driven healthcare to a knowledge-driven healthcare system is the health information exchange from a patient-centered perspective [Braunstein 18a]. It was moving as a scalability difficulty for deep learning-based medical applications to integrate into new clinical settings. Thus, the model that works in hospital A does not work in hospital B due to the structure and semantics of the patient-related information required to feed the DL medical application [ Esteva 19].

The EHR interoperability challenges occur at different scales, from minimal communication and data exchange between several independent software within the same organization to the diversity of codes used to record the same characteristics of the patient between internal units and external organizations. For example, the billing system constantly integrates information when one or more records are created for each patient in one or more hospital units. As a result, the databases can have simple problems, such as gender being recorded in radiology as M and F . In contrast, the pharmacy system uses one and zero, and in the laboratory, zero and one. [Reid 05]. The other example refers to semantic confusion, in which an ICP C -X76 code relates to breast cancer in the International Classification of Primary Care, but depending on the structure of the database, an instance of this terminology code may denote various diagnoses of breast cancer like a diagnosis of a current condition of the patient, a past state of the patient, or the current condition of a family member [Ethier 18]. CHAPITRE 2. TOWARDS A LEARNING HEALTHCARE SYSTEMS Therefore, to implement clinical decision systems, healthcare information systems must exchange EHRs in any format between any healthcare system to maintain the meaning of the information being exchanged. The goal is to directly support the safe, timely, efficient, effective, and equitable delivery of patient-centered care. For this purpose, it is necessary to build healthcare information systems with the following interoperability layers :

1. Foundational Layer : Achieves the ability of patients to receive their personal health information electronically by enabling one system or application to securely store, transmit, and receive data from another organization's system. Those systems will include a health information exchange (HIE) shared electronically among providers, patients, and families. When health information is shared, patients have access to the information they need to make informed decisions regarding their health care. In addition, their providers have access to the clinical information they need to provide quality care, and healthcare organizations can provide more efficient, effective, and cost-effective care.

2. Structured Layer : It is the constant transfer of health data from one system to another that preserves and does not change the data's purpose and clinical or operational meaning. It, therefore, defines the format, syntax, and organization of the exchanged information, including at the level of data fields for interpretation.

The intermediate form of interoperability requires the receiving system to interpret meaning at the data field level. In the most advanced form of structured interoperability, specific data fields are placed in locations that indicate their purpose [Braunstein 18b].

Semantic Layer :

The semantic layer is a set of ontological relationships that operate on a set of data elements. This is the highest level of interoperability and requires sufficient shared standards to be consistent, accurate, and relevant to the data element definitions. This level of interoperability enables a receiving system to interpret the data to perform a task as if the data had been generated in the receiving system [Braunstein 18b].

4.

Organizational Layer : This layer covers the details of implementation, management, and even legal processes to turn the concept into a tangible solution. It includes governance, policy, social, legal, and organizational considerations to facilitate secure communication and use of data both within and between organizations, entities, and individuals. For example, a Federated Learning (FL) approach ad-2.1. LEARNING HEALTHCARE SYSTEMS dresses privacy and data governance challenges by enabling ML from non-co-located data. In an FL environment, each data controller defines its governance processes and associated privacy policies, controls access to the data, and reviews the data.

In addition, the FL includes the training and validation phases. In this way, FL could create new opportunities, for example, by enabling large-scale institutional validation or enabling novel research on rare diseases [ Rieke 20].

Fast Healthcare Interoperability Resources (FHIR)

Health Level Seven (HL7)1 developed the Fast Healthcare Interoperability Resources (FHIR) as a standard for harmonizing and exchanging diverse clinical types such as patient, practitioner, diagnoses, procedures, medications, and others, between healthcare information systems. The FHIR structure the EHRs as a collection of "resources" using embedded ontology references such as LOINC, SNOMED, and others to ensure a common vocabulary among the various healthcare practitioners. [Braunstein 18b].

FHIR resources are created in JSON, XML, or RDF, with JSON being the most commonly used format as a common language between services and practitioners. The main implementations of FHIR server-structured EHRs are :

-FHIR server uses a common standard called Care Connect Reference Implementation CCRI to develop APIs on top of the existing database structure to communicate EHRs between various software. For example, build an FHIR server with data loading on the radiology, laboratory, and medical history system databases to integrate the patient features and compose clinical analysis to assist specialists in making decisions.

-Another approach is to use the FHIR profile structure to standardize clinical features used to feed medical intelligence applications such as patient risk models, clinical decision support systems, and others. Thus, allowing these artificial intelligence medical applications to scale from a hospital A to a hospital B.

FHIR Resource Structure :

The EHR elements are structured by blocks called Resources. For example, the Diag-nosticOrder resource contains the orders placed by clinicians for imaging studies of a specific patient, which in turn is structured in a P atient resource [ Kamel 18]. Additionally, the structure definitions describe the data types, infrastructural types, and cardinalities defined in the FHIR resource. Therefore, FHIR structures are used as the basis for code generation, reporting, and user interface. And in turn, structure definitions are shared and published through repositories to enable interoperability between implementations.

When a structure definition contains a repeated element, you can chop the repeated element into sub-elements with different constraints on the sub-elements with the same meaning as the repeated element. In FHIR, this operation is known as "slicing" a list. It is common to split a list into sub-lists, each containing a single element, effectively placing constraints on each list element. For example, in a sliced resource structure, an Observation defines the component element containing a nested code and a value for the observations with several values. In which a resource instance of blood pressure measurement that includes one value for the systolic and one value for the diastolic, looks like this : API Expressions 2.1 -Structure of a blood pressure monitoring resource in a JSON format. { " resourceType " : " Observation " , "id" : "blood -pressure " , "meta" : {"profile" : [ "http :// hl7.org/fhir/ StructureDefinition / vitalsigns " ] } , " subject. referece " : "Patient /1186747 " , " component " : [ {" Observation " : " Systolic BP" , "name" : " Systolic " , "coding" : "LOINC 8480 -6" , "value.units" : "mmHg" , } , {" Observation " : " Diastolic BP" , "name" : " Diastolic " , "coding" : "LOINC 8462 -4" , "value.units" : "mmHg" , } ] }
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FHIR Operation or Qurey :

The operation resource defines the input parameters that are passed to an executable operation or query. The FHIR servers execute the operations to determine system compatibility and thus enable dynamic generation of forms for sharing resources. Technically the operations are defined under a set of schemas like OpenAPI Specification, that formally represent the FHIR RDF compliance rules-sending a copy of the FHIR resource to another system via the FHIR API with JSON payload or other interoperability protocol [ Solbrig 17].

Resource operation provides relative URLs to interact with the data. For example, blood pressure observation can be fetched by specifying the resource, observation identifier, and format, and the query returns an Atom feed, which includes all related resources. For example, in the case of a Blood Pressure Observation could be fetched as follows : API Expressions 2.2 -Fetch a blood pressure monitoring resource in a JSON format.

GET h t t p s : // hl7.org/ Observation /blood -pressure ?_format=json

The operation parameters are specified directly in a profile or resource structure by describing an operation's input and output parameters. In other words, the operation parameters can be defined using the OperationDefinition.parameter element or through a profile. If a profile is used, it must follow the information defined in the operation parameter element using OperationDefinition.inputProfile and OperationDefinition.outputProfile.

As an example, consider an operation that defines three parameters : the input that contains an integer parameter and a patient parameter ; and the output that includes the result parameter, is defined as follows : API Expressions 2.3 -Example of defining an operation as a profile. { "meta" : { " inputProfile " : [ "http :// hl7.org/ StructureDefinition /op.x.in.profile" ] , " outputProfile " : [ "http :// hl7.org/ StructureDefinition /op.x.out.profile" ] , } } 

Healthcare Data Mining

Given the increasing volume of data in healthcare systems, data mining is widely applied to extract clinical features characteristics of patients and is used in conjunction with deep learning models to develop clinical decision systems. This section synthesizes the stages for EHRs data mining, then harmonizes clinical features and extracts patient phenotype representation to feed it into biomedical applications. Figure 2.2 shows a pipeline based on three steps to harmonize heterogeneous and unstructured clinical data using standard ontologies to enable semantic interoperability of clinical features for developing scalable models between clinical centers.

a. The data warehouse generally includes as much information related to the patient as demographic data, medical notes, medications, vital signs, laboratory data, and others generated by one or more encounters in any care delivery setting.

b. The data mining process maps heterogeneous and unstructured data to standardize into a single format to represent the patient's state, including the structure and semantic levels of interoperability, such as standard ontologies like ICD10, SNOMED-CT, LOINC, RxNORM, and others. c. There are several methods to derive and represent the clinical status of the patient, which is generally called the High-throughput Phenotype (HtP) and used deep learning models to generate biomedical applications as new principles of patient stratification, reveal correlations of unknown diseases, and provide a more accurate understanding of genotype-phenotype relationships. Using deep learning to develop risk model predictions will be described in more detail in the next chapter.

CASE OF TUDY : HEALTHCARE SYSTEM IN PACA

Case of tudy : Healthcare System in PACA

The objective of this study was to design a clinical risk prediction model pipeline based on deep learning methods to be integrated into a healthcare learning system, where the EHRs generated from patients could be continuously analyzed and modeled to create predictive medical tasks that would be transferred to patient care and optimize the functions of healthcare professionals.

In 2000, the French Ministry of Health [de la Sante 5], established the medicalization program of the information system (PMSI). They are designed primarily to know the medical activity of health facilities and to standardize the clinical documents. It houses applications from a hospital stay to follow-up medical visits, which should result in producing a standardized computerized record, called a standardized discharge summary (RSS), that includes administrative, demographic, medical, and supportive information.

The French Technical Agency for Hospitalization Information (ATIH) was created as a public administrative establishment of the State under the supervision of the ministers responsible for health, social affairs, and social security, to collect data from the health systems and manage medical classifications, as well as economic studies, costs, information of restitution and participate in the development of health nomenclatures. In 2019, the ATIH registered 12.9 million patients and 3,252 facilities from services of medicine, surgery, obstetrics, hospitalization, care, and rehabilitation follow-up that transmitted the RSS feed through PMSI. From this perspective, we collected many EHRs to build a clinical dataset, which was used during the development of this thesis and other related works. The clinical dataset was derivative from the hospital discharge data warehouse in the south region of France called Provence-Alpes-Côte d'Azur (PACA) through the Medicalization Program of the Information System (PMSI)2 .

Medicalization Program of the Information System

The PMSI compiles all the information related to the hospital stay and condenses it to summarize standardized results (RSS). Which is fed by one or more medical units (RUM), depending on the number of medical units attended who cared for the patient during the stay in one or more hospitals. Likewise, the PSMI uses a classification called a group of homogeneous patients (GHM) to classify all the records produced in each hospital and delimits them into groups of coherent codes according to medical and cost terms [ Chantry 12].

The hospital discharge data warehouse is divided into four main areas of patient care, such as medicine, obstetrics, and odontology (MCO), follow-up and rehabilitation care (SSR), home hospitalization (HAD), and psychiatry. In 2019, they obtained a total of 1'162,900 in the flow of patients treated in 353 facilities, as shown in the following table 2.1.

Table 2.1 -Patient flow for PACA health system in 2019.

Patients Facilities Medicine, obstetrics and odontology (MCO)

1'024,700 123 This collection describes the medical activity of health facilities as well as the summary of outpatient activity, comprising administrative, demographic, medical and support information.

Care and rehabilitation follow-up (SSR)

96,100 153 This collection describes the medical activity of health facilities and quantifies hospital stays, which contains a summary of hospitalizations by sequences of weeks.

Home hospitalization (HAD)

6,800 23 This collection applies to all health establishments, public and private, with authorization for home hospitalization activity. Psychiatry 35,300 54 This collection describes all the activity carried out for the benefit of patients by health establishments, in full or partial hospitalization as well as in outpatient.

Care and Rehabilitation Follow-up Data Warehouse

The primary hospital discharge used during the development of this thesis was the PMSI care and rehabilitation follow-up data warehouse as a source to obtain the complete summary of the standardized results and derive the clinical dataset. Specifically, the SSR data warehouse is derived from the hospitalization and rehabilitation facilities. They are homogenizing in records with information related to the diagnosis, procedures, and rehabilitation of patient care treated during a week and with the possibility of tracking up to 52 records per year.

The SSR data covers 2006 to 2011, with an average of 680,626 records and 166,202 procedures per year, and the data corresponding to the MCO, has an average of 1'982,451 records and 5'113,458 procedures per year, as shown in the table 4.3. However, in this thesis, the MCO data is not used, although these have a greater flow of patients per year, it did not contain the necessary indexes to identify the follow-up visits or to link the patients that came from SSR facilities. The main clinical variables were structured into ten different groups, which include clinical descriptors such as demographics, admission details, hospitalization details, physical dependence, cognitive dependence, rehabilitation time, comorbidities, morbidity, etiology, and procedures, for all patients who were treated in any of the hospitals in the PACA region or patients in this region who were treated in other hospitals from 2006 to 2011, as shown in the following Table 2.3. The anticipation into the medical unit, during the week considered an indicator to order the stays of the same patient in an establishment.
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First week

The start dates of entry into the medical unit.

Hospitalization Details Numdays week

This is the calendar week ID number.

The first week of the year is the week that contains January 4 (ISO 8601 standard).

Sequence number Each calendar day of actual presence in hospitalization is coded "1" otherwise "0".

Surgery time

For patients hospitalized after surgery, the date of the intervention is information from the standardized weekly summary.

Entity Feature Description

Physical dependence Dressing

It is a quantitative measure of the ability to dress and undress above the waist, as well as to put on and take off an orthosis or prosthesis as the case may be.

Displacement

This variable includes five actions : bed-chair-wheelchair transfers, transfers to the bathroom, transfers to the bathroom or shower, to locomotion and the use of stairs.

Feeding

This variable includes three necessary actions : use of utensils, chew, swallow (swallow a bite or sip).

Ccontinence

This variable includes two actions : control and hygiene of urination, control and hygiene of defecation.

Wheelchair

A patient uses a wheelchair. He needed help getting from bed to chair (support and positioning by the caregiver). Once seated in his chair, he moves independently.

Cognitive dependence Comportement

It includes a single action, social interaction, defined as the ability to get along with others and participate in social or therapeutic hospital situations to satisfy one's own needs. 

Risk Modeling

Since 2011, meta-analysis has demonstrated that healthcare information systems that have successfully adhered to clinical guidelines benefit the quality and efficiency in which healthcare organizations perform patient care [ Buntin 11]. The mechanisms by which EHRs improve healthcare quality are reducing medication errors through a clinical decision system, improved clinical communication, improved information management, leading to better treatment decisions, and data sharing, which reduces information fragmentation.. [ Atasoy 19]. Specifically, an observational study confirmed that the adoption of EHR improved the quality of care in medical centers for the treatment of critically ill patients. For this purpose, they performed a Cox proportional hazards regression analysis, where the leading indicators of quality of care were inpatient mortality, readmissions CHAPITRE 2. TOWARDS A LEARNING HEALTHCARE SYSTEMS within 14 days, and postoperative mortality at 48 hours [ Lin 20].

