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CHAPTER 1

Introduction

During the last decade, the extensive use of on-line platforms such as video on demand
(Netflix, AmazonOCS, MyCanal) or video streaming platforms (Youtube, Dailymotion,
Vimeo) has lead to a significant increase in the volume of exchanged video content. The
multimedia services have also diversified with the apparition of video applications that
offer immersive and more natural viewing experience. These new services require both
higher resolution (4K, 8K, 360◦) or frame-rates (120fps) and increase neatly the volume
of the video content. In parallel, devices conceived to display and distribute these emerg-
ing video services are becoming affordable products for the general public thanks to the
progress in microelectronics. Televisions, computers or smart phones capable of displaying
high-definition resolutions have now entered our daily lives. Therefore, it is now possible
to consume video services almost anywhere and at anytime, and the video services are
increasingly voluminous. A recent study published by Cisco [1] has predicted that video
traffic will increase from 61% of the global IP traffic in 2016 to 82% in 2021. Viewing video
content on-line also has a considerable impact on global CO2 emissions. In 2018, the stor-
age, transmission and viewing of on-line video accounted for gas emissions comparable to a
country like Spain (1% of global greenhouse gas emissions) [2]. This increasing demand for
video contents brings new challenges to compression, mostly to enhance the video coding
efficiency and reduce the pollution induced by video storage, transmission and processing.
Higher coding efficiency enables the same quality of experience of video services, with lower
storage and transmission cost.

Since the late 1980s, academic and industrial researches have been focusing on video
coding, and the fundamental video coding recommendations remained unchanged since
H.261 standard in 1988. All video codecs are based on the same block-based hybrid coding
architecture, combining Inter and Intra predictions with transform coding. Almost every
decade, a new standard is released with the objective of 50% bit-rate reduction for equal
subjective quality compared with its predecessor. Every standard comes with new encod-
ing and decoding devices that implement the standard. These devices are called codecs. In
2013, the video coding standard named H.265/HEVC, for High Efficiency Video Coding,
was released and gradually adopted in many application systems. Compared to its pre-
decessor H.264/Advanced Video Coding (AVC) [3, 4, 5] released in 2003, HEVC enables
twice as much video content to be stored on a server or sent through a streaming service.
Currently the state-of-the-art in video coding is the nearly completed VVC, for Versatile
Video Coding, finalized in July 2020. As for every new generation standard, the primary
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objective of VVC was to provide a significant improvement in coding efficiency over the
previous existing standard, in this case HEVC. VVC provides close to 40% bit-rate savings
over HEVC [6] and it is expected to enable the delivery of Ultra High Definition (4K)
services at bit-rates that actually are used to carry HDTV.

The bit-rate savings achieved by each new generation of video codecs are generated by
increasingly complex tools, on both encoder and decoder side. The computational com-
plexity of a VVC encoder is estimated to 10 and 27 times HEVC computational complexity
in inter and intra coding configuration, respectively [6]. At decoder side, the computational
complexity increase of VVC standard compared to HEVC is approximately a factor 2 in
both inter and intra coding configurations [6]. This complexity may become a bottleneck
for the development of the VVC standard and may interfere with its deployment, espe-
cially on embedded platforms with low energy supplies and on live applications that require
real-time encoding and decoding.

1.1 Challenges and Objectives

The number of devices connected to IP networks will grow up to 29.3 billion by 2023,
which represents more than three devices per world inhabitant in average, according to
the Cisco study 1. The number of devices is in constant increase, and an important share
of these network devices are embedded and enable video processing. However, embed-
ded platforms only have limited energy supplies. Drastic energy consumption reduction
is therefore crucial for realistic deployment of VVC codecs on embedded platforms such
as mobile devices. Even for non-embedded platforms such as video data centers, energy
consumption is an important issue. The substantial increase in video codec energy con-
sumption generates a higher budget for electricity, especially for data centers processing
millions of video sequences every day. On a more environmental level, reducing video
codecs energy consumption on billions of devices is a manner to contain the greenhouse
gas emissions generated by video codec processing.

The decrease of VVC codec processing time is also a crucial challenge. For live VVC
applications, the optimization of both encoding and decoding processes is mandatory to
meet real-time requirements. At encoder side, many live applications require real-time
video encoding. Many applications have emerged in the latest years such as individual live
streaming (Periscope, Wowza, LiveStream) or conference meeting application (Hangouts,
Zoom, Skype), and some were already widespread in the past 30 years such as classical live
television streaming. On decoder side, a large majority of applications require real-time
decoding where the decoded video sequence is almost always instantaneously consumed to
avoid the storage of the uncompressed content on memory.

This thesis aims at reducing efficiently the implementation cost, i.e. energy consump-
tion and processing time, of VVC encoding and decoding processes. The two levers em-
ployed are the reduction of computational complexity and the parallel processing of VVC
codec. Techniques optimizing computational complexity reduce the overall work of the
process, and therefore directly decrease energy consumption and processing time. Parallel
processing techniques leverage multi-core architectures in order to distribute optimally the
work on several cores. Parallel processing techniques can be used to reduce the processing
time through multi-thread speed-up. It is also possible to use them to decrease the pro-
cessors clock frequency, which decreases the energy consumption by reducing the supply

1https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
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voltage [7]. Both parallel processing and complexity reduction are conducted while mini-
mizing the coding quality losses, in order to preserve the quality improvement of the new
standard VVC.

1.2 Contributions

This document includes one evaluation study and three main contributions, each presented
in a distinct Chapter. The first contribution is a preliminary study, providing important
information to adequately address the issue of VVC codec optimization. Then are presented
three technical contributions aiming at reducing efficiently the implementation cost of VVC
encoding and decoding processes, while minimizing the coding quality losses in terms of
bitrate and visual quality.

To adequately address the issue of VVC codec optimization, the first stage of this
thesis is a quality assessment of coding tools. This assessment identifies the tools likely to
induce coding quality losses. In parallel, a complexity profiling of VVC codec highlights the
most computationally consuming parts of both encoding and decoding processes. In order
to assess the performance of VVC compared to HEVC, both studies (quality assessment
and complexity profiling), are conducted in comparison with HEVC standard. The VVC
reference software used by researchers and industrial companies to propose and test new
coding tools during VVC standardization process is called VVC Test Model (VTM). During
HEVC standardization process, the reference software was the HEVC Model (HM). The
performance of VTM is compared with the HM, highlighting the main improvements of
VVC standard compared to its predecessor. This preliminary work on quality assessment
and computational complexity profiling is currently under review for publication in IEEE
international journal Transactions on Multimedia (TMM).

The three main contributions have been proposed when VVC standardization process
was not yet finalized. Therefore, only few studies on VVC complexity reduction and even
less on parallel processing were available in the literature. The contributions presented
in this document are among the first applied to VVC standard to be published in their
respective fields. They are intended to serve as a basis of comparison for future research
work, and are designed to be easily implementable into future professional VVC encoders
and decoders. The last contribution of this thesis is particularly representative of this
effort, since it has been directly inserted in the open source decoder openVVC, which is
intended to be distributed to the general public. The three main contributions of this
thesis are briefly presented below.

Tunable VVC Block Partitioning based on Lightweight Machine Learning

At the encoder side, the block partitioning scheme selects the appropriate block size accord-
ing to the local activity of the pixels, achieving significant improvement in coding quality.
However, the block partitioning scheme has been identified as the most computationally
expensive tool in the VVC standard in our paper [8]. In order to reduce the search space
of block partitioning scheme, we propose a lightweight and tunable solution in Random
Access (RA) coding configuration. The proposed solution is based on a Random Forest
(RF) classifiers [9] to determine for each coding block the most probable partition modes.
Classification by RF is a classical method in Machine Learning (ML) that predicts the value
of a target variable, named class, from values of several input variables, named features.
To minimize the encoding loss induced by misclassification, risk intervals for classifier deci-
sions are introduced in the proposed solution. By varying the size of risk intervals, tunable

https://hal-univ-rennes1.archives-ouvertes.fr/hal-02334438v2/document
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trade-off between encoding complexity reduction and coding loss is achieved. The Joint
Exploration Model (JEM) is the VVC reference software pre-VTM, used during the first
half of standardization process. The proposed solution has been implemented in both
VTM-5.0 and JEM-7.0 software models and offers encoding complexity reductions ranging
from 30% to 70% in average, for only slight encoding quality loss in RA coding configu-
ration. The overhead induced in the encoding process by RF classifiers is also very light,
which is a key point to use this solution in a real-time or embedded framework. This
work has lead to the presentation of a poster session in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) in 2019 [10], and has been published
in international journal IEEE Transactions on Image Processing (TIP) in 2019 [11].

Efficient Parallel Encoding through Dynamic Tiles and Rectangular-Slices

As mentioned in previous section, in order to achieve real-time and low latency encod-
ing, it is mandatory to rely on parallel processing to distribute optimally the encoding
complexity on several actors (cores). The second contribution of this thesis is an effective
high-level parallelism solution for VVC encoding process in RA configuration. The VVC
standard includes tile grid partitioning that allows to process simultaneously rectangular
regions of a frame with independent threads. The tile grid may be further partitioned into
a horizontal sub-grid of Rectangular Slices (RSs), increasing the partitioning flexibility. A
dynamic Tile and Rectangular Slice (TRS) partitioning solution, i.e. evolving across video
sequence time-line, is proposed and benefits from this increased flexibility at the expense
of coding loss. The TRS partitioning is carried-out at the frame level, taking into account
both spatial texture of the content and encoding times of previously encoded frames. The
proposed solution searches the partitioning configuration that minimizes the trade-off be-
tween multi-thread encoding time and encoding quality loss. Experiments prove that the
proposed solution, compared to uniform TRS partitioning, significantly decreases multi-
thread encoding time, with slightly better encoding quality. This work has been presented
in the special session Complexity Reduction and Real Time Implementations of the Versa-
tile Video Coding Standard of IEEE International Conference on Image Processing (ICIP)
in 2020 [12].

Parallel and Real-Time VVC Decoder in AI configuration

The last contribution of this thesis focuses on the decoder side of the new standard. This
contribution is implemented in the open source and real-time VVC decoder openVVC
project, under the All Intra (AI) configuration. The contribution includes the implemen-
tation starting from scratch of in-loop filters Adaptive Loop Filter (ALF) and Sample
Adaptive Offset (SAO), with special attention to the minimization of filter buffers memory
usage. It also includes the consolidation of tile parallelism in order to enable both dynamic
and uniform tile partitioning. With in-loop filters and dynamic tile parallelism operational,
we reimplemented the dynamic tile partitioning solution proposed in our previous contribu-
tion (See A.2), enabling the generation of bitstreams compatible with openVVC decoder.
The experimental results show that the decoding frame-rates obtained with dynamic tiles
are equivalent to the frame-rates obtained with uniform tiles, with improved coding qual-
ity. The general performance of the openVVC version is also presented. By combining
data-level with tile-level or frame-level parallelism, openVVC achieves real-time decoding
for High Definition (HD) and Ultra High Definition (UHD) content. The main asset of the
proposed decoder lies in its very low memory usage, since the sequential decoding of HD
and UHD content only requires 20MB and 70MB of memory, respectively.

https://www.researchgate.net/publication/332791432_Random_Forest_Oriented_Fast_QTBT_Frame_Partitioning
https://hal.archives-ouvertes.fr/hal-02281120/document
https://ieeexplore.ieee.org/document/9190928/


1.3. Outline 5

1.3 Outline

This section briefly summarizes the content of each chapter presented in this document.
Chapter 2 presents the fundamental concepts of video compression, from video signal for-
mat, through Rate Distorsion Optimization (RDO) process and history of video coding
standards, to the recently released video coding standard Versatile Video Coding.

In Chapter 3, a subjective and objective quality assessment of VVC is conducted in
order to evaluate the coding quality of this new emerging standard in comparison with
HEVC standard. This chapter also provides an analysis of times and complexity repartition
for both encoding and decoding processes. This chapter identifies the tools likely to induce
quality losses and evaluate the complexity reduction opportunities.

In order to reduce the complexity of the encoding process, Chapter 4 focuses on the
partitioning scheme and reduces the number of tested partition configurations in RA coding
configuration. All the steps of the proposed solution are detailed, from the creation of the
ML classifiers, to the achievement of tunable trade-off between coding quality and execution
time.

In Chapter 5 a technique to parallelize efficiently the VVC encoding process in RA cod-
ing configuration is presented. The TRS partitioning, briefly presented in previous section,
is adjusted at the frame level, taking into account both spatial content and encoding times
of previously encoded frames. Experiments prove that the proposed solution decreases
significantly multi-thread encoding time, with slightly better encoding quality, compared
to other straightforward TRS partitioning techniques.

Chapter 6 presents a real-time VVC decoder based on the open source openVVC
project, for HD and UHD contents in AI configuration. It presents the contributions of this
thesis in the software, as well as the experimental results obtained with these contributions.
By combining data-level with threading parallelism, openVVC achieves real-time decoding
for HD content, with very low memory usage.

Chapter 7 concludes this document and gives several research directions to extend this
work for future research.





CHAPTER 2

Video Coding Background

Video coding is a branch of data compression that reduces the amount of data required to
represent a video signal, while minimizing the quality degradation compared to the original
video signal. This chapter presents the fundamental concepts of video coding required to
understand this document, from video signal format to the recently released video coding
standard Versatile Video Coding. Section 2.1 describes the properties that characterize
a digital video signal. The concept of rate is introduced in Section 2.2, along with the
most common metrics used to evaluate the quality of a decoded video signal. Section 2.3
investigates the Rate Distorsion Optimization (RDO) process used at the encoder side
to estimate the optimal encoding parameters. In Section 2.4, the history and evolution
of video coding standards during the last three decades is presented. The description of
recently standardized Versatile Video Coding (VVC) decoder is provided in Section 2.5 as a
concrete example of classical hybrid video coding standard. Finally, Section 2.6 introduces
the software video codecs used in the three contributions of this thesis.

2.1 Video Signal Format

A video signal is defined as a sequence of frames, also called pictures or images. The char-
acteristics of a frame have been standardized to ensure correct processing and displaying
of the video signal. The following section details the characteristics of the video signal.

2.1.1 Spatial Resolution

A frame is represented by a 2 dimensional matrix of pixels. The spatial resolution is defined
by the number of pixels in a row and in a column of the frame. These two characteristics
are noted W and H for the frame width and height, respectively. Figure 2.1 gives a visual
representation of the frame as a 2 dimensional matrix of pixels p(i, j), with p(i, j) the pixel
localized in row number i and in column number j of the frame.

For gray-scale video signal, a pixel is composed of a single component called luminance.
The luminance represents the visual sensitivity of luminosity of a surface. In the rest of this
document, pixel components are also called channels. To represent colors in a color video
signal, three channels are required. Among the most widespread color representations, the
RGB color space associate each channel to a primary color: red, green and blue. For coding
purposes, the YCbCr representation of a pixel is more common in digital imaging, with
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Figure 2.1 – Video signal with spatial resolution of W ×H pixels.

Y the luminance, Cb and Cr the blue and red chrominance channels, respectively. The
chrominance represents the color intensity of a surface, and is also called chroma.Y

U
V

 =

 0, 299 0, 587 0, 114
−0, 147 13 −0, 288 86 0, 436

0, 615 −0, 514 98 −0, 100 01

R
G
B

 (2.1)

Equation 2.1 can be used to derive Y, U and V from the components R, G and B.
Historically, the notation YCbCr is used for digital color video signals and the notation
YUV refers to analogue signals (TV sets / cathode ray tube monitors), but both refer to the
same color representation. In this document, YCbCr and YUV are both used equivalently.

2.1.2 Temporal Resolution

The temporal resolution of a video signal is characterized by its frame-rate. The frame-
rate, usually expressed in Frames Per Second (fps), corresponds to the frequency at which
the frames change in the video. In Figure 2.2, a video signal with a temporal resolution of
f fps is presented. In this case, the displayed frame is refreshed every 1

f seconds.

time
Figure 2.2 – Video signal with temporal resolution of f fps.

2.1.3 Bitdepth and Color Sampling

A pixel is composed of three channels, each carrying a part of the pixel visual information.
The channel content is generally represented either by an integer or a floating point. The
bitdepth of the video signal is the fixed number of bits required to store each channel
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content. The most common bitdepth values range from 8-bit to 16-bit formats, resulting
in a total of 24 to 48 bits per pixel for a color video.
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Figure 2.3 – Video signal with temporal resolution of f fps.

In order to reduce the total bits per pixel without reducing the bitdepth of the video
signal, color sampling is frequently applied. A very common color sampling applied in YUV
representation is the chrominance down-sampling, i.e. reducing the chrominance resolu-
tion while leaving the luminance resolution unchanged. Indeed, the Human Visual System
(HVS) is more sensitive to luminance channel compared to the chrominance channels in
YUV representation. It is therefore possible to discard a part of the chrominance infor-
mation without significantly reducing the perceived quality of the video. This is the main
interest of YUV representation and the reason for its extensive use in the video coding
field.

In the following, the bitdepth of a video signal is noted b and the total number of
bits per pixel is noted B. Figure 2.3 shows the 3 typical color sampling formats used in
video coding: 4:4:4, 4:2:2 and 4:2:0. The 4:4:4 color sampling format is the original YUV
representation with no chrominance down-sampling. In this case B = 3b. With the 4:2:2
color sampling format, a chroma down-sampling by 2 in the horizontal direction is applied.
As shown in Figure 2.3, in this case 2B = 4b, which implies B = 2b. With the 4:2:0 color
sampling format, a chroma down-sampling by 2 in both horizontal and vertical direction
is applied. As shown in Figure 2.3, 4B = 6b, which implies B = 3

2b. The chrominance
down-sampling is therefore effective to reduce the total bits per pixel.

2.2 Quality Evaluation of a Decoded Video

In this section we first introduce the notions of video quality and rate, and then we present
the most common metrics used to evaluate the quality of a decoded video signal.

2.2.1 Video Quality and Rate

Figure 2.4 shows the coding process of a video signal. A raw video is acquired by a recording
device, and converted by the encoder into a bitstream composed of binary symbols (bits).
The size of the bitstream for a given time interval is called rate, or bit-rate. The rate is often
expressed in bits per seconds, i.e. the amount of transmitted numerical data per second.
The bitstream is further processed by the decoder, and the decoded video signal is displayed
on the user screen. The quality of the decoded video is assessed either by a distortion
metric, a rate-distortion metric or by a subjective quality metric. The distortion measures
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Figure 2.4 – Video rate and quality in the video coding cycle.

the distance between the raw and the decoded video signal, and therefore requires the
raw video signal as reference to be computed. The most commonly used objective metrics
are presented in the following section: Peak Signal to Noise Ratio (PSNR), Structural
SIMilarity (SSIM) and Video Multi-Method Assessment Fusion (VMAF). The Bjøntegaard
metrics [13] compare two video coding solutions taking into account both rate and distortion
performance. The subjective metrics evaluate the quality of the decoded video signal
relying on scores from the HVS.

2.2.2 Distortion Metrics

2.2.2.1 PSNR Metric

The PSNR metric is a purely “signal” measure. The PSNR is a pixel-to-pixel treatment
regardless of the 2D aspect of the image or video. The PSNR is based on the Mean Squared
Error (MSE), to evaluate the error between a degraded image and its reference version. It
is defined by:

MSE =
1

W H

W−1∑
i=0

H−1∑
j=0

(Imr(i, j)− Ime(i, j))
2, (2.2)

where W and H are the dimensions of the image, Imr is the reference image and Ime

is the image to be evaluated.
The PSNR of a signal of amplitude A is defined by Equation 2.3.

PSNR = 10 log10

(
A2

MSE

)
, (2.3)

with A = 2γ − 1 and γ is the video bitdepth.
For video color sequences, which ordinarily consist of three channels (y, u, v), a weighted

PSNR (wPSNR) version can be used. The weighted PSNR is computed by weighting three
channels Y, U and V as defined bellow.

wPSNR =
6PSNRY + PSNRU + PSNRV

8
. (2.4)
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PSNR is the most used objective metric in video domain. It is easy and fast to im-
plement. However, it simply computes the pixel-wise distortion without considering the
relationships among the pixels.

2.2.2.2 SSIM Metric

To substantially remedy this disadvantage, Wang et al. [14] proposed a metric named SSIM
based on the similarities between the structures in the image. Thus, it makes it possible to
extract three different criteria, for each “window” of the image, judged important for human
observers, namely luminance, contrast and structure. The metric is defined as follows for
two windows belonging to two images Imr and Ime:

SSIM(Imr, Ime) =

(2µImrµIme + C1)(2σImIme + C2)

(µ2
Imr

+ µ2
Ime

+ C1)(2σ2
Imr

+ σ2
Ime

+ C2)
,

(2.5)

where µImr is the local luminance mean in image Imr, σImr is the local standard
deviation, Imr, σImrIme is the covariance between Imr and Ime. C1 and C2 are two
constants that depend on the dynamics of the image.

The values of this metric are then obtained for all calculation windows. They are
between 0 and 1: a value close to 1 indicates that both images (videos) have a maximum
fidelity while values close to 0 indicate a too degraded image (video). Moreover, SSIM has
been recently exploited [15] in the High Efficiency Video Coding (HEVC) rate-distortion
optimization stage to enhance the perceived video quality under a rate control process.

2.2.2.3 VMAF Metric

VMAF is a perceptual video quality assessment algorithm developed by Netflix with col-
laboration of Laboratory of Image and Video Engineering [16]. VMAF is a full-reference,
perceptual video quality metric focused on quality degradation due to compression and
rescaling. It was specifically formulated to approximate human perception of video quality
and then to correlate strongly with subjective Mean Opinion Scores (MOSs). Using ma-
chine learning techniques, a large sample of MOS scores were used as ground truth to train
a quality estimation model. VMAF estimates the perceived quality score by computing
scores from multiple quality assessment algorithms and fusing them using a support vector
machine. The features taken as input by the support vector machine include:

• Detail loss metric [17]: details loss and visual defects that distract viewer attention.

• Visual information fidelity: information loss at four different spatial scales.

• Mean co-located pixel difference: luminance difference between consecutive frames.

• Anti-noise signal-to-noise ratio.

VMAF has been shown to outperform other image and video quality metrics, such as
SSIM and PSNR on several datasets in terms of prediction accuracy, when compared to
subjective ratings.
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Figure 2.5 – Computation of Bjøntegaard metrics between two R-D curves.

2.2.3 Rate-Distortion Metrics: Bjøntegaard Metrics

The Bjøntegaard metrics [13] compare two video coding solutions taking into account both
rate and distortion performance. This characteristic makes the Bjøntegaard metrics the
most widely used metrics for the comparison of two video coding solutions. As shown
in Figure 2.5, the Bjøntegaard metrics measure the average difference between two Rate
Distorsion (RD) curves, i.e. rate/distortion points obtained by coding a raw video with
various encoding rates. The green and red RD curves are interpolated through at least
four points, using a third-order logarithmic polynomial fitting.

As illustrated in Figure 2.5b, the Bjøntegaard Delta BitRate (BD-BR) measures the
average bit-rate difference (in percent) of the two RD curves at the same PSNR quality.
This average bit-rate difference is measured on the overlapping PSNR range of the two
RD curves. Likewise, the Bjøntegaard Delta PSNR (BD-PSNR) measures the average
PSNR difference in decibels (dB) for the two coding solutions at the same bit-rate. In this
document, the quality of all the coding solutions proposed are compared to the anchor
encoder in term of BD-BR metric.

2.2.4 Subjective Quality Metrics

Unlike signal-based approaches for objective quality measurements, subjective quality as-
sessment is the process of employing human viewers for grading video quality based on
individual perception [5]. The global environment, viewing conditions and the imple-
mentation process for subjective quality assessments are specified in various International
Telecommunication Union (ITU)recommendations. Two specific methodologies are widely
used in the video quality assessments: ITU-T Rec. P.910 [18] for multimedia applications
and ITU-R Rec. BT.500 [19], for television pictures.

Subjective tests rely directly on the HVS, but they are costly in time and money. For
this reason, metrics such as VMAF or SSIM seek objective criteria correlated with HVS.

2.3 Rate-Distortion Optimization

During the encoding process, the encoder estimates the coding parameters Π that minimizes
the distortion under bit-rate constraint. This optimization problem is called RDO, and
expressed is in Equation 2.6. EΠ represents the set of allowed coding parameters and Π∗
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the coding parameters that minimize the distortion D(Π). R(Π) is the bit-rate obtained
with the coding parameters Π and Rmax the bit-rate constraint.

Π∗ = argmin
Π∈EΠ

(D(Π)),

under constraint, R(Π) < Rmax.
(2.6)

This constrained problem has been modeled by Everett [20] as an unconstrained prob-
lem, introducing a Lagrangian multiplier λ. This unconstrained problem is defined by
Equation 2.7, with J(Π, λ) the RD-cost of coding parameters Π and Lagrangian multiplier
λ.

Π∗(λ) = argmin
Π∈EΠ

(J(Π, λ)),

with J(Π, λ) = D(Π) + λR(Π).
(2.7)

In Equation 2.7, the value of λ controls the trade off between distortion D(Π) and bit-
rate R(Π), and affects the choice of the optimal coding the parameters Π∗(λ). Since the λ
values used in the video coding field have been experimentally fixed for H.263 standard (see
Section 2.4 by Wiegand et al. [21], λ is no longer considered as a variable. It is therefore
possible to change the notation for the coding parameters that minimize RD-cost from
Π∗(λ) to Π∗ in Equation 2.7.

Since no mathematical model exists to define the relation between coding parameters
Π and corresponding RD-cost J , a common RDO strategy is to exhaustively test the
coding parameters within set of allowed coding parameters EΠ. The optimal set of coding
parameters Π∗ found after RDO is further used to code the video signal. The set EΠ

bounds the RDO search space and is usually determined by the encoding configuration,
the encoding limitations or the specificities of the encoder algorithms. In most cases,
larger search space leads to better coding efficiency, at the cost of increased computational
complexity.

2.4 Video Coding Standards

Encoder

Decoder

Bitstream 

Raw video

Decoded
 video

Non-standard
Respect standard syntax.
Tool competition (RDO).

Focus of standardization
Propose a bitstream syntax.

Propose set of available tools.

Figure 2.6 – Roles of the encoder and decoder in the standardization process.
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A video coding standard specifies the bitstream syntax and the decoding process that
allows to convert the bitstream in a displayable video sequence.

Each standard introduces specific coding tools, selected based on their maximum coding
efficiency. On the other side, the encoding process generates a bitstream compliant with
the standard syntax, using the tools specified in the standard. The roles of the encoder
and decoder in the standardization process is depicted in Figure 2.6. As mentioned in
Section 2.3, at the encoder side the RDO exploits the coding tools available in the standard
in order to optimize coding efficiency. Thus, two distinct competitions exist in the video
coding field. The competition among standards, whose aim is to provide the best set
of coding tools. And the competition among encoders compliant with the syntax of a
standard, whose aim is to optimize the use of the coding tools through proprietary RDO
algorithms. In this section we give an overview of the competition among existing video
coding standards. In the last three decades, the contributors for the most used video
coding standards have been the two standard organizations International Organization for
Standardization (ISO)/International Electrotechnical Commission (IEC) and the ITU-T.
Currently, the major alternative is the industry-oriented Alliance for Open Media (AOM).

2.4.1 ISO/IEC and the ITU-T

In Figure 2.7, the history standards is presented chronologically. The left part corresponds
to the standards proposed by the ISO/IEC and the ITU-T, which are the most widespread
in the last thirty years. In 1984, the first video coding standard known as H.120 [22] is
released by the International Telegraph and Telephone Consultative Committee (CCITT).
The CCITT and the ITU have further been unified to create the ITU-T group. Inside
ITU-T, the group in charge of the video coding standardization, named Video Coding
Experts Group (VCEG), proposed in 1988 the first widespread video encoder under the
form of recommendation H.261 [23]. The classical hybrid video coding scheme, combining
both spatial/temporal prediction and transform coding, has been used for the first time in
H.261 standard. Since current standards still rely on this hybrid video coding scheme, it
is described in detail in Section 2.5.

Also in 1988, the ISO and the IEC collaborated to create their own standardization
group called Moving Picture Experts Group (MPEG), in parallel with VCEG activities. As
the name suggests, the initial aim of MPEG was proposing standards for the representation
of audio and moving pictures. The first standard developed by MPEG called MPEG-
1 [24] was released in 1993. After these first effort from both VCEG and MPEG, the two
standardization groups joined their forces and proposed the most widely used standards
of the last decades with the H.262/MPEG-2 (1994) [25], H.264/MPEG-4 Advanced Video
Coding (AVC) (2003) [26] and H.265/HEVC (2013) [27] standards. The latest video coding
standard named H.266/VVC has been developed by the Joint Video Exploration Team
(JVET), which is also the result of the collaboration between VCEG and MPEG.

2.4.2 Principal Alternatives

In the right part of Figure 2.7, the standards proposed as alternatives to the ISO/IEC and
the ITU-T are displayed. Between 1995 and 1997, the company On2 Technology developed
the TrueMotion S, TrueMotion RT and TrueMotion 2 video codecs for 3D-rendering, i.e.
process of converting 3D models into 2D images on a computer. The same company
proposed VP3 in 2000, focusing this time on natural scenes images. In 2001, the Xiph
organization proposed the first open-source Theora [28] standard in 2001, based on the
previously released VP3 codec. Another alternative to H.264/AVC has been proposed by
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Figure 2.7 – History of video coding standards.

Microsoft in 2006 under the name of VC-1. This latler is used in both HD-DVD and
Blu-ray discs.

In early 2010, several alternatives to H.265/HEVC have been released. The Xiph
organization released Daala [29] in 2013 and Cisco Systems developed Thor [30]. Both
video codec being royalty-free and open-source alternatives to VP9 developed by Google. In
2018, Amazon, Apple, ARM, Cisco, Facebook, Google, IBM, Intel Corporation, Microsoft,
Mozilla, Netflix and Nvidia forming the industry consortium AOM presented the AV1
standard [31]. This emerging standard competes with the H.265/HEVC in term of efficiency
of the available coding tools, and does not induce limitations regarding financial patent
cost or legal usage terms.
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Figure 2.8 – VVC encoder block diagram.

2.5 VVC: Classical Hybrid Video Coding Standard

In this section, the classical hybrid coding scheme used in many video coding standards is
presented, taking as example the new state of the art video coding standard VVC. Since
VVC is the focus of this thesis, a description of the main coding tools available in the
standard is further detailed.

2.5.1 Overview of VVC Encoding Process

The encoding process of the vast majority of encoders, including VVC, is divided into 5
main steps. Figure 2.8 represents a classical VVC encoder block diagram. The 5 main steps
described below are highlighted in green and identified with their corresponding numerical
numbers.

1. Block Partitioning: the input frame is divided into rectangular group of samples,
called Coding Units (CUs), on which the other main steps are applied.

2. Prediction: the samples of the CUs are predicted using the reference samples stored in
memory. Intra prediction exploits spatial redundancy within the same frame, whereas
inter prediction exploits temporal redundancy between frames. The predicted block
is an approximation of the original CU. It is then subtracted to the original block,
resulting in a residual block.
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3. Transform and Quantization: the residual block is transformed into the frequency
domain. The transform enables to decorrelate the residual block and pack its energy
in a few coefficients. Then lossy coding methods are applied to the transform coeffi-
cients in order to remove information less relevant for the HVS and provide quantised
coefficients.

4. Internal Decoder: inverse operations are applied to generate the reference samples
and store them in the memory. The reconstructed samples correspond to the pre-
dicted samples, summed with inverse quantization and inverse transform of quantised
coefficients. The reconstructed samples are used by intra prediction. The in-loop fil-
ters (further described in Section 2.5.7) are then applied on the reconstructed samples
to generate decoded samples. The decoded samples are used as reference for inter
prediction.

