Obtenir De

Docteur Le Grade De

Université De L'

Montpellier De

De L'université De Montpellier

Présentée Par

Vincent Iampietro

Professeur David Delahaye

MCF David Andreu

Docteur, Ingénieur David Déharbe

Clearsy Examinateur

Professeur Marc Pouzet

Sandrine Blazy

Frédéric Boniol

Gabriel Volte

THÈSE POUR OBTENIR LE GRADE

Keywords: O : nat | S : nat → nat. Chapter 2. Preliminary notions ∆, σ, Λ n ∆, σ, Λ false ∆, σ, Λ true ∆, σ, Λ, ≤, >, ≥} ∆, σ, Λ sitpn_to_hvhdl(sitpn, id e, id a

Vérification formelle d'une méthodologie pour la conception et la production de systèmes numériques critiques

Vérification formelle d'une méthodologie pour la conception et la production de systèmes numériques critiques

Formal verification of a methodology for the design and production of safety-critical digital systems Formal verification of a methodology for the design and production of safety-critical digital systems

Résumé

La production de circuits numériques complexes est devenue impossible sans l'aide des ordinateurs. La méthodologie HILECOP (HIgh LEvel hardware COmponent Programming) assiste les ingénieurs dans la conception et la production de circuits numériques dans le contexte des systèmes critiques, i.e. systèmes dont le malfonctionnement peut résulter en la perte de vies humaines, des catastrophes naturelles, des désastres économiques, etc. À titre d'exemple, la société Neurinnov1 applique la méthodologie HILECOP pour la production de neuroprothèses, considérées comme des dispositifs médicaux hautement critiques par la loi de régulation de l'UE 2 . Dans HILECOP, les ingénieurs produisent un modèle de circuit numérique. Ils utilisent un formalisme graphique qui regroupe les diagrammes à composant et un type particulier de réseaux de Petri (RdP). Ensuite, le modèle est transformé en une représentation textuelle intermédiaire décrite en langage VHDL (Very high speed integrated circuit Hardware Description Language). Finalement, un compilateur/synthétiseur industriel génère un circuit numérique physique, i.e. un ASIC ou sur carte FPGA, depuis la représentation VHDL. Ici, l'utilisation des RdPs est liée au contexte des systèmes critiques. Les RdPs permettent la vérification de propriétés sur les modèles de circuits numériques grâce à l'application de techniques de modelchecking. Cependant, une des transformations décrite dans la méthodologie HILECOP pourrait altérer le comportement (ou sémantique) des modèles initiaux, invalidant ainsi les précédentes étapes de vérification. Le but de cette thèse est de prouver que la transformation modèle-verstexte de HILECOP, qui génère une description VHDL depuis un modèle de circuit numérique, préserve le comportement des modèles d'entrée, i.e.: pour tout modèle passé en entrée de la transformation, la description VHDL résultante se comporte de la même manière. Pour prouver cette propriété, nous nous inspirons des travaux menés sur la vérification formelle de compilateurs (notamment sur le compilateur C certifié CompCert [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]). Notre approche est celle de la vérification déductive interactive avec assistants de preuve. Dans ce contexte, les étapes pour établir la propriété de préservation de comportement de la transformation sont : (1) formaliser la sémantique d'exécution de la représentation source, (2) de la représentation cible, (3) décrire la transformation, et (4) prouver un théorème de préservation sémantique. Même en suivant ce processus clairement détaillé, les spécificités de la transformation modèle-vers-texte de HILE-COP (comparaît notamment aux compilateurs) apportent de nouvelles questions recherches et des challenges à chaque étape. Dans cette thèse, nous utilisons l'assistant à la preuve Coq pour nous accompagner tout au long du processus. Finalement, nous avons prouvé que la transformation de HILECOP préserve le comportement de tous modèles initiaux. La mécanisation complète de la preuve avec Coq est un travail en cours.

xiii

Abstract

The complexity of digital hardware circuits makes it difficult to produce them without the help of computers. The HILECOP (HIgh LEvel hardware COmponent Programming) methodology aims at the assistance of engineers in the design and production of such digital circuits. The context of production is the one of safety-critical digital systems, i.e. systems which failure could result in direct human losses, natural catastrophes, economic disasters, etc. To give an example, the Neurinnov3 company leverages the HILECOP methodology to produce highly critical medical devices known as neuroprostheses. In HILECOP, engineers rely on a graphical formalism, based on component diagrams and a particular kind of Petri nets, to produce a model of a digital circuit. Then, a computer program turns the model into an intermediary description written in VHDL (Very high speed integrated circuit Hardware Description Language). Finally, an industrial compiler/synthesizer transforms the VHDL description into a concrete physical circuit on an FPGA, or as an ASIC. The use of Petri nets permits the engineers to describe a formal model of a digital circuit. The mathematical foundations of Petri nets enable the use of model-checking techniques. Thus, proofs can be brought that the produced models verify certain soundness properties. However, even with a sound model of a circuit, one transformation step could alter the behavior of the initial model. The goal of this thesis is to bring the formal proof that the model-to-text transformation from a HILECOP high-level model to a VHDL description is semantic preserving (or behavior preserving); i.e. for all high-level model given as an input to the transformation, the resulting VHDL description behaves similarly. To perform this task, we draw our inspiration from the works pertaining to the formal verification of compilers for programming languages (especially from the certified C compiler CompCert [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]). Specifically, we are interested in proving the property of semantic preservation in the context of deductive verification with proof assistants. In this context, the steps to verify that a transformation is semantic preserving include: [START_REF]The B-Method[END_REF] the formalization of the execution semantics of the source representation, (2) of the target representation, (3) the formal description of the transformation, and (4) the proof of a corresponding semantic preservation theorem. In this thesis, these steps have been carried within the framework of the Coq proof assistant. Even though these steps are clearly set, the specificities of the HILECOP model-to-text transformation, compared to compilers for programming languages, bring some interesting research challenges. Finally, we have brought the paper proof that the HILECOP transformation is semantic preserving by demonstrating a related behavior preservation theorem. The full mechanization of the proof using the Coq proof assistant is an ongoing task.

Résumé étendu 0.1 Introduction

Pour répondre aux contraintes liées à la conception de circuits numériques critiques, et à l'augmentation constante de la complexité des systèmes, le domaine de l'Ingénierie Système à Base de Modèles (ISBM) a été développé. L'intérêt est de travailler sur des modèles de haut niveau avec un pouvoir d'expression et des qualités de compréhension et de lisibilité qui facilitent les interactions entre les acteurs de la conception du circuit (i.e, les ingénieurs). Plusieurs formalismes existent : le langage SysML [START_REF] Friedenthal | A Practical Guide to SysML: The Systems Modeling Language[END_REF], des variantes du langage C [START_REF] Yankova | Automated HDL Generation: Comparative Evaluation[END_REF], ou encore les réseaux de Petri (RdPs) [START_REF] Yakovlev | Petri Nets and Digital Hardware Design[END_REF], pour citer les plus répandus. Une fois la conception terminée, les modèles sont physiquement synthétisés en suivant un procédé manuel ou automatique. Il reste alors à prouver que la phase de transformation préserve le comportement du modèle de conception. La présente thèse s'intéresse à la vérification d'un processus d'aide à la modélisation et à la production de circuits numériques critiques : la méthodologie HILECOP (HIgh LEvel hardware COmponent Programming). Cette méthodologie est mise en oeuvre dans le cadre de la création de micro-contrôleurs intégrés à des dispositifs médicaux de type neuroprothèses. La Figure 1 en décrit les principales étapes. xvi Le concepteur de systèmes électroniques esquisse premièrement un modèle graphique de haut niveau de son circuit [START_REF]The B-Method[END_REF]. Ce modèle s'appuie sur le formalisme des diagrammes à composants, avec l'addition des RdPs pour décrire le comportement interne des parties du circuit. Dans un deuxième temps, les parties du modèle sont assemblées et la structure des composants est effacée. Le résultat obtenu est un réseau de Petri global décrivant le système modélisé (2). Des outils d'analyse exploités par la méthodologie permettent alors de vérifier certaines propriétés du modèle (caractère borné, vivacité. . .) et présentent un compte rendu au concepteur. Après plusieurs itérations du cycle analyse-correction, du code VHDL est généré à partir du modèle d'implémentation (3). Dès lors, la dernière étape de la méthodologie, qui opère la synthèse du circuit électronique depuis le code source VHDL, est prise en charge par un compilateur/synthétiseur industriel propriétaire (4).

L'objectif de la thèse est de prouver que la transformation du modèle d'implémentation en code VHDL (i.e, de 2 vers 3 dans la Figure 1) n'introduit pas de divergences de comportement. Dans cette optique, il sera nécessaire de formaliser la sémantique des modèles de haut niveau (RdP), du langage cible (VHDL), et de décrire la transformation. Ensuite, la preuve de similarité comportementale devra être établie. L'intégralité de la démarche sera mécanisée avec l'assistant à la preuve Coq [START_REF]Coq[END_REF]. Même si cette démarche a été éprouvée pour la vérification de compilateurs, son application à la conception de circuits numériques est bien moins fréquente. L'intérêt scientifique provient de la distance qui existe entre le modèle d'exécution du formalisme source (SITPN) et celui du langage cible (VHDL). Cette distance devra être prise en compte lors de la preuve de préservation de comportement.

Un formalisme de haut-niveau : les réseaux de Petri

Du fait de leur statut de modèles formels et des possibilités d'analyse qui en résultent, les RdPs ont été retenus comme modèles de haut niveau de la méthodologie HILECOP. Le but de la méthodologie étant la conception et la production de circuits numériques critiques, les modèles se doivent d'être validés par analyse formelle. Afin d'augmenter l'expressivité des modèles, les RdPs HILECOP combinent plusieurs classes connues de RdPs (présentées ci-après), mais leur particularité réside dans leur exécution synchrone. Les RdPs HILECOP sont nommés SITPNs pour Synchronously executed Interpreted Time Petri Nets with priorities.

Les SITPNs sont des RdP interprétés; des actions peuvent être associées aux places d'un réseau et des fonctions/conditions peuvent être associées aux transitions. Actions et fonctions définissent des opérations sur une ensemble de variables, ici, des signaux VHDL. Les conditions associées aux transitions sont des expressions Booléennes sur la valeur des signaux. Dans un RdP interprété, une transition est franchissable si elle est sensibilisée et que toutes les conditions qui lui sont associées sont vraies. La Figure 2 Les RdP utilisés dans HILECOP sont temporels ; une fenêtre de tir, i.e un intervalle de temps, peut être associée à une transition. Un compteur de temps est lancé lorsqu'une transition devient sensibilisée; celle-ci devient franchissable lorsque son compteur de temps a atteint l'intervalle de tir. La Figure 3 donne un exemple de RdP temporel. La valeur courante des compteurs de temps est représentée entre chevrons en dessous des intervalles temporels associés. En résumé, une transition d'un SITPN est franchissable si elle est sensibilisée, si toutes les conditions qui lui sont associées sont vraies et si son compteur de temps est dans l'intervalle défini. Contrairement au cas général, les SITPNs ont une politique de tir (i.e, une sémantique) synchrone. Fondamentalement, le tir des transitions d'un RdP est un phénomène indéterministe (si deux transitions sont franchissables au même instant, tous les ordres de tirs sont possibles), et asynchrone (dès qu'une transition est franchissable, elle peut être tirée sans attente). A contrario, l'évolution d'un SITPN est rythmée par le front montant et le front descendant d'un signal d'horloge, comme montré dans la Figure 4. Sur le front descendant (1 de la Figure 4), toutes les transitions devant être tirées sont déterminées, ce après mise à jour des conditions et intervalles de temps ; sur le front montant (2 de la Figure 4), les précédentes transitions xviii sont tirées, entraînant la mis à jour du marquage du réseau et l'exécution de fonctions. La sémantique d'évolution d'un tel réseau est synchrone et déterministe.

p 0 p 1 t 0 [2, ∞] <2> t 1 [2, 4] <1>

Clock signal

Updates the marking, the reset order values and the function execution status.

Updates the condition values, the time counter values, and the action activation status. La structure et la sémantique des SITPNs ont été formalisées dans [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF][START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF]. La sémantique est exprimée comme un système états-transitions où les transitions sont étiquetées par les évènements d'un signal d'horloge. Il y a deux évènements possibles : le front montant et le front descendant du signal. L'état d'un SITPN décrit, entre autres, le marquage courant du SITPN, la valeur des compteurs de temps et des conditions associés aux transitions, la liste des transitions à tirer. . . La sémantique des SITPNs fixe les règles de changement d'état en fonction des évènements d'horloge. Par exemple, sur le front descendant d'horloge, la liste des transitions à tirer au prochain front montant est calculée; une règle stipule qu'une aucune transition non franchissable au front descendant n'appartient à l'ensemble des transitions à tirer.

La première contribution de la thèse est l'implantation en Coq de la structure et de la sémantique des SITPNs. La sémantique a été implantée comme une relation inductive paramétrée par un SITPN, deux états (i.e, avant et après transition), et un évènement d'horloge. La relation présente deux cas de construction, un pour chaque évènement d'horloge considéré. Afin de tester notre implantation de la sémantique des SITPNs, un interprète a été conçu, i.e un programme qui simule les changements d'état d'un SITPN pour n cycles d'horloge, en partant de l'état initial du réseau. Cet interprète est prouvé correct et complet vis-à-vis de la sémantique des SITPNs pour une évolution sur un cycle d'horloge. L'intégralité de la formalisation et de la mécanisation est mise à disposition du lecteur 4 . Cependant, nous avons utilisé une autre version de l'implantation des SITPNs en Coq pour effectuer la preuve de préservation sémantique. La dernière version est plus élégante et utilisent les types dépendants 5 .

Un langage cible : VHDL

Il existe plusieurs techniques permettant la synthèse physique d'un RdP. Cependant, la technique la plus étudiée est la transformation vers la langage VHDL. Cette technique a donc xix été retenue par la méthodologie HILECOP. Le langage VHDL permet les descriptions structurelle et comportementale de circuits électroniques, à des fins de simulation ou de synthèse physique. En VHDL, un design décrit un composant électronique en termes d'interface entréesortie (l'entité) et de comportement interne (l'architecture). Le comportement d'un design s'exprime de deux manières : via l'interconnexion d'instances d'autres designs (des sous-composants), ou à l'aide de processus. La spécificité du langage VHDL tient à l'exécution concurrente des processus et des sous-composants décrivant une architecture de design. Un processus définit un bloc d'instructions séquentielles; il observe un certain nombre de signaux qui composent sa liste de sensibilité. Le changement d'état d'un signal de cette liste entraîne l'exécution du bloc d'instructions du processus. Conceptuellement, un signal VHDL représente une connexion physique sur un circuit électronique. Les signaux sont les principaux véhicules des valeurs dans les programmes VHDL.

La sémantique de VHDL est décrite dans une prose informelle dans le manuel de référence du langage (MRL). De fait, interpréter un programme VHDL, qui décrit un design de circuit, revient à simuler le design décrit. Dans le MRL, la sémantique de VHDL est donc définie sous la forme d'une boucle de simulation. La boucle de simulation spécifie la dynamique d'exécution des blocs concurrents qui composent une architecture de design, ainsi que la propagation des valeurs au travers des signaux.

La littérature propose de nombreuses formalisations de la sémantique de VHDL [START_REF] Delgado | Formal Semantics for VHDL[END_REF]. Certaines formalisations expriment la boucle de simulation telle qu'exhibée dans le MRL; d'autres choisissent de s'abstraire de cette boucle, et optent pour une formalisation alternative basée sur des modèles permettant la gestion de la concurrence et du temps (automates temporels, réseaux de Petri, logique d'intervalles temporels. . .).

La méthodologie HILECOP opère la génération d'un design VHDL dans l'optique de sa synthèse physique. Dès lors, nous ne considérons qu'une partie synthétisable du langage que nous définissons et nommons H-VHDL. De plus, les designs VHDL générés par la méthodologie HILECOP décrivent des circuits synchrones, i.e, dont l'exécution est rythmée par un signal d'horloge. La prise en compte d'une sous-partie synthétisable et du synchronisme nous a permis d'exprimer la sémantique des programmes H-VHDL en termes d'une boucle de simulation bien plus simple en comparaison de celle exprimée dans le MRL. L'Algorithme 1 décrit notre boucle spécifique de simulation pour un design H-VHDL. L'Algorithme 1 est paramétré par un design élaboré ∆ et un état de design σ e . Ces deux paramètres sont le résultat de l'élaboration du design qui va être simulé. Le paramètre cs correspond au comportement, ou, pour être précis, à la partie comportementale de l'architecture du design. C'est ce comportement qui sera exécuté au cours de la simulation. Le paramètre E p est l'environnement de simulation. Il permet l'injection de nouvelles valeurs sur les ports d'entrée du design à chaque nouveau cycle d'horloge. Le paramètre T c correspond au nombre de cycles de simulation à effectuer, c'est à dire, le front de simulation.

La première partie de l'Algorithme 1 correspond à la phase d'initialisation. Chaque processus et sous-composants appartenant à cs sont exécutés exactement une fois lors de cette phase (RunAllOnce(∆, σ e , cs)). S'ensuit une phase de stabilisation des signaux (Stabilize(∆, σ e , cs)) où seules les parties combinatoires du design sont exécutées. Ensuite, vient l'exécution de la boucle principale de simulation. La boucle principale exécute T c fois les phases d'un cycle d'horloge. Dans l'ordre, ces phases sont : (1) injection de nouvelles valeurs dans les ports d'entrée du design simulé, (2) exécution des processus séquentiels qui réagissent au front montant de l'horloge, (3) stabilisation des signaux, (4) exécution des processus séquentiels qui réagissent au front descendant de l'horloge, (5) stabilisation des signaux. Pour un cycle d'horloge, l'état stable obtenu au milieu du cycle et à la fin du cycle sont ajoutés à la trace de simulation θ. Cette trace de simulation est retournée à la fin de l'Algorithme 1.

Une formalisation de la sémantique de H-VHDL a été effectuée sous la forme d'une sémantique opérationnelle à petit pas pour la partie simulation, c.-à-d., chaque état intermédiaire est considéré dans la trace de simulation. Le corps des processus est lui interprété avec une sémantique à grands pas. La mécanisation en Coq de la syntaxe et la sémantique de H-VHDL a été réalisée. Cette sémantique s'inspire des travaux de formalisation esquissés dans [START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF][START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF]. La sémantique formalisée prend également en compte la phase d'élaboration du design, préliminaire à la simulation. L'élaboration génère l'environnement de simulation, i.e un couple ∆, σ init qui se trouve en paramètre de la boucle de simulation (voir Algorithme 1). Durant la phase d'élaboration, une vérification de type est effectué sur le code VHDL. La vérification de type xxi s'assure que la partie déclarative et la partie comportementale du design VHDL respectent certaines règles de typage définies par le MRL. Par exemple, pour une instruction d'affectation de valeur à un signal, l'expression affectée doit être du même type que le signal cible.

La transformation modèle-vers-texte de HILECOP

Comparée à la compilation de programmes (qui est un type de transformation), l'originalité de la transformation modèle-vers-texte de HILECOP provient de plusieurs critères. Premièrement, la représentation source de la transformation HILECOP n'est pas un programme écrit dans un langage de programmation. C'est un formalisme graphique, c.-à-d., celui des RdPs. La structure des modèles d'entrée est alors bien différente de celle de l'arbre syntaxique d'un programme. Par conséquent, l'expression de la transformation ne peut pas suivre la définition récursive opérant une descente dans l'arbre syntaxique du programme d'entrée, définition qui est usuelle pour les compilateurs de langage de programmation. Deuxièmement, le langage cible de la transformation HILECOP est un langage de description d'architecture de circuits, c.-à-d., VHDL. Même spécifique, ce langage reste un langage de programmation.

Nous allons illustrer la transformation modèle-vers-texte HILECOP en prenant le SITPN présenté en Figure 5 La transition t 0 est associée à l'intervalle de temps [START_REF]The B-Method[END_REF]3] et à la condition c 0 . La transition t 1 est associée à la condition c 1 , et son tir déclenche l'exécution de la fonction f 0 . L'action a 0 est activé lorsque la place p 0 est marqué, et de même pour l'action a 1 et la place p 1 .

La transformation modèle-vers-texte HILECOP génère un design H-VHDL dit de top-niveau (c.-à-d., un circuit qui n'est pas lui-même embarqué dans un autre circuit) depuis un modèle d'entrée SITPN. La Figure 6 présente la forme finale du design H-VHDL de top-niveau résultant de la transformation. La première partie de la transformation HILECOP génère les composants qui vont constituer l'architecture interne du design de top-niveau. Pour chaque place du modèle d'entrée, un composant de type place, qui correspond à une instance du design place défini au préalable, est généré. Il en va de même pour chaque transition du modèle d'entrée. Dans la Figure 6, la place p 0 donne lieu au composant place d'identifiant id p 0 , la transition t 0 au composant transition d'identifiant id t 0 , etc. Lors de cette première phase, les parties constantes des composants sont générées (en bleue sur la Figure 6). Les parties constantes comprennent les constantes génériques, qui donne les dimensions aux interfaces des composants, et les informations liées aux arcs du SITPN d'entrée (c.-à-d., poids et types) qui sont encodées dans l'interface des composants de type place.

Lors de la deuxième phase de la transformation, les interconnexions entre composants de type place et composants de type transition sont générées. Les interconnexions apparaissent en rouge dans la Figure 6. C'est grâce à ces interconnexions et aux comportements internes de chaque composant que la même sémantique d'exécution du SITPN d'entrée sera obtenue dans sa version VHDL.

