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Abstract

The push towards a scalable quantum computer is entering a crucial phase, with several
different solid-state qubit designs demonstrated as strong candidates for the basis of a
future quantum computer. One such candidate is silicon-based quantum dot spin qubits,
a relatively recent entry into the field but with potential for long coherence times and
high-fidelity measurement and manipulation. Silicon also has a significant advantage in
leveraging industrial expertise and compatibility with current semiconductor fabrication
techniques to produce reliable, reproducible and scalable qubit designs. To develop a
fully-functional quantum computer at scale, the individual qubit design should be compact
with a low control overhead, and have minimal interaction with the environment to prevent
loss of quantum information. One of the major environmental interactions experienced
by quantum dots is the characteristic 1/𝑓 charge noise present in all electronic devices.
Electric field fluctuations in the region of the quantum dot pose a significant challenge for
single- and multi-qubit measurement, manipulation, and coherence in semiconductor spin
qubits.

In this thesis, we investigate and characterize the charge noise experienced by quantum
dots in CMOS silicon nanowire devices. We use frequency-domain analysis to determine
the variability in the charge noise experienced by a quantum dot due to its position within
the nanowire and its interaction with different interfaces, finding typical charge noise
values on the order of 10 µeV2/Hz in the many-electron regime. We analyse the energy
spectrum of charge noise fluctuators in the region of a typical quantum dot and identify
two frequencies which dominate the charge noise in the temperature range of interest. We
also demonstrate a novel technique of measuring the charge noise experienced by a single
electron, a regime which is highly applicable to future qubit development, and extract
the single-electron charge noise value of (130 ± 60) µeV2/Hz at a typical measurement
temperature of 400 mK. The potential decoherence induced by this degree of charge noise
is compared to the decoherence caused by the hyperfine field in natural silicon, and we find
that the theoretical charge noise-limited 𝑇 *

2 is more than two orders of magnitude longer
than the nuclear spin limited 𝑇 *

2 , underpinning the benefits of isotopic purificiation on the
spin coherence time.

Secondly, we demonstrate single-shot measurement of the spin of a single electron
and characterization of the spin physics in a nanowire quantum dot. We demonstrate
measurement of the spin-lattice relaxation time 𝑇1 with a state visibility greater than 90%.
The spin-valley relaxation hotspot is detected via magnetic field spectroscopy, finding a
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valley splitting energy of (297 ± 5) µeV. Finally, we analyse the magnetic field anisotropy
of the spin-valley mixing, demonstrating suppression of the relaxation mechanism by
an order of magnitude in a field oriented along the main symmetry axis of the device.
These experiments have developed our understanding of the noise environment and spin
physics present in CMOS nanowire quantum dots, and form the foundations of in-depth
characterization that can be applied at scale to direct future development of spin qubits in
silicon.



Abstract - Français

La développement d’un ordinateur quantique évolutif entre dans une phase cruciale, avec
plusieurs conceptions de qubit à semi-conducteurs différentes démontrées comme de solides
candidats pour la base d’un futur ordinateur quantique. Un de ces candidats est le qubit
de spin quantique à base de silicium, une entrée relativement récente dans le domaine mais
avec un potentiel pour de longs temps de cohérence et une mesure et une manipulation
haute fidélité. Le silicium a également un avantage significatif en tirant parti de l’expertise
industrielle et de la compatibilité avec les techniques actuelles de fabrication de semi-
conducteurs pour produire des conceptions de qubit fiables, reproductibles et évolutives.
Pour développer un ordinateur quantique entièrement fonctionnel à grande échelle, la
conception de qubit individuel doit être compacte avec une faible surcharge de contrôle et
avoir une interaction minimale avec l’environnement pour éviter la perte d’informations
quantiques. Une des principales interactions environnementales rencontrées par les boîtes
quantiques est le bruit de charge caractéristique 1/𝑓 présent dans tous les appareils
électroniques. Les fluctuations du champ électrique dans la région de la boîte quantique
posent un défi important pour la mesure, la manipulation et la cohérence des qubits de
spin à un ou plusieurs qubits.

Dans cette thèse, nous étudions et caractérisons le bruit de charge ressenti par les boîtes
quantiques dans les dispositifs à nanofils de silicium CMOS. Nous utilisons l’analyse du
domaine fréquentiel afin de déterminer la variabilité du bruit de charge subi par un boîte
quantique en raison de sa position dans le nanofil et de son interaction avec des différentes
interfaces, en trouvant des valeurs de bruit de charge typiques de l’ordre de 10 µeV2/Hz
dans le régime à plusieurs électrons. Nous analysons le spectre d’énergie des fluctuations du
bruit de charge dans la région d’un boîte quantique typique et identifions deux fréquences
qui dominent le bruit de charge dans la plage de température d’intérêt. Nous démontrons
également une nouvelle technique de mesure du bruit de charge subi par un seul électron,
un régime qui est applicable au développement futur des qubits, et extrayons la valeur du
bruit de charge à un électron de (130 ± 60) µeV2/Hz à une température de mesure typique
de 400 mK. La décohérence potentielle induite par ce degré de bruit de charge est comparée
à la décohérence provoquée par le champ hyperfin dans le silicium naturel, et on constate
que la charge théorique limitée au bruit 𝑇 *

2 est plus de deux ordres de grandeur plus longue
que le nucléaire spin limité 𝑇 *

2 , sous-tendant les avantages de la purification isotopique sur
le temps de cohérence du spin.

Deuxièmement, nous démontrons la mesure dans un seul coup du spin d’un seul électron
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et la caractérisation de la physique du spin dans un boîte quantique à nanofils. Nous
démontrons la mesure du temps de relaxation spin-réseau 𝑇1 avec une visibilité d’état
supérieure à 90 %. Le point chaud de relaxation spin-vallée est détecté par spectroscopie
de champ magnétique, trouvant une énergie de division de vallée de (297 ± 5) µeV. Enfin,
nous analysons l’anisotropie du champ magnétique du mélange spin-vallée, démontrant la
suppression du mécanisme de relaxation d’un ordre de grandeur dans un champ orienté
le long de l’axe de symétrie principal du dispositif. Ces expériences ont développé notre
compréhension de l’environnement sonore et de la physique du spin présents dans les boîtes
quantiques de nanofils CMOS, et forment les fondations d’une caractérisation approfondie
qui peut être appliquée à l’échelle pour diriger le développement futur des qubits de spin
dans le silicium.
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CHAPTER 1
Introduction

1.1 Introduction
Since the turn of the twentieth century, physics has been undergoing a so-called "quantum
revolution". The discovery of the quantization of energy at atomic scales, as well as the
discovery of quantum-specific phenomena such as quantum tunnelling, entanglement, and
superposition of states, enabled a rapid swathe of developments in not only fundamental
physics, but also in everyday technological applications. Quantum principles underpin
technologies such as magnetic resonance imaging (MRI), electron microscopy, lasers, light-
emitting diodes (LEDs) and, at the heart of the digital age, semiconductor transistors of
ever-decreasing size.

1.1.1 Classical computation
The semiconductor transistor is arguably one of the most important inventions of the last
century. Since its development in 1947 [Rio99], the transistor has become the building
block of the powerhouse of the digital age: the classical computer. The rapid advancements
in transistor technology have allowed computers to be scaled down from room-sized
machines operating with punch cards and mechanical keys to today’s ubiquitous laptops,
smartphones, and high-density supercomputers. This progression has remarkably reliably
followed Moore’s law [Mac11], which predicts a doubling of the density of transistors
roughly every two years. Such an exponential growth has led us from centimetre-sized
transistors to the state-of-the-art Intel® 14 nm CMOS technology as of 2020, with 10 nm
technology in development [Nat14]. CMOS technology in particular has emerged as by far
the dominant process for fabricating cutting-edge transistors, demonstrating low noise and
low power consumption [Voi13], and it is used in 99% of all modern electronic devices.

However, modern transistors are approaching the length scales where quantum effects are
non-negligible. Nanoscale transistors begin to suffer from power leakage due to quantum
tunnelling [Liu09] on a scale that exceeds the rate at which leakage heat can be removed from
a device. These effects are likely to slow or stall the continuing increase in transistor density
within the next decade. Fortunately, these same quantum effects that are detrimental to
classical transistors can be exploited in a new type of computer: the quantum computer.

1



2 1 Introduction

1.1.2 Quantum computation
Towards the end of the twentieth century, a field of thought developed combining the
principles of classical computation and information processing, and the fundamental field
of quantum mechanics. Aptly termed quantum information, this new field created a new
paradigm of computation, leading to the development of specifically quantum algorithms
and cryptography protocols. One of the first of these, developed in 1984 by Bennett
and Brassard, is known as the "BB84" quantum key distribution scheme [Ben84]. BB84
is a provably secure theoretical key distribution protocol, which relies on the quantum
properties of entanglement and projection - that is, the measurement of a system disturbs
the system itself. Another similar protocol known as E91 was posited in 1991 by Artur
Ekert [Eke91]. The widespread use of such a secure communication channel would naturally
have significant consequences in an age of constant worldwide communication. However,
potentially of even greater impact, is the potential for a computer based on quantum
mechanics to perform computations that a classical computer could not efficiently simulate.

A picture of a truly quantum computer began to develop as the concept of a "qubit",
analogous to the classical "bit" that forms the fundamental basis of a classical computer,
was proposed. It is this that distinguishes the quantum computer from a classical computer.
In a classical computer, information is manipulated classically, using the digital "bit". In
a quantum computer, information is fundamentally quantum, using the analog "qubit",
and exploiting uniquely quantum resources such as entanglement. In general, a quantum
computer can efficiently simulate a classical computer, but a classical computer cannot
efficiently simulate a quantum computer. This is the main advantage of quantum computers
over their classical counterparts, and does not necessarily constitute a universal increase in
speed, efficiency or computing power. Instead, there are certain problems which can be
formulated such that they resemble a quantum system, allowing a quantum computer to
provide a significant speed-up.

In the 1990s, the first purely quantum algorithms were developed, with theoretical proof
of a "quantum speed-up" - that is, proof of superiority in terms of efficiency compared
to the same task being performed on a classical computer. Some of these, such as the
famous Shor’s algorithm for factorizing large numbers and Grover’s algorithm for searching
a database, have significant implications for classical cryptography - much of which (such
as the widely-used RSA algorithm) is based on the difficulty that classical computers have
in solving such problems with "brute force" methods. These algorithms, along with several
more developed in the following years, cemented the idea of a new quantum computing
paradigm, in which such algorithms could be realized, being the future of information
processing. However, it was known that practically implementing a quantum computer
would be a formidable challenge in terms of both physics and engineering.

1.1.3 The qubit
The quantum bit, hereafter referred to as the qubit, is the fundamental unit of information
in quantum information processing. The physical implementation of a qubit can take
many forms, such as photons, trapped ions, electron and nuclear spins, or superconducting
qubits. In general, a qubit can be any system defined by two basis states, representing
0 and 1, which can take a continuum of possible superpositions of these two states. In
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Dirac notation, a qubit can be represented by |𝛹⟩ = 𝛼|0⟩ + 𝛽|1⟩, with the condition that
|𝛼|2 + |𝛽|2 = 1. The values of 𝛼 and 𝛽 can be referred to as the "amplitudes" of the two
states |0⟩ and |1⟩ respectively. The classical state 0 (1) can be recovered when 𝛼 = 1(0) and
𝛽 = 0(1), giving |𝛹⟩ = |0⟩ and |𝛹⟩ = |1⟩ respectively. However, the true value of the qubit
lies in its ability to take a value that is neither |0⟩ or |1⟩, but a linear combination of the
two - a so-called superposition state. An example of a superposition state is 𝛼 = 𝛽 = 1√

2 ,
whereby the qubit has equal amplitude of both the |0⟩ and |1⟩ states.

A measurement of a qubit corresponds to a projection of a qubit into its basis states
|0⟩ and |1⟩. One of these two results will always be obtained, regardless of the qubit state
before measurement. The probability of obtaining the state |0⟩ is given by |𝛼|2, and the
probability of obtaining |1⟩ is given by |𝛽|2. This makes the choice of measurement basis
meaningful, as a qubit will not generally give the same result if measured in a different
basis.

Figure 1.1: Bloch Sphere The Bloch sphere is often used to depict the state of a qubit. A
qubit can take any state which lies on the surface of this sphere, which has a radius of unity.
The basis states |0⟩ and |1⟩ lie at the north and south poles of the sphere. Therefore, a qubit
pointing directly towards the north pole has the state |0⟩. However, a qubit which points
towards the equator of the sphere is in a superposition state containing equal amplitudes of
both |0⟩ and |1⟩, as well as a phase, which is determined by its longitude around the sphere.
Any arbitrary state a qubit can take can be represented as a vector within the Bloch sphere.
[Image credit [Tow]]

A qubit is often depicted using the Bloch sphere, as seen in Fig 1.1 [Blo46]. In this
picture, the north and south poles of the sphere correspond to the |0⟩ and |1⟩ states. The
qubit can take any state which lies on the surface of the Bloch sphere. This gives rise to
the picture of a complex qubit "phase", that being the "longitude" of the qubit vector in
the Bloch sphere, which has little bearing on the state of a single qubit measured in the
|0⟩,|1⟩, but becomes crucially important for two interacting qubits.

1.1.4 The DiVincenzo criteria
The physical realization of a quantum computer has some significant requirements, each
one of which is not trivial to implement in a physical system. These were first laid out
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by DiVincenzo in 2000 and have come to be known as the DiVincenzo requirements for
quantum computation [DiV00].

1. A scalable physical system with well-characterized qubits
The first criterion is immediately a formidable challenge. To produce a quantum computer

which can perform large-scale computations, we will require at least 106 qubits [Ste99].
At this scale, qubits cannot be individually tuned, and therefore reliable, reproducible
qubits that can be produced at scale will be necessary. Well-characterized qubits have been
developed, especially using superconducting qubits and ion traps. However, scalability of
these systems can be a significant practical issue in terms of hardware, power dissipation
at low temperatures, and fabrication scalability.

2. The ability to initialize the state of the qubits into a known fiducial state
The initialization of a qubit is crucial to computation. The initial state must be known

for the outcome of an operation to have any meaning. In general, we aim to initialize in
the |0000....⟩ state in the {|0⟩, |1⟩} basis. For many systems (such as spin-based qubits)
this simply means allowing the qubit sufficient time to relax to the energetically favourable
ground state. This relaxation can be accelerated through use of relaxation hotspots (specific
configurations which allow rapid relaxation), or by using a system with a naturally short
relaxation time. In others, the initialization must be dynamically controlled, such as by
pre-polarizing a photon qubit, or using microwave pulses to induce rapid relaxation. In
a real system, qubit errors mean that many repeated measurements will be necessary,
meaning efficient initialization is highly beneficial [Tuo17].

3. Relevant decoherence times longer than the gate operation time
Qubits are naturally coupled to their environment. The quantum state of a qubit can be

perturbed through interaction with the environment. For a single qubit state, this can lead
to relaxation, for example, from the |1⟩ state to the |0⟩ state. For multiple qubits, however,
the relative phase of the qubits can also decay due to interaction with the environment,
leading to what is known as decoherence. To conduct quantum computation, the time
required for a qubit to decohere must be much longer than the time required to implement
computational operations on the qubit. This corresponds to a low noise environment, or a
qubit implementation which is highly decoupled from the environment.

4. A universal set of quantum gates
The actual process of computation involves applying operations to a register of qubits.

These operations are performed via a set of unitary transformations, referred to as quantum
gates. Quantum gates are operations which rotate a single qubit, or a pair of qubits, about
the Bloch sphere. An example of a simple quantum algorithm involving two-qubit gates is
depicted in Fig 1.2. A universal set of gates means that any arbitrary operation can be
carried out through combinations of one- or two-qubit gates. In general, one-qubit gates
and two-qubit CNOT gates, or any set of gates that can reproduce these, are an adequate
set of gates to enact universal operations [DiV00]. However, increasing the number of gates
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Figure 1.2: Quantum algorithm An example of a quantum algorithm. The horizontal
lines represent qubits, with the x axis moving forward in time towards the right. A typical
gate is the two-qubit CNOT gate, represented here by a white circle containing a "+" on the
target qubit, with the control qubit indicated by a solid black circle. This specific algorithm
is a simple error correction algorithm, in which a qubit and two ancilla are passed through a
noisy channel and post-corrected to yield the original qubit state.

required to produce an arbitrary operation also increases the error in the final result, as
each gate induces additional errors into the computation. Therefore it would be preferable
to have a computational basis upon which a wide set of one- and two-qubit gates can be
directly implemented.

5. The capability to measure specific qubits
The final requirement for general quantum computation is the ability to readout and

measure the quantum state of individual qubits. For an ideal measurement, the qubit
with state |𝛹⟩ = 𝛼|0⟩ + 𝛽|1⟩ should yield the outcome 0 with probability |𝛼|2 and 1 with
probability |𝛽|2 = 1 − |𝛼|2, independent of any other parameters including the state of
nearby qubits. An ideal measurement should also not perturb the rest of the quantum
computer (beyond projecting the state of the measured qubit). Again, environmental
interaction with the qubit means that 100% efficiency will never be reached in a physical
system. This means that a real quantum computer will have a finite error inherent in
the readout. This can be accounted for by duplicating the operation over many qubits
and repeating the measurement. Such redundancy will be necessary for any physical
implementation of a quantum computer.

In addition to these five criteria, there are two additional requirements, which do not
directly pertain to quantum computation, but instead to the development of a connectable
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set of quantum computers. A quantum computer could be built without these, but they
would be necessary, for example, to transfer a qubit state over a very long distance. They
are requirements for quantum communication and cryptography due to the necessity of a
specifically quantum channel of communication in order to transfer quantum information.

6. The ability to interconnect stationary and flying qubits
Different qubit realizations have different advantages. Some, such as superconducting

and quantum dot qubits, demonstrate high degrees of control and have a small physical
footprint, allowing them to be scaled to large numbers. However, the interaction range
of these qubits is very short, on the order of the size of a single qubit. Whilst some
medium-range transport of solid-state qubits has been demonstrated (for example, using
surface acoustic waves to coherently transmit electrons over several micrometres, or using
spin chains to transfer a spin state through a series of coupled quantum dots), for very
long range communication on the order of tens or hundreds of kilometres, it is likely
that photons in fibre optic cables will be the go-to qubit. In order to transfer quantum
information from a static computer across a communication channel, we require the ability
to transfer information from one type of qubit to another. Such interactions can be realized
via optomechanical resonators, or through photoexcitation in solid state materials...

7. The ability to transmit flying qubits between specified locations
The final requirement to complete a fully quantum-compatible network is the ability to

transmit flying qubits over long distances whilst maintaining quantum coherence. Photon
qubits in fibre optic cables will be the most likely realization of this, although decoherence
over long distances may necessitate the use of "booster stations" - intermediary points
along the network where operations can be performed to preserve and re-transmit the state.
To enable such a network to connect multiple quantum computers, the decoherence time of
the quantum state must be longer than the time required to transmit the state to another
point.

1.1.5 Quantum error correction
Any real quantum computer that satisfies all of the first five of DiVincenzo’s criteria will
be comprised of qubits which have a finite error. This is unavoidable, and whilst individual
qubit errors must be minimized, the field of quantum error correction has developed to
realize a "fault tolerant" quantum computer. Quantum error correction generally involves
an encoding of a "logical" or "computational" qubit onto many physical qubits to correct
for bit-flip and phase-flip errors. This method requires additional quantum gates in an
operation to encode the logical qubit. The threshold theorem for quantum computation
is stated as follows: A circuit containing 𝑛 qubits and 𝑝(𝑛) gates can be simulated with
an error 𝜀 using a number of gates 𝑁 on a register of qubits that produce an error with
probability 𝑝, given that 𝑝 < 𝑝𝑡ℎ [Nie01].

𝑁 = 𝑂(𝑙𝑜𝑔𝑐(𝑝(𝑛)/𝜀)𝑝(𝑛)) (1.1)

The quantum threshold theorem shows that if the individual gate error is a small
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constant, arbitrarily long computations can be performed to arbitrarily good precision with
only a minor overhead (on the order 𝑙𝑜𝑔(1/𝜀)). However, to implement this, the number
of qubits required is expanded significantly. An example error correction algorithm is
depicted in Fig 1.2, where three qubits, including two ancilla, are used to correct a single
logical qubit. In large-scale quantum error correction, many individual physical qubits are
required to encode a single logical qubit. One promising implementation of quantum error
correction, known as surface codes, suggests that for a typical individual qubit error of
0.1% (a 99.9% fidelity qubit), one logical qubit will require between 1,000 to 10,000 physical
qubits [Cam17]. This indicates the kind of numbers of qubits that will be necessary to
create a functional quantum computer, and underpins the importance of scalability in the
physical realization of a quantum computer.

1.2 Physical realizations of a quantum computer
Ultimately, there is no fundamental barrier to a fault tolerant quantum computer. The
challenge to overcome is a technological one, and as research progresses with cutting-edge
engineering techniques, it seems inevitable that a large-scale quantum computer will be
possible. However, there are many different propositions for building a quantum computer,
each of which has its advantages and disadvantages. Here we will outline some of the most
developed qubit implementations.

1.2.1 Superconducting qubits
The first superconducting qubit was developed in 1999 [Nak99], not long after the first
quantum computing architecture proposals. Since then, the field of superconducting
quantum computing has rapidly developed, with one- and two-qubit gates demonstrated
with fidelity over 99% [Bar14]. Superconducting qubits are the qubits of choice for current
industrially-developed quantum computers, with Google and IBM leading the way with 53
and 65 qubit arrays respectively [Moo21]. Notably, it was the first qubit implementation
in which the milestone of so-called "quantum supremacy" has been claimed to be achieved,
using Google’s 53-qubit processor (in 2019, [Aru19]).

There are many different designs of superconducting qubits, including charge qubits,
flux qubits, and phase qubits [Hua20]. They are versatile, and can operate in different
modes depending on the requirements of the system. Additionally, they are built using
microfabrication processes, meaning several qubits can be placed on a single chip, offering
good short-term scalability. Coupling between superconducting qubits is relatively simple,
and usually implemented via capacitive or inductive coupling. Finally, superconducting
qubits can be controlled via microwave excitation, which can be reliably implemented using
current technology. With this in mind, it is easy to see why the field has had significant
success over the past decade.

1.2.2 Photonic qubits
Photonic qubits have been part of the quantum computing conversation since the earliest
days for two main reasons [Slu19]. Firstly is the simplicity in which high-fidelity single-qubit
operations can be performed with minimal environmental interaction. Secondly is the
necessity of transporting quantum information over large distances, for which photonic
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Figure 1.3: Qubit realizations a) The Google Sycamore quantum chip, used to demonstrate
quantum supremacy in 2019 and currently one of the most advanced quantum computers.
[Image credit [Aru19]]. b) Photonic quantum computers make use of interferometry and single-
photon emission and detection to implement flying qubits, [Image credit [Fla18]] c) Trapped
ion quantum computers use magnetic fields to trap single ions, which can be manipulated with
lasers, [Image credit [Mon13]] d) The D-Wave 2000Q quantum computer contains 2048 qubits,
which are used to implement quantum annealing - a sub [Image credit ©D-Wave Systems Inc.]

qubits are an obvious candidate. Photons are minimally-interacting systems, so that they
can transport quantum information over very long distances without decoherence.

In their current state, photonic qubits fulfil five of the seven DiVincenzo requirements,
partly due to their natural advantage in the two communication-based criteria. Difficulties
arise when considering the last two criteria, however: implementing a universal set of
quantum gates, and qubit-specific measurement. By their nature, photons have minimal
interaction. This gives them long decoherence times due to low interaction with the
environment.

Photonic qubits have already entered the market, with applications in cryptography and
random number generation. Commercial quantum key distribution systems are commer-
cially available, with companies such as MagiQ Technologies, QNu Labs, Quintessence
Labs, SeQureNet and ID Quantique offering quantum key distribution systems based on
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quantum optics. Quantum random number generators are commercially available using
quantum optics, such as the Quantis product line from ID Quantique. With their prevalence
in commercial quantum applications and potential for enacting flying qubits, photonic
quantum computation is one of the deepest areas of research in the field.

1.2.3 Trapped ion qubits
No discussion of quantum computing implementations would be complete without men-
tioning qubits formed of cold trapped ions. Some of the first propositions of implementing
quantum computations, predating even the Kane proposal, involve the use of trapped ions
as qubits [Cir95]. Single trapped ions have been confined in radiofrequency traps since
the 1980s, and displayed promising properties for quantum computation. The ions have
long lifetimes within the traps, long coherence times of their internal basis states (up to
50 s [Bru19]), and can be manipulated with laser pulses and laser cooling. Additionally,
two-qubit gates were rapidly demonstrated using the hyperfine coupling in a Beryllium ion
[Mon95].

Since these first experiments, several of the DiVincenzo criteria have been satisfied for
trapped ion qubits. Single-qubit gates with errors below 10−4 have been demonstrated on
single ions [Bro11], as well as two-qubit gates shown to be able to entangle multiple ions
[Ben08]. High-fidelity state preparation and measurement have also been demonstrated,
above the limit for fault-tolerant quantum computation [Mye08]. Trapped ions fulfil the
first five DiVincenzo criteria with remarkably high fidelity, and have even been shown to
be able to implement Shor’s algorithm [Mon16].

1.2.4 Other realizations
In addition to the above qubit designs, there are many other types of qubits or quantum
computers, most of which fulfil a specific purpose or play a particular role. Many of these
have exciting prospects for quantum computation which are more specialized than, for
example, superconducting qubits.

One approach to quantum computation, especially that involving quantum simulation
of molecules, is liquid nuclear magnetic resonance (NMR) quantum computation. Liquid
NMR is based on molecules in solution that contain atomic nuclei which act as spin-1/2
systems, each of which has a characteristic energy and interaction with its neighbours
[Ger98]. The qubit is formed by the spin-1/2-like nuclei, and the qubit-qubit interactions
are mediated by spin-spin interactions at inter-atomic bonds. Liquid NMR is performed
on a large ensemble of molecules, which has both advantages (such as being able to work
at higher temperature) and disadvantages (unable to address specific qubits or sets of
qubits, introduction of decoherence). Shor’s algorithm was demonstrated on a 7-qubit
ensemble liquid NMR quantum computer in 2001 [Van01]. Solid-state NMR operates on
similar principles, but with solid state samples, allowing lower temperatures, individual
qubit addressability, and a higher degree of control [Jon01].

Nitrogen-vacancy (N-V) centers in diamond are another qubit implementation of interest
due to its atom-like properties and solid state environment [Chi13]. They contain spin
degrees of freedom which can be addressed via optical transitions. Additionally, stimulated
single photon emission has been demonstrated in N-V centers, making them of particular
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interest when considering the sixth DiVincenzo requirement of interacting solid state qubits
and flying qubits [Jes17].

Finally, a prominent type of quantum computer is the adiabatic quantum computer,
particularly that based on quantum annealing. This is the basis of the D-Wave Systems
commercial quantum computers. It is not a universal quantum computer, but specialized in
solving minimization problems - that is, problems which involve finding a global minimum
in a finite parameter space. It cannot, for example, solve Shor’s algorithm, as it does not
fall into this class of problems. However, quantum entanglement has been demonstrated on
their quantum annealers [Lan14], and a speedup over classical methods such as simulated
annealing and quantum Monte Carlo simulation was shown in 2015 [Den16]. Their largest
quantum computers have over five thousand qubits operating with more than a million
Josephson junctions, outpacing the current universal quantum computer implementations.

1.3 A spin-based silicon quantum computer
Spins in silicon have been central to the quantum computing conversation since the first
proposals. The archetypal model for a quantum computer, proposed by Kane in 1998
[Kan98], involved the use of nuclear spins in phosphorous atoms embedded in a silicon
lattice, controlled by so-called "J" and "A" gates, which tune the coupling between qubits
and the qubit state itself respectively. It proposed to leverage the quiet nuclear spin field to
have a minimal-decoherence substrate, and the hyperfine interaction between the electronic
and nuclear spin to couple qubits.

Also in 1998, Loss and DiVincenzo proposed a quantum computer using electron spins
in quantum dots [Los98]. Quantum dots in semiconductor materials have emerged as a
method of tightly confining electrons [Cro97; Gam96; Kum90; Liv96; Swi98]. Loss and
DiVincenzo proposed to use quantum dots to trap single electrons in a two-dimensional
array. The electrons would then be controlled through manipulation of the wavefunction
by gate voltages to tune the coupling and chemical potentials - the "A" and "J" gates.

Silicon - and semiconductor materials in general - was chosen for these early proposals
due to its negligible hyperfine field after purification, as well as the history of silicon in
industrial transistor fabrication. The electron and nuclear spins are both strong candidates
for qubits, forming a natural two-level system which can be accessed and manipulated
using electric and magnetic fields.

Qubits have been enacted in many types of semiconductor quantum dots, from InAs
nanowires to GaAs heterostructures. These substrates are excellent test beds, and have
been used to demonstrate complex electron manipulation, such as coherent electron spin
transfer using surface acoustic waves [Jad21] and shuttling of electrons in a two-dimensional
array of quantum dots [Mor18]. Silicon spin qubits in particular have been the subject of
rapid advancements in recent years [Hut16; Pla12; Tyr12; Vel17; Yon17]. Their potential
for scalable development via industrial fabrication processes is especially exciting, and a
great deal of effort is now focussed towards demonstrating that silicon spin qubits - and
CMOS qubits in particular - can fulfil the DiVincenzo requirements. Due to the simple
initialization of spins (through fast ground state relaxation) and the long coherence times
characteristic in silicon, the main three objectives to be demonstrated are addressable,
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high fidelity readout; single-qubit manipulation; and two-qubit manipulation.

1.3.1 Si-MOS spin qubits

Figure 1.4: High-fidelity readout The energy-selective readout used to detect the spin of a
single electron in a phosphorous donor is depicted. a) Single-shot readout traces distinguishing
between spin-up (red) and spin-down (blue) measurements. If the current jumps beyond
the threshold (black dashed line) within the measurement time, the spin is detected to be
up, otherwise it is down. b) Histogram of the current distribution in the spin-up (red) and
spin-down (blue) measurements. The overlap of the two peaks gives the readout error - this
represents a false detection (detecting spin-up as spin-down, and vice versa). The more
separated the peaks are, the higher fidelity the measurement is. c) As the threshold current
(black dashed line in a)) is varied, the fidelity of measuring spin-down (spin-up) is increased
(decreased). The visibility 𝑉 = 𝐹↑𝐹↓ is plotted in black. At the optimum threshold current,
the maximum visibility is 92%. Adapted from [Mor10].

The first objective of addressable, high-fidelity readout was achieved in 2010 [Mor10].
Energy-selective readout using an on-chip charge sensor was used to detect a single electron
spin, with single-state fidelity approaching 99%, and state visibility around 92%. The
readout is depicted in Fig 1.4. Such single-shot spin detection is an important step
towards addressable spin readout. Demonstration of this in principle suggests that any
arbitrary qubit in a quantum computer could be read out in a single measurement, with
the only geometric requirements being a nearby charge sensor and an electron reservoir.
Energy-selective readout has proven to be a reliable and high-fidelity choice for spin readout.

High-fidelity single qubit gates have been demonstrated with 99.9% fidelity [Yon17]. The
gate is implemented via EDSR spin control with microwave pulses on an electrostatic gate,
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Figure 1.5: Single- and two-qubit gates Demonstrations of one- and two-qubit gates in
silicon quantum dots. a) Fidelity analysis of a one-qubit gate in a silicon quantum dot [Yon17].
The gate fidelity for 𝑁 iterations of different Clifford gates. The Clifford gates correspond
to the Pauli transformations and the identity transformation, comprising a complete set of
single-qubit transformations which, in conjunction with a two-qubit CNOT gate, could be
used to implement any arbitrary quantum gate. The fidelity of each gate is above or close to
99.9%, above the 1% error threshold for error-corrected fault tolerant quantum computation.
b) Schematic and readout of a two-qubit CNOT gate [Vel15]. A target qubit undergoes a 𝜋
rotation conditional on the state of the control qubit. Due to the exchange interaction, the
frequency of the microwave pulse required is different depending on the state of the control
qubit. It is set to one of these state-specific frequencies, then pulsed when the control qubit is
in a known initial state. A CNOT gate with a fidelity greater than 99% was demonstrated
with this method. Adapted from [Vel15; Yon17].

manipulating an electron spin in a magnetic field gradient and detected with energy-selective
readout. The fidelity is quantified via repeated EDSR pulses of varying length, with the
resulting spin-up population measured and compared to the expected population. It is
benchmarked by applying Clifford gates, common single-spin operations which correspond
to the Pauli matrices; that is, 𝜋-rotations about the cardinal axes of the Bloch sphere. The
fidelity as a function of the number of applied gates is depicted in Fig 1.7, with a fidelity
of more than 99.9% found for almost all types of single-qubit gate.

Two-qubit gates are the most complex to implement, requiring excellent control over
individual qubits and the inter-qubit coupling. However, they are necessary to be able to
implement a universal set of quantum gates. It is sufficient to be able to demonstrate a
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CNOT gate (controlled-NOT, whereby one qubit undergoes a 𝜋 rotation dependent on the
state of the second), as any arbitrary gate can be implemented as a combination of CNOT
and single-qubit gates. A two-qubit CNOT gate has been demonstrated in silicon [Vel15].
Two quantum dot qubits are coupled via the exchange interaction, which is controlled with
the detuning. A schematic of the CNOT procedure is laid out in Fig ??. The averaged
state readout depicted in (b) demonstrates coherent interaction during the CNOT gate.
The fidelity of the two-qubit gate was determined to be above 99%, which is compatible
with error correction codes which allow fault-tolerant computing with errors as high as 1%.

With these three main objectives demonstrated for Si-MOS qubits, and the inherent
benefits of silicon, the future looks promising for development of a universal quantum
computer with this qubit realization. The success of Si-MOS qubits has motivated research
into a similar kind of qubits with formidable potential for scalability: CMOS spin qubits.

1.3.2 CMOS spin qubits
CMOS fabrication processes are used to fabricate high-density processors containing billions
of transistors. These processes could be leveraged to allow mass fabrication of CMOS
spin qubits, combining the promising properties and demonstrated capabilities of Si-MOS
qubits, and the scalability and reproducibility of CMOS fabrication. Despite being a
relatively young field, significant progress has been made towards demonstrating the
required objectives. The MOS-Quito project, consisting of a collaboration between the
nanoelectronics giant CEA-LETI and various academic institutions, is a European project
to create a high-fidelity qubit on a 300 mm CMOS platform. Whilst the ultimate objective
of a fully-functional qubit with two-qubit gates has not yet been achieved, several advances
have been made in this direction.

Maurand et al in 2016 demonstrated qubit functionality in a hole spin qubit using a
CMOS device [Mau16]. It was demonstrated that quantum dots could be formed in the
corner of a depleted silicon channel using only a single control gate, with two quantum dots
in series formed. Spin readout was demonstrated via Pauli spin blockade, with the channel
biased so that holes could flow in one direction only. Importantly, single-spin manipulation
was demonstrated by measuring the spin as a function of the power and burst time of a
microwave pulse applied to one of the gates. The crucial elements of spin readout and
single spin manipulation were demonstrated, and these results - as well as the promising
results from Si-MOS qubits - spurred further research into these CMOS-fabricated devices.

One of the drawbacks - which can also be an advantage - of electrons in silicon is their
low spin-orbit coupling. This means that electronic spins can only weakly be controlled by
electric fields, presenting a challenge to performing EDSR manipulation. However, it also
means that a major source of spin relaxation is minimized for electrons. EDSR was however
demonstrated for electrons, by making use of spin-valley mixing to enhance the spin-orbit
coupling [Cor18]. This allows use of low power microwave excitation which would normally
not be sufficient to drive conventional ESR. EDSR is a promising tool for selective spin
manipulation, as it can be applied on a local gate rather than using a microwave stripline
for magnetic field control.

Single-shot spin readout is necessary to be able to detect the spin of specific qubits -
one of the main requirements of the DiVincenzo criteria. RF reflectometry has emerged as
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Figure 1.6: CMOS qubit manipulation Demonstration of single-qubit manipulation in
CMOS silicon quantum dots. a) Schematic of a typical two-gate CMOS-fabricated device. The
depleted channel (yellow) is bounded by two reservoirs, source and drain. The spin is read
out via Pauli spin blockade using two quantum dots in series below the two gates, with a dot
containing a ground-state spin under gate 2 blocking transport of a ground-state spin from
the dot under gate 1. b) Rabi oscillations as a function of microwave power and burst time.
The microwave burst is applied on gate 1, rotating the blockaded spin into a state dependent
on the duration and power of the burst. c) Demonstration of EDSR control of an electron
spin in a similar device to that depicted in a). The EDSR is mediated via the spin-valley
interaction, and controlled with a frequency matching 𝐸𝑍 , which is variant with magnetic field.
The resonance lines A,B and C correspond to different resonant spin-flip transitions. Adapted
from [Cor18; Mau16].
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Figure 1.7: Single-shot readout Single-shot readout demonstrated in a CMOS device using
RF reflectometry. a) Schematic of the device and RF circuit. A tank circuit is connected to
the quantum dot under 𝐺1, with the reflected signal used to probe the charge state of the
dot under 𝐺2. b) Single-shot readout of the charge state of 𝐺2. The distinctive spin-down
(orange) and spin-up (blue) traces are used to distinguish between the two states. c) Fidelity
analysis of this readout method. The fidelity is degraded with temperature due to thermal
charge transitions, but remains above 90% up to a temperature of 1 K. At low temperature,
the readout fidelity approches 99%. Adapted from [Urd19].

a method of implementing high-fidelity single-shot readout integrated within the device
[Urd19]. This is a method of charge sensing which uses a reflectometry circuit connected to
a gate or reservoir nearby the probed system. A resonance in the reflected signal is shifted
in frequency when the capacitive coupling between the gate (or reservoir) and the probed
system is changed by a charge entering or leaving the probed quantum dot. This integrated
charge sensing was used with an electron latching mechanism to detect the spin of a double
quantum dot in single-shot. The readout fidelity was shown to remain above 90% up to
1 K, indicating that spin readout can be possible at relatively high temperatures.

With single-spin manipulation and high fidelity single-shot readout achieved in CMOS
quantum dots, only a few milestones remain to be demonstrated to have functional, coupled
spin qubits. However, this field remains very young, and despite the current promising
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results, CMOS quantum dots have not been well-characterized, and their properties are not
fully understood. In particular, experimental results do not always line up with simulations
of the quantum dot behaviour, and the reasons why are currently unknown. A more
complete characterization of the properties of such CMOS devices is necessary to be able to
proceed towards functional qubits, and this is the problem that this thesis aims to tackle.

1.4 Thesis structure
Characterization of CMOS devices at room temperature is a routine part of fabrication.
However, low-temperature characterization of the quantum dots is not yet routine, and
is necessary to inform simulations and future development in device design, as well as
obtaining data on the variability in low-temperature characteristics across different devices.
This thesis aims to demonstrate in-depth low-temperature characterization of quantum dots
in a CMOS device in terms of the local electric field fluctuations and disorder, as well as
the spin and valley physics which are highly influenced by the local device characteristics.

In Chapter 2 the theory and fundamentals behind the formation of single and double
quantum dots is outlined. The electrostatic model and the energetic structure of the levels
within the dot are detailed. We discuss the principles behind charge sensing, and the spin
structure within the dot, with several spin-to-charge conversion mechanisms presented.

In Chapter 3 we outline the experimental setup used to characterize a CMOS device.
We present the device design and structure, and discuss how it can be characterized at
room and low temperature. Finally, we demonstrate how various parameters of a quantum
dot can be extracted using current-voltage measurements, with example measurements
from real devices.

In Chapter 4 we outline how charge noise affects a qubit defined in a semiconductor
device, the physical source of the noise, and how a 1/𝑓 noise spectrum can be interpreted
for semiconductor quantum dots. We then present experimental results, demonstrating
clear 1/𝑓 charge noise experienced by a quantum dot in a silicon CMOS nanowire device.
We demonstrate how the charge noise varies as the quantum dot is manipulated within the
device and experiences different spatially separated sources of charge noise. We also explore
the sources of charge noise and measure the energies of two-level fluctuators believed to be
the dominant cause within the measurement regime. Finally, we present a novel method of
measurement of charge noise at the single electron level, and use it to probe the charge
noise experienced by the first three electrons in a quantum dot.

In Chapter 5 we present a method of detection and addressable single-shot measurement
of a single electron spin, which could be used to characterise large arrays of silicon CMOS
nanowire quantum dots. We first present the readout method used and fidelity analysis,
and demonstrate the measurement of the spin relaxation time 𝑇1 with a spin state visibility
greater than 90%. The relaxation time is analysed as a function of the magnetic field, and
used to detect the spin-valley relaxation hotspot at (297 ± 5) µeV. We demonstrate control
over the valley splitting via electric field tuning from 297 µeV to 260 µeV, detected via
measurement of the relaxation hotspot. Finally, we measure the magnetic field anisotropy
of the spin-valley mixing, demonstrating suppression of the relaxation mechanism in a field
oriented along the main symmetry axis of the device.



CHAPTER 2
Quantum Dots

2.1 Introduction
A promising candidate for a physical implementation of a scalable qubit is the quantum
dot. A quantum dot is a sharp potential well, defined on the nanoscale by some mechanism
of potential confinement; this can be through the use of electrostatic gates, or by using a
naturally-occurring potential well, such as a single dopant.

Here we review the dynamics of a quantum dot in a semicondutor, defined via electrostatic
gates acting on a 2D electron gas. First we present the theory behind the formation and
operation of a quantum dot, then discuss the use of a quantum dot as an electrometer for
probing the single-electron regime. Finally we present the use of single and two electron
spins as a two-level system appropriate for use as a qubit.

2.2 Quantum dots
2.2.1 Single dot energy
A quantum dot is a sharp potential well that is able to trap and hold a number of electrons
(or holes). Quantum dots in semiconductors can be formed by accumulating electrons into
what is known as a 2D electron gas, or 2DEG, at a physical interface in a semiconductor
device through attraction by a positive electric field. The dot is then defined in two
dimensions via electrostatic fields generated by metallic gates, isolating a small region of
this 2DEG.

The size of the dot is typically a few to tens of nanometers, to be on the order of the
fermi wavelength of the electrons. In isolation, the confinement in all dimensions results in
a quantized energy spectrum, and therefore a quantum dot holds an integer number of
electrons that occupy the available energy states below the Fermi energy. The number of
free electrons in the dot can be changed by manipulating the confinement potential.

As electrons are loaded onto the quantum dot, they exert a repulsive Coulomb force
upon other electrons in the dot. In order to add an additional electron to the dot, this
repulsive force must be overcome. The energy associated with this is called the charging
energy, and is a purely classical effect. The charging energy can be derived simply from
electrostatics. If we consider a quantum dot as one terminal of a capacitor, with the other

17
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being an electron reservoir, then the charge on the quantum dot will be given by 𝑄 = 𝐶𝑉 ,
with C the capacitance and V the potential difference between the dot and the reservoir.
The energy on the quantum dot is therefore:

𝐸 = 1
2

𝑄2

𝐶
= (𝑁𝑒)2

2𝐶
(2.1)

Where 𝑁 is the number of electrons trapped on the quantum dot. For the case of 𝑁 = 1:

𝐸 = 𝑒2

2𝐶
(2.2)

This is called the Coulomb charging energy, or simply charging energy, and is an
important energy scale for quantum dots. For semiconductor quantum dots on the order
of 100 nm in size,the charging energy is typically on the order of a few meV.

Figure 2.1: Quantum Dot model Schematic of the electrode arrangement for a single
quantum dot. The dot has a self-capacitance 𝐶𝛴 = 𝐶𝐺 + 𝐶𝑆 + 𝐶𝐷. It is capacitively coupled
to a gate with an applied potential 𝑉𝐺 with a capacitance 𝐶𝐺. The dot is also capacitively
coupled to two electron reservoirs, labelled here Source and Drain, with capacitance 𝐶𝑆 and
𝐶𝐷 respectively. A bias potential 𝑉𝑆𝐷 may be applied across the reservoirs.

