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Osvanny RAMOS Directeur de thèse
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tribué à me faire grandir du point de vue scientifique, c’est bien les personnes que
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Guillaume, Camille et Manon. Je ne peux pas non plus oublier l’équipe de 12 heures,

37 minutes et 30 secondes : Arsouille, Clem, Elise, Tinj et Tomtom qui ont toléré
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Résumé

Le cadre de cette thèse est une expérience modèle reproduisant des comportements

invariants d’échelle présentés par divers phénomènes naturels, les tremblements de

terres entre autres.

Le modèle expérimental utilisé est constitué d’un granulaire bidisperse, fait

dans une matériau photoélastique, cisaillé dans une cellule periodique cylindrique.

Lorsque que le granulaire est cisaillé, des émissions acoustiques se produisent. Nous

appelons ces évenements “labquakes”. La géométrie de la cellule autorise une ci-

saillement sans limite, ce qui nous permet d’obtenir une quantité très élevé de

données et consituter des statistiques riches. Le suivi du système est assuré par un

grand nombre de techniques. 6 catpeurs acoustiques enregistrent les sons produit

par le granulaire, 2 capteurs de force mesurent les couples résistant au cisaillement,

2 capteurs de position le volume de l’expérience et 24 caméras assurent un suivi de

la position des grains, ainsi que des chaines de forces grâce à la photoélasticité du

matériau.

Une partie de la thèse se concentre sur les relations entre changements soudains

de volume et de couple résistant, deux grandeurs présentant une relation non trivial.

Cette relation est d’abord décrite, puis expliquée par des propriétés géométrique

des chaines de force. Dans un second temps, une méthode de localisation des

sources acoustiques dans le milieu granulaire est présentée. Cette méthode, basée

sur la localisation hyperbolique, servira dans de futurs travaux pour corréler les car-

actéristiques mesurées d’un évenement aux propriétés locales de son lieu d’emission.

Finalement, des résultats préliminaires sur la prédiction des évenements assisté par

machine learning seront présentés.
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Abstract

The framework of this thesis is a model experiment which reproduces scale invariant

behaviors displayed by various natural phenomena, earthquakes among others.

The experimental setup consists of a bidisperse granular medium made of a

photoelastic material, sheared in a cylindrical periodical cell. When the granular is

sheared, acoustic emissions occur. We call these events “labquake”. The geometry

of the cell allows for unrestricted shearing, which allows us to obtain a very high

amount of data and build up rich statistics. The monitoring of the system is ensured

by a large number of techniques. 6 acoustic sensors record the sounds produced by

the granular material, 2 force sensors measure the resisting torque, 2 position sensors

measure the volume of the experiment and 24 cameras monitor the position of the

grains, as well as the force chains thanks to the photoelasticity of the material.

A part of the thesis focuses on the relationship between sudden changes in volume

and resistive torque, two quantities with a non-trivial relationship. This relationship

is first described and then explained by geometrical properties of force chains. In a

second step, a method for localizing acoustic sources in granular media is presented.

This method, based on hyperbolic localization, will be used in future works to cor-

relate the measured characteristics of an event to the local properties of its emission

site. Finally, preliminary results on machine learning assisted event prediction will

be presented.
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Chapter 1. Introduction

1.1 Earthquakes and Scale Invariance

1.1.1 Avalanches phenomenons

Figure 1.1: From left to right; 2011 Tohoku earthquake aftermath (©37frames),

Snow avalanche (©Archive SLF) and 1929 market crash headlines (©The Halifax

Chronicle)

Even though the word “avalanches” call to mind disastrous snow slides [1], a

broader reading of the term will include many more phenomena, such as market

crashes [2–5], species evolution [6], solar eruptions [7, 8], various social interactions

that can be modeled by networks [9], granular materials [1, 10–17], sub-critical

fracture [18, 19] and earthquakes [20–23]. Avalanches occur in out-of-equilibrium

systems where small events (snowfall, stock sell-off) may trigger other events, leading

to a chain reaction. Such chain reaction can span over the entire system and lead to

catastrophic disasters... or they may not. In some systems, avalanches can stop at

any point before their largest possible scale: the skier dropping its glove in the snow

will not cause a deadly avalanche. When an avalanche phenomenon covers a large

range of (abstract) scales, it is useful to study and characterize its distribution. In

many cases, including the examples mentioned above, the probability of stopping at

scale s will follow a power law of the form P (s) ∼ s−a, with a a positive real number.

For a = 1 for instance, it means scales ten times bigger will be ten times rarer as well.

In the case of earthquakes, the distribution of their energies follows a power law and

the observed exponent for worldwide statistics is a ∼ 1.661, and is closely related

with the Gutenberg-Richter law, linking magnitude and the cumulative quantity of

earthquakes [24].

The term avalanche intuitively carries the idea of chain reactions, as domino

effects or rolling snowballs. However, a power-law distribution of sudden events,

usually called avalanches, may also be a consequence of discrete events taking place

in a fractal landscape, as for example, discrete failure events within a power-law

1This can vary when looking at particular regions or time periods.
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1.1. Earthquakes and Scale Invariance

distribution of rupture thresholds.

An avalanche process described by a power-law distribution will have the addi-

tional property of being scale-invariant: no particular scale of avalanche will come

out as particular or typical. This is specific to this distribution, and if we compare

it to other ones, like the bell curve describing the average human size, we notice a

typical value of 1.65 m.

Let us now discuss the practical effects of power-law distributions.

1.1.2 Consequences of heavy-tailed distributions

To get a feel for this sort of relationship and its consequences, let us imagine the

two following probability distributions, a power-law and a normal distribution:

PPL(s) ∼ s−a (1.1)

PN(s) ∼ exp(−(s/σ)2) (1.2)

Now, consider how the probability changes with a doubling of the event scale:

PPL(2s) ∼ 2−as−a (1.3)

PPL(2s) ∼ 2−aPPL(s) (1.4)

and:

PN(2s) = exp(−4(s/σ)2) (1.5)

PN(2s) = (PN(s))
4 (1.6)

While the power-law power probability is simply scaled down by a multiplicative fac-

tor, the normal distribution gets raised to the power of four. More generally, power

laws converge much slower to 0 for larger and larger event sizes. The impossibility

to asymptotically bound power-laws by an exponential makes them “heavy-tailed”,

as illustrated in figure 1.2. For comparison purposes, let us give some context to

these distributions:

• The Maxwell-Boltzmann distribution (P (x) ∝ x2e−x2

) describes the speed of

molecules in an ideal gas,

• the normal distribution (P (x) ∝ e−(x−1)2), also called the bell curve, describes

many things including average human size,

• the exponential distribution (P (x) ∝ e−x) describes the time between radioac-

tive disintegration,

3



Chapter 1. Introduction

• a power law of exponent 1.66 corresponds to the distribution of earthquake

energies,

• a power law of exponent 2.3 corresponds to the initial mass function in stellar

systems [25].

Figure 1.2: Several probability distributions in log-log scale. The dashed blacked

line represent the boundary above which distributions are considered heavy tailed.

In all distribution, very high values are very rare. But in heavy-tailed distribu-

tions, higher values decrease in probability at a slow rate, making extreme samples

more common. In the case of earthquakes, the consequences can be devastating.

1.2 Modeling earthquakes

Earthquakes always have been a part of human life, but their systematic study

was propelled after the great 1906 San Francisco earthquake, officially causing over

3000 casualties [26] – about 1% of the city’s population at the time. The terrible

consequences of earthquakes are strong incentives to develop our understanding of

them. Several different approaches have been developed over the past century, some

of which I will now succinctly detail.

1.2.1 Geo-mechanical approaches

One of the earliest theoretical attempts at understanding earthquakes dates back

to 1911, by geophysicist H. F. Reid [27]. His elastic rebound theory stipulates that,

4



1.2. Modeling earthquakes

along a fault, each side is slowly deformed. At some point, the strain is too high

and fracture happens. The elastic energy stored in the fault is released causing an

earthquake. This process is schematized in figure 1.3.

Figure 1.3: top: Stress is applied to each side of a block. mid: Elastic energy is

stored in the deformed block. bot: The block breaks and energy is released.

This simple model was coherent with the observed displacement of the ground.

However, a more precise analysis of the radiated waves [28], the low amount of stress

released by an earthquake in relation to the available one, the high energies needed

to shear over a fractured surface, and above all, the lack of healing required to

generate a second earthquake at the same location and close in time to the first one,

subsequently set “stick-slip” sliding mechanisms as a more plausible explanation

of earthquakes [29]. Stick-slip is the name given to the jerking motion that can

happen when an object slides against another. The initial steps are similar to what

was proposed by Reid; the objects stick, elastic energy is accumulated until a limit

is reached – but instead of a fracture, slipping occurs.

The proposition of stick-slip as a plausible mechanism for earthquakes by Brace

and Byerlee in the mid-sixties [29] was quickly followed by friction models. First,

analytical ones, like the spring-block model, [30, 31] and later phenomenological

ones, like the Rate and state friction (RSF) model [32–34].

The most common analytical model is perhaps the spring-block model, developed

originally by Burridge and Knopoff [30] and illustrated in figure 1.4. A bunch of

blocks, sitting on a frictional surface, are linked by springs both to a common plate

and to neighboring blocks. As the plate slowly moves tension is stored in the system

until one block slips. This will elongate the neighboring spring, possibly causing the

second block to slip as well, and eventually generating a chain reaction, or avalanche.

The Rate and state friction (RSF) brings a phenomenological description of the

5



Chapter 1. Introduction

Figure 1.4: Spring-block model. (from [35])

frictional dynamics [32–34]. It can be formulated as follow:

µ = µ∗ + A ln
V

V ∗
+B ln

θV ∗

Dc

(1.7)

with µ and µ∗ the current and characteristic coefficient of friction, V and V ∗ the

current and characteristic slip rates, Dc the characteristic slip length, θ a state

variable, and A, B coefficient parameters of the model.

RSF has also been used in conjunction with spring-blocks to model the friction of

each block [36], successfully capturing the multi-scale behavior of earthquakes and

some time-correlation properties like aftershocks and memory effects (figure 1.5).

Besides the facts presented by Brace and Byerlee [29] in favor of a stick-slip

description of earthquakes, the fact that subcritical fracture displays a jerky dy-

namic with a power-law distribution of event sizes has been continuously used as an

analog phenomenon. We can cite relevant works on subcritical fracture and earth-

quakes ranging from the sixties [37, 38] to very recent ones [19, 39, 40]. The also

recent works of Jay Fineberg [41] analyzing the onset dynamics of a frictional block

that have shown that frictional sliding follows the same theoretical description as

Figure 1.5: Cumulative slip of a spring-block cellular automaton, displaying memory

effects and predictability. (from [36]).
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1.2. Modeling earthquakes

a shear fracture. The authors’ claim “friction is fracture” seems to conciliate both

approaches to explain earthquake dynamics.

1.2.2 The contribution of complexity

The rise of complex systems

During the 1970s, the concept of complex systems was emerging [42], and took off

in the 1980s – the Santa Fe Institute, dedicated to the study of such systems, was

founded in 1984. Complexity characterizes systems where a large number of simple

constituents, with simple interaction rules, are brought together. In such systems,

(much) more complex behavior may arise through emergence. Complex systems

occur in many fields, such as economics or mathematics. In physics, this concept

was initially applied in condensed matter, regarding phase transitions [43, 44].

At the same time, geophysicists started to exploit them as alternative approaches

to analyze earthquakes. Renormalization groups theory was used in asperity models

[45], while some studies [46, 47] focused on the fractality [48] of seismicity and

its relation to the size distributions of earthquakes. In 1989, Rundle proposed a

thermodynamical approach of earthquakes [49], framing them as fluctuations around

an average slipping dynamic [50]. A year later, the interactions between different

faults were interpreted in the framework of chaos theory [51]. However, it was the

concept of Self-organized criticality (SOC) [52] that drove the interest of the physics

community into earthquakes, with the development of a large variety of models, and

the interpretation of earthquake dynamics in the light of SOC [21, 22, 53–62].

Self-organized criticality

In 1987, Bak, Tang, and Wiesenfeld proposed the BTW model (known also as the

sandpile model) [52]. In this toy model, 0 to 3 particles are placed on each tile of

a regular, square grid. Particles are then dropped one by one on a random tile of

the grid. When a tile has 4 particles, it “topples” and redistributes one particle to

each of its neighboring tiles, which can topple as well. Particles falling off the edge

of the grid are removed from the system. After a while of repeating this process,

avalanches will happen at every step and are distributed following a power law of

slope 1.29 [63]

The authors used this simple model to introduce the concept of Self-Organized

Criticality (SOC). The existence of power-law distributions of event sizes, with the

possibility of an event reaching the system size, was interpreted as a critical dynamic,

7



Chapter 1. Introduction

making an analogy with phase transitions [64]. However, in contrast to them, the

absence of a direct tuning parameter designated these systems as self-organized.

SOC had the ambition of explaining practically all phenomena displaying scale in-

variance, which attracted the interest of a large community and generated a large

number of works in diverse disciplines.

The direct relevance of the SOC ideas to earthquake physics is rather limited,

which we may say is expected given the simplicity of the ingredients and rules

of the original model. However, those ideas sparked the interest of the physics

community in earthquake-like dynamics and were a starting point for more suited

models, like the Olami-Feder-Christensen (OFC) one, [65]. The OFC model is a

cellular automaton translation to the spring-block model [30] and, therefore, it is

much closer to the actual earthquakes than the original sandpile model [52]. The

emergence of different experiments displaying scale-invariant behavior, often linked

to earthquake statistics, is another relevant legacy of the SOC ideas.

1.2.3 Analog experiments

The complexity of earthquakes is such that capturing their dynamics in a theoretical

model will always be an oversimplification. Finding a physical system sharing a

common behavior is a less drastic simplification to approach earthquake dynamics.

With this perspective, a large number of analog experiments have been set. Much

like theoretical studies, many efforts were focused on fracture and friction. Early

fracture-oriented studies [37, 38] have shown micro-fractures, occurring during rock

compression tests, exhibited a multi-scale behavior. More recent works on subcritical

fracture have also displayed power laws distributions similar to the G-R law as well

as Omori-like relations [19, 39, 40].

Friction experiments have usually focused on shearing two surfaces against one

another, usually blocks. Several materials have been used, such as acrylic [41] (more

controllable) or actual rocks [66] (closer to geological materials). To further the re-

semblance with actual faults, granular material has been added in some experiments

between the sheared surface. One example, from [67]2, is shown in figure 1.6.

In parallel, the importance of other mechanisms was being investigated, such

as fault healing [70–73] or water lubrication [74, 75]. Contemporary experiments

have included these aspects using ice [76–78]. In these experiments, a solid disk

is rotating at the surface of a water bath. As the experiment is conducted under

freezing temperature, a layer of ice forms above the water. This provides both

2The setup was first used in [67], but the schematic here has been taken from [68].

8



1.2. Modeling earthquakes

Figure 1.6: Experimental setup used in [67–69], among others works. It consists of

a plate slowly driven (1–100 µm/s in [67]) between two others, with both gaps filled

with a monodisperse granular made of glass beads. (From [68])

lubrication, thanks to water, as well fault healing, when the ice forms back after a

rupture event.

It is clear the complexity of earthquakes is unlikely to be capture by a single

model or experimental setup. Nucleation of earthquakes, propagation along a fault,

interactions between faults, statistical properties are all very different phenomena

happening at vastly different scales.

Different complementary models and analog experiments working at different

scales and aiming at diverse goals will be necessary to reach a more complete under-

standing of earthquake physics. Our work focuses primarily on earthquake statistics,

with a system comprised of a granular material. Other works have used similar ap-

proaches [79–81], with one system in particular [82], a bi-axially sheared 3D granular

material which replicates each of the statistical law we have discussed earlier, but

with a twist. In this system, the total strain plays the role of time, showing any

memory effect must be present in the structure.

The labquake project, the framework of my thesis, falls in this line of research.

Our main experiment, which will be detailed in chapter 2, is shown in figure 1.7.

Succinctly, a photoelastic granular material arranged in a 2D layer is continuously

sheared under constant load. During the shear, acoustic emissions occur and have

been shown to exhibit statistical features found in earthquakes [83]. Before present-

ing this agreement in detail in chapter 3, I will now explain each statistical law our

9



Chapter 1. Introduction

Figure 1.7: The main experimental setup of my thesis. It consists of a sheared 2D

layer of disks.

experiment reproduces.

1.2.4 statistical laws of earthquakes

The incursion of many physicists into earthquakes dynamics, propelled by the ideas

of Complexity, brought fresh ideas into the field. However, it is quite common to find

wrong interpretations about the statistical relation describing seismicity in physics

papers. Therefore, as a good practice, we encourage the community to use real

earthquake data to directly confront their results on models or analog experiments.

All the statistical analyses in this section are performed on real earthquakes data.

A very recent (2019) earthquake database, The QTM Seismicity Catalog, has been

used [84]. This catalog range from 2008 to 2017 and focuses on southern California.