5. Entropy Coding: all the syntax elements (including chosen coding parameters and
quantised coefficients) are further encoded by a lossless entropy coder to reduce statis-
tical redundancies and generate the output bitstream. In VVC, the Context Adaptive
Binary Arithmetic Coding (CABAC) [32] is used as entropy coder which is further
described in Section 2.5.8.

2.5.2 Block Partitioning Scheme in VVC

W

H CTU

W
C

T
U

WCTU

Raster-scan

Figure 2.9 – VVC encoder block diagram.

The first step of the block partitioning scheme splits the frame into large blocks of equal
sizes, named Coding Tree Unit (CTU), as shown in Figure 2.9. The CTU width is noted
Wctu, the maximum CTU size is 128 × 128 pixels in VVC contrary to HEVC standard
where the maximum enabled size for a CTU is 64× 64.

The CTUs are processed in raster scan order from top left to bottom right, as indicated
by the arrows in Figure 2.9. In order to adapt block size for prediction to the local activity
of the pixels, each CTU is then recursively split into smaller rectangular CUs, following a
Multi-Type Tree (MTT) partition scheme. The MTT partitioning scheme is an extension
of the Quad Tree (QT) partitioning scheme adopted in HEVC. We first describe the QT
partitioning scheme in HEVC and then present the novelties brought by MTT partition
scheme in VVC.

The authorized recursive partition modes for QT partitioning in HEVC are shown in
Figure 2.10: the CU is either not partitioned (4N×4N), or partitioned into 4 equal squares
(2N × 2N). A typical QT partitioning of a CTU in HEVC is illustrated by Figure 2.11a.
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Split QT Split BT-V Split BT-H Split TT-V Split TT-HCU
4N x 4N 2N x 2N 2N x 4N 4N x 2N nN x 4N 4N x nN

HEVC

VVC

Figure 2.10 – Available partition modes in HEVC and in VVC for a 4N × 4N square CU.

(a) QT partition of a CTU in HEVC.

2Nx4N 4Nx2N

4NxN 4NxNNx4N NX4N

4Nx4N 2Nx2N Intra

Inter

(b) Allowed PU modes in HEVC.

Figure 2.11 – QT partition scheme of a CTU in HEVC. QT partition modes in red and further
PU modes in blue.

The red lines correspond to the recursive QT partitioning, while the blue lines correspond
to the subdivision of the CUs into Prediction Units (PUs).

In order to perform prediction in HEVC, the square CUs can be divided into PUs of
smaller size following one of the eight PU modes illustrated in Figure 2.11b. All the PU
modes are available for inter prediction, while only the 4N × 4N and 2N × 2N PU modes
are available for intra prediction.

Moreover, after performing prediction, residual blocks can be further split recursively
with a second QT partition scheme into Transform Units (TUs), the block on which trans-
form is performed. The block partitioning scheme in HEVC suffers from the following
limitations:

• CUs can only be square, with no flexible shape to cover all block characteristics.

• Luma and Chroma components of the encoded sequence have the same QT splitting
which is rarely optimal for chroma.

• Residual can only be split into TUs with square shapes, reducing the potential impact
of transformation.
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Figure 2.12 – MTT partitioning scheme of a CTU in VVC, with a part of its corresponding tree
representation.

To overcome these limitations, VVC integrates a nested recursive MTT partitioning,
i.e. Binary Tree (BT) and Ternary Tree (TT) partition modes, in addition to the recursive
QT partitioning. Figure 2.10 illustrates all available split in VVC for a 4N × 4N CU.
The BT partition modes consists of symmetric horizontal splitting (BT-H) and symmetric
vertical splitting (BT-V). The TT partition modes enables horizontal ternary splitting
(TT-H) and vertical ternary splitting (TT-V). In this case, the CU is split in three blocks
with the middle block being half the size of the CU. Once BT or TT split is performed on
a CU, QT split is not allowed on its sub-CUs. Figure 2.12 presents on the left an example
of a CTU split with MTT partition modes, and on the right a part of the corresponding
tree representation. The black, green and blue branches correspond to QT, BT and TT
partition modes, respectively. The leafs in the tree filled in yellow and red correspond to
the yellow and red CUs in the left part of Figure 2.12.

In order to overcome the restriction of square residual TUs in HEVC, rectangular
transforms have been adopted in VVC. The transform is thus directly applied on the CUs
independently of the CU shape, without any further splitting of residual blocks [33]. Also,
the flexibility brought by MTT partition modes covers the PU modes in Figure 2.11b. In
VVC, the CUs are directly used to perform prediction and no subdivision in PUs is needed
for prediction. Consequently, the TU and PU partitioning is discarded in VVC, and both
prediction and transform are performed directly on the CU.

Moreover, different block partitioning trees can be applied on Luma and Chroma chan-
nels for intra predicted frames in VVC. For inter predicted frames, the same block parti-
tioning is used for both of Luma and Chroma and a triangle partition for merge mode has
been adopted [34].

2.5.3 Intra Prediction

The Intra prediction exploits spatial redundancy within the same frame, predicting the
samples of a CU using the neighboring samples of CUs already encoded. The neighboring
CUs already encoded include the left and above CUs. Figure 2.13 shows the reference
samples used for intra prediction of a CU of size N ×M . The left neighboring CU and the
upper neighboring CU provide 2M (in blue) and 2N (in red) reference samples for intra
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prediction, respectively. A total of from 2M+2N+1 reference samples are used, including
1 sample of the upper-left block (in pink).

Intra directional mode

2N

2M

M

N

Figure 2.13 – Reference samples used for intra prediction of a N × M CU

In VVC, 65 intra directional prediction modes are used, instead of 33 in HEVC, in
order to capture the arbitrary edge directions presented in a natural video. Each in-
tra directional prediction mode corresponds to the propagation with a given angle of the
neighboring reference samples. In Figure 2.13 for instance, the selected intra directional
mode corresponds to the diagonal down-left mode. To this 65 intra modes, 2 additional
modes already used in previous standards are available: Planar-mode and DC-mode. The
DC-mode computes the average value of reference pixels to predict current CU samples.
The Planar-mode is designed to preserve continuities across CU boundaries using bilinear
interpolation. The angular intra prediction directions in HEVC range from 45 degrees to
-135 degrees in clockwise direction. They were designed for square CUs. For rectangular
blocks, Wide Angular Intra Prediction (WAIP) has been added in VVC to enable intra
prediction directions beyond the range of conventional intra prediction directions.
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Figure 2.14 – Intra sub-partitioning configurations



2.5. VVC: Classical Hybrid Video Coding Standard 21

In VVC, Matrix-based Intra Prediction (MIP) [35] is an alternative for intra prediction.
A matrix is selected based on the intra prediction mode, and a convolution is carried out
with a row and a column of reference samples presented in Figure 2.13. The available
matrices are constructed through off-line training and are inserted in the specification
of the standard. Moreover, for Intra predicted CUs an additional partitioning tool as
been adopted in VVC. The Intra Sub-Partitionning (ISP) tool may perform additional
partitioning of the CU vertically or horizontally into 2 or 4 sub-partitions depending on
the block size. Figure 2.14 illustrates the possible ISP partitioning configurations depending
on the size of the original block.

2.5.4 Inter Prediction

Inter prediction exploits temporal redundancy in the video sequence. It predicts the sam-
ples of a CU from samples of previously coded reference pictures. The process of finding
the most similar block in the reference pictures is called Motion Estimation (ME). The
ME relies on block matching and is one of most computationally complex operations in
the encoding process. It outputs one or several Motion Vectors (MVs), each composed of
a vertical and an horizontal component, representing the translation of the CU from the
reference frame to current frame.

Current frame
Reference frame

Current CU

C0

C2

C1
Best MV  candidate

Current  MV

Figure 2.15 – Simplified example of Advanced Motion Vector Prediction.

After the ME is processed, other coding tools are applied to reduce the transmission cost
of MVs in the bitstream. An effective tool, introduced in HEVC and extended in VVC,
is called Advanced Motion Vector Prediction (AMVP) [36]. The AMVP exploits both
spatial and temporal homogeneity of the motion inside the video sequence. In Figure 2.15,
a simplified example of AMVP is provided considering only spatial neighboring CUs as
candidates. For the current green CU, a candidates list containing the previously coded
neighboring CUs C0, C1 and C2 is proposed. The CU with the more similar MV compared
to current MV is selected. In the case of Figure 2.15, the MV of CU C0 is selected as best
candidate. The encoder only transmits the index in the list of the best candidate and
the MV difference between current MV and best candidate MV. This difference requires
less bits to be coded and transmitted compared to the original MV obtained after ME. In
VVC, an improved version of AMVP is available compared to HEVC. This new version
inherits more information from reference and combines temporal and spatial prediction.
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The Skip/Merge Modes [37] are other efficient tools to reduce the transmission size of MVs,
with similar operating principle as AMVP.

For Inter Prediction, VVC standard includes several new and refined inter prediction
coding tools compared to its predecessors including among others Subblock-based Tem-
poral Motion Vector Prediction (SbTMVP), Bi-Directional Optical Flow (BDOF) and an
improved version of AMVP previously mentioned. The Decoder-side Motion Vector Re-
finement (DMVR), also included in VVC, reduces the bit-rate induced by inter prediction
by refining the motion vectors at the decoder side. Less information is transmitted in the
bitstream, but this information must be retrieved with extra calculations at decoder side.
The reader is referred to the document [38] for detailed description of these new tools. The
benefits in term of coding efficiency as well as the computational complexity of these novel
inter prediction tools is discussed in Chapter 3.

2.5.5 Transform

The Multiple Transform Selection (MTS) concept in VVC defines three separable trigono-
metrical transform types including Discrete Cosine Transform (DCT)-II, VIII and Discrete
Sine Transform (DST)-VII. As illustrated in Figure 2.16, the MTS concept selects, for
Luma blocks of size lower than 64, the set of transforms that minimizes the rate distor-
tion cost among five transform sets and the skip configuration. However, only DCT-II
is considered for chroma channels and Luma blocks of size 64. The MTS solution brings
a significant coding gain of respectively 0.84% and 0.33% in All Intra (AI) and Random
Access (RA) coding configurations [39] compared to HEVC.

The sps_mts_enabled_flag flag defined at the Sequence Parameter Set (SPS) enables
to activate the MTS concept at the encoder. Two other flags are defined at the SPS level to
signal whether implicit or explicit MTS signaling is used for Intra and Inter coded blocks,
respectively. For the explicit signaling, used by default in the Common Test Conditions
(CTC), the tu_mts_idx syntax element signals the selected horizontal and vertical trans-
forms, as specified in Table 2.1. This flag is coded with Truncated Rice code with rice
parameter p = 0 and cMax = 4 (TRp).

Table 2.1 – Signalling of the MTS in the explicit mode

tu_mts_idx
Transform Direction

Horizontal Transform Vertical Transform
0 DCT-II DCT-II
1 DST-VII DST-VII
2 DCT-VIII DST-VII
3 DST-VII DCT-VIII
4 DCT-VIII DCT-VIII

The Low-Frequency Non-Separable Transform (LFNST) has been adopted in the VTM-
5. The LFNST relies on matrix multiplication applied between the forward primary trans-
form and the quantization at the encoder side

~Y = T · ~X, (2.8)

where the vector ~X includes the coefficients of the block rearranged in a vector and the
matrix T contains the coefficients transform kernel. The LFNST is enabled only when
DCT-II is used as a primary transform.
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Figure 2.16 – The concept of 2D separable transforms selection in VVC. X is the input block
of residuals, Y is the output transformed block and MTS flag is the index of the selected set of
transforms.

Four sets of two LFNST kernels of sizes 16x16 and64×64 are applied on 16 coefficients
of small block (min (width, height) < 8 ) and 64 coefficients of larger (min (width, height)
> 4) blocks, respectively.

Four sets of two LFNST kernels of sizes 16×16 and 64×64 are applied on 16 coefficients
of small block (min (width, height) < 8 ) and 64 coefficients of larger (min (width, height) >
4) blocks, respectively. The VVC specification defines four different transform sets selected
depending on the Intra prediction mode and each set defines two transform kernels. The
used kernel within a set is signaled in the bitstream. To reduce the complexity in number
of operations and memory required to store the transform coefficients, the 64× 64 inverse
transform is reduced to 48 × 16. Therefore, only 16 basis of the transform kernel is used
and the number of input coefficients is reduced to 48 by excluding the bottom right 4× 4
block (i.e. include only coefficients of the top-left, top-right and bottom-left 4× 4 blocks).

2.5.6 Quantization

Quantization is a lossy compression method that defines a single quantum value to map a
range of values. In the classical hybrid video coding scheme, quantization is applied on the
transformed residual coefficients, under the form of discrete mapping of the coefficients into
integers. Since the HVS is less sensitive to high frequencies compared to low frequencies,
it is possible to discard a part of the high frequency information with little reduction on
the perceived quality of the video. For this reason, the quantization mapping is non-linear
with larger steps for high transform coefficients values.

The Quantization Parameter (QP) is the coding parameter handling the size of quan-
tization step. Its values range from 0 to 63 in VVC standard, when the maximum value in
HEVC was set to 51. The average quantization step increases by approximatively 12% for a
QP increase of 1, inducing more information loss in the transformed coefficients. Therefore
a higher QP leads to a lower bit-rate, generally at the cost of higher distortion.

2.5.7 In-Loop Filters

Four in-loop filters are performed on the reconstructed pixels in order to reduce the visual
artifacts of previous coding tools. They include the Luma Mapping with Chroma Scaling
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(LMCS), the Deblocking Filter (DBF), the Sample Adaptive Offset (SAO) and the Adap-
tive Loop Filter (ALF). The LMCS is a novel tool introduced in VVC [40]. It modifies
the predicted values of inter predicted blocks by reshaping (i.e. redistributing) the sam-
ples across the entire possible value range. After reconstruction, the inverse reshaping is
performed before the DBF stage.

The DBF [41] is applied on block boundaries, reducing the blocking artifacts introduced
among others by quantization. First, the vertical filtering for horizontal edges is performed,
followed by horizontal filtering for vertical edges. Subsequent to the DBF, the SAO is
applied [42]. The SAO classifies the reconstructed samples into different categories and
reduces the distortion sample by sample. For each category, an offset value has been
retrieved by the entropy decoder, and is added during SAO process to each sample of the
category.. The SAO is particularly efficient to filter the ringing artifacts.

The last in-loop filter the ALF [43], which allows block-based filter adaption. For the
chroma component, the bitstream may contain up to 8 different 5 × 5 diamond shape
filters. Each chroma CTU uses one of the provided filter coefficients. The filters for luma
component are 7×7 diamond shape filters. The filter is applied in each 4×4 pixels block,
based on the direction and activity of local gradients. The filter is selected among 16
predefined filters and up to 25 transmitted sets of filter coefficients. The ALF can be
considered as an adaptive filter that collects and reduces the remaining coding artifact and
further enhances the video quality.

2.5.8 Entropy Coding

The CABAC [32], first introduced in AVC standard, is the entropy engine used in VVC.
The CABAC compacts all the syntax elements obtained after coding process, such as
intra and inter information, quantised coefficients or in-loop filtering parameters. It is
lossless operation and thus does not introduces additions distortion to the reconstructed
frames. Its operating principle is divided in the three following steps: binarization, context
modeling and arithmetic coding. The syntax elements are converted into binary symbols
and associated with a predefined context. One by one, the binary symbols are converted
into a probability following a probability model specific to their context. Finally, each
binary symbol is arithmetically coded to a number of bits that is function of its probability.

In HEVC the transform coefficients of a coding block are coded using non-overlapped
coefficient groups, each of them containing the coefficients of a 4 × 4 sub-block of a CU.
In VVC, various coefficient groups are allowed: 1 × 16, 2 × 8, 8 × 2, 2 × 4, 4 × 2 and
16 × 1. In addition, the core of the CABAC engine includes some important changes in
VVC compared to the design in HEVC. The CABAC engine in HEVC uses a table-based
probability transition process between 64 different representative probability states. In
VVC, a decode decision uses a 2-state model with variable probability updating window
sizes [44].

2.5.9 Temporal Prediction Structure

Previous sections gives an overview of the processing of a single frame in VVC classical
hybrid video coding scheme. This Section describes the temporal prediction structure of
the video sequence into Group of Picturess (GOPs). Each GOP contains a fixed number
of frames and is encoded following a certain coding configuration. The most commonly
used coding configuration in the video coding field are presented in this section, along with
their advantages and drawbacks in concrete use cases.
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2.5.9.1 Slice/Frame Types

A frame may be divided into one or several slices. Initially, slices have been introduced
to divide a bit-stream into smaller independently decodable parts for transmission. The
network characteristics generally define the maximum size of the slices in the bit-stream.
Three distinct types of slices are used in the GOP structures further presented, each with
distinct prediction properties. To facilitate understanding, we will consider in this section
the case of a single slice per frame. The terminology I-slice, P-slice and B-slice is therefore
changed in favor of I-frame, P-frame and B-frame.

• I-frame: intra coded frame, only the intra prediction is allowed in these frames.
Since intra prediction only relies on the spatial content of current frame, I-frames are
not dependent of the encoding or decoding of other frames to be processed. Intra
prediction usually results in lower coding performance compared to inter prediction.
For this reason, the I-frames are usually less used compared to the type of frames
presented below.

• P-frame: predictive coded frame, uses both intra and inter prediction. For Motion
Compensation (MC) in inter prediction, only a single reference frame may be used.
P-frames introduce a delay compared to I-frames since they require the previous
encoding or decoding of another frame. The coding performance is however better
since additional information is used for inter prediction.

• B-frame: bi-directional coded frame, same as P-frame but may use several reference
frames for MC, improving coding efficiency compared to P-frame. B-frames use both
temporally backward (past) and forward (future) frames as reference. The processing
of B-frames is the most computationally complex since the ME algorithms must
explore several frames.

2.5.9.2 All Intra Coding Configuration

Picture Order 
Count (POC)

0 8

0 I-Frame21 3 4 5 6 7 8

Figure 2.17 – AI coding configuration.

In AI coding configuration, the video sequence is encoded only with I-frames. Fig-
ure shows the 9 first frames of a sequence in AI coding configuration. The Picture Order
Count (POC) in abscissa corresponds to the display order of the frames, the numbers inside
the boxes represent the encoding order of the frames. The I-frames are encoded in the POC
order and can be independently processed, introducing no latency in the coding process.
The bit-rate of AI coded video sequences is usually prohibitive for streaming purposes.

2.5.9.3 Low Delay Coding Configuration

The Low-Delay (LD) coding configuration includes both intra and inter coded frames.
It uses smaller GOP sizes and less complex MC dependencies compared to RA coding
configuration (see Section 2.5.9.4). Two classical configurations are Low-Delay P (LDP),
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Figure 2.18 – Low-Delay B (LDB) coding configuration.

containing only I-frames and P-frames, and LDB, that also includes B-frames. An example
of LDB coding configuration is given in Figure 2.18. The GOP size is 4, composed of
B-frames and the coding order is the same as the POC. LD coding configurations are
widely used in video conferencing for its better coding efficiency compared to AI coding
configuration and for its low delay compared to RA coding configuration.

2.5.9.4 Ramdom Access Coding Configuration

0 1

2

POC

TL#4

3 10

0 8 16

TL#3

TL#2

TL#1

TL#0

11 1474
I-Frame

B-Frame

Reference for inter pred

GOP

5 6 8 9 12 13 15 16

Figure 2.19 – RA coding configuration.

The RA coding configuration includes I-frames and B-frames. This coding configuration
includes random access points in the bitstream. Random access points are frames that the
decoder may process without requiring other decoded frames. The random access points
correspond to I-frames distributed along the sequence, localized at the start of several
GOPs. Figure 2.19 shows 16 frames localized after a random access point (I-frame) in a
typical example of RA coding configuration. The GOP structure size in this example is 16,
composed of 16 B-frames. The frames at the same level of ordinates belong to the same
Temporal Layer (TL). The frames belonging to a TL only use as reference for MC frames
belonging to lower TLs, as shown in Figure 2.19.

The frames with lower TL are processed first since their coded content is required for
MC of higher TL frames. The RA coding configurations is widely used in over-the-top and
broadcast services since it achieves the highest coding efficiency. This coding efficiency
comes at the cost of computational complexity increase and additional delay. For this
reason, the contributions in Chapters 4 and 5 focus on the complexity reduction and the
parallel processing of VVC encoding process in RA configuration, respectively.
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2.6 Baseline Software video codecs

In order to investigate new coding tools and prove the coding performance of a standard,
each standard comes with a software that implements a reference encoder and decoder.

As mentioned in Section 2.4, VVC has been developed by the JVET, which is the result
of the collaboration between VCEG and MPEG. After every standardization meeting,
which takes place approximately every three months, a new version of the reference software
is released with the new tools approved by the JVET. The first reference software used
by the JVET to investigate the first coding tools for VVC standard is called the Joint
Exploration Model (JEM) [45][46]. The reference software used in a more advanced phase
of VVC standardization process by researchers and industrials is called VVC Test Model
(VTM). During HEVC standardization process, the reference software was called HEVC
Model (HM). Since the purpose of the reference software is to demonstrate the capabilities
of the standard, their implementation achieve high quality encoding through an almost
exhaustive RDO process (see Section 2.3). They are therefore well suited for research,
but not usable in use-cases that require low complexity and memory consumption such as
over-the-top media services or broadcast.

This thesis has been conducted during the standardisation of VVC, therefore different
software projects are used for the three proposed contributions. The software models used
in the various contributions of this thesis are shown in Table 3.2, along with their corre-
sponding versions. The contribution presented in Chapter 4 has originally been designed
to reduce the encoding complexity in the JEM-7.0 encoder and as further been adapted
to the VTM-5.0 encoder. The HEVC reference software HM-16.20 and the VVC reference
software VTM-5.0 are compared in term of coding efficiency and complexity repartition
in Chapter 3, on both encoder and decoder side. The VTM-6.2 encoder is parallelized in
Chapter 5 in order to reduce its execution time. The in-loop filters implementation and
the parallelism technique proposed in Chapter 6 have been included to openVVC decoder.
The openVVC decoder is developed by the VAADER team of IETR laboratory 1 in C
programming language, and is integrated as a dynamic library inside FFmpeg library [47].

Table 2.2 – Softwares used in the various contributions of this thesis.

Software Chapter 3 Chapter 4 Chapter 5 Chapter 6

HM-16.20 4

JEM-7.0 4

VTM-5.0 4 4

VTM-6.2 4

OpenVVC 4

2.7 Conclusion

In this chapter we have presented the fundamental concepts of video coding, from video
signal format to the recently released video coding standard Versatile Video Coding. Nu-
merous coding concepts, evaluation metrics and tools necessary to understand the rest of
the document have been introduced. They include, among others, the quality metrics of

1https://www.ietr.fr/spip.php?article1604

https://www.ietr.fr/spip.php?article1604
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a coded video signal, the RDO process that estimates the optimal coding parameters, the
block partitioning scheme in VVC and the software projects used during this thesis. Next
chapter provides a quality assessment of VVC coding tools as well as a complexity profiling
of VVC reference software VTM-5.0 over HEVC reference software HM-16.20.



CHAPTER 3

Video Quality Assessment and Coding Complexity of VVC Standard

Finalized in July 2020, the primary objective of Versatile Video Coding (VVC) is to provide
40% bit-rate savings in terms of Bjøntegaard Delta BitRate (BD-BR) (see Section 2.2.3)
over High Efficiency Video Coding (HEVC) standard with reasonable complexity increase
at both encoder and decoder. It is important to evaluate the gains in term of couple
quality/rate of the new standard to demonstrate its efficiency. In this Chapter we present
a subjective and objective quality assessment study in order to evaluate the performance
of this new emerging standard in comparison with HEVC standard. The VVC reference
software version 5 (VVC Test Model (VTM)-5.0) is compared with the HEVC reference
software HEVC Model (HM)-16.20 in Random Access (RA) coding configuration. Several
video contents, at different bit-rates, and two spatial resolutions, High Definition (HD) and
Ultra High Definition (UHD) have been used. In VVC, most of the coding efficiency gains
are provided by a set of tools, given in “Table 3.1” in term of objective metric BD-BR. To
obtain these results the authors measured the individual coding efficiency loss when the
tools are disabled in the VTM-5.0. In this Chapter we will measure the gain in term of
objective and subjective metrics achieved when the tools are enabled altogether.

This Chapter also provides an analysis of times and complexity repartitions, for both
encoding and decoding processes. In order to highlight the principal evolutions from one
reference software to another, the VTM-5.0 and HM-16.20 profiling are presented simul-
taneously. In [48], authors have assessed the impact on HEVC complexity of several new
tools by separately disabling them and measuring the encoding/decoding times. Many
other tools are mandatory in the main profile and cannot be disabled at the encoder side,
meaning their complexity cannot be measured with this approach. Moreover, disabling
one tool would result in different coding decisions compared to the reference configuration
and changes the complexity repartition. The profiling lead in this Chapter has two main
benefits compared to previously mentioned paper: it allows assessing the complexity of all
encoding/decoding tools, and the complexity is measured in the original encoding/decod-
ing process with all tools enabled. Table 3.2 summarizes the related works proposing a
comparison between VTM and HM in the literature. The work presented in this Chapter
assesses most points of comparison between VTM and HM including 4 quality metrics and
the complexity profiling of both encoding and decoding processes.

The remainder of this Chapter is organized as follows. In Section 3.1, we describe the
subjective quality assessments. The results obtained in term of objective and subjective
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quality metrics are provided in Section 3.2. Section 3.3 provides an analysis of times and
complexity repartitions, for both encoding and decoding processes.

Table 3.1 – Performance of the main tools included in the VTM-5.0 software [39].

Module Tool description BD-BR

Multi Type Tree ≈6.0%
Block Triangular partition mode 0.35%
partitioning Chroma separate tree 0.14%

Sub-block transform 0.41%

Transforms
Multiple Transform Selection 0.33%
Low-frequency non-separable tran. 0.79%
Decoder-side Motion Vector Refinement 0.82%
Subblock-based temp. merging cand. 0.43%

Inter Affine motion model 2.53%
Prediction Merge with MVD 0.58%

Bi-directional optical flow 0.78%
Temporal motion vector predictor 1.19%

Intra Multi-reference line prediction 0.20%
Prediction Intra sub-partitioning 0.13%

Matrix based intra prediction 0.27%
In-Loop Filt. Adaptive Loop Filter 4.91%
Quantization Dependent Quantization 1.71%

Table 3.2 – Related works proposing a comparison between VTM and HM.

Codec Quality Complexity Configuration Sequence

Reference VTM HM PSNR SSIM VMAF Subj. Enc. Dec. AI RA LD Total ≥ 2160p

Topiwala et al. [49] 5.0 16.18 4 4 9 2

Zhang et al. [50] 4.1 16.18 4 4 4 4 4 9 9

Pakdaman et al. [51] 8.0 16.18 4 4 4 8 2

Siqueira et al. [52] 6.0 16 4 4 4 4 4 6 1

Laude et al. [53] 5.0 16.9 4 4 4 19 0

Cerveira et al. [54] 4.0 16.19 4 4 4 4 28 8

Bossen et al. [55] 9.0 16.20 4 4 4 4 4 4 22 6

Proposed 5.0 16.20 4 4 4 4 4 4 4 14 7

3.1 Subjective Quality Assessments

As mentioned in Section 2.2, subjective quality assessment is the process of employing
human viewers for grading video quality based on individual perception [5]. This section
describes the subjective quality assessment setup and illustrate the test material, environ-
ment and used methodologies.
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3.1.1 Experimental environment

The subjective study (see Section 2.2 for definition) has been conducted in the INSA/I-
ETR PAVIM Lab, which is a platform for video quality monitoring actively involved in the
emerging video contents. This platform includes a psycho-visual testing room, complying
with the ITU-R BT.500-13 Recommendation. A display screen UHD of 55 inches Loewe
Bild 7.55 was used to visualize the video sequences. 44 observers, 30 men and 14 women
aged from 20 to 55 years, have participated in this experiment. All the subjects were
screened for color blindness and visual acuity using Ishihara and Snellen charts, respec-
tively, and have a visual acuity of 10/10 in both eyes with or without correction. Finally,
all participants have been gratified. Viewers are placed at distances of 1.5 and 3 times the
height of the screen for UHD and HD resolutions, respectively. In this section, we provide
information regarding the used video sequences, test material, test settings, and evaluation
procedures.

3.1.2 Test Video Sequences

In this experiment, a set of higher resolution video sequences, from various categories (mu-
sic, sport, gaming, etc.) has been selected from several datasets (Huawei, SVT, b<>com)
as well as 4EVER1 database. The target resolutions for this test are HD (i.e. 1920x1080)
and UHD (3840x2160), in a Standard Dynamic Range (SDR). Firstly, 13 videos sequences
in UHD resolution have been selected and down-sampled using the same down sampling
filters used in Scalable High Efficiency Video Coding (SHVC). The choice of these video is
mainly based on the video encoding complexity in terms of color, movement, texture and
homogeneous content.

Table 3.3 – Configuration parameters for HM-16.20 and VTM-5.0 main profiles, in RA configu-
ration.

Parameter HM-16.20 main VTM-5.0 main

CTU size 64 128
QT max depth 4 4
MTT max depth 0 3
Transform Types DCT-II, DST-VII DCT-II, DST-VII, DCT-VIII
Max TU size 32 64
Loop Filters DBF, SAO LMCS, DBF, SAO, ALF
Search Type TZ TZ
Search Range 384 384
N. Ref. Pictures 5 5
Entropy Coding CABAC CABAC
Internal Bit Depth 10 10

All these videos were encoded using both HEVC (HM-16.20) and VVC (VTM-5.0)
main profiles, at different bit-rates, in HD and UHD format in RA configurations. The
main profiles configuration parameters are summarized in TABLE 3.3. This first selection
is done in order to retain the sequences representing a good balance of content variety and
video coding artefacts. After this initial selection, only seven scenes have been retained

1For Enhanced Video ExpeRience 2 project, www.4ever-2.com
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for the experiment , as given in “Table 3.4”. In total 168 video sequences are used in this
study: 7 scenes × 5 bit-rates × 2 codecs × 2 resolutions + 28 original scenes (2 references
per scene in two resolution). An example snapshots of used video sequences is shown in
“Fig. 3.2”.

Table 3.4 – Test video sequences

Sequence HD UHD Fps Bit Depth
AerialCrowd2 1920× 1080 3840× 2160 30 10
CatRobot1 1920× 1080 3840× 2160 60 10
CrowdRun 1920× 1080 3840× 2160 50 8
DaylightRoad 1920× 1080 3840× 2160 60 10
Drums2 1920× 1080 3840× 2160 50 10
HorseJumping 1920× 1080 3840× 2160 50 10
Sedof 1920× 1080 3840× 2160 60 8

In order to measure video contents diversity across the selected test sequences, Spatial
Information (SI) and Temporal Information (TI) metrics are used [56]. The SI is increasing
with the amount of spatial details, whereas the TI increases with the quantity of motion
in the sequence. In Figure 4.5, the 14 test sequences are represented under the SI TI
coordinates. The green crosses and red stars correspond to UHD and HD test sequences,
respectively. Figure 4.5 shows that the down-sampled HD sequences have equivalent TI co-
ordinates and significantly higher SI coordinates compared to the original UHD sequences.
This is due to the increased quantity of spatial details contained in the down-sampled HD
frames compared to the original UHD frames, since the same visual information is located
in a smaller frame.
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Figure 3.1 – SI and TI of the test sequences, according to the resolution.

