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Abstract
Statistical analysis of vertical land motions and sea level measurements at the

coast

by Kevin GOBRON

Ensuring the long-term stability of sea-level measurements at the coast is essential
for the sustainable management of coastal territories. To do this, scientists mainly
rely on two complementary measurement techniques: tide-gauges, which measure
changes in sea-level with respect to the coast, and space geodesy, which allows mea-
suring the vertical movements of the coast itself, with respect to the centre of the
Earth. These two techniques are complementary because the correction of the ver-
tical land motions estimated using geodetic techniques allows estimating geocen-
tric sea-level change at the coast, and thereby to understand the origin of sea-level
change better.

To estimate and improve the stability and quality of these two sources of in-
formation, this thesis proposes methodological developments dedicated to the es-
timation of the precision of each type of observation and investigates the potential
sources of errors.
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Chapter 1

Introduction

1.1 Measuring sea-level at the coast

Over the past two centuries, the overproduction of greenhouse gases by industrial
societies has resulted in a long-lasting increase in the surface temperature. One of
the main consequences, but also one of the most indisputable evidence of this global
change, is the increase in the global mean sea-level (GMSL), resulting from both sea-
water expansion and continental ice-melting. In particular, based on the analysis
of multidecadal time series provided by tide-gauges scattered around the world, the
rate of sea-level change over the 1901-2010 period is estimated at 1.7 mm/yr (Church
et al., 2013). With the advent of the satellite era, it has become possible to estimate
the change in GMSL from the combination of globally distributed altimeter satellite
observations. From these new observations, the rate of sea-level change is estimated
at 3.2 mm/yr for the period 1993-2017 (Cazenave et al., 2018).

Although symptomatic of global transformations, the current GMSL change is
not at all representative of the sea-level change that is and will be observed at the
world coasts. One of the main reasons is that sea-level change shows a strong re-
gional variability due to the heterogeneous distribution of continental ice-melting,
sea-water temperature, salinity, and ocean dynamics (Cazenave and Cozannet, 2014).
For instance, the rate of the regional sea-level exceeds 10.0 mm/yr in the west-
pacific, which is several times the rate of the GMSL (Becker et al., 2012).

In addition to the spatial variability of absolute sea-level change, the evolution
of sea-level is also influenced by vertical motions of the coast itself (Wöppelmann
and Marcos, 2016). The subsidence or the uplift of the coast directly translates into
an increase or a decrease in sea-level relative to the ground, which is the relevant
quantity to consider for coastal management. Vertical land motions can be caused by
a wide variety of natural and anthropogenic processes (Pfeffer et al., 2017), including
the viscoelastic response to past and current continent ice-melting, known as glacial
isostatic adjustment (GIA) (Peltier and Andrews, 1976; King et al., 2010), tectonic
activity (Ballu et al., 2011; Ballu et al., 2019), sediment compaction (Syvitski et al.,
2009; Galloway and Burbey, 2011) or surface mass loading (Van Dam, Blewitt, and
Heflin, 1994; Mémin, Boy, and Santamaria-Gomez, 2020).

Forecasting relative sea-level change at the coast is a crucial issue in sea risk man-
agement given the anthropization of the coast and the vulnerability of both private
and public infrastructure (Nicholls and Cazenave, 2010). Given the spatial variabil-
ity of both absolute sea-level change and vertical land motion, to address this chal-
lenge, it is necessary to benefit from reliable in-situ measurements of both sea-level
and vertical land motion.
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Due to intrinsic difficulties in distinguishing water from land, satellite altimetry
observations are less accurate near the coasts, ground-based tide-gauges are still
considered as the most accurate source of coastal sea-level measurements. For the
vertical land motion, the most reliable technique to monitor long-term deformations
in a geocentric frame is currently the Global Navigation Satellite Systems (GNSS),
and the Global Positioning System (GPS) in particular (Wöppelmann et al., 2007).

Studying and understanding the temporal evolution of the sea-level along the
coasts requires long time series with high metrological quality, and not only for sea-
level but also for the vertical land motions. The quality and stability of the two main
references, that is, tide gauges and GNSS time series are still a matter of research
(Wöppelmann and Marcos, 2016) and providing observations with such high stan-
dards is a significant metrological challenge.

1.2 Related metrological requirements

1.2.1 Tide gauge accuracy

The simplest and oldest types of sea-level measurements originate from graduated
poles placed against a vertical structure at the coast, requiring human intervention
to perform observations. Since then, the art of measuring sea-level evolved towards
self-recording tide gauges, first with mechanical gauges (IOC, 1985), and then with
pressure gauges (IOC, 2002), acoustic gauges (IOC, 2006), and, more recently, radar
gauges (IOC, 2016). Today, they are clustered into networks of continuously oper-
ating stations, and are key components of storm surge or tsunami warning systems
and climate-related monitoring programs, such as the Global Sea Level Observing
System (GLOSS) (IOC, 2012).

Among the scientific and technical applications of tide gauges, climate studies
require the highest accuracy. For instance, a tide gauge complying with GLOSS
standards should be capable of measuring instantaneous sea-level with an accuracy
better than 1.0 cm, in all conditions of tide, waves, currents and weather (IOC, 2016).
In practice, this level of accuracy cannot be ensured by laboratory experiments, so
tide-gauges must be calibrated and regularly controlled in real measuring condi-
tions. Hence, considering the multiple sources of error that can affect tide gauge
measurements (Míguez Martín, Testut, and Wöppelmann, 2008) and the effects of
aggressive marine environment, maintaining the stability of sea-level measurement
over several decades constitutes an important financial, technical and scientific chal-
lenge.

The benefit in maintaining tide gauge accuracy goes beyond the analysis of tide
gauge time series for climatic studies. In practice, coastal tide gauge are also in-
volved in the calibration of several other sea-level sensors, including GNSS buoys
(André et al., 2013), kinematic systems (Chupin et al., 2020), GNSS reflectometry
(Larson, Ray, and Williams, 2017; Williams et al., 2020), and altimeter satellites (Bon-
nefond, Haines, and Watson, 2011; Watson et al., 2011). Therefore, ensuring the
quality of tide-gauge measurement is beneficial for many oceanographic studies.
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1.2.2 GNSS time series accuracy

According to Wöppelmann and Marcos (2016), vertical land motions should be de-
termined with standard errors that are one order of magnitude lower than the con-
temporary climate signals of 1 to 3 millimetres per year observed on average in sea-
level records, either by using tide gauges or satellites.

Over the years, analyses of globally distributed networks of GNSS stations have
proved capable to assess secular VLMs at below millimetre per year level (Wöppel-
mann et al., 2007; Santamaría-Gómez et al., 2012). However, estimating VLMs with
an accuracy below the 0.1 millimetres per year level remains a considerable chal-
lenge because the final uncertainty on the vertical component of a station depends
on two main limitations.

The first and most direct limitation is the precision GNSS positioning itself. In
particular, VLM accuracy depends on many factors, which includes, for instance:
the accuracy of orbits and clock products, of the modelling of tropospheric and iono-
spheric delays of GNSS signals propagating through the atmosphere, of the accuracy
on the phase centres of both satellites and antennas, of the number of satellites visi-
ble by the antenna, of possible multi-path effects, and the stability of the origin and
the scale of the reference frame used to express the estimated motion (Altamimi et
al., 2016). Therefore, any improvement in one of these aspects of GNSS positioning
would benefit to the accuracy of VLM estimates.

The second and more indirect limitation is the difficulty of extracting reliable sec-
ular trends from GNSS position time series. From the statistical inference point of
view, the uncertainty of trend estimates depends on the span and completeness of
the time series, but also on the statistical model used to describe its motion. In par-
ticular, two main effects limit the precision of trend estimates, namely the presence
of position offsets and the influence of time-correlated stochastic processes.

To model the deterministic motion visible in GNSS potion time series, one re-
lies on a trajectory model. This trajectory model usually accounts for a linear trend,
periodic oscillations, and position offsets (Bevis and Brown, 2014). Position offsets
are abrupt changes in position that typically result from instrumental changes or
large earthquakes (Gazeaux et al., 2013). If not accounted for in the trajectory model,
offsets bias systematically trend estimates (Williams, 2003b). However, even when
accounted for, offsets remain a nuisance as it increases the uncertainty of all esti-
mates, and especially the trend uncertainties (Williams, 2003b; Griffiths and Ray,
2016; Wang and Herring, 2019).

To model the part of the time series that is not described by the trajectory model,
referred to as stochastic variability, we use a stochastic model. The stochastic vari-
ability was first described using uncorrelated white noise. However, several stud-
ies demonstrated the stochastic variability in GNSS position time series is time-
correlated, and that a combination of white noise and power-law stochastic pro-
cesses more realistic (Zhang et al., 1997; Mao, Harrison, and Dixon, 1999; Calais,
1999; Williams et al., 2004; Santamaría-Gómez et al., 2011). In particular, modelling
the stochastic variability using time-correlated processes is crucial for the estima-
tion of trends, because assuming only white noise yields to far too optimistic results.
However, the origin of such a time-correlation of the GNSS stochastic variability re-
mains unknown. In particular, it is unclear whether such a time correlation results
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from positioning errors or from non-modelled geophysical processes. Significant
progress in this research field could dramatically increase the precision of VLM esti-
mates.

1.3 Research objectives

The scientific goal of this thesis is to improve our understanding of the biases and
uncertainties of tide gauges and GNSS products, both by the development of sta-
tistical methods and by the analyses of real observations. Through these statistical
analyses, we aim at identifying potential areas of improvements that could lead to
an enhanced metrologic quality of these geodetic products. Due to the fundamental
differences between the two quantities of interest, our research work is divided into
two main research axes, one for tide-gauge observations, and one for GNSS position
time series.

Concerning the study of the tide gauge calibration procedure, we aim at provid-
ing a complete characterization of the performance of tide gauges during calibration
experiments and evaluate whether Intergovernmental Oceanographic Commission
(IOC) requirements can be met. To this end, we present a combination method ded-
icated to the assessment of the biases and uncertainties of different sea-level sensor
technologies from inter-comparison experiments involving multiple instruments.

The second research axis is dedicated to the study of the time-correlation in GNSS
vertical land motion time series. Here, we aim at identifying possible sources of
time-correlated processes in vertical land motions. To this end, we first study the sta-
tistical methods for determining the stochastic model of GNSS position time series.
Then, we examine the global variability of time-correlation properties in globally
distributed GNSS stations. Finally, we investigate whether the deformation induced
by geophysical processes could explain the observed variability.

1.4 Outline of the thesis

This thesis presents six contributions to the assessment and the improvement of the
quality of tide-gauge sea-level measurements and GNSS-based vertical land mo-
tions. Because these contributions tend to address separate research questions, we
chose to present them in 6 independent chapters that can be read independently of
one another. In particular, each contribution chapter is presented in an article for-
mat with its introduction, a recall of the methods, and its results, so the reader is not
required to read the thesis entirely.

Although they address different research questions, these six contributions tend
to rely on similar statistical tools. Considering that the article format employed for
the contribution chapters cannot provide a beginner-friendly introduction to these
methods, the six contribution chapters are preceded by four methodological chap-
ters providing a comprehensive introduction to the main statistical tools used in this
thesis.

In chapter 2, we recall the main methods dedicated to the determination of func-
tional parameters from observations. In particular, we present the weighted least-
squares and the maximum likelihood estimation methods, which are extensively
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used throughout the thesis. We also present commonly used accuracy metrics and
introduce the misclosures, used in chapters 8-11.

In chapter 3, we provide an introduction to the determination of stochastic param-
eters from observations. We present three variance component estimation methods,
namely, the maximum likelihood estimation (MLE), the restricted maximum like-
lihood estimation (RMLE), and the Least-Squares Variance Component Estimation
(LS-VCE). These methods are used in chapters 7-11 and compared in chapter 9.

In chapter 4, we introduce the basics of geodetic time series analysis. We present
functional models allowing to describe trends, periodic oscillations, discontinuities
and transients in time series. We also introduce three frequent stochastic models,
namely first-order Gauss-Markov, power-law, and generalised Gauss-Markov pro-
cesses. These models are employed in chapters 8-11.

The chapter 5 presents a method dedicated to the detection of non-modelled sig-
nal in geodetic time series. Based on hypothesis testing in linear models, and the
Generalised Likelihood Ratio Test (GLRT) in particular, the method allows testing
for the significance of signals in the presence of time-correlated processes. We illus-
trate applications of the GLRT to the detection of periodic signals and discontinu-
ities. This method is used in chapters 9 and 10.

In chapter 6, we study a tide-gauge calibration experiment. We assess the in-
fluence of a scale error on different aspects of the determination of the tide-gauge
sensor offset. Although estimating the sensor offset is a mandatory step, in other
studies, it is unclear how this step is handled in the presence of a scale error. Hence,
this chapter addresses this lack of information and provides indications for the de-
sign of calibration experiments.

In chapter 7, we focus on the assessment of the biases and uncertainties of tide-
gauges. We propose a combination method based on the analysis of multiple col-
located time series. The proposed method provides a complete description of the
performances of each tested gauge. We apply it to a tide-gauge comparison experi-
ment involving six collocated tide-gauges, realized in 2016 on the Aix island off the
mid-Atlantic coast of France.

In chapter 8, we study the estimation of stochastic parameters from GNSS posi-
tion time series. We investigate the potential of the nonlinear LS-VCE method for
the estimation of the parameters of both power-law and generalized Gauss-Markov
stochastic models. Because this method not only provides unbiased and minimum-
variance stochastic parameter estimates, but also their uncertainties, it could reveal
to be useful for future stochastic model investigations.

In chapter 9, we assess the influence of offsets on the estimation of the stochastic
parameters in GNSS time series. The effect of offsets on functional parameters is
already well established. However, their impact in the stochastic modelling remains
poorly understood. In this chapter, we show that offsets affect various aspects of
the stochastic modelling, namely spectral analysis, stochastic model selection, and
variance component uncertainty.

In chapter 10, we examine the global-scale variability of stochastic model param-
eters in global GNSS solutions. In particular, we analyse the north, east, and vertical
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time series of over 10,000 stations computed by the Nevada Geodetic Laboratory at
the University of Nevada Reno. To better understand the potential source of stochas-
tic variability, we also study the influence of a recent reprocessing. We show that,
even in the most recent solution, the vertical land motions reveal a spatial variability
of stochastic parameter estimates that stands out from horizontal displacements.

In chapter 11, we further examine the spatial variability of stochastic parameters
of vertical land motions. In particular, we investigate whether surface mass loading
effects can explain their spatial variability. To this end, we use both the most recent
NGL time series and the non-tidal atmospheric loading, non-tidal oceanic loading
and hydrological loading deformation time series computed by the Earth System
Modelling team of the GeoForschungsZentrum Potsdam. We show that non-tidal
atmospheric and oceanic loading deformations explain a large part of the stochastic
variability observed in vertical land motions.

Finally, chapter 12 synthesises the different contributions of this thesis and dis-
cusses future research perspectives.
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Chapter 2

Estimation of deterministic
parameters from observations

Whether analysing vertical land motions, water level fluctuations, or any other mea-
surement of a geophysical quantity, an essential step of data analysis is to convert
raw observations into interpretable parameters. The main challenge is that, in exper-
imental sciences, observations never can be modelled using a purely deterministic
model. At the very least, one must account for the uncertainties of the experimen-
tal protocol used to obtain measurements. But more generally, complex physical
phenomena failing to benefit from physical modelling must also be considered as a
stochastic variability.

The presence of stochastic variability in the observations has two main conse-
quences on data analysis. The first one is that there exists no perfect way to estimate
parameters, and the analyst must make a choice among possible estimation meth-
ods. The second is that parameters can only be estimated with limited precision,
which must be evaluated for physical interpretations.

To estimate parameters and their uncertainties, we rely on inferential statistics.
In this chapter, we review the basics of geodetic weighted least-squares estimation and
maximum likelihood estimation. These two estimation methods, and their underlying
mathematical foundations, are extensively used throughout this thesis. This chapter
should provide a comprehensive description of the essential statistical concepts.

2.1 Functional and stochastic models

2.1.1 Scalar case

A common practice is to assume that an observation, noted yi, can be decomposed
as the sum of deterministic component, noted µi, and a stochastic component, noted
ei, so that

yi = µi + ei. (2.1)

The term ei, also referred to as residual or noise, represents the effect of the stochas-
tic variability on the observation yi. In practice, ei is assumed to be the realization of
a continuous stochastic variable, noted ei, following a centred normal distribution.
The dispersion of this distribution is quantified by a parameter, the variance, noted
σ2

i . These assumptions for ei are more compactly denoted as ei ∼ N (0, σ2
i ).

The normal distribution assumption for ei is motivated by its omnipresence in
experimental sciences. This is supported theoretically by the central limit theorem,
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which explains how the distribution of a sum of independent and identically dis-
tributed stochastic variables converges to the normal distribution when the number
of considered variables increases.

A direct implication of the above distribution assumption for ei is that the obser-
vation yi can itself be described as a realization of a continuous stochastic variable,
noted yi, following a normal distribution with the same variance σ2

i , but centred on
µi, that is yi ∼ N (µi, σ2

i ).

Hence, in some studies, Equation (2.1) is often directly written in terms of the
stochastic variables yi and ei, namely

yi = µi + ei, (2.2)

so that, by "observation", we often refer to the underlying stochastic variable yi and
not specifically each scalar measurement yi.

In order to precise a bit more these distribution assumptions for yi, we can define
its probability density function (PDF), noted pyi(yi), as

pyi(yi) =
1√

2π · σ2
i

exp
(
−1

2
(yi − µi)

2

σ2
i

)
. (2.3)

An important property of pyi(yi) that it is fully described using only two param-
eters, namely its first raw moment and its second central moment. The first raw moment
is the so-called expectation, noted E{.}, and defined by

E{yi} = µi, (2.4)

and its second central moment is the so-called variance, noted var{.}, and defined
by

var{yi} = E{(yi − µi)
2} = σ2

i . (2.5)

In other words, providing a description for the deterministic component µi of an
observation corresponds to the study of E{yi}, whereas providing a description the
stochastic component ei corresponds to the study of var{yi}.

In the following, this distinction is crucial as it leads to the definition of two com-
plementary models, namely the functional and the stochastic models. The func-
tional model defines the expectation of yi, whereas the stochastic model defines the
variance of yi. These models are complementary in the sense that a correct descrip-
tion of both the functional and the stochastic model is required to fully describe the
distribution of the observations.

2.1.2 Multivariate case

So far, we considered a single observation yi. For a set of m observations, we can
re-write the relation (2.2) using vector notation so that
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y1

y2
...

ym

 =


µ1
µ2
...

µm

+


e1
e2
...

em

 , (2.6)

which can be more compactly written as

y = µ + e. (2.7)

In the multivariate case, y is a stochastic vector following a multivariate normal
distribution, whose multivariate probability density function, noted py(y), is defined
by

py(y) =
1√

(2π)m · det(Qy)
exp

(
−1

2
(y− µ)TQ−1

y (y− µ)

)
, (2.8)

in which Qy is the so-called m×m covariance matrix of y, det(.) denotes the deter-
minant, (.)−1 denotes the inverse, and (.)T the transpose.

In the multivariate case, the functional model of the observation vector y is noted
E{y} and follows

E{y} = µ. (2.9)

and the stochastic model of the observation vector y, denoted var{y}, follows

var{y} = Qy. (2.10)

The diagonal elements of the covariance matrix Qy models the variance of each
observation, whereas the non-diagonal elements model the covariance between ob-
servations.

In this chapter, it is assumed that the covariance matrix Qy and, thereby, the
stochastic model of the observations, is completely known. In practice, this is almost
never the case, so in chapter 3, we will relax this hypothesis.

2.2 Model of observation equations

We now assume that the deterministic vector µ in Equation (2.9) can be modelled
with a set of n unknown parameters (x1, x2, · · · , xn), through a multivariate function
f (.) so that

E{y} = µ = f (x), (2.11)

in which x is the unknown n× 1 parameter vector, defined as

x =


x1
x2
...

xn

 .



10 Chapter 2. Estimation of deterministic parameters from observations

The model E{y} = f (x) is referred to as the model of observation equations
(Teunissen, 2000a). For such functional models, the goal of parameter estimation
methods is to derive an estimator x̂ of the unknown parameter vector x based on the
observation vector y and the function f (.).

2.2.1 Linear case

When the function f (.) is linear with respect to x, the linear model of observation
equations can be written as

E{y} = Ax (2.12)

in which A is the so-called m × n design matrix, that is, the linear function f (.)
expressed in matrix notation.

Although it may seem like an oversimplification, a wide range of estimation
problems in geodesy turns out to be linear with respect to the unknown parameters.
For instance, this thesis exclusively deals with linear functional models. Besides,
linear models are convenient because they are easy to solve, such that nonlinear
problems are turned into linear ones whenever it is possible.

2.2.2 Nonlinear case

When the function f (.) is nonlinear, a common strategy is to linearize f (.) around
an approximate estimate of x, noted x0. The first-order Taylor series expansion of
f (x) at x0 reads

f (x) ≈ f (x0) +
∂ f (x)

∂x

∣∣∣∣
x0

(x− x0),

≈ f (x0)−
∂ f (x)

∂x

∣∣∣∣
x0

x0 +
∂ f (x)

∂x

∣∣∣∣
x0

x.
(2.13)

Because E{y} = f (x), and because x0 is known, one can recover a system of
linear equations as

E{y} − f (x0) +
∂ f (x)

∂x

∣∣∣∣
x0

x0 ≈
∂ f (x)

∂x

∣∣∣∣
x0

x. (2.14)

Hence, it is possible to turn nonlinear models of observation equations into lin-
ear ones. This approach is not perfect because the linearized function is just a local
approximation of the nonlinear function f (.). This approximation issue can be han-
dled using the so-called Newton-Raphson algorithm. The principle of this algorithm
is to start with an initial parameter x0, and then solve Equation (2.14) to obtain a new
estimate x1. By repeating this step, one can obtain new estimates xi+1 using previ-
ous estimates xi. The algorithm stops when the difference between two estimates
become negligible. The application of this method to least-squares estimation is de-
scribed in more details in (Teunissen, 2000a). Note that this strategy can only work
if the guess x0 is relatively close to the true solution. Hence, in some problems, the
choice of x0 may be important.

Because solving a nonlinear problem can come down to solving linear ones, in
the following, we exclusively focus on parameter estimation for linear models.
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2.2.3 Estimation principle

A basic requirement for the unconstrained estimation of n parameters from m obser-
vations in a linear equation system is that there are at least n observations to avoid
an infinite number of solutions. In practice, it is preferable to derive only a few pa-
rameters n from many observations m, that is m >> n, to benefit from a redundancy
of information.

Since there is usually no exact solution for m > n, one must instead find the
estimator x̂ that optimizes a certain criterion. In the following, methods optimizing
two different criteria are presented: the Weighted Least-Squares Estimation method
and the Maximum Likelihood Estimation method.

2.3 Weighted Least-Squares Estimation

2.3.1 Weighted Least-Squares Estimator

The objective of Weighted Least-Squares Estimation is to derive an estimator x̂ that
minimizes a quadratic error function such that

x̂ = argmin
x∈Rn

(y−Ax)TW(y−Ax), (2.15)

in which W is the so-called m×m weight matrix. In principle, the weight matrix W
can be any symmetric and positive-definite matrix. In the particular case in which
the weight matrix is the identity matrix, that is W = I, the expression is equivalent
to minimizing the sum of the squares of the residuals, hence the name Least-Squares.

The standard strategy to minimize a function is to search the argument for which
its derivative is null. In other words, the goal is to solve

∂

∂x
{(y−Ax)TW(y−Ax)} = 0, (2.16)

which leads to

ATWAx−ATWy = 0, (2.17)

which can be rewritten the so-called normal equations system

ATWAx = ATWy. (2.18)

The n× n matrix ATWA in the left hand-side of Equation (2.18) is known as the
normal matrix, and is usually denoted N. The n× 1 vector in the right hand-side of
Equation (2.18) does not have a specific name, but is sometimes denoted l = ATWy,
such that

Nx = l. (2.19)

If the design matrix A is of full column rank, – that is, if the columns of A are
linearly independent – then the normal matrix N is positive-definite. It can be shown
that N is the second-order partial derivative of the error function. Hence, its positive-
definiteness indicates that the solution of Equation (2.16) is indeed the argument of
a (local) minimum.
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Finding x̂ comes down to solving a linear system of normal equations. Since N
is positive definite, it is invertible, and the weighted least-squares estimator x̂ can be
obtained as x̂ = N−1l, which is the short notation for

x̂ = (ATWA)−1ATWy. (2.20)

Noting A+ the weighted pseudo-inverse of A defined as

A+ = (ATWA)−1ATW, (2.21)

the Equation (2.20) can be more compactly written as

x̂ = A+y, (2.22)

which illustrates that the estimator x̂ is a linear transformation of y, that is to say, x̂
is a linear estimator of x.

Moreover, by substituting y = Ax + e into Equation (2.20) and applying linear
propagation law of means, it can be shown that

E{x̂} = (ATWA)−1ATWAx + A+E{e}
= x + A+0
= x,

(2.23)

which demonstrates that the weighted least squares estimator x̂ is an unbiased esti-
mator of x. This property is true for any choice of positive-definite weight matrix
W.

2.3.2 Uncertainty of the weighted least-squares estimator

To evaluate how the variance of the observations and the chosen functional model
affects the precision of the estimates, one can compute the n× n covariance matrix
Qx̂ of the estimator x̂. Since the weighted least-squares estimator is expressed as a
linear transformation of the observation vector y, one can apply the linear propaga-
tion law of variance, and show that the covariance matrix Qx̂ follows

Qx̂ = A+QyA+T, (2.24)

in which, the i-th diagonal element of Qx̂ corresponds to the estimated variance σ2
x̂i

of the i-th parameter estimate x̂i. The non diagonal elements denote the covariance
between the estimated parameters.

2.4 Maximum Likelihood Estimation (MLE)

2.4.1 Likelihood function

In the case of linear models, the multivariate PDF of y depends on the parameter
vector x, and is usually denoted py(y|x) so that
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py(y|x) =
1√

(2π)m · det(Qy)
exp

(
−1

2
(y−Ax)TQ−1

y (y−Ax)
)

. (2.25)

In practice, the observation vector y and the covariance matrix Qy in Equation
(2.25) are known. When py(y|x) is taken as a function of x and not y, it is referred to
as the likelihood function.

2.4.2 Maximum Likelihood Estimator

The objective of Maximum Likelihood Estimation (MLE) is to find the parameter
vector x̂ for which the observation vector y is the most likely to be observed. This
is done by maximizing the likelihood function py(y|x) of observing y for a given
parameter vector x, that is

x̂ = argmax
x∈Rn

py(y|x). (2.26)

The logarithm function ln(.) being monotonous, it is actually equivalent, and
more convenient, to maximize the log-likelihood function ln(py(y|x)) defined as

ln(py(y|x)) = −
1
2
[m ln(2π) + ln(det(Qy)) + (y−Ax)TQ−1

y (y−Ax)]. (2.27)

Note that maximizing Equation (2.27) is equivalent to minimizing the quadratic
term

x̂ = argmin
x∈Rn

(y−Ax)TQ−1
y (y−Ax). (2.28)

Hence, under the normal distribution assumption, maximizing the likelihood
function is equivalent to minimizing the norm of the residual vector e using the
matrix Q−1

y as a metric. The general solution to the above minimization problem
is addressed by the Weighted Least-Squares Estimation method presented in the
previous section.

Thus, using Equation (2.20) with W = Q−1
y , one can show that the Maximum

Likelihood Estimator of x reads

x̂ = (ATQ−1
y A)−1ATQ−1

y y. (2.29)

2.4.3 Uncertainty of the maximum likelihood estimator

The uncertainty of the maximum likelihood estimator follows from that of the weighted
least-squares estimator in Equation (2.24). By taking W = Q−1

y , after a few simplifi-
cations, it follows that

Qx̂ = (ATQ−1
y A)−1. (2.30)
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2.5 Best Linear Unbiased Estimation

Intuitively, there must be some limit to the precision of the parameters estimated
from a limited amount of observations. In the case of linear estimators, this limit is
formalized by the so-called Cramér-Rao lower bound. This lower bound provides
the variance of the Best Linear Unbiased Estimator (BLUE) when it exists.

The Cramér-Rao lower bound, is given as

I(x)−1, (2.31)

in which, I(x) is the so-called n× n Fisher information matrix defined as

I(x) = −E
{

∂2

∂xxT {ln(py(y|x))}
}

, (2.32)

where ∂2

∂xxT {.} denotes the second order partial derivative, or Hessian matrix, of a
multivariate function with respect to x.

Since the only differences between minimizing the least-squares criterion and
maximizing the log-likelihood are a change of sign and a change of weight matrix,
it follows from Equation (2.17) that the Hessian matrix of ln(py(y|x)) follows

∂2

∂xxT {ln(py(y|x))} = −(ATQ−1
y A). (2.33)

Given that (ATQ−1
y A) is positive-definite, the Hessian matrix is negative-definite,

as expected from a local maximum. Substituting Equation (2.33) into Equation (2.32)
gives

I(x) = (ATQ−1
y A), (2.34)

which, using Equation (2.31), leads to the Cramér-Rao lower bound, namely

I(x)−1 = (ATQ−1
y A)−1. (2.35)

One important observation is that the covariance matrix of the maximum likeli-
hood estimator in Equation (2.30) equals the Cramér-Rao lower bound (2.35), that is
Qx̂ = I(x)−1. Hence, by choosing W = Q−1

y as a weight matrix, we obtain an unbi-
ased and minimum-variance least-squares estimator of x. In other words we obtain the
best possible Linear Unbiased Estimator, which is often referred to as the Best Linear
Unbiased Estimator, or BLUE.

Another useful observation is that the Hessian matrix is a measure of the curva-
ture of a multivariate function, hence the minimum possible variance of an estimator
is closely related to the sharpness of the log-likelihood function around x (Bos et al.,
2020). This observation helps in understanding the results in chapter 9.

2.6 Measures of inconsistency

One benefit of having more observations than unknowns is that it allows quality con-
trol. In practice, there exist several measures of inconsistency that can be used to in-
vestigate the quality of a functional model and identify possible miss-specifications.
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In the following, we present two of these measures: the estimator of the residuals,
and the misclosure vector.

2.6.1 Residuals

The most intuitive measure of inconsistency is probably the estimator of the residual
vector, denoted ê. It is defined as the difference between the observations y and the
best fitting model Ax̂, that is

ê = y−Ax̂ (2.36)

In some applications, the vector ê is directly expressed as a linear function of the
observations y such as

ê = P⊥Ay , (2.37)

in which the m×m matrix P⊥A is the least-squares orthogonal projector defined by

P⊥A = I−A(ATWA)−1ATW . (2.38)

The weighted least-squares estimator being unbiased, the expectation of the es-
timator of the residuals reads

E{ê} = 0, (2.39)

meaning that variability of the estimated residuals should be purely stochastic.

By applying the linear propagation law of variance to Equation (2.37), one can
show that the covariance matrix of the vector ê, noted Qê, reads

var{ê} = Qê = P⊥AQyP⊥T
A . (2.40)

Since the vector ê has the same structure as the observations, analysing residuals
allows a quick identification of possible modelling problems and observation out-
liers. Besides, residuals are often used to compute other accuracy metrics, such as
the Root Mean Square Error (RMSE)

RMSE =

√
1
m

êT ê, (2.41)

or the Weighted RMSE (WRMSE)

WRMSE =

√
1
m

êTWê. (2.42)

Although useful to evaluate the goodness of fit of a chosen model, or to get an
insight about the stochastic variability in the observations, the estimated residuals ê
cannot fully represent the true stochastic variability e because the estimated param-
eters inevitably absorb part of it.

This is visible when analyzing the variance of Equation (2.36), which reads

Qê = Qy −AQx̂AT. (2.43)

Consequently, quality metrics exclusively based on the estimated residuals ê,
such as RMSE or WRMSE, systematically underestimate the stochastic variability of
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the observations. Note that the degree of underestimation depends on the chosen
functional model, but also on the weight matrix W.

2.6.2 Misclosures

Let’s denote b = m − n the degree of redundancy of the functional model. An al-
ternative measure of inconsistency is the so-called misclosure b× 1 vector t defined
as

BTy = t, (2.44)

in which, B is a m× b matrix, whose columns span the null space of the matrix AT,
so that

BTA = 0. (2.45)

The use of the matrix B has the effect of removing the influence of the functional
model from the observations, so that t only reflects the redundancy.

Given that t is defined as a linear transformation of y, it also follows a multi-
variate normal distribution. Besides, using Equation (2.45), one can show that its
expectation, noted E{t}, reads

E{BTy} = E{t} = 0 (2.46)

and that its variance, noted var{t}, reads

var{t} = Qt = BTQyB. (2.47)

The model (2.46), is referred to as the model of condition equations. Even though the
vector t cannot be used for a direct visual inspection of outliers because it does not
have same structure as the observations, it is extremely used in quality control the-
ory (Teunissen, 2000b) and Variance Component Estimation (Teunissen, 1988; Koch,
1986).

To understand why, we can study the following transformation (Teunissen and
Amiri-Simkooei, 2008) [

x̂
t

]
=

[
(ATQ−1

y A)−1ATQ−1
y

BT

]
y (2.48)

First, one can show that this transformation in invertible, so that

y =
[
A QyBQ−1

t
] [x̂

t

]
, (2.49)

which implies that all the information that is not absorbed by x̂ is contained in t.

Then, from Equations (2.23) and (2.46), it follows that the expectation of Equation
(2.48) reads

E
{[

x̂
t

]}
=

[
x
0

]
(2.50)
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and that its variance reads

var
{[

x̂
t

]}
=

[
Qx̂ 0
0 Qt

]
(2.51)

which shows that x̂ and t are independent.

Hence, unlike the variance of ê in Equation (2.43), the variance of t is indepen-
dent from the variance of the estimator x̂.

2.7 Misspecifications

So far, we assumed that the functional model (2.12) is correct. However, when deal-
ing with actual measurements, it is frequent that a lack of knowledge about the mea-
sured process results in misspecifications of the functional model.

The most problematic kind of misspecification is certainly the under-parametrization
of the functional model. When a functional model does not account for all determin-
istic effects, the weighted least-squares estimator is biased. Under-parametrization
is an important issue in data analysis in general, as biased estimates can seriously af-
fect conclusions drawn from a scientific study. The best strategy to overcome under-
parametrization is probably to perform a careful analysis of the observation, some-
times with the help of hypothesis testing methods. We present this part in detail
chapter 5.

A somewhat less dramatic kind of misspecification is the over-parametrization of
the functional model. Over-parametrization implies that although all deterministic
effects are considered, there exist unnecessary parameters in the functional model.
The negative impact of such useless parameters is a systematic increase in uncer-
tainty of the estimators. One way to overcome this is to remove non-significant
parameters from the functional model.

The last possible issue is a misspecification in the stochastic model. This kind of
misspecification has two main consequences. The first one is that the covariance ma-
trix of the estimator obtained using Equation (2.24) or Equation (2.30) is inaccurate.
Incorrect covariance matrix causes the estimated uncertainties to be either too opti-
mistic or too pessimistic. The second consequence is that the best linear unbiased
estimator loses the minimum variance property, meaning that the estimates are not
as close as the true values as they could be.
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Chapter 3

Estimation of stochastic parameters
from observations

So far, we only addressed parameter estimation in the case the stochastic model is
fully known. In other words, we assumed a perfect knowledge about the uncer-
tainty of the measurements, and about the nature and the amplitude of the variabil-
ity present in the observations. If it is even possible, such conditions may only be
met in laboratory experiments. Hence, for sea-level and vertical land motion obser-
vations, it is necessary to relax this hypothesis and to be able to assess part of the
stochastic properties from observations.

In practice, it is particularly important to be able to adapt the stochastic model
based on observations because both parameter uncertainties and the minimum-variance
property of the BLUE requires a realistic stochastic model.

In this chapter, we present how to derive stochastic parameters from observa-
tions, provided that a parametric stochastic model can be formulated. The main
content of this chapter comes from the work of Amiri-Simkooei (2007), Teunissen
(1988), and Teunissen and Amiri-Simkooei (2008).

3.1 Parametric stochastic model

In this chapter, we consider that the covariance matrix of the observation Qy is
partially unknown, and can be described using p unknown stochastic parameters
(σ1, σ2 · · · σp) called variance components. Hence, hereafter, it is implicitly assumed
that the matrix Qy is a parametric function of these variance components, that is

Qy = Qy(σ) (3.1)

where Qy(σ) is a symmetric and positive-definite m× m matrix and σ is the p× 1
variance component vector, defined such that

σ =


σ1
σ2
...

σp

 . (3.2)

The statistical methods devoted to the estimation of the variance components
are referred to as Variance Component Estimation (VCE) methods. In the last decades,
numerous VCE methods have been developed. Among the ones that are commonly
used in geodesy, we can mention the Maximum Likelihood Estimation (MLE) (Harville,
1977), the Restricted Maximum Likelihood Estimation (RMLE) (Koch, 1986), the
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Minimum Quadratic Unbiased Estimation (MINQUE) (Rao, 1971), the Best Invari-
ant Quadratic Unbiased Estimation (BIQUE), the Helmert method, and the Least-
Squares Variance Component Estimation (LS-VCE) (Teunissen and Amiri-Simkooei,
2008).

These methods were developed based on different estimation criteria. How-
ever, except the MLE method, for normally distributed observations, the RMLE,
MINQUE, BIQUE, Helmert and LS-VCE methods are mathematically equivalent
(Teunissen and Amiri-Simkooei, 2008). For a review of these VCE methods, we re-
fer to Fotopoulos (2003) and Amiri-Simkooei (2007). In this chapter, we restrict our
presentation to three different VCE methods discussed or used at some point in this
thesis, namely the MLE, the RMLE and LS-VCE methods.