Energy distribution

Earthquakes display many statistical features, explained through several phenomeno-

logical relations. In our project we have focused on three main relations: The GR

law, the Omori law and the distribution of inter-event times. . The first was eluded

to at the beginning of this introduction and relates to the distribution of earthquakes

energy. the Gutenberg-Richter law [24] describes the probability distribution to

observe an event of magnitude at least M0 :

P (M ≥ M0) ∼ M−b
0 (1.8)

with b empirically measured to be close to 1 (with some variation [85]). The physicist

is however more used to talking in term of non-integrated probability distribution,

10



1.2. Modeling earthquakes

and energy instead of magnitude. To convert the GR law into a more familiar form,

one can use the following relationships, the first from [86] and the second being the

fundamental theorem of calculus:

M ∼ 2/3log(E) (1.9)

P (X0) =
d

dX
P (X ≥ X0) (1.10)

One can finally derive a probability density function for the energy:

P (M) ∼ M−5/3 ∼ M−1.67 (1.11)

Figure 1.8: Energy distribution of earthquakes, with a linear regression of slope 1.64.

Figure 1.8 represents the energy distribution law under the form of equation 1.11

accompanied with a linear fit of slope 1.64. Given the relevance of the exponent

values (explained in appendix A), specific methods have been developed to perform

an optimal fit of the data. The method and python package developed by [87] was

used for this linear regression. It will also be used throughout this thesis.

Aftershock rate decay

The second3 statistical feature we have focused on is theOmori law [88] (sometimes

the Utsu-Omori law [89]) and relates to aftershocks. After large earthquakes, the

seismic activity is higher than usual, causing additional quakes smaller than the

3Even if listed as second here, it was actually described before the GR law, in 1894.

11



Chapter 1. Introduction

mainshocks – these are called “aftershocks”. The Omori law stipulates the rate of

aftershock n at time t after the mainshock decrease as:

n(t) = n0 +
k

(c+ t)p
(1.12)

with n0, k, c and p empirical constants4. k is a global activity rate multiplier, n0 is

the background rate and c acts as a time lag. The most important parameter, the

p exponent, dictates the decay rate of n(t) and is typically close to 1.

To compute the aftershock rate, a mainshock must first be defined. The earth-

quake I will present the aftershock sequence of is the 2010 Baja California earth-

quake, which happened on April 4th, 2010. A section of the QTM catalog after this

mainshock is shown in figure 1.9 while the aftershock rate is shown in figure 1.10.

Figure 1.9: An aftershock sequence following a main quake which happened on

April 4th, 2010. Note the magnitude axis is cropped to exclude the smallest event

for clarity. Another fairly large quake (M6) can be seen around 70 days, with its

own, smaller, increase in seismic activity.

If the concept of aftershock may make intuitive sense at first, it is actually far from

obvious to properly define. Since earthquakes can a priori happen anytime at any

size, how can an independent event be differentiated from one that is the consequence

of the previous one? Depending on what is or what is not an aftershock, measures

and interpretations may vary and several models and techniques have been deployed

to tackle this issue [90–95]. A very crude method to separate aftershocks from the

background activity is to change the detection threshold. The effect of the threshold

4Note than while they are called “constants”, they depends on the period and seismic region

studied.
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1.2. Modeling earthquakes

Figure 1.10: Seismic rate decay obtained by selectively counting earthquake above

a range of threshold, following the main shock shown in figure 1.9. The black lines

(solid and dashed) are not fit, but visual clues. The decay is longer and more

pronounced for higher thresholds since the respective baseline activities are lower.

choice is illustrated by figure 1.10. The beginning of the curves (between 10−1 and

100 days) are less meaningful as the aftershock rate is harder to compute right after

the mainshock, smaller events are hidden by larger ones. This is a phenomenon called

catalog incompleteness. After a day, all curves decay following power laws with more

or less well-defined slopes. As expected, the seismic rate decays to lower values the

higher the threshold is. The decay rate itself does not change very significantly

once any threshold is applied. A striking feature of this seismic rate slowdown is its

timescale, ranging in the years.

Waiting times between events

The last property we will discuss is a rather recent one and comes from the physics

community. It was described by A. Corral in [96]. To quantify earthquake recurrence

at a given region, one can study the series of waiting time τ between events of

energy above a given threshold E0, noted τE≥E0
. The distribution of τE≥E0

can be

rescaled for comparison between thresholds. For this purpose, let us call τ ∗E≥E0
the

average of τE≥E0
and RE≥E0

= 1/τ ∗E≥E0
, respectively representing the average inter-

event time and the event rate. We can then define the dimensionless waiting time

θ = τE≥E0
/τ ∗E≥E0

and compute its rescaled probability distribution PDF (θ) ·RE≥E0
,

as is done for the QTM catalog in figure 1.11. At any threshold the data collapses

well around a master curve in black of equation f(θ) = C θγ−1exp(−θδ/B) with
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parameters C=0.5, γ=0.67, B=1.58 and δ=0.98. This master curve consists of a

slowly decreasing power law of exponent −0.33 for values below θE≥E0
= 1 and an

exponential decay for values above. The later part of the curve indicates the inter-

event time is highly unlikely to be very large, as this distribution is not heavy-tailed

but exponentially bounded.

Figure 1.11: Normalized probability distribution of θ = τE≥E0
/τ ∗E≥E0

for different

threshold E0. All distribution collapse perfectly on the universal function f(θ) =

C θγ−1exp(−θδ/B).

Besides the remarkable universality across geographical regions and energy thresh-

olds, an important feature of this master curve is its power-law beginning. If earth-

quakes were a completely memory-less process, like radioactive decay, we would only

expect a decreasing exponential. This indicates there is memory in such processes.

This weak memory effect is characterized by the fact the system appears to “remem-

ber” an event of energy E0 for a duration equal to the average inter-event times of

event larger than E0.
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1.2. Modeling earthquakes

1.2.5 Labquake project and thesis goals

The labquake project, led by Osvanny Ramos, aims at developing a fully controllable

analog experiment, capable of –with relatively simple ingredients– reproducing the

statistical relations describing seismicity. Finding simpler systems experiencing the

same dynamics may allow a better understanding of the physics that rules this

behavior. More explicitly, long terms goals are tackling questions like the origin and

robustness of the dynamics, the analysis of memory effects, and the possibilities of

predicting catastrophic events in earthquake-like systems.

This model experiment, a continuously sheared photoelastic granular, will be

presented in chapter 2 of this thesis. The experimental method used to make mea-

surements will also be detailed, which includes acoustic, force, volume, and optical

measurements.

The statistical relevance, which has now been established [83], will be detailed in

chapter 3. Strong agreement with each of the three statistical laws presented before

has been observed.

Chapter 4 will focus on structural characterizations of the granular assembly.

First, a multi-scale behavior of the volume change of the granular will be presented.

This new data augment our previous mechanical definition of labquakes, giving rise

to a new classification of events. Quantitative analysis of the force chain network

will give insight into this classification. The rest of this chapter will present a novel

acoustic-based method to probe the inner structure of this force chain network.

Exploiting both images and acoustic data, chapter 5 will describe a technique

developed to locate sound emission sources in small, compact, and 2D granular

systems such as is ours. After detailing the theoretical foundation of the method, it

will be demonstrated in two different cells.

Finally, preliminary attempts at prediction will be the topic of chapter 6. First,

precursors based on distinct data will be listed and evaluated. Using basic machine

learning, these precursors will then be merged and exploited to make an agglomer-

ated prediction with hopefully better forecasting capability.
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LabQuake Experimental setup and

methods
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Chapter 2. LabQuake Experimental setup and methods

2.1 Experimental apparatus

The main experiment of the labquake project and the one I studied (see figures 2.1

and 2.2) is a 2D cylindrical granular pile, confined in between two concentric fixed

acrylic cylinders (side walls) and bounded by two rough circular rings (top / bottom).

The rings are made using the same material as the grains and have 99 “teeth” made

of half-cylinders of diameter d=6.4 mm with a periodic spacing of
√
2d (∼9.05 mm).

The granular material used in this experiment is a bidisperse mix of plastic

disks. They are 4 mm in thickness and the diameters are 6.4 mm and 7 mm.

To avoid crystallization, both diameters are used in equal proportions. With the

goal to measure the stress in the granular using photoelasticimetry, a photoelastic

material was required. Common choices include homemade particles using clear

rubber or commercially available materials [97]. However, such material have low

Young modulus (1∼10 MPa) and would not be able to handle our confining pressure.

Fortunately, we had access to an Objet30 3D-printer which can use the (proprietary)

Durus White 430 material, a UV-cured plastic with photoelastic properties, and a

Young modulus in the range of 100 MPa.

A constant dead load placed over the top ring compresses the granular pile, of

weight 7 ∼ 40 kg, depending on the experiment – but typically 27.5 kg. Using heavy

weights ensures the vertical compression is well controlled and does not depend on

spurious frictional interactions between the granular material and the sidewalls.

The top ring is free to move vertically but not to rotate, while the bottom one

is slowly rotated with a period of 18.33 h, quasi-statically shearing the granular

pile with a linear velocity of 48.84 mm/h. Thanks to a lever and a force sensor, we

measure the torque Γ(t) applied by the granular pile on the top ring. Six piezoelectric

pinducersTM are inserted regularly in the top ring and simultaneously record acoustic

emissions. Placed above the top plate, two inductive positions sensors monitor

its position h(t). Finally, an array of 24 cameras driven by Raspberry Pi 3B+

surrounds the setup to take full panoramic pictures. Except for the pictures, taken

at 4 seconds intervals, all the other measurements are done at a rate of 100 000

samples per second, using a NI-USB-6366 card. The system is left to evolve for a

typical duration of 24h.

Thanks to its particular geometry, the system can be sheared almost indefinitely,

with strains larger than 100%. This allows for a very large amount of data to be

collected. This is crucial to perform statistical analysis regarding large events, as
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2.1. Experimental apparatus

they occur very rarely. A shear band divides the structure into a very mobile zone,

corresponding to a layer of about 10 grain diameters adjacent to the moving ring

at the bottom of the system; and a zone that is almost static in the top part of the

pile [83, 98, 99].
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Figure 2.1: The main Labquake experiment. Six piezoelectric sensors record acoustic

data, two force sensors measures the resistive torque on the top as well as the tension

in the driving chain and two position sensors measure the height of the top plate (not

seen in the picture). Force chains can be seen on the zoomed view of the granular.

Figure 2.2: Schematic of the cylindrical shearing experiment shown in figure 2.1 as

a cut-view.
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2.2. Acoustic and mechanical measures

2.2 Acoustic and mechanical measures

During the shear, grains rub and slide against each other and sudden re-arrangements

of the structure occur. All of these processes can create acoustic emissions, as well

as torque and volume discontinuities. In this section, I will describe the processing

done on the acoustic and torque signals to define the core measurements used in the

labquake project, and throughout my thesis. The position signal will be studied in

the first half of chapter 4.

2.2.1 Acoustic sensors

Acoustic emissions are recorded by six piezoelectric pinducersTM (VP-1.5 from CTS

Valpey Corp) regularly inserted in the top ring closing the experiment. These sen-

sors have a rather flat response over a large band of frequencies (1kHz to 10MHz),

containing typical frequencies produces by our system. To ensure good and constant

acoustic coupling, silicon oil is added to the hole before inserting each sensor. Silicon

oil has two advantages: it does not dry quickly and spreads very easily, ensuring the

holes are well filled throughout an experiment.

Figure 2.3: Top: recorded acoustic signal displaying a large acoustic event around

t = 15ms. Bottom: Smoothed scalogram of the above signal, with lighter shade

indicating higher energy. The color is in log-scale.

To detect events in the acoustic signal, we perform a Discrete Wavelet Trans-

form (DWT) on instants separated by 50µs. 128 frequencies, logarithmically spaced
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between fmin = 1kHz and fmin = 20kHz, are analyzed. A python implementation

(tftb on pip) of the Matlab Time-Frequency Toolbox was used to perform this spec-

tral analysis. The obtained scalogram is then smoothed using a Gaussian blur of

parameters σt = 0.6 ms and σf = 12 bins (respectively for the time and frequency

axis). The resulting scalogram is shown in figure 2.3. Events are then detected on

this smoothed time-frequency representation using a basic peak detection algorithm.

Detecting a peak provides its timing, and the energy is defined as the peak value.

2.2.2 Mechanical sensors

Both mechanical signals, torque and position, consist of a smoothly varying part

with short discontinuities, as illustrated on the top of figure 2.5 (in the next sub-

section). Discontinuities are detected and characterized through convolution with a

normalized derivation filter D of the form:

D(t) = −1/K for t in [−tf,2,−tf,1]

D(t) = +1/K for t in [tf,1, tf,2]

D(t) = 0 otherwise.

(2.1)

Figure 2.4: Shape of the filter D used to detect discontinuities in mechanical signals.

with tf,1 = 30 ms and tf,2 = 200 ms and K = tf,2 − tf,1 a normalization constant.

Choosing tf,1 6= 0 creates a “gap” in the middle of the filter, as illustrated by figure

2.4. The reason for this is to account for the finite speed of the discontinuities. With

this gap, we can measure only the change between before and after an event, and

ignore the transient displacement.
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Torque and mechanical energy

The torque signals are measured with Interface SML-900N force sensors. To obtain

the torque, we multiply the force value by the lever length. By assimilating the setup

as a torsion spring, the mechanical energy can be written as Em,tot =
1
2
K · Γ2. The

spring constant K is the composition of several different parts of the experimental

setup; K−1 = K−1
gears +K−1

chain +K−1
sensors +K−1

lever +K−1
granular. Since everything but

the grains is made out of large pieces of steel or aluminium, we can approximate

K−1 = K−1
grains. Mechanical energy release events are then defined as Em ∼ Γ2

i − Γ2
f

with Γi and Γf the initial and final torque values.

In figure 2.5, a torque signal (top) and its convolution with the previously de-

scribed filter (bottom) is shown. 1D peak detection is then used to detect the energy

and timing of events.

Figure 2.5: Top: the torque signal Γ. Bottom: smoothed derivative of Γ2.
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Dilation

The two position sensors (Baumer IPRM 12I9505/S14) are suspended above the

experiment, attached to controlled stepping motors. When a sensor is getting too

close (or too far), its motor brings it back into an optimal distance range.

Figure 2.6 shows the first hour of a position signal alongside a zoom around a

large drop. On the zoomed part, oscillations can be observed. These are due to the

way the sensor is installed, suspended above the experiment. Large events shake

the structure and the sensor can oscillate for a short while, acting as a dampened

pendulum. However, these oscillations are easy to filter using the previously detailed

filter.

Chapter 4 is dedicated to the study of the position signal.

Figure 2.6: Top: the first hour of the position measurement. Bottom: a zoom of the

large event right after 40 minutes.
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2.3 Imaging setup

When joining the LabQuakes project during my Master’s internship and for the

better part of the following year, my first task was to completely redesign the imaging

system, which included both the instruments and the methods. The original setup,

shown in figure 2.7, was comprised of 12 HD (1920×1080p) Logitech USB webcams.

With 12 cameras, each has to observe at the very least a 12th of the cylinder, which is

30o. Since they were placed around 30 cm away from the surface, curvatures effects

were strong and the sides of each camera region of interest (ROI) were very blurry.

This setup was previously used for qualitative analysis, but it was not adapted for

quantitative measurements.

I replaced the old optical system with 24 Raspberry Pi 3B+, each equipped with

V2.1 camera modules (3280×2464 px), which can be seen in figure 2.8. The in-

creased number of sensors reduces the angle each unit must record by two, to 15o.

In addition, the new cameras are placed almost twice further as the previous ones.

Finally, in the latest version of the setup, the polarizers used to measure photoe-

lasticity are now placed in front of each camera, covering their sight, as illustrated

in figure 2.9a. The previous solution, a large sheet covering the outer cylinder, in-

troduced some defects (such as where the edges of the sheet meets), and was much

more fragile. Thanks to these changes, current images (see figure 2.9b) are now of

good enough quality for quantitative analysis.

Contrary to the torque sensor (for instance), which measures a property of the

whole system, each image provides data related to only a fraction of the system.

From the set of 24 independent images, we want to be able to measure system-wide

properties. Schematically, two approaches can be considered:

• measuring on individual images → fusing data

• fusing images → measuring on a fused panorama

The second approach has several advantages: faster (smaller total pixel area),

the curvature is corrected prior to measurements, and some analyses are easier to

do on panoramic images (on force chains, for instance). For these reasons, this

approach was chosen. Two methods were considered to fuse images, which I will

now explain.
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Figure 2.7: Former setup with 12 USB webcams placed at a distance of roughly

30cm.

Figure 2.8: Imaging setup, forming a ring of 24 independent cameras placed at 50cm.

26



2.3. Imaging setup

(a) Analyzing polarizers are now held

by a frame, in front of each camera.

(b) Typical picture taken by a camera.

The region of interest is boxed in red.

Figure 2.9

2.3.1 Image fusing techniques

The geometry of the optical system is fairly simple: 24 cameras are located on a

circle, perpendicular to the setup axis. For this reason, the first approach to fuse

neighboring images was to use our knowledge of the system geometry and use explicit

theoretical formulas to straighten the images.

Theoretical approach

We observe a cylinder of know radius R, from a distance d, as schematized in figure

2.10. On the picture (in the focal plane) we observe a point P of coordinates (x, y),

which corresponds to a real point Pm located on the cylinder surface of coordinates

(xm, ym). We want to compute Pm as a function of P . Note that the xm coordinate

is defined along the surface of the cylinder, such that xm = Rα.

Using the angles and length as defined on 2.10, we can show that:

α = −β + arcsin(
R + d

R
sin(β)) (2.2)
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Figure 2.10: A top view of the model is represented on the left side, with (xm, ym)

denoting the coordinates in curved geometry and (x, y) the coordinates within the

picture. On the right side, a front view of the same model.