We consider a quantum dot using the constant interaction model, which assumes that
the Coulomb interaction between electrons within the dot is independent of the number of
electrons 𝑁 . In the CI model, the quantum dot is an island tunnel coupled to two electron
reservoirs, labelled here Source and Drain (see Fig. 2.1), and capacitively coupled to a
plunger gate with an applied potential 𝑉𝐺 that directly controls the chemical potential of
the dot.

The tunnel barriers separating the dot from the reservoirs are modelled as leaky capacitors
that can allow charges to flow from reservoir to dot and vice versa. A leaky capacitor can
be considered as an ideal capacitor in parallel with a resistor. When a voltage is applied
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across the capacitor and resistor, a current can flow across the resistor. This system is
called a tunnel junction or tunnel barrier, and is used to describe the coupling between the
quantum dot and the source and drain reservoirs.

The electrostatic energy of the dot is given by the energy stored inside an ideal capacitor:

𝑈 = 𝑄2

2𝐶𝛴
(2.3)

Where 𝐶𝛴 = 𝐶𝐺 + 𝐶𝑆 + 𝐶𝐷, the sum of the relevant capacitance contributions, and
𝑄 is the charge inside the dot. The charge inside the dot is the sum of the number of
free electrons on the quantum dot 𝑁 multiplied by the electronic charge 𝑒, and the charge
induced by each contact, 𝐶𝑖𝑉𝑖 where 𝐶𝑖 is the capacitance and 𝑉𝑖 the voltage on the contact
𝑖.

𝑄 = −𝑁 |𝑒| + 𝐶𝐺𝑉𝐺 + 𝐶𝑆𝑉𝑆 + 𝐶𝐷𝑉𝐷 (2.4)

For now we can consider the source and drain to be grounded such that 𝑉𝑆 = 𝑉𝐷 = 0,
and therefore the charge on the quantum dot is controlled primarily by the gate voltage
𝑉𝐺. This gives the electrostatic energy of the quantum dot to be:

𝑈(𝑁) = (−𝑁 |𝑒| + 𝐶𝐺𝑉𝐺)2

2𝐶𝛴
(2.5)

Quantum dots are often referred to as "artificial atoms", as they exhibit similar properties
[Kou01]. They are defined by a tightly confined positive potential, which in atoms is the
nucleus, and for quantum dots is gate-defined. Both contain an integer number of electrons.
In atoms, the number of electrons can only vary slightly via ionization, whereas in quantum
dots, we can tune the electron number over a wide range. And, similar to an atom, a
quantum dot contains discrete energy levels than an electron can occupy, which can be
considered equivalent to atomic orbital energy levels. Due to the Pauli exclusion principle,
each orbital level can only contain two electrons, each of which must have opposite spin.

This manifests as an extra energy term 𝐸𝑜𝑟𝑏, describing the single-particle orbital energy
that must be paid when loading an extra electron into the dot. The splitting of these
orbital levels in a 2D circular quantum dot of diameter 𝐿 in a 2D electron gas is closely
approximated by the solution to the Schrödinger equation for a particle in a two dimensional
box:

𝛥𝐸𝑜𝑟𝑏 = 𝐸𝑁+1 − 𝐸𝑁

= 1
𝑚𝑒

(︂
~𝜋

𝐿

)︂2 (2.6)

Where 𝑚𝑒 is the electron mass. Due to the "filling" of orbital levels with opposite spin
electrons, not every electron will have to pay this additional orbital energy. Thus we
include a generic 𝐸𝑁−1,𝑁 , which is the specific energy requirement to add the 𝑁 𝑡ℎ electron.
In some cases 𝐸𝑁−1,𝑁 will be 0.
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𝑈(𝑁) = (−𝑁 |𝑒| + 𝐶𝐺𝑉𝐺)2

2𝐶𝛴
+

𝑁∑︁
𝑁=0

𝐸𝑁−1,𝑁 (2.7)

To avoid complication via varying numbers of electrons in the dot, it is preferable to use
the electrochemical potential over the energy of the dot. This is defined as 𝜇𝑑𝑜𝑡(𝑁), the
energy required to add the 𝑁𝑡ℎ electron to the island:

𝜇𝑑𝑜𝑡(𝑁) = 𝑈(𝑁) − 𝑈(𝑁 − 1) (2.8)

𝜇𝑑𝑜𝑡(𝑁) = 𝑈(𝑁) − 𝑈(𝑁 − 1) = (𝑁 − 1
2)𝐸𝐶 + 𝐶𝐺𝑉𝐺

𝐶𝛴
+ 𝐸𝑁−1,𝑁 (2.9)

Where 𝐸𝐶 = 𝑒2

𝐶𝛴
is the charging energy of the system and 𝐶𝐺

𝐶𝛴
is the conversion factor

for gate voltage to energy. This parameter is also known as the lever arm or alpha factor.
The alpha factor is always positive, and typically varies across large ranges of gate voltage
due to the increase in quantum dot size and resulting changes to the capacitance matrix.
The charging energy is the difference between electrostatic energies only, not including the
single particle energies.

From here we can define the addition energy 𝐸𝑎𝑑𝑑, which is simply the energy required
to add one additional electron to the island:

𝐸𝑎𝑑𝑑(𝑁) = 𝐸𝐶 + 𝐸𝑁−1,𝑁 (𝑁) (2.10)

The addition energies as a function of 𝑁 form an addition energy spectrum. When
a quantum dot is filled with 𝑁 electrons, no more electrons can enter the dot until the
addition energy has been paid.

2.2.2 Coulomb blockade
The state with 𝑁 electrons has an electrochemical potential 𝜇𝑑𝑜𝑡(𝑁). We define the
potential of the source and drain as 𝜇𝑆 and 𝜇𝐷 respectively, as shown in Fig. 2.2. At
𝑉𝑆𝐷 = 0, 𝜇𝑆 = 𝜇𝐷. By applying a finite 𝑉𝑆𝐷, we open a potential window where
𝜇𝑆 = 𝜇𝐷 + 𝑒𝑉𝑆𝐷. Now if 𝜇𝑑𝑜𝑡(𝑁) is positioned between the source and drain potentials,
fulfilling 𝜇𝑆 ≥ 𝜇𝑑𝑜𝑡(𝑁) ≥ 𝜇𝐷, then electrons are able to tunnel into and out of the quantum
dot. When there is no available potential level within this window, transport is blocked,
as all available energy states are filled, and the system is considered to be in Coulomb
blockade.

In Fig. 2.2a, the quantum states in the dot are filled up to 𝜇𝑑𝑜𝑡(𝑁). The addition of
one extra electron would require shifting the potential of the dot to 𝜇𝑑𝑜𝑡(𝑁 + 1), which
lies above the bias window. As such, electron tunnelling into the dot is forbidden, and
the device is in Coulomb blockade. In Fig. 2.2b, transport into the dot is allowed, as the
potential level 𝜇𝑑𝑜𝑡(𝑁) lies within the bias window. The dot is filled with N-1 electrons,
but tunnelling in and out is freely allowed through the available level, causing the number
of electrons on the dot at any one time to fluctuate between 𝑁 − 1 and 𝑁 .
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Figure 2.2: Coulomb blockade model Energy diagram for the quantum dot seen in Fig.
2.1. The electron reservoirs source and drain here have electrochemical potentials 𝜇𝑆 and 𝜇𝐷

respectively. These are related via the external voltage 𝜇𝑆 − 𝜇𝐷 = 𝑒𝑉𝑆𝐷. In (a), the transport
is blocked and the dot contains a fixed number of electrons. In (b), the gate voltage is tuned
into a configuration whereby current can flow through the dot via the state with potential
𝜇𝑑𝑜𝑡(𝑁), leading to a peak in the conductance of the dot.

For a small 𝑉𝑆𝐷 ≃ 0 (referred to as the linear transport regime), we therefore have a
peak in the conductance whenever the condition 𝜇𝑆 ≥ 𝜇𝑑𝑜𝑡(𝑁) ≥ 𝜇𝐷 is satisfied. The gate
voltage can be continuously changed, leading to peaks and blockade in the conductance
through the dot, as shown in Fig. 2.3. The charge on the quantum dot is fixed when the
system is in blockade, and when set to a peak, the number of electrons fluctuates between
𝑁 − 1 and 𝑁 .

The potential level 𝜇𝑑𝑜𝑡(𝑁) is physically manipulated by changing 𝑉𝐺, which induces a
potential shift at the quantum dot equal to 𝑉𝐺𝛼𝐺. At 𝑉𝑆𝐷 ≃ 0, it follows that the gate
voltage required to position 𝜇𝑑𝑜𝑡(𝑁) in conduction is at 𝜇𝑆 = 𝜇𝑑𝑜𝑡(𝑁) = 𝜇𝐷 = 0 (we define
𝜇𝐷 = 0), which for the 𝑁𝑡ℎ electron is given by:

𝑉
(𝑁)

𝐺 = 1
𝑒𝛼𝐺

[𝐸𝑁−1,𝑁 + (𝑁 − 1
2)𝐸𝐶 − 𝑒𝛼𝐺𝑉𝐺] (2.11)

The conductance of the dot can be determined for varying 𝑉𝐺 by measuring the current
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Figure 2.3: Coulomb peaks A typical coulomb blockade spectrum in the few-electron
regime. Here, peaks can be seen at a spacing corresponding to potential levels residing within
the bias window. The width of each peak is determined by the electron temperature and
the applied bias, with the bias dominating at low temperature. The height is independent of
temperature, and depends on the coupling of the quantum dot to the reservoirs, which can be
strongly dependent on the coupled states. Inset: The addition energy spectrum, extracted from
the peak spacing and charging energy, is plotted as a function of electron number. [Adapted
from [Kou01], original data from [Tar96]]

at the drain contact. This will result in a series of conductance peaks, known as Coulomb
peaks, as indicated in Fig. 2.3. Consecutive peaks are separated by a voltage proportional
to the addition energy 𝐸𝑎𝑑𝑑. In the inset of Fig. 2.3, the addition energy spectrum,
extracted from the peak spacing through subtraction of the charging energy, is plotted.
Atoms have a three-dimensional shell and subshell structure that has orbital transitions at
𝑁 = 2,10,18.... The shells and subshells correspond to the lowest energy states available to
a given number of electrons in the atom. A quantum dot has a different structure due to
its 2D symmetry, and therefore has the shell structure of a 2D harmonic potential. This
leads to shell filling at values of 𝑁 = 2,6,12..., which can be seen in the addition energy
spectrum.

To properly analyse the spectrum, it is necessary to extract the lever arm of the tuning
gate. The easiest way to determine this is through measurement of coulomb blockade
diamonds by varying the bias 𝑉𝑆𝐷 as a function of gate voltage. Increasing 𝑉𝑆𝐷 opens the
bias window further, narrowing the energy range in which the quantum dot is in blockade.
This manifests as a widening of the coulomb peak. The bias can be increased until it
exceeds 𝐸𝑎𝑑𝑑, in which case a potential level within the quantum dot is always positioned
within the bias window, allowing conduction at any 𝑉𝐺 above the first electron state.

This principle is demonstrated in Fig. 2.4. The resulting structure is often referred to
as a Coulomb diamond due to is characteristic shape, where the shaded regions indicate
where the quantum dot is in Coulomb blockade. Where the edges of the diamonds intersect
at 𝑉𝑆𝐷 = 0, the linear-response coulomb peaks are seen. For simplicity, we consider the
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Figure 2.4: Coulomb diamonds A coulomb map of a single-electron transistor. Within
the shaded diamonds the dot is in coulomb blockade, and current cannot flow. Outside of the
diamonds, the coulomb blockade is overcome and current can flow from source to drain. The
slopes of the boundaries are dependent on the coupling to each reservoir, as described in Eqn.
2.16 and Eqn. 2.17. [Adapted from [Hei03]]

bias 𝑉𝑆𝐷 to be applied symmetrically to the source and drain, such that 𝜇𝑆 = 𝑒𝑉𝑆𝐷
2 and

𝜇𝐷 = 𝑒𝑉𝑆𝐷
2 . Then the stability requirements at positive bias voltage become:

𝜇𝑑𝑜𝑡(𝑁) <
𝑒𝑉𝑏𝑖𝑎𝑠

2 (2.12)

𝜇𝑑𝑜𝑡(𝑁 + 1) >
𝑒𝑉𝑏𝑖𝑎𝑠

2 (2.13)

and for negative bias:

𝜇𝑑𝑜𝑡(𝑁) <
𝑒𝑉𝑏𝑖𝑎𝑠

2 (2.14)

𝜇𝑑𝑜𝑡(𝑁 + 1) >
𝑒𝑉𝑏𝑖𝑎𝑠

2 (2.15)

The blockade region as a function of the bias voltage is defined by two lines that
correspond to the energy conditions being met to have a potential level within the bias
window. The relative coupling to the reservoirs defines the shape of the blockade region. 𝛼𝑆

and 𝛼𝐷 are the alpha factors of the source and drain contacts. In the case of a symmetric
geometry, 𝛼𝑆 = 𝛼𝐷, and the equations 2.16 and 2.17 have exactly opposite slope, yielding
symmetric coulomb diamonds. The gradient of each slope is determined by the alpha
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factor, where 𝛼𝑖 = 𝐶𝑖
𝐶𝛴

for 𝑖 = {𝑆,𝐷}. As such, if the quantum dot is not symmetrically
coupled to the source and drain, the diamonds can resemble parallelograms instead, and
the asymmetry is increased the larger the difference between 𝐶𝐷 and 𝐶𝑆 . Assuming that
the current through the dot is measured at the drain, the gradient of the positive slope is
given by:

𝑑𝑉𝑆𝐷

𝑑𝑉𝐺
= 𝐶𝐺

𝐶𝐺 + 𝐶𝑆
(2.16)

And the negative slope is:

𝑑𝑉𝑆𝐷

𝑑𝑉𝐺
= −𝐶𝐺

𝐶𝐷
(2.17)

The lines cross at the point 𝑉𝑆𝐷 = 1
𝑒 (𝐸𝑁,𝑁+1 + 𝐸𝐶), meaning that the lever arm can

be extracted through comparison of the extent of the diamonds to the separation of the
coulomb peaks at zero bias. The distance between two coulomb peaks, indicated in Fig.
2.4, is given by:

𝛥𝑉𝐺(𝑁,𝑁 + 1) = 1
𝑒𝛼𝐺

(𝐸𝑁,𝑁+1 + 𝐸𝐶) (2.18)

Taking 𝛥𝑉𝑆𝐷 = 1
𝑒 (𝐸𝑁,𝑁+1 + 𝐸𝐶) at the top of the coulomb diamond, the lever arm can

therefore be extracted:

𝛼𝐺 = 𝛥𝑉𝑆𝐷

𝛥𝑉𝐺
(2.19)

Typical values for the alpha factor are in the region 0.1 − 0.3eV/V.

2.2.3 Quantum tunnelling
A quantum dot connected to a reservoir is defined by one or more tunnel barriers. These
are regions of resistive material which present a potential barrier to electrons attempting
to flow into or out of the quantum dot. Classical current flow can be attained by supplying
a bias voltage which can overcome the barrier potential, or by reducing the potential of the
barrier. However, when considering individual electrons and barriers with high potential,
quantum tunnelling must be considered. In the classical picture, when a kinetic particle
(such as an electron) encounters an obstacle, it cannot pass it unless it is supplied enough
energy to overcome it. However, quantum tunnelling is a phenomenon whereby an electron
has a finite probability to pass through a narrow barrier that it does not have the potential
energy to overcome. The probability for an electron to tunnel through a potential barrier
depends exponentially on the width and the height of the barrier. This is a quantum effect
that can occur even at high temperatures, and can be a significant contribution to the
leakage current through a nanoscale transistor [nakhmedov2005quantum].

Tunnelling is generally described by the tunnel rate parameter, 𝛤, with units Hz. The
tunnel rate is generally dependent on the height and width of the potential barrier, as well
as the energy of the electrons in the reservoir/dot (𝑘𝐵𝑇 ). The transmission probability of
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a single particle with energy 𝐸 to travel through a barrier of potential 𝑈 and length 𝐿 is
given by:

𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ≈ 16𝐸

𝑈

(︂
1 − 𝐸

𝑈

)︂
𝑒−2𝛽𝐿 (2.20)

Where 𝛽 =
√

2𝑚(𝑈−𝐸)
~ . Typical tunnel rates in the quantum dots studied here range from

a few MHz (singly detectable electron tunnelling events) to hundreds of 𝐺𝐻𝑧 (continuous
current), and can be measured (for multiple tunnel barriers in series) by 𝐼𝑆𝐷 = 𝛤𝑒, or by
the frequency of single-shot electron tunnelling events. In order to detect a single electron
tunnelling event, we require charge sensing techniques which are sensitive to single charge
shifts.

2.2.4 Charge sensing
Measurement of a quantum dot via direct electron tunnelling is one way of characterising
a quantum dot system. However, in the few-electron regime, it is often not possible to
measure the loading of the first few electrons directly due to weak tunnelling current. In
this situation, it is generally favourable to employ a charge sensor instead. A charge sensor,
as the name implies, is a method of detecting the change in electrostatic energy of a system
without directly affecting it. In typical semiconductor quantum dots, a typical charge
sensor is the quantum point contact, or QPC. However, it is also possible to use a quantum
dot as a charge sensor.

The general principle of a charge sensor is to detect a change in signal due to a shift in
the charge of its environment. For a quantum dot charge sensor, this manifests as a shift
in the electrochemical potential of the quantum dot via simple coulomb interaction.

In order to use a quantum dot as a charge sensor, we can consider a simple case of a
single quantum dot tunnel coupled to two electron reservoirs and capacitively coupled to
an arbitrary system which will be probed (see Fig. 2.5a). This is identical to the single
dot case, except that we include an additional term to account for the charge occupancy of
the probed system, 𝐶𝑝, which has an associated potential 𝑉𝑝:

𝜇𝑑𝑜𝑡(𝑁) = 𝑈(𝑁) − 𝑈(𝑁 − 1) = (𝑁 − 1
2)𝐸𝐶 + 𝐶𝐺𝑉𝐺

𝐶𝛴
+ 𝐶𝑝𝑉𝑝

𝐶𝛴
+ 𝐸𝑁−1,𝑁 (2.21)

Here 𝐶𝑝

𝐶𝛴
is 𝛼𝑝, or the lever arm for the probed system, a measure of the sensitivity

of the quantum dot to the probed system. A similar correction must be applied to the
formula for the gate voltage position of a coulomb peak that marks the transition from
𝑁 − 1 electrons to 𝑁 electrons:

𝑉
(𝑁)

𝐺 = 1
𝑒𝛼𝐺

[𝐸𝑁−1,𝑁 + (𝑁 − 1
2)𝐸𝐶 − 𝑒𝛼𝐺𝑉𝐺 − 𝑒𝛼𝑝𝑉𝑝] (2.22)

From here it can be seen that when the probed system is charged or discharged, and
thus its voltage changed by an amount 𝛥𝑉𝑝, that the position of the coulomb peak in the
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Figure 2.5: Charge detector A quantum dot configured for use as a charge detector. a) The
model for a charge detector quantum dot is identical to the single dot case, with an adjacent
probed system that is coupled to the quantum dot via a capacitive coupling characterised by
𝐶𝑃 . The probed system has a voltage 𝑉𝑃 . b) A change in the potential energy of the probed
system manifests as a shift in the gate voltage required to see a coulomb peak for the detector
dot. Here, the blue curve is the coulomb peak at 𝑁𝑃 = 0. When an electron is loaded into
the probed system, the potential shift induced in the detector dot shifts the coulomb peak
to the green curve for 𝑁𝑃 = 1. By measuring at the position indicated by the dashed line,
it is possible to detect whether the system is in the state 𝑁𝑃 = 0 or 𝑁𝑃 = 1. c) A stability
diagram sweeping 𝑉𝑃 and 𝑉𝐺. The loading of additional electrons into the probed system is
seen as abrupt line breaks in the coulomb peak lines as a function of 𝑉𝐺.
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𝑉𝐺 space will be shifted by an amount equal to 𝛼𝑝𝑉𝑝

𝛼𝐺
.

This movement of the coulomb peak can be detected by fixing 𝑉𝐺 at a point of high
sensitivity to gate movement, such as that indicated in Fig. 2.5b. The conductance through
the sensor dot is measured. As the charge on the probed system is changed, the current
through the sensor dot is correspondingly shifted. This can be used to detect a charging
event that may not be visible in a direct-current measurement. In Fig. 2.5c, this principle
is demonstrated. Here, the breaks in the coulomb peak lines correspond to the "jump"
experienced by the sensor dot due to the charging of the probed system. This method can
be used to detect the first charging event for a quantum dot with a high degree of certainty.

2.3 Spins in quantum dots
When considering the viability of a quantum dot for use as a qubit in a quantum computer,
the most fundamental question to ask is: how do we form our two-level system? A clear
candidate naturally arises in the quantum dot system in the form of electron spin. Electrons
are fermions and therefore a spin-1/2 particle, meaning they can take one of two states
(commonly termed spin-up, ↑, and spin-down, ↓). These spin states are energy degenerate
except under the influence of a magnetic field, and the Pauli exclusion principle precludes
any two electrons from occupying the same spin and orbital state. This creates an ideal
two-level system, with the computational states represented by | ↑⟩ and | ↓⟩, in which it
is possible to create superposition states and entangled states. Here we outline the spin
physics in a quantum dot for both the single dot and double dot case, involving either one
or two electrons, and discuss some of the readout methods used to detect the spin state of
an electron.

2.3.1 Spin states in a single dot
Single electron spin states
The simplest system involving spin is the situation with a single electron in a single quantum
dot. This electron can have one of two spin orientations, either spin-up (| ↑⟩) or down
(| ↓⟩). Each of these states has an associated energy, which we denote 𝐸(↑ ,0) and 𝐸(↓ ,0).
The first excited state is the next lowest orbital, where the spin states will have energy
𝐸(↑ ,1) and 𝐸(↓ ,1). Then the electrochemical potentials are:

𝜇(0 ⇒↑ ,0) = 𝐸(↑ ,0) (2.23)

𝜇(0 ⇒↓ ,0) = 𝐸(↓ ,0) = 𝐸(↑ ,0) + 𝛥𝐸𝑍 (2.24)

𝜇(0 ⇒↑ ,1) = 𝐸(↑ ,1) = 𝐸(↑ ,0) + 𝛥𝐸𝑜𝑟𝑏 (2.25)

𝜇(0 ⇒↓ ,1) = 𝐸(↓ ,1) = 𝐸(↑ ,0) + 𝛥𝐸𝑜𝑟𝑏 + 𝛥𝐸𝑍 (2.26)

Here 𝛥𝐸𝑜𝑟𝑏 is the orbital energy level spacing and 𝛥𝐸𝑍 is the Zeeman splitting, which
is given by 𝛥𝐸𝑍 = 𝑔𝜇𝐵𝐵. In the absence of a magnetic field, the up and down spin states
are degenerate in energy. When a magnetic field is applied, however, all energy levels are
separated into Zeeman doublets, lifting the spin degeneracy.
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Two electron spin states
If we now consider the case in which a single quantum dot contains two electrons, it is
necessary to consider that the two electrons will be indistinguishable and must both occupy
an orbital state and a spin state. Due to the Pauli exclusion principle, which prevents two
electrons from occupying the same orbital and spin state, either the orbital state or the
spin state must be asymmetric, resulting in a limited set of states that the system can take.
The two-spin states in which the total spin number 𝑆 = 0 are the singlet states with an
antisymmetric spin part, whilst those with a total spin number of 𝑆 = 1 are the triplet
states with a symmetric spin part.

For simplicity, we consider the lowest two energy states in the quantum dot, these being
the first and second electron orbitals, which we denote as the ground (first) orbital |𝐺⟩ and
the excited (second) orbital |𝐸⟩. Under the condition of zero magnetic field, the lowest
energy state of the system is a singlet state with the two electrons each in the lowest
orbital:

|𝑆⟩ = |𝐺𝐺⟩ × (| ↑↓⟩ − | ↓↑⟩)√
2

(2.27)

The next lowest energy two-electron states require an electron in the excited state. These
are the triplet states, which are degenerate at zero magnetic field, and can be written as
follows:

|𝑇+⟩ = |𝐺𝐸⟩ − |𝐸𝐺⟩√
2

× | ↑↑⟩ (2.28)

|𝑇0⟩ = |𝐺𝐸⟩ − |𝐸𝐺⟩√
2

× (| ↑↓⟩ + | ↓↑⟩)√
2

(2.29)

|𝑇−⟩ = |𝐺𝐸⟩ − |𝐸𝐺⟩√
2

× | ↓↓⟩ (2.30)

To complete the set of possible two-electron states in the lowest two orbitals, we have
two additional singlet states, whereby either one or both of the electrons occupy the second
(excited) orbital:

|𝑆1⟩ = |𝐺𝐸⟩ + |𝐸𝐺⟩√
2

× (| ↑↓⟩ − | ↓↑⟩)√
2

(2.31)

|𝑆2⟩ = |𝐸𝐸⟩ × (| ↑↓⟩ − | ↓↑⟩)√
2

(2.32)

These singlet states have a higher energy at zero magnetic field than the triplet states
due to the symmetric orbital part. The associated energies for the singlet and triplet states
can be directly extracted from the sum of the revelant single-particle energies. For the
four lowest energy states:

𝑈𝑆 = 2𝐸↑,0 + 𝛥𝐸𝑍 + 𝐸𝐶 (2.33)
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𝑈𝑇+ = 2𝐸↑,0 + 𝐸𝑆𝑇 + 𝐸𝐶 (2.34)

𝑈𝑇0 = 2𝐸↑,0 + 𝐸𝑆𝑇 + 𝛥𝐸𝑍 + 𝐸𝐶 (2.35)

𝑈𝑇− = 2𝐸↑,0 + 𝐸𝑆𝑇 + 2𝛥𝐸𝑍 + 𝐸𝐶 (2.36)

Where 𝐸𝑆𝑇 is the energy difference between the singlet and the lowest energy triplet
state. At zero magnetic field, 𝛥𝐸𝑍 = 0, and the three triplet states are degerate in energy.

2.3.2 Spins in two quantum dots
We have thus far considered the case of a single spin in a single quantum dot. However, to
acces some configurations required for procedures such as Pauli spin blockade, we require
the double dot configuration. Here we apply spin physics to the system outlined in section
A.1.

When containing a single electron, the physics are identical to the single dot situation.
At zero magnetic field, the spin states are degenerate; when a magnetic field is applied,
then the spin-up and spin-down states are separated by the Zeeman energy, 𝐸𝑍 . Adding a
second electron to the same dot produces the single-dot singlet and triplet states. If the
right dot is populated:

|𝑆(0,2)⟩ = |(| ↑2↓2⟩ − | ↓2↑2⟩)√
2

(2.37)

|𝑇+(0,2)⟩ = | ↑2↑2⟩ (2.38)

|𝑇0(0,2)⟩ = |(| ↑2↓2⟩ + | ↓2↑2⟩)√
2

(2.39)

|𝑇−(0,2)⟩ = | ↓2↓2⟩ (2.40)

At zero magnetic field, the triplets are separated from the singlet by 𝐸𝑆𝑇 . Now if we
have one electron in each dot, we also obtain the singlet triplet basis, with electrons in
separate dots:

|𝑆(1,1)⟩ = |(| ↑1↓2⟩ − | ↓1↑2⟩)√
2

(2.41)

|𝑇+(1,1)⟩ = | ↑1↑2⟩ (2.42)

|𝑇0(1,1)⟩ = |(| ↑1↓2⟩ + | ↓1↑2⟩)√
2

(2.43)

|𝑇−(1,1)⟩ = | ↓1↓2⟩ (2.44)
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Figure 2.6: Double dot spin states The energy diagram for the two dot singlet/triplet spin
states as a function of the detuning between the dots, 𝜀. a) This is the case for two completely
decoupled dots, in which the spin states are dependent purely on the single dot energies. The
|𝑆(1,1)⟩ and |𝑇 (1,1)⟩ states are degenerate, and the |𝑆(0,2)⟩ and |𝑇 (0,2)⟩ states are separated
by the singlet-triplet splitting, 𝐸𝑆𝑇 . b) When a finite tunnel coupling 𝑡𝑐 is applied between the
two dots, the (1,1) and (0,2) state hybridize, leading to the characteristic anti-crossings seen in
the detuning energy diagram. When the single dot energy states are aligned, the singlet and
triplet states are split by the exchange energy 𝐽 = 4𝑡2

𝑐

𝐸𝐶
. [Adapted from [Han07]]

The energy difference between the lowest energy singlet and triplet states when the
single-dot levels are aligned is given by 𝐽 = 4𝑡2

𝑐
𝐸𝐶

. This energy difference, 𝐽 , is referred to as
the exchange energy, and strongly depends on the detuning between the dots. At 𝑡𝑐 = 0,
there is no coupling between the dots, and the |𝑆(1,1)⟩ and |𝑇 (1,1)⟩ states are degenerate
in energy. This situation is demonstrated in Fig. 2.6a.

At finite tunnel coupling, the exchange interaction is enabled. Due to finite exchange
energy 𝐽 , the (1,1) and the (0,2) charge states hybridize, meaning there is no sharp
transition from one to another; instead, there is a smooth transition from (1,1) to (0,2),
as indicated in Fig. 2.6b. This can be thought of intuitively as an overlap of the states
from one dot to another as the detuning is changed. At the detuning value where there is
an avoided crossing between the singlet states, the charge state for the singlet becomes
(|(1,1)⟩ + |(0,2)⟩)/

√
2, meaning that there is an equal probability to find the system in the

charge state (1,1) or (0,2).
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Since tunnelling does not generally involve a spin-flip, there is coupling only between
the same spin states: |𝑆(1,1)⟩ ↔ |𝑆(0,2)⟩ and |𝑇 (1,1)⟩ ↔ |𝑇 (0,2)⟩. The singlet and triplet
transitions are separated in energy, and it is this that enables the Pauli spin blockade
readout method detailed in section 2.3.3. Crucially for this readout, there is a range of
detuning where the lowest energy state for a singlet is the (0,2) charge state and the lowest
energy state for a triplet is (1,1), enabling non-destructive spin-to-charge conversion.

2.3.3 Spin measurement
Measurement and resolution of a single-electron spin is challenging due to the small
associated energy scales. In order to probe the spin state of an electron, we convert the
spin information to charge information. This method is called spin-to-charge conversion.
It is comparatively simple to measure the charge state of a quantum dot, and this can be
used to probe the spin. There are three main ways to convert spin to charge, all of which
rely on the difference in how spin configurations tunnel from (or into) a quantum dot.

Here we present energy selective and tunnel-rate selective tunnelling. Both methods can
be used to probe either a single or two-electron spin state, and can be implemented using
a single quantum dot coupled to a reservoir with an adjacent charge detector.

Energy selective tunnelling
Energy-selective tunnelling is a method that exploits the difference in energy between
two spin states. For a single spin, this will be the energy difference between | ↑⟩ and | ↓⟩.
For a two-spin state, we use |𝑆⟩ and |𝑇 ⟩, where |𝑇 ⟩ denotes the generic triplet state that
comprises the three triplet states |𝑇+⟩, |𝑇0⟩ and |𝑇−⟩, degenerate at zero magnetic field.
For simplicity, the lowest energy state will be referred to as |𝐺⟩ and the higher energy state
as |𝐸⟩, corresponding to the system ground state and excited state.

To perform energy-selective tunnelling, we require a quantum dot coupled to a reservoir,
and an adjacent charge detector which is configured to measure the charge state of the dot.
The charge state of the dot can be modulated through changing the chemical potential of
the dot relative to the Fermi energy of the reservoir. We consider the case in which the
potential of the dot is positioned such that the fermi energy lies between the states |𝐺⟩
and |𝐸⟩. Since |𝐺⟩ is the lowest energy state, it lies below the fermi energy, and |𝐸⟩ lies
above the fermi energy. As such, transport from the dot to the reservoir is blocked if the
system is in the |𝐺⟩ state, but it is allowed if the system is in the |𝐸⟩ state. Then, an
electron will tunnel back into the quantum dot, as there is an energy level available below
the fermi energy.

This tunnel-out-tunnel-in event can be observed as a charge change via the charge
detector, as the dot temporarily loses the electron to the reservoir, as shown in Fig. 2.7.
Curve B demonstrates the signal seen when the system is in the ground state, i.e. no
tunnelling event is observed and the charge in the quantum dot does not change. Curve A
demonstrates a single tunnelling event, followed by a new electron tunnelling into the dot.
Through analysis of the charge time trace, the spin state of the electron at the start of the
measurement can be deduced in a single-shot manner.

For this mechanism to work, the separation in energy of the two states |𝐺⟩ and |𝐸⟩
must be large compared to the thermal energy of the charge carriers. This puts a lower
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Figure 2.7: Energy selective readout Schematic of the energy selective spin readout
mechanism. a) In the event that the electron in the dot is in the excited state |𝐸⟩, it is able
to tunnel out of the dot and into the reservoir. After some time, a new electron will tunnel
back into the newly vacated dot into the ground state |𝐺⟩. If the electron is already in the |𝐺⟩,
tunnelling into the reservoir is blocked. b) & c) Time-traces of the current through a nearby
QPC or other charge detector. b) is the signature seen by the detector for the situation with
initial state |𝐸⟩, with the tunneling out event and the repopulation event visible. c) is the
signature seen for the situation with initial state |𝐺⟩, with no tunnelling events observed. The
red dashed line indicates a threshold that can be selected to distinguish between measurement
of an |𝐸⟩ state and a |𝐺⟩ state.

bound on the energy scale that is necessary to use this type of measurement in a system
at a given temperature. For single spin states, for example, this therefore requires a
high magnetic field (𝑔𝜇𝐵𝐵 >> 𝑘𝐵𝑇 ). It is also necessary to have a high tunnelling rate
compared to the relaxation time from |𝐸⟩ to |𝐺⟩, so that the electron tunnels out of the
dot before it relaxes to the ground state. However, a low tunnelling rate compared to the
measurement bandwidth is required to be able to detect the tunnelling event, leading to a
lower and upper bound for the coupling to the reservoir. This method of spin measurement
is extremely sensitive to the charge environment of the quantum dot due to the precise
positioning required to keep the |𝐺⟩ and |𝐸⟩ states either side of the Fermi energy.

Spin dependent tunnel rate readout
Tunnel-rate selective measurement is a viable alternative to energy selective measurement
in cases where the system has a spin-dependent tunnel rate. The system is the same as
in the energy selective case, configured to a state where both the |𝐺⟩ and |𝐸⟩ states for
electron number 𝑁 are above the fermi energy of the reservoir. The electron will tunnel
off the dot and into the reservoir from either state. However, if the tunnelling time is
much longer for the ground state than the excited state (𝛤𝐸 >> 𝛤𝐺), there will be a
period of time in which it is highly likely for the electron to have already tunnelled into
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Figure 2.8: Tunnel rate readout The mechanism for a tunnel rate dependent readout. a)
Here two states |𝐸⟩ and |𝐺⟩ are lifted above the energy of the reservoir. Each has an associated
tunnelling rate 𝛤𝐸 and 𝛤𝐺. Tunnel rate dependent readout is possible when 𝛤𝐸 >> 𝛤𝐺. b)
Time trace readout of a nearby QPC or charge detector. The excited state |𝐸⟩ tunnels quickly
into the reservoir, leading to a quick shift in QPC current to the unloaded state. The ground
state |𝐺⟩ takes longer due to the lower coupling to the reservoir. A boundary in time 𝑡𝑟𝑒𝑎𝑑 can
be chosen to select between the two states, indicated by the dashed line. If a high current value
is measured here, the dot can be said to have been in the |𝐸⟩ state initially, and conversely for
a low current value the dot is measured in the |𝐺⟩ state. [Current-time trace adapted from
[Ber15]]

the reservoir if the system was in the ground state |𝐺⟩, but not if it was initially in the
excited state |𝐸⟩. When measured at this position, measurement of a charge state of 𝑁
would indicate that the electron is in the excited state, whilst measurement of a charge
state 𝑁 − 1 would indicate that the electron was in the ground state. This protocol is
indicated in Fig. 2.8. This technique is less sensitive to charge noise, since the positioning
of the energy levels does not need to be as precise as in the energy selective case. Typical
charge noise signatures will affect the entire energy landscape, not a single tunnel path
[Jun04], and therefore are less impactful on this kind of measurement. The measurement
visibility is instead largely dependent on the difference in tunnel rate.

In the two-electron spin case, there is often a difference in tunnel rate between the
singlet and the triplet. In the singlet, the electrons occupy the same orbital, whilst in
the triplet case, one electron is in a higher orbital. In the few-electron regime, there can
be a significant difference in the coupling to the reservoir for the higher orbital due to
the difference in wavefunction close to the edges of the confining potential. However, this
difference can be small, and is strongly dependent on the configuration of the dot.

The same technique can be used for single spin through exploiting a difference in tunnel
rate between spin-up and spin-down, which has been measured but currently has no physical
explanation. The difference is small, and as such the measurement has a very low fidelity
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compared to the singlet-triplet case. It also requires very high magnetic fields, in which
case it is likely that energy-selective readout would have a far greater fidelity and would
be more achievable. In practice, this technique would likely not be used for single-spin
measurement.

Spin blockade
Both the energy selective and tunnel rate selective spin measurements are destructive,
in the sense that in the process of measurement you lose the measured electron to the
reservoir and therefore lose the spin information. This can be acceptable to determine
the result of an operation, but is not sufficient to perform further operations; it would be
necessary to re-initialise the spin in its measured state each time. To have a measurement
(projection) operation that does not affect the spin, we require a protocol that preserves
the spin state, a so-called quantum nondestructive measurement.

The technique described here is called Spin Blockade readout. Significantly in comparison
to the other two techniques, it requires a two-electron system in a double dot consisting of
Dot 1 and Dot 2. The initial state is the (1,1) configuration, i.e. a single electron in each
dot. A charge detector is needed to sense the charge state of either dot.
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Figure 2.9: Spin blockade readout The mechanism for spin blockade readout. a) The
energy level of the left dot is positioned such that the |𝑇 (1,1)⟩ and |𝑆(1,1)⟩ states lie between
the energy levels necessary to form |𝑆(0,2)⟩ and |𝑇 (0,2)⟩. The |𝑇 (1,1)⟩ state is blocked from
tunnelling into the |𝑇 (0,2)⟩ state, whilst the |𝑆(1,1)⟩ is able to tunnel into the |𝑆(0,2)⟩. b)
Time trace readout of a nearby charge detector. In the event that the system is in a singlet
state, the system will immediately move to the |𝑆(0,2)⟩ state, indicated in blue. However, if
the system is initially in the triplet state, it is blocked from tunnelling until a spin-flip event
occurs, which can take several milliseconds, as indicated in orange. A threshold can be defined
to distinguish the two measurement results as indicated by the dashed line.

The system is then tuned to a state in which an electron in dot 1 will selectively tunnel
from Dot 1 to Dot 2 depending on its spin state. This is done by detuning the dots until the
energy level of the electron in Dot 1 is positioned between the energy states |𝑆(0,2)⟩ and
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|𝑇 (0,2)⟩ (see Fig. 2.9a). If the spins are antiparallel, then the system is in a singlet state,
and the electron can tunnel from Dot 1 to Dot 2, i.e. from the |𝑆(1,1)⟩ state to |𝑆(0,2)⟩.
However if the spins are parallel, then the system is in a triplet state, and the electron is
blocked from tunnelling, remaining in |𝑇 (1,1)⟩. The system will remain in |𝑇 (1,1)⟩ until a
spin-flip occurs in Dot 1 (as seen in Fig. 2.9b), which can be a slow mechanism compared to
the manipulation time. Provided the transfer rate between the dots and the measurement
speed are significantly faster than the spin-flip mechanism, it is possible to distinguish the
two states simply through measurement of the charge state of either dot. If the system is
in a singlet state, a change in charge state from (1,1) to (0,2) will be seen. If the system is
in a triplet state, no change will be seen.

Crucially, the spin state of the system is preserved. This allows successive single-shot spin
readout of the same electron to prove that it is a nondestructive measurement. This then
allows for subsequent operations on the same state, preventing the need for re-initialization.

Pauli spin blockade can be measured experimentally in a double dot system via direct
current transport measurements. If we consider the triple point between states (0,1), (0,2),
and (1,1), then at negative bias the electron transfer sequence is (0,1) → (0,2) → (1,1) →
(0,1). There is always an electron in the right dot, and this electron can be either spin-up or
spin-down. In either case, in the transition from (0,1) → (0,2) the dot can only accept an
electron with the opposite spin from the leads. Since the leads act as an electron reservoir,
there is no problem with requiring a spin-down electron, and the cycle can proceed as
normal.

However, if we instead apply a positive bias, we now have the sequence (0,1) → (1,1) →
(0,2) → (0,1). In this case, an electron of any spin state is allowed to tunnel in to Dot 1
from the reservoir. If this electron has opposite spin to that in Dot 2, then it is able to
tunnel into Dot 2, and out into the drain. However, if the electron has the same spin as that
in Dot 2, then this tunnelling process is blocked, and we obtain Pauli spin blockade, where
no current is allowed until a spin-flip occurs (and this can be on a long time scale relative
to the measurement time). This can be directly measured by looking at bias triangles for
𝑁 = 1%2 → 𝑁 = 2%2 transitions. When the system is blockaded, the bias triangles will
show current at positive bias, but be rectified at negative bias (or vice versa).





CHAPTER 3
Experimental setup and characterization

3.1 Introduction
The control and characterization of a silicon CMOS quantum dot requires many steps
to achieve. In addition to the hardware requirements, each individual device is unique,
and must be characterized and tuned to assess its viability as a spin qubit. One of the
consequences of the top-down approach taken by the CMOS silicon quantum dot community
is that mass characterization and comparison of device designs, dimensions, and operating
parameters is necessary to guide future development. Here, we are not constructing the
perfect qubit from scratch, but instead using - and working within the limitations of -
existing industrial processes to create nanodevices which are viable spin qubits. As such,
rapid characterization and parameterization of devices is necessary, as is having figures of
merit which can be compared across devices to determine reliability and reproducibility.

Additionally, on a smaller scale, in-depth parameterization of a single device is needed
to understand its

In this chapter, the experimental setup required to cool a sample to the requisite
temperatures is outlined, as well as the hardware used to control the electric fields in the
device and detect current signals. We present the type of device measured in this thesis,
including the fabrication process flow and the types of characterizations performed at room
temperature and low temperature, and how a device can be tuned into the appropriate
measurement regime. Finally, the methods for extracting various important parameters of
the device and quantum dots are presented, including extraction of the charging energy,
gate lever arms and electron temperature.

3.1.1 Cryogenics
Quantum physics operates on very low energy scales. At room temperatures, the thermal
energy is far larger than the kind of energies we intend to probe. The most significant
energy is the charging energy of our quantum dot. This gives the separation between
coulomb peaks, and we require 𝑘𝐵𝑇 << 𝐸𝐶 to be able to observe quantum phenomena.
As such, we require the device to be cooled to cryogenic temperatures, as typical 𝐸𝐶

values (a few meV) correspond to a temperature around 10 K. This necessitates the use
of a cryogenic refrigerator which can provide the cooling power necessary to operate the

37
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device in this regime. For the low-temperature measurements outlined in this thesis, three
different cryogenic refrigerators were used.

"Dipstick" immersion refrigerator
For rapid characterisation of many devices at low temperature, we require a refrigerator
which has a short cycle time. The "dipstick" immersion fridge works well for this purpose.
It consists of a cryogenic stage with 40 DC lines which can be immersed in a bath of liquid
4He. The cryogenic stage is well-thermalized via exchange gas, bringing the sample to 4 K.
This fridge can be cooled in less than an hour, allowing for rapid measurements of many
devices. Most devices were first tested and characterised in this fridge first, before being
measured at lower temperature.