3.2 Maximum Likelihood Estimation (MLE)

This VCE method is the direct extension of the MLE principles introduced in chapter
2 to the determination of the variance components. It consists in adding the vari-
ance component vector σ̂ as an additional parameter to the likelihood maximisation
problem, that is

x̂, σ̂ = argmax
x∈Rn,σ∈Rp

ln(py(y|x, σ)), (3.3)

in which, assuming a normal distribution, ln(py(y|x, σ) is given by

ln(py(y|x, σ)) = −1
2

[
m ln(2π) + ln(det(Qy)) + (y−Ax)TQ−1

y (y−Ax)
]

. (3.4)

For a given variance component vector σ, the optimal functional parameter vec-
tor x̂ can be directly obtained using the Best Linear Unbiased Estimator (BLUE).
Hence, the likelihood ln(py(y|x, σ)) is mostly a function of σ. However, unlike for
x̂, there is no direct expression of the optimal variance components σ̂ as a function
of y. Hence, the assessment of σ̂ relies on the use of nonlinear optimization meth-
ods. In some applications, the Nelder–Mead optimization method – also known
as the downhill simplex method – is used, because it does not require to compute
the partial derivatives of the likelihood function (Williams, 2008) with respect to the
variance components.

Although the MLE method can provide unbiased and minimum-variance esti-
mates of the functional parameters x, this method is known to be a biased estimator of
variance components (Harville, 1977). This bias is caused by the loss of redundancy
resulting from the estimation of the functional parameters. In particular, the method
is influenced by the uncertainty of the estimator x. Nonetheless, when the redun-
dancy increases, the uncertainty of the estimator x systematically reduces, and so is
the bias on the variance components. Hence, the method is considered as asymptoti-
cally unbiased.

3.3 Restricted Maximum Likelihood Estimation (RMLE)

An unbiased alternative to the MLE method is the so-called Restricted Maximum
Likelihood Estimation (RMLE) method as defined in Patterson and Thompson (1971)
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and Koch (1986). To avoid the bias caused by the loss of redundancy, the RMLE max-
imizes the log-likelihood of the misclosure vector t, presented in chapter 2, instead of
the observation vector y. Hence, the estimator of the variance components is defined
as

σ̂ = argmax
σ∈Rp

ln(pt(t|σ)) (3.5)

in which, assuming a normal distribution, ln(pt(t|σ)) is given by

ln(pt(t|σ)) = −
1
2

[
(m− n) ln(2π) + ln(det(Qt)) + tTQ−1

t t
]

(3.6)

with Qt = BTQy(σ)B and t is obtained from y using Equation (2.44).

As for the MLE, the RMLE does not provide a direct expression for the variance
components, and the assessment of σ̂ also relies on the use of a nonlinear optimisa-
tion method.

3.4 Least-Squares Variance Component Estimation (LS-VCE)

The Least-Squares Variance Component Estimation method was first introduced in
1988 by Teunissen (1988), and further developed in Amiri-Simkooei (2007) and Teu-
nissen and Amiri-Simkooei (2008).

The method consists in reformulating the variance component estimation prob-
lem into a linear system of observation equations identical to that defined in chap-
ter 2. The LS-VCE method then applies the theory of weighted least-squares esti-
mation to provide unbiased estimators of the variance components, without making
any distribution assumptions. But, under the additional assumption of elliptically
contoured distributions, such as the multivariate normal distribution, the LS-VCE
method provides unbiased and minimum-variance estimators of the variance compo-
nents.

The LS-VCE method also provides a direct derivation of the covariance matrix of
the variance components as well as an iterative algorithm for the computation of the
variance components, which will both reveal to be extremely useful for our investi-
gations.

3.4.1 Linear stochastic model

So far, we did not make any assumption about the linear or the nonlinear nature of
the stochastic model. However, in its original form, the LS-VCE method considers a
linear functional model

E{y} = Ax, (3.7)

and a linear stochastic model such that

var{y} = Qy = Q0 +
p

∑
i=1

σiQi. (3.8)

in which the m×m matrices Q0 and Qi are the so-called co-factor matrices. The co-
factor matrices correspond to the known components of the stochastic model. They
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usually represent the covariances of groups of observations or the covariances of
specific stochastic processes known up to a scaling factor.

The overall method used to transform the stochastic model (3.8) into a system
of observation equations relies on the properties of the misclosure vector t = BTy
presented in chapter 2, namely

E{t} = 0, (3.9)

and

var{t} = Qt = E{ttT} = BTQyB. (3.10)

Since the vector y is observable, so is the vector t, and the b× b matrix ttT can be
viewed as an observation of the covariance matrix Qt. Hence, by substituting Equa-
tion (3.8) into Equation (3.10), the matrix ttT can be directly linked to the unknown
variance components σi as

E{ttT} = BTQ0B +
p

∑
i=1

σiBTQiB, (3.11)

or, by moving the known component BTQ0B on the left hand-side of Equation (3.11)
one obtains

E{ttT − BTQ0B} =
p

∑
i=1

σiBTQiB. (3.12)

In chapter 2, the functional model of observation equations (Equation 2.12) de-
fines the expectation of the observation vector as a linear combination of unknown
functional parameters xi with known vectors ai corresponding to the columns of the
design matrix A. In this chapter, Equation (3.12) similarly defines the expectation
the observation matrix ttT − BTQ0B as a linear combination of unknown stochastic
parameters σi with known matrices BTQiB.

3.4.2 Vectorizing the problem

The matrices ttT, BTQ0B, and BTQiB being symmetric, one can consider that all their
non-redundant entries are concentrated in their lower-triangular part. Hence, the
strategy adopted in Teunissen and Amiri-Simkooei (2008) is to vectorize the problem
using the so-called half-vectorization operator, noted vh{.}, which only vectorizes the
lower-triangular part of each matrix. For instance, given a symmetric b× b matrix
M, vh{M} returns a 1

2 b(b + 1)× 1 vector such that

vh{M} = vh




m11 m12 . . . m1b
m12 m22 . . . m2b

...
...

. . .
...

m1b m2b . . . mbb


 =



m11
m12

...
m1b
m22

...
m2b

...
mbb


(3.13)
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The half-vectorization vh{.} operator depicted in Equation (3.13) is linear. Hence,
when applied to Equation (3.12), it follows that

E{vh{ttT − BTQ0B}} =
p

∑
i=1

σivh{BTQiB}, (3.14)

which, by noting the 1
2 b(b + 1)× 1 observation vector yvh as

y
vh

= vh{ttT − BTQ0B}, (3.15)

and the 1
2 b(b + 1)× p design matrix Avh as

Avh =
[
vh{BTQ1B} · · · vh{BTQpB}

]
, (3.16)

gives a more familiar system of observation equations

E{y
vh
} = Avhσ. (3.17)

Thanks to this vectorization of the VCE problem, it becomes possible to apply the
body of knowledge of weighted least-squares estimation, presented in chapter 2, to
derive an unbiased and minimum-variance estimator σ̂ of the variance components.

3.4.3 Best Linear Unbiased Estimator

Searching for the weighted least-squares solution to the linear system in Equation
(3.17) leads to the formulation of the following normal equations system

(AT
vhWvhAvh)σ̂ = AT

vhWvhy
vh

(3.18)

in which Wvh can be virtually any 1
2 b(b + 1) × 1

2 b(b + 1) symmetric and positive-
definite weight matrix.

Noting Nvh = (AT
vhWvhAvh) and lvh = AT

vhWvhy
vh

, Equation (3.18) becomes

Nvhσ̂ = lvh. (3.19)

If the p matrices BTQ1B, · · · , BTQpB are linearly independent, the design matrix
Avh is of full column rank and the normal matrix Nvh is invertible. Thus, a necessary
but not sufficient condition to the invertibility of Nvh is that the p co-factor matri-
ces Q1, · · · , Qp are linearly independent. This condition is not sufficient because,
through the span of the matrix BT, the design matrix A influences the estimability
of variance components.

Assuming that Nvh is invertible, an unbiased estimator of the variance compo-
nents σ̂ can be obtain as σ̂ = N−1

vh lvh, that is

σ̂ = (AT
vhWvhAvh)

−1AT
vhWvhy

vh
. (3.20)

Hence, noting var{yvh} = Qvh, the unbiased and minimum-variance estimator σ̂
of σ is obtained by taking Wvh = Q−1

vh so that

σ̂ = (AT
vhQ−1

vh Avh)
−1AT

vhQ−1
vh y

vh
(3.21)
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in which the weight matrix Q−1
vh can be directly computed from Q−1

t using

Q−1
vh =

1
2

DT(Q−1
t ⊗Q−1

t )D (3.22)

where {.} ⊗ {.} denotes the Kroenecker product, and D denotes the so-called dupli-
cation matrix.

Written out in full, Equation (3.21) reads


σ̂1
σ̂2
...

σ̂p

 =


n11 n12 . . . n1p
n12 n22 . . . n2p

...
...

. . .
...

n1p n2p . . . npp


−1 

l1
l2
...
lp

 (3.23)

where the entries nij and li are given by

nij = vh{BTQiB}Q−1
vh vh{B

TQjB}, (3.24)

and

li = vh{BTQiB}Q−1
vh vh{tt

T − BTQ0B}. (3.25)

In Equations (3.24) and (3.25), the entries nij and li are defined as inner products
between large vectors with the Q−1

vh -metric, which is unpractical. Using the proper-
ties of the vh{.} operator, Amiri-Simkooei (2007) and Teunissen and Amiri-Simkooei
(2008) provided more convenient formulations for nij and li.

In the case of a linear stochastic model and a functional model of observation
equations, alternative formulations for nij and li are given by

nij =
1
2

tr(QiQ−1
y P⊥AQjQ−1

y P⊥A). (3.26)

and

li =
1
2

êTQ−1
y QiQ−1

y ê− 1
2

tr(QiQ−1
y P⊥AQ0Q−1

y P⊥A). (3.27)

where ê is obtained as ê = P⊥Ay with P⊥A = I−A(ATQ−1
y A)−1ATQ−1

y .

Note that the entries nij and li are defined using the unknown covariance matrix
Q−1

y . In other words, Equation (3.21) defines the estimator of σ as a function of σ
itself. Such type of circular problems can be solved numerically through an iterative
procedure.

3.4.4 Iterative algorithm

To solve Equation (3.23), (Amiri-Simkooei, 2007) proposes the use of the Newton-
Raphson algorithm. This optimization algorithm starts with initial values for the
variance component vector, noted σ(0)



3.4. Least-Squares Variance Component Estimation (LS-VCE) 25

σ(0) =


σ
(0)
1

σ
(0)
2
...

σ
(0)
p

 (3.28)

which, depending on the study, can be obtained from a simple guess, from sen-
sor specifications, from previous publications, or from approximate VCE methods
(Amiri-Simkooei, 2007).

The initial variance component vector σ(0) is used to solve Equation (3.21) and
obtain an improved estimate for the variance component vector, noted σ(1). Then, by
iterating this procedure, each time a variance component σ(k) is estimated, a more
precise estimate σ(k+1) can be obtained. The iterations stop when the difference
between two successive variance component estimates becomes negligible.

In practice, the iterative determination of variance components involves a large
number of algebraic operations. At each iteration, the most computationally expen-
sive operation is the inversion of the covariance matrix. This inversion can only be
optimized in particular cases. Another expensive operation in the iterative process
is the evaluation of nij and li from Equations (3.24) and (3.25), which involves multi-
plying possibly large matrices.

To reduce the computational burden of each iteration without loss in generality,
in Algorithm (1), we propose an implementation of LS-VCE different from (Amiri-
Simkooei, 2007; Amiri-Simkooei, 2020) to avoid several unnecessary matrix multi-
plications, and we optimize the evaluation of the trace in Equations (3.24) and (3.25).

This optimized algorithm evaluates the vector Q−1
y ê, the matrix Q−1

y P⊥A , and the
p + 1 matrices Q0Q−1

y P⊥A , Q1Q−1
y P⊥A , · · · , QpQ−1

y P⊥A prior to the computation of nij
and li. Then the trace in Equations (3.26) and (3.27) is computed from those p + 1
matrices using the following relation

tr(UV) =
m

∑
k=1

m

∑
l=1

uklvlk, (3.29)

which avoids large matrix multiplications.

We illustrate the gain in speed resulting from this optimization in a numerical
example at the end of this chapter.

3.4.5 Uncertainty of the variance components

When the iterative algorithm converges to a final variance component estimate σ̂, its
covariance matrix Qσ̂ can be obtained by inversion of the normal matrix Nvh, that is

Qσ̂ = N−1
vh . (3.30)

The i-th diagonal elements of Qσ̂ correspond to the variance of the i-th variance

components, noted σ2
σi

. It follows that σσi =
√

σ2
σi

is the standard deviation of the
i-th variance component.
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Input

1. Observation vector y
2. Design matrix A
3. Co-factor matrices Q0, Q1, . . . Qp

4. Approximate variance components vector σ(0)

5. Small convergence criterion ε ∼ 10−4

6. Stop← False

while Stop = False do

Evaluate the covariance matrix Qy = Q0 +
p
∑

i=1
σiQi

Evaluate the weight matrix as W = Q−1
y

Evaluate projector matrix as P⊥A = I−A(ATWA)−1ATW
Evaluate normalized projector as K = WP⊥A
Evaluate normalized residual vector as q̂ = Ky
Evaluate the p + 1 matrices Ri = QiK
Evaluate the entries nij and li of Nvh and lvh as
for i← 1 to p do

li ← 1
2 q̂TQiq̂− 1

2 tr(RiR0)

for j← i to p do
v← 1

2 tr(RiRj)

nij ← v
nji ← v

end

end
Solve for σ̂ the system Nvhσ = lvh
if (σ̂ − σ0)TNvh(σ̂ − σ0) ≥ ε then

σ0 ← σ̂

else
Evaluate Qσ̂ = N−1

vh

Stop← True

end

end
Result: σ̂ and Qσ̂

Algorithm 1: Algorithm for the iterative estimation of σ̂ and Qσ̂ for linear stochas-
tic models. Each evaluation of the trace is done using Equation (3.29).
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Although the observations are normally distributed, due to the specific structure
of y

vh
, the estimator of the variance components is not normally distributed. Ac-

cording Equations (3.28) and (3.29) in Teunissen (1988), the estimator of a variance
component σ̂i is distributed as

σ̂i ∼
r

∑
k=1

λkχ2
k(1, 0), (3.31)

where χ2
k(1, 0) denote mutually independent chi-squared variables, and r is the num-

ber of positive eigenvalues λk of the following matrix

Q−1
y

(
1
2

p

∑
j=1

σσi σσj Qj

)
Q−1

y Qê. (3.32)

Except for very specific cases, such as p = 1, the probability density function
of σ̂i does not have a closed form expression. Therefore, in this thesis, we illustrate
the distribution of the variance component estimates using the normal distribution
approximation.

3.4.6 Nonlinear stochastic model

We now consider that the stochastic model Qy(σ) is a nonlinear function of the vari-
ance components vector σ. Just like the classical weighted least-squares estimation
method, the LS-VCE method can handle nonlinear stochastic model models by lin-
earizing the problem around the approximate variance components σ(0) using the
first-order Taylor series expansion, so that (Amiri-Simkooei, 2007)

Qy(σ) ≈ Qy(σ
(0))−

p

∑
i=1

∂Qy(σ)

∂σi

∣∣∣∣
σ(0)

σ
(0)
i +

p

∑
i=1

∂Qy(σ)

∂σi

∣∣∣∣
σ(0)

σi (3.33)

A more familiar linear stochastic model of the form

Qy(σ) ≈ Q(k)
0 +

p

∑
i=1

σiQ
(k)
i (3.34)

can be obtained, for each iteration (k), by noting

Q(k)
0 = Qy(σ̂

(k))−
p

∑
i=1

∂Qy(σ)

∂σi
σ̂
(k)
i

∣∣∣∣
σ̂(k)

(3.35)

and

Q(k)
i =

∂Qy(σ)

∂σi

∣∣∣∣
σ̂(k)

, (3.36)

in which Q(k)
0 and Q(k)

i now depends on the variance components estimates.

The non-linearity of the stochastic model affects the iterative procedure used to
obtain variance component estimates. Hence, in Algorithm (2), we present a modi-
fied algorithm suited for nonlinear stochastic models.
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Input

1. Observation vector y
2. Design matrix A

3. covariance function Qy(σ) and its p partial derivatives ∂Qy(σ)
∂σi

4. Approximate variance components vector σ(0)

5. Small convergence criterion ε ∼ 10−3

6. Stop← False
7. k← 0

while Stop = False do

Evaluate Q(k)
0 and Q(k)

i from Equations (3.35) and (3.36)

Evaluate the covariance matrix Qy = Q(k)
0 +

p
∑

i=1
σ̂
(k)
i Q(k)

i

Evaluate the weight matrix as W = Q−1
y

Evaluate projector matrix as P⊥A = I−A(ATWA)−1ATW
Evaluate normalized projector as K = WP⊥A
Evaluate normalized residual vector as q̂ = Ky

Evaluate the p + 1 matrices Ri = Q(k)
i K

Evaluate the entries nij and li of Nvh and lvh as
for i← 1 to p do

li ← 1
2 q̂TQ(k)

i q̂− 1
2 tr(RiR0)

for j← i to p do
v← 1

2 tr(RiRj)

nij ← v
nji ← v

end

end
Solve for σ̂ the system Nvhσ = lvh
if (σ̂ − σ0)TNvh(σ̂ − σ0) ≥ ε then

σ(k+1) ← σ̂

k← k + 1

else
Evaluate Qσ̂ = N−1

vh

Stop← True

end

end
Result: σ̂ and Qσ̂

Algorithm 2: Algorithm for the iterative estimation of σ̂ and Qσ̂ for nonlinear
stochastic models. Each evaluation of the trace is done using Equation (3.29).
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3.4.7 Possible estimation issues

Divergence

The LS-VCE being iterative, the algorithm used to derive variance component esti-
mates may diverge in some occasions. There are three main possible reasons for this
problem. The first and most frequent one is an incorrect stochastic model. Intuitively,
if one attempts to fit a stochastic model that is not representative of the observations,
the LS-VCE has a higher chance to fail at providing estimates. The second reason is
a lack of redundancy. Some stochastic model requires more observations than others
to obtain reliable estimates. The last reason is a badly chosen set of approximate variance
components. If the approximate values are far from the true values, the algorithm has
more difficulty to converge.

Negative estimates

Another occasional problem is the negativity of some variance component estimates.
The LS-VCE being unconstrained, it can provide negative values, even when it makes
no physical sense. This issue is usually caused by lack of redundancy, which results
in an imprecise estimator and random fluctuations of the estimates can reach neg-
ative values, especially when the true variance component amplitude is relatively
close to zero. Another possibility is that variance component estimates are biased
toward negative values. This usually indicates that the stochastic model poorly rep-
resents the observations.

To systematically overcome the negativity issue, Amiri-Simkooei (2016) proposes
to use the non-negative sequential coordinate-wise algorithm developed by (Franc,
Hlaváč, and Navara, 2005) to solve the LS-VCE normal equation system (3.21) at
each iteration.

Note that the non-negativity constraint conflicts with the unbiased property of
the LS-VCE estimator (Amiri-Simkooei, 2016). Consequently, the use of the non-
negative LS-VCE method should ideally be used in the case the unconstrained LS-
VCE failed to provide positive estimates.

3.4.8 Numerical examples

To illustrate the application of the LS-VCE method, we consider a synthetic experi-
ment consisting in the estimation of the variance and covariance of two time series.

The two time series are measurements of the same linear trend, of intercept a
and rate b, obtained from two correlated measurement devices. In this case, the
functional model follows

E

{[
y

1
y

2

]}
=

[
A
A

] [
a
b

]
(3.37)

with

A =


1 t1
1 t2
...

...
1 tm

 . (3.38)
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in which, ti is the time of measurement.

The stochastic model of this synthetic experiment can be written as

var

{[
y

1
y

2

]}
= σ2

1

[
I 0
0 0

]
+ σ2

2

[
0 0
0 I

]
+ σ1σ2

[
0 I
I 0

]
= σ2

1 Q1 + σ2
2 Q2 + σ1σ2Q3

(3.39)

in which σ2
1 , σ2

2 , and σ1σ2 correspond to the variance components and Q1, Q2 and Q3
correspond to the co-factor matrices.

Accuracy of the method

For the simulation, the variances and the covariance are chosen as σ2
1 = 5 mm2,

σ2
2 = 10 mm2, and σ1σ2 = 3 mm2. A set of simulated observations following these

properties is visible in Figure (3.1). By taking σ
2(0)
1 = 15 mm2, σ

2(0)
2 = 15 mm2, and

σ1σ2
(0) = 0 mm2 as approximate values, we applied the LS-VCE method (1) for two

different sample sizes m1 = 50 and m2 = 100, and so, for 5000 simulations.
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FIGURE 3.1: Example of simulated observations.

The distributions of the estimated variance components σ̂2
1 , σ̂2

2 and σ̂1σ̂2 are pre-
sented in Figure (3.2). The LS-VCE estimates are centred on the true variance com-
ponents. This results from the unbiased property of the estimator. Note that the
uncertainty of the variance component estimator induces a spread of estimates dis-
tribution. When increasing the sample size, this spread reduces.

Although the empirical distributions of the variance component estimates are
slightly skewed due to the special distribution of the variance component estimates,
the normal distributions drawn in red remain good approximations. The standard
deviations used to draw the normal probability density functions in Figure (3.2) are
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that predicted by the LS-VCE method. Hence, the method also provides reliable
uncertainties on its estimates.
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FIGURE 3.2: Normalized distributions of variance component esti-
mates for 5000 simulations (blue). True variance components (black).
Normal distribution approximation using the standard deviation pre-
dicted by Equation (3.30). Result for 50 observations per time series

(top). Result for 100 observations per time series (bottom)

Speed of the optimized algorithm

To illustrate the gain in speed of the proposed algorithm over the standard imple-
mentation presented in (Amiri-Simkooei, 2007; Amiri-Simkooei, 2020), we tested the
evolution of both algorithm runtimes with the number of observation per time se-
ries.

The results obtained for a number of observations per time series ranging from
50 to 3000 are presented in Figure (3.3). Our simulation shows that the runtime of
the optimized algorithm is more than 3 times faster than that of the standard one for
3000 observation per time series (that is, 6000 observations in total).
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Chapter 4

Elements of geodetic time series
analysis

Whether analysing ground deformations or sea-levels, it is often necessary to model
how a series of observations measured at a specific geographic location evolves as
a function of time. In such cases, the statistical analysis comes under the field of
time series analysis, which has specific ways to describe both the functional and the
stochastic models.

This chapter reviews the basic principles of geodetic time series analysis. In par-
ticular, we present parametric functional models and parametric stochastic models
frequently used by the geodetic community. Hence, this chapter should also provide
a more in-depth description of the statistical models used in chapters 8-11.

The content of this methodological chapter is mostly derived from Bevis and
Brown (2014) and Bos et al. (2020).

4.1 Trajectory model

When the considered time variable observations, noted y(ti), correspond to position
coordinates in one or more spatial dimensions, the functional model of geodetic time
series is often referred to as trajectory model (Bevis and Brown, 2014). In most appli-
cations, this trajectory model can be defined as a linear combination of elementary
behaviours, including a general trend, periodic oscillations, step discontinuities and
possible transients.

Hence, in the following, the functional model of the time variable observations,
noted E{y(ti)}, is defined such that

E{y(ti)} = µtrend(ti) + µperiodic(ti) + µdiscontinuities(ti) + µtransients(ti), (4.1)

in which µtrend(ti), µperiodic(ti), µdiscontinuities(ti), and µtransients(ti) are the expected
values of each elementary behaviour at time ti.

4.1.1 Trend model

In practice, the trend µtrend(ti) is modelled using low-degree polynomials. There-
fore, µtrend(ti) can be written as

µtrend(ti) = α + βti (+
γ

2
t2
i ), (4.2)
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in which the intercept α, the velocity β, and the acceleration γ are parameters that
must be estimated from the observations. The acceleration term is left in parenthe-
ses because a very few phenomena actually show accelerations (this is the case, for
example, of ice mass changes, not investigated in this study).

4.1.2 Periodic oscillations model

At first approximation, periodic oscillations induced by tides and by climatic pro-
cesses can be described by a linear combination of pure sine waves, that is

µperiodic(ti) = ∑
k

Aksin(ωkti + ϕk), (4.3)

in which Ak denotes the amplitude, ωk the angular frequency, and ϕk the phase
offset. ωk is related to time frequency fk as ωk = 2π fk.

We often know the frequencies of the oscillations fk from a prior frequency anal-
ysis or the physical understanding of the measured process, like the frequencies of
tidal constituents measured by tide gauges or the seasonality in surface mass distri-
bution. Hence, the parameters to be estimated from observation are the amplitude
Ak and the phase offset ϕk, for each considered frequency fk. Equation (4.3) depends
non-linearly on Ak and ϕk, so their direct estimation requires using a nonlinear esti-
mation method, which is not convenient when dealing with numerous frequencies.
Instead, Equation (4.3) can be linearized using the Fourier series decomposition so
that

µperiodic(ti) = ∑
k

akcos(ωkti) + bksin(ωkti), (4.4)

in which ak and bk are referred to as Fourier coefficients.

For each considered frequency, fk, the amplitude Ak can be computed from the
Fourier coefficients ak and bk as

Ak =
√

a2
k + b2

k , (4.5)

and the phase offset ϕk as

ϕk = arctan
(

ak

bk

)
. (4.6)

Because Equation (4.4) assumes a constant amplitude Ak and phase offset ϕk, it
may be too simple for some processes. In such cases, more advanced methods (not
used in this thesis) have been developed (Davis, Wernicke, and Tamisiea, 2012; Klos
et al., 2019).

4.1.3 Discontinuity models

When measuring a signal continuously over years or decades, instrumental changes
and large earthquakes may introduce discontinuities into the time series (Gazeaux
et al., 2013). These discontinuities can be modelled using the so-called Heaviside
functionH(.), which models a unit step discontinuity at time tk as
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H(ti − tk) =

{
0, ti − tk < 0
1, ti − tk ≥ 0

. (4.7)

A collection of step discontinuities, or offsets, with unknown amplitudes, can be
modelled as a linear combination of Heaviside functions, that is

µoffsets(ti) = ∑
k

ζkH(ti − tk), (4.8)

in which ζk is the amplitude of an offset occurring at time tk.

The occurrence time tk of an offset is usually given by the date of earthquakes, by
the instrument metadata, or by automatic change detection algorithms. Therefore,
the amplitude parameters ζk are the only one to be estimated from the observations,
so that the trajectory model remains linear when accounting for offsets.

Occasionally, geodetic time series also exhibit abrupt changes in velocity trig-
gered by geophysical events or human activities in the vicinity of the sensors. In
such cases, a set of velocity changes occurring at times tk can also be modelled using
the Heaviside function as

µvelocities(ti) = ∑
k

ηk(ti − tk)H(ti − tk) (4.9)

in which ηk correspond to the velocity increment at time tk.

As for the offsets, the occurrence time tk of each velocity discontinuity is deter-
mined prior to the design of the trajectory model, using either metadata or detection
algorithms. Therefore, the velocity increments ηk are the only parameters to be esti-
mated from the observations, and the trajectory model remains linear.

When considering both type of discontinuities, the term µdiscontinuities(ti) in Equa-
tion (4.1) is defined as

µdiscontinuities(ti) = µoffsets(ti) + µvelocities(ti). (4.10)

4.1.4 Transient models

Another phenomenon occasionally present in geophysical time series are transients
signals. It occurs, for instance, when the sensor is affected by post-seismic deforma-
tions (Bevis and Brown, 2014) or instrumental drifts (Watts and Kontoyiannis, 1990;
Van Camp and Francis, 2007).

Such signals are usually modelled using a linear combination of exponential
functions (Savage and Prescott, 1978)

µexp(ti) = ∑
k

φk

(
1− exp

(
− ti − tk

τk

))
(4.11)

or logarithmic functions (Marone, Scholtz, and Bilham, 1991)

µlog(ti) = ∑
k

ψk ln
(

1 +
ti − tk

τk

)
(4.12)
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in which the parameters φk and ψk are unknown amplitudes and τk are the time-
constants of the transient signals starting at time tk.

Sometimes, both µexp(ti) and µlog(ti) models must be combined to really fit the
transient signal observed in some time series (Altamimi et al., 2016) so that

µtransients(ti) = µexp(ti) + µlog(ti). (4.13)

In practice, the time-constants τk are unknown and must be estimated along with
the amplitudes φk and ψk. Thus, the introduction of such transients in the trajectory
model makes the functional model nonlinear.

4.2 Stochastic processes

In addition to the trajectory model, which only models the part of the observations
considered as deterministic, the remaining stochastic variability must be described
by a stochastic model, using stochastic processes. In the context of time series analy-
sis, the considered stochastic processes are random time variable functions existing
in both continuous and discrete forms. Since we usually deal with regularly sampled
observations, with possible gaps, this chapter exclusively focuses on the presenta-
tion of discrete stochastic processes.

In the following, the distinction is made between white noise processes, that is un-
correlated noise, and time correlated processes. Although white noise processes were
used as default hypotheses for the stochastic model, time-correlated processes have
shown to be much more realistic when dealing with geophysical time series (Ag-
new, 1992; Press, 1978). In particular, numerous studies demonstrated that includ-
ing time possible correlated processes in the stochastic model is essential to obtain
realistic functional parameter uncertainties from geodetic time series (Zhang et al.,
1997; Williams, 2003a).

In practice, continuous stochastic processes are mathematically defined through
their auto-covariance functions, or, equivalently, through their power-spectra. For
discrete stochastic processes, auto-covariance functions can be written in the form
of covariance matrices. Being able to express the auto-correlation of a process in the
form of a covariance matrix is especially important when using a Variance Compo-
nent Estimation method, as it is the basic element of a stochastic model (see chapter
3). Therefore, besides presenting each process, we also specify the computation of
their covariance matrix for practical applications.

4.2.1 White noise

The most simple type of discrete stochastic process is probably the discrete white
noise process. Noting vi independent and identically normally distributed errors
with unit variance – that is, vi ∼ N (0, 1), a white noise process with variance σ2,
noted wi, is defined as

wi = σvi (4.14)

where σ denotes the standard deviation of the process.
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The auto-covariance between two samples of a white noise process, noted wi and
wj is given by

cov{wi, wj} =
{

σ2 , if i = j
0 , if i 6= j

, (4.15)

where σ2 denotes the variance of the process.

Hence, for m observations of a white noise process starting at t0, the Equation
(4.14) can be re-written using matrix notation as

w = σv (4.16)

noting

w =


w0
w1
...

wm−1

 , v =


v0
v1
...

vm−1

 . (4.17)

with v ∼ N (0, I).

Applying the linear variance propagation law to Equation (4.16), we obtain the
covariance matrix of the white noise process w, which is simply

var{w} = σ2I (4.18)

with I the cofactor matrix associated to the white noise process, and σ2 its amplitude.

4.2.2 Time-correlated processes

The hypothesis that the variability considered as stochastic in geophysical time se-
ries can be modelled with only white noise is a strong assumption in general. If
incorrect, it ultimately leads to an underestimation of functional parameter uncer-
tainties, and therefore to an over-interpretation of measurements (Williams, 2003a;
Bos et al., 2014; Van Camp, Williams, and Francis, 2005). To avoid this problem, it
has become a standard practice to consider possible time-correlation of the stochastic
component of geophysical observations.

A wide variety of discrete and time-correlated stochastic processes are in use in
geodesy. However, their definitions usually come down to filtering a white noise
process using a process-specific filter hk introducing time correlation. In this thesis,
all the time-correlated processes, noted ri, are defined through the following convo-
lution

ri = σ
+∞

∑
k=−∞

hkvi−k, (4.19)

in which, vi−k are lagged values of a white noise process with unit variance, hk is
the value of the process-specific filter at lag k, and σ is the amplitude of the time-
correlated process.

In general, it is assumed that the stochastic process ri starts at t0, therefore the
maximum lag is i and the summation in Equation (4.19) stops at i. Besides, it is
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always assumed that hk = 0 for k < 0, and the summation actually starts at 0. Under
these assumptions, Equation (4.19) can be re-written as

ri = σ
i

∑
k=0

hkvi−k, (4.20)

The covariance between two samples of a discrete time-correlated process de-
fined from Equation (4.20), noted ri and rj, is given by (Bos et al., 2008)

cov{ri, rj} = σ2
i

∑
k=0

hkhk+(j−i), (4.21)

For m observations of a time-correlated process starting at t0, the Equation (4.20)
can be re-written using matrix notation as

r = σLv (4.22)

by noting

r =


r0
r1
...

rm−1

 , L =


h0 0 · · · 0

h1 h0
. . .

...
...

. . . . . . 0
hm−1 · · · h1 h0

 , v =


v0
v1
...

vm−1

 . (4.23)

with v ∼ N (0, I).

Applying the linear propagation law of variances to Equation (4.22), one obtains
the covariance matrix of the time-correlated process r as

var{r} = σ2Q = σ2LLT. (4.24)

with Q the cofactor matrix associated to the considered stochastic processes, and σ2

its amplitude.

From the definition of the filter hk, it is possible to generate a wide range of time-
correlated stochastic processes. In the following, we present three types of stochastic
processes, namely first-order Gauss-Markov, power-law, and generalized Gauss-Markov
processes.

First-Order Gauss-Markov (FOGM) processes

As a first example of time-correlated process, we consider the so-called First-Order
Gauss-Markov processes (FOGM), also called first-order Auto-Regressive processes (AR1).
These processes are often used to model the time correlation observed in sea-level
and climatic time series (Allen and Smith, 1996; Hughes and Williams, 2010; Ca-
margo et al., 2020).

FOGM processes are defined through the convolution of a white noise process
with an exponentially decaying function of the time delay k. In their discrete form,
FOGM processes can be obtained from Equation (4.19) by defining the filter hk as

h0 = 1
hk = φhk−1

(4.25)



4.2. Stochastic processes 39

where φ is a parameter defined so that 0 < φ < 1.
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FIGURE 4.1: Example of simulated first-order Gauss-Markov pro-
cesses generated from the same white noise time series.

To obtain the auto-covariance and the covariance matrix of a FOGM process,
one can substitute the filter definition (4.25) in Equations (4.21) and (4.24). Because
hk decay exponentially fast with the time delay k, the FOGM only exhibits short-
memory effects. Two examples of simulated FOGM processes with the same variance,
but with different φ, generated using Equation (4.22) are presented in Figure (4.1).

For some numerical application, the use of the unit-less parameter φ may be
unpractical. Instead, one can transform the parameter φ into the time-constant of a
continuous FOGM process, noted τ, expressed in years, and defined as

τ = − ∆t

ln(φ)
(4.26)

in which ∆t is the sampling period in years.

To identify the nature of the stochastic process, a common strategy is to analyse
the shape of power-spectrum of the time series by comparing it to the theoretical
power spectrum of a given process. The theoretical power-spectrum P( f ) of a dis-
crete FOGM process sampled at a frequency fs reads

P( f ) = 2
σ2

fs
[1 + φ2 − 2φ cos(2π f / fs)]

−1 (4.27)

The theoretical power-spectra of FOGM processes for different values of φ are de-
picted in Figure (4.2). Due to the time correlation, the energy of the process increases
at low frequencies, but, as the correlation between two samples decays exponentially
fast, the spectrum eventually flattens at very low frequencies. In log-log scales, the
power spectrum (4.2), show a slope of−2.0 at high frequencies and a systematic flat-
tening at low frequencies. The crossover frequency of this flattening fc is controlled
by the time-constant τ as
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FIGURE 4.2: Theoretical spectra of discrete first-order Gauss-Markov
(FOGM) processes.

fc =
1

2πτ
. (4.28)

Note that, for φ = 0, the FOGM process is a simple homogeneous white noise.
In this case, the expression power spectrum (4.2) does not depend on the frequency
f anymore, and it looks flat in a graphic representation.

FOGM processes depend on two stochastic parameters: the parameter φ and
the amplitude parameter σ2. If φ is known, σ2 is the only unknown variance com-
ponent. In this case the stochastic model is linear, and σ2 can be estimated using
the linear LS-VCE method. However, if φ is to be estimated, the stochastic model
becomes nonlinear and σ2 and φ must be estimated using the nonlinear LS-VCE
method (Khazraei and Amiri-Simkooei, 2019).

Power-Law (PL) processes

Since the work of Hurst (1951) and Hurst (1957), who evidenced a power-law depen-
dence between the cumulative flow of rivers and the observation time, more recent
studies – e.g., Press (1978) and Agnew (1992) – showed that many geophysical and
astronomical time series present similar power-spectra P( f ) following power-law
functions of the time-frequency f , that is

P( f ) ≈ P0

(
f
f0

)κ

, (4.29)

where both P0 and f0 are normalization constants, and κ is the so-called spectral
index (Agnew, 1992).

This discovery had a significant impact on statistical time series analysis as it
implied that some natural phenomenon showed long-term dependencies, or long
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memory effects, which could not be described by the stochastic processes known at
the time. This issue led Mandelbrot and Van Ness (1968) to develop the so-called
fractional Brownian motions, which formalized the concept of continuous power-law
(PL) processes. Later, Granger and Joyeux (1980) and Hosking (1981) developed
fractional differencing which provided a statistical framework for the analysis of
discrete PL processes.