Where β = arctan(x/d). Let us call L to the distance between the intersection

of the dashed and horizontal lines on the left part of figure 2.10. Two applications

of the Thales theorem gives us:

ym =
yL

d
(2.3)

We can finally express both xm and ym as:

xm = Rα (2.4)

ym = y · (1 + R

d
(1− cos(α))) (2.5)

A curved grid of observed points (x, y) (dark blue) is overlaid on a corresponding

grid of real points (xm, ym) (light blue) on figure 2.11, alongside a vector field to

show the transformation.

By applying this transform to our pictures, we can now “flatten” them and

remove curvature effects. However, each image must still be aligned and fused with

its neighbors. This procedure of fusing different data sets with different coordinates

systems (here, neighboring images) is called registration. For this process to be

accurate, it helps to have at least some overlap: points in each set describing the

same object, to serve as a reference. An example is shown in figure 2.12, where two

orthogonal laser scans are fused to form a more complete 3D view. In this example,

a vertical edge of the building (among other details) can serve as a reference point

for the alignment.
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Figure 2.11: On the left, the viewed, deformed grid is represented in dark blue, with

the real grid overlaid in light blue. The point-wise transformation is represented on

the right.

Figure 2.12: An example of registration of laser scans of an unknown monument A

side view is matched with a front view. Sourced from [100].

In our case, two options are available. Either we can directly use the images

themselves for alignment, using cross-correlation, or we can use indirect data, such

as tracking output. The first option may seem to be better at first sight since raw

images are not subject to processing-induced errors, such as possibly poorly tracked

grains. However, the area where we aim to fuse neighboring images is along their

edges. This is where they are the most visually dissimilar since it is observed at a

high but opposite angle from each camera. It was thus chosen to use tracked grain

coordinates as reference points for alignment.

The experimental design detailed above implies that the granular pile is not crys-

tallized. However, the grains are relatively close in diameter (∼ 9% difference) and

the local ordering can still resemble hexagons. Because of this, using a correlation
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between sets of tracked grains may present a lot of local minimums which would be

hard to discriminate between. To prevent this issue, we only used a given category

of grain (small or large) as reference points, since such a subset is likely to have

much less regularity. The geometric model we used to flatten our picture has some

limitations, in the sense that it does not include any rotation (roll, pan, and tilt)

of either the observed object or the camera. These can be accounted for by giving

some leeway to the cross-correlation process. Instead of comparing two sets P1 and

P2, we can compare the first one to a transformed version of the second, T (P2). The

flexibility of the matching process is determined by the extent of the transformation

allowed in T . In our case, T was only able to rotate and shear the points. In fig-

ure 2.13, two sets of neighboring points, comprised only of small grains, have been

aligned. This alignment required a rotation.

Figure 2.13: Two matched subsets of points, comprised of small grain position data.

The overlapping points appear darker. Initial figure frames are left to show the data

has been, among other things, rotated.

One big issue with this approach however is error accumulation. We have 24

cameras, producing 24 sets of points. Using point registration, we transform data

to perform a local match. This means P2 will be transformed to match P1, but

P3 must be transformed to match the transformation of P2. Small errors can get

magnified after 23 steps. In practice, local geometry is conserved in all cases but

global geometry is not, as illustrated by figure 2.14 where the detected grains end

up curving downward. Such drift can be fitted and corrected for, but that would

add yet another ad-hoc transformation to our data.

This geometrical method was used for qualitative measurements back when the

setup had 12 cameras. Due to this limitation, however, it was not sufficient anymore

for quantitative analysis. I thus devised a completely different method based on
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empirically measuring the transformation to apply, which I will now explain.

Figure 2.14: A panoramic detection reconstructed with iterative registration. Local

geometry looks fine, but a global drift downward can be observed. Color codes grain

size: red for larger grain, blue for smaller ones. Holes were caused by cracks in the

cylindrical outer wall, as well as tears in the polarizing sheets. Both were eventually

changed, the consequences of which are discussed at the end of chapter 3.

Empirical approach

This method is inspired by the use of fiducial markers in computer vision [101–

104]: these markers serve as references for the imaging system to better interpret its

environment, by providing information such as the location and orientation of the

marked objects. The obtained data can then be used for various applications, such

as augmented reality (see figure 2.15), motion capture, or deformation mapping -

our objective here.

Figure 2.15: A fiducial marker is used to transmit position and orientation data to

the smartphone so it can correctly overlay a 3D kettle on top of the table. Sourced

from [102].
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The marker I designed consists of a long rectangular grid of red dots, with unique

green round marks regularly placed along the central line of the grid (see figure 2.16).

Once printed on a large sheet of paper, we can wrap it around the cylindrical wall

of our experiment. The green marks are similar to 5bits QR-code, with a known

absolute position within the grid. The position of each red dot can be known relative

to its nearest green marks and thus, absolutely located as well.

We can then take a picture1 of the wrapped cylinder, and assign to each red

dot seen in each camera an absolute coordinate in the flat plane represented on the

printed paper. This defines a function, taking pixels coordinates and image number

as input and providing absolute coordinates as outputs. This function can then be

interpolated and applied to every pixel in our images where the marked paper has

been removed as if we were unwrapping the image like the label on a can of food.

Practically, this transformation is done using the LinearNDInterpolator function

in the scipy [105] python library, which performs a Delaunay triangulation followed

by a barycentric weighting. The computation of the interpolation parameters is very

expensive and takes roughly 3 hours on a modern laptop to run. However, since

these parameters do not change during an experiment, they can be saved and directly

applied afterward. Experimentally, this calibration is done once per experiment at

the start. This is sufficient as cameras do not move during an experiment, but also

necessary as they may move during setup and cleanup.

Once the pixel positions have been interpolated to the absolute frame of reference,

they will no longer be aligned on a regular square grid. An additional step of

interpolation is required to cast the data into the shape of a raster picture. This is

done using the same scipy linear interpolation function. Finally, images are stitched

together using a procedure based called “seam carving”2. Seam carving [106] was

originally developed to reduce the size of an image without cropping, which may

lead to loss of data, or squeezing, which will change the aspect ratio. The procedure

revolves around computing a path (or a seam) that will minimize information loss,

usually by minimizing the image gradient along the path. The path (or seam) is

then “carved out” of the image.

This new method has several key advantages over the previous one. Since the

deformation is measured instead of computed, there are essentially no approxima-

tions and everything should be accounted for. It also makes it less crucial to set the

camera perfectly horizontal. However, the most important advantage over the first

1The green and red colors are chosen for easier separation during image processing since we

capture RGB pictures.
2(now called liquid rescaling in GIMP)
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2.3. Imaging setup

Figure 2.16: (a): Flat, original picture of the reference grid. Green symbols are

unique and provide global position information within the reference while red dots

provide local geometry information in relation the green symbols. (b) Picture of

the printed reference grid wrapped around the outer cylinder of the experiment. (c)

Picture taken without the printed reference grid.(With a light reflections, which are

not present during experiments.)

method is the absolute frame of reference common to all transformations. Since the

reference grid location information is relative to the whole paper sheet, every pixel

is not only flattened but placed in that absolute frame as well. Thanks to this prop-

erty, the reconstruction error between data from camera 1 and camera 2 is expected

to be the same as between camera 1 and camera 24: there is no accumulation of

errors.

A panoramic image created using this technique is shown on the next page.
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2.3.2 Image exploitation

Tracking

In the procedures previously described, we focused on unwrapping the data from a

collection of 24 independent and curved images to exploitable, globally positioned

data. From there, two major measurements can be performed: grains position

tracking and force network extraction. The tracking is done using an implementation

of the Hough algorithm [107] found in OpenCV for Python [108] which shows great

performances; the estimated number of missed particles is < 0.2% and the mean

error on the position is ∼ 5% of a grain radius.

Birefringence and photoelasticity

Materials that have two refractive indexes are called birefringent. When light goes

through such a material, the relevant index will depend on the direction of polariza-

tion of the light. Some materials are naturally birefringent, such as calcite or ruby.

This property can also be achieved by some material under strain, in which case it

will be called photoelastic. This phenomenon is illustrated in figure 2.17.

Figure 2.17: A protractor showing tension lines thanks to polarized light. Picture

by Nevit Dilmen, licence CC BY-SA 3.0

Let us consider a photoelastic material at rest (without birefringence) with a refrac-

tive index n0 and thickness h. If a stress of σ1, σ2 (along its principal directions) is

applied, an index difference will appear:

∆n = n2 − n1 = C(σ2 − σ1) (2.6)

where C is a material-specific constant expressed in Brewster, with 1 Bw = 10-12 Pa-1.

It encompasses both the photoelastic response to strain, and the strain response to

the stress. If two coherent monochromatic waves of wavelength λ go through the
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Figure 2.18: Schematic of a polariscope. The sample is placed between two circular

polarizers (made of a linear polarizer and a quarter-wave plate). The “S” and “F”

denote the slow and fast axis of the quarter-wave plates, respectively.

material (polarized respectively along axis 1 and 2) a phase shift 2πp will be induced,

where p is given by:

p =
hC(σ2 − σ1)

λ
(2.7)

To visualize the stress using this phase shift, polarized light is needed. A

schematic of the optical setup is shown in figure 2.18. By using circularly polarized

light, the signal observed by the camera is made independent of φ, the orientation

of the stress relative to the individual (linear and quarter-wave) polarizers.

After a wave has gone through the setup, the light intensity is:

I ∼ sin2(πp) = sin2

(
πhC(σ2 − σ1)

λ

)
(2.8)

The details of this calculation are found in annex B. Under no stress, p = 0

and the intensity is null: this is a dark field configuration where small stress will

locally increase luminosity. Turning either circular polarizers by 90o will reverse this

behavior: stress will darken an otherwise bright sample.

Force estimation

For the relatively soft grains commonly used in photoelastic studies (cite K. Daniels...)

and for the typical stressed applied... For soft grains, the strain is larger for a given

stress and the range of value covered by the phase shift p can be large. In this case,

several interference fringes can appear. For hard grains like ours, no fringe appears

the vast majority of the time. Depending on the case, different approaches exist

based either on total luminosity, gradient integration [109] or fringe counting. The
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2.3. Imaging setup

photoelasticity wiki [110] is a great source of information concerning experimental

and analysis methods regarding photoelasticity.

In our case, we used the gradient-square method, or G2 method. This method is

well explained in the photoelasticity wiki, but I will quickly recall it below.

First, we define the gradient squared as:

|∇|2 = 1

4

[
(
Ii−1,j − Ii+1,j

2
)2 + (

Ii−1,j−1 − Ii+1,j+1

2
√
2

)2+ (2.9)

(
Ii,j−1 − Ii,j+1

2
)2 + (

Ii+1,j−1 − Ii−1,j+1

2
√
2

)2
]

Where Ii,j is the intensity of the image at coordinate (i, j). The G2 value is then

defined as the normalized sum of |∇|2 over the region of interest (ROI):

G2 =
1

N

∑

i,j∈ROI

|∇|2 (2.10)

Figure 2.19: Calibration of the G2 value against a vertically applied force on a single

grain, for two grains.

This G2 method is not applied directly to the raw images: our images are colored,

and the G2 is defined on single-channel images (greyscale). One could simply use

the luminosity of the images – however, this is not adapted since the photoelasticity-

induced phase shift depends on the wavelength. Hence, mixing colors through lumi-

nosity (which is a weighted sum of the red, green, and blue channels) could attenuate

and complicate the gradient behavior. As it happens, the intensity change in the red

channel is the most correlated with applied force, and all the following analyses will

be performed on this channel. Figure 2.20 and 2.21 show eight pictures of our grains
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Figure 2.20: Eight pictures of the grain during the uni-axial stress test realized for

figure 2.19.

Figure 2.21: Red channel of the eight pictures shown above.

(large size, d = 7 mm) under different loads. The first set of images are standard

RGB images and the second set is only comprised of the red channel.

In figure 2.19, the G2 value is compared to a vertically applied load. We can see

that there is a good linear correlation. The large horizontal error bar on the force is

explained by the test methodology. First, the load is applied to the grain, a picture

is taken, and the load removed. The force is measured during the whole process.

Since the loading is not done with a deadweight but a press, the grain can undergo

a small quasi-plastic relaxation. Thus, the measured force drops a little during the

process. This range of force is the dominant cause of uncertainty in figure 2.19.
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This rather short chapter mostly corresponds to the results published in 2019 [83].
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Chapter 3. Relevance to earthquakes

In the previous material and methods chapter, I explained the two ways we used

to define labquakes (and their associated energy), either using the acoustic signal

or the force signal. Both types of events will be analyzed here, and will respectively

be referred to as acoustic event and mechanical event, with their respective energy

denoted as Ea and Em.

Let us now detail the statistical similarities between labquakes and earthquakes,

with a focus on the laws that were detailed at the end of the introduction.

As most interpretations focus on power-law exponents, the energies and the as-

sociated probability distributions will sometimes be multiplied to align elements on

some figures. This will be indicated by a “∝” symbol on the relevant axis labels.

3.1 Energy distribution

3.1.1 Distribution of the different event types

Figure 3.1 presents the probability distribution of energy for earthquakes and both

types of labquake events (acoustic and mechanical). The distributions have been

shifted along both axes for easier comparison. The distributions shown were com-

puted on around ∼ 5.5 × 105 earthquakes, ∼ 2 × 106 acoustic labquake event, and

∼ 5 × 103 mechanical events. The earthquake data presented here comes from the

same catalog as the one used in the introduction [84].

Figure 3.1: Energy distributions of earthquakes, acoustic and mechanical labquakes.

All are well described by power laws of comparable slopes.

Both Ea and Em distributions are compatible with a power-law description of
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3.1. Energy distribution

the form P (E) ∼ E−β, with βa = 1.71 and βm = 1.71. These values were obtained

by the maximum likelihood method described in [87]. The exponents are coherent

between both kinds of artificial events, and very comparable with the one describing

this earthquake catalog.

3.1.2 Robustness across acoustical sensors

The distribution of acoustic energies Ea shown in figure 3.1 is based on a single

sensor. To check the results do not depend on the sensor, we can compare their

distributions, as shown in figure 3.2.

Figure 3.2: Energy distribution of the sensors, shifted so they all share a common

point at (1, 1), highlighted in black.

All distributions in figure 3.2 have been shifted, along both axes, to share a

common point at the beginning of the power law, highlighted in black on the figure.

3.1.3 Coherence of the definitions

The acoustic and mechanical definition of events produces the same distributions,

but we can verify their agreement event-wise as well. Since mechanical events are

far less numerous than acoustic events, we will look for acoustic emissions matching

our torque drop, rather than the contrary.

To associate an acoustic energy to a torque drop, we find the acoustic event

that is closest in time, for each acoustic sensor. As some sensors will be closer the

event than others, we will take the average energy from all the sensors. Before doing
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so, however, the data from each sensor is rescaled the same way they have been to

make figure 3.2. This way, the average is not dominated by the pinducerTM with

the highest coupling.

Finally, the acoustic energy is binned by their associated mechanical energy. The

median of Ea is computed for each bin, and these finally serve to perform a linear

regression.

Figure 3.3: Equivalence of the mechanical and acoustic energies. The regression is

performed on binned medians of all paired events.

This process results in figure 3.3, with the event data in light blue, the binned

median in dark blue, and the fit in solid dark blue. The slope of the fit is 0.96,

indicating an agreement on average. However, the spread of the point cloud shows

Ea and Em are not trivially linked either.
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3.2. Omori law

3.2 Omori law

To study aftershock and foreshock sequences, I started by investigating the activity

after the largest event of a dataset, with the idea to fit the evolution of the event

rate using the equation presented in the introduction:

n(t) = n0 +
k

(c+ t)p

Let us remind the physical meaning of each parameter. k is a global activity

rate multiplier, n0 is the background rate and c acts as a time lag which helps to

account for the plateau due to catalog incompleteness. Finally, the Omori exponent

p dictates the decay rate and is typically close to 1.

However, as shown in figure 3.4, the activity curves obtained are jittery and

subject to “catalog” incompleteness, particularly in the cases of foreshocks. This

makes the estimation of the parameters difficult.

Figure 3.4: Foreshock and aftershock sequence for the largest event.

To solve this issue, we can average the activity rate over many events. Figure

3.5 display the same analysis as done in figure 3.4, but average over the 4500 largest

events. The trends appear much more clearly, and the resulting fits are:

n4500
aftershock(t+) = 8.75 +

5.54

(0.011 + t+)0.8

n4500
foreshock(t−) = 9.35 +

2.13

(0.0029 + t−)0.6

where t− = te− t and t+ = t− te, with te the event timing. The Omori exponent

is noticeably smaller for the foreshock rate, as well as the rate increase prior to the

event. The plateau effect is less pronounced as well.
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Figure 3.5: Foreshock and aftershock sequence average over the largest 4500 Ea

events.

Changing the threshold does not change the behavior, however, the parame-

ters are slightly different. An example of a larger threshold is shown in figure 3.6,

selecting only 1000 events, with the associated fit parameters below it.

Figure 3.6: Foreshock and aftershock sequence average over the largest 1000 Ea

events.

n1000
aftershock(t+) = 8.22 +

9.18

(0.061 + t+)1.0

n1000
foreshock(t−) = 9.85 +

2.53

(0.029 + t−)0.65

The background rates are further apart, the time offset c is larger (as propor-

tionally more events may be missed), and the decay rates are larger as well. This is

coherent with the fact that the effects of these 1000 events are not diluted with the

next 3500 largest events, as they were in the previous figure (3.5).
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3.3 Inter-event time distribution

Let us quickly remind the quantities defined in the introduction to study the inter-

event time distribution. We first define the time series of waiting times between

events of energy above a given threshold E0, noted τE≥E0
. This time series is first

rescaled by its average τ ∗≥E0
, to make θ = τ≥E0

/τ ∗≥E0
. The distribution of θ is then

itself rescaled by the inverse of τ ∗≥E0
, denoted RE≥E0

.