In this sense, the standard Structural Equation Model (SEM) established to measure the quality of care in healthcare organizations is used to develop clinical risk prediction models, adding a new level of automation to empower clinicians and improve the quality of care. The SEM identifies and quantifies system and patient characteristics to timely and appropriately assign clinical procedures to obtain the best patient care outcomes. Figure 2.3 shows the SEM components for mapping the clinical structure to clinical outcomes ; in which the characteristics of health systems, patient characteristics, and social and family characteristics are standardized in CDA to build a repressive input vector to feed deep learning tasks to process clinical caregivers as diagnoses, procedures, and length of stay. 

Structural Equation Model Applied to Risk Modeling in Paca Hospitals

The SEM has been shown to help clinicians better understand their patient populations' needs and improve health outcomes and reduce expenditures by targeting and tailoring care to high-need patients. In this study, we integrate the data-driven modeling with the SEM to digitize the patient information and the clinical care procedures to develop the clinical risk models.

The data-driven modeling focused on structuring the EHRs according to the clinical descriptors from the care and rehabilitation follow-up data warehouse of PACA healthcare systems. Then, a transformative library is developed to parser the various sources of EHR over the years to the clinical document architecture (FHIR) to allow semantic interoperability and allow the feeding of data into the clinical visualization API or to feed them into the clinical modeling tasks, which is described in detail in the following subsection.

DEVELOPMENT A FHIR TRANSFORMER TO STANDARDIZE EHRS

The SEM approach was designed as a pipeline of deep learning tasks to map the primary care pathways according to the flow of patients from the follow-up care and rehabilitation in the PACA facilities. The conceptual scheme of the patient hospitalization process to track the medical history of individual patients and the second utilization of the EHRs to data-driven models for improving the accuracy of healthcare forecasting is presented in Figure 2.4. In which is presented the discharge flow ratio for all hospitalized patients during their first week in 2008. The first step is to extract the patient's features and embed them in a general representation of patients (phenotyping) using unsupervised learning methods. Thus, the embedded patient feature representations are fed into diverse deep learning tasks like health care purpose, medical procedures, length of stay, or destination. 

Development a FHIR transformer to standardize EHRs

The main objective here is to design and develop a framework that parses EHRs into the FHIR standard as the primary basis for developing medical studies using deep learning models and enabling the trained model's scalability among other institutions. The clinical document architecture is one of the leading data formats standardized in the HL7 FHIR specification and is being used by healthcare institutions showing robustness in its structure and agility to communicate information between devices and applications. However, this model is rarely used in research or studies using deep learning methods applied to medical research since this stage increases the complexity of the study.

Furthermore, MongoDB has proven to be a robust engine that offers excellent perfor-CHAPITRE 2. TOWARDS A LEARNING HEALTHCARE SYSTEMS mance, accessibility, and scalability for document non-relational database management in a wide variety of use cases and industries [Anusha 21]. MongoDB works with records as documents. The documents are stored in JSON, BSON, and XML formats, allowing data storage for various uses.

A MongoDB aggregation pipeline was developed for parsing and serializing a patient record into an FHIR document, called ehr2fhir transformer. The clinical document architecture was based on the clinical entities and features presented in Table 2.3. The ehr2fhir create an initial collection coming from the anonymization output summaries (RSA) obtained from the PACA PMSI data related to hospital admissions, ICD-10 diagnoses, disease grouping, procedures, and others.

The former aggregation is made to merge the RSA files with the procedures files to compose an object per each patient RSA data and concatenate all the operations performed on the same week.

The second aggregation is made to add the SSR fields. This aggregation translates the French clinical variables to English clinical variables according to the features described in the Table 2.3, as well as is performed the engineering rules to group and bucketize variables as the age which was used seven groups like age groupe : [0 -6, 7 -12, 13 -17, 18 -29, 30 -59, 60 -74, 75+] and other variables as the rehabilitation times was a divide in buckets.

The third aggregation is made to build the clinical document architecture used during the experiments of this thesis. This aggregation defines the clinical document architecture divide in header and body according to the entities described in Table 4 "sexe" : "$sexe" , " age_group " : " $age_group " , " activity " : " $type_activite " , " postal_code " : " $geograph " , }}} , {$addFields : {" x2_admission_details " : { " input_mode " : " $mode_entree " , " input_source " : " $prov_entree " , " previous_state " : " $anteriorite " , " first_week " : " $semaine_debut " , "month" : "$Mois" , "year" : "$Annee" , }}} , {$addFields : {" x3_hospitalization_details " : { " numdays_week " : " $Nbjour_sem " , " numdays_weekend " : " $Nbjour_we " , " numdays_hospitalized " : { $toUpper : " $numdays_hosp " } , " sequence_number " : " $Num_seq " , " surgery_time " : " $date_chir_group " , }}} , {$addFields : {" x4_physical_dependence " : { " dressing " : " $Dep_habillage " , " displacement " : " $Dep_deplacement " , "feeding" : " $Dep_alimentation " , " continence " : " $Dep_continence " , " wheelchair " : " $Fauteuil_roulant " , }}} , {$addFields : {" x5_cognitive_dependence " : { " comportement " : " $Dep_comportement " , " communication " : " $Dep_relation " , }}} , {$addFields : {" x6_rehabilitation_time " : { " mechanical_rehab " : " $Reeduc_meca_gr " , " motorsensory_rehab " : " $Reeduc_sensor_gr " , " neupsycho_rehab " : " $Reeduc_neuropsy_gr " , " cardioresp_rehab " : " $Reeduc_cardioresp_gr " , " nutritional_rehab " : " $Reeduc_nutri_gr " , " urosphincter_rehab " : " $Reeduc_urosph_gr " , " kidneys_rehab " : " $Readap_reins_gr " , " electrical_equipment " : " $Appareillage_gr " , "collective -rehab" : " $Reeduc_collective_gr " , "bilans" : " $Bilans_gr " , " physiotherapy " : " $PhysioT_gr " , " balneotherapy " : " $BalneoT_gr " , }}} , {$addFields : {" x7_associated_diagnosis " : [ "$DAs1" , "$DAs2" , "$DAs3" , "$DAs4" , "$DAs5" , "$DAs6" , "$DAs7" , "$DAs8" , "$DAs9" , "$DAs10" , "$DAs11" , "$DAs12" , "$DAs13" , "$DAs14" , "$DAs15" , "$DAs16" , "$DAs17" , "$DAs18" , "$DAs19" , "$DAs20" , ] }} , {$addFields : {" x8_primary_morbidity " : { " care_purpose " : " $Fin_princ_PC " , " morbidity " : " $morbid_princ " , " etiology " : " $affect_etiol " , " major_diagnostic_categories " : " $cmc_rhs " , " homos_diagnostic_categories " : " $ghj_rhs " , }}} , {$addFields : {" x9_clinical_procedures " : { " procedures " : "$actes.CodActe" , " nb_actes " : " $Nb_actes " : , }}} , {$addFields : {" x10_destination " : { " last_week " : " $semaine_fin " , " output_mode " : " $mode_sortie " , " destination " : " $destination " , }}} , ] )

Patient Flow in PACA Hospitals

Once the clinical data coming from the hospitals of the PACA region, France, had been serialized and structured with FHIR standards. The next objective is to analyze the patient flow of hospitalizations to quantify the number of patients admitted to the hospital and map the trajectories until discharge. This first analysis allows us to see the density of the population entering the hospitalization stage, to know the mode of entry and the mode of exit. For example, if a patient comes from a hospitalization transfer from one hospital to another ; if the transfer is from one unit to another in the same hospital ; And mapping the output of these patients transferred to understand where the patient load is and identified the tasks that clinicians need the AI to assist the decision-making.

To perform this exploration, we selected data concerning the first week of hospitalization for all hospitalized patients in 2008. As a result, Figure 2.5 illustrates the flow of 121,369 patients admitted to PACA health services from the general community, transferred from other hospitals, and discharges into the health services systems for patient care, threat, and discharge. It is observed that the highest flow of hospital admissions comes from the emergency department, with a rate of 72,422 patients in the first week 2.4. DEVELOPMENT A FHIR TRANSFORMER TO STANDARDIZE EHRS of hospitalization in 2018 for the entire PACA region. 62.4% of patients in the transfer admission modality are discharged home, followed by 14% of patients in the transfer admission modality are discharged to another inpatient unit such as ICU and others. And the majority number of decedents per week comes from the transfer admission modality at 2.67%, with 1,931 decedents out of the total number of transfers processed in the first week of hospitalization in 2018 for the entire PACA region. 

Medical Care Purpose Classification for Inpatients

The PMSI system has two ways to track the patient flow and correlate those with the medical units. Once using the medical diagnoses with the ICD-10 codes, the other uses the equivalent diagnosis-related groups organized in hierarchization levels encoded in a Nosological Group (GHJ).

The medical diagnosis contains the care purpose of each hospitalization-allowing the correlation between the patient flow with the GHJ and thus obtaining a better quantification and reporting of the workload and the need for IA tools. Being the nosological CHAPITRE 2. TOWARDS A LEARNING HEALTHCARE SYSTEMS group codes complementary information of the primary morbidity of the patient, which is composed of :

-Care purpose : Healthcare realization of the main load taking and high-level expertise to attend to the patient. -Primary morbidity : Primary morbid manifestation such as illness, symptom, trauma, injury, poisoning, or situation at hospital admission. -Etiology : Cause or origin to cause disease. Therefore, to enrich the patient flow analysis is extracted the high-level care purpose group, obtaining 14 labels-categories to classify the medical care of patients hospitalized, as shown in Table 2.4. The second analysis of the patient flow is divided by two charts, the first concerning inpatient admissions versus major diagnosis in the nosological group classification. And the other concerning the discharge from hospitalization versus major diagnosis in the nosological group classification.

The figure shows the multimodal distribution of the patient flow with admissions and discharge mapped across a high level of care purpose groups or GHJ. The green distributions represent all patients hospitalized during their first week in 2008, while the orange distributions represent all patients hospitalized during their fourth week in 2008. The categories with the highest flow of inpatient hospitalization at admission are 1 : Cardiovascular and respiratory medical care procedures, 2 : Circular system disorders procedures, 3 : Neuro-muscular medical care procedures, 5 : Sensory and skin medical care procedures, 6 : Rheumatic and orthopedic medical care procedures, 7 : Post-traumatic medical care procedures, 12 : Nutritional, medical care procedures. 

Summary

The second use of EHRs allows the development of new DL models that empower researchers and healthcare professionals with the possibility of finding new answers for the treatment, prevention, and understanding of disease and quality of life. While the interplay of big data analytics and the development of artificial intelligence applications in automating routine tasks will free up the workload of healthcare professionals, allowing them to focus on more personalized and in-depth analysis for each patient.

Despite the enormous amount of work hospitals and healthcare centers require to upgrade their health information systems from management information to new integrated medical intelligence applications and enable scalability of the model across different organizations and build learning healthcare systems.

We believe that the basis for building continuous learning healthcare systems is to add a layer of standardization of EHRs through a standard medical model, such as those provided by the FHIR standard. Applying the standardization to the EHR-driven modeling allows DL models to be scaled from hospital A to hospital B, providing an opportune scenario to evaluate the robustness and generalizability of DL models.

The next chapter focuses on machine-and-deep learning approaches to enable highthroughput phenotype discovery. It seeks to transform the general representational space of patients and group patients by groups that share similarities from vital signs, comorbidities, the purpose of care to enable the training of supervised learning algorithms that allow the medical task to begin.

Chapitre 3 AI-based to Automate Clinical Risk Prediction Workflows

EHRs are growing and flowing more and more through healthcare systems, collecting longitudinal data on patient and physician experience. Raising a common challenge in healthcare systems, as it contains a wealth of historical patient information, but clinicians are short on time and often do not have the right tools to synthesize this information [Choi 16a]. In response, data-driven approaches have been applied to develop clinical decision support systems based on secondary use of EHRs for modeling different clinical tasks or events. In general, the design of these systems involves integrating diverse machine learning training processes, in which input features are mapped to obtain a set of intermediate features that are then mapped to the output classes. [ Shamout 20]. However, modeling an accurate representation of the patient's state in an embedded feature representation is a task that involves solving several challenges in terms of algorithmic complexity, such as the number of hours required for model convergence and the considerable memory size needed to process these models.

This chapter describes the first component of the DiagnoseNET workflow to automate extracting and representing the patient phenotype for use in mapping different medical targets. This component focuses on implementing unsupervised neural networks to derive general latent representations fed by supervised learning algorithms, while computing resources such as convergence time, GPU memory, and power consumption are monitored to improve their utilization. The data manager abstracts the entire workflow orchestration stage by stage, from the transformation of clinical features to the latent representation, dividing the data for training, validation, and testing, and using micro-batch management to train deep distributed neural networks.

DiagnoseNET workflow automates the training process of the machine learning pi-CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS peline, allowing each stage to have enough dynamism to configure different parameters according to the problem or to search for the best model to specify and explain the medical task. The main stages of the DiagnoseNET workflow are as follows :

1. In the first stage, it previously processes the EHRs to build a sparse binary representation of the patient and thus describe the patient's condition according to a standardized semantic structure that guarantees the interoperability of the model to be built.

2. Then, in the second stage, we seek to transform the representation space to obtain latent representations that embed the clusters of patients with similar clinical descriptors and reduce the dimensionality of the data than the original space where the data lives.

3. In the third stage, both representations could be used as input to supervised learning models to model clinical risk predictions according to the medical target.

EHRs derivation to represent the patient's condition

Representing patient conditions is an essential step in developing clinical decision support systems. Much of the performance of clinical predictive models depends on the representation of data features and how underlying bias is handled in the EHRs, which often have noisy data. For which a method called High-throughput Phenotyping (HtP) has recently been introduced to extract impartially and automatically select informative features, which can be comparable to those chosen by experts in terms of machine learning tasks [ Yu 15]. In addition, the HtP is enhanced by the use of representation learning algorithms applying different embedding approaches, such as standard dimensionality reduction techniques, distributed representations used in language modeling, the use of embedding layers as part of a larger model, or through the latent space of autoencoders and their variants [ Shamout 20].

High-throughput Phenotyping from EHRs

Patient phenotypes are the basis for clinical and genetic studies of disease risk, and outcomes [ Zhang 19]. Generally, a clinical phenotype refers to the disease or condition representing an observable trait of the subject. A retrospective analysis of patient datasets is used to derive and identify correlations of clinical features with host-response patterns and clinical outcomes to determine whether a patient with a particular set of clinical characteristics meets that definition [ Yu 15]. These clinical features are usually composed 3.1. EHRS DERIVATION TO REPRESENT THE PATIENT'S CONDITION of heterogeneous data from diagnoses, procedures, medications, vital signs, laboratory results, and clinical notes coded and recorded according to each healthcare system.