Helium-3 circulation refrigerator
At 4 K, thermal broadening can still render quantum dot features blurred, obscuring
detail of the quantum dot structure. Measurements such as single-shot charge sensing can
remain difficult at 4 K. To investigate promising devices further, we use a 3He circulation
refrigerator. Low-pressure 3He is pre-cooled via a pumped 1 K pot, and circulated to
the device at the the cold finger in the cryogenic stage of the fridge. The cold finger is
kept under vacuum to minimize thermal coupling to the 4He bath. The 3He is pumped
with a primary and turbo pump to obtain the minimum temperature of approximately
400 mK. This refrigerator was used for the majority of the charge noise measurements and
characterization of the main device.

Dilution refrigerator
In order to probe the spin physics of electrons within these devices, we require temperatures
𝑘𝐵𝑇 << 𝐸𝑍 . For spin measurements, we moved the device to a Kelvinox® MX 3He/4He
dilution refrigerator. This fridge offers a lower base temperature compared to the 3He
refrigerator, around 70 mK (with a corresponding electron temperature of around 120 mK).
It makes use of a dilution process involving the phase transition of the two helium isotopes.
The principle of experimental operation is similar to that in the He-3 refrigerator. The
cryogenic principles for dilution refrigerators are well documented and will not be covered
in detail here.

3.1.2 Electronics
In order to control the device in each refrigerator, we require one DC line for each gate,
reservoir contact, and the top and back gates. All voltage supply, pulse generation and
readout is performed via room-temperature electronics.

Wiring
Each refrigerator used here has approximately 40 thermally-anchored DC cables to carry
signal from the room temperature electronics to the cryogenic stage of the fridge. The
majority of the DC lines used were copper-nickel alloy Constantan wires, which display
similar characteristics from high to low temperature. The bandwidth of these lines is
approximately 10 MHz, which is sufficient for control and readout on a typical time scale
of tens of microseconds.
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Figure 3.1: Experiment schematic Depiction of the measurement setup. The experiment
is controlled digitally, with instructions sent to the field-programmable gate array (FPGA),
which controls the digital-to-analog voltage supply. DC cables carry the voltage from room
temperature to the device at a nominal temperature of 200 mK (real temperature ranges from
100 − 200 mK). A superconducting coil, immersed in the 4He bath at 4 K, is used to control
the magnetic field along the three cardinal axes. The current through the device is measured
using a room temperature analog-to-digital converter in combination with a current-voltage
converter and amplifier with a gain of 1 × 109 V/A. In the 3He circulation refrigerator, the
base temperature is 400 mK instead, and the magnetic coil is monodirectional. The magnetic
coil and 200 mK stage are not present in the "Dipstick" refrigerator.
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Voltage supply
The state of the device is manipulated by supplying voltages to the gates. To set the
voltage state, we use a set of purpose-built low-noise digital-to-analog converter (DAC)
boards. They can sweep at a rate of 2.5 V/µs with a noise of 25 nV/

√
Hz. The range of

each board is ±5 V, with a resolution of 150 µV. For finer voltage resolution, an additional
DAC output is used to provide a supplementary voltage through a voltage adder-divider.
The secondary output has a resistance of 5 k𝛺, dividing the DAC output by 50. This gives
a voltage resolution of 3 µV.

The DAC outputs are controlled by a National Instruments® sbRIO-9208 field pro-
grammable gate array (FPGA). The FPGA recieves the ramp or pulse instructions and
stores them temporarily in memory before passing the pulse shape to the DAC, allowing
voltage ramps and pulses on a faster timescale than the communication between the control
software and the FPGA. The minimum setting time is 16 µs, which gives the minimum step
time in an experiment. In practice, this is faster than our typical integration time, and is
shorter than the time scales probed here (typically hundreds of µs up to hundreds of ms).

Current readout
Measurement of the output current is done via a National Instruments© USB-6229 analog-
to-digital converter. This is combined with a purpose-built current-voltage converter
and amplifier, with a gain between 1𝐸6 and 1 × 109 V/A. In combination the readout
bandwidth is around 100 kHz at a gain of 1 × 107 V/A. Digital triggering allows for precise
timing of pulse sequences down to a few tens of µs.

Magnetic coil
The magnetic coil used in the majority of the magnetic field experiments is a three-
directional electromagnet controlled by an Oxford Instruments® Mercury IPS power supply.
The 𝑧-coil can supply a field of up to ±6 T perpendicular to the plane of the device. The 𝑥
and 𝑦 coils are limited to ±3 T in the plane of the device. Each coil can be swept at a rate
of 0.2 T/min and are controlled digitally to synchronize the field with measurement of the
device.

3.1.3 Software
The electronics were interfaced with digital control via an in-house Python and LabVIEW
hybrid control software. Experiment "batch" files are generated via Python scripts, which
then pass a set of instructions to the LabVIEW interface. Simple voltage sweeps are
configured using a "ramp" method, whilst more complex experiments can be designed
with a pulse map. The LabVIEW interface provides real-time data updates, logging, and
experiment queueing. Data generated by an experiment is stored in a compressed .h5 file
format.

For data treatment, custom Python scripts were written for analysis and plotting. The
PyPlot library was extensively used to generate the graphs and figures used in this thesis.
The .h5 format data files were addressed using the h5py library. For data treatment,
the NumPy and SciPy libraries provide tools for manipulation and analysis of data; in
particular, the scipy.signal.periodogram function was used to calculate the power spectral
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density of charge noise traces.

3.2 Characterization
The measurements made in this thesis were made in the context of the quantum silicon
project, spearheaded by several groups of researchers around Grenoble. The samples were
provided by our industrial partner CEA-LETI. One of the main goals of this project is to
create not only a reliable qubit in silicon, but one that is reproducible and scalable using
standard industrial practices. As such, parametric testing of devices at room temperature
and correlated measurements at low temperature are necessary to characterise the properties
of devices produced at scale.

3.2.1 Sample design

a
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G2

S D

b

Back Gate
BOX

QD1

G1
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S D

Figure 3.2: Device design a) SEM image of a typical two-gate face-to-face device after
deposition of the polysilicon gates and spacers. The solid black bar (bottom left) is a 100 nm
reference scale. The nanowire (yellow) is formed of etched intrinsic silicon and has a width
𝑊𝑎𝑝𝑝𝑟𝑜𝑥90 nm in the channel region. The polysilicon gates (blue) are deposited overlapping
the nanowire as a single gate, and then cut horizontally to form two face-to-face gates. They
have a length of 50 nm and a contact area of 50 × 20 nm2. 35 nm SiN spacers are deposited
around the edges of the gates (pink) to define the tunnel barriers in the device and protect the
channel from implantation. After encapsulation, a metallic top gate is placed 400 nm above
the sample in the region outlined by the white dashed lines. b) A cut along the black dashed
line in a) (not to scale). The wafer consists of bulk silicon, which can be polarized using an
applied voltage and an LED to generate photocarriers, and is operated as a back gate. It is
insulated from the nanowire by a 145 nm buried oxide (BOX). The nanowire is depicted in
yellow, and consists of a 16 nm high channel with source and drain defined by implantation.
The approximate location of the quantum dot is indicated, as it is formed by accumulation
under the plunger gate, 𝐺1. The polysilicon gate is insulated from the channel by 6 nm of
silicon oxide, and an additional 5 nm of TiN forms the interface (in red). The channel, gate,
and spacers are encapsulated, and a metallic top gate placed 400 nm above the sample.

The device used here was an industrially-fabricated CMOS silicon nanowire design. It
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was designed and fabricated using an industry-standard 300 mm wafer CMOS process at
CEA-LETI. The design consists of an intrinsic silicon nanowire of width 𝑊 ≈ 90 nm, with
electron reservoirs at either end formed by ion implantation. Two accumulation gates
are placed on top of the wire to form two parallel quantum dots. Above the channel and
accumulation gates, a metal gate is placed to act as a top gate.

The fabrication process involves a 300 mm SOI wafer consisting mostly of intrinsic silicon.
A 145 nm buried oxide (BOX) insulates the bulk silicon wafer from the active layer. The
active layer is 16 nm in depth and comprises intrinsic silicon. It is possible to isotopically
purify this active layer (the wafers tested here did not undergo this process). The nanowire
is formed via electron beam lithography for precise definition, and etched down to a width
of 𝑊 ≈ 90 nm.

Next, electrostatic gates are defined to cover the nanowire. The stack is insulated from
the channel by 6 nm silicon oxide, and the interface is formed by 5 nm of TiN placed by
atomic layer deposition. Then 50 nm of polysilicon forms the bulk of the resistive gate
material. The gate stack is protected in the region of the channel by a hard mask of SiN
and SiO2, which protects the gates during etching. The hard mask is removed after the
gate definition. The device after hard mask removal is pictured in Fig 3.2, consisting of the
etched nanowire and gates. The gates in this device have a length of 𝐿𝐺 = 50 nm and a
vertical spacing of 𝑆𝑉 = 50 nm, leaving an overlap area of 50 × 20 nm2. Spacers consisting
of 35 nm SiN are deposited on the channel surrounding the gates. These shield the channel
from ion implantation, which is used to define the reservoirs. The device is then contacted
through silicon vias, and encapsulated. 400 nm above the device, a metallic top gate is
placed to allow an additional degree of control.

An important point to note is the 5 nm of TiN is not present on all devices fabricated
on these wafers due to a problem in the fabrication process. This has led to some
deviations from expected properties in devices missing TiN. However, it was found that
the presence or lack of TiN could be detected by examining the room temperature current-
voltage characteristics and comparing the threshold voltage 𝑉𝑡ℎ. Specifically, devices with
𝑉𝑡ℎ < 0.2 V are missing TiN, whilst those which have a 𝑉𝑡ℎ ≈ 0.2 V have the TiN. Based on
the room temperature characteristics, we believe that the device measured here contains
the TiN, which may account for some differences between this and other similar devices.

3.2.2 Room temperature characterization
Parametric testing is performed via a four- or six-tip probe station at CEA-LETI on the
wafer scale. Mass batch characterization of many devices is possible in a relatively short
time, giving statistics on device behaviour. For each device, the 𝐼𝑆𝐷 − 𝑉𝐺 characteristics of
each gate are measured, along with the bias dependence through the channel. An 𝐼𝑆𝐷 − 𝑉𝐺

curve is measured by applying a voltage on the source contact (typically in the range
of a few mV or tens of mV) and measuring the current through the sample at the drain
contact, 𝐼𝑆𝐷, as a function of the gate voltage, 𝑉𝐺. A typical 𝐼𝑆𝐷 − 𝑉𝐺 measurement
is shown in Fig 3.3a. From such measurements, we can extract the threshold voltage
𝑉𝑡ℎ, the sub-threshold slope, and the channel resistance. At this stage, statistics on the
population of non-functional or defective devices can be obtained. We can also extract the
threshold voltage, the drain-induced barrier lowering, and subthreshold slope, all of which
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Figure 3.3: Room temperature characterization a) 𝐼𝑆𝐷 − 𝑉𝐺 characteristic of a split-
gate type device at room temperature. Each curve is measured by sweeping one of the gates
whilst keeping the other closed. The two gates display similar characteristics, with a voltage
threshold 𝑉𝑡ℎ,𝐺1 ≈ 𝑉𝑡ℎ,𝐺2 ≈ 0.18 V. b) Drain-induced barrier lowering (DIBL) effect measured
in a single gate transistor type device. The gate is swept for two different bias voltages
(𝑉𝑆𝐷 = 50 mV and 100 mV). Short-channel effects cause the threshold voltage to shift with
applied bias. For a 𝑉𝑡ℎ = −0.19 V at 𝑉𝑆𝐷 = 50 mV, increasing the bias to 𝑉𝑆𝐷 = 100 mV
lowers the threshold voltage to 𝑉𝑡ℎ = −0.28 V.

are parameters which can be used to compare devices.

Threshold voltage

The threshold voltage, 𝑉𝑡ℎ, is defined as the minimum voltage at which there is a
conductance path from source to drain. It is one of the fundamental parameters used
to characterize MOSFET devices [OC02]. We use the constant-current (CC) method to
assess the 𝑉𝑡ℎ of a device. In the CC method, an arbitrary threshold source-drain current
value is chosen, with a bias voltage |𝑉𝑏𝑖𝑎𝑠| < 100 mV applied. During room-temperature
parametric testing, 𝐼𝑆𝐷 − 𝑉𝐺 curves are generally acquired at 𝑉𝑏𝑖𝑎𝑠 = 50 mV. A typical
𝐼𝑆𝐷 − 𝑉𝐺 characteristic is plotted in Fig 3.3a.

The threshold current value is dependent on the geometry of the device. A wider
(wider channel) device requires a comparatively lower gate voltage to attain the same
current level, and the inverse is true for a longer (wider gate) device. As such, the drain
current is defined proportional to the width and inversely proportional to the gate length:
𝐼𝑡ℎ = (𝑊/𝐿𝐺) × 10−7 [Tsu99]. The threshold voltage 𝑉𝑡ℎ corresponds to the voltage at
which 𝐼𝑆𝐷(𝑉𝑡ℎ) = 𝐼𝑡ℎ. It is a relatively simple method of extracting the threshold voltage,
and can be used to characterize large numbers of devices in a relatively short time. It also
allows for comparison of the voltage threshold across different device geometries. However,
it is also highly dependent on the value of the bias voltage. The applied bias voltage is
therefore fixed to allow comparison of the voltage threshold between devices.

Other methods may be used to define the bias threshold, such as the linear extrapolation
method, the ratio method, or the second-derivative method. The linear extrapolation



44 3 Experimental setup and characterization

method makes use of the linear part of the 𝐼𝑆𝐷 − 𝑉𝐺 curve: a linear fit is applied at the
point of maxium transconductance (d𝐼𝑆𝐷/d𝑉𝐺), and 𝑉𝑡ℎ is defined as the point where
this linear fit intercepts 𝐼𝑆𝐷 = 0. This method can be degraded by mobility fluctuations
and parasitic resistances due to their distortion of the 𝐼𝑆𝐷 − 𝑉𝐺 characteristics. A similar
method makes use of the ratio between the current and the transconductance to obtain a
linear fit instead. The ratio method takes the intercept of a linear fit to the curve 𝐼𝑆𝐷/𝑔1/2,
where 𝑔 is the transconductance; 𝑉𝑡ℎ is where a linear fit to this curve reaches 𝐼𝑆𝐷/𝑔1/2 = 0.
This method was shown to be independent of mobility effects [Ghi88], as well as parasitic
resistances [Fik95]. Finally, in the second-derivative method, 𝑉𝑡ℎ is defined as the gate
voltage at which the second derivative of the current, d2𝐼𝑆𝐷/d𝑉 2

𝐺, is maximum. This
can be combined with the constant-current method [Zho99] to allow the definition of the
threshold current 𝐼𝑡ℎ to be more rigorous, whilst maintaining simplicity for large-scale
device characterization.

Drain-induced barrier lowering

The devices measured here are on the order of a few tens of nanometres in length.
They therefore experience short-channel effects, such as the drain-induced barrier lowering
(DIBL) effect. This is a phenomenon whereby the short channel allows a strong source (or
drain) voltage to reduce the gate voltage requirement to turn the device on. It is defined
as:

DIBL = −
𝑉 ℎ𝑖𝑔ℎ

𝑡ℎ − 𝑉 𝑙𝑜𝑤
𝑡ℎ

𝑉 ℎ𝑖𝑔ℎ
𝑏𝑖𝑎𝑠 − 𝑉 𝑙𝑜𝑤

𝑏𝑖𝑎𝑠

(3.1)

Where 𝑉 ℎ𝑖𝑔ℎ
𝑡ℎ is the threshold voltage at a high bias voltage 𝑉 ℎ𝑖𝑔ℎ

𝑏𝑖𝑎𝑠 , usually 1 V. 𝑉 𝑙𝑜𝑤
𝑡ℎ is

the threshold voltage at a low bias voltage 𝑉 𝑙𝑜𝑤
𝑏𝑖𝑎𝑠 , which is usually 50 mV.

The DIBL effect is caused by an extension of the reservoir potential into the channel,
closer to the gate, as the bias voltage is increased. This shortens the depletion region
controlled by the gate, and therefore lowers the gate potential requried to reach conductance,
as shown in Fig 3.3b. However, it also has an impact on the subthreshold region, and the
subthreshold slope can be reduced. This can be interpreted as the gate having a lesser
effect on the conductance of the channel, and a greater change in the gate voltage required
to have the same effect as it has at low bias.

Subthreshold slope

Despite the definition of the threshold voltage as the voltage required to turn on a
device, there is no sharp cutoff in conductance at room temperature, as seen in Fig 3.3a.
Even below the threshold voltage, there is a parasitic leakage current. Leakage is a
quantum effect, consisting of a combination of thermionic emission and tunnelling effects,
whereby electrons are able to tunnel through even a high tunnel barrier potential with a
finite probability [Jun06]. As the device dimensions decrease, the tunnel barrier provided
by the channel length also decreases, and the leakage current can become a significant
factor, accounting for up to 50% of power consumption in nanoelectronic circuits. The
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subthreshold region can be characterised by the subthreshold slope, which is the gradient
of the slope of an 𝐼𝑆𝐷 − 𝑉𝐺 curve below the threshold voltage. The 𝐼𝑆𝐷 − 𝑉𝐺 characteristic
curve exhibits linear behaviour in log scale in the subthreshold region. The gradient of
the linear section of this curve, in mv/decade, gives the subthreshold slope. Since the
subthreshold slope characterizes the behaviour of the device in a regime where quantum
effects are relevant, it may prove to be a crucial parameter for obtaining information on
quantum properties of devices at room temperature. At present, we do not have a rapid
method of characterizing quantum effects in a device at room temperature, and cryogenic
testing is necessary, increasing the cycle time for development and preventing large-scale
testing. In order to parameterize devices in terms of quantum effects, we bring them to
low temperature to measure the charging energy, gate and reservoir capacitances, lever
arm, and electron temperature.

3.2.3 Low-temperature characterization
Low temperature characterization was carried out generally on the "dipstick" immersion
fridge at 4 K, with some measurements also made at 400 mK on the 3He circulation fridge.
Initial characterization of a device typically involves analysis of the quantum dot structure
through I-V curves and stability diagrams. A typical stability diagram of a 1S-like device
is shown in Fig 3.4. Coulomb peaks due to the quantum dots are visible as conductance
peaks coupled primarily to one of the two gates. I-V characteristics can reveal the coulomb
blockade spectrum, but do not capture the full picture of the device structure. In particular,
additional dots (or dopants in the channel) can appear as additional conductance peaks or
potential shifts (similar to that seen in charge sensing) coupled to both gates. In general,
we define two regimes for analysis of a device. The first, in which coulomb peaks are visible,
is the many-electron regime. In some types of device, such as single-gate and pump devices,
this is the only accessible regime. The first coulomb peak is usually visible at 𝑁 ≈ 10,
but this can vary depending on the size of the dot, gate dimensions, and coupling to the
reservoirs. When there is an adjacent quantum dot which can be operated as an SET, the
few-electron regime becomes available, as shown in Fig 3.4. Here, charge sensing allows
detection of the addition of electrons down to the first. The analysis of the quantum dot
can be more precise, as single charge tunnelling events can be detected.

Many-electron regime

Charging energy

The charging energy is an important parameter of a quantum dot. It is a qualitative
measure of the size of the dot, and defines the energy scale for processes involving the
dot. It can also provide information about the type and structure of the dot. Examples
include a metallic quantum dot, which will have a flat charging energy spectrum at all
gate voltages (typically low); dopants, which will generally only have one to two available
energy levels and a high charging energy; and multiple dots, which can be indicated by
periodic variations in charging energy.

The charging energy measures the energy required to add an additional electron to a
quantum dot. It is detailed in section 2.2.1 in a general context. In order to measure



46 3 Experimental setup and characterization

0.2 0.3 0.4 0.5 0.6 0.7 0.8
VG1 (V)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

V G
2 (

V
)

0

1

2

3

I S
D

 (n
A

)

Figure 3.4: Low-temperature stability diagram Stability diagram depicting the elec-
tronic structure of the quantum dots below the gates 𝐺1 and 𝐺2 at 𝑉𝐵𝐺 and 𝑉𝑇 𝐺 = 0 V.
Transport through a coulomb peak is indicated by a line of high current in the stability
diagram. Between coulomb peaks, the dot is blockaded and current cannot flow. At low 𝑉𝐺1,
no coulomb peaks are visible, but jumps in the coulomb spectrum of the dot under 𝐺2 are
visible. These are caused by electrons loading into the dot under 𝐺1. Below 𝑉𝐺1 = 0.35 V, no
more such transitions are visible, allowing identification of the first loaded electron. Above
𝑉𝐺1 = 0.7 V, coulomb peaks become visible for 𝑁𝑒 > 5. The gates in this device display
asymmetric behaviour at low temperature, with the first visible peak in the other dot located
at 𝑉𝐺2 = 1 V.
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Figure 3.5: Coulomb diamonds A typical coulomb diamond map close to the transition
from the few-electron to the many-electron regime. In the few-electron regime, the coulomb
diamonds often do not close as 𝑉𝑏𝑖𝑎𝑠 → 0 mV. Coulomb peaks begin to be visible at low 𝑉𝑏𝑖𝑎𝑠 in
the many-electron regime, towards the right of the plot. The extrema points of the first visible
closed coulomb diamond are plotted. These can be used to extract the configuration-specific
charging energy 𝐸𝐶 , self-capacitance 𝐶𝛴, contact capacitances 𝐶𝐺, 𝐶𝑆 and 𝐶𝐷, and the gate
lever arm, 𝛼𝐺, as described in the text.

the charging energy, we measure how much energy we need to supply the quantum dot
to load a new electron. We have two methods of doing this: by varying the gate voltage
𝑉𝐺, or by increasing the source-drain bias 𝑉𝑏𝑖𝑎𝑠. If the lever arm of the gate is not known,
bias spectroscopy is another method of overcoming coulomb blockade. The source-drain
bias may be increased to a point whereby the bias window is large enough that electrons
with high energy can overcome coulomb repulsion and tunnel into the dot. To probe the
charging energy and capacitances of the quantum dot, a coulomb diamond map is the
quickest and simplest method to obtain this information. 𝐼𝑆𝐷 − 𝑉𝐺 characteristics are
obtained for varying 𝑉𝑏𝑖𝑎𝑠, as shown in Fig 3.6a. The four extrema of a coulomb diamond
are indicated. Each has an 𝑥 and 𝑦 value, corresponding to their 𝑉𝐺 and 𝑉𝑏𝑖𝑎𝑠 value in
V, giving a set {𝑥1,𝑥2,𝑥3,𝑥4} and {𝑦1,𝑦2,𝑦3,𝑦4}, with 1,2,3,4 corresponding to the points
clockwise starting at the most negative 𝑉𝐺. The charging energy can be found from the
average of the 𝛥𝑉𝑏𝑖𝑎𝑠 of the two extrema:

𝐸𝐶 = |𝑦2| + |𝑦4|
2 (3.2)

A typical value for quantum dots in this type of nanowire device ranges from one to a
few meV. The self-capacitance of the dot, 𝐶𝛴, is:
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𝐶𝛴 = 𝑒

𝐸𝐶
(3.3)

Capacitances

A quantum dot is capacitively coupled not only to its own plunger gate, but to neigh-
bouring gates and to the reservoirs. From a coulomb diamond map, we can extract the
relevant capacitances. Assuming the case where a dot is controlled by a single gate 𝑉𝐺 and
capacitively coupled to the source and drain via tunnel barriers, the gate capacitance 𝐶𝐺,
the source capacitance 𝐶𝑆 and the drain capacitance 𝐶𝐷 can be reliably extracted with
a four-point method. Then the capacitances (and charging energy) can be calculated as
follows:

𝐶𝐺 = 𝑒

𝑥3 − 𝑥1
(3.4)

𝐶𝑆 = 2𝐶𝐺

| 𝑦2−𝑦1
𝑥2−𝑥1

| + | 𝑦3−𝑦4
𝑥3−𝑥4

|
− 𝐶𝐺 (3.5)

𝐶𝐷 = 2𝐶𝐺

| 𝑦4−𝑦1
𝑥4−𝑥1

| + | 𝑦3−𝑦2
𝑥3−𝑥2

|
(3.6)

The shape of a coulomb diamond gives some clues as to the relative coupling to the source
and drain. If it is horizontally symmetric, the source and drain capacitances are equal,
whilst the more asymmetric it is, the greater the difference between them. The capacitance
of additional gates can be measured in the same way for a single dot. 𝑉𝐺 should be set so
that the dot is in coulomb blockade or on a coulomb peak, then the appropriate gate can
be swept against the bias voltage. Four-point measurement of coulomb diamonds, given a
wide enough gate sweep, can yield the lever arm to any arbitrary gate. It is important to
note that the lever arm measured is only valid for a small deviation from the measurement
position. A significant change in voltage, especially on the plunger gate, can distort the
dot such that its self-capacitance increases or decreases significantly, thereby decreasing or
increasing a corresponding lever arm. Similarly, distortion of the quantum dot can change
the distance to a contact; this is especially relevant for the reservoirs, as the dot expands
laterally, and the back gate, as the dot expands vertically in the channel. It is therefore
necessary to re-measure the relevant lever arms whenever the dot is in a new configuration.

In large devices with many gates and quantum dots, the picture can become complex.
Even with nearest-neighbour assumptions, the complexity can increase rapidly. As such, in
devices with many dots, or multiple gates controlling a single dot, a capacitance matrix
is often calculated dynamically for a quantum dot. Such a capacitance matrix can make
control of a dot easier, by automating the application of compensating voltages on adjacent
gates to maintain the environment of a dot whilst, for example, only increasing the on-site
potential. This is effective for large devices which require fine manipulation in a small
regime. However, the distortion of the dot when investigating effects that span occupancies
from one electron to many tens of electrons makes such a technique infeasible even in a
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small (single- or few-gate) device, and so it was not used for characterization here.

Lever arm

An important parameter to understand how the dot is manipulated by applied voltages
is the so-called lever arm, or alpha factor. It is a conversion factor to translate the voltage
applied on a gate to the difference in energy felt by the quantum dot. The lever arm of a
contact on the quantum dot is given simply by the ratio between the relevant capacitance
and the self-capacitance:

𝛼𝑖 = 𝐶𝑖

𝐶𝛴
(3.7)

However, both the self-capacitance and the gate capacitance can change as a function
of the size and number of electrons in the dot, and coulomb diamonds are not easily
measurable to low electron number. As such, extracting the lever arm of a quantum dot in
the few-electron regime can be more complex.

Few-electron regime

First electron

The addition of electrons into a quantum dot is indicated by the coulomb peak spectrum.
When an energy level of the dot lies in resonance with the bias window, current is allowed
to flow through the dot, and a coulomb peak is observed. If the potential of the gate
controlling the dot is increased further, the energy level is filled and the dot enters coulomb
blockade, characterised by the current rectification between peaks. As a peak is crossed
towards more positive gate voltage, we therefore know that it contains 𝑁 + 1 electrons.
However, the first coulomb peak is not in general seen at the transition of the first electron.
When the quantum dot is at a low potential and contains few electrons, the coupling to
the reservoirs can be weak, with the transport through an available energy level being low
enough that it is below the noise floor of our current detector. As such, DC measurement
of the first electron is not possible. Alternatively, we can make use of an adjacent quantum
dot as a charge sensor to detect the transition of electrons into and out of the dot. Fig 3.4
demonstrates charge sensing of multiple consecutive electron transitions. As the energy
levels of the dot are brought to the reservoir potential, the current through the dot is not
detectable - but the change in charge state of the dot is visible as a capacitive shift in the
state of the sensor dot. The magnitude of this shift is always the same, meaning we can
conclude they all come from the same dot undergoing a charge state shift of ±1𝑒.

By reducing the voltage on the gate controlling the dot, we can effectively empty the
dot of electrons until we reach the last electron transition. Below this, there are no more
electrons entering or leaving the dot, so the potential of the first electron can be quickly
found. The potential at which the first electron can enter the dot can be heavily dependent
on the configuration of the other gates, including that of the sensor dot. In some devices,
it was found that the coupling between the sensor and the dot was stronger than that
between the source/drain contacts and the dot, and the sensor was therefore acting as a
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reservoir to load and unload electrons.
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Figure 3.6: Addition energy Addition energy spectrum of the first 12 electrons in a typical
quantum dot. The addition energy exhibits a general decline as the spacing between energy
levels becomes closer as the quantum dot is more occupied. A significant peak is seen at
𝑁 = 5 → 6. Such a peak would normally be expected at 𝑁 = 4 → 5, characteristic of a
quantum dot in silicon which has four states in the lowest orbital (two spin-degenerate and two
valley-degenerate), however quantum dots can contain local potential minima which disrupt
the orbital structure of the dot and shift the addition energy spectrum.

The charging energy of a quantum dot is a purely classical parameter, arising from the
coulomb repulsion of the negatively-charged electrons in the quantum dot. However, a
quantum dot is defined by a potential well. Under confinement, energy levels within a
potential are separated in energy as electrons occupy different orbital states, similar to
electron orbitals in an atom. Due to this, quantum dots are sometimes called "artificial
atoms". This arises as an additional energy contribution on top of the charging energy
required to add an additional electron:

𝐸𝑎𝑑𝑑 = 𝐸𝐶 + 𝐸𝑁−1,𝑁 (𝑁) (3.8)

Where 𝐸𝑁−1,𝑁 (𝑁) is the energy difference between the orbital states of electrons 𝑁 − 1
and 𝑁 . This can be zero; for example, in the absence of a magnetic field, each state is
twofold degenerate in energy, and two electrons with the same energy can consecutively
occupy the dot, separated only by the charging energy. However, when loading an electron
into the next orbital state, the addition energy can be measured. By probing the voltage
required to add an additional electron for 𝑁 = 1,2,3..., we can construct an addition energy
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spectrum. Such a spectrum is plotted in Fig 3.6b.
The addition energy for an ideal quantum dot is well-known, and is defined by the atomic

orbitals in the electronic shell model. However, the physical realisation of a quantum dot
can complicate the picture. The presence, especially in silicon, of valley states, can yield
additional electron degeracies, lifting the orbital transitions to higher electron numbers.
Additionally, local disorder at the site of a quantum dot can significantly perturb the
potential in the few-electron regime. In this regime, the dot is poorly defined by the applied
gate potential, and can be distorted by local potential minima. This can disrupt the shell
filling spectrum, and yield an addition energy spectrum which does not align with the
"artificial atom" interpretation. For the quantum dot shown here, a significant peak is seen
at 𝑁𝑒 = 5, meaning the addition energy of the fifth electron 𝐸𝑎𝑑𝑑(5 → 6) is significantly
higher. This is an indication that there are multiple potential minima in this quantum dot
in the few-electron regime, and the addition energy spectrum is imperfect.
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Figure 3.7: Lever arm calculation a) Magnetospectroscopy of the addition energy of the
𝑁 𝑡ℎ electron. The change in the addition energy is plotted as a function of magnetic field for
electron transitions starting at 𝑁 = 1 → 2, up to 𝑁 = 6 → 7. It can be seen that the change
in addition energy switches from positive to negative for odd and even 𝑁 , due to the relative
spin parity. The linear fit is given by 𝛥𝐸𝑎𝑑𝑑 = 𝛥𝑉𝐺,𝑎𝑑𝑑𝛼𝐺 = 𝑔𝜇𝐵𝐵. Since 𝑔 and 𝜇𝐵 are
known, this allows to extract 𝛼𝐺 in the few-electron regime. Above 𝑁 = 4 → 5, the addition
energy remains constant. This may be indicative of multiple degenerate states preventing
spin-selective tunnelling, and is an indication that spin measurement would not be possible at
higher electron numbers in this quantum dot. At 𝑁 = 4 → 5, the addition energy experiences
a characteristic "kink", indicating a crossing with a higher energy level. This occurs at 3.5 T,
and may correspond to the valley state later measured at 297 µeV. b) A fit of the average state
of a quantum dot across the transition of the first electron. A current value of 𝐼𝑆𝐷 ≈ 0.1 nA
indicates that the quantum dot is empty, whilst a current value of 𝐼𝑆𝐷 ≈ 1.3 nA indicates it
contains one electron. The width of this plot is determined by the electron temperature. It is
fitted with a Fermi distribution (orange) to extract the electron temperature (if 𝛼𝐺 is known),
or the lever arm (if the electron temperature is known).

Extracting the lever arm at low electron number is not possible with coulomb diamonds,
and therefore two alternative methods can be used. The first makes use of the known
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change in the addition energy spectrum with an applied magnetic field due to the increased
Zeeman splitting, and is called the magnetospectroscopy method. The second relies on
knowledge (or a good estimate) of the electron temperature at the quantum dot. Then
a fit of a fermi distribution to an electron transition can yield the lever arm directly by
relating the width of the transition in voltage to the expected thermal broadening.

Magnetospectroscopy

The addition energy of an electron is dependent on the magnetic field. If we consider a
twofold degenerate energy state, in the absence of a magnetic field, the addition energy
from the first to the second electron will be simply 𝐸1→2 = 𝐸𝐶 . However, in the presence of
a finite field 𝐵, the two energy states become separated by the difference in energy between
the spin states, 𝐸𝑍 = 𝑔𝜇𝐵𝐵. The addition energy then becomes 𝐸1→2 = 𝐸𝐶 + 𝐸𝑍(𝐵).

The same occurs at the next energy level, 𝐸3→4 = 𝐸𝐶 + 𝐸𝑍(𝐵). A corresponding
reduction of the energy required to load the third electron follows, 𝐸2→3 = 𝐸𝐶 − 𝐸𝑍(𝐵).
In the ideal case, this will repeat up to high electron numbers, with odd-to-even electron
number transitions having a positive 𝐸𝑍 shift and even-to-odd transitions having a negative
𝐸𝑍 shift. The magnitude of this shift is a fixed value 𝑔𝜇𝐵𝐵, where 𝑔 ≈ 2 in silicon and
𝜇𝐵 = 5.788 eV/T is the Bohr magneton. If the magnetic field strength is known, then the
shift of the addition energy 𝛥𝐸𝑎𝑑𝑑 for any 𝐵 can be calculated. We can then relate the
𝛥𝐸𝑎𝑑𝑑 to the measured shift of the transition position in gate voltage, 𝛥𝐸𝑎𝑑𝑑 = 𝛥𝑉𝐺𝛼𝐺.
This can be used to extract the lever arm 𝛼𝐺 = 𝛥𝐸𝑎𝑑𝑑/𝛥𝑉𝐺.

𝛥𝐸𝑎𝑑𝑑 as a function of the magnetic field is shown in Fig 3.7. From these measurements,
the lever arm of the gate at the first electron was estimated to be 𝛼𝐺 = 0.27 eV/V.

This magnetospectroscopy can also be used as a "first test" to assess if a device is
spin-compatible. There are many reasons why spin measurement may not be possible in a
device; for example, if electrons are being loaded or read out via a spin-blockaded dopant
or interstitial dot, or if the potential landscape of the quantum dot is rough and contains
many potential minima, preventing sharp confinement of an electron. However, tuning
a device into a regime where spin is visible is not trivial and can be a lengthy process.
Magnetospectroscopy can be a good first test to ensure that the device is spin-compatible.
If such an addition energy shift spectrum is seen, it is a good first indication that the spin
can be characterized.

Electron temperature

To characterize the electron spin, it is necessary to measure at low temperature, so
that 𝑘𝐵𝑇 << 𝐸𝑍 . The temperature measured at the fridge is not necessarily the same
as the electron temperature at the sample, and this discrepancy can be greater at lower
temperatures [check and include fridge specs - cooling power at 4k, 200mk].To measure the
electron temperature, we can measure the thermal broadening of the transition.

To do so, we measure the average current through the sensor dot as a function of the
plunger gate voltage 𝑉𝐺 across the transition of the first electron. A two-level current-time
trace is obtained for each 𝑉𝐺, with 𝐼𝑆𝐷,0 indicating that the probed dot has 𝑁𝑒 = 0, and
𝐼𝑆𝐷,1 indicating that it has 𝑁𝑒 = 1. The average state of the probed dot is measured by
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taking the mean current during a fixed integration time. The mean current is plotted as a
function of the detuning 𝑉𝐺 in Fig 3.7b. This is fitted with a fermi distribution of the form:

𝐼𝑆𝐷 = 𝐼𝑆𝐷,0 + 𝐼𝑆𝐷,1

1 + 𝑒
𝛼𝐺(𝑉𝐺−𝑉0)

𝑘𝐵𝑇

(3.9)

Here, 𝑉0 is the value of 𝑉𝐺 where the transition occurs. If the lever arm is known, the
electron temperature can be determined from this fit. Similarly, if the electron temperature
is known, this can be used to measure the lever arm.





CHAPTER 4
Low frequency charge noise in FDSOI quantum dots

4.1 Introduction
1/𝑓 noise, also called "pink noise" or "flicker noise", is one of the most ubiquitous noise types
to appear in physical systems. It manifests as a noise signal with a power spectral density
that follows a 1/𝑓 relationship. It is not only present in all metallic and semiconductor
devices, but is also seen in large-scale physical [Mat86], biological [Gil95], and even economic
systems [Wes89]. Whilst it is unclear why 1/𝑓 noise is so prevalent, and remarkably
consistent across many different fields, the sources of 1/𝑓 noise are seemingly uncorrelated
and system dependent.

1/𝑓 noise has been thoroughly studied for the field of electronics, and it is typically
believed that the main source of the noise is low-frequency fluctuations in the material of
the device. This type of noise is often referred to as charge noise, and has been shown to
be a limiting factor for quantum devices [Yon17].

Here we outline how charge noise affects a qubit defined in a semiconductor device,
the physical source of the noise, and how the 1/𝑓 noise spectrum can be interpreted for
semiconductor quantum dots. We then present experimental results, demonstrating clear
1/𝑓 charge noise experienced by a quantum dot in a silicon CMOS nanowire device. We
demonstrate how the charge noise varies as the quantum dot is manipulated within the
device and experiences different spatially separated sources of charge noise. We also explore
the sources of charge noise and measure the energies of two-level fluctuators believed to be
the dominant cause within the measurement regime. Finally, we present a novel method of
measurement of charge noise at the single electron level, and use it to probe the charge
noise experienced by the first three electrons in a quantum dot.

4.2 Background
4.2.1 Charge noise models
In quantum dots, charge noise manifests as a variation in the chemical potential due to
changes in the electrostatic environment of the dot, which can come from several sources,
including voltage noise on the electrostatic gates and charge fluctuations in potential wells
nearby. Such noise is observed in many different implementations of quantum dot including
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GaAs/AlGaAs heterostructures [Jun04], self-assembled InGaAs quantum dots [Hau14],
and in Si/SiGe quantum dots [Con19]. Charge noise generally manifests as low-frequency
noise that follows a 1/𝑓 behaviour.

1/𝑓 noise has been a significant field of study in MOS devices since their conception.
Throughout the latter half of the 20𝑡ℎ century, two competing fields of thought developed to
explain the 1/𝑓 noise behaviour observed in MOS structures, termed "mobility fluctuations"
and "number fluctuations", or the 𝛥𝜇 and the 𝛥𝑁 models respectively [Van94]. These
arose from the attempt to find a generally accepted model that encompassed the noise seen
in all MOS devices. The 𝛥𝜇 model, based on the work of F. N. Hooge rejects the hypothesis
that 1/𝑓 noise arises from surface effects, and instead relates the noise magnitude to the
density of mobile charge carriers in the semiconductor bulk [Hoo94]. This model was
shown to describe the noise observed in p-type devices well, which are in general low-noise
compared to n-type devices [Van94]. However, the 𝛥𝑁 model was developed to explain
the higher noise observed in n-type devices [McW57]. It posits that the noise magnitude is
proportional to the density of charge traps in the oxide at the channel surface. Arguments
have been made in either direction - for example, it was shown that in both n- and p-type
devices the 1/𝑓 noise holds when the interface is highly charged and the conduction channel
is far from the oxide [Li94]. Similarly, the 𝛥𝑁 model was used to describe the noise
experienced by both n- and p- type devices at subthreshold gate voltages [Jak98].

Around the start of the 21𝑠𝑡 century, several unified models were postulated to cover
all noise regimes in n- and p-type devices. Reduction in the scale of CMOS devices to
ones with a gate area containing few or single electrons were able to demonstrate discrete
modulation of the current in the transistor channel, which may be modelled as the random
telegraph signal of a two-level charge fluctuator [Lun02]. This led to the resolution of this
discussion to an extent in favour of the 𝛥𝑁 model due to its dominance at low number of
effective traps, and we will generally consider 1/𝑓 noise in this context, as it best explains
the noise observed at low device dimensions in n-type devices such as those studied.

4.2.2 Charge traps in silicon
Since the year 2000, there has been rapid development in the characterisation of charge
noise in CMOS devices for a variety of applications. In particular, CMOS photosensors
[Kon14], biosensors [Cre13] and quantum dots [Pet99] have all been studied extensively to
determine the origins and effect of the prevalent 1/𝑓 noise. With the reduction of device
dimensions below 100 nm, 1/𝑓 noise became a critical factor in device operations [Lee06].
Around the same time, support for the solid state spin qubit was growing, with coherent
manipulation of semiconductor quantum dots demonstrated in both electrons [Pet05] and
holes [Bru09]. The negative effects of charge noise on spin qubits were heavily studied
[Cul09], and it was found that 1/𝑓 noise has a detrimental effect on spin coherence time,
becoming more prevalent as the quantum dots became smaller in dimension.

Charge fluctuations in silicon arise from the charging and discharging of charge traps,
which are isolated potential wells in the silicon lattice caused by the presence of lattice
defects. These charge traps are considered bistable; that is to say, they have only two
stable states, charged with a single electron and discharged. They are often referred to as
two-level systems, or TLS.
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In the McWhorter model the charge fluctuations in a semiconductor arise from the
exchange of electrons between the surface layer of the semiconductor and the traps in the
oxide layer at the interface. These are prominent at Si-SiO2 interfaces, where dangling and
distorted bonds act as charge trap sites. They are the result of lattice mismatch between
the Si and SiO2, and are generally unavoidable to a certain extent when fabricating the
kind of devices used. A mismatch in the lattice results in a distribution of unpaired bonds
at the boundary of the silicon lattice.

Figure 4.1: Dangling bonds example A schematic of the Si/SiO2 interface. Left panel:
two types of dangling bond commonly found at the interface due to lattice mismatch. The 𝑃𝑏0
dangling bond is found at a silicon nucleus which is bonded to three adjacent silicon nuclei.
The 𝑃𝑏1 dangling bond is found at a silicon nucleus bonded to two adjacent silicon nuclei and
one oxygen nucleus. Right panel: mirror of the left panel with dangling bonds neutralised via
hydrogen passivation.

Some examples of this type of defect that are present in standard CMOS silicon wafers
are the 𝑃𝑏0 and 𝑃𝑏1 centers, which are dangling bonds on a silicon atom at the interface.
For the 𝑃𝑏0 center, the Silicon atom is bonded to only three adjacent silicon atoms in the
crystal lattice. For the 𝑃𝑏1 center, the atom is instead bonded to two silicon atoms and
one oxygen as part of the SiO2 layer. The energy of both kinds of trap is within the silicon
band gap, meaning that the charge configuration of the trap is dependent on the Fermi
energy. When the trap is electrically active, the charge state of the trap can fluctuate
between charged and discharged, giving rise to the two level system.

Both types of trap can lie either high or low in the band gap, meaning that they
function as either donors or acceptors of electrons. The two types can be distinguished by
their relative distributions of energies through the band gap [Len01]. However, they are
functionally similar when considering their effect on the charge noise present in the system.

The density of the traps can be reduced via hydrogen passivation, which neutralises
the unpaired electrons by forming Si-H bonds. However, even after passivation, there will
be a finite number of trap sites that can contribute to the charge noise. The estimated
density of charge traps at the interface 𝐷𝑖𝑡 after oxidation is estimated to be approximately
𝐷𝑖𝑡 ≃ 1012cm−2eV−1 [Edw91]. This can be further reduced to approximately 1010cm−2eV−1
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via hydrogen passivation. This would be considered an extremely clean interface, and
approaches the trap density limit attainable with modern technology. If we assume a
quantum dot of dimension 100 nm, this leads to approximately one defect in the region
of the quantum dot in the ideal situation. However, due to the potentially lower quality
oxide interface, we expect ∼ 10 − 100 defects in the region of a realistic quantum dot.