Several distributions PDF (θ)·R≥E0
, with different thresholds E0, are represented

in figure 3.7. The chosen thresholds are compared against the initial energy distribu-

tion in figure 3.8. Much like in the case of earthquakes, the data collapses well around

the master curve proposed by Corral [96]. The equation of the master curve has not

been fit to our data, instead, the same parameters have been kept to underline the

resemblance. The equation of the master curve is f(θ) = 0.5 θ−0.33exp(−θ0.98/1.58).

The conclusions that were drawn for earthquakes apply here as well. There are

weak memory effects in the system, which appears to “remember” an event of energy

E0 for a duration equal to the average inter-event times of event larger than E0.
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Figure 3.7: Normalized probability distribution of the dimensionless waiting times

θ = τ≥E0
/τ ∗≥E0

.

Figure 3.8: Energy distribution of the data set used to make figure 3.7
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3.4 Changes in experiment behavior

In the imaging section of chapter 2, I explained parts of the experiments were

changed to improve image quality: the cylindrical sidewalls, as well as the bot-

tom ring shearing the grain which was made shorter (to augment the vertical field

of view) and partly replaced with metal. This had several effects on the statistical

features presented in this chapter.

Figure 3.9: Comparison of aligned acoustic energy distributions. The recent data

set is indicated by squares, the older one by circles.

In figure 3.9, we can see the acoustic energy distribution has significantly shrunk,

from roughly 6 decades to 4. In addition, the exponent of the best fitting power law

is slightly higher, at β = 1.85, indicating larger events are slightly less common.

In addition, the analysis of after and foreshock sequences has also revealed some

differences, as illustrated by figure 3.10 which reproduces the method done for figure

3.5, averaging over 4500 events. The activity returns to its background rate faster,

in about 0.5 seconds compared to the 3 seconds in older data sets. A quiescence

period of around 5 seconds can also be observed in both foreshock and aftershock

sequences, where the event rate dips roughly 21% below its asymptotic value (at

2.19 s-1, compared to 2.78 s-1). The fitted law, matching well both curves, has the

equation: n(t) = 8.22 + 2.77
(0.073+t)2

. The most striking (and still unexplained) feature

is the almost perfect overlap of both curves. The analysis has been checked multiple

times and this is not due to a coding mistake, indicating a change in the experiment

behavior.

Finally, the inter-event time distribution presents deviations that are coherent

with the ones observed in the Omori law: There is a dip below the master curve
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Figure 3.10: Aftershock and foreshock sequences for recent data sets.

Figure 3.11: Normalized probability distribution of the dimensionless waiting times

for recent data sets.
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3.4. Changes in experiment behavior

around θ = 10−1, and the beginning of the distributions have steeper slopes.

Considering the deviations observed and the nature of the work done on the

experiment, we expect an increased stiffness of the system is responsible for these

changes. While this evolution of the setup was unexpected, exploring what dictates

the statistical law’s exponents is one of the long-term goals of this project. New parts

are being made to investigate the influence of the changes done on the experiment.
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4.1 Evolution of the volume

The dilation of a granular layer under shear is a classical and a rather intuitive

phenomenon reported more than a century ago [111]. To study this behavior, two

inductive sensors measuring the vertical movement of the upper plate were added to

the setup (Baumer IPRM 12I9505/S14). In figure 4.1, one can see the signal h(t)

seems to evolve relatively smoothly with a few discontinuities. These discontinuities

are denoted as ∆h1. On the zoomed event (bottom), oscillations can be observed.

As explained at the end of section 2.2.2, these oscillations are easy to filter out and

do not hinder any of the following analyses. Controlled stepping motors compensate

for the movement of the plate to guarantee the sensors are always in their range of

measurements.

Figure 4.1: Top: the first hour of the position measurement. Bottom: a zoom of the

large event right after 40 minutes.

4.1.1 Height discontinuity events

The expected behavior of a granular under shear is to dilate until the grains re-

arrange suddenly, causing a collapse in the structure. In our experiment, this mani-

fests as a drop (∆h < 0) of the top plate. This view corresponds well with the large

event observed around 40 minutes in figure 4.1. However, we can also observe some

sudden jumps (∆h > 0) around 10 or 55 minutes.

1This notation does not represent the signal h(t) - h(0))

52



4.1. Evolution of the volume

Figure 4.2: From the raw position signal (top), a series of jumps and drops (middle)

can be extracted. By removing these discontinuities from the raw signal, we can

obtain a smooth, continuous dilation (bottom).

By looking for positive and negative peaks in the convolution, we can measure

the timing and displacement of events with a precision as low as 0.1µm. 60 hours

of the raw position signal is shown on the top of figure 4.2. We can extract the

time series of jumps and drops (same figure, middle) from this signal using the

described filter. Finally, a smooth dilation S(t) = h(t) − ∆h(t) (bottom) is obtain

by subtracting the discontinuities from the raw signal. This smooth residual can be

interpreted as a signature of the expected granular behavior under shear. Overall,

the discontinuities dominate the dynamic as the overall signal h(t) trends downward,

due to very small but accumulating plastic deformations of the grains.

In addition, it seems from figure 4.2 the drops are generally larger in size than the

jumps, with no jumps larger than 0.2 mm while several drops pass this threshold.

To verify this, we can examine their respective probability distribution, shown in

figure 4.3. We can see the distribution of drops indeed reaches higher values than the

jumps. This is expected as such events are more energetically favorable. Another

difference can be seen slightly between 2× 10−4 and 2× 10−3 mm: jumps are more

numerous in this range. Finally, the two distributions come together at the lowest
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Figure 4.3: distribution of the jumps and drops absolute sizes. The dashed power-

law is not a fit of this data, but corresponds to the fitted value for acoustic events

for comparison purposes.

values. This can be understood as the threshold is near noise level, which is a priori

symmetrically distributed in sign. Finally, a dashed line corresponding to a power

law of slope -1.85, the value obtained by fitting the distribution of acoustic event

size, is added for comparison purposes.

4.1.2 Augmenting labquakes properties

The good agreement between the power-law slope obtained from acoustic events and

the distribution of position events ∆h is shared with the definition of events based

on torque, Em ∼ ∆(Γ2). We showed acoustic event Ea and position events ∆h are

similarly distributed, both well described by a power-law with a slope of -1.85. As

shown in chapter 2, acoustic energies Ea and mechanical energies Em (defined using

the torque Γ) are also strongly correlated. Since both torque events and position

events are mechanical in nature, one can wonder about the possible links between

them.

The resisting Γ torque is measured orthoradially and the ∆h events are related to

vertical force changes (under constant pressure and free volume condition). It seems

reasonable to assume that, since torque and vertical forces are simply orthogonal

projections of the same force being applied at a given angle by the force chains, ∆Γ

and ∆h should vary the same way. For instance, when a force chain breaks, it is

intuitive to think that the orthoradial force will decrease (∆Γ < 0) and the now less

supported top plate will drop (∆h < 0). However, figure 4.4 shows counter-examples
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Figure 4.4: Sudden variations in h are simultaneous with sudden variations in re-

sisting torque Γ.

to this intuitive view: From the three observable jumps, the first two correspond

to sudden increases both in torque and h(t), while the last jumps correspond to a

torque drop but with an associated increase of h(t). The events are simultaneous,

however, indeed indicating a common source between the two signals.

To investigate the relationship between these two measurements ∆Γ and ∆h,

we need a procedure to identify which torque discontinuity ∆Γ matches which ∆h.

For a given type of measurement (position or torque), the inter-event time is almost

never below 100 ms while the time precision on event detection is in the range of

0.1 ms. We have used a criterion of ∆t ≤ 1 ms to consider that both measurements

correspond to the same reorganization event.

Matched events can then be normalized and compared in log-scale. The resulting

scatter plot is presented in figure 4.5, where re-scaled ∆h are plotted against re-

scaled mechanical energy changes (proportional to ∆Γ2 [83]). For each series, the

scaling factor is its detection threshold (respectively denoted as E∗
m and ∆h∗). In

log-scales, it ensures the range of values starts from 0. The released energy associated

with a torque drop is considered positive; therefore a sudden increase of measured

torque implies a “negative energy release”.

We can observe the scattered data forms an“X” shape. Contrary to our intuition,

not only quadrant D in figure 4.5 is populated, but all other quadrants are also

significantly populated. We will next consider the force chains geometry to explain

this variety of events.
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Figure 4.5: Relation between signed and normalized ∆h∗ values and released me-

chanical energy E∗
m, for matched events. A-D: four different behaviors with percent-

age of events in each classification. The red lines represents the functions y = x and

y = −x.

4.1.3 Force chain orientation as a likely cause

Let us consider a system with a single force chain system, with extreme-case orien-

tations. If the force chain is perfectly vertical, it would not apply any force on the

orthoradially oriented sensor. On the contrary, if it was completely flat, the force

chain would not reach the force sensor at all. In order to maximize their stability,

force chains reorganize around a local optimal angle, placing themselves parallel to

the total stress. We will use this reasoning of a single one-chain description, where

one chain (called “active”) holding some part of the stress is broken and replaced

by a new one, as the main ingredient to qualitatively explain all the four different

behaviors presented in the figure 4.5:

• A (Γ ↑, h ↑, 42% of events): negative energy release and dilation of the

medium. Replacement of the active force chain with an equivalent one. This

is actually the most common case, particularly for lower energy events. The

second ingredient to explain the dynamics corresponds to the inertia of the

structural reorganization: the kinetic energy developed by the system during

the reorganization time, generates an extra-pressure in the new force chain,

reading as an increase of the force in both lateral (torque) and vertical (dila-

tion) directions with respect to the replaced one.

• B (Γ ↓, h ↑, 11% of events): positive energy release and dilation of the medium.
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Replacement of the active force chain with a more vertical one. The horizontal

projection of the force is smaller with respect to the replaced one. This reads

as a reduction of the global torque and, thanks to the inertia, an increase in

the vertical force, which provokes a dilation of the medium.

• C (Γ ↑, h ↓, 12% of events): negative energy release and contraction of the

medium. Replacement of the active force chain with a more horizontal one.

It should increase the global torque thanks to a better projection; as well as

bringing a contraction. However, the probability of finding such a percolating

chain for high-energy events is rather low, because of its instability.

• D (Γ ↓, h ↓, 35% of events): positive energy release and contraction of the

medium (intuitive case of a collapse). Replacement of the active force chain

with a weaker one. The more energetic releases fall into this classification.

Notice that from the 33 more energetic events, 31 events (94 %) fall in the

D-zone and only 2 (6 %) in the A-zone.

All the reasoning above is done within the shear band, where force chains are

the most dynamic. Above this region, the grains hardly rearrange or move at all,

and the upper half can be considered as a quasi-solid storing elastic energy.

Note that each of the above-proposed mechanisms explains both torque and posi-

tion variation at the same time. This makes sense with the fact both kinds of events

are caused by the same re-arrangement in the granular, and we can expect large

re-arrangement to have large consequences both in ∆Γ and ∆h. This is supported

by the “X” shape along which the data is distributed. By removing the signed

multiplicative factor, we can observe a linear correlation between | Em | and | ∆h |.

Extraction of force chains

Quantitatively checking the suggested explanation above requires a method to char-

acterize both the strength and angles of the force chains. To do so, we first need

to extract them from the images. Specifically, we want to examine the stress that

disappeared and appeared between before and after an event. To extract the rele-

vant data, we can take the difference between the image immediately after an event

I(t+) and the image immediately before I(t−) to filter the conserved force chains,

and keep only the one that appeared and disappeared. However since the grains can

move quite a lot during large events, conserved force chains move with them, as illus-

trated in figure 4.6. To compensate for this movement, we first perform a line-by-line

correlation between I(t+) and I(t−) to estimate the horizontal displacement field.
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Figure 4.6: Around large event, sudden movement and re-arrangement occurs. Con-

cerning force chains they can either disappear (red, left), appear (green, right) or

deform to be more vertical (grey, both).

This field is then subtracted from the after image, I(t+) (by an operation we will

call T ) to obtain a differential picture ∆I = T [I(t+)]− I(t−). Finally, we interpret

the positive part of ∆I (resp. negative) as the force chains that appeared (resp.

disappeared) during the re-arrangement event. I will now detail the procedure to

measure the “strength” S of an angle α in these force chains.

Evaluation of an angle prevalence

First, we compute the following convolution: C(α) =image ∗ maskn(α). S is then

defined as the 99th percentile of C. The masks are small binary images (background

set to 0) containing a thin segment tilted at an angle α. The parameter n here

represents the side of the square mask, in pixel. In the case of our force chains,

this parameter was set to 200px. This value was chosen as it corresponds to three

grain diameters, with our image resolution. n needs to be strictly larger than one

diameter (inclination would not make sense otherwise) but also smaller than the

maximum force chain length (10 to 15 grains diameter2) in order to account for

direction change along the force chain.

An example of this procedure is shown in figure 4.7, applied to an artificial binary

image made of several randomly placed segments. Each segment is of random length

but is either inclined at a 65o or a 80o angle. After convolution with a series of binary

masks (one of which is shown in the figure), we can obtain the bottom curve S(α).

The two dotted lines indicate the angle used to create the artificial image (65o and

80o) while the larger green dot corresponds to the convolution performed using the

example mask, tilted at 45o.

We also can define a normalized version: S∗(α) = S(α)/
∫ π/2

0
S(θ)dθ. Since many

2This may seem very short compared to images shown in previous chapters. For this analysis

however the region of interest is the bottom third of the granular (the shear band), hence the

“small” force chains considered.
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4.1. Evolution of the volume

Figure 4.7: The artificial binary image in top right is made of segments with random

position and length tilted at either 65o or 80o. Taking the 99th percentile of this

image convolution with masks (example in Top right) produce the curve below. The

bold green point corresponds to the mask shown (45o).

force chain disappear during large events, the direct value S(α) mostly provides in-

formation regarding force intensity, while the normalized distribution is more related

to orientation.

Application to real data

We apply this method to the extracted images of the appeared and disappeared

force chains around the largest 50 events (by absolute mechanical energy Em) of

each category A, B, C, and D as defined in figure 4.5.

The resulting S(α) curves are presented in figures 4.8 and 4.9 (normalized ver-

sion). Let us revisit our predicted mechanism in light of these results:

• A (Γ ↑, h ↑): negative energy release and dilation of the medium, Replacement

of the active force chain with an equivalent one. Indeed, both the total force

(Fig. 4.8) and orientation (Fig. 4.9) do not change drastically.

• B (Γ ↓, h ↑): positive energy release and dilation of the medium. Replacement

of the active force chain with a more vertical one. The large (Fig. 4.8) loss of
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force explains the positive energy release, and the newly created force chains

are significantly more vertical.

• C (Γ ↑, h ↓): negative energy release and contraction of the medium. Replace-

ment of the active force chain with a more horizontal one. The distribution of

angles has slightly shifted to lower values (Fig. 4.9) and the forces are mostly

conserved (Fig. 4.8).

• D (Γ ↓, h ↓): positive energy release and contraction of the medium. Re-

placement of the active force chain with a weaker one. The dynamic here is

completely dominated by the loss of force (Fig. 4.8).

By inspecting the dilation signal h(t) I uncovered a rich dynamic of sudden jumps

∆h. Since these jumps are mechanical in nature and power-law distributed, it made

sense to compare them with mechanical energy releases Em – another measurement

with the same characteristics. Doing so, a complex correlation was uncovered be-

tween these two quantities: | Em | and | ∆h | are linearly correlated but with

seemingly any sign combination possible. The four observed sign combinations can

be explained by the changes in the distribution of angles within the force chains,

between before and after the events.
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4.1. Evolution of the volume

Figure 4.8: Distribution of the strength of the angles S(α) of appeared and disap-

peared force chains, averaged over the largest 50 events of each category A, B, C or

D.

Figure 4.9: Normalized versions of the distributions shown in figure 4.8. This allows

us to better read the changes in orientation.
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4.2 Evaluation of the force network fractal dimen-

sion using images

A useful interpretation of the fractal dimension(s) 3 of a given object is its capacity

to fill the space it is embedded in. A line does not fill a 2D plane at all, whereas a

solid surface (like a disk) fills it entirely (at least, within its boundary). A fractal

object of dimension Df = 1.5 will partly fill its 2D embedding space: infinitely more

than a line and infinitely less than a disk. In the case of the force chain network

in a granular medium, we can interpret its fractal dimension as the density of the

network; how much it fills the granular.

We want to use it as an input of our prediction models in chapter 6, and will

now describe how to measure it.

4.2.1 Minkowski–Bouligand dimension

To estimate a fractal dimension of the force chain network, we used the common

Minkowski–Bouligand method [112], also called the box-counting method. This

particular one is popular in experimental sciences as it is well suited to real data,

limited by resolution or sampling.

Using this method to evaluate the fractal dimension of an object, we overlay on

it a square tiling of tile length ǫ. We then count the number of tiles at least partly

overlapping with the object of interest, N(ǫ). As ǫ goes from the object length to

0, N(ǫ) should follow a power-law, at least for a range of ǫ values. The absolute

value of this power-law slope is the box dimension. For instance, the number of tiles

of side ǫ covering a line grows as Nline(ǫ) ∼ ǫ−1. In the case of disk, it grows as

Ndisk(ǫ) ∼ ǫ−2. Indeed, the respective dimensions of these object are 1 and 2.