La dernière phase de la transformation concerne les éléments d'interprétation contenus dans le modèle d'entrée. Pour chaque condition du modèle d'entrée, un port d'entrée primaire (c.-à-d., un port d'entrée d'un design de top-niveau) est généré. Ce port d'entrée est connecté à l'interface de certains composants de type transition (fils verts dans la Figure 6). Cela représente l'association de la condition à certaines transitions du SITPN. Pour chaque action et fonction du modèle d'entrée, un port de sortie correspondant est généré dans l'interface de sortie du design de top-niveau. Ces ports de sortie représentent l'état d'activation/exécution des actions/fonctions associées. Pour qu'une action soit activée, il faut qu'au moins une des xxiii places à laquelle l'action est associée soit marquée d'un jeton. Pour représenter ce mécanisme en VHDL, les composants de type place possèdent un port de sortie marked qui indique leur état de marquage. Lors de la transformation, tous les ports de sortie marked des composants de type place sont branchés au processus action, qui est aussi généré par la transformation. Le processus action est alors chargé d'activer les ports de sortie représentant les actions du modèle d'entrée. Le même mécanisme est mis en place pour les fonctions. Chaque composant de type transition est armé d'un port de sortie fired qui indique leur état de tir. Rappelons que dans la sémantique des SITPNs, une fonction est exécutée lorsqu'une des transitions qui lui est associée est tirée. Lors de la transformation, chaque port fired est branché au processus function, qui est aussi généré par la transformation. Le processus function va se charger d'activer les ports de sortie représentant les fonctions du modèle d'entrée. Cette activation se fait selon la valeur des ports fired des composants de type transition. L'interconnexion entre les ports marked et le processus action, et les ports fired et le processus function est représentée par les fils orange dans la Figure 6.

Un algorithme complet de la transformation a été exprimé en pseudo-langage impératif. Ensuite, l'algorithme a été implanté par une fonction écrite en langage Coq.

Preuve de préservation sémantique

Le but de cette thèse a été de prouver que la transformation modèle-vers-texte de HILECOP préserve le comportement de ses modèles d'entrée. Plus précisément, pour un modèle d'entrée de la transformation, nous voulons prouver que le design de top-niveau H-VHDL résultant se comporte de la même manière. Il est donc d'abord important de définir la relation nous permettant de comparer un état d'un SITPN avec un état d'un design de top-niveau H-VHDL. Nous avons défini une relation de similarité entre l'état d'un SITPN et l'état d'un design H-VHDL. C'est à travers cette relation de similarité que notre théorème de préservation de comportement pourra être exprimé. La relation de similarité relie les valeurs présentes dans l'état d'un SITPN aux valeurs de certains éléments, principalement les valeurs de signaux, présents dans l'état d'un design H-VHDL. Pour un état s de SITPN et un état σ de design H-VHDL, s et σ sont similaires si :

-Pour toute place p, le marquage de p est égal à la valeur du signal interne s_marking d'un composant de type place d'identifiant id p (où p et id p sont liés par la transformation).

-Pour toute transition t, la valeur du compteur de temps associé à t est égale à la valeur du signal interne s_time_counter d'un composant de type transition d'identifiant id t (où t et id t sont liés par la transformation).

-Pour toute transition t, la valeur de l'ordre de reset associé à une transition t est égale à la valeur du signal interne s_reinit_time_counter d'un composant de type transition d'identifiant id t (où t et id t sont liés par la transformation).

-Pour toute condition c, la valeur d'une condition c est égale à la valeur du port d'entrée id c représentant la condition dans le design de top-niveau H-VHDL.

xxiv -Pour toute action a, la valeur d'une action a est égale à la valeur du port de sortie id a représentant l'action dans le design de top-niveau H-VHDL.

-Pour toute fonction f , la valeur d'une fonction f est égale à la valeur du port de sortie id f représentant la fonction dans le design de top-niveau H-VHDL.

Notre théorème de préservation de comportement prend donc la forme suivante. Pour un modèle SITPN d'entrée et le design de top-niveau H-VHDL résultant de la transformation, si le SITPN renvoie la trace d'exécution θ, et le design renvoie la trace de simulation θ en s'exécutant pendant τ cycle d'horloges, alors chaque couple d'états, considéré dans les traces à un même instant temporel, vérifie la relation de similarité.

Pour prouver ce théorème, nous avons raisonné par induction sur la structure des traces d'exécution. Le lemme fondamental pour la preuve déclare qu'à états de départ similaires, un SITPN et un design H-VHDL liés par la transformation, et qui s'exécutent pendant un cycle d'horloge, arrivent en fin de cycle à deux états similaires. La Figure 7 exprime graphiquement ce lemme. Nous avons prouvé que la transformation modèle-vers-texte HILECOP vérifie bien la propriété de préservation sémantique. La preuve a été effectuée informellement sur papier. Elle s'étale sur une centaine de pages. La mécanisation de la preuve avec l'assistant de preuves Coq est en cours de réalisation.

Chapter 1 Introduction

With the use of every human-bred technology is associated a risk. Regarding the nature of the technology, and the broader system in which it is involved, the consequences of a failure can be dramatic. Thus arises the notion of the safety of systems; [START_REF] Bowen | Safety-Critical Systems, Formal Methods and Standards[END_REF] gives the following definition of safety: "Safety can [. . .] be defined as the freedom from exposure to danger, or the exemption from hurt, injury or loss."

A safety-critical system can be understood as a system for which the safety aspect is the main concern, being that important consequences, such as direct human losses, natural catastrophes, or economic disasters, could result of the failure of the system. In this thesis, conducted in the field of computer science, we are particularly interested in safety-critical computer systems. The concept of computer system encompasses both the low-level hardware-related and the more abstract software-related aspects involved in computer technologies. These days, computers pervade a considerable number of objects and technologies that pave our every-day life, including safety-critical systems. Thus, the risk associated with the use of computers in certain critical applications is real. Failures of safety-critical computer systems have happened and continue to happen; the list of critical incidents maintained by the ACM Committee on Computers and Public Policy and Peter G. Neumann ever since the mid 80s [START_REF] Peter | Illustrative Risks to the Public in the Use of Computer Systems and Related Technology[END_REF] is always growing 1 .

To ensure the safety of computer systems involved in critical domains such as avionics, railway, power plants or medicine, there exists a number of standards and norms developed by international organizations. These standards set of a number of rules and techniques to be followed for the design, the production and the validation of safety-critical computer systems. To cite some well-known standards, the EUROCAE and RTCA organisms has devised the ED-12C/DO-178C and ED-80/DO-254 industry standards for the development cycle of software and hardware computer systems involved in avionics; the CENELEC has defined the EN-50128 standard for the development of software programs for railway control and protection systems; the IEC is at the origin of the IEC-60880 standard for the development of software programs involved in the control of power plants; the USA, Canada and the EU have defined the Common Criteria (CC) referential for the evaluation of the safety of systems and software programs. In this thesis, we are interested in verifying a computer-related methodology involved in the production of safety-critical medical devices. This domain is regulated by the EU 2017/145 standard 2 that sets the rules for the development of medical devices, including how to validate the technologies involved in the production line.

The rules imposed by the standards vary with respect to the criticality of the considered systems; for instance, in the medical field, the regulation text 2017/145 of the EU, pertaining to the marketing of medical devices, sets a different requirement level whether we are considering the production of dressings (class I), or of neuroprostheses (class III). The IEC defines a SIL (Safety Integrity Level) measure that qualifies the criticality level of a system. The CC defines a level of Evaluation Assurance Level (EAL), from 1 to 7, that must be met by the evaluated systems regarding their functional requirements.

Among the mandatory procedures, prescribed by the standards, which must be followed to validate a computer system involved in a safety-critical system, there are tests (unit, functional or integration tests) or simulation (especially applied to hardware systems). However, in the case of the development of safety-critical computer systems, a particular kind of methods, called formal methods (FM), are also applied. In formal methods, a computer system is considered as a mathematical object [START_REF] Bjørner | 40 Years of Formal Methods[END_REF]. As pointed out in [START_REF] Bowen | Safety-Critical Systems, Formal Methods and Standards[END_REF], "formal methods address correctness issues", that is whether a system delivers the required service. The perks of formal methods are to set a formal mathematical framework around a computer system. This framework allows us to reason about the system and prove that the system meets some required properties. Thus, a "formal methods" framework for computer systems requires at least a formal requirement language, i.e. with a formal semantics, to express the properties that a given system must verify. The expression of these required properties is called the specification of the system. We can cite some specification formalism such as CCS [START_REF] Milner | A Calculus of Communicating Systems[END_REF], CSP [START_REF] Hoare | Communicating Sequential Processes[END_REF], Petri nets [START_REF] Adam | Kommunikation mit Automaten[END_REF] or TLA+ [START_REF] Lamport | The Temporal Logic of Actions[END_REF] to describe reactive systems (i.e. systems that continuously interact with an environment); hardware description languages such as VHDL [START_REF] Lipsett | VHDL -The Language[END_REF] and Verilog [START_REF]IEEE Standard Hardware Description Language Based on the Verilog(R) Hardware Description Language[END_REF] can also be considered as formal specification languages for hardware designs if provided with a formal semantics and embedded in a formal proof system (see for instance [START_REF] Borrione | Formal Verification of VHDL Descriptions in the Prevail Environment[END_REF]). We can also cite specification languages such as VDM [START_REF]VDM '87. VDM -A Formal Method at Work: VDM-Europe Symposium 1987[END_REF], the Z notation [2] on which is based the B language [START_REF]The B-Method[END_REF] (included in the broader B-method); but also, all the theorem provers and proof assistants that come with their own specification languages such as Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-Order Logic[END_REF], Coq [START_REF]Coq[END_REF], PVS [START_REF] Crow | A Tutorial Introduction to PVS[END_REF], etc. A FM framework must also provide a formal proof system to reason about the formal specification of the system. Some FM frameworks come with means to implement the computer system or simplified version of the system (i.e. a model) in a formal setting. This latter kind of framework enables to check if the implementation of a system always complies with its specification, i.e. the soundness of the system, and if all the aspects of the specification are met by the implementation, i.e. the completeness of the system.

Even though the purpose is always to check the correctness of systems, there exist multiple kinds of formal verification techniques. These techniques can be separated in three groups. The first group refers to the deductive verification methods; the techniques aims at establishing some proofs over a computer system in a formal proof setting; the deduction process can either be interactive (i.e. conducted by a human) or automated. The second group refers to model-checking techniques. The third group refers to the abstract interpretation of programs.

Chapter 1. Introduction [START_REF] Pnueli | The Temporal Logic of Programs[END_REF], Computation Tree Logic [START_REF] Emerson | Deciding Full Branching Time Logic[END_REF], etc.), which are handy to express time-related properties. To give examples of well-known model-checkers, we can cite the BLAST [START_REF] Henzinger | Lazy Abstraction[END_REF], CADP [START_REF] Garavel | CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF] or UP-PAAL [START_REF] Bengtsson | Uppaal in 1995[END_REF] model-checkers.

Deductive software verification

"Deductive software verification aims at formally verifying that all possible behaviors of a given program satisfy formally defined, possibly complex properties, where the verification process is based on some form of logical inference, i.e., 'deduction' " [START_REF] Hähnle | Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools[END_REF]. Deductive software verification methods are divided into two categories: interactive theorem proving methods and automated theorem proving methods.

In the philosophy of Interactive Theorem Proving (ITP), the programmer is responsible for the specification and the implementation of a computer program, but he also expresses theorems and conducts the corresponding proofs in a formal proof system. Interactive theorem proving methods are closely tied to proof assistants (cf. Isabelle/HOL, Coq, PVS, etc.), which offer the possibility to specify, implement, perform proofs over a given program in the same framework. The programmer builds the proof for a given theorem in an interactive manner, for instance assisted by a tactic language in the case of the Coq proof assistant (see Chapter 2 for an example). Each proof assistant comes with its own specification language and underlying proof system. In between the world of interactive theorem proving and automatic theorem proving, we can also cite the contract-based verification methods based on the Floyd-Hoare logic [START_REF] Floyd | Assigning Meanings to Programs[END_REF] and Dijkstra's weakest precondition calculus [START_REF] Wybe | A Discipline of Programming[END_REF] such as SPARK [START_REF] Ba Carré | SPARK: The SPADE Ada Kernel: Version 1[END_REF], ESC [START_REF] Rustan | An Extended Static Checker for Modula-3[END_REF], the B-method [START_REF]The B-Method[END_REF], Frama-C [START_REF] Kirchner | Frama-c: A Software Analysis Perspective[END_REF], or the Escher Verifier [START_REF] Carlton | Escher Verification Studio Perfect Developer and Escher C Verifier[END_REF].

The Automated Theorem Proving (ATP) methods aim at automating the deduction steps involve in the proof search. Multiple automated theorem provers exist based on different proof search techniques such as natural deduction (e.g. Isabelle [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-Order Logic[END_REF]), the tableaux method (e.g. the FaCT++ reasoner [START_REF] Tsarkov | FaCT++ Description Logic Reasoner: System Description[END_REF], Zenon [START_REF] Bonichon | Zenon: An Extensible Automated Theorem Prover Producing Checkable Proofs[END_REF]), or resolution algorithms (e.g. the E theorem prover [START_REF] Schulz | E -A Brainiac Theorem Prover[END_REF], Vampire [START_REF] Riazanov | Vampire 1.1 (System Description)[END_REF]).

In this thesis, we address the problem of the formal verification of a particular program. This program transforms an input model, which is an instance of a particular kind of Petri nets (PNs), into a program written in a Hardware Description Language (HDL). The program, the context in which it is involved, the specificities of the input model, and the target HDL, will all thoroughly be presented in this thesis. Here, we want to zoom in on the nature of the considered program that we aim to formally verified. The transformation from an instance of one formalism to another instance of another formalism is analog to the case of a compiler program. The only difference is that here an input to the transformation is not a program of a source language, but rather a model of an abstract source formalism, namely a PN model. Thus, our formal verification task amounts to the formal verification of a compiler program. The problem of compiler verification has greatly stimulated the use of formal methods in the field of software verification. Because a complete computer system is made out of complete chain of hardware, firmware and software components, the ultimate goal of the verification of such a system is to be able to prove the safety of all the layer composing it. In this system of layers, the place of compiler programs are mandatory as they are placed at the layer interfaces. Indeed, one can prove that a given program and a given hardware is safe, but what if the compilation phase from the given program to low-level version introduces errors and behavior divergences. With these considerations in mind, compiler verification is an important aspect for one that needs to certify an entire computer system.

Thus, certifying a compiler program amounts to proving that the compiler verifies certain properties; [START_REF] Patrignani | Formal Approaches to Secure Compilation: A Survey of Fully Abstract Compilation and Related Work[END_REF] presents three of them. First, one can verify that a compiler is type-preserving, also called the subject reduction property. A type-preserving compiler yields a well-typed target program given a well-typed source program. Second, one can verify that a compiler is semanticpreserving. A semantic-preserving compiler yields a target program that behaves similarly to the source program. Thirdly, one can verify that the compiler is equivalence-preserving. Given two source programs that verify a certain source-level equivalence relation, an equivalencepreserving compiler yields two corresponding target programs that verify a certain target-level equivalence relation; this target-level equivalence relation is of course somehow related to the source-level equivalence relation. In this thesis, we are interested in proving that a compiler-like transformation program is semantic-preserving.

[72] lists several techniques that exist to establish that a compiler is semantic-preserving. The first method is simply called compiler verification. Compiler verification aims at establishing the semantic-preserving property of a compiler program by proving a so-called semantic preservation theorem of the form: For all source program S, and compiler C from the language of S to a target language, S has the behavior B (written S ⇓ B) iff C(S) (i.e. the compiled version of S) has the behavior B: ∀S, C, B, S ⇓ B ⇔ C(S) ⇓ B.

Now the above form of the theorem is the strongest one, i.e. it can be proved only for a very particular kind of source and target languages. Other refined versions of this semantic preservation theorem exist depending on the nature of the source and target languages. Proving such a theorem is often performed with the help of a proof assistant as can be witnessed in the pioneering work on the CompCert compiler [START_REF] Leroy | Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof Assistant[END_REF]; thus, compiler verification falls under the hood of deductive verification methods.

The second method is called compiler validation. Compiler validation does not aim at proving a theorem stating that a given compiler program is semantic preserving for all input programs. The strategy of compiler validation is to equip the compiler program with a validator program. Each time the compiler produces a target program from a source program, the validator tries afterwards to prove that the two programs have the same behavior. To establish such a proof, the validator program often relies on model-checking or abstract interpretation techniques.

The third method is called proof-carrying compilation. In this setting, the compiler program generates alongside the target program a proof that this program conforms to some property. The generated proof must be is such a format that can be verified by a proof-checker, built in a proof assistant for instance.

Even though it is not considered as a formal method, compiler testing is also a way to validate the semantic preservation property for a given compiler program. Considering the essential part played by compiler programs regarding the production of software products, a lot of efforts has been dedicated for the generation of test suites [START_REF] Chen | A Survey of Compiler Testing[END_REF].

Chapter 1. Introduction

In the thesis, we will follow the compiler verification technique. Consequently, our aim is to prove a semantic preservation theorem over a transformation program and mechanize the process within the framework of the Coq proof assistant.

The HILECOP methodology

In this section, we present in more details the context of our work, and more specifically, the subject of our verification task, i.e. HILECOP, a methodology for the design and the production of safety-critical digital systems.

Designing safety-critical digital systems

According to Moore's law [START_REF] Moore | Cramming More Components onto Integrated Circuits[END_REF], the complexity of digital integrated circuits is always increasing. To give an example, the cut-of-the-edge AMD Epyc Rome microprocessor (2019) is made out of 50 billion of transistors. Composing billions of transistors on a wired circuit is no more a task for humans but is very suited to computers. However, engineers need to think about the design of digital circuits in a way that is understandable for humans. Therefore, they need high-level views of the circuits they are designing in order to work together and to communicate about the designs. The domain of Model-Based Systems Engineering (MBSE) [START_REF] Long | A Primer for Model-Based Systems Engineering[END_REF] proposes a framework to help engineers to design and produce digital circuits, in a well-documented, safe and reliable way. Comparable to what Model Driven Engineering (MDE) does in the world of software engineering, models are first order concepts in MBSE. A model represents a simplified view of real object. As illustrated in Figure 1.1, a MBSE process describes a way to design a digital circuit starting from a high-level view of the system. This high-level view can follow a graphical formalism such as SysML [START_REF] Friedenthal | A Practical Guide to SysML: The Systems Modeling Language[END_REF] or Petri nets [START_REF] Adam | Kommunikation mit Automaten[END_REF], or a textual one such as SystemC [START_REF] David | SystemC: From the Ground Up, Second Edition[END_REF] or VHDL [START_REF] Peter | The Designer's Guide to VHDL[END_REF]. Then, the MBSE process describes many refinement phases (the downwardgoing green arrows in Figure 1.1) during which the input model will be transformed; at each refinement phase, the model goes down in abstraction towards its final implementation as a hardware circuit. A refinement phase, which is also a transformation phase, can be performed automatically, manually, or both. Depending on the refinement phase, the full automation of the transformation can sometimes never be achieved. In that case, a manual intervention is necessary. In the case where the digital circuit being designed is a safety-critical system, an MBSE process will often employ formal models, i.e. models with a formal mathematical definition, as the design formalism. Thus, these models enable a certain extent of mathematical reasoning to prove that safety properties are met during the design V&V phase (cf. Figure 1.1).

The refinement process of the MBSE is really close to the one of the B-method [START_REF]The B-Method[END_REF] for the development of safety-critical software programs. The B-method allows the developers to specify, implement and verify a software program at an abstract level, using the B language; then, several refinement phases are performed until a concrete program is generated in the Ada or C language.

Introducing the HILECOP methodology

The INRIA CAMIN team has developed a new technology of neuroprostheses [START_REF] Guiraud | An Implantable Neuroprosthesis for Standing and Walking in Paraplegia: 5-Year Patient Follow-Up[END_REF]. Neuroprostheses are medical devices which purpose is to electro-stimulate the nerves of patients suffering from moving disabilities. The nerves are responding to the stimulation, i.e. an electric influx, in order to activate the muscles and so that the patient can recover some movements. Thus, controlling stimulation applied to the patient's nerve is a critical point of the device overall functioning. This stimulation is generated and controlled by an implanted mixed circuit (resp. analogous and digital parts), embedded in the neuroprosthesis. Therefore, the design of such digital systems becomes utterly critical as a faulty circuit could result in the injury of patients. To assist the engineers in the design and the implementation of these safety-critical digital systems, the CAMIN team came up with a process called the "HILECOP methodology" Chapter 1. Introduction [4]. This methodology follows the principles of a MBSE process and relies on several transformations going from abstract models to concrete FPGA (Field-Programmable Gate Array) or ASIC (Application-Specific Integrated Circuit) implementations through the production of VHDL code. Figure 1.2 details the global workflow of HILECOP. In Figure 1.2, Step 1 corresponds to the design phase of a digital system. At this step, the engineers produce a model of the required system; the leveraged model formalism is a graphical formalism specially designed for the methodology and based on component diagrams. Figure 1.3 provides an example of such a model. As shown in Figure 1.3, a component of the HILECOP high-level model formalism is represented by a box having an internal behavior and an interface that allows the connection to other components. The internal behavior of a component is defined with a specific kind of Petri Net (PN) model. These PNs and their distinguishing features will be thoroughly presented in Chapter 3. The component interface exposes references to the places, transitions, and signals of the internal behavior to the outside so that multiple components can be assembled. Each component has a clock and a reset input port (clk and rst) in its interface. The presence of the clk port shows that the HILECOP methodology has been built for the design of synchronous digital systems. To a certain extent, VHDL signals can be integrated to the high-level components to represent a direct wiring between components. A component behavior can also be defined through the composition of other components. In that case, we talk about a composite hardware structure.