The charging and discharging of these traps requires an electron to tunnel from the
Fermi sea to the trap. This tunnelling has a characteristic tunnelling rate, 𝛾𝑖, which has
an exponential dependence on the distance from the trap to the electron source. For
a two-level fluctuator, this tunnelling rate is the dominant contributor to the switching
frequency. This implies that the distribution of switching frequencies is exponentially wide
due to the variation in the tunnelling distance for different charge traps. For an almost
continuous distribution of the tunnelling distance and barrier height across many two level
systems, the distribution of switching frequencies will be proportional to 1/𝑓 .

4.3 Low frequency charge noise in the many electron regime
4.3.1 Introduction
Here, we investigate the effects of charge noise in the simplest CMOS device that can be
used as a qubit: a single "qubit" quantum dot with a nearby charge sensor. We measure
the charge noise in the many-electron regime for different configurations of quantum dot
to explore the effect of lateral and vertical movement within the channel. Next we conduct
temperature spectroscopy to determine the source of the charge noise on the quantum dot.
Finally, we demonstrate a novel method of charge noise measurement at the single-electron
level, and extract the charge noise for the first few electrons in a quantum dot.

4.3.2 1/f noise
Almost all noise sources in any electronic device follow a 1/𝑓 dependence at low frequency.
This dependence arises from a coupling to a distribution of two-level systems with switching
frequencies that span a broad frequency range. For a single two level fluctuator with a
characteristic switching rate 𝛾𝑖, then the spectral density as a function of frequency takes
on a lorentzian form [Pal14]:

𝑆𝑖(𝜔) = 𝑓2
𝑖 𝐿𝛾𝑖(𝜔) (4.1)

Where 𝑓𝑖 is the electric field influence induced by the TLS at the detector, 𝜔 = 2𝜋𝑓 is
the angular frequency and 𝐿𝛾𝑖(𝜔) is:

𝐿𝛾𝑖(𝜔) = 1
𝜋

𝛾𝑖

𝜔2 + 𝛾2
𝑖

(4.2)

A lorentzian spectrum can be an indicator of a single TLS in close proximity to the
detector dominating the charge noise from other fluctuators. The McWhorter model
assumes that the switching rate of the TLS is thermally activated [McW57]. Then the
switching time, 𝜏𝑖 = 1

𝛾𝑖
, is given by 𝜏 = 𝜏0𝑒𝐸𝑖/𝑘𝐵𝑇 , where 𝐸𝑖 is the activation energy of

the fluctuator, 𝜏0 is the characteristic attempt time of the two level system, and 𝑇 is the
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temperature. The spectrum of a single two level system can therefore be characterized in
terms of its activation energy:

𝑆𝑖(𝜔,𝑇 ) = 𝜏0𝑒𝐸𝑖/𝑘𝐵𝑇

𝜔2𝜏2
0 𝑒2𝐸𝑖/𝑘𝐵𝑇 + 1

(4.3)

However, the density of charge traps indicates that it is probable that rather than one
single strongly coupled TLS, we will have a distribution of many TLS in the region of
the detector that all contribute to the noise spectrum. The McWhorter model assumes
multiple fluctuators with a continuous distribution of activation energies 𝐷(𝐸).

𝑆𝜀(𝜔,𝑇 ) =
ˆ

𝜏0𝑒𝐸/𝑘𝐵𝑇

𝜔2𝜏2
0 𝑒2𝐸/𝑘𝐵𝑇 + 1

𝐷(𝐸)𝑑𝐸 (4.4)

If the distribution of activation energies 𝐷(𝐸) is constant, then the noise spectrum
integrated across all fluctuators is proportional to 𝑘𝐵𝑇/𝑓 . This is the typical 1/𝑓 noise
spectrum observed in almost every physical system. Due to the assumptions made, it can
be noted that a close agreement with the 1/𝑓 spectrum is an indicator of an approximately
continuous distribution of two-level systems.

Figure 4.2: 1/f charge noise in an Si-MOS quantum dot Charge noise 𝑆𝜀 plotted as a
function of frequency over a range from 10 mHz to 5 Hz for three different values of temperature.
A line proportional to 1/𝑓 is overlaid. The charge noise spectrum can be seen to follow an
approximately 1/𝑓 behaviour. Adapted from [Pet18].

Clear 1/𝑓 behaviour has been observed in Si-MOS quantum dots in the frequency range
10 mHz − 3 Hz [Pet18]. A linear temperature dependence of the charge noise at 1 Hz is
seen over the range 0.1 − 4K, varying from 4 to 144 µeV2/Hz.

1/𝑓 noise has been demonstrated in Si/SiGe quantum dots [Con19] for quantum dots
fabricated with varying gate oxide thickness. Charge noise values at 1 Hz were found for
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these devices in the range 0.59 to 3.50 µeV2/Hzat 50 mK, which are among some of the
lowest charge noise values reported in literature for devices of this type. A significant
dependence on the thickness of the oxide was also noted, with an increase in charge noise
by a factor 2 observed on devices with 46 nm thickness oxide compared to those with no
gate oxide.

A low disorder MOS quantum dot was demonstrated with a low density of charge traps
at cryogenic temperatures [Kim19]. This device was fabricated using high-energy processes
such as electron beam lithography, demonstrating that such fabrication methods do not
prevent reaching the low disorder regime. In particular, atomic layer deposition aluminium
oxide (ALD) was used to protect exposed silicon oxide from contamination. The charge
noise measured was around 10 µeV2/Hz at 300 mK, 1 Hz, which is comparable to the 46 nm
oxide devices measured in [Con19].

4.3.3 Measurement method
Charge noise is manifested in a quantum dot as a modulation of the dot’s chemical potential.
This is similar to the case where a quantum dot is used as a charge detector. However,
instead of a simple two-state current readout, the quantum dot may be coupled to many
different fluctuators in its environment. This is observed in a current-time trace measured
on the slope of a coulomb peak. A small fluctuation in the chemical potential of the
quantum dot, 𝛿𝜀, induces a small current fluctuation due to the movement of a coulomb
peak, 𝛿𝐼. Therefore:

𝛿𝐼 = 𝑑𝐼

𝑑𝑉𝐺

𝛿𝜀

𝛼
(4.5)

Where 𝛼 is the lever arm of the quantum dot, and 𝑑𝐼
𝑑𝑉𝐺

is the slope of the coulomb peak
at the measurement position. Figure 4.4a shows the current modulation as a function of
time in a quantum dot system tuned to the slope of a coulomb peak. The position of
maximum gradient is used to obtain the maximum sensitivity to charge fluctuations on
the quantum dot site.

𝑆𝜀 = 𝛼2𝑆𝐼

|𝑑𝐼/𝑑𝑉𝑃 |2
(4.6)

To obtain the noise spectrum in the frequency domain, the time trace is converted via
fast fourier transform to a power spectrum 𝑆𝐼 . The noise spectrum is then renormalised to
obtain the noise spectrum experienced by the electrochemical potential of the quantum
dot using Eqn 4.8. The resulting spectrum corresponding to the time trace seen in Figure
4.4a is plotted in Figure 4.4b. This charge noise spectrum, 𝑆2

𝜀 , takes units of 𝜇eV2/Hz. As
such, charge noise values are typically quoted in these units.

Two example spectra are shown in Figure 4.4b and c. Figure 4.4b is an example of a
characteristic 1/𝑓 spectrum. This may be fitted with a curve using 𝑆𝜀(𝑓) = 𝐴/𝑓𝛾 . Here, 𝛾
is the gradient of the curve in log scale, and 𝐴 is a scaling factor. However, Figure 4.4c
demonstrates the other type of spectrum commonly observed. Spectra of this type are
best described using a combination of the 1/𝑓 curve and an additional Lorentzian curve,
as described in Eqn 4.9.
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Figure 4.3: Charge Noise of a typical quantum dot. a) A current-time trace measured on
the slope of a coulomb peak for a standard quantum dot configuration. The variations in the
current level are due to charge noise-induced fluctuations of the quantum dot’s electrochemical
potential. b) A time trace similar to that seen in a) converted via fourier transform into a power
density spectrum, and renormalized using Eqn 4.8. The fit is proportional to 1/𝑓𝛾 , with 𝛾 close
to 1. c) A separate time trace which exhibits the characteristics of a single dominant fluctuator,
as indicated by the Lorentzian shape. The fit parameters give the estimated characteristic
frequency of this fluctuator to be 2.6 Hz.

𝑆𝜀(𝑓) = 𝐴

𝑓𝛾
+ 𝐵

𝑓2/𝑓2
0 + 1 (4.7)
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Figure 4.4: Charge noise variance across a coulomb peak. The absolute 𝑑𝐼/𝑑𝑉𝐺, used to
renormalize the charge noise, is shown in blue. The resulting charge noise at 1 Hz is shown in
red. From this, the charge noise at this coulomb peak is estimated to be 3 µeV2/Hz.

To obtain a precise charge noise value for a specific configuration, such measurements are
made whilst varying the plunger gate voltage across a coulomb peak. This is demonstrated
in Fig 4.5. The fact that the charge noise is (relatively) demonstrably constant across the
coulomb peak is a good indication that the renormalization to account for the sensitivity
works well. At the limits (where the 𝑑𝐼/𝑑𝑉 tends to zero) the sensitivity is arbitrarily
low and the renormalization unreasonably large, so limits in 𝑑𝐼/𝑑𝑉 are set, beyond which
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the charge noise results are discarded. The charge noise value for a specific configuration
is then taken to be the mean of the selected data, with the error given by the standard
deviation.

4.3.4 Wavefunction manipulation
The properties of a quantum dot at the single-electron level is highly dependent on the
confinement of the electronic wavefunction. A quantum dot is formed through accumulation
at the gate-channel interface. This interface provides the vertical confinement necessary to
lift the valley spin degeneracy, which is crucial for creating a viable spin qubit. However,
interface trap sites are expected to dominate low-frequency charge noise. Local manipulation
of the wavefunction to minimize the effect of charge noise may therefore be necessary to
operate a low-noise spin qubit. The wavefunction may be distorted via control of the
electric fields within the channel. For this purpose, there are four control gates that may
be used.

The plunger gate for the dot, denoted 𝑉𝐵1, is used to control the on-site chemical
potential. This gate is not used to distort the wavefunction, but instead to compensate
changes in the on-site potential to preserve the state of the quantum dot. The back gate,
𝑉𝐵𝐺, acts as a universal control over the channel. By applying a positive voltage on the
back gate, the quantum dot can be attracted more strongly to the back interface. With
the plunger gate providing a compensation on the on-site potential, this back gate can be
used to move the quantum dot vertically within the channel. Additionally, a top gate, 𝑉𝑇 𝐺

is used to control the lateral extension of the wavefunction.

Vertical manipulation
Within the channel of the nanowire device, there are multiple interfaces formed at different
stages of the fabrication process. The back interface is formed via growth of the polysilicon
channel on the silicon oxide substrate (often referred to as the buried oxide, or BOX).
Conversely, the upper and side interfaces in the region of the quantum dots are formed by
deposition of the metallic gates at a later step in the process. They are separated from the
channel by a native oxide of a thickness of a few nanometres.

Outside of the gate region, the metallic layer and oxide is etched away, and the interface
is instead formed by the silicon nitride spacers which are deposited around the gates and
protect the depletion region between the quantum dot and the reservoirs. The reservoirs
are formed by ion implantation from above. The metallic gates and spacers nominally
protect the channel from this implantation. However, high energy ions can penetrate
the protective layer and damage the oxide. Such ions have fixed configurations in which
they are active, and the quantum dot may be tuned away from such a configuration to
avoid their direct effect. However, their implantation can cause damage to the silicon
oxide, which manifests as charge traps, often in the form of dangling bonds. As such, it is
expected that the upper interface has a higher charge trap density than the lower interface.

By probing the change in the charge noise experienced by the quantum dot as it moves
vertically in the channel, we aim to identify the dominant source, and determine to what
degree it is possible to screen the effects of charge noise through vertical distortion. The
number of electrons in the dot is kept constant through on-site potential compensation
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Figure 4.5: Vertical manipulation of the quantum dot in the channel. a) The capacitance
between the quantum dot and the source and drain reservoirs, labelled 𝐶𝑆 and 𝐶𝐷 respectively.
This capacitance is extracted from coulomb diamond measurements in each configuration for
which the charge noise was measured. b) The capacitance between the quantum dot and the
plunger gate 𝐶𝐺 as a function of 𝑉𝐵𝐺. The capacitance is strongly linked to the distance of the
quantum dot from the gate interface. This implies a significant vertical movement within the
channel, changing the capacitance to the gate by more than a factor 4. c) The self-capacitance
of the quantum dot, 𝐶𝛴, as a function of the 𝑉𝐵𝐺. 𝐶𝛴 can be interpreted as a measure
of the quantum dot’s spatial extension. d) The charge noise measured at the quantum dot
for equivalent configurations at values of 𝑉𝐵𝐺 between 0 to 10 V. Each point represents the
average charge noise measured in at least twenty identical experiments.

with the plunger gate. The charging energy of the dot may be studied to determine the
relevant capacitances as discussed in Chapter 2. From these capcitances, we are able to
study how the charge noise responds to the manipulation of the dot.

Fig 4.6a demonstrates that the capacitance to source and drain, 𝐶𝑆 and 𝐶𝐷, remains
approximately constant below 𝑉𝐵𝐺 = 5 V, and increases sharply after 5 V. This implies that
the dot only begins to undergo lateral extension after 𝑉𝐵𝐺 = 5 V. Fig 4.6b indicates the
opposite trend for the capacitance to the plunger gate: below 𝑉𝐵𝐺 = 5 V, the capacitance
decreases, and then remains relatively stable above 5 V. Finally, Fig 4.6c shows the
self-capacitance of the dot, 𝐶𝛴, approximately follows the same trend as 𝐶𝑆 and 𝐶𝐷,
as the self-capacitance is dominated by these two. The self-capacitance is a qualitative
measure of the size of the quantum dot, and we can therefore conclude that the dot size
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is approximately constant in the first 5 V. By combining these three factors, we build a
picture of the movement of the quantum dot. During the first 5 V of manipulation, the
dot does not change size or lateral extension, but does move vertically in the channel, as
indicated by the change in 𝑉𝐺. After 𝑉𝐵𝐺 = 5 V, the dot position remains constant, and
we can conlude that it is then confined against the back interface. Increasing 𝑉𝐵𝐺 increases
this confinement, and additionally the spatial extension, leading to the increase in 𝐶𝑆 , 𝐶𝐷,
and consequently 𝐶𝛴.

With this in mind, we can apply this movement of the dot to our study of the charge
noise. The change in the power spectral density 𝑆𝜀 measured at 1 Hz is plotted as a function
of 𝑉𝐵𝐺 in Fig 4.6. It can be immediately seen to match the change in 𝐶𝐺 well, with a
sharp decrease in charge noise observed below 5 V and a reduced decrease observed at
higher 𝑉𝐵𝐺. Indeed, no clear correlation with the increase in 𝐶𝑆 and 𝐶𝐷 is observed. Thus
we conclude that the reduction in charge noise from 40 µeV2/Hz to 4 µeV2/Hz is due to the
displacement of the dot vertically in the channel, and not the change in lateral extension.
We interpret this as being due to the nominally cleaner back interface having fewer charge
traps, and therefore a lower magnitude of charge noise, whilst the noisy upper interface
has a reduced effect due to the reduced capacitive coupling. Due to the strong correlation
between the charge noise and 𝐶𝐺, we conclude that it is likely that the charge noise at
𝑉𝐵𝐺 = 0 V is dominated by charge traps in the gate stack, which experience a similar
decrease in capacitance to the dot as it moves in the channel.

However, this conclusion does not reveal any information about the effect of the lateral
extension of the quantum dot. To investigate this, we therefore need to change the shape
of the dot without changing its position in the channel.

Lateral manipulation
The source and drain are created by implantation of donor ions into the silicon lattice. If
not fully annealed, these can also act as charge traps. Such traps are expected to have
a high characteristic frequency, due to their position within the channel and close to the
boundary of the electron reservoir. The density of these traps is expected to increase
towards the reservoir boundary. In order to distinguish the charge noise screening effect
due to the change in interface from a changed coupling to the reservoirs, we now control
the lateral extension of the wavefunction without inducing vertical motion, to study the
effect of the reservoirs.

In order to achieve this, we apply a positive voltage on the top gate, 𝑉𝑇 𝐺. Due to the
metallic gate screening the on-site potential of the quantum dot, this positive electric field
is preferentially applied at the sides of the gate. The effect of this is twofold: firstly, it is
expected to extend the quantum dot wavefunction beyond the edges of the gate, without
significantly affecting its on-site potential. This has been observed through stability diagram
measurements at varying 𝑉𝑇 𝐺, whereby the potential of the quantum dot is only weakly
modified, but the coupling to the reservoirs (measured via the tunnel rate through the dot)
can be changed by more than factor 3 for a 𝑉𝑇 𝐺 range of a few volts. Second, this positive
electric field will attract the electron reservoirs, extending them closer to the quantum dot.
This has the effect of increasing the coupling of the quantum dot to the reservoirs without
affecting its vertical orientation.
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Figure 4.6: Lateral manipulation of the quantum dot in the channel. a) The capacitance
between the quantum dot and the source and drain reservoirs, labelled 𝐶𝑆 and 𝐶𝐷 respectively,
as a function of 𝑉𝑇 𝐺. b) The capacitance between the quantum dot and the plunger gate 𝐶𝐺

as a function of 𝑉𝑇 𝐺. c) The self-capacitance of the quantum dot, 𝐶𝛴, as a function of 𝑉𝑇 𝐺.
d) The charge noise measured at the quantum dot for equivalent configurations at values of
𝑉𝑇 𝐺 between −15 to +15 V. Each point represents the average charge noise measured in at
least twenty identical experiments.

We tune the quantum dot to a low-noise regime, that is, 𝑉𝐵𝐺 = 5 V, with an identical
number of electrons loaded as in the previous measurement. The top gate is tuned over a
range from −15 to +15 V, and the corresponding charge noise measured in an identical
fashion. The number of electrons in the dot is kept constant throughout the measurement.

In Fig 4.7a, it can be seen that 𝐶𝑆 and 𝐶𝐷 vary similarly with the top gate voltage,
increasing rapidly at positive values of 𝑉𝑇 𝐺. This implies an expansion of the quantum dot
towards the reservoirs (or, equivalently, an expansion of the reservoirs towards the quantum
dot). Compared to the measurement of the movement of the dot with the back gate, there
is a comparatively small change in the capacitance to the plunger gate, as indicated in Fig
4.7b. Fig 4.7c indicates that there is a strong increase in the size of the quantum dot with
high 𝑉𝑇 𝐺. This strongly implies that the increased 𝐶𝑆 and 𝐶𝐷 do indeed correspond to a
lateral extension of the dot, and cannot be purely explained by movement of the reservoirs.
From these factors, we can conclude that the quantum dot remains relatively constant
in both size and location from 𝑉𝑇 𝐺 = −10 V up to 𝑉𝑇 𝐺 ≈ 5 V. Between 𝑉𝑇 𝐺 ≈ 5 V and
𝑉𝑇 𝐺 = 15 V, the dot is significantly extended laterally along the axis of the wire, bringing
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it closer to the source and drain.
The change in the charge noise experienced by the dot with 𝑉𝑇 𝐺 is shown in Fig

4.7d. It can be seen that the charge noise remains approximately constant until a steady
increase around 𝑉𝑇 𝐺 ≈ 5 V. It then sharply increases around 𝑉𝑇 𝐺 ≈ 10 V. Due to the
strong correlation with 𝐶𝑆 and 𝐶𝐷, we attribute this rapid increase in charge noise to the
increased lateral extension of the dot. Attributing the source of the increased charge noise
is not trivial, however, as increasing the size of the dot changes many factors.

Firstly, the increased coupling to the reservoirs implies an increased coupling to charge
traps at the reservoir interface. However, the positive field applied by the top gate is also
likely changing the reservoir interface, which in turn changes the population of traps that
are active. The increased capacitive coupling to the reservoirs implies that the reservoir
fluctuators will have an increased effect on the charge noise experienced by the dot, but we
cannot conclude that this is the sole contributor.

A second factor to consider is the interfaces that the dot experiences as it is extended
in the channel. The dominant interface that the dot is in contact with in the absence
of external fields is the gate oxide, since it is formed by accumulation at the top gate.
However, the gate is surrounded by silicon nitride spacers. These spacers are expected to
contain a higher density of charge traps than the gate oxide, and indeed could be one of
the main contributors to charge noise. The increase in charge noise as the dot extends
laterally could therefore be attributed to an increased capacitive coupling to the traps
in the spacers. A strong argument for this being the case is that the increase in charge
noise is not observed when varying the back gate, despite a similar increase in 𝐶𝑆 and 𝐶𝐷

being observed. Indeed, as the reservoir capacitances are increased, the charge noise in
that case continues to decrease. This may be an indicator that applying a positive top gate
voltage shifts the interface between the dot and the reservoir towards the upper interface,
increasing the coupling to traps at the upper interface. The location of the dot is likely
unchanged, as indicated by the constant 𝐶𝐺.

Finally, it is currently unclear what effect the electric field fluctuations induced by charge
traps have on the tunnel coupling. The tunnel barrier is a potential barrier created by
the depletion region between the quantum dot and the reservoir. Charge traps in this
region could cause fluctuations in the potential of this barrier, which would manifest as
changes in the current through the quantum dot. As the potential barrier is decreased
(equivalently, the tunnel coupling increased, as indicated by 𝐶𝑆 and 𝐶𝐺), these fluctuations
in the height of the tunnel barrier will have an increased effect on the magnitude of current
through the dot. Thus, the increase in charge noise may be simply due to the increased
contribution from fluctuations of the barrier potential. However, in the region of maximum
sensitivity, this is indistinguishable from charge noise experienced by the on-site potential,
so we cannot conclude if this is a significant contributor. Additionally, the inverse trend
is observed with the back gate measurement. If this is, therefore, a factor in this case, it
would imply that this is due to the interface being localized towards the upper interface,
which is expected to have a higher density of charge traps. Alternatively - or additionally -
it may only become a factor at higher tunnel coupling. In the back gate experiment, 𝐶𝑆

and 𝐶𝐷 are only increased to around 40 aF, whereas a capacitance of 80 aF is reached in the
top gate experiment. As the tunnel coupling increases exponentially with a linear decrease
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in the width of the barrier potential, this could explain why no competing mechanism was
observed in the back gate experiment.

Indeed, the increase in charge noise with 𝑉𝑇 𝐺 is likely to result from a combination of
these factors. Further study would be required to isolate the relevant contributions from
each factor and inform future fabrication techniques with a view to minimizing charge
noise. If we consider a purely capacitive model, however, our conclusion is clear that
increasing the coupling to the electron reservoirs induces a significant increase in charge
noise. We see a variation from 6 µeV2/Hz in the low noise regime (𝑉𝐵𝐺 = 5 V, 𝑉𝑇 𝐺 = 0 V)
to 129 µeV2/Hz in the high noise regime.

4.3.5 Identifying fluctuators
Thus far we have studied the effect of charge noise on the quantum dot, but the nature of
the source of this charge noise remains unresolved. Temperature spectroscopy can allow
comparison of the system with various models of charge noise, and investigation of the
distribution of the fluctuators. In particular, it allows comparison of this system with the
Dutta-Horn model of charge noise in semiconductors, as discussed previously.

Lorentzian spectra
The theory behind 1/𝑓 noise relies on the assumption that the two level systems have a
continuous distribution of switching frequencies and activation energies, which may not
be the case in a physical system. These assumptions are largely valid for defects in bulk
material, but do not hold in general for the systems considered, that being interface defects
acting as two-level fluctuators, with their charge state modulated via a tunnel coupling.
Rather than defects in a bulk material, these are better described as a sparse bath of
discrete defects. It follows that the number of fluctuators that couple to a quantum dot
can be highly dependent on the size of the dot. For a sufficiently large dot, it can be
anticipated that the observed noise should tend towards a 1/𝑓 spectrum as it couples to a
continuous distribution of fluctuators. However, for a small dot, the number of fluctuators
can be small, and no longer appropriately described by a continuous distribution. This can
manifest as a deviation from the typical 1/𝑓 relationship of charge noise with frequency,
either as a clear Lorentzian signature or a change in the linear gradient at 1 Hz described by
𝛾. For a linear fit, this is equivalent to the value of 𝛽, the frequency exponent. These kind
of deviations from the standard 1/𝑓 spectrum have been observed in all kinds of devices.
A signature that a strong deviation from a 1/𝑓 spectrum can indicate is the presence of a
single, very strong fluctuator close to the detector.

Simulations of the two extreme cases are shown in Fig 4.8. Fig 4.8a is a simulation of
a single fluctuator with a characteristic frequency of 0.1 Hz. This single fluctuator has
a lorentzian-type spectrum, described in Eqn. 4.5. This is typically indicated by the
preferential fitting of a curve of the form 𝑆𝐼(𝑓) = 𝐴

𝑓𝛽 + 𝐵
𝑓2/𝑓2

0 +1 where the scaling factor
𝐵 is comparable to or greater than 𝐴. In general, a curve that is indicative of a single
fluctuator dominating within a distribution will manifest as 1/𝑓 noise with a Lorentzian
distribution superimposed, with 𝑓0 the characteristic switching frequency of the dominant
fluctuator.

Fig 4.8b is a simulation of a group of fluctuators with a flat distribution of activation
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Figure 4.7: Bistable fluctuator simulations RTN simulations of two different populations
of fluctuators. a) A single fluctuator with a characteristic frequency of 0.1 Hz. b) A population
of fluctuators with energies distributed linearly between 1 eV and 1 µeV.

energies. Clear 1/𝑓 noise is observed due to the summation of many individual lorentzian-
noise fluctuators. However, it is common to see noise spectra that do not fall into either
category. Spectra often follow a 1/𝑓𝛽 dependence, with 𝛽 having a value typically between
1 and 2, with values between 1 and 1.4 most frequently reported in Silicon. This is an
indication of a non-continuous activation energy distribution of fluctuators that is not
dominated by one fluctuator in particular. Such a distribution 𝐷(𝐸) is described using the
Dutta-Horn model:

𝑆𝜀(𝜔,𝑇 ) = 𝑘𝐵𝑇

𝜔
𝐷(�̃�) (4.8)

Where �̃� = −𝑘𝐵𝑇 ln(𝜔𝜏0). The gradient of the noise spectrum at 1 Hz is defined as
𝛾 = −𝜕ln𝑆𝜀/𝜕ln𝜔. If 𝛾 ≠ 1, then 𝐷(�̃�) must not be constant. A deviation from 𝛾 = 1 can
therefore be used to indicate an uneven distribution of two-level systems. Charge noise in
Si/SiGe quantum dots that deviated strongly from the 1/𝑓 spectrum was shown in [Con19]
to qualitatively agree with the Dutta-Horn model of an uneven distribution of two-level
systems.

Temperature dependence of charge noise
Temperature spectroscopy may be used to determine the origin of deviations from 1/𝑓
noise. The Dutta-Horn model, as described in eqn. 4.10, indicates that if 𝐷(𝐸) is not
constant, 𝑆𝜀(𝜔,𝑇 ) does not vary linearly with temperature. There is then a relationship
between the noise power 𝑆𝜀(𝜔,𝑇 ) and 𝛽(𝜔,𝑇 ):

𝛽(𝜔,𝑇 ) = 1 − 1
ln(𝜔𝜏0)

(︂
𝜕ln𝑆𝜀(𝜔,𝑇 )

𝜕ln𝑇
− 1

)︂
(4.9)

Using these two relationships, the Dutta-Horn model can be applied to noise spectra
obtained over a range of temperatures to determine the linearity of the distribution of
activation energies 𝐷(𝐸). If 𝑆𝜀 varies linearly with temperature, then 𝐷(𝐸) can be
approximated to a linear distribution. This can be interpreted by considering how the
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temperature broadens the "window" of energy around the electrochemical potential that
contains the active states of thermally activated fluctuators. States that lie beyond this
window are either filled or emptied, and are not considered active fluctuators. If 𝐷(𝐸) is a
linear distribution, as the temperature is increased, this window is similarly widened, and
the number of active states will increase linearly, leading to higher charge noise (increasing
𝑆𝜀). However, if 𝐷(𝐸) is not a linear distribution, then the increase in 𝑆𝜀 will not be linear
with temperature.

A careful distinction should be made between the relationship between 𝑆𝜀 and 𝑇

compared to the relationship between 𝑆
1/2
𝜀 and 𝑇 . Charge noise is often given in 𝜇eV/

√
Hz,

as extracted from 𝑆
1/2
𝜀 , and as such the relationship between charge noise and temperature

for a linear 𝐷(𝐸) should instead be a square root dependence. For clarity, 𝑆𝜀 is used here
to discuss results from literature, adapted from the 𝑆

1/2
𝜀 relationship if necessary.

In silicon quantum dots, [Pet18], the average charge noise has been seen to vary approxi-
mately quadratically with temperature, indicating that the system of fluctuators cannot
be described simply by an even distribution of fluctuators in activation energy. The charge
noise varies from 4 µeV2/Hz to 144 µeV2/Hz over 0.1-4 K.

Figure 4.8: Temperature dependence of charge noise in Si/SiGe quantum dots
Temperature dependence of charge noise measured across three Si/SiGe samples with varying
gate oxide thickness. Data averaged over multiple quantum dots per device. An approximately
linear temperature dependence is observed for all devices. Adapted from [Con19].

A similar case is seen in Si/SiGe quantum dots, [Con19], where the charge noise follows an
approximately linear temperature dependence on average, but individual dots demonstrate
significant deviation. This is in qualitative agreement with the Dutta-Horn model and
indicative of a non-uniform distribution of activation energies for individual quantum dots.
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The magnitude of the increase with temperature was seen to be strongly dependent on
the thickness of the gate oxide. The best case was seen for 0 nm gate oxide, where an
increase from 1 µeV2/Hz to 6 µeV2/Hz was seen over a range from 65 mK to 1 K. A thick
gate oxide of 46 nm was shown to significantly increase the charge noise, demonstrating an
increase from 2 µeV2/Hz to 27 µeV2/Hz over the same range, and shown in Fig 4.9.

Deviations from such a linear dependence have been considered in [Ahn20] at the few-
fluctuator level. It is shown that 1/𝑓 noise may be demonstrated over a broad frequency
range for a single or few fluctuators when coupled to a microscopic thermal bath. The
thermal bath model implies a range of phonon frequencies that may activate the two-level
fluctuators in the system. This could be considered analogous to the activation energy
of a single fluctuator, 𝐸𝛼𝑖, not being an invariable value, as assumed in the Dutta-Horn
model. Instead, this energy can vary with temperature and cause deviation from the linear
dependence typically seen. In this model including the microscopic sub-bath, the spectra
are instead modelled using 4.12.

𝑆(𝜔) ≈ 4𝜏𝛥2

1 + 𝜔2𝜏2 + 2𝐸𝛥2

𝑘𝐵𝜎𝑠𝑏𝜔ln2 1
𝜔𝜏

𝑒
− (𝑇 −𝑇𝜔)2

2𝜎2
𝑠𝑏 (4.10)

The first term models the Lorentzian spectrum seen due to a single TLS, and the second
term describes the influence of the sub-bath. Here the sub-bath is modelled as a portion of
the thermal bath with an area 𝐴, giving a variance 𝜎𝑠𝑏:

𝜎2
𝑠𝑏 = 3~2𝑇

𝜋𝑚𝐴𝑘𝐵
(4.11)

This model was demonstrated to improve upon the raw Dutta-Horn model in describing
data over a range from 50 mK to 1 K, where significant deviations from 1/𝑓 noise were
demonstrated and non-linear temperature dependence was seen. In this case, only one or
two fluctuators were needed to describe the temperature dependence seen.

We investigate the change in charge noise with temperature in the range 400 mK to 4 K.
The temperature is varied by applying a voltage across a resistor which is thermally coupled
to the device. It is measured via the internal thermometer of the refrigerator, which is
thermally anchored at the top of the cold finger. A rise time in the thermometer is expected
due to the need to thermalize the cold finger, so measurements are delayed for around
120 seconds after changing the temperature. This gives the fridge time to thermalize, and
time for the electron temperature to reach equilibrium.

The quantum dot was biased into the low charge noise regime (𝑉𝐵𝐺 = 5 V and 𝑉𝑇 𝐺 = 0 V).
The variation in 𝑆𝜀 with temperature can be seen in Fig 4.10 for two different numbers of
electrons loaded into the dot. Such non-linear behaviour is indicative of a non-uniform
distribution of fluctuators, as described by the Dutta-Horn model and outlined in Section
4.3.5. This can be seen simply by considering a single fluctuator with a Lorentzian-
type noise spectrum. For frequencies below the fluctuator frequency 𝑓𝑖, the noise is
essentially independent of frequency and appears similar to white noise in the power
spectrum. It therefore decreases with temperature, as the activation frequency is increased
𝑓𝑖 = 𝑓0𝑒−𝐸𝛼𝑖/𝑘𝐵𝑇 . However, at frequencies above the fluctuator frequency, the noise is
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Figure 4.9: Temperature dependence of charge noise Measured for two different config-
urations of quantum dot. The quantum dot is biased in a low noise regime and the temperature
varied from 400 mK to 4 K. Each point is representative of the average value of charge noise
measured across a coulomb peak. Every 10𝑡ℎ point is plotted with the error bar giving the
standard deviation of charge noise across the peak, with the dashed line giving the moving
average.

proportional to 1/𝑓2 and exponentially increases with temperature.
Due to the small size of the quantum dot, it is expected that a few fluctuators dominate

our noise spectrum. Taking a reasonable estimate of a few fluctuators per 100 nm2 in
the native oxide, the dot should experience significant coupling to only a few fluctuators.
Two separate measurements were made at 𝑁 = 10 and 𝑁 = 30, shown in blue and
red respectively in Fig 4.10. The temperature dependence in the two configurations is
very similar, implying that the population of fluctuators experienced by the dot does
not significantly change with its dimensions. However, the absolute value of the charge
noise increases as the number of electrons in the dot decreases. This is believed to be a
consequence of the decreased screening due to electron charges within the dot, meaning
that a single charge fluctuation close to the quantum dot has a comparatively larger effect.

In order to support the argument that the charge noise is dominated by a few individual
fluctuators, we turn to frequency analysis to identify the dominant fluctuators in the noise
spectrum of the quantum dot.

Fluctuator energies
The fluctuation frequency of a thermally-activated charge trap is a temperature-dependent
parameter, governed by a kinetic process. This process involves the tunnelling of an electron
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into and out of the charge trap across a tunnel barrier. The frequency of fluctuator 𝑖 can
be described by the temperature-dependent equation given by 4.14.

𝑓𝑖 = 𝑓0𝑒
− 𝐸𝛼𝑖

𝑘𝐵𝑇 (4.12)

Here, the parameter 𝐸𝛼𝑖, the characteristic activation energy of fluctuator 𝑖, is considered
to be fixed. Additionally, the maximum attempt frequency, 𝑓0, is a characteristic property
of the system, and can be considered an experimentally-derived fit parameter. It follows
that the frequency of a single fluctuator is only dependent on the fluctuator energy and the
temperature of the system. Similarly, the energy of a fluctuator may be described by 4.15.

𝐸𝛼𝑖 = −𝑘𝐵𝑇 ln
(︂

𝑓𝑖

𝑓0

)︂
(4.13)

Furthermore, by varying the temperature of the system, we can probe the energy of
individual dominant fluctuators. When we change the temperature, we change the frequency
of the fluctuators within the system, as indicated by Eqn 4.14. If we therefore fix our
measurement frequency, we can vary the fluctuators that dominate at this frequency by
varying the temperature. This allows exploration of a wider frequency range than would
normally be possible with an experiment of reasonable duration at a fixed temperature.
Additionally, it allows us to identify if fluctuators have a static activation energy, or if
it changes with temperature as in the sub-bath model discussed in Section 4.3.5. We
have shown that it is possible to identify a single dominant fluctuator by its characteristic
Lorentzian spectrum. Through analysis of the spectra, it is possible to identify the
fluctuators that dominate in a particular frequency range at different temperatures. This
was done using two methods.

Spectral analysis
The first method uses analysis of the gradient of noise spectra at 1 Hz over a range of
temperatures to reconstruct a spectrum in energy space that covers all values of 𝑓 and 𝑇 in
a set window. Similarly to previous measurements, the noise spectrum for a quantum dot
is extracted from current-time measurements with a duration and interval corresponding
to the frequency space from 0.01 Hz to 50 Hz. The gradient of this spectrum at 1 Hz is
extracted from many spectra across a coulomb peak and averaged. This gives the mean 𝛾
value for a particular configuration and temperature. The quantum dot configuration is
kept constant through drift compensation using the plunger gate. The 𝛾 value is therefore
extracted for a range of temperatures from 400 mK to 4 K in a consistent dot configuration.
This is plotted in Figure 4.11a.

From the 𝛾 distribution, it is possible to re-create the distribution of 𝑆𝜀 in terms of
𝐸𝛼 = −𝑘𝐵𝑇 ln 𝑓

𝑓0
. This can be seen in Fig 4.11b. This captures more precisely the noise

spectrum over the full temperature range probed. For an ideal system where 𝐷(𝐸) does
not vary with temperature, this approximate spectrum may be obtained directly through
measurement at 4 K. However if this is not the case, which is apparent in our system due
to the nonlinearity of 𝑆𝜀 with 𝑇 , this method captures a variant 𝐷(𝐸), and allows us to
predict the 𝑆𝜀 for any combination of 𝑓 and 𝑇 in this system. Additionally, through fitting



4.3 Low frequency charge noise in the many electron regime 73

0 2 4
T (K)

0

1

2
=

ln
(S

)/
ln

(f)
a

0 1 2 3
E = ln(f/f0)kBT (meV)

5

10

15

20

25

S
(

eV
2 /H

z)

b

0

1

2

Figure 4.10: Variation of 𝛾 with temperature a) The average gradient of the noise spec-
trum at 1 Hz for temperature values between 400 mK and 4 K. b) A temperature-independent
reconstruction of the averaged noise spectrum across the range of energies probed between
400 mK and 4 K. This is simulated by considering three crucial points in plot a). Firstly, the
temperature at which the 𝛾 value changes from 0.5 towards 2 indicates a fluctuator with an
activation energy that gives a characteristic fluctuation frequency of 1 Hz at this temperature.
Secondly, the rate of decay towards 1 implies a lower frequency distribution of fluctuators
that recover the 1/𝑓 curve but are low enough in frequency that they do not prevent the first
fluctuator from dominating at lower temperatures. Thirdly, the initial value of 𝛾, 0.5, implies
a lack of a distribution of fluctuators in this energy range, which would tend the curve towards
a 𝛾 value of 1. This gives a lower bound for a higher frequency cluster of fluctuators.

a double Lorentzian curve to this spectrum, we are able to obtain the activation energies of
two primary fluctuators to a reasonable degree of precision. The fit gives these fluctuator
energies to be 1.35 meV and 0.30 meV. The clear step in Fig 4.11a gives a good estimate
for the lower frequency fluctuator at 1.35 meV. The other fluctuator has its characteristic
frequency beyond the energy range probed and therefore we can only estimate its lower
bound. In order to obtain a better estimate of the nature of these two fluctuators, we can
turn to characteristic frequency analysis.

Characteristic frequency analysis
It is likely that, as the gate voltage is swept across a coulomb peak, a slightly different
population of fluctuators may be activated. This manifests as a variation in the 𝛾 value
in measurements across a coulomb peak for the same configuration. The variation can
be as high as up to 0.4 across a peak. As discussed previously, the 𝛾 value can be an
indication of the presence and central frequency of a dominant fluctuator. Since the
fluctuator frequency 𝑓𝑖 is a temperature dependent parameter, extracting the activation
energy 𝐸𝛼𝑖 of a fluctuator directly requires varying the temperature. We also generally
require the 𝑓0, often called the maximum attempt frequency. This parameter is usually
derived from fitting the Dutta-Horn model. However, the accuracy of the value of 𝑓0
obtained is unclear. For example, in [Con19], a maximum attempt frequency of only 5 Hz
was obtained, with clear 1/𝑓 -like noise demonstrated to frequencies significantly greater
than 5 Hz. In all calculations, we have assumed an 𝑓0 of 200 Hz, as this is the maximum
frequency to which 1/𝑓 noise was seen. However, it is possible to extract the energy of a



74 4 Low frequency charge noise in FDSOI quantum dots

trap using an Arrhenius diagram [Bou17]. This method is independent of 𝑓0, allowing to
extract the activation energy 𝐸𝛼𝑖 of individual fluctuators.

log
(︀
𝜏𝑖𝑇

2)︀ = 𝐸𝛼𝑖
𝑞

𝑘𝐵𝑇
(4.14)

To this end, we use Eqn 4.16 to plot the characteristic time constant (𝜏𝑖 = 1/2𝜋𝑓) of
spectra that demonstrate single fluctuator behaviour. These spectra were selected from
the data collected for the temperature spectroscopy experiment through analysis of the
lorentzian fit covariance. Note that the characteristic lorentzian spectra are not identical
across a coulomb peak. This results in a spread of results for each value of temperature,
from which qualitative linear fits are made to extract fluctuator activation energies, as
plotted in Fig 4.12.
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Figure 4.11: Arrhenius plot for individual fluctuator spectra Each point of data
represents a single measured spectrum with a good lorentzian fit. The position of the spectrum
across the coulomb peak is given in the colour scale, meaning similarly coloured points are
likely to correspond to a fluctuator active at the same gate voltage. Qualitative fits are plotted
as dashed black lines using the colour scale as a guide. A single fluctuator will exhibit a linear
dependence on 1/𝑘𝐵𝑇 with the gradient giving the activation energy 𝐸𝛼.

The gradient of these linear fits gives the 𝐸𝛼𝑖 for individual fluctuators. Four main
qualitative fits give values for 𝐸𝛼 that are in good agreement with two activation energies:
1.25 meV and 0.13 meV. These energies are in good agreement with those derived from
spectral analysis, and can explain the variation in 𝛾 with temperature as seen in Fig 4.11a.
We therefore conclude that there is a high probability that two fluctuators (or species of
fluctuators) with activation energies close to 1.3 meV and 0.2 meV dominate the charge
noise of the quantum dot in this temperature range.
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4.4 Low frequency charge noise in the few-electron regime
Thus far, we have concerned ourselves with understanding the nature of the charge noise in
the region of the quantum dot. However, this must be considered in context with the goal
of the silicon quantum project. This is to enable creation of a reproducible, high-fidelity,
controllable qubit at the nanoscale. In order to fulfil these requirements for a spin qubit, it
is important to understand the main sources of decoherence, so that these can be minimized
and the spin state preserved. To this end, the characterization of the charge noise in the
many-electron regime is of limited value. Many sources in literature report low values
of charge noise below 10 µeV2/Hz, but these are measured in quantum dots containing
tens of electrons. Such values have little relevance or meaning at the single electron level,
and robust characterization of charge noise at the few-electron level is lacking. In this
chapter, we aim to fill this gap in the literature by characterizing the charge noise of a
single electron using a simple and reliable method requiring only a nearby charge detector.

Currently, charge noise at the single-electron level is measured through Ramsay spec-
troscopy [Yon17]. However, this necessitates measurement and control of the single electron
spin before measuring the charge noise. Here we present a simpler method which can be
achieved using only a charge detector and weakly tunable tunnel coupling. We propose
that this method could be used for rapid characterization of charge noise in single-electron
quantum dots in different kinds of systems without significant requirements. We present
measurements of the charge noise experienced by a quantum dot containing one, two and
three electrons. The noise magnitude is extrapolated to the values obtained for tens of
electrons. Finally, the spin-spin relaxation time in a charge noise limited regime under
a typical magnetic field gradient is calculated and compared to the limitation of 𝑇 *

2 in
natural silicon.