For any complicated shape, however, the results will likely be somewhere between

0 and 2 (in the case of an image). For the coast of Great Britain, as shown in figure

4.10, values close to 1.254 have been computed [113].

4.2.2 Application to thresholded images

To apply box-counting on our images, however, we must first isolate the force net-

work. The force chain image is obtained by manipulating the color channels (empir-

ically, it was found that subtracting either the green or blue channel to the red one

3Several different definitions and measures of fractal dimensions coexist, either more adapted

to real-life data or to theoretical constructs.
4This may slightly vary depending on the implementation of the method and tiling used.
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4.2. Evaluation of the force network fractal dimension using images

Figure 4.10: Box-counting method applied to the coast of Great Britain. As the box

size reduces, more and more details are captured. Figure adapted from Wikipedia.

worked quite well) on a panoramic image is presented at the top of figure 4.11, as

well as three thresholded versions with different cutoff values. Since the distribution

of constraints in the granular is multi-scale, it is not easy to choose the threshold

value - especially since it is performed on an image that has undergone non-trivial

pre-processing. Presenting three instances at different cutoffs allows getting a better

feel for its influence.

A limitation of the method however comes with its flexibility regarding real-

life data: it is highly sensitive to resolution. To have a reasonable power-law fit,

a large range of scales is needed. In our case, while the images are fairly large (∼
2000×10000 pixels) the smallest relevant scale for force chains is one grain (diameter

of 7 mm) and the largest scale is the system size (cylinder surface of 200×950 mm).

Considering we are only interested in the shear band here (photoelasticity in the

static bulk is much less reliable, as it is mostly due to plastic deformations), the

height of the large scale will be even smaller, around 90 mm. That is only slightly

above one order of magnitude vertically, and two horizontally. Considering box-

counting relies on fitting a power law, this limited range of scale will likely impact

precision and interpretation.

Another issue arises from the threshold process. Depending on the value, struc-

tures will be more or less sparse and one can imagine the measured box dimension

will be positively correlated with lower (more inclusive) threshold values. This effect

is illustrated by the images in figure 4.11. The force chain image on the top may

give each of the three binary images below, with the number on the side being their

respective box dimension. To check the effect of threshold value T , a reasonable

range was tested for all images. This produces several time-series DimT (t), four
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Figure 4.11: Top: An image of the chains of forces obtained by subtracting the blue

channel from the red channel of a partial panoramic image, about a quarter of the

total image. below: Three different thresholds of the top image, with the associated

box size values obtained.
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4.2. Evaluation of the force network fractal dimension using images

Figure 4.12: Left: Time series of the box dimension (clipped after ∼11 h) for the

selected threshold value. Right: Zoom of the figure on the left with four different

thresholding. A higher threshold is represented by a lighter shade.

of which are plot in the right part of figure 4.12. The trends are very similar, but

higher values (lighter shades) are noticeably jumpier and provide lower dimensions,

as fewer force chains are visible.

When torque increase, it may be reflected by several quantities related to the

force chains: intensity, quantity, and orientation. By comparing the measured torque

with the fractal dimension, we can determine how important is the effect of force

intensity on the fractal dimension.

Figure 4.14 compares instantaneous torque and fractal dimension with two dif-

ferent visualizations; a scatter plot on the left and a histogram on the right. The

scatter plot helps evaluate the possible range of measurements while the histogram

provides information about their frequency. There is a correlation between the two

measurements; a linear fit is added with a dashed line on the left. However, the

thickness of the scatter plot as well as the 2D histogram on the right side of the

figure shows either of the signal (fractal dimension or torque) does not completely

explain the other one, and there are indeed other effects at play.

The spread observed in the scattered data is not due to noise. To check this, let

compare figure 4.14 and figure 4.13. On the first one, for a torque value of 9 N.m for

instance, points span 1.16 to 1.30 – a range of 0.15. In the second figure, the noise

amplitude of the box-counting dimension is roughly 0.03, a value five times smaller

than the observed vertical spread of the histogram.

Since the measured box dimension and the torque readings are non-trivially

correlated, there is exclusive information to each signal. For this reason, we will use

both as inputs of our predictive models in chapter 6.
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Figure 4.13: The box dimension (top) correlates well with the torque measurement

(bottom), jumps appear in the same places and local slopes are similar, however

anti-correlated jumps exist as well, around 260 min.

Figure 4.14: scatter plot (left) and 2D histogram (right) of the torque Γ against the

fractal dimension.
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4.3 Acoustic-based fractal dimension

Using acoustic wave to probe systems have been done for a long time. The concepts

of sonar and echography emerged soon after the speed of sound in water was mea-

sured by Jean-Daniel Colladon and Charles Sturm in 1827. In geology, seismic waves

are commonly exploited to probe the earth’s inner structure: this is how, among

many other examples, Danish seismologist Inge Lehmann discovered the earth’s in-

ner core in 1936 [114].

More recently, coda waves interferometry [115–119] has been used as a tool to detect

very subtle changes in a medium through which sound waves travel and get scattered

(much like an acoustic speckle), a technique pioneered in 1985 by Keiichi Aki [120].

Another line of research (more mathematical) focused on the very ambitious goal to

describe the shape of a resonating object by listening to it, with the aptly named

article “Can you hear the shape of a drum?” [121]. Thirty years later, an even

more aptly named article answered the question; “You cannot hear the shape of a

drum” [122]. (Yet another article was published, called “Can you hear the shape of

a fractal drum ?” [123] but we’re still waiting for the answering paper.)

Regardless of the approach, knowledge of the internal state of a granular stack

may help to predict its behavior [17]. In our setup, we have access to the state of

each grain, as well as the force network, through photoelasticity. However, such

measurements may not be available in other experiments.

In order to facilitate comparison, I tried to develop a way of probing the structure

of the force chain network, by comparing measurements between pairs of acoustic

sensors with a simple propagation model. It is known that acoustic waves travel

preferentially through force chains in a compacted 2D granular medium [124, 125].

I will try to leverage this property with measurements of the geometric spreading of

energy to evaluate the fractal dimension of the force network.

4.3.1 propagation model

First, we will consider the simplified case of a spherical wave, propagating at constant

velocity c in an isotropic, homogeneous, and non-dissipative medium, in which two

sensors are placed. By reason of energy conservation, we write the measured energy

of the wave as:

E(r) =
E0G

rα
(4.1)

With E(r) the energy at a distance r from the source, E0 proportional to the
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Figure 4.15: Schematic of the propagation model, in the context of the cylindrical

experiment. A wave is emitted at the event source, and propagates in a straight line

towards each of the two sensors.

emitted energy, G a sensor-specific multiplicative gain, and α being equal to the

dimension of the propagation medium minus one.

The two different sensors are located at distance r1 = r0+ ǫ and r2 = r0− ǫ each.

A wave emitted by the source will be recorded at different times by each sensor and

the time difference is:

∆t = t2 − t1 =
2ǫ

c
(4.2)

With c as the wave velocity. Let us compute the difference of the log of energy:

∆M = log(E0 G2 r
−α
2 )− log(E0 G1 r

−α
1 ) (4.3)

∆M = −α (log(r0 − ǫ)− log(r0 + ǫ)) + 2 log(
G2

G1

) (4.4)

The first two logarithms can then be linearized to give:

∆M = −α

(
−2

ǫ

r0

)
+ 2 log(

G2

G1

) (4.5)

∆M =
2 α ǫ

r0
+∆M0 (4.6)

With ∆M0 denoting the gain-related term. Finally, part of the first term can be

substituted with the expression found in equation 4.2 to find the following relation:

∆M =
αc

r0
∆t+∆M0 (4.7)

Provided we can detect two events across each of the two sensors and know r0,

one can then perform a linear regression to measure α. The advantage over a single

sensor measurement, where one could fit equation 4.1, is the absence of reliance

on absolute time or distance: both of which are inaccessible in practice. The r0

parameter still is an absolute distance in some sense but is easier to obtain (or,
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at least, approximate) thanks to the bounded size of our system: one can simply

take the barycenter of all the possible event sources. In practice, this is halfway

through the shear band (vertically) and between the two sensors (horizontally), as

represented with a yellow star in figure 4.15. Due to dissipation, α + 1 can only be

a lower bound for the medium dimension. This effect will be significant in the next

section.

4.3.2 A simpler case: sound propagation in air

To verify this simple model, a series of tests were performed in air with the same

acoustic sensors used in our granular experiment. These tests were done in collab-

oration with the Luminescence Team of the ILM.

A plasma is generated by a focused laser, pulsing at 9 Hz. The sensors are placed to

be co-planar with the plasma (to make measurements easier) and radially aligned

(to maximize gain), as schematized in figure 4.16. Both sensors are initially 25.1 mm

away from the plasma.

Figure 4.16: Left: Schematic of the air propagation setup. The laser is used to make

a plasma mid-air, which creates a sound wave when collapsing. The wave is recorded

by two co-planar acoustic sensors pointing towards the source. Right: Picture of

the setup from above, with the plasma appearing as the smaller, saturated light.

The first sensor is left in place, while the second one is placed further and further

away, up to 75 mm away from the plasma. Around 100 laser pulses are recorded

and averaged for each of the 8 distances tested.

We can first measure the current sound velocity, as it is a parameter of the model

and depends on temperature or humidity. The good alignment and small intercept

value lend weight to the measurements.
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Figure 4.17: Distance between the two sensors plotted against arrival time difference.

The linear fit gives us the sound velocity in the environment of the experiment.

In addition, we can verify the propagation law form we assumed at the beginning,

in equation 4.1. In figure 4.18, the energy is plotted against the sensor distance to

the source. The power-law assumption is well verified, will all points close to the

linear regression. However, we can see a significant deviation from the exponent of

2 we expected. A larger exponent means we observe less energy than anticipated.

Without dissipation, the energy should decrease due to geometric spreading only.

Observing a faster decay can be interpreted as a signature of dissipation, causing

energy to be lost as the wave travels. Over the range of value observed, however,

a power-law still well describes the data. In these conditions, the dissipation effect

can be encompassed in the exponent.

Figure 4.18: Measured energy as a function of the moving sensor’s distance to the

source. The linear fit is again very good but the slope is significantly different than

the expected 2 of the ideal, non dissipative case.

70



4.3. Acoustic-based fractal dimension

We can now apply the two-sensor method to the data. Fitting equation 4.7 pro-

duces figure 4.19, with a solid line representing the fit, of slope 2.46. For comparison

purposes, lines with slopes 2.23 and 2 have been added, respectively corresponding

to the single-sensor measurement shown in figure 4.18, and to the ideal case.

The dimension of the propagation medium, in this case, is definitely not 3.46

but 3. This significant deviation already put a limitation on this technique. While

the dissipation effects could likely be modeled, predicted, and accounted for in air,

it will be more complicated in our granular as it is a more complex medium than

air. One of many possible reason for this deviation is the spherical wave assumption

hidden in equation 4.1, which may not be true considered the technique used to

generate the wave, a collapse. Still, let us see what we can learn from applying this

method to labquake data.

Figure 4.19: Linear regression results of air measurements. The regression, in solid,

provide an effective dimension of 3.46. For comparison, the slope obtained with a

single sensor in figure 4.18 (dashed) as well as the ideal non-dissipative case (dotted)

have been represented.

4.3.3 Application to our experiment

To use equation 4.7 in our system, knowledge of c and r0 is required. C can be

estimated with the calibrations performed in [125]. As for r0, it is approximated as

described in the last paragraph of section 4.3.1 and represented in figure 4.15: in

the middle of the shear band, halfway between the sensors.

In the shearing experiment, the acoustic sensors are regularly placed in the top ring.

From figure 4.20, we can see there are three “types” of pair we can choose from. For
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Figure 4.20: Three types of pairs can be made from points in a hexagon. Only in

the case of diametrically opposed sensors the “left” and “right” side of the sensor

pair are equivalent.

symmetry reasons, we will only match events of pairs 1-4, 2-5, and 3-6, as the left

side and right side of a sensor pair are equivalent only in this case.

To match events between two sensors, I used the procedure described earlier in sec-

tion 4.1.2, when matching force and torque discontinuities, based on time differences.

By selecting a sufficiently high acoustic energy threshold and a sufficiently tight time

difference tolerance, we can pair measurements between two sensors one-to-one.

For each pair, the amount of matched events are n(1,4) = 5337, n(2,5) = 3839 and

n(2,5) = 4466. However, we cannot consider this to be a dataset of ntot = 13642

event and subject it to analysis, as the ∆M0 value is different for each pair. For this

reason, three different regressions must be performed, as shown in figure 4.21.

The fitted slopes are −4.3 · 10−3, −2.8 · 10−3 and −3.3 · 10−3 for pairs 1-4, 2-

5 and 3-6 respectively. Using the values r0 = 50 cm and c0 = 800 m.s-1 we can

compute the dimension for each pair ; d(1,4) = 1.62, d(2,5) = 1.40 and d(3,4) = 1.48

respectively. These values are not too far off the range measured using the images

(1.15 – 1.35) but are all higher. This is expected as we compound the effect of

geometric spreading with energy dissipation.

In the tests done in air, the noise level was very low and the sound waves well

defined. In the case of our granular, however, the analysis is more difficult. Not

only the sound waves are much more complex, but the model proposed in section

4.3.1 is even more of an approximation in this case. The sound velocity is no longer

constant and the location emission can be significantly away from its supposed

average location. In addition, this model only introduces dimensional effects in the

geometric spreading of the energy, assuming linear propagation. Since sound waves

preferentially propagate through forces chains, this last assumption is known to be
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Figure 4.21: Regression assuming expression 4.7 for matched labquakes. The raw

data has a large variance and is binned before being fitted. 22h of data were used.
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false. This could be accounted for using images and detecting possible paths for the

sound to travel on (which will be done in chapter 5) but our objective here was to

evaluate whether this purely acoustic-based method could work.

My objective was to devise a method using only acoustic data to provide in-

formation about the force chains structure (here, a fractal dimension) and be less

reliant on images. This way, future prediction results could possibly be generalized

to setups where images are not available. However, the simplicity of the model and

the difficulty to properly measure the necessary quantities (time of arrival and en-

ergy) with sufficient precision limits its current usefulness. While the images provide

a data point every four seconds, this method needs at least several hours worth of

acoustic data to average out the different sources of variance in figure 4.21. Finally,

the different readings of each pair cover a large range of value (d1−4 = 1.62 and

d1−4 = 1.40, a span of 0.22). This is as large as the range cover by all the image

measurements.
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5.1 Acoustic location and hyperbolic methods

Prediction is a major goal of the labquake project. In order to forecast re-arrangement

events, knowledge of the local properties of an event nucleation site would be help-

ful. In other works1 [124, 126], fast camera recording (100,000 Hz and 49,000 Hz

respectively) could locate event sources. However, in our shearing experiment, the

image acquisition frequency is only 1/4 Hz. Thus, a different method is required for

our cylindrical setup.

The method presented in this chapter was inspired by hyperbolic sound location.

It uses time-difference-of-arrival across an array of acoustic sensors, coupled with a

propagation model, to evaluate where the recorded sound may come from. In 2019,

Ange Haddjeri (Master 1 student) did an internship in our team to help develop this

technique.

The history of hyperbolic methods to locate unknown signal sources takes its

roots around World War I [127, 128]. The objective was to detect the position of

enemy artillery by recording their firing sound. Using two microphones (located at

M1 and M2 respectively) one can observe the time difference of arrival T2−T1 = ∆t.

Considering sounds travel at a known velocity c, the artillery location A obey the

following relation:

c∆t = AM2 − AM1 (5.1)

This is very similar to the equation of a hyperbola: the only difference is the

lack of absolute value around the distance difference, which is due to the fact we

know the sign of ∆t. The locus of points A that satisfies equation 5.1 is a single

hyperbolic branch and is not enough to pinpoint the source of the recorded sound.

However, with another microphone, three hyperbolic branches can be computed. In

theory, all branches should cross on a single point. Similar equipment was also used

to detect enemy planes, for instance by the Japanese army during World War II, as

seen in figure 5.1.

Another historic usage for hyperbolic methods is navigation and self-positioning.

In such systems, the roles are reversed: Mi are static, cooperative emitting radio

beacons and A is a navigating agent. Examples include the American LORAN

[129] or the international OMEGA [130], which was shut down in 1997 with the

generalization of the GPS.

1the second article was done by our group.
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Figure 5.1: Japanese Emperor Hirohito inspecting“war tubas” (officially named Type

90 large aerial sound detector) with anti-air guns in the background. Date unknown

but likely to be around the early 1930s, as this equipment was commissioned in 1932.

Sourced from Wikipedia.

A granular medium however is neither continuous, isotropic nor homogeneous.

Sounds travel through grains that do not fill space entirely, there are gaps in the

structure. The contact area between two neighboring grains is very small, further

limiting the propagation possibilities. In addition, differently stressed grains trans-

mit sounds at different speeds (see [124, 125]). Finally, if the experimental setup

is not carefully designed, the sound may even travel in the frame/structure holding

the grains. Sound velocities in glass (∼ 4500 m/s) or aluminium (∼ 6300 m/s) is

almost an order of magnitude higher than it is in grains (∼ 800 m/s).

In two-dimensional arrangements and with a low number of grains, as is the case

in our experiment, the above points will be addressed both in the propagation

model and the design of the experiment.
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5.2 Setup and method

Before trying to locate events in our main shearing experiment, we need to develop

and test methods. For this purpose, I built another, simpler setup (shown in figure

5.2) as a testbed for different acoustic location methods.