Next, in Figure 1 The PN models used in HILECOP have been specifically devised for the design of safetycritical digital systems; a first thesis has formalized the execution semantics of these PN models [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF]. What makes them a very particular kind of models is their synchronous execution semantics. This semantics denotes from the standard asynchronous execution of PNs. The PN formalism is a formal model and therefore allows us to apply mathematical reasoning on its instances. Particularly, a PN model can be analyzed, and a proof that a given model meets some properties can be automatically produced through the direct analysis of the structure or through the use of model-checking techniques. This feature of PNs has been one of the reason of the adoption of this formalism as HILECOP's base formalism. A thesis has been dedicated to the development of new methods to analyze the HILECOP PN models [START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF]. In fact, the transformation of the abstract model is a bit different in preparation of the model analysis. The transformation adds new information to the flattened model to help the analysis. Figure 1.4 only gives the flattened version of the model produced in preparation of the next transformation into a VHDL design. The analysis phase is here to convince the engineers that they are indeed designing a safe system. The analysis process is a round trip between Step 1 and Step 2. It aims at producing a model that is conflict-free (see Section 3.2.6 for more details about the definition of a conflict), bounded, and deadlock-free, using model-checking techniques. After several iterations, the model should reach soundness and is then said to be implementation-ready.

In Figure 1.2, from Step 2 to Step 3, VHDL source code is then generated by means of an automatic model-to-text transformation. The generated code describes a VHDL design, i.e. a textual description of a hardware system, which has an interface defining input and output ports and an internal behavior called an architecture. Details about the syntax and the semantics of the VHDL language will be given in Chapter 4. For the purpose of the HILECOP methodology, two VHDL designs have been defined: the place design, which is a hardware description of a PN place (circle nodes in a PN) and the transition design, which is a hardware description of a PN transition (square nodes in a PN). Like all VHDL designs, the place and the transition designs have an input and output port interface, and their own internal behavior. A VHDL design describes a kind of "class" of hardware component. Thus, a design can be instantiated in the behavior of other designs in order to obtain more complex behaviors. As illustrated in Figure 1.5, the transformation from Step 2 to Step 3 creates a place component (or design) instance (PCI) and a transition component (or design) instance (TCI) for each place and transition of the input Petri net. Then, Chapter 1. Introduction the PCIs and TCIs are connected together through their input and output port interfaces. These connections reflect the arc connections, and thus the interactions, between the places and the transitions of the input PN model.

From Step 3 to Step 4, the VHDL compilation/synthesis and the FPGA programming, or ASIC realization, are finally performed using industrial tools. At the end of Step 4, the designed circuit is physically built on an FPGA device or an ASIC. What happens between Step 3 and Step 4 appears as a black box in the whole HILECOP methodology. Therefore, we will not consider this transformation phase, which will not be verified.

Verifying the HILECOP methodology

The use of Petri nets as a base model is one of the major advantage of the HILECOP methodology. All the analysis tools that accompany the Petri net formalism, and allow us to prove that the models meet some required properties, qualify the HILECOP methodology as a formal method for the design and implementation of safety-critical digital systems. However, even with input models that are proved to be sound, the advantages provided by the use Petri nets would be lost if one of the transformations performed during the process changes the input definition of the circuit in a way that would alter its behavior. Thus, the engineers would have specified a perfectly correct digital system but would never obtain the expected circuit on a physical device. Therefore, in order to reinforce the confidence in the HILECOP methodology, the goal of this thesis is to verify, by establishing a formal proof, that the model-to-text transformation from Step 2 to Step 3 (i.e. the framed part with red dotted lines in Figure 1.2) preserves the behavior of the input models into the generated VHDL designs. We choose to carry out this task as a deductive verification task. We aim at proving a theorem stating that the HILECOP model-to-text transformation is semantic-preserving. This theorem will be of the following form: for all PN model, input to the HILECOP transformation, the generated output VHDL design behaves similarly at execution time. Chapter 6 formally presents our behavior preservation theorem, and thus, what we mean about the similarity of execution between a PN model and a VHDL design.

One could argue that to qualify the entire HILECOP methodology, one has to verify all the transformations used in the methodology, i.e. consider also the transformation from Step 1 to Step 2, and the transformation from Step 3 to Step 4. However, we shall say that:

-The transformation from Step 1 to Step 2 changes the structure of the component-based input model. Even if the removal of the component structures induces some structural rearrangements, the behavior of the flattened model is almost similar to the one of the componentbased model. Therefore, we argue that verifying that this transformation is semantic-preserving is an easy enough task.

-The transformation from Step 3 to Step 4 is performed by industrial tools. We rely on these tools because they are widely used in the industry for the development of safety-critical systems (e.g. cadence tools in aerospace and defense domains). Moreover, the compiler/synthesizer used at this stage of the methodology is a proprietary product. Thus, we don't have any access to the code of this program. Moreover, the compiler/synthesizer performs a lot of optimizations over the input VHDL code. Even with a provided access to the code, verifying such an optimizing compiler would not possible within the time-span of this thesis.

Now that we have clarified the nature of the verification task we want to achieve, we can state our research question as follows: This task is really close to the formal verification of compilers for programming languages. Compiler verification has been widely explored, and many works are accessible in the literature [START_REF] Maulik | Compiler Verification: A Bibliography[END_REF]. The major source of inspiration of this thesis has been the work done on the CompCert certified C compiler [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]. Thus, we argue here that the scientific interest of our research comes from the comparison between the methods used to perform our verification task and the methods used to perform similar verification task in other domains such as compiler verification. Thus, we can complement our research question with the following ones:

-What are the similarities and the differences between the HILECOP transformation and other transformation situations (compilers, model transformations. . .)?

-Is there a strategy to perform the verification of the HILECOP transformation?

-How far the correspondence holds between this strategy and the strategy used in other transformation situations such as compiler verification?

To achieve the formal verification of HILECOP, our approach is similar to what has been done for the CompCert compiler. The idea is to formalize the semantics of the source and target languages, and verify that the transformation preserves the semantics of any input model. In the thesis, we propose both to perform the formalization work on "paper" and mechanize it within the Coq proof assistant [START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art: The Calculus of Inductive Constructions[END_REF].

In the case of HILECOP, some specificities of the source and target languages introduce additional technical difficulties in the process of formal verification. A first difference pertains to HILECOP's high-level formalism (the input language), which is quite abstract. This formalism depends on PNs, and thus is not a common programming language.

A second difference is about the VHDL language (the output language). Similarly to the PN models used in HILECOP, the VHDL language is not a common programming language as its purpose is both the structural and behavioral description of hardware circuits.

To further motivate the necessity of the verification task, the development of neuroprostheses by the INRIA CAMIN team is at the base of the creation of the Neurrinov company 3 . The Neurrinov company is now looking towards the industrial development of such neuroprostheses. We hope that once the verification performed on the HILECOP methodology, it will help to obtain the CE certification, related to the EU 2017/745 regulation text, necessary to qualify the neuroprostheses as eligible for the medical market.

Moreover, the HILECOP methodology comes with a working implementation based on the Eclipse framework. This software is currently used by the engineers of the Neurinnov company to design the digital systems having a part in the neuroprostheses. Figure 1.6 gives a view of the existing HILECOP software. To the purpose of formal verification, we will implement the HILECOP model-to-text transformation leveraging the functional language of the Coq proof assistant. However, after the mechanization of the proof of semantic preservation, we could use the extraction feature of the Coq proof assistant to produce the implemented transformation as an OCaml program. Then, we will be able to connect this program to the existing HILECOP software in order to use the verified version of the transformation. This thesis memoir is structured as follows.

Chapter 2 introduces all the necessary mathematical notions to understand the remainder of the memoir. Chapter 3 presents in an informal and formal way a specific kind of Petri net models; these models are the input to the HILECOP transformation program. Chapter 4 gives an informal presentation of the VHDL language. The VHDL language is the target language in which the programs generated by the HILECOP transformation are written. We also give in this chapter a formal definition of the syntax and semantics of a subset of the VHDL language that we call H-VHDL. Chapter 5 presents the algorithm of the HILECOP transformation and its implementation with the Coq proof assistant. Chapter 6 details the semantic preservation theorem expressing that the HILECOP transformation is semantic-preserving. It also gives the high-level theorems and lemmas involved in the proof of the semantic preservation theorem. Finally, Chapter 7 ends the memoir, and outlines the perspectives regarding the full completion of the task of proving that the HILECOP transformation is semantic-preserving.

The results of a literature review pertaining to the formal semantics VHDL is presented at the beginning of Chapter 4. Similarly, the results of a literature review pertaining to the task of compiler verification in the world of deductive verification methods are presented at the beginning of Chapters 5 and 6.

Chapter 2

Preliminary notions

In this chapter, we introduce the mathematical formalisms and notations used throughout this thesis to express and formalize our ideas. Section 2.1 introduces both classical first-order logic and set theory which constitute our mathematical frameworks. Section 2.2 is a reminder on induction principles. In Section 2.3, we provide the basics to understand the Coq proof assistant, which is the framework we adopt to write our programs and mechanize our proofs. This chapter is inspired by the book The Formal Semantics of Programming Languages: an Introduction [START_REF] Winskel | The Formal Semantics of Programming Languages: An Introduction[END_REF] by Glenn Winskel, the courses of the University of Cambridge on the semantics of programming languages1 by Neel Krishnaswami, the documentation of the Coq proof assistant2 , and the book Certified Programming with Dependent Types [START_REF] Chlipala | Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant[END_REF] by Adam Chlipala.

Mathematical formalisms

In this section, we introduce classical first-order logic and the Zermelo-Fraenkel (ZF) set theory which combination constitutes the base formalism for all our mathematical definitions, and our framework for the expression and the interpretation of logical formulas.

Classical first-order logic

In this section, we define the syntax of the first-order logic. Here, we already use concepts and notations that belong to set theory; set theory will be presented in the following section. For now, the reader has only to consider the intuitive definition of a set as a collection of elements, and a function as an entity that relates each element of a set to a unique element of another set.

To define the syntax of the first-order logic, let us first define:

-The set V of variables x, y, etc.

-The set S F of function symbols f, g, etc.

-The set S P of predicate symbols P, Q, etc.

Chapter 2. Preliminary notions

Let us also consider a function a ∈ S F ∪ S P → N that associates a given function or predicate symbol to an arity, i.e. the number of parameters of the function or the predicate. E.g, if f (x, y) with f ∈ S F then a(f) = 2; if P(x, y, z) with P ∈ S P then a(P) = 3. Constants are functions of arity 0, i.e. with no parameter.

The syntax of classical first-order logic [START_REF] Moschovakis | Intuitionistic Logic[END_REF] is divided between terms and formulas. We define a term of the classical first-order logic with the following BNF entry:

t ::= v | f (t 1 , . . . , t n)
This entry states that a term is either a variable v ∈ V, or a function symbol f ∈ S F of arity n with terms t 1 , . . . , t n as inputs.

We define a formula of the classical first-order logic with the following BNF entry:

F ::= ⊥ | | P(t 1 , . . . , t n) | F ∧ F | F ∨ F | F ⇒ F | F ⇔ F | ¬F | ∀x, F | ∃x, F
This entry states that a formula is either:

-⊥ (bottom), the always false formula, or (top), the always true formula.

-A predicate P(t 1 , . . . , t n) (i.e. an atomic formula) of arity n, where P ∈ S P with terms t 1 , . . . , t n as inputs.

-The composition of two subformulas with one of the following binary operators: the conjunction ∧, the disjunction ∨, the implication ⇒, the double implication ⇔.

-The composition of one subformula with the negation operator ¬.

-A subformula prefixed by the universal quantifier ∀ or the existential quantifier ∃. For instance, the formula (∀x, P(x)) denotes the atomic formula P(x) where the parameter x is a universally quantified variable of the formula. As a shorthand notation, we write ∀x, y, z. . . . to denote ∀x, ∀y, ∀z. The same stands for the existential quantifier ∃. Variables that are introduced in a logical formula by one of the previous quantifiers are called the bound variables of the formula. Variables that appear in a logical formula without being introduced by a quantifier are called free variables. For instance, in the logical formula (∀x,

P(x) ∧ Q(y)),
x is a bound variable and y is a free variable of the formula.

In this thesis, our formulas are interpreted as formulas of the classical logic [START_REF] Shapiro | Classical logic[END_REF]. Thus, during a proof, we can appeal to the law of excluded middle to reason on the truth value of a given formula.

ZF Set theory

In this thesis, we use the Zermelo-Fraenkel (ZF) set theory as the base formalism for all our mathematical definitions and proofs. In this section, we present the axioms of the ZF set theory, and the associated definitions and notations that will be used throughout this memoir. The reader will find further information on the ZF set theory in [START_REF] Moschovakis | Notes on Set Theory[END_REF].

In the ZF set theory, a set represents a group of elements called the members of the set. For every set A, we write a ∈ A to denote that the element a is a member of set A. The membership property is a basic set-theoretic property. Given a set A, we sometimes have to express a property P of the elements of A in the following form: ∀x, x ∈ A ⇒ P(x). When there is no ambiguity, we equivalently write ∀x ∈ A, P(x).

Now, let us define the axioms of the ZF set theory.

Axiom 1 (Existence).

There exists a set which has no elements, i.e. ∃A, ∀a, a / ∈ X.

Definition 1 (Empty set). We call the empty set the unique set with no element, written ∅.

Axiom 2 (Extensionality). If every element of A is an element of B, and vice-versa, then A = B, i.e. ∀A, B, x, (x

∈ A ⇔ x ∈ B) ⇒ A = B.
Axiom 3 (Schema of comprehension). Let P(x) be a property of x. For all set A, there exists a set B such that x ∈ B if and only if x ∈ A and P(x) holds. I.e. ∀A, B, x, x ∈ B ⇔ x ∈ A ∧ P(x).

Axiom 4 (Pair). For all set A and B, there exist a set C such that x ∈ C if and only if x = A or x = B. I.e. ∀A, B, ∃C, ∀x, (x

∈ C ⇔ x = A ∨ x = B).
More intuitively, Axiom 4 states that if A and B are sets then their corresponding pair C is also a set.

Axiom 5 (Union). For all set A having sets as elements, there exists a set C corresponding to the union of the elements of A. I.e. ∀A, ∃U,

x ∈ U ⇔ ∃B, B ∈ A ∧ x ∈ B. Definition 2 (Subset). A set A is a subset of set B, written A ⊆ B, if for all x if x ∈ A then x ∈ B, i.e. ∀x, x ∈ A ⇒ x ∈ B.
Definition 3 (Union). Given a set A and B, the set A ∪ B is the union of the members of A and the members of B, i.e. ∀x,

x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B.

Axiom 6 (Infinity).

There exists a set A such that the empty set belongs to A and for all x such that x ∈ A then x ∪ {x} ∈ A. I.e. ∃A,

∅ ∈ A ∧ (∀x, x ∈ A ⇒ x ∪ {x} ∈ A).
Axiom 7 (Power set). For all set A, there exists a set B such that for all set X, X ∈ B if and only if X ⊆ A. I.e. ∀A, ∃B, ∀X, (X ∈ B ⇔ X ⊆ A).

Chapter 2. Preliminary notions

Axiom 8 (Schema of replacement). Let P(x, y) be a property such that for all x there exists a unique y such that P(x, y) holds. For all set A, there exists a set B such that for all x ∈ A, there exists y ∈ B for which P(x, y) holds. I.e. (∀x, ∃y, P(x, y)) ∧ ∀A, ∃B, ∀x, (x ∈ A ⇔ ∃y, y ∈ B ∧ P(x, y)).

Definition 4 (Intersection).

Given a set A and B, the set A ∩ B denotes the set formed by the intersection of set A and B, i.e. ∀x,

x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B.
Axiom 9 (Foundation). For all non-empty set A, there exists a set B such that B ∈ A and B has no common element with A. I.e. ∀A,

A = ∅ ⇒ ∃B, B ∈ A ∧ (A ∩ B = ∅).
Based on the previous axioms, we can complement the theory with following definitions and notation.

Notation 1 (Extension).

A set is defined by extension with the enumeration of all its members. For instance, {1, 0, -1}, {a, b, c} or {p 0 , . . . , p n } are all sets defined by extension.

Notation 2 (Intension). Let P(x) be a property of x, we write {x | P(x)} the set of x for which P(x) holds. The set {x | P(x)} is defined by intension. For instance, here is the intensional definition of the set of even numbers: {n ∈ N | ∃k ∈ N, n = 2k}.

Given two sets A and B, the following sets are formed: Definition 5 (Difference). A \ B denotes the set formed by the elements of set A that are not elements of set B (the difference between set A and B), i.e. A \ B = {x | x ∈ A ∧ x / ∈ B}.

Definition 6 (Cartesian product).

A × B denotes the Cartesian product between the elements of set A and set B, i.e. the set of all ordered pairs defined by {(x,

y) | x ∈ A ∧ y ∈ B}.
We generalize the definition to build the set of n-tuples

A 0 × A 1 × • • • × A n defined by {(x 0 , (x 1 , . . . (. . . , x n))) | x 0 ∈ A 0 , x 1 ∈ A 1 , . . . , x n ∈ A n }.
It is sometimes useful to give a name to the elements of a tuple without referring to their index. In such a case, a tuple is called a record where each element, called a field, has been given an explicit name. This formalism is useful to represent rather complex data structures. For instance, say that we want to represent the set of humans by a triplet composed of the size, weight, and eye color of a given human. We can define this set as the set of triplet R × R × {green, blue, brown}. If we want to give a concrete name to the elements of the triplet, we can equivalently define such a triplet as a record, written <size, weight, eye>, where size ∈ R, weight ∈ R and eye ∈ {green, blue, brown}. Definition 7 (Disjoint union). A B denotes the set formed by the disjoint union of set A and set B. The disjoint union is obtained by adjoining an index i to the elements of A and an index j to the elements of B such that i = j. Then, the two sets of couples are joined together to build the disjoint union of A and B. For instance, consider that A = {a, b, c} and B = {a, b}. To obtain the disjoint union A B, we create the two sets A i = {(i, a), (i, b), (i, c)} and B i = {(j, a), (j, b)}, and then join the sets together s.t. A B = {(i, a), (i, b), (i, c), (j, a), (j, b)}.

When the two sets

A and B are disjoint, i.e. A ∩ B = ∅, then A B is isomorphic to A ∪ B.
To stress the fact that we are building a set from the union of two disjoint sets, we prefer to use the disjoint union operator. For instance, we write N {∞}, instead of N ∪ {∞}, to denote the set of values ranging from the set of natural numbers with the addition of the infinite value ∞. Definition 8 (Powerset). P (A) denotes the powerset of A defined by all the possible subsets formed with the elements of set A, i.e. P (A) = {X | X ⊆ Y}.

Relations and functions

Definition 9 (Relation). A binary relation R between two sets X and Y is a subset of the set of pairs X × Y, i.e. R ⊆ X × Y, or an element of the powerset P (X × Y), i.e. R ∈ P (X × Y). We write R(x, y) to denote (x, y) ∈ R. We generalize the definition to n-ary relations. An nary relation between sets X 0 , . . . , X n is a subset of the set of n-tuples

X 0 × • • • × X n , i.e. R ⊆ X 0 × • • • × X n , or an element of the powerset P (X 0 × • • • × X n), i.e. R ∈ P (X 0 × • • • × X n).
We write R(x 0 , . . . , x n) to denote (x 0 , . . . , x n) ∈ R.

Definition 10 (Partial function).

A partial function f from set X to set Y is a binary relation from X to Y verifying that ∀x ∈ X, y, y ∈ Y, (x, y) ∈ f ∧ (x, y) ∈ f ⇒ y = y , i.e. x appears at most once as the first element of a pair in f . We note f ∈ X Y to denote a partial function from X to Y. The set of the first elements of the pairs defined in f is called the domain of f . We write it dom(f) = {x | ∃y s.t.(x, y) ∈ f }. When there is no ambiguity, and given an x ∈ X and f ∈ X Y, we write x ∈ f as a shorthand to x ∈ dom(f).

Definition 11 (Application).

A total function a, or application, from X to Y is a partial function verifying that all the elements of X appear as the first element of a pair in a, i.e. for all x ∈ X, there exists y ∈ Y such that (x, y) ∈ a. In other words, the domain of an application from X to Y is equal to the set X. We note a ∈ X → Y to denote an application from X to Y.

Rule-based definition of sets

All along this memoir, we define sets (especially relations) with rule instances, also called inference rules or judgments. A rule instance can take the following forms:

Chapter 2. Preliminary notions

C or P 1 , . . . , P n C
The left form of rule instance is called an axiom. In the right form of rule instance, P 1 , . . . , P n are the premises of the rule and C is the conclusion of the rule.

Definition 12 (Rule instances). We define a set R of rule instances as a set of pairs of the form (P/C) where P is a finite (possibly empty) set of premises and C is an element called the conclusion. A pair (P/C) is a rule instance.

Rule instances define a way to build derivation trees. A derivation of C takes either the form of an axiom, i.e. C , or of a tree with C as a root and with branches composed of the derivation trees of the premises, i.e. . . .