4.4.1 Measurement method
A difficulty is encountered in attempting to directly measure charge noise at the single
electron level in semiconductor quantum dots. The current passing through a single
electron quantum dot is negligibly small, and well below the noise floor of our detectors.
Additionally, as in this system, at the single-electron level, the electric potential of the
channel can be dominated by geometric defects rather than electric field-induced potentials.
Such defects, as well as poor definition of the quantum dot potential well, may contribute
to resistive paths that divert current away from the quantum dot. This is the case in our
system, where at the single-electron level, electrons are loaded into the dot via the adjacent
dot, indicated by the high level of control over the tunnel rate with the occupation of the
adjacent dot.

Therefore, we choose to use this dot, 𝑇1, as both charge sensor and reservoir. Fig 4.13a
shows the transition of the first electron. The electron occupancies in each dot are labelled
in the form (𝑁𝑇 1,𝑁𝐵1) (the values for dot 𝑇1 are approximate and estimated from larger
stability diagrams). No further transitions are seen at lower values of 𝑉𝐵1. This is a strong
indicator that we do indeed see the transition of the first electron.

Stochastic charge transition events may be seen when the measurement rate is on the
order of the tunnelling rate. This may be seen in Fig 4.13b. At the transition, electrons
may tunnel into and out of the quantum dot. This is the degeneracy region, where the dot
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Figure 4.12: Transition of the first electron The colour scale indicates the current passing
through the sensor dot 𝑇1. a) A wide-scale stability diagram demonstrating charge sensing of
the first few electron transitions into dot 𝐵1. The bright coulomb peaks seen here correspond
to energy levels in resonance in dot 𝑇1. The breaks in the coulomb peaks correspond to the
capacitive shift caused by an electron loading into 𝐵1. The approximate occupancy of 𝐵1 is
labelled in white, and the absolute occupancy of 𝐵1 labelled in red. b) A close-up stability
diagram of the transition marked by ⋆ in a). Stochastic events can be seen by sharp switches
between low and high current in the region of the transition. These correspond to electrons
entering and leaving the dot as it lies in resonance with the reservoir.

𝐵1 fluctuates between states 𝑁𝐵1 = 0 and 𝑁𝐵1 = 1. The frequency of this tunnelling is
given by 𝛤𝑁=0↔1, and it is seen when the quantum dot is in the configuration indicated
by the schematic in Fig 4.14a. If both dots are tuned to this region, we can obtain a
current-time trace indicating the charge occupancy of 𝐵1 over time. This is shown in Fig
4.14b. The characteristic signature of such a trace is the two current levels, each of which
indicates an occupancy state, with sharp transitions between the two. These two current
levels can be assigned an occupancy state, which in this case is 𝑁 = 0 for 𝐼𝑆𝐷 > 5 nA and
𝑁 = 1 for 𝐼𝑆𝐷 < 5 nA. A threshold is defined at 𝐼𝑆𝐷 = 5 nA (dashed line in Fig 4.14b) to
distinguish between the two states, and the current-time trace is digitized. Every transition
between states, i.e. every time the trace crosses the threshold, is caused by an electron
tunnelling onto or off the dot 𝐵1. Therefore by measuring such a current-time trace for a
sufficient time, we may extract the tunnel rate as 𝛤 = 𝑁𝑡𝑟/𝑡𝑚𝑒𝑎𝑠 where 𝑁𝑡𝑟 is the number
of tunnelling events and 𝑡𝑚𝑒𝑎𝑠 is the measurement duration.

The tunnel rate 𝛤 will be the parameter used to measure the fluctuations induced by
charge noise. In order to properly normalize this, we need to know the sensitivity of the
detector, and the lever arm of the gate. The simpler of these to extract is the detector
sensitivity. This can be obtained by reconstructing a tunnel rate coulomb peak, where
𝛤 is measured as a function of 𝑉𝐵1. This peak is shown in Fig 4.14d. The sensitivity of
the tunnel rate to fluctuations in the on-site potential of the quantum dot, 𝑑𝛤/𝑑𝑉𝐵1, is
extracted from this peak.

Extracting the lever arm of the gate is done via magnetospectroscopy since is not possible
to use the typical coulomb diamonds method at the single electron level. Instead we
investigate the change in addition energy with magnetic field. A more detailed explanation
of this procedure is given in section 3.2.3. In brief, the addition energy, 𝐸𝑎𝑑𝑑 = 𝐸𝐶 +𝛥𝐸𝑍 ,
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Figure 4.13: Measurement method for single electron charge noise (a) Schematic of
the quantum dot configuration to be probed. The first available energy level in the quantum dot
is brought into resonance with the reservoir potential. Electrons may tunnel through the barrier
with a tunnel rate 𝛤𝑁𝑒=0↔1. The occupancy of the dot varies between 𝑁𝑒 = 0 ↔ 𝑁𝑒 = 1. (b)
Current through the sensor dot measured over 100 ms (blue). Changes in the occupancy of
the probed dot induces a capacitive shift in the sensor dot, switching the current between two
states 𝑁𝑒 = 0 and 𝑁𝑒 = 1. A threshold may be defined (red) to distinguish between the two
states. The number of switches between these two states gives the tunnel rate through the
dot over 100 ms (c) Power spectral density extracted from the variation in tunnel rate over
time for the probed dot. The tunnel rate is measured as indicated in (b) over ≈ 80 s (inset).
(d) The power spectral density is measured whilst varying the plunger gate voltage on the
probed dot. A coulomb peak (not visible in DC measurement) is reconstructed (blue) from the
average tunnel rate value at each 𝑉𝐺. At each point, the |𝑑𝑒𝛤/𝑑𝑉𝐺| is used to renormalize the
measured PSD spectrum. The value at 1 Hz is extracted by extrapolation of a linear fit to 1 Hz
and plotted as a function of 𝑉𝐺 (red). Where |𝑑𝑒𝛤/𝑑𝑉𝐺| is low, the PSD value is discarded to
prevent over-renormalization.
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changes with magnetic field, as 𝛥𝐸𝑍 = 𝜇𝐵𝐵𝑔, with 𝑔 ≈ 2 and 𝜇𝐵 the electron g-factor and
the Bohr magneton respectively, both fixed parameters, is only dependent on 𝐵. Using
this and the corresponding voltage shift, we can extract the lever arm at the first electron,
which for our system is 𝛼𝑁=1 = 0.27 eV/V.

𝑆𝜀(𝑓,𝑇 ) = 𝑆𝛤𝑒(𝑓,𝑇 )𝛼𝑁=1
𝑑𝛤

𝑑𝑉𝐵1

(4.15)

𝑆𝛤𝑒(𝑓,𝑇 ) is extracted through measurement of variation in the tunnel rate with time.
The tunnel rate is measured as described previously. The measurement duration is 1 s
at 1 kHz acquisition rate. This is then measured over the course of several minutes to
obtain a 𝛤𝑒 time trace as seen in Fig 4.14c (inset). We then take the fourier transform
of this time trace to obtain 𝑆𝛤𝑒(𝑓,𝑇 ), Fig 4.14c. This is renormalized to obtain 𝑆𝜀(𝑓,𝑇 )
using Eqn 4.17. The duration of the tunnel rate measurement gives the upper bound for
the frequency window which this spectrum can be measured for. In order to obtain the
value for 𝑆𝜀 at 1 Hz, we extrapolate a linear fit to the spectrum. We repeat this process
for many points across the tunnelling peak in order to extract an average charge noise,
as demonstrated in Fig 4.14d. Whilst the experimental requirements are not trivial, this
method is significantly simpler and faster than the current methods of measuring charge
noise at the single electron level.

4.4.2 Charge noise at the single electron level
Examples of typical 1/𝑓 -like spectra measured using this method are shown in Fig 4.14c.
For each spectrum, a linear fit is plotted and extrapolated to 1 Hz. It should be noted that
many spectra measured in this way have a 𝛾 value below 1. This is indicative of higher
frequency fluctuators (which operate outside the measurement bandwidth) dominating the
charge noise in this regime. To obtain a precise charge noise value, up to 100 measurements
are made across a tunnelling peak. The measured peak is indicated in Fig 4.14d. The
shape of the peak is extracted from 𝛤𝑒-averaged time traces during the measurement. This
gives a precise 𝑑𝛤𝑒/𝑑𝑉𝐵1 value, which is the most important parameter to ensure accurate
normalization. At each value of 𝑉𝐵1, the variation in the tunnel rate with time is measured,
and the noise value 𝑆𝜀 calculated. As before, measurements where 𝑑𝛤𝑒/𝑑𝑉𝐵1 is low are
discarded, to avoid over-renormalization.

The calculated 𝑆𝜀 values are shown in Fig 4.14d. These give an average charge noise
value of (130 ± 60) µeV2/Hz at 1 Hz at 400 mK. This value means that the quantum dot
experiences charge noise of a magnitude comparable to the electron temperature during 1 s.

Further measurements were conducted at 4 K and 200 mK using an identical method at
the same charge transition. We measure 𝑆𝜀(1 Hz, 4 K) to be (1310 ± 318) µeV2/Hz, which
is approximately ten times greater than 𝑆𝜀(1 Hz,400 mK). This suggests an approximately
linear increase in charge noise with temperature. It is also approaching the Zeeman energy
for a device in a magnetic field of 1 T, which is a realistic value that may be used in
future devices. Charge noise contributes to spin decoherence through several spin-to-
charge mechanisms, including spin-orbit coupling and motion within a magnetic field
gradient. Additionally, measurement fidelity can be degraded through direct disturbance
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of the quantum dot potential, which induces current shifts and may contribute to false
detection events. It also causes long-term changes in the configuration of the quantum
dot, meaning that to maintain spin measurements over a long period of time, the system
must be constantly re-tuned. However, the value for 𝑆𝜀(1 Hz, 200 mK) is reduced to
(89 ± 28) µeV2/Hz. As seen in the temperature-dependent measurement in section 4.3.5, the
change in charge noise with temperature is significantly non-linear, and at low temperatures
the change also appears to be less significant.

4.4.3 Evolution of charge noise with electron number
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Figure 4.14: Charge noise with electron occupancy The reduction in charge noise as
the number of electrons in the dot increases is plotted in log scale. The first three points,
corresponding to 𝑁𝑒 = 1, 2, 3, were measured using the tunnel rate method outlined in this
section. The values for 𝑁𝑒 = 10, 15, 30 were measured in the many-electron regime using the
standard method as outlined in section 4.3.3. The red dashed line overlay is proportional to
1/𝑁

3/2
𝑒 .

Spin measurements are expected to most commonly be conducted at the first electron.
However certain schema involve the use of quantum dots with two or more electrons
in the same quantum dot or via exchange coupling between two adjacent dots, such as
Pauli spin blockade readout [Fog18] or singlet-triplet exchange qubits [Deh14]. Given the
significant reduction in charge noise at higher electron occupancy, these are expected to
be more resistant to on-site charge noise, although as discussed previously, the exchange
coupling is subject to additional effects from charge noise which could prove detrimental.
Additionally, it has been shown that singlet-triplet qubits can have a higher spin-orbit
coupling than expected in silicon [HC19], which implies a higher effect from charge noise.
To quantify the effect of adding one or two additional electrons to the quantum dot, charge
noise measurements were conducted at 𝑁𝐵1 = 1 → 2 and 𝑁𝐵1 = 2 → 3, as shown in Fig
4.15. These experiments were performed at 200 mK. The charge noise is reduced by an
order of magnitude from 𝑁 = 1 to 𝑁 = 3. Values of (37 ± 15) µeV2/Hz for 𝑁 = 2 and
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(9 ± 5) µeV2/Hz for 𝑁 = 3 were obtained from 100 measurements across the transition. We
note that the error in these measurements is significantly higher than for the many-electron
regime. This may be indicative of low frequency fluctuations of the tunnel rate 𝛤. However,
it can also be seen in Fig 4.14d that the variations have an apparent periodicity, which
could correspond to increased tunnelling when certain excited states become available with
increasing 𝑉𝐺 and offer additional tunnelling pathways. It may also be indicative that our
method of renormalization of the tunnel rate is incomplete, and requires additional terms
to be able to properly compare measurements across the coulomb peak. Also included in
Fig 4.15 are extrapolations of data taken at 400 mK for 𝑁 = 10, 15, 30 using the standard
method of measurement without a charge detector dot. The charge noise appears to
decrease following a trend proportional to 1/𝑁

3/2
𝑒 .

The mechanism responsible for such a reduction in charge noise is unclear. Intuition
suggests that electric field screening could be responsible for the general reduction in charge
noise with electron number. Electric field screening is an effective damping of electric
fields in a conducting material by mobile charges. It follows that increasing the occupancy
of the quantum dot increases the effective screening. Potential field simulations led by
Michal and Niquet, however, suggest that the screening is a second-order effect. They find
that expansion of the electron wavefunction towards a fluctuator has a greater effect than
screening in the general case. This is a first order effect, induced by the increased spatial
extension of the electron wavefunction. The only situation where the opposite is seen is
when the fluctuator is within the quantum dot, in which case the first-order expansion
reduces the charge noise experienced by the quantum dot. Simulations therefore suggest
an opposite trend to that observed in experiment. However, the effect of interfaces and
fluctuator positioning on the first-order expansion is not obvious, nor is the extent and
directionality of the quantum dot expansion in the experimental device well-known. Further
simulations will be required to explain the dependency seen in Fig 4.15. Additionally,
comprehensive testing of similar devices would aid in understanding if the trends seen here
are due to device-specific phenomena, or characteristic of nanowire devices in general.

Charge noise induced decoherence in quantum dots
Charge noise can cause decoherence of a spin qubit defined within the quantum dot via
two main mechanisms: the spin-orbit interaction, and coupling to a magnetic field gradient.
The spin-orbit interaction is a relativistic interaction between its spin and its orbit within
the potential well, and acts to couple the electron spin to the electrical component of the
electromagnetic field. While it is typically weak in silicon, the spin-orbit coupling can
be significant at the interface, where the inversion symmetry is broken [Ber14]. It has
also been shown to be strongly dependent on the magnetic field direction [Tan19], with a
possibility of turning off the spin-orbit interaction altogether, but also with potentially
strong spin-orbit coupling when the magnetic field is not precisely controlled. The Stark
shift induced by electric fields can provide a further source of dephasing as it modulates
the electron energy. Since it is a coupling between the energy and the electric field, electric
field modulations in the form of charge noise will induce dephasing. Additionally, the
Stark shift modulates the electron g-factor, which changes the qubit frequency. This causes
dephasing during active operation.
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Another process by which the spin can couple to the electric field is through experiencing
a magnetic field gradient. This gradient is typically created by a micromagnet, and
causes different spatial locations within the dot to experience a different magnetic field.
Through electric field manipulation of the electron within the quantum dot, electric field
fluctuations induce a magnetic field variation. This can be used for spin manipulation, by
applying an oscillating electric field with a frequency equivalent to the Zeeman splitting
𝐸𝑍 such that the electron experiences an AC magnetic field at its resonant frequency.
This method of spin control is commonly known as electron dipole spin resonance, or
EDSR. However, uncontrolled electric field fluctuations can have a similar effect in the
peresence of a magnetic field gradient. Through this coupling to the magnetic field, electric
field variations can induce stochastic spin decoherence and errors in EDSR-controlled
manipulations.

For both cases, it can be shown that a modulation of the field can cause a loss of
coherence in a qubit via stochastic degradation of the spin state (for a full derivation
refer to [Pal14]). Here, decoherence manifests as a perturbation to an arbitrary field F,
which can be the sum of a controlled part, F0 and a fluctuating field f(𝑡), which represents
the noise. This distinction is purely one between "stochastic" and "non-stochastic"; the
controlled field F0 may also be dynamic and may evolve with time in a controlled manner,
whilst the fluctuating part is a random and uncontrolled perturbation. This perturbation
prevents deterministic coherent evolution of the qubit, giving it a finite coherence time. As
the magnitude of the field fluctuations increases, the coherence time will correspondingly
decrease. This ultimately leads to a relationship between the pure dephasing time 𝑇 *

2 and
the noise spectrum 𝑆𝑓 (𝜔) when the measurement time 𝑡 is assumed to be long:

𝑇 *
2 = 1

𝜋𝑆𝑓 (0) (4.16)

It can immediately be seen that this is a strange result, as for a 1/𝑓 noise spectrum the
value of 𝑆𝑓 (0) approaches infinity, and therefore 𝑇 *

2 decays to 0 for a long measurement time.
To date, experiments have been conducted up to 1 × 10−6 Hz [Cal74], and the 1/𝑓 noise has
been seen to remain consistent, implying that this relationship does not fully describe the
effect of 1/𝑓 noise on the dephasing at low frequency. We can, however, interpret this as
the low-frequency noise dominating the pure dephasing time for long-period measurements.
𝑇 *

2 of 55 ns for a measurement time of ≈ 1 hour was measured in the presence of nuclear
spin noise in natural Si [Pla12]. 𝑇 *

2 of 18 µs for a measurement time of 10 min was measured
in the presence of charge noise of magnitude 0.22 µeV2/Hz at 1 Hz in isotopically purified
Si/SiGe [Str20], reducing to 𝑇 *

2 = 7 µs at long measurement time (6 h). This result from
[Str20] is significant, as the monotonic reduction in 𝑇 *

2 at long measurement time can
be simply explained if it is due to noise proportional to 1/𝑓 . This indicates that charge
noise may be the limiting factor for coherence in spin qubits in silicon once the isotopic
purification has eliminated the nuclear spin noise.

Another crucial effect that charge noise has which should be considered is the effect
on the coupling between two adjacent qubits. As seen previously, the coupling between
two quantum dots is dependent on both the tunnel coupling 𝑡𝑐, and the energy difference



82 4 Low frequency charge noise in FDSOI quantum dots

between the two dots 𝛥𝐸. 𝑡𝑐 is strongly dependent on 𝑉𝐵, the barrier voltage. Both 𝑉𝐵

and 𝛥𝐸 will be affected by charge noise, and therefore the effect on the exchange energy 𝐽
can be more significant than for a single spin:

𝑑𝐽 =
(︂

2𝐽

𝑡𝑐

𝑑𝑡𝑐

𝑑𝑉𝐵

)︂
𝑑𝑉𝐵 −

(︂
𝐽

𝛥𝐸

)︂
𝑑𝛥𝐸 (4.17)

This 𝑑𝐽 induces an error in any operation performed between the two qubits. For
example, a SWAP gate corresponds to a 𝜋 pulse, the duration of which is determined
by the exchange energy 𝐽 . A stochastic modulation of 𝐽 via charge noise through the
duration of the gate pulse will contribute an error to the angle of rotation, such that the
pulse applied is instead 𝜋 + 𝛿, with 𝛿 the gate rotation error. Then the resulting state
will no longer be a clean exchange of single-qubit states, but will have a finite entangled
component with a magnitude dependent on the magnitude of the error 𝛿. Measurements
made on the resulting state will therefore have a finite probability to project to the wrong
state.

In addition, when the exchange coupling is on for long periods of time during the
manipulation, the modulation of 𝐽 will induce some dephasing to the spins. This contri-
bution to the degradation of the two-qubit fidelity can be significant, especially when 𝐽
is large (𝑑𝐽/𝑑𝑉 = 𝑑𝐽/𝑑𝑉𝐵 + 𝑑𝐽/𝑑𝛥𝐸 ≃ 1). In a physical system, it is more likely to see
𝑑𝐽/𝑑𝑉 ≃ 0.01, in which case the 𝑇 *

2 will be on the order of ten times the charge relaxation
time 𝑇1. This suggests that charge noise may be one of the most significant sources of
decoherence for exchange-coupled spin qubits in semiconductors, both during manipulation
via gate errors, and during static operation due to the time-sensitive dephasing when the
exchange coupling is active [Hu06].

Figure 4.15: Relaxation sources Sources of spin relaxation in gate-defined silicon quantum
dots at 150 mK. Adapted from [Hua14a].
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Finally, charge noise can also be a source of spin relaxation [Hua14a] at long measurement
time and low magnetic field. Simulations of relaxation sources in gate-defined silicon
quantum dots are shown in Fig 4.2. It can be seen that below 𝐵 = 1 T, Johnson (charge)
noise starts to dominate the relaxation processes. In silicon, due to the large valley splitting,
intravalley spin-orbit mixing dominates the spin relaxation [Yan13]. In the low-field regime
the 𝑇1 relaxation time is very long (tens of seconds). However, 𝑇1 provides an upper bound
for the spin coherence, and this further underpins the need to understand and minimize
the effect of charge noise.

Charge noise was found to be the limiting factor in the dephasing time 𝑇 *
2 for spin qubits

in Si/SiGe in the presence of a magnetic field gradient [Yon17]. The charge noise here
is observed to follow the 1/𝑓 law in excellent agreement, obtaining 𝛾 = 1.01 ± 0.05. The
noise was measured in two main frequency ranges, between 0.01 − 1Hz and around 10 kHz,
with the extrapolation of each in close correlation to the other. An implication of this is
that the 1/𝑓 charge noise dominates the noise in this device over a range from mHz to
kHz, leading to a predicted value of 𝑇 *

2 at 25 µs.

Prediction of 𝑇 *
2 in the presence of a magnetic field gradient
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Figure 4.16: 𝑇 *
2 simulation The increase in the dephasing frequency with increasing charge

noise for a measurement duration of 1 s. The dashed line is the dephasing frequency due to the
nuclear spin noise in natural silicon (𝑇 *

2 = 0.05 µs). The dephasing frequency limits given by
the charge noise values measured for the first few electrons are indicated.

Here we simulate the effect of the charge noise experienced by our system on the 𝑇 *
2

in the presence of a typical magnetic gradient required for EDSR. Fig 4.16 shows the
simulated effect of charge noise on the 𝑇 *

2 for 𝑡𝑚𝑒𝑎𝑠 = 1 s. The 𝑇 *
2 limit due to the nuclear

spin noise is 0.05 µs [Pla12].
The 𝑇 *

2 is calculated as the dephasing due to the motion of the electron in a magnetic
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field gradient along the spin quantization axis. We use a gradient of 𝑑𝐵𝑧/𝑑𝑧 = 0.35 mT/nm,
which is approaching the upper bound of typical magnetic field gradients in similar systems.
The charge noise is modelled as a perturbation to the applied gate voltage, 𝑑𝑉𝑟𝑚𝑠 ∝ 𝑆

1/2
𝜀 .

This can be considered to be the maximal effect the charge noise can have on the coherence,
as it implies the displacement of the dot 𝑟𝑟𝑚𝑠 is purely along 𝑧. It is assumed that for a small
potential perturbation 𝑑𝑉𝑟𝑚𝑠 the displacement 𝑟𝑟𝑚𝑠 is linear, and that for 𝑑𝑉𝑟𝑚𝑠 = 1 µeV,
𝑟𝑟𝑚𝑠 = 1 pm, a value extracted from potential simulations of a similar device.

We calculate a 𝑇 *
2 of 10.9 µs and 34.5 µs for 𝑁𝑒 = 1, 3 respectively. This is more than

two orders of magnitude longer than the 𝑇 *
2 for natural silicon, and comparable to the

𝑇 *
2 ≈ 20 µs measured in highly purified Si/SiGe [Str20]. This is for the "worst case" and

indicates a lower bound for 𝑇 *
2 , as the charge noise is assumed to induce displacement in the

dot along the quantization axis. It is a reasonable approximation, as the interface where
the charge traps are expected to prominent is located along the z direction. However, in a
real system it is probable that most charge fluctuations will have a non-zero component
orthogonal to the z axis relative to the quantum dot, and therefore the true magnitude of
the z-axis fluctuations will be lower.

It demonstrates that we are not currently charge noise limited in terms of coherence
time, and that it would be beneficial to move to isotopically purified silicon to extend the
𝑇 *

2 as far as possible. The 1/𝑓 dependence of the 𝑇 *
2 seen in [Str20] is a good indication

that we would be charge noise limited after purification. The same holds true at higher
operational temperatures. The measured value of (1310 ± 318) µeV2/Hz at 4 K yields a 𝑇 *

2
of 2.9 µs, which is still 50-60 times longer than the nuclear spin noise limited 𝑇 *

2 .

4.5 Conclusion
The charge noise experienced by a quantum dot in a CMOS silicon nanowire device has been
characterized. We have shown that such devices experience the typical 1/𝑓 charge noise
seen in similar semiconductor devices. Through comparison with the Dutta-Horn model
of charge noise, we conclude that this 1/𝑓 noise spectrum is generated by a non-uniform
distribution of two-level fluctuators in the region of the quantum dot.

We have investigated the influence of the dot position and shape in the channel on
the charge noise. It was demonstrated that operating the quantum dot with a highly
positive applied back gate reduces the charge noise by one order of magnitude. This was
attributed to the movement of the dot in the channel, as indicated by the changes in
relative capacitances, and the expected reduced population of charge traps at the rear
interface.

It was demonstrated that extension of the wavefunction towards the electron reservoirs
yields a rapid increase in charge noise. We attribute this to combined effect of the increased
coupling of the quantum dot to the reservoirs, which contain a high density of implanted
dopants that may act as charge traps, and the lateral extension of the wavefunction bringing
it into the area of the interface with the silicon nitride spacers, which are expected to
also contain a high density of charge traps. We investigated the population of fluctuators
experienced by the quantum dot through temperature spectroscopy. It was found that our
system is in weak agreement with the Dutta-Horn model of charge noise. The temperature
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dependence of 𝑆𝜀 is non-linear, indicating a non-uniform distribution of fluctuators.
Additionally, the population of fluctuators experienced by the quantum dot in a low-noise

configuration was analysed. We found that two fluctuators or groups of fluctuators with
activation energies 1.3 meV and 0.2 meV dominate the noise spectrum in this regime.

We have demonstrated a novel technique for determining the charge noise of the first
electron in a charge-sensed quantum dot. This technique was used to determine that the
charge noise at the single electron level is approximately on the order of the temperature
over a typical measurement time of 1 s. The same technique was used to investigate the
charge noise of subsequent electrons, finding that the magnitude of the noise experienced
by the quantum dot decreases with the number of electrons. The charge noise was also
found to increase approximately linearly with temperature at the single-electron level,
varying from (130 ± 60) µeV2/Hz at 400 mK to (1310 ± 318) µeV2/Hz at 4 K.

Finally, the impact of the charge noise at the single electron level on spin coherence was
analysed. It was found that the 𝑇 *

2 is limited to 10.9 µs for a 𝑡𝑚𝑒𝑎𝑠 = 1 s, 𝑇 = 200 mK at
the first electron due to charge noise. This is more than two orders of magnitude longer
than the nuclear spin limited 𝑇 *

2 , underpinning the benefits of isotopic purification on the
spin coherence time.





CHAPTER 5
Characterisation of spin physics in a single CMOS quantum dot

5.1 Introduction
Research into large-scale quantum processors in silicon is motivated by the promising
aspects of qubits based on electron spins. Electron spins are an obvious candidate for the
implementation of a qubit. An electron in a static magnetic field forms a natural two-level
system which is accessible and controllable via electric fields [Kop06]. Electrical control of
electrons down to the single electron level is routinely possible in nanowire quantum dots
[Cha20; CT20; Cor18], and high-fidelity readout of electron and hole spin states has been
demonstrated in these devices both in DC measurement [Mau16] and with RF reflectometry
[CT20; Urd19; Wes19]. In order to implement a large-scale silicon quantum processor, we
must be able to simply and robustly characterise the spin physics of electrons in nanowire
quantum dots.

Here we present a method of detection and addressable single-shot measurement of a
single electron spin, which could be used to characterise large arrays of silicon CMOS
nanowire quantum dots. We first present the readout method used and fidelity analysis,
and demonstrate the measurement of the spin relaxation time 𝑇1 with a spin state visibility
greater than 90%. The relaxation time is analysed as a function of the magnetic field, and
used to detect the spin-valley relaxation hotspot at (297 ± 5) µeV. We demonstrate control
over the valley splitting via electric field tuning from 297 µeV to 260 µeV, detected via
measurement of the relaxation hotspot. Finally, we measure the magnetic field anisotropy
of the spin-valley mixing, demonstrating suppression of the relaxation mechanism in a field
oriented along the main symmetry axis of the device.

5.2 Spin detection and readout
The first step towards a spin qubit in a silicon CMOS nanowire is enabling fast, high
fidelity spin detection of a single electron. Charge detection of the first electron is relatively
routine, both using an adjacent SET [Yan13], and through gate or source reflectometry
[Urd19]. However, spin detection is more difficult, and requires a spin-to-charge conversion
mechanism. The principle of such mechanisms are detailed in section 2.3.3. Here we employ
an energy-selective readout method to convert spin information to easily-measurable charge
information. We attain a maximum visiblity of 92% in a measurement time of 1.2 ms.

87
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5.2.1 Background
In section 2.3.3 we discuss the various spin-to-charge conversion and spin readout mech-
anisms which can be employed to measure the spin of a quantum dot. For a rapid and
robust characterisation of spin physics in many quantum dots, energy-selective readout is
a strong choice. It is the most commonly employed method of measurement for similar
systems, being favoured over Pauli spin blockade (which requires an ancilla qubit) and
tunnel rate selective readout (requiring a system with a difference in tunnel rate, such as a
singlet-triplet qubit) due to its comparatively light hardware requirements and simplicity.

Energy-selective readout can be used to detect the spin of a single electron quantum
dot capacitively coupled to a nearby SET, and used to probe the spin relaxation and
spin-valley physics of a trapped electron. It was first demonstrated in GaAs/AlGaAs
quantum dots in 2004 [Elz04]. It can also be possible to use such an SET as both detector
and reservoir, as in [Mor10; Pla12]. Here, an electron was loaded onto a dopant via an SET
which was both electrostatically and tunnel coupled to the dopant. It also demonstrates
that the method is not inhibited by using the SET as the reservoir, despite it potentially
having a non-reservoir-like density of states. One advantage demonstrated in [Pla12] is that
the configuration used for energy-selective readout can also be used to deterministically
initialize the dopant in the spin-down state. Rapid and deterministic initialisation, such as
that using this method, is one of the crucial requirements for fast operation of qubits.

Readout of the second electron is also possible using this method. In [Yan13], energy-
selective readout was used to detect the spin state of a quantum dot containing two
electrons. In this case, the selectivity in energy is between the singlet and 𝑇− triplet states.
The method is the same, with a 𝑇− state being detected via a current signal through the
SET. It was also used to detect the spin of the third electron, with the method being
identical to that of the first and the lowest two electrons uninvolved in the readout.

This readout method requires one qubit dot to be coupled to a reservoir (or a quasi-
metallic SET which can act as a reservoir), and capacitively coupled to a charge sensor
[Elz03], which can take the form of a QPC [Top00], SET [Fuj04; Ibb20], or an RF-coupled
quantum dot or reservoir [CT20]. The main requirements for energy-selective readout
are that the Zeeman splitting 𝐸𝑍 = 𝑔𝜇𝐵𝐵 must be greater than the reservoir’s thermal
broadening, and that the tunnel rate from the qubit dot to the reservoir must be less than
the measurement bandwidth [Elz04]. The Zeeman splitting is dependent on the external
magnetic field to 116 µeV/T for electrons in silicon, where 𝑔 = 2. Similarly, the thermal
energy is dependent on the temperature at 86 µeV/K. At a magnetic field of 1 T, we require
a temperature much lower than 1 K to have the requisite energy difference. To maximize
the readout fidelity and avoid stochastic thermal tunnelling events, the energy difference
should be as large as possible. Low temperature and high magnetic field therefore are
necessary for high-fidelity energy-selective readout of single spins.

The principle of energy-selective readout is demonstrated in Fig 5.1. A three-step pulse
sequence is used to read out the dot. First, the dot is emptied of all electrons by lifting the
energy high above the reservoir potential 𝜇𝑟𝑒𝑠. Second, an electron of unknown spin state
is loaded into the dot by plunging it deep below the reservoir potential, so that an electron
with an unknown spin state is loaded. Only one electron can be loaded due to coulomb
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Figure 5.1: Energy selective readout of a single electron spin a) Pulse sequence of the
voltage on the plunger gate controlling the qubit dot potential. b) Detector response schematic.
c) Schematic of the quantum dot and reservoir during the pulse sequence. Depending on the
spin state, the electron undergoes a different sequence. If the electron is spin-down (lower
branch), it remains in the quantum dot, as it does not have the requisite energy to tunnel out.
However, if the electron is spin-up (upper branch), it can tunnel out, leaving the quantum dot
briefly empty. Another electron may then tunnel rapidly back in, restoring the original charge
state of the dot. (Adapted from [Han07].)
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repulsion, and it is loaded after a time based on the tunnel rate 𝑡𝑖𝑛 ≈ 𝛤−
𝑖𝑛1. The electron is

held on the dot for a time 𝑡𝑤𝑎𝑖𝑡. After 𝑡𝑤𝑎𝑖𝑡, the spin state is measured by pulsing it to a
position where the reservoir potential lies between the potential of the two spin states. If
the electron was spin-down, it has potential 𝜇↓ < 𝜇𝑟𝑒𝑠, and cannot tunnel out. However, if
it was spin-up, it has 𝜇↑ > 𝜇𝑟𝑒𝑠, and can tunnel out of the dot to the reservoir, leaving the
quantum dot emptied of electrons. This change in the charge state of the quantum dot
causes a characteristic jump in the charge detector current. A new spin-down electron can
then tunnel back into the dot due to the lifting of the coulomb blockade, returning it to its
original charge state.

The expected two-level readout current through the detector dot 𝐼𝑆𝐷 is depicted in
Fig 5.1. The charge detector, which in this case is the adjacent quantum dot, is aligned
such that an energy level lies within the bias window, allowing transport through the dot,
when the qubit dot is empty of electrons. Therefore, when 𝐼𝑆𝐷 is high, the dot contains
𝑁 = 0 electrons (𝐼𝑁=0). When an electron is loaded onto the qubit dot, 𝐼𝑆𝐷 is reduced to
𝐼𝑁=1 ≈ 0 nA, as the capacitive shift causes the detector potential to shift out of resonance
with the leads. It remains at 𝐼𝑁=1 for a time 𝑡𝑤𝑎𝑖𝑡, as the electron is held on the quantum
dot. Then, when the qubit dot is pulsed to the measurement position, the spin state of the
electron dictates the current readout. If the electron was originally spin-down, the electron
does not have sufficient energy to tunnel out of the dot, and remains loaded, leaving the
current readout to remain 𝐼𝑁=1. However, if the electron was spin-up, then the electron is
able to tunnel out, which it will do in a time 𝑡𝑜𝑢𝑡 (which is typically short, less than 1 ms),
resulting in an increase in current to 𝐼𝑁=0. Then, a new electron may tunnel back into the
spin-down state of the empty qubit dot, resulting in the current returning to 𝐼𝑆𝐷 = 𝐼𝑁=1,
indicating that the dot is filled. The dot can then be pulsed back above the reservoir
potential 𝜇𝑟𝑒𝑠 to empty it in preparation for the next measurement, and the current returns
to 𝐼𝑁=0.

It is important to note that the electron has a non-zero probability to relax from the
excited state (spin-up) to the ground state (spin-down) whilst it is being held in the qubit
dot (during 𝑡𝑤𝑎𝑖𝑡). This relaxation is characterised by a time constant 𝑇1. The relaxation
can be caused by phonon or electronic noise, coupled to the spin state via spin-orbit or
spin-valley interaction, as discussed in section 5.3.2. The longer the electron is held, the
higher the probability it will relax. Thus, in order to obtain the state of the initial electron,
𝑡𝑤𝑎𝑖𝑡 should be as short as possible. It is limited by the tunneling in time, 𝑡𝑖𝑛. However,
𝑡𝑤𝑎𝑖𝑡 can be varied in order to probe the relaxation time of the spin state by measuring the
relative state probabilities, as discussed in section 5.2.4.

The method has some drawbacks. The energy requirement can be significant. The
required temperatures are only achieveable in a dilution refrigerator, presenting an im-
mediate experimental complication. Similarly, the necessary fields are high, upwards of
1 T, requiring a powerful electromagnet. Additionally, the sensitive positioning of the dot
potential with respect to the reservoir means significant charge noise induced switches can
displace the dot from the measurement position [Jun04]. The nature of the reservoir, if it is
atypical, can also be detrimental. The precise positioning of the quantum dot potential can
be disrupted by a non-uniform density of states in the reservoir, preventing energy-selective
readout in certain configurations. This can be especially prevalent when a quasi-metallic
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quantum dot is used as a reservoir, compared to a 2DEG or metallic contact, for example.
Finally, the presence of additional energy states can disrupt the energy configuration.

5.2.2 Locating spin
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Figure 5.2: Elzerman spin readout Detail of the energy-selective readout mechanism used
to measure the spin. a) Stability diagram of the transition of the first electron. The coulomb
peak corresponding to a transition in the detector dot (𝑁𝑑𝑒𝑡 ≈ 40). The prominent break in
the line indicates a potential shift due to an electron entering the adjacent qubit dot. The
occupancy of the qubit dot (𝑁𝑒) is indicated. b) Elzerman spin readout mechanism. An
electron of unknown spin is loaded from the reservoir into the quantum dot. The quantum
dot is then brought to the measurement position, where the reservoir energy (dashed line) is
between the energy of the spin-up state (red) and the spin-down state (blue). If the electron
is in the spin-up state (red), it will rapidly tunnel out of the dot. A new spin-down electron
can then tunnel into the empty dot. This process is very fast and typically takes place within
a few milliseconds of pulsing to the measurement position. If the original electron is in the
spin-down state (blue), it will remain in the dot, as it does not have the requisite energy to
tunnel out. c) The current through the detector dot 𝐼𝑆𝐷 as a function of the measurement time,
for several 𝑉𝑚𝑒𝑎𝑠 values across the transition. Around 100 traces are acquired and averaged
for each 𝑉𝑚𝑒𝑎𝑠. High current (yellow) indicates that the qubit dot is empty, while low current
(blue) indicates that it is full. The white dashed lines indicate the measurement window, in
which a single out-in event is seen, as evidenced by the "tail" of transient current seen most
strongly at 𝑡 = 0.25 ms. The gate voltage scale is relative to the chosen measurement position
at 𝛥𝑉𝐺1 = 0. d) The current trace obtained when the loaded electron is spin-down. No
tunnelling event is seen, and the electron remains loaded onto the dot. e) The trace obtained
for a spin-up electron. A single, short tunnelling event is seen, indicating an electron rapidly
leaving the dot, then a new one tunnelling back in. By setting a current threshold 𝐼𝑡ℎ, we can
distinguish between a spin-up and spin-down measurement. If the current trace passes the
threshold within 𝑡𝑚𝑒𝑎𝑠, we assign it spin-up. If it remains below the threshold, it is spin-down.

To read the charge on the qubit dot, we require a nearby charge sensor which is
capacitively coupled to the quantum dot. In our system, we use a large quantum dot
formed under the opposite gate, 𝐺2, as a charge sensor to probe our qubit dot, which is
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controlled by 𝐺1. It is in the many-electron regime (𝑁𝑠𝑒𝑛𝑠𝑜𝑟 ≈ 45, measured by counting
transitions in the sensor dot), and has a charging energy of 𝐸𝐶 ≈ 1 meV. The stability
diagram of the transition of the first electron is shown in Fig 5.2a. The break in the
horizontal resonance peak corresponds to detection of a charge shift in the nearby qubit
dot, which is strongly coupled to 𝑉𝐺1. No further breaks are seen at lower 𝑉𝐺1, so we can
be sure that this is the first electron in the qubit dot.

The qubit dot is tunnel coupled to an electron reservoir, indicated by the addition of
electrons. The tunnel rate into and out of the dot is measurable via a two-level trace at
the degeneracy point (where stochastic in-out events are seen on the stability diagram).
Such a two-level trace can be digitized, and the number of times the electron tunnels in
a given time calculated to find the tunnel rate, 𝛤1𝑒. The tunnel rate was measured here
to be in the regime of 𝛤1𝑒 ≈ 100 kHz. This was chosen to be faster than the minimum
integration time for a single measurement point 𝑡𝑖𝑛𝑡 = 30 µs, but slow enough that a single
in-out tunnelling event within a single integration point would register as a signal beyond
our noise level.

The tunnel rate 𝛤1𝑒 is highly tunable in this system by varying the number of electrons
(and therefore size) of the sensor dot. For this reason, it is believed that the sensor dot is
acting as the electron reservoir for the qubit dot. Electrons are therefore tunnelling from
the sensor dot into the qubit dot. This can complicate the picture, as the energy states
in the sensor dot now become relevant when considering the energy diagram in 5.2b. In
particular, if an electron has to tunnel from the reservoir to the sensor dot, then from the
sensor dot to the qubit dot, then it is possible to imagine that spin blockade could occur,
whereby the available energy states in the sensor dot only allow one species of electron
to be transmitted. If this were the case, then spin measurement would be prevented at
certain 𝑁𝑠𝑒𝑛𝑠𝑜𝑟. For this dot, however, we were able to perform spin measurement for
all transitions up to 𝑁𝑠𝑒𝑛𝑠𝑜𝑟 ± 2, with only the tunnel rate changing significantly. It is
likely, therefore, that the sensor dot is in a configuration where many degenerate states are
available, such that spin blockade does not occur.

To obtain spin readout, we have to employ a spin-to-charge conversion technique. Here,
we use the method outlined in [Elz04], often referred to as "Elzerman readout" or "energy-
selective readout", with the basic theory addressed in 2.3.3. A schematic of the readout
pulse sequence is shown in Fig 5.2b. Before the sequence, the potential of the qubit dot
is raised far above the Fermi energy (into the "empty" region), and held there for a few
fractions of a millisecond to ensure that the dot is fully emptied of the last electron. The
dot is then plunged briefly below the Fermi energy into the "load" region to load an electron
with an unknown spin onto the quantum dot. This simulates any processes that take place
before the measurement which may rotate the electron spin from the ground state into
an unknown state. There is no significant difference in the tunnel rate for different spin
states, so the population of spins should be around 50/50. We wait a length of time 𝑡𝑤𝑎𝑖𝑡

in the load region, before pulsing to the measurement region. The measurement region
is chosen by sweeping the measurement point across the transition to determine where
the chemical potential of the dot 𝑉𝑚𝑒𝑎𝑠 is well-positioned such that the Fermi energy lies
between the two spin states. The pulse sequence is plotted for varying 𝑉𝑚𝑒𝑎𝑠 in Fig 5.2c,
with 𝑡𝑤𝑎𝑖𝑡 ≈ 0.5 ms.
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At 𝑡𝑚𝑒𝑎𝑠 = 0 ms, the dot is empty. It is then initialized by pulsing to the region indicated
by 𝑁𝑒 = 1 in the stability diagram (a). By 𝑡𝑚𝑒𝑎𝑠 = 0.5 ms, the electron is loaded, as
indicated by the low detector current. The qubit dot is then pulsed to a point across the
transition indicated by 𝛥𝑉𝐺1. When 𝛥𝑉𝐺1 is low (pulsing far into the "empty" region),
the electron rapidly tunnels out of the dot no matter what the original spin state is, and
the dot remains emptied, as indicated by the high detector current. Similarly, when 𝛥𝑉𝐺1
is high (pulsed far into the "load" region), both spin states lie deep below the Fermi energy,
and no matter the spin state the electron remains captured, indicated by low detector
current. There are two regions where this is not the case: firstly, the "thermal" region
between 𝛥𝑉𝐺1 = −1 → −0.3 mV, where electrons can tunnel into and out of the dot due to
thermally-activated tunnel events. Secondly, around 𝛥𝑉𝐺1 = 0 mV, there is a region where
an initial increase in current is seen (indicating that the dot has been emptied), then it is
re-filled and remains full. This signature cannot be due to stochastic thermally-activated
tunnelling such as that seen between 𝛥𝑉𝐺1 = −1 → −0.3 mV, as the dot remains in
the 𝑁𝑒 = 1 state and does not fluctuate. It is indicative of the single tunnelling event
characteristic of a spin-up electron tunnelling out, and a spin-down electron tunnelling
back in. This voltage range is considered the "Elzerman window", as it is the region
where energy-selective tunnelling is possible. As such, 𝑉𝑚𝑒𝑎𝑠 is chosen to lie within this
measurement region.

