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Abstract

Automation of data-driven models for medical diagnosis can support the clinical decision

process and increase the efficiency of healthcare delivery in clinical settings. Both clini-

cians and patients will benefit from personalized medicine by detecting critical events

and defining new care pathways. However, although deep learning (DL) algorithms have

shown high accuracy and exemplary performance in different clinical categories, very few

have been integrated into intelligent medical systems. This type of system goes beyond

the modeling process. It requires integrating technical and scientific innovation in a clini-

cal setting, solving various technical and research problems to offer real solutions at the

hospital level. Some of the most common barriers in the actual clinical setting are data

privacy and interoperability, patient representation and multitask learning, the distribu-

ted methods to speed up the training models, and the efficient use of the computational

resources available in hospitals.

This thesis proposes a modular deep learning framework optimized for medical diag-

nosis to create portable and scalable solutions over heterogeneous systems. The modules

include data-driven representation learning and distributed deep learning methods to de-

velop risk prediction models whit clinical outcomes such as hospital admissions, length of

stay, and mortality. In this context in which the data comes from heterogeneous sources

and requires intensive computing to gather and be statistically significant, the main

contributions of this research thesis were divided into two components. The first com-

ponent focuses on implementing unsupervised neural architectures to derive a general

latent representation of the patients from electronic health records (EHRs) and apply it

to different clinical tasks. The heterogeneous EHRs harmonization was based on the Fast

Healthcare Interoperability Resources (FHIR) format, allowing model scalability built

from EHRs of the hospital A to be replicated in hospital B with different information

healthcare system formats. On the other side, the second component accelerates the trai-

ning process and hyperparameter search to determine an optimal generalization model for

a specific medical task using a mini-cluster of Jetson TX2 nodes. The primary approach

has been a set of gradient computation modes that adapts the neural network according

to the memory capacity, the number of nodes used, the coordination method between

nodes, and the available inter-node communication protocol (e.g., GRPC or MPI).

We conducted different experiments using clinical descriptors collected during the first

week of hospital stays of patients in the PACA region and using short ECG recordings of

30 to 60 seconds, obtained as part of the PhysioNet 2017 challenge. These experiments

allowed us to evaluate the accuracy, convergence time, and scalability of our proposed



framework. This framework, available in open-source, is called DiagnoseNET for medical

diagnosis. It automates the definition of the neural architecture, the search for hyper-

parameters, the distribution of data on the different compute nodes, and the purpose

of treatment batches in a single API. Furthermore, its execution engine orchestrates the

gradient computation on the various nodes according to different cooperation strategies.

Keywords : Clinical Prediction Models, Representation Learning, Distributed Deep

Neural Networks, Green Computing.
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Résumé

L’automatisation de la modélisation basée sur les données pour le diagnostic médical

peut soutenir le processus de décision clinique et accrôıtre l’efficacité de la prestation des

soins de santé dans les établissements cliniques. Tant les médecins que les patients en

tireront profit, soit par la détection d’événements critiques, soit par l’émergence d’une

médecine personnalisée, soit encore par une meilleure définition des parcours de soins.

Cependant, malgré le fait que les algorithmes d’apprentissage profond (DL) ont montré

une grande précision et de bonnes performances dans différentes catégories cliniques, très

peu ont été intégrés dans des systèmes médicaux intelligents. Ce type de systèmes va

au-delà du processus de modélisation et nécessite l’intégration de l’innovation technique

et scientifique dans le contexte d’un cadre clinique, en résolvant divers problèmes tech-

niques et de recherche pour offrir des solutions réelles au niveau de l’hôpital. Certains des

obstacles les plus courants dans le contexte réel sont liés à la confidentialité des données

et à l’interopérabilité ; à la représentation des patients et à l’apprentissage multitâche ;

aux méthodes distribuées pour accélérer les modèles de formation et à l’utilisation efficace

des ressources informatiques disponibles dans les hôpitaux.

Cette thèse propose un cadre modulaire d’apprentissage approfondi optimisé pour le

diagnostic médical afin de créer des solutions portables et évolutives sur des systèmes

hétérogènes. Ces modules comprennent des méthodes d’apprentissage approfondi basées

sur les données, l’apprentissage par représentation et l’apprentissage approfondi distribué

afin de développer un modèle de prédiction des risques avec des résultats cliniques tels

que les admissions à l’hôpital, la durée du séjour et la mortalité. Dans ce contexte où

les données proviennent de sources hétérogènes et nécessitent un calcul intensif pour être

collectées et statistiquement significatives, les principales contributions de cette thèse de

recherche ont été divisées en deux volets : le premier volet vise à mettre en œuvre des

architectures neuronales non supervisées pour dériver une représentation générale latente

des patients à partir de dossiers de santé électroniques (EHRs) pouvant être appliqués à

différentes tâches cliniques, et à harmoniser les HERs hétérogènes sur la base du format

FHIR (Fast Healthcare Interoperability Resources), ce qui permet de reproduire l’exten-

sibilité des modèles construits à partir des HERs de l’hôpital A dans un hôpital B avec

différents formats de systèmes d’information sur les soins de santé. Le deuxième volet vise

à accélérer le processus de formation et le réglage des hyperparamètres afin de déterminer

un modèle de généralisation optimal pour une tâche médicale spécifique en utilisant un

mini-groupe de nœuds Jetson TX2. La principale approche a consisté en un ensemble de

modes de calcul de gradient permettant d’adapter le réseau neuronal en fonction de la

capacité de mémoire, du nombre de nœuds utilisés, de la méthode de coordination entre



les nœuds et du protocole de communication inter-nœuds disponible (par exemple GRPC

ou MPI).

Nous avons mené différentes expériences en utilisant des descripteurs cliniques re-

cueillis au cours de la première semaine de séjour des patients à l’hôpital dans la région

PACA ou en utilisant de courts enregistrements ECG de 30 à 60 secondes, obtenus dans

le cadre du défi PhysioNet 2017. Ces expériences nous ont permis d’évaluer les perfor-

mances en termes de précision, de temps de convergence et d’évolutivité du cadre que

nous proposons. Ce cadre, disponible en open-source, est appelé DiagnoseNET pour le

diagnostic médical. Il automatise en une seule API la définition de l’architecture neurale,

la recherche d’hyperparamètres, la distribution des données sur les différents nœuds de

calcul ainsi que la définition des lots de traitement. Son moteur d’exécution est chargé

d’orchestrer les calculs de gradient sur les différents nœuds selon différentes stratégies de

coopération.

Mots-clés : Modèles de prédiction clinique, apprentissage par représentation, réseaux

neuronaux profonds distribués, informatique verte.
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Chapitre 1

Introduction

1.1 Research Context

1.1.1 Clinical risk prediction models

Health researchers along with computer scientists are widely adopting deep learning

methods and computer technologies, whose contributions make it possible to compose

the next Intelligent Medical Systems (IMS) to improve the quality of care and facilitate

the clinical decision support as well as to determine who will be hospitalized, what pro-

cedures they will prioritize and what results will get the best performance. The main

challenges facing the IMS are generating accurate patient profiles and predictive models

from large volumes of healthcare data. In which only the United States produced 153

Exabytes of health data in 2013 and 2,314 Exabytes are estimated for 2020, showing an

annual growth rate of 48% [Stanford Medicine 17]

However, a 2016 systematic review by Goldstein et al. in the medical literature that

evaluates clinical studies that used Electronic Healthcare Records (EHR) to develop risk

prediction models, identifying that many studies did not fully utilize the depth of infor-

mation on the patients available in the EHR, using a median of only 27 variables and

most used extensions of traditional generalized linear models [Goldstein 16]. In contrast to

recent studies that use deep neural networks and machine learning algorithms to extract

more patient characteristics as input to implement risk prediction models, have reported

promising results in clinical outcomes such as hospital admissions to prioritize patients

for preventive care uses, length of stay, and discharges to determine the release time and

mortality for high-risk warning patient of in-hospital mortality before their death.

In hospital admission outcomes, a recent study reports that machine learning

models as random forest (RF) and gradient boosting classifier (GBC) have higher per-

formances than the Cox proportional hazards (CPH) model in predicting the risk of

1



CHAPITRE 1. INTRODUCTION

emergency hospital admission, comparing the ROC curves by the three models with

different predictor sets extracted from EHRs of 4.6 million patients, including patient de-

mographics, lifestyle factors, laboratory tests, currently prescribed medications, selected

morbidities, and previous emergency admissions [Rahimian 18].

In the length of stay outcomes, a recent study compares the performance of Mul-

tilayer Perceptron Network (MLP) and Adaptive Neuro-Fuzzy Inference System (ANFIS)

to predict patients’ length of stay at intensive care units after cardiac surgery, reporting

that the ANFIS resulted in the creation of a more precise model than the MLP, in which

the neural network hyperparameter search for a generalized model to be compared is a

limitation [Maharlou 18].

For the risk of mortality outcomes, a recent study compares RF, XGBoost, Sup-

port Vector Machine (SVM), LASSO, and K-nearest neighbors to calculate the risk score

of mortality for each inpatient day during the in-hospital episode and use the quintiles

of these calibrated risk scores to stratify risk groups, in which RF has been proven to

have high accuracy as it overcomes overfitting by selecting random subsets of features

to build smaller trees and can handle potential errors caused by unbalanced case-control

datasets [Ye Chengyin 19].

1.1.2 Patient phenotype representation

To derive patients’ phenotypes, it is necessary to extract their medical data (demogra-

phics, medical diagnoses, procedures performed, cognitive status, etc.). Although possible,

the evolution of this information over time must be extracted. A used method is vector

based representation in which, for each medical target is constructed a matrix correlation

between patients and medical group features [Wang 14], The generation of the different

vectors generally takes a critical time. A couple of other possibilities are non-negative

matrix factorization, and non-negative tensor factorization for extracting phenotypes as

a set of matrices, tensor candidates that show patients clusters linked on specific medical

features and their date [Ho 14,Perros 17,Perros 18]. Other approaches use non-negative

vectors for embedding the clinical codes and use word representations as (skip-gram or

Glove) to generate the corresponding visit representation [Choi 16b].

Unsupervised representation learning, after the success of unsupervised feature

learning for training unlabeled data to dimensionality reduction and learn good general

features representations and used either as input for a supervised learning algorithm [Ben-

gio 14], the application of employ it to produce patient phenotype representations can
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significantly improve the predictive clinical model for a diverse array of clinical conditions

as it was shown in deep patient approach [Miotto 16]. Other derivative approaches use a

record into a sequence of discrete elements separated by coded time, which uses the un-

supervised embedding Word2Vec to pre-detected the continuous vector space, them uses

a convolution operation which detects local co-occurrence and pools to build a global

feature vector, which is passed into a classifier [Nguyen 17]. Another approach trains a

recurrent neural network with an attention mechanism to embed patients’ visit vector to

visit the representation, which is then fed to a neural network model to make the final

prediction [Choi 16c].

However, these approaches to derive patients’ phenotypes algorithms demand conside-

rable effort in deploying preprocessing pipelines and data transformation, which are built

without considering the response time. In this perspective, a large number of authors

have explored scaling up deep learning networks, well-known training datasets focused

on the impact of synchronization protocol, and state gradient updates [Dean 12a, Keu-

per 16,Suyog Gupta 17]. At the same time, other groups have been working on high-level

frameworks to quickly scale out to multiple machines to extend libraries for parameter

management to allow more agile development, faster and fine-tuning hyper-parameter

exploration [Dünner 18]. However, not all of these developments are applied to medical

care and do not consider energy consumption.

Nevertheless, most of these approaches focus on a single medical task for customizing

their models and patient representations for a specific outcome. Instead, this thesis im-

plements the unsupervised neural architecture that Miotto et al. Whose objective is to

derive a general latent representation of the patients from the clinical data warehouse

that can be applied to a different number of clinical tasks. [Miotto 16]. In addition,

we harmonize the EHR in a single format based on the clinical document architecture

(CDA) [Mandel 16], to allow the scalability of models built with EHRs from a hospital

”1” to be replicated in a hospital ”2” with different information healthcare system for-

mats [Rajkomar Alvin 18].

1.1.3 Distributed deep neural network

On the other hand, generative models or translation models that use encoder-decoder

methods to generate a latent representation that will be used as input for a second mo-

del is an expensive task that generally requires extreme hyperparameter exploration and

massive parallelization to determine an optimal generalization model for a multiple me-

dical tasks [Stanley Kenneth O. 19]. Furthermore, scale deep learning workflows over a
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wide range of emerging heterogeneous system architecture increases the programming

expressiveness complexity for model training and computing orchestration. In addition,

with the beginning of an open era of instruction set architecture, the HPDA applications

require abstracting a variety of domain-specific architectures and languages. For example,

the Nvidia embedded computing family (Jetson) uses a hybrid processor on-chip, with

an ARM processor coupled with one streaming multiprocessor, delivering computing ca-

pabilities similar to a GPU workstation under low power consumption [Boggs 15].

The data-distributed methods that use iterative-convergent Machine Learning

(ML) algorithms for training, such as Bosen [Xing 15] and [Konecný 16, Bonawitz 19]

who have extended these approaches to Federated Learning (FL). They can be applied

generically to any ML method if data samples are independent and identically distributed.

The Bosen platform provides a distributed version for some well-known ML algorithms

(for example, Deep Learning, Sparse Coding, K-means clustering, Random forests or

Multi-class Logistic Regression), while the FL approach is designed to be efficient in se-

tups with many users and unreliable or slow connections. Final classification or prediction

models represent a weight matrix that is stored across a large number of clients. The local

weight matrix is calculated in the initial step and refined over the rounds, where updates

are based on the exchange of parameters with local neighbors or a single master node.

The model-distributed approaches such as Strads platform [Xing 15] require ML

specialized systems that perform a partition of ML algorithms into a set of parallel tasks,

in general, scheduled by master node(s) and executed by a set of workers. Schedulers’

task is to separate the problem into a non-overlapping set of sub-problems, divide a work-

load and synchronize the updates amongst the workers. This setup admits non-conflicting

model updates that lead to convergence. Numerous algorithms can be deployed in this

framework, such as Latent Dirichlet Allocation, Matrix Factorization, Support Vector

Machine or Deep Learning algorithm based on Caffe, called Poseidon, to name a few.

The model and data-distributed algorithms for classification and prediction

problems. In the literature, there exist only a few works. A hybrid distributed platform

known as Angel [Jiang 17] appropriately combines data partitioning, scheduling, and pa-

rameter synchronization tasks and demonstrates accuracy improvement in comparison

with a Petuum-based data or model distribution. In addition, there exist many paral-

lelization methods, such as FlexFlow [Jia 18]. It is a hybrid data and model parallel

(non-distributed) approach worth exploring in a distributed setup because it performs an

automated search of parallelization strategies that incorporate data, attribute, parame-

ter, and operator parallelization for DNN algorithms.
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1.1.4 Green artificial intelligence

The remarkable precision of deep neural networks to solve general tasks in various do-

mains, such as computer vision, speech recognition, and natural language processing, is

largely due to increased complexity in the neural architecture and the number of experi-

ments carried out to adjust its hyperparameters. Consequently, developing a generalizable

model with deep neural networks is an expensive process due to the time of cloud compu-

ting or the cost of hardware and electricity required to power modern computing systems

and its environmental impact to process large and multiple models. [Strubell 19]. To es-

timate the total cost to develop deep neural network models, [Schwartz 20] proposes a

processing cost equation Cost(R) ∝ E ∗D∗H. In which, they illustrate three factors that

linearly influence the total cost to produce a result R, the cost of executing a single model

E, the size of the training dataset D and the number of hyperparameter experiments H.

Therefore, we consider two methods to train neural networks : The first method is

based on human designs to improve a neural architecture through the evolution of state

of the art in a specific domain, which often involves building deeper models with more so-

phisticated layers, among other techniques, increasing the cost of execution E per model

and at the same time reduces the number of models to explore. While the second method

is based on the neural architecture search to automate the design of neural architec-

tures through search strategies such as reinforcement learning or evolutionary algorithms

with policies to select a subgraph that maximizes the validation set’s expected reward, in-

creasing exponentially, the hyperparameter space H to explore by each model generate E.

Neural architectures by hand design, Since AlexNet achieved a 5.3% error in the

top 5 in the ImageNet challenge by using two GPUs to calculate convolution operations

with 60 million parameters of the neural network [Krizhevsky 12]. This allows designing

deeper neural networks, including mixed layers with convolutions, dropout, and others,

which allowed achieving an error of 1% in 2017. While the amount of compute used to

train deep neural learning models has increased 300.000X in 6 years.

In medical images, initializing the weights using pretrained models with ImageNET

are widely adopted, facilitating the hyperparameter search space and fast convergence ;

as the case of skin cancer classification from dermatology images [Esteva Andre 17] ;

prediction of cardiovascular risk factors from eye images [Poplin Ryan 18] ; and among

others [Raghu 19]. Nevertheless, transferring knowledge or benefit from a pretrained mo-

del to a new medical task is not always possible.

In these situations, designing a neural architecture like Inception, ResNet, and Den-

seNet from scratch requires exploring many candidates and finetune each one to discover

a well-performing model, which is a scientific process of trial and error.
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Neural architecture search, To overcome these limitations, automated methods

and processes are increasing ; in which it is common to use a controller to generate model

descriptions of neural architectures and train each model while maximizing the expec-

ted precision of generated models in a validation set [Elsken 18]. For example, in image

classification with CIFAR-10, using the same number of parameters (27.6M), DenseNet

achieves an error rate of 3.74%, while NASNet automated architecture achieves an error

rate of 2.4%. Although this last is computationally expensive and time-consuming, it

was necessary to train 20000 models with 500 GPUs (Nvidia P100) in 4 days at 2000

GPU-hours [Zoph 17], and in a previous architecture search was used 800 GPUs (Nvidia

k40) in 28 days resulting 22400 GPU-hours [Zoph 16].

Consequently, designing deep neural networks with automatic methods to generate a

population of models during the search space enables extreme exploration and massive

parallelization, which translates into energy consumption in a long-time window [Stanley

Kenneth O. 19]. Taking all these concepts into account, In this thesis, we used a green ar-

tificial intelligence term as an integrative evaluation criterion to reduce the environmental

impact of developing deep neural networks, whose essential evaluation criteria comprises

two optimization challenges :

1. Automating the exploration strategy to reduce the model trade-offs space ;

2. Tailoring each model generated to exploit the computing platform and minimize

the energy consumption.

1.2 Objective and Motivations of this Thesis

This thesis aims to develop green neural networks and scale them in heterogeneous

systems to accelerate the construction of clinical models for predicting multitask risks

with an effective balance between accuracy and energy consumption. The main tasks

that we have studied are not limiting concern ; the care purpose of hospital admissions

and the prediction of the major clinical category to answer the question : in which service

will the patient be rereferred after admissions ? Then the prediction of the length of stay

to answer the question : How long will the bed be occupied ? Furthermore, finally, we

try to predict mortality risk in the hospital. The available data relating to hospitalized

patients in the Provence-Alpes-Côte d’Azur region (PACA), could make it possible to

predict many other targets : the patient’s destination at the end of their stay (home,

care-home, hospital transfers, and death), as well as the primary medical procedures that

will be performed, the risk of emergency readmission, etc.

6



1.3. CONTRIBUTIONS AND THESIS OUTLINE

The construction of all these models requires a high computing power to operate and

train the unsupervised network to generate dense patient profiles that represent the state

of health (patient phenotype representation) and then retrain the different prediction risk

models. The confidentiality of the data requires data anonymization, which loses quality

in the data by adding blur by grouping specific terms in more generic terms. The volume

of data processed is relatively large, and the patient records are fully anonymized with

an average of more than 670,000 records per year, to compose the Inpatient dataset from

the PMSI PACA from patients hospitalized between 2006 to 2011.

The overriding question of this research is related to : is it possible to efficiently

use a platform of GPU embedded nodes to build multitask predictive risk models with

an appropriate level of performance ?. The first underlying idea is that if the answer is

positive, it would then be possible to deploy this platform of embedded GPU nodes within

the services-producing the data in order to be able to process them in-situ of hospitals, to

free themselves from the problems of anonymization necessary to export the data outside

of their place of production. The second idea is that if one wishes to process complex and

voluminous problems using processors with low capacity, whether in terms of memory,

execution speed, or throughput, between the different components, it is then necessary

to distribute the data set as adequately as possible, to minimize memory movements and

to determine precisely the best hyper-parameters to minimize the ratio : relevance of the

result concerning its cost, which may be the response time or energy consumption. The

two are often linked.

1.3 Contributions and Thesis Outline

The main contribution of this thesis is the automatization and the harmonization of

distributed processing and coordination methods for training and finetuning neural net-

works over heterogeneous systems, avoiding to the researchers the necessitate to writing

the new coordination gradient codes abstracting the complexity to data placement and

memory management over several nodes for each architecture (X86 and ARM) or test new

models in the hyperparameter search process. Likewise, DiagnoseNET made a workload

characterization, which collects the GPU, CPU, memory tracks, and energy consumption

metrics. At the same time, the DNN model is executed on the target platform, whose

information is synthesized in terms of accuracy and energy ratio for the programmer or

the scheduler, could be used to adjust the task granularity : model dimension and batch

partition, according to the memory capacity and the number of nodes in the subsequent

execution.