3.1.3 Evaluation Procedure

In this quality assessment experiment, the Subjective Assessment Methodology for Video
Quality (SAMVIQ) method was used [57]. This method has specifically been designed for
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multimedia content. It takes into account a range of codec types, image formats, bit-rates,
temporal resolutions, etc. It has been recommended by International Telecommunication
Union (ITU)-R 6Q in 2004 [58]. Each scene (video sequence) is presented with the follow-
ing conditions: an explicit reference, a hidden reference and 10 processed video sequences
(PVSs). 4 categories of PVS are tested (HEVC-HD, VVC-HD, HEVC-UHD and VVC-
UHD). The button with label REF clearly identifies the explicit reference sequence. The
hidden reference is identical to the explicit reference but it is not readily accessible to the
subject and it is "hidden" among other stimuli. For each scene, participants were asked
to evaluate the processed video sequences, given by buttons with letter labels A to K (in-
cluding the hidden reference), as indicated by the protocol SAMVIQ [59]. The conducted
experiment is divided into two parts: HD and UHD. For an optimal visual comfort, these
two parts have been done separately but using the same participants. Moreover, to prevent
from visual fatigue, each part (HD and UHD) of the test is carried-out in two sessions.
Before each experiment, participants receive clear and deep explanations about the eval-
uation procedures and the used interface. Finally, all viewers scores have been collected
using a dedicated graphical user interface, developed in compliance with the SAMVIQ
recommendation.

3.2 Quality Evaluation Results

3.2.1 Objective Evaluation Results

Several objective metrics of different categories are used in this Chapter: Mathemati-
cal approaches (Peak Signal to Noise Ratio (PSNR), BD-BR, Bjøntegaard Delta PSNR
(BD-PSNR)), weighting approaches (Structural SIMilarity (SSIM)) and by modeling the
Human Visual System (HVS) (Video Multi-Method Assessment Fusion (VMAF)). All the
mentioned metrics have been described in Section 2.2. The objective quality results, for
the whole test sequences, are shown in Fig. 3.3 in the form of PSNR (top), SSIM (middle)
and VMAF (bottom) versus bit rate plots. The solid and dotted lines represent HEVC
and VVC codec curves, respectively. It is worth noting here that the objective (i.e. PSNR,
SSIM, VMAF) and subjective (i.e., MOS) results are independently analyzed, and thus
no direct correlation between them is demonstrated, since we do not develop here a new
objective quality metric. Also, the PSNR results presented here are weighted through the
three components (y, u, v), as shown in the equation (2.4). Figs. 3.3 (top) illustrates the
average performance in terms of PSNR metric of the whole used dataset. According to
these figures, PSNR values increase significantly when using VTM-5.0 coding tools, and
consequently VTM enables higher video quality than the HM codec. In addition, it can
be observed that VVC codec achieves the same objective quality as HEVC while typically
requiring substantially lower bit rates. In these figures, VVC codecs enable a bit-rate sav-
ing up to 40% for some sequences as CatRobot and DaylightRoad in the two used formats
HD (left) and UHD (right).

The obtained results using SSIM metric, Figs. 3.3 (middle), have shown also that VVC
codecs enables a bit-rate saving up to 50% for some test sequences, in HD (left) and UHD
(right) formats, compared to the HEVC standard. In these figures, we can noticed that,
beside the CrowdRun sequence in low bit-rate, all the used test sequences have a good
quality measures: higher than 0.96 in HD and 0.97 in UHD formats. For some sequences,
as AerialCrowd2 in HD and DaylightRoad in UHD formats, a considerable bit rate gains is
obtained by VVC codec while keeping the same quality measures. In other words, for the
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Figure 3.2 – An example frames of the used video sequences (HD & UHD).

same quality at high bit-rate (> 0.99), a bit-rate gain from 6Mbps to 8Mbps is obtained.
This gain is ranking from 13Mbps to 21Mbps in UHD format.

Finally, Figs. 3.3 (bottom) present the objective measurements using VMAF metric,
in HD (left) and UHD (right) contents. Similar to the other metrics, these figures indicate
that VVC codecs enable a bit-rate saving up to 49% compared to HEVC standard. It
is noticed here that we have used these metrics, while presenting the similar behaviors,
in order to cover a large number of quality measurement categories, for a possible future
comparisons as well as a multiple ground truth datasets.

Table 3.5 summarizes the Bjøntegaard measurement (BD-BR) for HD and UHD con-
tents, using PSNR metric. On average, the VTM-5.0 codec enables, in average, a bit rate
savings of about 31% and 34% for HD and UHD video sequences, respectively. Moreover,
using VMAF and SSIM, the same behaviors are noticed and a significant bit-rate gains is
obtained. These gains are summarized in Table 3.7.
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Figure 3.3 – Objective-based comparison, using three metrics: PSNR (top), SSIM (middle) and
VMAF (bottom), for the whole used datasets in HD and UHD (2160p) formats.
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Table 3.5 – BD-BR (PSNR) of VTM-5 compared to the anchor HM video codec.

Sequence BD-BR (HD) BD-BR (UHD)
AerialCrowd2 -24,5% -29,9%
CatRobot1 -39,8% -41,8%
CrowdRun -27,2% -30,3%
DaylightRoad -38,9% -42,4%
Drums2 -29,5% -32%
HorseJumping -31,1% -32,5%
Sedof -27.7% -31,9%

Average -31.24% -34.42%

3.2.2 Subjective Assessment Results

The first step in the results analysis is to calculate the Mean Opinion Score (MOS) for
each video used in the experience. This average is given by the equation 3.1.

MOSjk =
1

N

N∑
i=1

sijk, (3.1)

where sijk is the score of participant i for the test video j of the sequence k and N is the
number of observers. In order to better evaluate the reliability of the obtained results, it
is advisable to associate for each MOS score a confidence interval, usually at 95%. This is
given by the equation 3.2. Scores respecting the experiment conditions must be contained
in the interval [MOSjk − ICjk,MOSjk + ICjk].

ICjk = 1.95
δjk√
N
, δjk =

√√√√ N∑
i=1

(sijk −MOSjk)

N
. (3.2)

Before data analysis, we conducted a verification of the distribution of individual par-
ticipant scores. In fact, some data may parasites the results. Thus, a filtering procedure
was applied to obtained results based on the annex 2 of the ITU-R BT.500 recommen-
dation [58]. In our outlier detection verification, a correlation index greater (Minimum
between Pearson and Spearman correlations) than or equal to 0.75 is considered as valid
for the acceptance of the viewer’s scores; otherwise, the viewer is considered as an outlier.
Following this screening process, 8 subjects (6 in HD and 2 in UHD test) were discarded.
Consequently, only 36 viewers scores are retained.

Table 3.6 summarizes the BD-Rate gains obtained by VVC relative to HEVC, consider-
ing Mean Opinion Score (MOS). As shown in this table, VTM-5.0 outperforms the HEVC
for the whole used sequences. A bit rate savings of about 37% and 40% are obtained for
HD and UHD video sequences, respectively

The subjective evaluation results, for the whole test sequences are shown in Figs. 3.4 &
3.5 in the form of MOS versus bit rate plots, for HD and UHD formats, respectively. The
solid and dotted lines represent HEVC and VVC codec curves, respectively. The associated
confidence intervals are displayed for each MOS test point. In these figures, VTM-5.0 codec
enables a higher MOS score and consequently a higher video quality, compared to HEVC
reference software. As we can see, a considerable gains in terms of bit-rate savings can
be noticed with the same perceived quality. For HD format , a bit-rate saving of -50%
and -40% is obtained in the “Excellent” and “Good” quality area, respectively. For UHD
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format, a bite-rate savings of about -50% is obtained, with the same perceived quality,
for the sequence “CatRobot1”. Reciprocally, for the same bit-rate, a considerable quality
enhancement is obtained by VVC compared to HEVC standard. In fact, at low bit-rate,
the sequence “CrowdRun” is judged as “Fair” quality using VVC while it is judged as “Poor”
quality using HEVC standard. In addition, this quality is enhanced from “Fair” to “Good”
quality area using VVC. The same behavior can be noticed for the other video sequences,
depending on the considered bit-rates and the used video format.

Table 3.6 – BD-BR (MOS) of VTM-5.0 compared to the anchor HM-16.20 video codec.

Sequence BD-BR (HD) BD-BR (UHD)
AerialCrowd2 -33% -41%
CatRobot1 -48% -47%
CrowdRun -35% -35%
DaylightRoad -49% -48%
Drums2 -35% -39%
HorseJumping -38% -45%
Sedof -19% -21%

Average -37% -40%

As a conclusion, for HD resolution, a bit-rate saving of 31% and 35% can been achieved
with the VTM-5.0 in terms of PSNR and VMAF metrics, respectively. This gain exceed
40% for the UHD resolution, using VMAF metric. For the subjective comparison, the
obtained gains is ranging between 37% and 40% for HD and UHD resolutions, respectively,
as summarised in Table 3.7. For the same bit rate range, the highest bit-rate saving for
HD contents is obtained by MOS-based BD-rate (-37%) while this gains for UHD contents
is obtained by VMAF-based BD-rate (-40.44%).

3.2.3 Statistical Analysis

A statistical analysis was performed using the Analyse of Variance (ANOVA) approach
[60]. Bit rate, Content, Resolution and Codec are used as independent variables and MOS
is used as dependent variable. The null hypothesis in this case would be that theVVC test
points have the same quality as the HEVC test point while the alternate hypothesis is that
the VVC test points do not have the same perceived quality as the HEVC test point [60].
Results have shown that only codec parameter (VTM, HM) has a significant influence on
the subjects scores, with p-value < 0.0001 2. Subjectively speaking, VVC coded enables
a significant visual quality improvement regardless the used bit-rate, resolution and video
content.

Table 3.7 – Bit-rate Savings of VTM-5.0 over HEVC standard.

Resolution PSNR VMAF SSIM MOS
HD -31.24 % -35.18 % -33% -37%
UHD -34.42% -40.44% -38% -40%

2a factor is considered influencing if p-value < 0.05
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Figure 3.4 – MOS-based comparison, with associated 95% confidence intervals, in HD format.
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3.3 VVC Coding Time and Complexity Repartition

This section provides an analysis of times and complexity repartitions, for both encoding
and decoding processes. In order to highlight the principal evolutions from one reference
software to another, the VTM-5.0 and HM-16.20 results are presented simultaneously.

3.3.1 Platform and Configuration Parameters

The experiments are carried-out on the same 14 sequences described in Section 3.1.2. In
order to evaluate the impact of Quantization Parameter (QP) on encoding and decoding
times, 2 QP values per resolution are selected. Encodings of HD sequences with QP=37
generate bit-rates considered too small to be representative of real use-cases, and bit-rates
generated by UHD sequences encodings with QP=27 are considered too large. For this
reason, the aforementioned QP values are discarded in the following experiments. Finally,
four QP values are retained in the following experiments: QP=27 and QP=32, for HD
sequences, and QP=32 and QP=37, for UHD sequences.

Table 3.8 – Platform setup for complexity analysis

CPU Intel Xeon CPU E5-2603 v4
Clock Rate 1.70 GHz
Memory 8 Gb
Compiler gcc 5.4.0
Operating System Linux 4.4.0-127-generic

TABLE B.1 details the platform setup for complexity analysis. The experiments on
codecs time and complexity repartition are carried-out on an Intel(R) Xeon(R) CPU E5-
2603 v4, a Central Processing Unit (CPU) clocked at 1.70 GHz. The HM-16.20 and VTM-
5.0 are both built with gcc compiler version 5.4.0, under Linux version 4.4.0-127-generic as
distributed in Ubuntu-16.04.

By default, the VTM-5.0 features low-level optimizations, such as Single Instruction
on Multiple Data (SIMD) optimizations, at both encoder and decoder sides. SIMD de-
scribes computers that perform the same operation on multiple data simultaneously, with
a single instruction. To assess the time consumption of the VTM-5.0 without low-level op-
timizations, the SIMD optimizations at both encoder and decoder sides are disabled in the
following. This also enable a fair comparison with the HM-16.20 software that does not in-
clude any SIMD optimization. The speed-up offered by SIMD optimizations is nonetheless
measured and further discussed.

The repartition of encoding and decoding complexities, presented in upcoming Sec-
tions 3.3.2.2 and 3.3.3.2, are obtained by running the executables with Callgrind soft-
ware [61]. Callgrind is the Valgrind profiling tool that records the call history of program
functions as a call graph. By default, the data collected includes the number of instructions
executed, the calling/callee relation between functions and the number of calls. Contrary
to execution time, that depends among others on memory accesses or CPU frequency, the
insight of the complexity repartition given by Callgrind is nearly constant regardless of the
execution platform.

3.3.2 Encoders Analysis

3.3.2.1 Encoding Time
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Table 3.9 – Factor between encoding time and real time (×1000), for both VTM-5.0 and HM-16.20
in RA configuration, according to the test sequence and QP value.

HD UHD

Encoder HM-16.20 VTM-5.0 HM-16.20 VTM-5.0

QP 27 32 27 32 32 37 32 37

AerialCrowd2 1.1 0.9 22 15 3.9 3.4 64 41
CatRobot1 2.0 1.8 33 26 7.2 6.7 102 68
CrowdRun 2.4 2.1 49 39 8.6 7.6 179 124
DaylightRoad 2.3 2.0 44 32 8.1 7.3 132 84
Drums2 2.1 1.9 42 32 7.4 6.7 107 72
HorseJumping 1.4 1.3 23 17 5.4 5.0 57 38
Sedof 2.2 1.9 40 28 7.9 7.1 129 85

Mean 1.9 1.7 36.2 26.9 6.9 6.3 110.3 73.2
Std Dev 0.4 0.4 9.8 7.9 1.5 1.4 38.9 27.3

TABLE 3.9 shows an average factor of 1,700 between real-time encoding and the HM-
16.20 encoding time of HD video content at QP=32. This average factor is 16 time greater
(27,000) with VTM-5.0. The VTM-5.0 main profile is therefore 16 times more complex
in average compared to the HM-16.20 main profile for the encoding of HD video content.
This encoding complexity increase between HM-16.20 and VTM-5.0 is mainly caused by
the Multi-Type Tree (MTT) partitioning scheme which allows 4 additional partition modes
compared to Quad Tree (QT) partitioning in HM-16.20 (see Section 4.2.1). Indeed, our
experiments show that when these additional partition modes are disabled in VTM-5.0,
obtaining a partitioning scheme close to QT partitioning scheme, the complexity of the
VTM-5.0 encoding process is in average divided by 5. The additional transform types and
intra modes enabled in VTM-5.0 are also a non negligible cause for the observed complexity
increase between HM-16.20 and VTM-5.0.

The results in TABLE 3.9 also highlight the impact of QP value on encoding complexity.
Indeed, in order to avoid exhaustive Rate Distorsion Optimization (RDO) process and to
decrease encoding time for researchers experimentations, the reference encoders include
early termination techniques. In VTM for instance, a dozen early termination techniques
speed-up the encoding process by a factor 8 [62] compared to exhaustive RDO process.
The efficiency of these techniques vary with the encoding parameters, in particular with
QP value. This explains why in TABLE 3.9, for VTM-5.0, encoding times carried out
with lower QP values are 44% higher compared to encodings with higher QP values. The
impact of QP decreases to 11% for HM-16.20, due to QT partitioning that offers less early
termination opportunities compared to MTT partitioning in VTM-5.0.

Regardless the QP value and resolution, encoding times standard deviations are around
20% and 30% of average encoding times for HM-16.20 and VTM-5.0, respectively. These
standard deviations are induced among others by the diversity of frame-rates among test se-
quences. For instance, the sequenceAerialCrowd2 with the lowest frame-rate (30 frames/sec)
has the lowest encoding time in all columns of TABLE 3.9. The standard deviations are
also a consequence of the diversity of spatial textures and movements among test sequences.
Let us consider the sequences HorseJumping and CrowdRun, which have the same frame-
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rate of 50 frames/sec. Figure 4.5 shows that CrowdRun has considerably higher SI and TI
compared to HorseJumping. Given that previously mentioned early termination techniques
are more efficient on sequences with lower spatial textures and slower motion, CrowdRun
encoding time exceeds at least by a factor 1.4 HorseJumping encoding time, in all columns
of TABLE 3.9.

As mentioned in Section 3.3.1, SIMD optimizations have been disabled in the VTM-5.0
encoder in this work. Enabling the SIMD optimizations speeds up the VTM-5.0 encoder
by 1.9 times in average. This speed-up is very far from the 110,000 speed-up needed in
average to achieve UHD real time encoding. Complexity reduction of HEVC encoder has
been widely investigated [63, 64] in the past years, and recently more efforts have been
dedicated to the VVC encoder. In fact, several techniques already proposed to reduce
VTM encoding complexity by predicting a reduced set of likely intra modes [65, 66], or by
testing a reduced number of partition configurations [67, 10]. The reduction of the VTM
encoding complexity is the scope of next Chapter and we believe will be an active research
field over the next years.

3.3.2.2 Encoding Complexity Repartition

As mentioned in Section 3.3.1, the encoding complexity repartition is obtained with
Callgrind profiling tool. The encoders of both HM16.20 and VTM-5.0 have a significant
portion of its complexity located in code cycles, since functions call each other in a recursive
manner during the partitioning. However, the graphical user interface for Callgrind data
visualization, named KCachegrind, contains a cycle detection module that allows an easy
profiling of encoding complexity.

Figure 3.6 displays under the form of pie charts the encoding complexity repartition
(in %), for UHD sequence CrowdRun, according to the reference software and QP value.
The inter prediction stage is divided into 2 sub stages: Motion Estimation (ME) and
Motion Compensation (MC). ME establishes the list of Motion Vector (MV) predictor
candidates using block matching techniques and then infers the best MV predictor from
this list. MC produces the prediction residuals by subtracting the inter predictions from the
original Coding Units (CUs) and applying interpolation filters. The Tr/Inv.Tr stage sums
the complexities induced by both Transform and Inverse Transform stages. The stages
representing less than 1% of encoding complexity are gathered in the “Other" category.

In RA configurations, Intra prediction and Inter prediction are in competition for Pre-
diction Units (PUs) of P and B frames. As expected, Figure 3.6 shows that Inter prediction
is heavily predominant compared to Intra prediction for both HM-16.20 and VTM-5.0. The
percentage is even more unbalanced between Intra and Inter prediction when QP value in-
creases. Indeed, Intra prediction percentage decreases from 3.4% and 18.8%, at QP=32, to
2.5% and 11.6%, at QP=37, while ME percentage raises from 55% and 41%, at QP=32, to
59% and 53%, at QP=37, for HM-16.20 and VTM-5.0, respectively. Therefore Figure 3.6
highlights that the higher the QP value, the more predominantly the encoder elects Inter
prediction compared to Intra prediction.

In Figure 3.6, substantial differences are observable between HM-16.20 and VTM-5.0
complexity repartitions, especially for Intra Prediction and MC stages. The Intra Pre-
diction percentage is increased by almost a factor 5 in VTM-5.0 compared to HM-16.20.
This increase is caused by the Intra prediction tools added in VTM-5.0 and mentioned in
Section 2.5.3, such as Multi-reference line prediction, Intra sub-partitioning and Matrix
based intra prediction. The Bi-directional optical flow, Decoder-side Motion Vector Re-
finement (DMVR) and Affine motion model tools, also mentioned in Section 2.5.4, have
been introduced in the VTM-5.0 and are applied during the MC stage. These new tools
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Figure 3.6 – Encoding complexity repartition (in %), for UHD sequence CrowdRun, according to
the reference software and QP value.

are responsible for 1.0%, 1.4% and 2.9% of total VTM-5.0 complexity, respectively. There-
fore they partly explain the increase in MC stage percentage in VTM-5.0 (around 15%)
compared to HM-16.20 (around 8%). Finally, it is interesting to notice that the Sample
Adaptive Offset (SAO) and deblocking filters do not appear in Figure 3.6 as their com-
plexities are bellow 0.2% for both HM-16.20 and VTM-5.0. However, Adaptive Loop Filter
(ALF) process must be taken into account in VTM-5.0, since its complexity represents
1.3% and 1.7% of total encoding complexity at QP=32 and QP=37, respectively.

3.3.3 Decoders Analysis

3.3.3.1 Decoding Time

The decoding process interprets the encoded symbols of a bitstream compliant with
the standard specification. It is therefore not burdened with the complex RDO performed
during encoding process that includes among others partitioning, intra mode decision or
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Table 3.10 – Factor between decoding time and real time, for both VTM-5.0 and HM-16.20 in RA
configuration, according to the test sequence and QP value.

HD UHD

Decoder HM-16.20 VTM-5.0 HM-16.20 VTM-5.0

QP 27 32 27 32 32 37 32 37

AerialCrowd2 2.8 2.3 8.8 7.8 8.4 7.3 27.9 25.7
CatRobot1 4.1 3.6 13.1 11.1 13.1 12.1 44.4 35.5
CrowdRun 5.4 4.4 15.4 13.1 14.2 12.1 49.0 39.6
DaylightRoad 4.5 4.0 15.1 13.8 13.5 12.6 54.2 42.3
Drums2 4.3 3.7 12.1 10.8 12.0 11.3 37.1 31.0
HorseJumping 3.1 2.7 10.8 8.0 10.8 10.0 32.5 28.4
Sedof 4.9 4.1 15.7 14.7 13.9 12.2 52.9 50.7

Mean 4.1 3.5 13.0 11.3 12.3 11.1 41.4 36.1
Std Dev 0.9 0.7 2.5 2.4 1.9 1.7 8.4 8.0

motion estimation. For this reason, comparatively to encoding time values presented in
TABLE 3.9, the decoding times shown in TABLE 3.10 are in average 500 and 2000 times
lower compared to encoding times for HM-16.20 and VTM-5.0, respectively.

It is interesting to note that the decoding time with VTM-5.0 is almost 3 times greater
compared to the decoding time with HM-16.20. This decoding complexity increase is partly
imputable to the ALF filter introduced in VTM-5.0, which complexity will be further
discussed in Section 3.3.3.2. Moreover, regardless of the resolution or test sequence, the
decoding time decreases with the QP value in TABLE 3.10 for both HM-16.20 and VTM-
5.0. Indeed, for a given sequence, a lower QP value implies a larger bitstream outputted
by the encoder, and therefore more symbols for the decoder to interpret especially at the
level of by the CABAC engine.

As mentioned in Section 3.3.1, SIMD optimizations have been disabled at VTM-5.0
decoder side. Enabling the SIMD optimizations speeds up the VTM-5.0 decoder by 2.0
times in average for both HD and UHD sequences. Therefore, by enabling SIMD optimiza-
tions, the VTM-5.0 decoding time is only 1.5 times greater than HM-16.20 in average. For
HEVC standard, real-time decoding has been reached by adding hardware optimization,
implementing assembly written functions and/or enabling high level parallelism. For in-
stance, authors in [68] describe a real-time SHVC decoder based on the OpenHEVC open
source decoder, and paper [69] presents a real-time decoder for HEVC standard relying on
SIMD optimizations and frame-level parallelism. In order to achieve real-time decoding
for VVC standard, similar efforts must be extended and improved in future years, since we
have shown that decoding process is 3 times more complex for VVC standard compared
to HEVC standard.

3.3.3.2 Decoding Complexity Repartition

As for the encoder in Section 3.3.2.2, the decoding complexity repartition is obtained
by running the decoder with Callgrind [61]. Figure 3.7 displays the decoding complexity
repartition (in %), averaged across UHD test sequences, according to the reference software
and QP value. The Create Bufs. stage consists in the creation of global buffers at picture
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Figure 3.7 – Decoding complexity repartition (in %), averaged across UHD test sequences, ac-
cording to the reference software and QP value.

level, while Init Ctu creates internal buffers and sets initial values before encoding the
Coding Tree Unit (CTU). The sum of these stages is greater than 13% in HM-16.20, but
is negligible in VTM-5.0

The first noticeable fact among the presented pie charts is the predominance of MC,
ranging from 43.6% to 51.0% in both HM-16.20 and VTM-5.0. The predominance of
Inter predicted frames in RA configuration explains these numbers, and also explains the
limited portion of Intra prediction in the pie charts. In VTM-5.0, an important share of MC
complexity lies in the DMVR, that refines the motion vectors at decoder side, as mentioned
in Section 2.5.4. In fact, the share of DMVR in VTM-5.0 global decoding complexity is
in average 23% with QP=32 and 32% with QP=37, which represents almost 60% of MC
stage complexity. However, the DMVR is not significant burden as the previous percentages
suggest for the decoding process. Indeed, when it is disabled, it is replaced to a large extent
by usual MV Inter prediction, which decoding complexity approaches DMVR complexity.
The contribution [39] confirms this behaviour, since it announces that VTM-5.0 decoding
complexity is only 4% lower when DMVR is disabled compared to original VTM-5.0 in
RA configurations. The deblocking filtering stage covers a consistent portion of the total
decoding complexity: around 7.5% for VTM-5.0 and around 12% for HM-16.20. In VTM-
5.0, the in-loop filtering percentage is heavily increased by additional ALF tool, which is
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responsible for around a third of total decoding complexity. As mentioned in Section 2.5.7,
the ALF provides a significant improvement in encoding efficiency. It does not overload the
VTM-5.0 encoding process by more than 2% of total complexity (see Figure 3.6). However,
in counterpart for the aforementioned benefits, ALF represents a considerable burden for
the decoding process. It is worth mentioning that ALF percentage decreases to less than
20% when the SIMD optimizations are enabled.

3.4 Conclusion

In this Chapter, both quality enhancement and computational complexity of VVC have
been investigated. We studied bit-rate savings between VTM-5.0 and the HM-16.20 soft-
wares as well as their respective encoding/decoding complexity repartitions over a typical
classification of hybrid decoding tools. As results, the VTM coding tools enable a sig-
nificant quality improvement compared to the HM reference software, for different videos
sequences used in the experiment. Using PSNR, SSIM and VMAF, as quality metrics, the
obtained gain is ranging between 31% to 40% depending on video format. Subjectively, the
VTM codec outperforms, in a significant manner, the HEVC reference software, especially
for the low bit-rate. Moreover, for various sequences, we notice that VVC codec enables
the same perceived visual quality as HEVC with a bit-rate reduction of 50% is obtained.

Nevertheless, a consequent computational complexity increase between HM and VTM
is observed. The complexity increase of the VTM process is not consistent, since it depends
among others on QP value, frame-rate, spatial texture and movement. At the encoder side,
the simultaneous profiling of both HM and VTM has identified the additional intra modes
and the block partitioning scheme as mainly responsible for the complexity increase in
VTM. Based on these observations, in next Chapter we propose a complexity reduction
solution for VVC encoding process that reduces the search space of block partitioning
scheme in RA coding configuration. At the decoder side, the ALF and DMVR represent
the main additional burdens in VTM compared to HEVC decoding processes. For this
reason, in the last Chapter of this thesis, special attention is given to ALF implementation
in a real-time VVC decoder.



CHAPTER 4

Tunable VVC Block Partitioning based on Lightweight Machine
Learning

4.1 Introduction

The complexity increase of Versatile Video Coding (VVC) encoding process may interfere
with its deployment especially on embedded platforms and live applications. In previous
Chapter 3.3.2.1, we identified the additional intra modes and the new block partitioning
scheme as mainly responsible for the complexity increase of VVC. To reduce the computa-
tional complexity of High Efficiency Video Coding (HEVC) and VVC, several techniques
propose to reduce the tested intra mode candidates. These techniques use features such as
gradients of luminance samples [70, 71, 65] or Machine Learning (ML) techniques [66] to
predict a reduced set of likely intra modes. Many other techniques reduce the complexity of
the encoding process by focusing on the partitioning scheme and testing a reduced number
of block partitioning configurations. This is the approach chosen in this Chapter and a
detailed review of related works is provided in Section 5.2.

The contribution presented in this Chapter has been proposed in the early standardiza-
tion phase of VVC. As mentioned in Section 2.6, at that time the reference software used
by the Joint Video Exploration Team (JVET) to investigate new coding tools was called
the Joint Exploration Model (JEM) [45][46]. For block partitioning, the JEM featured the
Quad Tree Binary Tree (QTBT) partitioning scheme, that is a simplified version of the
Multi-Type Tree (MTT) partitioning scheme presented in Section 4.2.1. The contribution
presented in this Chapter has originally been designed to reduce the encoding complexity
of the QTBT partitioning scheme in the JEM and as further been adapted to the MTT
partitioning scheme in the VVC Test Model (VTM).

In this Chapter, we reduce the computational complexity of JEM encoding process
in Random Access (RA) coding configuration. A reduced number of QTBT partitioning
configurations is tested, using a tunable ML solution based on Random Forest (RF) clas-
sifiers. The proposed solution explores a novel approach to solve a 4 classes classification
problem inherent to QTBT partition scheme, which has not been fully studied in related
works. The decision of QTBT partition mode for the Coding Unit (CU) is modeled as
three distinct binary classification problems. Thus, three binary RF classifiers are trained
independently off-line, with separate training for each CU size. The goal of the classifiers
is to skip expensive exploration of the partition modes classified as unlikely. Furthermore,
the classifiers take as input only features from the current CU, making the solution parallel-
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friendly. To limit the Rate Distorsion (RD) loss induced by misclassification, risk intervals
are introduced to control the classifier decisions. When the classifier decision falls into
the risk interval, all possible partitioning modes are processed. The risk intervals are set
by the encoder based on the encoding of a reference frame, adapting the RD loss induced
by misclassification to the encoded content. By varying the size of risk intervals,tunable
complexity reduction is achieved.

To the best of our knowledge, the proposed solution is the first tunable complexity
reduction solution offering tunable cababilities applied on an encoder post HEVC. It in-
cludes various Complexity Reduction Configurations (CRCs), each offering a new trade-off
between complexity reduction and Bjøntegaard Delta BitRate (BD-BR) increase. In JEM-
7.0 software, encoding complexity reductions vary from 30% to 70% in average at the
expense of only 0.7% to 3.0% BD-BR increase. The proposed solution based on RF clas-
sifiers is also efficient to reduce the complexity of the MTT partitioning scheme in the
VTM-5.0 software, with complexity reductions varying from 25% to 61% in average for
limited BD-BR increase of 0.4% to 2.2%. Moreover, the proposed solution induces a very
low overhead between 0.2% and 1.8% of the encoding time according to the video content,
which is a key point to adopt this solution in a real-time and embedded framework.

The rest of the Chapter is organized as follows. Section 5.2 describes the frame par-
titioning decision in JEM, and then reviews the related works. Section 4.3 goes through
background of RF classifiers and presents the proposed classification problem. Section 4.4
depicts the training dataset. The training process to build RF classifiers is described in
Section 4.5. Section 4.6 details how tunable encoding complexity reduction is achieved
using various configurations of the risk intervals. Experimental results are presented and
analyzed for both JEM-7.0 and VTM-5.0 in Section 5.4. Finally, Section 5.5 concludes this
Chapter.

4.2 Related Works

4.2.1 Overview of QTBT Partitioning Scheme JEM

Split QT Split BT-V Split BT-HCU
4N x 4N 2N x 2N 2N x 4N 4N x 2N

QT

QTBT

Figure 4.1 – Available partition modes in QTBT partition scheme for a 4N × 4N CU.

To overcome the limitations of block partitioning scheme in HEVC (see Section 4.2.1),
a QTBT partitioning scheme has been proposed in the JEM [72]. QTBT is an extension to
the QT partitioning that enables symmetric binary partition modes CUs in both horizontal
(Binary Tree Horizontal (BTH)) and vertical (Binary Tree Vertical (BTV)) directions, as
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(a) QTBT partition of a Coding Tree Unit
(CTU).