The temperature was lowered to 120 mK after spin was not detected at 400 mK. Mea-
surements are made at high magnetic field, between 1.5 T and 3 T. The current-time
trace at 𝑉𝑚𝑒𝑎𝑠 is plotted in Fig 5.2d & e. Two representative time traces are seen for two
different cases. The first trace, in which no change in the current through the sensor is seen,
indicates that the electron remains on the qubit dot for the duration of the measurement
time. This is indicative of the loaded electron being spin-down, as this state remains
below the Fermi energy and cannot normally tunnel out of the dot. The second trace
has a characteristic current jump, representing an electron tunnelling out of the dot. The
increase to the higher current level indicates that the qubit dot has been emptied and is in
the charge state. Because there is a state below the Fermi energy, a new electron rapidly
tunnels back into the qubit dot, returning it to the previous current level, indicating it
is filled. This is the signature of a spin-up electron tunnelling out of the dot, and then a
new spin-down electron tunnelling in. We define a current threshold 𝐼𝑡ℎ between the two
current levels. If the current crosses the threshold within the integration time 𝑡𝑚𝑒𝑎𝑠, we
define the trace to be a measurement of a spin-up electron. If the current does not cross
the threshold, we attribute it to the measurement of a spin-down electron. This method
enables readout of the spin state of a single electron with a single shot measurement. It is
a destructive method of measurement, in that the electron is lost if it is spin-up. However,
it allows us to probe the spin dynamics of the qubit dot.

5.2.3 Measurement fidelity
In order to maximise the visibility of the spin state, we turn to analysis of the readout
traces. Once the detection window has been found, we can analyze the fidelity to optimize
our quantum dot configuration.

The fidelity of this measurement is characterised by three figures: 𝐹↑, 𝐹↓, and 𝑉 . 𝐹↑
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is the fidelity of a spin-up measurement. This is given by 1 − 𝑃 (↓ | ↑), where 𝑃 (↓ | ↑) is
the probability to measure a spin-down electron when its true state is actually spin-up.
Similarly, 𝐹↓ is the fidelity of a spin-down measurement, given by 1 − 𝑃 (↑ | ↓). 𝑉 is a
parameter called the "visibility", and is defined as 𝑉 = 𝐹↑𝐹↓ (in some cases, it is also defined
(𝐹↑ + 𝐹↓)/2, or 1 − (𝑃 (↑ | ↓) + 𝑃 (↓ | ↑))/2, which are similar ways to quantify the average
readout fidelity of a random spin state). To obtain the maximum measurement visibility, we
aim to maximize 𝐹↑ and 𝐹↓ (equivalently, minimize 𝑃 (↓ | ↑) and 𝑃 (↑ | ↓)). 𝑃 (↓ | ↑) is the
probability to measure a spin-down electron when it was originally spin-up, and therefore
corresponds to events in which the spin has relaxed. Thus, 𝑃 (↓ | ↑) can be minimized
through faster measurement (shorter 𝑡𝑤𝑎𝑖𝑡). 𝑃 (↑ | ↓) is the probability to see a spin-up
measurement when the electron is spin-down. This corresponds to thermally-activated
tunnelling or excitation of the spin state, and can be minimized by lowering the electron
temperature.

Here, we assess the fidelity of our readout method with regards to distinguishing the
two states from a current-time trace, in a typical configuration used for 𝑇1 measurement.
Thermal excitation can give false positive measurements, and these are determined through
measurement of the spin-up population at long wait time. Additionally, the initialization
fidelity is measured from the maximum spin-up population at short wait time. We also
measure the readout fidelity at very short 𝑡𝑤𝑎𝑖𝑡 as a function of the loading position across
the transition.

State visibility
Around 10,000 measurements of the spin state are taken at short 𝑡𝑤𝑎𝑖𝑡. The spin has
minimal time to relax, so we expect to obtain approximately 50% population of either
spin state. Additionally, the tunnel-in time is longer than the pulse time, so the transition
is not adiabatic with respect to the tunnel-in time. To analyse the fidelity of the spin,
we create a cumulative histogram of the maximum current level in each trace. To allow
analysis of the tunnelling out and in time for spin-down electrons, the integration time for
this measurement is 1.2 ms.

A representative histogram is plotted in Fig 5.3a. The two main peaks correspond to
the distributions of the two current levels 𝐼0 and 𝐼𝑚𝑎𝑥. Each peak takes a gaussian shape
and is described by equation 5.1.

𝑓𝑖𝑡 = 𝐴𝑒−𝐵(𝐼−𝐼↓)2 + 𝐶𝑒
− 𝑡𝑚

𝑇1
−𝐵(𝐼−𝐼↑)2

+ 𝑓𝑑𝑒𝑐𝑎𝑦(𝐼) (5.1)

The pure gaussian fit to the histogram consists of two gaussian curves which describe the
noise-broadened current distribution about 𝐼↓ and 𝐼↑. These take the form 𝐴𝑒−𝐵(𝐼−𝐼↓)2 and
𝐶𝑒

− 𝑡𝑚
𝑇1

−𝐵(𝐼−𝐼↑)2
respectively, with 𝐴,𝐵,𝐶 as fit parameters. 𝑡𝑚 is the integration time of a

single measurement point (𝑡𝑚 ≈ 30 µs in this case). 𝑇1 is the spin-lattice relaxation time,
obtained from measurements detailed later in this chapter. 𝐼↑ and 𝐼↓ are the current values
about which the two gaussians are centered for the spin-up and spin-down populations
respectively. The integral of the overlap between these two gaussians gives 1 − 𝑉 , the error
in the readout visibility. This error is the chance to obtain a false measurement, detecting
spin-up when the electron is spin-down, or vice versa.
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Figure 5.3: Fidelity analysis Analysis of the single state fidelity and state visibility. a)
Binned maximum current data from around 10,000 traces. The blue and red traces are
gaussians describing the noise-broadened spin-down and spin-up distributions respectively.
Black dashed line is the total distribution with an additional 𝑓𝑑𝑒𝑐𝑎𝑦(𝐼) to account for the loss
of information during one measurement point. b) Fidelity plots for single state fidelity and
state visibility. The blue and orange curves are the single state fidelities for spin-down and
spin-up measurements respectively as a function of the placement of the threshold current,
𝐼𝑡ℎ. The black dashed curve is the state visibility, defined as 𝑉 = 𝐹↑𝐹↓. c) Histogram of
tunnel-out times 𝑡𝑜𝑢𝑡 (blue) and tunnel-in times 𝑡𝑖𝑛 (orange). d) State visibility as a function
of the measurement time 𝑡𝑚𝑒𝑎𝑠.

In the case of two pure gaussians fit to our data, we obtain a state visibility of upwards
of 99%. This represents the charge fidelity - that is, the visibility of the two charge states.
However, it does not capture the spin physics, and does not fully fit the obtained histogram.

Whilst the current trace is typically a two-level trace, there is a finite probability to
obtain a maximum current value between 𝐼↓ and 𝐼↑ which cannot be simply described by
the noise broadening of the gaussian current distributions. This occurs when the spin-up
electron tunnels out and a new electron tunnels back in during a single measurement point,
leading to a lower integrated current being recorded. The tunneling times 𝑇𝑜𝑢𝑡 and 𝑇𝑖𝑛 are
plotted in Fig 5.3c. The peak 𝑇𝑜𝑢𝑡 and 𝑇𝑖𝑛 are 610 µs and 350 µs respectively. However, it
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is notable that the 𝑇𝑖𝑛 curve does not start at 0 count, supporting that there is a finite
(signifiicant) probability for the electron to tunnel back in faster than the measurement
interval.

𝑓𝑑𝑒𝑐𝑎𝑦(𝐼) =
ˆ 𝐼↑

𝐼↓

𝐴
𝑡𝑚𝑃↑

𝑇1(𝐼↑ − 𝐼↓)𝑒
− 𝑡𝑚

𝑇1(𝐼↑−𝐼↓) (𝐼𝑑−𝐼↓)2

𝑒−𝐵(𝐼−𝐼𝑑)2
𝑑𝐼𝑑 (5.2)

To account for this, we introduce an additional term 𝑓𝑑𝑒𝑐𝑎𝑦(𝐼), Eqn 5.2. 𝐴,𝐵,𝐶 are
the gaussian fit parameters. 𝑃↑ is the population fraction which is measured to be spin-
up (approximately 0.5). The full fit is plotted in Fig 5.3a. We can then analyse the
measurement fidelity. We define the state fidelity to be 𝐹↓(𝐼𝑡ℎ) = 1 −

´ 𝐼𝑡ℎ

0 𝑓↓(𝐼)𝑑𝐼 for
the spin-down, and 𝐹↑(𝐼𝑡ℎ) = 1 −

´ 𝐼𝑚𝑎𝑥

𝐼𝑡ℎ
𝑓↑(𝐼)𝑑𝐼 for the spin-up electrons, where 𝑓↓(𝐼) is

𝐴𝑒−𝐵(𝐼−𝐼↓), and 𝑓↑(𝐼) is 𝐶𝑒−𝐵(𝐼−𝐼↑) + 𝑓𝑑𝑒𝑐𝑎𝑦(𝐼). The fidelity is plotted in Fig 5.3b as a
function of 𝐼𝑡ℎ, the threshold current used to distinguish between spin-up and spin-down
states. We define the visibility to be 𝑉 = 𝐹↑𝐹↓. It is plotted in Fig 5.3b as the dashed
line. The optimum 𝐼𝑡ℎ is taken at the maximum of the visibility plot to obtain the best
fidelity for both states. We obtain measurement fidelities of 𝐹↓ = 99% and 𝐹↑ = 93%,
giving a maximum visibility of 𝑉 = 92%. This method of obtaining the optimum 𝐼𝑡ℎ is
used when processing data to ensure maximum visibility in each measurement. The state
visibility is plotted as a function of the measurement time 𝑡𝑚𝑒𝑎𝑠 in Fig 5.3d. The visibility
is initially low due to the noise broadening of the gaussian functions for each state, but
this is reduced and the visibility improved with a longer integration time. At very long
𝑡𝑚𝑒𝑎𝑠, the visibility will be reduced again through spin-lattice relaxation and the increased
probability to observe stochastic, uncorrelated charge transitions.

In [Mor10], a similar readout fidelity of more than 90% was achieved. They obtained
spin-down fidelity 99% and spin-up fidelity 93%, giving a state visiblity of 92%, which
is closely comparable with the fidelities obtained here. Whilst a higher fidelity would be
preferable for an ideal qubit in large-scale error correction protocols due to the additional
physical qubit overhead required for low fidelities, this has been proved to be more than
sufficient for characterisation of spin physics.

Initialization error

When the quantum dot potential is plunged below the Fermi potential, the tunnelling
probability for spin-up and spin-down electrons is expected to be 50% for each, as both
energy levels lie deep below the Fermi energy. However, a non-continuous density of states
in the reservoir (which is, in this case, a quasi-metallic SET), can alter this picture. The
probability to load an electron of state spin-up can be measured by pulsing to the load
position 𝑉𝑙𝑜𝑎𝑑 for a very short 𝑡𝑤𝑎𝑖𝑡. This allows an electron enough time to load into the
dot, but does not allow time for the electron to relax. The spin-up population of repeated
measurements at very short 𝑡𝑤𝑎𝑖𝑡 gives the initialization error. For the configuration
discussed in the state fidelity analysis, the initialization error is 13 ± 2%, from a maximum
measured spin-up population of 37 ± 2%.
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Thermally activated tunnelling
Thermally-activated charge transitions can be detected as false spin-up signatures. These
are not distinguishable in the short fidelity analysis, but by analysing the spin-up population
at long 𝑡𝑤𝑎𝑖𝑡 the false readings can be identified. From 𝑇1 measurements (detailed in the
next section) we can be confident that at long 𝑡𝑤𝑎𝑖𝑡, 𝑃↑ is less than 1%, so any current values
beyond the spin-down distribution must be due to stochastic tunnelling events. Depending
on the position within the measurement window (closer to the transition increases the
likelihood of seeing stochastic charge transitions), we see a minimum spin-up population
of 15 ± 3% at 𝑡𝑚𝑒𝑎𝑠 ≈ 1.2 ms. This suggests that 15 ± 3% of detected spin-up electrons
are due to thermal transitions, limiting our spin-up fidelity and the state visibility. It is
important to note that this is highly dependent on both the measurement position and the
measurement time.

Readout fidelity

Table 5.1: Readout and initialization errors

Charge visibility 99%

Spin visibility 92%

Thermally activated errors 15%

Total readout fidelity 77%

Initialization error 13%

A summary of the relevant fidelities is given in Table 5.1. The charge visibility reflects
the maximum possible visiblity in this configuration, and is determined by the capacitive
coupling of the charge detector to the quantum dot relative to the temperature and the
noise induced in the signal by the amplification chain. The spin visibility and errors due to
thermal activation of tunnelling events limit the total readout fidelity to around 77%. An
additional initialization error of 13% is present, likely due to the non-ideal reservoir used
to load the electrons. Fast spin relaxation could also play a part in the initialization error,
but the measured 𝑇1 indicates that the spin lifetime should be long compared to the time
required for the electron to tunnel out (𝑡𝑜𝑢𝑡: Fig 5.3c), so the impact of this should be
minor. This fidelity is configuration-specific, and is only a typical value, varying depending
on the loading and measurement voltages, as well as the magnetic field, the occupancy of
the charge sensor dot, and the integration time.

Loading spectrum
The energy spectrum of the quantum dot can be probed by analyzing the probability to
load a spin-up electron as a function of the detuning across the transition. The probability
to load a spin-up electron can be measured through repeated single-shot measurements
to determine the population at very short 𝑡𝑤𝑎𝑖𝑡, such that the spin does not have time to
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Figure 5.4: Loading Spectrum a) The spin-up population at short 𝑡𝑤𝑎𝑖𝑡 is measured as a
function of the qubit gate voltage at 𝑉𝑙𝑜𝑎𝑑, converted to energy via the lever arm 𝛼 = 0.27 eV/V.
The magnetic field for this measurement is 2.3 T, with the corresponding Zeeman energy
𝐸𝑍 = 0.27 meV labelled. The transition is located at 𝛥𝜀 = 0 meV, with the measurement
window indicated between the dashed lines. Values of qubit potential below the transition
𝛥𝜀 = 0 meV are not included, as the potential is above the Fermi sea at this point and almost
zero electrons are able to tunnel onto the dot. 𝑃↑ = 50% is indicated by the black dotted line.
The population has been renormalized based on the initialization and readout errors. b) A
schematic of an energy level structure in the quantum dot that may yield the population map
in a). The dot contains ground and excited states which have spin states separated by 𝐸𝑍 . In
this case, the spin-up of the ground state and the spin-down of the first excited state are likely
close in energy. The reservoir as positioned with respect to the quantum dot is labelled with
𝜀1,2,3,4 corresponding to the detuning positions marked in a). At 𝜀1, there is no spin-up state
available in the quantum dot, so the population of spin-up electrons is nominally zero. At
𝜀2, the ground spin-up state and the excited spin-down states (which are close in energy) are
both below the reservoir potential. The probability to load a spin-up electron is therefore 33%,
so the spin-up population increases. At 𝜀3, the excited spin-up state is below the reservoir
potential, and the probability to load a spin-up electron is maximum - nominally 50%. At 𝜀4,
a further decrease in the spin-up population below the maximum may indicate the presence of
a further spin-down state entering the window, again reducing the probability to load spin-up.

relax. The spin-up population at 𝑡𝑤𝑎𝑖𝑡 = 100 µs, for a measurement time 𝑡𝑚𝑒𝑎𝑠 = 1.2 ms,
is plotted in Fig 5.4a for varying loading position 𝑉𝑙𝑜𝑎𝑑. It has been renormalized based
on the readout and initialization error. As 𝛥𝜀 increases, the potential of the qubit dot is
plunged deeper below the Fermi sea. Below 𝛥𝜀 = 0 meV, the qubit is above the Fermi sea,
and no electrons can tunnel onto the dot.

At 0 − 0.25 meV (𝜀1), the dot enters the measurement region, where the population of
spin-up approaches zero. This is due to the only available energy level below the Fermi
energy being a spin-down state, so spin-up tunnelling is prevented.

We then seen an increase to a population of around 40% from 0.25 − 0.6 meV (𝜀2),
indicated in Fig 5.4 in red. In this region, the Zeeman energy 𝐸𝑍 = 0.27 meV (𝐵𝑒𝑥𝑡 = 2.3 T
has been exceeded, meaning that both spin-up and spin-down states are available. However,
we are close to the excited state energy, and within a few µeV, the spin-down state of the
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next excited state becomes available; see Fig 5.4b. This means we expect to see around
33% spin-up, assuming equal probability to tunnel into any of the three available states.
The spin-up population is higher than expected, possibly indicating preferential loading of
spin-up due to the non-ideal reservoir.

After another 0.27 meV, we overcome the spin splitting again, and four states are
available: the spin-up and spin-down states of both of the lowest valleys. We therefore see
an increase towards the maximum spin-up population.

Further investigation would be interesting regarding the slight secondary minimum to
around 40%, seen at 𝛥𝜀 ≈ 2.2 meV. Two possible explanations for this could arise in our
system. Firstly, it may indicate the presence of the next orbital or valley state entering
the picture (bringing the expected spin-up probability to 40%). Secondly, it could result
from the non-continuous density of states in the quantum dot acting as the reservoir. This
would be indicative of spin-dependent tunnelling at certain qubit potentials, resulting from
an inhomogeneous density of states.

Conclusion
Due to the rapid electron tunnelling back in to the dot, the fidelity for this measurement
method is degraded in comparison to other similar methods (although is comparable with
other similar measurements using the same method [Mor10]). Additionally, the tunnelling
out of the spin-up state is fairly slow, which increases the required 𝑡𝑚𝑒𝑎𝑠 and reduces
the readout fidelity due to thermal transitions. We find fairly high thermally-activated
(15 ± 4%) and initialization (13 ± 2%) errors in our region of measurement. These may
be a consequence of stochastic tunnelling, as well as a non-reservoir-like density of states
in the quantum dot which acts as the reservoir. It is likely that the energetic picture of
our quantum dot system is different to the ideal case. In order to rectify this, it may be
possible to operate the sensor dot at a larger scale, i.e. with more electrons. This also
significantly changes the dimensions of the sensor dot, and modifies the tunnel coupling to
the qubit dot by orders of magnitude. It would therefore require improved control over the
tunnel coupling, therefore, to be able to tune the qubit dot into a regime where spin is
measurable. This may be possible through manipulation of the top gate and back gate.
There is a wide parameter space to explore, and fully tuning a device to the ideal regime
could be a long process. For characterisation of the device, however, the fidelity obtained
here is sufficient; it is significantly higher than 50%, meaning we are not prevented from
probing spin physics. The parameter which limits any spin readout and manipulation
timescale is the spin-lattice relaxation time 𝑇1. In the next section we probe the 𝑇1 of the
first electron spins in the qubit dot.

5.2.4 T1 measurement
The relaxation time of the spin 𝑇1 can be measured through repeated spin measurements
of a quantum dot after allowing some fraction of the spins to relax to their ground state.
We initialize the dot with an electron of unknown spin state by pulsing deep into the load
region (𝑉𝑙𝑜𝑎𝑑) where the maximum spin-up population is obtained (see Fig 5.4). After a
short time 𝑡𝑤𝑎𝑖𝑡, we then pulse into the measurement position 𝑉𝑚𝑒𝑎𝑠 and detect the spin
state. This may be repeated many times to determine the population of spin-up electrons
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Figure 5.5: 𝑇1 measurement sequence a) A pulse sequence schematic demonstrating the
𝑇1 measurement method. The dot is initially emptied of all electrons by raising its potential
above the Fermi energy for a long time (≈ 5 ms). It is then pulsed below the Fermi energy to
load an electron. It remains in this state for a duration 𝑡𝑤𝑎𝑖𝑡. The dot is then moved into the
measurement region, where a spin-up electron can escape but a spin-down electron cannot. The
maximum current recorded during 𝑡𝑚𝑒𝑎𝑠 is used to determine the parity of the spin state. The
dot is then re-emptied of the remaining electron to begin the next measurement. b) Sample
two-level traces from a typical 𝑇1 measurement. The maximum current is compared to 𝐼𝑡ℎ,
which is dynamically computed for each set of data. This is repeated approximately 1,000
times for each 𝑡𝑤𝑎𝑖𝑡 to extract 𝑃↑, the spin-up population. c) 𝑃↑ as a function of 𝑡𝑤𝑎𝑖𝑡. The
decay function is fitted with 𝑃↑ = 𝑃↑(0)𝑒−𝑡𝑤𝑎𝑖𝑡/𝑇1 .

measured in the quantum dot. We measure the spin-up population 𝑃↑ as a function of the
waiting time 𝑡𝑤𝑎𝑖𝑡. The spin-up state is the excited state of the system, and therefore 𝑃↑
will decay with increased wait time as the probability for a spin-up electron to relax to the
ground state is increased.

A typical 𝑇1 measurement is plotted in Fig 5.5. At 𝑡𝑤𝑎𝑖𝑡 = 0 ms, 𝑃↑(0) approaches 50%.
It is in reality reduced to 35 − 40% by initialization errors, consistent with the maximum
population seen in Fig 5.4. 𝑃↑ decays to a minimum of ≈ 11% over a few tens of ms. This
minimum value of 𝑃↑ is again consistent with Fig 5.4 and results from false detection
events caused by stochastic charge transitions. The decay of 𝑃↑ with 𝑡𝑤𝑎𝑖𝑡 can be described
by an exponential, 𝑃↑(𝑡𝑤𝑎𝑖𝑡) = 𝑃↑(0)exp(−𝑡𝑤𝑎𝑖𝑡/𝑇1). The maximum 𝑇1 measured for this
device was (80 ± 5) ms at 1.5 T. Longer 𝑇1 measurement was not possible due to thermal
broadening of the transition preventing reliable spin measurement below 1.5 T.
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Figure 5.6: Valley states in silicon a) The lifting of valley state degeneracy through
confinement. At low confinement (bulk silicon), the six valley states are degenerate in energy.
However, close to an interface, the degeneracy is partly lifted, giving two low-energy states (±𝑧)
and four high-energy states (±𝑥,𝑦). Further in-plane confinement, such as that experienced
by a 2D quantum dot, further lifts the degeneracy and separates the six valley states. The
states of interest are +𝑧 and −𝑧, the two lowest energy states, which are separated by an
energy 𝐸𝑉 𝑆 . b) Spin and orbital state filling of the lowest two valleys. The shell and orbital
quantum numbers 𝑛 and 𝑙 are indicated, with the valley states ±𝑧 labelled + and −. In typical
operation, we generally only consider the lowest four states, which are in the same orbital but
separated by valley and spin energy. Adapted from [Yan13].

5.3 Spin-valley interactions
5.3.1 Valley states in silicon
The presence of energy-degenerate valley states in bulk silicon can inhibit the creation of a
well-isolated two-level system[Pen20]. In bulk silicon, there are six degenerate valley states
which prevent formation of a two-level spin system. These arise due to the periodicity of
the silicon lattice structure. The free-space energy of an electron in 𝑘 space can be written
𝐸(k) = ~2𝑘2

2𝑚 . In the presence of degenerate valley states, this can be separated as follows:

𝐸(k) = 𝐸0 + ~2

2

[︃
𝑘2

𝑥

𝑚𝑥
+

𝑘2
𝑦

𝑚𝑦
+ 𝑘2

𝑧

𝑚𝑧

]︃
(5.3)

Where 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are not necessarily equal. These are the effective electron mass
in the associated direction, and depend on the curvature of the conduction band energy.
In bulk silicon, the effective masses are the same due to the crystal isotropy, leading to
the six-fold valley degeneracy (±𝑥, ±𝑦 and ±𝑧 valleys) as depicted in Fig 5.6. However,
interfaces introduce discontinuities to the conduction band, which can alter the effective
electron masses and lift the valley degeneracy. Due to fabrication processes using stacking
materials, such interfaces tend to be along the 𝑧 axis, the growth axis of the material.
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In the two main types of 𝑧-confined quantum dot, Si/SiO2 and Si/SiGe, have a typical
energy difference between the remaining ground states (±𝑧) and the lifted 𝑥 and 𝑦 states
of 20 meV and 200 meV respectively [Pen20]. This energy scale is much larger than that
typically probed in quantum dots, especially at the single-electron level, being higher than
the orbital energy 𝐸𝑜𝑟𝑏 and the charging energy. However, the energy splitting of the two
remaining ±𝑧 valleys can be much less than the charging energy, and approach the Zeeman
energy. This is denoted 𝐸𝑉 𝑆 and it becomes highly relevant for spin physics in confined
quantum dots. In general, where 𝐸𝑉 𝑆 << 𝐸𝑜𝑟𝑏, the first excited state is the next valley
state. In other materials or types of quantum dot, 𝐸𝑜𝑟𝑏 << 𝐸𝑉 𝑆 , and the first excited
state is instead an orbital state.

We will denote the lowest energy valleys 𝑣− and 𝑣+ separated by the valley splitting
energy 𝐸𝑉 𝑆 . This splitting 𝐸𝑉 𝑆 can be very variable between devices. It is determined
by a combination of factors including interface disorder and atomic-scale defects, such as
local strain or potential minima. Typical values of 𝐸𝑉 𝑆 range between tens of µeV to a
few meV. In Si/SiO2, it is typically around 1 meV, and about 0.1 meV for Si/SiGe [Pen20].
As will be demonstrated later in this chapter, for our particular quantum dots we find that
the 𝐸𝑉 𝑆 is on the order of the Zeeman energy. The variability of this 𝐸𝑉 𝑆 could impede
the development of spin-based qubits in silicon, so it is important to understand its effects.
It can then be possible to control 𝐸𝑉 𝑆 , and even exploit it for valley-based spin qubits
[Cul12].

Control of 𝐸𝑉 𝑆 using an electrostatic gate potential was demonstrated in gate-defined
silicon quantum dots [Yan13]. Electric field control over a wide range of 0.3 to 0.8 meV valley
splitting was demonstrated using a local plunger gate, biased to potentials between 1.4
and 2.1 V This range of demonstrated 𝐸𝑉 𝑆 is impressive, but required use of two separate
techniques for different magnetic field ranges. Nevertheless, the agreement between the
two is excellent, with the plunger gate providing strong control over 𝐸𝑉 𝑆 . Note that the
plunger gate is also used to control the on-site potential of the quantum dot. This implies
that the 𝐸𝑉 𝑆 can change significantly depending on the potential required to reach the
first electron. This could therefore be a good measure of subtle variability between devices.

5.3.2 Relaxation mechanisms
Electron spins are two-level systems that preferentially couple to the magnetic field. They
have a magnetic moment, 𝜇𝐵 = 5.8 µeV/T, which is relatively weak [Han07] meaning
magnetic field fluctuations have only a limited effect on the spin. Electric field fluctuations
have to be coupled to the spin through a spin-charge interaction. The main mediator
in silicon quantum dots is the spin-orbit interaction. The spin orbit-interaction is the
interaction between the spin state of an electron and its motion within the orbital potential
of its host atom (or, equivalently, quantum dot). In bulk silicon, the spin-orbit interaction
is relatively weak. However, it can be significantly enhanced via interaction with the valley
states. This gives rise to a second interaction channel, the spin-valley interaction, which
can also couple the electric field and the spin state.

Through these two channels, electric field fluctuations can cause the spin to relax to the
ground state. The rate at which the spin relaxes, 𝑇 −1

1 , sets an upper bound on the spin
coherence time. Silicon has been shown to have long 𝑇1 times, with 𝑇1 values approaching
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an hour reported in phosphorous donors [Tyr12], and a few seconds in electrons in quantum
dots [Sim11].

𝑇 −1
1 = 𝛤𝐽,𝑆𝑉 + 𝛤𝑝ℎ,𝑆𝑉 + 𝛤𝐽,𝑆𝑂 + 𝛤𝑝ℎ,𝑆𝑂 + 𝛤𝑐𝑜𝑛𝑠𝑡 (5.4)

This relaxation is mediated in a strongly confined (> 1 meV) silicon quantum dot by
four main relaxation mechanisms (see Eqn 5.4) [Zha20]. Each of these corresponds to a
source of noise felt by the electron spin through two different coupling mechanisms. The
main sources of noise are Johnson noise (J) and phonon noise (ph). 1/𝑓 charge noise also
plays a role, but it has a relatively minor effect on the relaxation. These noise sources
are coupled to the spin system via the two main channels which couple the spin with the
electric field [Hua14b]: the spin-orbit coupling (SO), which arises from the motion of the
electron within its orbital, and the spin-valley coupling (SV), arising from the mixing of
spin and valley states.

The source of the noise is the most dominant contributor to its dependence on the
magnetic field as the sources, phonon and Johnson noise, have different spectral densities.
The phonon spectral density has an approximately 𝑓5 dependence, whilst Johnson noise is
approximately constant with frequency.

Spin relaxation due to phonon noise typically dominates at high magnetic field due to
the higher density of phonons at higher frequency (where 𝐸𝑍 is large). The dependence
of the relaxation due to phonon noise through the spin-valley and spin-orbit interactions
(𝛤𝑝ℎ,𝑆𝑉 and 𝛤𝑝ℎ,𝑆𝑂) on the applied magnetic field can be determined through correlation
functions as detailed in [Hua14a]. It is found that 𝛤𝑝ℎ,𝑆𝑉 has a 𝐵5 dependence, whilst
𝛤𝑝ℎ,𝑆𝑂 has a 𝐵7 dependence. The total spin relaxation due to phonon noise is given by
𝛤𝑝ℎ = 𝛤𝑝ℎ,𝑆𝑉 + 𝛤𝑝ℎ,𝑆𝑂. We can therefore expect that at high magnetic field the spin
relaxation is dominated by spin-orbit mediated phonon noise. However, at very high field,
a "bottleneck" effect begins to cause the dependence to deviate from the dominant 𝐵7

curve. This bottleneck results from an effective reduction in the coupling interaction for
high frequency phonons, and comes into play as the field approaches 8 − 10 T.

Johnson noise is the other main source of spin relaxation. Contrary to phonon noise,
Johnson noise has a spectral density which (in an ideal resistor) is flat across all frequencies.
It is found that the Johnson noise through the spin-valley interaction, 𝛤𝐽,𝑆𝑉 , is approxi-
mately linear with magnetic field when the zeeman energy is lower than the valley splitting:
𝐸𝑍 << 𝐸𝑉 𝑆 [Hua14a]. However, the spin-orbit-coupled Johnson noise 𝛤𝐽,𝑆𝑂 demonstrates
a 𝐵3 dependence. At very low field, the spin-valley mediated relaxation dominates the
Johnson noise contribution. However once the condition 𝐸𝑍 >> 𝐸𝑉 𝑆 is met, i.e. at high
magnetic fields beyond the valley energy, the dependence of 𝛤𝐽,𝑆𝑉 becomes proportional to
𝐵−1; that is, the relaxation rate via the spin-valley coupling decreases at higher field. In
this regime, the spin-orbit coupling will dominate the Johnson contribution.

5.3.3 Valley relaxation hotspot
In order to explore the different contributions to the relaxation mechanism, we measure the
𝑇1 as a function of the static magnetic field 𝐵𝑍 . The results are plotted in Fig 5.7a. The fit
is calculated from a combination of contributions to the relaxation mechanisms, described
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Figure 5.7: Spin-valley hotspot a)Variation of 𝑇1 with magnetic field 𝐵𝑍 in the range 1.5 T
to 3.2 T. The black dotted line is proportional to 𝐵5. Green and red dashed lines demonstrate
the spin-orbit and spin-valley contributions respectively. The spin-orbit contribution 𝛤𝑆𝑂 =
𝛤𝑝ℎ,𝑆𝑂 + 𝛤𝐽,𝑆𝑂 follows an approximately 𝐵5 trend. The spin-valley contribution 𝛤𝑆𝑉 =
𝛤𝑝ℎ,𝑆𝑉 + 𝛤𝐽,𝑆𝑉 peaks at 𝐵𝑍 = 𝐸𝑉 𝑆/(𝑔𝜇𝐵), creating a point known as a spin-valley relaxation
hotspot. The solid blue line gives the sum of the spin-orbit and spin-valley contributions. b)
Energy diagram of the spin-valley hotspot. As 𝐵𝑍 approaches 𝐸𝑉 𝑆/(𝑔𝜇𝐵), the states |2⟩ and
|3⟩ hybridize, forming new eigenstates which are linear combinations of |2⟩ and |3⟩. These new
eigenstates mix the spin and valley degrees of freedom and provide a rapid spin relaxation
route when 𝐸𝑉 𝑆 = 𝐸𝑍 . As the hotspot is approached, the energy difference between |↑, 𝑧−⟩
and |↓, 𝑧+⟩, 𝛿 = 𝐸𝑉 𝑆 − 𝐸𝑍 , approaches zero. 𝛥 is the splitting at the anticrossing, also known
as the valley coupling.

in Eqn 5.4. Noise is modelled as a combination of the phonon lattice deformation and
Johnson (electrical) noise contributions. Each of these noise contributions normally cannot
induce spin-flips. However they are coupled to the spin state via two main interaction
mechanisms: spin-orbit (SO) and spin-valley (SV) interactions, as discussed in 5.3.2. The
internal angular momentum of an electron is intrinsically linked to its orbital energy.
Fluctuations in the electric field cause this orbital energy to shift, inducing a rotation to
the electron spin.

The spin-valley interaction is depicted in Fig 5.7b. In bulk silicon, there are six degenerate
valley states which an electron can occupy [Pen20]. Under strong confinement, such as
that provided by an interface, the degeneracy of these valley states can be lifted. Two of
these valley states, 𝑣− and 𝑣+, remain relatively close in energy. 𝑣+ and 𝑣− correspond to
the two z-axis valley states, with 𝑣− the twofold-degenerate ground state of the system at
𝐵𝑍 = 0 T. They are separated by the valley splitting energy 𝐸𝑉 𝑆 . At finite magnetic field,
the spin degeneracy is lifted, and the states separate into a mixture of both spin and valley
states: |1⟩, |2⟩, |3⟩, |4⟩. These are defined as |1⟩ = |𝑣−, ↓⟩, |2⟩ = |𝑣−, ↑⟩, |3⟩ = |𝑣+, ↓⟩, and
|4⟩ = |𝑣+, ↑⟩. At 𝐵𝑍 << 𝐸𝑉 𝑆/(𝑔𝜇𝐵), these are the eigenstates of the system. However,
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as the Zeeman energy becomes comparable to the Valley splitting, the states |2⟩ and |3⟩
hybridize and form an anticrossing point. At this point it makes more sense to describe
the hybrid system in terms of redefined eigenstates |2̄⟩ and |3̄⟩:

|2̄⟩ =
√︀

(1 − 𝑎)/2|2⟩ −
√︀

(1 + 𝑎)/2|3⟩ (5.5)

|3̄⟩ =
√︀

(1 + 𝑎)/2|2⟩ −
√︀

(1 − 𝑎)/2|3⟩ (5.6)

Where 𝑎 = −𝛿/
√︀

𝛿2 + 𝛥2 with 𝛿 = 𝐸𝑉 𝑆 −𝐸𝑍 the detuning from the mixing point and 𝛥
the splitting at the anticrossing. Importantly, both of these states have a rapid relaxation
mechanism to the ground state |1⟩. Both have a contribution from the state |3⟩, which has
a spin component which is parallel to |1⟩. This allows direct phonon-induced relaxation,
which is normally forbidden [Yan13]. This significantly increases the spin-flip rate and
reduces 𝑇1 by several orders of magnitude where this interaction is maximal. Far from the
anticrossing (i.e. where 𝛿 >> 𝛥) the original eigenstates |2⟩ and |3⟩ are recovered, albeit
with their energetic ordering swapped at high field, and the spin-valley mixing effect is
reduced.

The effect of the noise through the two interaction mechanisms is plotted in Fig 5.7a. We
label these as spin-orbit (SO) and spin-valley (SV) interactions for clarity. However, it is
important to note that spin-valley interactions are also a spin-orbit effect with inter-valley
state mixing [Zha20]. We label spin-valley as a separate interaction to distinguish it
from the intra-valley spin-orbit interaction with higher orbital states, which we simply
call the spin-orbit interaction. The spin-orbit contribution follows a commonly-reported
approximately 𝐵5 dependence, generally seen for dominant spin-orbit interactions in the
absence of spin-valley coupling. This is due to the two noise sources, phonons and Johnson
noise, having a 𝐵7 [Tah14] and 𝐵3 [Hua14b] dependence respectively. The 𝐵7 dependence
of the spit-orbit coupled phonon noise is characteristic of silicon quantum dots since it
arises from interaction with the next orbital level [Yan13].

Conversely, the spin-valley coupling contribution is generally weaker than the spin-orbit
coupling, but has a significant peak at 𝐵𝑍 = 2.6 T. The spin-valley interaction is strongly
dependent on the value of 𝐸𝑉 𝑆 . Its magnitude is proportional to 1 −

(︁
1 + 𝛥2

(𝐸𝑉 𝑆−𝐸𝑍)2

)︁−1/2
,

which is maximal when 𝐸𝑉 𝑆 = 𝐸𝑍 [Hua14b]. 𝛥 is the magnitude of the spin-valley coupling
at the anticrossing, and 2𝛥 describes the width of the peak. The fitting for our data
gives 𝛥 ≈ 200 neV. Where 𝐸𝑍 << 𝐸𝑉 𝑆 , the spin-valley contribution approaches a small
constant 𝛥2/𝐸2

𝑉 𝑆 . When 𝐸𝑍 >> 𝐸𝑉 𝑆 it becomes proportional to 𝛥2/𝐸2
𝑍 and eventually

decreases towards 0, offset by the 𝐵7 and 𝐵3 dependence of the phonon and Johnson
noise contributions to produce the relatively low, constant contribution seen in Fig 5.7a.
From this fit, we extract 𝐸𝑉 𝑆 = (297 ± 5) µeV, with the relaxation "hotspot" occurring at
𝐵𝑍 ≈ 2.6 T.

A valley splitting of (681 ± 23) µeV and (571 ± 27) µeV was reported for two devices with
a similar structure, fabricated using similar CMOS-compatible 300 mm wafer techonology
[CT20]. The spin-valley hotspot was not directly measured through magnetic field relax-
ometry, but was extracted from excited state spectroscopy by varying the loading position.
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A device identical to that presented here in terms of structure, dimensions and fabrication
process was also measured (data unpublished, personal communication with Cardoso-Paz),
with 𝐸𝑉 𝑆 = 191 µeV found via magnetic field relaxometry. The 𝐸𝑉 𝑆 measured here is
therefore in line with other CMOS-fabrication quantum dots in silicon. The variation
observed from device to device is significant, however. A difference of a few 100 µeV in
nominally identical devices corresponds to a difference of more than 1 T in terms of the
static magnetic field. For schema that seek to exploit the spin-valley interaction, precise
tuning of the 𝐸𝑉 𝑆 could be critical, and high variance in 𝐸𝑉 𝑆 across multiple qubits could
prove problematic for scalable manipulation. Fortunately, 𝐸𝑉 𝑆 is not a fixed parameter,
but is strongly dependent on the electric fields present in the device [Bou18; Ibb18]. In the
next section we demonstrate tuning of the valley splitting by applying a universal electric
field to the device.

5.3.4 Valley energy tuning
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Figure 5.8: Valley energy tuning a) For a fixed 𝐵𝑍 , we find the hotspot by tuning the
back gate voltage. The relaxation rate 𝑇 −1

1 is plotted as a function of 𝑉𝐵𝐺. It is approximately
constant in the range −6 to −3 V. However, a prominent increase in the relaxation rate is
found around 𝑉𝐵𝐺 = 2.8 V This is due to the tuning of the 𝐸𝑉 𝑆 with the back gate, bringing
the valley splitting into resonance with the spin splitting. At this field and back gate voltage,
the condition 𝐸𝑉 𝑆 = 𝐸𝑍 is fulfilled. b) The spin-valley relaxation hotspot plotted as a function
of the back gate voltage 𝑉𝐵𝐺 and the magnetic field 𝐵𝑍 . The valley energy 𝐸𝑉 𝑆 = 𝑔𝜇𝐵𝐵𝑍 is
tuned by over 40 µeV from 297 to 260 µeV.

The valley splitting is highly dependent on the confinement of the quantum dot. A linear
dependence of 𝐸𝑉 𝑆 with the electric field was predicted for quantum dots in 2DEG type
devices using effective mass theory [Fri07; Sar11], and demonstrated in MOS type devices
over a wide range of 0.3 to 0.8 meV [Yan13]. Simulations have shown [Bou18] that such a
linear dependence is predicted in CMOS nanowire devices through manipulation of the
electric fields with the universal back gate.

We measure 𝐸𝑉 𝑆 by finding the magnetic field value at which the 𝑇1 becomes minimal
𝐵𝑚𝑖𝑛, giving 𝐸𝑉 𝑆 = 𝑔𝜇𝐵𝐵𝑚𝑖𝑛. At a fixed magnetic field, we can measure 𝑇1 for different
𝑉𝐵𝐺 to find the hotspot. Such a measurement is shown in Fig 5.8a for a magnetic
field of 2.3 T. The hotspot is detected at 𝑉𝐵𝐺 ≈ (−2.8 ± 0.2) V. This corresponds to
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𝐸𝑉 𝑆 = (260 ± 10) µeV. Thus we demonstrate that we are able to vary the value of 𝐸𝑉 𝑆

by up to 40 µeV by applying a back gate potential in the range −5 V to −3 V as shown in
Fig 5.8. We obtain a linear coefficient of 0.14 T/V, consistent with the trend predicted in
[Bou18]. We were not able to obtain data outside of this range due to the limited range
in which spin signature was visible. This is a drawback of the use of external fields to
manipulate the valley splitting; applied fields, even non-local fields, necessarily interact
with the dot potential in the channel. However, it is a key result that we are able to vary
the valley energy up to 40 µeV even within a limited range and maintain spin detection.

Some leading schema for spin control in quantum dots make use of the spin-valley
coupling to perform EDSR. Such a protocol has been demonstrated in silicon nanowire
quantum dots [Cor18] using spin blockade. This allows spin control using electric fields,
which is a more scalable and addressable method of control.

5.3.5 Relaxation field anisotropy
The geometry of a device and on the applied fields can have a very significant effect on
the valley splitting, and on the spin-valley mixing strength 𝛥. It has been shown that
spin-valley mixing can be highly anisotropic with the applied magnetic field in gate-defined
quantum dots in silicon [Zha20]. In particular, the directionality of the spin-orbit coupling
(determined by symmetries in the device) allows the spin-valley mixing to occur. In the
presence of multiple orthogonal planes of symmetry, the spin-valley mixing can vanish.
It has been shown that, for a device with a single major symmetry axis, the spin-orbit
coupling can be defined by an effective magnetic field, B𝑆𝑂. When the external applied
magnetic field is parallel to B𝑆𝑂, the spin-orbit coupling which allows spin-valley mixing
can be highly suppressed. This can limit or even prevent relaxation and manipulation
through valley states. In [Zha20], the point of maximum suppression of spin-valley mixing
was found to have a 180-degree periodicity, with the suppression dominant along the 𝑥
axis of the device. This introduces a limitation on the directionality of the external field if
such mixing is desired, either for fast relaxation for intialization, or for spin-valley EDSR
manipulation. However, it also provides a "sweet spot" that the field can be placed at to
suppress valley mixing, in the case that it is detrimental to qubit operation.

This anisotropy was also investigated for CMOS nanowire devices [CT20]. Despite the
highly symmetric device design, a single-symmetry periodicity was not observed. This
was believed to be due to distortion of the quantum dot by local electric field disorder.
Interface disorder can break symmetry, and also introduce new quasi-symmetric planes
which complicate the geometric picture. If this is a prominent problem in nanowire devices,
it could prove detrimental to spin-valley qubits and limit their reproducibility - one of their
main advantages. As such, it is an important spin property to characterise.