High-throughput phenotyping is a mechanism that aims to derive millions of finegrained phenotypes, speeding up the process of trait selection for phenotyping algorithms with minimal human intervention. Algorithms that identify the desired phenotype could be constructed in quite different ways ; One of the methods used is the vector representation in which, for each medical objective, a correlation matrix is constructed between the patients and the features of the medical data [ Wang 14]. The generation of the different vectors usually takes significant time. Other possibilities are nonnegative matrix factorization, and nonnegative tensor factorization to extract the phenotypes as a set of matrices, tensor candidates showing the patients clusters linked to specific medical characteristics and their date [Ho 14,Perros 17,Perros 18]. Other approaches use nonnegative vectors to embed the clinical codes and use word representations such as skip-gram or Glove to generate the corresponding visit representation [Choi 16b]. decision making. However, EHRs are not a direct reflection of the patient's proper condition, but rather a review of the recording process inherent in the healthcare system with noise and feedback loops [ Hripcsak 13]. Depending on the healthcare system, these data pose modeling challenges associated with missing data, mismatches, sparsity, and noise at the medical record level. These challenges are being solved by applying deep learning algorithms to healthcare research, described in the following sections.

Representation Learning to Derive Patient Phenotypes

In recent decades, manual phenotyping methods were traditionally designed to identify patterns in patients with a single target disease, with domain experts overseeing the definitions of trait scales for a particular medical target and typically working with well-defined. Still, minuscule sets of data [str 10, Kennedy E.H. 13]. Meanwhile, the new generation of artificial intelligence medical systems is expanding medical capabilities from tracking patients' health to predicting early risk detection and providing new patterns to help personalize treatments. Therefore, representing the state of patients through the phenotyping process is a crucial step in the development of these systems.

Following the significant success of representation learning for image, text, and audio with rich high-dimensional data, there has been increasing transfer of knowledge gained in these domains to train deep neural networks in medical settings [Bengio 11,Mikolov 13,Srivastava 15]. Healthcare researchers and computer scientists have used unsupervised methods to train deep neural networks to discover latent representations of patient phenotype.

They effectively built predictive models for a broad set of medical conditions. The strength of these unsupervised methods is that they do not require domain experts at the level of the feature extraction process and solve some issues of missing data, sparsity, and log-level noise.

In general, the derivation of a patient's phenotype involves a mathematical transformation of high-dimensional features into a lower-dimensional space. In the deep learning process, the representation is learned using two neural network models with multiple hidden units for encoding and decoding the clinical features. First, an encoder network or an embedding function f θ(.) is a generative model, which takes the essential clinical features X as input data to transform them into a new latent space Z as the output. Second, the representation Z is fed into the decoder network gθ (.), which is used to reconstruct the input data X and also to predict the clinical label y n given the input latent representation Z, as shown in the Figure 3.2. Meanwhile, the choice of a model usually depends on the 

DiagnoseNET to Automate Clinical Risk Prediction Workflow

In this thesis, we extend the deep patient approach [Miotto 16], in which all clinical descriptors are grouped inpatient vectors, and each patient can be described by a highdimensional vector or by a sequence of vectors computed in a predefined temporal window. Figure 3.5 shows the process of using the DiagnoseNET workflow to build a clinicalspecific risk prediction model from EHRs. It highlights the different steps needed to construct the phenotype, aiming to create an equivalent but more miniature representation for more effective clinical or medico-administrative prediction. The first stage focuses on mining the heterogeneous clinical data source to build a patient document-term matrix. The second stage uses unsupervised representation learning methods for mapping the patient's document-term matrix to a new latent space with a lower-dimensional data representation. In the third stage, the medical task classes are matched with the new patient representations to train a classification model using machine learning algorithms or deep neural networks. Finally, the quality of the new patient representation consists of evaluating the trained model on a new test set by comparing the accuracy performance against a second classification model trained using the patient's document-term matrix directly. A detailed description of the three stages is provided in the following paragraphs. WORKFLOWS 

DiagnoseNET : Patient Feature Composition

The growing health-wide research is mainly due to the clinical dataset being composed of secondary usage of patient records collected in admission, and hospital process [Jensen Peter B. 12]. However, there is no standard library for mining and composing representative patient vectors [ Evans 16]. The main objective of the patient feature composition is to develop a set of functions for high-throughput phenotyping that provides a set of data mining tasks and tools for processing patient records. To this end, a data mining library was built that transforms the EHRs into a clinical document architecture, using the standard called fast healthcare interoperability resources (FHIR) to reproduce high- The following two components that achieve this objective were developed, as shown in Figure 3.4. The first component, preprocess a heterogeneous clinical data source (e.g., EHR) through a chain of aggregations to structure the clinical descriptors by entities, using the fast health care interoperability FHIR standard discussed in the previous chapter, and its repository is available at https://github.com/jagh/ehr2fhir.

The second component focuses on standardizing the different records by data type to compose a matrix of patient terms whose columns are the clinical terms, i.e., a sequence of demographic information followed by all the ICD10 codes for medical diagnoses. The main step is to extract a vocabulary (medical ontology) from the EHR or import a ready-made one to store clinical terms and serve as the ontological basis for patient feature composition. Whose main functions are described in the following points, and its repository is CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS available at https://github.com/IADBproject/patient-feature-composition.

-Clinical Document Architecture (CDA) The CDA identifies the syntax for clinical records exchange between the system PMSI and DiagnoseNET through the new versions generated by the agency ATIH. The CDA schema consists of a header and body :

-Header : Includes patient information, author, creation date, document type, provider, etc. -Body : Includes clinical details, demographic data, diagnosis, procedures, admission details, etc.

-Vocabulary Composition Enables dynamic or custom vocabulary for selecting and crafting the right set of corresponding patient attributes by medical entities.

-Features Composition Serialize each patient record and get the CDA object for processing all patient attributes in a record object.

-Label Composition This function gets the medical target selected from the CDA schema to build a one-hot or vector representation.

-Binary Patient Representation To build the initial patient representation is mapping the values of the features from the record object with the corresponding terms in each feature vocabulary to generate a binary corpus using Term-document Matrix.

DiagnoseNET : Unsupervised Learning

Once the patient document-term matrix has been constructed, it is time to perform a representation model learning to transform the input data into a new latent space with lower dimension and discover the clusters that best represent the phenotype of the patients for input into a clinical-specific risk prediction model. It is the most sensitive stage, both because of the variability of the clinical characteristics that can be selected as an input and because of the intense finetuning of the hyperparameters to choose the model that generates a quality patient phenotype to predict medical tasks.

Consequently, it was necessary to build a data manager that automatically stores the clinical features selected to compose the patient's document-term matrix in a sandbox to generate and store the subsequent transformations hierarchically according to each generated model hyperparameters applied to the selected deep neural network. As
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shown in Figure 1, the data manager is incorporated in each of the stages, from the data mining process, the unsupervised learning process to the execution of different supervised algorithms to perform the medical tasks. For the first case, the data manager is in charge of structuring the storage from the data staging according to the FHIR standard, followed by the construction or import of the vocabularies (medical ontology) to build the patient document-term matrix according to the selected clinical features called binary representation. Then, the data manager divides the data into training, validation, and test so that the network feeds them into the unsupervised neural network and stores the new latent representation according to the hyperparameter used. Finally, the data manager can use the binary representation or a different latent representation to perform the subsequent supervised learning tasks and store the learning metrics and computational metrics for each new training process. On the other hand, a variation of autoencoder called Unsupervised Denoising Stacked Autoencoders was selected as the neural network architecture to reduce the dimension of data and discover the new patient representation. Since training these neural networks is time and resource-consuming, it was necessary to develop a parallelizable GPU-based framework to train the neural networks with the adaptation into the NVIDIA Jetson CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS TX2 cards. Whose model and parallel transformation will be described in the following subsections.

Unsupervised Stacked Denoising Autoencoders

The representation learning model is built from the unsupervised denoising stacked autoencoders (USDA), which combine an end-to-end generative autoencoder as a weight generator to pre-train a network of encoders layers that generate the latent representation. The objective of the USDA model is to generate representations that are sufficiently robust to the introduction of noise. For this, the noise process is introduced in the first layer employing Gaussian additive noise that allows the random assignment of the subset of inputs to 0, with a certain probability [ Vincent 10].

Usually, the model is trained with unlabeled images, whose input images are used to compare the reconstruction image generated from the input image with noise. The USDA model comprises a stack generative autoencoder and an encoder network that generates the latent representation to feed the classification learning model. Each latent layer of the autoencoder has several neurons equal to that of the corresponding layer of the coding network to which the weights are transferred. At each step of the training process of the USDA network, the weights of the stacked autoencoders and the associated lower-dimensional latent representation are obtained simultaneously, as shown in Figure 3.6. The USDA network was composed as a deterministic mapping from the cleaning of the partially corrupted input x (denoising) to obtain a hidden features representation y = f θ(x) by layer. Therefore, each stacked layer is independently trained to reconstruct a clean input x from a corrupted version of it z = gθ (y), this approach was introduced by [ Vincent 10]. Previously each encoder was pre-trained to get a semantics representation parameters θ by denoising autoencoder which was trained before, to obtain a robust 3.2. DIAGNOSENET TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOW representation y = f θ(x) from a corrupted input x. The following steps described the USDA implementation :

-First is applied dropout to corrupting the initial input x into x the stochastic mapping x ∼ qD(x|x).

-Second, the corrupted input is mapped as traditional autoencoders to get a hidden representation y = f θ(x) = s(W x + b).

-Third, a schematic representation is reconstructed from a hidden space z = gθ (y) = s(W y + b ).

-Four, once the parameters θ ∧θ are trained to minimize the average reconstruction error over the training set, to have z as close as possible to the uncorrupted input x.

-Finally is shared the new semantic representation parameters θ to next layer as new initial input x 2 and corrupting it into x2 by stochastic mapping x 2 ∼ qD(x 2 |x 2 ) and repeat steps.

Distributed Approach for Training UDSA Networks

Unsupervised learning algorithms are an emerging approach in which the search for a robust and generalizable architecture is a common argument in state-of-the-art. Meanwhile, unsupervised methods have shown promising results in reducing the dimensionality of clinical features and clustering of subjects. However, unsupervised learning models such as USDA are computationally complex since this method involves one optimizer per block or stacked layer. Additionally, unsupervised neural networks require a much more extensive training dataset than supervised neural networks, and since this is the main task to derive the phenotype representation of patients to then train various clinical risk models using supervised. Thus, a distributed approach and batch training overcomes the limitations of the training speed when the model does not fit in the GPU memory. In this section, we extend the data parallelism and distributed deep learning process proposed by [Dean 12b]. Furthermore, we developed an approach for training unsupervised denoising autoencoders using a mini-cluster of Nvidia Jetson TX2, adding a high level of task-based programming model to speed up the tasks when independent tasks are executed concurrently. The figure 3.7 sketch the distributed implementation to train the USDA network using the DiagnoseNET framework. The part A. shows the task parallelism for training the USDA WORKFLOWS network and the part B. shows the data dependencies and the tasks that are processed concurrently for training the USDA network. We reconstructed a three-block USDA network with TensorFlow-1.5 to extract and share the weights to initialize an encoder network to obtain the latent representation that compresses the input clinical data and represents the patients' state.

Distributed cluster setup : Distributed cluster setup aims to identify each node and define each node's job name and task index.

-The first step is to build a distributed session and let all the nodes be ready to train the deep neural network. -The second step is to declare the number of layers and pre-trained the denoising autoencoder for processing the last encoder network. -The third step specifies the host IPs and the role of each machine as a parameter server (ps) or as a worker. In which is define the machine role setting the input flags like number of ps, number of workers, job name, and task index.
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USDA training and distributed processing : Declare the number of layers and pre-trained the denoising autoencoder for processing the last Encoder Network.

The parameter server node will wait until all workers are connected. Once all the workers are synchronized, build a distributed session that produces a queue and dequeue to summarize the gradients computed by each worker and send the new recapitulate gradients to each worker.

The worker node first connects to the distributed session using a device replication approach. It then builds the neural network graph in memory using a placeholder to store the training data set. Similarly, a placeholder is created to make the neural network graph and keep the data validation set. Then, each worker enters the neural network using a distributed session through a supervisor method. It allows to host the previously defined network graph and creates checkpoints to restore from a checkpoint when an error occurs. Additionally, in the supervisor, you can define rules to end the training, resulting from penalties for learning or epoch convergence. Finally, each worker loads and reads the mini-batch files assigned to initialize the training process, and the weights with the highest accuracy are saved for the validation set.

DiagnoseNET : Supervised Learning

It is well known that the overall performance of machine learning algorithms to convergence time and accuracy generally depends on the data representations. For this reason, the result of the unsupervised model obtained in the previous step can be used as input for a standard supervised machine learning algorithm [ Bengio 14]. Thus, this approach allows using the latent or vector representations obtained from the training of unsupervised neural networks as input data in algorithms such as Random Forest and other neural networks, the multilayer perceptron, to predict the final medical task. In the following section, we describe those two approaches implemented to compare the prediction results, using the latent representation of the patients and the initial clinical data of the patients.

Random Forest

Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for random forests converges as the number of trees becomes large, as well as the classification error depends on the strength of the individual trees in the forest and the correlation between them [ Breiman 01].
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The random forest algorithm is an ensemble method that grows multiple decision trees at training time. Then, at test time, a majority vote is performed on the predictions of the individual trees.

The algorithm is an extension of bagging, where each tree is grown using a bootstrap sample of the original training data. Each tree is grown using a bootstrap sample of the initial training data in bagging. In random forests, each tree is grown using a bootstrap sample of the original training data, with replacement [ Breiman 96].

For example, in a forest of trees, each tree is different to classify a data set :

-Each tree is grown by randomly selecting a sample of the data and then increasing the tree using that sample. -The trees are grown until they are as big as possible.

-The trees are allowed to vote on the best classification.

-The classification with the most votes is the final classification.

Multilayer Perceptron Network

The multilayer perceptron (MLP) is a feed-forward neural network. It consists of three layers : the input, output, and hidden layers. The input layer receives the input data to be processed. The output layer produced a label vector containing the probabilities corresponding to tasks such as classification and prediction. An arbitrary number of hidden layers is placed between the input and output layers to transform the data space and reduce dimensionality [ Abirami 20]. Therefore, the MLP transforms the input highdimensional patient's representations to the desired dimension of the label projections as an output of the medical task.

Every node in the multi-layer perception uses an activation function such as a sigmoid, a rectified linear unit (ReLU), and others. Therefore, each neuron takes all the input values and convert them to number between 0 and 1 using the activation function. The computation taking place at the output of each hidden layer as follows : h i = f ( n j=1 w ij x j + b ij ) ; where x j : is the output of the previous layer ; w ij : is the weight value associated with x j ,b i,j is the bias associated with x j ; n : is the number of neurons in the previous layer and f : is the activation function.

The general network architecture comprises fully-connected layers ; each neuron is connected to all previous layer neurons building a stacked neural network and then a softmax layer on top. Usually, an MLP network requires a finetuning process, where the primer hyperparameters to search are related to the number of units per layer, the num-3.3. CASE STUDY : HOSPITALIZED PATIENTS IN PACA ber of layers, the batch size, the loss function, optimization algorithm such as stochastic gradient descent (SDG), a method for stochastic optimization (ADAM) [ Kingma 15] and others, which hyperparameters affect the computational cost directly.