 QT

BT Ver

BT Hor

No Split

(b) QTBT partition tree. Leaf boxed in green cor-
responds to CU filled with green in Figure 4.2a.

Figure 4.2 – QTBT partition scheme in JEM. In red Quad Tree (QT) partition mode and in
green Binary Tree (BT) partition modes.

shown in Figure 4.1. When BT partition mode is used in a CU, QT partition mode is no
longer allowed. In the JVET Common Test Conditions (CTC) [73], BTdepth parameter is
set to 3, enabling only 3 successive BT partitions. Figure 4.2b shows the tree representation
of QTBT partition, where the leaf surrounded by a green square corresponds to the green
CU of Figure 4.2a.

Unlike in HEVC, the Transform Unit (TU) and Prediction Unit (PU) partitioning is
discarded in the JEM, and both prediction and transform are performed directly on the
CU. Moreover, different partition trees can be applied on Luma and Chroma components
for intra predicted slices. For inter predicted slices, the partition trees of Luma are used
for Chroma.

4.2.2 Complexity Reduction of Block Partitioning

QTBT partitioning scheme has not yet been fully studied from the perspective of complex-
ity reduction. Reason why in this section, the techniques proposed to speed up the QT
partitioning scheme in HEVC are first described. Subsequently, papers that have investi-
gated the complexity reduction of QTBT partitioning scheme are presented.

4.2.2.1 Partitioning Scheme in HEVC

The techniques proposed to speed up the QT partitioning scheme in HEVC are divided
into four categories, whether they involve: intermediate encoding information, texture
characteristics, motion divergence, and ML.

Intermediate encoding information. Techniques of the first category are based on in-
termediate information computed during the encoding process such as depths of previously
encoded blocks, encoding flags or RD cost of PU modes. Pan et al. [74] use the motion
estimation and all-zero block detection informations of M ×M PU mode (Figure 2.11a),
coupled with merge mode informations of previous depths to determine if early merge can
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save computational time. A threshold based on Sum of Absolute Transform Differences
(SATD) ofM ×M PU mode has been proposed in [75]. The technique ignores the unlikely
remaining PU modes or early terminating QT partitioning mode. In [76], Correa et al.
figure out that some QT depths tend to be used in co-located areas of adjacent frames
and exploit this correlation to target a computational complexity reduction. Same authors
adapt this principle to speedup the coding of motion sequences in [77] by using a motion
compensated area as reference in previously encoded frame (instead of co-located area)
and by using depths of spatial neighboring CTUs. In [78], a thresholding process applied
on RD cost of M ×M merge mode determines if the skip mode shall be used for the PU.
These techniques [75] [77] [78] reduce the encoding complexity between 30% and 50% with
a BD-BR increase in the range 0.4% to 1.4%.

Texture characteristics. The second category covers techniques exploiting the correla-
tion between spatial information of a sequence, also called texture, and the QT partitioning
scheme. Usually, areas having complex textures are split into small blocks in order to fit
better its local variations. Authors in [79] apply thresholds on local and global edge fil-
ters of luminance samples in 4 directions (0°, 45°, 90°, 135°) to determine if a CU shall be
split, non-split or undetermined. A similar principle is applied in [80], where the authors
compute adaptive thresholds based on texture homogeneity for early determination of QT
depth of CTUs. Mercat et al. propose in [81] a technique that determines at each step if the
4 smaller CUs shall be merged into one CU. This bottom-up approach exploits correlation
between the QT partitioning scheme and texture variance.

Motion divergence. The techniques of the third category explore the correlation be-
tween motion divergence in a frame and the QT partitioning scheme. Areas of the frame
with continuous motion tend to be split into larger blocks. Reason why in [82], authors
detect motion continuity by applying Sobel operators to a pre-computed optical flow and
use this information to predict block size and save computational time. In [83], a score
called Pyramid Motion Divergence (PMD) based on variance of Motion Divergence Field
is assigned to every CU. The authors show that CUs with similar PMD tend to be en-
coded with the same partitioning. Blasi et al. [84] propose a bottom-up approach to ignore
certain CU partition modes based on a motion vector variance distance, computed on the
four QT sub-CUs.

Machine Learning. The techniques of last category use ML approaches to reduce en-
coding complexity. They either take as input features extracted from one or more of
previous categories, or rely on Deep Learning (DL) approaches such as Convolution Neural
Networks (CNNs). Liu et al. [85] propose a technique based on CNN for All Intra (AI)
configuration that determine if a CU must be early terminated or early split. A CNN is
separately trained for every QT CU size from 32x32 to 8x8 pixels. In [86], Duanmu et
al. focus on Screen Coding Content (SCC), an extension of HEVC that targets typical
screen contents. Separate CNN classifiers are separately trained for different Quantization
Parameter (QP) values and CU sizes to output a variable between 0 and 1, representing
the probability that a CU is early terminated. In [87], to reduce RA encoding complexity
in HEVC, Support Vector Machines (SVM) classifiers are separately trained for every CU
size in order to determine if a CU should be early terminated. The SVM classifier takes as
an input features such as pixel gradients, sub-CUs Motion Vectors (MVs) and intermediate
encoding information (encoding flags, CU depth of neighboring blocks and the RD cost).
The technique proposed by Correa et al. [84] is based on decision trees, each relying on
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spatial features and intermediate RA configuration encoding information. The decision
trees are trained separately for every CU size from 64x64 to 8x8. In [88], Shen et al. pro-
pose a Bayesian rule classifier employing features of M ×M PU mode such as SATD, RD
cost and MV to determine the PU mode of a CU. Finally, Mercat et al. [89] compares
features used in state of the art techniques to predict HEVC partition, considering both
information gain and computational complexity.

4.2.2.2 QTBT Partitioning Scheme

The QTBT partitioning scheme in the JEM allows two more partition modes compared to
QT partitioning scheme, considerably increasing the encoding complexity. Furthermore,
intermediate PU splitting modes, that provides useful information for early termination or
early skip decision in HEVC, have been removed in the JEM. For these reasons, most of
previously mentioned techniques can not be directly used to speedup the JEM encoder.

In [90], Yamamoto proposes to reduce the encoding complexity in RA configuration
by setting high value of BTdepth on frames with low Temporal ID, whereas frames with
high Temporal ID use smaller value of BTdepth. In the QTBT partition scheme the same
CU can be generated by different block partition choices. Huang et al. [91] reduce the
encoding complexity by re-using the encoder decisions of the same CU explored in previous
partition choices. The technique proposed by Lin et al. [92] skips the BT Rate Distorsion
Optimization (RDO) process of the second sub-CU, when the RD cost of the parent CU
and the first sub CU fulfil certain constraints. Authors in [93] and [94], use CNNs to predict
a depth description of QTBT partition of the CTUs. In [93], the CNN takes as an input
the 32× 32 pixels blocks of the frame, as well as QP value, and outputs a class from 0 to
5 describing QTBT partition depth for AI configuration. In [94], the false prediction risk
of CNN is controlled based on temporal correlation for RA configuration. Wang et al [95]
use a combination between Motion Divergence Field and gradient of luminance samples to
model the RD cost of a CU. A probabilistic model is then proposed to determine unlikely
partition modes of the QTBT partitioning scheme. Complexity reduction techniques [90],
[94] and [95] can reduce encoding complexity in RA configuration by 17%, 32% and 52% for
0.5%, 0.5% and 1.4% of BD-BR increase in average, respectively. These results depend on
the encoder version of the used software, encoding parameters and hardware configuration.
They nevertheless provide an order of magnitude of the techniques efficiencies.

Even though RF is a classical method in ML that offers high classification performance
with slight overhead and is widely used in many applications such as image classifica-
tion [96] and 3D pose estimation [97], none of the previously mentioned QT or QTBT fast
partitioning techniques rely on RF. Furthermore, previously mentioned techniques speed-
ing up the QTBT partition scheme, the proposed solution is tunable and offers various
complexity reduction opportunities, from 30% to 70% in average. Moreover, this solution
can be considered as lightweight since it relies on RF classifiers, inducing much smaller
overhead compared to CNN based techniques [93] [94].

4.3 Random Forests for Partition Decision Classification Prob-
lem

This section introduces RF classifiers and presents the three binary classification problems
proposed in this work to reduce the number of processed partition modes.
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4.3.1 Background for Random Forests

Classification by RF [9] is a classical method in ML. RF classifiers predict the value of a
target variable, named class, from values of several input variables, named features. They
bag many single little-correlated decision trees and gather the results from all the trees to
make the final decision.

4.3.1.1 Build Decision Trees

Decision trees are constructed by a recursive partitioning of the data set into subsets called
nodes. At each node, a threshold that achieves optimal separation of the classes is selected
among the input features. Each child-node corresponds to a set of values of the selected
input features, so that the totality of child-nodes cover all possible values of this input
features.

The criterion used in this work to select the best split for a node in decision trees is
Mutual Information (MI). The differential entropy H of a continuous random variable X
is computed as follows:

H(X) = −
∫
R
fX(x) log2 (fX(x)) dx, (4.1)

where fX : R → [0,+∞] is the Probability Density Function (Pdf) of X. The entropy H
measures the quantity of information delivered by the knowledge of X. MI of class C and
feature F , noted I(F,C), is defined as the entropy decreasing of C when F is known [98].
The value of I(F,C) is comprised between 0 and H(C), and is expressed by Equation (4.2)

I(F,C) = H(C)−H(C|F ). (4.2)

In other words, I(F,C) measures the information shared by C and F . Therefore, the higher
I(F,C), the more the feature F is relevant to estimate class C. When MI is used as a cri-
terion, the optimal threshold of a feature F to split a decision tree node is the threshold
that maximizes I(F,C) on both subsets of child-nodes.

4.3.1.2 Benefits of Random Forests

Let the error rate be the percentage of wrong classification on the training dataset. By
de-correlating trees, RF classifiers achieve a better trade-off between error rate and training
data over-fitting compared to a single decision tree classifier.

In order to de-correlate the decision trees of the RF, a random subset of the training
dataset is selected to build each decision tree. The decision trees in the RF take as an
input all the features. However, the splitting threshold of each node in the decision tree
is selected among a random subset of the input features. This random selection decreases
the probability that two decision trees in the RF select the same set of features in the same
order, and therefore is crucial to de-correlate one decision tree from another. The following
example illustrates the interest of RF classifiers in term of error rate compared to single
decision tree classifiers. Assume the RF classifier is composed of 10 perfectly de-correlated
decision trees, each with error rate εi of 0.3: εi = ε = 0.3,∀i ∈ {1, . . . , 10}.
If a RF classifier makes a wrong prediction when more than half of the base decision tree
classifiers are wrong, the error rate εRF of the RF classifier is computed by Equation (4.3)

εRF =
10∑
j=6

(
10

j

)
εj(1− ε)10−j ≈ 0.05. (4.3)
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It is not possible to de-correlate perfectly the decision trees of the RF as they are
trained on the same data. Nonetheless, the more the decision trees are de-correlated, the
closer the error rate of the RF classifier is to εRF .

4.3.2 Classification Problem

To find the CU partition mode that achieves the best RD performance, the encoder recur-
sively explores all possible partition modes. This process is called full or exhaustive RDO
search. For each CU, the encoder computes the RD cost of the whole CU, QT and BT par-
tition modes, BT partition modes being composed of BTH and BTV partition modes. The
encoder selects the partition mode that minimizes the RD cost J , expressed as a trade-off
between distortion D and rate R, with λ the Lagrangian multiplier:

J = D + λR. (4.4)

The aim of the proposed solution is to predict for every encountered CU the partition mode
that minimizes the RD cost. Several partition modes are ignored reducing the number of
processed partition modes. As shown in Figure 4.3, the problem to solve is a four classes
classification problem including the following partition modes: NoSplit, QT, BTH and
BTV.

NoSplit QT BTH BTV

Figure 4.3 – Four classes of the CU classification problem.

In this work, instead of creating a RF classifier that solves directly the four classes
classification problem, the partition decision is divided into three successive binary clas-
sification problems. This division adds flexibility into the decision structure and allows
a separate training of the classifiers on specific features, improving global classification
performance.

The three binary classifiers are named S-NS, QT-BT and BH-BV. As shown in Fig-
ure 4.4, each classifier takes as input a different set of features and the classifiers are used
in the following order:

1. Classifier S-NS : The two output classes of classifier S-NS are either NoSplit par-
tition mode or Split partition modes, where Split partition modes include QT, BTH
and BTV partition modes. When the Classifier S-NS outputs class NoSplit, NoS-
plit partition mode is processed and Split partition modes are ignored. Otherwise,
NoSplit partition mode is ignored, and the second classifier QT-BT is requested.

2. Classifier QT-BT : The output classes of classifier QT-BT are either QT partition
mode or BT partition modes, where BT partition modes include BTH and BTV par-
tition modes. When the classifier QT-BT outputs QT partition mode, QT partition
mode is processed and BT partition modes are ignored. Otherwise, QT partition
mode is ignored, and the third classifier BH-BV is requested.
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Figure 4.4 – Convert Four Classes Problem into Three Binary Problems

3. Classifier BH-BV : The output classes of classifier BH-BV are either BTH partition
mode or BTV partition mode. When the classifier BH-BV outputs BTH partition
mode, BTH partition mode is processed and BTV partition mode is ignored. Other-
wise, BTV partition mode is processed and BTH partition mode is ignored.

4.4 Dataset Creation

Let us define a training instance as the entity composed of the chosen set of input features
and the associated output class. This section details the creation of the training dataset,
i.e. the set that contains all the training instances used to train the RF classifiers.

4.4.1 Training Setup

The effectiveness of ML is highly linked to the diversity and relevance of the training
dataset. To characterize a video content, Spatial Information (SI) and Temporal Informa-
tion (TI) metrics are used [56]. The SI estimates the amount of spatial details whereas the
TI measures the quantity of motion in the sequence. In Figure 4.5, 25 sequences extracted
from JVET CTC [73] are represented under the SI TI coordinates.

To cover a wide range of these two content types, the training dataset is extracted from
10 training sequences spanning a large range of SI and TI space and distributed across
6 classes (A1, A2, B, C, D, E). The training sequences are circled in black in Figure 4.5
including: DaylightRoad and CatRobot1 (class A1), Traffic (class A2), BasketballDrive and
BQTerrace (class B), Flowervase and BQMall (class C), BQSquare and Keiba (class D),
Johnny (class E). The training instances are extracted from encodings carried-out with the
JEM-7.0 in RA configuration across the 4 QP values used in CTC: 22, 27, 32 and 37. The
corresponding output class of a CU is defined as the optimal partition mode selected after
a exhaustive RDO process.
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Figure 4.5 – SI and TI of the CTC sequences according the classes.

Let the size category of a CU depend only on the number of pixels in the CU. TABLE 4.1
gives the dimensions in width and height of the CUs composing the 7 size categories. The
category S0 corresponds to the largest CUs and the category S6 to the smallest CUs. For
each CU size category, a separate training dataset is created and a separate RF classifier
is trained. With this separation, the features are computed on the same number of pixels
in each training dataset.

Table 4.1 – Width and Height of the CUs composing the size categories.

S0 S1 S2 S3 S4 S5 S6

128x128 128x64 64x64 64x32 32x32 32x16 16x16
64x128 128x32 32x64 64x16 16x32 32x8

32x128 128x16 16x64 64x8 8x32
16x128 128x8 8x64

8x128

Sequences with high resolution and high frame rate provide more CTUs to the training
datasets compared to the low resolution and low frame rate sequences. To avoid being
biased by these particular training sequences, the datasets used for training are composed
of a fixed number of CTUs by training sequence. To ensure a fixed number of CTUs by
training sequence, the number of frames used for training in a sequence differs according to
the sequence class: 7 frames for class A1, 13 frames for class A2, 25 frames for class B, 55
frames for class E, 125 frames for class C and 500 frames for class D. To avoid temporal bias,
the CTUs come from frames evenly distributed in their sequence time-line. Furthermore,
to reduce the problem of imbalanced data, the training datasets are composed randomly
with the same amount of training instances classified into each output class.

4.4.2 Feature Evaluation and Selection

Let a feature be a property of the CU used to determine which output class shall be se-
lected by the RF classifiers. In related works, features are extracted among others from
intermediate encoding information [88], texture of pixel luminance samples [86] or mo-
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tion divergence [95], as mentioned in Section 5.2. Features based on intermediate encod-
ing information have been shown to be effective for the S-NS classification problem in
HEVC [24][28]. In this work, we choose to build a parallel friendly set of features as an in-
put of the RF classifiers, since intense parallelization will be compulsory to achieve real time
encodings for VVC standard. The features must not add dependencies between regions
of the frame, in order to preserve the opportunities of high level parallelism and CU level
parallelism. Therefore, the selected features are only designed based on current CU data,
such as texture of pixel luminance samples and motion divergence. This choice forces to
neglect features based on intermediate encoding informations. This section first introduces
Motion Divergence Field (MDF), then explains the feature evaluation and selection.

4.4.2.1 Motion Divergence Field

In the following, motion divergence in a frame is considered through the MDF. The MDF
is the array of MVs of every 4x4 pixels block of the frame. The MVs point to the closest
reference frame in term of temporal distance. In this work, a separate motion search process
is needed to compute the MDF. Without optimization and parallelization, the motion
search process of the MDF induces an average 0.8% overhead of the encoding complexity.
However, many real-time encoders x265 [99] already use look-ahead techniques. A look-
ahead technique consists in a pre-analysis of the video sequence, generally including a
motion search on small blocks of the frame. For encoders using look-ahead techniques, the
overhead to compute the MDF is null.

Figure 4.6a displays the original frame #9 of sequence RaceHorses, while Figure 4.6b
gives a visual representation of its MDF. MVs with different motion directions are displayed
with different colors, separating visually regions of the frame with different movement. The
optimal QTBT partition selected by JEM-7.0 encoder after a exhaustive RDO process is
also displayed. Areas with similar colors tend to be merged together in a CU, showing the
correlation between frame’s optimal QTBT partition and the MDF. Some edge-examples
CUs containing distant colors are recognized, and one of them is highlighted with a yellow
square. Indeed, this CU is not further split and the blue zone is not separated from the
purple zone. The goal of the feature selection is to determine which features extracted
from the MDF and from pixel luminance samples are the most relevant to determine the
best partition mode of a CU.

4.4.2.2 Evaluated Features

Evaluated features are divided into 3 categories: features computed onwhole CU, features
computed on sub-quarters of the CU and features based on inconsistency among CU
sub-quarters.
Features computed on the whole CU are the following:

• QP : Quantization parameter used to encode CU slice.

• VarPix : Variance of luminance samples.

• Grad : Gradients in horizontal (gradx) and vertical (grady) directions of the lumi-
nance samples (2 features).

• RatioGrad : ratio of gradients gradx
grady

.

• VarMv : σ2
MVx + σ2

MVy with σ2
MVx and σ2

MVy respectively variances of horizontal and
vertical MVs of MDF.
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(a) Original frame.

(b) Visual representation of the MDF. The MVs with different motion directions are displayed
with different colors

Figure 4.6 – Correlation between MDF and frame QTBT partition, frame #9 RaceHorses, at
QP=32.

• MaxDiffMv : maximum 1-norm distance between MVs of MDF, noted mv, and their
mean, noted mv, as in Equation (4.5).

MaxDiffMv = max
mv∈MDF

(||mv −mv||1),

= max
mv∈MDF

(|mvx −mvx|+ |mvy −mvy|).
(4.5)

Features based on sub-quarters of the CU are the following:

• QuarterVarPix : VarPix on 4 sub-quarters (4 features).

• QuarterVarMv : VarMv on 4 sub-quarters (4 features).

• QuarterMaxDiffMv : MaxDiffMv on 4 sub-quarters (4 features).

For any feature f , f1 is the feature computed on top-left sub-quarter, f2 on top-right, f3

on bottom-left and f4 on bottom-right. Let δH(f) and δV (f) be Horizontal Inconsistency
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(HI) and Vertical Inconsistency (VI) as defined by Equation (4.6)

δH(f) = |f1 − f2|+ |f3 − f4|,
δV (f) = |f1 − f3|+ |f2 − f4|.

(4.6)

The aim of HI and VI is to highlight which rectangular parts of the CU have the highest
differences. Features based on inconsistency among sub-quarters of the CU are the
following:

• InconsPix : HI and VI of mean, variance and gradients-ratio of luminance samples (6
features).

• InconsMv : HI and VI of mean and variance of MDF (4 features).

• DiffInconsPix : difference between HI and VI for luminance based features (3 fea-
tures).

• DiffInconsMv : difference between HI and VI for MDF based features (2 features).

4.4.2.3 Feature Selection

As decision trees node splitting relies on MI (see Section 4.3.1), the feature evaluation is
conducted with MI as metric. Figure 4.7 gives the MI of all evaluated features according to
the classifier and CU size. Only MI for CU size categories S0, S2, S4 and S6 are displayed
to avoid overloading the figure as these values are representative of MI of other CU sizes.

Figure 4.7a shows that for classifier S-NS, the larger the CU, the higher the MI, inde-
pendently of the evaluated feature. Therefore, the larger the CU, the more relevant are the
evaluated features to determine whether the optimal partition mode of a CU is NoSplit or
one of the Split partition modes.

For QT-BT and BH-BV classifiers, Figure 4.7b and Figure 4.7c respectively show that
features based on texture have higher MI than features based on the MDF, independently
of CU size. In other words, features based on texture are more relevant than features based
on the MDF to estimate the partition modes to process, independently of CU size. It can
also be noted that the MI of features are lower for classifiers QT-BT and BH-BV than for
classifier S-NS. The maximum MI reaches 0.22 for classifier S-NS whereas the maximum
MI is 0.07 and 0.14 for classifiers QT-BT and BH-BV, respectively.

For each classifier, only one set of features is selected to create the training datasets
of the various CU size categories. Let the classification rate be the percentage of correct
classification given by the 4-fold cross-validation on the training dataset. The selected
features are those providing the highest MI and improving the classification rate when
added to the set of features.
The set of features for classifier S-NS is composed of the 24 features: QP, VarPix, Grad
(2 features), RatioGrad, VarMv, MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 fea-
tures), InconsMv (4 features), DiffInconsPix (3 features).
The set of features for classifier QT-BT is composed of the 19 features: QP, VarPix, Grad
(2 features), RatioGrad, MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 features)
and DiffInconsPix (3 features).
For classifier BH-BV, the set of features is composed of the 21 features including VarPix,
Grad (2 features), RatioGrad, QuarterVarPix (4 features), QuarterVarMv (4 features),
InconsPix (6 features) and DiffInconsPix (3 features).
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(a) S-NS Classifier
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(b) QT-BT Classifier
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(c) BH-BV Classifier

Figure 4.7 – Mutual Information of evaluated features according to classifier and CU sizes.
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4.5 Classifiers Training Process

The training process consists in building the classifier through maximizing classification
rate on the training dataset. In addition to classification rates, the losses of RD performance
induced by misclassification are considered in the training process.

4.5.1 Impact of Misclassification on RD-cost Errors
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Figure 4.8 – Average RD misclassification error according to the classifier and CU size cat-
egory. Data from 4 Sequences (BasketballDrive, BQMall, Flowervase, Johnny), encoded with
QP = 22, 27, 32, 37

To assess the impact of misclassification on the encoding efficiency, the RD error εRD
caused by a misclassification is introduced. In the following, the misclassification A|B is
when the partition mode A is chosen by the RF classifier, whereas B is the optimal partition
mode selected by the encoder after exhaustive RDO process. RD error of misclassification
A|B is defined by Equation (4.7)

εRD(A|B) =
JA − JB
JB

(4.7)
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JA and JB are the RD costs resulting from RDO process for partition modes A and B,
respectively. In our case,

(A,B) ∈ {(NS, S), (S,NS), (QT,BT ), (BT,QT ),

(BTV ,BTH), (BTH,BTV )},
JS = min(JQT , JBTH , JBTV ) and
JBT = min(JBTH , JBTV ).

Figure 4.8 shows the average εRD according to the classifier and the CU size. Results
are averaged across 4 sequences (BasketballDrive, BQMall, Flowervase, Johnny) and 4 QP
values.

A statistical study in Figure 4.8a shows that εRD caused by classifier S-NS is in average
3.4 times higher compared to εRD caused by classifiers QT-BT and BH-BV. In other words,
the partition modes S and NS are in average more divergent in terms of RD cost, compared
to partition modes QT and BT and partition modes BTH and BTV. Therefore S-NS
classification problem is easier to solve compared to classification problems QT-BT and
BH-BV, explaining why the MI of selected features in Section 4.4.2 are lower for classifiers
QT-BT and BH-BV compared to classifier QT-BT.

Concerning the first classifier S-NS, Figure 4.8a shows that the smaller the CU, the
higher εRD(S|NS). When the classifier selects Split partition modes instead of the correct
NoSplit partition mode selected by exhaustive RDO process, the misclassification has a
higher RD impact for small CUs.
On the other hand, larger CU generate higher values of εRD(NS|S). This is due to the
fact that the larger the CU, the greater the number of partitioning possibilities. Therefore,
for large CUs, the NoSplit partition mode is more divergent in average from the optimal
partitioning after exhaustive RDO process, compared to small CUs.

For the second classifier QT-BT, Figure 4.8b shows that εRD(BT |QT ) is higher for
large CUs (128 × 128 and 64 × 64) than small CUs (32 × 32 and 16 × 16). When the
classifier selects BT partition modes instead of the correct QT partition mode, selected by
exhaustive RDO process, the misclassification has stronger impact on RD cost on the large
CUs than small CUs in average. Indeed, when BT partition mode is selected on large CUs,
QT partition mode is no longer available, as detailed in Section 5.2. Combined with the
limit of 3 successive BT partitions, fine grain partitioning is no longer achievable. On the
other hand, εRD(QT |BT ) is higher for small CUs than for large CUs. This is due to the
fact that rectangular BT partition modes offer more partitioning shapes than square QT
partition mode on small areas in the frame.

Concerning the third classifier BH-BV, Figure 4.8c shows that εRD are symmetric for
misclassification BTH|BTV and BTV |BTH. Moreover, misclassification has very small
impact in average on RD cost losses (below 2%) for S0 category CUs and quite higher
impact (around 10%) for S2, S4 and S6 category CUs.

4.5.2 Weighting of Training Dataset

Previous section shows that the impact of misclassification on RD cost losses depends
highly on the classifier and the CU size. From this observation, all the training instances
for classifier A-B with (A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )} are assigned a weight
w(A,B). The value of w(A,B) is computed by Eq (4.8).

∀(A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )},
w(A,B) = max(εRD(A|B), εRD(B|A)).

(4.8)
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By assigning a weight to the training instances, the RF classifiers are built in order to
minimize the sum of misclassified weights w(A,B), instead of minimizing the classification
error rate. Therefore the training process has more probability to classify well training
instances with high weights, i.e training instances that induce high RD losses. Note that
the weights are needed only during the training process, and not when the trained model
is used to reduce the complexity of encoding process.

4.5.3 Classification Rates

As mentioned in Section 4.4.2, the classification rate is the percentage of correct classi-
fication given by the 4-fold cross-validation on the training dataset, carried out with the
weighting of training instances described in Section 4.5.2. In the following, the number of
decision trees of the RFs has been set to 40 which represents a good trade-off between high
classification rate and low inference time. TABLE 4.2 gives the average classification rates
of the three classifiers according to the CU size category, with 40 decision trees by RF.

Table 4.2 – Classification rate (in %) according to the classifier and the CU size category.

S0 S1 S2 S3 S4 S5 S6 Average

S-NS 83 82 78 76 73 72 69 76

QT-BT 69 - 70 - 67 - 60 67

BH-BV 62 64 70 67 69 68 67 67

In TABLE 4.2, the classification rates of classifier S-NS are between 69% and 83%.
The larger the CU, the higher the classification rate for classifier S-NS. In the literature,
classification rates of techniques using ML to reduce the complexity of the QT partitioning
in HEVC are close to 80% [89, 100]. The classifier S-NS has therefore classification rate
performance comparable to previous works on HEVC.

Section 4.5.1 shows that the S-NS classification problem is easier to solve compared
to classification problems QT-BT and BH-BV. For this reason the classification rates of
classifiers QT-BT and BH-BV are in average 67%, which is in 9% lower than the average
classification rate of classifier S-NS.

4.6 Tunable Complexity Reduction

In order to control RD losses induced by misclassification, risk intervals of classification are
introduced for each binary classifier. In the risk interval of the binary classifier, both output
partition modes are processed, limiting RD efficiency losses at the expense of complexity
reduction. By varying the size of risk intervals, tunable complexity reduction is achieved.

4.6.1 Definition of Risk Interval

A score value, deduced from the votes of individual decision trees, is used to determine
the risk interval of a given classifier. The associated score Score(A) corresponds to the
percentage of decision trees of the RF classifier that predicts the class A which is defined
by Equation (4.9)

Score(A) =
Nvotes(A)

Ntrees
(4.9)
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where Nvotes(A) is the number of trees voting for class A and Ntrees is the total number
of trees constituting the RF classifier. Score(A) takes values between 0 and 1 and the
value of Score(A) quantization step is 1/Ntrees. The closer Score(A) is to 1, the more
predominantly the RF classifier selects class A.

In our specific case, all the classification problems are between two classes A and B,
with (A,B) ∈ {(NS, S), (QT,BT ), (BTV,BTH)}. For binary classification, asNvotes(A)+
Nvotes(B) = Ntrees, then Score(A) + Score(B) = 1. Using this relation, the classification
decision of the binary RF classifier is A if Score(A) > 0.5 and B otherwise (see Sec-
tion 4.3.1).

An example of risk interval is illustrated in red color in Figure 4.9. The risk interval is
the range [0.5− dS(A), 0.5 + dS(B)] of Score(A), with dS(A) and dS(B) the risk interval
boundaries dS for decisions A and B, respectively. The risk interval boundary dS are
included in the range [0, 0.5]. When Score(A) is inside the risk interval, the classifier
makes no decision and both output partition modes A and B are processed.

10.50 10.5-dS(A) 0.5+dS(B)

Score(A)

class Aclass A & Bclass B

Figure 4.9 – Risk interval for binary classification.

4.6.2 Computation of Risk Interval Boundaries

The values of the risk interval boundaries dS for every classifier and CU size category are
computed at encoding time. Every 32 frames, 1 reference frame is encoded with the exhaus-
tive RDO process of JEM-7.0, enabling the RF classifiers only to gather misclassification
RD statistics. No complexity reduction is achieved on the encoding of the reference frames.
The complexity of the reference frames is included in the final results and is compensated
by the complexity reduction achieved on frames constrained by the RF classifiers.

In the reference frames, the RD costs of all partition modes are computed, making
it possible to compute the sum of εRD error induced by misclassification, further called
cumulative εRD. The risk interval boundaries dS are computed in order to limit cumulative
εRD on the reference frame. The computation of the the dS values at encoding time adjusts
the RD efficiency losses to video content variations, across different sequences and scenes.

In Figure 4.10, the blue and green histograms correspond to a concrete example of cumu-
lative εRD(QT |BT ) and cumulative εRD(BT |QT ), respectively, in function of Score(QT ).
The cumulative εRD are computed from the RD costs of S6 category CUs, extracted from
the RDO process of sequence BasketballDrill reference frame. The maximum cumula-
tive εRD error tolerated on the reference frame is further noted L and represented by the
red line in Figure 4.10. Depending on the L value, the boundaries of the risk interval
dS(QT ) and dS(BT ) are determined such as both cumulative εRD(QT |BT ) and cumula-
tive εRD(BT |QT ) are below L. Note that dS(QT ) is greater than dS(BT ) in this example,
since the errors εRD(BT |QT ) are greater than the errors εRD(QT |BT ).