PL processes are defined through the convolution of a white noise process with a
power-law decaying function of the time delay. In their discrete form, PL processes
can be obtained from Equation (4.19) by defining the filter hk as (Kasdin, 1995)

h0 = 1
hk = akhk−1

(4.30)

with

ak = 1− κ

2k
− 1

k
. (4.31)

To obtain the auto-covariance and the covariance matrix of a PL process, one can
substitute the filter definition (4.30) in Equations (4.21) and (4.24). The difference
with the definition of a FOGM process is that ak is a more slowly decaying function,
which introduces a longer memory effect. Three examples of PL time series with
different spectral indices simulated using Equation (4.22) are presented in Figure
(4.3).

The theoretical power spectrum of a discrete PL process is given by

P( f ) =
σ2

fs
[2 sin(π f / fs)]

κ (4.32)

which, for f / fs → 0, satisfies the power-law property defined in Equation (4.29).

The theoretical power-spectra of three PL processes with different spectral in-
dices are presented in Figure (4.4). When plotted in log-log scales, the theoretical
power-spectrum of a PL process is a linear trend of which the slope is the spectral
index κ.

PL processes depend on two stochastic parameters: the spectral index κ and the
variance σ2. If κ is known, σ2 is the only variance component and the stochastic
model is linear. In such a case, σ2 can be estimated using the linear LS-VCE method.
However, if κ is to be estimated, the stochastic model becomes nonlinear. In chapter
8 we discuss the estimation of κ using the nonlinear LS-VCE method.

Generalized Gauss Markov (GGM) processes

In some cases, the geophysical time series exhibits power-law properties at high
frequencies and white noise properties at low frequencies (Bos et al., 2014; He et
al., 2019). To account for this behaviour, Langbein (2004) introduced Generalized
Gauss Markov (GGM) processes, which is a generalization of both FOGM and PL
processes.

Generalized Gauss-Markov processes are defined through the convolution of a
PL process with an exponentially decaying function of the time delay k. In their
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FIGURE 4.3: Example of simulated discrete power-law processes gen-
erated from the same white noise time series.
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FIGURE 4.5: Example of simulated discrete generalized Gauss
Markov processes generated from the same white noise time series.

discrete form, GGM processes can be obtained from Equation (4.19) by defining the
filter hk as (Langbein, 2004; Bos et al., 2020)

h0 = 1
hk = φakhk−1

(4.33)

in which φ is the parameter of the FOGM process 0 < φ ≤ 1) and ak is the same
power-law parameter as defined in Equation (4.31).

To obtain the auto-covariance and the covariance matrix of a GGM process, one
can substitute the filter definition (4.33) in Equations (4.21) and (4.24). The differ-
ence with the definition of PL processes is the influence of the parameter φ, which
removes the long term dependencies of the power-law. Three examples of GGM
time series with different parameters κ and φ simulated using Equation (4.22) are
presented in Figure (4.5).

The theoretical power-spectrum of a discrete GGM process is given by

P( f ) = 2
σ2

fs
[1 + φ2 − 2φ cos(2π f / fs)]

κ/2. (4.34)

It follows that, for κ = −2, the GGM power-spectrum (4.34) becomes that of the
FOGM process (4.27). Besides, using trigonometric identities, it can be shown that,
when φ = 1, the power-spectrum (4.34) is that of a pure PL process ( 4.32).
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The theoretical power-spectra of three GGM processes with different spectral in-
dices and parameters φ are presented in Figure (4.6). When plotted in log-log scales,
the theoretical power-spectrum of GGM processes shows a linear trend at high fre-
quencies and a flattening at low frequencies.
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FIGURE 4.6: Theoretical spectra of discrete generalized Gauss
Markov processes

GGM processes depend on three stochastic parameters, namely the parameter
φ, the spectral index κ, and the variance σ2. If both φ and κ are known, σ2 is the
only variance component and the stochastic model is linear. In such a case, σ2 can
be estimated using the linear LS-VCE method. However, if φ or κ is to be estimated,
the stochastic model becomes nonlinear. In chapter 8, we discuss the estimation of φ
and κ using nonlinear LS-VCE method.

4.2.3 Combination of stochastic processes

The stochastic variability observed in geodetic time series is sometimes too complex
to be realistically modelled using only one stochastic process. In such cases, one
can define the stochastic model as a linear combination of several stochastic pro-
cesses. In particular, it is frequent to combine white noise with one or two types
of correlated process. The white noise processes aim at describing high-frequency
variability whereas the time-correlated process rather describes the low-frequency
variability. When doing so, the stochastic model var{y} becomes a linear combina-
tion of covariance matrices of each process, which increases the number of unknown
variance components.

For instance, for a white noise process w combined with a PL process r, the
stochastic model reads

var{y} = var{w}+ var{r} = σ2
wI + σ2

plQpl , (4.35)
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where the variance of each process, σ2
w and σ2

pl , but also the spectral index κ of the
PL process can be unknown.

4.2.4 Missing values

In practice, long-lasting observations are rarely perfectly continuous. Hence, one
must consider missing values during the analysis. For the trajectory model, missing
observations are not an issue since it is possible to evaluate each function at arbitrary
times ti. For the stochastic model, this is less trivial because we consider discrete
stochastic processes defined using recurrence relations.

The most simple strategy to handle missing values is to first assume continuous
measurements when constructing the covariance matrix of each process using Equa-
tion (4.24), and then to remove the lines and columns that correspond to the missing
observations in the covariance matrix Qy. Note that it is important not to delete lines
of L before computing LLT as it would erroneously assume that the process stopped
during the unobserved epochs.

4.3 Functional and stochastic model selection

When searching for the best functional or stochastic model for a geodetic time series,
it is common to test several possible models and then chose the one that optimizes a
given selection criterion.

If the considered models have the same number of functional and stochastic pa-
rameters, the likelihood can be used as a criterion to be maximized. However, when
the number of parameters differs, using the likelihood is not ideal because it tends
to promote models with more parameters.

To avoid over-parametrisation issues, one can perform hypothesis testing to as-
sess whether the additional parameters significantly improve alternative models
given a considered type of noise. This methodology is presented in more details
in chapter 5.

Another strategy for model selection is to define a new criterion that penalizes
models with more parameters in order to introduce parsimony. Two famous exam-
ples of such criterion are the Akaike Information Criterion (AIC) (Akaike, 1974) and
the Bayesian Information Criterion (BIC) (Schwarz, 1978).

They are defined as functions of the log-likelihood ln(py(y|x̂, σ̂)), the number of
observations m, the number of functional parameters n, and the number of stochastic
parameters p such that

AIC = 2(n + p)− 2 ln(py(y|x̂, σ̂)), (4.36)

and

BIC = 2 ln(m)(n + p)− 2 ln(py(y|x̂, σ̂)). (4.37)

Note that, unlike the log-likelihood which is a criterion to maximize, both AIC
and BIC are criteria to minimize. The main practical difference between the two
criteria is that the BIC tends to penalize more models with many parameters.
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Chapter 5

Event detection using hypothesis
testing in linear models

In chapter 2, we mention that a necessary condition to the unbiased estimation of
unknown functional parameters is an appropriate choice for the functional model.
In particular, the model must not be under-parametrized. Unfortunately, the func-
tional model is rarely known prior to the data analysis step. Although some general
patterns are expected from a given set of observations, each time series may present
specific deviations from these expectations, which must be taken into account.

An appropriate strategy to avoid miss-specifications in the functional model is to
analyse each time series and select an optimal trajectory model, for example, using
a Bayesian or Akaike information criterion. However, for large data-sets, this step
can be cumbersome, and one may rely on automatic model selection methods. Au-
tomatic segmentation, that is, the automatic identification of the trajectory model of
time series, is a wide topic, and the review of this field is beyond the scope of this
chapter.

In this chapter, we consider that we have a reliable prior idea about the functional
and stochastic model for the observations, as well as a mathematical description
of the possible undetected signals. In particular, we show how hypothesis testing
in linear models is helpful to construct automatic detectors for commonly observed
patterns in geodetic time series.

The methods presented here result from Teunissen (2000b) and Amiri-Simkooei
(2020). They are extensively used in chapters 9 and 10.

5.1 Hypothesis testing

The goal of hypothesis testing is to quantify whether extending the prior functional
model to include additional effects is justified considering the observations and a
given stochastic model. To do so, it is necessary to define a so-called null hypothesis,
that is, a prosaic hypothesis in which the current functional model is correct, an
alternative hypothesis, in which the functional model includes additional effects, and
finally, a statistical test to decide between the two.

5.1.1 The null hypothesis

Under the null hypothesis, noted H0, the functional and stochastic models of the
observation vector y are known and can be written as
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H0 : E{y} = Ax ; var{y} = Qy, (5.1)

in which A is the m× n design matrix and x is unknown the n× 1 parameter vector,
and Qy is the covariance matrix of the observations, which is assumed to be known.

5.1.2 The alternative hypothesis

Under the alternative hypothesis, the functional model must account for q additional
parameters so that

Ha : E{y} = Ax + Cy∇ ; var{y} = Qy, (5.2)

in which Cy is m× q the design matrix of the functional model extension, ∇ is the
unknown q× 1 vector of additional parameters, and Qy is unchanged.

5.1.3 The Generalized Likelihood Ratio Test (GLRT)

The statistical test considered in deciding between the null and the alternative hy-
pothesis is the so-called Generalized Likelihood Ratio Test (GRLT). It consists in compar-
ing the maximum of likelihood under each hypothesis to define whether the likeli-
hood under Ha is significantly higher than under H0.

The maximum of likelihood under H0 can be written as

max
x0∈Rn

py(y|x0), (5.3)

which corresponds to the likelihood of the observations py(y|x̂0) for a model based
on the Best Linear Unbiased Estimator (BLUE) of the functional parameters x̂0 under
H0.

Likewise, the maximum of likelihood under Ha can be written as

max
xa∈Rn,∇∈Rq

py(y|xa,∇), (5.4)

which corresponds to the likelihood py(y|x̂a, ∇̂) of a model based on the BLUE esti-
mators of the functional parameters x̂a and ∇̂ under Ha.

From the maximum likelihood under each hypothesis, the generalized likelihood
ratio, noted GLR, is defined as

GLR =

max
x0∈Rn

py(y|x0)

max
xa∈Rn,∇∈Rq

py(y|xa,∇) . (5.5)

The observations can only be better modelled with additional parameters, there-
fore, the maximum likelihood under Ha is always greater or equal than that under
H0, such that 0 ≤ GLR ≤ 1.

Assuming the normal distribution for both the H0 and Ha hypotheses, the ex-
pression for the GLR becomess

GLR = exp [−1
2
(ê0

TQ−1
y ê0 − êT

a Q−1
y êa)], (5.6)



5.1. Hypothesis testing 49

in which ê0 is the estimator of the residuals under H0 and êa is that under Ha. Both
residual vectors are obtained using the BLUE under their respective hypotheses.

Instead of analyzing the GLR, Teunissen (2000b) proposes to analyze the so-called
T-statistic Tq defined as

Tq = −2 ln(GLR) = êT
0 Q−1

y ê0 − êT
a Q−1

y êa, (5.7)

that is, the difference between the quadratic forms of the residuals, under each hy-
pothesis.

Equation (5.7) implies that deriving the T-statistic requires the use of the BLUE
under each hypothesis. However, Teunissen (2000b) showed that Equation (5.7) can
be re-written as

Tq = êT
0 Q−1

y Cy[CT
y Q−1

y P⊥ACy]
−1CT

y Q−1
y ê0, (5.8)

in which P⊥A is the orthogonal projector of the BLUE under the null hypothesis, that
is P⊥A = I−A(ATQ−1

y A)−1ATQ−1
y .

Unlike Equation (5.7), Equation (5.8) does not explicitly require the calculation
of êa.

To test whether the null hypothesis should be rejected based on the value of
Tq, it is necessary to know the distribution of Tq under H0. Using the fact that Tq
is expressed as a quadratic form of the residuals, it can be shown that, under H0,
the statistic Tq follows a centred chi-squared distribution with q degrees of freedom
(Teunissen, 2000b), that is

H0 : Tq ∼ χ2(q, 0). (5.9)

Hence, for a given confidence level α, one can accept the alternative hypothesis
if Tq > χ2

α(q, 0).

In the case in which the alternative model only requires one additional parame-
ter, that is q = 1, the design matrix of the functional model extension Cy becomes a
vector noted cy. In this case, Equation (5.8) becomes

T1 = êT
0 Q−1

y cy[cT
y Q−1

y P⊥Acy]
−1cT

y Q−1
y ê0, (5.10)

which can be simplified into a simple ratio of two scalars such that (Amiri-Simkooei
et al., 2019)

T1 =
(cT

y Q−1
y ê0)

2

cT
y Q−1

y P⊥Acy
. (5.11)

In conclusion, as long as an event detection problem can be formulated in the
form of hypothesis testing in linear models, one can use Equation (5.8) and (5.11)
to build any kind of customized detector. In the following section, we demonstrate
the construction of such detectors for the identification of periodic oscillations and
different types of discontinuities.
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FIGURE 5.1: Synthetic time series generated for the examples.

5.2 Practical detection examples

In this section, we present some practical applications of the GLRT for the detec-
tion of specific patterns in geodetic time series, namely periodic oscillations, offsets,
outliers and velocity changes.

For the sake of the demonstration, we simulated a daily displacement time series
presenting a linear trend of 1 mm/yr along with an annual signal with a 5 mm am-
plitude and a semi-annual signal with a 3 mm amplitude. The simulated stochastic
variability is a linear combination of a white noise process with 5 mm amplitude and
a power-law process with spectral index κ = −1.0 and a 15 mm yr−0.25 amplitude.
The simulated time series is presented in Figure (5.1).

Hereafter, the stochastic properties of the time series are considered as fully
known. In particular, the covariance matrix Qy used in Equation (5.8) and Equation
(5.11) is exactly that of the simulated stochastic processes. Using a realistic stochastic
model is important when trying to detect some patterns because, otherwise, there is
a risk of spurious detection (Amiri-Simkooei et al., 2019).

In practice, the stochastic model may depend on unknown variance components.
In this case, one has to satisfy with the stochastic model estimated from the observa-
tions, keeping in mind that the variance component estimates can be biased.

5.2.1 Spectral analysis

The detection of non-modelled periodic oscillations in a geodetic time series can be
formulated within the framework of hypothesis testing by testing whether adding
a periodic oscillation with a frequency fk induces a significant increase in the maxi-
mum of likelihood given a considered stochastic model.

When testing for periodic oscillations with arbitrary phase offsets and ampli-
tudes, the design matrix extension Cy of the alternative hypothesis Ha reads
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Cy =


cos(2π fkt1) sin(2π fkt1)
cos(2π fkt2) sin(2π fkt2)

...
...

cos(2π fktm) sin(2π fktm)

 , (5.12)

and the additional parameters correspond to the two Fourier coefficients, noted ak
and bk, of the considered frequency fk.

It follows from Equation (5.8), that the application of the GLRT comes down to
evaluating a statistic Tq=2 distributed as χ2(2, 0) under H0. In practice, the frequency
of a possible undetected oscillation is usually unknown. Hence, one does not want
to test a single frequency fk, but rather a whole range of frequencies to draw a detec-
tion spectrum. When analysing T2 as a function of the frequency fk, one obtains the
so-called Least-Squares Harmonic Estimation methods (LS-HE) introduced in Amiri-
Simkooei, Tiberius, and Teunissen (2007) and used for various geodetic applications
(Amiri-Simkooei and Asgari, 2012; Amiri-Simkooei, 2013; Amiri-Simkooei, Zamin-
pardaz, and Sharifi, 2014).

The choice of the frequencies fk, or the periods pk, at which to test for possible pe-
riodic oscillations is completely arbitrary. However, in practice, to draw a spectrum,
it is preferable to have a higher resolution at high frequency than at low frequency.
In this case, the periods pk can be sampled using the following recurrence expression
(Amiri-Simkooei and Tiberius, 2007)

p0 = pmin,

pk+1 = pk

(
1 + α

pk

pmax

)
,

(5.13)

in which, pmin is the minimum period considered, pmax is the maximum period con-
sidered, and α = 0.1 is a parameter controlling the amplitude of the step between
two sampled periods pk and pk+1.

Assuming a linear trend as the null hypothesis, we used Equation (5.8) to com-
pute T2 for frequencies ranging between 0.193 cycle per year (cpy) and 182.625 cpy.
The detection results are presented in Figure (5.2). The bottom plot of Figure (5.2) is
referred to as LS-HE power-spectrum. As expected, T2 shows two distinct peaks
at the 1 cpy and 2 cpy frequencies. Each peak is clearly above the significance
threshold obtained by evaluating χ2

α(2, 0) with confidence level of α = 0.99, that
is χ2

0.99(2, 0) = 9.21. The LS-HE power-spectrum is intrinsically normalized by the
combined influence of the functional and the stochastic models on the residual vec-
tor ê0. As a result, the value of the statistic is unit-less and the background variability
looks flat even in the presence of a power-law process.

5.2.2 Detection of discontinuities

Offsets detection

The detection of offsets in geodetic time series can be formulated within the frame-
work of hypothesis testing by testing whether adding a Heaviside function H(ti −
tk) at a time tk induces a significant increase in the maximum of likelihood given a
considered stochastic model.
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FIGURE 5.2: Example of a spectral analysis in a synthetic time series
using the GLRT. Simulated time series (top). T2 statistic (bottom). The
grey line is the detection threshold for a confidence level α = 0.99.

The vertical red lines are the true frequencies.
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When testing for an offset with unknown amplitude, the design matrix extension
Cy of the alternative hypothesis Ha is a vector cy defined as

cy =


H(t1 − tk)
H(t2 − tk)

...
H(tm − tk)

 (5.14)

and the additional parameter is the offset amplitude.

It follows from Equation (5.11) that the application of the GLRT to offset detection
comes down to evaluating a T1 statistic distributed as χ2(1, 0) under H0. Often,
the time of occurrence of an offset is unknown. Hence, it is necessary to test for
offsets at multiple time ti to identify the date of a possibly undetected offset. When
analysing the evolution of T1 as a function of the time tk one obtains the univariate
offset detection method proposed in (Amiri-Simkooei et al., 2019).

To illustrate the offset detection method, we added a 15 mm offset in 2010.00 to
the simulated time series in Figure (5.1). Assuming a linear trend, an annual and a
semi-annual signal as the null hypothesis, we used Equation (5.11) to compute the
T1 statistic for each day between 2000 and 2017. The detection results are presented
in Figure (5.3). The T1 statistic shows a maximum at the date of the undetected
offset. Moreover, the magnitude of the maximum is above the significance threshold
obtained by evaluating χ2

α(1, 0) with confidence level of α = 0.99, that is χ2
0.99(1, 0) =

6.23. Hence, in this example, the GLRT correctly detects the non-modelled offset.

Outlier detection

The detection of outliers in geodetic time series can be formulated within the frame-
work of hypothesis testing by testing whether adding a Dirac function δ(ti − tk) at
a time tk induce a significant increase in the maximum of likelihood given a consid-
ered stochastic model.

When testing for an outlier with unknown amplitude, at a time tk, the design
matrix extension Cy of the alternative hypothesis Ha is a vector cy defined as

cy =


δ(t1 − tk)
δ(t2 − tk)

...
δ(tm − tk)

 (5.15)

and the additional parameter is the outlier amplitude.

As for offset detection, the application of the GLRT to outlier detection comes
down to evaluating a T1 statistic distributed as χ2(1, 0) under H0. Since the occur-
rence time of an undetected outlier is also unknown, it is necessary to test for outliers
at multiple time ti.

To illustrate a case of outlier detection, we added a 50 mm outlier, occurring in
2004.00, to the simulated time series in Figure (5.1). Assuming a linear trend, an
annual and a semi-annual signal as the null hypothesis, we used Equation (5.11) to
compute the T1 statistic for each day between 2000 and 2017. The detection results
are presented in Figure (5.4). In Figure (5.4), the T1 statistic shows a maximum at the
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FIGURE 5.3: Example of offset detection in a synthetic time series
using the GLRT. Simulated time series (top). T1 statistic (bottom). The
grey line is the detection threshold for a confidence level α = 0.99.

The vertical red line is the true date of the offset.
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FIGURE 5.4: Example of outlier detection in a synthetic time series
using the GLRT. Simulated time series (top). T1 statistic (bottom). The
grey line is the detection threshold for a confidence level α = 0.99.

The vertical red line is the true date of the outlier.

date of the undetected offset. Moreover, the magnitude of the maximum is above
the significance threshold obtained by evaluating χ2

α(1, 0) with confidence level of
α = 0.99, that is χ2

0.99(1, 0) = 6.23. Hence, in this example, the GLRT correctly
detects the outlier.

Velocity change detection

By slightly modifying the offset detection method, one can also define a velocity
change detector. In particular, when testing for a velocity change with unknown
amplitude, the design matrix extension Cy of the alternative hypothesis Ha is a vec-
tor cy defined as

cy =


(t1 − tk)H(t1 − tk)
(t2 − tk)H(t2 − tk)

...
(tm − tk)H(tm − tk)

 , (5.16)

and the additional parameter is amplitude of the velocity change.

To illustrate a velocity change detection, we added a 5 mm/yr velocity change,
occurring in 2012.00, to the simulated time series in Figure (5.1). Assuming a linear
trend, an annual and a semi-annual signal as the null hypothesis, we used Equation
(5.11) to compute the T1 statistic for each day between 2000 and 2017. The detec-
tion results are presented in Figure (5.5). In Figure (5.5), the T1 statistic does not
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FIGURE 5.5: Example of velocity change detection in a synthetic time
series using the GLRT. Simulated time series (top). T1 statistic (bottom).
The grey line is the detection threshold for a confidence level α = 0.99.

The vertical red line is the true date of the velocity change.

show a clear maximum at the exact date of the undetected velocity change. This im-
plies that identifying the date of this velocity change is challenging with the consid-
ered stochastic model. However, the maximum T1 statistic is above the significance
threshold obtained by evaluating χ2

α(1, 0) with a confidence level of α = 0.99, that
is χ2

0.99(1, 0) = 6.23. Hence, the detector does identify a velocity change, but with a
few month error on the date.
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Chapter 6

Assessment of tide gauge sensor
offsets in the presence of scale
errors

In this first contribution chapter, we address the calibration of tide gauges in its sim-
plest form: the comparison of two collocated gauges. We specifically focus on a
mandatory step in the installation of a tide-gauge: the determination of so-called the
sensor offset. In the presence of a scale error, it is unclear how to estimate the sensor
offset. Here, we provide a thorough description of the link between the measure-
ment biases and sea-level biases observed between two gauges, which we then use
to provide indications about the estimation of the sensor offset.

6.1 Introduction

With the advent of climate monitoring from space, oceanographic quantities, such
as sea level, started to be investigated globally, making it necessary to combine data
from different sensors. To ensure the long term stability and interoperability of
coastal sea level time series, all sensors must provide comparable and consistent
quantities. In practice, several technical problems can affect sea-level observations,
and the accuracy of sea-level time series must be regularly controlled during calibra-
tion campaigns.

This chapter focuses on the calibration of ground-based coastal tide gauges, such
as pressure gauges, acoustic gauges (IOC, 1994) and radar gauges (IOC, 2016). These
types of tide gauge are the main constituent of sea-level program such as the Global
Sea Level Observing System (GLOSS) (IOC, 2012). Besides, coastal tide gauges are
commonly used as references – or ground-truth – to assess the performance of other
technologies. They have been involved in the characterization of systems based on
Global Navigation Satellite System (GNSS), such as GNSS buoys (André et al., 2013;
Chupin et al., 2020) or GNSS reflectometry (Larson, Ray, and Williams, 2017), and
they played a role in the calibration and validation of satellite altimeters (Bonnefond,
Haines, and Watson, 2011; Watson et al., 2011).

Several types of biases can affect tide gauge measurements. During calibration
campaigns, the most commonly observed ones are the sensor offsets, the scale errors
and the time delays (Míguez Martín, Testut, and Wöppelmann, 2008). Sensor offsets
are constant biases induced by a wrong assumption on the position of the sensor’s
point of zero range (PZR) (IOC, 2016). Scale factors induce an error dependent on
the measured sea level. They result from a sensor tilts or errors in the analog to
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digital conversion. Time delays result from either lag between the actual locations
of two gauges, or from clock synchronization issues.

Unlike sensor offsets and scale errors, time delays do not depend linearly on the
time or the sea level. As the statistical tools used in this study assumes linearity, time
delays must be estimated and removed prior to further analyses. This can be done,
for instance, by finding the delay that maximizes the cross-correlation between the
tested gauge and the reference gauge time series.

In this chapter, we present a tide gauge calibration procedure in the presence of
a sensor offset and of a scale error. The influence of the scale error on the analysis of
sea-level differences have been studied by Pérez et al. (2014) in the context of datum
offset determination. In this study, we more specifically focus on the determination
of the sensor offset, both for its computation and its uncertainty.

To this end, we first demonstrate the exact expression of the sea-level difference
as a function of the sensor offset and the scale factor. Using this expression, we
present a methodology allowing a quick interpretation of sea-level differences in
terms of tide gauge measurement biases. Finally, we evaluate the experiment du-
ration required to reach a sensor offset determination with a few millimetres uncer-
tainty.

6.2 Influence of a sensor offset and a scale error on sea-level
differences

The sea-level time series HT(t) for a given gauge is computed from mT(t), the mea-
sured distance between the sensor Point of Zero Range (PZR) and the water surface,
with

HT(t) = cT + mT(t), (6.1)

where cT is the reference level, given at a reference point named Reference Survey
Mark (RSM) (IOC, 2016). To simplify notations, it is assumed that the RSM marks
the position of the expected PZR. Note that HT(t), cT and mT(t) can be positive or
negative depending on the chosen reference level – or datum – and sign convention.
Hereafter, vertical distances are taken as positive when measured upwards.

In the absence of sensor offset, the RSM coincides with the sensor PZR, as il-
lustrated in Figure (6.1). In this ideal case, the measurement mT(t) equals the true
distance between the RSM and the water surface, noted dT(t), that is

mT(t) = dT(t).

However, in reality, the RSM provided by a tide gauge manufacturer may differ
from the sensor PZR. This would result in a sensor offset, noted oT, defined as the
distance from RSM and pointing toward the gauge’s PZR, as depicted in Figure (6.2).
This sensor offset oT will affect the measured range mT(t) such that

mT(t) = dT(t)− oT.

in which the sign of oT comes from the fact that it is defined in the opposite direction.



6.2. Influence of a sensor offset and a scale error on sea-level differences 59

Tested gauge (T)

mT(t) cT

Datum

Water level at time « t »

PZR and RSM

HR(t)

dT(t)

HT(t)

mT(t)= dT(t)mT(t)= dT(t)

FIGURE 6.1: Configuration with no offset and no scale error. RSM:
Reference Survey Mark. PZR: Point of Zero Range.
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FIGURE 6.2: Configuration with an offset but no scale error. RSM:
Reference Survey Mark. PZR: Point of Zero Range.

The tested gauge may, in addition, be affected by a scale error, noted sT, intro-
ducing a distance-dependent measurement error (Figure 6.3). In practice, this error
is expected to be small compared to the measured distance, so that the overall dis-
tance is scaled by a factor close to 1.0 and noted (1 + sT). The scale factor (1 + sT)
affects the distance between the sensor PZR and the water, that is dT(t)− oT, such
that
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mT(t) = (1 + sT)(dT(t)− oT). (6.2)
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FIGURE 6.3: Configuration with an offset and a scale error. RSM:
Reference Survey Mark. PZR: Point of Zero Range.

Substituting Equation (6.2) into Equation (6.1) leads to an expression for the sea-
level HT(t) as a function of the scale, the sensor offset oT, the measured distance dT,
and reference level cT:

HT(t) = cT − oT − sToT + dT(t) + sTdT(t). (6.3)

During a calibration experiment, the sea-level HT(t) is compared to the sea-level
provided by a reference gauge HR(t), assumed to be unbiased. HR(t) can be directly
linked to the tested gauge reference level cT and distance dT(t) as (Figure 6.1)

HR(t) = cT + dT(t). (6.4)

The difference ∆T(t) = HT(t)− HR(t) corresponds to a sea-level bias that must
be modelled and corrected. The differences ∆T(t) can be obtained by subtracting
Equation (6.4) to Equation (6.3) such that

∆T(t) = HT(t)− HR(t) = −(1 + sT)oT + sTdT(t). (6.5)

Because the reference level HR(t) is only temporarily measured and the true dis-
tance dT(t) is unknown, the sea-level bias ∆T(t) must be expressed as a function of
HT(t). Equation (6.3) can be re-arranged into

dT(t) =
1

(1 + sT)
HT(t)−

1
(1 + sT)

cT + oT, (6.6)

and substituting this expression in Equation (6.5), so that



6.2. Influence of a sensor offset and a scale error on sea-level differences 61

∆T(t) = −oT −
sT

(1 + sT)
cT +

sT

(1 + sT)
HT(t). (6.7)

Finally, Equation (6.7) can be simplified by noting

βT =
sT

(1 + sT)
, (6.8)

and

αT = −oT − βTcT , (6.9)

so that

HT(t)− HR(t) = αT + βT HT(t) . (6.10)

which demonstrates that the sea-level bias is a linear function of HT(t) in the pres-
ence of a sensor offset and a scale factor.

The Equation (6.10) points out to an inconsistency in the Equation (2) of Míguez
Martín, Testut, and Wöppelmann (2008), in which the intercept is absent. Equation
(2) in Míguez Martín, Testut, and Wöppelmann (2008) assumes that HT(t)−HR(t) =
0 for HT(t) = 0, which is, in general, not verified.

Comparing two tide gauges, the parameters αT and βT can be estimated by a
linear regression in the so-called Van de Casteele diagram. Proposed in 1962 for me-
chanical gauges by Lennon (1968) and revisited for modern technologies in Míguez
Martín, Testut, and Wöppelmann (2008), this diagram displays the sea-level (H) dif-
ference between a tested (T) and a reference (R) instrument, ∆T(t) = HT(t)− HR(t)
as a function of HT(t) or HR(t). However, for a more intuitive reading, ∆T(t) is used
for the horizontal axis and HT(t) for the vertical axis . This tool has been applied
in numerous studies (Míguez Martín, Le Roy, and Wöppelmann, 2008; André et al.,
2013; Pérez et al., 2014; Larson, Ray, and Williams, 2017; Pytharouli, Chaikalis, and
Stiros, 2018). Figure (6.4) illustrates the patterns visible in a Van de Casteele dia-
gram in the presence of the most common biases. A precaution that should be taken
when estimating αT and βT from the Van de Casteele diagram, is that the diagram
must display the difference HT(t)−HR(t) as a function of the tested gauge sea-level
HT(t) and not reference gauge sea-level HR(t).

Once the estimated values α̂T and β̂T are obtained, a corrected sea-level, that is,
an estimate of the sea-level of the reference gauge noted ĤR(t), can be obtained from
HT(t) as

ĤR(t) = HT(t)− (α̂T + β̂T HT(t)) (6.11)

Although useful to obtain ĤR(t), the parameters α̂T and β̂T do not directly pro-
vide information about the bias on the measurement mT(t). To derive estimates of
the scale error (ŝT) and the sensor offset (ôT) from α̂T and β̂T, one can show from
Equations (6.8) and (6.9) that

ŝT =
β̂T

1− β̂T
, (6.12)

and
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FIGURE 6.4: Examples of the deterministic influence of common mea-
surement biases on the Van de Casteele diagram. HT(t) is the sea-
level recorded by the tested gauge at time t. ∆T(t) = HT(t)− HR(t)
is the difference of sea-level between the tested gauge and the refer-

ence gauge.

ôT = −α̂T − β̂TcT. (6.13)

ŝT and ôT can either be used for a direct diagnosis of instrumental issues affecting
mT(t) or for the computation of parameters α

′
T and β

′
T in the case the tested gauge

has to be moved from the reference level cT to a new level c
′
T.

Note that −oT is the value of the sea level bias model (6.10) for HT(t) = cT.
Hence, as illustrated on Figure (6.5), by drawing the intersection between the bias
model and reference level, the sensor offset oT has a simple geometrical interpreta-
tion on the Van de Casteele diagram.

6.3 Impact of the scale error on mean difference interpreta-
tion.

When analysing sea-level differences between two tide-gauges, it is easy to assume
that the mean sea-level difference, noted ∆̄T, should correspond to the sensor offset,
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FIGURE 6.5: Visual identification of the offset on the Van de Casteele
diagram of the tested gauge.

up to a conventional change of sign. When sT = 0, Equation (6.7) gives oT = −∆T(t),
therefore, oT can be estimated from ∆̄T.

However, Equation (6.7) also shows that −∆̄T 6= oT as long as sT 6= 0. Hence,
neglecting the influence of the scale error when interpreting the mean difference
would lead to an error (−∆̄T − oT), that can be quantified using Equations (6.10)
and (6.13).

From Equation (6.10), one can show that

∆̄T = αT + βT H̄T. (6.14)

where H̄T denotes the average sea-level measured by the tested gauge. If the cali-
bration experiment is done over one or more tidal cycles, then H̄T is approximately
the mean sea-level.

From Equations (6.13) and (6.14) the mean difference error (−∆̄T − oT) can be
expressed as

(−∆̄T − oT) =
sT

1 + sT
(cT − H̄T), (6.15)

where (cT − H̄T) is approximately the sensor height above mean sea-level.

Based on Equation (6.15), the Figure (6.6) shows the amplitude of the mean dif-
ference interpretation error (−∆̄T − oT) as a function of the scale error sT and the
sensor height above mean sea-level (cT − H̄T). In Figure (6.6), the interpretation er-
ror quickly reaches a few centimetres. Hence, the influence of a scale factor cannot
be neglected while estimating the sensor offset oT.
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FIGURE 6.6: Evolution of the interpretation error resulting from the
assumption that oT = −∆̄T in the presence of scale error.

6.4 How long should a calibration experiment last ?

When designing a calibration experiment, one may aim at assessing the sensor offset
ôT with a few millimetres precision for later applications. In that case, it is impor-
tant to design a calibration experiment long enough to reach the desired level of
precision.

Given that ôT is a function of α̂T and β̂T in Equation (6.13), its precision depends
on the variance and the covariance of α̂T and β̂T. In particular, let’s denote x̂ the
estimator of these parameters such that

x̂ =

[
α̂T
β̂

T

]
. (6.16)

The 2× 2 covariance matrix Qx̂ of the estimator x̂ can be denoted as

Qx̂ =

[
σ2

α̂T
σα̂T β̂T

σα̂T β̂T
σ2

β̂T

]
(6.17)

and, by applying the linear propagation law of variances to Equation (6.13), one can
show that the standard deviation of ôT, noted σôT , reads

σôT =
√

σ2
α̂T

+ 2cTσα̂T β̂T
+ c2

Tσ2
β̂T

. (6.18)
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Hence, to assess the evolution of σôT with the calibration experiment duration,
one must simulate the covariance matrix Qx̂ under theoretical conditions. When
estimating α̂T and β̂T from a linear regression on a Van de Casteele diagram, and
under the assumption of both independent and identically distributed observation
uncertainties, the covariance matrix Qx̂ reads

Qx̂ = σ2
∆T
(ATA)−1 (6.19)

in which σ2
∆T

is the considered variance for the measured differences ∆T, and A is
the m× 2 design matrix of the linear regression defined as

A =


1 HT(t1)
1 HT(t2)
...

...
1 HT(tm)

 , (6.20)

with m the considered number of observation of the experiment.

Given the definition A, the sensor offset uncertainty depends on the measured
sea-level HT(t), which is not known before the experiment. However, one can assess
the evolution of σôT based on a tide model.

To illustrates the dependence of σôT with both the experiment duration and the
expected tide amplitude, we use the following simplified tide model

HT(t) = M + A · cos(2π fM2 t) (6.21)

where M is the mean sea-level, fM2 is the frequency of the M2 tidal constituent, and
A is the tide amplitude.

Hence, by considering sea-level differences ∆T(t) measured every 10 min with a
standard deviation σ∆T = 1 cm, we simulated the standard deviation of the sensor

offset σôT =
√

σ2
ôT

for experiments with duration ranging from 8h to 48h and tide
models with amplitudes A ranging from 0.5 m to 2.5 m. The considered mean sea
level is M = 3.0 m. The simulation results are presented in Figure (6.7).

In Figure (6.7), we observe that to reach a given level of precision, locations with
small tidal ranges requires longer experiments than that with large tidal ranges. This
is because a precise determination of the scale parameter β̂T requires comparing tide
gauges over a large tidal range. Besides, we note that for a few millimetres accuracy
on the sensor offset, a few days of continuous observation are quickly necessary.
Therefore, for practical reasons, it seems very difficult to achieve a precise tide gauge
calibration with a reference gauge requiring continuous human intervention.

6.5 Conclusion

Calibration experiment is a crucial step for the installation and control of coastal tide
gauges. The two most frequent types of tide gauge measurement biases observed
in such experiments are the sensor offset and the scale error. In this chapter, we
studied how a sensor offset and scale error influence the measured sea-level. We
also provided expressions allowing to assess these parameters from the sea-level
differences measured between two tide gauges.
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FIGURE 6.7: Evolution of the standard deviation of the sensor offset
σoT with the cumulative observation time and the tide amplitude A.

Using these expressions, we showed that the effect of the scale error cannot be
neglected when interpreting the mean difference between two sensors. In particular,
we showed that assuming the mean difference corresponds to the sensor offset in the
presence of a scale error can easily result in a few centimetres interpretation error.

Finally, based on simulations, we estimated the dependence of the sensor off-
set uncertainty with the calibration experiment duration and tidal amplitude. We
showed that estimating the sensor offset with a few millimetres uncertainty quickly
requires a few days experiment, especially for a small tidal range. This observation
may influence the choice of sensor used for such calibrations by promoting self-
recording devices over human-dependent measurements.
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Chapter 7

Assessment of tide gauges biases
and precisions by the combination
of multiple co-located time series

This chapter proposes a new method for the cross-calibration of tide gauges. Based
on the combination of at least three co-located sea level time series, it takes advan-
tage of the Least-Squares Variance Component Estimation method to assess both
sea-level biases and uncertainties in real conditions. The method was applied to
a multi-instrument experiment carried out on Aix island, France, in 2016. Six tide
gauges were deployed to carry out simultaneous sea level recordings for 11 hours.