Case Study : Hospitalized Patients in PACA

A case study uses a clinical dataset sourced from the EHRs of hospitals in the PACA region, structured and serialized from the FHIR MongoDB database. The clinical data consists of high-level data entities related to the patient features like : demographic data, admission details, hospitalization details, physical dependency, cognitive dependency, rehabilitation time, and associated diagnoses to represent the patient status and predict primary morbidity as a deep learning task, whose labels are described in the next section. Figure 3.8 shows the pipeline for extracting patient features. First, the patient records are serialized in CDA-JSON format, as described previously. Second, all features are converted into the term-document matrix to represent each patient feature in a vector representation. Finally, the dataset is divided into 85% for training, 5% for validation, and 10% for testing. 

Medical Target : Medical Care Purpose Classification

The first medical objective used for this work is to classify the primary purpose of hospital care as a Major Clinical Category (MCC) as the clinical label to train the deep learning and machine learning algorithms, which groups the classification of ICD-10 codes at a high level. This clinical label allows answering questions such as What type of care CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS did the patient benefit from, or What was the essential nature of this patient's medical and nursing care ?

These codes are used in French hospitals and are stored throughout the PMSI system to assign ICD-10 codes to the "purpose of hospital care." Table 1 shows two examples of hospitalization. Patient one is hospitalized under an unspecified coma with an etiology of the Nontraumatic intracerebral hemorrhage ; therefore, the care purpose is an encounter for palliative care, and the clinical label will be palliative care. While patient two is hospitalized for significant morbidity related to neoplastic (malignant) related fatigue with an etiology of Maligna neoplasm of the rectum ; however, the patient was encountered for other specified aftercare purposes, and the clinical label is other disorders. 

Experiments and Results

In this chapter, we have performed three groups of experiments. The first set of experimentation is focused on identifying the clinical features that benefit the performance accuracy to predict the medical target, comparing four clusters of patients' clinical characteristics to represent and find patients' phenotypes through unsupervised neural networks and then classifying the purpose of care as a supervised learning task and medical objective.

In the second set of experiments, we analyzed the behavior of computational resources by training USDAs with different batch sizes to examine the relationship between a network's convergence time, energy consumption, and ability to translate a patient's phenotype into a smaller latent space.

Finally, the third set of the experiment focused on characterizing the workload during the execution of a DNN network running on a variable number of Jetson TX2 according to different batch sizes. To estimate the efficiency (accuracy and energy consumption), we measure loss, accuracy, time, and number of gradient updates per epoch. Thus, we record the energy consumption, GPU SM frequency, GPU memory frequency and stipulate the minimum value of the loss as the convergence point to stop the training process.

Feature Assessment to Compose the Patient's Phenotype

Driving EHRs to build a general patient phenotype representation presents critical challenges in big data, deep learning, and parallel processing as the high energy cost for training models until finding the optimal model generalization accuracy. The general dataset is composed of the diagnosis-related group represented in object form ; such as ICD-10 codes, CCAM codes, and other codes established by the agency ATIH and generated by the system PMSI for the Intensive Care Unit (ICU) and Clinical operations (MCO) with activities of hospitals in PACA and the activities of residents PACA hospitalize in another region.

As a case of study, we have used an Intensive Care Unit (ICU) dataset with an average of 785,801 Inpatients records by year to build a general-purpose inpatient phenotype representation for available applicative medical targets, such as :

1. Predict the 'Major Clinical Category' from inpatients features recorded in the process 1, 2, and 3, presented in the scheme.

2. Predict the Clinical Procedures PMSI Data recorded in the process 1, 2, 3 and the Primary Morbidity.

3. Predict the 'Clinical Procedures' from inpatients features recorded in the process 1, 2, 3 and the Primary Morbidity, presented in the scheme.

4. Predict the 'Inpatient Destination' (home, transfer, death) and length of hospitalization stay from inpatients features recorded in the process 1, 2, 3, Primary Morbidity and Clinical Procedures, presented in the scheme.

DiagnoseNet Data-mining

It is a feature extraction API that uses a dynamic features composition with their respective vocabulary to build a binary patient phenotype representation in a 'documentterm sparse matrix' from the ICU dataset, as shown in the figure below. WORKFLOWS We present four ways to derive a BPPR, selecting different Inpatient features grouped by high-level entities as was shown at ICU data collection scheme (i.e., X1 Demographics : sexe : [male, f emale], age : [..., 64, 65, 66, ...], ...). As a result, we got different BPPR in the length of features and disk size. As an experiment are using 12% of ICU data by one year : This API pre-training three Denoising Autoencoder (DAE) to get each latent representation and send them as input to the next DAE. Then, the Encoder Network uses a clean BPPR as input for mapping with the previously trained weights to obtain a new Latent Patient Phenotype Representation (LPPR), as shown in the figure below.

We use two groups of layer dimensions whit the same hyperparameters (i.e., batch size : 32, num. epoch : 10, . . . ) to change the space and reduce the length and disk size of the previous BPPR. As an experiment, each previous BPPR was divided into nine batch files : 

DiagnoseNet Supervised Learning :

We implemented Random Forest Classifier (RFC) to predict the Clinical Major Category (CMC) labels presented in the first medical target. As an experiment, we set the same RFC parameters (i.e., estimators : 100, max f eatures : sqrt, ...) to compare the precision (AUC-ROC) between each previous BPPR and their two LPPR, as shown in following Table. As a result, the embedded representation had similar accuracy to the model with highdimensional features, with an AUC of 0.83 versus an AUC of 0.86.4 for classifying the CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS first medical target. The unsupervised runtime has the most extended runtime among the three stages ; however, the classification time was shortest for phenotype group three [X1, X2, X3, X4, X5, X7], As shown in the Figure 3.9. In this sense, the following experiments will focus on reducing the execution time and analyzing the impact of unsupervised training and energy consumption.

Energy efficiency analysis for mapping USDA on a CPU-GPU

The USDA network's workload focuses on the latent representation data transfer and writing produced by each denoising autoencoder. Therefore to perform the first analysis of power consumption and workload characterization processing on one CPU-GPU environment, we used a submodule of DiagnoseNet called enerGyPU monitor for recording in runtime energy factors of the GPU, such as Streaming Multiprocessor Clock-frequency, Memory Clock-frequency, Memory Usage, and Power Consumption.

This DNN consists of a 3-layer denoising autoencoder with 2000, 1000, and 500 neurons in each layer, respectively, with other hyper-parameters : Relu as activation function, binary cross-entropy as loss function, and stochastic gradient descent as optimizer. The input data comprises 84.999 samples that represented 85% of the binary patient phenotype representation. we experiment on three input data mini-batch fragmentation strategies to process the DiagnoseNet Unsupervised Embedding stage.

Strategy 1 : Using all of the BPPR samples (84.999) for getting the LPPR. In this case, we can observe that the initial cost to move all the input samples from host memory to GPU memory represents 22% of the execution time. After the first 8 minutes, the first denoising autoencoder, in which the first output latent representation is encoded, is processed. The second and third autoencoder layers are even more efficient. 

EXPERIMENTS AND RESULTS

Strategy 2 : We split the data into nine files containing up to 10.000 samples in this case. We can observe that the initial cost to transfer the input data from host to GPU memory is reduced to 6%, and the GPU governor overlaps all the transfers during processing, resulting in a 7 minutes improvement in execution time concerning case 1 while energy consumption is 1.8X lower. Strategy 3 : Using a mini-batch with 1000 samples in each of the 85 files, we significantly reduce the initial data transfer cost from host to GPU memory to 3%, and the GPU governor overlaps all transfers with processing, resulting in a 2.3 mins execution time improvement concerning case 2 while being twice more energy-efficient than case 1. In this case, the layer output weights writing starts to appear. 

Gradient Computations Number to Early Model Convergence

To illustrate the impact of processing more gradient updates as a factor to fast convergence, consider the traditional fully connected autoencoders (AE), parametrized with 3hidden layers of [2000,1000,500] neurons per layer, relu is used as activation function, Adam such as optimizer and sigmoid cross entropy as loss function. The clinical dataset uses 84.999 records for training and 4.950 records for validation.

The same AE model has been executed using three different data batch partitions of 20.000, 1.420, 768 records by batch to measure the number of epochs needed to arrive at the convergence point, characterized by the minimum loss value of 0.6931 as shown in Figure 3.13a. We can observe that the largest batch partition of data requires, to reach the convergence point, a greater number of epochs. The 20.000 batch size partition reach the convergence point in 100 epochs for 36.21 minutes for each batch, the 1.420 in 20 for 7.9 MN/batch and the last batch size (768) in 10 epochs for 4.3 MN/batch. Thus, it is possible to estimate that the consumption required to build the model has an average consumption of [63.35, 86.61, 82.21] watts respectively with an energy consumption of [137.65, 41.26, 21.87] kilojoules. For the dataset and model considered, a 768 item batch size is the most energy efficient for generating batch gradient updates. [20000,1420,768] records to generate [START_REF] García | Pascal Staccini and Michel Riveill Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare[END_REF]59,110] gradient updates by epoch respectively. Low power consumption was obtained when the batch of data was very large as 20.000

EXPERIMENTS AND RESULTS

samples per batch. This amount of data plus the model exceeded the memory capacity, generating periods of idle status on the GPU with a SM frequency of 847.49 MHz, when the batch is transferred from main memory to the device memory. This idle phenomenon is not observed in the other batch sizes, which showed more continuous processing with a GPU SM frequency of 1071.97 and 1015.49 MHz for the 1420 and 768 records per batch.

To illustrate the impact of the idle status on the GPU, generated by large data batch partition, we can observe the same window of 6 minutes shown in the Figure 3.14a. This window is extracted of the training of the AE model when it is executed using three different batch partitions. 

Worker Number to Early Model Convergence

The experiments use a synchronous distributed gradient for neural network training, combining computational parameters such as the number of workers with the batch size as a factor for early model convergence. The objective is to analyze the worker scalability for training the autoencoder neural networks on a mini-cluster composed by Nvidia Jetson TX2, using a fixed neural network with three layers and [2000,1000,500] According to Figure 3.15, the third group with one parameter server and eight workers presented the shortest execution time per epoch, using distributed data parallelism for training the unsupervised neural network. Specifically, using eight workers executed an epoch in 50.6 seconds, while using only three workers, it took 70.6 seconds to execute 3.5. SUMMARY an epoch. Furthermore, the graphs show that using eight workers converges the neural network faster, as shown in the following table 3.5.

However, as the selected model was very small, the total run time was much shorter for group two with six workers, which had a total run time of 9.95 minutes with a batch partition of 1024 samples. While group three with eight works had a total run time of 10.18 minutes with a batch partition of 1066 samples. This result may be given by the synchronization latency of the workers, which is evaluated in the next chapter, using a larger workload as well as a different type of neural architecture. 

Summary

In summary, DiagnoseNET workflow automates the training process of the machine learning pipeline, allowing each stage to have enough dynamism to configure different parameters according to the problem or search for the best model to specify and explain the medical task. The work carried out so far has allowed us to highlight that the use of a well-chosen latent representation instead of the initial binary representation could make it possible to significantly improve processing times (up to 41%) while maintaining the same precision.

Minimizing the execution time of a perceptron multi-layer on a Jetson TX2 cluster, whether to perform an auto-encoder or to perform classification, depends on the application's ability to distribute data for analysis efficiently to the various Jetsons based on the available SSD memory space and then cut that data into a mini-batch based on the available memory space on the GPUs. Using hundreds of gradient updates by epochs with synchronous data parallelism offer an efficient distributed DNN training to early CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS convergence and minimize the bottleneck of data transfer from host memory to device memory, reducing the GPU idle status.

One technical problem in multi-platform DNN training is developing a different class by the platform for the same neural network. To avoid this problem, we have refactored the framework DiagnoseNET to provide a modular library and facilitate multi-platform experimentation and following deep neural networks implementation, described in the next chapter and explained in detail the DiagnoseNet modular framework to scale neural networks on heterogeneous systems applied to medical diagnosis.

Chapitre 4 Scalable Deep Learning Models in Heterogeneous Systems

Determining an optimal generalization model with deep neural networks for a medical task is an expensive process that generally requires large amounts of data and computing power. Furthermore, the complexity of the programming expressiveness increases to scale deep learning workflows over new heterogeneous system architectures for training each model and efficiently configuring the computing resources. We introduce DiagnoseNET, an automatic framework designed for scaling deep learning models over heterogeneous systems applied to medical diagnosis.

DiagnoseNET is designed as a modular framework to enable deep learning workflow management and allow neural networks' expressiveness written in TensorFlow. At the same time, the DiagnoseNET runtime abstracts the data locality, micro batching, and distributed orchestration to scale the neural network model from a GPU workstation to multi-nodes. The primary approach comprises a set of gradient computation modes to adapt the neural network according to the memory capacity, the workers' number, the coordination method, and the communication protocol (GRPC or MPI) to balance accuracy and energy consumption. The experiments allow the evaluation of the computational performance in terms of accuracy, convergence time, and worker scalability to determine an optimal neural architecture over a mini-cluster of Jetson TX2 nodes.

Embedded Computing Clusters

Healthcare demands new computing paradigms to meet the need for personalized medicine, next-generation clinics, enhanced quality of care, and breakthroughs in biomedical research to treat disease. Today's research requires infrastructure that can handle large SYSTEMS computational workloads to derive fast and accurate insights from vast amounts of data.

Heterogeneous parallel programming has two main problems on large computation systems : the first is the increase of power consumption on supercomputers in proportion to the number of computational resources used to obtain high performance. The second one is the underuse of these resources by scientific applications with the improper distribution of tasks. Therefore, selecting the optimal computational resources and making an exemplary mapping of task granularity is the fundamental challenge for building the next generation of Exascale Systems.

Rosie -Mini-Cluster of Jetson TX2 Nodes

The Rosie mini-cluster were built a mini-cluster using a desk to put together the 14nodes Jetson TX2 interconnected by 1 GigE switch Ethernet as shown in the Figure 4.5 above. The nodes are identical, independent machines, and each one runs a separate OS. Every node is composed of one developer kit Jetson TX2, which contains a hybrid processor Nvidia Denver with one ARM Cortex-A57 quad-core with a Pascal GPU 256-CU DA@cores with a maximum. It has 8GB of LPDDR4 memory, 59.7GB/s of memory bandwidth, 32GB of internal storage, and one external SSD was mounted over one node 4.1. EMBEDDED COMPUTING CLUSTERS to provide a Network File System (NFS) to make that storage available to the whole cluster. Therefore, Astro contains a computing capacity of 24 NVIDIA Jetson TX2 nodes with 144 CPU cores, 6144 CUDA-enabled Pascal GPU cores, storage, and 10 Gigabit networking in a standard 1U form factor. It is structured over three arrays with 8 TX2 modules, each one with a single enclosure with access to power control, serial console, and networking. The integrated network switch further reduces the cable clutter with integrated 1 Gigabit internal network fabric and 2x 10 Gigabit uplinks located at the front of the chassis. The typical power consumption of 180W with 24 TX2 nodes running CPU and GPU loads being an edge-embedded and highly converged platform, energy-efficient CHAPITRE 4. SCALABLE DEEP LEARNING MODELS IN HETEROGENEOUS SYSTEMS systems to be a green data center.