4.6.3 Individual Performance of Classifiers

As explained in Section 4.5.1, average RD losses induced by misclassification depend highly
on the classifier. Reason why the possibility is left for the user to select a different threshold
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Figure 4.10 – Cumulative εRD of QT |BT and BT |QT misclassifications in function of
Score(QT ). Data from S6 category CUs of first frame of sequence BasketballDrill, QP = 22.

L by classifier, further noted LS-NS, LQT-BT, LBH-BV. For a given classifier, the same
threshold is applied on all CU size categories.

The performance of a complexity reduction solution is evaluated by measuring the
trade-off between RD efficiency using the BD-BR increase [13] and encoding complexity
reduction ∆T , defined by Equation (4.10)

∆T =
1

4

∑
QPi∈{22,27,32,37}

TA(QP i)− TR(QP i)

TA(QP i)
, (4.10)

where TA(QP i) and TR(QP i) are the anchor (encoded with exhaustive RDO process) and
reduced time required to encode the video with QP = QP i, respectively.

In order to evaluate the performance of the classifiers individually, encodings are run
activating only one classifier at a time with different values of L: 0.0%, 0.01%, 0.02%,
0.05%, 0.10%, 0.15%, 0.20%, 0.30%. The value L = 0.0% means that the classifier is
disabled. The performance is gathered across the encodings of the 32 first frames of 10
training sequences over 4 QP values.

Figure 4.11 shows the average ∆T versus the average BD-BR, according to the classifier
for BTdepth equals to 1, 2 and 3. As explained in Section 4.2.1, BTdepth is the encoding
parameter that specifies the number of successive allowed BT partitions. In the CTC [73],
BTdepth value is set to 3, reason why the conducted experiences only consider BTdepth
values lower than 3. The blue, green and red curves correspond to performance obtained
with the individual activation of classifiers S-NS, QT-BT and BH-BV, respectively. The
points of the curves are obtained from left to right for the following values of L: 0.0%,
0.01%, 0.02%, 0.05%, 0.10%, 0.15%, 0.20%, 0.30%. In Figure 4.11, the higher left the
curve, the better the classifier performance, as it minimizes BD-BR while maximizing ∆T .

Figure 4.11a shows that for BTdepth = 3, when BD-BR is lower than 1.2%, the curve of
classifier BH-BV is below the curve of classifier QT-BT and above the curve of classifier
S-NS. Classifier QT-BT has therefore the best performance. Even though classifier S-NS
has the best successful classification rates (see Section 4.5.3), it has the worst performance
in term of trade-off between ∆T and BD-BR. This is due to the fact that misclassification
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Figure 4.11 – Average ∆T and BD-BR, according to the BTdepth and classifier. Average computed
across the encodings of 32 first frames of 10 training sequences with 4 QP values. Points correspond
to different values of L: 0.0%, 0.01%, 0.02%, 0.05%, 0.10%, 0.15%, 0.20%, 0.30%.
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induces much higher RD errors in average for classifier S-NS compared to other classifiers,
as explained in Section 4.5.1.

For BTdepth = 2, Figure 4.11b shows that classifiers QT-BT and BH-BV have equiv-
alent performance as their curves overlap from 0% to 30% ∆T . Classifier S-NS has the
lowest performance as its curve is the rightmost from 0% to 40% ∆T .

Finally, when BTdepth = 1, BT partition modes are available for less CUs compared
to BTdepth = 3 and BTdepth = 2. Classifiers QT-BT and BH-BV have therefore less CUs
to address, meaning less complexity reduction opportunities compared to classifier S-NS.
This explains why in Figure 4.11c, the curve of classifier QT-BT is lower compared to the
curve of classifier S-NS when BD-BR is between 0% and 1.7%. This also enlighten why
∆T for classifier BH-BV only reaches 20%, whereas it reaches 30% for BTdepth = 3 and
BTdepth = 2.

4.6.4 Optimal Selection of Complexity Reduction Configurations

In order to activate the three classifiers simultaneously at encoding time, three values of L
are required. The triplet (LS-NS, LQT-BT, LBH-BV) is further called Complexity Reduction
Configuration (CRC).

For a given CRC, knowing the individual complexity reductions of classifiers ∆T (LS-NS),
∆T (LQT-BT) and ∆T (LBH-BV) presented in Section 4.6.3, this section first explains how
to estimate the expected complexity reduction (called ∆Tcrc) when the three classifiers are
used simultaneously. In the following, ∆Tcrc is computed considering an example where
∆T (LS-NS) = 15%, ∆T (LQT-BT) = 25% and ∆T (LBH-BV) = 20%. Intermediate values
∆TS , ∆TQ and ∆TB are introduced by Equation (4.11)

∆TS = ∆T (LS-NS) = 15%,

∆TQ = (1.0−∆TS) ·∆T (LQT-BT)

= 0.85 · 25% = 21%,

∆TB = (1.0−∆TS −∆TQ) ·∆T (LBH-BV)

= 0.64 · 20% = 13%.

(4.11)

The expected complexity reduction ∆Tcrc is given by Equation (4.12)

∆Tcrc = ∆TS + ∆TQ + ∆TB = 49%. (4.12)

Over all CRCs achieving an expected complexity reduction ∆Tcrc, a CRC is considered
optimal when it obtains the lowest sum of BD-BR after exhaustive search. The optimal
CRCs, noted from C0 to C4, are given in TABLE 4.3 each corresponding to a target ∆Tcrc,
according to the BTdepth.

For both BTdepth = 3 and BTdepth = 2, in all optimal CRCs the value of LS-NS is 0.0,
meaning classifier S-NS is not used to reduce encoding complexity. This is explained by
the results of Section 4.6.3, where classifier S-NS has lower performance in term of trade-off
between BD-BR and ∆T compared to classifiers QT-BT and BH-BV, for BTdepth = 3 and
BTdepth = 2,.

When BTdepth = 1, the value of LQT-BT is 0.0 for all optimal CRCs. It is therefore more
efficient in term of BD-BR to use only classifiers S-NS and BH-BV when BTdepth = 1.
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Table 4.3 – Optimal CRCs and associated expected ∆Tcrc, according to BTdepth.

CRC BTdepth = 3 BTdepth = 2 BTdepth = 1
Name ∆Tcrc LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV

C0 30% 0.0 0.01 0.02 0.0 0.01 0.02 0.01 0.0 0.05

C1 35% 0.0 0.05 0.02 0.0 0.02 0.05 0.01 0.0 0.15

C2 40% 0.0 0.10 0.05 0.0 0.05 0.10 0.02 0.0 0.20

C3 45% 0.0 0.10 0.15 0.0 0.10 0.15 0.05 0.0 0.20

C4 50% 0.0 0.15 0.15 0.0 0.15 0.15 0.10 0.0 0.20

4.7 Experimental Results

This section gives the experimental setup and the results obtained for the proposed tunable
complexity reduction solution. Sections 4.7.2 and 4.7.3 present the results obtained on
JEM-7.0, while Section 4.7.4 present the results obtained on VTM-5.0.

4.7.1 Experimental Setup

The selected set test sequences is composed of 18 video sequences different from training
set sequences (see Section 4.4.1), selecting 3 sequences by class: Campfire, ParkRunning3,
ToddlerFountain, PeopleOnStreet, SteamLocomotiveTrain, NebutaFestival, Cactus, Ritual-
Dance, Kimono, RaceHorsesC, PartyScene, BasketballDrill, ParkScene, KristenAndSara,
FourPeople, BlowingBubbles, RaceHorsesD and BQSquare.

The experiments are carried-out under the CTC [73] in RA coding configuration at
four QP values: 22, 27, 32 and 37. The performance of the proposed complexity reduction
solution is evaluated by measuring the trade-off between BD-BR increase and encoding
complexity reduction ∆T , defined in Section 4.6.3. In the following, the complexity over-
head induced by the RF inference during partition scheme is noted θ. The proposed
complexity reduction solution is implemented in both JEM-7.0 and VTM-5.0. In order to
limit the encoding time, JEM-7.0 encoder compares the RD cost of the whole current CU
with those of the BTH and BTV partition modes to prune the QT partition mode. As
our solution does not compute all the RD costs of the BT partition mode, this condition
is removed in the experiments.

4.7.2 Performance Evaluation of the Proposed Solution in the JEM-7.0.

In order to set the upper bound in term of complexity reduction of the proposed solution,
the maximum complexity reduction opportunity ∆Tmax for QTBT partitioning scheme in
JEM-7.0 is computed. ∆Tmax is the value of ∆T achieved when the only tested QTBT
partition is the optimal partition. The average ∆Tmax value across the 18 test sequences
in RA configuration is:

∆Tmax = 90%.

TABLE 4.4 shows the average BD-BR and ∆T values across the 18 test sequences,
encoded with exhaustive RDO process according to the BTdepth value. Reducing BTdepth
value and allowing exhaustive RDO process is a straightforward technique to reduce com-
plexity of QTBT partition scheme. For a fixed value of BD-BR, if the average ∆T value
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Table 4.4 – BD-BR(%) and ∆T (%) for JEM-7.0 exhaustive RDO process encodings with different
BTdepth values. Results averaged across 18 test sequences.

JEM-7.0 Exhaustive RDO

BTdepth = 3 BTdepth = 2 BTdepth = 1 BTdepth = 0
BD-BR ∆T BD-BR ∆T BD-BR ∆T BD-BR ∆T

+0.0% 0% +0.6% 20% +2.0% 50% +5.1% 79%

of the proposed solution is lower than the average ∆T value obtained simply by allow-
ing exhaustive RDO process with a reduced value of BTdepth, the CRC is considered as
non-efficient for this value of BD-BR.
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Figure 4.12 – Average BD-BR and ∆T for optimal CRCs and exhaustive RDO with different
BTdepth. CRCs adopted in the proposed solution are circled in black. All results averaged across
18 test sequences and 4 QP values.

The performance of the CRCs in term of BD-BR and ∆T is displayed in Figure 4.12.
The upper bound ∆Tmax, as well as BD-BR and ∆T for exhaustive RDO process with
different BTdepth values, are also displayed in red. In Figure 4.12, the blue stars correspond
to CRCs with BTdepth = 3, as in the CTC. With BTdepth = 3, the optimal CRCs offer
an average ∆T value between 30% and 57% for an average BD-BR increase comprised
between 0.67% and 2.22%. The yellow crosses and green hexagons correspond to CRCs
with reduced values BTdepth = 2 and BTdepth = 1, respectively. With BTdepth = 2, the
∆T of the optimal CRCs are in average comprised between 48% and 66% with BD-BR
increase between 1.48% and 3.40%. With BTdepth = 1, the optimal CRCs offer an average
∆T value between 63% and 78% for BD-BR increase between 2.45% and 5.21%.

The 8 CRCs adopted in the proposed solution are circled in black in Figure 4.12. They
are located on the pareto front, i.e. the CRCs with lower BD-BR for a given value of ∆T .
The CRC inducing a BD-BR increase superior than 3% are not adopted in the proposed
solution since they offer a trade-off between ∆T and BD-BR not considered good enough.
The adopted CRCs include: C0(BT3), C1(BT3), C2(BT3), C0(BT2), C1(BT2), C2(BT2),
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Table 4.5 – Average BD-BR, ∆T and complexity overhead θ of the CRCs adopted in the proposed
solution.

Proposed Solution in the JEM-7.0

BTdepth Adopted CRC BD-BR (%) ∆T (%) θ (%)

C0 0.7 30.2 1.4
BTdepth = 3 C1 1.0 37.3 1.2

C2 1.3 44.1 1.1

C0 1.6 48.2 0.7
BTdepth = 2 C1 1.9 54.3 0.7

C2 2.3 59.4 0.6

BTdepth = 1
C0 2.5 63.2 0.5
C1 3.0 70.0 0.5

C0(BT1) and C1(BT1). TABLE 4.5 summarizes the average BD-BR, ∆T and θ of the CRCs
adopted in the proposed solution. TABLE 4.5 shows that in order to achieve complexity
reductions higher than 43% in average, it is more efficient to apply our solution with a
value of BTdepth < 3, compared to applying our solution with BTdepth = 3. With these
adopted CRCs, the proposed tunable solution offers a range of average ∆T between 30%
and 70% for an average BD-BR increase between 0.7% and 3.0%.

Table 4.6 – BD-BR, ∆T and complexity overhead θ of CRCs C0(BT3) and C0(BT1) of the
proposed solution with respect to the performance announced by Wang et al. in papers [94] and
[95]. The results are shown by test sequence.

Proposed Solution Related Work Proposed Solution Related Work
CRC C0(BT3) Wang CNN [94] CRC C0(BT1) Wang Proba [95]

Class Sequence name BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

A1 Campfire 0.36 35.1 0.5 0.66 40.6 2.4 3.4 68.8 0.2 1.7 46.7
A1 ParkRunning3 0.49 21.1 1.0 - - - 2.0 57.4 0.4 - -
A1 ToddlerFountain 0.58 18.2 0.8 - - - 1.8 59.5 0.3 1.2 48.4

A2 PeopleOnStreet 0.22 21.8 1.5 - - - 2.2 58.0 0.5 - -
A2 SteamLocomotiveTrain 0.57 24.6 1.0 - - - 2.7 63.5 0.3 - -
A2 NebutaFestival 1.37 35.1 0.9 - - - 2.2 68.0 0.3 - -

B Cactus 1.18 34.1 1.2 - - - 2.8 64.1 0.4 1.5 48.2
B RitualDance 0.90 32.0 0.7 0.55 32.6 4.2 3.9 64.7 0.2 - -
B Kimono 0.79 23.1 1.0 - - - 4.0 65.3 0.3 1.4 54.7
B ParkScene 0.63 30.8 1.6 - - - 2.5 68.1 0.5 1.2 45.7

C RaceHorsesC 0.42 32.8 0.9 0.47 30.7 1.7 2.1 63.1 0.3 1.6 60.5
C PartyScene 0.45 29.2 1.5 0.54 34.6 2.2 1.6 62.8 0.5 1.7 62.3
C BasketballDrill 0.61 30.2 1.2 - - - 2.4 63.5 0.4 1.5 62.3

D RaceHorsesD 0.41 28.8 1.2 0.51 36.3 2.7 2.3 61.5 0.6 1.3 56.5
D BQSquare 0.64 25.1 1.8 0.44 26.0 2.1 1.5 57.5 0.8 1.3 51.8
D BlowingBubbles 0.46 31.6 1.6 0.60 35.7 1.9 1.9 60.0 0.8 1.2 50.3

E FourPeople 0.76 40.8 1.8 0.32 28.9 4.1 2.5 68.3 0.5 1.3 47.7
E KristenAndSara 1.17 46.6 1.2 0.38 33.8 3.6 2.7 70.2 0.4 1.0 45.6

Same Sequences Average 0.62 33.5 1.4 0.50 32.8 2.8 2.42 64.0 0.5 1.38 52.3
Global Average 0.67 30.2 1.3 2.45 63.4 0.5

4.7.3 Comparison with Related Works in JEM-7.0.

The proposed solution is evaluated and compared to previous techniques on QTBT parti-
tion scheme in RA configuration [90], [92], [94] and [95]. Previous techniques [90] and [92]
offer an average encoding complexity reduction of 17% and 10% for an average BD-BR
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increase of 0.5% and 0.2%, respectively. The encoding complexity reductions are much
lower compared to the encoding complexity reductions proposed in our solution, which is
in minimum equals to 30% for C0(BT3).

For a fairer comparison with the two most recent techniques [94] and [95], TABLE 4.6
details the performance of 2 CRCs of the proposed solution - C0(BT3) and C0(BT1) -
with respect to the performance announced by Wang et al. in papers [94] and [95]. The
performance in TABLE 4.6 is shown by test sequence, in terms of BD-BR increase, encoding
complexity reduction ∆T and θ induced by the respective techniques.

TABLE 4.6 shows that configuration C0(BT3) applied to the same sequences as tech-
nique [94], offers in average the same encoding complexity reduction (∆T ≈ 33%) for
a BD-BR increase 0.12% higher in average. However, technique [94] is based on CNNs
to reduce the encoding complexity without specifying his implementation, whereas CNNs
are known to have high computational overhead. For C0(BT3), θ has values between 0.7%
and 1.8%, whereas θ for technique [94] has values between 1.7% and 4.2% according to the
sequence. θ is included in the encoding complexity reductions of of the proposed solution.
These overhead performance confirms the lightweight of our approach and highlights that
RF classifiers consume few computing resources, which is a key point to use this solution
in a real-time or embedded framework.

TABLE 4.6 also shows that configuration C0(BT1) achieves higher encoding complex-
ity reductions for all tested sequences compared to considered previous techniques, and
achieves in average 12% higher encoding complexity reduction compared to technique [95],
with tolerable BD-BR increase of 2.45% in average. Moreover, the fact that the proposed
solution is tunable offers more flexibility for concrete use-cases compared to previous tech-
niques that aim to reduce the complexity of QTBT partition scheme.

4.7.4 Performance Evaluation of the Proposed Solution in the VTM-5.0

The VTM-5.0 is the latest reference software for VVC standardization. Several new coding
tools have been added compared to the JEM-7.0 reference software. For instance, the
VTM-5.0 includes the MTT partitioning scheme, more complex than QTBT in JEM-7.0.
Thus, the proposed solution has also been implemented in the VTM-5.0 in order to verify
its performance. The following section first introduces the MTT partitioning scheme and
second presents the results of the proposed solution integrated in the VTM-5.0.

The MTT partitioning scheme is an extension to QTBT that enables Ternary Tree (TT)
partition modes, including Ternary Tree Horizontal (TTH) partition mode and Ternary
Tree Vertical (TTV) partition mode. When TT partition modes are used, the CU is
divided either horizontally or vertically into three blocks and the size of the middle block
is half the size of the CU, as shown in Figure 4.13. The MTdepth parameter defines the
maximum number of successive BT or TT partitions allowed for the encoding of a CTU.

TTH TTV

Figure 4.13 – Additional partition modes in MTT partition scheme.
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The proposed solution has originally been designed for complexity reduction of QTBT
partitioning scheme. MTT partitioning scheme is more complex than QTBT partitioning
scheme, as it enables two additional partition modes. In order to adapt the proposed
solution to MTT partitioning scheme, horizontal partition modes including TTH and BTH,
and vertical partition modes including TTV and BTV, are both grouped as outputs of the
BH-BV classifier, as shown in Figure 4.14. The same classifier BH-BV is used to classify
both BT and TT partition modes in the VTM-5.0. This choice is supported by the fact
that partition modes TTH and BTH, as well as partition modes TTV and BTV, generate
partitions with the same directions.

BTV

BTH classifier
BH-BV

RDO process

Input Data
Decision

Features BH-BV

Figure 4.14 – Outputs modification of BH-BV classifier in VTM-5.0.
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Figure 4.15 – Average BD-BR and ∆T for optimal CRCs and exhaustive RDO with different
BTdepth. CRCs adopted in proposed solution are circled in black. All results averaged across 18
test sequences and 4 QP values.

The same features selected in Section 4.4.2 are used as an input of the RF classifiers.
Moreover, CRC assessed under the VTM-5.0 are selected with the same process described
in Section 4.6.4.

Instead of applying the CRCs with different values of BTdepth as in JEM-7.0, the
CRCs are applied with different values of MTdepth in the VTM-5.0. The performance
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of the CRCs in term of BD-BR and ∆T is illustrated in Figure 4.15. The BD-BR and
∆T for exhaustive RDO process with different MTdepth values, are also displayed in red.
In Figure 4.15, the blue stars correspond to CRCs with MTdepth = 3, while the yellow
crosses and green hexagons correspond to CRCs with reduced values MTdepth = 2 and
MTdepth = 1, respectively.

Figure 4.15 shows that for a similar ∆T complexity reduction, the proposed solution
offers a BD-BR value 1.0% lower compared to exhaustive RDO process with MTdepth = 1.
This result confirms that our approach is relevant compared to the most straightforward
complexity reduction technique, that allows exhaustive RDO process with reduced values
of MTdepth.

The 7 CRCs circled in black in Figure 4.12 are adopted in the proposed solution. As for
the JEM-7.0 in Section 4.7.2, the CRC inducing a BD-BR increase superior than 3% are
not adopted in the proposed solution since they do not offer a relevant trade-off between
∆T and BD-BR. TABLE 4.7 summarizes the average BD-BR, ∆T and θ of the CRCs
adopted in the proposed solution. TABLE 4.7 shows that the complexity reductions vary
from 25% to 61% in average for 0.4% to 2.2% BD-BR increase. Moreover, the RF inference
overhead θ is below 0.7% for all the CRCs, which confirms the lightweight overhead of our
approach.

Table 4.7 – Average BD-BR, ∆T and complexity overhead θ of the CRCs adopted in the proposed
solution for VTM-5.0.

Proposed Solution in the VTM-5.0

Adopted CRC BD-BR (%) ∆T (%) θ (%)

MTdepth = 3

C0 0.43 25.5 0.6
C1 0.61 30.1 0.6
C2 0.75 33.4 0.6
C3 0.97 38.6 0.5

C0 1.32 50.7 0.3
MTdepth = 2 C1 1.67 56.3 0.3

C2 2.22 61.5 0.3

TABLE 4.8 shows the BD-BR, ∆T and θ of CRCs C1(MT3) and C0(MT2) of the
proposed solution under the VTM-5.0, according to the test sequence. We can notice
that the scores given in TABLE 4.8 differ slightly according to the test sequence. For
instance, the lowest resolution sequences (class D), including RaceHorsesD, BQSquare and
BlowingBubbles, achieves in average 54.6% ∆T for C2(MT2) configuration. The ∆T values
of class D sequences are in average 7% lower compared to the average ∆T value of all
test sequences for C2(MT2). Indeed, the lowest resolution sequences tend to have a finer
grained partitioning, which offers less complexity reduction opportunities compared to
higher resolution sequences.

In conclusion, this section has shown that it is possible to apply the proposed solution
in the VTM-5.0. The performance under the VTM-5.0 prove that the proposed solution is
scalable to two different encoders and does not over-fit the JEM-7.0 encoding characteris-
tics. The good performance achieved under VTM-5.0, the latest reference software of VVC
standard, also attests the reliability of the proposed solution for future encoders, compliant
with VVC standard. Finally, to the best of our knowledge, this contribution is the first to
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Table 4.8 – BD-BR, ∆T and complexity overhead θ of CRCs C1(MT3) and C2(MT2) of the
proposed solution in the VTM-5.0, according to the test sequence.

Proposed Solution Proposed Solution
CRC C1(MT3) CRC C0(MT2)

Sequence name BD-BR
(in %)

∆T
(in %)

θ
(in %)

BD-BR
(in %)

∆T
(in %)

θ
(in %)

Campfire 0.95 29.3 0.4 3.06 65.1 0.2
ParkRunning3 0.46 30.9 0.4 1.91 62.9 0.2
ToddlerFountain 0.74 23.2 0.4 1.95 64.2 0.2

PeopleOnStreet 0.72 25.6 0.6 3.13 62.2 0.2
SteamLocomotive 0.92 44.9 0.4 1.71 69.5 0.2
NebutaFestival 0.25 36.3 0.5 0.83 75.8 0.2

Cactus 1.00 36.7 0.5 2.45 64.5 0.2
RitualDance 0.93 27.5 0.5 3.26 61.5 0.2
Kimono 1.16 33.7 0.5 2.74 64.7 0.2
ParkScene 0.29 30.3 0.6 1.93 59.2 0.3

RaceHorsesC 0.35 26.9 0.6 2.77 64.1 0.2
PartyScene 0.42 19.6 0.8 2.05 58.0 0.3
BasketballDrill 1.00 29.9 0.7 2.96 62.8 0.3

RaceHorsesD 0.17 26.6 0.7 2.19 57.1 0.4
BQSquare 0.16 26.2 1.0 1.55 49.1 0.6
BlowingBubbles 0.54 31.3 0.8 1.79 57.7 0.5

FourPeople 0.46 31.6 0.7 1.90 55.6 0.5
KristenAndSara 0.53 30.5 0.6 1.74 54.3 0.4

Average 0.61 30.1 0.6 2.22 61.5 0.3

propose a complexity reduction technique for the VTM reference software in Inter coding
configuration.

4.8 Conclusion

In this Chapter, a tunable ML solution based on RF classifiers to speed up the QTBT
partitioning scheme in RA configuration is proposed. Three binary RF classifiers are
trained off-line in order to ignore expensive exploration of the partition modes classified as
unlikely. By varying the size of risk intervals for classification decision, tunable complexity
reduction is achieved, offering an average encoding complexity reduction varying from 30%
and 70% for an average BD-BR increase between 0.7% and 3.0% in the JEM-7.0, with very
low overhead.

The proposed solution as also been implemented in the JVET software post JEM,
named VTM. To this end, the proposed solution as been extended to the new TT partition
modes included in the VTM partition scheme. In VTM-5.0 software, encoding complexity
reductions vary from 25% to 61% in average for only 0.4% to 2.2% BD-BR increase.
Tunable encoding complexity reduction being the first step for encoding time control,
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future works will investigate the possible modification in the proposed solution in order to
achieve encoding time control.



CHAPTER 5

Efficient Parallel Encoding through Dynamic Tiles and
Rectangular-Slices

5.1 Introduction

In order to reduce the energy consumption and processing time of Versatile Video Coding
(VVC) encoder, the second lever employed in this thesis is the parallel processing. Parallel
processing techniques exploit multi-core architectures in order to distribute the complexity
to several actors. Techniques for parallel video coding essentially operate at three levels of
parallelism: data level, frame level and high-level. The data level parallelism techniques are
applied on elementary operations, and no encoding quality is lost compared to sequential
encoding, i.e. encoding with a single thread. They include among other techniques relying
on Single Instruction on Multiple Data (SIMD) architectures [69]. Frame level and high-
level parallelism operate at thread level. The frame level techniques encode a group of
frames in parallel where each frame is entirely processed by a single thread [68]. The
encoding time of a single frame is not reduced with frame level techniques, i.e. the latency
is not reduced. In high-level parallelism techniques, several threads operate on continuous
regions of the same frame. These techniques improve equally both speed-up and latency,
and are the focus of this Chapter.

For high-level parallelism, both High Efficiency Video Coding (HEVC) and VVC in-
clude high-level partitioning of the frame into tiles or slices [101] that allow to process
simultaneously large regions of a frame with independent threads. Tiles are rectangular
regions of the frame independently encodable, following a grid shaped partition. The stan-
dards allow to further partition the tile grid into an horizontal sub-grid of Rectangular
Slices (RSs), increasing the partitioning flexibility. The partitioning combining tiles and
RSs is called Tile and Rectangular Slice (TRS) partitioning in this Chapter and described
with details in Section 5.2.1. The partitioning of a frame into TRSs raises two distinct
optimization issues: on one side the multi-thread encoding time minimization (or speedup
maximization), on the other side the minimization of encoding quality loss caused by the
partitioning. This encoding quality loss is the consequence of prediction dependencies dis-
abling across RSs boundaries and of the entropy coding state reinitialization for each RS
In the literature, both issues have been addressed for HEVC tile partitioning. However,
the related works on HEVC tile partitioning only address independently minimization of
encoding time and encoding quality loss.
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In this work, we take advantage of the increased flexibility offered by the RSs in VVC,
in order to propose a dynamic TRS partitioning solution under VVC Test Model (VTM)-
6.2 software. The TRS partitioning is adjusted at the frame level, taking into account
both spatial content and encoding times of previously encoded frames. The proposed so-
lution addresses as a trade-off the multi-thread encoding time and encoding quality loss
minimization. Experiments prove that the proposed solution decreases significantly multi-
thread encoding time, with slightly better encoding quality, compared to uniform TRS
partitioning. Moreover, to the best of our knowledge, this is the first work that imple-
ments a multi-thread VVC reference encoder, generating baseline results for future related
works. Since Random Access (RA) coding configurations is the most computational com-
plex coding configuration for the encoder (see Section 2.5.9.4), it is also the configuration
studied in this work.

The rest of this Chapter is organized as follows. The Section 5.2 describes the TRS
partitioning in VVC standard and provides an overview of the related works on HEVC tile
partitioning. Section 5.3 describes the proposed solution, which establishes the trade-off
between encoding time and encoding quality. Section 5.4 presents the experimental results
on VTM-6.2 in RA configuration. Finally, Section 5.5 concludes this Chapter.

5.2 State of the Art

This Section first describes the operating principle of TRS partitioning in VVC standard.
It further provides an overview of the related works. These works only provide results on
HEVC tile grid partitioning, since this is the first work that implements a multi-thread
VVC reference encoder.

5.2.1 Overview of Tiles and Slices in VVC standard

As mentioned in Section 5.1, in high-level parallelism techniques several threads operate on
continuous regions of the same frame. They include among others tile and slice partitioning
tools enabled in VVC and presented in this section.

5.2.1.1 Tiles

0 1

2

CTUTile

3

CABAC Reinit.

CABAC Reinit.

CABAC Reinit.

Figure 5.1 – Illustration of tile partitioning: grid of 4 tiles labeled from 0 to 3.
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Tiles are rectangular regions of the frame, independently encodable and decodable, al-
lowing several threads to process simultaneously the same frame. By enabling independent
processing of frame regions, prediction dependencies across boundaries are broken and en-
tropy encoding state is reinitialized for each region. These restrictions lead to an encoding
quality loss compared to the encoding of the non-partitioned sequence. The encoding qual-
ity decreases with the number of independent regions of the frame, as has been measured
in HEVC by Chin et al. [102]. In HEVC and VVC standard, only grid shaped tile parti-
tioning is allowed, as shown by Figure 5.1. The tiles are delimited by the continuous black
lines and the dashed lines correspond to the Coding Tree Unit (CTU) delimitation. The
tile partitioning forms a 2x2 grid and tiles are labeled from 0 to 3.

5.2.1.2 Slices

A

C

CTUTile
Rectangular
Slice

B

0

Figure 5.2 – Particular case of RS partitioning with only 1 Tile.

Initially, slices have been introduced to divide a bit-stream into smaller independently
decodable parts for transmission. The network characteristics generally define the maxi-
mum size of the slice bit-stream. Among other criteria, the maximum transmission unit
size of the considered network is often selected as a upper bound for the size of slice bit-
stream. Slices are not only useful for packetization of the bitstream, it is possible to use
them for parallelization of the encoding process. Indeed, the slices are also independently
encodable, allowing several threads to process simultaneously the same frame. In the case
presented in Figure 5.2 where the tile partitioning is composed of a single tile, the slices
allow to partition the frame into an horizontal grid. In the rest of this work, the paral-
lelism offered by the combination of several tiles and slices is studied and is presented in
Figure 5.3.

Figure 5.3 shows the various combinations of tiles and slices enabled in VVC, based on
the same 2x2 tile grid presented in Figure 5.1. The slices are delimited by the continuous
red lines and are labeled with letters. Two modes of slices are supported, namely the raster-
scan slice mode and the Rectangular Slice (RS) mode. Both slice modes are presented in
Figure 5.3. In the raster-scan slice mode, a slice contains a sequence of complete consecutive
tiles in a Raster-scan order of the picture. The slice B in Figure 5.3a for instance, contains
consecutive tiles in Raster-scan order #1, #2 and #3. In the RS mode, the slice must form
a rectangular region of the frame as the name suggests. The slices A and B in Figure 5.3b
are an example of RSs containing one or several complete tiles. Moreover, as shown in
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A B
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3

(a) Raster-scan slices labeled from A to B.
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CTUTile
Rectangular
Slice

D

0

2

1

3

(b) Rectangular Slices labeled from A to D.