The content of this chapter has been published as Kevin Gobron et al. (2019). “As-
sessment of Tide Gauge Biases and Precision by the Combination of Multiple Collo-
cated Time Series”. In: Journal of Atmospheric and Oceanic Technology 36.10, pp. 1983–
1996

7.1 Introduction

Tide gauges aim at measuring the vertical distance between the sea level and a refer-
ence level (or datum). Historically, tide gauges were first used for tide prediction
and navigation (Cartwright, 2000); today, their applications have been extended
(Pugh and Woodworth, 2014). Clustered into networks of continuously operating
stations, they are the key components of storm surge or tsunami warning systems
and climate-related monitoring programs, such as the Global Sea Level Observing
System (GLOSS) (IOC, 2012).

A wide range of distance meter technologies can serve to implement a tide gauge,
as long as it can resolve both sea level and datum along the vertical. The datum
of a sea level station is a local and conventional reference level, independent from
any instruments. It enables the construction of long time series with successive or
overlapping tide gauges. The datum is defined through a network of benchmarks
grounded around the sea level station, some of them can also act as benchmarks
for leveling networks (IOC, 1985; Pugh and Woodworth, 2014). Thus, a preliminary
step in field calibrations consists of tying the reference gauge to the station datum or
controlling whether it is properly tied.

The simplest and oldest types of tide gauge are graduated poles or tide poles
placed against a vertical structure at the coast (Cartwright, 2000). Tide poles requir-
ing human-made measurements are still in-use, along with electric tape probes for
on-site field calibration of more elaborated self-recording tide gauges. Since 1985,
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the manuals of the Intergovernmental Oceanographic Commission (IOC) have cov-
ered the basic principles of the main types of tide gauges in use across the world,
ranging from mechanical float gauges (IOC, 1985) to radar technologies (IOC, 2016),
including pressure and acoustic gauges (IOC, 2002; IOC, 2006).

Over the past decade, radar-based technologies appeared as the preferred ones
(IOC, 2016). However, new technologies are emerging, based on Global Naviga-
tion Satellite System (GNSS) buoys (André et al., 2013), GNSS reflectometry (GNSS-
R) (Larson, Ray, and Williams, 2017), or laser distance measurement (MacAulay,
O’Reilly, and Thompson, 2008). A tide gauge complying with GLOSS standards
should be capable of measuring instantaneous sea level with an accuracy better than
1.00 cm, in all conditions of tide, waves, currents and weather (IOC, 2016). As labo-
ratory testings do not ensure those performances, the practice has evolved towards
field experiments (Míguez Martín, Testut, and Wöppelmann, 2008; Míguez Martín,
Le Roy, and Wöppelmann, 2008; Park, Heitsenrether, and Sweet, 2014; Pérez et al.,
2014).

When dealing with accuracy requirements, it is useful to distinguish random and
systematic errors. The random error is the error component that, in replicate mea-
surements, varies in an unpredictable manner, whereas the systematic error is the
error component that, in replicate measurements, changes in a predictable manner
(BIPM et al., 2008).

Given the crucial role of tide gauges in coastal sea level observation, the increas-
ing number of available technologies and the evolution of accuracy requirements,
this chapter aims at providing a cross-calibration method that quantifies both sys-
tematic errors – the biases – and random errors of sea level time series.

Determining the errors of given time series can be achieved through three ap-
proaches : (a) the observed time series can be compared with that from a more pre-
cise instrument, (b) it can be compared with theory in cases where the observed
phenomena can be very precisely modelled, and (c) observed time series of three or
more instruments can be analyzed to obtain enough information to determine the
uncertainty of each.

Approach (a), also known as buddy-checking, is routinely used during calibra-
tion campaigns where a pair of tide gauges are compared over a tidal cycle, some-
times with the help of the so-called Van de Casteele diagram (Lennon, 1968; IOC,
1985). During the last decade, several studies have investigated the performances
of radar gauges, pressures gauges, GNSS buoys or GNSS reflectometry based on
this approach (Watson, Coleman, and Handsworth, 2008; Míguez Martín, Le Roy,
and Wöppelmann, 2008; Míguez Martín, Testut, and Wöppelmann, 2012; Pérez et
al., 2014; Larson, Ray, and Williams, 2017; Pytharouli, Chaikalis, and Stiros, 2018).
Even if this approach can provide bias estimates and general accuracy metrics, such
as mean error or root mean square error (RMSE), it cannot rigorously separate the
uncertainties of each gauge.

Approach (b) would correspond to removing a tide model from the measured
sea level time series. But, because of the complexity of meteorological and ocean
dynamics involved in sea level fluctuations, these models are not precise enough to
assess the performance of tide gauges at the targeted centimeter level.
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Approach (c) is classically used in metrology (Pálinkáš et al., 2017) and has of-
ten been used in geodesy through the three-cornered-hat (TCH) estimation method
(Gray and Allan, 1974), for example, to determine the stability of reference station
positions (Feissel-Vernier, Viron, and Le Bail, 2007; Abbondanza et al., 2015) or the
precision of space gravity model (Viron et al., 2008; Valty et al., 2013). The TCH is
not the only possible implementation of the approach (c): the more general frame-
work of Variance Component Estimation (VCE) can similarly address this problem,
as shown by the theoretical example (4.10) of Amiri-Simkooei (2007). The TCH and
VCE examples can separate the uncertainty of each gauge, but assume the absence
of sea level biases.

To take advantage of both approaches (a) and (c), this chapter proposes a com-
bination model that extends the use of approach (c) to the analysis of potentially
biased time series. Assessing the tide gauge uncertainties in addition to the sea level
bias parameters is made possible by the use the Least-Squares Variance Component
Estimation (LS-VCE) method (Teunissen and Amiri-Simkooei, 2008). As the model
can handle an arbitrary number of time series, it is suited for multi-instrument ex-
periments.

The method is applied to an on-site field calibration experiment carried out at
Aix Island, mid-Atlantic coast of France, where a permanent radar gauge has oper-
ated for several years (Gouriou, Míguez, and Wöppelmann, 2013), and various types
of tide gauges (including some emerging technologies) were temporarily deployed
during the experiment within meters from each other over a tidal cycle in 2016.

7.2 The Aix Island experiment

This experiment was carried out on June 7, 2016, by a team of scientists (see Ac-
knowledgment section). For 11 hours, they recorded one semi-diurnal spring tidal
cycle with a tidal range of 5.22 m using 6 different instruments:

• a permanent radar gauge (hereafter, RADAR),

• a permanent tide pole (hereafter, POLE),

• an electrical contact probe (hereafter, PROBE),

• a laser distance-meter (hereafter, LASER),

• 2 GNSS buoys (hereafter, BUOY1 and BUOY2).

RADAR, POLE, PROBE, and LASER are shown in Figure (7.1) and the two GNSS
buoys in Figure (7.2). All tide gauges and the reference GNSS station were referenced
to the station datum by leveling. Each gauge record is defined as an average over a
2 minutes acquisition window every 10 minutes.

The radar gauge (RADAR) is the primary tide gauge of the permanent sea level
observatory of the Aix Island. This station contributes to the French sea level obser-
vation network (RONIM) operated by the French hydrographic service (SHOM). It
is a Krohne Optiwave 7300C gauge that measures the air range between the trans-
mitter fixed above the sea surface and the sea surface with a sampling frequency of
1 Hz using a frequency modulated continuous wave technology (IOC, 2016).



70
Chapter 7. Assessment of tide gauges biases and precisions by the combination of

multiple co-located time series

FIGURE 7.1: The four ground-based tide gauges: RADAR, POLE,
PROBE and LASER.

FIGURE 7.2: The two GNSS buoys: BUOY1 and BUOY2.
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The tide pole (POLE) is a permanent instrument made of a plastic staff with
graduations every 10 centimeters fixed vertically by a stainless steel structure (Figure
7.1). The operator estimates the sea level visually over the pre-defined 2 minutes
acquisition period.

The electrical contact probe (PROBE) is a measuring tape with millimeter grad-
uations ended by an electrical device that emits a short signal when detecting the
seawater surface. We used a Schill probe installed within a stilling pipe anchored
along the tide pole (Figure 7.1). A sea level record from PROBE is an average over
the 2 minutes of human-made readings every 15 seconds. Electric probes are typi-
cally used as the reference gauge in tide gauge calibrations, so was it in our study.
The stilling pipe was too short to allow measurements at the lowest sea levels, which
resulted in a gap between 10:00 and 12:10 A.M.

The first GNSS buoy (BUOY1), designed at the Institut de Physique du Globe de
Paris (IPGP), is a GNSS antenna installed above a lifebuoy and protected from the
water by a radome (Figure 7.2). The second one (BUOY2), designed by the Division
Technique de l’Institut National des Sciences de l’Univers (DT INSU), is a GNSS
antenna housed in the center of a tripod floating structure (Figure 7.2). The receivers
and batteries of the buoys are located inside a metallic cylinder under each antenna.
These two buoys (BUOY1 and BUOY2) were already used in previous campaigns
(André et al., 2013). The heights between their phase centers and the water surface
are known at the sub-centimeter level thanks to previous testings carried out under
calm conditions.

The buoy vertical positions, i.e., ellipsoidal heights, from GPS were assessed by
post-processing, using a double-differences strategy with a baseline of about 300 m
from the ILDX GNSS reference station. Only satellites with elevation angles above
15 degrees were used, with a combination of both L1 and L2 frequencies. The cen-
timeter level accuracy was achieved, using full ambiguity resolution with the RTKlib
software suite with RTKPOST v2.4.2 program (Takasu, 2013).

LASER is a reflector-free distance-meter Leica DISTO A6. This type of instrument
is built for solid surface ranging but showed fair to good performances during this
experiment. This instrument uses an optical laser beam with a wavelength of 635
nm. Each LASER record corresponds to an average of measurements done every 4
seconds.

All instruments time series are presented in Figure (7.3). Due to data transmis-
sion loss and GNSS recording issues during the experiment, some records from the
LASER, BUOY1, and BUOY2 instruments are missing.

7.3 Calibration methods

This chapter proposes a combination method to go beyond the classical difference
methods, allowing a better determination of the biases and their uncertainties. For
comparison, we processed the time series using both the combination method and
the classical difference method used by the hydrography community, the so-called
Van de Casteele (VdC) diagram (Lennon, 1968).
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FIGURE 7.3: Sea level time series yi recorded by all tide gauges.

7.3.1 Sea level error model

Due to the short recording period, this chapter only considers the influence of the
three most common types of range measurement biases on the resulting sea level
time series, namely: height reference, scale, and clock synchronization errors (Wat-
son, Coleman, and Handsworth, 2008; Míguez Martín, Testut, and Wöppelmann,
2008).

While converting original range measurements into sea level time series, range
biases turn into sea level biases that must be quantified and removed. This chapter
proposes a linear sea level bias model, which expresses the sea level bias as a func-
tion of the measured sea level itself. More precisely, the model links the i-th sea level
time series y

i
(t) to the real sea level h(t) through

y
i
(t) = h(t− τi) + βi · yi

(t) + αi + ei(t), (7.1)

where βi × y
i
(t) + αi is the linear sea level bias model, and ei(t) is a random error

modelled by a centered normal distribution of unknown variance σ2
i .

In Equation (7.1), αi corresponds to the intercept: a constant term representing
the sea level bias when y

i
(t) = 0. It may result from a height reference error, but also

from the influence of a scale error, as mentioned shown in chapter 6. βi corresponds
to the scale error: a multiplying factor that causes a sea level bias proportional to the
tidal range. It can result from both instrument or installation defaults. Finally, τi is
the time delay between different tide gauges: it results from clock synchronization
issues.

The measured sea-level y
i
(t) depends non-linearly on the time delay τi, which

makes linear determinations, like the one proposed in this paper, impossible. How-
ever, it can be corrected before the other bias estimations, e.g., by computing the
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delay that maximizes the cross-correlation between a tested signal and a reference
signal. Obtaining τi by cross-correlation avoids any assumptions on the periodicity
of the measured signal. In our case, the time delay estimation showed that the best
correlation was achieved with no delays added i.e., τi = 0, ∀i.

The sea-level bias model directly quantifies the amplitude of the bias associated
with the measurement y

i
(t). The correction of the sea level time series can be done

after the calibration experiment by subtracting the estimated bias model from the
measurements. This linear model can be adapted to other types of biases. For ex-
ample, longer time series analysis (several days, months, or years) may require to
consider time-dependent biases such as trends and jumps (Pytharouli, Chaikalis,
and Stiros, 2018).

7.3.2 The difference-based calibration method (DIFF)

Difference-based methods (DIFF) consist in analyzing the differences ∆yi
(t)

∆yi
(t) = y

i
(t)− y

ref
(t),

in which y
i
(t) is the time series of a tested instrument

y
i
(t) = h(t) + βi · yi

(t) + αi + ei(t),

and y
ref
(t) is that of a reference instrument

y
ref
(t) = h(t) + eref(t)

A commonly used tool for DIFF methods is the Van de Casteele (VdC) diagram,
which represents the sea level difference ∆yi(t) as a function of y

i
(t). Initially devel-

oped in 1962, for mechanical tide gauges (IOC, 1985), the VdC diagram is nonethe-
less still applicable for modern sea level measurement technologies (Míguez Martín,
Testut, and Wöppelmann, 2008). The most attractive feature of this diagram is a fast,
visual, detection of possible biases with only one tidal cycle. Figure (7.4) shows the
sea level error patterns resulting from the most common range measurement errors
(IOC, 1985).

In the presence of the linear biases mentioned before, ∆yi
(t) follows

∆yi
(t) = βi · yi(t) + αi + ei(t)− eref(t). (7.2)

In other words, estimates of the sea level bias parameters αi and βi of Equation
(7.1) can be obtained by a linear regression of ∆yi

(t) on y
i
(t), which corresponds to

fitting a linear model on a VdC diagram.

Assuming that both random errors ei(t) and eref(t) are uncorrelated, the term
ei(t) − eref(t) in Equation (7.2) follows a centered normal distribution with an un-
known variance σ2

i + σ2
ref . The merge of the random errors ei(t) and eref(t) in the

differences ∆yi(t) implies that, without assumption, the DIFF methods can only as-
sess the variance σ2

i + σ2
ref , which is just an upper bound to the tested gauge vari-

ance σ2
i (Lentz, 1993; Míguez Martín, Testut, and Wöppelmann, 2008; Pytharouli,

Chaikalis, and Stiros, 2018). To separate σ2
i and σ2

ref , an additional piece of informa-
tion is needed, such as a third time series.
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FIGURE 7.4: Synthetic examples of Van de Casteele diagrams for the
most common types of range measurement errors: (a) random mea-
surement errors only; (b) random measurement errors and a height
reference error; (c) random measurement errors and a scale error; (d)

random measurement errors and a clock error.

7.3.3 The combination-based calibration method (COMB)

When more than 2 time series are available, it becomes possible to assess the random
errors and biases from each tide gauge by estimating a weighted combination of all
the time series, using a variance component estimation method. In the following,
the acronym COMB refers to the combination method.

Functional model

Noting y
i

the i-th gauge k × 1 observation vector (or time series), the full pk × 1
stacked vector y, containing all observations from the p instruments, can be written
as

y =


y

1
y

2
...

y
p

.

The functional model links the expectation E{.} of the pk× 1 observations vector
y to q unknown parameters using a model of observation equations . When there
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is no theoretical model for the observed signal, one can estimate a k × 1 combined
solution h from the p measured time series, so that

h =


h1
h2
...

hk

.

In the case of unbiased gauges, the functional model would be E{y
i
} = h for

each gauge. In the case of the cross-calibration of possibly biased time series, the
functional model should also account for the biases:

E{y
i
} =

{
h, if the i-th gauge is unbiased
h + βi · yi

+ αi, otherwise
. (7.3)

Because biases are always defined with respect to a conventional reference, at
least one time series must be considered as conventionally unbiased to avoid an
ill-posed equations system. Hence, in the following, the first time series y1 will be
considered as conventionally unbiased.

This functional model can be written using matrix algebra, so that

E{y} = Ax =
[

Ah Aα Aβ

]  h
α
β

 , (7.4)

where h = [h1 · · · hk]
T is the combined solution vector, α =

[
α2 · · · αp

]T is the inter-
cept parameter vector, and β =

[
β2 · · · βp

]T is the scale error parameter vector.

In Equation (7.4), the combination design pk × k matrix Ah corresponds to p
stacked identity matrices Ik×k such as

Ah =

 Ik×k
...

Ik×k

 ,

and both the intercept design pk × (p − 1) matrix Aα and the scale error design
pk× (p− 1) matrix Aβ are constituted with block non-zeros vectors so that

Aα =



0k×1 · · · · · · 0k×1

1k×1
. . .

...

0k×1
. . . . . .

...
...

. . . . . . 0k×1
0k×1 · · · 0k×1 1k×1


,

and
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Aβ =



0k×1 · · · · · · 0k×1

y2
. . .

...

0k×1
. . . . . .

...
...

. . . . . . 0k×1
0k×1 · · · 0k×1 yp


,

where 0k×1, 1k×1 refer to k× 1 vectors respectively filled with zeros and ones.

Stochastic model

The stochastic model describes the variance var{.} of the observation vector y. Con-
sidering that all measurements are statistically independent and that the uncertainty
of the i-th instrument follows a multivariate normal distribution with a variance σ2

i ,
the pk× pk covariance matrix of the observations var{y} = Qy reads

Qy =



σ2
1 Ik×k 0k×k · · · · · · 0k×k

0k×k
. . . . . .

...
...

. . . σ2
i Ik×k

. . .
...

...
. . . . . . 0k×k

0k×k · · · · · · 0k×k σ2
pIk×k


, (7.5)

where Ik×k and 0k×k are respectively the k× k identity and null matrices.

To use the LS-VCE method, Qy needs to be expressed as a linear combination of
cofactor matrices Qi such as

Qy = σ2
1 Q1 + . . . + σ2

pQp =
p

∑
i=1

σ2
i Qi, (7.6)

where the σ2
i are referred to as variance components, and correspond to the instru-

ment uncertainties.

In this chapter, the Qi are known pk× pk cofactor matrices that follow

Q1 =


Ik×k

0k×k
. . .

0k×k



Q2 =


0k×k

Ik×k
0k×k

. . .


...

Qp =


0k×k

. . .
0k×k

Ik×k
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Least-Squares estimation

According to the least-squares estimation theory (Teunissen, 2000a), for normally
distributed observations, an unbiased and minimum variance estimator x̂ of the n×
1 parameter vector x can be obtained as

x̂ = (ATQ−1
y A)−1ATQ−1

y y, (7.7)

and its covariance matrix Qx̂ as

Qx̂ = (ATQ−1
y A)−1. (7.8)

In the case of a lack of knowledge on the on-site precision of the tide gauges, that
is, on stochastic model Qy, a variance component estimation method can be used to
assess the uncertainty of each gauge. As the minimum variance property of least-
squares estimates requires a realistic weighting between sea level time series, the use
of a variance component estimation method also allows for more realistic estimates
of the parameter vector x̂ and its covariance matrix Qx̂.

Least-Squares Variance Component Estimation

A review of most variance component estimation methods can be found in Fotopou-
los (2003) and Amiri-Simkooei (2007). Here, we consider the application of the Least-
Squares Variance Component Estimation (LS-VCE), which is based on the same
least-squares estimation principles used in section 7.3.3. LS-VCE was first intro-
duced in 1988 by Teunissen (1988) and further developed by Amiri-Simkooei (2007)
and Teunissen and Amiri-Simkooei (2008). Under the assumption of the multivari-
ate normal distribution considered in section 7.3.3, the method provides an unbi-
ased and minimum variance estimator of the variance components. It can also be
shown that the LS-VCE estimates maximize the restricted likelihood function of the
considered normal distribution (Amiri-Simkooei, 2007). This property is common
to most rigorous VCE methods. However, the LS-VCE is more generally applica-
ble and offers additional features, including a direct derivation of the uncertainty of
each variance component estimate (Teunissen and Amiri-Simkooei, 2008).

The LS-VCE method consists in using the redundancy of information of a system
to infer the variance of the observations. In the case of a linear parametric functional
model, one can compute a residual pk× 1 vector ê such as

ê = y−Ax̂

= P⊥Ay,
(7.9)

where P⊥A is a projector matrix defined by

P⊥A = I−A(ATQ−1
y A)−1ATQ−1

y . (7.10)

The residual vector ê gives pieces of information about observation uncertainties,
potential model miss-specifications, and the presence of outliers. By assuming the
absence of outliers and model miss-specifications, the LS-VCE provides an estimator
of the observation uncertainties using ê and P⊥A .

As for the standard least-squares estimation, the LS-VCE method estimates the
unknown variance components p× 1 vector
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σ =

σ2
1
...

σ2
p


by solving a normal equations system:

σ̂ = N−1l =


n11 · · · · · · n1p

...
. . .

...
nij

...
. . .

...
np1 · · · · · · npp



−1 
l1
...
li
...

lp

 , (7.11)

where the normal matrix N and the vector l are specific to the stochastic model, and
thus different from the normal matrix N and vector l in Equation (7.7).

For the stochastic model defined in section 7.3.3, for which all variance compo-
nents are to be estimated, the elements nij and li of N and l are defined by (Amiri-
Simkooei, 2007) :

nij =
1
2
tr{QiQ−1

y P⊥AQjQ−1
y P⊥A} (7.12)

li =
1
2

êTQ−1
y QiQ−1

y ê (7.13)

where tr{.} stands for the trace operator.

Note that σ̂ is involved in the definition of nij and li through Q−1
y . Hence, Equa-

tion (7.11) expresses σ̂ as a function of Qy, which is already a function of σ̂ in Equa-
tion (7.6). Such system of equations, where the equations for the unknowns include
functions of the unknowns, can be numerically solved using an iterative procedure
starting with an initial guess on the unknowns: the prior variance component vector
σ(0).

The first iteration consists in using the prior vector σ(0) and cofactor matrices Qi
to compute Qy and P⊥A , which are necessary to build the normal equations system
(7.11). Solving this normal equations system (7.11) leads to the estimation of an up-
dated variance component vector σ(1). The next k iterations consist in successively
updating the variance component vector σ(k) by solving the normal Equations sys-
tem (7.11) built using the previously estimated variance component vector σ(k−1).
The iterations stop when the difference between two estimated variance component
vectors becomes negligible. To obtain more details on the implementation of the
LS-VCE method, we refer to chapter 3.

Once convergence is achieved, an insight into the quality the variance compo-
nent estimates σ̂2 – the covariance matrix of the variance component estimates – can
be obtained by inverting the normal matrix N:

Qσ̂ = N−1, (7.14)

The i-th diagonal element of Qσ̂ corresponds to the variance of the i-th variance
component σ̂. As for Qx̂, the uncertainties of variance component estimates depend
on the system redundancy and the precision of the observations.
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To get interpretable variance component estimates, one can change variance com-

ponents σ̂2
i into standard deviation components σ̂i =

√
σ̂2

i . To obtain variance com-
ponent uncertainties with interpretable units, one can follow Amiri-Simkooei, Teu-
nissen, and Tiberius (2009), and approximate the new variance of the standard de-
viation component σ2

σ̂i
by applying variance propagation law through the linearized

square root function:

σ2
σ̂i
≈ σ2

σ̂2
i
·

 1

2
√

σ̂2
i

2

, (7.15)

The more interpretable standard deviation of the standard deviation component

σσ̂i =
√

σ2
σ̂i

can then be derived by taking the square root of both sides of Equation
(7.15), which gives:

σσ̂i ≈
σσ̂2

i

2σ̂i
, (7.16)

where σσ̂2
i

is the standard deviation of the i-th variance component σσ̂2
i
=
√

σ2
σ̂2

i
.

Hence, one can express the uncertainty estimate of the i-th tide gauge as σ̂i ± σσ̂i

[cm].

7.4 Results

To compare COMB and DIFF methods on a similar basis, the PROBE time series has
been considered conventionally unbiased for both methods.

To remove the influence of potential outliers, residuals time series were com-
puted using Equation (7.9) before the actual processing of both methods. The func-
tional model (7.4) and the covariance matrix Qy = I were considered in Equation
(7.10). Observations that showed residuals above five times the median absolute de-
viation of the gauge residual time series were removed from the data-set. In practice,
it concerned less than 2 observations by time series.

7.4.1 Calibration with the combination (COMB) method

Before the assessment of the unknown bias parameters and the combined solution, a
realistic covariance matrix Qy was first computed using LS-VCE. An arbitrary stan-
dard deviation of 0.80 cm for all time series was used to build the prior variance
component vector. Starting with σ(0), the iterative procedure, summarized in sec-
tion 7.3.3 and fully described in (Amiri-Simkooei, 2007), provided the final variance
components vector estimate σ̂ and its covariance matrix Qσ̂. As the elements of both
σ̂ and Qσ are not directly interpretable, the Equation (7.16) was used to express each
tide gauge uncertainty estimate as σ̂i ± σσ̂i (cm).

The bias parameters and the combined solution were estimated by solving the
functional model (7.4) using the final variance component estimates: σ̂ was substi-
tuted in Equations (7.7) and (7.8) through Equation (7.6) to obtain the vector x̂ and
its covariance matrix Qx̂.

Both estimated sea level bias parameters and uncertainties for 10 min records are
given, in centimeter, in Table (7.1). The electrical PROBE is found to be the most
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precise gauge in this experiment, with an uncertainty of 0.30 cm. The least precise
gauges are the tide pole POLE (1.23 cm) and the BUOY1 (1.25 cm). BUOY1 is nearly
two times less precise than BUOY2 (0.74 cm).

TABLE 7.1: Tide gauge cross-calibration results obtained using the
COMB method. PROBE scale error and intercept are conventionally

set to zero.

Gauges α̂i ± σα̂i (cm) β̂i ± σβ̂i
(cm m−1) σ̂i ± σσ̂i (cm)

RADAR -1.87 ± 0.30 0.52 ± 0.07 0.81 ± 0.08

PROBE . . 0.31 ± 0.10

POLE -0.13 ± 0.39 -0.32 ± 0.09 1.23 ± 0.12

BUOY1 -4.30 ± 0.41 0.00 ± 0.11 1.25 ± 0.14

LASER -3.42 ± 0.35 0.13 ± 0.08 0.90 ± 0.10

BUOY2 -3.53 ± 0.30 0.17 ± 0.07 0.74 ± 0.09

In Table (7.1), 4 time series – RADAR, LASER, BUOY1, and BUOY2 – show inter-
cept estimates α̂i significant at the 3σα̂i – or 99% – confidence level. Their amplitudes
range from -1.87 cm (RADAR) to -4.30 cm (BUOY1). For the scale errors β̂i, only
RADAR and POLE show estimates above 3σβ̂i

, with about 0.50 cm m−1 and -0.30 cm
m−1 respectively.

The residual time series of each tide gauge are presented in Figure (7.5). BUOY1
exhibits a mean shift of about -2.00 cm between 07:20 and 09:40. This artifact appears
in the residual time series because it cannot result from the combination model.
It means that the other gauges did not observe such a shift, otherwise, it would
have been modelled by the combined solution. The presence of this artifact in the
BUOY1’s residual time series lowers its precision in Table (7.1). For the other gauges,
no clear pattern appears in the residual time series, which suggests that their biases
are correctly modelled.

The combined solution ĥ and its uncertainty σĥ are presented in Figure (7.6). Each
missing value in one of the time series increases the uncertainty of the combined so-
lution to an extent proportional to its precision. The available measurements are
displayed for each tide gauge, in the bottom of Figure (7.6). When the most precise
tide gauge (PROBE) is not recording, between 10:00 and 12:10, the uncertainty σĥ of
the combined solution increases by almost a factor of two. Despite the missing val-
ues of PROBE, the combined solution is estimated for the entire experiment period
because all available observations are taken into account.

To investigate whether PROBE is found to be the most precise gauge because it is
the conventionally unbiased gauge, the calibration has been reprocessed by instead
considering BUOY1 as conventionally unbiased. The alternative calibration results
are presented in Table (7.2). The choice of another conventionally unbiased gauge
does not change uncertainty estimates but changes bias parameter estimates and
their uncertainties. Bias parameters are the most affected because they intrinsically
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depend on the definition of a convention. As BUOY1 does not exhibit any scale error
in Table (7.1), the changes in scale error estimates in Table (7.2) are not dramatic. The
sea level time series uncertainty estimates are identical in both alternatives because
all biases are considered in each case. An alternative functional model ignoring an
existing bias would not have provided identical results.

TABLE 7.2: Alternative tide gauge cross-calibration results obtained
using the COMB method and by defining BUOY1 as the convention-
ally unbiased gauge. BUOY1 scale error and intercept are conven-

tionally set to zero.

Gauges α̂i ± σα̂i (cm) β̂i ± σβ̂i
(cm m−1) σ̂i ± σσ̂i (cm)

RADAR 2.34 ± 0.42 0.55 ± 0.11 0.81 ± 0.08

PROBE 4.18 ± 0.42 0.03 ± 0.11 0.31 ± 0.10

POLE 4.07 ± 0.49 -0.29 ± 0.13 1.22 ± 0.12

BUOY1 . . 1.25 ± 0.14

LASER 0.72 ± 0.45 0.15 ± 0.12 0.90 ± 0.10

BUOY2 0.68 ± 0.42 0.19 ± 0.11 0.74 ± 0.09

7.4.2 Comparison with the difference (DIFF) method

Using PROBE as the reference gauge, we plotted the VdC diagram for RADAR,
POLE, LASER, BUOY1, and BUOY2. A linear regression on each diagram provided
intercept and scale error estimates for each gauge. The DIFF method estimates are
presented in Table (7.3). The differences with the COMB method estimates are sum-
marized in Table (7.4).

TABLE 7.3: Tide gauge calibration results obtained using the DIFF
method. PROBE is the reference gauge.

Gauges α̂i ± σα̂i (cm) β̂i ± σβ̂i
(cm m−1)

RADAR -1.54 ± 0.47 0.42 ± 0.10

PROBE . .

POLE 0.09 ± 0.66 -0.36 ± 0.14

BUOY1 -5.05 ± 0.72 0.15 ± 0.18

LASER -3.07 ± 0.77 0.12 ± 0.17

BUOY2 -3.42 ± 0.47 0.18 ± 0.10

The discrepancies between COMB and DIFF methods reach 0.75 cm for the in-
tercepts (BUOY1) and 0.15 cm m−1 for the scale errors (BUOY1). In Table (7.5),
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TABLE 7.4: Difference between DIFF and COMB calibration results.

Gauges ∆α̂i (cm) ∆σα̂i (cm) ∆β̂i (cm m−1) ∆σβ̂i
(cm m−1)

RADAR -0.33 -0.17 0.10 -0.03

PROBE . . . .

POLE -0.22 -0.27 0.04 -0.05

BUOY1 0.75 -0.31 -0.15 -0.07

LASER -0.35 -0.42 0.01 -0.09

BUOY2 -0.11 -0.17 -0.01 -0.03

changes in bias uncertainties between methods are expressed in terms of uncertainty
reduction percentages. The DIFF method provides slightly different results from the
COMB method because it only considers a smaller subset of the data-set for each
pair of gauge and because it does not take into account the precision of each time
series. In this chapter, the DIFF method can only take into account the overlapping
observations between PROBE and the tested gauges. Given that PROBE has no ob-
servation between 10:00 and 12:10, the DIFF method ignores several observations,
which deteriorates the precision of bias estimates. As a consequence, Table (7.5)
shows that the COMB method provides 30% to 55% smaller uncertainties than the
DIFF method for bias parameter estimates.

TABLE 7.5: Reduction of the standard deviations of the bias param-
eters obtained using the COMB method with respect to the DIFF

method.

Gauge ∆σα̂i (%) ∆σβ̂i
(%)

RADAR -36 -30

PROBE . .

POLE -41 -36

BUOY1 -43 -39

LASER -55 -53

BUOY2 -36 -30

The presence of the scale error induces a height-dependency of the sea level bias
models and their confidence intervals. To illustrate this, Figure (7.7) displays the es-
timated sea level bias models and their uncertainties, obtained with both methods,
on the VdC diagram for BUOY1, which is the time series with the most substantial
differences between the two models. At the lowest tide, sea level bias models ob-
tained with COMB and DIFF method differs of about 3 millimeters. Besides, both
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FIGURE 7.7: Van de Casteele diagram of BUOY1. The sea level bias
model estimated with the COMB method is displayed in blue, and

the one estimated with the DIFF method is displayed in red.

sea level bias models are more precise around the mean tide than near the tidal ex-
trema. As a consequence, the combined solution of the COMB method is also less
precise near the tidal extrema, which results in the few millimeter changes for σĥ that
appears in Figure (7.6) at the lowest tide: between 10:00 and 12:10.

A representation of all bias estimates obtained with both DIFF and COMB meth-
ods is given in Figure (7.8). Bias estimates are shown as points in the bias parameter
space - intercept vs scale error. Their uncertainties appear as 1σ confidence ellipses.
The correlations between bias parameters, always around -0.9, induce an inclination
of the ellipses. As the cause of the correlation is the same – same signal and same
bias model – for every time series, so are the inclinations in Figure 7.8. Figure (7.8)
also shows that, while providing more precise estimates, the COMB method still
globally agrees with the DIFF method for bias detection.

7.5 Discussion

7.5.1 Performance of the tide gauges

The PROBE time series is twice more precise than that of BUOY1, the next most
precise tide gauge. Its good performance results probably from the use of the stilling
pipe, which stabilizes the water level and allows accurate readings on the measuring
tape. This result comforts the use of electrical contact probes as references in tide
gauge calibration campaigns.

The results also show that RADAR, LASER, and BUOY2 uncertainty estimates
are below the centimeter level, which confirms that they could provide sea level
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records with the level of accuracy specified by the IOC with a confidence level of
more than 67% if they were not affected by biases.

Among the 6 tested gauges in this work, only two, of which one automatic gauge,
present an uncertainty above 1.00 cm: POLE (1.23 cm) and BUOY1 (1.25 cm). The
1.23 cm uncertainty of POLE might result from the limitation of human eye reading
on the 10.00 cm graduations. The lower performance of BUOY1 compared to BUOY2
is assigned to the presence of the artifact between 07:20 and 09:40. Considering its
floating structure is less stable than the more recent model BUOY2, this artifact could
be due to the buoy instability in the presence of currents during the ebb tide. BUOY2
did not measure when BUOY1 observed the artifact; one cannot exclude that the
artifact is due to a miss-modeling of the GNSS data.

7.5.2 Nature of the biases

Separating instrumental and environmental contributions in bias estimates is diffi-
cult, especially when the gauges are not fully collocated. We can nonetheless draw
some hypotheses for bias attribution.

Usually, significant intercept estimates are due to instrumental height errors. But
in this experiment, other explanations are plausible for BUOY1, BUOY2, LASER,
and RADAR.

BUOY1 and BUOY2 show similar intercept estimates while being deployed a
few tens of meters away from the ground-based instruments. Hence, changes in the
dynamic topography due to currents likely impacted their intercept estimates (Pérez
et al., 2014). In that case, an environmental effect is detected, not an instrumental
bias.
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As LASER is not dedicated to water surface measurements, the intercept estimate
is certainly due to the penetration of the laser beam into the water. More appropri-
ate laser systems have already been developed, using floating mirrors (MacAulay,
O’Reilly, and Thompson, 2008).

For RADAR, the significant intercept estimate is influenced by the strong scale
error. Theoretically, LASER, RADAR, and POLE could show scale error in the case
of vertical alignment defaults. This cause is plausible for RADAR and LASER. How-
ever, the vertical alignment of POLE can be considered as reliable and the human-
reading is the most likely source of its scale error.

Even though the nature of significant bias parameters αi and βi could remain
unclear, one can still obtain corrected sea level time series by subtracting the bias
model βi × yi(t) + αi to the measured sea level yi(t).

7.5.3 Improvement over difference based methods

The proposed calibration method provides an unbiased and minimum variance es-
timate of the tide gauge uncertainties, their sea level biases, and the combined so-
lution from all time series. The variance of all estimates, including tide gauge un-
certainties, are also determined. Thus, the COMB method leads to a more complete
tide gauge calibration than the DIFF method.

The application to the Aix Island experiment revealed that the proposed method-
ology also leads to more precise bias estimates. This improvement is attributed to the
combination of all available observations along with the realistic weighting between
each gauge. The drastic precision improvement, from 30% to 55% on the uncertainty
of the bias parameters, mostly shows that this method is more robust to the missing
values of the most precise time series (PROBE), which is used as a reference to build
the VdC diagrams.

For comparison purposes, this chapter considers only one conventionally unbi-
ased time series. However, the COMB method allows using several unbiased time
series and partially unbiased time series at the same time, which is not possible with
the DIFF method. Adding unbiased time series should further improve the results
of the COMB method.

7.6 Conclusion

The present contribution proposes a method for the cross-calibration of tide gauges.
Based on the combination of multiple collocated time series, it takes advantage of the
Least-Squares Variance Component Estimation method to assess both instrumental
biases and measurement uncertainties in real conditions. The method was applied
to a multi-instrument experiment carried out at Aix Island in 2016. Six instruments
were deployed and performed simultaneous sea level recordings for 11 hours, with
a 10 minutes sampling.