P 1 P n C
Given a set R of rule instances, we define the set A such that if (∅/C) ∈ R then C ∈ A, and if ({P 1 , . . . , P n }/C) ∈ R, then if there exists a derivation for all premises P 1 , . . . , P n then C ∈ A. In fact, the set R of rule instances define the properties that must be verified by the elements of set A. There exists an infinity of sets A that verify the properties outlined by the rule instances R. Thus, we define the set of elements defined by the rule instances R as the least set verifying the properties outlined by the rules. For instance, the two following rules, named rules EV0 and EV2, define the set of even natural numbers:

EV0 IsEven(0) EV2 IsEven(n -2)

IsEven(n)

The rule EV0 states as an axiom that 0 is an even number; the rule EV2 states that for all natural number n, n is an even number if one can derive that fact that n -2 is an even number. Thus, we can derive from the previous rules that 4 is an even number by building the following derivation tree:

EV0 IsEven(0) EV2 IsEven(2) EV2 IsEven(4)
Starting from IsEven(4), we can apply the EV2 rule to derive IsEven(2). Then, another application of the EV2 rule leads to IsEven(0), and we can close the derivation branch by applying the EV0 rule. Here, the only branch of the tree has reached an axiom, and thus the derivation tree is finite. To further illustrate the use of rule instances in the definition of a set, let us consider the following minimal language of arithmetic expressions expressed in the Backus-Naur form:

e ::= n | id | e 0 + e 1
Here, n ranges over the set of natural numbers N; id ranges over the set string of nonempty strings (i.e. it is the set of identifiers). To evaluate the arithmetic expressions, we need a state s ∈ string N that maps each variable identifier to a natural number value. We assume that only a certain set of declared identifiers can appear in an arithmetic expression. Thus, the state is a partial function from the set of non-empty strings to the set of natural numbers. We define the evaluation relation for the arithmetic expressions with the three following rules:

NAT s n → n VAR id ∈ dom(s) s id → s(id) ADD s e 0 → n s e 1 → m s e 0 + e 1 → n + m
Here, the evaluation relation is a subset of the set of triplets (string N) × e × N. In the rule instances defining the evaluation relation, the symbol (pronounced thesis) means that the left part implies the right part, or it is involved in the evaluation of the right part. For instance, the second rule can be read: in the context of state s, id evaluates to s(id) if id ∈ dom(s). When the context is not involved in the evaluation of the syntactic constructs on the right side of the symbol, we remove the context and the from the rule instances. For example, we can define to the NAT rule by: NAT n → n as the state s in not involved in the evaluation of expressions that are natural numbers.

Note that in the VAR rule, there appears an extra statement, at the right of the judgment line, called a side condition. This is an extra condition that must hold with all the premises of the rule instance, but which does not generate a derivation tree of its own.

Finally, here is an example of a derivation tree for the evaluation of the expression x + (y + 1) in the context of state {(x, 1), (y, 2)}:

VAR x ∈ {x, y} {(x, 1), (y, 2)} x → 1 VAR y ∈ {x, y} {(x, 1), (y, 2)} y → 2 NAT 1 → 1 ADD {(x, 1), (y, 2)} y + 1 → 3 ADD {(x, 1), (y, 2)} x + (y + 1) → 4
Here again, all the branches of the derivation tree have reached axioms, and thus {(x, 1), (y, 2)} x + (y + 1) → 4 is a member of the evaluation relation of arithmetic expressions. It states that the expression x + (y + 1) evaluates to 4 in the state {(x, 1), (y, 2)}.

The evaluation relation can also include rule instances defining error cases. For instance, we can add an extra rule to the definition of the evaluation relation for arithmetic expressions; Chapter 2. Preliminary notions the following rule states that an arithmetic expression that is an unreferenced variable in state σ results in an error:

UNREFVAR id / ∈ dom(s)
s id → err

The special value err is defined to represent error cases. Thus, the evaluation relation defines a subset of triplets (string N) × e × (N {err}).

Induction principles

In the proofs presented in this thesis, we often rely on induction. Here are some reminders on induction principles to help the reader understand the proofs of Chapter 6 and Appendix D.

Well-founded induction

The most general principle of induction is called well-founded induction. From well-founded induction derives all induction principles presented afterwards.

To introduce well-founded induction, let us define a well-founded relation.

a i ≺ • • • ≺ a 1 ≺ a 0 .
For instance, the strictly less than relation < over the set of natural numbers is a wellfounded relation.

Let ≺ be a well-founded binary relation on a set A. The principle of well-founded induction on the relation ≺ says that in order to prove that a property P holds for all elements of A, it suffices to prove that P holds of any a ∈ A whenever P holds for all b ∈ A such that b ≺ a, formally:

∀a ∈ A, ([∀b ∈ A, b ≺ a ⇒ P(b)] ⇒ P(a)) ⇒ ∀a ∈ A, P(a)

Structural induction

Sometimes, reasoning by induction requires to follow the structure of a given set, i.e. the formation rules of a given set. This kind of reasoning is called structural induction.

Let us consider the formation rules of the set of natural numbers:

ZERO 0 ∈ N SUCC n ∈ N n + 1 ∈ N
These rules state that zero is a natural number and that for every natural number, its direct successor is also a natural number. Structural induction describes a way to deduce that a 2.2. Induction principles 25 property holds for the set of natural numbers, first by stating that the property holds for zero, i.e. the minimal element of the set, then by stating that if the property holds for a given number then it holds for its successor. Thus, knowing that P(0) holds, we can deduce that P(1) holds, P(2) holds, P(3) holds, etc. Following the structural induction scheme, given a property P, to prove that P holds for all natural numbers, it is sufficient to prove that:

-P holds for 0 -if P holds for a given n then it holds at n + 1 To take another example, if we want to prove that a given property P holds for the set of arithmetic expressions described in Section 2.1.3, we must prove that:

-P holds for all natural number n -P holds for all identifiers id -if P holds for all sub-expressions e 0 and e 1 , then P holds for e 0 + e 1 A proof that leverages structural induction follows the structure of the elements we are reasoning upon. In this thesis, we are using structural induction to prove that a sum expression verifies a certain property. Thus, the structural induction follows the recursive definition of the sum term, which is, for any set A, function f ∈ A → N and X ⊆ A and :

∑ x∈X f (x) =    0 if X = ∅ f (x) + ∑ x ∈X f (x) if X = {x} ∪ X
In the second computation branch, it is left implicit that set X is strict subset of X such that x / ∈ X or X = X \ {x}. Given a set A and a function f ∈ A → N, to prove that for all X ⊆ A, the property P(X, ∑ x∈X f (x)) holds, we must show that:

-∀X ⊆ A, X = ∅ ⇒ P(∅, 0) -∀X ⊆ A, x ∈ X, X ⊂ X, X = {x} ∪ X ⇒ P(X , ∑ x ∈X f (x)) ⇒ P({x} ∪ X , f (x) + ∑ x ∈X f (x))
The induction follows the structure of the function. In this specific case, structural induction is often referred to as functional induction. Let Then, given an X ⊂ X and an x ∈ X s.t. X = {x} ∪ X , and assuming that P(X , ∑

x ∈X 2x) holds (i.e. the induction hypothesis), let us show P({x} ∪ X , 2x + ∑ x ∈X 2x). Appealing to the induction hypothesis, let us take a j such that ∑

x ∈X 2x = 2j. Rewriting ∑ x ∈X 2x as 2j: ⇒∃k ∈ N s.t. 2x + 2j = 2k ⇒∃k ∈ N s.t. 2(x + j) = 2k
⇒Then, let us take k = x + j to obtain a tautology.

Rule induction

A specific kind of structural induction, called rule induction, is applied to prove properties over sets that are defined by rule instances. Let us take the evaluation relation for arithmetic expressions used in Section 2.1.3 to illustrate the principle of rule induction. To prove that a property P holds for the evaluation relation of arithmetic expressions, which is a subset of triplets (string → N) × e × N, we must prove that: -For all s ∈ string N, n ∈ N, P(s, n, n) -For all s ∈ string N, id ∈ string, if id ∈ dom(s) then P(s, id, s(id)) -For all s ∈ string N, e 0 , e 1 ∈ e, n, m ∈ N, if s e 0 → n and P(s, e 0 , n), and s e 1 → m and P(s, e 1 , m) then P(s, e 0 + e 1 , n + m)

Rule induction states that in order to prove a property over a set defined by rule instances, the property must hold in any construction case of the considered set. The idea is that if the property is preserved from the premises of rules to the conclusions then the property holds for all the elements of the set.

Let us give an application of rule induction to prove a property over the evaluation relation of arithmetic expressions. First, we define, through the three following rules, the relation ∈ r stating that a given identifier id is referenced in an arithmetic expression e, written id ∈ r e: Then, the property of Proposition 2 states that an arithmetic expression that contains references to identifiers that are not part of the current state's domain can not be evaluated. Let us define the property P as follows:

P(s, e, n) ≡ id / ∈ dom(s) ∧ id ∈ r e ⇒ ¬s e → n
Then, let us use rule induction to prove P(s, e, n).

First, we must prove P(s, n, n). Assuming id ∈ r n, there is a contradiction as no rule instance defining the relation ∈ r includes the case where the considered expression is a natural number.

Then, we must prove P(s, id , s(id)), assuming that id ∈ dom(s). We know that id ∈ r id , and thus id = id . Then, there is a contradiction between id ∈ dom(s) and id / ∈ dom(s).

Finally, we must prove P(s, e 0 + e 1 , n + m), assuming that s e 0 → n and P(s, e 0 , n), and s e 1 → m and P(s, e 1 , m). We know that id ∈ r e 0 + e 1 ; this hypothesis has either be constructed by applying Rule INRADDL or Rule INRADDR. If Rule INRADDL has been applied, then we know id ∈ r e 0 ; thus, from P(s, e 0 , n), we can deduce ¬s e 0 → n, which contradicts s e 0 → n. We can perform the proof similarly if Rule INRADDR has been applied.

The Coq proof assistant

In this section, we present the Coq proof assistant [START_REF]Coq[END_REF]. The Coq proof assistant constitutes our framework to encode the different semantics, programs and proofs involved in the verification of the HILECOP model-to-text transformation. Here, we give an overview of the different concepts underlying the Coq proof assistant. The aim is to give to the reader the tools to understand the different listings presenting Coq code in the following chapters. For a thorough presentation of the Coq proof assistant, the reader can refer to [START_REF] Chlipala | Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant[END_REF][START_REF] Paulin-Mohring | Introduction to the Coq Proof-Assistant for Practical Software Verification[END_REF][START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art: The Calculus of Inductive Constructions[END_REF].

Chapter 2. Preliminary notions

The Calculus of Inductive Constructions (CIC)

The kernel of the Coq proof assistant implements the Calculus of Inductive Constructions (CIC) [START_REF] Coquand | Inductively Defined Types[END_REF]. The CIC is a typed lambda-calculus that includes polymorphism, dependent and inductive types. Thus, the CIC permits us to define programs and types similarly; both are terms of the language. A program is a term with a certain type, and a type is also a term with a certain type. The type of a type is called a sort. We can mention three basic sorts built in the Coq proof assistant: the Prop sort which is the type of logical formulas, the Set sort which is the type of small sets, and the Type sort which encompasses the Prop and Set sorts.

The Coq proof assistant allows us to express logic formulas and to interactively build proofs of these formulas by using a high-level tactic language. The sequence of tactics that builds a proof for a given formula is called a proof script. The execution of a proof script builds a proof term. In the CIC, a logic formula can be seen as a type and a proof of this formula is an inhabitant of the type denoted by the logic formula. Thus, when building a proof term by executing a proof script, the Coq kernel checks that the proof term is of the type of the logic formula by applying typing rules 3 . For instance, let us take two logical propositions A and B. In Coq, we can declare these propositions as elements of the Prop type in the Coq top-level loop 4 :

Coq < Variables A B : Prop.
The Variables keyword adds the propositions A and B to the global environment accessed by the Coq kernel. Now, say that we want to prove the modus ponens theorem expressed with the propositions A and B, namely that A ⇒ (A ⇒ B) ⇒ B. In Coq, we can express it as follows:

Coq < Theorem modus_ponens : A → (A → B) → A.
Here, we declare the modus ponens theorem as an element of type A → (A → B) → A. The arrows represent functional arrows; in fact, A → B is a notation for the product type Πx : A.B where x is not referenced in B. According to the Curry-Howard correspondence [START_REF] William | The Formulae-as-Types Notion of Construction[END_REF], there is an equivalence between a proof term and a program. This correspondence is a consequence of the Brouwer-Heyting-Kolmogorov (BHK) interpretation of the intuitionistic logic [START_REF] Moschovakis | Intuitionistic Logic[END_REF]. Intuitionistic logic is the underlying logic built-in the Coq proof assistant. Intuitionistic logic denies the use of the law of excluded middle to perform proofs. Thus, intuitionistic logic has a constructivist approach of proofs. In the intuitionistic setting, one has to provide an explicitly built proof to demonstrate a theorem; one can not rely on pure proof by contradiction by appealing to the law of excluded middle. Thus, a proof term of the logical implication A ⇒ B is equivalent to an explicitly built program, or a function, of type A → B, i.e. a program that takes an element of type A and yields an element of type B. Thus, the type

A → (A → B) → A is a valid encoding of the formula A ⇒ (A ⇒ B) ⇒ B.
The Theorem keyword triggers the interactive proof mode through which the user will build a proof term for the corresponding formula. A simple proof term for the modus ponens theorem is a function that takes an element x of type A and a function f of type A → B as inputs, and yields an element of type B by applying the function f to parameter x, i.e. (f x). The function takes the form of the following term of the typed lambda-calculus:

λ(x : A).λ(f : A → B).(f x)
While passing this lambda-term as a proof term of the modus ponens theorem, the Coq kernel checks the well-typedness of the term by building the following derivation tree, which is a simplified version of the full derivation tree according to the typing rules of the CIC:

VAR A B : Prop[x : A, f : A → B] f : A → B VAR A B : Prop[x : A, f : A → B] x : A APP A B : Prop[x : A, f : A → B] (f x) : B LAM A B : Prop[x : A] λ(f : A → B).(f x) : (A → B) → B LAM A B : Prop[] λ(x : A).λ(f : A → B).(f x) : A → (A → B) → B
In the above derivation tree, the global and the local environment are represented at the left of the thesis symbol . The local environment is represented by square brackets. The global environment is represented at the left of the local environment. At the root of the derivation tree, the global environment contains our two previously declared logical propositions A and B, whereas the local environment is empty. The application of the LAM rule adds new entry to the local environment; the APP triggers the type-checking of the left and the right part of an application; the VAR rule checks that a term is well-typed if it is referenced as an element of the given type in the global or the local environment.

As said before, the Theorem keyword triggers the interactive proof mode. The interactive proof mode will accompany the user to an incremental building of a proof term for the current goal, i.e. the current logic formula we want to prove. Then, to prove the modus ponens theorem, the following interface is first presented to the user:

Coq < Theorem modus_ponens : A → (A → B) → B. 1 subgoal ============================ A → (A → B) → B
The term under the horizontal bar represents the current goal to prove, i.e. the current formula for which we are building a proof term. Above the horizontal bar are referenced the variables constituting the local environment. At the beginning of the proof, the local environment is empty -and so is the local environemnt at the root of the derivation tree presented above. To build a proof term in interactive mode, the user will then invoke commands called tactics. Each tactic invocation corresponds to the invocation of a typing rule of the CIC performed by the Coq kernel. To build a proof term for the modus ponens theorem, the first thing to do is to invoke the LAM rule; this is done by appealing to the intros tactic.

Coq < intros x. 1 subgoal x : A ============================ (A → B) → B

Chapter 2. Preliminary notions

Here, the user passes to the system the name of the variable that will be introduced in the local environment by the LAM rule, i.e. the variable x. Then, we repeat the operation, applying the LAM rule a second time to introduce an element of type A → B in the environment.

The nat type is of the Set sort (remember that the type of a type is called a sort). The nat type is defined through two constructors, represented by the pipe-separated entries. The O constructor states that zero is a natural number. The S constructor takes a natural number as input and yields the successor to this natural number. This corresponds to the structural definition of natural numbers in Peano's arithmetic. Thus, in this setting, the number 2 is represented by (S (S O)) , the number 3 by (S (S (S O)) , etc. The result of the evaluation of an inductive type, declared through the Inductive keyword, is the addition of this type and each of its constructors to the global environment accessible by the Coq kernel. Also, a corresponding structural induction principle is generated at the evaluation of an inductive type definition. For instance, the nat_ind induction principle is generated at the evaluation of the nat type. It is a proof term of the logical formula denoting the structural induction principle over the nat type, i.e.:

forall P : nat → Prop, P 0 → (forall n : nat, P n → P (S n)) → forall n : nat, P n Then, the induction principle nat_ind can be used to perform structural induction in a proof involving natural numbers. For instance, say that we want to prove the following theorem stating that a natural number elevated at the power 2 is always greater than or equal to itself. We can write as follows:

Coq < Theorem ge_pow2 : forall n : nat, n <= n * n. 1 subgoal ============================ forall n : nat, n <= n * n
Then, we can use the nat_ind induction principle to prove such a theorem. Most conveniently, the built-in induction tactic chooses the appropriate induction principle based on the type of its argument. Thus, the following command invokes the nat_ind induction principle over the universally quantified variable n:

Coq < induction n. 2 subgoals ============================ 0 <= 0 * 0 subgoal 2 is: S n <= S n * S n
The result of the invocation of the induction tactic is a branching in the proof tree. Thus, the system indicates that two subgoals must be proved to complete the proof of the gt_pow2 theorem. These two subgoals correspond to the proof of P(0) and the proof that assuming P(n) we can show P(n + 1), as agreed with structural induction. Here, the property P is defined by P(n) ≡ n ≤ n × n. We can use the built-in lia tactic, defined in the Lia module of the Coq standard library, to solve the two remaining subgoals. The lia tactic implements a whole decision procedure to prove theorems involving systems of equalities and inequalities over the set of natural numbers. We can combine the induction tactic with the lia tactic using the semicolon operator. Then, the lia tactic is applied to all the subgoals generated by the induction tactic.

Chapter 2. Preliminary notions

Coq < induction n; lia. No more subgoals. Coq < Qed.

The Coq proof assistant permits us to define proof tactics, or procedures, in order to automatize some proof tasks. At the top-level of the Coq proof assistant, the Ltac and Ltac2 languages are the supports for the definition of this kind of tactics. These languages allow us to compose sequences of tactics, to perform pattern matching over the local environment and the current goal in interactive proof mode, to define loops or recursive tactics, etc. Even though the Ltac and Ltac2 languages offer a lot of possibilities, the user willing to implement complex proof tactics must turn to the OCaml language which the implementation, and thus meta-language, of the Coq proof assistant. For instance, the lia tactic is implemented partly with the Ltac language and as a OCaml program.

Leveraging the definition of inductive types, the syntactic constructs of programming languages are also easily implemented. Here is the implementation of the syntax of arithmetic expressions presented in the previous section: Each constructor corresponds to a construction case in the definition of arithmetic expressions in the Backus-Naur form. The Coq system also generates the induction principle following the structure of arithmetic expressions (thus, a structural induction principle). The induction principle is a proof term of the following logical formula:

forall P : e → Prop,
(forall n : nat, P (enat n)) → (forall id : string, P (eid id)) → (forall e0 : e, P e0 → forall e1 : e, P e1 → P (eadd e0 e1)) → forall e : e, P e

The evaluation relation for arithmetic expressions is defined similarly:

Inductive evale (s : string → option nat) : e → nat → Prop := | evalnat : forall n : nat, evale s (enat n) n | evalid : forall (id : string) (n : nat), s id = Some n → evale s (eid id) n | evaladd : forall (e0 e1 : e) (n m : nat), evale s e0 n → evale s e1 m → evale s (eadd e0 e1) (n + m).
In the above listing, the state that yields the value of identifiers present in an arithmetic expression is a named parameter of the evale relation, i.e. the s parameter. Parameters which are not varying from one construction case to another can be passed as named parameters while defining an inductive type. The state s takes a string identifier as input and yields an option to a natural number. As so, the option type permits the definition of partial functions. The identifiers that belong to the domain of state s will be associated with Some natural number, whereas the unreferenced identifiers will be associated with the None value of the option type. The Some and the None constructors are the two constructors of the option type which is defined in Coq as follows:

Inductive option (A : Type) :

Type := | Some : A → option A | None : option A.
The option type is parameterized by a type A that will set the type of elements passed to the Some constructor. As so, the option type is an example of generic type.

Functional programming

As told in the presentation of the CIC, the Coq proof assistant permits to write functional programs, including the definition of recursive functions. The definition of a recursive function is performed with Fixpoint keyword. Here is an example of recursive function defined in Coq. The pow function takes two natural numbers a and n as inputs and yields a to the power n. In the body of the pow function, the match construct performs pattern-matching over the structure of the input n. The input n is an element of the nat type, and thus it could either have been built with the O constructor or as the successor of another element of the nat type, i.e. with the S constructor. The match construct enumerates all the possible construction cases for the given input. Each construction case leads to a pipe-separated entry; for each entry, the structure of the input appears at the left of the arrow, and the result returned appears at the right the arrow. In the above example, 1 is returned if n equals O, and the result of the multiplication of a with the recursive call pow a m is returned if n is the successor of a certain m. In that case, we have m = n -1, and then the recursive call pow a m can be read as pow a (n -1).