In the healthcare research field, preserving patient privacy is a principal requirement.
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DiagnoseNET allows training a neural network using different communication protocols

as MPI and GRPC. Both methods use the data and resource manager module for training

the DNN model keeping a balanced portion of the dataset by each node only transferring

gradients to the server. Over this methodology, DiagnoseNET can be used as a distri-

buted platform across multiple hospitals to train DNN models without sharing patient

data, using low-power consumption clusters with minimal infrastructure requirements.

Overcoming several challenges in implementing DiagnoseNET as a modular framework

include : Building an expression programming module to build dynamic neural networks

without rewriting the code for a new platform or execution modes. Automatize the da-

taset splitting, placement, and balancing the batch over the nodes and their memory

constraints, having input sets with different dimensions as both study cases.

1.3.1 Document Organization

Figure 1.1 – Outline to highlight the artificial intelligence workflow, methods, and
techniques included in the thesis manuscript.

Figure 1.1 shows the high-level contributions of this thesis, which has been organized

into two components that bring together the methods and techniques required to process

the complete artificial intelligence workflow proposed. The first component is focused

on implementing unsupervised neural architectures to derive a general latent represen-

tation of EHRs patients to be applied into multitasking clinical risk models. This part

consists of the following chapters. Chapter 2 describes the learning healthcare systems

and briefly describes the interoperability module for clinical data processing in the Fast

Healthcare Interoperability Resource (FHIR) scheme to build the architecture of clinical

documents per patient to develop predictive models, as well as presenting the patient flow
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in the Côte d’Azur healthcare system and defining the case study. Chapter 3 discuss

patient phenotype extractions and apply them to predict different medical targets. It

provides three high-level features : a complete deep learning workflow orchestration into

stage pipelining for mining clinical data and using unsupervised feature representations

to initialize supervised models and the data resource management for training parallel

and distributed deep neural networks.

The second component is focused on speeding up the training process and fine-

tune the hyperparameters to determine an optimal generalization model for the medical

task using a mini-group of Jetson TX2 nodes. Chapter 4 combines the hardware and

software perspectives to build scalable deep learning models on embedded low power

systems. From the hardware perspective, practices and lessons learned from assembling

a cluster of embedded GPU nodes, the standard of the implemented architecture, and

the general cross-platform library to integrate two levels of parallel and distributed pro-

cessing deep neural networks. In contrast, the software perspective is introduced the

programming framework designed for scaling deep learning models over heterogeneous

systems applied to medical diagnosis. It is designed as a modular framework to enable

deep learning workflow management and allow neural networks’ expressiveness written

in TensorFlow. At the same time, its runtime abstracts the data locality, micro batching,

and distributed orchestration to scale the neural network model from a GPU worksta-

tion to multi-nodes. Chapter 5 discusses qualitative and quantitive aspects to balance

accuracy and energy-efficient to train deep neural networks on heterogeneous systems

and describes the granularity of neural network tasks as a combination of data paralle-

lism and mini-batch online learning with capabilities of platform memory as a factor for

convergence model principles. Chapter 6 summarizes our conclusions, gives an overview

to automatize artificial intelligence workflow applied in medical diagnoses produced as

part of this research, and outlines ideas for future work based on this thesis.
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Chapitre 2

Towards a Learning Healthcare

Systems

Clinical informatics systems were designed primarily to obtain patient information

and perform administrative healthcare tasks such as billing, administering procedures,

and medications, among others. However, in the last decade, several investigations have

been carried out based on the secondary use of electronic health records (EHRs), which

has allowed advances in clinical research based on the massive analysis of patients and

their integration with learning models for the development of personalized medicine.

In particular, given the increasing volume of data in healthcare, data-driven modeling

based on machine learning and deep learning methods has become a powerful approach

in medical research for the risk prediction model. —Some approaches for EHRs mining

and generating patient new stratification principles and revealing unknown disease cor-

relations [Miotto 16]. Others approach combining the EHRs with genetic data to give a

more refined understanding of genotype-phenotype relationships [Sánchez-Valle Jon 20].

Nevertheless, there have been few implementations of risk prediction models in real clini-

cal settings due to the complexity of standardized units and vocabulary among healthcare

systems worldwide. In addition, some health systems present challenges and standardize

multiple independent sub-systems in the same institution.

2.1 Learning Healthcare Systems

The learning healthcare system (LHS) has recently emerged as a potential solution-

based system to link routine healthcare systems, patient values, and the best available

scientific information directly to healthcare practitioners to support the clinical decision

making (CDM). Consequently, the LHS has been conceptualized from the paradigms of
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evidence-based medicine (EBM) and translational research medicine, taking advantage of

the ubiquitous use of electronic medical record systems and technological advances in the

area of artificial intelligence to develop models according with the care target [Delaney 15].

The EBM paradigma aim to incorporate knowledge generation processes based on hos-

pital data collected from daily practice to provide feedback on their diagnoses, procedures

and provide better medical care to their patients [Ethier 18]. While the translational re-

search medicine involves fundamental scientific principles for turning biomedical research

into practical applications or for expanding knowledge in the field of medicine to improve

human health and well-being [Adithan 17].

Nevertheless, there is a wide variety of health systems around the world, with orga-

nizational structures designed according to their needs and resources to provide primary

health care and public health. As a result, there are multiple useful frameworks for deve-

loping an LHS, but each framework has been targeted according to the requirements of

your health systems [White 15, Smith 20]. For example, the Health Innovation Program

(HIP) Model [Smith 20], proposed to build and implement effective LHS for complex case

management health systems, are comprised of four process steps, including (1) identifying

critical questions, (2) conducting research and evaluations, (3) sharing results, and (4)

implement changes. While the TRANSFoRm Project [Delaney 15, Ethier 18], proposed

an architecture for the LHS with respect to functional and interoperability requirements

to support primary care, which describe a software ecosystem for building generic midd-

leware components that provide essential shared functions for LHS applications, such

as vocabulary services, secure data transport, authentication methods, and provenance

services ; while in the second work the methods to access, process and operate the data

are specified, classifying them in data warehousing and data federation. And the Heim-

dall Framework [Mclachlan 18], proposed a classification of target care systems for LHS,

whose main branches are cohort identification to determine the feasibility of studies such

as risk modeling and decision-making as the first operational step of LHS ; and intelli-

gent assistance to automate routine processes, such as pathology order pre-filling and

surveillance monitors for disease outbreaks or treatment problems.

Based on the steps of these models and their main requirements, we composed a high-

level framework to develop a continuous LHS integrating artificial intelligence methods

and computing techniques to manage access and develop the service of target care systems

through a data warehouse or a data federation, for allowing the implementation of the

EBM and translational research medicine paradigms, respectively, as shown in Figure 2.1.
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Figure 2.1 – The LHS framework is comprised of a continuous learning cycle that
systematically collects information from the patient to incorporate knowledge
generation processes, developing clinical decision support systems across the

organization to produce continuous improvement in the delivery of care, based on
translational research and evidence-based medicine paradigms.

1. It should allow the collection of EHRs in a standardized way to develop MBE studies

that could be applied in other organizations or to implement research interventions

andor products of other organizations.

2. It must have a level of data integration, which allows : storing and structuring the

EHRs in a data warehouse (local model) in agreement with the organization to iden-

tify the high priority clinical process to develop a clinical decision support system ;

while the second component, called data federation, maps the specific queries of

the EHRs into a central standard (global model), to validate a new cadidates in-

tervention or product developed by the scientific community or other organizations.
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3. It should minimize the resources required by an organization to develop local and

central models or participate in research projects.

4. It should be flexible enough to accommodate the addition of new data sources or

deletion or change of current ones.

5. It must allow the integration of data from multiple sources belonging to various

fields, such as care, research and knowledge data to implement decision support

systems, by being able to provide relevant pieces of information, feedback and alerts

based on the data of the patient and the population.

6. It should be possible to trace both protocol variations and short- and long-term

patient results, such as intermediate, final clinical, costs and satisfaction outcomes.

2.1.1 LHS Taxonomy of Medical Applications

Based on a qualitative meta-narrative study by [Mclachlan 18], whose study proposes

a taxonomy to unify and reduce diversity and fragmentation to develop learning health

systems. Therefore, here we describe six types of medical applications empowered by ad-

vances in artificial intelligence. Integrating them into a learning health system benefits

both clinicians and patients by detecting critical events, such as the emergence of perso-

nalized medicine or a better definition of care pathways.

— Discrete-Event Simulation (DES) : Is a multi-method that discretizes the

sequence of events over time to model the operation of a system. It is used in heal-

thcare organizations to increase patient satisfaction and to reduce treatment costs.

For example, DES is combined with design of experiment approach to simulate an

emergency department and optimize the average waiting time of a patient to be

attended [Atalan 20].

— Predictive Patient Risk Modeling (PDRM) : Clinicians can use patient pre-

dictive risk modeling to estimate the likelihood that an individual will experience

a triple failure event in a specific future period. Predictive patient risk modeling

relies on patterns discovered in inpatient data sets to identify cohorts at increased

risk for future adverse events [Lewis 13].

— Clinical Decision Support Systems (CDSS) : The CDSS is an active heal-

thcare system that matches patients’ features against computerized algorithms to
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generate patient-specific treatment patient-specific treatment recommendations.

The CDSS is one of many complex and challenging decision support systems, pri-

marily because of the various measurable and non-measurable features involved

in decision making and the complex relationships between those attributes. The

CDSS algorithms can be practical tools to support the decision-making process,

but the patient features entered into the algorithms must be measurable and quan-

tifiable. The clinical decision systems involve various systems, including medical

devices, applications, and a variety of other types of software. Are active know-

ledge systems where two or more characteristics of the patient are matched to

computerised knowledge bases with algorithms generating patient-specific treat-

ment recommendations [Sandeep Kumar 20].

— Comparative Effectiveness Research (CER) : Compares interventions and

outcome data with the current patient to determine the best outcome. CER uses

an LHS to analyze outcome data from other patients with similar attributes to

the current patient. Thus, they are enabling the clinician to determine the appro-

priate outcome for the current patient. CER can be done by using observational,

quasi-experimental, and experimental study designs. These methods can use rou-

tinely collected data to fill gaps in the evidence base, ensuring more effective care

in a more timely and efficient manner than would be possible with traditionally

designed [Foley 17].

— Intelligent Assistance or Computer Aims Diagnosis (CAD) : The use of

clinical data sources can be augmented with artificial intelligence (AI) to improve

accuracy and efficiency while reducing unwanted variability. This can be achieved

by training an AI system with annotated labels derived from high-quality reports

from expert radiologists on a database of anonymized reports. The AI system can

be used as a concurrent reader to aid a less experienced radiologist in making

more accurate interpretations. The AI system can also be used as a pre-reader for

a radiologist to improve efficiency and consistency of reports due to the anchoring

of findings in the consistent results of the complementary AI [Winkel 21].

— Health Surveillance Systems (HSS) : HSS is intrinsically data-driven health

surveillance for identifying early signals of health anomalies or disease outbreaks.

The heterogeneous collection of data sources carries two technical challenges in

Public Health Surveillance : the first data sourcing challenge is quickly determi-

ning operationalizable data sources that contain valuable signals, and the second

analytics challenge is concerned with developing effective computational frame-

works to extract such signals. AI offers solutions to help predict the course of
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infectious diseases and emergencies and analyze and evaluate interventions and

responses. Firstly, a data-driven method was developed to automatically identify

and select keywords from social media text for disease surveillance purposes. For

instance, with the rapid development of the Internet and the Internet of Things ap-

plications, ubiquitous social and device sensing capabilities are becoming a reality,

presenting significant surveillance potentials. Secondly, AI provides comprehen-

sive methods for dealing with unstructured and semistructured text, images, and

videos, in addition to structured information items for automatic data-driven fea-

ture construction. Thirdly, AI offers modeling frameworks that allow the study

of the evolution of epidemics under different conditions by simulating complex

configurations and scenarios of infectious disease transmission and public health

responses. For example, simulating the evolution of epidemics in time, space, and

infection transmission dynamics using nonlinear techniques such as AI multiagent

systems [Thiébaut 19].

2.1.2 The Interoperability Challenge in Healthcare Systems

The first difficulty for healthcare systems in transforming from data-driven health-

care to a knowledge-driven healthcare system is the health information exchange from

a patient-centered perspective [Braunstein 18a]. It was moving as a scalability difficulty

for deep learning-based medical applications to integrate into new clinical settings. Thus,

the model that works in hospital A does not work in hospital B due to the structure

and semantics of the patient-related information required to feed the DL medical appli-

cation [Esteva 19].

The EHR interoperability challenges occur at different scales, from minimal com-

munication and data exchange between several independent software within the same

organization to the diversity of codes used to record the same characteristics of the pa-

tient between internal units and external organizations. For example, the billing system

constantly integrates information when one or more records are created for each patient

in one or more hospital units. As a result, the databases can have simple problems, such

as gender being recorded in radiology as M and F . In contrast, the pharmacy system

uses one and zero, and in the laboratory, zero and one. [Reid 05]. The other example

refers to semantic confusion, in which an ICPC −X76 code relates to breast cancer in

the International Classification of Primary Care, but depending on the structure of the

database, an instance of this terminology code may denote various diagnoses of breast

cancer like a diagnosis of a current condition of the patient, a past state of the patient,

or the current condition of a family member [Ethier 18].
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Therefore, to implement clinical decision systems, healthcare information systems

must exchange EHRs in any format between any healthcare system to maintain the mea-

ning of the information being exchanged. The goal is to directly support the safe, timely,

efficient, effective, and equitable delivery of patient-centered care. For this purpose, it

is necessary to build healthcare information systems with the following interoperability

layers :

1. Foundational Layer : Achieves the ability of patients to receive their personal

health information electronically by enabling one system or application to securely

store, transmit, and receive data from another organization’s system. Those sys-

tems will include a health information exchange (HIE) shared electronically among

providers, patients, and families. When health information is shared, patients have

access to the information they need to make informed decisions regarding their

health care. In addition, their providers have access to the clinical information they

need to provide quality care, and healthcare organizations can provide more effi-

cient, effective, and cost-effective care.

2. Structured Layer : It is the constant transfer of health data from one system

to another that preserves and does not change the data’s purpose and clinical or

operational meaning. It, therefore, defines the format, syntax, and organization of

the exchanged information, including at the level of data fields for interpretation.

The intermediate form of interoperability requires the receiving system to interpret

meaning at the data field level. In the most advanced form of structured interopera-

bility, specific data fields are placed in locations that indicate their purpose [Braun-

stein 18b].

3. Semantic Layer : The semantic layer is a set of ontological relationships that

operate on a set of data elements. This is the highest level of interoperability and

requires sufficient shared standards to be consistent, accurate, and relevant to the

data element definitions. This level of interoperability enables a receiving system

to interpret the data to perform a task as if the data had been generated in the

receiving system [Braunstein 18b].

4. Organizational Layer : This layer covers the details of implementation, mana-

gement, and even legal processes to turn the concept into a tangible solution. It

includes governance, policy, social, legal, and organizational considerations to facili-

tate secure communication and use of data both within and between organizations,

entities, and individuals. For example, a Federated Learning (FL) approach ad-
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dresses privacy and data governance challenges by enabling ML from non-co-located

data. In an FL environment, each data controller defines its governance processes

and associated privacy policies, controls access to the data, and reviews the data.

In addition, the FL includes the training and validation phases. In this way, FL

could create new opportunities, for example, by enabling large-scale institutional

validation or enabling novel research on rare diseases [Rieke 20].

2.1.3 Fast Healthcare Interoperability Resources (FHIR)

Health Level Seven (HL7) 1 developed the Fast Healthcare Interoperability Resources

(FHIR) as a standard for harmonizing and exchanging diverse clinical types such as pa-

tient, practitioner, diagnoses, procedures, medications, and others, between healthcare

information systems. The FHIR structure the EHRs as a collection of ”resources” using

embedded ontology references such as LOINC, SNOMED, and others to ensure a common

vocabulary among the various healthcare practitioners. [Braunstein 18b].

FHIR resources are created in JSON, XML, or RDF, with JSON being the most com-

monly used format as a common language between services and practitioners. The main

implementations of FHIR server-structured EHRs are :

— FHIR server uses a common standard called Care Connect Reference Implemen-

tation CCRI to develop APIs on top of the existing database structure to commu-

nicate EHRs between various software. For example, build an FHIR server with

data loading on the radiology, laboratory, and medical history system databases

to integrate the patient features and compose clinical analysis to assist specialists

in making decisions.

— Another approach is to use the FHIR profile structure to standardize clinical fea-

tures used to feed medical intelligence applications such as patient risk models,

clinical decision support systems, and others. Thus, allowing these artificial intel-

ligence medical applications to scale from a hospital A to a hospital B.

1. The health level seven (HL7) is a not-for-profit, ANSI-accredited standards developing organization
dedicated to providing a comprehensive framework and related standards for the exchange, integration,
sharing, and retrieval of electronic health information that supports clinical practice and the manage-
ment, delivery and evaluation of health services. HL7 is supported by more than 1,600 members from
over 50 countries, including 500+ corporate members representing healthcare providers, government
stakeholders, payers, pharmaceutical companies, vendors/suppliers, and consulting firms.
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FHIR Resource Structure :

The EHR elements are structured by blocks called Resources. For example, the Diag-

nosticOrder resource contains the orders placed by clinicians for imaging studies of a spe-

cific patient, which in turn is structured in a Patient resource [Kamel 18]. Additionally,

the structure definitions describe the data types, infrastructural types, and cardinalities

defined in the FHIR resource. Therefore, FHIR structures are used as the basis for code

generation, reporting, and user interface. And in turn, structure definitions are shared

and published through repositories to enable interoperability between implementations.

When a structure definition contains a repeated element, you can chop the repeated

element into sub-elements with different constraints on the sub-elements with the same

meaning as the repeated element. In FHIR, this operation is known as ”slicing” a list.

It is common to split a list into sub-lists, each containing a single element, effectively

placing constraints on each list element. For example, in a sliced resource structure,

an Observation defines the component element containing a nested code and a value

for the observations with several values. In which a resource instance of blood pressure

measurement that includes one value for the systolic and one value for the diastolic, looks

like this :

API Expressions 2.1 – Structure of a blood pressure monitoring resource in a JSON
format.

{
"resourceType" : "Observation" ,
"id" : "blood-pressure" ,
"meta" : {"profile" : [

"http://hl7.org/fhir/StructureDefinition/vitalsigns" ]} ,
"subject.referece" : "Patient/1186747" ,
"component" : [

{"Observation" : "Systolic BP" ,
"name" : "Systolic" ,
"coding" : "LOINC 8480-6" ,
"value.units" : "mmHg" ,

} ,
{"Observation" : "Diastolic BP" ,

"name" : "Diastolic" ,
"coding" : "LOINC 8462-4" ,
"value.units" : "mmHg" ,

} ]
}
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FHIR Operation or Qurey :

The operation resource defines the input parameters that are passed to an executable

operation or query. The FHIR servers execute the operations to determine system com-

patibility and thus enable dynamic generation of forms for sharing resources. Technically

the operations are defined under a set of schemas like OpenAPI Specification, that for-

mally represent the FHIR RDF compliance rules—sending a copy of the FHIR resource

to another system via the FHIR API with JSON payload or other interoperability pro-

tocol [Solbrig 17].

Resource operation provides relative URLs to interact with the data. For example,

blood pressure observation can be fetched by specifying the resource, observation identi-

fier, and format, and the query returns an Atom feed, which includes all related resources.

For example, in the case of a Blood Pressure Observation could be fetched as follows :

API Expressions 2.2 – Fetch a blood pressure monitoring resource in a JSON format.

GET https : //hl7.org/Observation/blood-pressure?_format=json

The operation parameters are specified directly in a profile or resource structure by

describing an operation’s input and output parameters. In other words, the operation

parameters can be defined using the OperationDefinition.parameter element or through a

profile. If a profile is used, it must follow the information defined in the operation parame-

ter element using OperationDefinition.inputProfile and OperationDefinition.outputProfile.

As an example, consider an operation that defines three parameters : the input that

contains an integer parameter and a patient parameter ; and the output that includes the

result parameter, is defined as follows :

API Expressions 2.3 – Example of defining an operation as a profile.

{
"meta" : {

"inputProfile" : [
"http://hl7.org/StructureDefinition/op.x.in.profile" ] ,

"outputProfile" : [
"http://hl7.org/StructureDefinition/op.x.out.profile" ] ,

}
}
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Figure 2.2 – EHR mining schema with the harmonization of clinical features and
extracting phenotype representation of patients to feed biomedical applications.