5.2.1 Experimental design

Granular material: The granular material used here is the same as the ones in the

main shearing experiment (photoelastic and bi-disperse), and is arranged in a single

layer of roughly 2200 disks. Among the standard grains are eight black hollowed

grains that can be observed slightly above the center of the pile; these are active

grain prototypes that will be discussed later in section 5.4.2.

Cell design and geometry: The grains are sandwiched between two vertical and

parallel acrylic plates 4.4 mm apart. This spacing is 110% of the thickness of the

disks to minimize contact and friction between the grains and the walls, therefore

avoiding parasite waves that could travel through them.

The bottom and side walls are fixed and made with several layers of insulating foam

and paper strip to dampen incident sound waves.

The upper boundary is mobile, allowing the compression of the granular medium

with a weight. This weight is constituted of weight disks (up to 40 kg) and a

variable weight (0∼20 kg) achieved with a 20 L water tank that can be slowly

filled or emptied. The confinement cell initial area is 335 × 295 mm (W × H) as

schematized in figure 5.3, but can decrease in height when the water tank is filled.

Measurements: Holes have been drilled through the top and sidewalls to insert

acoustic sensors. These sensors are in turn inserted into fixed grains, to maximize

acoustic coupling with the bulk of the structure. The coupling is further augmented

by silicon oil around the pinducersTM. The acoustic sensors are the same as the

one used in the shearing experiment, but the sampling frequency is 25 times higher

(2.5 MHz) to maximize accuracy on the time of arrival. In addition, pictures of the

granular were taken every ∼1 s using a NIKON D750.

To calibrated our location method, a controlled acoustic emission of a known source

is needed. The first source I used is a thin metallic rod connected to a permanent

magnet shaker (LDS V201 from Brüel Kjaer) that hits one grain at the bottom of

the granular ensemble. The shaker is driven with a squared signal, to make a sharp

impact. The second source I (tried to) use is active grains, which can emit sounds.

Their design will be explained later in section 5.4.2.
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Figure 5.2: Picture of the experimental setup. The 6 black circles are “active grains”

prototypes. The black bar above the granular is 10 cm long.

Figure 5.3: Schematic of the experimental setup. Grains are arranged in a 2D layer

held by a ⊔ shape made of several layers of insulating foam. Artificial waves can

be created by a shaker below the experiment, hitting one grain with a metallic pin,

driven with a square signal.
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5.2.2 Ballistic propagation model

To account for the issues raised in section 5.1 (discontinuities of the medium and

varying local sound velocities), two key ingredients were used to develop the prop-

agation model. The first one is the topology of the pile: we only allow for sound

propagation within disks. To travel from one disk to the next, the sound wave must

go through their common contact point. This will account for the lack of continuity

of the propagation medium. The second one is heterogeneous sound velocity, caused

by the heterogeneous force chains distribution [83]. For each grain, its stress level

can be evaluated using photoelasticity and its inner sound velocity computed.

Considering these two points, I decided to model the disk layer as a network.

This network is built in two steps: first, the nodes are defined as the contact points

between the grains. Then, all the contact points of a grain are fully linked by edges.

Sound waves travel from node to node, through edges. A small part of this network

view is represented in figure 5.4.

Figure 5.4: Schematic of the network model overlaid on an experiment picture.

Contact points are the nodes, linked by edges within grains.

Assuming a network modeling, one might wonder if considering the grains as

nodes, instead of the contact points, would be a more natural choice. Picking con-

tacts over grain centers as nodes is motivated by several reasons. First, the origin

of an acoustic emission is expected to be grains sliding or hitting each other. If so,

it makes more sense to look for the source between grains, at contact points. In

addition, edges between grains would span over two grains, making velocity eval-

uation more complex. Finally, for n grains, there is a total of n(tc/2) contacts,
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with tc the average number of neighbors touching a single grain. Typically, this

number is around 4.6 in our experiments. This means that a network using contact

instead of grain will have more nodes. We can expect a model with more nodes may

be (slightly) closer to a continuous description of the experiment, and thus more

accurate.

As explained in section 2.3.2:Image Exploitation, the grains are detected through

the Hough circle detection method. To decide whether two grains are touching, we

compare the sum of their radii to the distance between their centers. If the two

values are less than 5% apart2, their contact point is added to the graph. Two

contact points are linked by an edge if and only if they are from the same grain.

To compute local propagation velocities, we first need to evaluate the stress.

This is done using the calibration described earlier in section 2.3.2. To translate

stress into velocity, we use the relations described in [125] between applied force F

and sound velocity c in the case of a disordered array, that is: c ∼
√
F . The exact

velocity is calibrated using the form c = α
√

G2 + β, with α and β values fitted for

this setup.

Finally, by dividing an edge length by its associated velocity, we can obtain the

wave flight time along that edge. In order to estimate the propagation time of the

wave ballistic front from a given node to a given sensor, we compute the fastest path

between the two points in this flight time network. This is done using the Dijkstra

algorithm [131]. For a given potential source point, the difference in arrival time

between two sensors can be expressed as:

∆tmodel =
N∑

n=0

ln
vn

−
M∑

m=0

lm
vm

(5.2)

with N and M being the number of nodes of the fastest paths for each of the two

sensors, vi and li being the edge velocity and edge length. The resulting ∆tmodel is

dependent on up to hundreds of measurements depending on how far the considered

source is, which is a large source of uncertainty. This will have an important effect

when evaluating source likelihood, discussed in section 5.3.1.

Beside this uncertainty, the structure of the model makes its output actually fairly

robust. Since the flight time between two points only depends on the edges along a

single path, the value of every other path is irrelevant. The only way for the fastest

flight time to change when errors are introduced to the network is for another path

2This tolerance may seem large but with our image resolution, it translates to 3 pixels.
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to emerge as the fastest. To appreciably change the results, this new “false” fastest

path should be significantly faster than the original one.

5.2.3 Time-of-Arrival Measurement

Before measuring the time of arrival, each signal is first de-noised. To do this, I

use a seventh sensor that was recorded with the other six but isolated away from

the experiment. This sensor does not pick up any significant acoustic signal, but

its recorded data is subject to the same electrical noise. By subtracting this signal

from the other useful ones, part of the noise can be removed.

Figure 5.5: Left: acoustic signals from the six sensors shifted for readability. Right:

A zoom of the signal starting with a red dot, around its ballistic arrival time.

The timing measurement is then done manually on the signals, an example of

which can be seen in figure 5.5. From the zoomed signal on the right, one can see

it may be difficult to exactly pinpoint the arrival time of the ballistic signal, and

no satisfying automatic way to detect it was found. To account for the difficulty

of measuring the time-of-arrival and the inherent variability that comes with hu-

man measurements, the model described below takes both a timing value and an

uncertainty value as inputs. For instance, the zoomed signal shown in figure 5.5

corresponds to a time-of-arrival of 190± 20 mus.
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5.3. Evaluating source likelihood

5.3 Evaluating source likelihood

We wish to use our six time-of-arrival measurements to locate the acoustic source.

First, I will detail the method for a pair of sensors. How to agglomerates the

measurements over all possible pairs of sensors (effectively using all the available

information) will be explained afterward.

5.3.1 Single branch likelihood

To evaluate whether a point Ak in the network can be the source of a measured

event according to a pair of sensors (i, j), we want to know how “far” that point is

from the pseudo-hyperbolic branch stemmed from that sensor pair.

We can model both ∆tmodel (computed from the model) and ∆tsensor (measured

on the signals) as independent random variables each drawn from normal distribu-

tionsN (∆̂t, σ2), centered on a true value ∆̂t and with variance equal to its estimated

uncertainty σ. For ∆tsensor, the uncertainty is due to the difficulty of measuring the

timing of arrivals described in section 5.2.3. For ∆tmodel, it comes from the distance

and (mostly) the local velocity estimation. We then define the difference between

the measured and expected ∆t values, E = ∆tsensor − ∆tmodel. This difference E

can be in turn be described as a normal random variable N (Ê, σtot), with Ê the

true value and σ2
tot = σ2

model + σ2
sensor, respectively estimated using uncertainty on

speed and distance measurements, and on time of arrival measurements.

We wish to estimate how likely it is that Ê is close to 0 – or more formally, that

|Ê| < ǫ for a given small and positive ǫ:

P̃ (|Ê| < ǫ) =

∫ ǫ

−ǫ

1

σtot

√
2π

e
− 1

2
(x−E
σtot

)2
dx (5.3)

The above value depends on which pair of sensors i, j and which node k are

being considered, and can be written as P̃ (i, j, k). We drop ǫ from the notation as it

only plays a role similar to a contrast ratio, but does not change the ordering of the

source candidate probabilities, unless taken to extreme values (typically not more

than two orders of magnitude away (× 0.01 ∼ 100) from typical σ values). When

σtot becomes very large, the probability becomes uniform across the values of Ê.

This can be understood as the model does not have precise enough information to

discriminate between candidates. To make P̃ a proper probability, we can normalize

it:

P (i, j, k) =
P̃ (i, j, k)∑Nc

l=0 P̃ (i, j, l)
(5.4)
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Figure 5.6: Probability field according to the sensor pair (2, 5). Higher values

represent higher probability. The maximum ridge is roughly shaped like a hyperbole,

spreading as it extend deeper in the granular. The blue △marker indicates the actual

source.

With Nc the number of contacts. Figure 5.6 represents this probability field

overlaid on a photo of the experiment for sensor pair (2, 5). As expected, the

maximums are similar to a hyperbolic branch, with the thin end between the two

sensors. The branch widens as it gets further away from the sensors, due to the

distance-dependent uncertainty.

Since a single branch is insufficient to locate the source, we need to combine the

branches obtained from different pairs of sensors.

5.3.2 Agglomerated likelihood

We have seen how to derive a probability for node k from a pair of sensors i, j,

but 15 different pairs (n(n − 1)/2, with n = 6) are potentially available. However,

the mathematical methods presented below favor statistical independence between

the constituent probabilities. For this reason, each sensor will only be used once,

for one hyperbolic branch. Instead of the potential 15 pairs, only 3 will be used

in the following analysis. In practice, I observed mixing sensors did not provide

a significant performance advantage but made it harder to interpret the results: a

poorly measured (due to a low signal to noise ratio, for instance) time-of-arrival on

a sensor creates 6− 1 = 5 “wrong” branches, obscuring the graphs.

Several methods to combine probabilities from different sources (called pooling)
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exists [132]. The best choice will depend on the desired properties of the pooling

method as well as the input distributions properties. In our case, we want to locate

an acoustic source. Considering this, and the structure of the granular, we expect

an output distribution with a single maximum. Moreover, due to the uncertainty

effects, the distribution from single pair can only discriminate sources at short range;

at long range, the probabilities are less meaningful. This hints to the fact that we

should interpret a single-branch probability distribution as excluding rather than

including. Low probability values have a strong meaning, as they exclude source

points, but high values may simply mean there is not enough information to elimi-

nate a particular point.

Based on these considerations, I chose a product based pooling with a formula of

the form:

PA(prod)(k) ∝
pairs∏

ij

Pij(k)
wi,j(k) (5.5)

with the pooled probability PA being a product combination of each pair prob-

ability. Weights are path-dependent: w = wi,j, k. Product pooling does not impose

conditions on the weights – in particular, they do not necessarily have to sum to 1.

The weights are dependent on both the pair of sensors i, j, and the node k. The first

dependency makes sense as not all time-of-arrival measurements are equally precise.

The node dependency is motivated by the uncertainty described in section 5.2.2.

When propagating to points further away from a sensor, errors accumulate and

may counterbalance the gain from an otherwise “good” pair with accurate signals.

To favor more precise information, weights have been set to wi,j(k) = 1/
√
σtot.

Remember that P itself is dependant on σtot.

This pooling formula fits our needs: if a given point is strongly voted against

(wi,j(k) ∼ 1 and Pi,j(k) ≪ 1) by a constituent sub-probability, the overall result

will be very low regardless of the other votes. Product pooling also generally gives

unimodal distributions [132]. For comparison purposes, I will also present the results

of another popular and intuitive method, a weighted arithmetic average:

PA(avg)(k) ∝
pairs∑

ij

Pij(k) ∗ wi,j(k) (5.6)

This average has an opposite behavior regarding high and low constituent prob-

abilities. Rather than selecting nodes that have not been strongly voted against,

like product pooling, this method selects nodes that have been strongly voted for.
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5.4 Event location performance

Now that the model has been described, let us look at its performance in two different

cases: controlled and spontaneous emissions.

Throughout this section, I will add to the previously-set convention of using a blue △

marker to indicate the real source a red ▽ marker, to indicate the predicted source.

5.4.1 Border impacts

As described in figure 5.3, a pin, mounted on a magnetic shaker is inserted below

the granular stack. The shaker is driven by a square wave to impact a fixed grain

at the bottom of the pile.

Figure 5.7a represents the likelihood obtained from a single pair of sensors (2,5).

On the right-hand side (fig. 5.7b), three such branches are “visually stacked” to-

gether. This second representation is obtained with the following formula:

PA(stack)(k) = max(i,j

(
Pij(k)

wi,j(k)
)

This formula has no meaning in terms of probability pooling but provides a useful

visual representation. For instance, we can observe that the central branch appears

thinner than the lateral one, indicating lower uncertainty and thus higher relative

weight. The three branches all converge to the same zone, near our impacted grain.

Since no pooling is performed here, there is no predicted source shown on the figure,

as it would be meaningless.

The resulting prediction of both (product and average) pooling is shown in fig-

ure 5.8. The distribution obtained through product pooling (fig. 5.8a)produces a

maximum very close to the real source, about 2 grains apart. In comparison, the

average pooling method result (fig. 5.8b) is about 6 grains apart. Moreover, the

distribution is narrower around its maximum. This is a consequence of the nature

of average pooling, which selects voted-for nodes. Product pooling produces a more

“cautious” distribution.

Since the excitation is controlled and the granular well compacted, the acoustic

waveform varies very little between emissions, making these results strongly repeat-

able. Border impacts are however very much edge cases. Since we only look for

sources within the network, perhaps the prediction model would rather (wrongly)

elect a point outside the granular but is kept in bounds by the network structure.

To further test this model, we need embedded controlled sources.
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(a) Single branch likelihood

from sensor pair (2,5)

(b) Stacked branches from

pairs (1,4), (2,5) and (3,6).

Figure 5.7: Single (a) and triple (b) branch likelihood. The controlled impact is

located at the bottom.

(a) Product pooling with a zoomed

insert, based on formula 5.5

(b) Average pooling, based on

formula 5.6.

Figure 5.8: Comparison of product (a) and average (b) pooling for controlled border

impacts. An insert in figure (a) shows how close the prediction is to the actual

source.
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5.4.2 Bulk sources

Two bulk-based emissions were sought after to further test the method: artificial

sources and spontaneous emissions.

Artificial sources

The design requirements on a controlled acoustic source deep in the granular are

hard to meet. The device needs to be no thicker than a grain to fit between the plates

and small enough not to disturb the force network. The emitted sound should have

a well-defined ballistic front (it should be “snappy”) and ideally have a controlled

trigger. Several designs were tested and none worked in the experiment. I will

however describe our latest attempt that fits all but the last of our requirements.

To produce a sudden sound we opted for pencil leads, which produce a very well

time-defined sound when they break. A grain-sized enclosure was design to host

the lead, shown in figure 5.9. This “active grain” has a cylindrical outer shell with

two holes in which to put the lead. The holes also serve the purpose to weaken the

grain, with the expectation it will locally bend under stress and break the lead with

the perpendicular protrusion. The initial weight should get the active grain close to

its breaking point and the continuous load triggers the breakage.

(a) 3D model of an active

grain.

(b) Breakage of a pencil

lead in a press

(c) Active grain embedded

in an experiment

Figure 5.9: Active grains were designed (a) to be loaded with a pencil lead that

would emit sound if broken (b) when in the experiment (c).

This process has been tested in a press (fig. 5.9b) and can even be performed

using finger strength. Eight such grains were made and inserted into the experiment

(fig. 5.9c). Since we do not control where force chains will appear, several active

grains were used in the hope that at least one would be along a sufficiently strong

force chain to break the lead. Unfortunately, after several repeats of the experiment
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no such breakage happened. In spite of this, this design will be kept and refined

upon by our latest Ph.D. student Louis Combe, whose thesis goals include acoustic

location.

Spontaneous Emissions

In addition to active grain, we expected to capture spontaneous emissions. Such

emission presents the advantage to be of the same nature as the one we eventually

wish to analyze in the shearing experiment, however, by nature, we do not know

their exact source location. Images were continuously recorded during the loading

of the cell, in the hope to visually detect re-arrangements and validate acoustic

location. Unfortunately, the displacements involved were too small to see anything

on camera. It was mentioned in the introduction of this chapter we were actually

able to locate an acoustic emission using a fast camera in previous works [126].

The cell was then much smaller, and thus the image resolution much better, in

this previous setup. This older cell was actually briefly used when developing the

techniques presented here, but it was abandoned in favor of a larger one. There

were two reasons for this change. First, in a too-small cell, the flight time is so short

the time-of-arrival measurements need to be much more precise. Second and more

importantly, the walls of this cell were very acoustically conductive and I verified

the ballistic front-wave traveled through the frame, instead of the grains.