The electrical probe was found to be two to four times more precise than the
other gauges. RADAR, LASER, and BUOY2 uncertainty estimates are below the
centimeter level, which confirms that, in those conditions, they could provide sea
level records with the level of accuracy specified by the IOC if they were not affected
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by biases. We showed that, within our time series, significant bias parameters were
found for all the tested gauges. Hence, this chapter shows that it is possible to assess
both the biases and the precision – i.e. the full accuracy – for each gauge.

The results obtained with the combination method have been compared to that
of a difference based method. It showed that the combination of all time series also
provides more precise bias estimates.

Because this chapter is based on an 11 hours experiment, time-dependent bi-
ases and random errors have not been considered. Further studies using the COMB
methods are necessary to investigate the time-dependency of sea level bias parame-
ters and tide gauge precisions.

7.7 Acknowledgments

This study would not have been possible without the fieldwork carried out on the
Aix island in 2016 by Laurent Testut, Guy Woppelmann, Valérie Ballu, Etienne Poirier,
Médéric Gravelle, Álvaro Santamaría-Gómez, Mikaël Guichard, Elizabeth Prouteau,
Pierre Chasseloup, Cyril Poitevin, Fabien Durand, Ronan Le Gall, and Pascal Le Dû.



89

Chapter 8

Investigating the potential of the
nonlinear LS-VCE method for the
stochastic modelling of GNSS
position time series

The two previous chapters focused on the assessment of tide-gauge accuracy. In the
next four chapters, we focus on the stochastic properties of GNSS position time se-
ries. The first step in the statistical modelling of GNSS position time series is the
choice of the statistical method. In practice, the estimation of the functional param-
eters is usually done with the Best Linear Unbiased Estimator (BLUE) presented in
chapter 2. On the other hand, the estimation of the stochastic parameters, or vari-
ance components, is usually done with the Maximum Likelihood Estimator (MLE)
presented in chapter 3. Although the MLE method is easy to implement, it is not
unbiased. Hence, is in this chapter, we investigate whether the nonlinear Least-
Squares Variance Component Estimation (LS-VCE) method, also presented in chap-
ter 3, which is both unbiased and minimum-variance, could be an interesting alter-
native to the MLE method for GNSS time series analysis.

The theoretical developments presented in this chapter to apply the nonlinear
LS-VCE method are used in the chapter 9 for the study of the influence of offsets on
the uncertainty of variance component estimates.

8.1 Introduction

The study of geodetic position time series plays a central role in the understanding
of geophysical processes such as plate tectonics (Argus and Heflin, 1995; Kreemer,
Blewitt, and Klein, 2014), glacial isostatic adjustment (Nocquet, Calais, and Parsons,
2005; Schumacher et al., 2018), surface mass distribution (Van Dam, Blewitt, and
Heflin, 1994; Van Dam et al., 2001), and vertical land motions (Pfeffer and Allemand,
2016; Wöppelmann and Marcos, 2016).

To convert raw observations into usable parameters, the statistical modelling of
geodetic time series is divided into two complementary models, namely the func-
tional model and the stochastic model. The functional model describes determinis-
tic behaviours identified, or expected, in the observations. This usually includes a
trend, periodic patterns, discontinuities and possible transient deformations (Bevis
and Brown, 2014). On the other hand, the stochastic model describes identified, or
expected, stochastic variability of observations. It usually accounts for white noise
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(WN) and time-correlated stochastic processes such as power-law (PL) (Press, 1978;
Agnew, 1992; Zhang et al., 1997) or generalized Gauss-Markov processes (Langbein,
2004; Bos et al., 2020).

Power-law processes (PL) are stochastic processes characterized by their power-
spectrum P( fk), which follows a power-law function of the time frequency fk, such
that

P( fk) ≈ P0

(
fk

f0

)κ

(8.1)

in which P0 and f0 are normalization constants, and κ is the spectral index, a scalar
usually ranging between [−3, 1] (Agnew, 1992) defining the nature of the power-
law process. In GNSS position time series, several studies showed that the preferred
stochastic model is a combination of a WN and a PL noise with a spectral index
close to −1, that is close to a flicker noise (Zhang et al., 1997; Williams et al., 2004;
Santamaría-Gómez et al., 2011).

Generalized Gauss-Markov (GGM) processes are stochastic processes introduced
in Langbein (2004) showing power-law properties at high-frequencies and white
noise properties at low frequencies. The transition between power-law and white
noise behaviours is parametrized by an additional parameter denoted φ, which lim-
its the energy of the process at low frequencies and makes the GGM process station-
ary. PL processes are special cases of GGM processes in the sense that a PL process
is a GGM process whose transition towards white noise properties never occurs.

Stochastic model parameters, namely the amplitude of each process, the spectral
index, and the parameter φ are generally referred to as the variance components.
If unknown, they can be estimated from the observations using a Variance Compo-
nent Estimation (VCE) method. The most widely used VCE method in time series
analysis is the maximum likelihood estimation method, which benefits from sev-
eral software implementations such as CATS (Williams, 2008), HECTOR (Bos et al.,
2013) and est_noise (Langbein, 2017). Although the MLE method is widely used, it
can only give asymptotically unbiased estimator of variance components because it
does not account for the influence of the functional model on variance components
estimates (Harville, 1977).

There also exist other VCE methods that directly provides unbiased estimates.
We can mention the Restricted Maximum Likelihood Estimation (Koch, 1986), the
Minimum Quadratic Unbiased Estimation (Rao, 1971), the Best Invariant Quadratic
Unbiased Estimation, the Helmert method, and the Least-Squares Variance Compo-
nent Estimation (Teunissen and Amiri-Simkooei, 2008). These VCE methods were
developed based on different estimation criteria. However, in the case of normally
distributed observations, they are mathematically equivalent (Teunissen and Amiri-
Simkooei, 2008). For a review of existing VCE methods we refer to Fotopoulos (2003)
and Amiri-Simkooei (2007).

In this chapter, we investigate the potential of the nonlinear Least-Squares Vari-
ance Component Estimation for the estimation of variance component in geodetic
time series. In previous studies, the linear LS-VCE has shown to be useful for the
unbiased and minimum-variance estimation of noise amplitudes of power-law pro-
cesses with fixed spectral indices κ (Amiri-Simkooei, Tiberius, and Teunissen, 2007;
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Amiri-Simkooei, 2009; Amiri-Simkooei, 2016). Here, by providing an expression for
the partial derivatives of the stochastic model with respect to κ and φ, we extend the
application of the LS-VCE to the estimation of the spectral index κ and the GGM pa-
rameter φ. This results in an algorithm providing unbiased and minimum-variance
estimates of all variance components, along with their uncertainties.

8.2 Functional and stochastic model

The functional model describes the expectation E{.} of the m× 1 observation vector
y. For linear(-ized) models of observation equations, the functional model can be
written as

E{y} = Ax, (8.2)

in which A is the known m× n design matrix, and x is the n× 1 functional parameter
vector.

The stochastic model describes the variance var{.} of the observation vector y.
Power-law processes being a particular case of generalized Gauss-Markov processes,
if we consider either a WN+PL or WN+GGM combination, the stochastic model fol-
lows:

Qy = σ2
wI + σ2

plQκφ, (8.3)

in which σ2
w is the white noise amplitude, I is the m × m identity matrix, σ2

pl is the
time-correlated process amplitude, and Qκφ is the m× m covariance matrix associ-
ated to a GGM process of spectral index κ and parameter φ.

The covariance matrix Qκφ in Equation (8.3) can be obtained as

Qκφ = ∆−κ/2
t LκφLT

κφ (8.4)

in which ∆t is the sampling period in years, and Lκφ is the m × m transformation
matrix defined as

Lκφ =


h0 0 · · · 0

h1 h0
. . .

...
...

. . . . . . 0
hm−1 · · · h1 h0

 , (8.5)

where the entries hi are defined by the following recurrence expression (Langbein,
2004; Bos et al., 2020):

h0 = 1,
hi = φaihi−1.

(8.6)

with

ai = 1− κ

2i
− 1

i
(8.7)

When φ = 1, the covariance matrix Qκφ is that of a pure power-law process.
When φ < 1, it corresponds to that of a Generalized Gauss-Markov process.
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8.3 Least-Squares Variance Component Estimation

Introduced by Teunissen (1988) and further developed by Teunissen and Amiri-
Simkooei (2008) and Amiri-Simkooei (2007), under the normal distribution assump-
tion the LS-VCE provides an unbiased and minimum-variance estimator of the vari-
ance components. The method also allows for a direct assessment of the variance
components uncertainty.

Noting E{.} and var{.} the expectation and variance operators, the linear LS-
VCE considers both a linear functional model E{y} and a linear stochastic model
var{y} = Qy such that

E{y} = Ax, Qy = Q0 +
p

∑
i=1

σ2
i ·Qi (8.8)

where Q0 and Qi are known m× m co-factor matrices, σ2
i are p unknown variance

components, A is the m× n design matrix, and and x is the unknown n× 1 parame-
ter vector of the functional model.

The LS-VCE provide an estimator of the p× 1 variance component vector

σ̂ =

σ̂1
2

...
σ̂p

2

 (8.9)

by solving a normal equation system Nσ̂ = l, in which the entries nij and li of the
p× p normal matrix N and the p× 1 vector l are given by (Amiri-Simkooei, 2007)

nij =
1
2

tr(QiQ−1
y P⊥AQjQ−1

y P⊥A), (8.10)

li =
1
2
(êTQ−1

y QiQ−1
y ê)− 1

2
tr(QiQ−1

y P⊥AQ0Q−1
y P⊥A). (8.11)

In Equations (8.10) and (8.11), ê denotes the residual vector, P⊥A is an orthogonal
projector defined by P⊥A = I− A(ATQ−1

y A)−1ATQ−1
y so that ê = P⊥Ay, and I is the

m×m identity matrix.

Assuming that the cofactor matrices Q0 and Qi are linearly independent, the
unbiased and minimum-variance estimator of the variance components can be ob-
tained by inverting the normal matrix N such that

σ̂ = N−1l. (8.12)

Since the unknown covariance matrix Qy is involved in the definition of nij and
li, the estimation is done in an iterative way. One starts with a first guess on the
variance component vector σ̂0 to approximate Qy and obtain nij and li. σ0 can be ob-
tained from previous publications, or simplified VCE methods. By solving the nor-
mal equation system, a new variance component vector σ̂1 can be obtained. Then,
by iterating this procedure, each time a variance component σ̂i is estimated, a new
estimate σ̂i+1 can be obtained. The iterations stop when the difference between two
successive variance component estimates become negligible. For more details about
the implementation of the LS-VCE, we refer to Amiri-Simkooei, 2007 and chapter 3.
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When the iterative process converges to a final variance component vector esti-
mate σ̂, its covariance matrix Qσ̂ can be obtained as

Qσ̂ = N−1. (8.13)

8.3.1 Nonlinear LS-VCE

When the stochastic model depends non-linearly on one of the variance components,
the estimation procedure must be adapted. In particular, the matrices Q0 and Qi
must be updated at each iteration k to handle the non-linearity of the problem.

The expression for the matrix Q(k)
0 at the k-th iteration can be obtained as (Amiri-

Simkooei, 2007)

Q(k)
0 = Qy(σ̂

(k))−
p

∑
i=1

∂Qy(σ)

∂σi
σ̂
(k)
i

∣∣∣∣
σ̂(k)

, (8.14)

and that of the matrices Q(k)
i as

Q(k)
i =

∂Qy(σ)

∂σi

∣∣∣∣
σ̂(k)

. (8.15)

(Amiri-Simkooei, 2007) and chapter 3 provide a detailed description of the algo-
rithm to implement the nonlinear LS-VCE. In the nonlinear case, variance compo-
nents can represent virtually any stochastic parameter, and not necessarily process
amplitudes. Besides, Equations (8.14) and (8.15) depend on the partial derivatives of
the stochastic model. Hence, to apply the nonlinear LS-VCE method, it is necessary
to express the partial derivatives of the stochastic model with respect to all variance
components.

8.3.2 Non-negative LS-VCE

The LS-VCE method being unconstrained, it can occasionally provide negative esti-
mates for some variance components. When the concerned variance component is a
noise amplitude, this is problematic because the result cannot be interpreted physi-
cally. To overcome the negativity issue, Amiri-Simkooei (2016) proposes to use the
non-negative sequential coordinate-wise algorithm developed by (Franc, Hlaváč,
and Navara, 2005) to solve the LS-VCE normal equation system at each iteration.

The non-negativity constraint conflicts with the unbiased property of the LS-
VCE estimator. Consequently, the use of the non-negative LS-VCE method should
ideally be used only in the case in which the unconstrained LS-VCE failed to provide
positive estimates.

8.4 Partial derivatives of the stochastic model

8.4.1 Partial derivatives with respect to σ2
w and σ2

pl

As the covariance matrix Qy depends linearly on the stochastic parameters σ2
w and

σ2
pl , one can show that the partial derivatives of the stochastic model with respect to

σ2
w and σ2

pl follows
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∂

∂σ2
w
{Qy} = I, (8.16)

and

∂

∂σ2
pl
{Qy} = Qκφ. (8.17)

Since the stochastic parameters κ and φ are involved in the definition of the ma-
trix Qκφ in Equation (8.6), the computation of the corresponding partial derivatives
is more intricate.

8.4.2 Partial derivative with respect to κ

To study the partial derivative of the stochastic model with respect to κ and φ, we
denote ri the element of a discrete GGM process at a time index i. For j ≥ i, the
auto-covariance between two elements ri and rj can be written as (Bos et al., 2008)

cov{ri, rj} = σ2
pl∆
−κ/2
t

i

∑
k=0

hkhk+(j−i). (8.18)

The partial derivative of cov{ri, rj} with respect to κ can thus be written as

∂

∂κ
{cov{ri, rj}} = σ2

pl
∂

∂κ
{∆−κ/2

t

i

∑
k=0

hkhk+(j−i)} (8.19)

and developed into

∂

∂κ
{cov{ri, rj}} = σ2

pl

[
∂

∂κ
{∆−κ/2

t }
i

∑
k=0

hkhk+(j−i) + ∆−κ/2
t

∂

∂κ
{

i

∑
k=0

hkhk+(j−i)}
]

(8.20)

The two elements to be computed are ∂
∂κ{∆

−κ/2
t } and ∂

∂κ{∑
i
k=0 hkhk+(j−i)}. For

the computation of ∂
∂κ{∆

−κ/2
t }, we obtain

∂

∂κ
{∆−κ/2

t } = −1
2

ln(∆t)∆−κ/2
t . (8.21)

For the computation of ∂
∂κ{∑

i
k=0 hkhk+(j−i)}, using the linearity of the derivative

one can write

∂

∂κ
{

i

∑
k=0

hkhk+(j−i)} =
i

∑
k=0

∂

∂κ
{hkhk+(j−i)} (8.22)

which can be developed into

∂

∂κ
{

i

∑
k=0

hkhk+(j−i)} =
i

∑
k=0

∂

∂κ
{hk}hk+(j−i) +

i

∑
k=0

hk
∂

∂κ
{hk+(j−i)} (8.23)

.
To simplify the notation, we denote

uk =
∂

∂κ
{hk} (8.24)

so that
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∂

∂κ
{

i

∑
k=0

hkhk+(j−i)} =
i

∑
k=0

ukhk+(j−i) +
i

∑
k=0

hkuk+(j−i). (8.25)

By substituting Equation (8.21) and Equation (8.25) in Equation (8.20) one obtains

∂

∂κ
{cov{ri, rj}} = σ2

pl∆
−κ/2
t

×
[
−1

2
ln(∆t)

i

∑
k=0

hkhk+(j−i) +
i

∑
k=0

ukhk+(j−i) +
i

∑
k=0

hkuk+(j−i)

]
, (8.26)

Equation (8.26) can be re-written using matrix notation as

∂

∂κ
{Qy} = σ2

pl∆
−κ/2
t

[
−1

2
ln(∆t)LκφLT

κφ + UκφLT
κφ + LκφUT

κφ

]
, (8.27)

in which Uκφ is a lower triangular m×m matrix defined as

Uκφ =


u0 0 · · · 0

u1 u0
. . .

...
...

. . . . . . 0
um−1 · · · u1 u0

 . (8.28)

The entries uk in Uκφ can be obtained by computing

uk =
∂

∂κ
{φakhk−1} (8.29)

which leads to the recurrence expression

u0 = 0,

uk =−
φ

2k
hk−1 + φakuk−1.

(8.30)

Note that, when using non-negativity constraints, the use of the spectral index
κ is problematic because it is negative in geodetic applications. To overcome this
issues, one can estimate α = −κ instead of κ. In this case, the partial derivative with
respect to α is simply

∂

∂α
{Qy} = −

∂

∂κ
{Qy} (8.31)

8.4.3 Partial derivative with respect to φ

The derivation of partial derivative with respect to φ is similar to that with respect
to κ. We start by writing the partial derivative of cov{ri, rj} with respect to φ as

∂

∂φ
{cov{ri, rj}} = σ2

pl∆
−κ/2
t

∂

∂φ
{

i

∑
k=0

hkhk+(j−i)} (8.32)

and develop it into
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∂

∂φ
{cov{ri, rj}} = σ2

pl∆
−κ/2
t

[
i

∑
k=0

∂

∂φ
{hk}hk+(j−i) +

i

∑
k=0

hk
∂

∂φ
{hk+(j−i)}

]
. (8.33)

To simplify the notation, we denote

vk =
∂

∂φ
{hk} (8.34)

so that

∂

∂φ
{cov{ri, rj}} = σ2

pl∆
−κ/2
t

[
i

∑
k=0

vkhk+(j−i) +
i

∑
k=0

hkvk+(j−i)

]
. (8.35)

Equation (8.35) can be re-written using matrix notation so that

∂

∂φ
{Qy} = σ2

pl∆
−κ/2
t

[
VκφLT

κφ + LκφVT
κφ

]
, (8.36)

in which Vκφ is a lower triangular m×m matrix defined as

Vκφ =


v0 0 · · · 0

v1 v0
. . .

...
...

. . . . . . 0
vm−1 · · · v1 v0

 . (8.37)

The entries vk of the matrix Vκφ can be obtained by computing

vk =
∂

∂φ
{φakhk−1} (8.38)

which leads to the following recurrence expression:

v0 = 0,
vk = akhk−1 + φakvk−1.

(8.39)

The parameter φ is already a non-negative parameter, however it has an upper-
bound at φ = 1. The LS-VCE being unconstrained, this upper-bound can be prob-
lematic for numerical evaluation. Hence, instead of estimating φ, it is numerically
more convenient to estimate another non-negative parameter, noted τ, which is the
time-constant of the generalized Gauss Markov process (Langbein, 2004). The pa-
rameters τ and φ are linked through

τ = − ∆t

ln φ
. (8.40)

The partial derivative of the stochastic model with respect to τ is obtained from
Equation (8.36) as

∂

∂τ
{Qy} =

∂

∂φ
{Qy}

∂

∂τ
{φ}, (8.41)

with
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∂

∂τ
{φ} = exp

{
−∆t

τ

}
∆t

τ2 . (8.42)

8.5 Performance on synthetic time series

In this section, we test the performance of the nonlinear LS-VCE method for the
variance component estimation of both WN+PL and WN+GGM models.

8.5.1 WN+PL model

To investigate whether the LS-VCE is able to retrieve both reliable process ampli-
tudes and the spectral index estimates for WN+PL models, we evaluate the method
on 2000 synthetic time series with daily observations and a span of 8 years. For
each synthetic time series, both the unconstrained and the non-negative LS-VCE are
applied.

The simulated deterministic component is a linear trend with annual and semi-
annual periodic signals. The simulated stochastic component is a combination of a
white noise and a power-law process. The true values as well as the chosen approx-
imate – that is, initial – variance components used for the simulations are presented
in Table (8.1).

TABLE 8.1: True and approximate (initial) variance components used
for the simulation

Parameters True Initial

σ2
w (mm2) 9 100

σ2
pl (mm2 yr−0.4) 225 100

κ -0.8 -1

The distributions of the variance component estimates obtained with the uncon-
strained LS-VCE method are presented in Figure (8.1). The unconstrained LS-VCE
algorithm converged toward a solution for 1960 time series out of 2000, which cor-
respond to as success rate of 98%, although the initial values were far from the true
values.

TABLE 8.2: Average variance component estimates for the uncon-
strained LS-VCE (LS-VCE) and the non-negative LS-VCE (NNLS-

VCE).

Parameters True LS-VCE NNLS-VCE

σ2
w (mm2) 9 8.56 7.25

σ2
pl (mm2 yrκ/2) 225 224.21 218.54

κ -0.8 -0.80 -0.77
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FIGURE 8.1: Distribution of variance component estimates obtained
using the unconstrained nonlinear LS-VCE method for the WN+PL
stochastic model (blue histogram). True variance component (dashed
red line). Normal distribution centred on the true value, with variance
computed using Equation (8.13) based on the true variance compo-

nents in Table (8.1) (solid red line).
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FIGURE 8.2: Distribution of variance component estimates obtained
using the non-negative nonlinear LS-VCE method for the WN+PL
stochastic model (blue histogram). True variance component (dashed
red line). Normal distribution centred on the true value, with variance
computed using Equation (8.13) based on the true variance compo-

nents in Table (8.1) (solid red line).

The distributions of the variance component estimates obtained with the NNLS-
VCE method are presented in Figure (8.2). The constrained LS-VCE algorithm con-
verged toward a solution for 1981 time series out of 2000, which corresponds to a
success rate of 99.05 %. This success rate is slightly better than that of the uncon-
strained algorithm. The average estimates for each variance component are pre-
sented in Table (8.2). In this example, the nonlinear NNLS-VCE slightly underesti-
mates process amplitudes and overestimates the spectral index. This illustrates that
the non-negativity introduces a bias. This bias is also visible in the distributions
presented in Figure (8.2).

Our simulations show that both the unconstrained and the non-negative nonlin-
ear LS-VCE method can provide reliable estimates of the variance components. To
consider their use in other studies, it is also useful to investigate the speed of the
method for time series with different time spans.

Therefore, we tested the runtime of the unconstrained nonlinear LS-VCE algo-
rithm for time series with daily observations and a time span ranging between 4
and 20 years. The simulated noise properties and initial variance components are
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the same as in Table (8.1). The algorithm was implemented in the Python 3 pro-
gramming language. Algebraic operations were processed using the Numpy library
(Harris et al., 2020) and parallelized on 4 CPUs Intel R© CoreTM i7-6500U (2.50 GHz).

The evolution of the algorithm runtime as a function of the span of the daily
time series is presented in Figure (8.3). The nonlinear LS-VCE method provides
variance components estimates in about 8 seconds for 4 years long time series, and
in about 10 minutes for 20 years long time series, which is reasonably fast. As a
result, the speed nonlinear LS-VCE method does not seem prohibitive for practical
applications. More investigations are required to define whether the nonlinear LS-
VCE method provides a significant increase in speed compared to other software.
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Runtime of the nonlinear LS-VCE with the span of the time series.

FIGURE 8.3: Runtime of the unconstrained nonlinear LS-VCE method
with the time span of the time series.

8.5.2 WN+GGM model

The differences between a WN+GGM and a WN+PL model are expected to be no-
ticeable when analyzing long time series (He et al., 2019). Therefore, to investigate
whether the nonlinear LS-VCE method can retrieve reliable process amplitude, spec-
tral index, and Gauss-Markov parameter estimates for WN+GGM models, in this
section, we test the method on 200 synthetic time series with a span of 20 years. For
each synthetic time series, we apply both the unconstrained and the non-negative
nonlinear LS-VCE method. The true values, as well as the chosen approximate vari-
ance components used for the simulations, are presented in Table (8.3).

The distributions of the variance component estimates obtained using the uncon-
strained nonlinear LS-VCE method are presented in Figure (8.4). The unconstrained
LS-VCE algorithm converged toward a solution for only 96 time series out of 200,
which corresponds to a success rate of only 48%. Hence, although it provides es-
timates within the expected uncertainty in case of convergence, the unconstrained
nonlinear LS-VCE method cannot offer stable results with the chosen initial values.



100
Chapter 8. Investigating the potential of the nonlinear LS-VCE method for the

stochastic modelling of GNSS position time series

TABLE 8.3: True and approximate (initial) variance components used
for the simulation

Parameters True Initial

σ2
w (mm2) 25 100

σ2
ggm (mm2 yrκ/2) 400 225

κ -1.50 -1.20

τ 0.09 0.15

(φ) (0.970) (0.981)
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FIGURE 8.4: Distribution of the WN+GGM model variance compo-
nent estimates obtained using the unconstrained nonlinear LS-VCE.

The distribution of the variance component estimates obtained with the nonlin-
ear LS-VCE method with non-negativity constraints are presented in Figure (8.5).
Here again, the algorithm only converged toward a solution for 90 time series out of
200, which correspond to as success rate of 45%. Hence, the non-negative nonlinear
LS-VCE method is not more stable than the unconstrained one.
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FIGURE 8.5: Distribution of the WN+GGM model variance com-
ponent estimates obtained using the nonlinear LS-VCE with non-

negativity constraints.

Given its poor rate of convergence, more studies are needed to try adapting
the nonlinear LS-VCE method to the variance component estimation of WN+GGM
models. Indeed, the inability of the method to converge under synthetic cases tends
to indicate that this optimization problem is numerically challenging. In particular,
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it is possible that the simultaneous estimation of σ2
w ≈ 25, σ2

pl ≈ 225, κ ≈ −1.5, and
τ ≈ 0.1 is an ill-posed problem with the considered functional model, time span,
and initial values. Considering a new formulation of the estimation problem, for
instance by estimating ln(τ) instead of τ, or optimizing the choice of initial values,
could improve the success rate.

8.6 Contributions and perspectives

In this chapter, we investigated the potential of the nonlinear LS-VCE method for
time-correlated stochastic process parameter estimation. Stochastic models combin-
ing white noise processes with either generalized Gauss-Markov processes (WN+GGM)
or power-law processes (WN+PL) have been considered. To apply the nonlinear
LS-VCE method, we first presented how to derive the partial derivatives of the
WN+GGM model with respect to the spectral index κ and the parameter φ. We
then tested the accuracy, but also the speed of the method on synthetic time series.

Our results show that the nonlinear LS-VCE method provides accurate estimates
of all variance components in the case of the WN+PL model, both for the uncon-
strained and the non-negative cases. However, in the non-negative case, variance
component estimates tend to be slightly biased due to the use of constraints. To
consider possible further applications of the method, we also assessed its speed.
Our runtime analyses show that, with a 10 minutes runtime for 20 years long daily
time series, the nonlinear LS-VCE method provides reasonably fast estimates, and
is therefore not prohibitive for future applications. Further comparative studies are
considered to investigate whether the method provides a real gain in speed and pre-
cision over other existing software.

Unfortunately, for the WN+GGM model, the nonlinear LS-VCE method fails to
converge more than half of the time for both the unconstrained and the non-negative
cases, which makes it completely unsuited for practical applications. This result
suggests that the estimation of all variance components for the WN+GGM process
considered in this study is a challenging or ill-posed estimation problem. Further
studies are needed to investigate whether a re-parametrization of the problem, or
better initial values, could lead to a better success rate in the estimation of WN+GGM
parameters.

In addition to estimating variance components, the nonlinear LS-VCE method
also computes the standard deviations of the spectral index and the parameter φ.
This by-product of the nonlinear LS-VCE method is exploited in the next chapter, to
evaluate the influence of offsets on low-frequency stochastic parameters such as the
parameter φ.
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Chapter 9

Impact of offsets on the stochastic
modelling of GNSS position time
series.

In addition to the presence of time-correlated processes in GNSS time series, another
frequent issue is the presence of position offsets. Even when detected, offsets remain
a nuisance as they increase the uncertainty of all functional model parameters, and
especially that of trend estimates. Although their influence on functional parameters
has already been investigated, their impact on the estimation of stochastic parame-
ters remains poorly understood.

In this study, we examine how offsets influence the stochastic modelling of GNSS
position time series. In particular, we study their impact on various parts of the
stochastic modelling, including the spectral analysis, the variance component esti-
mation – both when using the Maximum Likelihood Estimation (MLE) or Restricted
Maximum Likelihood Estimation (RMLE) methods –, and the uncertainty of vari-
ance components. For the latter part, we use the partial derivatives presented in the
previous chapter.

9.1 Introduction

Investigating the time correlation of the stochastic variability observed in GNSS po-
sition time series is now a standard practice in many geodetic studies (Bos et al.,
2020). In particular, a realistic stochastic model, that is a model realistic of the
stochastic variability, is crucial to derive reliable parameter uncertainties, especially
for trend estimation (Williams, 2003a; Santamaría-Gómez et al., 2011). Besides, as we
shall see in sections 10 and 11, assessing the stochastic variability also helps identify
possible non-modelled processes in position time series. This could eventually lead
to methodological improvements in the modelling of GNSS observations and there-
fore to enhance the precision of GNSS products.

Over almost three decades, numerous studies demonstrated the presence of power-
law processes in stochastic variability of various geophysical time series (Agnew,
1992; Langbein and Johnson, 1997; Langbein, 2004; Van Camp, Williams, and Fran-
cis, 2005), and in GNSS position time series in particular (Zhang et al., 1997; Mao,
Harrison, and Dixon, 1999; Calais, 1999; Williams et al., 2004). Power-law processes
are stochastic processes characterized by their power-spectrum P( f ), which follows
a power-law function of the time-frequency f , that is P( f ) ∝ f κ, the parameter κ
being referred to as the spectral index (Agnew, 1992). When κ = 0.0, the power-law
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process is a simple uncorrelated white noise. When κ < 0.0, the power-law pro-
cess is time-correlated. In GNSS position time series analysis, most studies reported
that the position residuals tend to follow power-law processes with κ ≈ −1.0, corre-
sponding to the so-called flicker noise (FL) (Williams et al., 2004; Santamaría-Gómez
et al., 2011; Rebischung et al., 2016).

The most commonly selected stochastic model for global GNSS solutions is a lin-
ear combination of a white noise (WN) and a power-law power process (PL), noted
(WN+PL), with possibly unknown amplitudes and spectral index (Williams et al.,
2004; Santamaría-Gómez et al., 2011). In the future, with the increasing span of
position time series, this stochastic model could evolve. In particular, long time se-
ries could allow assessing low-frequency properties of the stochastic variability (He
et al., 2019). Two main alternatives to the usual (WN+PL) model are considered.
The first one is the detection of random walk (RW) processes, and the second one
is the detection of Generalized Gauss Markov (GGM) processes. RW processes are
power-law processes with κ = −2.0, which appear as an increase in the power spec-
trum of the noise at low frequencies. RW processes can result from ground instabil-
ities around the station (Langbein, 2012). GGM processes, introduced by (Langbein,
2004), are not power-law processes and should appear as a flattening spectrum at
low frequencies. Identifying either RW or GGM would improve the understanding
of the stochastic variability in GNSS time series and affect parameter uncertainties.

In this chapter, we study the biases and uncertainties that can affect the esti-
mation of low-frequency properties of GNSS position time series. To do so, we in-
vestigate the properties of the main statistical tools used for such investigations,
namely the spectral estimation methods and the Variance Component Estimation
(VCE) methods.

In stochastic modelling, spectral estimation methods aim at identifying the na-
ture of the noise from the shape of the power spectrum of position residuals. Since
position time series have unevenly spaced observations, one usually relies on a
Least-Squares Spectrum Analysis (LSSA) method, in particular, the Lomb-Scargle
periodogram (Lomb, 1976; Scargle, 1982). This periodogram is not the only example
of LSSA method: Amiri-Simkooei and Tiberius (2007) showed that it could be gener-
alized by the Least-Squares Harmonic Estimation (LS-HE), a method derived from
hypothesis testing in linear models (Teunissen, 2000b). The main difference between
the Lomb-Scargle and LS-HE periodograms is that the LS-HE takes into account the
functional and stochastic models used to obtain position residuals.

Complementary, VCE methods aim at estimating unknown stochastic param-
eters, named variance components, for a predefined stochastic model. The most
widely used VCE method in geodetic time series analysis is the Maximum Likeli-
hood Estimation method (MLE), which is implemented in several statistical mod-
elling software (Williams, 2008; Bos et al., 2013). This VCE method is conceptu-
ally simple and provides asymptotically unbiased variance component estimates. In
other words, the estimation bias gets smaller when increasing the redundancy of
observations. Since one usually model thousands of observations with a few tens
parameters only, this bias is assumed to be negligible. Nonetheless, there are un-
biased alternatives to the MLE method. We can mention the Restricted Maximum
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Likelihood (REML) (Koch, 1986), the Minimum Norm Quadratic Unbiased Estima-
tion (MINQUE) (Rao, 1971), and the Least-Squares Variance Component Estima-
tion (LS-VCE) (Teunissen and Amiri-Simkooei, 2008). Under the normal distribu-
tion assumption, these VCE methods yield identical results (Teunissen and Amiri-
Simkooei, 2008).

In previous studies, using the MLE and the Lomb-Scargle periodogram method,
Dmitrieva, Segall, and Bradley (2017) and Santamaría-Gómez and Ray (2020) showed
that the investigation of low-frequency properties of GNSS position times could be
biased by the estimation of a linear trend and offsets. Offsets are abrupt disconti-
nuities in time series, usually caused by instrumental changes or large earthquakes
(Gazeaux et al., 2013). Undetected, offset induce a bias on functional parameters,
and especially station velocities, to an extent related to their magnitude and the span
of the time series (Williams, 2003b). Moreover, undetected offsets correlate with ran-
dom walk processes, such that it also biases variance component estimates. For these
reasons, not accounting for offsets is a modelling error that should be avoided at all
cost.

In this work, we only consider the case in which offsets are detected and mod-
elled. In particular, even when detected, the presence of offsets is not harmless be-
cause they systematically weaken the functional model and increases parameter un-
certainties (Williams, 2003b; Griffiths and Ray, 2016; Wang and Herring, 2019).

In this chapter, we assess the influence of trend and offsets estimation on the
estimation of low-frequency stochastic properties of geodetic time series. To this
end, we investigate 3 complementary aspects of the stochastic modelling: the peri-
odogram computation, variance component estimation biases and, finally, variance
component estimation uncertainties. Unlike Dmitrieva, Segall, and Bradley (2017)
and Santamaría-Gómez and Ray (2020), we also assess the influence of the chosen
LSSA method, Lomb-Scargle and LS-HE, and VCE methods, MLE and RMLE, on the
result, which leads to recommendations for future studies.

9.2 Functional and stochastic model of GNSS time series

9.2.1 Functional model

The functional model describes the expectation E{.} of the m× 1 observation vector
y. For linear(-ized) models of observation equations, the functional model can be
written as

E{y} = Ax, (9.1)

in which A is the known m× n design matrix, and x is the n× 1 functional parameter
vector.

The design matrix A models the identified deterministic effects in the time series.
For GNSS time series analysis, the functional model usually accounts for a linear
trend, periodic oscillations, offsets, and eventual transients. Hereafter, for compar-
ison purpose, two types of functional models are considered: a simple linear trend
model (trend) and models accounting for additional offsets (trend+offsets).
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9.2.2 Stochastic model

The stochastic model describes the variance var{.} of the observation vector y. Power-
law processes being a particular case of generalized Gauss-Markov processes, the
preferred (WN+PL) stochastic model follows:

Qy = σ2
wI + σ2

plQκφ, (9.2)

in which σ2
w is the white noise amplitude, I is the m × m identity matrix, σ2

pl is the
power-law process amplitude, and Qκφ is the m×m covariance matrix associated to
a GGM process of spectral index κ and parameter φ.

The covariance matrix Qκφ can be obtained as

Qκφ = ∆−κ/2
t LκφLT

κφ (9.3)

in which ∆t is the sampling period in years and Lκφ is a m×m transformation matrix
defined as

Lκφ =


h0 0 · · · 0

h1 h0
. . .

...
...

. . . . . . 0
hm−1 · · · h1 h0

 , (9.4)

where the entries hi are defined by the following recurrence expression (Langbein,
2004; Bos et al., 2020):

h0 = 1,

hi = φ(1− κ

2i
− 1

i
)hi−1.

(9.5)

Note that, for φ = 1, the covariance matrix Qκφ is that of a power-law process
(Williams, 2003a). When 0 < φ < 1, the covariance matrix corresponds to that of a
Generalized Gauss-Markov process. The parameter φ in Equation (9.5) is a unit-less
parameter. For interpretation purpose, φ can be translated into the time-constant τ
of the GGM process, expressed in years, and defined as (Langbein, 2004)

τ = − ∆t

ln(φ)
. (9.6)

9.2.3 Properties of position residuals

The primary observational evidence for the presence of time-correlated stochastic
processes in GNSS position time series comes from the properties of position resid-
uals (Zhang et al., 1997; Mao, Harrison, and Dixon, 1999). Hence, to understand
how offsets may influence the stochastic modelling, we explain in some details how
residuals are computed.

From Equation (9.1), the m× 1 residual vector e is defined from the observation
vector y, as

e = y−Ax. (9.7)
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Assuming no under-parametrization of the functional model, the expectation
and the variance of the residual vector e read

E{e} = 0, (9.8)

and

var{e} = var{y} = Qy = Qe. (9.9)

which shows that, when the functional parameter vector x is known, the covariance
matrices of the observations and the residuals are identical.

However, in most geodetic applications, the functional parameter vector x is un-
known and must be estimated from the observations. To do so, one usually uses
the weighted least-squares estimator (Teunissen, 2000a) to obtain an estimator of x,
noted x̂, such that

x̂ = (ATWA)−1ATWy, (9.10)

where W can be virtually any m × m symmetric and positive-definite weight ma-
trix. When the weight matrix is chosen to be inverse of the covariance matrix of the
observation W = Q−1

y , one obtains the Best Linear Unbiased Estimator (BLUE) of x.