2.1.4 Healthcare Data Mining

Given the increasing volume of data in healthcare systems, data mining is widely ap-

plied to extract clinical features characteristics of patients and is used in conjunction with

deep learning models to develop clinical decision systems. This section synthesizes the

stages for EHRs data mining, then harmonizes clinical features and extracts patient phe-

notype representation to feed it into biomedical applications. Figure 2.2 shows a pipeline

based on three steps to harmonize heterogeneous and unstructured clinical data using

standard ontologies to enable semantic interoperability of clinical features for developing

scalable models between clinical centers.

a. The data warehouse generally includes as much information related to the patient

as demographic data, medical notes, medications, vital signs, laboratory data, and

others generated by one or more encounters in any care delivery setting.

b. The data mining process maps heterogeneous and unstructured data to standardize

into a single format to represent the patient’s state, including the structure and se-

mantic levels of interoperability, such as standard ontologies like ICD10, SNOMED-

CT, LOINC, RxNORM, and others.

c. There are several methods to derive and represent the clinical status of the patient,

which is generally called the High-throughput Phenotype (HtP) and used deep lear-

ning models to generate biomedical applications as new principles of patient stra-

tification, reveal correlations of unknown diseases, and provide a more accurate

understanding of genotype-phenotype relationships. Using deep learning to develop

risk model predictions will be described in more detail in the next chapter.

20



2.2. CASE OF TUDY : HEALTHCARE SYSTEM IN PACA

2.2 Case of tudy : Healthcare System in PACA

The objective of this study was to design a clinical risk prediction model pipeline ba-

sed on deep learning methods to be integrated into a healthcare learning system, where

the EHRs generated from patients could be continuously analyzed and modeled to create

predictive medical tasks that would be transferred to patient care and optimize the func-

tions of healthcare professionals.

In 2000, the French Ministry of Health [de la Sante 5], established the medicalization

program of the information system (PMSI). They are designed primarily to know the

medical activity of health facilities and to standardize the clinical documents. It houses

applications from a hospital stay to follow-up medical visits, which should result in pro-

ducing a standardized computerized record, called a standardized discharge summary

(RSS), that includes administrative, demographic, medical, and supportive information.

The French Technical Agency for Hospitalization Information (ATIH) was created as

a public administrative establishment of the State under the supervision of the ministers

responsible for health, social affairs, and social security, to collect data from the health

systems and manage medical classifications, as well as economic studies, costs, informa-

tion of restitution and participate in the development of health nomenclatures. In 2019,

the ATIH registered 12.9 million patients and 3,252 facilities from services of medicine,

surgery, obstetrics, hospitalization, care, and rehabilitation follow-up that transmitted

the RSS feed through PMSI. From this perspective, we collected many EHRs to build a

clinical dataset, which was used during the development of this thesis and other related

works. The clinical dataset was derivative from the hospital discharge data warehouse

in the south region of France called Provence-Alpes-Côte d’Azur (PACA) through the

Medicalization Program of the Information System (PMSI) 2 .

2.2.1 Medicalization Program of the Information System

The PMSI compiles all the information related to the hospital stay and condenses

it to summarize standardized results (RSS). Which is fed by one or more medical units

(RUM), depending on the number of medical units attended who cared for the patient

during the stay in one or more hospitals. Likewise, the PSMI uses a classification called

a group of homogeneous patients (GHM) to classify all the records produced in each

hospital and delimits them into groups of coherent codes according to medical and cost

terms [Chantry 12].

2. PMSI program of medicalization systems information in medical care and rehabilitation care ope-
rated by the French agency ATIH https://www.atih.sante.fr/ssr/presentation
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The hospital discharge data warehouse is divided into four main areas of patient care,

such as medicine, obstetrics, and odontology (MCO), follow-up and rehabilitation care

(SSR), home hospitalization (HAD), and psychiatry. In 2019, they obtained a total of

1’162,900 in the flow of patients treated in 353 facilities, as shown in the following table

2.1.

Table 2.1 – Patient flow for PACA health system in 2019.

Patients Facilities

Medicine, obstetrics and odontology (MCO) 1’024,700 123
This collection describes the medical activity of health facilities
as well as the summary of outpatient activity, comprising
administrative, demographic, medical and support information.

Care and rehabilitation follow-up (SSR) 96,100 153
This collection describes the medical activity of health facilities
and quantifies hospital stays, which contains a summary of
hospitalizations by sequences of weeks.

Home hospitalization (HAD) 6,800 23
This collection applies to all health establishments, public
and private, with authorization for home hospitalization activity.

Psychiatry 35,300 54
This collection describes all the activity carried out
for the benefit of patients by health establishments,
in full or partial hospitalization as well as in outpatient.

2.2.2 Care and Rehabilitation Follow-up Data Warehouse

The primary hospital discharge used during the development of this thesis was the

PMSI care and rehabilitation follow-up data warehouse as a source to obtain the com-

plete summary of the standardized results and derive the clinical dataset. Specifically, the

SSR data warehouse is derived from the hospitalization and rehabilitation facilities. They

are homogenizing in records with information related to the diagnosis, procedures, and

rehabilitation of patient care treated during a week and with the possibility of tracking

up to 52 records per year.

The SSR data covers 2006 to 2011, with an average of 680,626 records and 166,202

procedures per year, and the data corresponding to the MCO, has an average of 1’982,451

records and 5’113,458 procedures per year, as shown in the table 4.3. However, in this

thesis, the MCO data is not used, although these have a greater flow of patients per year,

it did not contain the necessary indexes to identify the follow-up visits or to link the

patients that came from SSR facilities.
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Table 2.2 – Summary of Patient Flows in PACA region.

In-Patients Out-Patients
Year Records Procedures Records Procedures

2006 660, 743 109, 605 1, 864, 122 5, 606, 190
2007 668, 109 124, 451 1, 827, 333 5, 812, 424
2008 673, 676 139, 234 1, 868, 364 6, 250, 494
2009 693, 469 226, 626 2, 087, 874 6, 769, 023
2010 − − − −
2011 707, 130 231, 091 2, 264, 558 7, 221, 259

The main clinical variables were structured into ten different groups, which include cli-

nical descriptors such as demographics, admission details, hospitalization details, physical

dependence, cognitive dependence, rehabilitation time, comorbidities, morbidity, etiology,

and procedures, for all patients who were treated in any of the hospitals in the PACA

region or patients in this region who were treated in other hospitals from 2006 to 2011,

as shown in the following Table 2.3.

Table 2.3 – Clinical descriptors to build the dataset.

Entity Feature Description

Header ID RSA
This is the identifier for the entire
hospitalization based in standardized
weekly summaries.

ID hospital
Designate the number of the health facilitie
in the national archive of social
and health establishments.

Demographics
Age group

It is categorized into ranges like :
[0− 6, 7− 12, 13− 17, 18− 29, 30− 59, 60− 74]

Sexe It is coded as 1 male and 2 female.

Admission Details
Input mode

Mode of entry into the medical unit. Which
can enter by mutation, final transfer,
orovisional transfer or home.

Input source
Specifics if the patient comes from a
control unit, a hospitalization unit,
intensive care unit or home hospitalization

Previous state
The anticipation into the medical unit, during
the week considered an indicator to order the
stays of the same patient in an establishment.

First week The start dates of entry into the medical unit.

Hospitalization Details Numdays week
This is the calendar week ID number.
The first week of the year is the week that
contains January 4 (ISO 8601 standard).

Sequence number
Each calendar day of actual presence in
hospitalization is coded ”1” otherwise ”0”.

Surgery time
For patients hospitalized after surgery,
the date of the intervention is information
from the standardized weekly summary.
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Entity Feature Description

Physical dependence
Dressing

It is a quantitative measure of the ability
to dress and undress above the waist,
as well as to put on and take off an
orthosis or prosthesis as the case may be.

Displacement

This variable includes five actions :
bed-chair-wheelchair transfers, transfers to
the bathroom, transfers to the bathroom or
shower, to locomotion and the use of stairs.

Feeding
This variable includes three necessary
actions : use of utensils, chew, swallow
(swallow a bite or sip).

Ccontinence
This variable includes two actions :
control and hygiene of urination,
control and hygiene of defecation.

Wheelchair

A patient uses a wheelchair. He needed help
getting from bed to chair (support and
positioning by the caregiver). Once seated
in his chair, he moves independently.

Cognitive dependence
Comportement

It includes a single action, social interaction,
defined as the ability to get along with others
and participate in social or therapeutic
hospital situations to satisfy one’s own needs.

Communication
This variable includes two actions :
understanding of verbal, visual or auditory
communication ; clear expression of verbal and
nonverbal language.

Rehabilitation time

Mechanical R.
Motorsensory R. The score for rehabilitation proccedures
Neu. Psycho. R. is calculated by adding the weightings

Cardiorespiratory R. of coded rehabilitation from the clinical
Nutritional R. proccedures, then dividing the result by

Uro. Sphincter R. the total number of days of presence
Kidneys R. during the week (Monday to Friday).

Electrical R. This score is used quantitatively and
Collective R. in two classes (lower or higher than a

Physiotherapy threshold may vary according to
Balneotherapy medical-economic groups)

Associated diagnosis

[DAs1, ..., DAs20]

Significant diagnostic association
Is considered to be any health problem
that coexists with the main morbidity
that has led to effective management
(research, treatment, etc.)
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Entity Feature Description

Primary morbidity
Care purpose

The care purpose is usually an action
that answers the following questions :
What type of care did the patient
mainly receive ? What was the essential
nature of the medical and nursing
care for this patient ?

Morbidity

The main morbidity manifestation is
the deterioration or functional or
organic health problem on which
the previous action is exercised,
and which has mobilized most of the
medical and nursing effort.

Etiology
It is the etiology of the main morbidity,
which describes the cause of a disease.

Major Diag. cat.

It is a measure to classify each standardized
weekly summaries in a major category.
Dichotomous tests (yes-no) are performed
successively on three main morbidity
variables as care purpose, morbidity and
etiological condition.

Hom. Diag. Cat.

A second step consists in classifying each
standardized weekly summaries in
a nosological group (GN), most often
describing the main pathology.

Clinical procedures
Procedures

Any clinical procedure performed during
the week as part of the hospitalization
and is coded under the CCAM codes. e.g.
HHFA001 Appendectomy, of first quadrant.

Destination
Output mode

Exit mode of the medical unit. Which
can leave due to mutation, hospital
transfer, home transfer or the death
of the patient.

Destination
If the exit method requires it, in the
event of exit by mutation or transfers

2.3 Structural Equation Model from Quality Care to

Risk Modeling

Since 2011, meta-analysis has demonstrated that healthcare information systems that

have successfully adhered to clinical guidelines benefit the quality and efficiency in which

healthcare organizations perform patient care [Buntin 11]. The mechanisms by which

EHRs improve healthcare quality are reducing medication errors through a clinical deci-

sion system, improved clinical communication, improved information management, lea-

ding to better treatment decisions, and data sharing, which reduces information fragmen-

tation.. [Atasoy 19]. Specifically, an observational study confirmed that the adoption of

EHR improved the quality of care in medical centers for the treatment of critically ill

patients. For this purpose, they performed a Cox proportional hazards regression analy-

sis, where the leading indicators of quality of care were inpatient mortality, readmissions
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within 14 days, and postoperative mortality at 48 hours [Lin 20].

In this sense, the standard Structural Equation Model (SEM) established to measure

the quality of care in healthcare organizations is used to develop clinical risk prediction

models, adding a new level of automation to empower clinicians and improve the quality of

care. The SEM identifies and quantifies system and patient characteristics to timely and

appropriately assign clinical procedures to obtain the best patient care outcomes. Figure

2.3 shows the SEM components for mapping the clinical structure to clinical outcomes ; in

which the characteristics of health systems, patient characteristics, and social and family

characteristics are standardized in CDA to build a repressive input vector to feed deep

learning tasks to process clinical caregivers as diagnoses, procedures, and length of stay.

Figure 2.3 – Main entities to develop risk models for inpatient outcomes.

2.3.1 Structural Equation Model Applied to Risk Modeling in

Paca Hospitals

The SEM has been shown to help clinicians better understand their patient popu-

lations’ needs and improve health outcomes and reduce expenditures by targeting and

tailoring care to high-need patients. In this study, we integrate the data-driven modeling

with the SEM to digitize the patient information and the clinical care procedures to de-

velop the clinical risk models.

The data-driven modeling focused on structuring the EHRs according to the clinical

descriptors from the care and rehabilitation follow-up data warehouse of PACA health-

care systems. Then, a transformative library is developed to parser the various sources

of EHR over the years to the clinical document architecture (FHIR) to allow semantic

interoperability and allow the feeding of data into the clinical visualization API or to

feed them into the clinical modeling tasks, which is described in detail in the following

subsection.
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The SEM approach was designed as a pipeline of deep learning tasks to map the

primary care pathways according to the flow of patients from the follow-up care and re-

habilitation in the PACA facilities. The conceptual scheme of the patient hospitalization

process to track the medical history of individual patients and the second utilization of

the EHRs to data-driven models for improving the accuracy of healthcare forecasting is

presented in Figure 2.4. In which is presented the discharge flow ratio for all hospitalized

patients during their first week in 2008. The first step is to extract the patient’s features

and embed them in a general representation of patients (phenotyping) using unsupervi-

sed learning methods. Thus, the embedded patient feature representations are fed into

diverse deep learning tasks like health care purpose, medical procedures, length of stay,

or destination.

Figure 2.4 – Conceptual scheme of the discharge flow ratio for all hospitalized patients
during their first week in 2008.

2.4 Development a FHIR transformer to standardize

EHRs

The main objective here is to design and develop a framework that parses EHRs into

the FHIR standard as the primary basis for developing medical studies using deep lear-

ning models and enabling the trained model’s scalability among other institutions. The

clinical document architecture is one of the leading data formats standardized in the HL7

FHIR specification and is being used by healthcare institutions showing robustness in

its structure and agility to communicate information between devices and applications.

However, this model is rarely used in research or studies using deep learning methods

applied to medical research since this stage increases the complexity of the study.

Furthermore, MongoDB has proven to be a robust engine that offers excellent perfor-
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mance, accessibility, and scalability for document non-relational database management

in a wide variety of use cases and industries [Anusha 21]. MongoDB works with records

as documents. The documents are stored in JSON, BSON, and XML formats, allowing

data storage for various uses.

A MongoDB aggregation pipeline was developed for parsing and serializing a patient

record into an FHIR document, called ehr2fhir transformer. The clinical document ar-

chitecture was based on the clinical entities and features presented in Table 2.3. The

ehr2fhir create an initial collection coming from the anonymization output summaries

(RSA) obtained from the PACA PMSI data related to hospital admissions, ICD-10 diag-

noses, disease grouping, procedures, and others.

The former aggregation is made to merge the RSA files with the procedures files to

compose an object per each patient RSA data and concatenate all the operations perfor-

med on the same week.

The second aggregation is made to add the SSR fields. This aggregation translates the

French clinical variables to English clinical variables according to the features described

in the Table 2.3, as well as is performed the engineering rules to group and bucketize

variables as the age which was used seven groups like age groupe : [0 − 6, 7 − 12, 13 −
17, 18 − 29, 30 − 59, 60 − 74, 75+] and other variables as the rehabilitation times was a

divide in buckets.

The third aggregation is made to build the clinical document architecture used during

the experiments of this thesis. This aggregation defines the clinical document architecture

divide in header and body according to the entities described in Table 4.3. Furthermore,

it is a function to serialize each record to create a clinical document in JSON format.

Finally, an example of the JSON CDA schema is presented :

API Expressions 2.4 – CDA schema of PMSI hospitalization data.

ssr2008 addfield . aggregate ( [
{$addFields : {"x0_header" : {

"ID_RSA" : "$idnum" ,
"hospital" : "$finess" ,
"patient" : "$clef" ,
"patient_Rol" : "Inpatient" ,
"rsa_V" : "$version" , }}} ,

{$addFields : {"x1_demographics" : {
"age" : "$age" ,
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"sexe" : "$sexe" ,
"age_group" : "$age_group" ,
"activity" : "$type_activite" ,
"postal_code" : "$geograph" , }}} ,

{$addFields : {"x2_admission_details" : {
"input_mode" : "$mode_entree" ,
"input_source" : "$prov_entree" ,
"previous_state" : "$anteriorite" ,
"first_week" : "$semaine_debut" ,
"month" : "$Mois" ,
"year" : "$Annee" , }}} ,

{$addFields : {"x3_hospitalization_details" : {
"numdays_week" : "$Nbjour_sem" ,
"numdays_weekend" : "$Nbjour_we" ,
"numdays_hospitalized" : {

$toUpper : "$numdays_hosp"} ,
"sequence_number" : "$Num_seq" ,
"surgery_time" : "$date_chir_group" , }}} ,

{$addFields : {"x4_physical_dependence" : {
"dressing" : "$Dep_habillage" ,
"displacement" : "$Dep_deplacement" ,
"feeding" : "$Dep_alimentation" ,
"continence" : "$Dep_continence" ,
"wheelchair" : "$Fauteuil_roulant" , }}} ,

{$addFields : {"x5_cognitive_dependence" : {
"comportement" : "$Dep_comportement" ,
"communication" : "$Dep_relation" , }}} ,

{$addFields : {"x6_rehabilitation_time" : {
"mechanical_rehab" : "$Reeduc_meca_gr" ,
"motorsensory_rehab" : "$Reeduc_sensor_gr" ,
"neupsycho_rehab" : "$Reeduc_neuropsy_gr" ,
"cardioresp_rehab" : "$Reeduc_cardioresp_gr" ,
"nutritional_rehab" : "$Reeduc_nutri_gr" ,
"urosphincter_rehab" : "$Reeduc_urosph_gr" ,
"kidneys_rehab" : "$Readap_reins_gr" ,
"electrical_equipment" : "$Appareillage_gr" ,
"collective -rehab" : "$Reeduc_collective_gr" ,
"bilans" : "$Bilans_gr" ,
"physiotherapy" : "$PhysioT_gr" ,
"balneotherapy" : "$BalneoT_gr" , }}} ,

{$addFields : {"x7_associated_diagnosis" : [
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"$DAs1" , "$DAs2" , "$DAs3" , "$DAs4" , "$DAs5" ,
"$DAs6" , "$DAs7" , "$DAs8" , "$DAs9" , "$DAs10" ,
"$DAs11" , "$DAs12" , "$DAs13" , "$DAs14" ,
"$DAs15" , "$DAs16" , "$DAs17" , "$DAs18" ,
"$DAs19" , "$DAs20" , ] }} ,

{$addFields : {"x8_primary_morbidity" : {
"care_purpose" : "$Fin_princ_PC" ,
"morbidity" : "$morbid_princ" ,
"etiology" : "$affect_etiol" ,
"major_diagnostic_categories" : "$cmc_rhs" ,
"homos_diagnostic_categories" : "$ghj_rhs" , }}} ,

{$addFields : {"x9_clinical_procedures" : {
"procedures" : "$actes.CodActe" ,
"nb_actes" : "$Nb_actes" : , }}} ,

{$addFields : {"x10_destination" : {
"last_week" : "$semaine_fin" ,
"output_mode" : "$mode_sortie" ,
"destination" : "$destination" , }}} ,
] )

2.4.1 Patient Flow in PACA Hospitals

Once the clinical data coming from the hospitals of the PACA region, France, had

been serialized and structured with FHIR standards. The next objective is to analyze

the patient flow of hospitalizations to quantify the number of patients admitted to the

hospital and map the trajectories until discharge.

This first analysis allows us to see the density of the population entering the hos-

pitalization stage, to know the mode of entry and the mode of exit. For example, if a

patient comes from a hospitalization transfer from one hospital to another ; if the trans-

fer is from one unit to another in the same hospital ; And mapping the output of these

patients transferred to understand where the patient load is and identified the tasks that

clinicians need the AI to assist the decision-making.

To perform this exploration, we selected data concerning the first week of hospitali-

zation for all hospitalized patients in 2008. As a result, Figure 2.5 illustrates the flow of

121,369 patients admitted to PACA health services from the general community, trans-

ferred from other hospitals, and discharges into the health services systems for patient

care, threat, and discharge. It is observed that the highest flow of hospital admissions

comes from the emergency department, with a rate of 72,422 patients in the first week
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of hospitalization in 2018 for the entire PACA region. 62.4% of patients in the transfer

admission modality are discharged home, followed by 14% of patients in the transfer ad-

mission modality are discharged to another inpatient unit such as ICU and others. And

the majority number of decedents per week comes from the transfer admission modality

at 2.67%, with 1,931 decedents out of the total number of transfers processed in the first

week of hospitalization in 2018 for the entire PACA region.

Figure 2.5 – The inpatients flow ratio in PACA health services for all hospitalized
patients during their first week in 2008.

2.4.2 Medical Care Purpose Classification for Inpatients

The PMSI system has two ways to track the patient flow and correlate those with the

medical units. Once using the medical diagnoses with the ICD-10 codes, the other uses

the equivalent diagnosis-related groups organized in hierarchization levels encoded in a

Nosological Group (GHJ).