When declaring a recursive function, the user must specify which parameter is structurally decrementing through the recursive call. This is performed through { struct id} annotation, where id denotes one parameter of the declared function. This information permits to the Coq kernel to generate the fixpoint equation for the function, thus proving that the function is always terminating. For consistency reasons, all Coq functions must terminate and must be total. A user willing to implement a non-terminating function equivalently define the function as an inductive type where termination limitations do not apply. For instance, let us say that we want to implement this following ill-formed version of the pow function:

Fixpoint pow (a n : nat) { struct n} : nat := match n with | O ⇒ 1
The Pow relation takes three parameters of the nat type and projects a value in the Prop type (meaning that the Pow relation is a predicate). The third nat parameter corresponds to the result of the computation of a n given that the two first parameters are a and n. Determining the result of the computation of a n is equivalent to finding a natural number m that verifies that Pow a n m holds. In intuitionistic logic, finding a proof of the existence of a m such that Pow a n m holds amounts to explicitly building such a m. Here, one can notice that when the second parameter passed to the Pow relation is greater than zero, the formation rules of the Pow relation will not permit us to find a result for the computation. Thus, a tactic implementing a proof search for a m such that Pow a n m holds when n > 0 will never terminate.

Dependent types

In the listings that the reader will find in the following chapters, and also in the code repository associated with this thesis, some data structures are dependently-typed structures. Thus, we introduce here the notion of dependent type and how it is expressed with the Coq proof assistant.

A type is said to be dependent when its expression depends on one or more elements of other types. To give an example of dependent type, let us take the definition of polymorphic lists that carry their own length. In Coq, these lists are defined as follows:

Inductive listn (A : Type) : nat → Set := | niln : list A 0 | consn : forall n : nat, A → listn A n → listn A (S n).
The listn takes the type A of its elements as its first parameter, then its second parameter is an element of the nat type which represent the actual length of the list. Note that the first parameter, i.e. the A parameter, of the listn type alone is not sufficient to qualify listn as a dependent type. The A parameter is the expression of the polymorphism of the elements of the list involved in generic programming. Polymorphism relates to the fact that the A type is general enough to accept multiple types as the type of the list's elements. The niln constructor of the listn, i.e. the constructor of the empty list, has the type of lists of length 0. The consn constructor permits to add a new element at the head of an existing tail list to build a new list. Thus, the type of the resulting list is the type of lists of length n + 1, where n is the length of the tail list.

To further illustrate the use of dependent types, let us say that we want to write a function that takes two natural numbers n and m as inputs, and yields nm only if n ≥ m. Thus, the function takes two parameters n and m, and a third parameter which is the proof that n ≥ m. This third parameter depends on the two previous parameters, and thus the function is said to be a dependently-typed function. In Coq, it would be written as follows:

Definition my_sub (n m : nat) (pf : m <= n) : nat := n -m.
Even though, in its definition body, the my_sub function simply appeals to the Coq builtin subtraction function, passing a proof that m is less than or equal to n adds a constraint to the computation of the subtraction. One can see how dependent types can help check that the parameters of programs meet some properties at definition time. Constraining the type of parameters during the definition of programs reduces the proof efforts afterwards, but adds programming complexities at the moment of the definition. Thus, there is a trade-off between using dependent types to constraint the structures and programs at the moment of their definition, or letting the structures and programs as constraint loose as possible at the cost of having to prove much more properties afterwards.

To conclude the subject of dependent types, we often use sigma types to define a type of elements that meet a given property. Sigma types are constructivist versions, coming from the intuitionistic logic, of existential logic formulas. A sigma type expresses the dependence between a parameter and a proof of a given property that possibly depends on another parameter. As so, sigma types are useful to express intentional sets (cf. Section 2.1.2). In the Coq standard library, the definition of the sigma type is as follows:

Inductive sig (A:Type) (P: A → Prop) : Type := exist : forall x:A, P x → sig P.

The sig type only constructor takes an element x of type A along with a proof that x meets a certain property P. For instance, if we want to define the type of natural numbers that are strictly greater than zero, we can do it as follows:

Definition natstar := sig nat (fun n : nat ⇒ n > 0).

The property passed as the second argument of the sig type is expressed by a lambda abstraction (denoted by the fun keyword) that takes a parameter n of type nat and returns a proof that n is strictly greater than zero. The Coq standard library defines a notation to write sigma types as intensional sets. Thus, we can write the natstar type as follows:

Definition natstar2 := { x : nat | x > 0}.
We can leverage sigma types to rewrite the my_sub function presented above. In the following version, the type of the m parameter carries the proof that m is less than or equal to n:

Definition my_sub2 (n : nat) (m : { x : nat | x <= n }) : nat := n -(proj1_sig m).
Here, we can no longer directly subtract n with m as the type of m is no longer nat but { x : nat | x <= n } . We have to extract the first part of the m parameter with the help of the proj1_sig function. The first part of an element of the { x : nat | x <= n } type corresponds to the natural number x verifying the following property x <= n, and the second part corresponds to the proof that x verifies the property.

Chapter 3

Implementation of the HILECOP Petri nets

In this chapter, we present the input formalism of our transformation function: Synchronously executed Interpreted Time Petri Nets with priorities (SITPNs). The formalization of the SITPN structure and semantics is mainly the result of two former Ph.D. theses [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF][START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF]. However, we contributed to the simplification and clarification of both the definition of the SITPN structure and its semantics. Moreover, we added complementary definitions that are required to express the semantic preservation theorem about the HILECOP model-to-text transformation (cf. Chapter 6). Our main contribution in this part lies in the implementation of the SITPN structure and semantics with the Coq proof assistant. This chapter is structured as follows: Section 3.1 is a reminder on the PN formalism and also gives an informal presentation of SITPNs; Section 3.2 provides the formal definitions of the SITPN structure and semantics; Section 3.3 deals with the implementation of SITPNs with the Coq proof assistant.

Informal presentation of Synchronously executed Petri nets

Here, fundamentals on the Petri net formalism are outlined, and certain classes of Petri nets are described more precisely. Then, the specificities of the Petri nets used to design the behavior of electronic components in the HILECOP methodology are presented. For more information on the topic of Petri nets, the reader can refer to [START_REF] David | Petri Nets for Modeling of Dynamic Systems: A Survey[END_REF], [START_REF] Murata | Petri Nets: Properties, Analysis and Applications[END_REF], or [START_REF] Diaz | Les Réseaux de Petri: Modèles Fondamentaux[END_REF].

Preliminary notions on Petri nets

Petri nets (PNs), invented by C. A. Petri [START_REF] Adam | Kommunikation mit Automaten[END_REF], have been designed to model a broad range of dynamic systems: resource sharing between concurrent processes [START_REF] David | Petri Nets for Modeling of Dynamic Systems: A Survey[END_REF], behavior of agents in multi-agent systems [START_REF] Celaya | Modeling and Analysis of Multi-Agent Systems Using Petri Nets[END_REF], behavior of digital components [START_REF] Yakovlev | Petri Nets and Digital Hardware Design[END_REF]. A Petri net is a directed graph composed of two types of node: place nodes (circles) and transition nodes (squares or lines). As shown in Figure 3.1, place nodes usually represent a part of the state of the modelled system, here, the states of two computer processes and a semaphore; transition nodes usually refer to events triggering the system evolution (or state changing). In Figure 3.1, places p 0 , p 3 and sem are marked with tokens, represented by filled black circles. This means that places p 0 , p 3 and sem are currently active. The distribution of tokens over places is called the marking of the Chapter 3. Implementation of the HILECOP Petri nets net. The marking of a Petri net reflects the overall state of the modelled system at a certain moment in its activity cycle. We will see later that there exists a lot of different classes of PNs. Figure 3

Edges

In a Petri net, directed edges link together places and transitions. Places cannot be linked to other places, and the same stands for transitions. There are two kinds of edges, pre or incoming edges, going from a place to a transition, and post or outcoming edges, going from a transition to a place. Places linked to a transition t by incoming (resp. outcoming) edges will be referred to as the input places (resp. output places) of t. The same stands for the transitions linked to a place p. For instance, in Figure 3.1, p 0 and sem are the input places of t 0 , and p 1 is the output place of t 0 ; t 1 and t 3 are the input transitions of place sem, and t 0 and t 2 are the output transitions of sem. Some weight -a natural number-is associated to the edges of a Petri net. If no label appears on the edge then one is the default weight. Petri nets are said to be generalized when the weight of the edges are possibly greater than one.

Transition firing

In a Petri net, the marking evolves based on a token consumption-production system. Transitions consume tokens from their input places, and produce tokens to their output places. This whole process is called transition firing. In order to be firable, a transition must be sensitized (or enabled), meaning that the number of tokens in each of its input places must be equal or greater than the weight of the associated incoming edges. For instance, in Figure 3.1, the transition t 0 is sensitized because the weight of the arcs (p 0 , t 0) and (sem, t 0) is of one (default value), and place p 0 and sem are marked with one token. As a counter example, transition t 3 is not sensitized because its input place p 2 holds no token, where at least one token is expected for t 3 to be sensitized. Depending on the class of PNs that is considered, other parameters affect the firability of transitions (see interpreted Petri nets, time Petri nets and Section 3.1.2). When a sensitized transition is fired, tokens are retrieved from their input places (as many tokens as the weight of the input arcs) and produced in their output places (as many tokens as the weight of the output arcs). This process represents the occurrence of an event (denoted by the transition) triggering the evolution of the system from one state to another. Figure 3 In Figure 3.2, the tokens in the input places of t 0 , i.e. places p 0 and sem have been consumed, and one token has been produced in the output place p 1 . The current marking indicates that the task "Treatment 1" is being performed (place p 1 is active).

In Figure 3.1, transition t 0 and t 2 are enabled at the same time. However, the standard semantics of PNs is such that only one transition can be fired in that case. Either t 0 consumes the token in place sem or t 2 does, but never both. Thus, the transition firing process in the standard PN semantics is a nondeterministic process. From the marking of Figure 3.1, two markings are reachable: the marking resulting of the firing of transition t 0 and the one resulting of the firing of transition t 2 . Also, in standard PNs, the transition firing process is asynchronous; as soon as a transition is enabled, the transition firing process can be triggered.

Extended Petri nets

The class of extended Petri nets introduces the inhibitor and test edges. As shown in Figure 3 The particularity of the inhibitor and test edges is that they are not consuming tokens in input places after the firing of a transition. They are just testing the number of tokens in incoming places to determine if the transition is enabled. Inhibitor arcs ensure that the number of tokens in input places is strictly lower than their weights; test arcs ensure that the number of tokens in incoming places is equal or greater than their weights. Therefore, on the left side of Figure 3.3, transition t 0 is sensitized because there is strictly less than one token in place p 0 and strictly less than two tokens in place p 1 . On the right side of Figure 3.3, transition t 0 is sensitized because there is at least one token in place p 0 and three tokens in place p 1 .

Interpreted Petri nets

As stated in [START_REF] David | Petri Nets for Modeling of Dynamic Systems: A Survey[END_REF], Interpreted Petri Nets (IPN) "can be applied to various interpretations according to the use wished to be made of it". In its general definition, an IPN is associated with a finite set of variables V, a finite set of operations O, and a finite set of conditions C. Operations of the O set are associated with places and triggered when the places become marked. The execution of operations affects the value of the variables, and the value of conditions depends on Boolean expressions computed upon the variables. Conditions are associated with transitions and become involved in the firing process. Thus, in an IPN, a transition is firable if:

-It is enabled.

-All its associated conditions are true.

Among other applications, IPNs are handy to model the behavior of hardware controllers. Thus, interpretation aspects have been naturally introduced to the HILECOP high-level models, which are models of hardware systems. The HILECOP version of IPNs refines the concepts of the general definition. In this version, the set of variables corresponds to the set of VHDL signals that are handled by the model; a signal can be an input port, an output port or an internal signal of the modeled hardware circuit. The operations are separated in two kinds, namely: actions and functions. Actions (or continuous operations) are associated to the places; all the actions associated to a place p are activated as long as p is marked (i.e. as long as p holds a token). Functions (or discrete operations) are associated to the transitions; when a transition t is fired, all functions associated to t are executed once.

0 a 0 p 1 p 2 a 1 t 0 f 0 c 0 t 1 c 1 c 0 : i > 10 • C f 0 : set temperature(o 1 ,s) c 1 : i ≤ 10

Chapter 3. Implementation of the HILECOP Petri nets

In Listing 3.1, the set_temperature procedure declares two parameters: the tmp signal which is a write-only signal of type integer, and the flag signal which is a both readable and writable signal of the Boolean type (std_logic in VHDL). The set_temperature procedure checks the value of the flag signal and assigns a new value to the tmp and flag signals accordingly. The ⇐ operator is the assignment operator for signals in the VHDL syntax (more on that in Chapter 4).

Therefore, to compute the evolution of an IPN, we must be able to interpret the content of operations associated with actions and functions, and also to evaluate the Boolean expressions associated with conditions. This implies the definition of interpretation rules that give an execution semantics to operations and expressions. For now, we consider a simplified version of the interpretation that permits us not to bother with the semantics of operations and Boolean expressions. In fact, we do not consider the set of VHDL signals as a part of the HILE-COP PN structure; thus, we are not interested in the representation of the Boolean expressions associated with conditions, nor in the VHDL procedures that implement functions and actions. Regarding conditions, we consider that they directly receive their value from an environment that would have computed in our stead the values of the Boolean expressions. Thus, we no more have to consider the Boolean expressions associated with conditions, and only have to rely on the values given by the environment. Regarding actions and functions, we are only interested in the fact that a given action/function is activated/executed but no more in actually executing the associated operation.

Time Petri nets

In a time Petri net (TPN), time intervals are associated to transitions. The goal is to constrain the firing of a transition to a certain time window. As shown in Figure 3.5, time intervals are of the form [a, b], where a ∈ N * and b ∈ N * {∞}. Other definitions of time intervals exist for TPNs (e.g. with real numbers), but here we will only consider the latter definition. In Figure 3.5, time counters are represented in red between diamond brackets. The current value of time counters is part of the state of the TPN, along with its current marking, whereas time intervals are part of the static structure of the TPN. For each sensitized transition associated with a time interval, time counters are incremented at a certain time step, previously defined by the designer. For instance, in the case of SITPNs, i.e. Petri nets used in the HILECOP methodology, the reference time step for the increment of time counters is the clock cycle.

p 0 p 1 t 0 [2, ∞] <2> t 1 [2, 4] <1>
When a transition associated with a time interval is fired or disabled, a reset order is sent to the transition to set its time counter to zero. In time Petri nets, a transition is firable if:

-It is enabled.

-Its time counter value is within its time interval.

For instance, in Figure 3.5, only transition t 0 is firable. Moreover, there are several possible firing policies for TPNs. Here, we will only consider the imperative firing policy: as soon as a time counter reaches the lower bound of a time interval, the associated transition must be fired if all the other firability conditions are verified.

Petri nets with priorities

Two transitions are in structural conflict if they have a common input place connected through a basic arc (i.e. neither inhibitor nor test arc). When two transitions in structural conflict are firable at the same time and if the firing of one of the transitions disables the other, then, the conflict becomes effective. In a Petri net with priorities, it is possible to specify a firing priority in the case where the conflict between two transitions becomes effective. In that case, the transition with the highest firing priority will always be fired first.

Particularities of SITPNs

Here, we will informally present the specificities of the Petri nets describing the internal behavior of the HILECOP high-level model components. These Petri nets are called: Synchronously executed, extended, generalized, Interpreted, Time Petri Nets with priorities or SITPNs. SIT-PNs are a combination of multiple classes of PNs, namely: extended PNs, generalized PNs, interpreted PNs, time PNs and PNs with priorities. These classes were presented in the above section. We will now talk about another aspect of SITPNs that constitutes the originality of the formalism compared to the standard PN semantics: its synchronous execution. The class of interpreted Petri nets increases the expressiveness of the HILECOP high-level models. However, to ensure the safe execution of functions after the synthesis of the designed circuit, the whole system must be synchronized with a clock signal [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF]. As a consequence, a clock signal also regulates the evolution of SITPNS (i.e. it is a part of their semantics). The evolution of a SITPN is synchronized with two clock events: the rising edge and the falling edge of the signal. Figure 3.7 depicts the process of state evolution, following the clock signal.

Clock signal

Updates the marking, the reset order values and the function execution status.

Updates the condition values, the time counter values, and the action activation status. Considering the different classes of PNs that define SITPNs, the state of a SITPN is characterized by its marking, the value of time counters, the reset orders assigned to time counters, the execution/activation status of actions/functions (Boolean values), and the value of conditions (also Boolean). As shown in figure 3.7, the state evolution process of a SITPN is divided into two steps. The rising edge of the clock signal triggers the marking update, which is the consequence of transition firing; all transitions that have been fired or disabled by the firing process receive reset orders; all functions associated with fired transitions are executed. Then, on the falling edge of the clock signal, the environment provides a new value to each condition. The falling edge triggers the evolution of the time counter values; values are incremented, reset, or stalling in the case where a time counter has reached the upper bound of its associated time interval (see the following remark on locked time counters). Finally, all actions associated with marked places are activated. Figure 3.8 gives an example of the evolution of the state of a given SITPN through one clock cycle. The aim of this figure and the explanation that follows is to give some hints to the reader about the semantics of SITPNs before giving its formal definition in Section 3.2.4.

p 0 t 0 [2, 4] <2> p 1 t 1 a 0 a 1 c 0 f 0 c 1 1 p 0 t 0 [2, 4] <2> p 1 t 1 a 0 a 1 c 0 f 0 c 1 2 p 0 t 0 [2, 4] <1> p 1 t 1 a 0 a 1 c 0 f 0 c 1 3 ↓ ↑ ↓ ↑ FIGURE 3
.8: Evolution of a SITPN over one clock cycle. Conditions appear in green when their value is true and in red otherwise; actions and functions appear in green when they are activated/executed and in red otherwise; time counters appear in red and between diamond brackets; time counters appear in blue when they receive reset orders.

From Step 1 to Step 2, the rising edge of the clock signal triggers the SITPN state evolution. Here, transition t 0 is fired. At Step 1, transition t 0 gathers all the necessary conditions to trigger the firing process, namely:

t 0 is enabled by the current marking.

-Condition c 0 is true (appears in green).

-The value of t 0 's time counter is within the associated time interval (2 ∈ [2,4]).

As a consequence, one token is consumed in place p 0 and one token is produced in place p 1 . Also, function f 0 is executed at the occurrence of the rising edge of the clock signal, and thus, f 0 appears in green at Step 2. Due to the firing of t 0 at the rising edge, a reset order is sent to the time counter of t 0 , and it appears in blue at Step 2. From Step 2 to Step 3, the falling edge updates the action activation status: a 0 stays activated as place p 0 is still marked; a 1 becomes newly activated as p 1 is marked. The value of time counters is updated: t 0 's time counter is set to zero as the transition previously received a reset order. However, as t 0 is still enabled by the new marking, its time counter is incremented. Thus, the resulting time counter value at Step 3 is of one (i.e. result of reset plus increment). Also, the environment provides a new value to each condition. As a consequence, condition c 0 takes the value false and condition c 1 keeps the same value.

A remark on priorities

The semantics of synchronous execution is that all transitions are fired at the same time. In Figure 3.9, transitions t 0 and t 1 are both sensitized by place p 0 , and consequently are both fired at the same time. The system acts as if two tokens were available in place p 0 , one for the firing of t 0 and another for the firing of t 1 .

p 0 t 0 t 1 p 0 t 0 t 1 ↑ FIGURE 3
.9: Double consumption of one token in a SITPN. On the left side, the current marking before the firing of t 0 and t 1 ; on the right side, the marking resulting of the firing of t 0 and t 1 . The arrow indicates the occurrence of a rising edge that triggers the firing process.

In the context of a SITPN, a branching like the one of Figure 3.8, normally interpreted as a disjunctive branching, takes the semantics of a conjunctive branching when no priority are prescribed between the conflicting transitions. To avoid the phenomenon of "double consumption" of tokens, we enforce the resolution of any structural conflict by means of mutual exclusion or through the application of priorities. This policy about the resolution of structural conflicts is part of the definition of a well-defined SITPN presented in Section 3.2.6. The property of well-definition is mandatory to produce safe models of digital systems.

When a structural conflict between transitions is solved with priorities, the firing process follows a slightly different mechanism. As illustrated in Figure 3.10, to determine which transitions of t 0 , t 1 and t 2 must be fired, a residual marking is computed by following the priority order. For each transition of the group t 0 , t 1 and t 2 , the residual marking represents the remaining tokens in p 0 after the firing of transitions with a higher firing priority. Thus, in the semantics of SITPNs, we add an extra condition to the firing of a transition: to be fired, a transition must be:

-enabled by the current marking -must have all its conditions valuated to true -must have its time counter within its time interval and must be enabled by the residual marking.

The computation of the residual marking only involves the consumption phase of the firing process; tokens are withdrawn from places, but none are generated.

p 0 t 0 t 2 t 1 c 0 1 p 0 t 0 t 2 t 1 c 0 2 p 0 t 0 t 2 t 1 c 0 3 FIGURE 3
.10: Computation of the residual marking for a group of conflicting transitions. At 1 (resp. 2 and 3), place p 0 holds the residual marking for transition t 0 (resp. t 1 and t 2). Condition c 0 is in red to indicate that its current value is false.

In Figure 3.10, the residual marking for t 0 corresponds to the marking obtained after the firing of all transitions with a higher priority. As t 0 is the transition with the highest firing priority, the residual marking for t 0 is equal to the current marking. Transition t 0 gathers all the conditions to be firable and is enabled by the residual marking; thus, t 0 will be fired on the next rising edge. The residual marking for t 1 is the marking obtained after the firing of t 0 , i.e. the only transition with a higher priority. As illustrated at 2 , t 1 is enabled by the residual marking. However, t 1 does not gather all the conditions to be firable as the value of condition c 0 is false. Thus, t 1 will not be fired on the new rising edge. The residual marking for t 2 is obtained after the firing of t 0 only. Even though transition t 1 has a higher firing priority than t 2 , t 1 is not a member of the set of fired transitions. Thus, t 1 is not taken into account in the computation of the residual marking for t 2 . The residual marking at 3 enables transition t 2 , and as t 2 gathers all the conditions to be firable, then t 2 will be fired on the next rising edge.