DiagnoseNET : Cross-platform Library

To implement these different algorithms and, in particular, the stage of construction of the latent representation at the heart of this paper, we used the high-level framework provided by the Tensorflow library. It enables learning algorithms to be deployed in parallel or distributed architectures, enabling the necessary computing resources to be optimized. It is necessary to adjust the granularity of the tasks according to the memory capacity of the host machine, the complexity of the model and the size of the datasets. To exploit the computing resources and SSD memory capacity available on Jetson TX2, the data to be processed is distributed according to the number of Jetson cards used. On each Jetson card, the data that has been assigned is also divided into the batch to take into account the available RAM space on the Jetson cards GPU. Then, once the data is distributed on each Jetson and the mini-batch constituted on each one, the work is distributed in the form of identical tasks. In this first approach, all task replicas read the same model's values to be built from a host machine, calculate the gradients in parallel with their assigned data and return the new gradients to the host machine using the synchronous approach described in [Abadi 16a]. SYSTEMS

Model Graph Generator

In Sequential Graph, the first step defines the stacked layers and sets the type of each layer, their neurons numbers, the number of layers, followed by a linear output on top since the cross-entropy will be used loss function and include the softmax function. Then the neural network hyperparameters are defined as shown in the expression 1. to generate the model graph object. Finally, Custom Graph uses tf.layers to define the staked layers, and a similar expression as the former is used to define the optimizer and loss function for generating the model graph object. 

Data Manager

This manages the dataset according to the computational architecture, creating an isolated sandbox for each dataset and its transformations in the training process to guarantee the data location. For example, in which the dataset is splitting into well balance batches over the number of workers, and its worker-batch is micro batching according to the memory or parameter, as shown in the following code expressions : 

Monitor

The monitor collects the energy consumption metrics for x86 and arm computing architectures. Additionally, it collects the bandwidth metrics when launched on a dis- 

Plaform Execution Mode

The last step allows the multiplatform execution, in which the model graph object is set, the dataset configuration. An example is selecting the 'DesktopExecution' for training the feed-forward neural network over a CPU-GPU machine exploiting the memory capacities. 

DiagnoseNET : Automated Distributed Deep Learning

The data resource management is built to scale deep learning models quickly, automatize the mapping process on the computational resources, and adjust task granularity according to memory host capacity, model complexity, and data batch size to minimize the energy consumption at the training stage. Concurrently the data resource manager designates the role and transmits the DNN hyperparameters to be used on the master (or parameter-server) and each of the workers, as shown in the above Figure 4.5. SYSTEMS Figure 4.5 -The schema for the synchronous learning of mini-batches in a distributed memory platform, using the data and resources management module of DiagnoseNET.

Training Deep Neural Networks with gRPC

It harmonizes the computational resources with the dataset manager to train previously defined models over a multi-node platform, automating the gRPC communication protocol to coordinate the workers with asynchronous gradient computations. The resource manager divides the dataset equally onto the workers' nodes of the system, where each worker has a copy of the neural network (graph) and its local weights. Each worker operates on a unique subset of the dataset and updates its local set of weights. These local weights are shared across the cluster to compute a new global set of weights through an accumulation algorithm.

Compared to the Desktop implementation on DiagnoseNET API, the distributed gRPC uses a Resource M anager instance, which will be responsible for launching the experiment and turning on the monitor over the nodes selected. The main task is to launch the model replica on every node via the SSH protocol for the graph replication function.

import diagnosenet as dt dt . b e t w e e n _ g r a p h _ r e p l i c a t i o n ( d_replica_path =/ myworkspace , d_replica_name =" GRPC_replica . py " , ip_ps =" host1 " , ip_workers =" host2 , host3 , host4 , host5 " , num_ps =1 , num_workers =4) API Expressions 4.5 -Distribted orchestration with GRPC asynchronous.

On the side of the replica script, it gives the model graph object, creates the dataset batching, and passes both of these to a Distributed GRP C object. This object is 

Training Deep Neural Networks with MPI

DiagnoseNET implements synchronous and asynchronous MPI methods to improve performance in the communication between workers. For example, asynchronous gradient updates were optimized with a weighting parameter, which is responsible for determining the number of workers required in each step to compute the new weights and broadcast them. 

MPI Synchronous Gradient Descent

It uses Point-to-Point communication between workers, unlike gRPC does not require a launcher orchestration, but each worker will be blocked while sending and receiving messages. The algorithm 1 describes the MPI synchronous coordination training with parameter server. It uses the nodes' ranks to assign them the parameter server or worker role, defined the rank 0 as parameter server (PS), and the other ranks as workers. When launching the program, the PS performs pre-processing tasks, such as loading the dataset and compiling SYSTEMS the model. After these tasks, the PS sends the model to the workers, ready to receive it. At each training step, the PS sends a different subset of the data to every worker for loss optimization. At the end of an epoch, the PS will gather the new weights from every worker. Then, workers collect weights and compute the average weight for the global update. For the other computing parts, it works as the desktop version. 

MPI Asynchronous Gradient Descent

The algorithm 2 describes the MPI asynchronous coordination training with parameter server. It allows training multiple model replicas in parallel on different nodes with different subsets of the data. Each model replica processes a mini-batch to compute gradients and sends them to the parameter server that applies a function (mean, weighted average) between previous and received weights, then updates the global weights accordingly and sends them back to the workers. Every worker will compute its gradients individually until convergence ; the conver-SYSTEMS gence occurs when we start overfitting, which means that the training loss decreases while the validation loss increases. [ Chahal 18]. The master responsible for computing the weighted average of received weights and its weights will stop when all workers converge. To check the status of convergence of workers, the master has a queue that stores converged workers, and when its length is equal to the number of workers, the master knows that all workers converged and stops training. Since each node computes gradients independently and does not require interaction among each other, they can work at their own pace and have greater robustness to machine failure.

4.5 Case studies and Neural Architectures 4.5.1 Medical Care Purpose Classification for Inpatients :

The clinical dataset was derived from the medicalization of information systems (PMSI) collection of synthetic medical information in a standardized and anonymized format from hospitalizations carried out in medical care or rehabilitation settings. The patient-feature composition module was used to generate the representations of the patients' status in the first week of hospitalization using one year of the PMSI data collection. The primary clinical descriptors used were demographics, admission details, hospitalization details, physical dependence, cognitive dependence, rehabilitation time, comorbidities, morbidity, and etiology. The clinical dataset obtained has 116, 831 different inpatients and 14, 637 clinical-features embedded in a document-term sparse matrix [Garcia Henao 18]. The PMSI system has two ways to track hospitalized patients' medical care using ICD-10 codes and equivalent diagnosis-related groups organized in hierarchical levels. In this section, we worked with the high-level group called Clinical Major Category (CMC), obtaining 14 labels-categories to classify the medical care of patients hospitalized as shown in Table 2.4 in section 2 called Healthcare Interoperability and Data Mining.

Atrial Fibrillation Classification for Cardiac Diagnosis :

The ECG dataset was obtained from the 2017 PhysioNet Challenge 1 . The dataset was already labeled, and the four labels are : Normal, Atrial Fibrillation, Others, and Noisy. The Others label means recordings of those similar heart diseases. The total number of source datasets is 8, 528. Each sample is a single short ECG lead recording. Since the length of the sample is inequivalent, samples are transformed into structured input. The peaks R of recordings are extracted to get the centered windows of 260 time steps, which are complete ECG rhythms for a cycle. Then, to better represent the behavior of the recording, each five consecutive centered windows are concatenated into a training 4.5. CASE STUDIES AND NEURAL ARCHITECTURES sample as shown in the following table 4.1. It contains similar rhythms, which are labeled as Others. Noisy recordings are also added to decrease episodic detection. The addition of other irregular ECG recordings and noisy data samples can help detect the AF rhythms better. 

Implementation of the MLP in DiagnoseNET

In DiagnoseNET, the network architecture was composed dynamically through fullyconnected layers ; each neuron is connected to all neurons of the previous layer building a stacked neural network and followed by a softmax layer on top

h i = f ( n j=1 w ij x j + b ij )
, where x j is the output of the previous layer and w ij is the weight value associated with x j with a bias associated b i,j and n is the number of neurons in the previous layer, while f is the as activation function. Having as a baseline the neural network used in work called improving palliative care deep learning [?] and after finetuning it to classify the medical care purpose with PACA inpatients. The model used to evaluate the scalability comprised an input (of 10,833 dimensions), four hidden layers (every 512 dimensions), and a softmax output layer as activation function was used rectified linear unit (ReLU), as loss function was used categorical cross-entropy and Adam as optimizer [ Kingma 14]. The first medial task is based on a Multilayer Perceptron Network (MLP) designed to input the high-dimensional patients' representations and generate the label projections as outputs.

Implementation of the CNN in DiagnoseNET

The neural network baseline for the second medial task is based on a Convolutional Neural Network (CNN) designed to take as input the time-series of ECG signal and generates the sequence of label predictions as outputs [Rajpurkar 17]. The general neural architecture is composed using DiagnoseNET with 75 layers of convolution followed by a fully-connected layer and a softmax layer on top, as shown in the Appendix 4.6. SYSTEMS This can be solved by the residual network connections proven to solve the information loss problem. To implement this, a second information stream is added to the model. In this way, deeper layers have access to the original features, in addition to the information processed by the previous layers [He 15,Bai 18]. Two different types of a residual blocks are included to access the different states of the information. The stable residual block preserves the input size while the sub-sampling residual block lowers the size of the input 4.6. EXPERIMENTS AND RESULTS down to a half. By using max pooling, the network extracts only the high values from input so that the size of its output is halved.

Experiments and Results

The experimental procedures are oriented to compare the distributed training scalability using different parallel methods to classify the medical targets, while is analyzed the convergence effects between accuracy and the usage of the computational resources for training each model on different workers to compare the coordination training modes using GRPC and MPI communication protocols. Here we present the first results of a series of experiments that provide clues for efficient computing performances over heterogeneous platforms.

The experiments use the DiagnoseNET self-expression codes for training the first task called : medical care purpose classification, and use the Tensorflow API to describe neural network plus the DiagnoseNet runtime for training the second task called : atrial fibrillation classification. The core algorithms used to process the distributed gradient computation and train the two deep learning tasks are the GRPC asynchronous, MPI synchronous, and MPI asynchronous communication protocols.

HPC System and Enviroment :

The distributed experiments use a mini-cluster with 14-nodes NVIDIA Jetson TX2 interconnected by 1 GigE switch Ethernet. The nodes are identical, independent machines, and each one runs a separate OS on Ubuntu 16.04, with CUDA 8.0 support, cuDNN v6 for Python 3.6. Every node is composed of one developer kit Jetson TX2, which contains a hybrid processor Nvidia Denver with one ARM Cortex-A57 quad-core with one a Pascal GPU 256-CU DA@cores with a maximum, it has 8GB of LPDDR4 memory, 59.7GB/s of memory bandwidth, 32GB of internal storage, and one external SSD was mounted over one node to provide a Network File System (NFS) to make that storage available to the whole cluster.

Worker Scalability for Training the Medical Task 1 :

The baseline got 11.04 hours as convergence time for training the MLP model described in the previous session. The distributed method to communicate and synchronize the nodes' computations uses gRPC asynchronous to coordinate and compute the gradient updates between two workers and one master. In contrast, the best setting reduces SYSTEMS the convergence time to 1.3 hours with the MPI asynchronous method to coordinate and compute the gradient updates between 12 workers and one master, as shown in Figure 4.7, The atrial fibrillation classification task uses a small dataset (77MB) with 8, 528 patients and a medium model with 72 layers fully-connected to a convolutional neural net- The baseline uses a gRPC asynchronous training modes with four workers, take 13 minutes as a time to solution achieving one accuracy of 0,63 F1-score, while the MPI asynchronous training modes with 12 workers take 5 minutes as a time to solution achieving the same accuracy of 0,63 F1 score, as shown in the Table 4.3. Figures 4.9 and 4.10 compare the validation loss curves between the communication protocols. In the case of MPI synchronous training modes, the PS will gather the weights SYSTEMS from workers after an epoch to compute the average weight for a global update. It saves weight when minimizing the validation loss and loads it for testing to avoid overfitting problems. Finally, the computation for the neural network is assigned to the workers, and the rest of the jobs will be finished by the parameter master. While the MPI Asynchronous training modes graph of validation loss curves is shown in Figures 4.9 and 4.10 that using a small number of workers, we achieve convergence faster in terms of epoch (four epochs for the experiment with four workers, versus eight epochs for the experiment with 12 workers), and then we start having over-fitting ; this is due to using a low learning rate as well as having multiple workers doing calculations independently as well as the problem of stale gradients where some workers could be computing gradients using master weights that may be several gradient steps behind the current version of global weights making convergence slow and not guaranteed. 4.7. SUMMARY

Summary

DiagnoseNET increases the developer's productivity facilitating the programming process to build and finetune Deep Learning workflows, while its runtime abstracts the data locality and the distributed orchestration to scale each model from a GPU workstation multi-nodes.

Furthermore, implementing a mini-cluster of Jetson TX2 nodes presents good scalability for distributed training of each neural network by their medical task. Therefore, clusters with embedded computation platforms can be used as a deep learning platform system with minimal infrastructure requirements and low power consumption, offering the computing capacity for processing large datasets and models in the HPDA ecosystem.

To characterize the deep learning tasks and improve the balance between accuracy, convergence time, and worker scalability, partitioning the micro-batches to use hundreds of gradient updates by epochs with MPI asynchronous gradient computations with data parallelism offer an efficient distributed neural network training for early convergence.

Likewise, adapting the number of records by batch and the model dimensionality helps minimize the bottleneck of data transfer from host memory to device memory, reducing the GPU idle status.

Chapitre 5 Towards Green-AI for Training Deep Neural Networks

Deep learning models have been getting increasingly extensive and computationally intensive, with the training cost for state-of-the-art models doubling every few months. The cost of training these models has been happening in several areas of artificial intelligence, including object recognition, game playing, speech recognition, and machine translation. Some researchers have argued that this trend is both environmentally unfriendly and prohibitively expensive, raising barriers to participation in artificial intelligence research.

In response to this situation, Schwartz et al. has published an article entitled Green AI in Communications of the ACM, December 2020 [ Schwartz 20]. He defined Red AI as the design and training of neural networks, where they are only concerned with obtaining greater accuracy, linearly with the increment of data, the number of parameters, and the number of computational resources used without considering cost carbon footprint. In contrast, Green AI considers efficiency as a primary evaluation criterion, along with accuracy, time, and reproducibility. Therefore, the neural network design is focused on solving the domain task and performing similar or better than the state-of-the-art with a lower carbon footprint.

Identifying the optimal granularity level to train deep neural networks is necessary to efficiently use the computational resources and reduce energy consumption in execution time. Therefore, this chapter describes the importance of task granularity in deep learning algorithms and how it affects data movement, convergence time, and energy consumption. Experiments and results are measured to balance accuracy and energy consumption according to the hyperparameter settings of the neural network. For the different configurations of neural architecture, the partitioning of the task between fine-grained and coarse-grained tasks is analyzed to observe the impact of energy consumption.