The medical diagnosis contains the care purpose of each hospitalization—allowing the

correlation between the patient flow with the GHJ and thus obtaining a better quanti-

fication and reporting of the workload and the need for IA tools. Being the nosological
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group codes complementary information of the primary morbidity of the patient, which

is composed of :

— Care purpose : Healthcare realization of the main load taking and high-level

expertise to attend to the patient.

— Primary morbidity : Primary morbid manifestation such as illness, symptom,

trauma, injury, poisoning, or situation at hospital admission.

— Etiology : Cause or origin to cause disease.

Therefore, to enrich the patient flow analysis is extracted the high-level care purpose

group, obtaining 14 labels-categories to classify the medical care of patients hospitalized,

as shown in Table 2.4.

Table 2.4 – Medical Target 1 : Care purpose classification task to assist the inpatient
encounter.

Class ID Labels Description In-Patients Number

0 Other Situations 5,271
1 Proceedings of Medical Cardiovascular / Respiratory Care 21,684
2 Proceedings of Circulatory System Disorders 15,342
3 Proceedings of Neuro-Muscular Medical Care 6,310
4 Proceedings of Medical Care Mental Health 3,448
5 Proceedings Sensory and Skin Medical Care 9,679
6 Proceedings of Rheumatics / Orthopedic Medical Care 21,247
7 Proceedings of Post-Traumatic Medical Care 16,594
8 Proceedings of Medical Amputations 875
9 Palliative Care 2,426
10 Placement Expectation 359
11 Rehabilitation 2,643
12 Proceedings of Nutritional Medical Care 10,799
13 No grouping 4,692

Total 12,1369

The second analysis of the patient flow is divided by two charts, the first concerning

inpatient admissions versus major diagnosis in the nosological group classification. And

the other concerning the discharge from hospitalization versus major diagnosis in the

nosological group classification.

The figure shows the multimodal distribution of the patient flow with admissions

and discharge mapped across a high level of care purpose groups or GHJ. The green

distributions represent all patients hospitalized during their first week in 2008, while

the orange distributions represent all patients hospitalized during their fourth week in

2008. The categories with the highest flow of inpatient hospitalization at admission are

1 : Cardiovascular and respiratory medical care procedures, 2 : Circular system disorders
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procedures, 3 : Neuro-muscular medical care procedures, 5 : Sensory and skin medical care

procedures, 6 : Rheumatic and orthopedic medical care procedures, 7 : Post-traumatic

medical care procedures, 12 : Nutritional, medical care procedures.

(a) Hospitalization admissions input sources.

(b) Hospitalization discharge output sources.

Figure 2.6 – Multimodal distribution chart of the patient flow correlates admission
and discharging hospitalizations with the major diagnosis categories using the

nosological group classification.
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2.5 Summary

The second use of EHRs allows the development of new DL models that empower

researchers and healthcare professionals with the possibility of finding new answers for

the treatment, prevention, and understanding of disease and quality of life. While the

interplay of big data analytics and the development of artificial intelligence applications

in automating routine tasks will free up the workload of healthcare professionals, allowing

them to focus on more personalized and in-depth analysis for each patient.

Despite the enormous amount of work hospitals and healthcare centers require to up-

grade their health information systems from management information to new integrated

medical intelligence applications and enable scalability of the model across different or-

ganizations and build learning healthcare systems.

We believe that the basis for building continuous learning healthcare systems is to

add a layer of standardization of EHRs through a standard medical model, such as those

provided by the FHIR standard. Applying the standardization to the EHR-driven mode-

ling allows DL models to be scaled from hospital A to hospital B, providing an opportune

scenario to evaluate the robustness and generalizability of DL models.

The next chapter focuses on machine-and-deep learning approaches to enable high-

throughput phenotype discovery. It seeks to transform the general representational space

of patients and group patients by groups that share similarities from vital signs, comor-

bidities, the purpose of care to enable the training of supervised learning algorithms that

allow the medical task to begin.
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Chapitre 3

AI-based to Automate Clinical Risk

Prediction Workflows

EHRs are growing and flowing more and more through healthcare systems, collecting

longitudinal data on patient and physician experience. Raising a common challenge in

healthcare systems, as it contains a wealth of historical patient information, but clini-

cians are short on time and often do not have the right tools to synthesize this informa-

tion [Choi 16a]. In response, data-driven approaches have been applied to develop clinical

decision support systems based on secondary use of EHRs for modeling different clinical

tasks or events. In general, the design of these systems involves integrating diverse ma-

chine learning training processes, in which input features are mapped to obtain a set of

intermediate features that are then mapped to the output classes. [Shamout 20]. Howe-

ver, modeling an accurate representation of the patient’s state in an embedded feature

representation is a task that involves solving several challenges in terms of algorithmic

complexity, such as the number of hours required for model convergence and the consi-

derable memory size needed to process these models.

This chapter describes the first component of the DiagnoseNET workflow to automate

extracting and representing the patient phenotype for use in mapping different medical

targets. This component focuses on implementing unsupervised neural networks to derive

general latent representations fed by supervised learning algorithms, while computing re-

sources such as convergence time, GPU memory, and power consumption are monitored

to improve their utilization. The data manager abstracts the entire workflow orchestration

stage by stage, from the transformation of clinical features to the latent representation,

dividing the data for training, validation, and testing, and using micro-batch management

to train deep distributed neural networks.

DiagnoseNET workflow automates the training process of the machine learning pi-
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peline, allowing each stage to have enough dynamism to configure different parameters

according to the problem or to search for the best model to specify and explain the me-

dical task. The main stages of the DiagnoseNET workflow are as follows :

1. In the first stage, it previously processes the EHRs to build a sparse binary repre-

sentation of the patient and thus describe the patient’s condition according to a

standardized semantic structure that guarantees the interoperability of the model

to be built.

2. Then, in the second stage, we seek to transform the representation space to obtain

latent representations that embed the clusters of patients with similar clinical des-

criptors and reduce the dimensionality of the data than the original space where

the data lives.

3. In the third stage, both representations could be used as input to supervised learning

models to model clinical risk predictions according to the medical target.

3.1 EHRs derivation to represent the patient’s condi-

tion

Representing patient conditions is an essential step in developing clinical decision

support systems. Much of the performance of clinical predictive models depends on the

representation of data features and how underlying bias is handled in the EHRs, which

often have noisy data. For which a method called High-throughput Phenotyping (HtP)

has recently been introduced to extract impartially and automatically select informative

features, which can be comparable to those chosen by experts in terms of machine learning

tasks [Yu 15]. In addition, the HtP is enhanced by the use of representation learning

algorithms applying different embedding approaches, such as standard dimensionality

reduction techniques, distributed representations used in language modeling, the use of

embedding layers as part of a larger model, or through the latent space of autoencoders

and their variants [Shamout 20].

3.1.1 High-throughput Phenotyping from EHRs

Patient phenotypes are the basis for clinical and genetic studies of disease risk, and

outcomes [Zhang 19]. Generally, a clinical phenotype refers to the disease or condition re-

presenting an observable trait of the subject. A retrospective analysis of patient datasets

is used to derive and identify correlations of clinical features with host-response patterns

and clinical outcomes to determine whether a patient with a particular set of clinical

characteristics meets that definition [Yu 15]. These clinical features are usually composed
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of heterogeneous data from diagnoses, procedures, medications, vital signs, laboratory

results, and clinical notes coded and recorded according to each healthcare system.

High-throughput phenotyping is a mechanism that aims to derive millions of fine-

grained phenotypes, speeding up the process of trait selection for phenotyping algorithms

with minimal human intervention. Algorithms that identify the desired phenotype could

be constructed in quite different ways ; One of the methods used is the vector represen-

tation in which, for each medical objective, a correlation matrix is constructed between

the patients and the features of the medical data [Wang 14]. The generation of the dif-

ferent vectors usually takes significant time. Other possibilities are nonnegative matrix

factorization, and nonnegative tensor factorization to extract the phenotypes as a set of

matrices, tensor candidates showing the patients clusters linked to specific medical cha-

racteristics and their date [Ho 14,Perros 17,Perros 18]. Other approaches use nonnegative

vectors to embed the clinical codes and use word representations such as skip-gram or

Glove to generate the corresponding visit representation [Choi 16b].

Figure 3.1 – A conceptual diagram to encounter the clinical process in healthcare
facilities and derive patient phenotypes.

The figure 3.1 shows the conceptual diagram depicting the clinical and EHR recor-

ding process and its derivation of patient phenotype to feed this knowledge back through

clinical decision support systems. The box A represents the feedback loops in the EHR,

where the patient’s condition varies and determines not only the value of the measure-

ments in the recording but also the type and timing of the measurements. While box B

represents the process of high-throughput phenotyping and its subsequent use for clinical

modeling. And box C represents the system that is designed to integrate these pheno-

types and clinical models to highlight individual patient features and assist clinicians in

37



CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION
WORKFLOWS

decision making. However, EHRs are not a direct reflection of the patient’s proper condi-

tion, but rather a review of the recording process inherent in the healthcare system with

noise and feedback loops [Hripcsak 13]. Depending on the healthcare system, these data

pose modeling challenges associated with missing data, mismatches, sparsity, and noise

at the medical record level. These challenges are being solved by applying deep learning

algorithms to healthcare research, described in the following sections.

3.1.2 Representation Learning to Derive Patient Phenotypes

In recent decades, manual phenotyping methods were traditionally designed to iden-

tify patterns in patients with a single target disease, with domain experts overseeing

the definitions of trait scales for a particular medical target and typically working with

well-defined. Still, minuscule sets of data [str 10,Kennedy E.H. 13]. Meanwhile, the new

generation of artificial intelligence medical systems is expanding medical capabilities from

tracking patients’ health to predicting early risk detection and providing new patterns

to help personalize treatments. Therefore, representing the state of patients through the

phenotyping process is a crucial step in the development of these systems.

Following the significant success of representation learning for image, text, and audio

with rich high-dimensional data, there has been increasing transfer of knowledge gained

in these domains to train deep neural networks in medical settings [Bengio 11, Miko-

lov 13,Srivastava 15]. Healthcare researchers and computer scientists have used unsuper-

vised methods to train deep neural networks to discover latent representations of patient

phenotype.

They effectively built predictive models for a broad set of medical conditions. The

strength of these unsupervised methods is that they do not require domain experts at

the level of the feature extraction process and solve some issues of missing data, sparsity,

and log-level noise.

In general, the derivation of a patient’s phenotype involves a mathematical transfor-

mation of high-dimensional features into a lower-dimensional space. In the deep learning

process, the representation is learned using two neural network models with multiple hid-

den units for encoding and decoding the clinical features. First, an encoder network or an

embedding function fθ(.) is a generative model, which takes the essential clinical features

X as input data to transform them into a new latent space Z as the output. Second, the

representation Z is fed into the decoder network gθ′(.), which is used to reconstruct the

input data X and also to predict the clinical label yn given the input latent representation

Z, as shown in the Figure 3.2. Meanwhile, the choice of a model usually depends on the
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performance of subsequent learning tasks.

Figure 3.2 – An unsupervised encoder network maps clinical features into a new latent
space to represent the patient’s phenotype.

3.2 DiagnoseNET to Automate Clinical Risk Predic-

tion Workflow

In this thesis, we extend the deep patient approach [Miotto 16], in which all clinical

descriptors are grouped inpatient vectors, and each patient can be described by a high-

dimensional vector or by a sequence of vectors computed in a predefined temporal window.

Figure 3.5 shows the process of using the DiagnoseNET workflow to build a clinical-

specific risk prediction model from EHRs. It highlights the different steps needed to

construct the phenotype, aiming to create an equivalent but more miniature representa-

tion for more effective clinical or medico-administrative prediction. The first stage focuses

on mining the heterogeneous clinical data source to build a patient document-term ma-

trix. The second stage uses unsupervised representation learning methods for mapping

the patient’s document-term matrix to a new latent space with a lower-dimensional data

representation. In the third stage, the medical task classes are matched with the new

patient representations to train a classification model using machine learning algorithms

or deep neural networks. Finally, the quality of the new patient representation consists of

evaluating the trained model on a new test set by comparing the accuracy performance

against a second classification model trained using the patient’s document-term matrix

directly. A detailed description of the three stages is provided in the following paragraphs.
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Figure 3.3 – Workflow scheme to automate patient phenotype extractions and apply
them to predict different medical targets.

3.2.1 DiagnoseNET : Patient Feature Composition

The growing health-wide research is mainly due to the clinical dataset being composed

of secondary usage of patient records collected in admission, and hospital process [Jensen

Peter B. 12]. However, there is no standard library for mining and composing represen-

tative patient vectors [Evans 16]. The main objective of the patient feature composition

is to develop a set of functions for high-throughput phenotyping that provides a set of

data mining tasks and tools for processing patient records. To this end, a data mining

library was built that transforms the EHRs into a clinical document architecture, using

the standard called fast healthcare interoperability resources (FHIR) to reproduce high-
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throughput phenotyping from dataset A to a dataset B.

Figure 3.4 – DiagnoseNET data mining library transforms EHRs into a clinical
document architecture according to the FHIR standard and then is derived the clinical

data of the patients in a document-term matrix from clinical features.

The following two components that achieve this objective were developed, as shown

in Figure 3.4. The first component, preprocess a heterogeneous clinical data source (e.g.,

EHR) through a chain of aggregations to structure the clinical descriptors by entities,

using the fast health care interoperability FHIR standard discussed in the previous chap-

ter, and its repository is available at https://github.com/jagh/ehr2fhir.

The second component focuses on standardizing the different records by data type to

compose a matrix of patient terms whose columns are the clinical terms, i.e., a sequence of

demographic information followed by all the ICD10 codes for medical diagnoses. The main

step is to extract a vocabulary (medical ontology) from the EHR or import a ready-made

one to store clinical terms and serve as the ontological basis for patient feature compo-

sition. Whose main functions are described in the following points, and its repository is
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available at https://github.com/IADBproject/patient-feature-composition.

— Clinical Document Architecture (CDA) The CDA identifies the syntax for

clinical records exchange between the system PMSI and DiagnoseNET through

the new versions generated by the agency ATIH. The CDA schema consists of a

header and body :

— Header : Includes patient information, author, creation date, document type,

provider, etc.

— Body : Includes clinical details, demographic data, diagnosis, procedures, ad-

mission details, etc.

— Vocabulary Composition Enables dynamic or custom vocabulary for selecting

and crafting the right set of corresponding patient attributes by medical entities.

— Features Composition Serialize each patient record and get the CDA object for

processing all patient attributes in a record object.

— Label Composition This function gets the medical target selected from the CDA

schema to build a one-hot or vector representation.

— Binary Patient Representation To build the initial patient representation is

mapping the values of the features from the record object with the corresponding

terms in each feature vocabulary to generate a binary corpus using Term-document

Matrix.

3.2.2 DiagnoseNET : Unsupervised Learning

Once the patient document-term matrix has been constructed, it is time to perform

a representation model learning to transform the input data into a new latent space with

lower dimension and discover the clusters that best represent the phenotype of the pa-

tients for input into a clinical-specific risk prediction model. It is the most sensitive stage,

both because of the variability of the clinical characteristics that can be selected as an

input and because of the intense finetuning of the hyperparameters to choose the model

that generates a quality patient phenotype to predict medical tasks.

Consequently, it was necessary to build a data manager that automatically stores

the clinical features selected to compose the patient’s document-term matrix in a sand-

box to generate and store the subsequent transformations hierarchically according to

each generated model hyperparameters applied to the selected deep neural network. As
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shown in Figure 1, the data manager is incorporated in each of the stages, from the data

mining process, the unsupervised learning process to the execution of different supervi-

sed algorithms to perform the medical tasks. For the first case, the data manager is in

charge of structuring the storage from the data staging according to the FHIR standard,

followed by the construction or import of the vocabularies (medical ontology) to build

the patient document-term matrix according to the selected clinical features called bi-

nary representation. Then, the data manager divides the data into training, validation,

and test so that the network feeds them into the unsupervised neural network and stores

the new latent representation according to the hyperparameter used. Finally, the data

manager can use the binary representation or a different latent representation to perform

the subsequent supervised learning tasks and store the learning metrics and computatio-

nal metrics for each new training process.

Figure 3.5 – DiagnoseNET datamanager to automate the s.

On the other hand, a variation of autoencoder called Unsupervised Denoising Stacked

Autoencoders was selected as the neural network architecture to reduce the dimension of

data and discover the new patient representation. Since training these neural networks

is time and resource-consuming, it was necessary to develop a parallelizable GPU-based

framework to train the neural networks with the adaptation into the NVIDIA Jetson
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TX2 cards. Whose model and parallel transformation will be described in the following

subsections.

Unsupervised Stacked Denoising Autoencoders

The representation learning model is built from the unsupervised denoising stacked

autoencoders (USDA), which combine an end-to-end generative autoencoder as a weight

generator to pre-train a network of encoders layers that generate the latent representa-

tion. The objective of the USDA model is to generate representations that are sufficiently

robust to the introduction of noise. For this, the noise process is introduced in the first

layer employing Gaussian additive noise that allows the random assignment of the subset

of inputs to 0, with a certain probability [Vincent 10].

Usually, the model is trained with unlabeled images, whose input images are used

to compare the reconstruction image generated from the input image with noise. The

USDA model comprises a stack generative autoencoder and an encoder network that

generates the latent representation to feed the classification learning model. Each latent

layer of the autoencoder has several neurons equal to that of the corresponding layer

of the coding network to which the weights are transferred. At each step of the training

process of the USDA network, the weights of the stacked autoencoders and the associated

lower-dimensional latent representation are obtained simultaneously, as shown in Figure

3.6.

Figure 3.6 – An unsupervised encoder network maps the binary patient representation
x into a new space, obtaining the latent patient phenotype representation z.

The USDA network was composed as a deterministic mapping from the cleaning of

the partially corrupted input x̃ (denoising) to obtain a hidden features representation

y = fθ(x̃) by layer. Therefore, each stacked layer is independently trained to reconstruct

a clean input x from a corrupted version of it z = gθ′(y), this approach was introduced

by [Vincent 10]. Previously each encoder was pre-trained to get a semantics representa-

tion parameters θ′ by denoising autoencoder which was trained before, to obtain a robust
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representation y = fθ(x̃) from a corrupted input x̃. The following steps described the

USDA implementation :

— First is applied dropout to corrupting the initial input x into x̃ the stochastic

mapping x ∼ qD(x|x).

— Second, the corrupted input is mapped as traditional autoencoders to get a hidden

representation y = fθ(x̃) = s(Wx̃+ b).

— Third, a schematic representation is reconstructed from a hidden space z = gθ′(y) =

s(W ′y + b′).

— Four, once the parameters θ∧θ′ are trained to minimize the average reconstruction

error over the training set, to have z as close as possible to the uncorrupted input x.

— Finally is shared the new semantic representation parameters θ′ to next layer

as new initial input x2 and corrupting it into x̃2 by stochastic mapping x2 ∼
qD(x2|x2) and repeat steps.

Distributed Approach for Training UDSA Networks

Unsupervised learning algorithms are an emerging approach in which the search for a

robust and generalizable architecture is a common argument in state-of-the-art. Meanw-

hile, unsupervised methods have shown promising results in reducing the dimensionality

of clinical features and clustering of subjects. However, unsupervised learning models

such as USDA are computationally complex since this method involves one optimizer per

block or stacked layer. Additionally, unsupervised neural networks require a much more

extensive training dataset than supervised neural networks, and since this is the main

task to derive the phenotype representation of patients to then train various clinical risk

models using supervised.

Thus, a distributed approach and batch training overcomes the limitations of the trai-

ning speed when the model does not fit in the GPU memory. In this section, we extend

the data parallelism and distributed deep learning process proposed by [Dean 12b]. Fur-

thermore, we developed an approach for training unsupervised denoising autoencoders

using a mini-cluster of Nvidia Jetson TX2, adding a high level of task-based program-

ming model to speed up the tasks when independent tasks are executed concurrently. The

figure 3.7 sketch the distributed implementation to train the USDA network using the

DiagnoseNET framework. The part A. shows the task parallelism for training the USDA

45



CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION
WORKFLOWS

network and the part B. shows the data dependencies and the tasks that are processed

concurrently for training the USDA network.

Figure 3.7 – Illustrative schema of the parallel and distributed processing train
unsupervised stacked denoising autoencoders implemented to obtain the patient

phenotype representation.

We reconstructed a three-block USDA network with TensorFlow-1.5 to extract and

share the weights to initialize an encoder network to obtain the latent representation that

compresses the input clinical data and represents the patients’ state.

Distributed cluster setup : Distributed cluster setup aims to identify each node

and define each node’s job name and task index.

— The first step is to build a distributed session and let all the nodes be ready to

train the deep neural network.

— The second step is to declare the number of layers and pre-trained the denoising

autoencoder for processing the last encoder network.

— The third step specifies the host IPs and the role of each machine as a parameter

server (ps) or as a worker. In which is define the machine role setting the input

flags like number of ps, number of workers, job name, and task index.
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USDA training and distributed processing : Declare the number of layers and

pre-trained the denoising autoencoder for processing the last Encoder Network.