Locked time counters

SITPNs inherit the properties of time PNs and interpreted PNs. The phenomenon of locked time counters is a consequence of this inheritance. As illustrated in Figure 3.11, the value of a time counter can overreach the upper bound of its associated time interval. This situation can only arise if a condition hinders the firing of a given transition while the considered transition is still enabled by the marking. As a consequence, the time counter will be incremented at every clock cycle until the upper bound of the time interval is overreached. Then, at this point, the time counter is said to be locked and its value will no more evolve. Chapter 3. Implementation of the HILECOP Petri nets

In Figure 3.11, condition c is valuated to false before the falling edge of the clock signal. Thus, transition t can not be fired but is still enabled by the marking. On the next falling edge, the time counter of transition t is incremented and overreaches the upper bound of interval [2,4] and thus becomes locked. If the designer of the model has not anticipated the case of a locked time counter, and has not provided an alternative to disable place p in that case, then the transition t will never be firable again.

Formalization of the SITPN structure and semantics

We hope that the reader has now a fair understanding of the concepts underlying the SITPNs and of the dynamics governing the SITPN state evolution process. In this section, we give the formal definition of the SITPN structure and of its execution semantics. We also introduce the concept of a well-defined SITPN at the end of the section.

SITPN structure

The structure of SITPNs is formally defined as follows: Definition 14 (SITPN). A synchronously executed, extended, generalized, interpreted, and time Petri net with priorities is a tuple <P, T, pre, post, M 0 , , A, C, F , A, C, F, I s >, where we have:

1. P = {p 0 , . . . , p n }, a finite set of places.

2. T = {t 0 , . . . , t m }, a finite set of transitions.

3. pre ∈ P → T (N * × {basic, inhib, test}), the function associating a weight to place-transition edges.

4. post ∈ T → P N * , the function associating a weight and a type to transition-place edges.

5. M 0 ∈ P → N, the initial marking of the SITPN.

6.

⊆ (T × T), the priority relation, which is a partial order over the set of transitions.

7. A = {a 0 , . . . , a i }, a finite set of continuous actions.

8. F = { f 0 , . . . , f k }, a finite set of functions (instantaneous actions).

9. C = {c 0 , . . . , c j }, a finite set of conditions.

I + ⊆ (N * × (N * {∞})).
In Definition 14, the structure holds the static elements of a SITPN model, i.e. all the elements which value does not evolve with the execution of the model. Therefore, the value of time counters associated with transitions does not appear in the SITPN structure. As the value of time counters is dynamic, i.e. it evolves with the execution of an SITPN model, it is a part of the SITPN state.

Definition 15 (Time transitions). For a given sitpn ∈ SITPN, T i denotes the definition domain of I s , i.e. the set of transitions associated with a time interval, referred to as time transitions.

In the current formal definition of the SITPN structure, and as discussed in Section 3.1.1, we do not consider the set of VHDL signals manipulated by a SITPN model. As a consequence, the structure holds neither the association between conditions and boolean expressions, and nor the association between actions/functions and operations (i.e. VHDL procedures that act upon signal values) that would be necessary in the presence of the set of VHDL signals. In this simplified version of the SITPN structure, conditions, actions and functions are only considered as finite sets of indexed elements associated with the places and transitions of an SITPN.

SITPN State

The SITPN semantics describes the evolution of the state of an SITPN through a given number of clock cycles; thus, we must first define the SITPN state structure: Definition 16 (SITPN State). For a given sitpn ∈ SITPN, let S(sitpn) be the set of possible states of sitpn. An SITPN state s ∈ S(sitpn) is a tuple <M, I, reset t , ex, cond>, where:

1. M ∈ P → N is the current marking of sitpn. 2. I ∈ T i → N is the function mapping time transitions to their current time counter value.

Preliminary definitions and fired transitions

Before formalizing the full SITPN semantics, we must introduce some definitions and notations, especially the definition of a firable and a fired transition. We use the two following notations to simplify the formalization of the SITPN semantics.

Notation 4 (Relations between markings). For all relation R existing between two marking functions M and M , the expression R(M, M) is a notation for ∀p ∈ P, R(M(p), M (p)). For instance, M = M -∑

t i ∈T pre(t i) is a notation for ∀p ∈ P, M (p) = M(p) -∑ t i ∈T pre(p, t i)
where T ⊆ T.

Notation 5 (Sum expressions and arc types). Many times in this document, we need to express the number of tokens coming to or from places, after the firing of a certain subset of transitions. To do so, we use two kinds of sum expression:

1. The first kind of expression computes a number of output tokens. For instance, for a given place p, ∑ t∈T pre(p, t) where T ⊆ T.

The expression

∑ t∈T pre(p, t) is a notation for ∑ t∈T ω i f pre(p, t) = (ω, basic) 0 otherwise
When computing a sum of output tokens (i.e. resulting of a firing process), we want to add to the sum the weight of the arc between place p and a transition t ∈ T only if there exists an arc of type basic from p to t (remember that the test and inhibitor never lead to the withdrawal of tokens during the firing process). Otherwise, we add 0 to the sum as it is a neutral element of the addition operator over natural numbers.

2. The second kind of expression computes a number of input tokens. For instance, for a given place p, ∑ t∈T post(p, t) where T ⊆ T.

= 1 ⇒ cond(c) = 1 and C(t, c) = -1 ⇒ cond(c) = 0.
As explained in Section 3.1.2, the firability conditions are not sufficient for a transition to be fired. A transition must also be enabled by the residual marking to go through the firing process. Definition 20 gives the formal definition of a fired transition at a given SITPN state: Definition 20 (Fired). A transition t ∈ T is said to be fired at the SITPN state s = <M, I, reset t , ex, cond>, which is noted t ∈ Fired(s), if t ∈ Firable(s) and t ∈ Sens M -∑

t i ∈Pr(t)
pre(t i) , where Pr(t) = {t i | t i t ∧ t i ∈ Fired(s)}.

One can notice that the definition of the set of fired transitions is recursive. To compute the residual marking necessary to the definition of a fired transition, the Pr set must be defined. For a given transition t, the Pr set represents all the transitions with a higher firing priority than t that are also fired transitions; hence the recursive definition. As the priority relation is a partial order over the finite set of transitions, all transitions have a finite set of transitions with a higher firing priority. Thus, the computation of the set of fired transitions always terminates.

In Definition 20, the marking M -∑

SITPN Semantics

We formalize the semantics of a given SITPN as a transition system. (1) cond is the function giving the (Boolean) values of conditions that are extracted from the environment E c at the clock count τ, i.e.:

∀c ∈ C, cond (c) = E c (τ, c).

(2) All the actions associated with at least one marked place in the marking M are activated, i.e.:

∀a ∈ A, ex (a) = ∑ p∈marked(M)
A(p, a) where marked(M) = {p ∈ P | M(p) > 0}.

(3) All the time transitions that are sensitized by the marking M and received the order to reset their time intervals, have their time counter reset and incremented, i.e.:

∀t ∈ T i , t ∈ Sens(M) ∧ reset t (t) = true ⇒ I (t) = 1.
(4) All the time transitions that are sensitized by the marking M, and did not receive a reset order, increment their time counters if time counters are still active, i.e.:

∀t ∈ T i , t ∈ Sens(M) ∧ reset t (t) = false ∧ [I(t) ≤ u(I s (t)) ∨ u(I s (t)) = ∞] ⇒ I (t) = I(t) + 1. (5
∀ f ∈ F , ex (f) = ∑ t∈Fired(s) F(t, f).
We inherit from [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF] and [START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF], the form of Definition 21. In this thesis, we prefer to use rule instances to define execution relations, or relations that are involved in an operational semantics. Thus, Definition 21 can be equivalently represented with the following rule instances, where the premises of the rules refer to the premises of Definition 21:

Chapter 3. Implementation of the HILECOP Petri nets FALLINGEDGE (1) (2) (3) (4) (5) (6) E c , τ s ↓ -→ s RISINGEDGE (7) (8) (9) E c , τ s ↑ -→ s
Premises (1) to (6) describe the SITPN state evolution at the falling edge of the clock signal. Premises (1) and (2) deal with the update of condition values and the activation status of actions. Note that in Premise (2) (and also in Premise (9)), the sum expression corresponds to the Boolean sum expression, i.e. the application of the or operator over the elements of the iterated set. Premises (3), (4), (5) and (6) focus on the update of time counter values. In Premise (4) of the SITPN semantics, the active time counters refer to the time counters that have not yet overreached the upper bound of their associated time interval. Of course, a time counter is always active when the upper bound is infinite. In Premise [START_REF] Peter | The Designer's Guide to VHDL[END_REF], the locked time counters refer to the time counters that have overreached the upper bound of their associated time interval. Of course, time counters can never be locked in the presence of an infinite upper bound. In Premises (4) and [START_REF] Peter | The Designer's Guide to VHDL[END_REF], for a given time interval i, u(i) denotes the upper bound of the time interval, and l(i) denotes the lower bound of the time interval.

Premises [START_REF] Berramla | Formal Validation of Model Transformation with Coq Proof Assistant[END_REF] to (9) describe the SITPN state evolution at the rising edge of the clock signal. Premise [START_REF] Berramla | Formal Validation of Model Transformation with Coq Proof Assistant[END_REF] corresponds to the marking update. The computation of the new marking uses the set of fired transitions at state s, i.e. Fired(s). Premise (9) deals with the update of the function execution status. Premise (8) computes the reset orders for time transitions. There are two cases where a time transition receives the order to reset its time counter. First, if the transition is one of the fired transitions at state s, then its time counter must be reset on the next falling edge. Second, if the transition is disabled in a transient manner, then its time counter must also be reset. Figure 3.12 illustrates the case of a transition disabled by the transient marking, i.e. the marking obtained after the token consumption phase of the firing process.

p 0 t 0 p 1 t 1 [3, 3] <2> t 2 1 p 0 t 0 p 1 t 1 [3, 3] <2> t 2 2 p 0 t 0 p 1 t 1 [3, 3] <2> t 2 3 FIGURE 3.
12: An example of transition that receives a reset order after being disabled by the transient marking. At 1 , the marking before the firing of transitions t 0 and t 2 ; at 2 , the transient marking; at 3 , the marking at the end of the firing process.

In Figure 3.12, the situation at 1 describes the state of the SITPN before a rising edge. Given the current SITPN state at 1 , transition t 0 and t 2 will be fired on the next rising edge event. Situation 2 depicts the marking obtained after the consumption phase of the firing process (once the rising edge occurred), i.e. the so-called transient marking. Situation 3 corresponds to the marking at the end of the firing process, where t 0 and t 2 have been fired. At 3 , transition t 1 is enabled by the marking. However, at 2 , the transient marking disables t 1 and thus t 1 must receive a reset order (represented by a blue time counter). This reset order will be taken into account at the next falling edge event, and the time counter associated with transition t 1 will then be reset.

Contributions to the SITPN semantics

We brought the following changes to the SITPN semantics that was defined in [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF] and [START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF]:

-We clarified the definition of the set of fired transitions. In the former SITPN semantics, four premises were dedicated to the computation of the set of fired transitions in the definition of the SITPN state transition relation on falling edge. We removed these premises from the definition, and made a standalone definition of the set of fired transitions that only depends on a given SITPN state (cf. Definition 20).

-We completed Premise (8) with the condition ∑

t i ∈Fired(s)
pre(p, t i) > 0. This condition is mandatory to perform the proof of semantic preservation.

-We added Premise [START_REF] Bengtsson | Uppaal in 1995[END_REF] to the definition of the SITPN state relation on falling edge. This premise is also mandatory to perform the proof of semantic preservation.

SITPN Execution

As a part of the SITPN semantics, we define here the SITPN execution and SITPN full execution relations. These relations bind a given SITPN to an execution trace, i.e. a time-ordered list of states. This execution trace represents the successive states of the SITPN during its execution for a given number of clock cycles. These definitions are additional elements corresponding to our own contribution to the formalization of the SITPN semantics. These two relations provide a small-step semantics to the SITPNs, given that we are interested in keeping the intermediary states in an execution trace.

-→ s E c , τ sitpn, s ↓ -→ s E c , τ -1 sitpn, s → θ τ > 0 E c , τ sitpn, s → (s :: s :: θ)
The EXECUTIONEND rule states that the execution of a sitpn ∈ SITPN, starting from a state s ∈ S(sitpn) in the environment E c ∈ N → C → B, yields an empty execution trace if the clock count comes down to 0.

The EXECUTELOOP rule describes how the execution trace related to the execution of a sitpn ∈ SITPN is built in the case where the clock count τ is greater than zero. The final execution trace is composed of a head state s , followed by state s and the tail trace θ. The :: operator builds a new trace by adding a new element at the head of an existing trace. Starting from state s, sitpn reaches state s after a rising edge event; then from state s , it reaches state s after a falling edge event. Finally, the execution trace θ is obtained through the recursive call to the SITPN execution relation where sitpn is executed during τ -1 cycles starting from state s . Definition 23 (SITPN full execution). For a given sitpn ∈ SITPN, a clock cycle count τ ∈ N, and an environment E c ∈ N → C → B, sitpn yields the execution trace θ starting from its initial state s 0 ∈ S(sitpn) (as defined in Definition 17), written E c , τ sitpn → θ, by following the two rules below:

FULLEXEC0 E c , 0 sitpn f ull --→ [s 0] FULLEXECCONS E c , τ s 0 ↓ s E c , τ -1 sitpn, s → θ s τ > 0 E c , τ sitpn f ull
--→ (s 0 :: s 0 :: s :: θ s)

The FULLEXECCONS rule of the SITPN full execution relation (Definition 23) appeals to the SITPN execution relation (Definition 22). However, the definition of the SITPN full execution relation is necessary because the first cycle of execution, starting from the initial state s 0 , is particular. As a matter of fact, no transitions are fired during the first rising edge. Thus, the first rising edge does not change the initial state s 0 . This is why the execution trace of Rule FULLEX-ECCONS begins with two states s 0 , thus representing the idle first rising edge.

Well-definition of a SITPN

To be able to transform a given SITPN into a VHDL design and also to perform the proof of semantic preservation, a SITPN must verify some properties ensuring its well-definition. Here, we formalize the predicate stating that a given SITPN is well-defined.

The main interest of the well-definition predicate is to prevent the phenomenon of the "double consumption" of tokens at the execution of a SITPN. In a well-defined SITPN, a conflict resolution strategy must be applied to every group of transitions in structural conflict. We must be able to decide which transition in a conflicting pair will be fired when the conflict becomes effective. Thus, we give the formal definitions of a conflicting pair of transitions and a conflict group.

Definition 24 (Conflict). For a given sitpn ∈ SITPN, two transitions t, t ∈ T are in conflict if there exist a place p ∈ P and two weights ω, ω ∈ N * such that pre(p, t) = (ω, basic) and pre(p, t) = (ω , basic).

A conflict group qualifies a finite set of transitions that are all in conflict with each other through at least a common input place. In Figure 3.13, the set {t 0 , t 3 , t 1 } is a conflict group. The formal definition of a conflict group is as follows:

Definition 25 (Conflict Group). For a given sitpn ∈ SITPN, T c ⊆ T is a conflict group if there exists a place p such that ∀t ∈ T, ∃ω ∈ N * , pre(p, t) = (ω, basic) ⇔ t ∈ T c .

Contrary to the statement made in [71, p. 67], we no more consider the notion of conflict as being transitive. To illustrate this, Figure 3.13 shows two conflict groups: {t 0 , t 3 , t 1 } and {t 1 , t 2 }. In a well-defined SITPN (see Section 3.2.6), all conflicts in a conflict group must be considered, i.e. for all pair of transitions in the group the conflict must be solved. However, we no more consider transitions t 0 and t 2 , and t 3 and t 2 , as in conflict. It was believed by the author of [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF] that, if no conflict resolution technique was applied between transitions in the same situation as t 0 and t 2 , and t 3 and t 2 , then this could result in the double-consumption of a token, or in the case where a transition is not elected to be fired even though it ought to be. However, the author does not provide an example where such a situation arises. We argue that such a situation can never arise and contrive to prove it later. Therefore, we no more consider the construction of merged conflict group (i.e, conflict groups must be merged into one if their intersection is not empty; e.g, {t 0 , t 1 , t 2 } in Figure 3.13) as being necessary. As a consequence, the definition of a conflict group is simpler than in [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF] When the conflict between a pair of transitions becomes effective, there are two ways to be sure that only one transition will be fired. The first way is to define a firing order through a priority relation. The second way is to use a mean of mutual exclusion. A mean of mutual exclusion ensures that the two transitions of a conflicting pair will never be firable at the same time. We only consider two ways of mutual exclusion, namely: mutual exclusion with complementary conditions and mutual exclusion with inhibitor arcs. Here, we give the formal definition of these two means of mutual exclusion.

Definition 26 (Mutual exclusion with complementary conditions). Given two conflicting transitions t 0 and t 1 , t 0 and t 1 are in mutual exclusion with complementary conditions if there exists c ∈ C such that (C(t

0 , c) = 1 ∧ C(t 1 , c) = -1) or (C(t 0 , c) = -1 ∧ C(t 1 , c) = 1).
Definition 27 (Mutual exclusion with an inhibitor arc). Given two conflicting transitions t 0 and t 1 , t 0 and t 1 are in mutual exclusion with an inhibitor arc if there exists p ∈ P and ω ∈ N * such that (pre(p,

t 0) = (ω, basic) ∨ pre(p, t 0) = (ω, test)) ∧ pre(p, t 1) = (ω, inhib) or (pre(p, t 1) = (ω, basic) ∨ pre(p, t 1) = (ω, test)) ∧ pre(p, t 0) = (ω, inhib).
p t 0 c 0 c1 t 1 c 0 c 1 1 p t 0 t 1 p 0 2 FIGURE 3.14:
Examples of conflicting transitions in mutual exclusion. At 1 , an example of mutual exclusion with complementary conditions; at 2 , an example of mutual exclusion with an inhibitor arc.

In Figure 3.14, in situation 1 , condition c 1 is associated to t 1 and the complementary condition is associated to t 0 thus creating the mutual exclusion. In situation 2 , the arcs (p 0 , t 0) and (p 0 , t 1) ensure the mutual exclusion between transitions t 0 and t 1 . Note that in the structure of mutual exclusion with an inhibitor arc, the weight of the inhibitor arc and of the one of the basic or test arc must be the same; otherwise, the mutual exclusion is not effective.

A given sitpn ∈ SITPN is well-defined if it enforces some properties needed on the HILE-COP source models before the transformation into VHDL. If the properties, given in Definition 28, are not ensured, they will lead to compile-time errors during the transformation of the SITPN into a VHDL design.

Definition 28 (Well-defined SITPN). A given sitpn ∈ SITPN is well-defined if:

-T = ∅, the set of transitions must not be empty.

-P = ∅, the set of places must not be empty.

-There is no isolated place, i.e, a place that has neither input nor output transitions: p ∈ P, input(p) = ∅ ∧ output(p) = ∅, where input(p) (resp. output(p)) denotes the set of input (resp. output) transitions of p.

-There is no isolated transition, i.e, a transition that has neither input nor output places: t ∈ T, input(t) = ∅ ∧ output(t) = ∅, where input(t) (resp. output(t)) denotes the set of input (resp. output) places of t.

-For all conflict group as defined in Definition 25, either all conflicts (i.e. for all pair of transitions in the conflict group) are solved by one of the mean of mutual exclusion, or, the priority relation is a strict total order over the transitions of the conflict group.

Boundedness of a SITPN

We conclude the formalization of the SITPN structure and semantics by the expression of the boundedness of a SITPN model with respect to its execution trace. In the manner of the welldefinition property, the boundedness of a SITPN model is a mandatory condition to prove the semantic preservation theorem (cf.

Implementation of the SITPN structure and semantics

In this section, we present our mechanization of the SITPN structure and semantics using the Coq proof assistant. The source code is available to the reader at the address https: //github.com/viampietro/ver-hilecop. More precisely, the implementation of the SITPN structure and semantics is to be found under the sitpn/dp directory. We made a first implementation of SITPNs without the use of dependent types. For this first version, we also implemented a SITPN interpreter (a so-called token player) and proved that the interpreter is sound and complete w.r.t the SITPN semantics. This first implementation of the SITPNs and the formal proof of soundness and completeness are available at https://github.com/viampietro/ sitpns. Here, we are only presenting the second version of the implementation of the SITPN structure and semantics, i.e. an implementation with dependent types. We use lists of natural numbers, i.e. list nat in Coq, to define the finite sets of places (Line 3), transitions (Line 4), actions (Line 14), conditions (Line 13) and functions (Line 15) in the Sitpn record. We want to use these finite sets in the signature of functions appearing in the structure (e.g. use the finite set of places P in the signature of the initial marking M 0 ∈ P → N).