Our system is almost identical to that outlined in [CT20], with the quantum dot strongly
confined along the 𝑧 axis through the positive field applied by the plunger gate and
secondary fields generated by the back gate and top gate. This lifts the 𝑥 and 𝑦 valley
degeneracy, leaving the ±𝑧 valleys as the lowest energy states in the quantum dot. Each of
these valleys are twofold degenerate with spin states. These spin states are separated by
the Zeeman energy 𝐸𝑍 , as before, along the direction of the external magnetic field 𝐵𝑒𝑥𝑡.
The spin valley states can provide a channel for spin relaxation when the spin and valley
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Figure 5.9: Magnetic field anisotropy Spin relaxation rate measurements to determine
the spin-valley anisotropy in a quantum dot. a-c) Spin relaxation rate as a function of the
angle of the magnetic field, rotated around the three main crystalline axes of the nanowire
device. d) Schematic representation of the nanowire device with the crystalline axes labelled.
e) A spherical heatmap of the relaxation rate, generated from sin2 fits to the relaxation curves
measured in a) and b). Dashed lines corresponding to cuts of the rotation of 𝐵𝑒𝑥𝑡 about one of
the crystalline axes are labelled.

states are mixed.
The mechanism that couples the spin states at the valley hotspot is an inter-valley spin

mixing. This mixing is caused by spin-orbit interaction, and can be considered to be
an effective magnetic field 𝐵𝑆𝑂 [Zha20]. When 𝐵𝑆𝑂 is orthogonal to 𝐵𝑒𝑥𝑡, the applied
magnetic field, this spin-valley interaction can cause the spin to flip through rotation in the
plane of the 𝐵𝑒𝑥𝑡 axis, providing a relaxation channel. When the external magnetic field
𝐵𝑒𝑥𝑡 is applied parallel to 𝐵𝑆𝑂, this relaxation channel can be suppressed, reducing the
relaxation rate and producing a 𝜋 rad-periodic "sweet spot" where the spin-valley relaxation
components are minimized. This is generally referred to as the spin-valley relaxation
anisotropy, and has been observed in Si quantum dots [Zha20], GaAs quantum dots [Hof17],
and with a periodicity indicative of an unintuitive symmetry in similar CMOS nanowires
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to that measured here [CT20].
The directionality of 𝐵𝑆𝑂 is determined by the symmetry of the quantum dot. Spin-orbit

coupling is due to the interaction between the momentum of an electron and the electric
fields in the device. Along the 𝑥 axis of the device, the fields are approximately symmetric.
In this direction, the momentum 𝑝𝑥 is symmetric under reflection. Due to the device
geometry, the directionality of the spin-orbit interaction is effectively fixed. We therefore
probe the spin-valley relaxation anisotropy by varying the directionality of the external
applied magnetic field 𝐵𝑒𝑥𝑡(𝜑,𝜃).

The magnetic field is rotated in three planes, labelled 𝑋𝑌 , 𝑋𝑍, and 𝑌 𝑍. 𝑋, 𝑌 and 𝑍
here correspond to the three cardinal axes of the magnetic coil. The 𝑋𝑍 and 𝑌 𝑍 planes
which are swept here are rotated with respect to the coil axes by 0.2 rad in order to align
the 𝑋 axis with the channel of the device, which was not precisely aligned with the coil
axes. We can therefore associate each plane with the crystalline axes, labelling them with
the axial vector aligned to the plane vector. The 𝑋𝑌 , 𝑋𝑍 and 𝑌 𝑍 rotations therefore
correspond to rotations around the crystalline axes [001],[1̄10] and [110] respectively. The
axes are labelled with respect to the nanowire device in Fig 5.9d.

We measure the spin relaxation rate 𝑇 −1
1 as a function of the angle of rotation of the

magnetic field in each plane. The measured 𝑇 −1
1 for a 𝜋 rotation in each plane is plotted

in Fig 5.9a-c. A prominent minimum in the relaxation rate is observed at −0.2 rad in the
𝑋𝑌 plane rotation as shown in Fig 5.9b. It is fitted with sin2(𝜃𝑋𝑌 ), the dashed curve in
Fig 5.9b. The relaxation rate minimum −0.2 rad is chosen as the starting angle for the
𝑋𝑍 rotation plane, with the 𝑌 𝑍 plane rotated by 𝜋/2 about the 𝑍 axis from 𝑋𝑍. The
rotation along the 𝑋𝑍 rotation plane is plotted in Fig 5.9a. A similar minimum is found
at 𝜃𝑋𝑍 = 0 rad. The 𝑇 −1

1 also follows an approximately sin2(𝜃𝑋𝑍) behaviour. The 𝑇 −1
1

behaviour along the 𝑌 𝑍 plane stands out as having no variation on the scale of that seen
in the 𝑋𝑌 and 𝑋𝑍 planes.

To understand this sin2 dependence, we recall the interaction of the spin and valley
states. The states which are coupled here are |2⟩ and |3⟩ as depicted in Fig 5.7, which
have spin and valley components |2⟩ = |𝑣−, ↑⟩ and |3⟩ = |𝑣+, ↓⟩. The energy of the two
branches which interact at the anticrossing is given by [Bou18]:

𝐸± = 1
2(𝐸𝑣− + 𝐸𝑣+) ± 1

2
√︀

(𝐸𝑉 𝑆 − 𝑔𝜇𝐵𝐵𝑒𝑥𝑡)2 + 4|𝛥|2 (5.7)

The important term which defines the magnitude of the mixing between the valley
states at the hotspot (when 𝐸𝑉 𝑆 ≈ 𝑔𝜇𝐵𝐵𝑒𝑥𝑡) is |𝛥|2. This mixing is necessary to have the
rapid relaxation characteristic of the valley hotspot. When 𝛥 → 0, the hotspot relaxation
is suppressed, and the 𝑇1 can be long. Here the spin-valley states are coupled via the
spin-orbit hamiltonian given in Eqn 5.8.

𝐻𝑆𝑂 =
∑︁

𝑘

p𝑘𝜎𝑘 (5.8)

𝜎𝑘 are the standard Pauli matrices, and p𝑘 are a set of momentum operators determining
the spin-orbit interaction. Note that we are considering only the two states |2⟩ and |3⟩,
as the states |1⟩ and |4⟩ are very well separated in energy. The coupling term is given by
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[Bou18]:

𝛥 = ⟨2|𝐻𝑆𝑂|3⟩ (5.9)

This defines the interaction between the strength of the spin-valley coupling and the
geometry of the spin-orbit interaction. 𝐻𝑆𝑂 is necessarily a geometric hamiltonian, as
it contains momentum components 𝑝𝑥, 𝑝𝑦, etc. which have a symmetry (or asymmetry)
defined by the geometry of the channel. Taking the 2D case where 𝐻𝑆𝑂 = 𝑎𝜎𝑥𝑝𝑦 + 𝑏𝜎𝑦𝑝𝑥,
we can consider the presence of a plane of symmetry 𝑅, which is perpendicular to the
𝑥 axis. It therefore only acts on the 𝑝𝑥 component of the momentum operators. If we
consider the interaction of 𝑝𝑥 with the valley states:

⟨𝑣−|𝑝𝑥|𝑣+⟩ = ⟨𝑅𝑣−|𝑅†𝑝𝑥𝑅|𝑅†𝑣+⟩ (5.10)

Since 𝑣− and 𝑣+ are geometrically defined along the 𝑧 axis, they are invariant under
𝑅 (⟨𝑅𝑣−| = ⟨𝑣−|, |𝑅†𝑣+⟩ = |𝑣+⟩). The reflection operation on the momentum operator
gives, by symmetry, 𝑅†𝑝𝑥𝑅 = −𝑝𝑥. Assuming there is only one plane of symmetry, this
is the only axis along which this is true (there is asymmetry in 𝑝𝑦 and 𝑝𝑧). Therefore
the interaction of the 𝑥 component of the momentum, ⟨𝑣−|𝑝𝑥|𝑣+⟩, must be zero, from
⟨𝑣−|𝑝𝑥|𝑣+⟩ = −⟨𝑣−|𝑝𝑥|𝑣+⟩ = 0. So when such a mirror plane acts on 𝐻𝑆𝑂, we obtain for
𝛥:

𝛥 = ⟨𝑣− ↑ |𝐻𝑆𝑂|𝑣+ ↓⟩ = ⟨𝑣−|𝑝𝑦|𝑣+⟩⟨↑ |𝜎𝑥| ↓⟩ (5.11)

When B𝑒𝑥𝑡 is along 𝑥, ↑ and ↓ are eigenstates of 𝜎𝑥 so that ⟨↑ |𝜎𝑥| ↓⟩ = 0, and therefore
𝛥 = 0, giving no spin-valley mixing.

This is the basis of the symmetry argument for the spin-valley mixing "sweet spot". To
consider how the magnitude of the mixing varies as a function of the magnetic field, it
is simpler to think in terms of field vectors. From our definition of 𝐻𝑆𝑂, we can define
a dominant spin-orbit effective magnetic field B𝑆𝑂, which is orthogonal to the plane of
symmetry. We use the relationship ⟨𝑣−|𝑝|𝑣+⟩ = (𝑖𝑚*𝐸𝑉 𝑆/~) ⟨𝑣−|𝑟|𝑣+⟩ [Zha20] to obtain
the interaction between the spin-orbit hamiltonian and the valley states:

⟨𝑣−|𝐻𝑆𝑂|𝑣+⟩ = ⟨𝑣−|𝛼𝑚𝑝𝑦𝜎𝑥 + 𝛼𝑝𝑝𝑥𝜎𝑦|𝑣+⟩ = 𝑖𝑚*𝐸𝑉 𝑆

~
(𝛼′𝜎𝑥 + 𝛽′𝜎𝑦) (5.12)

Here 𝑚* is the effective mass of the electron, and 𝛼′ = 𝛼𝑚𝑟+−
𝑦 and 𝛽′ = 𝛼𝑝𝑟−+

𝑥 contain
the inter-valley dipole matrix elements between the valley eigenstates on the 𝑦 and 𝑥 axes,
and 𝛼𝑚 = 𝛽 −𝛼 and 𝛼𝑝 = 𝛽 +𝛼, constants giving the interaction strength from Dresselhaus
(𝛽) and Rashba (𝛼) contributions. The precise definition of 𝛼′ and 𝛽′ is not important for
the definition of B𝑆𝑂; a detailed explanation is given in [Zha20]. Then we can define an
effective spin-orbit field B𝑆𝑂 such that ⟨𝑣−|𝐻𝑆𝑂|𝑣+⟩ = B𝑆𝑂 · 𝜎, where 𝜎 is the generalized
pauli spin matrix:

B𝑆𝑂 = 𝑖𝑚*𝐸𝑉 𝑆

~𝛾
(𝛼′x̂ + 𝛽′ŷ) (5.13)
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The symmetry argument can similarly be extended to more planes of symmetry, and it
is found that in the presence of more than one perpendicular symmetry plane there can be
no spin-orbit mixing with the valley states [Bou18], as there cannot be a B𝑆𝑂 which is
orthogonal to both or all symmetry planes.

To examine how the spin-orbit mixing changes as a function of B𝑒𝑥𝑡, we examine how 𝛥
changes as a function of 𝐻𝑆𝑂. The valley-orbit interaction can be characterized by the
interaction between the valley states and the spin-orbit coupling [Zha20]:

𝐻𝑆𝑉 = ⟨𝑣−|𝐻𝑆𝑂|𝑣+⟩ (5.14)

The magnitude of 𝐻𝑆𝑉 determines the coupling between the spin states, and therefore
the rate of relaxation. From the definition of B𝑆𝑂:

𝛥 = ⟨↑ |𝐻𝑆𝑉 | ↓⟩ = ⟨↑ |B𝑆𝑂 · 𝜎| ↓⟩ (5.15)

The states | ↑⟩ and | ↓⟩ are the eigenstates of B𝑒𝑥𝑡 · 𝜎. From vector transformation, we
obtain the condition for 𝛥 = 0 to be B𝑒𝑥𝑡 ×B𝑆𝑂 = 0 [Zha20]. It follows that the spin-valley
mixing 𝛥 is maximum when the external field B𝑒𝑥𝑡 ⊥ B𝑆𝑂, and zero when B𝑒𝑥𝑡 ‖ B𝑆𝑂.

To determine how the magnitude of 𝛥 varies as a function of the magnetic field angle,
we can consider rotating the spin-orbit field B𝑆𝑂 with respect to the quantization axis. | ↑⟩
and | ↓⟩ are quantized along B𝑒𝑥𝑡. Then for B𝑆𝑂 at an angle 𝜃 to the quantization axis:

|⟨↑ |B𝑆𝑂 · 𝜎| ↓⟩| ∝ |sin𝜃| (5.16)

Note that the relaxation rate 𝑇 −1
1 is dependent on the square of the spin-valley mixing,

|𝛥|2. Thus we obtain:

|𝛥|2 ∝ sin2𝜃. (5.17)

Eqn 5.17 is the basis for the sin2 dependence of the relaxation rate 𝑇 −1
1 [CT20; Cor18].

This argument can be extended to three dimensions, as the angular dependence is the same
under transformation of the axes. The measurements probe the orientation of B𝑆𝑂 by
varying the quantization axis in three dimensions. From the measurements in Fig 5.9a-c, it
can be seen that the minimum mixing occurs at 𝜃𝑋𝑌 = −0.2 rad, 𝜃𝑋𝑍 = 0 rad. We can
conclude therefore that B𝑆𝑂 is along this axis, which is approximately parallel to the [110]
crystalline axis. This coincides with the axis of maximal symmetry in the nanowire device,
along which we expect to find B𝑆𝑂.

We fit our data to sin2 along the 𝑋𝑌 and 𝑋𝑍 axes, seen in Fig 5.9a and b. From these
fits we can construct a 2D map of the 𝑇 −1

1 , shown in Fig 5.9e. The white dashed lines
correspond to rotations of 𝐵𝑒𝑥𝑡 about the labelled axis, with 𝜃 and 𝜑 the corresponding
angles in spherical coordinates. The minimum of the 𝑇 −1

1 is due to the suppression of the
spin-valley mixing (𝛥 → 0). Notably, the spin relaxation rate is not reduced to 0. There
are two main factors which can determine the minimum of the anisotropy curve.

First is that interface disorder can distort the electron wavefunction such that there
is no longer a single symmetry plane. Indeed, the relaxation sweet spot is predicted to
occur even with a small degree of symmetry breaking [CT20]. In this case, the B𝑆𝑂 can
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be tilted away from the channel axis. A small degree of symmetry breaking could cause
the minimum valley mixing to be finite, such that a degree of the spin-valley relaxation
contribution remains.

Secondly, it is important to note that the "pure" spin-orbit interaction is still present,
and this can also have a degree of anisotropy with the magnetic field direction through
a similar argument to that made here for the mixing mechanism. It is highly likely that
the "pure" spin-orbit 𝑇1 contribution will also vary with the angle of B𝑒𝑥𝑡 (that which
does not involve the valleys). This can also lead to an variation in the effective "pure"
spin-orbit contribution along the symmetry axis. However, given the magnitude of the
"pure" spin-orbit contribution, this alone cannot explain the 𝑇 −1

1 behaviour seen here, and
so we conclude that the anisotropic behaviour is dominated by the effects of the spin-valley
mixing.

In conclusion, we have measured the anisotropy of the spin-valley mixing. The relaxation
rate can be tuned over more than an order of magnitude through suppressing the spin-
valley mixing mechanism. The axis of minimal mixing was found to align with the axis of
maximum symmetry in the device. It is in agreement with anisotropy measurements in
other types of quantum dots [Hof17; Zha20] and tight-binding simulations of a device of
similar design and fabrication [Bou18].

However, such an orientation dependence was not seen in another geometrically similar
device [CT20]. The dependence observed there did not correspond to the sin2𝜃 dependence
expected with a single symmetry axis. It is believed that this is due to the presence
of multiple non-orthogonal axes of symmetry, such that the mixing sweet spot is less
strongly geometrically defined. However, given the similar geometric symmetry in the
device structure, it is curious that these symmetry axes do not arise in our data.

One explanation for this could be that our dot is comparatively less disordered. Interface
disorder can perturb the shape of the dot wavefunction and significantly change the potential
environment the electron experiences. The two devices were fabricated using the same
method, but fabrication issues meant that some devices were missing an important element
of the gate stack. This has been seen on devices demonstrating unusual characteristics.
Thanks to parametric testing, we are sure that the device measured in this thesis lies in
the group which contains this element, offering a potential explanation for the discrepancy
across similar devices. It would imply that in the "normal" case, the disorder experienced
by the quantum dot in this type of device is relatively low, with a strong mirror plane
observed; a promising conclusion for future development.

5.3.6 𝑇1 charge noise
When operated close to the valley splitting hotspot, the quantum dot is in a sensitive
configuration. Fluctuations in the potential of the quantum dot over a long duration can
change the effective field it experiences, leading to variation in 𝐸𝑉 𝑆 . This can be probed
by measuring the variation in the spin relaxation rate over time. The variation in the
relaxation time 𝑇1 over more than three hours is plotted in Fig 5.10a. The low-frequency
fluctuations, already apparent in the time trace, are characteristic of 1/𝑓 noise. Each point
represents an average of 200 traces over the course of 4 min. The magnetic field is aligned
such that the spin relaxation is dominated by the spin-valley interaction; that is, on the
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Figure 5.10: Charge noise measurement via spin relaxation The charge noise experi-
enced by the first electron is investigated by measuring the change in 𝐸𝑉 𝑆 with time via the
spin relaxation rate. a) A time trace of the 𝑇1 over several hours. Low-frequency oscillations are
visible, induced via low-frequency noise. Each measurement point represents a 𝑇1 measurement
of duration 4 min. b) Renormalized power spectral density of the 𝑇1 low-frequency noise. The
time trace in a) is converted to the frequency domain via fourier transform and renormalized
using the method detailed in the text. The orange dashed line is a fit proportional to 1/𝑓1.25.

edge of the relaxation hotspot peak. To obtain the variation in valley splitting energy, we
take the fourier transform of the time trace to obtain 𝑆𝑇1 and use the gradient at the side
of the valley hotspot peak:

𝑆𝑉 𝑆 = 𝑆𝑇1

|𝑑𝑇1/𝑑𝐵𝑍 |2
(5.18)

For this to hold, we assume the gradient 𝑑𝑇1/𝑑𝐵𝑍 calculated from the hotspot fit in Fig
5.7 is approximately constant for small fluctuations. The variation in the valley splitting
with frequency is plotted in Fig 5.10b. A clear 1/𝑓𝛽 trend is seen, with a frequency
exponent of 𝛽 = 1.25. Extrapolating to 1 Hz yields a variation in the valley splitting energy
of around 23 µeV2/Hz, which corresponds to a variation of a few µeV over a measurement
time of one second. The decoherence of the qubit due to this fluctuating effective magnetic
field can be estimated by considering the frequency of Larmor precession in this field. In an
external field of magnitude 𝐵 which is not aligned with the spin, an electron will precess
at a frequency given by:

𝑓 = 𝛾𝐵 (5.19)

Where 𝛾 is the gyromagnetic ratio for an electron 28.0 GHz/T. Fluctuations in the 𝑇1
of 5 µeV correspond to an effective field of 43 mT. The frequency of the fluctuations in the
precession of the spin is therefore 1.2 GHz. This is much faster than the natural 𝑇 *

2 due to
the hyperfine field in silicon, which is about 20 MHz, and is on the order of the decoherence
rate of a charge qubit (1 GHz, [Kim15]). It is highly dependent on the configuration of the
quantum dot due to the |𝑑𝑇1/𝑑𝐵𝑍 | term, and suggests that the quantum dot undergoes
fast decoherence as it approaches the mixing point. This is an important result when
considering the use of spin-valley mixing for spin manipulation.

Spin-valley mixing can be used to implement EDSR spin manipulation [Cor18]. EDSR
uses fluctuating electrical fields to manipulate an electron spin. A mechanism is required to
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couple the spin and electric fields. Typically this is done via the spin-orbit interaction. In
silicon, the spin-orbit coupling for electrons is weak. This is sometimes overcome by using
a micromagnet to generate a magnetic field gradient, allowing a pseudo-SOC interaction as
the electron is moved within the gradient. However, the spin-valley interaction allows even
a weak spin-orbit coupling to induce fast spin rotation. It was used in [Cor18] to drive
selective spin rotation in a blockaded quantum dot, allowing addressable manipulation.
The spin states can be coupled via the valley states when the zeeman energy 𝐸𝑍 is close to
the valley splitting 𝐸𝑉 𝑆 . At this point, the spin-up state of the lower valley is mixed with
the spin-down state of the upper valley, strongly enhancing the Rabi frequency near the
anti-crossing. The Rabi frequency here can reach tens to hundreds of MHz [Bou18].

However, the magnitude of the 𝑇1 fluctuations indicates that close to the mixing point,
the spin coherence time could be very short, around 1 ns. This could prove detrimental for
EDSR, as the manipulation time would have to be much shorter than the coherence time.
If this method of spin manipulation is to be used, it may be necessary to find a sweet spot
where the spin-valley mixing is sufficiently strong, but the coherence time remains long
enough for spin manipulation.

To investigate the origin of this noise, we can compare it to the first electron charge noise
by converting it to a potential fluctuation induced by a global gate. We can use previous
analyses to compare the valley splitting variation to the potential flucutations induced by
charge noise, with some assumptions. First is that the shift in the valley splitting is caused
by deformation of the potential of the quantum dot in a manner similar to charge noise.
Second is that the potential shift affects the valley splitting 𝐸𝑉 𝑆 in a similar way to the
electric field generated by the voltage applied to the back gate 𝑉𝐵𝐺. This allows us to use
both 𝑑𝐸𝑉 𝑆/𝑑𝑉𝐵𝐺 from the hotspot tuning measurement and the lever arm of the back gate
to relate low-frequency fluctuations in the relaxation time 𝑇1 to the potential shift induced
by charge noise. To relate the variation in the valley splitting to the potential fluctuations
at the dot, we create the following renormalization equation using these assumptions:

𝑆𝜀 = 𝛼2
𝐵𝐺𝑆𝑉 𝑆

|𝑑𝐸𝑉 𝑆/𝑑𝑉𝐵𝐺|2
(5.20)

The power spectral density of the 𝑇1 is calculated via fourier transform. In order to
renormalize the PSD such that the potential fluctuation of the dot is being considered,
we use Eqn 5.20. The back gate lever arm is measured to be 𝛼𝐵𝐺 = 0.0378 meV/V. The
change in energy with the back gate is 𝑑𝐸𝑉 𝑆/𝑑𝑉𝐵𝐺 = 16.8 µeV/V.

The renormalized power spectral density is plotted in Fig 5.10c. We extrapolate the 1/𝑓
behaviour to high frequency and find a value of 121 µeV2/Hz. This is in good agreement
with the 90 µeV2/Hz measured using tunnel rate fluctuations.

Note that this may be an over-estimation of the magnitude of the potential shift, as
fluctuations to the spin relaxation time due to variations in the phonon or Johnson noise
may also contribute. As discussed in section 5.3.2, phonon and Johnson noise have a much
greater direct effect on the spin relaxation than the 1/𝑓 charge noise. However, these noise
sources are expected to dominate at higher frequencies, and as such should be averaged
out in this measurement, so the dominant contribution to the low-frequency fluctuation
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should be largely from variations in the electric field controlling 𝐸𝑉 𝑆 .
The magnitude of the potential shift at the qubit dot may also be underestimated when

only considering the 𝑇1 variation, as only charge fluctuations which affect 𝐸𝑉 𝑆 will cause
𝑇1 fluctuations. It is likely that some charge fluctuations induce potential shifts which do
not affect 𝐸𝑉 𝑆 but still contribute to charge noise (for example, potential shifts along the
main symmetry axis).

Because of these factors - and the assumptions made when converting 𝑆𝑉 𝑆 to 𝑆𝜀 - the
precise value of 𝑆𝜀 should be considered critically. The good agreement with the tunnel rate
fluctuation measurement suggests it is a reasonable estimate, and that the 𝑇1 fluctuations
close to the spin-valley mixing hotspot are likely dominated by 1/𝑓 charge noise. The
magnitude of the fluctuations in the valley splitting energy 𝐸𝑉 𝑆 due to charge noise are
large, and induce an effective field of 43 mT, corresponding to a coherence time of 1.2 ns.
This suggests that attempts to further reduce the charge noise experienced by the quantum
dot would be beneficial for spin qubits operated in a spin-valley mode.

5.4 Conclusion
The behaviour of a single electron spin in a silicon CMOS nanowire quantum dot has been
measured and characterised. Spin readout using the Elzerman energy-selective readout
method has been demonstrated with a single-state fidelity of up to 99% for spin-down and
93% for spin-up electrons, and a state visibility of 92%. Thermally-induced tunnelling
errors reduce the readout fidelity to < 80%. Even with these limitations, the readout
method remains robust enough to characterise the spin physics of the quantum dot.

𝑇1 values between 80 ms and 100 µs have been measured in various device configurations,
to a minimum magnetic field of 1.5 T. The evolution of 𝑇1 with the external applied
magnetic field has been measured and fit to a spin-orbit spin-valley relaxation model,
with a valley energy of 297 µeV and valley coupling of 200 neV extracted. It was shown
that the 𝑇1 follows an approximately 𝐵5 dependence with magnetic field, consistent with
phonon and Johnson noise interacting through spin-orbit coupling far from the spin-valley
relaxation hotspot. It was demonstrated that the valley energy 𝐸𝑉 𝑆 can be tuned over
40 µeV through manipulation of the electric field using a universal back gate in the range
−6 V to −3 V.

The spin-valley anisotropy was measured, with a relaxation sweet spot located along
the [110] crystalline axis, parallel to the channel of the device. At the sweet spot, the
spin relaxation rate is suppressed by more than an order of magnitude due to a strong
symmetry plane breaking the spin-orbit interaction. This anisotropy is consistent with
results in similar qubit implementations, indicating that local disorder is low in CMOS
nanowire devices.

Finally, the effect of the charge noise on the spin relaxation time was investigated,
finding a charge noise value of 121 µeV2/Hz when converted to a potential fluctuation.
This is in good agreement with the single-electron charge noise measured in section 4.4,
suggesting that low frequency 𝑇1 fluctuations are charge noise-induced. They corresponds
to fluctuations of the valley splitting energy on the order of 5 µeV over the course of 1 s. The
effective field induced by these fluctuations is 43 mT, leading to a 𝑇 *

2 of 1.2 GHz. This is
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very fast, and suggests that a balance must be found between the increased Rabi frequency
at the mixing point and keeping the coherence time long enough for manipulation.



Conclusion

The goal of this thesis was to characterize the charge noise and spin physics of quantum dots
in a silicon CMOS-fabricated nanodevice. Despite the rapid advancements towards CMOS
qubits in recent years, the quantum dots formed in these devices are not well-understood.
In-depth characterization of these quantum dots is necessary to enable development of
reproducible devices with low variability in terms of local disorder, gate controls, and dot
geometries. Here, we aim to understand the properties of CMOS quantum dots that could
inhibit qubit control.

The 1/𝑓 charge noise experienced by a quantum dot in a CMOS silicon nanowire device
was characterized, and we conclude that this 1/𝑓 noise spectrum is generated by a non-
uniform distribution of two-level fluctuators in the region of the quantum dot. The influence
of the dot position and shape in the channel on the charge noise was investigated, with
a noise reduction of over an order of magnitude possible by tuning the position of the
quantum dot. It was found via temperature spectroscopy that two fluctuators or groups of
fluctuators with activation energies 1.3 meV and 0.2 meV dominate the noise spectrum in
the low-noise regime. Additionally, we demonstrated a simple technique for determining
the charge noise of the first electron in a charge-sensed quantum dot, finding that the
charge noise at the single electron level is approximately on the order of the temperature
over a typical measurement time of 1 s. It was also used to investigate the charge noise of
subsequent electrons, finding that the magnitude of the noise experienced by the quantum
dot decreases with the number of electrons. Finally, the impact of the charge noise at the
single electron level on spin coherence was analysed. It was found that the 𝑇 *

2 is limited
to 10.9 µs for a 𝑡𝑚𝑒𝑎𝑠 = 1 s, 𝑇 = 200 mK at the first electron due to charge noise. This is
more than two orders of magnitude longer than the nuclear spin limited 𝑇 *

2 , underpinning
the benefits of isotopic purification on the spin coherence time.

The behaviour of a single electron spin in a silicon CMOS nanowire quantum dot was also
characterized, using the Elzerman energy-selective readout method to detect single electron
spins with a visibility of 92%. 𝑇1 values between 80 ms and 100 µs were measured in various
device configurations, to a minimum magnetic field of 1.5 T. The evolution of 𝑇1 with
the external applied magnetic field has been measured and fit to a spin-orbit spin-valley
relaxation model, with a valley energy of 297 µeV and valley coupling of 200 neV extracted.
It was shown that the 𝑇1 follows an approximately 𝐵5 dependence with magnetic field,
consistent with phonon and Johnson noise interacting through spin-orbit coupling far from
the spin-valley relaxation hotspot. The anisotropy in the spiny-valley mixing was measured,
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with a relaxation sweet spot located along the [110] crystalline axis, parallel to the channel
of the device. At the sweet spot, the spin relaxation rate is suppressed by more than an
order of magnitude due to a strong symmetry plane breaking the spin-orbit interaction.
This anisotropy is consistent with results in similar qubit implementations, indicating that
local disorder is low in CMOS nanowire devices. Finally, the effect of the charge noise
on the spin relaxation time was investigated, finding a charge noise value of 121 µeV2/Hz
when converted to a potential fluctuation. They corresponds to fluctuations of the valley
splitting energy on the order of 5 µeV over the course of 1 s. The effective field induced
by these fluctuations is 43 mT, leading to a 𝑇 *

2 of 1.2 GHz. This is very fast, and suggests
that a balance must be found between the increased Rabi frequency at the mixing point
and keeping the coherence time long enough for manipulation.

These results represent an important step towards large scale characterization of CMOS
qubits. The characterizations presented here are relatively simple to implement, with low
hardware overhead and fully DC control, and can be used for routine analysis of CMOS
quantum dots. We find that the charge noise compares favourably with similar types of
quantum dot implementations in the many-electron regime. The charge noise at the first
electron is likely to be a more useful measure for CMOS qubits, and it was found that
fluctuations over one second are consistently on the order of the temperature, which is
promising for future development. Additionally, characterization of the spin-valley mixing
anisotropy suggests low disorder in the environment of the quantum dot. The measured 𝑇1
is similar to that seen in other silicon devices, and is expected to approach seconds at 1 T
and below.

An important result of the charge noise measurement is the indication that the coherence
time is not charge noise limited in the general case. The isotopic purification of silicon
is a complex and expensive process, so it is vital to be sure that spin qubits can benefit
from it and are not limited by other factors. We did however find that the coherence time
is strongly reduced close to the valley mixing hotspot due to fluctuations in the valley
splitting energy which are charge noise-like. This has significant implications for spin-valley
mediated EDSR manipulation, whereby the system is pulsed into the mixing regime where
the decoherence is enhanced for the duration of the manipulation. If the manipulation is
slower than the decoherence, coherent qubit manipulation becomes difficult.

Further characterization is needed to have a more complete understanding of these
devices. By characterizing a device containing more quantum dots, it would be possible to
measure the effect of charge noise on the tunnel barriers between dots, and distinguish this
from the effect of fluctuations at quantum dot sites. With more quantum dots available,
it could be possible to isolate a dot from the reservoirs and measure the charge noise in
isolation via charge sensing, to determine if the reservoirs have a significant effect. The
effect of charge noise on spin manipulation should be studied, especially in the spin-valley
mixing regime, where fluctuations in the spin splitting can be significant. The 1/𝑓 nature
of these fluctuations suggests that charge noise is a likely candidate for their origin, but
further investigation is necessary to confirm this. Whilst EDSR has been demonstrated
using the spin-valley mixing [Cor18], the spin coherence time has not been measured and
enhanced decoherence could be detrimental to electrical control of coupled spins. The
characterization of coupled spins, and the effect of charge noise on two-qubit gates (via
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fluctuations in the coupling, for example), will be necessary further down the line, when such
operations have been demonstrated. Finally, efforts are underway in collaboration with our
industrial partner to study correlations between room-temperature and low-temperature
behaviour. Mass automated characterization at 2 K is now possible with a 300 mm wafer
cryo-prober, and many of the techniques presented here are possible at this temperature
and within the limitations of the cryo-prober, opening the door to obtaining statistics on
mass batch measurement of many devices from cycle to cycle.

CMOS qubits have come a long way since their first development. Though they lag
behind superconducting and semiconductor heterostructure quantum dots, their rapid
advancement in recent years is exciting for the field. As inter-device variability is reduced
and the design perfected, it is likely that further milestones will be reached in the coming
months and years. The push for progress has enormous weight behind it, with a powerhouse
of the semiconductor industry devoting significant resources towards a CMOS qubit, and
the longstanding expertise of the solid state research community to guide development.
Whether or not CMOS qubits are the eventual qubit of choice for a large scale quantum
computer, the progress that has been made in this field will contribute significantly towards
that end, as well as having implications for the wider semiconductor industry.





Bibliography

[Ahn20] Seongjin Ahn, S Das Sarma, and JP Kestner: ‘Microscopic bath effects on noise
spectra in semiconductor quantum dot qubits’, arXiv preprint arXiv:2007.03689
(2020) (see p. 72).

[Aru19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al.: ‘Quantum supremacy using a programmable superconducting processor’,
Nature 574 (2019), 505–510 (see pp. 7, 8).

[Bar14] Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank,
Evan Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell,
et al.: ‘Superconducting quantum circuits at the surface code threshold for fault
tolerance’, Nature 508 (2014), 500–503 (see p. 7).

[Ben08] Jan Benhelm, Gerhard Kirchmair, Christian F Roos, and Rainer Blatt: ‘Towards
fault-tolerant quantum computing with trapped ions’, Nature Physics 4 (2008),
463–466 (see p. 9).

[Ben84] Charles H Bennett and Gilles Brassard: ‘Quantum cryptography: Public key
distribution and coin tossing’, Proceedings of IEEE International Conference
on Computers, Systems and Signal Processing 175 (1984), 8 (see p. 2).

[Ber14] Adam Bermeister, Daniel Keith, and Dimitrie Culcer: ‘Charge noise, spin-orbit
coupling, and dephasing of single-spin qubits’, Applied Physics Letters 105
(2014), 192102 (see p. 58).

[Ber15] Benoit Bertrand: ‘Long-range transfer of spin information using individual
electrons’, ThÃ¨se de doctorat dirigÃ©e par Meunier, Tristan Physique de la
matiÃ¨re condensÃ©e et du rayonnement Grenoble Alpes 2015, PhD thesis,
2015 (see p. 33).

[Blo46] Felix Bloch: ‘Nuclear induction’, Physical review 70 (1946), 460 (see p. 3).
[Bou17] Dimitri Boudier, Bogdan Cretu, Eddy Simoen, Anabela Veloso, and Nadine

Collaert: ‘On quantum effects and low frequency noise spectroscopy in Si
Gate-All-Around Nanowire MOSFETs at cryogenic temperatures’, 2017 Joint
International EUROSOI Workshop and International Conference on Ultimate
Integration on Silicon (EUROSOI-ULIS), IEEE, 2017, 5–8 (see p. 76).

121



122 Bibliography

[Bou18] Léo Bourdet and Yann-Michel Niquet: ‘All-electrical manipulation of silicon
spin qubits with tunable spin-valley mixing’, Physical Review B 97 (2018),
155433 (see pp. 106, 107, 109–112, 114).

[Bro11] Kenton R Brown, Andrew C Wilson, Yves Colombe, C Ospelkaus, Adam M
Meier, Emanuel Knill, Dietrich Leibfried, and David J Wineland: ‘Single-qubit-
gate error below 10- 4 in a trapped ion’, Physical Review A 84 (2011), 030303
(see p. 9).

[Bru09] Daniel Brunner, Brian D Gerardot, Paul A Dalgarno, Gunter Wüst, Khaled
Karrai, Nick G Stoltz, Pierre M Petroff, and Richard J Warburton: ‘A coherent
single-hole spin in a semiconductor’, science 325 (2009), 70–72 (see p. 56).

[Bru19] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage:
‘Trapped-ion quantum computing: Progress and challenges’, Applied Physics
Reviews 6 (2019), 021314 (see p. 9).

[Cal74] MA Caloyannides: ‘Microcycle spectral estimates of 1/f noise in semiconductors’,
Journal of Applied Physics 45 (1974), 307–316 (see p. 59).

[Cam17] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot: ‘Roads towards
fault-tolerant universal quantum computation’, Nature 549 (2017), 172–179
(see p. 7).

[Cha20] Emmanuel Chanrion, David J Niegemann, Benoit Bertrand, Cameron Spence,
Baptiste Jadot, Jing Li, Pierre-André Mortemousque, Louis Hutin, Romain
Maurand, Xavier Jehl, et al.: ‘Charge detection in an array of CMOS quantum
dots’, Physical Review Applied 14 (2020), 024066 (see p. 87).

[Chi13] Lilian Childress and Ronald Hanson: ‘Diamond NV centers for quantum com-
puting and quantum networks’, MRS bulletin 38 (2013), 134–138 (see p. 9).

[Cir95] Juan I Cirac and Peter Zoller: ‘Quantum computations with cold trapped ions’,
Physical review letters 74 (1995), 4091 (see p. 9).

[CT20] Virginia N Ciriano-Tejel, Michael A Fogarty, Simon Schaal, Louis Hutin, Benoit
Bertrand, M Fernando Gonzalez-Zalba, Jing Li, Y-M Niquet, Maud Vinet, and
John JL Morton: ‘Spin readout of a CMOS quantum dot by gate reflectometry
and spin-dependent tunnelling’, arXiv preprint arXiv:2005.07764 (2020) (see
pp. 87, 88, 105, 107, 109, 111, 112).

[Con19] Elliot J Connors, JJ Nelson, Haifeng Qiao, Lisa F Edge, and John M Nichol:
‘Low-frequency charge noise in Si/SiGe quantum dots’, Physical Review B 100
(2019), 165305 (see pp. 56, 62, 71, 72, 76).

[Cor18] Andrea Corna, Léo Bourdet, Romain Maurand, Alessandro Crippa, Dharmraj
Kotekar-Patil, Heorhii Bohuslavskyi, Romain Laviéville, Louis Hutin, Sylvain
Barraud, Xavier Jehl, et al.: ‘Electrically driven electron spin resonance mediated
by spin–valley–orbit coupling in a silicon quantum dot’, npj quantum information
4 (2018), 1–7 (see pp. 13, 14, 87, 107, 111, 113, 114, 118).



Bibliography 123

[Cre13] Marco Crescentini, Marco Bennati, Marco Carminati, and Marco Tartagni:
‘Noise limits of CMOS current interfaces for biosensors: A review’, IEEE trans-
actions on biomedical circuits and systems 8 (2013), 278–292 (see p. 56).

[Cro97] SM Cronenwett, SR Patel, CM Marcus, K Campman, and AC Gossard: ‘Meso-
scopic fluctuations of elastic cotunneling in Coulomb blockaded quantum dots’,
Physical review letters 79 (1997), 2312 (see p. 10).

[Cul09] Dimitrie Culcer, Xuedong Hu, and S Das Sarma: ‘Dephasing of Si spin qubits
due to charge noise’, Applied Physics Letters 95 (2009), 073102 (see p. 56).

[Cul12] Dimitrie Culcer, AL Saraiva, Belita Koiller, Xuedong Hu, and S Das Sarma:
‘Valley-based noise-resistant quantum computation using Si quantum dots’,
Physical review letters 108 (2012), 126804 (see p. 102).

[Deh14] Juan P Dehollain, Juha T Muhonen, Kuan Y Tan, Andre Saraiva, David N
Jamieson, Andrew S Dzurak, and Andrea Morello: ‘Single-shot readout and
relaxation of singlet and triplet states in exchange-coupled p 31 electron spins
in silicon’, Physical review letters 112 (2014), 236801 (see p. 81).

[Den16] Vasil S Denchev, Sergio Boixo, Sergei V Isakov, Nan Ding, Ryan Babbush, Vadim
Smelyanskiy, John Martinis, and Hartmut Neven: ‘What is the computational
value of finite-range tunneling?’, Physical Review X 6 (2016), 031015 (see p. 10).

[DiV00] David P DiVincenzo: ‘The physical implementation of quantum computation’,
Fortschritte der Physik: Progress of Physics 48 (2000), 771–783 (see p. 4).

[Edw91] Arthur H Edwards: ‘Interaction of H and H 2 with the silicon dangling orbital at
the< 111> Si/SiO 2 interface’, Physical Review B 44 (1991), 1832 (see p. 57).

[Eke91] Artur K Ekert: ‘Quantum cryptography based on Bell’s theorem’, Physical
review letters 67 (1991), 661 (see p. 2).

[Elz03] JM Elzerman, R Hanson, JS Greidanus, LH Willems Van Beveren, S De
Franceschi, LMK Vandersypen, S Tarucha, and LP Kouwenhoven: ‘Few-electron
quantum dot circuit with integrated charge read out’, Physical Review B 67
(2003), 161308 (see p. 88).

[Elz04] JM Elzerman, R Hanson, LH Willems Van Beveren, B Witkamp, LMK Vander-
sypen, and Leo P Kouwenhoven: ‘Single-shot read-out of an individual electron
spin in a quantum dot’, nature 430 (2004), 431–435 (see pp. 88, 92).

[Fik95] W Fikry, G Ghibaudo, H Haddara, S Cristoloveanu, and M Dutoit: ‘Method
for extracting deep submicrometre MOSFET parameters’, Electronics Letters
31 (1995), 762–764 (see p. 44).

[Fla18] Fulvio Flamini, Nicolo Spagnolo, and Fabio Sciarrino: ‘Photonic quantum
information processing: a review’, Reports on Progress in Physics 82 (2018),
016001 (see p. 8).



124 Bibliography

[Fog18] MA Fogarty, KW Chan, B Hensen, W Huang, T Tanttu, CH Yang, A Laucht,
M Veldhorst, FE Hudson, KM Itoh, et al.: ‘Integrated silicon qubit platform
with single-spin addressability, exchange control and single-shot singlet-triplet
readout’, Nature communications 9 (2018), 1–8 (see p. 81).

[Fri07] Mark Friesen, Sucismita Chutia, Charles Tahan, and SN Coppersmith: ‘Valley
splitting theory of Si Ge/ Si/ Si Ge quantum wells’, Physical Review B 75
(2007), 115318 (see p. 106).

[Fuj04] T Fujisawa, T Hayashi, Y Hirayama, HD Cheong, and YH Jeong: ‘Electron
counting of single-electron tunneling current’, Applied physics letters 84 (2004),
2343–2345 (see p. 88).

[Fuj98] Toshimasa Fujisawa, Tjerk H Oosterkamp, Wilfred G Van der Wiel, Benno W
Broer, Ramón Aguado, Seigo Tarucha, and Leo P Kouwenhoven: ‘Spontaneous
emission spectrum in double quantum dot devices’, Science 282 (1998), 932–935
(see p. 144).

[Gam96] D Gammon, ES Snow, BV Shanabrook, DS Katzer, and D Park: ‘Homogeneous
linewidths in the optical spectrum of a single gallium arsenide quantum dot’,
Science 273 (1996), 87–90 (see p. 10).

[Ger98] Neil Gershenfeld and Isaac L Chuang: ‘Quantum computing with molecules’,
Scientific American 278 (1998), 66–71 (see p. 9).

[Ghi88] Gérard Ghibaudo: ‘New method for the extraction of MOSFET parameters’,
Electronics Letters 24 (1988), 543–545 (see p. 44).

[Gil95] David L Gilden, Thomas Thornton, and Mark W Mallon: ‘1 f noise in human
cognition’, Science 267 (1995), 1837–1839 (see p. 55).

[Han07] Ronald Hanson, Leo P Kouwenhoven, Jason R Petta, Seigo Tarucha, and Lieven
MK Vandersypen: ‘Spins in few-electron quantum dots’, Reviews of modern
physics 79 (2007), 1217 (see pp. 30, 89, 102).

[HC19] Patrick Harvey-Collard, N Tobias Jacobson, Chloé Bureau-Oxton, Ryan M Jock,
Vanita Srinivasa, Andrew M Mounce, Daniel R Ward, John M Anderson, Ronald
P Manginell, Joel R Wendt, et al.: ‘Spin-orbit interactions for singlet-triplet
qubits in silicon’, Physical review letters 122 (2019), 217702 (see p. 82).