The parameter server node will wait until all workers are connected. Once all the

workers are synchronized, build a distributed session that produces a queue and dequeue

to summarize the gradients computed by each worker and send the new recapitulate gra-

dients to each worker.

The worker node first connects to the distributed session using a device replication

approach. It then builds the neural network graph in memory using a placeholder to

store the training data set. Similarly, a placeholder is created to make the neural network

graph and keep the data validation set. Then, each worker enters the neural network

using a distributed session through a supervisor method. It allows to host the previously

defined network graph and creates checkpoints to restore from a checkpoint when an error

occurs. Additionally, in the supervisor, you can define rules to end the training, resulting

from penalties for learning or epoch convergence. Finally, each worker loads and reads

the mini-batch files assigned to initialize the training process, and the weights with the

highest accuracy are saved for the validation set.

3.2.3 DiagnoseNET : Supervised Learning

It is well known that the overall performance of machine learning algorithms to conver-

gence time and accuracy generally depends on the data representations. For this reason,

the result of the unsupervised model obtained in the previous step can be used as input

for a standard supervised machine learning algorithm [Bengio 14]. Thus, this approach

allows using the latent or vector representations obtained from the training of unsupervi-

sed neural networks as input data in algorithms such as Random Forest and other neural

networks, the multilayer perceptron, to predict the final medical task. In the following

section, we describe those two approaches implemented to compare the prediction results,

using the latent representation of the patients and the initial clinical data of the patients.

Random Forest

Random forests are a combination of tree predictors such that each tree depends on

the values of a random vector sampled independently and with the same distribution

for all trees in the forest. The generalization error for random forests converges as the

number of trees becomes large, as well as the classification error depends on the strength

of the individual trees in the forest and the correlation between them [Breiman 01].
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The random forest algorithm is an ensemble method that grows multiple decision trees

at training time. Then, at test time, a majority vote is performed on the predictions of

the individual trees.

The algorithm is an extension of bagging, where each tree is grown using a bootstrap

sample of the original training data. Each tree is grown using a bootstrap sample of the

initial training data in bagging. In random forests, each tree is grown using a bootstrap

sample of the original training data, with replacement [Breiman 96].

For example, in a forest of trees, each tree is different to classify a data set :

— Each tree is grown by randomly selecting a sample of the data and then increasing

the tree using that sample.

— The trees are grown until they are as big as possible.

— The trees are allowed to vote on the best classification.

— The classification with the most votes is the final classification.

Multilayer Perceptron Network

The multilayer perceptron (MLP) is a feed-forward neural network. It consists of

three layers : the input, output, and hidden layers. The input layer receives the input

data to be processed. The output layer produced a label vector containing the probabili-

ties corresponding to tasks such as classification and prediction. An arbitrary number of

hidden layers is placed between the input and output layers to transform the data space

and reduce dimensionality [Abirami 20]. Therefore, the MLP transforms the input high-

dimensional patient’s representations to the desired dimension of the label projections as

an output of the medical task.

Every node in the multi-layer perception uses an activation function such as a sigmoid,

a rectified linear unit (ReLU), and others. Therefore, each neuron takes all the input values

and convert them to number between 0 and 1 using the activation function. The computa-

tion taking place at the output of each hidden layer as follows : hi = f(
∑n

j=1wijxj + bij) ;

where xj : is the output of the previous layer ; wij : is the weight value associated with

xj,bi,j is the bias associated with xj ; n : is the number of neurons in the previous layer

and f : is the activation function.

The general network architecture comprises fully-connected layers ; each neuron is

connected to all previous layer neurons building a stacked neural network and then a

softmax layer on top. Usually, an MLP network requires a finetuning process, where the

primer hyperparameters to search are related to the number of units per layer, the num-
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ber of layers, the batch size, the loss function, optimization algorithm such as stochastic

gradient descent (SDG), a method for stochastic optimization (ADAM) [Kingma 15] and

others, which hyperparameters affect the computational cost directly.

3.3 Case Study : Hospitalized Patients in PACA

A case study uses a clinical dataset sourced from the EHRs of hospitals in the PACA

region, structured and serialized from the FHIR MongoDB database. The clinical data

consists of high-level data entities related to the patient features like : demographic data,

admission details, hospitalization details, physical dependency, cognitive dependency, re-

habilitation time, and associated diagnoses to represent the patient status and predict

primary morbidity as a deep learning task, whose labels are described in the next section.

Figure 3.8 shows the pipeline for extracting patient features. First, the patient records

are serialized in CDA-JSON format, as described previously. Second, all features are

converted into the term-document matrix to represent each patient feature in a vector

representation. Finally, the dataset is divided into 85% for training, 5% for validation,

and 10% for testing.

Figure 3.8 – PMSI clinical dataset used for patient feature-composition.

3.3.1 Medical Target : Medical Care Purpose Classification

The first medical objective used for this work is to classify the primary purpose of

hospital care as a Major Clinical Category (MCC) as the clinical label to train the deep

learning and machine learning algorithms, which groups the classification of ICD-10 codes

at a high level. This clinical label allows answering questions such as What type of care
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did the patient benefit from, or What was the essential nature of this patient’s medical

and nursing care ?

These codes are used in French hospitals and are stored throughout the PMSI system

to assign ICD-10 codes to the ”purpose of hospital care.” Table 1 shows two examples of

hospitalization. Patient one is hospitalized under an unspecified coma with an etiology of

the Nontraumatic intracerebral hemorrhage ; therefore, the care purpose is an encounter

for palliative care, and the clinical label will be palliative care. While patient two is

hospitalized for significant morbidity related to neoplastic (malignant) related fatigue

with an etiology of Maligna neoplasm of the rectum ; however, the patient was encountered

for other specified aftercare purposes, and the clinical label is other disorders.

Table 3.1 – Example of diagnosis-related group hierarchization to select the main
clinical category as clinical labels to train the algorithms and link them to patient care.

Diagnosis-related Group ICD-10 Definition

Patient 1
Morbidity Principal R402 Unspecified coma

Etiology I619 Nontraumatic intracerebral
hemorrhage, unspecified

Care Purpose Z515 Encounter for palliative care
Label used Clinical Major Category 20 Palliative care

Patient 2
Morbidity Principal R530 Neoplastic (malignant) re-

late fatigue
Etiology C20 Malignant neoplasm of rectum

Care Purpose Z518 Encounter for other speci-
fied aftercare

Label used Clinical Major Category 60 Other disorders

3.4 Experiments and Results

In this chapter, we have performed three groups of experiments. The first set of ex-

perimentation is focused on identifying the clinical features that benefit the performance

accuracy to predict the medical target, comparing four clusters of patients’ clinical charac-

teristics to represent and find patients’ phenotypes through unsupervised neural networks

and then classifying the purpose of care as a supervised learning task and medical objec-

tive.

In the second set of experiments, we analyzed the behavior of computational resources

by training USDAs with different batch sizes to examine the relationship between a net-

work’s convergence time, energy consumption, and ability to translate a patient’s pheno-

type into a smaller latent space.
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Finally, the third set of the experiment focused on characterizing the workload during

the execution of a DNN network running on a variable number of Jetson TX2 according

to different batch sizes. To estimate the efficiency (accuracy and energy consumption), we

measure loss, accuracy, time, and number of gradient updates per epoch. Thus, we record

the energy consumption, GPU SM frequency, GPU memory frequency and stipulate the

minimum value of the loss as the convergence point to stop the training process.

3.4.1 Feature Assessment to Compose the Patient’s Phenotype

Driving EHRs to build a general patient phenotype representation presents critical

challenges in big data, deep learning, and parallel processing as the high energy cost

for training models until finding the optimal model generalization accuracy. The general

dataset is composed of the diagnosis-related group represented in object form ; such as

ICD-10 codes, CCAM codes, and other codes established by the agency ATIH and ge-

nerated by the system PMSI for the Intensive Care Unit (ICU) and Clinical operations

(MCO) with activities of hospitals in PACA and the activities of residents PACA hospi-

talize in another region.

As a case of study, we have used an Intensive Care Unit (ICU) dataset with an ave-

rage of 785,801 Inpatients records by year to build a general-purpose inpatient phenotype

representation for available applicative medical targets, such as :

1. Predict the ‘Major Clinical Category’ from inpatients features recorded in the pro-

cess 1, 2, and 3, presented in the scheme.

2. Predict the Clinical Procedures PMSI Data recorded in the process 1, 2, 3 and the

Primary Morbidity.

3. Predict the ‘Clinical Procedures’ from inpatients features recorded in the process

1, 2, 3 and the Primary Morbidity, presented in the scheme.

4. Predict the ‘Inpatient Destination’ (home, transfer, death) and length of hospi-

talization stay from inpatients features recorded in the process 1, 2, 3, Primary

Morbidity and Clinical Procedures, presented in the scheme.

DiagnoseNet Data-mining

It is a feature extraction API that uses a dynamic features composition with their

respective vocabulary to build a binary patient phenotype representation in a ’document-

term sparse matrix’ from the ICU dataset, as shown in the figure below.

51



CHAPITRE 3. AI-BASED TO AUTOMATE CLINICAL RISK PREDICTION
WORKFLOWS

We present four ways to derive a BPPR, selecting different Inpatient features grouped

by high-level entities as was shown at ICU data collection scheme (i.e.,X1 Demographics :

sexe : [male, female], age : [..., 64, 65, 66, ...], ...). As a result, we got different BPPR in

the length of features and disk size. As an experiment are using 12% of ICU data by one

year :

Table 3.2 – Feature Assessment to Compose the Patient’s Phenotype.

Feature Composition Num. Features Disk (size) Exe. Time

[X1, X2, X3, X4, X5, X6, X7] 11094 3.2GB 1.86 mins

[X1, X2, X3, X4, X5, X6, X7, X8.3] 14515 4.1GB 2.63 mins

[X1, X2, X3, X4, X5, X7] 8041 2.3GB 1.48 mins

[X1, X2, X3, X4, X5, X7, X8.3] 11462 3.3GB 2.18 mins

DiagnoseNet Unsupervised Embedding :

This API pre-training three Denoising Autoencoder (DAE) to get each latent repre-

sentation and send them as input to the next DAE. Then, the Encoder Network uses a

clean BPPR as input for mapping with the previously trained weights to obtain a new

Latent Patient Phenotype Representation (LPPR), as shown in the figure below.

We use two groups of layer dimensions whit the same hyperparameters (i.e., batch

size : 32, num. epoch : 10, . . . ) to change the space and reduce the length and disk size of

the previous BPPR. As an experiment, each previous BPPR was divided into nine batch

files :

Table 3.3 – Feature Assessment to Compose the Patient’s Phenotype.

Num. Features Disk (size) USDA Dim. Encoded Exe. Time

11094 3.2GB [2000, 1000, 500] 255MB 39 mins

11094 3.2GB [500, 200, 100] 49MB 24 mins

14515 4.1GB [2000, 1000, 500] 248MB 51 mins

14515 4.1GB [500, 200, 100] 50MB 41 mins

8041 2.3GB [2000, 1000, 500] 255MB 26 mins

8041 2.3GB [500, 200, 100] 49MB 18 mins

11462 3.3GB [2000, 1000, 500] 255MB 38 mins

11462 3.3GB [500, 200, 100] 51GB 30 mins
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DiagnoseNet Supervised Learning :

We implemented Random Forest Classifier (RFC) to predict the Clinical Major Ca-

tegory (CMC) labels presented in the first medical target. As an experiment, we set the

same RFC parameters (i.e., estimators : 100,max features : sqrt, ...) to compare the

precision (AUC-ROC) between each previous BPPR and their two LPPR, as shown in

following Table.

Table 3.4 – Feature Assessment to Compose the Patient’s Phenotype.

Feature Composition Num. Features AUC-ROC Exe. Time

[X1, X2, X3, X4, X5, X6, X7] 11094 0.79 10.53 mins

[X1, X2, X3, X4, X5, X6, X7] 500 0.84 3.55 mins

[X1, X2, X3, X4, X5, X6, X7] 100 0.83 3.31 mins

[X1, X2, X3, X4, X5, X6, X7, X8.3] 14515 0.86 10.29 mins

[X1, X2, X3, X4, X5, X6, X7, X8.3] 500 0.84 3.72 mins

[X1, X2, X3, X4, X5, X6, X7, X8.3] 100 0.84 3.74 mins

[X1, X2, X3, X4, X5, X7] 8041 0.85 7.45 mins

[X1, X2, X3, X4, X5, X7] 500 0.83 3.66 mins

[X1, X2, X3, X4, X5, X7] 100 0.83 3.74 mins

[X1, X2, X3, X4, X5, X7, X8.3] 11462 0.87 8.80 mins

[X1, X2, X3, X4, X5, X7, X8.3] 500 0.84 3.73 mins

[X1, X2, X3, X4, X5, X7, X8.3] 100 0.84 3.44 mins

Figure 3.9 – Results to claasify the medical care purpose ; and execution times of the
experiments.

(a) AUC-ROC to classify the
medical care purpose. (b) Execution time to perform the three stages.

As a result, the embedded representation had similar accuracy to the model with high-

dimensional features, with an AUC of 0.83 versus an AUC of 0.86.4 for classifying the
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first medical target. The unsupervised runtime has the most extended runtime among the

three stages ; however, the classification time was shortest for phenotype group three [X1,

X2, X3, X4, X5, X7], As shown in the Figure 3.9. In this sense, the following experiments

will focus on reducing the execution time and analyzing the impact of unsupervised

training and energy consumption.

Energy efficiency analysis for mapping USDA on a CPU-GPU

The USDA network’s workload focuses on the latent representation data transfer and

writing produced by each denoising autoencoder. Therefore to perform the first analysis

of power consumption and workload characterization processing on one CPU-GPU envi-

ronment, we used a submodule of DiagnoseNet called enerGyPU monitor for recording in

runtime energy factors of the GPU, such as Streaming Multiprocessor Clock-frequency,

Memory Clock-frequency, Memory Usage, and Power Consumption.

This DNN consists of a 3-layer denoising autoencoder with 2000, 1000, and 500 neu-

rons in each layer, respectively, with other hyper-parameters : Relu as activation function,

binary cross-entropy as loss function, and stochastic gradient descent as optimizer. The in-

put data comprises 84.999 samples that represented 85% of the binary patient phenotype

representation. we experiment on three input data mini-batch fragmentation strategies

to process the DiagnoseNet Unsupervised Embedding stage.

Strategy 1 : Using all of the BPPR samples (84.999) for getting the LPPR. In this

case, we can observe that the initial cost to move all the input samples from host memory

to GPU memory represents 22% of the execution time. After the first 8 minutes, the

first denoising autoencoder, in which the first output latent representation is encoded, is

processed. The second and third autoencoder layers are even more efficient.

Figure 3.10 – Strategy 1 had 35.46 minutes, 74.75 watts and 120.94 kiloJoules.
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Strategy 2 : We split the data into nine files containing up to 10.000 samples in this

case. We can observe that the initial cost to transfer the input data from host to GPU

memory is reduced to 6%, and the GPU governor overlaps all the transfers during pro-

cessing, resulting in a 7 minutes improvement in execution time concerning case 1 while

energy consumption is 1.8X lower.

Figure 3.11 – Strategy 2 had 28.35 minutes, 106.05 watts and 65.11 kiloJoules.

Strategy 3 : Using a mini-batch with 1000 samples in each of the 85 files, we signi-

ficantly reduce the initial data transfer cost from host to GPU memory to 3%, and the

GPU governor overlaps all transfers with processing, resulting in a 2.3 mins execution

time improvement concerning case 2 while being twice more energy-efficient than case 1.

In this case, the layer output weights writing starts to appear.

Figure 3.12 – Strategy 3 had 25.99 minutes, 115.19 watts and 62.20 kiloJoules.
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3.4.2 Gradient Computations Number to Early Model Conver-

gence

To illustrate the impact of processing more gradient updates as a factor to fast conver-

gence, consider the traditional fully connected autoencoders (AE), parametrized with 3-

hidden layers of [2000, 1000, 500] neurons per layer, relu is used as activation function,

Adam such as optimizer and sigmoid cross entropy as loss function. The clinical dataset

uses 84.999 records for training and 4.950 records for validation.

The same AE model has been executed using three different data batch partitions of

20.000, 1.420, 768 records by batch to measure the number of epochs needed to arrive

at the convergence point, characterized by the minimum loss value of 0.6931 as shown in

Figure 3.13a. We can observe that the largest batch partition of data requires, to reach

the convergence point, a greater number of epochs. The 20.000 batch size partition reach

the convergence point in 100 epochs for 36.21 minutes for each batch, the 1.420 in 20 for

7.9 MN/batch and the last batch size (768) in 10 epochs for 4.3 MN/batch. Thus, it is

possible to estimate that the consumption required to build the model has an average

consumption of [63.35, 86.61, 82.21] watts respectively with an energy consumption of

[137.65, 41.26, 21.87] kilojoules. For the dataset and model considered, a 768 item batch

size is the most energy efficient for generating batch gradient updates.

Figure 3.13 – Network convergence using batch partitions of [20000, 1420, 768] records
to generate [4, 59, 110] gradient updates by epoch respectively.

(a) Learning curves for the loss function (b) Learning curves for performance accuracy

Low power consumption was obtained when the batch of data was very large as 20.000
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samples per batch. This amount of data plus the model exceeded the memory capacity,

generating periods of idle status on the GPU with a SM frequency of 847.49 MHz, when

the batch is transferred from main memory to the device memory. This idle phenomenon

is not observed in the other batch sizes, which showed more continuous processing with

a GPU SM frequency of 1071.97 and 1015.49 MHz for the 1420 and 768 records per batch.

To illustrate the impact of the idle status on the GPU, generated by large data batch

partition, we can observe the same window of 6 minutes shown in the Figure 3.14a. This

window is extracted of the training of the AE model when it is executed using three

different batch partitions.

Figure 3.14 – Impact of GPU idle status generated by large data batch partition,
consider the power consumption in a window of 6 minutes for the previous experiment.

(a) 63.35 Watts on average
to process 68 gradient
updates in 17 epochs.

(b) 86.61 Watts on average to
process 885 gradient updates

in 15 epochs.

(c) 82.21 Watts on average to
process 1540 gradient updates

in 14 epochs.

3.4.3 Worker Number to Early Model Convergence

The experiments use a synchronous distributed gradient for neural network training,

combining computational parameters such as the number of workers with the batch size

as a factor for early model convergence. The objective is to analyze the worker scalabi-

lity for training the autoencoder neural networks on a mini-cluster composed by Nvidia

Jetson TX2, using a fixed neural network with three layers and [2000, 1000, 500] neurons

per layer.

The experiments are divided into three groups of different number workers : The first

group had one Parameter Server and three workers, using two different batch sizes like
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[768, 1024] ; The second group had one Parameter Server and six workers, using two dif-

ferent batch sizes like [1024, 1420] ; And the third group had one Parameter Server and

eight workers with a fixed batch size like [1066], and the convergence curves of the expe-

riments are shown in Figure 3.15.

Figure 3.15 – Early convergence comparison between different groups of workers and
task granularity for distributed training with 10.000 records and 11.466 features.

(a) 1.30 MN in average for processing one
epoch on 1 PS & 3 workers.

(b) 1 MN in average for processing one epoch
on 1 PS & 6 workers.

(c) 50.6 Sec in average for processing one
epoch on 1 PS & 8 workers.

(d) 25.75 Sec in average for processing one
epoch on 1CPU and 1GPU Titan X.

According to Figure 3.15, the third group with one parameter server and eight wor-

kers presented the shortest execution time per epoch, using distributed data parallelism

for training the unsupervised neural network. Specifically, using eight workers executed

an epoch in 50.6 seconds, while using only three workers, it took 70.6 seconds to execute
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an epoch. Furthermore, the graphs show that using eight workers converges the neural

network faster, as shown in the following table 3.5.

However, as the selected model was very small, the total run time was much shorter

for group two with six workers, which had a total run time of 9.95 minutes with a batch

partition of 1024 samples. While group three with eight works had a total run time of

10.18 minutes with a batch partition of 1066 samples. This result may be given by the

synchronization latency of the workers, which is evaluated in the next chapter, using a

larger workload as well as a different type of neural architecture.

Table 3.5 – Preliminary results for processing the unsupervised patient phenotype
representation on the mini-cluster Jetson TX2.

DNN
1 PS & 3 WKR 1 PS & 6 WKR 1 PS & 8 WKR Workstation

Batch
Size

Conv.
Time
(mins)

Batch
Size

Conv.
Time
(mins)

Batch
Size

Conv.
Time
(mins)

Batch
Size

Conv.
Time
(mins)

M-1 768 13.49 1024 9.95 1066 10.18

M-1 1024 11.90 1420 10.51

M-2 768 14.50 1024 11.40 1066 11.76 768 3.97

M-2 1024 12.50 1420 12.48 1420 5.96

3.5 Summary

In summary, DiagnoseNET workflow automates the training process of the machine

learning pipeline, allowing each stage to have enough dynamism to configure different

parameters according to the problem or search for the best model to specify and explain

the medical task. The work carried out so far has allowed us to highlight that the use of a

well-chosen latent representation instead of the initial binary representation could make

it possible to significantly improve processing times (up to 41%) while maintaining the

same precision.