GREEN AI APPROACHES TO REDUCE CARBON FOOTPRINT

Green AI Approaches to Reduce Carbon Footprint

Green-deep learning is a way of doing deep learning that is more environmentally friendly. Therefore, AI workflows are modified from different approaches to use less electricity and create fewer carbon emissions while automation achieves the target task. A recent systematic review on developing deep learning technologies in the environment classifies approaches to achieve novel results with lightweight and efficient technology into four categories [Xu 21]. As shown in the following items :

-Compact Architecture Design : This is divided into two parts, component design, and component assembling. The component design, is focused on building new neural architectures by introducing efficiency variants, whose components include convolution layers, attention mechanishm, as well as the use of embedding to reduce the size of the representations. While, the component assembling ocuses on building a network efficiently by sharing resources such as shared memory, weight sharing, and weight sharing through selected convolutional blocks as used in the neural architecture search process to select the best model.

-Energy-Efficient Training : focuses on training neural networks that can reduce computations required during the whole training, including weight tuning and hyper-parameter tuning. This can be done by making sure the network is properly initialized, normalized, and by using progressive training. For example, EfficienNet focuses on building and searching for a CNN that can achieve higher accuracy and efficiency, using a multi-objective function to build the model that obtains good accuracy with fewer parameters [ Tan 19].

-Energy-Efficient Inference : This is a way to reduce the amount of energy needed to make inferences. This is done by reducing the number of calculations needed, using low-rank factorization, quantization, and knowledge distillation.

-Efficient Data Usage : This is about using data more efficiently, not needing as much data to get good results. It includes ways to do this, like active learning and pre-training approaches such as Few-shot learners. Pre-trained models are computer models that are heavily trained on a large dataset and then used as a starting point for a model on a new task. This is done in order to save time and data on NETWORKS the new task.

This chapter focuses on reducing the carbon print of deep neural networks through energy-efficient training approaches. Specifically, we minimize power consumption for the hyperparameter finetuning and model selection process. The DNN trains several models to determine the optimal generalization accuracy model, which consumes time and energy. In addition, using hundreds of gradient updates with synchronous data parallelism impacts the solution's energy. Therefore, the direct approach extends the task granularity from High Performace Computation (HPC) simulations to Deep Learning (DL) models, which combines the principles of data parallelism and mini-batch online learning with the platform memory capacities as a factor for early model convergence.

Task-Based Parallel Programming Model For HPC

Task-based parallelization is a way to make a computer program run faster by dividing it up into smaller tasks that can be completed at the same time. Usually, a task-based program is transformed into a direct acyclic graph (DAG) of tasks. The vertices are the computational operations, and the edges are the data needed and the dependencies between them. Usually, the task-based program uses heuristic algorithms to manage the tasks over computational resources like CPU, GPU, and memory to reduce the program's execution time [Bramas 20].

Task-based programming models for shared memory like Intel Cilk Plus [ Asai 15] and OpenMP 3.0 [ Liao 10] are well established and documented. Moreover, more recent frameworks designed for systems with distributed memory and using the task-based programming model are Charm++ [Kalé 11] and StarPU [Augonnet 09]. The main applications of which have been focused on solving non-linear equations through dense linear algebra algorithms with applications in different domains such as Climate/Weather prediction, computational astronomy, molecular dynamics, and others.

Task Granularity

In computing, the term "granularity" refers to the amount of data processed at once. In general, the smaller the chunks of processed data, the more granular the computing. Conversely, the larger the chunks of data, the less granular the computing. Granularity is often measured in terms of the amount of time it takes to complete a computation compared to time spent communicating with other processors. into two approaches Fine- -Fine-grain Parallelism : It is a way of processing operations that involves breaking tasks down into small tasks and doing them very quickly, with much communication between tasks. This type of parallelism is suitable for load balancing but can be inefficient if the tasks are too small.

-Coarse-grain Parallelism : It is a way of processing operations that involves breaking tasks down into heavy tasks, which means that a computer can do a lot of work simultaneously as it is talking to other parts of the computer. This makes the computer faster, but it is harder to balance the work so that each computer part is doing the same amount.

Task-Based Programming Model For Distributed Deep Learning

Energy-efficient training to reduce the carbon footprint of green learning combines two optimization challenges. The first focuses on building a neural architecture with the necessary components to obtain higher accuracy, reliability, and interpretation. The second focuses on training and optimizing the system resources for tailoring each neural network generated to exploit the computing platform and use the computational resources efficiently to minimize the execution time and energy consumption. Therefore, we propose to divide the training process of DNNs into tasks by transforming it into a DAG of tasks and thus control the execution of tasks among computing resources, just as task-based programming models have done for solving computing tasks in high-performance computing. As a first step, in this chapter, we do not focus on characterizing the performance of a multi-layer perceptron to evaluate the balance between accuracy and energy-efficient performance. Instead, partitioning the micro-batches to use hundreds of gradient updates by epochs with asynchronous data parallelism offers an early convergence of distributed training of deep neural networks.

Although the task-based programming model divides the processing tasks for training neural networks, it also allows scheduling the computation task, the communication task, and the synchronization task. Therefore, the critical problem is mapping the mini-batch and the neural network graph to avoid communication bottleneck, maximize the computation process, and update the scheduling plan to fit the dynamic workloads. Therefore, NETWORKS the optimization problem is finding the best mini-batch partition size according to the DNN model given and selecting the computational resources for deep neural networks, facing the following issues are related to the problem structure, problem dimension, and platform selection to map the task dependency graph.

Defining the task granularity for deep learning

The efficacy for training deep neural networks on a distributed platform is to divide the tasks into two distinct levels of granularity. Which division depends on the ability of the runtime system to profile the DNN model dimension, the dataset size and characterize the computational resources (memory capacity, number of CPUs, GPUs, the GPU micro-architecture, clocks frequency, and among others) as well the number of workers with the interconnection limitations.

Course-grain tasks : Figure 5.1 shows two samples of coarse-grain tasks, which are defined by the model dimension of, in this case, the number of parameters plus the size of the mini-batch set the task size, and the number of mini-batches defines the number of tasks. In the first example, the dataset is divided into two large batches, and the model is of medium size, while in the second example, the dataset is divided into four batches, and the model is of considerable size, with the granularity of these tasks classified as Course-Grain. Whose performance characterization relates to it : of few tasks, and each task has a considerable size. Which composition carries an intensive computation process, low-bottleneck tasks for managing CPU-GPU data transfers, and a few gradient-updates computation tasks. Fine-grain tasks : Figure 5.2 shows two samples of fine-grain tasks, which mainly the 5.3. TASK-BASED PROGRAMMING MODEL FOR DISTRIBUTED DEEP LEARNING high partition of batches defined plus the model dimension. In the first example, the dataset is divided into 32 medium batches, and the model is of small size, while in the second example, the dataset is divided into 128 batches, and the model is of small-medium size with the granularity of these tasks classified as Fine-Grain. Whose performance characterization relates to it : of many tasks, and each task has a small size. Which composition is less intensive computation process, high-bottleneck tasks for managing CPU-GPU data transfers, and required multiple gradient-updates computation tasks. 

Mapping the Dependency Graph on multi-GPUs and multi-Nodes

Regardless of the algorithm itself, the parallel section of an algorithm determines the granularity. Consequently, task granularity is characterized by three main components : algorithm structure, problem dimension, and platform selection, as shown in Figure 5.3. Commonly neural networks use data parallelism to train large datasets on multi-GPUs nodes. These algorithms add an essential factor from traditional parallel computing granularity : that seeks an appropriate rate between computation and communication task to include the synchronization task ; that in addition to minimizing the bottlenecks, has the responsibility for updating the weights and biases to decrease the loss function, which will determine a long or short convergence. The input data, model dimension, and the batch size determine the number of synchronization tasks per weight updated step, which is categorized as significant batch size increase the computational speed, and smaller batch size empirically improve better generalization. NETWORKS 

Tasks-Granularity Problem Definition

The Task-Granularity optimization problem has the batch size as a crucial factor of the optimization space due that it affects both the statistical accuracy (generalization) and hardware efficiency (utilization). The objective function is designed to determine a good batch granularity, given the model and the worker numbers to minimize the convergence time and energy consumption for training a distributed neural network on a heterogeneous system.

For example, a typical supercomputer of the TOP5001 has 700 nodes with a hybrid architecture, and each node contains 2 CPUs Intel Xeon and 4 GPUs Nvidia Tesla V100 all connected with PCIe network cards. Each node has about 128GB DDR4 of volatile memory, four solid-state devices of 2TB, and the nodes are connected in a non-blocking On the other hand, in this thesis, we execute the experiments on a mini-cluster of Nvidia Jetson-TX2 nodes since the Nvidia Jetson family does not have an integrated power sensor for obtaining the watts measurements for the Tegra processor. We could compute the energy consumption metric through the interpolation of the Jetson Tegra processor to obtain their watts measurements. The computing factors that determine the power consumption in watts are the memory uses, the cores' clock frequencies, the 'streaming multiprocessor' (GPU), and the bandwidth transfers. Therefore, DiagnoseNET integrates the enerGyPU monitor to enable the energy modeling and automatizes the power recording and storage of the registers ; in parallel, the deep neural networks are trained on the selected platform.

Measuring and Modeling Energy Efficiency at

Runtime

A standard accepted metric used to help improve the energy efficiency of a supercomputer is called P ower U sage Ef f ectiveness (PUE) [Belady 08]. It measures the relationship between the T otal F acility Energy which includes everything that supports the IT equipment as the energy associated with cooling, air movement, electricity transformers, lighting, and IT equipment ; divided by the amount of IT equipment Energy includes the energy associated with the computing system, like servers and switches.

Nevertheless, has emerged the metric called energy-to-solution E s [Hater 16,Gustavo Rostirolla 15]. It is used to estimate the energy required by a computing system for processing applications algorithms and training neural networks (computational tasks). E s is given by the integral of its instantaneous power draw, represented in the next equation :

E s = t 0 +∆t t 0 P s (τ ) dτ, (5.3) 
Where t 0 is the time when the computational task is started, and t 0 + ∆t is the execution time spent for processing the computational task. P s (τ ) is the sum of the instantaneous power consumed by each of the computational resources of the system at NETWORKS each time step ∆t(i), defined in follows the equation : (5.4) Where H represents the computing system constituted by a set of physical machines h and a set of network switches n, defined as H = h + n. Each node h can have diverse computational resources (components), like CPU, GPU, memory, storage, and network. Therefore, the power consumed by each node P h ∈ P H , can be seen as a resultant vector of the power draw at each time step ∆t(i) of its computational resources, started by [Oleksiak 19] and can be expressed as follows :

P s (τ ) = N i=t 0 P H (i) * ∆t(i),
P h = P CP U + P GP U + P RAM + P io + P net , (5.5) 
However, the instantaneous power consumed per node P h (i), is dynamic during runtime and changes according to the computational use of its components, while each component is conditioned by two based states, shown in the equation 5.6. The idle power state P h idle , represents the sum of the minimum power required by each component of the node to be on. While the active power state P h active , corresponding to the sum of the intermediate power applied by each component to execute the computational task, This occurs between the component's highest possible power and the idle power. P h (i) = t 0 , P h idle ∆t(i), P h idle ≤ P h active ≤ P h max (5.6) Therefore, the energy efficiency goal is to determine and apply the optimal frequency at the job level the optimal frequency to all cores and nodes running the job to match the selected energy policy. This frequency is set by setting the appropriate policy, composed by the Dynamic voltage and frequency. According to the U nif ied Extensible F irmware Interf ace (UEFI), the policies are :

-Efficiency-favor power mode maximizes the performance per watt efficient with a bias toward performance.

-Efficiency-favor performance mode optimizes the performance per watt efficiency with a bias toward performance.

By Ohm's law, the dynamic power consumed by a processor is given by P CP U = C * V 2 * f , where C is capacitance, F is the frequency, and V is voltage, which means the dynamic power increases quadratically with voltage and linearly with the frequency.

CASE OF STUDIES AND NEURAL ARCHITECTURES

While the dynamic power consumption is dependent on the clock frequency, the leakage power is dependent on the CPU supply voltage. We will come back to the power leakage.

If we look at how voltage and frequency vary with ACPI P states , we see that between P 0 state and the P states corresponding to the minimum voltage (p m with m < n where n is the highest possible P state . Therefore, between P 0 and P m , which is the range where a processor is executing workloads, can be approximated with : P ≈ C * F 3 . It shows dynamic power increases as the cube of frequency and how reducing the frequency when an application is running can significantly reduce the power consumption of a server.

Likewise, the theoretical peak performance per node is determined by the frequency, as : CP U peak = N core * F CP U * F LOP S, where N core denotes the number of cores and F CP U is the core clock frequency. On the other hand, the GPU processor could represent, similar as the processor GP U peak = N SM * F GP U * F LOP S. Therefore ; 1. To measure the energy consumed by all the workloads that have been executed.

2. One trivial way to minimize the power of a workload while running on a system is to reduce the processor's frequency.

Case of studies and Neural Architectures

Hyperparameter Search to Classify the Medical Task 1

A model space contains (d) hyperparameters and (n) hyperparameters configurations defined in Table 5.1 and the Table 5.2 shows the models by number of parameters. We have established some fixed hyperparameters and decided to tune the number of units per layer, the number of layers, and batch size, which are the hyperparameters that directly affect the computational cost. Each model was trained using Adam as an optimizer with a maximum of 40 epochs, and as a loss function is used the Cross Entropy.

According to the model dimension shown in the Table 5.2, we are found that it is possible to divide the models by fine, medium, and coarse grain. Which, the Figure 5.6 shows that middle-grain models from 1.99 to 8.29 million of parameters have a fast convergence in validation loss, and high accuracy levels for the majority of the 14 care purpose labels, in comparison with the other models who present a significant variation in accuracy and spent more epochs to convergence. 

Experiments and Results

The experimentation examines the relationship between a neural network task-granularity, mini-batch size, computational resources usage, and its reliance to predict the significant clinical categories by examining the balance between accuracy and energy consumption.

The CPU-GPU experiments used a server machine with a GPU Nvidia GTX-Titan X with 3072 CUDACores ; the device memory has 16GB GDDR5 336.5GB/sec the memory bandwidth. In addition, we built a mini-cluster of 14-nodes Jetson TX2 interconnected by switch Ethernet for the distributed processing experiments. As a case of study, we are select the medical task to predict the medical care purpose from inpatients features recorded in hospital admission and clinical attention. We defined a feed-forward neural network hyperparameter space to generate a population of models and analyze what computational resources present an efficient balance between accuracy and energy consumption. The experimentation and results are divided into three stages :

1. Hyperparameter space to determine the best batch splitting, 2. Hyperparameter space to determine the depth and width of the neural networks, 5.6. EXPERIMENTS AND RESULTS 3. Architectural parameter space to determine the worker's scalability.