Using the estimator of the functional parameters x̂, one can define the estimator
of the residuals, noted ê, such that

ê = y−Ax̂, (9.11)

Using Equations (9.10) and (9.11), this estimator can be written as a linear func-
tion of y as

ê = P⊥Ay, (9.12)

in which the m × m matrix P⊥A is the weighted least-squares orthogonal projector
defined by

P⊥A = I−A(ATWA)−1ATW. (9.13)

As the estimated residuals vector ê is expressed as a linear function of the obser-
vation vector y, using the linear propagation law of means and variances, one can
show that

E{ê} = 0, (9.14)

and that

var{ê} = Qê = P⊥AQyP⊥T
A . (9.15)

The crucial difference between the residual vector e and its estimator ê follows
from Equation (9.15), which shows that Qê 6= Qy. Moreover, Qê depends on both
the chosen design matrix A and the chosen weight matrix W through the definition
of P⊥A in Equation (9.13). In other words, adding offsets to the functional model,
whether necessary or not, will systematically affect the covariance of the estimated
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residuals. In the sequel, we more specifically assess the influence of offsets on spec-
tral properties of the residuals and on variance component estimation.

9.3 Influence of offsets on spectral analyses

In this section, we study the influence of trend and offsets estimation on the compu-
tation of both the LS-HE and Lomb-Scargle periodograms.

9.3.1 Least-Squares Harmonic Estimation

Definition

The first step to LS-HE is to define a null hypothesis, noted H0, in which the stochas-
tic model is known, and the functional model already describes all the deterministic
effects in the observations, that is

H0 : E{y} = Ax ; var{y} = Qy (9.16)

The following step is to consider an alternative hypothesis Ha, in which an addi-
tional periodic signal with a frequency fk should be added to the functional model,
keeping the stochastic model unchanged, that is

Ha : E{y} = Ax + Cy∇ ; var{y} = Qy (9.17)

with

Cy =


cos(2π fkt1) sin(2π fkt1)
cos(2π fkt2) sin(2π fkt2)

...
...

cos(2π fktm) sin(2π fktm)

 ;∇ =

[
ak
bk

]
(9.18)

where ak and bk are two additional parameters corresponding to the Fourier coeffi-
cients associated to the time frequency fk.

Following (Teunissen, 2000b), the decision to either accept or reject H0 depends
on the value of a T-statistic, noted Tq, with q the number of additional parameters.
In the context of periodic signal detection, Tq=2 can also be viewed as the power
P( fk) of the frequency fk (Amiri-Simkooei, 2020). This T-statistic T2 reads

T2 = P( fk) = êTQ−1
y Cy[CT

y Q−1
y P⊥ACy]

−1CT
y Q−1

y ê (9.19)

in which the projector P⊥A is assumed to be defined by taking W = Q−1
y .

When designing a stochastic model, the covariance matrix Qy is never known.
Hence, in practice, instead of using Q−1

y in Equation (9.19), one has to satisfy with a
weight matrix W representing the prior assumptions about the stochastic property
of the time series. In result, the LS-HE power spectrum is computed as

P( fk) = êTWCy[CT
y WP⊥ACy]

−1CT
y Wê. (9.20)
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Expectation

The LS-HE periodogram in Equation (9.20) is expressed as a quadratic form of the
stochastic vector ê. Hence, the periodogram is itself a random variable. To under-
stand their impact on the shape of periodograms, it is necessary to study how offsets
affect the expectation of P( fk).

Assuming the functional model is not under-parametrized, then E{ê} = 0, and
one can show that the expectation of P( fk) reads

E{P( fk)} = tr{QêWCy[CT
y WP⊥ACy]

−1CT
y W}

= tr{P⊥AQyP⊥T
A WCy[CT

y WP⊥ACy]
−1CT

y W}.
(9.21)

Hence, for given design and weight matrices A and W, one can compute the
expected LS-HE periodogram for any stochastic model Qy using Equation (9.21).

In the special case in which W = Q−1
y , Teunissen (2000b) shows that P( fk) fol-

lows a chi-squared distribution, noted χ2(2, 0), with expectation E{P( fk)} = 2. This
implies that P( fk) should appear to be constant (flat) at all frequencies fk, even in
the presence of time-correlated processes.

9.3.2 Lomb Scargle periodogram

Computation

The expression of Lomb-Scargle periodogram can be derived from that of the LS-HE
periodogram. In particular, assuming that, in Equation (9.19), W = I and that e is
not estimated, but directly observed, so that P⊥A = I, one obtains the Lomb-Scargle
periodogram defined as (Vaníček, 1969; Lomb, 1976; Scargle, 1982)

P′( fk) = êTCy[CT
y Cy]

−1CT
y ê (9.22)

In practice, the Lomb-Scargle periodogram P′( fk) of the residuals is more fre-
quently used than the LS-HE periodogram P( fk). However, P′( fk) ignores the fact
the residual vector e is computed using the functional model.

Expectation

As the Lomb-Scargle periodogram is also defined as a quadratic form of the residual
vector ê, one can show that

E{P′( fk)} = tr{QêCy[CT
y Cy]

−1CT
y}

= tr{P⊥AQyP⊥T
A Cy[CT

y Cy]
−1CT

y}
(9.23)

Hence, for a given design matrix A and weight matrix W, one can compute the
expected Lomb-Scargle periodogram for any stochastic model Qy using Equation
(9.23).

Lomb-Scargle periodogram bias resulting from residual estimation

In geodetic time series analysis, it is frequent to choose a stochastic model from the
shape of the power spectrum of the estimated residuals P′( fk). It is also common
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Parameter Value

σ2
w (mm2) 25

σ2
pl (mm2 yr−0.4) 225

κ -0.8

TABLE 9.1: Considered variance components for the WN+PL model.

to demonstrate the relevance of a given stochastic model by showing how its theo-
retical power-spectrum, noted P′true( fk), fits the estimated one P′( fk). When doing
so, one assumes the Lomb-Scargle periodogram of the estimated residuals should be
similar to that of the true residuals P′true( fk).

This assumption can be tested by analysing the expected difference between
P′( fk) and P′true( fk)

E{P′( fk)− P′true( fk)} = E{P′( fk)} − E{P′true( fk)}
= tr{QêCy[CT

y Cy]
−1CT

y} − tr{QyCy[CT
y Cy]

−1CT
y}

= tr{(Qê −Qy)Cy[CT
y Cy]

−1CT
y}

= tr{(P⊥AQyP⊥T
A −Qy)Cy[CT

y Cy]
−1CT

y}

. (9.24)

From Equation (9.24), it follows that, as long as P⊥A 6= I, the Lomb-Scargle peri-
odogram P′( fk) is systematically biased from P′true( fk). Because the bias depends
on P⊥A and fk (through Cy), both the design matrix A and the weight matrix W
introduce a frequency dependent bias and, therefore, engender a distortion of the
spectrum. Note that, using Equation (9.24), one can actually study the bias for any
design matrix A or weight matrix W. However, in the following numerical simu-
lations, we more specifically study the distortion introduced by a linear trend and
offsets, assuming different types of time-correlated processes.

9.3.3 Influence of offsets on periodogram interpretation

So far, we only derived expressions allowing to assess the expectations of both the
LS-HE P( fk) and Lomb-Scargle P′( fk) periodograms, for a given stochastic model
Qy and based on residuals ê estimated using a design matrix A and a weight matrix
W. To evaluate to which extent the choice for A and W may influence the shape of
periodograms, we now compute E{P( fk)} and E{P′( fk)} under different synthetic
cases.

For the sake of simulation, we consider a fully continuous vertical land motion
time series with daily observations over a time span of 20 years. The true stochastic
model of this time series is assumed to be a combination of a white noise process of
amplitude σ2

w and a power-law process with a spectral index κ and an amplitude σ2
pl .

The numerical values of the considered variance components are presented in Table
(9.1).

Using Equations (9.21) and (9.23), we computed E{P( fk)} and E{P′( fk)} under
the following cases:
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Functional model influence on the LS-HE periodogram

(a) : P(fk) - WN+PL (pure) - W = Q 1
y

(b) : P(fk) - WN+PL (trend) - W = Q 1
y

(c) : P(fk) - WN+PL (trend + 20 offsets) - W = Q 1
y

(d) : P(fk) - WN+PL (trend + 20 offsets) - W = I

FIGURE 9.1: Influence of the functional model on the expected LS-HE
periodogram P( fk). The expected LS-HE periodograms in the cases

(a), (b), and (c) overlap.

• (a) in the case of a direct observation of the noise content (pure),

• (b) in the case of residuals obtained by removing a trend (trend) using the
BLUE least-squares projector (that is, using W = Q−1

y in Equation (9.13)),

• (c) in the case of residuals obtained by removing a trend and 20 evenly spaced
offsets (trend+20 offsets) using the BLUE least-squares projector,

• (d) in the case of residuals obtained by removing a trend and 20 evenly spaced
offsets (trend+20 offsets) using the unweighted least-squares projector (that is,
using W = I in Equation (9.13)).

For E{P( fk)}, we assume that W = Q−1
y in Equation (9.21), except for the case

(d). For both periodograms, the ideal power-spectrum is that of the (pure) stochastic
model, which does not involve any functional model.

Figure (9.1) presents the expected LS-HE periodograms E{P( fk)} for each config-
uration. In the cases (a), (b) and (c), we can see that E{P( fk)} = 2 because W = Q−1

y .
This illustrates that the LS-HE periodogram is unaffected by offsets as long as there
is no under-parametrization of the functional model and that the correct weight ma-
trix W = Q−1

y is used. However, in the case (d), the estimated power spectrum is
biased from the true spectrum (a). In this case, E{P( fk)} indicates that there is an
anomalous power at low frequency that is not consistent with the chosen weight
matrix W = I. Since W should ideally be taken as W = Q−1

y , in a real analysis, this
would typically suggest considering time-correlation in the stochastic model.

Figure (9.2) presents the expected Lomb-Scargle periodograms E{P′( fk)} for each
configuration. In the case (a), E{P′( fk)} follows the periodogram expected from a
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Functional model influence on the Lomb-Scarle periodogram
(a) : P ′(fk) - WN+PL (pure)
(b) : P ′(fk) - WN+PL (trend) - W = Q 1

y

(c) : P ′(fk) - WN+PL (trend + 20 offsets) - W = Q 1
y

(d) : P ′(fk) - WN+PL (trend + 20 offsets) - W = I

FIGURE 9.2: Influence of the functional model on the expected Lomb-
Scargle periodogram P′( fk).

WN+PL process, that is, a slope at low frequencies and a flattening at high frequen-
cies. But, when a functional model is used, E{P′( fk)} shows distortions from the
true spectrum (a). These departures are mostly visible at low frequencies, in particu-
lar below the considered offset occurrence frequency of 1 cpy, in agreement with the
observations of Santamaría-Gómez and Ray (2020). In the case (b), the effect of the
trend estimation is relatively small. However, in the cases (c) and (d), the distortion
caused by offsets is dramatic, especially for (d), which uses an unweighted least-
square projector. As a result, the Lomb-Scargle periodogram is strongly influenced
by offsets, but also by the chosen weight matrix W.

Although we consider a WN+PL process, in cases (c) and (d) the expected Lomb-
Scargle periodograms show either flattening or a collapse of the power spectrum
at low-frequency. In particular, from the shape of the Lomb-Scargle periodogram,
in the case (c) a WN+GGM model may erroneously appear as more appropriate.
Hence, if the stochastic characterization of a time series is exclusively based on the
shape of the Lomb-Scargle periodogram, in the presence of several offsets, there is a
risk of incorrect stochastic model identification.

Note that, in the case (c), the LS-HE periodogram is flat, which would indicate a
good agreement between the stochastic model and the observations, and would not
promote a WN+GGM model. Hence, in the presence of offsets, one may prefer the
use of the LS-HE periodogram for the stochastic model investigations. However, as
the LS-HE periodogram only indicates a disagreement with a noise model and ob-
servations, one can start with a first guess about the stochastic model, and then adapt
this model to account for possible deviations observed in the LS-HE periodogram.
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9.4 Influence of offsets on stochastic model selection

The use of periodograms for the identification of the stochastic model is frequent
but not systematic. Some studies directly tries different known stochastic mod-
els and select the best one using a likelihood-based criterion (Williams et al., 2004;
Santamaría-Gómez et al., 2011; He et al., 2019). In such cases, it is necessary to in-
vestigate whether offsets can impact the selection criterion used.

The most frequently used method for stochastic model selection in geodetic time
series analysis is the Maximum Likelihood Estimation (MLE) (Bos et al., 2020). This
method proposes to chose among possible stochastic models, noted Q̄y, by selecting
the one maximizing the log-likelihood ln(py(y|Q̄y)) of the observations y. When the
observations y depend on functional parameters x, the MLE is biased. However, this
bias reduces for when increasing the redundancy m− n, hence, the MLE method is
asymptotically unbiased. Since in geodetic time series analysis, the m− n >> 0, the
bias of the MLE method is assumed negligible.

Nonetheless, there exists an unbiased alternative to the MLE method, namely the
restricted maximum likelihood estimation method (RMLE). This method proposes
to choose among possible stochastic models Q̄y by selecting the one maximizing the
log-likelihood ln(pt(t|Q̄y)) of a misclosure vector t constructed from the observa-
tions (Koch, 1986).

To understand the influence of offsets on the selection of a stochastic model, we
study how offsets affect both the log-likelihood ln(py(y|Q̄y)) and the restricted log-
likelihood ln(pt(t|Q̄y)).

9.4.1 Log-likelihood

Computation

For an observation vector y following a multivariate normal distribution, the log-
likelihood ln(py(y|Q̄y)) of y given a stochastic model Q̄y follows

ln(py(y|Q̄y)) = −
1
2
[m ln(2π) + ln(det(Q̄y)) + êTQ̄−1

y ê]. (9.25)

in which, ê is obtained by taking W = Q̄−1
y in Equation (9.13).

Note that, in Equation (9.25), the vector ê is used regardless of the number pa-
rameters or the type of functional model used to compute it. In other words, the
log-likelihood does not account for the variance absorbed by the estimator of the
functional parameter vector x̂, which systematically biases variance component es-
timation.

Expectation

As the log-likelihood in Equation (9.25) depends on a quadratic form of the stochas-
tic vector ê, the log-likelihood ln(py(y|Q̄y)) is itself a stochastic variable. Hence,
to assess the systematic influence of offsets on stochastic model selection using the
MLE method, we propose to study the expectation of the log-likelihood and not
directly the log-likelihood.
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One can show that the expected log-likelihood of the vector y for given stochastic
model Q̄y and true stochastic model Qy reads

E{ln(py(y|Q̄y))} = −
1
2
[m ln(2π) + ln(det(Q̄y)) + tr{QêQ̄−1

y }].

= −1
2
[m ln(2π) + ln(det(Q̄y)) + tr{P⊥AQyP⊥T

A Q̄−1
y }]

(9.26)

Using Equation (9.26), one can evaluate the expected log-likelihood of y for a
given stochastic model Q̄y and compare it to that of the true stochastic model Qy.
In particular, when Q̄y depends on one or more variance components, one can test
whether the argument of the maximum of E{ln(py(y|Q̄y))} is close to the true vari-
ance components. This allows exploring how the MLE method is biased by offsets
when estimating variance components.

9.4.2 Restricted log-likelihood

Computation

Unlike the log-likelihood, the restricted log-likelihood is not based on the m × 1
observation vector y, but on the (m − n) × 1 misclosure vector t. This misclosure
vector t is derived from the following transformation (Koch, 1986)[

x̂
t

]
=

[
(ATQ−1

y A)−1ATQ−1
y

BT

]
y (9.27)

in which B is a m× (m− n) matrix that spans the null space of AT, such that BTA =
0.

The linear application in Equation (9.27) is invertible (Teunissen, 2000a). This im-
plies that all the variance that is not absorbed by the functional parameter estimator
x̂ is fully absorbed by the misclosure vector t. Besides, by studying the expectation
and the variance of Equation (9.27), one can show that

E
{[

x̂
t

]}
=

[
x
0

]
; var

{[
x̂
t

]}
=

[
(ATQ−1

y A)−1 0
0 BTQyB

]
, (9.28)

which indicates that t and x̂ are independent.

The fact the misclosure vector t contains all the redundancy of the system while
being independent of x̂ makes it better suited for variance component estimation
than the estimator of the residuals ê. For these reasons, the restricted log-likelihood
ln(pt(t|Q̄y)) is defined as a function of t as (Koch, 1986)

ln(pt(t|Q̄y)) = −
1
2
[(m− n) ln(2π) + ln(det(BTQ̄yB)) + tT(BTQ̄yB)

−1
t], (9.29)

with

t = BTy. (9.30)
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Expectation

As Equation (9.29) depends on a quadratic form of the stochastic vector t, the re-
stricted log-likelihood ln(pt(t|Q̄y)) is itself a stochastic variable. As for the log-
likelihood, we propose to study the influence of offsets on the RMLE estimation
by analysing its expectation

E{ln(pt(t|Q̄y))} = −
1
2
[(m−n) ln(2π)+ ln(det(BTQ̄yB))+ tr{BTQyB(BTQ̄yB)

−1}]
(9.31)

Using Equation (9.31), one can evaluate the expected restricted log-likelihood
of t for a given stochastic model Q̄y and compare it to that of the true stochastic
model Qy. By doing so, one can analyze the influence of offsets on the shape of
the restricted log-likelihood function and compare with that of the log-likelihood
function.

9.4.3 Influence on the noise model selection

As shown in section 9.3.3, under the influence of offsets, the Lomb-Scargle peri-
odogram can promote WN+GGM models with φ 6= 1, although the true stochastic
model is WN+PL model (that is, a WN+GGM model with φ = 1). In this section, we
investigate whether the same effect is possible for the selection of stochastic models
based on either the MLE or the RMLE method. To do so, we consider the observa-
tion of a WN+PL process and investigate the expected log-likelihood and restricted
log-likelihood of a WN+GGM model for different values of φ. The parameters of the
considered WN+PL process are given in Table (9.1). The expected log-likelihood and
restricted log-likelihood are computed for functional models with a varying number
of offsets. In the ideal case, the argument of the maximum of the expected log-
likelihood and the expected restricted log-likelihood should be φ ≈ 1 whatever the
number of offsets.

Using Equations (9.26) and (9.31), we computed E{ln(py(y|Q̄y))} and E{ln(pt(t|Q̄y))}
for Q̄y corresponding to WN+GGM models with φ ranging from 0.975 to 1. The
other variance components, namely σ2

w, σ2
pl , and κ, were kept fixed to their true val-

ues. We computed each expected log-likelihood function for 3 different functional
models, namely, a trend, a trend with 7 evenly spaced offsets, and a trend with
20 evenly spaced offsets. The graph of the expected log-likelihood functions are
presented in Figure (9.3). For a better legibility, we subtracted the expected log-
likelihood and the expected restricted log-likelihood of the true stochastic model,
that is E{ln(py(y|Qy))} and E{ln(pt(t|Qy))}.

In Figure (9.3), we can see that the log-likelihood is maximum for φ < 1 for all
functional models. In particular, the most likely φ value is 0.9980 when accounting
for a simple trend, 0.9935 in the case of 7 additional offsets, and 0.9805 in the case
of 20 additional offsets. The impact of these different values of φ in terms of power-
spectra are depicted in Figure (9.4). Hence, the log-likelihood estimate of φ is biased
for all functional models, but the bias gets larger in the presence of additional offsets.
This demonstrates that, just like the Lomb-Scargle periodogram, the MLE method
can erroneously promote WN+GGM models over the WN+PL model in the presence
of offsets. In Figure (9.3), the expected restricted log-likelihood is always maximum
for φ = 1. Hence, unlike the MLE method, the RMLE method does not promote
WN+GGM models over the WN+PL model, even in the presence of 20 offsets.
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FIGURE 9.3: Expected log-likelihood (top) and restricted log-
likelihood (bottom) for WN+GGM models with different values of
φ. For a better legibility, the (restricted) log-likelihood of the true

WN+PL model is systematically subtracted.
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FIGURE 9.4: Influence of the parameter φ on the power-spectrum.

Nonetheless, in Figure (9.3), the presence of offsets results in a flattening of both
the log-likelihood and the restricted log-likelihood functions. This flattening is even
more apparent in Figure (9.5) where the likelihood functions are presented as a func-
tion of the time-constant τ instead of the parameter φ. For large τ, that is τ > 1, the
expected restricted log-likelihood function in Figure (9.5) is almost constant. This
flattening has two main consequences. This first is that the number of offsets nec-
essarily reduces the precision of variance components because the likelihood func-
tion curvature is linked to the minimum uncertainty of the considered parameter
through the Cramér-Rao lower bound. Hence, when the curvature of the likelihood
function decreases, so is the precision of the variance components. In Figure (9.5),
the flattening of the expected restricted log-likelihood for large τ implies the RMLE
method is unable to distinguish between a WN+PL model and WN+GGM models
when φ ≈ 1. The second consequence is that the flattening may result in a reduction
of the rate of convergence of the nonlinear optimization algorithm used for variance
component estimation.

Given the impact of offsets on the assessment of φ, we also investigated whether
similar biases can occur when estimating the spectral index κ. Using Equations (9.26)
and (9.31), we computed both E{ln(py(y|Q̄y))} and E{ln(pt(t|Q̄y))} for Q̄y corre-
sponding to WN+PL models with a parameter κ ranging from −0.79 to −0.81. The
other variance components, namely σ2

w, σ2
pl and φ, were fixed to their true values.

The considered functional models are the same as for φ. The graph of both func-
tions are presented in Figure (9.6). Figure (9.6) shows that the log-likelihood tend to
promote biased spectral indices κ > −0.8, i.e. a whiter noise model. However, the
deviation for 20 offsets is only about 0.0025, which is negligible and suggests that
offsets mostly affect variance components related to the low-frequency properties of
the stochastic model.
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WN+PL model is systematically subtracted.
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9.5 Uncertainty of variance components

In the previous section, we suggested that the flattening of the likelihood function
could cause an increase in low-frequency parameter uncertainties, even when using
the RMLE method. In this section, we aim at quantifying this effect by using the
Least-Squares Variance Component Estimation (LS-VCE) method. Introduced by
(Teunissen, 1988) and further developed by (Teunissen and Amiri-Simkooei, 2008)
and (Amiri-Simkooei, 2007), the LS-VCE provides an unbiased and minimum vari-
ance estimator of the variance components under the normal distribution assump-
tion. Under the assumption of normally distributed observation, the LS-VCE is
equivalent to the RMLE method. However, the LS-VCE allows for a direct assess-
ment of the standard deviation of the variance components, which is ideal to inves-
tigate parameter uncertainties.

In its original form, the LS-VCE considers a linear functional model E{y} and a
linear stochastic model var{y} = Qy such that

E{y} = Ax, Qy = Q0 +
p

∑
i=1

σi ·Qi (9.32)

where Q0 and Qi are known m × m co-factor matrices, here corresponding to the
covariance matrix of each stochastic process, and the σi are the p unknown variance
components, corresponding to their amplitudes.

Noting the p× 1 variance component vector as σ̂ =
[
σ̂1 · · · σ̂p

]T, its p× p covari-
ance matrix Qσ̂ can be obtained as (Amiri-Simkooei, 2007)

Qσ̂ = N−1. (9.33)

in which N is a p× p normal matrix whose entries nij are defined by

nij =
1
2

tr(QiQ−1
y P⊥AQjQ−1

y P⊥A ). (9.34)

The diagonal elements of Qσ̂ correspond to the variance of the variance compo-
nents, noted σ2

σi
. Given the expression (9.34), the normal matrix N does not depend

on the observations y. Hence, it is possible to compute each σ2
σi

without simulating
surrogate time series. However, the normal matrix N depends on the covariance
matrix Qy, which itself depends on the variance components σi in Equation (9.32).
Therefore, deriving σ2

σi
requires an estimate of the variance component vector σ̂ so

that assumptions about the amplitude of each process must be made.

When the covariance matrix Qy is a nonlinear function Qy(σ̂) of the variance
components σi, the matrix Qi in Equation (9.34) is defined as (Amiri-Simkooei, 2007)

Qi =
∂Qy(σ̂)

∂σi

∣∣∣∣
σ̂

. (9.35)

Note that, in the nonlinear case, the variance component σi can be virtually any
variance component, such as the spectral index κ or the parameter φ, and not neces-
sarily the amplitude of a stochastic process.
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Parameter Value

σ2
w (mm2) 25

σ2
ggm (mm2 yr−0.5) 225

κ -1

φ 0.98

TABLE 9.2: Considered variance components for the WN+GGM
model.

9.5.1 Influence on the variance component uncertainties

To assess the influence of offsets on the variance component uncertainties, we con-
sider 2 stochastic models devised to the modelling of different low frequency prop-
erties, namely a combination of white noise and generalized Gauss-Markov process
model (WN+GGM), and a combination of white noise, flicker noise, and random
walk process (WN+FL+RW) model.

Influence on a WN+GGM model

To estimate how the presence of offsets affects the uncertainty of WN+GGM param-
eters, we consider the simultaneous estimation of σ2

w, σ2
pl , κ, and φ for the model de-

fined in Equation (9.2). The considered parameters for σ2
w, σ2

pl , κ, and φ are presented
in Table (9.2). Since the stochastic model depends non-linearly on the parameter κ
and φ, to obtain (9.34) and (9.33), it is necessary to compute the partial derivatives of
the stochastic model with respect to each variance component. The computation of
these partial derivatives is presented in chapter 8.

Using Equation (9.33) and (9.34), we simulated the evolution of the standard de-
viation of each variance component estimate, noted σσ̂2

w
, σσ̂2

pl
, σκ̂, and σφ̂ for offset

frequency of occurrence ranging from 0.0 (no offsets) to 1.0 offset per year (opy). As
in previous sections, we consider a continuous daily time series with a span of 20
years. The computed variations of σσ̂2

w
, σσ̂2

pl
, σκ̂, and σφ̂ as a function of the offset fre-

quency are presented in Figure (9.7). For each variance component, the uncertainty
variation increases almost linearly with the offset frequency. However, the relative
uncertainty change is not similar for all components. To illustrate this, the increase
in uncertainty at 1.0 opy, compared to the uncertainty with no offset, is presented,
for each component, in Table (9.3). In Table (9.3), the largest increase in uncertainty
is observed for the parameter φ, which increased by +31.2%. This is about 3 to 9
times larger than the other parameters, hence, the uncertainty on the low-frequency
parameter φ is sensitive to offset frequency.

Influence on a WN+FL+RW model

An alternative to the WN+GGM model is the WN+FL+RW model describing a pos-
sible increase of variance at low frequency, which could result from monument in-
stabilities. The WN+FL+RW model can be expressed as

Qy = σ2
wI + σ2

f lQ f l + σ2
rwQrw, (9.36)
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FIGURE 9.7: Evolution of the standard deviation of variance compo-
nents with offset frequency for the WN+GGM model.

Parameter Uncertainty change at 1.0 opy

σσ2
w

(mm2) +3.3%

σσ2
ggm

(mm2 yr−0.5) +9.9%

σκ +7.2%

σφ +31.2%

TABLE 9.3: Percentage of standard deviation increase for the
WN+GGM variance components when considering functional mod-

els with 1.0 opy compared to 0.0 opy (that is, no offsets).
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Parameter Value

σ2
w (mm2) 25

σ2
f l (mm2 yr−0.5) 225

σ2
rw (mm2 yr−1) 4

TABLE 9.4: Considered variance components for the WN+FL+RW
model.

Parameter Uncertainty change at 1.0 opy

σσ2
w

(mm2) +2.9%

σσ2
f l

(mm2 yr−0.5) +6.3%

σσ2
rw

(mm2 yr−1) +64.5%

TABLE 9.5: Percentage of standard deviation increase for the
WN+FL+RW variance components when considering functional

models with 1.0 opy compared to 0.0 opy (that is, no offsets).

in which I is the covariance matrix of the white noise process, σ2
w is its amplitude,

Q f l is the covariance matrix of the flicker noise process, σ2
f l is its amplitude, Qrw is

the covariance matrix of the random walk process, and σ2
rw is its amplitude. The

matrices Q f l and Qrw can be obtained by taking κ = −1.0 and κ = −2.0 respectively,
in Equation (9.4), with φ = 1.0 in both cases. The considered parameters for σ2

w, σ2
f l ,

and σ2
rw are presented in Table (9.4).

The WN+FL+RW model depending linearly on each process amplitude, using
only Equations (9.33) and (9.34), we computed the evolution of the standard devi-
ation of each amplitude, namely σσ̂2

w
, σσ̂2

f l
, and σσ̂2

rw
in the presence of offsets with a

frequency of occurrence ranging from 0.0 (no offset) to 1.0 opy. The computed vari-
ations of σσ̂2

w
, σσ̂2

f l
, and σσ̂2

rw
in functions of offset frequency are presented in Figure

(9.8). As for the WN+GGM model, the uncertainty variations observed in Figure
(9.8) are approximately linear for all components. As the relative variability also
differs between parameters, we present the increase in uncertainty at 1.0 opy with
respect to 0.0 opy, for each parameter, in Table (9.5). The largest increase in uncer-
tainty is observed for the random walk amplitude uncertainty, which increased by
+64.5%. This is about 10 times superior to that of white noise and flicker noise am-
plitudes. Hence, the uncertainty random walk amplitude is more sensitive to the
number of offsets in the time series than other process amplitudes.

Besides, in Figure (9.8), the minimum random walk uncertainty is 5.1 mm2 yr−1

whereas the random walk amplitude is 4.0 mm2 yr−1. This implies that, with the
considered level of white noise and flicker noise, it is impossible to detect a ran-
dom walk process with a 4.0 mm2 yr−1 amplitude, even with 20 year of continuous
observations.
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FIGURE 9.8: Evolution of the standard deviation of variance compo-
nents with offset frequency for the WN+FL+RW model.
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9.6 Discussion

In sections 9.3.2 and 9.4.3, we show that the systematic biases observed when us-
ing the Lomb-Scargle periodogram or the MLE method disappears when using the
LS-HE periodogram and the RMLE method. Therefore, part of the problem result-
ing from the presence of offsets can be solved by using different statistical tools. In
particular, the asymptotically unbiased property of the MLE method, which is suf-
ficient for WN+PL models (Figure 9.6), may meet its limits for low-frequency noise
investigations (Figure (9.3) and (9.5)). Hence, for such analyses, we recommend to
systematically use the RMLE method and the LS-HE periodogram, to avoid a biased
stochastic modelling.

The transition from the MLE method to the RMLE method is rather straightfor-
ward as it only requires the assessment of the matrix B, which can be computed from
the design matrix A using linear algebra subroutines. However, the transition from
the Lomb-Scargle periodogram to the LS-HE periodogram is a fundamental change
in methodology. Because the LS-HE periodogram can only indicate disagreements
between hypotheses on the functional and stochastic models and the observations,
one cannot simply identify the stochastic process from the power-spectrum of the
residuals. Instead, with the LS-HE periodogram, one must start with initial hypothe-
ses about the functional and stochastic model, and adapt either the functional or the
stochastic model based on the shape of the periodogram. A flat LS-HE periodogram
at all frequencies indicates a good agreement between the model and the observa-
tions.

Although systematic biases can be avoided using the RMLE method, the pres-
ence of offsets in GNSS position time series is not without consequences on variance
component estimation. In Figures (9.3) and (9.5) we observe a clear flattening of
the restricted log-likelihood for the parameter φ and τ. This flattening suggests that
the uncertainty of the parameter φ, but possibly other low-frequency parameters,
are influenced by the number of offsets. This hypothesis is confirmed in section
9.5.1, in which the uncertainty of the parameter φ increases by +31.2% and the un-
certainty of the random walk amplitude σ2

rw increases +64.5% when considering 1.0
opy compared to no offsets. Hence, an excessive number of offsets could prevent the
identification of the low-frequency properties of the stochastic variability in position
time series, and thereby limit our understanding of its origin.

In this study we only considered daily and continuous observations over 20 years
and specific noise levels for presentation purpose. However, the overall methodol-
ogy can be applied to virtually any functional and stochastic model, as well as more
realistic time series. In particular, a systematic estimation of variance component
uncertainties could limit the over-interpretation of RMLE estimates, especially for
the parameter φ and the random walk noise amplitudes.

9.7 Conclusion

With the increasing span of GNSS position time series, it is possible that the most
frequently used stochastic model, which consists in a combination of white noise
and a power-law process, could evolve to account for new low-frequency prop-
erties. Among the considered low-frequency properties are detection of random
walk processes, characterized by an increase of power spectrum of the variability
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at low frequency and detection of Generalized Gauss Markov processes, character-
ized by power-law properties at high frequencies and white noise properties at low
frequency.

In this chapter, we investigated the influence of offsets on the biases and un-
certainties of statistical tools used for the determination of the stochastic model of
geodetic time series. We demonstrated that adding several offsets to the trajectory
model of geodetic time series systematically biases the results obtained using the
Lomb-Scargle periodogram and the MLE method. In particular, we showed that
both the Lomb-Scargle periodogram and the MLE method erroneously promote de-
tection of Generalized Gauss Markov processes because of offsets. This bias is due
to the fact that neither the Lomb-Scargle periodogram nor the MLE method takes
into account the way residuals are estimated. We showed that these biases can
be avoided by using the LS-HE periodogram and the RMLE method for stochastic
model investigation, which should be considered for future studies.

Although estimation biases can be avoided, the presence of offsets is not without
consequence on variance components estimation. In particular, even when using the
RMLE method, offsets increase the uncertainty of low-frequency parameters more
than any other variance components. Hence, in addition to being a nuisance for
the precision of functional parameters, the presence of offsets also systematically
limits our ability to assess the low-frequency properties of the stochastic variability
in GNSS position time series.
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Chapter 10

Spatial and temporal properties of
the stochastic variability in the
position time series of over 10,000
stations.

So far, chapters 8 and 9 only addressed methodological aspects of the stochastic
modelling of GNSS time series. In this chapter, we now aim at actually imaging the
spatial and temporal properties of the stochastic variability in both the North, East,
Vertical displacement time series of over 10,000 globally distributed GNSS stations
and computed by the Nevada Geodetic Laboratory. Through the joint analysis of the
three coordinates of 10,000 stations, this chapter aims at providing new insights on
the possible origin of this stochastic variability in GNSS time series in general, and
in vertical land motion time series in particular.

10.1 Introduction

Thanks to the ever-increasing spatial density and longevity of Global Navigation
Satellite System (GNSS) stations, it is now possible to monitor earth deformations
with an unprecedented spatial resolution, which is useful to the understanding of
geophysical processes such as plate tectonics (Argus and Heflin, 1995; Kreemer, Ble-
witt, and Klein, 2014), glacial isostatic adjustment (Nocquet, Calais, and Parsons,
2005; Schumacher et al., 2018), surface mass redistribution (Van Dam, Blewitt, and
Heflin, 1994; Van Dam et al., 2001), or coastal vertical land motions (Wöppelmann
et al., 2007).

To model the motion of each GNSS station, it is customary to decompose GNSS
position time series as the sum of a deterministic signal and stochastic variability.
The deterministic signal is described by a functional model, whereas a stochastic
model describes the stochastic variability, which is often regarded as noise. The
functional model – sometimes called trajectory model (Bevis and Brown, 2014) –
typically consists in a set of known parametric functions – trends, step disconti-
nuities, periodic oscillations and occasional nonlinear motions – depending on un-
known functional parameters (Bos et al., 2020). The stochastic model consists of a
set of stochastic processes with known covariance functions depending on unknown
stochastic parameters.

Defining a realistic stochastic model is advisable for several reasons. (a) It allows
deriving realistic parameter uncertainties, which is essential to assess the predictive
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power of any statistical result. (b) It is required to define minimum-variance esti-
mators, which are desirable for any application. (c) It allows performing realistic
hypothesis testing, which reduces the risk of over-interpretation of the observations.
And (d) it can shed some light about the nature of non-modelled processes, which
could then lead to modelling improvements reducing the noise level of the observa-
tions.

In the late 90s, numerous studies showed that the stochastic variability in GNSS
position time series is time-correlated, and that its power spectrum P( fk) tends to
follow a power-law function of the time frequency fk, that is (Zhang et al., 1997;
Mao, Harrison, and Dixon, 1999; Calais, 1999; Williams et al., 2004)

P( fk) ≈ P0

(
fk

f0

)κ

, (10.1)

where both P0 and f0 are normalization constants, and κ is the spectral index (Ag-
new, 1992).

The spectral index κ is a scalar identifying the nature of the power-law corre-
lation. Its value usually lies within [−3, 1] in Earth sciences, and within [−2, 0]
in GNSS time series analysis. Some power-law processes with integer values of κ
are known as white – that is, uncorrelated – noise (κ = 0), flicker noise (κ = −1),
and random walk noise (κ = −2). Any power-law process with a κ < 0 is time-
correlated. When κ ≤ −1 the power-law process is also non-stationary, and its vari-
ance diverges over time. Accounting for the power-law behaviour of the noise in
the stochastic model of GNSS position time series has proved to be essential to de-
rive realistic uncertainties of time-dependent parameters, and especially for station
velocities (Williams, 2003a; Santamaría-Gómez et al., 2011).

In practice, the stochastic variability observed in GNSS position time series is of-
ten not modelled with only one stochastic process, but with a combination of several
stochastic processes. The most commonly used stochastic model for global solutions
is a linear combination of a white noise (κ = 0) and a power-law process (κ ≈ −1)
with different amplitudes (Williams et al., 2004; Santamaría-Gómez et al., 2011; He
et al., 2019). Note that this practice could evolve with the increasing span of GNSS
time series. For instance, Generalized Gauss Markov (GGM) processes (Langbein,
2004) are sometimes used for long time series when the power-spectrum P( fk) of the
stochastic variability show a flattening at low frequencies fk.