Minimizing the execution time of a perceptron multi-layer on a Jetson TX2 cluster,

whether to perform an auto-encoder or to perform classification, depends on the appli-

cation’s ability to distribute data for analysis efficiently to the various Jetsons based on

the available SSD memory space and then cut that data into a mini-batch based on the

available memory space on the GPUs. Using hundreds of gradient updates by epochs

with synchronous data parallelism offer an efficient distributed DNN training to early
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convergence and minimize the bottleneck of data transfer from host memory to device

memory, reducing the GPU idle status.

One technical problem in multi-platform DNN training is developing a different class

by the platform for the same neural network. To avoid this problem, we have refactored

the framework DiagnoseNET to provide a modular library and facilitate multi-platform

experimentation and following deep neural networks implementation, described in the

next chapter and explained in detail the DiagnoseNet modular framework to scale neural

networks on heterogeneous systems applied to medical diagnosis.
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Chapitre 4

Scalable Deep Learning Models in

Heterogeneous Systems

Determining an optimal generalization model with deep neural networks for a medical

task is an expensive process that generally requires large amounts of data and computing

power. Furthermore, the complexity of the programming expressiveness increases to scale

deep learning workflows over new heterogeneous system architectures for training each

model and efficiently configuring the computing resources. We introduce DiagnoseNET,

an automatic framework designed for scaling deep learning models over heterogeneous

systems applied to medical diagnosis.

DiagnoseNET is designed as a modular framework to enable deep learning workflow

management and allow neural networks’ expressiveness written in TensorFlow. At the

same time, the DiagnoseNET runtime abstracts the data locality, micro batching, and

distributed orchestration to scale the neural network model from a GPU workstation to

multi-nodes. The primary approach comprises a set of gradient computation modes to

adapt the neural network according to the memory capacity, the workers’ number, the

coordination method, and the communication protocol (GRPC or MPI) to balance accu-

racy and energy consumption. The experiments allow the evaluation of the computational

performance in terms of accuracy, convergence time, and worker scalability to determine

an optimal neural architecture over a mini-cluster of Jetson TX2 nodes.

4.1 Embedded Computing Clusters

Healthcare demands new computing paradigms to meet the need for personalized me-

dicine, next-generation clinics, enhanced quality of care, and breakthroughs in biomedical

research to treat disease. Today’s research requires infrastructure that can handle large
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computational workloads to derive fast and accurate insights from vast amounts of data.

Heterogeneous parallel programming has two main problems on large computation

systems : the first is the increase of power consumption on supercomputers in proportion

to the number of computational resources used to obtain high performance. The second

one is the underuse of these resources by scientific applications with the improper dis-

tribution of tasks. Therefore, selecting the optimal computational resources and making

an exemplary mapping of task granularity is the fundamental challenge for building the

next generation of Exascale Systems.

4.1.1 Rosie - Mini-Cluster of Jetson TX2 Nodes

The Rosie mini-cluster were built a mini-cluster using a desk to put together the 14-

nodes Jetson TX2 interconnected by 1 GigE switch Ethernet as shown in the Figure 4.5

above.

Figure 4.1 – The experimental Mini-Cluster Jetson TX2 for distributed training deep
neural networks applied to healthcare decision-making.

The nodes are identical, independent machines, and each one runs a separate OS.

Every node is composed of one developer kit Jetson TX2, which contains a hybrid pro-

cessor Nvidia Denver with one ARM Cortex-A57 quad-core with a Pascal GPU 256-

CUDA@cores with a maximum. It has 8GB of LPDDR4 memory, 59.7GB/s of memory

bandwidth, 32GB of internal storage, and one external SSD was mounted over one node

62



4.1. EMBEDDED COMPUTING CLUSTERS

to provide a Network File System (NFS) to make that storage available to the whole

cluster.

4.1.2 Astro - Array-Server of Jetson TX2 Nodes

The Jetson architecture-based array-server, called Astro, is a powerful, high-performance

deep learning server solution with low power consumption. The Astro server has three

processor module carriers that house up to eight Jetson TX2 modules each and are all

connected via a Gigabit Ethernet fabric through a specialized managed Ethernet switch

developed by Connect Tech with 10G uplink capability, as shown in the Figure 4.2.

Figure 4.2 – The TX2 Server is an extremely low wattage, high performance deep
learning server with 24 NVIDIA Jetson nodes.

Therefore, Astro contains a computing capacity of 24 NVIDIA Jetson TX2 nodes

with 144 CPU cores, 6144 CUDA-enabled Pascal GPU cores, storage, and 10 Gigabit

networking in a standard 1U form factor. It is structured over three arrays with 8 TX2

modules, each one with a single enclosure with access to power control, serial console,

and networking. The integrated network switch further reduces the cable clutter with in-

tegrated 1 Gigabit internal network fabric and 2x 10 Gigabit uplinks located at the front

of the chassis. The typical power consumption of 180W with 24 TX2 nodes running CPU

and GPU loads being an edge-embedded and highly converged platform, energy-efficient
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systems to be a green data center.

4.2 DiagnoseNET : Cross-platform Library

To implement these different algorithms and, in particular, the stage of construction of

the latent representation at the heart of this paper, we used the high-level framework pro-

vided by the Tensorflow library. It enables learning algorithms to be deployed in parallel

or distributed architectures, enabling the necessary computing resources to be optimized.

It is necessary to adjust the granularity of the tasks according to the memory capacity

of the host machine, the complexity of the model and the size of the datasets. Figure

4.3 describes the different hardware architectures and software stacks used in different

experiments.

Figure 4.3 – Data resource management for training parallel and distributed deep
neural networks and energy-monitoring tool.

To exploit the computing resources and SSD memory capacity available on Jetson

TX2, the data to be processed is distributed according to the number of Jetson cards

used. On each Jetson card, the data that has been assigned is also divided into the batch

to take into account the available RAM space on the Jetson cards GPU.

Then, once the data is distributed on each Jetson and the mini-batch constituted on

each one, the work is distributed in the form of identical tasks. In this first approach, all

task replicas read the same model’s values to be built from a host machine, calculate the

gradients in parallel with their assigned data and return the new gradients to the host

machine using the synchronous approach described in [Abadi 16a].
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4.3 DiagnoseNET : Modular Framework Facility

DiagnoseNET was designed to harmonize the deep learning workflow and automatize

the distributed orchestration to scale the neural network model from a GPU workstation

to multi-nodes. Figure 4.4 shows the schematic integration of the DiagnoseNET modules

with their functionalities.

The first module is the deep learning model graph generator, which has two expression

languages : a Sequential Graph API designed to automatize the hyperparameter search

and a Custom Graph which support the TensorFlow expression codes for sophisticated

neural networks. The second module is the data manager, composed of three classes de-

signed for splitting, batching, and multi-tasking any dataset over GPU workstations and

multi-nodes computational platforms. The third module extends the enerGyPU monitor

for workload characterization, constituted by a data capture in runtime to collect the

convergence tracking logs and the computing factor metrics, and a dashboard for the ex-

perimental analysis results [John A. Garcia H. 16]. The fourth module is the runtime that

enables the platform selection from GPU workstations to multi-nodes whit different exe-

cution modes, such as synchronous and asynchronous coordination gradient computations

with gRPC or MPI communication protocols.

Figure 4.4 – DiagnoseNET framework scheme.
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Model Graph Generator

In Sequential Graph, the first step defines the stacked layers and sets the type of

each layer, their neurons numbers, the number of layers, followed by a linear output on

top since the cross-entropy will be used loss function and include the softmax function.

Then the neural network hyperparameters are defined as shown in the expression 1. to

generate the model graph object. Finally, Custom Graph uses tf.layers to define the

staked layers, and a similar expression as the former is used to define the optimizer and

loss function for generating the model graph object.

1 import diagnosenet as dt

2

3

4 stacked_layer_1 = [dt.Relu (14637 , 2048) ,

5 dt.Relu (2048, 1024),

6 dt.Relu (1024, 1024),

7 dt.Linear (1024, 14)]

8

9

10 model_1 = dt.sequentialGraph(

11 input_size =14637 , output_size =14,

12 layers=stacked_layer_1 ,

13 loss=dt.CrossEntropy ,

14 optimizer=dt.Adam(lr =0.001))

API Expressions 4.1 – Model definition to generate several graphic-model objects.

Data Manager

This manages the dataset according to the computational architecture, creating an

isolated sandbox for each dataset and its transformations in the training process to gua-

rantee the data location. For example, in which the dataset is splitting into well balance

batches over the number of workers, and its worker-batch is micro batching according to

the memory or parameter, as shown in the following code expressions :

1 data_config_1 = dt.Batching(

2 dataset_name =" medical_D1", valid_size =0.05,

3 devices_number =4, batch_size =128)

API Expressions 4.2 – Dataset splitting and micro-batching over the workers.

Monitor

The monitor collects the energy consumption metrics for x86 and arm computing

architectures. Additionally, it collects the bandwidth metrics when launched on a dis-
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tributed platform. All the computing and DNN model metrics are written in a default

directory called the testbed experiment outputs directory. For distributed environments,

it requires the machine type specification, the DiagnoseNet workspace location and testbed

path location as the follows.

1 monitor_config = dt.enerGyPU(

2 machine_type ="arm",

3 file_path=diagnosenet_path ,

4 testbed_path=myworkspace))

API Expressions 4.3 – Monitor set for trancking the distributed ARM machines.

Plaform Execution Mode

The last step allows the multiplatform execution, in which the model graph object is

set, the dataset configuration. An example is selecting the ’DesktopExecution’ for trai-

ning the feed-forward neural network over a CPU-GPU machine exploiting the memory

capacities.

1 # Select the computational platform:

2 platform = dt.DesktopExecution(

3 model=mlp_model ,

4 datamanager=data_config ,

5 monitor=monitor_config ,

6 max_epochs =20)

7

8 # Select the training platform modes:

9 platform.training_memory(

10 input_features=X.npy ,

11 target_labels=y.npy)

API Expressions 4.4 – Desktop execution with memory training modes.

4.4 DiagnoseNET : Automated Distributed Deep Lear-

ning

The data resource management is built to scale deep learning models quickly, auto-

matize the mapping process on the computational resources, and adjust task granularity

according to memory host capacity, model complexity, and data batch size to minimize

the energy consumption at the training stage. Concurrently the data resource manager

designates the role and transmits the DNN hyperparameters to be used on the master

(or parameter-server) and each of the workers, as shown in the above Figure 4.5.
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Figure 4.5 – The schema for the synchronous learning of mini-batches in a distributed
memory platform, using the data and resources management module of DiagnoseNET.

4.4.1 Training Deep Neural Networks with gRPC

It harmonizes the computational resources with the dataset manager to train pre-

viously defined models over a multi-node platform, automating the gRPC communica-

tion protocol to coordinate the workers with asynchronous gradient computations. The

resource manager divides the dataset equally onto the workers’ nodes of the system, where

each worker has a copy of the neural network (graph) and its local weights. Each worker

operates on a unique subset of the dataset and updates its local set of weights. These

local weights are shared across the cluster to compute a new global set of weights through

an accumulation algorithm.

Compared to the Desktop implementation on DiagnoseNET API, the distributed

gRPC uses a Resource Manager instance, which will be responsible for launching the

experiment and turning on the monitor over the nodes selected. The main task is to

launch the model replica on every node via the SSH protocol for the graph replication

function.

1 import diagnosenet as dt

2 dt.between_graph_replication(

3 d_replica_path =/ myworkspace ,

4 d_replica_name =" GRPC_replica.py",

5 ip_ps ="host1",

6 ip_workers ="host2 ,host3 ,host4 ,host5",

7 num_ps=1, num_workers =4)

API Expressions 4.5 – Distribted orchestration with GRPC asynchronous.

On the side of the replica script, it gives the model graph object, creates the data-

set batching, and passes both of these to a Distributed GRPC object. This object is

68



4.4. DIAGNOSENET : AUTOMATED DISTRIBUTED DEEP LEARNING

responsible for launching the experiment through its function asynchronous training.

1 platform = dt.Distibuted_GRPC(

2 model=model_1 ,

3 datamanager=data_config_1 ,

4 monitor=enerGyPU(machine_type ="arm"),

5 max_epochs =20,

6 ip_ps=argv[0], ip_workers=argv [1])

7

8 platform.asynchronous_training(

9 dataset_path =/ myworkspace/datasetpath ,

10 inputs_name ="X.npy", targets_name ="Y.npy",

11 job_name=argv[0], task_index=argv [1])

API Expressions 4.6 – GRPC asynchronous replica.

4.4.2 Training Deep Neural Networks with MPI

DiagnoseNET implements synchronous and asynchronous MPI methods to improve

performance in the communication between workers. For example, asynchronous gradient

updates were optimized with a weighting parameter, which is responsible for determining

the number of workers required in each step to compute the new weights and broadcast

them.

1 platform = dt.Distibuted_MPI(

2 model=model_1 , datamanager=data_config_1 ,

3 monitor=enerGyPU(machine_type ="arm"),

4 max_epochs =20, early_stopping =3])

5

6 platform.asynchronous_training(

7 dataset_name =" medical_D1",

8 dataset_path=d/myworkspace/datasetpath ,

9 inputs_name ="X.npy", targets_name ="Y.npy",

10 weighting =1)

API Expressions 4.7 – MPI Platform Execution Modes.

4.4.3 MPI Synchronous Gradient Descent

It uses Point-to-Point communication between workers, unlike gRPC does not require

a launcher orchestration, but each worker will be blocked while sending and receiving

messages.

The algorithm 1 describes the MPI synchronous coordination training with parameter

server. It uses the nodes’ ranks to assign them the parameter server or worker role, defined

the rank 0 as parameter server (PS), and the other ranks as workers. When launching the

program, the PS performs pre-processing tasks, such as loading the dataset and compiling
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the model. After these tasks, the PS sends the model to the workers, ready to receive

it. At each training step, the PS sends a different subset of the data to every worker for

loss optimization. At the end of an epoch, the PS will gather the new weights from every

worker. Then, workers collect weights and compute the average weight for the global

update. For the other computing parts, it works as the desktop version.

Algorithm 1 Synchronous MPI Kernel

if master True then

masterInput ← {dataset ,workers}
DistributedBatching(dataset, workers)

else

workerInput ← {batches , hyperparameters}
model← GraphGenerator(hyperparameters)

while ConvergenceCondition do

if master == True then

for all worker ∈ workers do

masterGrads← received(workerGrads)

averageGrads← average(masterGrads)

send(averageGrads)

else

workerGrads← compute(model, batches)

send(workerGrads)

if master == True then

for all worker ∈ workers do

masterLoss← received(workerLoss)

averageLoss← average(masterLoss)

if decrease(averageLoss) True then

send(updated(masterWeights))

if overfitting(averageLoss) True then

send(averageLoss, earlyStopping)

else

send(averageLoss, False)

else

workerWeights← received(masterWeights)

projection←model.Apply(workerWeights)

workerLoss← computeLoss(projection, labels)

send(workerLoss)
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4.4.4 MPI Asynchronous Gradient Descent

The algorithm 2 describes the MPI asynchronous coordination training with parame-

ter server. It allows training multiple model replicas in parallel on different nodes with

different subsets of the data. Each model replica processes a mini-batch to compute gra-

dients and sends them to the parameter server that applies a function (mean, weighted

average) between previous and received weights, then updates the global weights accor-

dingly and sends them back to the workers.

Algorithm 2 Asynchronous MPI Kernel

if master True then

masterInput ← {dataset ,workers}
DistributedBatching(dataset, workers)

else

workerInput ← {batches , hyperparameters}
model← GraphGenerator(hyperparameters)

while ConvergenceCondition do

if master == True then

convergeF lag ← received(workerCond)

masterGrads← received(workerGrads)

collectGrads← collection(masterGrads)

averageGrads← average(collectGrads)

send(averageGrads)

(convergeCond,modelGrads)← stopping(convergeF lag)

else

if overfitting(averageLoss) True then

send(averageLoss, earlyStopping)

else

send(averageLoss, False)

if decrease(averageLoss) True then

send(Updated(masterWeights))

workerGrads← compute(model, workerInput)

send(workerGrads)

if master False then

workerWeights← received(masterWeights)

projection←model.Apply(workerWeights)

workerLoss← computeLoss(projection, labels)

Every worker will compute its gradients individually until convergence ; the conver-
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gence occurs when we start overfitting, which means that the training loss decreases while

the validation loss increases. [Chahal 18]. The master responsible for computing the weigh-

ted average of received weights and its weights will stop when all workers converge. To

check the status of convergence of workers, the master has a queue that stores converged

workers, and when its length is equal to the number of workers, the master knows that all

workers converged and stops training. Since each node computes gradients independently

and does not require interaction among each other, they can work at their own pace and

have greater robustness to machine failure.

4.5 Case studies and Neural Architectures

4.5.1 Medical Care Purpose Classification for Inpatients :

The clinical dataset was derived from the medicalization of information systems

(PMSI) collection of synthetic medical information in a standardized and anonymized

format from hospitalizations carried out in medical care or rehabilitation settings. The

patient-feature composition module was used to generate the representations of the pa-

tients’ status in the first week of hospitalization using one year of the PMSI data col-

lection. The primary clinical descriptors used were demographics, admission details, hos-

pitalization details, physical dependence, cognitive dependence, rehabilitation time, co-

morbidities, morbidity, and etiology. The clinical dataset obtained has 116, 831 different

inpatients and 14, 637 clinical-features embedded in a document-term sparse matrix [Gar-

cia Henao 18]. The PMSI system has two ways to track hospitalized patients’ medical

care using ICD-10 codes and equivalent diagnosis-related groups organized in hierarchical

levels. In this section, we worked with the high-level group called Clinical Major Category

(CMC), obtaining 14 labels-categories to classify the medical care of patients hospitalized

as shown in Table 2.4 in section 2 called Healthcare Interoperability and Data Mining.

4.5.2 Atrial Fibrillation Classification for Cardiac Diagnosis :

The ECG dataset was obtained from the 2017 PhysioNet Challenge 1. The dataset

was already labeled, and the four labels are : Normal, Atrial Fibrillation, Others, and

Noisy. The Others label means recordings of those similar heart diseases. The total num-

ber of source datasets is 8, 528. Each sample is a single short ECG lead recording. Since

the length of the sample is inequivalent, samples are transformed into structured input.

The peaks R of recordings are extracted to get the centered windows of 260 time steps,

which are complete ECG rhythms for a cycle. Then, to better represent the behavior of

the recording, each five consecutive centered windows are concatenated into a training

1. Atrial Fibrillation Dataset Classification from a short single lead ECG recorded by the physioNet
computing in cardiology challenge 2017. https://physionet.org/challenge/2017/
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sample as shown in the following table 4.1. It contains similar rhythms, which are labeled

as Others. Noisy recordings are also added to decrease episodic detection. The addition of

other irregular ECG recordings and noisy data samples can help detect the AF rhythms

better.

Table 4.1 – Medical Target 2 : Cardiac Arrhythmia Labels

Class Label Description Source dataset Training Dataset Small Samples

0 Normal 5,050 34,303 4,241
1 AF 738 6,542 815
2 Others 2,456 18,986 2,424
3 Noisy 284 1,382 171

4.5.3 Implementation of the MLP in DiagnoseNET

In DiagnoseNET, the network architecture was composed dynamically through fully-

connected layers ; each neuron is connected to all neurons of the previous layer building a

stacked neural network and followed by a softmax layer on top hi = f(
∑n

j=1wijxj + bij),

where xj is the output of the previous layer and wij is the weight value associated with

xj with a bias associated bi,j and n is the number of neurons in the previous layer, while

f is the as activation function. Having as a baseline the neural network used in work

called improving palliative care deep learning [?] and after finetuning it to classify the

medical care purpose with PACA inpatients. The model used to evaluate the scalability

comprised an input (of 10,833 dimensions), four hidden layers (every 512 dimensions),

and a softmax output layer as activation function was used rectified linear unit (ReLU),

as loss function was used categorical cross-entropy and Adam as optimizer [Kingma 14].

The first medial task is based on a Multilayer Perceptron Network (MLP) designed to

input the high-dimensional patients’ representations and generate the label projections

as outputs.

4.5.4 Implementation of the CNN in DiagnoseNET

The neural network baseline for the second medial task is based on a Convolutional

Neural Network (CNN) designed to take as input the time-series of ECG signal and ge-

nerates the sequence of label predictions as outputs [Rajpurkar 17]. The general neural

architecture is composed using DiagnoseNET with 75 layers of convolution followed by a

fully-connected layer and a softmax layer on top, as shown in the Appendix 4.6.
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Figure 4.6 – ECG Convolutional Neural Architecture.