Implementation of the SITPN and the SITPN state structure

However, we can not use the places field to, for instance, give a type to the initial marking M 0 . That is, we can not write M 0 : places → nat, because places does not denote a set but an instance of lists of natural numbers. Thus, leveraging the sig type, we define the finite set P as the subset of natural numbers that are members of the places list (Line 5). We use the In relation defined in the Coq standard library to express the membership of a natural number regarding the elements of the places list. Also, the ArcT type (Line 8) implements the set {inhib, test, basic}; the TimeInterval type (Line 11) implements the set I + of time intervals, and the MOneZeroOne type (Line 20) implements the set {0, The SitpnState type definition depends on a SITPN given as a parameter; it is an example of dependent type. Projection functions are automatically generated to access the attributes of a record at the declaration of a type with the Record keyword. Thus, in Listing 3.3, we can refer to the set of places of sitpn with the term P sitpn. The term T i sitpn denotes the set of time transitions of sitpn. The set of time transitions, i.e. T i sitpn in Listing 3.3, for a given SITPN sitpn is declared as a sig type qualifying to the subset of transitions with an associated time interval.

Implementation of the SITPN semantics

Here, we present our implementation of the SITPN semantics. In Listing 3.4, we give an excerpt of the implementation of the SITPN state transition relation, i.e. the core of the SITPN semantics. § ¤ (* Premises (3), (4), (5) and (6) *) | SitpnStateTransition_rising: The SITPN state transition relation is implemented in Coq as an inductive type with two constructors, i.e. one for each clock event. The relation has 6 parameters: an SITPN, an environment E c , a clock count τ, two SITPN states s and s' and a clock event. Note that the two states s and s' are bound to the SITPN parameter through their type, i.e. SitpnState sitpn.

In the construction case SitpnStateTransition_falling, we give the implementation of Premises (2), (3), (4), (5) and (6) defined in the SITPN semantics. The sum term of Premise (2), i.e. ∑

p∈marked(M)

A(p, a), is implemented by Lines 8 and 9. At Line 8, the Sig_in_List predicate states that all the inhabitant of the P sitpn type (i.e. the places of sitpn) that verify the property (fun p ⇒ M s p > 0) (i.e. the marking of a place is greater than zero at state s) are members of the marked list. Because we cannot iterate over the elements of a given sig type, we use the Sig_in_List relation to convert a sig type into a list. Lists are iterable by definition. At Line 9, the BSum relation states that sum is the Boolean sum obtained by applying the function (fun p ⇒ A p a) to the elements of the marked list. Premises (3), (4), (5) and (6) are almost similar in their implementation to the description of Definition 21. The Coq term Sens (M s) t implements the term t ∈ Sens(M). Due to the particular nature of the upper bound of a time interval, i.e. defined over the set N * {∞}, the test that the current time counter of a given transition t is less than or equal to the upper bound is implemented by a separate predicate TcLeUpper.

Similarly, the TcGtUpper predicate implements the inverse test.

In the construction case SitpnStateTransition_rising, we give the implementation of Premises (7) and (9) defined in the SITPN semantics. In the implementation of Premise [START_REF] Berramla | Formal Validation of Model Transformation with Coq Proof Assistant[END_REF], the IsNewMarking predicate represents the expression:

∀p ∈ P, M (p) = M(p) -∑ t∈Fired(s) pre(p, t) + ∑ t∈Fired(s) post(t, p).
In its definition, the IsNewMarking predicate first checks that the fired list implements the set of fired transitions at state s. Then, it builds the marking at state s' for each place p, i.e. (M s') , by consuming and producing a number of tokens starting from the marking of p at state s. The fired list is helpful to qualify the input token sum and the output token sum for a given place. Similarly to the implementation of Premise (2), the implementation of Premise (9) at Line 33 relies on the BSum predicate to compute the Boolean sum ∑ t∈Fired(s)

F(t, f). The term

IsFiredList s fired states that the fired list implements the set of fired transitions at state s, so we can use the fired list to compute the above sum.

Conclusion

The class of SITPNs is a particular class of PNs used to model the behavior of components in the HILECOP high-level models. The synchronous evolution of SITPNs constitutes the originality of the model compared to the standard PNs semantics. In this chapter, we gave an informal and formal presentation of SITPNs and their execution semantics. Two previous Ph.D. theses contributed, for the most part, to the formalization of the SITPN structure and semantics. However, we helped simplify the semantics of SITPNs. We passed from 14 rules in the definition of the SITPN semantics given in [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF] to 9 rules in our current definition of semantics. Also, as presented in at the end of Section 3.2.4, we completed some rules when they happened to be insufficient to prove the theorem of behavior preservation. Finally, we defined the execution relations for the SITPN semantics and formalized the well-definition property for the SITPN structure.

Our other contribution was to implement the SITPN structure and semantics with the Coq proof assistant. There are two implementations: one with and one without dependent types. For the version without dependent types, we implemented a SITPN interpreter or token player. We also proved a soundness and completeness theorem between the interpreter and the formalized SITPN semantics. The first implementation of the SITPNs in Coq represents 5000 lines of specification and 7000 lines of proof. The second implementation, which was presented in Section 3.3, leverages dependent types. This implementation is closer to the formal definition given in Definition 14. We chose this implementation to mechanize the proof of the behavior preservation theorem (see Chapter 6).

Chapter 4

H-VHDL: a target hardware description language

The main purpose of this chapter is to present the target language of the HILECOP transformation, i.e. the VHDL language. The formalization and the implementation of the VHDL language syntax and semantics is mandatory to reason about the programs generated by the HILECOP model-to-text transformation. Thus, we want the reader to clearly understand the structure and the semantics of the language to be able to fully grab the proof of semantic preservation presented in Chapter 6. Specifically, we present here the H-VHDL language, our own synthesizable subset of the VHDL language. This subset permits to encode the programs generated by the HILECOP transformation. We devise a formal semantics for H-VHDL which is a simplification of the simulation semantics of the VHDL language. The formalization of the H-VHDL semantics and its implementation is one contribution of this thesis. The chapter is structured as follows. In Section 4.1, we give an informal presentation of the VHDL language syntax and semantics. In Section 4.2, we present the state of the art pertaining to the formalization of the VHDL language semantics. In Section 4.3, 4.4, 4.5 and 4.6, we give the full formalization of the H-VHDL language, a subset of the VHDL language. Section 4.7 illustrates the formal H-VHDL semantics with an example. Finally, Section 4.8 outlines the implementation of the H-VHDL syntax and semantics with the Coq proof assistant.

The HILECOP transformation generates a VHDL design implementing an input SITPN model. The transformation generates and connects the component instances of two previously defined VHDL designs: the place design, i.e. a VHDL implementation of a SITPN place, and the transition design, i.e. a VHDL implementation of a SITPN transition. These designs were defined by the INRIA CAMIN team at the creation of the HILECOP methodology. In the following sections, we will be using fragments of the definition of the place and transition designs to illustrate the content of VHDL programs and the rules of the VHDL language semantics. The reader will find the source code of the place and transition designs in concrete and abstract syntax in Appendices A and B.

Presentation of the VHDL language

The intent here is to give an overview of the VHDL language, its purpose, its main syntactic constructs, and an informal description of its semantics as presented in the Language Reference Chapter 4. H-VHDL: a target hardware description language Manual (LRM) [64]. The VHDL language offers a lot of possibility in terms of hardware (and even software) description. Here, we are not trying to be exhaustive in our presentation of the language. We will only maintain our description of the VHDL concepts in the scope that is of interest to us. The readers that are interested in learning more about the VHDL language can refer to [64], [START_REF] Peter | The Designer's Guide to VHDL[END_REF] and [START_REF] Volnei | Circuit Design with VHDL[END_REF].

Main concepts

The VHDL acronym stands for Very high speed integrated circuit Hardware Description Language. The main purpose of the VHDL language is to describe hardware circuits.

A top-level VHDL program is called a design. A VHDL design is composed of two descriptive parts. The first part is called the entity and describes the interfaces of a circuit, namely: the input and output ports, and the generic constants. Listing 4.1 is an excerpt of the transition design's entity that defines the generic constants, the input and output port interfaces of the design. The generic clause of the entity holds the declaration of the generic constants. The purpose of generic constants is either to represent some dimensions of the design (e.g. the size of ports, internal signals. . .) or to represent constant values used throughout the design. In Listing 4.1, one can see that the conditions_number generic constant gives a dimension to the type of the input_conditions input port, which is an array of Boolean values with indexes ranging from 0 to conditions_number-1 (that is the meaning of "std_logic_vector (conditions_number-1 downto 0)"). The port clause holds the declaration of input and output ports of the design. The in keyword indicates the declaration of an input port and the out indicates the declaration of an output port. § ¤ The second part of a VHDL design is called the architecture. The architecture describes the internal behavior of the design. It declares all the internal signals, i.e. the wires, involved in the description of the design behavior. Then, there are three ways to describe the behavior itself: by using processes, by instantiating other designs (also called, component instantiations), or by combining both techniques (the latter option is chosen in the VHDL designs generated by the HILECOP transformation).

Behavior specification with processes

The first way to specify the behavior of a design is through the description of processes. Processes are concurrent statements that describe the wiring or the operations performed on the signals of a given design. These operations are described by sequential statements in the body of processes. A process declares a sensitivity list that corresponds to the signals read in its statement body; also, it possibly declares internal variables. Listing 4.2 gives an excerpt of the transition design architecture containing the declarative part of the architecture (i.e. the declaration of internal signals) and three of the processes describing the transition design behavior, namely: the condition_evaluation process, the firable process and the fired_evaluation process. In Listing 4.2, Lines 2 to 8 correspond to the declaration of the internal signals of the transition design. Line 11 starts the declaration of the condition_evaluation process. The sensitivity list of the condition_evaluation process holds one signal, the input_conditions input port. The value of the input_conditions input port is read is the process body; then, as a design rule, it must be declared in the sensitivity list. The process defines a local variable v_internal_condition at Line 12. At Line 13, the begin keyword starts the declaration of the process body, i.e. the block of sequential statements performing operations on the signals of the transition design. In the statement body of a process, the designer can use control flow statements common to most of the generic programming languages (if statement, for loops. . .), and also statements that are specific to the VHDL language. The most representative statement, and the one of interest to us, is the signal assignment statement. The signal assignment statement relates a given signal identifier to a source expression. For instance, at Line 20 of Listing 4.2, the signal assignment statement, represented with the ⇐ operator, assigns the value of the internal variable v_-internal_condition to the s_condition_combination signal. The v_internal_variable that itself holds the Boolean product between the subelements of the input_conditions input port performed in the for loop of Lines 16 to 18.

When considering a VHDL design in the point of view of hardware synthesis, a signal assignment statement specifies a wiring between a target signal identifier and other source signals. In Figure 4.2, the condition_evaluation process is represented as an "and" port performing the product over the elements of the input_conditions input port. The fired_evaluation process is a simple "and" gate connecting the fired output port to the s_firable and s_-priority_combination internal signals. The fired_evaluation and the condition_evaluation processes are combinational processes. They describe the value of an output signal based on the value of input signals. For instance, the value of the s_condition_combination signal is a function of the value of the input_conditions input port such that:

s_condition_combination = conditions_number-1 ∏ i=0 (input_conditions[i])
This equation always holds, and we refer to it as a combinational equation. Here, the input_conditions input port is a composite signal, meaning that it is composed of multiple subelements (multiple pins) each having a unique index. We denote the value of the subelement of index i in a composite signal a with the square-bracketed notation a[i].

Also presented in Figure 4.2, the firable process is a synchronous process. It is executed only at the occurrence of the falling edge event of the clock signal, and thus represents a memory point. In its statement body (Line 30 of Listing 4.2), the firable process assigns the value of the internal signal s_firing_condition to the signal s_firable only at the occurrence of the falling edge of the clock signal (captured by the expression falling_edge(clock) where falling_edge is a primitive function of the VHDL language). In the point of view of simulation, there are no distinction between synchronous processes and combinational processes. However, in the point of view of synthesis, processes responding to a clock signal follow the rules of the synchronous (or sequential) logic, whereas, combinational processes follow the rules of combinational logic.

To complete the presentation of the statements to be found in the body of processes, the VHDL language is also equipped with timing constructs, i.e. statements that explicitly specify an amount of time in a given time unit. The signal assignment statement possibly specifies a time clause indicating when the assignment must be performed. For instance, the signal assignment statement specifying that the value of signal b must be assigned to signal a in 3 milliseconds takes the form: a ⇐ b in 3 ms. When no time clause is specified for a signal assignment statement, we talk about a δ-delay signal assignment, i.e. the application of the signal assignment is related to some δ interval corresponding the time of propagation through a wire. When a time clause is specified, we talk about a unit-delay signal assignment. δ-delay signal assignments are synthetizable, meaning they have an equivalent implementation on a physical device, whereas, unit-delay signal assignments can not be synthetized. Unit-delay signal assignments do not appear neither in the VHDL designs generated by HILECOP transformation nor in the declaration of the place and transition designs. We are only mentioning their existence because they play a part in the simulation algorithm described in Section 4.1.2.

Behavior specification with design instances

The second way to specify the behavior of a design is to use other designs, or rather instances of other designs, as components. In that case, the design is said to be composite as it embeds instances of other designs in its own behavior. Also, a design at the highest level of embedding, i.e. that is not instantiated as a part of another design's behavior, is called a top-level design. The design instantiation, or component instantiation, statement permits to instantiate a design in an embedding architecture. When instantiating a design with a design instantiation statement, the designer provides the component instance with an identifier. Then, the instance must be dimensioned; this is performed through a generic map that associates the generic constants of the design being instantiated to a static value. Finally, the designer specifies how the component instance is connected to the other elements of the architecture. A port map associates the input ports and output ports of the component instance to expressions or to the signals of the embedding architecture. In Listing 4.3, the transition component instance (TCI) has the identifier id t . Following the entity keyword is the name of the design being instantiated; here, the transition design. Then, the generic map associates the generic constants of the transition design (i.e. the left side of the arrow, also called the formal part) to static values (i.e. the right side of the arrow called the actual part). This permits the dimensioning of the component instance. For example, remember that the input_arcs_number generic constant value determines the number of elements in the composite input ports input_arcs_valid, priority_authorizations and reinit_time (cf. Figure 4.1). The port map associates the input ports of the transition design to expressions. For instance, the time_A_value input port is connected to the constant value 0, and the input_conditions input port is connected to the internal signal id 0 at index 0. The port map also associates the output ports with signal identifiers. Contrary to the association of input ports, output ports can not be associated to expressions. An output port association describes a direct wiring. In the port map described in Listing 4.3, the association fired ⇒ id 3 expresses that the fired output port is connected to the signal id 3 , where signal id 3 is defined in the embedding design.

Informal semantics of the VHDL language

There are two approaches to the description of circuits with the VHDL language. The first aims at the simulation of the described circuits, and the second aims at the synthesis of the described circuits on physical supports. These two approaches arise from the practice and the use of the VHDL language by electronicians. Even though, in practice, there are two ways to consider a VHDL design, i.e. a synthesis-oriented way and a simulation-oriented way, the LRM does not define a synthesis-oriented semantics for the VHDL language. A synthesis-oriented semantics gives an interpretation to a design by describing an equivalent in a lower level formalism, closer to the physical circuit. For instance, the Verilog language gives a synthesis-oriented semantics to its programs by defining an equivalent RTL level description [START_REF]IEC/IEEE International Standard -Verilog(R) Register Transfer Level Synthesis[END_REF]. The LRM gives an informal semantics to VHDL designs through the definition of a simulation algorithm [64, p.167]. The purpose of simulation is to compute the evolution of the values of signals during a certain time interval. Through the simulation process, the designer is able to control the behavior of the modeled circuits and to detect flaws in the evolution of the signal values. Former to the simulation, the LRM defines an elaboration phase. The elaboration phase operates syntactic and semantic controls over the design code. It also describes code transformations over the design's behavioral part to obtain a simulation-ready execution model. More specifically, the elaboration phase builds the simulation environment and the default simulation state associated with the design under simulation. The simulation environment is built based on the declarative parts of the top-level design; it maps the signals to their types. In the default simulation state, each signal is associated with a current value (i.e. the default value of the signal's type) and with a driver. A driver maps time points to values and the association between a given time point and a signal value is called a transaction. The need for drivers to express the values associated with a given signal is explained by the presence of unit-delay signal assignments. A unit-delay signal assignment specify a time clause indicating when a giving assignment must be performed, e.g. a ⇐ b in 3ms (signal a takes the value of signal b in 3 milliseconds). Thus, when a unit-delay signal assignment is executed in the course of a simulation, its effect is to change the driver of the target signal by posting a new transaction. For instance, let T c by the current simulation time, the execution of statement a ⇐ true in 2ns sets a new transaction in the driver of signal a. The new transaction associates the value true to the time point T c + 2ns. Note that without unit-delay signal assignments, i.e. without a specified time clause, drivers are not needed as all assignments take effect at the current simulation time. Moreover, the elaboration checks the well-formedness of the design by performing static type-checking on the behavioral part of the design. It also checks that the connection between signals respect certain rules, for instance, that there are no multiply-driven signals, i.e. signals that are written to by multiple processes. Finally, the elaboration operates some transformations over the VHDL code, and thus builds the execution model. To summarize, all concurrent statements of the behavioral part are transformed until the top-level design behavior is only composed of processes.

After the elaboration, the top-level design, or rather its corresponding execution model, is ready to be simulated. Two entities are involved in the simulation: the sea of processes obtained after the elaboration of the top-level design's behavior, and a kernel process. The kernel process orchestrates the simulation; it handles the time of the simulation, i.e. it holds a variable describing the current time of the simulation, and controls the execution of processes. Figure 4.4, which is an excerpt from [START_REF] Börger | A Formal Definition of an Abstract VHDL'93 Simulator by EA-Machines[END_REF], describes the structure of the VHDL simulation algorithm. The simulation starts with an initialization phase. During the initialization phase all processes are run exactly once. Then, the simulation cycles are structured as follows. All processes execute their statement body concurrently. New transactions are posted in the drivers of signals for every interpreted signal assignment statement. The execution goes on until all processes have executed their statement body and then have reached a suspension state. When, all processes are suspended, the kernel process takes over. As shown in Figure 4.5, after the suspension of all processes, the kernel process will then determine the kind of simulation cycle that will be performed next. There are two kinds of cycles: delta cycles or time cycles. If the value of a signal changes at the current time point, i.e. its driver holds a transaction at the current time point with a new value, then a delta cycle must be performed. Then, the simulation time does not change. The kernel process updates the current value of signals and their drivers, and wakes up the processes sensitive to the signals that obtained new values. The repetition of multiple delta cycles corresponds to the stabilization of signal values, i.e. the propagation of values through the wires, that takes effect in a negligible δ time. If all signal values are stable at the current time point, then a time cycle must be performed. The kernel process looks up the drivers for the next time point where the value of a given signal will change. Then, the kernel process advances the simulation time to this next time point before updating the signal values and resuming the execution of processes. The simulation goes on like this, alternating between delta and time cycles, until the current time value reaches the time specified for the end of the simulation.

Choosing a formal semantics for VHDL

In the previous section, we presented the main concepts underlying the VHDL language and its informal semantics. We want to prove that the HILECOP transformation that generates VHDL code from SITPNs preserves the behavior of the initial model (i.e, the SITPN model) into the generated VHDL program. A formal semantics for the VHDL language is therefore a necessary element to be able to reason about the generated VHDL programs, and moreover to be able to compare their behaviors with the behaviors of the source SITPN models. Keeping that in mind, which formal semantics should we consider for VHDL?

The same holds for any task: there is a trade off between finding a tool designed by others that will fit our needs, and creating our own tool that will mitigate the gaps between our needs and what is available in the literature. In the present case, the tool is a formal semantics for VHDL. Adopting a fully-set semantics found in the literature as a base ground for the implementation of a formal semantics for VHDL has multiple perks. First, it reduces the formalization effort, which is not a lesser point considering that the proof ahead might be long and must still be completed within the time span of the thesis. Still, the semantics would need to be implemented in Coq, if no implementation exists (or not written in Coq). Second, the formal semantics of programming languages found in the literature are often general in their approach, this to provide a generic framework to reason about programs. However, we must not lose sight of our goal which is to prove behavior preservation; a generic formal semantics could turn out to be too complex, or necessitate too much tweaking and thus hinder the fulfillment of our task. On the other side, creating our own formal semantics for VHDL, based on the work of others, is the best way to fit our needs in compliance with our final aim. However, the pitfalls are that the resulting semantics might prove to be very specific, therefore preventing others from using it. Also, a work of formalization would be necessary which, as we already stated, would be time-consuming. In order to determine whether we ought to use an existing semantics or design a new one, we must first clearly specify our needs regarding the VHDL language.

Specifying our needs: HILECOP and VHDL

Two elements are of major influence to the specification of our needs for a formal semantics: first, the context of HILECOP and the specificities of the VHDL programs that are generated; second, the context of theorem proving. These two aspects entail the following considerations.

The need for coverage

The HILECOP methodology generates particular VHDL programs. Even if some transformations can be operated on the generated programs to simplify them, the looked-for formal semantics must be able to deal with a certain subset of the VHDL language. Especially, this subset must include:

-0-delay (or δ-delay) signal assignments (equivalent to unit-delay signal assignment with a "0 ns" after clause)

Chapter 4. H-VHDL: a target hardware description language -component instantiation statements with generic constant and port mapping -entity's generic constant clauses (declaration of generic constants in a design entity)

HILECOP's VHDL programs only deal with 0-delay signal assignments because they are the only kind of signal assignments that can be synthesized. As a matter of fact, the industrial compiler/synthesizer used in the HILECOP methodology only accepts VHDL programs with no timing constructs (i.e, no delayed signal assignments) as inputs.