In addition to the time correlation, the stochastic variability observed in GNSS
position time series has shown to be spatially correlated (Wdowinski et al., 1997).
In particular, in global solutions, significant correlations between stations are de-
tected up to a few thousand kilometres of separation distances (Williams et al., 2004;
Amiri-Simkooei, 2009; Amiri-Simkooei, 2013; Amiri-Simkooei, Mohammadloo, and
Argus, 2017; Benoist et al., 2020). Just like temporal correlation affects the uncer-
tainty of time-dependent parameters, spatial correlation impacts the uncertainty of
space-dependent parameters (Razeghi, Amiri-Simkooei, and Sharifi, 2016).

Most studies acknowledge the spatial and temporal correlation of the stochas-
tic variability, but its origin remains to be identified. By analysing different solu-
tions, previous work showed that both the temporal and spatial correlation of the
stochastic variability is influenced by the processing strategy (Rebischung et al.,
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2016; Amiri-Simkooei, Mohammadloo, and Argus, 2017). This observation sug-
gests that GNSS positioning errors play a significant role in the properties of the
stochastic variability. On the other hand, other studies showed that geophysical
deformations also exhibit spatial dependencies and power-law behaviours (Agnew,
1992; Santamaría-Gómez and Mémin, 2015; Rebischung et al., 2017). Hence, it also
likely that a part of the stochastic variability may correspond to actual crustal de-
formations, and not artefacts. Besides, the large scale spatial correlations observed
in global solutions also suggest that local effects, such as multi-path or monument
instability, are not the primary contributor to this unidentified stochastic variability
(Williams et al., 2004).

Our understanding of the stochastic variability in globally distributed GNSS po-
sition time series is presently limited to analyses considering only a few hundred
stations (Amiri-Simkooei, Mohammadloo, and Argus, 2017; He et al., 2019). These
studies are intrinsically limited by the sparsity of the network of stations, and in-
vestigating denser networks could help better imaging the stochastic variability.
Moreover, geophysical studies now aim at combining the observations of several
thousands of stations (Schumacher et al., 2018; Kreemer, Blewitt, and Klein, 2014),
therefore, a realistic description of the stochastic variability in dense networks could
also improve uncertainty assessment in such studies.

To provide an insight about the stochastic properties of position time series, this
study investigates the temporal and spatial correlation in a network of over 10,000
globally distributed stations presenting at least 3 cumulative years of observations.
To this end, we used the North, East and Up position time series provided by the
Nevada Geodetic Laboratory (NGL) and processed at the University of Nevada,
Reno (Blewitt, Hammond, and Kreemer, 2018).

In November 2019, the NGL released a fully reprocessed solution based on up-
graded software, orbits, clocks, and models (Blewitt et al., 2019). Because such a re-
processing is a good opportunity to assess the influence of modelling improvements
on the stochastic variability (Amiri-Simkooei, Mohammadloo, and Argus, 2017), in
this chapter, we examine both the old and new NGL solutions to study the impact
of the reprocessing on both the observed temporal and spatial correlation patterns.

10.2 NGL Solutions

The final North, East and Up daily position time series products are available at
(http://geodesy.unr.edu). For both solutions, station positions are estimated us-
ing single-station precise point positioning with carrier phase ambiguity resolution
(Zumberge et al., 1997). The following pieces of information about each solution are
extracted from Blewitt et al. (2019).

The old solution (hereafter, NGL-IGS08) uses the Jet Propulsion Laboratory (JPL)
GIPSY OASIS II software with orbits and clocks based on IGS Repro 2 standards and
the IGS08 reference frame (Rebischung et al., 2012). For the tropospheric delay, the
generic Global Mapping Function (GMF) is used (Böhm et al., 2006). The first-order
ionospheric effects are removed using the ionospheric-free linear combination of the
carrier phase and pseudorange measurements. Second-order ionospheric effects are
not corrected in this solution. In 2018, the reference frame of the final products



130
Chapter 10. Spatial and temporal properties of the stochastic variability in the

position time series of over 10,000 stations.

switched from ISG08 to IGS14. Hence, for consistency, our noise estimations are
restricted to station positions estimated before January 2018.

The new solution (hereafter, NGL-IGS14) uses JPL’s new GipsyX 1.0 software
(Bertiger et al., 2020) with orbits and clocks based on IGS Repro 3 standards and
the IGS14 reference frame. For the tropospheric delay, the Vienna Mapping Func-
tion (VMF1) (Boehm, Werl, and Schuh, 2006) is used, with nominal dry and wet
tropospheric delays from the same VMF1 grids that are computed from the ECMWF
numerical weather model. An elevation-dependent data weighting is also used to
reduce the impact of signal degradation for satellites closer to the horizon. Second-
order ionospheric effects are now corrected using ionospheric TEC maps together
with a model of Earth’s magnetic field. For more details about the reprocessing we
refer to Kreemer, Blewitt, and Davis (2020) and (http://geodesy.unr.edu/gps/ngl.acn.txt)
To be consistent with the time-span of NGL-IGS08, only position estimates before
January 2018 are considered.

10.3 Variance Component Estimation

Estimating unknown parameters of the stochastic model can be done using Variance
Component Estimation (VCE) methods. In this study, we use the Least-Squares Vari-
ance Component Estimation (LS-VCE) method. Introduced by (Teunissen, 1988) and
further developed by (Teunissen and Amiri-Simkooei, 2008) and Amiri-Simkooei,
2007, the LS-VCE is an unbiased and minimum-variance alternative to the more
commonly used Maximum Likelihood Estimation (MLE) method (Zhang et al., 1997;
Williams, 2008; Bos et al., 2008). The LS-VCE has already been used in its univariate
and multivariate form for GNSS noise analyses (Amiri-Simkooei, Tiberius, and Te-
unissen, 2007; Amiri-Simkooei, 2009; Amiri-Simkooei, Mohammadloo, and Argus,
2017).

10.3.1 Least-Squares Variance Component Estimation

Noting E{.} and var{.} the expectation and variance operators, the LS-VCE consid-
ers a linear functional model E{y} and a linear stochastic model var{y} = Qy such
that

E{y} = Ax, Qy = Q0 +
p

∑
i=1

σ2
i ·Qi (10.2)

where Q0 and Qi are known m×m co-factor matrices, representing the covariance of
each stochastic process, σ2

i are p unknown variance components representing their
unknown amplitude, A is the m× n design matrix of the functional, that is, the Jaco-
bian of the model of observation equations, and x is the unknown n× 1 parameter
vector of the functional model.

The LS-VCE provides an estimator of the p× 1 variance component vector σ̂ =[
σ̂1

2 · · · σ̂p
2]T

by solving a normal equations system Nσ̂ = l, in which the entries
nij and li of the p× p normal matrix N and the p× 1 vector l are given by (Amiri-
Simkooei, 2007)

nij =
1
2

tr(QiQ−1
y P⊥AQjQ−1

y P⊥A), (10.3)

http://geodesy.unr.edu/gps/ngl.acn.txt
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li =
1
2
(êTQ−1

y QiQ−1
y ê)− 1

2
tr(QiQ−1

y P⊥AQ0Q−1
y P⊥A). (10.4)

In equations (10.3) and (10.4), ê is the residual vector, P⊥A is an orthogonal projec-
tor defined by P⊥A = I−A(ATQ−1

y A)−1ATQ−1
y so that ê = P⊥Ay, and I is the m×m

identity matrix.

Assuming the normal matrix N invertible, an estimator of the variance compo-
nent vector, noted σ̂, can be obtained as

σ̂ = N−1l. (10.5)

Since the unknown covariance matrix Qy is involved in the definition of nij and
li, the estimation is done in an iterative way. One starts with a first guess on the
variance component vector σ0 to approximate Qy and obtain nij and li. σ0 can be
obtained from previous publications, simplified VCE methods, or a simple guess.
By solving the normal equations system (Equation 10.5), a new variance component
vector σ̂1 can be obtained. Then, by iterating this procedure, each time a variance
component σ̂i is estimated, a new estimate σ̂i+1 can be obtained. The iterations stop
when the difference between two successive variance component estimates become
negligible. For more details about the implementation of the LS-VCE method, we
refer to Amiri-Simkooei (2007).

As the LS-VCE method is unbiased and unconstrained, it can occasionally pro-
vide negative estimates of some variance components. When encountering negative
estimates, the Non-Negative LS-VCE method (NNLS-VCE) introduced by Amiri-
Simkooei (2016) can be applied to obtain more interpretable values. Note that the
non-negativity property usually conflicts with the unbiased property of the LS-VCE
estimator, so the use of the NNLS-VCE method should ideally be restricted to the
case of non-negativity issues.

10.3.2 Selection of stochastic models

The linear LS-VCE and NNLS-VCE provide estimates of the unknown variance com-
ponent σ̂2

i for a given linear stochastic model. When several stochastic models are
considered for a given time series, one can use the LS-VCE to obtain estimates of
Qy for each model and select the model that maximizes the restricted log-likelihood
criterion ln(pt(t|σ)) defined by (Koch, 1986)

ln(pt(t|σ)) = −
1
2
[(m− n) ln 2π + ln(det(Qt)) + tTQ−1

t t] (10.6)

where t is the (m− n)× 1 misclosure vector defined by

t = BTy, (10.7)

Qt is its (m− n)× (m− n) covariance matrix that read

Qt = BTQyB, (10.8)

and B is a m× (m− n) matrix that spans the null space of AT.
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10.4 Spatial correlation

10.4.1 Spatial correlation estimation strategy

In previous work on spatial correlation, various spatial correlation estimation strate-
gies have been used. Williams et al. (2004) computed the variation of the cross-
correlation between pairs of residual time series with the station’s separation dis-
tances, for all three coordinates. Amiri-Simkooei (2009) and Amiri-Simkooei, Mo-
hammadloo, and Argus (2017) performed a similar analysis but used a particular
metric to take time correlation into account. Note that this strategy, based on the
multivariate LS-VCE (Amiri-Simkooei, 2009), assumes very similar stochastic prop-
erties for all time series. Finally, Benoist et al. (2020) assumed a second-order sta-
tionary spatial distribution of residuals and investigated the spatial correlation us-
ing variograms (Wackernagel, 2013). Benoist et al. (2020) also proposed to change of
frame for the analysis of pairwise correlation because it is not rigorous to compare
North and East coordinates between stations, especially when stations are close to
the poles. Instead of analysing position residuals in the North and East coordinates,
they proposed to analyse residuals in the extension/compression and shear direc-
tions.

In this chapter, we adopt the spatial correlation estimation method of Williams
et al. (2004), but adapted to the change of frame proposed by Benoist et al. (2020).
By doing so, we avoid assumptions about the spatial or temporal correlation of the
observations and compare consistent quantities.

10.4.2 Estimation

Change of frame

In the following, we consider a pair of stations, noted Si and Sj, with latitudes φi
and φj, and longitudes λi and λj. From the time series analysis, one obtains position
residuals in East (e), North (n), and Up (h) directions, that is, in enh-frames. The
goal of change of frame is, for each pair of stations, to compare the residuals in uvh-
frames depending on the relative position of the stations Si and Sj, such that the
estimated residuals are expressed in the extension/compression direction (u) and
shear direction (v). The change from enh-frames to uvh-frames is illustrated in Figure
(10.1).

The residuals of station Si in the enh-frame, noted êei (tk), êni (tk), and êhi (tk) can be
transformed into residuals in the uvh-frame, noted êui (tk), êvi (tk), and êhi (tk) usingêui (tk)

êvi (tk)
êhi (tk)

 =

 sin(θi) cos(θi) 0
− cos(θi) sin(θi) 0

0 0 1

êei (tk)
êni (tk)
êhi (tk)

 (10.9)

in which θi is an azimuth angle that can be obtained from the geographic coordinates
of the two stations as

θi = arctan
(

sin(λj − λi)

cos(φi) tan(φj)− sin(φi) cos(φj − φi)

)
(10.10)
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FIGURE 10.1: Illustration of the enh-frames and uvh-frames for two
stations Si and Sj.

Similarly, the residuals of station Sj in the enh-frame, noted êej (tk), ênj (tk), and
êhj (tk) can be transformed into residuals in the uvh-frame, noted êuj (tk), êvj (tk), and
êhj (tk) using êuj (tk)

êvj (tk)

êhj (tk)

 =

 sin(θj) cos(θj) 0
− cos(θj) sin(θj) 0

0 0 1


êej (tk)

ênj (tk)

êhj (tk)

 (10.11)

in which θj can be obtained as

θj = π + arctan
(

sin(λi − λj)

cos(φj) tan(φi)− sin(φj) cos(φi − φj)

)
(10.12)

Pairwise correlation estimation

From the residuals of both stations in the uvh-frame, one can compute a pairwise
correlation, noted ρ̂u,v,h

ij
, as

ρ̂u
ij
=

ˆcovuij√
ˆvarhzi ˆvarhzj

ρ̂v
ij
=

ˆcovvij√
ˆvarhzi ˆvarhzj

ρ̂h
ij
=

ˆcovhij√
ˆvarhi ˆvarhj

(10.13)

with
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ˆcovuij =
1

Kij

Kij

∑
k=1

êui (tk) · êuj (tk),

ˆcovvij =
1

Kij

Kij

∑
k=1

êvi (tk) · êvj (tk),

ˆcovhij =
1

Kij

Kij

∑
k=1

êhi (tk) · êhj (tk),

(10.14)

and

ˆvarhzi =
1

2Kij

Kij

∑
k=1

êui (tk)
2 + êvi (tk)

2

ˆvarhi =
1

Kij

Kij

∑
k=1

êhi (tk)
2

(10.15)

where Kij is the number of simultaneous observations of stations Si and Sj over the
considered period.

Average spatial correlation estimation

From the pairwise correlation estimates ρ̂u,v,h
ij

, one can then assess the average spatial

correlation ρ̂u,v,h(dl) at a given class of distance dl as

ρ̂u,v,h(dl) = mean{{ρ̂u,v,h
ij
}d(i,j)∈Dl

} (10.16)

in which {ρ̂u,v,h
ij }d(i,j)∈Dl

is the set of correlation estimates for all pairs of station (i, j)
whose separation distance d(i, j) falls within an admissible region Dl defined as

Dl =

]
dl −

δl

2
, dl +

δl

2

]
(10.17)

with δl the width of the averaging window.

10.4.3 Time dependence analysis

In the above cited studies, the spatial correlation is estimated using all observations
over a span of a few years. In result, the estimated correlation is an average over the
considered period. However, for shorter time scales, let’s say a few weeks, one can
expect the spatial correlation structure to show a time variable behaviour, especially
if position residuals are related to the climatic variability.

To investigate the time dependence of the spatial correlation, we perform cor-
relation analyses over running windows of one month. The pairwise correlation
obtained from a one month window is certainly less precise than for a window of
several years. However, given the number of stations analysed, the final correlation
estimates is an average over a few hundred thousands pairs, which makes the result
more robust.
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FIGURE 10.2: Histogram of the number of stations used as a function
of the number of observations for the NGL-IGS14 solution and the

Up coordinate.

10.5 Time series analysis

10.5.1 Selection of observations

We did not consider epochs showing a formal error above 5 mm on any of the three
coordinates to avoid possibly unreliable observations. Moreover, the raw observa-
tions were compared to a running monthly median to detect large outliers. Any
epoch showing a deviation from the median exceeding 5 times the median absolute
deviation was also discarded.

In addition, to focus on stations that could reveal time correlation, we only con-
sidered stations presenting time series with over 1090 observations, that is, about 3
years of continuous observations. The distribution of the number of stations used
as a function of the number of observations is presented for the NGL-IGS14 solution
and the Up coordinate in Figure (10.2). In the end, the median cumulative span of
the considered time series is 8 years.

10.5.2 Stochastic model

Assuming that the noise in each GNSS time series is a combination of white noise
and a power-law process, the stochastic model reads

Qy = σ2
wI + σ2

plQκ. (10.18)

where σ2
w is the unknown white noise amplitude, I is the m×m identity matrix, σ2

pl
is the unknown power-law process amplitude, κ is the unknown spectral index, and
Qκ is the m× m Hosking’s covariance matrix associated to a power-law process of
spectral index κ.

The Hosking’s covariance matrix Qκ can be obtained as
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Qκ = ∆−κ/2
t LκLT

κ , (10.19)

in which ∆t = 1/365.25 the sampling period in year and Lκ is the Hosking com-
bination matrix. ∆−κ/2

t is a normalization factor introduced by (Williams, 2003a)
for spectral visualisation, and now used in most studies. The Hosking combination
matrix Lκ is defined as

Lκ =


h0 0 · · · 0

h1 h0
. . .

...
...

. . . . . . 0
hm−1 · · · h1 h0

 , (10.20)

where the entries hi are given by a recursive formula (Kasdin, 1995):

h0 =1,

hi =(i− κ

2
− 1)

hi−1

i

(10.21)

For a fixed spectral index κ, the stochastic model (10.18) is a special case of the
general model given in Equation (10.2) in which p = 2 and Q0 = 0. If the observa-
tions are expressed in millimetre (mm), σpl is expressed in mm yrκ/4. Therefore, two
σpl obtained with different spectral indices are not directly comparable.

To overcome this issue, we define a standard deviation σ̂′pl , expressed in mm,
representing the square root of the expectation of the empirical variance of a power-
law process for 8 years, which is the median cumulative span of the time series.
Noting r the random vector defined such that r ∼ N (0, σ̂plQκ), the amplitude σ̂′pl
can be obtained as

σ̂′pl =

√√√√E

{
1

m′
m′

∑
i=1

(ri − r̄)2

}
(10.22)

where ri is an element of the vector r, m′ is number of observations for a 8 years long
time series, and r̄ is the arithmetic mean of the ri.

One can show that σ̂′pl reads

σ̂′pl = σ̂pl

√
1

m′
tr{Qκ} −

1
m′2

uTQκu (10.23)

with u a m′ × 1 vector defined as uT =
[
1 1 · · · 1

]
.

10.5.3 Initial functional model

For simplification, this study is restricted to the use of linear functional models ac-
counting for trends, step discontinuities, and periodic signals. The design matrix of
functional A is identical for the three coordinates of a given station.

The list of periodic signals accounted for in the functional model includes the
most commonly observed periodic signals in GNSS time series (Ray et al., 2008;
Amiri-Simkooei, 2013), that is, the annual signal with a period of 365.25 days and
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its 2 first harmonics, the draconitic signal with a period of 351.40 days and its 7 first
harmonics, and the fortnightly signals with periods of 13.62, 14.17, and 14.76 days.

Also, all the offset dates indicated in the NGL master steps database have been
considered by default. This database includes dates of known equipment changes
and potential earthquake-related discontinuities. This database is not necessarily
complete for all stations, and additional offsets must be detected to improve the
functional model and obtain unbiased noise estimates.

10.5.4 Improving the functional model

The detection of offsets is crucial in stochastic parameter estimation because an
under-parametrized functional model translates into time-correlated noise. It is also
a key issue in GNSS time series analysis in general. Offset detection is often done
manually since experimented operators can perform better than most algorithms
(Gazeaux et al., 2013). However, for a few ten thousands time series, the manual
detection is too cumbersome, and automatic detection is necessary.

In a recent study, Amiri-Simkooei et al. (2019) showed that one can improve the
automatic detection of offsets by taking time-correlated noise into account, and by
analysing the North (n), East (e) and Up (h) coordinates simultaneously. For our
stochastic model, applying the multivariate LS-VCE used in Amiri-Simkooei et al.
(2019) would assume a constant σ2

w/σ2
pl ratio for all coordinates, which can be a

strong assumption. In this study, we prefer adapting noise amplitudes to each co-
ordinate and then check for discontinuities, including offsets, but also outliers and
velocity changes.

The detection method used here is derived from the Detection Identification
Adaptation (DIA) procedure introduced by Baarda (1968) and Teunissen (2000b).
Applied to the detection of step discontinuities, outliers, or velocity changes, the
DIA procedure consists in testing a null hypothesis H0 : E{y} = Ax against alter-
native hypothesis Ha : E{y} = Ax + ca(tk)xa, in which ca(tk) is a known m × 1
vector modelling a discontinuity of type a at time tk with an unknown amplitude xa.
According to Teunissen, 2000b, accepting or rejecting H0 depends on the value of a
T-statistic defined by

T1 =
(cT

a (tk)Qy
−1ê)2

cT
a (tk)Qy

−1P⊥Aca(tk)
, (10.24)

Under H0, the random variable T1 follows a central chi-squared distribution with
1 degree of freedom: T1 ∼ χ2(1, 0). Hence, for a given confidence level α, if T1 >
χ2

α(1, 0), the null hypothesis can be rejected and ca can be added to the columns of
the design matrix A.

To combine the information of all coordinates, we define the power Pa(tk) of a
discontinuity ca(tk) at time tk as the sum of the T-statistics estimated on each coor-
dinate, that is

Pa(tk) = ∑
i∈{n,e,h}

(cT
a (tk)Qy

−1
(i) ê(i))

2

cT
a (tk)Qy

−1
(i) P⊥A(i)ca(tk)

, (10.25)

where the residual vector ê(i), the covariance matrix Qy(i), and the orthogonal pro-

jector P⊥A(i) are specific to each coordinate (i).
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Assuming that the coordinates are uncorrelated (Amiri-Simkooei, 2009; Benoist
et al., 2020), under H0, the power Pa(tk) follows a central chi-squared distribution
with 3 degrees of freedom, that is Pa(tk) ∼ χ2(3, 0).

The chi-squared distribution of T1 and Pa(tk) is based on the assumption that
the covariance matrices Qy(i) are known. However, in reality, the two variance com-
ponents σ2

w and σ2
pl are unknown and must be estimated. In such a case, the exact

distribution of T1 becomes complicated. Nonetheless, the chi-squared distribution
remains a good approximation as the redundancy of the functional model m− n is
large (Amiri-Simkooei et al., 2019).

To find a good candidate for the alternative hypothesis ca(tk), offsets co(tk), out-
liers ct(tk), and velocity changes cv(tk) were systematically tested for each epoch tk.
The most-likely discontinuity date t̂k and type â, were chosen as

â, t̂k = arg max
a,tk

Pa(tk). (10.26)

When the power of the most likely alternative Pâ(t̂k) exceeded a given thresh-
old Pâ(t̂k) > 25, the discontinuity câ(t̂k) was added to the functional model. The
threshold of 25 is arbitrarily chosen value, intentionally large, and corresponding to
a confidence level α > 0.9999 under the χ2(3, 0) hypothesis. This detection proce-
dure was repeated until no significant discontinuities were found.

At each iteration, the variance components of the stochastic model were (re)estimated
for all coordinates. However, to reduce the computational burden, for this detection
step only, we approximated κ as κ ≈ −0.8 and used the NNLS-VCE method by
default.

10.5.5 Variance component estimation strategy

To assess both variance components σ̂2
w, σ̂2

pl and the spectral index κ̂, we tested 30
stochastic models with values of κ ranging from −1.8 to −0.3 with a step of 0.05 for
each time series. The best set of stochastic parameters (σ̂2

w, σ̂2
pl , κ̂) was that maximiz-

ing the restricted log-likelihood criterion defined in section (10.3.2).

The LS-VCE was used by default to benefit from unbiased and minimum-variance
estimates. But when encountering negativity issues, the NNLS-VCE was system-
atically applied to obtain interpretable estimates. This resulted in occasional null
process amplitudes, mostly for the white noise amplitude of the Up coordinates.

Due to differences in the convergence of some time series and limitations in the
allocation of the resources used in this work, the number of station analysed fluc-
tuates depending on the considered solution and coordinates. However, there is
always over 10,000 time series analysed in each case.

10.6 Results

10.6.1 Spatial variability of the stochastic parameters

The global distribution of variance component estimates are presented, for the NGL-
IGS14 solution, in Figure (10.3) for the North coordinates, in Figure (10.4) for the East
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coordinates and in Figure (10.5) for the Up coordinates. Each one of these figures ex-
hibits global-scale variations in the distribution of the stochastic parameters. In a
first approximation, these variations are latitude-dependent, especially for the Up
coordinates. The results obtained with NGL-IGS08 solution show a similar latitude
dependence, but noticeable changes in amplitudes. To illustrate this, the latitude
dependence for both solutions, are presented in Figure (10.6) for σ̂w, in Figure (10.7)
for κ̂, and in Figure (10.8) for σ̂′pl . The latitude dependence of the more commonly
used Root Mean Square Error (RMSE) is presented in Figure (10.9). To ease the com-
parison between the NLG-IGS08 and NGL-IGS14 solution, we reported the running
median latitude dependence of the NGL-IGS08 on that of NGL-IGS14 solution.

In Figure (10.6), the latitude dependence of the white noise amplitude σ̂w re-
veals an equatorial bulge for all coordinates and solutions. The bulge is particularly
marked for the Up coordinate where σ̂w ≈ 4 mm inside the inter-tropical band, and
σ̂w ≈ 0 mm outside. It can also be noted that the bulge is systematically smaller in
the latest solution. Also, an asymmetry between the southern and northern hemi-
spheres present in NGL-IGS08 is systematically reduced in NGL-IGS14.

In Figure (10.7), there is a clear difference in the latitude dependence of the spec-
tral index κ̂ between Up and horizontal coordinates. For horizontal coordinates, the
median κ̂ show a mild latitude dependence with a −0.1/ − 0.2 decrease near the
equator. The Up coordinates rather show a bi-modal distribution with an increase
of about +0.55 at mid-latitudes. In words, for the Up component, time-correlated
processes tend to show longer memory near the equator and near the poles than at
mid-latitudes. The effect of the reprocessing is relatively negligible for the North
and East coordinates. For Up coordinates, the median κ̂ shifted down by about −0.1
in the NGL-IGS14.

In Figure (10.8), the latitude dependence of the (modified) power-law process
amplitude σ̂′pl shows a strong latitude dependence for the Up coordinates, where σ̂′pl
estimates double near the poles. The most dramatic effect is visible for the NGL-
IGS14 solution, which also reveals a peak for latitudes near +65◦ corresponding to
a large increase of σ̂′pl in Alaska and around the Baltic sea, as visible in (Figure 10.5).
For horizontal coordinates, σ̂′pl showed a North-South asymmetry in NGL-IGS08,
which is corrected in NGL-IGS14.

10.6.2 Spatial correlation

For each direction, and each solution, we estimated the spatial correlation ρ̂(tk, dl)
every 15 days between 2008 and 2018, with a time averaging window of 30 days,
and for 199 classes of distance dl ranging from 50 km to 19950 km, with a spatial
averaging window δd of 100 km. The correlation estimates ρ̂(tk, dl) along with the
time average over the 2008-2018 period ρ̄(dl) are presented in Figure (10.10) for the
NGL-IGS08 solution, and in Figure (10.11) for the NGL-IGS14 solution.

The average spatial correlation ρ̄(dl) in Figure (10.11) is close to +0.45 for short
separation distances (that is, dl ≈ 0 km) and decreases close to zero for larger sepa-
ration distances (that is, dl ≥ 7500 km). This behaviour confirms that the stochastic
variability in these data-sets shows a specific spatial correlation structure. To model
this average spatial correlation, we approximated the mean correlogram ρ̄(dl) by a
Gaussian correlation function defined by
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FIGURE 10.3: Global variability of white noise amplitudes (top), spec-
tral indices (middle); and power-law amplitudes (bottom) for the North

coordinates of the NGL-IGS14 solution.
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FIGURE 10.4: Global variability of white noise amplitudes (top), spec-
tral indices (middle); and power-law amplitudes (bottom) for the East

coordinates of the NGL-IGS14 solution.
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FIGURE 10.5: Global variability of white noise amplitudes (top), spec-
tral indices (middle); and power-law amplitudes (bottom) for the Up

coordinates of the NGL-IGS14 solution.
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FIGURE 10.6: Latitude dependence of white noise amplitudes σ̂w for
the North coordinate (top), for the East coordinate (middle), for the Up
coordinate (bottom), and for both the NGL-IGS08 solution (left) and
NGL-IGS14 solution (right). The dots in cyan represent the raw es-
timates. The continuous blue lines represent running medians over
centered 10◦ latitude windows. The shaded areas represent the cor-
responding interquartile ranges. The dashed black lines correspond
to the running median for NGL-IGS08, reported on the NGL-IGS14

results to ease the comparison.
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FIGURE 10.7: Latitude dependence of spectral indices κ̂ for the North
coordinate (top), for the East coordinate (middle), for the Up coordi-
nate (bottom), and for both the NGL-IGS08 solution (left) and NGL-
IGS14 solution (right). The dots in cyan represent the raw estimates.
The continuous blue lines represent running medians over centered
10◦ latitude windows. The shaded areas represent the corresponding
interquartile ranges. The dashed black lines correspond to the run-
ning median for NGL-IGS08, reported on the NGL-IGS14 results to

ease the comparison.
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FIGURE 10.8: Latitude dependence of power-law process amplitudes
σ̂′pl for the North coordinate (top), for the East coordinate (middle), for
the Up coordinate (bottom), and for both the NGL-IGS08 solution (left)
and NGL-IGS14 solution (right). The dots in cyan represent the raw
estimates. The continuous blue lines represent running medians over
centered 10◦ latitude windows. The shaded areas represent the cor-
responding interquartile range. The dashed black lines correspond
to the running median for NGL-IGS08, reported on the NGL-IGS14

results to ease the comparison.
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FIGURE 10.9: Latitude dependence of the Root Mean Square Error
(RMSE), for the North coordinate (top), for the East coordinate (mid-
dle), for the Up coordinate (bottom), and for both the NGL-IGS08 solu-
tion (left) and NGL-IGS14 solution (right). The dots in cyan represent
the raw estimates. The continuous blue lines represent running medi-
ans over centered 10◦ latitude windows. The shaded areas represent
the corresponding interquartile ranges. For each time series, RMSE
are based on residual estimates computed using the best stochastic
model. The dashed black lines correspond to the running median for
NGL-IGS08, reported on the NGL-IGS14 results to ease the compari-

son.
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FIGURE 10.10: Spatial correlation estimates ρ̂(tk, dl) for the NGL-
IGS08 solution. Extension/compression direction (top), Shear direc-
tion (middle) and Up direction (bottom). The blue curve represents the
median correlogram. The dashed black line represents the Gaussian

correlation function.
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FIGURE 10.11: Spatial correlation estimates ρ̂(tk, dl) for the NGL-
IGS14 solution. Extension/compression direction (top), Shear direc-
tion (middle) and Up direction (bottom). The blue curve represents the
median correlogram. The dashed black line represents the Gaussian

correlation function.
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Solution Direction ρ̄c ρ̄0 ρ̄max r [km]

Ext/Comp -0.02 0.46 0.44 5299

NGL-IGS08 Shear 0.06 0.40 0.46 6562

Up 0.06 0.37 0.43 1551

Ext/Comp -0.06 0.49 0.43 3539

NGL-IGS14 Shear 0.03 0.42 0.45 5479

Up 0.01 0.40 0.41 2470

TABLE 10.1: Parameter estimates for the average Gaussian correla-
tion function (Equation 10.27).

ρ̄(dl) =

{
1, dl = 0
ρ̄c + ρ̄0 · exp (− (dl/r)2), dl > 0

, (10.27)

where ρ̄c represents the constant correlation, ρ̄0 the distance-variable correlation, and
r the distance range parameter. From this Gaussian correlation function, a maximum
of correlation can be defined as ρ̄max = ρ̄c + ρ̄0.

Estimates for ˆ̄ρc, ˆ̄ρ0, ρ̂max and r̂ resulting from the least-squares adjustment of
the Gaussian correlation function on ρ̄(dl) are presented, for all coordinates, in Ta-
ble (10.1). The corresponding models are represented in Figures (10.10) and (10.11).
In Table (10.1) ρ̂

max
is similar for all coordinates. However, the range parameter r̂

is systematically larger for the horizontal directions than for the vertical one. Note
that the parameter r corresponds to the argument of the inflexion point of the Gaus-
sian correlation function. To ease physical interpretations, one can define an effec-
tive range, de = 2r, which corresponds to the separation distance above which the
distance-variable part of spatial correlation ˆ̄ρ0 is decreased by 98%. For instance, in
NGL-IGS14, the distance-variable part tend to be negligible for separation distances
above de ≈ 4000 km for the Up direction, and above de ≈ 7000 km for horizontal
directions (Figure 10.10 and 10.11).

With the reprocessing, the range parameter r̂ systematically decreased for both
compression/extension and shear directions and increased of the vertical direction.
This change is particularly visible in Figure (10.10) for horizontal directions where a
large scale correlation pattern, maximum in 2014, disappears in Figure (10.11).

In addition to the mean correlation, the time-variable correlograms in Figures
(10.10) and (10.11) reveal an annual oscillation for short separation distances, that
is dl < 4000, and for all directions. An example of the estimated spatial correlation
time series ρ̂(tk, dl) is presented in Figure (10.12) for separation distances of 50, 950,
1950, and 3950 km. Figure (10.12) shows that the amplitude of this annual oscillation
is maximum for short distances (dl = 50 km) and is synchronous for all distances
classes. Besides, both the mean correlation and the annual amplitude gets closer to
0.00 for increasing separation distances. Hence, to describe the oscillation of ρ̂(tk, dl),
we simply added an annual modulation to the distance-variable part of the mean
Gaussian correlation function defined Equation (10.27), that is
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Solution Direction ρ̂c ρ̂0 ρ̂A φ̂A [rad] ρ̂min ρ̂max r̂ [km]

Comp/Ext -0.02 0.46 0.06 1.709 0.38 0.50 5299

NGL-IGS08 Shear 0.06 0.40 0.07 1.509 0.39 0.53 6562

Up 0.05 0.37 0.16 1.266 0.26 0.58 1551

Comp/Ext -0.06 0.49 0.05 1.273 0.38 0.48 3539

NGL-IGS14 Shear 0.03 0.42 0.06 1.311 0.39 0.51 5479

Up 0.01 0.4 0.11 1.333 0.30 0.52 2469

TABLE 10.2: Parameter estimates for the time-variable Gaussian cor-
relation function (Equation 10.28). The r̂ are reported values from

Table (10.1).

ρ(tk, dl) =

{
1, dl = 0
ρc + [ρ0 + ρA sin(ωAtk + φA)] · exp (− (dl/r)2), dl > 0

(10.28)

where ρc is the constant correlation, ρ0 is the average of the time-variable part of
the correlation, ωA is the annual angular frequency, ρA is the annual amplitude, φA
is the corresponding phase, and r̂ is the range parameter estimated from the mean
correlogram. From these estimates, we can define a maximum and a minimum of
correlation for dl ≈ 0 as ρmin = ρc + ρ0 − ρA and ρmax = ρc + ρ0 + ρA.

Estimates of ρ̂c, ρ̂0, ρ̂A, φ̂A, ρmin and ρmax, based on the least-squares adjustment
of the model (10.28) on ρ̂(tk, dl) are presented in Table (10.2). The corresponding
model is visible, for the Up coordinates of the NGL-IGS14 solution, in Figure (10.12).
With an amplitude ρ̂A of 0.16 for the NGL-IGS08 solution and of 0.11 for the NGL-
IGS14 solution, Up coordinates show annual amplitudes about 2 times larger than
horizontal coordinates for both solutions. According to the estimated phases φ̂A,
the correlation maximum lies around January and the minimum around July for all
coordinates. In NGL-IGS14, the phase φ̂A are similar, but the annual amplitudes ρ̂A
are reduced compared to the NGL-IGS08 solution, especially for the Up coordinates,
which shows a 31% reduction.

Given that most stations are either located in the USA and Europe, the observed
phases and amplitudes of the short-distance time-variable correlation are probably
representative of a phenomenon occurring in these areas rather than in other parts of
the world. In particular, if the periodic nature of the correlation is linked to seasons
through surface mass loading, a change in phase and amplitude with the location
may occur.

To explore the possible spatial variability of this oscillation, we use the fact that
an annual periodicity of the spatial correlation is likely to result in an annual period-
icity of the variance of each station. Hence, from the estimated residual time series,
we computed monthly standard deviations every 15 days for all stations. From the
resulting standard deviation time series, we adjusted a trend and annual sine func-
tion. The annual amplitude and phase estimates obtained from time series present-
ing more than 4 years of cumulative observations are visible, for the NGL-IGS14 Up
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FIGURE 10.12: Time-variable spatial correlation estimates ρ̂(tk, dl) for
4 classes of distances of the Up coordinate of the NGL-IGS14 solution.
The coloured lines represent the estimates at given class of distance
dl . The dashed black lines represent the corresponding time-variable

Gaussian correlation function.
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coordinates, in Figure (10.15). Figure (10.15) demonstrates that the annual ampli-
tudes and phases of the Up coordinates have a spatial signature and a global-scale
variability. In particular, between 0◦ and +30◦ of latitude, and in Antarctica, the stan-
dard deviation is not maximum in January but in June. Hence, other amplitudes and
phases for the time-variable correlation should be expected for time-variable corre-
lation analyses performed on different parts of the globe, or more evenly distributed
networks of stations.

10.7 Discussion

10.7.1 Spatial dependence of noise parameters

Figures (10.3), (10.4) and (10.5) show that all stochastic parameters present a global-
scale variability, and this, for all coordinates and solutions. Hence, considering spa-
tially variable spectral indices and noise amplitudes is preferable when analyzing
global solutions, and especially for vertical land motions. In particular, the assump-
tion of a constant ratio between all variance components in a global network, as used
in Amiri-Simkooei (2013) and Amiri-Simkooei, Mohammadloo, and Argus (2017)
does not seem realistic in NGL solutions.