The significant elements in the CNN model are the residual network, the convolutio-

nal layers, and the regularization methods, such as batch normalization, dropout, and

activation, which are used to improve the performance and regularization of the CNN

model. The convolutional layers are used to extract features relative to the form of the

traces wave. The pure CNN model leads to the problem that the last layer of the model

may not exploit the original features or the ones extracted in the first layers

This can be solved by the residual network connections proven to solve the information

loss problem. To implement this, a second information stream is added to the model. In

this way, deeper layers have access to the original features, in addition to the information

processed by the previous layers [He 15,Bai 18]. Two different types of a residual blocks

are included to access the different states of the information. The stable residual block

preserves the input size while the sub-sampling residual block lowers the size of the input
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down to a half. By using max pooling, the network extracts only the high values from

input so that the size of its output is halved.

4.6 Experiments and Results

The experimental procedures are oriented to compare the distributed training scala-

bility using different parallel methods to classify the medical targets, while is analyzed

the convergence effects between accuracy and the usage of the computational resources

for training each model on different workers to compare the coordination training modes

using GRPC and MPI communication protocols. Here we present the first results of a

series of experiments that provide clues for efficient computing performances over hete-

rogeneous platforms.

The experiments use the DiagnoseNET self-expression codes for training the first task

called : medical care purpose classification, and use the Tensorflow API to describe neu-

ral network plus the DiagnoseNet runtime for training the second task called : atrial

fibrillation classification. The core algorithms used to process the distributed gradient

computation and train the two deep learning tasks are the GRPC asynchronous, MPI

synchronous, and MPI asynchronous communication protocols.

4.6.1 HPC System and Enviroment :

The distributed experiments use a mini-cluster with 14-nodes NVIDIA Jetson TX2 in-

terconnected by 1 GigE switch Ethernet. The nodes are identical, independent machines,

and each one runs a separate OS on Ubuntu 16.04, with CUDA 8.0 support, cuDNN v6

for Python 3.6. Every node is composed of one developer kit Jetson TX2, which contains

a hybrid processor Nvidia Denver with one ARM Cortex-A57 quad-core with one a Pascal

GPU 256-CUDA@cores with a maximum, it has 8GB of LPDDR4 memory, 59.7GB/s of

memory bandwidth, 32GB of internal storage, and one external SSD was mounted over

one node to provide a Network File System (NFS) to make that storage available to the

whole cluster.

4.6.2 Worker Scalability for Training the Medical Task 1 :

The baseline got 11.04 hours as convergence time for training the MLP model des-

cribed in the previous session. The distributed method to communicate and synchronize

the nodes’ computations uses gRPC asynchronous to coordinate and compute the gra-

dient updates between two workers and one master. In contrast, the best setting reduces
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the convergence time to 1.3 hours with the MPI asynchronous method to coordinate and

compute the gradient updates between 12 workers and one master, as shown in Figure 4.7,

(a) Convergence Time (HRS) (b) Speedup Scalability (Strong)

Figure 4.7 – Worker scalability comparison for distributed training on a mini-cluster of
Jetson TX2 to classify the medical care purpose.

To predict the medical care purpose, a medium dataset (3.6 GB) with 116.831 patients

was used a small model with four fully-connected layers of multilayer perceptron network

that produced 35GB of host memory. Where the baseline uses a gRPC asynchronous

training modes with four workers takes 7.04 hours as a time to solution achieving one

accuracy of 0,87 F1-score, while the MPI asynchronous training modes with 12 workers

take 2.02 hours as a time to solution achieving one accuracy of 0,61 F1-score, as shown

in the Table 4.2.

Table 4.2 – Scalability results for training the multilayer perceptron network for the
medical care purpose classification task.

F1-Score (Micro) Time to Solution (HRS) Latency (HRS)

W. gRPC MPI-S MPI-A gRPC MPI-S MPI-A gRPC MPI-S MPI-A

4 0,879 0,645 0,643 7,04 6,26 5,01 0,76 1,69 1,31
6 0,702 0,637 0,632 4,87 3,85 3,32 0,71 1,04 0,76
8 0,694 0,629 0,621 3,83 3,12 2,86 0,64 0,91 0,79
10 0,704 0,620 0,615 3,55 2,72 2,29 0,52 0,81 0,79
12 0,697 0,631 0,613 3,30 2,24 2,02 0,44 0,68 0,76

4.6.3 Worker Scalability for Training the Medical Task 2 :

The atrial fibrillation classification task uses a small dataset (77MB) with 8, 528 pa-

tients and a medium model with 72 layers fully-connected to a convolutional neural net-
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work with residual network connections. Where the baseline uses a gRPC asynchronous

training modes with four workers take 13 minutes as a time to solution achieving one

accuracy of 0.63 F1-score, while the MPI asynchronous training modes with 12 workers

take 5 minutes as a time to solution achieving the same accuracy of 0.63 F1 scores, as

shown in the Figure 4.8. Worker scalability comparison between the communication pro-

tocols and their coordination methods to compute the gradient updates for distributed

training of each neural network by medical task on a mini-cluster of Jetson TX2.

(a) Convergence Time (MINS) (b) Speedup Scalability (Strong)

Figure 4.8 – Worker scalability comparison for distributed training on a mini-cluster of
Jetson TX2 to the classify atrial fibrillation.

The baseline uses a gRPC asynchronous training modes with four workers, take 13

minutes as a time to solution achieving one accuracy of 0,63 F1-score, while the MPI

asynchronous training modes with 12 workers take 5 minutes as a time to solution achie-

ving the same accuracy of 0,63 F1 score, as shown in the Table 4.3.

Table 4.3 – Scalability results for training the convolutional neural network for the
atrial fibrillation classification task.

F1-Score (Micro) Time to Solution (MINS) Latency (MINS)

W. gRPC MPI-S MPI-A gRPC MPI-S MPI-A gRPC MPI-S MPI-A

4 0,63 0,62 0,64 12,9 11,3 10,6 3,0 3,7 3,1
6 0,65 0,63 0,60 9,9 8,8 8,2 3,2 3,5 3,2
8 0,66 0,63 0,62 9,0 7,8 6,7 3,9 3,7 2,8
10 0,66 0,61 0,63 7,9 6,9 5,7 3,8 3,4 2,5
12 0,65 0,66 0,63 6,5 6,2 5,0 3,0 3,2 2,4

Figures 4.9 and 4.10 compare the validation loss curves between the communication

protocols. In the case of MPI synchronous training modes, the PS will gather the weights
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from workers after an epoch to compute the average weight for a global update. It saves

weight when minimizing the validation loss and loads it for testing to avoid overfitting

problems. Finally, the computation for the neural network is assigned to the workers, and

the rest of the jobs will be finished by the parameter master. While the MPI Asynchronous

training modes graph of validation loss curves is shown in Figures 4.9 and 4.10 that using

a small number of workers, we achieve convergence faster in terms of epoch (four epochs

for the experiment with four workers, versus eight epochs for the experiment with 12

workers), and then we start having over-fitting ; this is due to using a low learning rate as

well as having multiple workers doing calculations independently as well as the problem

of stale gradients where some workers could be computing gradients using master weights

that may be several gradient steps behind the current version of global weights making

convergence slow and not guaranteed.

Figure 4.9 – Validation loss curves comparison bewteen the communication protocols
(GRPC and MPI), and their methods (Synchronous and Asynchronous) to compute

the gradient updates for training the medical task 1.

(a) Asynchronous gRPC. (b) Asynchronous MPI. (c) Synchronous MPI.

Figure 4.10 – Validation loss curves comparison bewteen the communication protocols
(GRPC and MPI), and their methods (Synchronous and Asynchronous) to compute

the gradient updates for training the medical task 2.

(a) Asynchronous gRPC. (b) Asynchronous MPI. (c) Synchronous MPI.
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4.7 Summary

DiagnoseNET increases the developer’s productivity facilitating the programming pro-

cess to build and finetune Deep Learning workflows, while its runtime abstracts the data

locality and the distributed orchestration to scale each model from a GPU workstation

multi-nodes.

Furthermore, implementing a mini-cluster of Jetson TX2 nodes presents good scala-

bility for distributed training of each neural network by their medical task. Therefore,

clusters with embedded computation platforms can be used as a deep learning platform

system with minimal infrastructure requirements and low power consumption, offering

the computing capacity for processing large datasets and models in the HPDA ecosystem.

To characterize the deep learning tasks and improve the balance between accuracy,

convergence time, and worker scalability, partitioning the micro-batches to use hundreds

of gradient updates by epochs with MPI asynchronous gradient computations with data

parallelism offer an efficient distributed neural network training for early convergence.

Likewise, adapting the number of records by batch and the model dimensionality helps

minimize the bottleneck of data transfer from host memory to device memory, reducing

the GPU idle status.
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Chapitre 5

Towards Green-AI for Training Deep

Neural Networks

Deep learning models have been getting increasingly extensive and computationally in-

tensive, with the training cost for state-of-the-art models doubling every few months. The

cost of training these models has been happening in several areas of artificial intelligence,

including object recognition, game playing, speech recognition, and machine translation.

Some researchers have argued that this trend is both environmentally unfriendly and

prohibitively expensive, raising barriers to participation in artificial intelligence research.

In response to this situation, Schwartz et al. has published an article entitled Green

AI in Communications of the ACM, December 2020 [Schwartz 20]. He defined Red AI as

the design and training of neural networks, where they are only concerned with obtaining

greater accuracy, linearly with the increment of data, the number of parameters, and

the number of computational resources used without considering cost carbon footprint.

In contrast, Green AI considers efficiency as a primary evaluation criterion, along with

accuracy, time, and reproducibility. Therefore, the neural network design is focused on

solving the domain task and performing similar or better than the state-of-the-art with

a lower carbon footprint.

Identifying the optimal granularity level to train deep neural networks is necessary to

efficiently use the computational resources and reduce energy consumption in execution

time. Therefore, this chapter describes the importance of task granularity in deep learning

algorithms and how it affects data movement, convergence time, and energy consump-

tion. Experiments and results are measured to balance accuracy and energy consumption

according to the hyperparameter settings of the neural network. For the different confi-

gurations of neural architecture, the partitioning of the task between fine-grained and

coarse-grained tasks is analyzed to observe the impact of energy consumption.
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5.1 Green AI Approaches to Reduce Carbon Foot-

print

Green-deep learning is a way of doing deep learning that is more environmentally

friendly. Therefore, AI workflows are modified from different approaches to use less elec-

tricity and create fewer carbon emissions while automation achieves the target task. A

recent systematic review on developing deep learning technologies in the environment

classifies approaches to achieve novel results with lightweight and efficient technology

into four categories [Xu 21]. As shown in the following items :

— Compact Architecture Design : This is divided into two parts, component

design, and component assembling. The component design, is focused on building

new neural architectures by introducing efficiency variants, whose components in-

clude convolution layers, attention mechanishm, as well as the use of embedding to

reduce the size of the representations. While, the component assembling ocuses on

building a network efficiently by sharing resources such as shared memory, weight

sharing, and weight sharing through selected convolutional blocks as used in the

neural architecture search process to select the best model.

— Energy-Efficient Training : focuses on training neural networks that can re-

duce computations required during the whole training, including weight tuning

and hyper-parameter tuning. This can be done by making sure the network is

properly initialized, normalized, and by using progressive training. For example,

EfficienNet focuses on building and searching for a CNN that can achieve higher

accuracy and efficiency, using a multi-objective function to build the model that

obtains good accuracy with fewer parameters [Tan 19].

— Energy-Efficient Inference : This is a way to reduce the amount of energy

needed to make inferences. This is done by reducing the number of calculations

needed, using low-rank factorization, quantization, and knowledge distillation.

— Efficient Data Usage : This is about using data more efficiently, not needing as

much data to get good results. It includes ways to do this, like active learning and

pre-training approaches such as Few-shot learners. Pre-trained models are compu-

ter models that are heavily trained on a large dataset and then used as a starting

point for a model on a new task. This is done in order to save time and data on
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the new task.

This chapter focuses on reducing the carbon print of deep neural networks through

energy-efficient training approaches. Specifically, we minimize power consumption for the

hyperparameter finetuning and model selection process. The DNN trains several models

to determine the optimal generalization accuracy model, which consumes time and energy.

In addition, using hundreds of gradient updates with synchronous data parallelism im-

pacts the solution’s energy. Therefore, the direct approach extends the task granularity

from High Performace Computation (HPC) simulations to Deep Learning (DL) models,

which combines the principles of data parallelism and mini-batch online learning with

the platform memory capacities as a factor for early model convergence.

5.2 Task-Based Parallel Programming Model For HPC

Task-based parallelization is a way to make a computer program run faster by dividing

it up into smaller tasks that can be completed at the same time. Usually, a task-based

program is transformed into a direct acyclic graph (DAG) of tasks. The vertices are

the computational operations, and the edges are the data needed and the dependencies

between them. Usually, the task-based program uses heuristic algorithms to manage the

tasks over computational resources like CPU, GPU, and memory to reduce the program’s

execution time [Bramas 20].

Task-based programming models for shared memory like Intel Cilk Plus [Asai 15] and

OpenMP 3.0 [Liao 10] are well established and documented. Moreover, more recent frame-

works designed for systems with distributed memory and using the task-based program-

ming model are Charm++ [Kalé 11] and StarPU [Augonnet 09]. The main applications

of which have been focused on solving non-linear equations through dense linear algebra

algorithms with applications in different domains such as Climate/Weather prediction,

computational astronomy, molecular dynamics, and others.

5.2.1 Task Granularity

In computing, the term ”granularity” refers to the amount of data processed at once.

In general, the smaller the chunks of processed data, the more granular the computing.

Conversely, the larger the chunks of data, the less granular the computing. Granularity

is often measured in terms of the amount of time it takes to complete a computation

compared to time spent communicating with other processors. into two approaches Fine-
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grain Parallelism and Coarse-grain Parallelism.

— Fine-grain Parallelism : It is a way of processing operations that involves brea-

king tasks down into small tasks and doing them very quickly, with much commu-

nication between tasks. This type of parallelism is suitable for load balancing but

can be inefficient if the tasks are too small.

— Coarse-grain Parallelism : It is a way of processing operations that involves

breaking tasks down into heavy tasks, which means that a computer can do a lot

of work simultaneously as it is talking to other parts of the computer. This makes

the computer faster, but it is harder to balance the work so that each computer

part is doing the same amount.

5.3 Task-Based Programming Model For Distribu-

ted Deep Learning

Energy-efficient training to reduce the carbon footprint of green learning combines

two optimization challenges. The first focuses on building a neural architecture with the

necessary components to obtain higher accuracy, reliability, and interpretation. The se-

cond focuses on training and optimizing the system resources for tailoring each neural

network generated to exploit the computing platform and use the computational resources

efficiently to minimize the execution time and energy consumption.

Therefore, we propose to divide the training process of DNNs into tasks by transfor-

ming it into a DAG of tasks and thus control the execution of tasks among computing

resources, just as task-based programming models have done for solving computing tasks

in high-performance computing. As a first step, in this chapter, we do not focus on cha-

racterizing the performance of a multi-layer perceptron to evaluate the balance between

accuracy and energy-efficient performance. Instead, partitioning the micro-batches to use

hundreds of gradient updates by epochs with asynchronous data parallelism offers an

early convergence of distributed training of deep neural networks.

Although the task-based programming model divides the processing tasks for training

neural networks, it also allows scheduling the computation task, the communication task,

and the synchronization task. Therefore, the critical problem is mapping the mini-batch

and the neural network graph to avoid communication bottleneck, maximize the compu-

tation process, and update the scheduling plan to fit the dynamic workloads. Therefore,
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the optimization problem is finding the best mini-batch partition size according to the

DNN model given and selecting the computational resources for deep neural networks,

facing the following issues are related to the problem structure, problem dimension, and

platform selection to map the task dependency graph.

5.3.1 Defining the task granularity for deep learning

The efficacy for training deep neural networks on a distributed platform is to divide

the tasks into two distinct levels of granularity. Which division depends on the ability of

the runtime system to profile the DNN model dimension, the dataset size and characte-

rize the computational resources (memory capacity, number of CPUs, GPUs, the GPU

micro-architecture, clocks frequency, and among others) as well the number of workers

with the interconnection limitations.

Course-grain tasks : Figure 5.1 shows two samples of coarse-grain tasks, which are

defined by the model dimension of, in this case, the number of parameters plus the size

of the mini-batch set the task size, and the number of mini-batches defines the number of

tasks. In the first example, the dataset is divided into two large batches, and the model

is of medium size, while in the second example, the dataset is divided into four batches,

and the model is of considerable size, with the granularity of these tasks classified as

Course-Grain. Whose performance characterization relates to it : of few tasks, and each

task has a considerable size. Which composition carries an intensive computation process,

low-bottleneck tasks for managing CPU-GPU data transfers, and a few gradient-updates

computation tasks.

Figure 5.1 – Schematic sample of task granularity for fully connected neural networks.

Fine-grain tasks : Figure 5.2 shows two samples of fine-grain tasks, which mainly the
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high partition of batches defined plus the model dimension. In the first example, the data-

set is divided into 32 medium batches, and the model is of small size, while in the second

example, the dataset is divided into 128 batches, and the model is of small-medium size

with the granularity of these tasks classified as Fine-Grain. Whose performance characte-

rization relates to it : of many tasks, and each task has a small size. Which composition is

less intensive computation process, high-bottleneck tasks for managing CPU-GPU data

transfers, and required multiple gradient-updates computation tasks.

Figure 5.2 – Schematic sample of task granularity for fully connected neural networks.

5.3.2 Mapping the Dependency Graph on multi-GPUs and multi-

Nodes

Regardless of the algorithm itself, the parallel section of an algorithm determines the

granularity. Consequently, task granularity is characterized by three main components :

algorithm structure, problem dimension, and platform selection, as shown in Figure 5.3.

Commonly neural networks use data parallelism to train large datasets on multi-GPUs

nodes. These algorithms add an essential factor from traditional parallel computing gra-

nularity : that seeks an appropriate rate between computation and communication task to

include the synchronization task ; that in addition to minimizing the bottlenecks, has the

responsibility for updating the weights and biases to decrease the loss function, which will

determine a long or short convergence. The input data, model dimension, and the batch

size determine the number of synchronization tasks per weight updated step, which is

categorized as significant batch size increase the computational speed, and smaller batch

size empirically improve better generalization.
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Figure 5.3 – Two scenarios where a bad task-partition could slow the training of
neural networks.

5.3.3 Tasks-Granularity Problem Definition

The Task-Granularity optimization problem has the batch size as a crucial factor of

the optimization space due that it affects both the statistical accuracy (generalization)

and hardware efficiency (utilization). The objective function is designed to determine

a good batch granularity, given the model and the worker numbers to minimize the

convergence time and energy consumption for training a distributed neural network on a

heterogeneous system.

For example, a typical supercomputer of the TOP500 1 has 700 nodes with a hybrid

architecture, and each node contains 2 CPUs Intel Xeon and 4 GPUs Nvidia Tesla V100

all connected with PCIe network cards. Each node has about 128GB DDR4 of volatile

memory, four solid-state devices of 2TB, and the nodes are connected in a non-blocking

1. The TOP500 table shows the 500 most powerful commercially available computer systems known.
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fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.

Ph idle = 2 ∗ 16.2 + 4 ∗ 20.0 + 3.8 + 7.3 + 2 ∗ 9.2 ≈ 141.9W (5.1)

Ph max = 2 ∗ 205 + 4 ∗ 250 + 7 + 7.8 + 2 ∗ 12.3 ≈ 1449.4W (5.2)

On the other hand, in this thesis, we execute the experiments on a mini-cluster of

Nvidia Jetson-TX2 nodes since the Nvidia Jetson family does not have an integrated

power sensor for obtaining the watts measurements for the Tegra processor. We could

compute the energy consumption metric through the interpolation of the Jetson Tegra

processor to obtain their watts measurements. The computing factors that determine

the power consumption in watts are the memory uses, the cores’ clock frequencies, the

’streaming multiprocessor’ (GPU), and the bandwidth transfers. Therefore, DiagnoseNET

integrates the enerGyPU monitor to enable the energy modeling and automatizes the

power recording and storage of the registers ; in parallel, the deep neural networks are

trained on the selected platform.

5.4 Measuring and Modeling Energy Efficiency at

Runtime

A standard accepted metric used to help improve the energy efficiency of a super-

computer is called Power Usage Effectiveness (PUE) [Belady 08]. It measures the

relationship between the Total Facility Energy which includes everything that supports

the IT equipment as the energy associated with cooling, air movement, electricity trans-

formers, lighting, and IT equipment ; divided by the amount of IT equipment Energy

includes the energy associated with the computing system, like servers and switches.

Nevertheless, has emerged the metric called energy-to-solution Es [Hater 16,Gustavo

Rostirolla 15]. It is used to estimate the energy required by a computing system for

processing applications algorithms and training neural networks (computational tasks).