Figure 5.3 – Difference between Rectangular and Raster-scan slices in VVC.

the examples C and D, a RS may be a rectangular sub-region of the tile, composed of
a number of complete and consecutive CTU rows of a tile. In this latter case, the new
concept of RS allows to further partition the tile grid into a horizontal sub-grid.

5.2.1.3 Combination of Tiles and Rectangular Slices

In this Chapter, the partitioning combining tiles and RSs is called TRS partitioning. It is
illustrated by the Figure 5.3b previously described. As mentioned, the RSs C and D are
rectangular sub-regions of the tile #2. In this case, the RSs allow to further partition the
tile grid into a horizontal sub-grid of RSs, increasing greatly the TRS partitioning flexibility
compared to tile grid partitioning. In the literature, the possibility to further partition the
tile grid is a sub-grid of slices has not yet been studied. This work aims to take advantage
of the TRS partitioning flexibility, in order to propose a high-level parallelism solution
adjustable to sequences spatial and temporal content.
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5.2.2 Related Works on HEVC tile partitioning

The partitioning of a frame into tiles and RSs raises two distinct optimization issues: on
one side the multi-thread encoding time minimization (or speedup maximization), on the
other side the minimization of encoding quality loss caused by the partitioning. In the
literature, both issues have been addressed for HEVC tile partitioning.

5.2.2.1 Encoding Time Minimization

The multi-thread encoding time minimization is investigated by Storch et al [103] and
Koziri et al. [104]. They observe that the encoding time does not vary significantly from
a CTU to the co-located CTU in the closest temporal frame. Considering this temporal
stability, the authors use the encoding times of previous frames to determine the tile
partitioning that minimizes the multi-thread encoding time. In [105], the time estimator
for each CTU is computed based on previously encoded frame CTU statistics (number
of Skip, Inter, Intra blocks for instance). Papdopoulos et al [106] propose a per-frame
balancing of core workload given a number of tiles T and a number of available cores C.
A thread scheduling problem is solved when T > C. However, they do not consider the
possibility to decrease T depending on available cores C.

5.2.2.2 Encoding Quality Loss Minimization

Authors in [107] minimize the encoding quality loss induced by the tile partitioning. This
work considers On-Chip memory limitations to establish a constraint on tile dimensions.
Under the established constraint on tile dimensions, the tile boundaries are determined
dynamically for each frame in order to minimize the sum of square errors of luminance
samples within the tiles. The technique proposed in [108] focuses on the particular case of
variable number of available cores. The encoding loss is lowered in some cases by setting
a number of tiles inferior to the number of available cores. Authors in [109] minimize the
encoding quality loss induced by the tile partitioning of Intra frames by analyzing the CTU
variance map of the encoded frame. The proposed tile partitioning results in unbalanced
work-load for a single frame. Authors observe that in All Intra (AI) configuration, this
problem is solved by properly scheduling tiles between distinct frames. In [110], the maxi-
mum tile size that enables real time HEVC encoding in Intra configuration is determined,
relying on sequence resolution, sequence frame rate, Quantization Parameter (QP) value
and CPU frequency. The tile boundaries are then determined based on the sequence spatial
characteristics, in order to reduce quality loss. The tiles encoding are finally distributed to
the minimal number of cores, in order to reduce encoding power consumption. However,
the related works on HEVC tile partitioning only address independently minimization of
encoding time and encoding quality loss, which is not the case of the proposed solution.

5.3 Proposed Dynamic TRS Partitioning for VVC Standard

This section describes the proposed TRS partitioning solution for VVC encoder. The
proposed solution addresses as a trade-off the minimization multi-thread encoding time
and encoding quality loss.

5.3.1 Encoding Time Minimization

Let P be the partitioning of current frame into n RSs: P = {s0, ..., sn−1}. In the follow-
ing, T (P ) is the encoding time of current frame partitioned with P , and simultaneously
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processed by N threads in parallel (each thread entirely dedicated to encode a single RS).
In this case, T (P ) is equal to the time required by the slowest thread to encode his RS.
Eq. 5.1 formally establishes T (P ), with T (ci) the encoding time of CTU ci belonging to
the RS sj , and T (sj) the encoding time of sj .

T (sj) =
∑
ci∈sj

T (ci),

T (P ) = max
sj∈P

(T (sj)).
(5.1)

Eq. 5.1 shows that T (P ) is directly determined by the CTU encoding times T (ci).
However, during the TRS partitioning stage, these values are not available, since the TRS
partitioning stage takes place before the encoding of current frame. In order to overcome
this lack of information, the values T (ci) are replaced during the TRS partitioning stage
by estimated valuess noted T̃ (ci). The Rate Distorsion Optimization (RDO) process pre-
sented in Section 2.3 and implemented in the VTM generates considerable disparities in
CTU encoding times. For instance, a factor 5 between the minimum and maximum CTU
encoding times in a frame is observed in the 32 first frames of High Definition (HD) se-
quence BasketballDrive QP27. This disparity makes the search for a time estimator both
crucial and challenging. Several related works [103, 104] define T̃ (ci) as the encoding time
of the co-located CTU (located at the same spatial coordinates) in the closest temporal
frame previously encoded. This choice is motivated by the temporal continuity of the video
sequences content.
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Closest Frame Previously Encoded
Co-TL Frame

Figure 5.4 – Difference between closest frame previously encoded and co-TL frame.

Let the co-Temporal Layer (TL) frame refer to the previously encoded frame belonging
to same temporal layer. Figure 5.4 illustrates the difference between the closest frame
previously encoded and the co-TL frame, in the classical group of picture structure defined
in the Common Test Conditions (CTC) [73]. For instance, during the encoding of frame
#6, the CTU times are available for both frames #4 and #2. Frame #4 is temporally
closer to frame #6 compared to frame #2. However due to the shared coding parameters
of frames at similar TL, authors in [111] have shown that T (ci) is more correlated with the
times of the co-located CTU in co-TL frame (frame #2), compared to the co-located CTU
of the closest temporal frame (frame #6).
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The following experiment corroborates the observations of paper [111]. Let us define
for a given CTU ci the error εT̃ of a time estimator as:

εT̃ (ci) =
|T (ci)− T̃ (ci)|

T (ci)
(5.2)

with T (ci) the real execution time and T̃ (ci) the estimated time. The average value for
εT̃ is computed across the 32 first frames of HD sequence BasketballDrive at QP27. The
results are shown in TABLE 5.1 according to the time estimator and the TL. The error εT̃
is in average 6% lower for Co-TL time estimator. This result confirms that Co-TL time
estimator is more efficient compared to Closest Frame time estimator. TABLE 5.1 also
shows that the higher the TL, the lower εT̃ for both time estimators. This is explained by
a lower temporal distance between frames belonging to higher TL, as shown by Figure 5.4.
For instance, the estimator results for TL#1 are particularly high in TABLE 5.1. Since
TL#1 only includes frame #8 in the Group of Pictures (GOP), the closest temporal frame
previously encoded from frame #8 is frame #0. The CTUs content is very likely to have
changed between these frames, inducing a high value εT̃ = 69.3%. The closest Co-TL frame
from frame #8 is the frame #8 in previous GOP. For the Co-TL time estimator also, this
high temporal distance is the cause for the value εT̃ = 63.1%.

Table 5.1 – Average εT̃ value (in %), computed on 32 first frames of HD sequence BasketballDrive,
according to the time estimator and the TL

Time Estimator T̃

Temporal Layer Closest Frame
εT̃ (%)

Co-TL Frame
εT̃ (%)

TL #0 31.9 31.9
TL #1 69.3 63.1
TL #2 39.0 32.4
TL #3 36.6 27.3
TL #4 24.7 19.1

Average 40.3 34.6

Following these results, the selected estimator T̃ (ci) is defined as the encoding time of
the co-located CTU in the co-TL frame. The encoding time minimization technique consists
in the search of a TRS partitioning P that minimizes the estimated T̃ (P ), computed with
T̃ (ci) values as an input.

5.3.2 Limitation of Encoding Quality Losses

As mentioned in Section 5.2, prediction dependencies across RSs boundaries are disabled
and entropy coding state is reinitialized at each RS. In order to limit the encoding quality
loss induced by these restrictions, the optimal TRS partitioning P ∗ gathers similar spatial
information inside the same RSs. This corresponds to a clustering problem [112] of the
spatial information into the RSs, further called RS clustering. Since RSs with similar
spatial information tend to have low luminance variances, the RS clustering searches the
TRS partitioning P ∗ that minimizes the sum of luminance variance on all RSs. Eq. 5.3
computes the partitioning P ∗ where pi is the value of luminance samples, and µj is the
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Figure 5.5 – TRS partitioning of BQTerrace frame #4, computed with slice clustering.

mean of RS sj luminance samples.

P ∗ = argmin
P

∑
sj∈P

∑
pi∈sj

(pi − µj)2

 . (5.3)

Figure 5.5 shows the 8 RSs partitioning, obtained by solving Eq. 5.3 for frame #4 of
sequence BQTerrace. In Figure 5.5, regions of the frame with similar spatial information
tend to be clustered into the same RSs. The dark water of the river is almost entirely
contained in RSs 6 and 7, and the light homogeneous regions of the frame are mainly
included in RSs 0, 3 and 5. On the other hand, the RSs 1, 2 and 4 contain the regions
with more complex spatial information.

5.3.3 Two Steps Slice Partitioning Search

Step 2: RS Clustering

TRS Partitioning Stage

 Fcur

Luma

 FcurFactor γ   

Processing Fcur

Step 3: Parallel Encoding
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Figure 5.6 – Proposed solution flowchart.

The TRS partitioning in Figure 5.5 gathers similar spatial information inside the same
RSs, but is far from optimal regarding the encoding time minimization. For instance,
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the encoding at QP = 27 of RS #1 is 12 times slower compared to the encoding of
RS #3, due among others to the greater area and spatial complexity of RS #1 compared
to RS #3. The encoding time of the considered frame is therefore sub-optimal due to the
high encoding time of RS #1. In order to reduce such imbalances between RSs encoding
times, the proposed solution combines the RS clustering (Section 5.3.2) with the encoding
time minimization technique (Section 5.3.1).

The proposed solution is represented as a flowchart in Figure 5.6. The TRS partitioning
stage, enclosed in the blue dashed box, is applied prior to the parallel encoding of current
frame Fcur, enclosed in the red dashed box. The TRS partitioning stage is divided into 2
distinct steps. The first step is called encoding time minimization step. This step computes
the minimum estimated encoding time, defined by Equation 5.4 and noted T̃min.

T̃min = min
P

(T̃ (P )) (5.4)

The encoding time minimization step takes the CTU times of the co-TL frame FTL as input.

The second step of the TRS partitioning stage computes the RS clustering of Fcur,
under encoding time constraint. This step takes as inputs T̃min estimated during previous
step, the luminance samples of Fcur, and a relaxation factor γ that manages the trade-off
between encoding time and encoding quality. The possible values for T̃ (P ) are determined
by Eq. 5.5.

P ∗ = argmin
P

∑
sj∈P

∑
pi∈sj

(pi − µj)2

 ,
T̃ (P ) ≤ (1 + γ)T̃min.

(5.5)

When γ = 0, only the partitioning P that minimizes the estimated time is considered, since
T̃ (P ) = T̃min. When γ increases, more partitioning opportunities are offered to the RS
clustering, and therefore higher weight is given to encoding quality compared to encoding
time minimization. The parameter γ is therefore a means for the encoder to manage the
trade-off, according to the requirement.

The aim of this Chapter is to show the relevance of a solution combining the 2 comple-
mentary steps previously presented. For this reason, a near exhaustive search is conducted
to compute both T̃min and RS clustering. As shown in Figure 5.6, the only constraint given
to the search algorithm:

kAmin(P ) > Amax(P ),

with Amin and Amax the area of the smallest and the largest RSs, respectively. The
constant k is set to 4 in this work in order to contain search complexity. The choice of less
complex heuristics for the TRS partitioning stage is a distinct issue, that will be part of
future works. The global complexity overhead induced by the TRS partitioning stage is
nonetheless measured and discussed further in this Chapter.

5.4 Experimental Results

This section presents the experimental setup, as well as the performance of the proposed
TRS partitioning solution.
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5.4.1 Experimental Setup

The following experiments are conducted under VTM-6.2 software, built with gcc compiler
version 7.4.0, under Linux version 4.15.0-74-generic as distributed in Ubuntu-18.04.1. The
platform setup is composed of Central Processing Units (CPUs) Intel(R) Xeon(R) E5-2690
v3 clocked at 2.60 GHz, each of them disposing of 12 cores. The cores have each 768KB
L1 cache, 3MB L2 cache and 30MB L3 cache.

The high-level parallelism structures included in VVC standard allow to tackle com-
plexity increase on multi-core processors. This complexity increase raises a critical issue
mainly for high resolution video sequences. For this reason, the test sequences selected
in this work contain 4 Ultra High Definition (UHD) and 5 HD sequences included in the
CTC [73]: CatRobot1, DaylightRoad2, FoodMarket4, Tango2 (UHD), and BQTerrace, Cac-
tus, MarketPlace, RitualDance (HD). The test sequences are encoded under RA configura-
tion at four QP values: 22, 27, 32, 37. The performance of our TRS partitioning solution
is assessed by measuring the trade-off between the encoding quality using the Bjøntegaard
Delta BitRate (BD-BR) [13] and the multi-thread speed-up ξ, defined by Eq. 5.6.

ξ =
1

4

∑
QPi∈{22,27,32,37}

TA(QP i)

TR(QP i)
(5.6)

TA(QP i) and TR(QP i) are the anchor time (encoded with 1 RS and 1 single thread) and
reduced time (encoded with N RSs and N threads) spent to encode the video sequence
with QP i, respectively. The overhead induced by TRS partitioning stage is further noted
θ and measured in percentage of TR.

5.4.2 Performance of the Proposed Solution

The theoretical upper bound in terms of speed-up, noted ξmax, for the proposed solution is
computed with the Amdahl law [113]. Let s be the sequential part (in %) of an application.
The upper bound ξmax obtainable with n threads is expressed by Eq. 5.7.

ξmax(n) =
1

s+ 1−s
n

(5.7)

In our case, the sequential portion of VTM-6.2 encoder contains the data initialization,
entropy, in-loop filter and bitstream writing stages. All together, these stages represent 4%
of the encoding time in average across test sequences and QP values. Therefore, Eq. 5.7
provides the following upper bounds: ξmax(4) = 3.57ξmax(4) = 3.57ξmax(4) = 3.57, ξmax(8) = 6.25ξmax(8) = 6.25ξmax(8) = 6.25 and ξmax(12) = 8.33ξmax(12) = 8.33ξmax(12) = 8.33.

Figure 5.7 shows the BD-BR and Speed-up offered by the proposed solution, according
to the number of threads and sequence resolution. In order to evaluate the performance of
the proposed solution, the results of the uniform TRS partitioning are also displayed and
surrounded by the black boxes. The uniform TRS partitioning is an usual and straightfor-
ward technique that partitions the frame in a grid of the same RS dimension. As mentioned
in Section 5.3.3, the relaxation factor γ manages the trade-off between encoding quality
and encoding time minimization induced by the proposed TRS partitioning. Four values
of γ are tested and displayed in Figure 5.7. From left to right on the subplots: γ = ∞,
γ = 0.3, γ = 0.1 and γ = 0. Finally, the upper bounds ξmax provided by Amdahl law
are represented by the red vertical lines. In Figure 5.7, the points further down to the
right offer the best performance, since they maximize the speed-up ξ while minimizing the
BD-BR increase.

The proposed solution offers various trade-offs depending on the γ value, for all reso-
lutions and number of threads. The curves of the proposed solution are all growing, i.e. a
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Figure 5.7 – BD-BR and Speed-up offered by uniform and proposed solution, according to the
number of threads. From left to right on each subplot: γ =∞, γ = 0.3, γ = 0.1 and γ = 0.

higher ξ is coupled with a higher BD-BR. This behavior is coherent with the explanations
of Section 5.3.3. When γ decreases, more importance is given to the speed-up with regard
to RS clustering (i.e encoding quality). Two exceptions are however noticeable on the
curves of UHD content with 4 threads and of HD content with 12 threads, respectively.
These exceptions show that in some corner cases a higher flexibility given to the RS clus-
tering leads to a higher BD-BR, which is not the expected behavior. In conclusion, the RS
clustering presented in Section 5.3.2 is highly but not perfectly correlated with the BD-BR.

The results obtained by the uniform TRS partitioning are surrounded by the black boxes
in Figure 5.7. The proposed TRS partitioning solution applied with γ ∈ {0, 0.1, 0.3} reduces
significantly the distance to the upper bounds ξmax, compared to uniform TRS partitioning.
In order to provide a more accurate comparison with uniform TRS partitioning, the points
offering the best trade-off between ξ and BD-BR are surrounded with a black circle in
Figure 5.7, according to the resolution and number of threads. TABLE 5.2 presents the
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Table 5.2 – Average speed-up ξ, BD-BR and overhead θ obtained by both uniform and proposed
TRS partitioning, according to the resolution and number of threads n.

HD UHD

Unif Proposed Unif Proposed

γ = 0 γ = 0

BD-BR (%) 1.62 1.57 1.31 1.27
n = 4 Speed-up ξ 2.68 3.10 2.91 3.27

θ(%) 0.0 0.0

γ = 0.3 γ = 0.1

BD-BR (%) 2.69 2.80 2.39 2.33
n = 8 Speed-up ξ 4.27 5.07 4.55 5.34

θ(%) 0.01 0.08

γ = 0.1 γ = 0.1

BD-BR (%) 4.31 3.90 3.26 3.20
n = 12 Speed-up ξ 5.57 6.44 6.13 7.09

θ(%) 0.54 1.84

average results obtained with these selected points compared to uniform TRS partitioning,
according to the resolution and number of threads n.

TABLE 5.2 shows that the proposed TRS partitioning solution enables better results
compared to uniform TRS partitioning in term of ξ, regardless the resolution and number of
threads n. The TRS partitioning solution obtains ξ values 0.36 and 0.94 higher compared
to uniform partitioning, for UHD content with n = 4 and n = 12, respectively. This
significant ξ increase proves the efficiency of the encoding time minimization step, presented
in Section 5.3.1. It is important to note that the encoding time of every frame is reduced.
Therefore both speed-up and latency are improved equally by the proposed solution.

In term of BD-BR, the results of the proposed solution with the selected γ values are
slightly better (around −0.05%) compared to uniform TRS partitioning. Two exceptions
are however noticeable. The BD-BR decrease is substantial (−0.41%) for HD content with
n = 12, and the only case for which the BD-BR is slightly higher is for HD content with
n = 8 (+0.11%). The related works in HEVC minimizing the BD-BR reported 0.16% [109]
and 0.10% [111] average BD-BR decrease with 8 threads on HD and UHD content. Our
results in term of BD-BR are therefore close to the results of previously mentioned works,
even though these works minimize the BD-BR without taking into consideration the speed-
up optimization.

The conclusion of TABLE 5.2 is that the proposed solution is highly effective to improve
the speed-up offered by the TRS partitioning in VVC compared to uniform RS partition-
ing. Moreover, the BD-BR results are slightly better than uniform RS partitioning. The
variation of γ value is however not sufficient to decrease significantly the BD-BR, except
for HD content with n = 12. Regarding the overhead θ, the values are half induced by
the encoding time minimization step, and half by the encoding quality loss limitation step.
The values are negligible when n = 4 and n = 8. For n = 12, θ is greater than 0.5% due to
the almost exhaustive search implemented (see Section 5.3.3). This overhead is relatively
high considering the high complexity of the VTM. Nevertheless it allows to obtain optimal
performance and prove the viability of our approach. For professional or real time applica-
tion, we are confident that the investigation of simple heuristics in future works will reduce



5.4. Experimental Results 87

greatly θ, without degrading the results presented in TABLE 5.2.

5.4.3 Impact of relaxation factor γ

Table 5.3 – Proposed solution with γ = 0 and γ = 0.1, encoded with 8 threads, according to
sequence.

8 Threads

Proposed Solution Proposed Solution
γ = 0γ = 0γ = 0 γ = 0.1γ = 0.1γ = 0.1

Sequence BD-BR
(in %) ξ

BD-BR
(in %) ξ

CatRobot1 1.38 5.24 1.14 5.19
DaylightRoad 1.82 5.79 1.70 5.70
FoodMarket 4.09 5.16 3.85 5.10
Tango2 2.67 5.54 2.61 5.40

BasketballDrive 3.27 5.13 3.23 5.08
BQTerrace 2.29 4.95 2.17 4.82
Cactus 2.33 4.87 2.17 4.85
MarketPlace 3.52 5.13 3.48 5.06
RitualDance 3.25 4.76 3.28 4.75

Average 2.74 5.17 2.62 5.10

TABLE 5.3 shows the performance of the proposed solution with γ = 0 and γ = 0.1
running with 8 threads, according to the test sequence. As explained in Section 5.3.3, the
higher γ, the more importance is given to encoding quality with regard to the speed-up.
The results of TABLE 5.3 are coherent with this explanation. Indeed, for almost every
sequence the proposed solution with γ = 0.1 enables better BD-BR but lower ξ compared
to the proposed solution with γ = 0. The only exception is sequence RitualDance, for which
the BD-BR is not improved with γ = 0.1. In average, the BD-BR is 0.12% better when
selecting γ = 0.1, without degrading significantly ξ (-0.07). The results are particularly
noticeable for sequence FoodMarket. For this sequence, the BD-BR is 0.24% better and ξ
only decreases by 0.06% when selecting γ = 0.1, compared to the proposed solution with
γ = 0.

Figure 5.8 provides 3 examples of the proposed TRS partitioning solution applied to
BQTerrace frame #9, according to γ value (γ = 0, γ = 0.1 and γ = ∞). With γ = 0,
the TRS partitioning in Figure 5.8a only focuses on minimizing the encoding time. To
that end, the areas of the RSs are almost evenly balanced. The RSs #2 and #3 (detailed
regions) are slightly smaller compared to RSs #0, #4 or #7 (homogeneous regions), since
more detailed regions induce higher encoding time. However, the encoding quality loss
limitation is not taken into account in Figure 5.8a. The regions of the frame with similar
spatial information are not necessarily clustered into the same RSs. For instance, the
RSs #6 and #7 contain simultaneously the dark water of the river and the edge of the
terrace. The RSs #0 is composed part of the homogeneous white roof, and part of the
people on the terrace.
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Figure 5.8 – Proposed TRS partitioning of BQTerrace frame #9, according to the γ value.

With γ =∞, the TRS partitioning in Figure 5.8c limits encoding quality loss by gather-
ing similar spatial information inside the same RSs, as explained in Section 5.3.2. However,
the TRS partitioning is far from optimal regarding the encoding time minimization. The
encoding time of RS #1 is considerably higher compared to RSs #3 and #7, due among
others to the greater area and spatial details in RS #1.

The TRS partitioning in Figure 5.8b, obtained with γ = 0.1, offers a trade-off between
γ = 0 and γ =∞. In order to limit encoding quality loss, the white roof is almost entirely
contained in RS #0 and the details of the terrace are mainly assigned to RS #1. Moreover,
in order to minimize the encoding time, the areas of the regions assigned to the RSs are
way more balanced compared to Figure 5.8c. Indeed, the tile with the highest encoding
time (RS #1) is 1.5 times smaller in Figure 5.8b compared to Figure 5.8c. The encoding
time will therefore be lower with γ = 0.1.

5.5 Conclusion

In this Chapter, a dynamic TRS partitioning technique is proposed for next generation
video standard VVC. The proposed solution combines two techniques to minimize multi-
thread encoding time and encoding quality loss, respectively. A relaxation factor γ is
applied, allowing to select a trade-off between encoding time and encoding quality. The
experiments show that the proposed solution decreases significantly multi-thread encoding
time, with slightly better encoding quality, compared to uniform RS partitioning. Future
works will focus among other points on the improvement of the CTU time estimator, used
in the encoding time minimization step. Instead of simply relying on the co-located CTU
times of the co-TL frame, future solutions will rely on CTU deduced by motion information.
The investigation of lightweight heuristics for the TRS partitioning stage will also be part
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of future works. We are confident they will reduce drastically the overhead, especially for
12 threads encodings of UHD content.





CHAPTER 6

Parallel and Real-Time VVC Decoder in AI configuration

6.1 Introduction

In order to reach the bit-rate savings promised by the Versatile Video Coding (VVC)
standard over High Efficiency Video Coding (HEVC), computationally expensive tools
have been added also at decoder side, as explained in Chapter 3. At the decoder side, the
computational complexity increase of VVC standard is approximately 2 times compared
to HEVC in All Intra (AI) coding configurations [6]. As presented in Section 6.3, the
energy consumption and the processing time of the decoder are generally reduced through
parallel processing techniques. For the decoder proposed in this Chapter, different levels
of parallelism have been investigated to reduce the implementation cost.

In this Chapter, we propose a real-time and parallel VVC decoder in AI configuration
based on the open source openVVC project. The openVVC decoder is developed by the
VAADER team of IETR laboratory 1 in C programming language, and is integrated as
a dynamic library inside FFmpeg player [47]. The used version of the decoder is compli-
ant with VVC Test Model (VTM)-9.0 bitstreams, that are very close from the finalized
VVC standard. The decoder relies on data-level parallelism techniques (Single Instruction
on Multiple Data (SIMD) optimization) to reduce the decoding time of the most com-
putationally complex operations. The multiprocessor architectures are exploited through
tile-level or frame-level parallelism. In this chapter, the decoding frame-rate is evaluated
through the number of decoded frames per second, noted fps. It measures the speed in
term of decoding time of openVVC. By combining data-level parallelism with 8 threads
parallelism, openVVC in AI configuration achieves 100 fps and 30 fps frame-rates for High
Definition (HD) and Ultra High Definition (UHD) content, respectively. The main asset
of the proposed decoder lies in its very low memory usage. For instance, the sequential
decoding of HD and UHD content only requires 20MB and 70MB of memory, respectively.

The contributions of this work to openVVC software are the following. The implemen-
tation from scratch of Adaptive Loop Filter (ALF) and Sample Adaptive Offset (SAO)
filters. The design of filter buffers that minimize the memory usage of in-loop filtering
process. The consolidation of tile parallelism so that the software supports both dynamic
and uniform tile partitioning. With these pre-requisites, we reimplemented in VTM-9.0 the
dynamic tile partitioning solution proposed in Chapter 5 for VTM-6.2, in order to generate
bitstreams compatible with openVVC. The experimental results show that the decoding

1https://www.ietr.fr/spip.php?article1604

https://www.ietr.fr/spip.php?article1604
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frame-rates obtained with dynamic tiles are equivalent to the frame-rates obtained with
uniform tiles. It proves that the dynamic tile partitioning proposed in Chapter 5 is an
effective asset at encoder side, without being a burden for the decoding process.

The rest of the Chapter is organized as follows. Section 6.2 presents the general block
diagram of a VVC decoder and describes the main decoding stages. In Section 6.3, the
principal techniques used for the decoder parallelization are described along with the re-
lated works relying on these techniques. The proposed openVVC decoder is presented in
Section 6.4. The general code structure, the buffer sizes, the in-loop filtering process and
the parallelization are described. Section 6.5 presents the experimental setup, as well as the
performance in term of memory usage and frame-rate of the proposed openVVC decoder
in AI configuration. The results are presented first enabling frame-level parallelism and
second enabling tile-level parallelism. Finally, Section 6.6 concludes this chapter.

6.2 Overview of VVC Decoder
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Figure 6.1 – VVC decoder block diagram.

Figure 6.1 presents the general block diagram of a VVC decoder. The decoding process
is based on the classical hybrid scheme, taking advantage of both intra/inter prediction and
transform coding. The decoder converts an input bitstream composed of binary symbols
(bits) into a decoded pictures. Each block in the diagram corresponds to one of the main
decoding stages. These decodig blocks are briefly decribed in this Section.

Entropy decoding The first decoding stage is the entropy decoding of the bitstream.
In VVC, the Context Adaptive Binary Arithmetic Coding (CABAC) is used as an entropy
engine [114]. During the entropy decoding stage, the CABAC reads the bitstream bit by
bit and converts the binary symbols into non-binary symbols. When a bit is read, the state
of the corresponding CABAC context is updated, allowing to read correctly the following
bit of this CABAC context. The entropy decoding provides the input data for all the other
main decoding stages.

Block Reconstruction At encoder side, the block partitioning scheme divides the frame
into appropriate block sizes according to the local activity of the pixels. At decoder side, the
block sizes are retrieved by the entropy decoder. Each block is reconstructed applying the
stages inside the red box in Figure 6.1 : prediction, reshaping, inverse residual quantization
and transform. The block is either intra or inter predicted (or both Intra and inter coded).
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When the block is intra predicted, the prediction requires the intra prediction mode, as well
as the previously reconstructed pixels of surrounding blocks. Motion Compensation (MC)
is performed by the inter prediction block for blocks coded in inter mode. It uses the motion
vectors information, as well as the content of the previously decoded pictures, contained
in the Decoded Picture Buffer (DPB). In both intra and inter prediction cases, a predicted
block is reconstructed. The inverse quantization and inverse transform decoding stages
compute the residual block from the residual transform coefficients. The residual block
reconstructed by inverse quantization and inverse transform is then added to the predicted
block of the prediction stages, forming the reconstructed block. The reconstructed blocks
are then processed by the in-loop filters, which aim to remove encoding artifacts and further
enhance the visual quality. In VVC, a new stage called the Luma Mapping with Chroma
Scaling (LMCS) has been introduced [40]. The LMCS modifies the predicted values of inter
predicted blocks by reshaping (i.e. redistributing) the samples across the entire possible
value range. After reconstruction, the inverse reshaping is performed before the Deblocking
Filter (DBF) stage.

In-loop Filters Four in-loop filters are performed on the reconstructed pixels, including
the inverse LMCS, DBF, the SAO and the ALF. The in-loop filters have been described
with more detail in Section 2.5.7. Once the in-loop filters are performed on the entire
picture, the decoded picture is inserted in the DPB. It will remain in the DPB until it is
any more required as reference for MC of the next decoded frames. The decoded picture
with Picture Order Count (POC) number p is displayed when the previous picture in
display order with POC number p− 1 is entirely decoded and displayed.

6.3 Sate of the Art for Decoding Parallelism

As explained in Section 5.1, techniques for parallel processing essentially operate at three
levels of parallelism: data-level, high-level and frame level. In this Section, the main
techniques for the decoder parallelization are described along with the related works relying
on these techniques. Since only few works on VVC decoders are currently available, most
of the presented related works focus on the parallelism opportunities of HEVC decoding
process. It is nonetheless possible to adapt the presented related works to VVC decoders
with little extra work, considering that the operating procedure of HEVC decoders is very
similar to VVC decoders.

6.3.1 Single Instruction on Multiple Data

The techniques relying on SIMD architectures are part of data-level parallelism techniques.
With a single instruction, SIMD architectures apply simultaneously an operation on a vec-
tor of data, producing a vector of results. This abbreviation is used as opposed to Single
Instruction on Single Data (SISD), the usual architectures, and Multiple Instructions on
Multiple Data (MIMD) the architectures using several processors with independent mem-
ories. Figure 6.2 provides an example of SIMD extensions SSE [115] operating on 128
bits registers. The result vector is obtained with a single SIMD operation, reducing the
execution time compared to multiple operations on SISD architectures. In order to apply
these operations, the data must be properly located in memory. If not, the data must be
displaced using pack and unpack calls, adding additional overhead. Typically, the calcula-
tions that benefit from SIMD architectures are those including elementary operations on
already created vectors and matrices. In the decoding process, these calculations include
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among others the application of the diamond shape filters of the ALF, the process of the
MC interpolation filter, the derivation of reconstructed samples in intra prediction and
the Inverse Transform applied on the residual transform coefficients. On the other hand,
the entropy coding stage does not include significant data-level parallelism which makes it
difficult to use SIMD methods.