Hyperparameter Space : Batch Splitting

To illustrate the impact of processing more gradient updates as a factor to fast convergence, consider the traditional feedforward neural network, parametrized with 2-hidden layers of [4096,4096] neurons per layer, relu is used as activation function, Adam such as optimizer and cross entropy as loss function. The clinical dataset uses 84.999 records for training and 4.950 records for validation.

The same DNN model has been executed using three different data batch partitions of [24.576, 3072, 768] records by batch to measure the number of epochs needed to arrive at the convergence point, characterized by the minimum loss value, as shown in Figure 4. The largest batch partition of data requires more epochs to reach the convergence point since it generates data transfer latencies from host memory to GPU memory. The model selection is crucial in reducing energy consumption for deep learning networks. This analyses aim to characterize the computational performance of a feed-forward neural network in order to minimize the energy consumption and maintain a good accuracy of the model.

One of the parameters that affect the energy consumption and the execution time is the tensor dimension in the network (i.e., the number of units for each layer). For this reason, the experiments stretch the same number of neurons over multiple layers to generate different models. The hyperparameter configuration space uses stretch exploration over a feed-forward neural network. Each box represents a specific hyperparameter configuration (model) expressed into parameter numbers, and the warmer color corresponds to better performance between accuracy and energy consumption. Stretching the same number of neurons affects the network's performance in terms of F1 score, execution time, and energy consumption, as shown in (Figure 6. Summary results). When we decrease the number of neurons per layer, the F1 score decreases, but the energy consumption decreases also. The aim is to find the number of neurons for which stretching over multiple layers will decrease energy consumption and time and affect the F1 score. 

Architectural Parameter Space : Workers Scalability

The first approach uses data parallelism to training deep neural networks on a minicluster Jetson TX2. Where all replicas task read the same values for the current DNN NETWORKS parameters, compute gradients in parallel, and theirs apply together [Abadi 16b]. To exploit the computational resources and the memory capacity of the Jetson TX2, the data is split acording with the number of Jetson nodes and each part of the assigned data is, again divided in micro-batches inside the each node to avoid memory constrains.

The distributed experiment results shows, when adding more workers for training a DNN model this generates more number of gradient updates and accelerate the convergence validation reducing the number epochs necessary. Since the performance has a great impact when the neural network has trained on memory or disk for each platform, for example : when we select a few workers number isn't possible to train the model exploits the memory, we need to use synchronous training on disk, due to the size of the batch. However, when we are select a huge number of workers the dataset batching is well balanced over the worker and is possible to train the model on synchronous training memory and improve the balance between communication and processing. 

Summary

The task-based programming model for distributed training of deep neural networks allows more control for processing tasks such as the model components the gradient updates. At the same time, the mini-batch is tuned to adjust the size of the task according to the GPU memory size and minimize the communication bottleneck to allow efficient scalability between nodes. Likewise, adapting the number of records by batch or the model dimensionality to minimize the bottleneck of data transfer from host memory to device memory reduces the GPU idle status.

As a theoretical conclusion for tailoring the DNN model on distributed platforms, we can answer the main question ; How many workers are necessary to train a model to get the best performance in terms of accuracy and energy efficiency ratio ? It is necessary to split the dataset so that each portion delivered to each worker occupies 90% of the main memory. In order to do this, it is necessary to determine the amount of space required to allocate the one record or the full-dataset into the host memory (dataset size ), likewise we compute the DNN model size in host memory (model size ) according to with the hyperparameters and get the worker host-memory capacity (worker M EM ). According to the previous variables, we can calculate the micro-batch partition size such as : batch size = dataset size /(worker M EM -model size ) and the number of workers as : workers number = dataset size /batch size . After all, could be used synchronous data parallelism on distributed memory for training the DNN model using the training memory modes to exploit the workers' capacities to early convergence.

Chapitre 6

Concluding Remarks

Summary of Main Results

The use of modern HPC systems to determine an optimal generalization model with Deep Neural Networks DNN in healthcare research is an expensive process for developing, training and financially, due to the cost of hardware and electricity or the cloud compute time and its carbon footprint required to fuel HPC systems. Health researchers and developers are looking for alternative options that allow health institutions to exploit locally the benefits of AI in healthcare, while the data privacy of each patient is preserved and the hardware and electricity cost is affordable. In this context, the motivation of this research is to develop a programming framework to improve the usability, portability and scalability of deep learning workflows over heterogeneous systems and, evaluate low-consumption computing architecture with minimal infrastructure requirements, to accelerate clinical risk-predictive models with an efficient balance between accuracy and energy consumption.

The main contributions of this thesis are the automatization and harmonization of communication paradigms and coordination methods for processing the gradient updates over heterogeneous systems into a framework called DiagnoseNET. In which, Diagno-seNET increase developer's productivity, facilitating the programming process to build and finetune a DNN, while its run-time abstracts the data locality, the micro batching and the distributed orchestration to scale the DNN model from a GPU workstation to multi-nodes. Likewise, DiagnoseNET made a workload characterization, collecting the computational platform characteristics memory usage, CPUs, GPUs clocks frequency and the energy consumption metrics while the DNN is executed on the target platform. This information is stored in a testbed for the programmer or the scheduler could be used to adjust the task granularity : model dimension and batch partition, according to the memory capacity and the number of nodes in the next execution.

RELEASED SOFTWARE

Using a cluster of embedding nodes as the Jetson TX2 gives an intra-node advantage in data movements from host memory to GPU memory, due that the CPU and the Streaming Multiprocessors (GPU) are inside on-chip. However, the critical point for the acceleration and the scalability DNN models are concentrated in the communication internodes and the coordination method to compute the gradient updates. Consequently, this thesis evaluates the most commonly used communication paradigms (MPI and gRPC) and their coordination methods for training two different neural architectures : multilayer perceptron MLP and Convolutional Neural Networks CNN applied in two medical tasks. In which, the experimental result has shown strong scalability using the MPI asynchronous method to coordinate the gradient computations in both medical cases of study, accelerating the convergence time in 1,3 hours with 12 Jetson TX2 nodes from 11,1 hours with 2 Jetson TX2 nodes, given a reasonable time to explore a medium hyperparameter space and determine a good regularization-model.

We overcome several challenges in the implementation of DIagnoseNET as a modular framework, here some of the most representative :

1. Build an expression programming module to build dynamic neural networks, without rewriting the code for a new platform or execution modes.

2. Automatize the dataset splitting, placement and balancing the batch over the nodes and their memory constrains, having input sets with different dimensions as both cases of study.

As the scientific contribution non-obvious in this thesis, we had observed in the hyperparameter search process for the multilayer perceptron, when is found a model with n number of neurons and l number of layers, we could minimize the energy consumption and keeping the same accuracy stretching (esto deberia tener mayor relevancia) the same number of neurons over more layers.

Released Software

In the development of this thesis, several software modules were developed as well as the DiagnoseNET framework that allowed automating the workflow of medical artificial intelligence proposed and described in detail in the previous chapters. This section summarizes the additional modules developed from the medical domain to configure a minicluster to train a distributed DNN. All the software was released to the repository called IADBproject and licenced under the GNU General Public License v3.0.

1. Patient Feature Composition : Is a data-mining module for driving electronic health records to compose a digital patient representation. The objective of this module is to build a dynamic feature composition from a custom vocabulary to build a patient vector representation using a document-term sparse matrix. This module was used to extract the clinical dataset and develop risk prediction models of the health systems of the PACA region.

It is available at https://github.com/IADBproject/patient-feature-composition.

2. Build Embedded Clusters : Is a cross-platform repository to configure an Nvidia Jetson mini-cluster to train distributed deep learning with TensorFlow and Diag-noseNET. The objective of this module is to automate and develop manuals to compile the necessary libraries and allow the reproducibility of the experiments.

It is available at https://github.com/IADBproject/buildEmbeddedClusters and was developed in collaboration with Arno.

3. Preprocesing MIMIC-III : Is a preprocessing component for extracting and compose a dataset with patient's hospital admissions and their sequence of events (medical procedures) from the MIMIC-III Database, which comprises 61,532 intensive care unit stays.

It is available at https://github.com/IADBproject/prepro-mimiciii and was developed in collaboration with Chanpiseth.

4. ECG Convoluional Network : Is a set of parallelism programs for training an ECG classification, comparing the same convolutional neural network to train the atrial fibrillation classification task using different libraries like TensorFlow, Keras and DiagnoseNET as well as the comunication protocols as gRPC and MPI.

It is available at https://github.com/IADBproject/ECG and was developed in collaboration with Ziqing Du.

DiagnoseNET :

Is an open-source framework designed into independent and interchangeable modules for scaling deep learning models over heterogeneous system architecture applied to medical risk prediction models. It automatizes in one expression API the neural architecture definition, the hyperparameter search, the data locality and batching, while the runtime coordinates the workers according to the execution modes through synchronous or asynchronous coordination gradient computations with communication protocols as MPI or gRPC, available for x86 and arm architectures. It is available at https://github.com/IADBproject/diagnosenet.

Research Perspectives

The vision of this thesis was to establish the main foundations for developing a learning healthcare system framework that systematically collects patient information to train deep learning models and implement clinical decision support systems throughout the organization to produce continuous improvement in care delivery.

In this direction, several opportunities we identified to extend the research from the patient from algorithm automation to patient modeling :

1. Neural Architecture Search : This thesis focused on the automation and scalability of deep learning workflows in heterogeneous systems to accelerate clinical risk prediction models with an efficient balance between precision and power consumption. However, developing neural networks for medical risk classification models often requires significant architecture engineering [ Zoph 17]. For which the DiagnoseNET framework could be extended with population-based training search methods, such as the multiobjective function to scale the model along the dimension of the neural network, while minimizing the number of model parameters as was introduce in the compound scling method by [ Tan 19].

2. Federated Learning : Another method that can be applied to extend this thesis is to improve asynchronous computing modes with the distributed coordination of gradients over a federated learning environment to allow collaborative and decentralized training of neural networks without sharing patient data. Whose models can benefit from data from different centers, regions, and patient phenotypes to generalize deep learning medical models that achieve human-level performanceon in decentralize clinical organizations. As recent contribution in federated deep learning to detect COVID-19 lung abnormalities from seven different multinational centers, using three centers to train the model and data from the other center to test and evaluate generalization performance [Dou 21].

Publications and Presentations

The following papers and conference presentations were published during the development of this thesis : 
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  Figure 1.1 -Outline to highlight the artificial intelligence workflow, methods, and techniques included in the thesis manuscript.
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 2 Figure 2.1 -The LHS framework is comprised of a continuous learning cycle that systematically collects information from the patient to incorporate knowledge generation processes, developing clinical decision support systems across the organization to produce continuous improvement in the delivery of care, based on translational research and evidence-based medicine paradigms.
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 22 Figure 2.2 -EHR mining schema with the harmonization of clinical features and extracting phenotype representation of patients to feed biomedical applications.
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 23 Figure 2.3 -Main entities to develop risk models for inpatient outcomes.
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 24 Figure 2.4 -Conceptual scheme of the discharge flow ratio for all hospitalized patients during their first week in 2008.
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 25 Figure 2.5 -The inpatients flow ratio in PACA health services for all hospitalized patients during their first week in 2008.

  (a) Hospitalization admissions input sources. (b) Hospitalization discharge output sources.
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 26 Figure 2.6 -Multimodal distribution chart of the patient flow correlates admission and discharging hospitalizations with the major diagnosis categories using the nosological group classification.
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 3 Figure 3.1 -A conceptual diagram to encounter the clinical process in healthcare facilities and derive patient phenotypes.

3. 2 .

 2 DIAGNOSENET TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOW performance of subsequent learning tasks.
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 32 Figure 3.2 -An unsupervised encoder network maps clinical features into a new latent space to represent the patient's phenotype.
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 33 Figure 3.3 -Workflow scheme to automate patient phenotype extractions and apply them to predict different medical targets.
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 2 DIAGNOSENET TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOW throughput phenotyping from dataset A to a dataset B.
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 34 Figure 3.4 -DiagnoseNET data mining library transforms EHRs into a clinical document architecture according to the FHIR standard and then is derived the clinical data of the patients in a document-term matrix from clinical features.
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 35 Figure 3.5 -DiagnoseNET datamanager to automate the s.
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 36 Figure 3.6 -An unsupervised encoder network maps the binary patient representation x into a new space, obtaining the latent patient phenotype representation z.
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 3 Figure 3.7 -Illustrative schema of the parallel and distributed processing train unsupervised stacked denoising autoencoders implemented to obtain the patient phenotype representation.
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 3 Figure 3.8 -PMSI clinical dataset used for patient feature-composition.
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 3 Figure 3.9 -Results to claasify the medical care purpose ; and execution times of the experiments.
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 310 Figure 3.10 -Strategy 1 had 35.46 minutes, 74.75 watts and 120.94 kiloJoules.
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 311 Figure 3.11 -Strategy 2 had 28.35 minutes, 106.05 watts and 65.11 kiloJoules.

Figure 3 . 12 -

 312 Figure 3.12 -Strategy 3 had 25.99 minutes, 115.19 watts and 62.20 kiloJoules.
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 313 Figure 3.13 -Network convergence using batch partitions of [20000, 1420, 768] recordsto generate[START_REF] García | Pascal Staccini and Michel Riveill Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare[END_REF] 59, 110] gradient updates by epoch respectively.

  (a) Learning curves for the loss function (b) Learning curves for performance accuracy

Figure 3 .

 3 Figure 3.14 -Impact of GPU idle status generated by large data batch partition, consider the power consumption in a window of 6 minutes for the previous experiment.