Es is given by the integral of its instantaneous power draw, represented in the next

equation :

Es =

∫ t0+∆t

t0

Ps(τ) dτ, (5.3)

Where t0 is the time when the computational task is started, and t0 + ∆t is the

execution time spent for processing the computational task. Ps(τ) is the sum of the

instantaneous power consumed by each of the computational resources of the system at
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each time step ∆t(i), defined in follows the equation :

Ps(τ) =
N∑

i=t0

PH (i) ∗∆t(i), (5.4)

Where H represents the computing system constituted by a set of physical machines
~h and a set of network switches ~n, defined as H = ~h+ ~n. Each node h can have diverse

computational resources (components), like CPU, GPU, memory, storage, and network.

Therefore, the power consumed by each node Ph ∈ PH , can be seen as a resultant

vector of the power draw at each time step ∆t(i) of its computational resources, started

by [Oleksiak 19] and can be expressed as follows :

Ph = ~PCPU + ~PGPU + ~PRAM + ~Pio + ~Pnet, (5.5)

However, the instantaneous power consumed per node Ph(i), is dynamic during run-

time and changes according to the computational use of its components, while each com-

ponent is conditioned by two based states, shown in the equation 5.6. The idle power

state Ph idle, represents the sum of the minimum power required by each component of

the node to be on. While the active power state Ph active, corresponding to the sum of the

intermediate power applied by each component to execute the computational task, This

occurs between the component’s highest possible power and the idle power.

Ph(i) =

{
t0, Ph idle

∆t(i), Ph idle ≤ Ph active ≤ Ph max

(5.6)

Therefore, the energy efficiency goal is to determine and apply the optimal frequency

at the job level the optimal frequency to all cores and nodes running the job to match the

selected energy policy. This frequency is set by setting the appropriate policy, composed

by the Dynamic voltage and frequency. According to the Unified Extensible F irmware Interface

(UEFI), the policies are :

— Efficiency-favor power mode maximizes the performance per watt efficient with a

bias toward performance.

— Efficiency-favor performance mode optimizes the performance per watt efficiency

with a bias toward performance.

By Ohm’s law, the dynamic power consumed by a processor is given by PCPU =

C ∗ V 2 ∗ f , where C is capacitance, F is the frequency, and V is voltage, which means

the dynamic power increases quadratically with voltage and linearly with the frequency.
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While the dynamic power consumption is dependent on the clock frequency, the lea-

kage power is dependent on the CPU supply voltage. We will come back to the power

leakage.

If we look at how voltage and frequency vary with ACPI Pstates, we see that bet-

ween P0 state and the Pstates corresponding to the minimum voltage (pm with m < n

where n is the highest possible Pstate. Therefore, between P0 and Pm, which is the range

where a processor is executing workloads, can be approximated with : P ≈ C ∗ F 3. It

shows dynamic power increases as the cube of frequency and how reducing the frequency

when an application is running can significantly reduce the power consumption of a server.

Likewise, the theoretical peak performance per node is determined by the frequency,

as : CPUpeak = Ncore ∗ FCPU ∗ FLOPS, where Ncore denotes the number of cores and

FCPU is the core clock frequency. On the other hand, the GPU processor could represent,

similar as the processor GPUpeak = NSM ∗ FGPU ∗ FLOPS. Therefore ;

1. To measure the energy consumed by all the workloads that have been executed.

2. One trivial way to minimize the power of a workload while running on a system is

to reduce the processor’s frequency.

5.5 Case of studies and Neural Architectures

5.5.1 Hyperparameter Search to Classify the Medical Task 1

A model space contains (d) hyperparameters and (n) hyperparameters configurations

defined in Table 5.1 and the Table 5.2 shows the models by number of parameters. We

have established some fixed hyperparameters and decided to tune the number of units per

layer, the number of layers, and batch size, which are the hyperparameters that directly

affect the computational cost. Each model was trained using Adam as an optimizer with

a maximum of 40 epochs, and as a loss function is used the Cross Entropy.

According to the model dimension shown in the Table 5.2, we are found that it is pos-

sible to divide the models by fine, medium, and coarse grain. Which, the Figure 5.6 shows

that middle-grain models from 1.99 to 8.29 million of parameters have a fast convergence

in validation loss, and high accuracy levels for the majority of the 14 care purpose labels,

in comparison with the other models who present a significant variation in accuracy and

spent more epochs to convergence.
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Table 5.1 – Search Space Model Descriptors.

Hyperparameters (d) Hyper. Configurations (n) State

Learning rate Adaptive L.R. starting From : 0.001
Activation function relu, tanh, linear Fixed : relu
Num. Units per layer 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 Search
Num. hidden layers 2, 4, 8, 16 Search
Regularization Dropout : 0.6, 0.7, 0.8 Fixed : 0.8
Batch size 24.576, 12.288, 6.144, 3.072, 1.536, 768 Search
Num. of workers 4, 6, 8, 10, 12 Search

Table 5.2 – Model Dimension Space in Number of Parameters (millions).

Numbers of layers
2 4 8 16

Neurons by Layer

16 0.24
32 0.47 0.48
64 0.95 0.97 1.0
128 1.89 1.93 1.99 2.12
256 3.82 3.95 4.21 4.74
512 7.76 8.29 9.34 11.44
1024 16.05 18.15 22.35
2048 34.2 42.6
4096 76.8

5.6 Experiments and Results

The experimentation examines the relationship between a neural network task-granularity,

mini-batch size, computational resources usage, and its reliance to predict the significant

clinical categories by examining the balance between accuracy and energy consumption.

The CPU-GPU experiments used a server machine with a GPU Nvidia GTX-Titan X

with 3072 CUDACores ; the device memory has 16GB GDDR5 336.5GB/sec the memory

bandwidth. In addition, we built a mini-cluster of 14-nodes Jetson TX2 interconnected

by switch Ethernet for the distributed processing experiments. As a case of study, we are

select the medical task to predict the medical care purpose from inpatients features recor-

ded in hospital admission and clinical attention. We defined a feed-forward neural network

hyperparameter space to generate a population of models and analyze what computa-

tional resources present an efficient balance between accuracy and energy consumption.

The experimentation and results are divided into three stages :

1. Hyperparameter space to determine the best batch splitting,

2. Hyperparameter space to determine the depth and width of the neural networks,
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3. Architectural parameter space to determine the worker’s scalability.

5.6.1 Hyperparameter Space : Batch Splitting

To illustrate the impact of processing more gradient updates as a factor to fast conver-

gence, consider the traditional feedforward neural network, parametrized with 2-hidden

layers of [4096, 4096] neurons per layer, relu is used as activation function, Adam such as

optimizer and cross entropy as loss function. The clinical dataset uses 84.999 records for

training and 4.950 records for validation.

The same DNN model has been executed using three different data batch partitions

of [24.576, 3072, 768] records by batch to measure the number of epochs needed to arrive

at the convergence point, characterized by the minimum loss value, as shown in Figure 4.

The largest batch partition of data requires more epochs to reach the convergence point

since it generates data transfer latencies from host memory to GPU memory.

(a) GPU S. Multiprocessor Usage (b) GPU Memory Usage

(c) GPU power consumption

(d) Core GPU Temperature

Figure 5.4 – GPU traces for training a MLP with different mini-batch size.
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5.6.2 Hyperparameter Space : Determine the Depth and Width

The model selection is crucial in reducing energy consumption for deep learning net-

works. This analyses aim to characterize the computational performance of a feed-forward

neural network in order to minimize the energy consumption and maintain a good accu-

racy of the model.

One of the parameters that affect the energy consumption and the execution time is

the tensor dimension in the network (i.e., the number of units for each layer). For this

reason, the experiments stretch the same number of neurons over multiple layers to gene-

rate different models. The hyperparameter configuration space uses stretch exploration

over a feed-forward neural network. Each box represents a specific hyperparameter confi-

guration (model) expressed into parameter numbers, and the warmer color corresponds

to better performance between accuracy and energy consumption.

Figure 5.5 – Accuracy vs Energy Consumption
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Stretching the same number of neurons affects the network’s performance in terms

of F1 score, execution time, and energy consumption, as shown in (Figure 6. Summary

results). When we decrease the number of neurons per layer, the F1 score decreases,

but the energy consumption decreases also. The aim is to find the number of neurons

for which stretching over multiple layers will decrease energy consumption and time and

affect the F1 score.

(a) Fine-grain test prediction
by class.

(b) Middle-grain test
prediction by class.

(c) Course-grain test
prediction by class.

(d) Fine-grain convergence
validation.

(e) Middle-grain convergence
validation.

(f) Course-grain convergence
validation.

(g) Fine-grain GPU P.C.
distribution.

(h) Middle-grain GPU P.C..
distribution.

(i) Course-grain GPU P.C.
distribution.

Figure 5.6 – Experiment results for training a feed-forward neural network, using the
hyperparameter model-dimension space.

5.6.3 Architectural Parameter Space : Workers Scalability

The first approach uses data parallelism to training deep neural networks on a mini-

cluster Jetson TX2. Where all replicas task read the same values for the current DNN

93



CHAPITRE 5. TOWARDS GREEN-AI FOR TRAINING DEEP NEURAL
NETWORKS

parameters, compute gradients in parallel, and theirs apply together [Abadi 16b]. To ex-

ploit the computational resources and the memory capacity of the Jetson TX2, the data

is split acording with the number of Jetson nodes and each part of the assigned data is,

again divided in micro-batches inside the each node to avoid memory constrains.

The distributed experiment results shows, when adding more workers for training a

DNN model this generates more number of gradient updates and accelerate the conver-

gence validation reducing the number epochs necessary. Since the performance has a great

impact when the neural network has trained on memory or disk for each platform, for

example : when we select a few workers number isn’t possible to train the model exploits

the memory, we need to use synchronous training on disk, due to the size of the batch.

However, when we are select a huge number of workers the dataset batching is well balan-

ced over the worker and is possible to train the model on synchronous training memory

and improve the balance between communication and processing.

(a) Workers scalability convergence
validation.

(b) Workers scalability test prediction by
class.

(c) Execution time spent to training each
model using different groups of workers.

(d) Cumulative comunnication banwidth
between workers and the parameter server.

Figure 5.7 – Distributed experiment results for training a feed-forwared neural
network on mini-cluster of Jetson TX2 nodes interconnected by switch Ethernet.
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5.7 Summary

The task-based programming model for distributed training of deep neural networks

allows more control for processing tasks such as the model components the gradient up-

dates. At the same time, the mini-batch is tuned to adjust the size of the task according

to the GPU memory size and minimize the communication bottleneck to allow efficient

scalability between nodes. Likewise, adapting the number of records by batch or the

model dimensionality to minimize the bottleneck of data transfer from host memory to

device memory reduces the GPU idle status.

As a theoretical conclusion for tailoring the DNN model on distributed platforms, we

can answer the main question ; How many workers are necessary to train a model to get

the best performance in terms of accuracy and energy efficiency ratio ? It is necessary

to split the dataset so that each portion delivered to each worker occupies 90% of the

main memory. In order to do this, it is necessary to determine the amount of space

required to allocate the one record or the full-dataset into the host memory (datasetsize),

likewise we compute the DNN model size in host memory (modelsize) according to with the

hyperparameters and get the worker host-memory capacity (workerMEM). According to

the previous variables, we can calculate the micro-batch partition size such as : batchsize =

datasetsize/(workerMEM − modelsize) and the number of workers as : workersnumber =

datasetsize/batchsize. After all, could be used synchronous data parallelism on distributed

memory for training the DNN model using the training memory modes to exploit the

workers’ capacities to early convergence.
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Chapitre 6

Concluding Remarks

6.1 Summary of Main Results

The use of modern HPC systems to determine an optimal generalization model with

Deep Neural Networks DNN in healthcare research is an expensive process for develo-

ping, training and financially, due to the cost of hardware and electricity or the cloud

compute time and its carbon footprint required to fuel HPC systems. Health researchers

and developers are looking for alternative options that allow health institutions to exploit

locally the benefits of AI in healthcare, while the data privacy of each patient is preser-

ved and the hardware and electricity cost is affordable. In this context, the motivation of

this research is to develop a programming framework to improve the usability, portabi-

lity and scalability of deep learning workflows over heterogeneous systems and, evaluate

low-consumption computing architecture with minimal infrastructure requirements, to

accelerate clinical risk-predictive models with an efficient balance between accuracy and

energy consumption.

The main contributions of this thesis are the automatization and harmonization of

communication paradigms and coordination methods for processing the gradient updates

over heterogeneous systems into a framework called DiagnoseNET. In which, Diagno-

seNET increase developer’s productivity, facilitating the programming process to build

and finetune a DNN, while its run-time abstracts the data locality, the micro batching

and the distributed orchestration to scale the DNN model from a GPU workstation to

multi-nodes. Likewise, DiagnoseNET made a workload characterization, collecting the

computational platform characteristics memory usage, CPUs, GPUs clocks frequency

and the energy consumption metrics while the DNN is executed on the target platform.

This information is stored in a testbed for the programmer or the scheduler could be used

to adjust the task granularity : model dimension and batch partition, according to the

memory capacity and the number of nodes in the next execution.
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Using a cluster of embedding nodes as the Jetson TX2 gives an intra-node advan-

tage in data movements from host memory to GPU memory, due that the CPU and the

Streaming Multiprocessors (GPU) are inside on-chip. However, the critical point for the

acceleration and the scalability DNN models are concentrated in the communication inter-

nodes and the coordination method to compute the gradient updates. Consequently, this

thesis evaluates the most commonly used communication paradigms (MPI and gRPC)

and their coordination methods for training two different neural architectures : multilayer

perceptron MLP and Convolutional Neural Networks CNN applied in two medical tasks.

In which, the experimental result has shown strong scalability using the MPI asynchro-

nous method to coordinate the gradient computations in both medical cases of study,

accelerating the convergence time in 1,3 hours with 12 Jetson TX2 nodes from 11,1 hours

with 2 Jetson TX2 nodes, given a reasonable time to explore a medium hyperparameter

space and determine a good regularization-model.

We overcome several challenges in the implementation of DIagnoseNET as a modular

framework, here some of the most representative :

1. Build an expression programming module to build dynamic neural networks, wi-

thout rewriting the code for a new platform or execution modes.

2. Automatize the dataset splitting, placement and balancing the batch over the nodes

and their memory constrains, having input sets with different dimensions as both

cases of study.

As the scientific contribution non-obvious in this thesis, we had observed in the hy-

perparameter search process for the multilayer perceptron, when is found a model with

n number of neurons and l number of layers, we could minimize the energy consumption

and keeping the same accuracy stretching (esto deberia tener mayor relevancia) the same

number of neurons over more layers.

6.2 Released Software

In the development of this thesis, several software modules were developed as well

as the DiagnoseNET framework that allowed automating the workflow of medical artifi-

cial intelligence proposed and described in detail in the previous chapters. This section

summarizes the additional modules developed from the medical domain to configure a

minicluster to train a distributed DNN. All the software was released to the repository

called IADBproject and licenced under the GNU General Public License v3.0.
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1. Patient Feature Composition : Is a data-mining module for driving electronic

health records to compose a digital patient representation. The objective of this

module is to build a dynamic feature composition from a custom vocabulary to

build a patient vector representation using a document-term sparse matrix. This

module was used to extract the clinical dataset and develop risk prediction models

of the health systems of the PACA region.

It is available at https://github.com/IADBproject/patient-feature-composition.

2. Build Embedded Clusters : Is a cross-platform repository to configure an Nvidia

Jetson mini-cluster to train distributed deep learning with TensorFlow and Diag-

noseNET. The objective of this module is to automate and develop manuals to

compile the necessary libraries and allow the reproducibility of the experiments.

It is available at https://github.com/IADBproject/buildEmbeddedClusters and was

developed in collaboration with Arno.

3. Preprocesing MIMIC-III : Is a preprocessing component for extracting and

compose a dataset with patient’s hospital admissions and their sequence of events

(medical procedures) from the MIMIC-III Database, which comprises 61,532 inten-

sive care unit stays.

It is available at https://github.com/IADBproject/prepro-mimiciii and was deve-

loped in collaboration with Chanpiseth.

4. ECG Convoluional Network : Is a set of parallelism programs for training an

ECG classification, comparing the same convolutional neural network to train the

atrial fibrillation classification task using different libraries like TensorFlow, Keras

and DiagnoseNET as well as the comunication protocols as gRPC and MPI.

It is available at https://github.com/IADBproject/ECG and was developed in col-

laboration with Ziqing Du.

5. DiagnoseNET : Is an open-source framework designed into independent and in-

terchangeable modules for scaling deep learning models over heterogeneous system

architecture applied to medical risk prediction models. It automatizes in one ex-

pression API the neural architecture definition, the hyperparameter search, the data

locality and batching, while the runtime coordinates the workers according to the

execution modes through synchronous or asynchronous coordination gradient com-

putations with communication protocols as MPI or gRPC, available for x86 and

arm architectures. It is available at https://github.com/IADBproject/diagnosenet.
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6.3 Research Perspectives

The vision of this thesis was to establish the main foundations for developing a learning

healthcare system framework that systematically collects patient information to train

deep learning models and implement clinical decision support systems throughout the

organization to produce continuous improvement in care delivery.

In this direction, several opportunities we identified to extend the research from the

patient from algorithm automation to patient modeling :

1. Neural Architecture Search : This thesis focused on the automation and sca-

lability of deep learning workflows in heterogeneous systems to accelerate clini-

cal risk prediction models with an efficient balance between precision and power

consumption. However, developing neural networks for medical risk classification

models often requires significant architecture engineering [Zoph 17]. For which the

DiagnoseNET framework could be extended with population-based training search

methods, such as the multiobjective function to scale the model along the dimen-

sion of the neural network, while minimizing the number of model parameters as

was introduce in the compound scling method by [Tan 19].

2. Federated Learning : Another method that can be applied to extend this thesis

is to improve asynchronous computing modes with the distributed coordination of

gradients over a federated learning environment to allow collaborative and decen-

tralized training of neural networks without sharing patient data. Whose models

can benefit from data from different centers, regions, and patient phenotypes to ge-

neralize deep learning medical models that achieve human-level performanceon in

decentralize clinical organizations. As recent contribution in federated deep learning

to detect COVID-19 lung abnormalities from seven different multinational centers,

using three centers to train the model and data from the other center to test and

evaluate generalization performance [Dou 21].

6.4 Publications and Presentations

The following papers and conference presentations were published during the deve-

lopment of this thesis :

1. John A. Garćıa H. Good Practices on Parallel and Distributed Program-

ming for Training Neural Networks. SC-CAMP, Supercomputing and Distri-

buted Camp. 2020.
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2. John A. Garćıa H., Frédéric Precioso, Pascal Staccini and Michel Riveill Diagno-

seNET : Automatic Framework to Scale Neural Networks on Hetero-

geneous Systems Applied to Medical Diagnosis. ICITCS2020, International

Conference on IT Convergence and Security. 2020.

3. Felix Mejia, John A. Garćıa H., Carlos Barrios, Michel Riveill Analysis of Re-

gularization in Deep Learning Models on Testbed Architectures. Latin

American High Performance Computing Conference, CARLA. 2020.

4. John A. Garćıa H., Frédéric Precioso, Pascal Staccini and Michel Riveill Scala-

bility Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied

to Healthcare. High Performance Computing, NVIDIA GTC Europe Conference.

2018

5. John A. Garćıa H.., Frédéric Precioso, Pascal Staccini and Michel Riveill Parallel

and Distributed Processing for Unsupervised Patient Phenotype Repre-

sentation. Latin American High Performance Computing Conference, CARLA.

2018

6. John A. Garćıa H., Frédéric Precioso, Pascal Staccini and Michel Riveill Diagno-

seNET : Framework to Build Full Deep Neural Networks Workflow From

Data-mining, Unsupervised Embedding and Supervised Learning. User-

Centric Network Workshop. 2017.
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[Kalé 11] Laxmikant V. Kalé. Charm++, pages 256–264. Springer US,

Boston, MA, 2011.

[Kamel 18] Peter I Kamel & Paul G Nagy. Patient-Centered Radiology with

FHIR : an Introduction to the Use of FHIR to Offer Radiology a

Clinically Integrated Platform. Journal of digital imaging, vol. 31,

no. 3, page 327—333, June 2018.

[Kennedy E.H. 13] Kennedy E.H., Wiitala W.L., Hayward R.A. & Sussman J.B. Im-

proved cardiovascular risk prediction using nonparametric regres-

sion and electronic health record data. Medical Care, 2013.

[Keuper 16] Janis Keuper & Franz-Josef Preundt. Distributed Training of

Deep Neural Networks : Theoretical and Practical Limits of Paral-

lel Scalability. In Proceedings of the Workshop on Machine Lear-

ning in High Performance Computing Environments, MLHPC ’16,

pages 19–26, Piscataway, NJ, USA, 2016. IEEE Press.

[Kingma 14] Diederik P. Kingma & Jimmy Ba. Adam : A Method for Stochastic

Optimization. arXiv e-prints, page arXiv :1412.6980, Dec 2014.

[Kingma 15] Diederik P. Kingma & Jimmy Ba. Adam : A Method for Stochastic

Optimization. CoRR, vol. abs/1412.6980, 2015.
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