Related works widely rely on SIMD architectures to speed up the decoding process.
The paper [116] provides a good summary of the possible SIMD accelerations in an HEVC
decoder. The authors discuss the challenges of the SIMD implementation for many of the
aforementioned calculations, and provides experimental results on 14 different platforms.
Yan et al. [117] also rely on intensive SIMD acceleration to reduce the HEVC decoding
time. In the particular case of the scalable extension of HEVC standard, named Scalable
High Efficiency Video Coding (SHVC), Hamidouche et al. [68] optimize among other the
upsampling of the base layer frame with SIMD methods.
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Figure 6.2 – Example of SIMD extensions SSE [115] operating on 128 bits registers.

6.3.2 Constrained Bitstream

This subsection presents tiles and Wavefront Parallel Processing (WPP) high level paral-
lelism techniques. They have been standardized in both HEVC and VVC, to facilitate the
use of parallel processing architectures for encoding and decoding. These tools must be
enabled at the encoder side, and additional information is transmitted in the bitstream in
order to decode the bitstream in parallel. Therefore, bitstreams containing tiles and WPP
are considered as constrained.

6.3.2.1 Tiles

Tile partitioning in VVC has been describe in Section 5.2.1.1. Prediction dependencies
across tile boundaries are broken and entropy encoding state is reinitialized for each tile.
These prerequisites ensure that tiles are independently decodable, allowing several threads
to decode simultaneously the same frame. The in-loop filtering stages across tile boundaries
must however be performed when the reconstructed pixels of both tiles are available.

In paper [118], the tile partitioning is adapted at the encoder side in order to minimize
the decoding time. The decoding load imbalance between tiles is reduced based on the
relation between the decoding time and the number of coded bits of a given Coding Tree
Unit (CTU). On computing systems with asymmetric processors, authors in [119] take
advantage of tile partitioning flexibility in order to optimize HEVC decoding time on these
specific platforms. Asymmetric tile work load is delivered at encoder side by varying tile
sizes. At decoder side, the bigger and smaller tiles are further allocated to faster and slower
threads, respectively.
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Figure 6.3 – Illustration of tile partitioning: grid of 4 tiles labeled from 0 to 3.

6.3.2.2 Wavefront Parallel Processing
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Figure 6.4 – Principle of the WPP approach in the decoding process.

The WPP tool, enabled at encoder side, divides the frame into CTU rows [120]. As
shown in Figure 6.4, the CABAC context is reinitialized at the start of each CTU row with
the CABAC context of the third CTU in the preceding row. The decoding of a row may
therefore begin when the two first CTUs in the preceding row are reconstructed, since it
ensures that the decisions needed for prediction and CABAC reinitialization are made in
the preceding row. These constraints allow several processing threads to decode the frame
in parallel, with a delay of two CTUs between adjacent rows. The in-loop filtering of current
CTU requires the reconstructed pixels of the following row, also inducing a delay in the
WPP process. The propagation of these delays across the frame rows induces parallelism
inefficiencies, especially when the number of processing threads increases. For this reason,
many works including [121] and [122] combine WPP tool with frame-level parallelism in
their solutions. Authors in [122] show that the decoder combining frame-level parallelism
and WPP enables much higher frame-rates compared to the decoder using WPP alone, as
soon as the number of threads is superior to 5 for high resolutions video.
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6.3.3 Unconstrained Bitstream

In opposition with decoding parallelism techniques that require specific processing at en-
coder side, the parallelism techniques presented in this section are suitable to decode any
input bitstream.

6.3.3.1 Frame-level Parallelism

When frame-level parallelism is activated, the decoder processes a group of frames in
parallel, with each frame entirely decoded by a single thread. The frames are simultane-
ously decoded, under the restriction that the MC dependencies are satisfied. Frame-level
parallelism is particularly efficient in AI coding configuration, since there are no MC de-
pendencies. However, the frame-level parallelism suffers from various limitations. The
decoding latency is not reduced since a single thread is assigned to the decoding of a
frame. The performance of the frame-level parallelism also highly depends on the motion
activity in the sequence and on the ranges of Motion Vectors (MVs) used for MC. Based on
this observation, Chi et al. [121] restrict the downwards component of movement vectors
to 1/4 of image height. This restriction reduces the MC dependencies for the decoding
of consecutive frames. Finally, the decoding of multiple frames induces a large memory
overhead since the decoder must store simultaneously multiple frame buffers. For systems
with strong memory constraints such as mobile devices, this memory overhead is a serious
limitation. For instance in the context of mobile and hand-held devices, authors in [123]
rely on high-level parallelism tools rather than frame-level parallelism to accelerate the
HEVC decoding process.

6.3.3.2 Parallelism at Stage Level

In this work, stage-level techniques refer to techniques in which several threads process si-
multaneously the same decoding stage, exploiting its specific parallel opportunities. They
are part of high-level techniques, but have not been standardized and do not require con-
strained bitstreams. Entropy decoding process is the most difficult stage to parallelize in
the decoder, due to its sequential nature. In order to process the CABAC in parallel,
CABAC reinitialization must be included in the bitstream at encoder side, as presented in
tiles or WPP high level parallelism techniques. Habermann et al. [124], propose three so-
lutions to improve CABAC processing in WPP for low-delay applications. However, these
solutions require constrained bitstreams as an input.

When no constrains are imposed at encoder side, the entropy decoding stage is often
performed sequentially as a pre-processing of the frame decoding. It provides the input
data for all the decoding stages described in Figure 6.1. This approach, adopted in re-
cent works on VVC [125] and [126], allows to parallelize the decoding at stage-level, but
requires the storage of the CABAC output on a frame basis. The work [126] is the first to
provide experimental results on a real-time VVC decoder. The authors propose intensive
SIMD optimizations, that achieve 70% decoding time reduction, coupled with stage-level
parallelization. This parallelization approach does not require constrained bitstreams and
obtains interesting speed-up results. However, the memory usage of the decoder is not opti-
mized and not discussed. Another approach consists in retrieving and storing the CABAC
output data only for the reconstruction of a single CTU [68]. With this approach, the re-
construction of the CTUs is processed sequentially but the memory consumption to store
CABAC output is negligible.
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Figure 6.5 – openVVC: local context for raster scan CTU processing.

For in-loop filtering, a classical approach consists in processing the in-loop filter in a
separate pass when the entire frame is reconstructed. Very little synchronization is needed
in this case since the in-loop filter are applied one by one on the entire frame. Kotra et
al. [127] provide three parallel implementations of the DBF for HEVC decoding, operating
on the entire reconstructed frame. The limitation of this approach is that the final pixels
needed as reference for MC are available only after reconstruction, DBF and SAO are
processed on the entire frame. When in-loop filters are performed on a CTU level, the final
pixels are available with a smaller delay. For instance in [128], all the steps necessary to
output most of the final pixels of a CTU are finished with a delay of less than 2 CTUs.
This approach improves the frame-level parallelism for inter decoding.

6.4 Proposed OpenVVC Decoder

The proposed VVC decoder is based on the open source openVVC project. The openVVC
decoder is developed in C programming language and integrated as a dynamic library inside
FFmpeg player [47]. It implements a conforming VVC decoder and currently supports
most of the new tools introduced in the VVC standard. The actors developing openVVC
also developed the open source software decoder OpenHEVC [129] compliant with HEVC
standard. OpenHEVC is the state of the art of real time HEVC software decoding [130]
and is used in widespread players such as VLC 2 and GPAC [131].
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Figure 6.6 – Block diagram of the openVVC decoder architecture.

6.4.1 Code Structure

The decoding parameters required at the sequence, picture, slice or tile level are retrieved
in the first place by parsing global parameter sets such as the Sequence Parameter Set
(SPS), Picture Parameter Set (PPS) and slice header. These parameters are stored in the
global context structure of the decoder and used to initialize its internal structure. In this
work, the frame is composed of a single slice, but may be partitioned into several tiles
for parallelism purpose. The decoder browses in raster scan the CTUs within the tile, as
displayed in Figure 6.5. All information required to decode current CTU, are stored in a
lightweight local context structure. This CTU by CTU processing in openVVC decoder is
designed to reduce as much as possible the memory usage. As mentioned in Section 6.3.3.2,
this approach reduces substantially the memory usage compared to the storage in a frame-
basis of the CABAC output.

2https://www.videolan.org/index.fr.html

https://www.videolan.org/index.fr.html
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The general block diagram of the openVVC decoder is presented in Figure 6.6. The
decoder processes each CTU by calling the function hls_coding_tree that browses the Cod-
ing Units (CUs) within CTU in z-scan order. For each CU the hls_coding_unit function
performs inverse prediction and inverse transform operations. The reconstructed pixels of
the CUs are stored in a buffer the size of the frame further called the decoding frame buffer.
Once all CUs within the CTU are decoded, the decoder processes the upcoming CTU.

When the entire tile is reconstructed, the decoder performs the in-loop filters sequen-
tially on the entire tile. As mentioned in Section 6.3.3.2, applying in-loop filter on the
entire tile is not optimal for frame-level parallelism in Inter configuration. The final pix-
els, needed as reference for MC of next frames, are available only after the reconstruction
stages, DBF and SAO are processed on a tile level, and after the ALF is processed on a
CTU level. Since this work focuses on AI configuration, the considered approach for in-
loop filtering process induces no overhead for frame-level parallelism. In future works that
will also focus on Inter configuration, the in-loop filters will be applied as soon as possible
on a CTU basis. In order to anticipate this evolution and reduce memory usage, the filter
buffers dimensions have been reduced to the minimum required for the application of filters
on a CTU basis.

6.4.2 Filtering Process

Figure 6.7 illustrates the dimensions of the filter buffers. In order to filter the current CTU
pixels, several not filtered pixels belonging to neighboring CTUs are required. These pixels
form a margin around current CTU. The selected margin sizeM is half the maximum filter
size. In our case the filter with maximum size is the ALF luma diamond shaped filter, that
is of size 7. Therefore, the margin is selected with value M=3
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Figure 6.7 – Dimension of buffers required for the filtering on a CTU basis.

As shown in Figure 6.7, the extended CTU buffer is a square of size WCTU + 2 ·M ,
and contains all not filtered pixels required to filter current CTU. The bottom rows buffer
dimensions depends on the tile dimensions. It is a rectangle of dimensions (M ×WT ile)
used to store the bottom not filtered pixels of the CTU, that will be used for the filtering
of the CTU below. The right columns buffer is a rectangle of dimensions (M ×WCTU ),
that will be used for the filtering of the right CTU.

Figure 6.8 illustrates the usage of the filter buffers during the filtering process for a
given CTU. First, the extended CTU buffer is filled with not filtered pixels, as shown in
Figure 6.8a. The center area, of size WCTU ×WCTU , is filled with the pixels of the frame
buffer. The bottom and right margins are also filled with the content of frame buffer, since
the CTUs to which they belong have not yet been filtered. The left margin is filled with
the not filtered right columns of the left CTU, contained in the right columns buffer. The
upper margin is filled with the not filtered bottom rows of the upper CTU, stored in the
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Figure 6.8 – Two steps usage of the filter buffers in the filtering process of current CTU.

bottom rows buffer. The second step is shown in Figure 6.8b. The right columns and
bottom lines buffers are updated with not filtered pixels of current CTU, and the in-loop
filter is applied on the center area of the extended CTU buffer. The center area is finally
copied inside the frame buffer, and the upcoming CTU is ready to be filtered.

6.4.3 Parallelism Strategy

OpenVVC decoder currently supports frame-level parallelism, as well as slice-level and tile-
level parallelism (both dynamic and static) defined in the VVC standard. The WPP tool
is not yet supported and therefore is not studied in this work. At a data-level parallelism,
several computationally expensive methods are optimized with SIMD instructions.

With frame-level parallelism, several frames are decoded in parallel with a single thread
assigned to a frame. In openVVC, each thread requires separate main picture buffer, filter
buffer, global context and local context structures. The memory usage is therefore expected
to increase linearly with the number of threads.
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With tile-level parallelism, the decoder calls in parallel the function hls_decode_tile.
This function processes in raster-scan order the CTUs within a tile, as described is Sec-
tion 6.4.1. Both dynamic and static tile partitioning of the sequence are supported in
openVVC. With static tile partitioning, the same tile partitioning is applied on the entire
sequence (uniform tile partitioning for instance). In contrast, the tile partitioning is called
dynamic when it evolves during the sequence time-line. In order to decode a tile, each
thread requires separate filter buffers and local context structure. The main picture buffer
and global context structure are however shared between all the threads. The memory
overhead induced by tile-level parallelism is expected to be negligible for high resolution
sequences, since filter buffers and local context structure sizes are negligible compared to
main picture buffer size.

For data-level parallelism, openVVC relies on SIMD extensions SSE [115] operating on
128 bits registers. Currently, the methods optimized with SIMD instructions include in-
verse DCT and DST transform, intra mode application, MC interpolation filtering, residual
addition and ALF filtering. A quick profiling pointed out that the application for luma and
chroma of ALF diamond shape filters is a bottleneck for openVVC decoding process. It is
typically a calculation that benefits from SIMD architectures, since it applies repeatedly
elementary operations on vectors of samples. The SIMD divides by 2.5 in average the time
consumption of the ALF luma and chroma diamond shape filters. In the future, other com-
putationally expensive methods such as SAO filtering or derivation of ALF classification
will take advantage of SIMD architectures.

6.5 Experimental Results

This section presents the experimental setup, as well as the performance in term of memory
usage and frame-rate of the proposed openVVC decoder in AI coding configuration. The
results are presented first with enabling frame-level parallelism and then with tile-level
parallelism.

6.5.1 Experimental Setup

The following experiments are conducted with the proposed openVVC decoder, compliant
with the reference VTM-9.0 decoder. These two software decoders are built with gcc
compiler version 7.4.0, under Linux OS version 4.15.0-4-generic as distributed in Ubuntu-
18.04.1. The platform setup is composed of a 12 cores Central Processing Units (CPUs)
Intel(R) Xeon(R) E5-2690 v3 running at 2.60 GHz. The cores have each 768KB L1 cache,
3MB L2 cache and 30MB L3 cache.

Table 6.1 – Platform setup used for the decoding performance analysis

CPU Intel(R) Xeon(R) E5-2690 v4
Clock Rate 2.60 GHz
Memory 64 GB
Cache (L1, L2, L3) 768 KB, 3 MB, 30 MB
Compiler Linux 4.15.0-74-generic
Encoder Version VTM-9.0
Decoder Version openVVC (branch update_vtm9.0 )

The complexity increase of VVC decoding process raises a critical issue mainly for
high resolution video sequences. For this reason, the test sequences selected in this work
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contain 4 UHD and 5 HD sequences included in the Common Test Conditions (CTC) [73]:
CatRobot1, DaylightRoad2, FoodMarket4, Tango2 (UHD), and BasketballDrive, BQTerrace,
Cactus, MarketPlace, RitualDance (HD). In order to obtain bitstreams of comparable sizes,
only the first 300 frames of all test sequences are encoded. The bitstreams are generated
with VTM-9.0 encoder under AI configuration. Current version of openVVC is compatible
with most tools enabled in the CTC, and some tools are still under implementation. The
main tools not yet available in current version include the joint coding of chrominance
residuals [132], dual chroma tree [133], Matrix-based Intra Prediction (MIP) [35] and in-
loop filters DBF and LMCS.

The performance of the openVVC decoding is assessed at both high and low bit-rates,
obtained with Quantization Parameter (QP) values of 27 and 37, respectively. The mem-
ory usage of the software and the output frame-rate are used as performance metrics. The
instantaneous memory usage is measured at decoding time with C function getrusage in-
cluded in sys/resource.h. It is a crucial information to assess the portability of openVVC
decoder on platforms with strong memory constraints. The frame-rate is evaluated through
the number of decoded frames per second, noted fps. It measures the speed in term of de-
coding time of openVVC with respect to real-time decoding.

Table 6.2 – Buffer and structure sizes, depending on sequence resolution.

Resolution Local Context Global Context Filter Buffers Frame Buffer

HD 16 KB 4 KB 60 KB 6.2 MB

UHD 16 KB 5 KB 69 KB 24.8 MB

TABLE 6.2 summarizes the sizes of the openVVC buffers and structures, with chroma
format 4:2:0, input bit depth 10 and 128× 128 CTUs. The local context structure size is
constant regardless of the resolution since it contains local information required to decode a
CTU. The global context structure contains the frame parameters including among others
SAO and ALF flags per CTU. It is therefore slightly larger for UHD resolution compared
to HD. For filter buffer sizes, the worst case of 1 tile per frame is considered in TABLE 6.2.
The filter buffers include the bottom rows buffer of size M × WT ile (see Section 6.4.2),
that is larger for UHD resolution compared to HD. For this reason the filter buffer size is
60KB for HD and 69KB for UHD. The frame buffer has the dimensions of the frame and
is therefore 4 times larger for UHD compared to HD sequences.

6.5.2 Frame-Level Parallelism

6.5.2.1 Average Performance

Figure 6.9 presents the performance of frame-level parallelism in term of frame-rate (Fig-
ure 6.9a) and memory usage (Figure 6.9b) in AI configuration. The performance is averaged
across test sequences depending on resolution and QP value. As mentioned in 6.3.3.1, there
are no MC dependencies between frames in AI configuration. This explains why the frame-
rate increases almost linearly with the number of used threads in Figure 6.9a. Figure 6.9a
shows that the frame-rate is in average higher for higher QP value. This behavior is further
explained in detail on a per sequence basis. For HD sequential decoding, openVVC achieves
in average 18 fps and 20 fps at QP=27 and QP=37, respectively. The frame-rate reaches
85 fps and 110 fps with 8 thread at QP=27 and QP=37, respectively. The performance is
divided by 4 in average for UHD content. With 8 threads 27 fps and 33 fps is achieved at
QP27 and QP37, respectively.
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(b) Average memory usage (in MB) depending on number of threads.

Figure 6.9 – Performance of frame-level parallelism in AI configuration.

Figure 6.9b shows the memory usage (in MB) of frame-level parallelism as function of
the number of threads. Figure 6.9b highlights the low memory usage required by openVVC.
With less than 105MB, openVVC is able to decode simultaneously up to 8 frames in
HD resolution and 2 frames in UHD resolution. As a comparison, the software used in
work [126] consumes 500MB of memory for the sequential decoding of HD content, which
is 20 time higher compared to openVVC. The software has been developped for academic
use 3, and the HD bitstreams APSALF_A_Qualcomm_2 and CROP_B_Panasonic_3 4

have been decoded. As mentioned in Section 6.3.3.2, the memory usage of their decoder is
not optimized, reason for this high memory usage. However, it gives an order of magnitude
of the very low memory usage required for the proposed decoding approach in openVVC.

Figure 6.9b also shows the linear increase of memory usage with the number of threads
required for frame-level parallelism. This behaviour is explained by the simultaneous stor-
age of multiple frame buffers. The memory usage reaches 310 MB in average for the
decoding of UHD content with 8 threads. This result is low relatively to other softwares,
but could become a bottleneck for systems with strong memory constraints. Finally, Fig-
ure 6.9b shows that the average memory usage is almost constant in function of the QP
value, since the plain and dashed curves are overlapping.

3https://github.com/fraunhoferhhi/vvdec
4https://www.itu.int/wftp3/av-arch/jvet-site/bitstream_exchange/VVC/under_test/VTM-10.

0/

 https://github.com/fraunhoferhhi/vvdec
https://www.itu.int/wftp3/av-arch/jvet-site/bitstream_exchange/VVC/under_test/VTM-10.0/
https://www.itu.int/wftp3/av-arch/jvet-site/bitstream_exchange/VVC/under_test/VTM-10.0/
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Table 6.3 – Frame-level parallelism: bitstream size for 300 frames (in MB), frame-rate (in fps)
and memory usage (in MB) per test-sequence, for various QP values and number of threads.

QP=27 QP=37

4 Threads 8 Threads 4 Threads 8 Threads

Sequence Bitstream size
(MB)

Fr-rate
(fps)

Mem
(MB)

Fr-rate
(fps)

Mem
(MB)

Bitstream size
(MB)

Fr-rate
(fps)

Mem
(MB)

Fr-rate
(fps)

Mem
(MB)

CatRobot1 63.1 13.8 150 25.1 315 20.5 17.8 174 31.7 314
UHD DaylightRoad 64.1 14.4 168 25.7 315 18.2 18.2 174 33.0 295

FoodMarket4 47.7 15.5 175 27.5 314 16.3 18.7 159 32.5 311
Tango2 30.0 15.4 150 27.3 315 9.6 17.7 173 31.9 307

BasketballDrive 20.5 54.9 50 89.5 84 5.4 67.1 51 111.2 85
BQTerrace 41.1 41.6 48 70.8 91 11.2 62.0 47 100.2 85

HD Cactus 35.1 45.2 49 89.5 86 10.1 62.2 51 111.2 90
MarketPlace 19.6 53.9 54 89.8 91 4.9 69.7 49 112.0 82
RitualDance 17.4 59.7 48 97.8 91 4.9 72.8 50 119.6 85

6.5.2.2 Per-Sequence Performance

TABLE 6.3 presents the bitstream size (in MB), frame-rate (in fps) and memory usage
(in MB) per test-sequence, for various QP values and number of threads. It is possible
to compare the sequences with the bitstream size, since the bitstreams contain the same
number of frames (300). TABLE 6.3 shows that for all the sequences, the frame-rate
increases when the QP value increases. This is coherent with the average values plotted
in Figure 6.9b, where the curves for higher QP are higher compared to lower QP. Indeed,
for QP37 the bitstream size is in average divided by 3 compared to QP27, the decoder has
much less symbols to process (see Section 3.3.3.1). At sequence level, TABLE 6.3 shows
that for a given QP value and number of threads, the frame-rate is globally increasing when
the bitstream size of the sequence decreases. For example at QP27 with 4 threads, the HD
sequence BasketballDrive has a bitstream 20MB smaller compared to BQTerrace (20MB
vs 41MB). The frame-rate obtained is significantly higher for BasketballDrive compared to
BQTerrace (54.9 fps vs 41.6 fps). However, the frame-rate difference is not as significant
when the size differences between the bitstreams are smaller. For instance at QP37 with 8
threads, the HD sequence MarketPlace has a bitstream 5MB smaller compared to Cactus
(4.9MB vs 10.1MB). The frame-rate obtained is almost equal for MarketPlace compared to
Cactus (112fps vs 111.2fps). In some cases where the difference between bitstream sizes is
very small, the relation is even inversed (QP37, 8 Threads, DaylightRoad vs FoodMarket).
This is explained by several decoding stages, such as in-loop filters, which complexity is
independent of the number of symbols to process.

TABLE 6.3 also shows that the variation of memory usage for a given thread number is
less than 8% according to the sequence, across same resolution sequences and QP values.
The memory usage of openVVC is therefore not dependent on the bitstream size, it is de-
pendent only on the sequence resolution and number of threads. These results corroborate
the Figure 6.9b shows that the average memory usage is almost constant in function of the
QP value, since the plain and dashed curves are overlapping.

6.5.3 Uniform Tile Partitioning

In this Section, the decoding performance of uniform tile partitioning is assessed. The
uniform tile partitioning is an usual and straightforward technique that partitions the
frame in a grid of the same tile dimensions. It is a static tile partitioning, since the same
tile partitioning is applied on the entire sequence. The constrained bitstreams containing
uniform tile partitioning are generated with VTM-9.0. The prediction dependencies across
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tile boundaries are disabled and entropy coding state is reinitialized at each tile. These
restriction induce encoding quality losses, averaged across test sequences in TABLE 6.4.

Table 6.4 – Tile partitioning BD-BR increase (in %) averaged across test sequences according to
the resolution and number of tiles.

Tiles 2 Tiles 4 Tiles 6 Tiles 8
BD-BR(%) BD-BR(%) BD-BR(%) BD-BR(%)

HD 1.11 1.62 2.02 2.69

UHD 0.82 1.31 1.78 2.39
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Figure 6.10 – Performance of Uniform and Dynamic tile parallelism in AI configuration.

Figure 6.10 presents the average performance of uniform tile level parallelism in term
of memory usage (Figure 6.10b) and frame-rate (Figure 6.10a) in AI configuration. The
performance is averaged across test sequences depending on resolution and QP value. Fig-
ure 6.9a shows that with 8 threads for HD content, the frame-rate reaches 66 fps and
85 fps for QP27 and QP37, respectively. With 2 and 4 threads, the performance of tile
parallelism is equivalent to frame-level parallelism presented in Figure 6.9a. With 6 and
8 threads however the performance is lower. This is due to the decoding time imbalance
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Figure 6.11 – Decoding time of CTU (in % of total frame decoding time), as a function of CTU
encoding time (in % of total frame encoding time). Times extracted from the processing of HD
sequences BasketballDrive, BQTerrace and Cactus.

between tiles, imbalance that grows with the number of tiles. For UHD content with 8
threads, 25 fps and 31 fps are achieved at QP27 and QP37, respectively. Even with 8
threads, the performance for UHD content of tile level parallelism is very close compared
to frame-level parallelism (26 fps and 32 fps). This is explained by the fact that the decod-
ing time imbalance between tiles has less impact on UHD content compared to HD content
since frames are larger.

Figure 6.10b shows one of the main advantages of tiles in openVVC decoder. The
memory usage is almost constant depending on the number of threads since the memory
overhead is only induced by lightweight filter buffers and structure local context, as men-
tioned in section 6.4.3. With less than 72MB, openVVC decodes simultaneously 8 tiles for
UHD content.

6.5.4 Dynamic Tile Partitioning

In this Section, the dynamic tile partitioning solution initially designed to speed-up the
encoder in Chapter 5 is applied to openVVC decoding process. Its decoding performance
is compared to previous results on uniform tile partitioning.

6.5.4.1 Reminder Proposed Solution

In Chapter 5, we proposed a dynamic Tile and Rectangular Slice partitioning solu-
tion for VTM-6.2 encoder (see Section 5.2.1 for definition on Tile and Rectangular Slice
partitioning). A Tile and Rectangular Slice (TRS) partitioning is called dynamic when it
evolves during the sequence time-line. The solution has been reimplemented into the VTM-
9.0 encoder, in order to generate bitstreams compatible with openVVC. For the current
experiments, the Rectangular Slices are not activated and only the tile grid partitioning is
considered. As a reminder, the solution operates as follows: a distinct tile partitioning is
computed prior to the encoding of each frame. The times of previously encoded CTUs are
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used to balance the encoding time between the selected tiles. This dynamic approach re-
duces significantly multi-thread encoding time with same encoding quality losses compared
to uniform tile partitioning.

6.5.4.2 CTU Decoding Times

To apply this solution in the decoding process, the preliminary study evaluates the
relation between CTU encoding time and CTU decoding time. Figure 6.11 plots the
openVVC decoding time per CTU (in % of total frame decoding time), as a function of
VTM-9.0 encoding time of the CTU (in % of total frame encoding time). The times are
extracted from the processing of HD sequences BasketballDrive, BQTerrace and Cactus.
For QP27, the points in Figure 6.11a are localized close to the function f(x) = x, meaning
the decoding time of a CTU in openVVC is close to VTM-9.0 encoding time, in percentage
of frame processing time. For QP37, the distribution in Figure 6.11b is substantially
more distant from f(x) = x. This is mostly explained by the filtering time of a CTU
that is almost constant regardless of the number of symbols required to code the CTU.
It homogenizes the CTU decoding times, especially for high QP values where the CTU
reconstruction stages are less complex, because of less symbols to process. The conclusion
of this preliminary study is that the dynamic tile partitioning is expected to balance more
efficiently the tile decoding times for QP27 compared to QP37.

6.5.4.3 Performance Dynamic vs Uniform Tile Partitioning
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Figure 6.12 – Performance of Uniform and Dynamic tile parallelism in AI configuration.

The frame-rates obtained by both Uniform and Dynamic tile partitioning in AI con-
figuration are displayed in Figure 6.10a. The red curves correspond to the dynamic tile
partitioning results, while the blue curves correspond to uniform partitioning already plot-
ted in Figure 6.9a. For HD sequences, the red and blue curves are almost overlapping for
QP37, and the red curve is slightly higher to the blue curve for QP27. It means that the
dynamic tile partitioning has equivalent performance for QP37 and slightly better perfor-
mance for QP27, compared to uniform tile partitioning. For UHD content, the dynamic
tile partitioning has equivalent performance for QP27 and slightly lower performance for
QP37, compared to uniform tile partitioning.

The first analysis is that the results in Figure 6.12 are coherent with the conclusion
of previous Subsection 6.5.4.2. Indeed for both resolutions, the dynamic tile partitioning
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is higher relatively to uniform tile partitioning for QP27 compared to QP37. The second
analysis is that the dynamic partitioning solution proposed in Chapter 5, initially designed
to speed-up the encoder, has equivalent decoding performance compared to uniform tile
partitioning. It is therefore an effective asset at encoder side, without being a burden for
the decoding process.

6.6 Conclusion

In this Chapter, we proposed a real-time VVC decoder based on the open source openVVC
project, for HD and UHD content in AI configuration. By combining data-level parallelism
with high-level or frame-level parallelism, openVVC achieves real-time decoding for HD
content and 30fps for UHD content with very low memory usage. The results presented
in this Chapter confirm that the assets of frame-level and tile-level parallelism in the
decoding process. Frame-level parallelism induces no encoding quality loss and slightly
better speedup compared to tile-level parallelism. Tile-level parallelism improves decoding
latency, with almost constant memory in openVVC. We have also shown in this Chapter
that the dynamic tile partitioning solution proposed in Chapter 5 obtains equivalent results
to those obtained with uniform tile partitioning. It proves that the dynamic tile partitioning
proposed in Chapter 5 is an effective asset at encoder side, without being a burden for the
decoding process.

Future works will focus on several improvements for openVVC decoder. The first as-
pect consists in speeding-up the in-loop filtering process that consumes 40% and 55% of
decoding time in average for QP27 and QP37, respectively. The speed-up will be achieved
reducing the memory accesses during the in-loop filtering process, and optimizing with
SIMD operations other time consuming computations such as SAO filtering or derivation
of ALF classification. In future works that will also focus on Inter configuration, the in-
loop filtering process will be applied as soon as possible on a CTU basis. As mentioned
in Section 6.4.2, this approach will reduce the overhead induced by MC for frame-level
parallelism. Finally, future works will combine frame-level with tile-level parallelism. Cur-
rently in openVVC, the decoder waits until all the tiles are decoded in current frame before
decoding the following frame. By combining frame and tile parallelism, a trade-off between
the assets of both approaches could be found.
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Conclusion

As for every new generation of video coding standard, the primary objective of Versatile
Video Coding (VVC) standard is to provide a significant improvement in coding efficiency
over the High Efficiency Video Coding (HEVC) standard. VVC provided around 40% bit-
rate savings over HEVC for the same quality of experience of video services. This higher
coding efficiency will enable lower storage and transmission cost for video signal. However,
the bit-rate savings achieved by VVC are generated by increasingly complex tools, on both
encoder and decoder sides. This complexity may interfere with the deployment of VVC
standard in the future years, especially on embedded platforms with low energy supplies
and on live applications that require real-time encoding and decoding.