[Hau14] M Hauck, F Seilmeier, SE Beavan, A Badolato, PM Petroff, and A Högele:
‘Locating environmental charge impurities with confluent laser spectroscopy of
multiple quantum dots’, Physical Review B 90 (2014), 235306 (see p. 56).

[Hei03] Thomas Heinzel and Igor Zozoulenko: Mesoscopic electronics in solid state
nanostructures, vol. 3, Wiley Online Library, 2003 (see p. 23).

[Hof17] Andrea Hofmann, Ville F Maisi, Tobias Krähenmann, Christian Reichl, Werner
Wegscheider, Klaus Ensslin, and Thomas Ihn: ‘Anisotropy and suppression of
spin-orbit interaction in a gaas double quantum dot’, Physical review letters
119 (2017), 176807 (see pp. 108, 112).



Bibliography 125

[Hoo94] Friits N Hooge: ‘1 f noise sources’, IEEE Transactions on electron devices 41
(1994), 1926–1935 (see p. 56).

[Hu06] Xuedong Hu and S Das Sarma: ‘Charge-fluctuation-induced dephasing of
exchange-coupled spin qubits’, Physical review letters 96 (2006), 100501 (see
p. 60).

[Hua20] He-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo Zhu: ‘Superconducting
quantum computing: a review’, Science China Information Sciences 63 (2020),
1–32 (see p. 7).

[Hua14a] Peihao Huang and Xuedong Hu: ‘Electron spin relaxation due to charge noise’,
Physical Review B 89 (2014), 195302 (see pp. 60, 103).

[Hua14b] Peihao Huang and Xuedong Hu: ‘Spin relaxation in a Si quantum dot due to
spin-valley mixing’, Physical Review B 90 (2014), 235315 (see pp. 103, 105).

[Hut16] L Hutin, R Maurand, D Kotekar-Patil, A Corna, H Bohuslavskyi, X Jehl, S
Barraud, S De Franceschi, M Sanquer, and M Vinet: ‘Si CMOS platform for
quantum information processing’, 2016 IEEE Symposium on VLSI Technology,
IEEE, 2016, 1–2 (see p. 10).

[Ibb18] David J Ibberson, Léo Bourdet, José C Abadillo-Uriel, Imtiaz Ahmed, Sylvain
Barraud, María J Calderón, Y-M Niquet, and M Fernando Gonzalez-Zalba:
‘Electric-field tuning of the valley splitting in silicon corner dots’, Applied Physics
Letters 113 (2018), 053104 (see p. 106).

[Ibb20] David J Ibberson, Theodor Lundberg, James A Haigh, Louis Hutin, Benoit
Bertrand, Sylvain Barraud, Chang-Min Lee, Nadia A Stelmashenko, Jason WA
Robinson, Maud Vinet, et al.: ‘Large dispersive interaction between a CMOS
double quantum dot and microwave photons’, arXiv preprint arXiv:2004.00334
(2020) (see p. 88).

[Ito14] Kohei M Itoh and Hideyuki Watanabe: ‘Isotope engineering of silicon and dia-
mond for quantum computing and sensing applications’, MRS communications
4 (2014), 143–157 (see p. 83).

[Jad21] Baptiste Jadot, Pierre-André Mortemousque, Emmanuel Chanrion, Vivien
Thiney, Arne Ludwig, Andreas D Wieck, Matias Urdampilleta, Christopher
Bäuerle, and Tristan Meunier: ‘Distant spin entanglement via fast and coherent
electron shuttling’, Nature Nanotechnology (2021), 1–6 (see p. 10).

[Jak98] C Jakobson, I Bloom, and Y Nemirovsky: ‘1 f noise in CMOS transistors for
analog applications from subthreshold to saturation’, Solid-State Electronics
42 (1998), 1807–1817 (see p. 56).

[Jes17] Jan Jeske, Desmond WM Lau, Xavier Vidal, Liam P McGuinness, Philipp
Reineck, Brett C Johnson, Marcus W Doherty, Jeffrey C McCallum, Shinobu
Onoda, Fedor Jelezko, et al.: ‘Stimulated emission from nitrogen-vacancy centres
in diamond’, Nature communications 8 (2017), 1–8 (see p. 10).



126 Bibliography

[Jon01] Jonathan A Jones: ‘Quantum computing and nuclear magnetic resonance’,
PhysChemComm 4 (2001), 49–56 (see p. 9).

[Jun06] Hak Kee Jung and Sima Dimitrijev: ‘Analysis of subthreshold carrier transport
for ultimate DGMOSFET’, IEEE transactions on electron devices 53 (2006),
685–691 (see p. 44).

[Jun04] SW Jung, T Fujisawa, Y Hirayama, and YH Jeong: ‘Background charge fluc-
tuation in a GaAs quantum dot device’, Applied Physics Letters 85 (2004),
768–770 (see pp. 33, 56, 90).

[Kan98] Bruce E Kane: ‘A silicon-based nuclear spin quantum computer’, nature 393
(1998), 133–137 (see p. 10).

[Kim15] Dohun Kim, DR Ward, CB Simmons, John King Gamble, Robin Blume-Kohout,
Erik Nielsen, DE Savage, MG Lagally, Mark Friesen, SN Coppersmith, et al.:
‘Microwave-driven coherent operation of a semiconductor quantum dot charge
qubit’, Nature nanotechnology 10 (2015), 243–247 (see p. 113).

[Kim19] J-S Kim, Thomas M Hazard, Andrew A Houck, and Stephen A Lyon: ‘A low-
disorder metal-oxide-silicon double quantum dot’, Applied Physics Letters 114
(2019), 043501 (see p. 62).

[Kon14] Mikhail Konnik and James Welsh: ‘High-level numerical simulations of noise in
CCD and CMOS photosensors: review and tutorial’, arXiv preprint arXiv:1412.4031
(2014) (see p. 56).

[Kop06] Frank HL Koppens, Christo Buizert, Klaas-Jan Tielrooij, Ivo T Vink, Katja C
Nowack, Tristan Meunier, LP Kouwenhoven, and LMK Vandersypen: ‘Driven
coherent oscillations of a single electron spin in a quantum dot’, Nature 442
(2006), 766–771 (see p. 87).

[Kou01] Leo P Kouwenhoven, DG Austing, and Seigo Tarucha: ‘Few-electron quantum
dots’, Reports on Progress in Physics 64 (2001), 701 (see pp. 19, 22).

[Kum90] Arvind Kumar, Steven E Laux, and Frank Stern: ‘Electron states in a GaAs
quantum dot in a magnetic field’, Physical Review B 42 (1990), 5166 (see p. 10).

[Lan14] Trevor Lanting, Anthony J Przybysz, A Yu Smirnov, Federico M Spedalieri,
Mohammad H Amin, Andrew J Berkley, Richard Harris, Fabio Altomare, Sergio
Boixo, Paul Bunyk, et al.: ‘Entanglement in a quantum annealing processor’,
Physical Review X 4 (2014), 021041 (see p. 10).

[Lee06] Jeong-Hyun Lee, Sang-Yun Kim, Il-Hyun Cho, Sung-Bo Hwang, and Jong-Ho
Lee: ‘1 f noise characteristics of sub-100 nm MOS transistors’, JSTS: Journal
of Semiconductor Technology and Science 6 (2006), 38–42 (see p. 56).

[Len01] Patrick M Lenahan, TD Mishima, J Jumper, TN Fogarty, and RT Wilkins:
‘Direct experimental evidence for atomic scale structural changes involved in the
interface-trap transformation process’, IEEE Transactions on Nuclear Science
48 (2001), 2131–2135 (see p. 57).



Bibliography 127

[Li94] X Li and LKJ Vandamme: ‘Normalised 1 f noise: a more sensitive diagnostic
tool for hot-carrier degradation in submicron MOSFET’s’, conference; Proc.
5th European Symposium on Reliability of Electron Devices, Failure Physics
and Analysis, Glasgow, UK, October 1994, 1994, 131–134 (see p. 56).

[Liu09] T-JK Liu and L Chang: ‘Transistor scaling to the limit’, Into the Nano Era,
2009, 191–223 (see p. 1).

[Liv96] C Livermore, CH Crouch, RM Westervelt, KL Campman, and AC Gossard: ‘The
Coulomb blockade in coupled quantum dots’, Science 274 (1996), 1332–1335
(see p. 10).

[Los98] Daniel Loss and David P DiVincenzo: ‘Quantum computation with quantum
dots’, Physical Review A 57 (1998), 120 (see p. 10).

[Lun02] Kent H Lundberg: ‘Noise sources in bulk CMOS’, Unpublished paper 3 (2002),
28 (see p. 56).

[Mac11] Chris A Mack: ‘Fifty years of Moore’s law’, IEEE Transactions on semiconductor
manufacturing 24 (2011), 202–207 (see p. 1).

[Mat86] WH Matthaeus and ML Goldstein: ‘Low-frequency 1 f noise in the interplanetary
magnetic field’, Physical review letters 57 (1986), 495 (see p. 55).

[Mau16] R Maurand, X Jehl, D Kotekar-Patil, A Corna, H Bohuslavskyi, R Laviéville,
L Hutin, S Barraud, M Vinet, M Sanquer, et al.: ‘A CMOS silicon spin qubit’,
Nature communications 7 (2016), 1–6 (see pp. 13, 14, 87).

[McW57] AL McWhorter and RH Kingston: ‘Semiconductor surface physics’, Univerisity
of Pennsylvania Press, Philadelphia, PA (1957), 207–228 (see pp. 56, 61).

[Mon95] Chris Monroe, David M Meekhof, Barry E King, Wayne M Itano, and David
J Wineland: ‘Demonstration of a fundamental quantum logic gate’, Physical
review letters 75 (1995), 4714 (see p. 9).

[Mon13] Christopher Monroe and Jungsang Kim: ‘Scaling the ion trap quantum proces-
sor’, Science 339 (2013), 1164–1169 (see p. 8).

[Mon16] Thomas Monz, Daniel Nigg, Esteban A Martinez, Matthias F Brandl, Philipp
Schindler, Richard Rines, Shannon X Wang, Isaac L Chuang, and Rainer Blatt:
‘Realization of a scalable Shor algorithm’, Science 351 (2016), 1068–1070 (see
p. 9).

[Moo21] Gary J Mooney, Gregory AL White, Charles D Hill, and Lloyd CL Hollenberg:
‘Whole-device entanglement in a 65-qubit superconducting quantum computer’,
arXiv preprint arXiv:2102.11521 (2021) (see p. 7).

[Mor10] Andrea Morello, Jarryd J Pla, Floris A Zwanenburg, Kok W Chan, Kuan Y
Tan, Hans Huebl, Mikko Möttönen, Christopher D Nugroho, Changyi Yang,
Jessica A Van Donkelaar, et al.: ‘Single-shot readout of an electron spin in
silicon’, Nature 467 (2010), 687–691 (see pp. 11, 88, 96, 99).



128 Bibliography

[Mor18] Pierre-Andre Mortemousque, Emmanuel Chanrion, Baptiste Jadot, Hanno
Flentje, Arne Ludwig, Andreas D Wieck, Matias Urdampilleta, Christopher
Bauerle, and Tristan Meunier: ‘Coherent control of individual electron spins in
a two dimensional array of quantum dots’, arXiv preprint arXiv:1808.06180
(2018) (see p. 10).

[Mye08] AH Myerson, DJ Szwer, SC Webster, DTC Allcock, MJ Curtis, G Imreh, JA
Sherman, DN Stacey, AM Steane, and DM Lucas: ‘High-fidelity readout of
trapped-ion qubits’, Physical Review Letters 100 (2008), 200502 (see p. 9).

[Nak99] Yasunobu Nakamura, Yu A Pashkin, and Jaw Shen Tsai: ‘Coherent control of
macroscopic quantum states in a single-Cooper-pair box’, nature 398 (1999),
786–788 (see p. 7).

[Nat14] S Natarajan, M Agostinelli, S Akbar, M Bost, A Bowonder, V Chikarmane,
S Chouksey, A Dasgupta, K Fischer, Q Fu, et al.: ‘A 14nm logic technology
featuring 2 nd-generation finfet, air-gapped interconnects, self-aligned double
patterning and a 0.0588 𝜇m 2 sram cell size’, 2014 IEEE International Electron
Devices Meeting, IEEE, 2014, 3–7 (see p. 1).

[Nie01] Michael A Nielsen and Isaac L Chuang: ‘Quantum computation and quantum
information’, Phys. Today 54 (2001), 60 (see p. 6).

[OC02] Adelmo Ortiz-Conde, FJ Garcıa Sánchez, Juin J Liou, Antonio Cerdeira, Magali
Estrada, and Y Yue: ‘A review of recent MOSFET threshold voltage extraction
methods’, Microelectronics reliability 42 (2002), 583–596 (see p. 43).

[Pal14] E Paladino, YM Galperin, G Falci, and BL Altshuler: ‘1/f noise: Implications
for solid-state quantum information’, Reviews of Modern Physics 86 (2014),
361 (see pp. 58, 61).

[Pen20] Nicholas Penthorn: ‘Investigating Valley States and their Interactions in Silicon/Silicon-
Germanium Quantum Dots’, PhD thesis, UCLA, 2020 (see pp. 101, 102, 104).

[Pet99] MG Peters, JI Dijkhuis, and LW Molenkamp: ‘Random telegraph signals and 1/f
noise in a silicon quantum dot’, Journal of applied physics 86 (1999), 1523–1526
(see p. 56).

[Pet18] L Petit, JM Boter, HGJ Eenink, G Droulers, MLV Tagliaferri, R Li, DP Franke,
KJ Singh, JS Clarke, RN Schouten, et al.: ‘Spin lifetime and charge noise in
hot silicon quantum dot qubits’, Physical review letters 121 (2018), 076801 (see
pp. 62, 72).

[Pet05] Jason R Petta, Alexander Comstock Johnson, Jacob M Taylor, Edward A
Laird, Amir Yacoby, Mikhail D Lukin, Charles M Marcus, Micah P Hanson,
and Arthur C Gossard: ‘Coherent manipulation of coupled electron spins in
semiconductor quantum dots’, Science 309 (2005), 2180–2184 (see p. 56).

[Pla12] Jarryd J Pla, Kuan Y Tan, Juan P Dehollain, Wee H Lim, John JL Morton,
David N Jamieson, Andrew S Dzurak, and Andrea Morello: ‘A single-atom
electron spin qubit in silicon’, Nature 489 (2012), 541–545 (see pp. 10, 59, 83,
84, 88).



Bibliography 129

[Rio99] Michael Riordan, Lillian Hoddeson, and Conyers Herring: ‘The invention of the
transistor’, More Things in Heaven and Earth (1999), 563–578 (see p. 1).

[Sar11] AL Saraiva, MJ Calderón, Rodrigo B Capaz, Xuedong Hu, S Das Sarma, and
Belita Koiller: ‘Intervalley coupling for interface-bound electrons in silicon: an
effective mass study’, Physical Review B 84 (2011), 155320 (see p. 106).

[Sim11] CB Simmons, JR Prance, BJ Van Bael, Teck Seng Koh, Zhan Shi, DE Savage,
MG Lagally, Robert Joynt, Mark Friesen, SN Coppersmith, et al.: ‘Tunable
spin loading and T 1 of a silicon spin qubit measured by single-shot readout’,
Physical review letters 106 (2011), 156804 (see p. 103).

[Slu19] Sergei Slussarenko and Geoff J Pryde: ‘Photonic quantum information pro-
cessing: A concise review’, Applied Physics Reviews 6 (2019), 041303 (see
p. 7).

[Ste99] Andrew M Steane: ‘Efficient fault-tolerant quantum computing’, Nature 399
(1999), 124–126 (see p. 4).

[Str20] Tom Struck, Arne Hollmann, Floyd Schauer, Olexiy Fedorets, Andreas Schmid-
bauer, Kentarou Sawano, Helge Riemann, Nikolay V Abrosimov, Łukasz Cy-
wiński, Dominique Bougeard, et al.: ‘Low-frequency spin qubit energy splitting
noise in highly purified 28 Si/SiGe’, npj Quantum Information 6 (2020), 1–7
(see pp. 59, 84).

[Swi98] M Switkes, AG Huibers, CM Marcus, K Campman, and AC Gossard: ‘High bias
transport and magnetometer design in open quantum dots’, Applied physics
letters 72 (1998), 471–473 (see p. 10).

[Tah14] Charles Tahan and Robert Joynt: ‘Relaxation of excited spin, orbital, and valley
qubit states in ideal silicon quantum dots’, Physical Review B 89 (2014), 075302
(see p. 105).

[Tan19] Tuomo Tanttu, Bas Hensen, Kok Wai Chan, Chih Hwan Yang, Wister Wei
Huang, Michael Fogarty, Fay Hudson, Kohei Itoh, Dimitrie Culcer, Arne Laucht,
et al.: ‘Controlling spin-orbit interactions in silicon quantum dots using magnetic
field direction’, Physical Review X 9 (2019), 021028 (see p. 58).

[Tar96] Seigo Tarucha, DG Austing, T Honda, RJ Van der Hage, and Leo P Kouwen-
hoven: ‘Shell filling and spin effects in a few electron quantum dot’, Physical
Review Letters 77 (1996), 3613 (see p. 22).

[Top00] MA Topinka, Brian J LeRoy, SEJ Shaw, EJ Heller, RM Westervelt, KD
Maranowski, and AC Gossard: ‘Imaging coherent electron flow from a quantum
point contact’, Science 289 (2000), 2323–2326 (see p. 88).

[Tow] Towards Data Science, https://towardsdatascience.com/can-we-teach-a-
computer-quantum-mechanics-part-i-c3e724e31e1a, Accessed: 2021-04-22
(see p. 3).

https://towardsdatascience.com/can-we-teach-a-computer-quantum-mechanics-part-i-c3e724e31e1a
https://towardsdatascience.com/can-we-teach-a-computer-quantum-mechanics-part-i-c3e724e31e1a


130 Bibliography

[Tsu99] Morikazu Tsuno, Masato Suga, Masayasu Tanaka, Kentaro Shibahara, Mitiko
Miura-Mattausch, and Masataka Hirose: ‘Physically-based threshold voltage
determination for MOSFET’s of all gate lengths’, IEEE transactions on electron
devices 46 (1999), 1429–1434 (see p. 43).

[Tuo17] Jani Tuorila, Matti Partanen, Tapio Ala-Nissila, and Mikko Möttönen: ‘Efficient
protocol for qubit initialization with a tunable environment’, npj Quantum
Information 3 (2017), 1–12 (see p. 4).

[Tyr12] Alexei M Tyryshkin, Shinichi Tojo, John JL Morton, Helge Riemann, Nikolai V
Abrosimov, Peter Becker, Hans-Joachim Pohl, Thomas Schenkel, Michael LW
Thewalt, Kohei M Itoh, et al.: ‘Electron spin coherence exceeding seconds in
high-purity silicon’, Nature materials 11 (2012), 143–147 (see pp. 10, 103).

[Urd19] Matias Urdampilleta, David J Niegemann, Emmanuel Chanrion, Baptiste Jadot,
Cameron Spence, Pierre-André Mortemousque, Christopher Bäuerle, Louis
Hutin, Benoit Bertrand, Sylvain Barraud, et al.: ‘Gate-based high fidelity spin
readout in a CMOS device’, Nature nanotechnology 14 (2019), 737–741 (see
pp. 15, 87).

[Van94] Lode KJ Vandamme, Xiaosong Li, and Dominique Rigaud: ‘1/f noise in MOS
devices, mobility or number fluctuations?’, IEEE Transactions on Electron
Devices 41 (1994), 1936–1945 (see p. 56).

[Van01] Lieven MK Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S
Yannoni, Mark H Sherwood, and Isaac L Chuang: ‘Experimental realization of
Shor’s quantum factoring algorithm using nuclear magnetic resonance’, Nature
414 (2001), 883–887 (see p. 9).

[Vel17] M Veldhorst, HGJ Eenink, Chih-Hwan Yang, and Andrew S Dzurak: ‘Silicon
CMOS architecture for a spin-based quantum computer’, Nature communica-
tions 8 (2017), 1–8 (see p. 10).

[Vel15] Menno Veldhorst, CH Yang, JCC Hwang, W Huang, JP Dehollain, JT Muhonen,
S Simmons, A Laucht, FE Hudson, Kohei M Itoh, et al.: ‘A two-qubit logic
gate in silicon’, Nature 526 (2015), 410–414 (see pp. 12, 13).

[Voi13] Sorin Voinigescu: High-frequency integrated circuits, Cambridge University Press,
2013 (see p. 1).

[Wes19] Anderson West, Bas Hensen, Alexis Jouan, Tuomo Tanttu, Chih-Hwan Yang,
Alessandro Rossi, M Fernando Gonzalez-Zalba, Fay Hudson, Andrea Morello,
David J Reilly, et al.: ‘Gate-based single-shot readout of spins in silicon’, Nature
nanotechnology 14 (2019), 437–441 (see p. 87).

[Wes89] Bruce J West and Michael F Shlesinger: ‘On the ubiquity of 1 f noise’, Interna-
tional Journal of Modern Physics B 3 (1989), 795–819 (see p. 55).

[Wie02] Wilfred G Van der Wiel, Silvano De Franceschi, Jeroen M Elzerman, Toshimasa
Fujisawa, Seigo Tarucha, and Leo P Kouwenhoven: ‘Electron transport through
double quantum dots’, Reviews of Modern Physics 75 (2002), 1 (see p. 137).



Bibliography 131

[Yan13] CH Yang, A Rossi, R Ruskov, NS Lai, FA Mohiyaddin, S Lee, C Tahan, Gerhard
Klimeck, A Morello, and AS Dzurak: ‘Spin-valley lifetimes in a silicon quantum
dot with tunable valley splitting’, Nature communications 4 (2013), 1–8 (see
pp. 60, 87, 88, 101, 102, 105, 106).

[Yon17] J Yoneda, K Takeda, T Otsuka, T Nakajima, MR Delbecq, G Allison, T Honda,
T Kodera, S Oda, Y Hoshi, et al.: ‘A> 99.9%-fidelity quantum-dot spin qubit
with coherence limited by charge noise’, arXiv preprint arXiv:1708.01454 (2017)
(see pp. 10–12, 55, 60, 78).

[Zha20] Xin Zhang, Rui-Zi Hu, Hai-Ou Li, Fang-Ming Jing, Yuan Zhou, Rong-Long Ma,
Ming Ni, Gang Luo, Gang Cao, Gui-Lei Wang, et al.: ‘Giant anisotropy of spin
relaxation and spin-valley mixing in a silicon quantum dot’, Physical Review
Letters 124 (2020), 257701 (see pp. 103, 105, 107, 108, 110–112).

[Zho99] X Zhou, KY Lim, and D Lim: ‘A simple and unambiguous definition of threshold
voltage and its implications in deep-submicron MOS device modeling’, IEEE
Transactions on Electron Devices 46 (1999), 807–809 (see p. 44).





List of Figures

1.1 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quantum algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Qubit realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 High-fidelity readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Single- and two-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 CMOS qubit manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Single-shot readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Quantum Dot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Coulomb blockade model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Coulomb peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Coulomb diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Charge detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Double dot spin states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Energy selective readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Tunnel rate readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Spin blockade readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Experiment schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Room temperature characterization . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Low-temperature stability diagram . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Coulomb diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Addition energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Lever arm calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Dangling bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Charge noise induced relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 1/f charge noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Charge Noise measurement method . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Charge noise across a coulomb peak . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Vertical manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Lateral manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

133



134 List of Figures

4.8 Bistable fluctuator simulations . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.9 Si/SiGe charge noise temperature dependence . . . . . . . . . . . . . . . . . 72
4.10 Temperature dependence of charge noise . . . . . . . . . . . . . . . . . . . . 74
4.11 Variation of 𝛾 with temperature . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.12 Arrhenius plot for individual fluctuator spectra . . . . . . . . . . . . . . . . 77
4.13 First electron transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.14 Single electron charge noise measurement method . . . . . . . . . . . . . . . 80
4.15 Charge noise with electron occupancy . . . . . . . . . . . . . . . . . . . . . 82
4.16 𝑇 *

2 simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Energy selective readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Measurement fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Loading Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 𝑇1 measurement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Valley states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 Spin-valley hotspot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.8 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.9 Magnetic field anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.10 Charge noise measurement via spin relaxation . . . . . . . . . . . . . . . . . 113

A.1 Double dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.2 Double dot potential schematic . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3 Double dot stability diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.4 Triple points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



List of Tables

5.1 Readout and initialization errors . . . . . . . . . . . . . . . . . . . . . . . . . 97

135





APPENDIX A
Double Quantum Dots

A.1 Double dot energy
While a single quantum dot is sufficient to define a single qubit, to fully exploit the potential
of quantum computers, we require the ability to entangle two qubits. While there are
proposals for methods to transfer quantum information over long distances, the simplest
and most direct method of quantum information transfer between adjacent qubits is to
directly transmit an electron from one quantum dot to another. The double quantum dot
system is an extension of the single dot system that enables more dynamic measurement
and manipulation of electrons. Similarly to how a single dot can be considered an artificial
atom, double dots (or more complex systems of multiple dots) are analagous to artificial
molecules.

The double dot system is constructed using a second quantum dot that is tunnel coupled
to the first, as demonstrated in Fig. A.1. Each dot is also coupled to a single reservoir, to
allow movement of electrons in and out of each dot independently. In addition, the on-site
potential energy of each dot is manipulated through a plunger gate, which for a single dot
had an applied voltage 𝑉𝐺. To distinguish between the potential applied to each dot in
this case, we use 𝑉𝐺1 and 𝑉𝐺2 instead. Additionally, the capacitive coupling of the dot to
the plunger gate is 𝐶𝐺1 and 𝐶𝐺2, and the relevant alpha factor 𝛼𝐺1 and 𝛼𝐺2. The dots
have 𝑁1 and 𝑁2 electrons respectively. Similarly, each dot has its own self-capacitance,
which is the sum of all capacitances the dot experiences, which we denote 𝐶1𝛴 and 𝐶2𝛴.
For each dot, this will be:

𝐶𝑖𝛴 = 𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 + 𝐶𝐺𝑖 + 𝐶12 (A.1)

Where 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 is the Source for dot 1 and Drain for dot 2, and 𝐶12 is the inter-dot
capacitance. The charge on each dot is, as before, the sum of 𝐶𝑖𝑉𝑖 for each relevant
capacitance and voltage acting on the dot, therefore:

𝑄1(2) = 𝐶𝑆(𝐷)(𝑉1(2) − 𝑉𝑆(𝐷) + 𝐶𝐺1(2)(𝑉1(2) − 𝑉𝐺1(2)) + 𝐶12(𝑉1(2) − 𝑉2(1)) (A.2)

This can be more succinctly expressed in matrix form, as −→
𝑄 = C−→

𝑉 [Wie02], where:
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Figure A.1: Double dot Model of a double quantum dot. Here two dots are defined in
series, labelled Dot 1 and Dot 2. Each has a self-capacitance 𝐶𝑖𝛴. Each is capacitively coupled
to a gate with capacitance 𝐶𝐺𝑖 and applied voltage 𝑉𝐺𝑖. Each has a tunnel coupling to one
of the two electron reservoirs, source and drain, and there is a tunnel junction between them
with capacitance 𝐶12. An applied voltage 𝑉𝑆𝐷 forms the potential difference across the two
reservoirs.

−→
𝑄 =

(︂
𝑄1 + 𝐶𝑆𝑉𝑆 + 𝐶𝐺1𝑉𝐺1
𝑄2 + 𝐶𝐷𝑉𝐷 + 𝐶𝐺2𝑉𝐺2

)︂
(A.3)

C =

⎛⎝𝐶1𝛴 −𝐶12

−𝐶12 𝐶2𝛴

⎞⎠ (A.4)

−→
𝑉 =

(︂
𝑉1
𝑉2

)︂
(A.5)

C is often referred to as the capacitance matrix of the system. In general, the diagonal
elements C𝑖𝑖 are the self-capacitance for dot 𝑖, while the off-diagonal elements C𝑖𝑗 are the
inter-dot capacitance between dots 𝑖 and 𝑗. For the double dot, we obtain:

(︂
𝑄1 + 𝐶𝑆𝑉𝑆 + 𝐶𝐺1𝑉𝐺1
𝑄2 + 𝐶𝐷𝑉𝐷 + 𝐶𝐺2𝑉𝐺2

)︂
=

⎛⎝𝐶1𝛴 −𝐶12

−𝐶12 𝐶2𝛴

⎞⎠(︂
𝑉1
𝑉2

)︂
(A.6)

The voltage on dot 𝑖 is given by −→
𝑉𝑖 = 𝐶−1

𝑖𝛴(−→𝑄𝑖 + 𝐶12
−→
𝑉𝑗). The capacitance matrix is

invertible, with 𝑑𝑒𝑡(C) = 𝐶1𝐶2 − 𝐶2
12, meaning we can rewrite Eqn. A.6 to obtain the

on-site potentials 𝑉𝑖:
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(︂
𝑉1
𝑉2

)︂
= 1

𝐶1𝐶2 − 𝐶2
12

⎛⎝𝐶1𝛴 −𝐶12

−𝐶12 𝐶2𝛴

⎞⎠(︂
𝑄1 + 𝐶𝑆𝑉𝑆 + 𝐶𝐺1𝑉𝐺1
𝑄2 + 𝐶𝐷𝑉𝐷 + 𝐶𝐺2𝑉𝐺2

)︂
(A.7)

As in the single-dot case, we obtain the energy of the system using 𝑈 = 𝑄2

2𝐶 , which in
matrix format is:

𝑈 = 1
2

−→
𝑄 · C−1−→

𝑄 (A.8)

For the case where 𝑉𝑆 = 𝑉𝐷 = 0 and 𝑄𝑖 = −𝑁𝑖|𝑒|, we obtain:

𝑈(𝑁1,𝑁2) = 1
2𝑁2

1 𝐸𝐶1 + 1
2𝑁2

2 𝐸𝐶2 + 𝑁1𝑁2𝐸𝐶12 + 𝑓(𝑉𝐺1,𝑉𝐺2) (A.9)

Where:

𝑓(𝑉𝐺1,𝑉𝐺2) = 1
−|𝑒|

[𝐶𝐺1𝑉𝐺1(𝑁1𝐸𝐶1 + 𝑁2𝐸𝐶12) + 𝐶𝐺2𝑉𝐺2(𝑁1𝐸𝐶12 + 𝑁2𝐸𝐶2)]

+ 1
𝑒2 [12𝐶2

𝐺1𝑉 2
𝐺1𝐸𝐶1 + 1

2𝐶2
𝐺2𝑉 2

𝐺2𝐸𝐶1 + 𝐶𝐺1𝑉𝐺1𝐶𝐺2𝑉𝐺2𝐸𝐶12] (A.10)

And we define:

𝐸𝐶1 = 𝑒2

𝐶1𝛴

⎛⎜⎝ 1
1 − 𝐶2

12
𝐶

1𝛴𝐶
2𝛴

⎞⎟⎠ (A.11)

𝐸𝐶2 = 𝑒2

𝐶2𝛴

⎛⎜⎝ 1
1 − 𝐶2

12
𝐶

1𝛴𝐶
2𝛴

⎞⎟⎠ (A.12)

𝐸𝐶12 = 𝑒2

𝐶12

⎛⎜⎝ 1
𝐶

1𝛴𝐶
2𝛴

𝐶2
12

− 1

⎞⎟⎠ (A.13)

as the dot 1 charging energy, dot 2 charging energy, and inter-dot electrostatic coupling
energy respectively. The coupling energy can be thought of as the change in the energy
of dot 1 when an electron is loaded into dot 2 (and vice versa). The individual charging
energies 𝐸𝐶𝑖 have the same form as seen for the single dot, with an additional correction
factor to account for the inter-dot coupling. If we consider the case where the dots are
completely decoupled, meaning 𝐶12 = 0 and 𝐸𝐶12 = 0, the energy of the system simplifies
to:

𝑈(𝑁1,𝑁2) = (−𝑁1|𝑒| + 𝐶𝐺1𝑉𝐺1)2

2𝐶1𝛴
+ (−𝑁2|𝑒| + 𝐶𝐺2𝑉𝐺2)2

2𝐶2𝛴
(A.14)
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which is the energy of two individual dots. Conversely, we can increase the inter-dot
capacitance 𝐶12 until there is no meaningful potential barrier between the quantum dots
and the system resembles a single dot controlled by two gates. By setting the inter-dot
capacitance to be dominant, i.e. 𝐶12 → 𝐶𝑖𝛴, the system energy becomes:

𝑈(𝑁1,𝑁2) = (−𝑁1|𝑒| + 𝐶𝐺1𝑉𝐺1)2

2
(︀
𝐶1𝛴 + 𝐶2𝛴 − 2𝐶12

)︀ (A.15)

This is analagous to a single-dot energy with modulation via two gates. Therefore by
changing the capacitance between the dots 𝐶12, we are able to fully tune the system from
two isolated dots to a single dot, with various stages of intermediate coupling.

A.2 Double dot transport
Similarly to the single dot situation, it is preferable to express the system in terms of
electrochemical potentials when discussing movement of electrons. We define 𝜇1(𝑁1,𝑁2)
as the energy required to add the 𝑁1th electron to dot 1 with 𝑁2 electrons on dot 2.
In contrast to the single dot, we now have to take account of the electron occupancy of
the adjacent dot, as this has a capacitive effect on dot 1 due to the inter-dot coupling.
Following the same principle as for the single dot, and continuing to consider the purely
classical case:

𝜇1(𝑁1,𝑁2) = 𝑈(𝑁1,𝑁2) − 𝑈(𝑁1 − 1,𝑁2)

= (𝑁1 − 1
2)𝐸𝐶1 + 𝑁2𝐸𝐶12 − 1

|𝑒|
(𝐶𝐺1𝑉𝐺1𝐸𝐶1 + 𝐶𝐺2𝑉𝐺2𝐸𝐶12) (A.16)

And equivalently for dot 2:

𝜇2(𝑁1,𝑁2) = 𝑈(𝑁1,𝑁2) − 𝑈(𝑁1,𝑁2 − 1)

= (𝑁2 − 1
2)𝐸𝐶2 + 𝑁2𝐸𝐶12 − 1

|𝑒|
(𝐶𝐺1𝑉𝐺1𝐸𝐶12 + 𝐶𝐺2𝑉𝐺2𝐸𝐶2) (A.17)

The first term is the single-dot potential due to the number of electrons in the dot. The
second term is the additional energy induced by the number of electrons in the adjacent
dot. Finally, the third term is the energy induced by each of the two gates 𝑉𝐺1 and 𝑉𝐺2,
directly and across the interdot coupling. As before, 𝐸𝐶1 and 𝐸𝐶2 are the addition energies
of dot 1 and 2, and in the classical regime are identically the charging energies of the dots.
𝐸𝐶12 is the change in energy experienced by the a dot when the adjacent dot is charged
with an additional electron.

This discussion so far has been entirely classical. The quantum part of the addition
spectrum is induced by the orbital level splitting, as in the single dot case. We introduce
the additional term 𝐸𝑁1−1,𝑁1 to account for the discrete level splitting:

𝜇1(𝑁1,𝑁2) − 𝜇1(𝑁1 − 1,𝑁2) = 𝐸𝐶1 + 𝐸𝑁1−1,𝑁1 (A.18)
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and similarly for the addition energy of dot 2. In order to analyse the energy spectrum
of the quantum dots, the current through the double dot system can be measured for each
linear combination of voltages 𝑉𝐺1 and 𝑉𝐺2. This results in a 2D map known as a stability
diagram.

Figure A.2: Double dot potential The potentials of a double dot system in coulomb
blockade. In order for blockade to be lifted, a potential level must reside within the bias
window for each dot, otherwise transport is prevented through the system. In each dot, the
energy levels are filled up to 𝜇1(𝑁1 + 1) 𝜇2(𝑁2 + 1).

The potential landscape of a double dot system in series is indicated in Fig. A.2. For this
case we have a new requirement for electron transport through the system, 𝜇𝑆 ≥ 𝜇1(𝑁1) ≥
𝜇2(𝑁2) ≥ 𝜇𝐷. When this condition is fulfilled, current can be seen through the quantum
dot. At low temperature and bias, this naturally leads to a blockade pattern similar to that
of the single dot case. However, the situation becomes more complex as current is only
allowed when the blockade is lifted in both dots simultaneously. As such, signal is seen
at the "triple points", where both dots and the bias are in resonance. If we consider the
linear regime, where 𝑉𝑆𝐷 = 0, then the condition becomes 𝜇𝑆 = 𝜇1(𝑁1) = 𝜇2(𝑁2) = 𝜇𝐷.
Similar to the coulomb peaks for a single dot, these triple points are separated by an energy
corresponding to the addition of one extra electron. As indicated in Fig. A.3, these triple
points can be used to reconstruct the charge configuration of the double dot system at any
point in the gate voltage space.

In Fig. A.3a, the situation for two completely decoupled dots is shown. Here 𝐶12 = 0,
and the charge configuration of each dot is entirely independent of the other. Inside
each "cell" of the grid pattern, the charge number of each dot is constant. However, at a
finite 𝐶12, the shape of the stability diagram changes to a hexagonal pattern, as in Fig.
A.3b. Notably, the triple points, degenerate at 𝐶12 = 0, become separated into two for
each electron charge configuration. These two triple points correspond to different charge
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Figure A.3: Double dot stability diagram Stability diagrams for a double dot with
different tunnel couplings. The lines indicate the gate voltages at which a change in the
electron number is seen. a) For 𝐶12 = 0, the quantum dots are completely decoupled and the
stability diagram resembles the single dot case for each dot, with no interaction between them.
b) At finite 𝐶12, a characteristic hexagonal pattern is seen, arising from the cross-capacitance
between the dots. c) At 𝐶12 → 𝐶𝑖𝛴, meaning the inter-dot capacitance dominates in the
system, a single dot stability diagram is seen, with the chemical potential of the dot being
equally modified by each gate.

transfer processes. This results in the characteristic honeycomb pattern associated with
coupled quantum dots.

The dimensions of each honeycomb cell can be determined from:

𝜇1(𝑁1,𝑁2,𝑉𝐺1,𝑉𝐺2) = 𝜇1(𝑁1 + 1,𝑁2,𝑉𝐺1 + 𝛥𝑉𝐺1,𝑉𝐺2) (A.19)

where we find

𝛥𝑉𝐺1 = |𝑒|
𝐶𝐺1

(A.20)

and 𝛥𝑉𝐺2 = |𝑒|
𝐶𝐺2

for dot 2. Since the splitting of the triplet points corresponds to a shift
in the potential level for dot 1 when an electron is loaded into dot 2, we can also extract
the linear shift in 𝑉𝐺1 between the triple points:

𝜇1(𝑁1,𝑁2,𝑉𝐺1,𝑉𝐺2) = 𝜇1(𝑁1,𝑁2 + 1,𝑉𝐺1 + 𝛥𝑉 ′
𝐺1,𝑉𝐺2) (A.21)

Giving:

𝛥𝑉 ′
𝐺1 = |𝑒|𝐶12

𝐶𝐺1𝐶𝛴2 = 𝛥𝑉𝐺1
𝐶12
𝐶2𝛴

(A.22)

and equivalently 𝛥𝑉 ′
𝐺2 = 𝛥𝑉𝐺2

𝐶12
𝐶1𝛴

for dot 2.
At the point A in Fig. A.4a, the cycle of charge transfer is (𝑁1,𝑁2) → (𝑁1 + 1,𝑁2) →

(𝑁1,𝑁2 + 1) → (𝑁1,𝑁2) corresponding to a single electron moving from the source contact
through the system to the drain. At the point B, however, the charge transfer cycle
instead involves the (𝑁1 + 1, 𝑁2 + 1) state, and the cycle instead is (𝑁1 + 1, 𝑁2 + 1) →
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Figure A.4: Triple points At a finite tunnel coupling in the double dot system, two triple
points are seen at the intersections between the (𝑁1,𝑁2), (𝑁1,𝑁2 + 1) and (𝑁1 + 1,𝑁2) states,
and the (𝑁1, 𝑁2 + 1), (𝑁1 + 1,𝑁2 + 1), and (𝑁1 + 1,𝑁2) states respectively. a) In the zero bias
case the triple points are located at the intersections of the electron transition lines for each
dot. b) When a finite bias is applied, bias triangles are seen at the triple points. Within the
bias triangle, charge transport is allowed through the quantum dots. Resonance lines within
the dot are seen when single dot levels are aligned within the double dot system.

(𝑁1 + 1, 𝑁2) → (𝑁1, 𝑁2 + 1) → (𝑁1 + 1, 𝑁2 + 1). This can be simply interpreted as
movement of a hole in the opposite direction. The difference in energy between these two
triple points is determined by the inter-dot capacitance 𝐶12. The dashed in line Fig. A.4a
indicates the detuning axis, which is perpendicular to the degeneracy line between the two
triple points where 𝜇1(1,0) = 𝜇2(0,1).

Fig. A.3c shows the case where 𝐶12 → 𝐶𝑖𝛴. Here the coupling between the two dots is
strong enough that they have merged to form a single dot with equal coupling to each gate.
In this regime, the notion of separated dots is no longer useful as there is only a single
potential minimum, and the system can be considered as a single quantum dot.

A.3 Bias triangles
So far we have considered the linear regime, with 𝑉𝑆𝐷 ≃ 0. If a finite bias is applied,
we enter the non-linear regime, where the bias window is opened. Then 𝜇𝑆 = −|𝑒|𝑉𝑆𝐷,
and 𝜇𝐷 = 0. Since the bias is applied asymetrically, we have to account for its effect on
the electrostatic energy of the system. Taking Eqn. A.9, and substituting 𝐶𝐺1𝑉𝐺1 with
𝐶𝐺1𝑉𝐺1 + 𝐶𝑆𝑉𝑆𝐷, where 𝐶𝑆 is the capacitance to the source from dot 1, we obtain the
energy of the system. No correction needs to be made for dot 2 as there is no applied
voltage on the drain, and in this model we assume the capacitance from dot 2 to the source
is zero.

The condition for transport becomes 𝜇𝑆 ≥ 𝜇1(𝑁1) ≥ 𝜇2(𝑁2) ≥ 𝜇𝐷, where 𝜇𝑆 = −|𝑒|𝑉𝑆𝐷.
This gives a set of three conditions, 𝜇𝑆 ≥ 𝜇1(𝑁1), 𝜇1(𝑁1) ≥ 𝜇2(𝑁2), and 𝜇2(𝑁2) ≥ 𝜇𝐷,
which form the boundaries of the conduction region at each triple point. This results in a
triangular shape, commonly known as bias triangles, as in Fig. A.4b.

The dimensions of the triangles, given by 𝛿𝑉𝐺1 and 𝛿𝑉𝐺2, are determined by the bias:
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𝛼𝐺1𝛿𝑉𝐺1 = |𝑒𝑉𝑆𝐷| (A.23)

𝛼𝐺2𝛿𝑉𝐺2 = |𝑒𝑉𝑆𝐷| (A.24)

This can be used to determine the lever arm of each gate, 𝛼𝐺𝑖. Once the lever arm
is known, then the addition energy 𝐸𝑎𝑑𝑑 can be determined for each hexagonal cell by
measuring 𝛥𝑉𝐺𝑖 and using the relation 𝐸𝑎𝑑𝑑 = 𝛥𝑉𝐺𝛼𝐺.

When the bias window is large, multiple energy levels can enter the bias window. This
means that excited states can play a role in tunnelling through the double dot system.
In particular, when the electrochemical potentials of two levels are in resonance, there
is a conductance peak, with the background conductance in the bias triangle induced by
inelastic processes [Fuj98] and co-tunnelling. This gives rise to resonance lines, as seen in Fig.
A.4b. These resonance lines correspond to an excited state matching the chemical potential
of another state, allowing fast tunnelling (and thus increased conductance) through the
double dots. These resonances can be used to determine the separation between the ground
and excited states.
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