Figure 5.10 presents the same two sub-figures as figure 5.7: a single branch and

three stacked branches, from the same sensor pairs. These measurements correspond

to a spontaneous emission that happened during a loading phase. The three branches

on figure 5.10b cross perfectly on a single point. While the acoustic source could

not be found using the images, the agreement between the three branches strongly

suggest the presented location is accurate.

Both pooling outputs are presented in figure 5.11. Since the branches cross very

well around a single point, there is little difference between product (fig. 5.11a) and

average (fig. 5.11b) pooling, and both maximums are one grain apart. The same

qualitative features observed on the controlled impact can be found: the average

distribution is narrower and presents the traces of the branch used.
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(a) Single branch likelihood

from sensor pair (2,5)

(b) Stacked branches from

pairs (1,4), (2,5) and (3,6).

Figure 5.10: Single (a) and triple (b) branch likelihood measured for a spontaneous

emission.

(a) Product pooling, based on

formula 5.5.

(b) Sum pooling, based on

formula 5.6.

Figure 5.11: Comparison of product (a) and average (b) pooling for a spontaneous

emission.
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5.4.3 Limitations and Future development

Besides the difficulty in finding the timing of arrival discussed earlier, another lim-

iting factor lies in the geometry of the sensors. To maximize precision, the sensors

should surround the area where acoustic emissions could occur, to compute hyper-

bolic branches that cross at angles close to 90o. This is illustrated by figure 5.12

where the overlap between the branches crossing at a more acute angle is larger than

the branches crossing at 90o. In addition, crossing points of curves at a right angle

are less susceptible to a slight change in angle. However, in the shearing experiment,

all sensors are placed aligned at the top.

Figure 5.12: When branches cross at a more acute angle, the overlapping region

cover a larger area and the location is thus less accurate.

To solve these issues, a completely different model is being considered, based

on time reversal [133]. Such methods exploits the reversibility of wave propagation

equations to make a signal “go back in time”. Using an array of sensors ci, many

signals si(t) are recorded. The signals are then “flipped” as si(−t) and sent back in

the propagation medium. the waves then travel back and eventually refocus to their

initial state. Time reversal has been shown to work experimentally, for instance in

water [134] or in granular materials for ultrasonic waves [135].

Compared to the method presented in this chapter, time-reversal approaches present

two advantages. First, there is no timing measurement as all signals are retro-

propagated in sync. Second, more information is used, as the whole signal is sent

back to the medium, whereas the hyperbolic method only uses a single point (the

ballistic wave-front).

In our case, however, our sensors cannot act as acoustic sources to senb back signals

into the granular. The only way to practically use time-reversal would be numerical,

using a simulation of our experiment. Creating such a model is one of the thesis
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goals of Louis Combe.

While computationally very cheap, fairly robust to fluctuations in the data, and

accurate in our testbed experiment, this method also suffers from heavy reliance on

human measurements. The work presented in this chapter can be seen as preliminary

work on an ongoing project.
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6.1 Signal-average based precursors

A strength of our shearing experiment is the very large volume of data it outputs,

thanks to its unlimited shearing range. The numerous large events available lead

our initial searches for precursors to focus on the average behavior of the system

around such large events. The intuition leading our initial attempts of prediction

relates to the dilation of a granular layer under shear described in chapter 4. Re-

arrangement with high energy releases should be more common when the medium

is relatively dilated and under high stress. The results presented in chapter 4 cor-

roborate this intuition, where I showed large energy releases are correlated with

large contraction of the medium ( ×-shaped figure 4.5). With that idea in mind, I

looked for dilation-based precursors (using the position sensors and the images) and

force-based precursors.

6.1.1 Dilation precursors

We have two ways to measure dilation in the shearing experiment: using the position

sensor or using the images. The first is a very accurate but global measurement,

while the second is less accurate but more localized.

Total volume increase

To verify the previously explained intuition, I first average windows of the position

signal centered around events that are between given thresholds of energy:

〈hEL,EH
(t)〉 = 1

N

N∑

i=1

h(t∗ − ti) (6.1)

with h the position signal, t∗ is the actual time, ti the timings of events of energy

between a low energy threshold EL and a high energy threshold EH . t is such that all

events occur at t∗ = 0. On this averaged signal, I perform a linear regression in the

last 300 s before t∗ = 0. The slope corresponds to the average dilation rate, which

increases prior to the event. This can be seen on figure 6.1, where the dilation rate

between t∗ = −300 s and t∗ = 0 s is roughly twice larger than between t∗ = −1000 s

and t∗ = −500 s, while the dilation rate between t∗ = 0s and t∗ = 500 s is close to

0, with a flat average signal 〈hEL,EH
〉.

In figure 6.1, EH and EL are such that the events selected are ranking from 20th to

8th in terms of energy.

To explore the robustness of the link between dilation rate and event size, I have

measured the average dilation (measured on the same time interval of 300 s) prior to
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Figure 6.1: The dilation rate is computed by a linear regression on 300s on the

average dilation curve.

events binned by event energy. As events are binned, the content of each bin is

independent: the largest event appears in the highest bin and not in any bin below.

Figure 6.2 shows that the average dilation rate seems monotonically dependent on

the binned energy. This relation lends weight to the precursory nature of dilation,

as event energy and the average expansion appear directly related.

Figure 6.2: Dilation rate plotted against binned event energy. As events get smaller,

the slope continuously decrease to a plateau. The highlighted orange square corre-

sponds to the measurement exemplified in figure 6.1.
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Local compacity

Let us consider a set of points Ci, 0 < i < n in the plane. The Voronoi tessellation

or Voronoi diagram [136] is a partition of the space in “cells” attributed to each

point Ci. The cell attributed to each Ci is defined as the ensemble of points p that

are closer to Ci than any other Cj 6=i. The Voronoi cell of a point can be seen as its

range of influence. In our case, we will compute a Voronoi diagram for the set of

centers of our grains, as shown in figure 6.3, to probe local compacity.

The local structure around single grains can be described by a shape factor

ζ = P 2/4πA, defined as the ratio between the square of the perimeter P and the

area A of the Voronoi cell of each grain [17]. The ζ parameter quantifies divergence

from circularity, and is related to how compact the granular is. The rightmost

colorbars in figure 6.3 shows that less dense arrangements indeed corresponds to

higher ζ values.

Figure 6.3: Two regions of the granular medium with their associated Voronoi dia-

gram on the right, colored by the ζ parameter. The region on the first line is much

denser.

ζ is normalized to a circle, meaning it is designed so that ζ = 1 when computed

on a circle. A regular hexagon, which achieves the minimum possible value in a

monodisperse pack of disks, has ζ = 1.103. A square has ζ = 1.273, and a disk

neighboring a hole in a hexagonal lattice has ζ = 1.286. This scope is exemplified

in figure 6.4, and bound the range of values we expect to encounter.
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6.1. Signal-average based precursors

Figure 6.4: Value of ζ for various Voronoi cell shapes (red). The last three are shown

over a disk tiling (blue) that could produce such cells.

Figure 6.5: Each dot corresponds to the ζ parameter (inversely correlated with local

density) averaged within the shear band on one picture at a given time t from the

33 largest events. Solid curve: averaged over the 33 images found at a given time t.

This ζ(x, y, t− ti, i) is computed for every disks at position (x, y) and for every

of the 33 largest event, indexed by i. Like for the dilation rate, times are shifted

to align event timing. Only the disks within the shear band (bottom third of the

granular pile, spanning 8∼9 grain diameters) are kept and analyzed. We focus only

on the shear band as it is the most active zone in our granular. The region above

it barely moves and the arrangement of grains in it is conserved throughout the

experiment. Including ζ values in this static area would only dilute the relevant

signal.

ζ is first averaged over every grain in every image, corresponding to the dots

on figure 6.5. The ζ(t − tN , N) values of all 33 images found in the same time

windows of 4 s width are averaged, resulting in 〈ζ〉(t), corresponding to the solid

curve on figure 6.5. Both averages are shown 800 s both before and after the events

happening, with a horizontal black line to show the global median. In the dots, and

much more clearly on the average, a dilation emerges from roughly 5 minutes prior

to the events. For comparison, the average time between selected events is around
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40 minutes (22h of images available).

The measures performed in this section were first done for the 50 largest events

and published in conference proceedings [137]. The exact results presented here

were later published in [138].

6.1.2 Force precursors

The approach I presented for position-based precursors was kept for force-based

precursors: computing the derivative of averaged windows (of the same size, 300 s)

of the signal, centered on large events. As displayed in figure 6.6, the qualitative

behavior is the same: prior to large events, the torque Γ increases faster than usual,

indicating an augmentation of the system stiffness. Like was the case for the dilation

rate, this stiffness is positively correlated with the size of the upcoming event. This

relationship has intuitive meaning, as we expect large energy release to happen when

the system is very jammed.

Figure 6.6: Average torque increase rate plotted against binned event energy. The

positive correlation is even more pronounced in the case of the torque signal.

In addition to this measurement, which is dynamic in nature, as it examines the

derivative of the torque, I investigated the absolute value of the torque. For a large

energy release to happen, a lot of energy must be available, and thus we expect the

torque values to be larger prior to large events.

Figure 6.7 compares the torque before and after events, with a threshold E0

selected to that the 120 highest energy events highlighted.

The orange dots represents all events. Since the vast majority of labquakes are of

very small energy, the system is almost identical between before and after these
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6.1. Signal-average based precursors

Figure 6.7: Torque values after against before an event. The distribution of “after”-

values (resp. before) is shown for both selected and all events on the horizontal (resp.

vertical axis.

events: most of these points are clustered around the identity diagonal.

The blue dots corresponds to the high energy events. Since they are a subset of all

events, they also have an orange dot overlaid on them. They strongly diverge from

the identity diagonal, most of the points are below it: high energy events usually

undergo a large drop in torque – this is coherent with what we described in chapter

4: Probing the Structure.

In addition, on each axis is shown the projected distribution of each set of events.

On the vertical axis, one can see that the distribution of torque immediately after

high energy events is very similar to the same distribution computed for all events.

However, for the torque values prior to an event occurs (horizontal axis), the dis-

tribution computed on the high energy events is significantly shifted to the right

compared to global distribution. This shows that, as expected, a lot of available

energy favors large events.

The reason this was investigated for torque only and not dilation signal is that

the measurement would not be exploitable, due to global plastic deformation of the

medium. The range of values covered during a 24h shearing experiment (1 mm)

compares to the height change due to plastic deformation observed in a control

experiment without shear
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Average correlations between several physical quantities (volume, compacity,

torque change) were exhibited in this section. While this indicates predicting large

events may be possible, doing so is actually very hard. We showed that large events

are, on average, preceded by high dilation rates. This however does not guarantee

a high dilation must precede a large event. Indeed, trying to predict big energy

releases based on a simple increase in dilation rate of stiffness has proven to be

fruitless. There is however still physical meaning to these measurements, and they

are still expected to be useful for prediction. But to extract relevant information,

more complex methods must be used.
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6.2. Combining precursors with machine learning

6.2 Combining precursors with machine learning

Recently, machine learning techniques have been used to consistently forecast failure

in a stick-slip experiment, using instantaneous acoustic emissions, by Rouet-Leduc

et al. [139]. Their setup, described in [68], is represented in figure 6.8a.

(a) Schematic of their experimental

setup.

(b) Measurement from their experi-

ment. Strain here corresponds to acous-

tic emissions. The two last signals are

computed on short acoustic windows.

Figure 6.8: Experimental setup and measurements done by Rouet et al.. (a) is from

[68], (b) is from [139].

Using a machine learning model called Random forests (which I will describe in

the next section), this team has been able to continuously predict the time-to-failure

in their system. The performance of their model is shown on figure 6.9

However, their system is, as can be seen on the ground truth of the time-to-

failure displayed on figure 6.9, quasi-periodic and with a rather narrow distribution

of event sizes. While their model is oblivious to these properties, as it only uses

instantaneous measurements, this suggests the dynamic at play in their system is

less complex than in a completely non-periodic one with all-sizes events. They have

also obtained similar results from real geological data [140], but the system studied

in this paper is, here again, quasi-periodic.
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Figure 6.9: Performance of the predictive algorithm of Rouet-Leduc et al. The

output of the model closely match the true time-to-failure.

Still, Inspired by their work, and in collaboration with Olivier Cochet-Escartin1,

a member of the Biophysics team at the ILM, I set to test a machine-learning tool

to predict labquakes, decision trees and random forests.

6.2.1 Decision tree and random forest

A decision tree [141, 142] is a flowchart-like structure, taking some data as input

and with arbitrary output (categorical, such as “yes” or “no”). At each node of the

tree, a test is performed on the data. The result of the test will determine which

branch is then followed until an output is reached.

An example of such a tree is shown in figure 6.10. The data here is what you can

observe about a guest entering your office, and the desired output is to know whether

it rains outside.

The tree presented in figure 6.10 would be the end results of a machine learning

process, as it has already selected relevant questions. Initially, we do not know which

questions to ask the input data (or “features”): the essence of machine learning is

to find which tests and criteria are the most useful. A possible method is to pick

the criterion that best splits the input data [143]. For instance, the set of integers

is perfectly split in two by the question “is it even or odd?”.

Decision trees are simple and useful models and present the advantage to be easily

interpreted. However, they are not very powerful. A way to refine decision tree

1Olivier has machine learning expertise and is now a complete collaborator of the Labquake

project, as he is a co-advisor of the latest Ph.D. student Louis Combe.
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Figure 6.10: Example of a decision tree answering the question “is it raining out-

side?” based on observation of guest entering your office.

models is to pool many of them. For instance, we could make another tree in

addition to the one shown in figure 6.10, which could ask different questions such as

“do they hold an umbrella?”. By doing so, one can build a vast collection of models,

each performing a partially different set of tests on the features, and reaching its

own output. All the models can then vote and elect the global output. When

agglomerating decision trees, the resulting model is called a random forest [144].

Random forests were used by the previously mentioned studies predicting labo-

ratory stick-slip and Cascadia fault slow-slip, and we chose to use them as a well.

Practically, I used the Python sklearn implementation, [145] and details concerning

the model parameters and features are presented in appendix C. Below is a succinct

list of the used features:

• Force: linear and quadratic fit parameters of the past 10 seconds. Moments

2 through 8 of the signal over the same timeframe.

(2 + 3 + 7 = 12 features)

• Position: linear and quadratic fit parameters of the past 10 seconds. Moments

2 through 8 of the signal over the same timeframe

(2 + 3 + 7 = 12 features)

• Structure: mean, minimum, maximum, standard deviation, 10th, 20th, ...,

90th percentiles of the distribution of ζ values, over the past 15 images (60

seconds). Fractal dimension of the force chain network in the shear band.

(4 + 9 + 1 = 14 features)
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• Acoustic: 64 spectral energies, averaged on a spectrogram computed over the

past 1 second, between 1 kHz and 20 kHz.

(64 features)

This sums up to a total of 102 features. I make such an array of 102 features,

generally calledX(t), for time t spaced every 4 seconds (the image’s time resolution).

The different models are trained using the first 2/3rd of the experimental data and

the last third is used for testing.

6.2.2 Defining and designing goals

Random forests are part of the so-called “supervised” machine learning models. This

means they do not only require data to be trained on (the input) but an objective

or a label to aim for (the output). For instance, linear regressions can be seen as

primitive models of machine learning requiring inputs (x values) and outputs (f(x)

values) to learn the slope and intercept.

Let us present a few outputs (targets) I tried to predict using random forests, before

showing their respective performance.

Time-To-Next event

This metric, very much inspired by the one used by Rouet-Leduc et al. [139], is

simply defined as the time remaining until the next event occurs:

TTN(t, E0) = te − t (6.2)

With E0 an energy threshold, and te the timing of the soonest event above this

threshold. The curve of TTN is saw-tooth shaped, and discontinuous every time

an event occurs. It has the advantage of being very easy to interpret as it is a

direct prediction. However, it suffers from being non-continuous relative to threshold

changes, as illustrated by figure 6.11.

To understand the issue, consider two events of size E0 + ǫ and E0 − ǫ, with

E0 the threshold. For the first event, the model is trained to predict a value close

to 0 just before the event, and a high value right after it passed. In the second

case, the model is trained to predict almost the same value between before and after

the event. However, as both events are very close in energy, we can imagine their

features are similar. This is an issue for a machine learning algorithm, as it would be

expected to produce very different outputs for very similar inputs. Such threshold

effects are not a concern in [139], as their system produces events of similar size. In
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Figure 6.11: The resulting TTN curve can be very different depending on the thresh-

old, even for very slight change in the parameter.

our case, the power-law distribution of energy is inherently ill-suited to a threshold

dependant approach, since there is no characteristic scale.

In the following tests, the threshold E0 was set to select 33 events, in a dataset

spanning 22 hours and 15 minutes.

Upcoming Energy

This second function I designed corresponds to the quantity of energy that will

be released in a future-looking time window. The window size is defined by an

exponential in the integrand. Another option would be to set a finite value for the

upper bound of the integral, but doing so would introduce unwanted discontinuities

in the function while using an exponential window has a smoothing effect. This

function presents the advantage of not depending on an arbitrary energy threshold

but does depend on a time parameter. Contrary to the previous function, higher

values correspond to large events.

UE(t, τ) =

∫ ∞

t

E(x) e−x/τ dx (6.3)

In the following tests, the timescale τ was set to 60 seconds, in the same dataset

spanning 22 hours and 15 minutes.

Energy Release Time

Finally, the last function I used is defined as the time ∆t it would take the system

to release a quantity of energy S. This is a variation of the previously presented
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metric. In this case, we wish to predict the lower values, as they mean a big event

is coming: we need to wait a very short time to see a lot of energy released.