The latitude dependence of white noise amplitudes, clearly visible in Figures
(10.6), was already detected and discussed by Williams et al. (2004). More recently, it
was also observed in IGS station position time series by Klos et al. (2019). Williams
et al. (2004) suggested that the equatorial bulge visible in Figure (10.6) could have
an atmospheric origin. The NGL-IGS14 solution benefits from improvements in
the modelling of both tropospheric and ionospheric effects. With the reprocessing,
we observe a reduction of −30% of white noise amplitudes for all coordinates and
latitudes. Such a systematic reduction is not observed for power-law amplitudes.
Hence, our results tend to support the hypotheses that non-modelled atmospheric
effects result in an increase of white noise in position time series (Munekane and
Boehm, 2010). However, the improvements in the modelling of atmospheric delays
do not seem to reduce the equatorial bulge. Hence, the origin of this bulge remains
to be investigated.

Unlike white noise amplitudes, power-law noise amplitudes σ̂′pl of the Up co-
ordinates increase more at high latitudes than near the equator. This dependence
is even more pronounced in the NGL-IGS14 solution. Moreover, NGL-IGS14 also
shows a distinct peak for the Up coordinates in Figure (10.8) around latitude +65◦,
which corresponds to a localized increase of σ̂

′
pl in Alaska, around the Baltic Sea and

in Russia (Figure 10.5). This localized increase in the NGL-IGS14 suggests the influ-
ence of non-modelled geophysical phenomena, which became more apparent with
modelling improvements. A possible candidate for this latitude pattern is the Non-
Tidal Atmospheric and Oceanic Loading (NTAOL), whose predicted RMSE shows
a strong latitude dependence in Mémin, Boy, and Santamaria-Gomez (2020). We
must mention that a process does not have to show a power-law behaviour to affect
power-law process estimates: in principle, any non-modelled processes can bias the
noise estimation, even if the energy of the process is localized on a frequency band.

The latitude distribution of the spectral index κ̂ in Figure (10.7) shows similari-
ties with that of σ̂′pl . In particular, the Up coordinates shows a pattern that is very
different from that of horizontal coordinates, for both solutions, and exhibits longer
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FIGURE 10.13: Spatial variability of the standard deviation oscilla-
tion for the North coordinates of NGL-IGS14. Annual amplitudes of
monthly standard deviations (top). Annual phase of monthly stan-
dard deviations. The phase is expressed as the month corresponding
to the maximum of dispersion (bottom). for time series presenting

more than 4 years of cumulative observations
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FIGURE 10.14: Spatial variability of the standard deviation oscilla-
tion for the East coordinates of NGL-IGS14. Annual amplitudes of
monthly standard deviations (top). Annual phase of monthly stan-
dard deviations. The phase is expressed as the month corresponding

to the maximum of dispersion (bottom).
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FIGURE 10.15: Spatial variability of the standard deviation oscilla-
tion for the Up coordinates of NGL-IGS14. Annual amplitudes of
monthly standard deviations (top). Annual phase of monthly stan-
dard deviations. The phase is expressed as the month corresponding

to the maximum of dispersion (bottom).
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memory at high latitudes. Hence, it is possible that at high latitudes, NTAOL could
also influence κ estimates. However, unlike σ̂′pl , κ̂ also shows a reduction at the
equator. Hence, it is possible that another type of loading effect, namely the hydro-
logical loading, whose RMSE is expected to higher near the equator (Mémin, Boy,
and Santamaria-Gomez, 2020) also affect κ̂.

10.7.2 Time-variable spatial correlation

As for previous studies (Williams et al., 2004; Amiri-Simkooei, Mohammadloo, and
Argus, 2017; Benoist et al., 2020), our results evidence a clear spatial correlation of
the residual time series. The spatial scale of the spatial correlation in horizontal
directions is systemically larger than in the vertical direction (Table 10.1, Figures
10.10 and 10.11). The spatial correlations estimated in this study are slightly smaller
than in previous studies, even for NGL-IGS08, undoubtedly due to the very different
number of stations analyzed.

Thanks to the considerable number of stations, our correlation analysis also re-
vealed a new characteristic of spatial correlation, namely an annual periodicity of
its amplitude (Figure 10.12). For instance, for the Up coordinates of NGL-IGS14, the
spatial correlation increases by 73% in January (+0.52) compared to July (+0.30).
Since most stations are located in the United States and Europe, this periodicity is
probably specific to these areas. This annual variability is also observed in standard
deviation residual time series. Still, it shows different phase and amplitudes de-
pending on the position of the station on the globe (Figure 10.15). Such seasonality
of the spatial correlation and monthly standard deviations, for the Up coordinates,
seems consistent with the possible influence of surface mass loading.

For horizontal coordinates, the seasonality of the standard deviation is visible,
but about 5 times smaller than for the Up coordinates in Figures (10.13), (10.14) and
(10.15). For the seasonality of the spatial correlation, it is 2 times smaller than for the
Up coordinates. In NGL-IGS14, the spatial correlation in the extension-compression
direction is similar to that in the Up direction (Figure 10.11). This spatial auto-
correlation also seems similar to that induced by atmospheric loading on the vertical
direction (Fig. 4 in Petrov and Boy (2004)). This is not the case for the Shear direc-
tion. Hence, the spatial and temporal variability in horizontal directions may partly
result from atmospheric loading. This, however, requires further investigations.

Although the causes of the spatial correlation and its temporal variability remain
unknown, accounting for it in future studies may result in more realistic uncertain-
ties for spatial analyses. In particular, the uncertainty on deformation parameters,
such as displacement, strain or rotation parameters has shown to be sensitive to the
spatial correlation of observations (Razeghi, Amiri-Simkooei, and Sharifi, 2016).

10.7.3 Influence of the reprocessing

Figures (10.9), (10.6) and (10.8) shows that the recent reprocessing resulted in a re-
duction of RMSE, white noise amplitudes, and power-law amplitudes. On average,
the estimated reduction of RMSE is of 20% for horizontal components and 18% for
vertical components. These results are in agreement with the 17% reduction in re-
peatability reported by Blewitt et al. (2019). Complementarily, our analysis shows
that this improvement is not equally distributed between white noise and power-
law processes, and neither between the south and north hemisphere.
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With an average reduction of about 34%, the white noise component is the most
affected by the reprocessing, which we attribute to the improvements in the mod-
elling of atmospheric delays. This supports the hypothesis that tropospheric error
appears as white noise in position time series (Munekane and Boehm, 2010).

In addition to this average white noise reduction, the reprocessing has removed
a North/South asymmetry for both white noise and power-law process amplitudes
of horizontal coordinates (Figures (10.6) and (10.8)). A possible cause of latitude
dependence could be an improvement of nominal hydrostatic delays resulting from
the change from GMF to VMF1. As the global pressure shows a large North/South
asymmetry (Böhm, Heinkelmann, and Schuh, 2007), the shift from the Temperature
(GPT) model to the more accurate ECMWF numerical weather model may induce
latitude dependent improvements, especially in the southern hemisphere.

The improvements observed on Up coordinates are not similar to that on hor-
izontal coordinates. The reduction of white noise amplitude is only visible near
the equator in Figure (10.6) because white noise was undetected at high latitudes
in NGL-IGS08. Besides, the reduction in power-law process amplitudes does not
show a South/North asymmetry. Instead, power-law process amplitudes rather
show global reduction with exceptions localized in Alaska, around the Baltic Sea
and in Antarctica. A possible cause for these localized exceptions is atmospheric
loading deformations, which could be more visible in NGL-IGS14 likely thanks to
the use of the VMF1 (Steigenberger, Boehm, and Tesmer, 2009).

In addition to noise amplitude reductions, the reprocessing also had a visible im-
pact on spatial correlations. For instance, although the noise level of each time series
is reduced, the spatial correlation level remained similar for both solutions (Table
10.1). It implies that part of the atmospheric errors in NGL-IGS08 was spatially cor-
related; otherwise, the spatial correlation would have increased. Another evidence
of the impact of reprocessing is the change of spatial correlation on horizontal direc-
tion, visible in Figure (10.10) and Figure (10.11), where large scale correlation pat-
terns disappeared. This also results in reduction of the range parameter r in Table
(10.1). The amplitude of this spatial pattern seems correlated with the solar cycle 24.
It may result from second-order ionospheric effects, non-modelled in NGL-IGS08,
which can cause large scale spatial pattern in the residuals of horizontal position
time series (Kedar et al., 2003).

Unlike horizontal components, we observe that the Up coordinates show an in-
crease in the range parameter. This could also be due to the influence of atmo-
spheric loading deformations, expected to be more visible in NGL-IGS14 than in
NGL-IGS08. However, Table (10.2) shows that the annual amplitude of the spatial
correlation reduced by 31% in NGL-IGS14. Hence, part of the correlation periodicity
in NGL-IGS08 may be due to atmospheric errors.

10.8 Conclusion

Assessing the spatial and temporal dependence of the stochastic variability in GNSS
position time series is necessary for both the uncertainty assessment and for the un-
derstanding of the source of stochastic variability in GNSS position time series. By
analyzing the time series of over 10,000 globally distributed stations, we demon-
strated that all stochastic parameters, namely white noise amplitudes, power-law
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amplitudes and power-law spectral indices show global scale variability for North,
East and Up coordinates. This global variability, most visible for the Up coordinates,
shows a strong latitude dependence. This latitude pattern could result from the in-
fluence of surface mass loading deformations or atmospheric errors. In all cases, our
study evidence that it is not realistic to assume that position time series have similar
stochastic properties in a global solution.

In complement to the time correlation analysis, our study evidence a signifi-
cant and time-variable spatial correlation of positions time series for both the ex-
tension/compression, shear and up directions. Such a time variable correlation is
compatible with the influence of surface mass loading. However, as a fraction of the
time variability was removed in the NGL reprocessing, atmospheric errors may also
be the cause of the time variable spatial correlation.

Finally, our comparative analysis demonstrated the NGL reprocessing resulted
in an apparent reduction of the stochastic variability, especially in the Southern
Hemisphere. The only observed exception is for the Up coordinates. Among the
possible cause for this increase, there is the influence of non-tidal atmospheric load-
ing deformations. We investigate this hypothesis in chapter 11.
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Chapter 11

Influence of non-tidal atmospheric
and oceanic loading on the
stochastic properties of vertical
land motion time series

In the previous chapter, our stochastic analyses revealed that Up coordinates show a
spatial variability standing out from that of horizontal coordinates for both NGL so-
lutions. This spatial variability is even more pronounced in the most recent solution,
suggesting the possible influence of non-modelled geophysical processes. In this
chapter, we investigate to which extent surface mass loading deformations, known
to be more significant on the Up coordinates, can explain such a specific variability.

11.1 Introduction

Trends estimated from vertical land motion time series obtained using global navi-
gation satellite systems (GNSS) are central to the understanding of geophysical pro-
cesses such as glacial isostatic adjustment (GIA) (Nocquet, Calais, and Parsons, 2005;
Schumacher et al., 2018) and coastal vertical land motions (Pfeffer and Allemand,
2016; Wöppelmann and Marcos, 2016). One of the main factor limiting the precision
of these trend estimates is that VLMs present a stochastic variability showing not
only white noise but also power-law properties.

In chapter 10, we evidenced a spatial dependence of both white noise ampli-
tudes, power-law amplitudes, and spectral indices that is specific to the Up coor-
dinates. This spatial dependence is especially visible in the latest Nevada Geodetic
Laboratory reprocessing, suggesting the possible influence of non-modelled physi-
cal processes. At the global scale, this variability is mostly latitude dependent. White
noise amplitudes are maximum near the equator and null outside the inter-tropical
band. Power-law process amplitudes show a minimum at the equator and maxi-
mum near the poles, with hot-spots around the Baltic Sea, Alaska, Canada, Russia
and Antarctica. Finally, spectral indices are systematically smaller near the equator
and near the poles than at mid-latitudes, identifying processes with longer memory
in these areas.

In this study, we investigate whether the spatial variability observed in chapter
10 is caused by non-modelled vertical deformation induced by surface mass load-
ing. To do so, we apply the exact same temporal and spatial noise estimation strat-
egy than in chapter 10, but to Up coordinates time series for which we subtract the
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non-tidal loading deformation computed by the Earth System Modelling group of
GeoForschungsZentrum Potsdam (ESMGFZ) (Dill and Dobslaw, 2013).

11.2 Computing loading deformations

The global surface mass distribution induced by atmospheric, oceanic and hydro-
logic phenomena results in spatial and temporal variations of pressure at the sur-
face of the Earth, which we refer to as load and denote as L(t, λ, φ) and express in
kg/m2. Information about the spatial and temporal variability of the load is usually
obtained from space missions, such as Gravity Recovery And Climate Experiment
(GRACE) or from physical numerical models.

In this study, we use ground deformation predictions based on numerical models
and not satellite observations because it is presently the only way to obtain both
daily and globally distributed estimates of the load L(t, λ, φ).

When dealing with globally distributed load estimates,L(t, λ, φ) can be expressed
in the spherical harmonic domain as

L(t, λ, φ) =
∞

∑
l=0

l

∑
m=0
LC

lm(t)Y
C
lm(λ, φ) + LS

lm(t)Y
S
lm(λ, φ), (11.1)

in whichLC
lm(t) andLS

lm(t) are the Stokes coefficients of the load and YC
lm and YS

lm(λ, φ)
are the spherical harmonic functions of degree l and order m, defined as[

YC
lm(λ, φ)

YS
lm(λ, φ)

]
= Pm

l (sin(φ))
[

cos(mλ)
sin(mλ)

]
, (11.2)

where Pm
l (x) is the Legendre associated function defined by

Pm
l (x) =

(−1)l

2l l!

√
(1− x2)m dl+m

dxl+m (x2 − 1)l . (11.3)

According to Farrell (1972), the vertical displacements δUp(t, λ, φ) resulting from
the effect of surface mass loading can be expressed, under the approximation of
a spherical, isotropic, non-rotating, and elastic Earth model, as a function of the
spherical harmonic coefficients of the load, LC

lm(t) and LS
lm(t), such that

δUp(t, λ, φ) =
1

ρE

∞

∑
l=0

l

∑
m=0

3hl

2l + 1

[
LC

lm(t)Y
C
lm(λ, φ) + LS

lm(t)Y
S
lm(λ, φ)

]
(11.4)

in which ρE denotes the mean density of the earth model in kg/m2, and hl denotes
the radial Love number of degree l.

The radial load Love numbers hl depend on the rheological properties of the
considered Earth model. For l = 1, the load Love number h1 also depends on the
considered frame.

11.2.1 Loading deformation predicted by the EMSGFZ-Postdam

In this study, we consider 3 types of loading effects, namely non-tidal atmospheric
loading (NTAL), non-tidal oceanic loading (NTOL) and hydrological loading (HYDL).
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Vertical deformations caused by NTAL are calculated by ESMGFZ using 3-hourly
atmospheric surface pressure from the European Center for Mean Weather Forecast
(ECMWF). Deformations caused by NTOL are calculated using 3-hourly ocean bot-
tom pressure from the Max-Planck-Institute Meteorology Ocean Model (MPIOM).
The deformations caused by HYDL deformation is calculated using 24-hourly ter-
restrial water storage from the Land Surface Discharge Model (LSDM). To obtain
vertical displacements from each type of load, the load Love numbers hl used by
EMSGFZ are computed from the elastic Earth model ak135 (Kennett, Engdahl, and
Buland, 1995; Wang et al., 2012) and expressed in the centre of Earth’s figure frame
(CF).

Given the sampling rate of ECMWF and MPIOM models, NTAL and NTOL de-
formation time series are estimated every 3 hours. To obtain daily time series, we
linearly interpolated the NTAL and NTOL predictions at the epochs of the GNSS
VLM time series. To illustrate the expected variability from each type of load, the
standard deviation of the deformation predictions are presented, for all time series
in Figure (11.1).

11.3 Preliminary change in repeatability analysis

Performing stochastic parameter estimation for over 10,000 daily position time se-
ries, is computationally expensive. Hence, before doing so, we preferred finding the
right candidate for the latitude pattern observed in chapter 10 using a more straight-
forward method.

Before variance component estimation, we estimate the change in repeatability
of the residuals after subtracting the NTAL, NTOL, and HYDL models from obser-
vations. As a measure of repeatability, we use the percentage of Root Mean Square
Error (RMSE) reduction. For each type of load, we compute the RMSE assuming
white noise, that is through an unweighted least-squares adjustment.

The RMSE reduction percentages obtained after removing either NTAL, NTOL,
or HYDL deformations are presented in Figure (11.2). NTAL corrections result in an
RMSE reduction for 97.5% of the stations, more effective near the poles than near
the equator. NTOL corrections result in an RMSE reduction for 87.6% of the stations.
Just like NTAL, the impact of NTOL is latitude dependent and most effective near
the poles. HYDL corrections result in RMSE reduction for 67.5% of the stations. This
reduction is not maximum near the pole, but near the equator and in the USA. Also,
HYDL corrections result in a slight RMSE increase in Eastern Europe.

As RMSE reductions resulting from HYDL corrections are not as systematic as
for NTAL and NTOL corrections and not maximum near the poles, we preferred not
to include it for stochastic parameter estimation. Hence, in the following, we focus
on the impact of the non-tidal atmospheric and oceanic loading (NTAOL) on the
spatial and temporal properties of the stochastic variability in VLM time series.

11.4 Influence of NTAOL on noise properties

We estimated the stochastic properties of the VLM time series after removing the
NTAOL time series computed by the ESMGFZ. The observations, the functional
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FIGURE 11.1: Standard deviation of the predicted vertical land mo-
tions resulting from surface mass loading. Non-Tidal Atmospheric
Loading (NTAL) (top). Non-Tidal Oceanic Loading (NTOL) (middle).

Hydrological loading (HYDL) (bottom).
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FIGURE 11.2: Global distribution of RMSE reduction percentages af-
ter removing deformation predictions. Non-tidal atmospheric load-
ing (NTAL) (top). Non-tidal oceanic loading (NTOL) (middle). Hydro-

logical loading (HYDL) (bottom).
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models, the stochastic models, and the statistical methods used for temporal and
spatial correlation estimation are identical to those used in chapter 10.

11.4.1 Impact on temporal correlation

Figure (11.3) presents the global distribution of variance components estimates for
VLM time series with NTAOL deformations removed. Estimates presented in Fig-
ure (11.3) significantly differs from that observed in chapter 10 (Figure 10.5) for all
stochastic parameters. Instead of being null everywhere but near the equator, the
white noise amplitudes are now positive everywhere and reveal an equatorial bulge
more similar to that of horizontal coordinates. The spectral index estimates also
show a reduction in spatial variability, with, on average, longer memory than in
Figure 10.5. The most significant changes are visible for the power-law amplitudes,
whose latitude dependence have completely disappeared and show a more homo-
geneous distribution. In particular, the power-law amplitudes observed around the
Baltic Sea, Alaska, Canada, Russia and Antarctica are now comparable to those of
the rest of the world.

To better illustrate the changes as a function of the latitude, Figure (11.4) de-
picts the latitude dependence of RMSE, white noise amplitude, spectral index, and
power-law amplitude estimates before and after NTAOL corrections. The running
medians before NTAOL corrections are reported on that after corrections to ease
the comparison. In Figure (11.4), the RMSE (here estimated using a weighted least-
square adjustment) shows a median reduction reaching 30% at high latitudes, and
especially near +60◦. This overall RMSE reduction is linked to a clear change in the
nature of the stochastic variability. Out of the inter-tropical band, white noise am-
plitudes now show a floor of about 2.0 mm. The equatorial bulge visible in white
noise amplitudes now appears as a 2 mm increase at the equator. For the spectral
index, the bi-modal latitude distribution visible before NTAOL corrections disap-
pears and become mostly centred on −1 with a decrease to −1.2 near the equator.
Spectral indices also show a clear increase in dispersion between [−60◦,−30◦] and
[+30◦,+60◦]. Based on the map in Figure (11.3), this increase suggests that the lat-
itude representation for this parameter is not appropriate anymore. Finally, Fig-
ure (11.4) confirms the observation made with Figure (11.3), namely that removing
NTAOL deformations completely removes the high latitude dependence of power-
law amplitudes. More precisely, power-law amplitudes now show only slight devi-
ations from a 3.5 mm average.

Note that, although we observe a decrease in RMSE at high latitudes, the change
in stochastic parameters in Figure (11.4) does not indicate whether considering white
noise and power-law noise model is still relevant when accounting for NTAOL de-
formations. This can however be tested by analysing the change in restricted log-
likelihood. Figure (11.5) shows the global distribution of restricted log-likelihood
changes after removing NTAOL deformations. The restricted log-likelihood increased
for 97.9% of the stations. Hence, the observations are now more consistent with a
combination of white noise and power-law noise than before removing NTAOL de-
formations.

Since the stochastic model directly influences deterministic parameter uncertain-
ties, we evaluated how trend uncertainties are affected by the change in stochastic
parameters. Because all stations do not have the same number of observations nor
the same functional model, we simulated the influence of the estimated stochastic
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FIGURE 11.3: Global variability of white noise amplitudes (top), spec-
tral indices (middle); and power-law amplitudes (bottom) for the Up

coordinates with NTAOL deformations removed.
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FIGURE 11.4: Latitude dependence of RMSE (top), white noise am-
plitudes (upper middle), spectral indices (lower middle), power-law am-
plitudes (bottom) in the presence of NTAOL deformations (left) and
with NTAOL deformations removed (right). The dots in cyan repre-
sent the raw estimates. The continuous blue lines represent running
medians over centered 10◦ latitude windows. The shaded areas rep-
resent the corresponding interquartile ranges. The dashes black lines
are running medians before NTAOL corrections reported on that after

corrections.
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FIGURE 11.5: Global variability of the restricted log-likelihood differ-
ences.

Dataset ρ̄c ρ̄0 ρ̄max r [km]

With NTAOL 0.01 0.40 0.41 2470

Without NTAOL 0.02 0.27 0.29 2485

TABLE 11.1: Parameter estimates of the Gaussian model adjustment
on the mean correlograms.

models on a fictional time series with continuous observations for 8 years, and no
deterministic effect other than a linear trend. The estimated trend uncertainties with
and without NTAOL corrections are presented in Figure (11.6).

Figure (11.6) demonstrates that NTAOL corrections also results in a dramatic
reduction – that is, up to −75% – of the trend uncertainties in Alaska, in Canada,
around the Baltic Sea, in Russia and Antarctica.

11.4.2 Impact on spatial correlation

Figure (11.7) presents estimates of both the time variable correlograms and the av-
erage correlation, with and without NTAOL corrections. In Figure (11.7), NTAOL
corrections results in a reduction of both the average spatial correlation and the time
variable correlation for separation distances dl < 4000 km. The change of time cor-
relation is also visible in Figure (11.8), which presents the spatial correlation time
series for 4 separation distances, namely dl = 50 km, dl = 950 km, dl = 1950 km and
dl = 3950 km.

As in chapter (10), we approximated the average spatial correlation by a Gaus-
sian correlation function (Equation (10.27)). The adjusted parameters of the Gaus-
sian correlation function with and without NTAOL corrections are presented in Ta-
ble (11.1). Table (11.1) shows that the maximum of correlation for dl > 0 km, noted
ρmax, changed from 0.41 to 0.29, that is, a reduction of −29.3% caused by NTAOL
corrections. The range parameter of the Gaussian correlation is unaffected by the
NTAOL corrections.

Pursuing the application of the method of chapter (10), the time variable spatial
correlation has been approximated by an annually modulated Gaussian correlation
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FIGURE 11.6: Global variability of the trend uncertainties for a 8 years
long time series. Without NTAOL corrections (top). With NTAOL

corrections (bottom).



11.5. Discussion 169

Dataset ρ̂c ρ̂0 ρ̂A φ̂A [rad] ρ̂min ρ̂max r̂ [km]

With NTAOL 0.01 0.40 0.11 1.333 0.30 0.52 2469

Without NTAOL 0.02 0.27 0.05 1.19 0.24 0.34 2485

TABLE 11.2: Parameter estimates of the time variable Gaussian model
adjustment. The r̂ are reported values from Table (11.1).

function (Equation (10.28)). The adjusted parameters of the time-variable correla-
tion model, with and without NTAOL corrections, are presented in Table (11.2). Ta-
ble (11.1) shows that in addition to reducing the average spatial correlation, NTAOL
corrections also results in a reduction of annual amplitude, which changed from 0.11
to 0.05, that is, a −54.5% reduction. The estimated phases are similar in both data
sets (the maximum of correlation is still in around January). In this study, annual
correlation estimates are also likely biased by the oversampling of the USA and Eu-
rope. To get some insight into the possible spatial variability of the remaining spatial
correlation in the rest of the world, we estimated the spatial variability of the annual
oscillation of monthly standard deviations of the residuals. The global distribution
of annual amplitude and phase estimates are presented in Figure (11.9). The effect
of NTAOL corrections appears in Figure (11.9) as a clear reduction of the amplitude
standard deviation periodicity in Alaska, Canada, around the Baltic Sea, Russia and
Antarctica. Areas now showing the largest annual amplitudes seem to be that af-
fected by hydrological loading (Figure (11.2)).

11.5 Discussion

NTAOL deformations strongly influence the estimated temporal correlation of VLM
time series. Correcting for NTAOL deformations results in a significant improve-
ment in the stochastic modelling for all time series, as shown by the change in re-
stricted log-likelihood in Figure (11.5). This means that VLM observations corrected
from NTAOL are more consistent with a stochastic model combining white noise
and power-law process. In other words, NTAOL deformations introduce a stochas-
tic temporal variability in VLM times that cannot be modelled by a combination of
white noise and power-law stochastic model process. The annual oscillation of the
variance observed in Figure (11.9) is an example of such variability. Hence, without
NTAOL correction, the considered stochastic model is under-parametrized, which
can ultimately lead to biased parameter estimates. This biased estimation issue ex-
plains why white noise was systematically absent at some latitudes and why power-
law noise amplitudes were so large in chapter 10, but also in Klos et al. (2019). This
dramatic change in stochastic parameters estimates has a direct impact on trend un-
certainties. In particular, NTAOL corrections results in a −75% reduction in trend
uncertainties in Alaska, Canada, around the Baltic Sea, Russia and Antarctica (Fig-
ure (11.6)). Hence, applying NTAOL corrections could lead to clear improvements
in trend uncertainty estimates in these areas.

The spatial correlation analysis also shows that NTAOL strongly influences the
spatial correlation between time series. In particular, NTAOL corrections reduced
the average spatial correlation by −29.3% and its annual amplitude by −54.4%.
Hence, applying NTAOL corrections could benefit not only to trend estimation but
also to spatial deformation estimation.
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Although smaller than before NTAOL corrections, a time variable spatial cor-
relation is still clearly visible in Figure (11.8). Similarly, the stochastic parameters
still exhibit spatial variability in Figure (11.3). Further investigations are needed to
test whether hydrological loading can explain the remaining variability in VLM time
series.

11.6 Conclusion

The stochastic modelling of vertical land motion time series is a crucial step to obtain
both realistic trend estimates and uncertainties, but also for spatial analyses. In a
previous study, the global distribution of stochastic parameters showed a latitude
dependence specific to VLM time series.

This chapter investigated the impact of non-tidal atmospheric and oceanic load-
ing (NTAOL) on stochastic parameters and their spatial variability. We showed that
a large part of the latitude dependence previously observed is caused by NTAOL
deformations, which introduces a non-modelled variability that biases the stochastic
parameter estimation. Our results show that applying NTAOL corrections improves
the agreement between the observations and the white noise + power-law stochastic
model and reduces the uncertainty of trend estimates at high latitudes.

Besides the time correlation analysis, we also showed that NTAOL deformations
also explains part of the spatial correlation and its time variability. Hence, applying
NTAOL corrections could also be beneficial to spatial analyses.

After NTAOL corrections, both the spatial distribution of stochastic parameters
and the spatial correlation still show some residual variability. Hence, it is possible
that hydrological loading and atmospheric errors could explain part of the remain-
ing variability, especially near the equator.
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FIGURE 11.7: Spatial correlation estimates. Without NTAOL correc-
tions (top). With NTAOL corrections (bottom). The blue curve rep-
resents the mean correlogram. The dashed black lines represent the

Gaussian correlation model.
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FIGURE 11.8: Time variable spatial correlation estimates for 4 classes
of distances with NTAOL corrections. The colored lines represent the
correlation estimates with NTAOL corrections. The light grey lines
represent the correlation estimates without NTAOL corrections. The
dashed black lines represent the time variable Gaussian correlation

model.
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FIGURE 11.9: Spatial variability of the standard deviation oscillation
with NTAOL corrections. Annual amplitudes of monthly standard
deviations (top). Annual phase of monthly standard deviations. The
phase is expressed as the month corresponding to the maximum of

dispersion (bottom).
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Chapter 12

Conclusions & perspectives

Throughout this thesis, we aimed at improving the knowledge about the uncertainty
and accuracy of both sea-level observations provided by tide gauges and the vertical
land motions estimated using Global Navigation Satellite Systems (GNSS). In this
final chapter, we summarize how this work contributes to this objective, and we
draw, for each considered quantity, new research perspectives.

12.1 Tide gauge observations

12.1.1 Contributions

Our work on tide gauge observations, presented in chapters 6 and 7, mostly focused
on the calibration process, essential to provide sea-level time series stable in the long
term.

In chapter 6, we started by providing a detailed description of the link between
the sea-level differences between two collocated tide-gauges and the measurement
biases, that is, the sensor offset and the scale error of the tested gauge. By providing
an expression of sensor offset as a function of the sea-level bias parameters, we also
showed that it is possible to determine the minimum calibration experiment dura-
tion necessary to reach a desired level of precision. Based on a simple simulation,
we showed that to get a few millimetre precision on the sensor offset requires a few
days of observation, especially in locations with small tidal ranges.

Then, in chapter 7, we demonstrated that, in the presence of at least three collo-
cated tide-gauges, it is possible to obtain a more precise and a complete assessment
of the performance of each gauge, by combining all available time series instead
of comparing them by pairs. Using a Variance Component Estimation method, we
could estimate the standard deviation of each gauge and demonstrate that, in the
absence of biases, the uncertainty of each gauge is close to the 1.0 cm requirement
suggested by the Intergovernmental Oceanographic Commission (IOC).

12.1.2 Perspectives

The results presented in chapter 7 are based on a calibration experiment carried out
over a few hours and under calm conditions only. Performing calibration exper-
iments over more extended periods would certainly allow deriving more realistic
uncertainty estimates, but also enable investigating the possible dependence of tide-
gauge uncertainty with environmental conditions.
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One by-product of the combination method presented in chapter 7 is the estima-
tion of a combined solution. This combined solution has several attractive features,
namely

• it is corrected from biases,

• it automatically fills the observation gaps of some sensors,

• it is more precise than the individual observations,

• its variance accounts for the bias model used and on the number of sensors
available.

Hence, in locations where two or more collocated permanent sensors are in-
stalled, it is possible to provide more precise and complete sea-level time series
with realistic uncertainties. Thus, investigating the applicability of the combination
method in an observatory with permanent collocated tide gauges is an interesting
perspective to obtain more precise sea-level time series. Besides, given that the com-
bination method in chapter 7 is expressed as a linear model of observation equations,
one could, in addition, implement automatic discontinuity detectors using hypoth-
esis testing method presented in chapter 5. In the presence of at least three gauges,
these detectors would automatically identify the problematic gauge, which could be
convenient for the operational maintenance of the tide gauges.

12.2 GNSS-based vertical land motion estimates

12.2.1 Contributions

Our work on GNSS position time series analysis, presented in chapters 8, 9, 10 and
11, first focused on the study of the statistical methods dedicated to the determina-
tion of the stochastic model of GNSS time series, and then on the description of the
global variability of the stochastic properties of GNSS time series.

So far, studies devoted to the assessment of the time-correlated properties of
GNSS position time series using the Least-Squares Variance Component Estimation
(LS-VCE) method assumed linear stochastic models. In particular, when considering
power-law processes, the spectral index was supposed to be known. To overcome
this limitation, in chapter 8, we demonstrated that the nonlinear LS-VCE method
could also estimate the spectral index of power-law processes along with the other
parameters. Because the LS-VCE method provides unbiased and minimum vari-
ance estimates, the method could be an interesting alternative to the more widely
used Maximum Likelihood Estimation method, which is only asymptotically unbi-
ased. Besides, using the nonlinear LS-VCE method, one immediately obtains the
uncertainty of all stochastic parameters, including that of the spectral index. We also
tested the application of the nonlinear LS-VCE method to the determination of the
variance component of generalized Gauss-Markov processes. In our study, the non-
linear LS-VCE method failed to converge in most of the cases. Hence, further work
on these models is required to improve this result.

In the introduction, we mentioned that offsets, even when modelled, are a nui-
sance when estimating functional parameters, and especially for the estimation of
trends. In chapter 9, we showed that the presence of offsets was also a nuisance for
the determination of low-frequency stochastic parameters. In particular, the pres-
ence of offsets systematically biased the results expected from both the Lomb-Scargle
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periodogram and the MLE method, which incorrectly promoted generalized Gauss-
Markov models over power-law models. Although such biases can be avoided using
unbiased methods, such as the Least-Squares Harmonic Estimation periodogram or
the restricted MLE (RMLE), the presence of offsets systematically increased the un-
certainty of low-frequency variance component estimates. Hence, we showed that,
in the future, offsets may restrain the identification of the low-frequency properties
of GNSS position time series.

In complement to the study of estimation methods, in chapter 10, we inves-
tigated the spatio-temporal properties of the stochastic variability in the position
time series of over ten thousand globally distributed GNSS stations produced by the
Nevada Geodetic Laboratory. By doing so, we were able to show that the stochastic
properties of the north, east, and vertical coordinates all presented a spatial variabil-
ity at the global-scale. In addition, by performing spatial correlation analyses over
monthly windows, we demonstrated that the stochastic variability of all coordinates
was spatially correlated, but also that this correlation presented a seasonal signa-
ture. The coordinate that showed the most pronounced spatio-temporal variability
was the vertical one, which displayed a latitude dependence and hot-spots of time-
correlation near polar regions. Through the analysis of two different NGL solutions,
we evidenced that this latitude dependence was even more apparent in the solution
using improved orbits and clocks products and GNSS modelling, which suggested
the influence of non-modelled geophysical processes rather that positioning errors.

Finally, based on the loading deformation time series computed by the Geo-
ForschungsZentrum (GFZ), in chapter 11, we investigated whether the spatio-temporal
variability of the vertical coordinate could result from the influence of surface mass
loading. To this end, we applied the same methodology as in chapter 10, but on VLM
observations from which the non-tidal atmospheric and oceanic loading (NTAOL)
deformations predicted by the GFZ were removed. Our results showed that the
latitude dependence of the time-correlated properties of this coordinate was fully
explained by NTAOL effects. Besides, NTAOL deformations also explained part of
the average spatial correlation and its seasonality.

12.2.2 Perspectives

The chapter 8 was a proof of concept for the application of the nonlinear LS-VCE
method to the variance component estimation of power-law stochastic models. A
natural follow-up to this study would be to test the applicability of this method to
real GNSS time series and to find ways to obtain reliable estimates for generalized
Gauss-Markov processes. For the latter, change the formulation of the problem, or
investigating fast and robust ways to get close approximates values could lead to a
better convergence rate of the method.

In chapter 10, our results evidenced a spatial correlation with a seasonality. In-
vestigating how this spatial correlation affects the covariance of trend estimates be-
tween stations could be helpful to future scientific applications using spatial vector
fields as inputs. This could theoretically be done by simultaneously estimating all
functional parameters from all observations of a given solution. However, in prac-
tice, this strategy would be far too computationally expensive with a realistic spatio-
temporal covariance model. Therefore, other methods, for instance based on Monte-
Carlo simulations of temporally correlated spatial-fields, could be considered.
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Finally, the study in chapter 11 was restricted to the influence of NTOAL de-
formations. Now the influence of NTOAL deformations on stochastic parameters
is understood, studying the influence of hydrological loading could be useful in
understanding the remaining variability in the spectral indices and in white noise
amplitudes.
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Analyse statistique des mesures des mouvements verticaux du sol et du
niveau de la mer à la côte.

Assurer la stabilité à long-terme des mesures du niveau de la mer à la côte est un
enjeu essentiel à une gestion durable des territoires littoraux. Pour ce faire, les
scientifiques reposent essentiellement sur deux techniques de mesure complé-
mentaires : la marégraphie, qui permet de mesurer l’évolution du niveau de la
mer par rapport à la côte, et la géodésie spatiale, qui permet de mesurer les mou-
vements verticaux de la côte elle-même, par rapport au centre de la terre. Ces
techniques sont complémentaires car la correction des mouvements verticaux
estimés par géodésie permet d’obtenir des mesures géocentriques du niveau de
la mer à la cote, et donc de mieux comprendre l’origine des changements du
niveau de la mer.

Afin d’estimer et améliorer la stabilité et la qualité de ces deux sources
d’informations, cette thèse propose des développements méthodologiques
dédiés à l’estimation de la précision de chaque type d’observation, et en étudie
les sources d’erreurs potentielles.

Mots clés : mouvements verticaux du sol, marégraphes, géodésie, séries
temporelles, analyses statistiques.

Statistical analysis of vertical land motions and sea level measurements at
the coast

Ensuring the long-term stability of sea-level measurements at the coast is es-
sential for the sustainable management of coastal territories. To do this, scien-
tists mainly rely on two complementary measurement techniques: tide-gauges,
which measure changes in sea-level with respect to the coast, and space geodesy,
which allows measuring the vertical movements of the coast itself, with respect
to the centre of the Earth. These two techniques are complementary because
the correction of the vertical land motions estimated using geodetic techniques
allows estimating geocentric sea-level change at the coast, and thereby to under-
stand the origin of sea-level change better.

To estimate and improve the stability and quality of these two sources of
information, this thesis proposes methodological developments dedicated to
the estimation of the precision of each type of observation and investigates the
potential sources of errors.

Keywords: vertical land motions, tide gauges, geodesy, time series, statis-
tical analysis.
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