In this context, this thesis has presented three contributions on various software projects
to reduce efficiently the implementation cost, i.e. energy consumption and processing time
of VVC encoding and decoding processes. The two levers employed are the reduction
of computational complexity and the parallel processing of VVC codec. Both parallel
processing and complexity reduction are conducted minimizing the coding quality losses,
in order not to affect the quality improvement of the new standard VVC. Both parallel
processing and complexity reduction are considered with the aim to minimize the coding
quality losses. This approach is crucial to affect the least possible the quality improvement
of the new standard VVC.

The contributions presented in this thesis are among the first to be published on com-
plexity reduction and parallel processing of VVC standard. In addition to providing promis-
ing results, they are intended to serve as a basis of comparison for future research work,
and are designed to be easily implementable into future professional VVC encoders and
decoders.

7.1 Reminder of Contributions

To adequately address the issue of VVC codec optimization, the first stage of this thesis is
a quality assessment of coding tools. This assessment identifies the tools likely to induce
coding quality losses. In parallel, a complexity profiling of VVC codec highlights the most
computationally consuming parts of both encoding and decoding processes. In order to
assess the performance of VVC compared to HEVC, both studies (quality assessment and
complexity profiling), was conducted in comparison with HEVC standard. The three main
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contributions proposed to reduce efficiently the implementation cost of VVC standard rely
on this preliminary study and are reminded briefly in this section.

7.1.1 Tunable VVC Block Partitioning based on Lightweight Machine
Learning

The block partitioning scheme has been identified in Chapter 3 as the most computation-
ally expensive tool in the VVC standard. In order to reduce the search space of block
partitioning scheme, we proposed a lightweight and tunable solution in Random Access
(RA) coding configuration. The proposed solution is based on a Random Forest (RF)
classifiers [9] to determine for each coding block the most probable partition modes. To
minimize the encoding loss induced by misclassification, risk intervals for classifier deci-
sions are introduced in the proposed solution. By varying the size of risk intervals, tunable
trade-off between encoding complexity reduction and coding loss is achieved. The proposed
solution has been implemented in both VVC Test Model (VTM)-5.0 and Joint Exploration
Model (JEM)-7.0 softwares and offers encoding complexity reductions ranging from 30%
to 70% in average, for only slight encoding quality loss in RA coding configuration. The
overhead induced in the encoding process by RF classifiers is also very light, which is a key
point to use this solution in a real-time or embedded framework.

7.1.2 Efficient Parallel Encoding through Dynamic Tiles and Rectangular-
Slices

The second contribution of this thesis is an effective high-level parallelism solution for
VVC encoding process in RA configuration. A dynamic Tile and Rectangular Slice (TRS)
partitioning solution is proposed and benefits from the combination of tiles and Rectangular
Slice (RS). The TRS partitioning is dynamic and carried-out at the frame level, taking
into account both spatial texture of the content and encoding times of previously encoded
frames. The proposed solution searches the best partitioning configuration that minimizes
the trade-off between multi-thread encoding time and encoding quality loss. Experiments
proved that the proposed solution, compared to uniform tile grid partitioning, significantly
decreases multi-thread encoding time, with slightly better encoding quality.

7.1.3 Parallel and Real-Time VVC Decoder in AI configuration

The last contribution of this thesis focuses on the decoder side of the new standard. Our
work is implemented in the open source and real-time VVC decoder openVVC project,
operational in All Intra (AI) configuration. After the implementation of in-loop filters and
dynamic tile parallelism in openVVC, we integrated the dynamic tile partitioning solution
proposed in our previous contribution (See A.2), enabling the generation of bitstreams
compatible with openVVC decoder. The experimental results showed that the decoding
frame-rates obtained with dynamic tiles are equivalent to the frame-rates obtained with
uniform tiles. The general performance of openVVC is also discussed. By combining data-
level with tile-level or frame-level parallelism, openVVC achieves real-time decoding for
High Definition (HD) content and 30fps for Ultra High Definition (UHD) content. The
main asset of the proposed decoder lies in its very low memory usage, since the sequential
decoding of HD and UHD content only requires 20MB and 70MB of memory, respectively.
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7.2 Future Works

7.2.1 Encoder Complexity Reduction

Short-Term Perspectives

The contribution presented in Chapter 3 has been proposed in the early standardization
phase of VVC. The related works that inspired the contribution mainly reduce the complex-
ity of Quad Tree (QT) partitioning scheme in HEVC and Quad Tree Binary Tree (QTBT)
partition scheme in JEM software. The Multi-Type Tree (MTT) partitioning scheme in
VVC standard allows two more partition modes compared to QTBT partitioning scheme,
considerably increasing the encoding complexity. An overview of the numerous complexity
reduction techniques for MTT partitioning scheme that have been published afterwards
could provide ideas to improve the proposed solution. In the literature for instance, many
works rely on Convolution Neural Networks (CNNs) to extract relevant features from a
block of pixels [93, 85]. Implementing a low complexity CNN to improve the classification
performance could therefore be an interesting lead.

The performance under the VTM-5.0 proves that the proposed solution is scalable to
two different encoders and does not over-fit the JEM-7.0 encoding characteristics. The
results in VTM-5.0 have been achieved with little extra implementation work. The RF
features and training process, as well as the computation technique for the Complexity
Reduction Configurations (CRCs) remained unchanged between VTM-5.0 and JEM-7.0.
Another interesting future work would be to adapt the proposed solution to a less complex
VVC encoder in order to prove its reliability for future professional encoders. The new
Fraunhofer Versatile Video Encoder, called VVenC [134], could be an interesting candidate
to adapt our solution.

Long-Term Perspectives

The risk intervals introduced to control the classifier decisions are set by the encoder,
adapting the solution to the encoded content. This process requires the deactivation of
the proposed solution on the encoding of a reference frame every 32 frame. An interesting
perspective consists in finding off-line criteria (using statistical models or machine learning
techniques for instance) allowing to be independent of this reference frame.

Encoding time control consists in keeping the encoding process complexity as close as
possible to a predefined target. This target can be expressed in term of energy (Joule) or
encoding time (Seconds) in function of the application. The tunable encoding complexity
reduction proposed in Chapter 3 provides several Complexity Reduction Configurations
(CRCs), each obtaining a distinct level of complexity reduction. It is therefore the first
step for encoding time control. The second step would be to implement a control system
that selects in real-time the optimal CRC, i.e. the CRC that generates the encoding
complexity closest to the predefined complexity target.

7.2.2 Encoder Parallel Processing

Short-Term Perspectives

The theoretical upper bound in terms of speed-up for the high-level parallelism solution
presented in Chapter 5 is computed with the Amdahl law [113]. In our case, the sequen-
tial portion of VTM encoder contains the data initialization, entropy, in-loop filters and
bitstream writing stages, reaching 4% of the encoding time in average. Implementing the



112 Chapter 7. Conclusion

in-loop filters inside the parallel portion of the encoder would increase the theoretical upper
bound and provide a use case more representative of real-life encoders.

The proposed solution benefits from the combination of dynamic tile grid and RS par-
titioning. The experiments proved that it outperforms the uniform tile grid partitioning.
In future works, the performance of the proposed solution with only dynamic tile grid
partitioning will also be assessed. It will quantify which share of the good results is gener-
ated by the dynamic tile partitioning, and which share is induced by the more flexible RS
partitioning.

Long-Term Perspectives

A potential direction for future works could also be to improve the Coding Tree Unit (CTU)
time estimator, used in the encoding time minimization step. Instead of simply relying on
the co-located CTU times of the co-Temporal Layer (TL) frame, future solutions could
rely on CTU times deduced by motion information.

The TRS partitioning search takes place before the encoding of each frame and adapts
the optimal TRS partitioning to the frame content. The investigation of lightweight heuris-
tics for the TRS partitioning search will also be part of future works. We are confident they
will reduce drastically the overhead, especially for 12 threads encodings of UHD content.

In order to limit the encoding quality loss induced by TRS partitioning, the proposed
solution gathers similar spatial information inside the same RSs. However, a more efficient
technique to reduce encoding loss consists in lowering the number of RSs in the frame [108].
This possibility has not been considered in this work, since the number of RSs in the frame
is a fixed input parameter. An interesting perspective would be to target an estimated
encoding speed-up, and search the TRS partitioning with minimum number of RSs that
obtains this target speed-up.

7.2.3 Real-time Decoder

Short-Term Perspectives

Future works will focus on several improvements for openVVC decoder. The first identified
improvement is to speed-up the in-loop filtering process. The latter consumes 40% and 55%
of decoding time in average for Quantization Parameter (QP)27 and QP37, respectively.
The speed-up will be achieved reducing the memory accesses during the in-loop filtering
process, and optimizing with Single Instruction on Multiple Data (SIMD) operations other
time consuming computations such as Sample Adaptive Offset (SAO) filtering or derivation
of Adaptive Loop Filter (ALF) classification.

Long-Term Perspectives

The contribution presented in Chapter 6 focuses on AI configuration that includes no Mo-
tion Compensation (MC) dependencies is frames. The frames are therefore independently
decodable. In this case, the application of in-loop filter at the end of the tile reconstruction
induces no overhead for frame-rate parallelism. In future works that will also focus on inter
coding configuration, the in-loop filtering process will be applied on a CTU basis. The final
pixels required as reference for Motion Compensation (MC) will be available with much
lower delay, improving frame-rate parallelism.

Finally, future works will combine frame-level with tile-level parallelism. Currently in
openVVC, the decoder waits until all the tiles are decoded in current frame before decoding
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the following frame. By combining frame and tile parallelism, a trade-off between the assets
of both approaches could be found.





APPENDIX A

FRENCH SUMMARY

Au cours de la dernière décennie, l’utilisation intensive de plateformes en ligne telles que
la vidéo à la demande (Netflix, AmazonOCS, MyCanal) ou les plateformes de partage
vidéo (Youtube, Dailymotion, Vimeo) a entraîné une augmentation significative du volume
de contenu vidéo échangé. Les services multimédias se sont également diversifiés avec
l’apparition d’applications vidéo qui offrent une expérience de visionnage immersive et plus
naturelle. Ces nouveaux services nécessitent à la fois une résolution (4K, 8K, 360◦) ou une
fréquence d’images (120fps) plus élevées et augmentent nettement le volume du contenu
vidéo. Parallèlement, les appareils conçus pour afficher et distribuer ces services vidéo
émergents deviennent des produits abordables pour le grand public grâce aux progrès de
la microélectronique. Les téléviseurs, les ordinateurs ou les téléphones intelligents capables
d’afficher des résolutions haute définition sont désormais entrés dans notre vie quotidienne.
Il est donc désormais possible de consommer des services vidéo presque partout et à tout
moment, et les services vidéo sont de plus en plus volumineux. Une étude récente publiée
dans Cisco [1] a prédit que le trafic vidéo passera de 61% du trafic IP mondial en 2016 à
82% en 2021. Le visionnage de contenus vidéo en ligne a également un impact considérable
sur les émissions mondiales de CO2. En 2018, le stockage, la transmission et la visualisation
de vidéos en ligne représentaient des émissions de gaz à effet de serre comparables à celles
d’un pays comme l’Espagne (1% des émissions mondiales) [2]. Cette demande croissante
en contenus vidéo pose de nouveaux défis à la compression, principalement pour améliorer
l’efficacité de codage et réduire la pollution induite par le stockage, la transmission et le
traitement de la vidéo. Une meilleure efficacité de codage permet d’obtenir la même qualité
d’expérience des services vidéo, avec des coûts de stockage et de transmission plus faibles.

Depuis la fin des années 1980, les recherches universitaires et industrielles se sont con-
centrées sur le codage vidéo, et les recommandations fondamentales en matière de codage
vidéo sont restées inchangées depuis H.261 en 1988. Tous les codecs vidéo sont basés sur
la même architecture de codage hybride par blocs, combinant les prédictions inter et intra
et le codage par transformation. Presque tous les 10 ans, une nouvelle norme est pub-
liée avec pour objectif une réduction de 50% du débit pour une qualité subjective égale à
celle de son prédécesseur. En 2013, la norme de codage vidéo appelée H.265/HEVC, pour
High Efficiency Video Coding, a été publiée et progressivement adoptée dans de nombreux
systèmes d’application. Par rapport à son prédécesseur H.264/Advanced Video Coding
(AVC) [3, 4, 5] sorti en 2004, HEVC permet de stocker et de transmettre deux fois plus
de contenu vidéo pour la même qualité visuelle. Actuellement, la technologie de pointe en
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matière de codage vidéo est la norme VVC, pour Versatile Video Coding, finalisée à la fin
de 2020. Comme pour toute nouvelle norme, l’objectif premier de VVC est d’améliorer
considérablement l’efficacité du codage par rapport à la norme existante précédente, en
l’occurrence HEVC. La norme VVC permet d’économiser plus de 40% de débit par rap-
port à la norme HEVC et devrait permettre de délivrer des services en UHD à des débits
qui sont en fait utilisés pour transporter la TV-HD.

Les économies de débit réalisées par chaque nouvelle génération de codecs vidéo sont
générées par des outils de plus en plus complexes, tant du côté de l’encodeur que du
décodeur. La complexité de calcul d’un encodeur VVC est estimée à 10 et 27 fois la
complexité de calcul HEVC en configuration de codage inter et intra, respectivement [6].
Du côté du décodeur, l’augmentation de la complexité de calcul de la norme VVC par
rapport à la norme HEVC est approximativement d’un facteur 2 dans les configurations
de codage inter et intra [6]. Cette complexité peut devenir un goulot d’étranglement pour
le développement de la norme VVC et peut interférer avec son déploiement, en particulier
sur les plateformes embarquées à faible consommation d’énergie et sur les applications en
direct qui nécessitent un codage et un décodage en temps réel.

A.1 Challenges et Objectifs

Le nombre de dispositifs connectés aux réseaux IP passera à 29,3 milliards d’ici 2023, ce qui
représente plus de trois dispositifs par habitant en moyenne, selon Cisco 1. Leur nombre
est en constante augmentation, et une part importante de ces dispositifs de réseau sont em-
barqués et permettent le traitement vidéo. Les plates-formes embarquées ne disposent que
d’un approvisionnement énergétique limité. Une réduction drastique de la consommation
d’énergie est donc cruciale pour un déploiement réaliste des codecs VVC sur les plateformes
embarquées telles que les appareils mobiles. Même pour les plates-formes non embarquées
telles que les centres de données vidéo, la consommation d’énergie est une question impor-
tante. L’augmentation substantielle de la consommation d’énergie des codecs vidéo génère
un budget plus important pour l’électricité, en particulier pour les centres de données qui
traitent des millions de séquences vidéo chaque jour. Sur un plan plus environnemental, la
réduction de la consommation d’énergie des codecs vidéo sur des milliards d’appareils est
une manière de contenir les émissions de gaz à effet de serre générées par les traitements
des codecs vidéo.

La diminution du temps de traitement des codecs VVC est également un défi crucial.
Pour les applications video en direct, l’optimisation des processus de codage et de décodage
est obligatoire pour répondre aux exigences du temps réel. Du côté des encodeurs, plusieurs
applications en direct nécessitent un encodage vidéo en temps réel. Beaucoup ont vu le
jour ces dernières années, comme la diffusion individuelle en direct (Periscope, Wowza,
LiveStream) ou les applications de visio-conférence (Hangouts, Zoom, Skype). Certaines
étaient déjà très répandues ces 30 dernières années, comme la diffusion en direct de pro-
grammes à la télévision. Côté décodeur, une grande majorité d’applications nécessite un
décodage en temps réel. En effet, la séquence vidéo décodée est presque toujours con-
sommée instantanément pour éviter le stockage du contenu non compressé sur le disque
dur.

Cette thèse vise à réduire efficacement le coût de mise en œuvre, c’est-à-dire la con-
sommation d’énergie et le temps de traitement, des processus de codage et de décodage
VVC. Les deux leviers utilisés sont la réduction de la complexité de calcul et le traitement

1https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


A.2. Contributions 117

parallèle du codec VVC. Les techniques d’optimisation de la complexité de calcul réduisent
le travail global du processus et, par conséquent, diminuent directement la consommation
d’énergie et le temps de traitement. Les techniques de traitement parallèle exploitent les
architectures multi-cœurs afin de répartir de manière optimale le travail entre plusieurs
acteurs. Les techniques de traitement parallèle peuvent être utilisées pour réduire le temps
de traitement grâce à l’utilisation de plusieurs threads. Il est également possible de les
utiliser pour diminuer la fréquence des processeurs, ce qui réduit quadratiquement la con-
sommation d’énergie [7]. Le traitement parallèle et la réduction de la complexité sont
tous deux effectués en minimisant les pertes de qualité du codage, afin de ne pas affecter
l’amélioration de la qualité de la nouvelle norme VVC.

A.2 Contributions

Ce document comprend trois contributions principales visant à réduire efficacement le coût
de mise en œuvre des processus de codage et de décodage VVC, tout en minimisant les
pertes de qualité du codage en termes de débit et de qualité visuelle. Afin d’aborder
de manière adéquate la question de l’optimisation du codec VVC, la première étape de
cette thèse est une évaluation de la qualité des outils de codage. Cette évaluation permet
d’identifier les outils susceptibles d’induire des pertes de qualité de codage. En parallèle, un
profilage de la complexité du codec VVC met en évidence les parties les plus gourmandes
en calcul de la nouvelle norme. Afin d’évaluer les performances du codec VVC par rapport
au codec HEVC, les deux études (évaluation de la qualité et profilage de la complexité) sont
menées par rapport à la norme HEVC. Le logiciel de référence VVC utilisé par les chercheurs
et les industriels pour proposer et tester de nouveaux outils de codage au cours du processus
de normalisation VVC est appelé VTM. Au cours du processus de normalisation HEVC, le
logiciel de référence était le HEVC Model (HM). Les performances de lu logiciel VTM sont
comparées à celles du HM, mettant en évidence les principales améliorations de la norme
VVC par rapport à son prédécesseur. Plusieurs contenus vidéo, à différents débits, et deux
résolutions spatiales, HD et UHD, sont encodés et décodés afin d’extraire des statistiques
sur la qualité et la complexité. Ce travail préliminaire sur l’évaluation de la qualité et le
profilage de la complexité est actuellement en cours d’examen en vue de sa publication
dans la revue internationale de l’IEEE Transaction on Multimedia (ToM).

Les trois principales contributions ont été proposées alors que le processus de nor-
malisation VVC n’était pas encore finalisé. C’est pourquoi seules quelques études sur la
réduction de la complexité de la norme VVC et encore moins sur le traitement parallèle
étaient disponibles dans la littérature. Les contributions présentées dans ce document sont
parmi les premières appliquées à la norme VVC à être publiées dans leurs domaines re-
spectifs. Elles sont destinées à servir de base de comparaison pour les futurs travaux de
recherche, et sont conçues pour être facilement transposables dans les futurs encodeurs et
décodeurs VVC professionnels. La dernière contribution de cette thèse est particulière-
ment représentative de cet effort, puisqu’elle a été directement insérée dans le décodeur
open source openVVC, qui est destiné à être distribué au grand public. La section suivante
présente brièvement les trois principales contributions de cette thèse.

Partitionnement en Blocs Ajustable pour VVC basé sur de l’Apprentissage
Machine

Du côté de l’encodeur, le schéma de partitionnement en blocs sélectionne la taille de bloc
appropriée en fonction de l’activité locale des pixels. Il s’agit d’un module essentiel pour
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obtenir une amélioration significative de la qualité du codage. Cependant, le schéma de
partitionnement des blocs a été identifié comme l’outil le plus coûteux en termes de calcul
dans la norme VVC [8]. Afin de réduire l’espace de recherche du schéma de partitionnement
par blocs, nous proposons une solution légère et ajustable en configuration de codage RA.
La solution proposée est basée sur un classificateur RF [9] qui détermine pour chaque bloc
de codage les modes de partitionnement les plus probables. La classification par RF est
une méthode classique en Machine Learning (ML) qui prédit la valeur d’une variable cible,
appelée classe, à partir des valeurs de plusieurs variables d’entrée, appelées caractéristiques.
Pour minimiser la perte de codage induite par une mauvaise classification, des intervalles
de risque pour les décisions de classification sont introduits dans la solution proposée. En
faisant varier la taille des intervalles de risque, on obtient un compromis entre la réduction
de complexité de codage et la perte de qualité. Le JEM est le logiciel de référence VVC
pre-VTM, utilisé pendant la première moitié du processus de normalisation. La solution
proposée a été mise en œuvre dans les logiciels VTM-5.0 et JEM-7.0 et offre des réductions
de la complexité de codage allant de 30 à 70% en moyenne, pour une légère perte de
qualité de codage dans la configuration de codage RA. Le surcoût induit dans le processus
d’encodage par les classificateurs RF est également très faible, ce qui est un point clé pour
utiliser cette solution dans un cadre temps réel ou embarqué. Ces travaux ont conduit à la
présentation d’une session de posters lors de la conférence IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) en 2019 [10], et ont été publiés dans
la revue internationale IEEE Transactions on Image Processing (TIP) en 2019 [11].

Encodage Parallèle Efficace via des Tiles et des Slices Rectangulaires
Dynamiques

Comme mentionné dans la section précédente, afin d’obtenir un encodage en temps réel et
à faible latence, il est obligatoire de s’appuyer sur un traitement parallèle pour distribuer
de manière optimale la complexité de l’encodage à plusieurs acteurs. La deuxième con-
tribution de cette thèse est une solution efficace de parallélisme de haut niveau pour le
processus d’encodage VVC en configuration RA. La norme VVC comprend un partition-
nement en grille de tiles qui permet de traiter simultanément les régions rectangulaires
d’une image avec des threads indépendants. La grille de tiles peut être subdivisée en une
sous-grille horizontale de RSs, ce qui augmente la flexibilité du partitionnement. Une solu-
tion de partitionnement dynamique de TRS, c’est-à-dire évoluant au cours de la séquence
vidéo, est proposée et bénéficie de cette flexibilité. Le partitionnement TRS est effectué
au niveau de l’image, en tenant compte à la fois de la texture spatiale du contenu et des
temps d’encodage des images précédemment encodées. La solution proposée recherche la
configuration de partitionnement qui minimise le compromis entre le temps d’encodage
multi-threads et la perte de qualité de l’encodage. Les expériences prouvent que la solu-
tion proposée, par rapport à un partitionnement uniforme TRS, diminue considérablement
le temps d’encodage multi-thread, avec une qualité d’encodage légèrement meilleure. Ces
travaux ont été présentés lors de la session spéciale Complexity Reduction and Real Time
Implementations of the Versatile Video Coding Standard de la conférence internationale de
l’IEEE sur le traitement de l’image (ICIP) en 2020 [12].

Décodeur VVC parallèle et temps réel en configuration AI

La dernière contribution de cette thèse se concentre sur le côté décodeur de la nouvelle
norme. Notre travail est implémenté dans le décodeur VVC open source et temps réel
openVVC, opérationnel en configuration AI. La contribution comprend la mise en œu-
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vre à partir des filtres ALF et SAO, avec une attention particulière à la minimisation de
l’utilisation de la mémoire tampon des filtres. Elle comprend également la consolidation
du parallélisme de tiles qui permet à la fois un partitionnement dynamique et uniforme des
tiles. Une fois les filtres et le parallélisme dynamique des tiles opérationnels, nous avons
réimplémenté la solution de partitionnement en tiles dynamique proposée dans notre précé-
dente contribution (voir A.2), permettant la génération de bitstreams compatibles avec le
décodeur openVVC. Les résultats expérimentaux montrent que la fréquence de décodage
obtenue avec les tiles dynamiques est équivalente à celle obtenue avec des tiles uniformes.
Les performances générales de openVVC sont également présentées. En combinant un par-
allelisme de données avec un parallélisme par tiles ou par images, la version présentée de
openVVC permet d’obtenir un décodage en temps réel pour les contenus HD et UHD. Le
principal atout du décodeur proposé réside dans sa très faible consommation de mémoire,
puisque le décodage séquentiel du contenu HD et UHD ne nécessite que 20 et 70 Mo de
mémoire, respectivement.

A.3 Plan Manuscrit

Cette section résume brièvement le contenu de chaque chapitre présenté dans ce document.
Le chapitre 2 présente les concepts fondamentaux de la compression de vidéo. Ce chapitre
introduit entre autre les caractéristiques d’un signal vidéo, le processus d’encodage Rate
Distorsion Optimization (RDO), l’historique de la création des normes de codage vidéo et
la norme de codage Versatile Video Coding récemment achevée.

Dans le chapitre 3, une évaluation subjective et objective de la qualité de VVC est
réalisée afin d’évaluer la qualité de codage de cette norme émergente par rapport à la
norme HEVC. Ce chapitre fournit également une analyse des répartitions de temps et de
complexité, tant pour le processus de codage que de décodage. Ce chapitre identifie les
outils susceptibles d’induire des pertes de qualité et évalue les possibilités de réduction de
la complexité.

Afin de réduire la complexité du processus d’encodage, le chapitre 4 se concentre sur
le schéma de partitionnement en blocs et réduit le nombre de partitionnements testés en
configuration de codage RA. Toutes les étapes de la solution proposée sont détaillées, de la
création des classificateurs ML à la réalisation d’un compromis ajustable entre la qualité
de codage et le temps d’exécution.

Le chapitre 5 présente une technique permettant de paralléliser efficacement le processus
de codage VVC dans la configuration de codage RA. Le partitionnement TRS, brièvement
présenté dans la section précédente, est ajusté pour chaque image, en tenant compte à la fois
du contenu spatial et des temps de codage des images précédentes. Les résultats obtenus
prouvent que la solution proposée réduit considérablement le temps de codage multi-thread,
avec une qualité de codage légèrement meilleure par rapport à d’autres techniques de
partitionnement TRS plus directes.

Le Chapitre 6 présente un décodeur VVC temps réel basé sur le projet open source
openVVC project, pour les contenus HD et UHD en configuration AI. Il présente les con-
tributions de cette thèse dans le logiciel, ainsi que les résultats expérimentaux obtenus
avec ces contributions. En combinant un parallelisme de données avec un parallélisme de
threads, openVVC atteint le décodage en temps réel pour les contenus HD, avec une très
faible utilisation de la mémoire.

Le Chapitre 7 conclut ce document et propose plusieurs axes de recherche pour pro-
longer les travaux présentés dans ce manuscript.
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Table B.1 – Notations used in this Thesis

Notation Definition

RGB Color space associate each channel to a primary color:
red, green and blue.

YUV (or YCbCr) Color space with Y luminance, U (or Cb) and V (or Cr) the
blue and red chroma channels.

W Number of pixels in a row of the frame.
H Number of pixels in a column of the frame.
p(i, j) Pixel in row number i and in column number j of the frame.
b Bitdepth of a video signal.
B Total number of bits per pixel.
Π Set of coding parameters.
Π∗ Set of coding parameters that minimize RD-cost.
EΠ Ensemble of allowed coding parameters.
D(Π) Distortion obtained with the coding parameters Π.
R(Π) Bit-rate obtained with the coding parameters Π.
Rmax Bit-rate constraint for Rate Distorsion Optimization (RDO).
λ Lagrangian multiplier for RDO.
J RD-cost of coding parameters Π and Lagrangian multiplier λ.
Imr Reference image for quality metrics.
Ime Image to be evaluated.
A Amplitude of the signal.
wPSNR Weighted PSNR with Y , U and V channels.
µ(X) Local mean for a variable X.
σ Local standard deviation.
σImrIme covariance between images Imr and Ime.
WCTU CTU width in pixels.

H(X) Differential entropy of a continuous random variable X.
fX Probability Density Function of continuous random variable X.
I(F,C) Mutual Information : entropy decreasing of C when F is known.
εRF Error rate of the RF classifier.
S-NS Binary classifier determining which of the Split modes or Non-Split

mode is more likely.
QT-BT Binary classifier determining which of the QT mode or BT modes

is more likely.
QT-BT Binary classifier determining which of the BTH mode or BTV mode

is more likely.
gradx, grady Gradients in horizontal (gradx) and vertical (grady) directions.
σ2 Local variance of a variable.
δH(f) Horizontal Inconsistency of a feature f .
δV (f) Vertical Inconsistency of a feature f .
εRD Percentage Rate Distorsion (RD) error caused by a misclassification.
w(A,B) Weight assigned to the training instances.
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Table B.1 – Continued

Notation Definition

Nvotes(A) Number of trees voting for class A in the RF classifier.
Ntrees Total number of trees constituting the RF classifier.
Score(A) Percentage of decision trees that predicts the class A.
∆T Percentage of complexity reduction of a solution.
TA Time of the anchor software (encoded with exhaustive RDO).
TR Reduced time after applying a complexity reduction solution.

P Partitioning of a frame into RSs.
P ∗ Optimal P after rectangular clustering of the RSs.
ci CTU number i in raster-scan order.
sj Slice number j in raster-scan order.
T (X) Effective time to encode a region X (frame, slice or CTU).
T̃ (X) Estimated time to encode a region X (frame, slice or CTU).
εT̃ Error of a time estimator T̃ .
Amin, Amax Area of the smallest and the largest RSs.
γ Relaxation factor that manages the trade-off between

encoding time and quality.
ξ Multi-thread speed-up.
ξmax Maximum obtainable speed-up (Amdhal law).
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Résumé :  Au cours de la dernière décennie, 
les progrès des technologies numériques ne 
augmentation importante du volume de contenu 
vidéo échangé. Fina lisée en juillet 2020, la 
nouvelle norme de codage vidéo Versatile Video 
Coding (VVC) développée par l’ITU-T VCEG et 
l’ISO/IEC MPEG répond au besoin de 
performances de codage plus élevées. Pour une 
même qualité vidéo, VVC permet d’économiser 
40% de débit par rapport au dernier codec vidéo 
High Efficiency Video Coding (HEVC). Toutefois, 
pour obtenir ces économies de débit, des outils 
complexes ont été ajoutés au niveau de 
l’encodeur et du décodeur. Ce document 
présente un ensemble de contributions visant à 
réduire efficacement la consommation d’énergie  

et le temps de traitement des codecs VVC, tout 
en minimisant les pertes de qualité du codage. 
Tout d’abord, un schéma de partitionnement en 
bloc léger et adaptable, basé sur une approche 
d’apprentissage machine, est proposé. La 
deuxième contribution, du côté de l’encodeur, 
tire parti des outils de parallélisme de haut 
niveau inclus dans VVC, tels que le 
parallélisme en tile et en slice. Du côté du 
décodeur, l’augmentation de la complexité de 
calcul de la norme VVC par rapport à la norme 
HEVC est d’un facteur 2 environ. Un décodeur 
VVC en temps réel et à faible mémoire, basé 
sur le projet openVVC open source, est 
proposé pour la configuration de codage Intra. 
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Abstract :  During the last decade, the 
progress in digital technologies has led to an 
important  increase in the volume of exchanged 
video content. Finalized in July 2020, the new 
video coding standard Versatile Video Coding 
(VVC) developed by the ITU-T VCEG and 
ISO/IEC MPEG answers the need for higher 
coding performance. For the same video quality, 
VVC provides 40% bit-rate savings over the 
latest state-of-the-art video codec High 
Efficiency Video Coding (HEVC). However, in 
order to obtain these bit-rate savings, 
computationally expensive tools have been 
added at both encoder and decoder sides. This 
document presents a set of contributions aiming  

at reducing efficiently the energy consumption 
and processing time of VVC codecs, while 
minimizing the coding quality losses. First, a 
lightweight and tunable block partitioning 
scheme based on a machine learning 
approach is proposed. The second contribution 
at the encoder side takes advantage of the 
high-level parallelism tools included in VVC, 
such as tile and slice parallelism. At decoder 
side, the computational complexity increase of 
VVC standard compared to HEVC is 
approximately a factor 2. A real-time and low-
memory VVC decoder based on the open 
source openVVC project is proposed for Intra 
coding configuration. 
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