ERT (t, S) = smallest ∆t such that
1

∆t

∫ t+∆t

t

E(x) dx > S (6.4)

In the following tests, the value of the integrated energy threshold S is identical to

the energy threshold E0 for the TTN function, for comparison purposes. The data

set is, again, the same.

Qualitative Classification

Finally, I tried a qualitative approach. Instead of attributing a value, each input is

put in a broad class. They are defined as followed:

• Peaceful: No event above a given low energy threshold Elow is coming in the

next 120s.

• High energy: not in any class above and at least one event over a high energy

threshold Ehigh coming in the next 60s.

• Medium energy: not in any class above and at least one event over a medium

energy threshold Emed coming in the next 60s.

The threshold Ehigh was set to E0. This value populates the “high energy” class

with 495 points. In turn, the other thresholds are defined as Emid = Ehigh/10 and

Elow = Emid/10. The respective populations of the “medium energy” and “peaceful”

classes are 1833 and 2789 points, respectively. Let us remind that these points are

not events: one event will typically corresponds to several data points. The 495

“high energy” samples come from 33 labquakes.

The first three functions are fitted using random forest regressors and the last

one using a random forest classifier. The types of outputs are different, but the

inner working of the algorithm is very similar and the inputs are exactly the same.
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6.2.3 Performance

Time-To-Next event

The performance of a random forest model on this metric is shown in figure 6.12.

To check the convergence of the training process, one can plot the prediction of the

model on the data it has been trained on – this is the top plot of figure 6.12.

Figure 6.12: Time-to-next event function and its prediction. Lower values mean a

big event is coming. The top plot contains data from the training set, explaining

the almost perfect match between ground truth and prediction. the bottom plot

presents the performance on data never seen by the model.

We can see there is no sign of under-fitting, an issue where models converge to

trivial solutions, such as always predicting the average output. This trait will be

shared by the next two functions. However, considering the quasi-perfect overlap

of the prediction and the ground truth, there is probably over-fitting. This is the

opposite issue, where a model learns the data “by heart” and fails to generalize to

new data. By looking at the predictive performance on data never seen before on the

bottom plot, one can see the model indeed fails to reproduce local details (smooth

downward slopes) and macro details (raise on average around the 1100 min mark).

This function does not seem promising for predictive purposes, but we expected low

performances since, as explained earlier, a metric depending on an energy threshold

is intrinsically ill-suited to our scale-invariant distribution of energy. In addition,

Using this function implies a belief that there could be information in the system

about an arbitrary far future: predicting the TTN right now is equal to 452 seconds

is equivalent to make a prediction about 452 seconds in the future.
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Upcoming Energy

The upcoming energy results are presented in figure 6.13, with the upcoming energy

in log scale. This metric converged properly as well. In its case, however, the

prediction on new data seems marginally better: several spikes are reproduced by

the model (t=1255 min, 1260 min, 1275 min, 1280 min ,or 1305 min), and the average

trend increase between t=1250 min and 1280 min can be found in the model output

as well.

Figure 6.13: Upcoming energy function and its prediction. Higher values mean a big

event is coming. The top plot contains data from the training set, while the bottom

plot presents the performance on data never seen by the model.

However, spikes or drops sometimes occur in the prediction, when nothing ac-

tually happens in the ground truth signal. In addition, this model presents a prob-

lematic behavior, indicative of partial over-fitting: compared to the ground truth,

its prediction is consistently below the peaks and above the valleys. This metric is

more promising than the previous one, but still not satisfactory.
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Energy Release Time

This last metric results are similar to the previous two. While the convergence

happens without issues, as can be seen in figure 6.14, the prediction is still very off

its target. Only one drop in the ground truth is somewhat predicted by the model,

around t=1280 min. The remaining of the prediction is clustered around a value

∼130 seconds.

Figure 6.14: Energy release time energy function and its prediction. Lower values

mean a big event is coming. The top plot contains data from the training set, while

the bottom plot presents the performance on data never seen by the model.

Qualitative Classification

In front of the difficulty to predict continuous functions, I tried a qualitative, class-

based approach. To visualize and evaluate the performance of such models, a com-

monly used method is to compute the confusion matrix. These are essentially his-

tograms, defined as:

Mi,j =number of class i samples predicted to be of class j.

Such matrix can be normalized column- or line-wise, depending on the infor-

mation one wants to infer from it. A perfect prediction would produce a diagonal

matrix. Points outside the diagonal are errors of the model, but not all errors have

equal consequences. Consider a matrix describing the results of a COVID-19 test:

Infected True positive False negative

Healthy False positive True negative

Positive test Negative test
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Ideally, every test is either a true negative or a true positive, but the consequences

of a wrong result are more severe in the case of a false negative rather than a false

positive.

The results of our classification are presented in figure 6.15. Let us analyze it in

light of what I have explained.

The most important thing to predict is large, catastrophic events. Let us look at

the Ground truth / Large line. Out of the 165 large data points in the testing set,

23 are well identified by the model. However, only 6 are “completely wrong” and

identified as peaceful. When something will happen this model is capable of predict-

ing it, but the size is underestimated ∼85% of the time. Concerning the Prediction

/ Large column, we can see the model does not give many false positives: ∼68% of

the events predicted as large are actually so. The same interpretation can be made

for the Prediction / Peaceful column: the model wrongly predicts it only ∼13%

of the time.

Figure 6.15: Confusion matrix of the classification model. Points on the diagonal

are well predicted, points below have their energy under-estimated and points above

are over-estimated.

This classification approach seems promising but is still not completely satisfying.

Like continuous functions, where the prediction is drawn to the average value to

minimize error, the classifier outputs are biased toward the medium class. It predicts

almost twice their actual number: 266+248+136=650 are predicted, when only
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113+248+2=363 actually happens. A lot of this increase is due to under-estimated

large points, 142 of which the model fails to identify.

One could think of adding a “medium+” class, in the hope these 142 points would

be classified as such. Doing so actually has an opposite effect, where large are mostly

downgraded by the model into this new class.

Finally, this model like the other three suffers from the same imbalance issues.
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6.3 Perspectives

I have shown a correlation between the average behavior of the torque and dilation

signals and the energy of upcoming events. Such a relationship has also been found

in a local measurement, ζ, describing local compacity. Unfortunately, these average

precursors are not present in all the individual cases under average, and therefore,

they predictive capabilities are rather limited. They have however encouraged trying

more elaborate methods.

Machine learning has proven to be a promising tool in previous studies. Random

forests are however apparently insufficient to produce reliable predictions in our

setup. We wish to predict extreme and rare events. Both properties impede

prediction. Rare events are by definition uncommon and require a lot of statistics. In

addition, there is little incentive for a machine learning model (training to minimize

its average error) to accommodate for these outliers. Furthermore, while the concept

of “extreme” event may make intuitive sense, it is ill-defined in a scale-invariant

phenomenon and thus difficult to work around for a computer.

Other fields, such as stock market research or weather forecasting, presents sim-

ilar challenges to the one faced in earthquake prediction: scale invariance, almost

everywhere discontinuous signals,... The strong financial and social incentives have

driven machine learning research to develop more complex models adapted to these

challenges[146–148], with some success. These methods are now being explored in

our group, and we expect significant improvements.
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Conclusion

I detailed my work on the labquake project, focused on deepening our understanding

of this experimental setup and furthering our prediction toolbelt. Let us retrace what

has been presented in this thesis.

• In chapter one, I described our experimental setup in detail. The main exper-

iment consists of a continuously and slowly sheared 2D granular layer, with

free volume and constant pressure conditions. The granular is made of a pho-

toelastic material, allowing us to visualize the stress within it. During the

shear, re-arrangement events occur. These “lab quakes” manifest themselves

in various ways: acoustic energy release, resisting torque variations, changes in

the volume experiment, and force chain re-organization. A range of techniques

are used to monitor these events: six acoustic sensors are placed on the top of

the experiment, two force sensors measure the resistive torque, two-position

sensors measure the height of the granular layer and 24 cameras are used to

capture the position of grains, as well as the force chains thanks to photoe-

lasticity. Building this complex multi-camera setup, both the hardware and

software to process the images, was my first task when I joined this project

during my master internship.

• Chapter two focused on the results published in [83], regarding the statistical

relevance of our setup to real earthquakes. Several statistical features found in

real earthquakes are reproduced by our system: the energy is distributed anal-

ogous to Gutenberg-Richter law, the waiting time between events collapse near

the same master curve and Omori-like a decaying aftershock rate is present as

well.

• The structure of the granular is discussed in chapter three. The signal mea-

sured by the positions sensors revealed a rich dynamic of jumps and drops

in the volume of the experiment. Comparing these position events with the

force events, four classes of events can be defined, depending on whether the

medium contracts or not and whether the torque increase or not. All these
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behavior have been explained by examination of the strength and geometry of

the force chain network.

In addition, two methods were described to characterize the density of the force

network. The first exploits the images, performing a box-counting method to

evaluates a fractal dimension of the force chains. I tried to develop a different

method using two-sensors correlation, which eventually proved unfruitful.

• Chapter four describes a technique using acoustic wave and image data to

locate the source of an acoustic emission. A propagation network is defined

using the images, with local velocity evaluated thanks to photoelasticity. The

time difference of arrival of a wave measured between two sensors is compared

to what is predicted by the model. By computing three time-differences of

arrival across six sensors, the source of emission can be located accurately. This

will be used in future works to measure local properties around the nucleation

site of labquakes, in the hope of finding precursors to large events.

• Finally, chapter five present our latest advancement in terms of prediction.

The first half presents precursors of the average dynamic. By averaging the

system behavior over many events, I found correlations between upcoming

event size and augmentation of the dilation rate as well as the stiffness of the

granular.

While these results cannot be directly used to predict the behavior of our

system, they motivated another approach: combining a multitude of precursors

using machine learning. I present promising initial results using a simple

model, random forests.

The work presented in this thesis is built upon previous works and will serve future

works. Several chapters are exploratory in nature and detail new techniques, which

are now used in our group. Important progress has been made on prediction with

the introduction of machine learning. We believe the preliminary work presented

here (most of it published, [83, 137, 138, 149]) will lead to key results in the future.
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Appendix A

Power-law exponent influence

Let us compute about the average value of a power law:

〈E〉 =
∫ Emax

Emin

xP (x)dx (A.1)

The ratio Emax/Emin is related to the system size. In practice, it is dictated by

the experimental setup characteristics. To compute this integral, we define Emin = 1

and use the expression P (E) = A E−b. Contrary to our physicist intuition, we will

not discard the normalization factor A as soon as we introduced it. The integral

then becomes:

〈E〉 =
∫ Emax

1
x−b+1dx

∫ Emax

1
x−bdx

(A.2)

Depending on the b-value, the solutions are:

〈E〉 = E−b+2
max − 1

(−b+ 2)log(Emax)
for b = 1 (A.3)

〈E〉 = (−1 + 2)log(Emax)

E−b+1
max − 1

for b = 2 (A.4)

〈E〉 = E−b+2
max − 1

E−b+1
max − 1

· 1− b

2− b
for other b > 0 (A.5)

Note that 〈E〉 is continuous with respect to b, so we could content ourselves with

a continuous extension of A.5. However, the b-values of 1 and 2 are particular for

the denominator and numerator (respectively) of A.2 – but the specificity of these

values is not limited to a mathematical quirk. On the left of figure A.1, 〈E〉 is

plotted against a range of b-value for 9 different values of Emax. A rescaled version

of this plot 〈E〉/Emax is shown on the right. On the rescaled curves (right), we
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can see that for power-law slopes below 1 the average energy scales linearly with

Emax: extreme events are common enough they dictates the average response of

the system. The non-rescaled plot (left) shows for slopes above 2, 〈E〉 is essentially
independent of system size: extreme events are now so rare they hardly impact the

system response. Between these two particular b-values, the relationship between

〈E〉 and Emax is more complex and comparison between two quantity from two

different system may be difficult in this range.

Figure A.1: Left : Average value 〈E〉 of a power-law distribution for different b-

values (slopes) and different system size cutoff Emax (curves). Right : Same curves

as on the left but rescaled by Emax.
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Polariscope output intensity

we want to shown relationship 2.8 used in chapter 2, in the frame of the Jones

calculus [150].

Let us define F1 and S1 the vector defined by the fast and slow axis of the first

quarter wave plate, shown in figure B.1. e1 and e2 are the principal direction of

stress in the sample.

Figure B.1: Schematic of a polariscope.The sample is placed between two circular

polarizer (made of a linear polarizer and a quarter-wave plate). The “S” and “F”

denote the slow and fast axis of the quarter-wave plates, respectively.

Suppose a monochromatic wave goes into the system along the optical path.

After the first linear polarizer, the wave polarisation is:

E =
aeiωt√

2

(
1

1

)

The quarter-wave plate adds phase shift of π/2 along its slow axis (second coor-

dinate):
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E =
aeiωt√

2

(
1

i

)

F1,S1

The Jones matrix representing the sample effect is, expressed along the natural

axis of birefringence:

M∗
sample =

(
1 0

0 ei2πp

)

e1,e2

This matrix however is in a different basis. We must rotate it by the angle

between e2 and F1, φ:

Msample = R(φ) ·M∗
sample ·R(−φ)

Msample =

(
cosφ −sinφ

sinφ cosφ

)

e1,e2

·
(
1 0

0 ei2πp

)

e1,e2

·
(

cosφ sinφ

−sinφ cosφ

)

e1,e2

Finally, the matrix representing the sample effect writes as:

Msample =


 cos2φ+ ei2πpsin2φ sinφ cosφ (1− ei2πp)

sinφ cosφ (1− ei2πp) sin2φ+ ei2πpcos2φ




F1,S1

After going through the sample, the wave polarization state is now:

E ∝
(

cos2φ+ ei2πpsin2φ+ i sinφ cosφ(1− ei2πp)

sinφ cosφ(1− ei2πp) + i(sin2φ+ ei2πpcos2φ)

)

F1,S1

Another phase shift π/2 is introduced by the second quarter-wave plate, this

time along the first coordinates as the second slow axis is aligned with the first fast

axis:

E ∝
(
i(cos2φ+ ei2πpsin2φ)− sinφ cosφ(1− ei2πp))

sinφ cosφ(1− ei2πp) + i(sin2φ+ ei2πpcos2φ)

)

F1,S1

Finally, the last linear polarizer projects along its axis:

E ∝i cos2φ+ i ei2πpsin2φ− sinφ cosφ(1− ei2πp)

− sinφ cosφ(1− ei2πp)− i (sin2φ+ ei2πpcos2φ)

We can factorize everything with regards to ei2πp:
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E ∝ ei2πp(i sin2φ+ sinφ cosφ+ sinφ cosφ− icos2φ)

+(i cos2φ− sinφ cosφ− sinφ cosφ− isin2φ)

This can be simplified to:

E ∝ (ei2πp − 1)
1

i
(−sin2φ+ 2i sinφ cosφ+ cos2φ)

E ∝ (ei2πp − 1)
1

i
(cosφ+ i sinφ)2

E ∝ (ei2πp − 1)(−ie−2iφ)

The second term of the multiplication above is of constant norm and does not

contribute to the interference. The first term can be expanded:

E ∝ (ei2πp − 1)

E ∝ eiπp(eiπp − e−iπp)

E ∝ eiπp · 2i sin(πp)

Here again, the first exponential is of constant norm and can be ignored. Finally,

we can write the intensity of the light:

I ∝ E2

I ∝ sin2(πp)
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Appendix C

Random forests parameters

C.1 Feature definitions

Force signal features

These features are computer over the past 10 seconds of the top force signal. The 10

seconds signal cut, initially recorded at 100 kHz, are decimated to 1000 Khz prior

to computation for speed reasons. Since the force signal varies slowly, this does not

change the resulting feature.

The signal is fit by both a linear model (β1t+α1) and a quadratic one (γ2t
2+β2t+α2),

and each of the fitted coefficient is added to the feature list.

In addition to these “trend” features, the moments 2 through 8 of the same signal

cut are computed, capturing whether the jittery properties of the signal.

This amount to 2 + 3 + 7 = 12 features.

Position signal features

The same computation is done for the position signal than the force signal.

This adds another 2 + 3 + 7 = 12 features to the total.

Structure

Let us first detail the features based on the distribution of the ζ parameter. From the

roughly 3800 grains detected in the experiment, around 800 are used to make these

features. The 3000 remaining grains have been excluded either because they are not

in the shear band, or because they are on the edge of the detection area. Grains

in the bulk hold little information, and grains on the edge can have degenerated

Voronoi cell, with infinite area.
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The mean, minimum, maximum, standard deviation, 10th, 20th, ..., 90th per-

centiles of the remaining ζ values are computed and averaged over the past 15

images (60 seconds). In addition, the fractal dimension of the force chain network

in the shear band, averaged over the same period, is added.

This adds another 4 + 9 + 1 = 14 features to the total.

Acoustic

A spectrogram of the past 1 second of the acoustic signal is computed, with the

same parameters used for acoustic event detection, on 128 bins of frequency loga-

rithmically distributed between 1 kHz and 20 kHz.

The spectral energy is then averaged over the total time (1 second) and across

two adjacent bins. This produces 64 average energy.

This adds another 4 + 9 + 1 = 14 features to the total, bringing it to 102

features.

C.2 Feature normalization

As is common to do in machine learning, the input features are normalized. Each

feature is individually normalized to have a mean of 0 and a variance of 1. The

normalization function is made measuring the mean and variance on the training

set, and applied to the testing set.
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