  (a) 63.35 Watts on average to process 68 gradient updates in 17 epochs. (b) 86.61 Watts on average to process 885 gradient updates in 15 epochs. (c) 82.21 Watts on average to process 1540 gradient updates in 14 epochs.

  neurons per layer. The experiments are divided into three groups of different number workers : The first group had one Parameter Server and three workers, using two different batch sizes like CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION WORKFLOWS [768, 1024] ; The second group had one Parameter Server and six workers, using two different batch sizes like [1024, 1420] ; And the third group had one Parameter Server and eight workers with a fixed batch size like [1066], and the convergence curves of the experiments are shown in Figure 3.15.
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 315 Figure 3.15 -Early convergence comparison between different groups of workers and task granularity for distributed training with 10.000 records and 11.466 features.
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 4 Figure 4.1 -The experimental Mini-Cluster Jetson TX2 for distributed training deep neural networks applied to healthcare decision-making.
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 12 Astro -Array-Server of Jetson TX2 Nodes The Jetson architecture-based array-server, called Astro, is a powerful, high-performance deep learning server solution with low power consumption. The Astro server has three processor module carriers that house up to eight Jetson TX2 modules each and are all connected via a Gigabit Ethernet fabric through a specialized managed Ethernet switch developed by Connect Tech with 10G uplink capability, as shown in the Figure 4.2.
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 42 Figure 4.2 -The TX2 Server is an extremely low wattage, high performance deep learning server with 24 NVIDIA Jetson nodes.
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 4 3 describes the different hardware architectures and software stacks used in different experiments.
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 43 Figure 4.3 -Data resource management for training parallel and distributed deep neural networks and energy-monitoring tool.
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 43 DIAGNOSENET : AUTOMATED DISTRIBUTED DEEP LEARNING tributed platform. All the computing and DNN model metrics are written in a default directory called the testbed experiment outputs directory. For distributed environments, it requires the machine type specification, the DiagnoseNet workspace location and testbed path location as the follows. Monitor set for trancking the distributed ARM machines.
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 4 Desktop execution with memory training modes.
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 4 DIAGNOSENET : AUTOMATED DISTRIBUTED DEEP LEARNING responsible for launching the experiment through its function asynchronous training. [0] , ip_workers = argv [1]) platform . a s y n c h r o n o u s _ t r a i n i n g ( dataset_path =/ myworkspace / datasetpath , inputs_name =" X . npy " , targets_name =" Y . npy " , job_name = argv [0] , task_index = argv [1]) API Expressions 4.6 -GRPC asynchronous replica.

  platform = dt . Distibuted_MPI ( model = model_1 , datamanager = data_config_1 , monitor = enerGyPU ( machine_type =" arm ") , max_epochs =20 , early_stopping =3]) platform . a s y n c h r o n o u s _ t r a i n i n g ( dataset_name =" medical_D1 " , dataset_path = d / myworkspace / datasetpath , inputs_name =" X . npy " , targets_name =" Y . npy " , weighting =1) API Expressions 4.7 -MPI Platform Execution Modes.
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 46 Figure 4.6 -ECG Convolutional Neural Architecture.
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 47 Figure 4.7 -Worker scalability comparison for distributed training on a mini-cluster of Jetson TX2 to classify the medical care purpose.
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 6 EXPERIMENTS AND RESULTSwork with residual network connections. Where the baseline uses a gRPC asynchronous training modes with four workers take 13 minutes as a time to solution achieving one accuracy of 0.63 F1-score, while the MPI asynchronous training modes with 12 workers take 5 minutes as a time to solution achieving the same accuracy of 0.63 F1 scores, as shown in the Figure4.8. Worker scalability comparison between the communication protocols and their coordination methods to compute the gradient updates for distributed training of each neural network by medical task on a mini-cluster of Jetson TX2.
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 48 Figure 4.8 -Worker scalability comparison for distributed training on a mini-cluster of Jetson TX2 to the classify atrial fibrillation.
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 4 Figure 4.9 -Validation loss curves comparison bewteen the communication protocols (GRPC and MPI), and their methods (Synchronous and Asynchronous) to compute the gradient updates for training the medical task 1.
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 410 Figure 4.10 -Validation loss curves comparison bewteen the communication protocols (GRPC and MPI), and their methods (Synchronous and Asynchronous) to compute the gradient updates for training the medical task 2.
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 3 TASK-BASED PROGRAMMING MODEL FOR DISTRIBUTED DEEP LEARNING grain Parallelism and Coarse-grain Parallelism.
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 5 Figure 5.1 -Schematic sample of task granularity for fully connected neural networks.
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 52 Figure 5.2 -Schematic sample of task granularity for fully connected neural networks.
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 53 Figure 5.3 -Two scenarios where a bad task-partition could slow the training of neural networks.
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 54 Figure 5.4 -GPU traces for training a MLP with different mini-batch size.
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 55 Figure 5.5 -Accuracy vs Energy Consumption

  Middle-grain GPU P.C.. distribution. (i) Course-grain GPU P.C. distribution.
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 56 Figure 5.6 -Experiment results for training a feed-forward neural network, using the hyperparameter model-dimension space.

  Execution time spent to training each model using different groups of workers. (d) Cumulative comunnication banwidth between workers and the parameter server.
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 5 Figure 5.7 -Distributed experiment results for training a feed-forwared neural network on mini-cluster of Jetson TX2 nodes interconnected by switch Ethernet.

  1. John A. García H. Good Practices on Parallel and Distributed Programming for Training Neural Networks. SC-CAMP, Supercomputing and Distributed Camp. 2020.
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Table 2 .

 2 2 -Summary of Patient Flows in PACA region.

		In-Patients	Out-Patients
	Year Records Procedures Records Procedures
	2006	660, 743	109, 605	1, 864, 122	5, 606, 190
	2007	668, 109	124, 451	1, 827, 333	5, 812, 424
	2008	673, 676	139, 234	1, 868, 364	6, 250, 494
	2009	693, 469	226, 626	2, 087, 874	6, 769, 023
	2010	-	-	-	-
	2011	707, 130	231, 091	2, 264, 558	7, 221, 259

Table 2 .

 2 3 -Clinical descriptors to build the dataset.

	Entity	Feature	Description
			This is the identifier for the entire
	Header	ID RSA	hospitalization based in standardized
			weekly summaries.
			Designate the number of the health facilitie
		ID hospital	in the national archive of social
			and health establishments.
			Mode of entry into the medical unit. Which
	Admission Details	Input mode	can enter by mutation, final transfer, orovisional transfer or home.
			Specifics if the patient comes from a
		Input source	control unit, a hospitalization unit,
			intensive care unit or home hospitalization
		Previous state	

Demographics

Age group It is categorized into ranges like : [0 -6, 7 -12, 13 -17, 18 -29, 30 -59, 60 -74] Sexe

It is coded as 1 male and 2 female.

  .3. Furthermore, it is a function to serialize each record to create a clinical document in JSON format. Finally, an example of the JSON CDA schema is presented : API Expressions 2.4 -CDA schema of PMSI hospitalization data.

ssr2008 addfield . aggregate ( [ {$addFields : {" x0_header " : { "ID_RSA" : "$idnum" , " hospital " : " $finess" , "patient" : "$clef" , " patient_Rol " : " Inpatient " , "rsa_V" : " $version " , }}} , {$addFields : {" x1_demographics " : { "age" : "$age" , 2.4. DEVELOPMENT A FHIR TRANSFORMER TO STANDARDIZE EHRS

Table 2 .

 2 4 -Medical Target 1 : Care purpose classification task to assist the inpatient encounter.

	Class ID Labels Description

Table 3 .

 3 1 -Example of diagnosis-related group hierarchization to select the main clinical category as clinical labels to train the algorithms and link them to patient care.

		Diagnosis-related Group ICD-10 Definition
		Morbidity Principal	R402 Unspecified coma
	Patient 1	Etiology	I619	Nontraumatic intracerebral
				hemorrhage, unspecified
		Care Purpose	Z515	Encounter for palliative care
	Label used Clinical Major Category	20	Palliative care
		Morbidity Principal	R530 Neoplastic (malignant) re-
	Patient 2			late fatigue
		Etiology	C20	Malignant neoplasm of rectum
		Care Purpose	Z518	Encounter for other speci-
	Label used Clinical Major Category	60	fied aftercare Other disorders

Table 3 .

 3 2 -Feature Assessment to Compose the Patient's Phenotype.

	Feature Composition	Num. Features Disk (size) Exe. Time
	[X1, X2, X3, X4, X5, X6, X7]	11094	3.2GB	1.86 mins
	[X1, X2, X3, X4, X5, X6, X7, X8.3]	14515	4.1GB	2.63 mins
	[X1, X2, X3, X4, X5, X7]	8041	2.3GB	1.48 mins
	[X1, X2, X3, X4, X5, X7, X8.3]	11462	3.3GB	2.18 mins
	DiagnoseNet Unsupervised Embedding :		

Table 3 .

 3 3 -Feature Assessment to Compose the Patient's Phenotype.

	Num. Features Disk (size) USDA Dim. Encoded Exe. Time
	11094	3.2GB	[2000, 1000, 500]	255MB	39 mins
	11094	3.2GB	[500, 200, 100]	49MB	24 mins
	14515	4.1GB	[2000, 1000, 500]	248MB	51 mins
	14515	4.1GB	[500, 200, 100]	50MB	41 mins
	8041	2.3GB	[2000, 1000, 500]	255MB	26 mins
	8041	2.3GB	[500, 200, 100]	49MB	18 mins
	11462	3.3GB	[2000, 1000, 500]	255MB	38 mins
	11462	3.3GB	[500, 200, 100]	51GB	30 mins

Table 3 .

 3 4 -Feature Assessment to Compose the Patient's Phenotype.

	Feature Composition	Num. Features AUC-ROC Exe. Time
	[X1, X2, X3, X4, X5, X6, X7]	11094	0.79	10.53 mins
	[X1, X2, X3, X4, X5, X6, X7]	500	0.84	3.55 mins
	[X1, X2, X3, X4, X5, X6, X7]	100	0.83	3.31 mins
	[X1, X2, X3, X4, X5, X6, X7, X8.3]	14515	0.86	10.29 mins
	[X1, X2, X3, X4, X5, X6, X7, X8.3]	500	0.84	3.72 mins
	[X1, X2, X3, X4, X5, X6, X7, X8.3]	100	0.84	3.74 mins
	[X1, X2, X3, X4, X5, X7]	8041	0.85	7.45 mins
	[X1, X2, X3, X4, X5, X7]	500	0.83	3.66 mins
	[X1, X2, X3, X4, X5, X7]	100	0.83	3.74 mins
	[X1, X2, X3, X4, X5, X7, X8.3]	11462	0.87	8.80 mins
	[X1, X2, X3, X4, X5, X7, X8.3]	500	0.84	3.73 mins
	[X1, X2, X3, X4, X5, X7, X8.3]	100	0.84	3.44 mins

Table 3 .

 3 5 -Preliminary results for processing the unsupervised patient phenotype representation on the mini-cluster Jetson TX2.

	DNN	1 PS & 3 WKR 1 PS & 6 WKR 1 PS & 8 WKR Workstation Batch Size Conv. Time (mins) Batch Size Conv. Time (mins) Batch Size Conv. Time (mins) Conv. Batch Time Size (mins)
	M-1	768	13.49	1024	9.95	1066	10.18		
	M-1	1024	11.90	1420	10.51				
	M-2	768	14.50	1024	11.40	1066	11.76	768	3.97
	M-2	1024	12.50	1420	12.48			1420	5.96

Table 4 .

 4 

		1 -Medical Target 2 : Cardiac Arrhythmia Labels
	Class Label Description Source dataset Training Dataset Small Samples
	0	Normal	5,050	34,303	4,241
	1	AF	738	6,542	815
	2	Others	2,456	18,986	2,424
	3	Noisy	284	1,382	171

Table 4 .

 4 2 -Scalability results for training the multilayer perceptron network for the medical care purpose classification task.

		F1-Score (Micro)	Time to Solution (HRS)	Latency (HRS)
	W. gRPC MPI-S MPI-A gRPC MPI-S MPI-A gRPC MPI-S MPI-A
	4 0,879 0,645	0,643	7,04	6,26	5,01	0,76	1,69	1,31
	6	0,702 0,637	0,632	4,87	3,85	3,32	0,71	1,04	0,76
	8	0,694 0,629	0,621	3,83	3,12	2,86	0,64	0,91	0,79
	10 0,704 0,620	0,615	3,55	2,72	2,29	0,52	0,81	0,79
	12 0,697 0,631 0,613	3,30	2,24	2,02	0,44	0,68	0,76
	4.6.3 Worker Scalability for Training the Medical Task 2 :

Table 4 .

 4 3 -Scalability results for training the convolutional neural network for the atrial fibrillation classification task.

		F1-Score (Micro)	Time to Solution (MINS)	Latency (MINS)
	W. gRPC MPI-S MPI-A gRPC MPI-S	MPI-A	gRPC MPI-S MPI-A
	4	0,63	0,62	0,64	12,9	11,3	10,6	3,0	3,7	3,1
	6	0,65	0,63	0,60	9,9	8,8	8,2	3,2	3,5	3,2
	8	0,66	0,63	0,62	9,0	7,8	6,7	3,9	3,7	2,8
	10	0,66	0,61	0,63	7,9	6,9	5,7	3,8	3,4	2,5
	12 0,65	0,66	0,63	6,5	6,2	5,0	3,0	3,2	2,4

  5.4. MEASURING AND MODELING ENERGY EFFICIENCY AT RUNTIMEfat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.

	P h idle = 2 * 16.2 + 4 * 20.0 + 3.8 + 7.3 + 2 * 9.2 ≈ 141.9W	(5.1)
	P h max = 2 * 205 + 4 * 250 + 7 + 7.8 + 2 * 12.3 ≈ 1449.4W	(5.2)

Table 5 .

 5 1 -Search Space Model Descriptors.

	Hyperparameters (d)	Hyper. Configurations (n)	State
	Learning rate	Adaptive L.R. starting	From : 0.001
	Activation function	relu, tanh, linear	Fixed : relu
	Num. Units per layer 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	Search
	Num. hidden layers	2, 4, 8, 16	Search
	Regularization	Dropout : 0.6, 0.7, 0.8	Fixed : 0.8
	Batch size	24.576, 12.288, 6.144, 3.072, 1.536, 768	Search
	Num. of workers	4, 6, 8, 10, 12	Search

Table 5 .

 5 2 -Model Dimension Space in Number of Parameters (millions).

				Numbers of layers	
			2	4	8	16
		16				0.24
		32			0.47	0.48
		64		0.95	0.97	1.0
		128	1.89	1.93	1.99	2.12
	Neurons by Layer	256	3.82	3.95	4.21	4.74
		512	7.76	8.29	9.34 11.44
		1024 16.05 18.15 22.35	
		2048 34.2	42.6		
		4096 76.8			

The health level seven (HL7) is a not-for-profit, ANSI-accredited standards developing organization dedicated to providing a comprehensive framework and related standards for the exchange, integration, sharing, and retrieval of electronic health information that supports clinical practice and the management, delivery and evaluation of health services. HL7 is supported by more than 1,600 members from over 50 countries, including 500+ corporate members representing healthcare providers, government stakeholders, payers, pharmaceutical companies, vendors/suppliers, and consulting firms.

PMSI program of medicalization systems information in medical care and rehabilitation care operated by the French agency ATIH https://www.atih.sante.fr/ssr/presentation

Atrial Fibrillation Dataset Classification from a short single lead ECG recorded by the physioNet computing in cardiology challenge 2017. https://physionet.org/challenge/2017/

The TOP500 table shows the 500 most powerful commercially available computer systems known.
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DIAGNOSENET : MODULAR FRAMEWORK FACILITY

DiagnoseNET : Modular Framework Facility

DiagnoseNET was designed to harmonize the deep learning workflow and automatize the distributed orchestration to scale the neural network model from a GPU workstation to multi-nodes. Figure 4.4 shows the schematic integration of the DiagnoseNET modules with their functionalities.

The first module is the deep learning model graph generator, which has two expression languages : a Sequential Graph API designed to automatize the hyperparameter search and a Custom Graph which support the TensorFlow expression codes for sophisticated neural networks. The second module is the data manager, composed of three classes designed for splitting, batching, and multi-tasking any dataset over GPU workstations and multi-nodes computational platforms. The third module extends the enerGyPU monitor for workload characterization, constituted by a data capture in runtime to collect the convergence tracking logs and the computing factor metrics, and a dashboard for the experimental analysis results [John A. Garcia H. 16]. The fourth module is the runtime that enables the platform selection from GPU workstations to multi-nodes whit different execution modes, such as synchronous and asynchronous coordination gradient computations with gRPC or MPI communication protocols.