Regarding component instantiation statements, the VHDL LRM describes a way to transform these statements into equivalent process statements and block constructs [64, p. 141] during the elaboration of the design. However, we want to preserve the hierarchical structure provided by the component instantiation statements arguing that it will be easier to compare the state of a given SITPN model with a VHDL design state with an explicit hierarchical structure. Indeed, there exists a mapping between places and transitions of an SITPN and their mirror (generated by the transformation) place and transition component instances (PCIs and TCIs). This one-to-one correspondence might turn out to be handy to perform the proof of behavior preservation. Obviously, the semantics must cover the evaluation of process statements which are the core concurrent statements of VHDL programs.

The types of signals and variables used in HILECOP VHDL designs must have finite ranges of values. For instance, a VHDL signal that ranges over N cannot be synthesized on a physical circuit. Indeed, N has an infinite number of values, and would therefore require an infinite number of latches to be physically implemented. Moreover, as the number of latches used to implement a digital circuit greatly impacts the power consumption of the circuit, the types of signals and variables must be as constrained as possible to optimize the dimensioning of the circuit. The generic constants, declared in the entity part of a design, are involved in the dimensioning of the circuit. The generic constants define the bound of the array and natural range types for the different signals and variables declared in the place and transition designs' architecture. When a place or a transition component is instantiated, that is during the transformation of the SITPN model into VHDL code, its generic constants receive values via a generic map; we call it the dimensioning of the component instance. Therefore, generic constant clauses must belong to the subset of the VHDL language covered by the semantics.

The need for a synchronous execution

The second property of HILECOP's generated VHDL programs is their synchronous execution. The digital circuits designed with the HILECOP methodology are all synchronously executed on physical target. The generated VHDL designs declare a clock signal as an input port of their entity port interface. Thus, the behavioral part of the designs contains two kinds of processes: synchronous processes, i.e. processes that are sensitive to the clock signal, and combinational processes, i.e. processes that are not sensitive to the clock signal, and that are permanently running until the stabilization of the signal values. Synchronous processes react to the events of the clock signal, i.e. the rising and the falling edge, and possess blocks of sequential statements that are only executed at the precise moment of the clock event 1 . Therefore, we need a semantics that is able to deal with synchronism, and that explicitly integrates the synchronization with a clock signal into the expression of the simulation cycle.

A last consideration pertains to whether or not the VHDL semantics must explicitly handle errors. As the SITPN semantics does not include the production of error values, the handling of errors by the VHDL semantics is not a mandatory aspect.

Qualifying criterions

We here give the list of the qualifying criterions that will help to analyze the different VHDL semantics encountered in the literature and that are presented in the next section. The three most relevant criterions are:

-Synchronism. Regarding this criterion, there are three possibilities:

-Synchronism is not expressible in the considered VHDL semantics; this completely disqualifies the adoption of the semantics.

-Synchronism is expressible in the considered VHDL semantics. Synchronism is expressible if time-steps are handled in the semantics, at least to be able to represent clock events.

-Synchronism is explicit, i.e. the simulation loop is built around the occurrences of clock events.

We will foster the semantics that explicitly formalize a synchronized execution of a VHDL design.

-Component instantiation. Either the semantics handle the component instantiation statement in its simulation rules, or component instantiation statements must be transformed in order to be executed. We will foster the semantics that handle component instantiation statements without transformation.

-Elaboration. This criterion pertains to the formalization of the elaboration phase as integrated to the VHDL semantics. This criterion also expresses the ability of the semantics to handle constrained types, i.e. arrays and natural ranges, and generic constant clauses that are both dealt with during the elaboration phase. Either the semantics handle these constructs or it does not. Of course, we will foster the first kind of semantics.

Looking for an existing formal semantics

Here, we give a summary of the work found in the literature pertaining to the formalization of the VHDL language semantics. Articles are gathered and presented depending on the type of semantics used in the formalization (operational, denotational, axiomatic. . .). Each semantics is analyzed regarding the needs that were previously expressed.

Denotational semantics

Some authors have been interested in giving a formal denotational semantics to VHDL. In a general manner, these authors want to reason about VHDL programs: prove properties over a VHDL program, prove that two programs are equivalent. . . In [START_REF] Fuchs | A Functional Semantics for Delta-Delay VHDL Based on Focus[END_REF], the authors give a denotational semantics to the VHDL language within the Focus [41] framework, a method for the development of distributed systems. Signal values and their evolution through time are represented as streams of values. Statements are denoted as streamprocessing functions. Processes are stream-processing functions that take input signal streams (signals of the sensitivity list) and yields transaction traces (i.e, waveforms) over output signals (i.e, signal that are written by the process). Transaction traces are merged together as the result of the concurrent execution of processes. The authors only consider 0-delay signal assignments in their semantics, stating that it is sufficient to "consider time at a logical level to model both synchronous and asynchronous designs". However, some transformations must be applied to a design that has a synchronous execution to express its equivalent only with 0-delay signal assignments. Therefore, this semantics does not express synchronism of execution in an explicit manner. Moreover, the component instantiation statements are not dealt with, and no mention is made of the elaboration phase.

In [START_REF] Peter | A Simple Denotational Semantics, Proof Theory and a Validation Condition Generator for Unit-Delay VHDL[END_REF], the authors give a denotational, yet relational, semantics to the VHDL language. A state of a VHDL design is represented by a function binding signals to values; a worldline is a time-ordered list of states. Statements (including processes) are denoted in the semantics by a relation that binds an input couple, composed of a time point and a worldline, to an output couple of the same type. Multiple input and output couples possibly satisfy the relation denoting a particular statement; thus, the semantics is nondeterministic. The semantics tries to abstract from the formalization of the simulation cycle as it is done in the LRM. The authors want to establish a semantics that is abstract enough to be able to compare all other works of formalization with the authors' semantics. The authors also give an axiomatic semantics (i.e, in the Hoare logic style) which is proved to be sound and complete with the first denotational semantics. A Prolog [START_REF] Colmerauer | An Introduction to Prolog III[END_REF] implementation of the axiomatic semantics is given. Regarding our needs, the semantics only deals with unit-delay signal assignments. However, this semantics enables the representation of a δ-delay signal assignment with a unit-delay signal assignment adorned with a "after 0 ns" time clause. The hierarchical structure of designs is not preserved, and, although expressible, the semantics does not explicitly express a synchronous simulation cycle.

The denotational semantics expressed in [START_REF] Pandey | VHDL Semantics and Validating Transformations[END_REF] uses interval temporal logic as an underlying model. Leveraging this underlying model, the authors are interested in proving some properties over VHDL designs to help compilers to optimize the code, for instance, by using rewrite rules proved to be valid against the model. Some of the proofs laid out by the authors are embedded in PVS [START_REF] Owre | A Tutorial on Using PVS for Hardware Verification[END_REF]. The expression of the dynamic model uses many concepts described in the LRM, like drivers, port association, driving and effective values for signals. The semantics deals with both unit-delay and δ-delay signal assignments. The semantics works on fully-elaborated designs, therefore, it does not deal with component instantiation statements. Moreover, interval temporal logic is useful to reason on the VHDL designs in the presence of delays, however, it looses its interest for designs presenting only 0-delay assignments.

In [START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF], the author states that "denotational semantics is more adequate for mathematical reasoning". The author formalizes the VHDL semantics to prove the equivalence between VHDL programs (for instance, a specification and an implementation). What is of major interest regarding our needs is that the author has expressed a simulation cycle for synchronous designs. Therefore, a distinction is made between combinational and synchronous processes in the abstract syntax. Moreover, this work formalizes the elaboration part of a VHDL design former to the simulation; also, the elaboration keeps the hierarchical setting of the VHDL design, that is component instantiation statements are not replaced by processes. Due to the time abstraction, the semantics only deals with 0-delay signal assignments. It is explained by the fact that the reference time-unit is the clock period (i.e, the only known time-step), and the advancing of time, happening during the simulation cycle as described in the LRM, is captured within the setting of the simulation cycle.

Operational semantics

Multiple works formalize an operational semantics for VHDL. These works are interested in the formal description of the VHDL simulator. The aim is to devise a formal semantics that acts as a formal specification for a simulator. In [START_REF] Peter | A Functional Semantics for Unit-Delay VHDL[END_REF], a formal description of a functional semantics for VHDL is laid out based on streamprocessing functions. The semantics is expressed with the functional programming language Gofer [START_REF] Mark | The Implementation of the Gofer Functional Programming System[END_REF], thus enabling the computation of execution traces, that is, the computation of the streams representing the values taken by signals over time. As in the former work of the same author [START_REF] Peter | A Simple Denotational Semantics, Proof Theory and a Validation Condition Generator for Unit-Delay VHDL[END_REF], only unit-delay signal assignments are dealt with, however, this time the author describes a deterministic operational semantics. Regarding our needs, this work is neither interested in preserving the hierarchical structure of VHDL designs, and no mention is made regarding how a design is elaborated, nor in expressing an explicit synchronous simulation cycle.

In [START_REF] Börger | A Formal Definition of an Abstract VHDL'93 Simulator by EA-Machines[END_REF], the authors formalize the simulation loop of the LRM using Evolving Algebra machines (EA-machines). All important constructs of the VHDL language are represented as records; processes are represented as concurrent agents running pseudo-codes, and the simulation control flow is passed to and fro between the kernel process (i.e, the simulation orchestrator) and the rest of the processes that execute the design behavior. This semantics implements closely the simulation loop as described in the LRM. Therefore, it is very rich and deals with most of the VHDL constructs, including the two time paradigms of the language (i.e. δ time and unit time). Moreover, the semantics works on fully-elaborated designs, therefore, component instantiation statements are omitted. However, a synchronous execution is fully expressible even if not explicitly embedded in the expression of the simulation loop.

In [START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF], the author presents a natural semantics for VHDL. The simulation loop is expressed by inference rules, and the execution of processes is based on the events over signals of their corresponding sensitivity lists. The execution of statements computes transaction traces, that is, the drivers of the signals. The semantics deals both with unit and delta delay signal assignments. Regarding our needs, this semantics does not entirely cover the subset of VHDL we are interested in. Component instantiation statements are not dealt with. A synchronous execution is expressible within the semantics, although it would be hidden in the inference rule formalizing the generic simulation loop. Also, the semantics does not provide its simulation loop with a simulation horizon (a maximum number of simulation cycles). The simulation ends when signal values evolve no more.

In [START_REF] Goossens | Reasoning about VHDL Using Operational and Observational Semantics[END_REF], the author presents an operational semantics for VHDL in the small-step style. The semantics follows closely the simulation cycle described in the LRM; however it is very concise and clear. The covered VHDL subset comprises both unit and delta-delay signal assignments. There is an interesting discussion about the non-determinism of VHDL, since it is a concurrent programming language: it entails that non-determinism is only existent at the processes level, that is, internal sequential statement of processes can be executed in a nondeterministic manner (referred to as A actions, that is, internal actions). But at every delta or time step (referred to as δ and T actions) of the execution, the design state can be computed in a deterministic manner, since all processes have reached a suspension point at the end of their inner body. The author is interested in comparing the behaviors of two VHDL designs by proving that some relation of equivalence holds between the two. He describes two strategies to compare VHDL programs. The first one is bisimulation; it is based on the comparison of the sequence of actions (either A, δ or T actions) performed by the two programs. The second one is observational equivalence; it is based on the observation of the value of the output signals of two VHDL programs (the observees), that receive values in their input signals from another VHDL program (the observer). The observer stimulates the entries of the observees and reaches a success state based on its observations of the value of the outputs. Regarding our needs, this semantics permits the description of our synchronous simulation cycle. However, like most of the semantics presented here, the component instantiation statement is not supported as it stands, but it is rather transformed into the equivalent processes statements. Small-step semantics is not needed in our case because we are only interested in the values of signals at the delta and time steps (for us, time steps correspond to clock events). We are not interested in capturing the design states in the middle of the execution of a process body. We are more interested in "weak bisimulation", therefore forsaking the internal actions performed by a VHDL design. In [START_REF] Thirunarayan | Structural Operational Semantics for a Portable Subset of Behavioral VHDL-93[END_REF], the authors extend the work of [START_REF] Goossens | Reasoning about VHDL Using Operational and Observational Semantics[END_REF], especially by handling shared variables, in the presence of which a VHDL program can have a concrete nonderterministic behavior. The authors are also interested in the equivalence between two VHDL programs, and they are interested in determining a unique meaning property for VHDL programs. The unique meaning property states that the execution of a VHDL design in the presence of shared variables is unique. This work is interesting as it points out the fact that the VHDL language is not only subject to "benign nondeterminism". By benign nonderterminism, the authors of [START_REF] Thirunarayan | Structural Operational Semantics for a Portable Subset of Behavioral VHDL-93[END_REF] mean that the only moment where the state of a VHDL design can not be decided in a deterministic way is when the processes are in the middle of the execution of their statement body. However, the state of a VHDL design at that moment is of no interest; it corresponds to nothing regarding the concrete functioning of a hardware circuit. Also, two different processes can never be writing to the same signal at the same time. If such a design happens, this is a case of multiply-driven signal, which is utterly forbidden. So, there can be no nondeterminism, regarding the value of a signal, coming from the concurrent execution of two processes (at least when shared variables are not involved).

Translational semantics

Another kind of semantics, called "translational", formalizes the VHDL language semantics by translating a VHDL design into another formal model. Thus, the semantics of VHDL is modeled by the translation and the formal semantics of the target model. The target model has the ability to model concurrency, which is one of the specificity of VHDL. Moreover, target models are chosen regarding the tools they provide for analysis, and thus, a translational semantics for VHDL is often related to model checking considerations.

In [START_REF] Reetz | A Flow Graph Semantics of VHDL: A Basis for Hardware Verification with VHDL[END_REF], the author expresses the formal semantics of VHDL by translating a VHDL design into a corresponding flowgraph. All VHDL constructs, ranging from sequential statements to concurrent processes, are expressed with individual flowgraphs that are then composed together through their interfaces. The simulation cycle of VHDL is also encoded by means of connected flow graphs: one for the "execution part" of the semantics, that is, all processes run until suspension, and one for the update part (i.e, the kernel process). Flowgraphs come with a large amount of tools for analysis, and this translational semantics is involved in the setting of a framework to reason about VHDL programs using multiple techniques (automatic theorem proving, model checking. . .). All these techniques rely on the flowgraph formalism.

In [START_REF] Döhmen | A Deterministic Finite-State Model for VHDL[END_REF], the author introduces a translational semantics for VHDL based on deterministic finite-state automatons. Again, the reason for using such automatons lies in the existence of many analysis tools. Moreover, forcing the generation of deterministic automatons improves the time execution of model-checking techniques. The translation is performed on an elaborated VHDL design; a data space stores the values of signals and variables, and automatons represent the control-flow of VHDL statements. Each VHDL statement is associated to a specific automaton; sequence of statements are achieved by automaton composition. The simulation kernel is also represented by a specific automaton. Processes are composed together with respect to synchronization states, i.e. states that permit to pass the control from one process to another, therefore achieving determinism in the control flow of the overall automaton.

In [START_REF] Olcoz | A Formal Model of VHDL Using Coloured Petri Nets[END_REF], the author presents a translation from VHDL to Coloured Petri Nets (CPNs) thus giving a formal semantics to the VHDL constructs. The author approach to the VHDL semantics is a strict translation of the "event-based" VHDL simulator by means of Petri nets. The author translates VHDL execution models (sea of processes) into CPNs, and also translates the kernel process into a CPN. The kernel process has previously been expressed as a VHDL process so that the translation into CPN is similar to the translation of other processes. Signals are not represented in the subnets, instead, three shared variables depict the signal states: one variable for the driving, one for the effective and one for the current value of a given signal (see [64, p.167] for the details on the values associated with signals during the simulation). Color domains of places in the subnets represent the different types of VHDL domains. Variables are represented by tokens. Values in drivers are represented by sequences of transactions (equivalent to waveforms); the author defines a set of functions that are convenient to handle sequences of transactions. Sequential statements are partitioned into two kinds: control flow (if, loop, case. . .) and notation (operations on signals and variables) nets. Processes subnets are made by the fusing of each sequential statements in the process body. There is a special Resume place that can be set by the kernel process to resume the activity of a process. Concurrency is not discussed here, as the Petri net models are inherently concurrent models. The kernel process is Chapter 4. H-VHDL: a target hardware description language a broad CPN having some of its places interfaced with the process subnets. The decoloration of the Petri net enables the analysis of the model and the detection of dead-locks.

In [START_REF] Déharbe | Semantics of a Verification-Oriented Subset of VHDL[END_REF], the author gives a formal semantics to VHDL by transforming a VHDL design into an abstract machine, i.e. defined by a set of inputs, outputs, states and transition function over states and outputs. The author is interested in the verification of properties over VHDL designs (temporal properties) or to prove equivalence between designs (bisimulation). To operate this transformation, only a subset of VHDL is considered, otherwise a finite-state representation is not reachable. The covered VHDL subset consists of objects with finite types, and no quantitative timing constructs (no after clause in signal assignments). The transformation generates a decision diagram (i.e. a control flow graph) and a state space for each process defined in the design's behavior. The decision diagram encodes the transition function over states and outputs. Process statements are composed with a special composition operator to obtain a global abstract machine. Moreover, the article lays out a method to transform a block statement into an abstract machine. The initiative is to be noticed as there are only a few papers, dealing with the formalization of the VHDL semantics, that are interested in such hierarchical constructs as block or component instantiation statements. The article concludes with an expression of the space of complexity entailed by the transformation of a VHDL design into an abstract machine.

Although the translational semantics described above meet most of the qualifying criterions in relation to our needs, we are not especially interested in implementing one of these. The main reason being that it would require to implement the transformation from the abstract VHDL syntax to the target model, in addition to the implementation of the semantics of the target model. Table 4.1 summarizes the analysis of the VHDL semantics encountered during our literature review. Table 4.1 compares the different VHDL semantics in relation to our qualifying criterions (see Section 4.2.1).

Fuchs and Mendler [START_REF] Fuchs | A Functional Semantics for Delta-Delay VHDL Based on Focus[END_REF] Breuer et al. [START_REF] Peter | A Simple Denotational Semantics, Proof Theory and a Validation Condition Generator for Unit-Delay VHDL[END_REF] Pandey et al. [START_REF] Pandey | VHDL Semantics and Validating Transformations[END_REF] Borrione and Salem [START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF] Breuer et al. [START_REF] Peter | A Functional Semantics for Unit-Delay VHDL[END_REF] Börger et al. [START_REF] Börger | A Formal Definition of an Abstract VHDL'93 Simulator by EA-Machines[END_REF] Van Tassel [START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF] Goossens [START_REF] Goossens | Reasoning about VHDL Using Operational and Observational Semantics[END_REF] Reetz and Kropf [START_REF] Reetz | A Flow Graph Semantics of VHDL: A Basis for Hardware Verification with VHDL[END_REF] Döhmen and Herrmann [START_REF] Döhmen | A Deterministic Finite-State Model for VHDL[END_REF] Olcoz [START_REF] Olcoz | A Formal Model of VHDL Using Coloured Petri Nets[END_REF] Déharbe and Borrione [

T T N T T T T T T T N Synchronism NE NE NE Ex E E E E E E E NE Elaboration × × × × × × × × × Extra.
Informations.

Impl.

Technology

Focus [START_REF] Dederichs | Focus: A Formal Design Method for Distributed Systems[END_REF] Prolog [START_REF] Colmerauer | An Introduction to Prolog III[END_REF] PVS [START_REF] Owre | A Tutorial on Using PVS for Hardware Verification[END_REF] ? Gofer [START_REF] Mark | The Implementation of the Gofer Functional Programming System[END_REF] ? HOL [START_REF] Hutton | Introduction to HOL: A Theorem Proving Environment for Higher Order Logic by Mike Gordon and Tom Melham[END_REF] ? HOL [START_REF] Hutton | Introduction to HOL: A Theorem Proving Environment for Higher Order Logic by Mike Gordon and Tom Melham[END_REF] ? ? ? -Purpose : AR (Abstract Reasoning) -ATP (Automatic Theorem Proving) -SS (Simulator Specification) -ITP (Interactive Theorem Proving) -MC (Model Checking).

Particular

-Component Instantiation : T (statement is Transformed into equivalent processes) -N (statement is Natively taken into account in the semantics).

-Synchronism : E (Expressible within the semantics) -NE (Not Expressible within the semantics) -Ex (Explicitly built in the semantics).

To summarize, we are interested in a semantics built for the purpose of interactive theorem proving (ideally, with an existing implementation in the Coq proof assistant). Most important, the formal semantics must be able to deal with the expression of synchronous designs, that is, designs synchronized with a clock signal. Therefore, a synchronous simulation cycle must be at least expressible within the semantics. Moreover, the semantics must handle component instantiation statements as they are, that is, without transforming them into equivalent processes. As a bonus, the semantics should formalize the elaboration part of VHDL semantics.

In Table 4.1, cells are colored in green when the cell's content foster the adoption of the semantics, in yellow when the content does not go towards the adoption of the semantics but is not disqualifying, and red when the content is a disqualifying criterion. Regarding the semantics adoption, cells are labelled in light grey when their content is neutral. Now comparing the entries of Table 4.1 with the expression of our needs, we can discard the semantics with a cell labelled in red, that is, most of the denotational semantics; moreover, all translational semantics are disqualified for the previously mentioned reasons. The candidate semantics are the operational semantics, plus the denotational semantics by Borrione and Salem [START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF], the only semantics that formalizes an explicitly synchronous simulation cycle. The semantics that is the most likely to be adopted is the Borrione and Salem's semantics. However, we prefer an operational setting for our semantics. To lower down the complexity of proofs, we really need a semantics that builds the synchronism into its simulation cycle, therefore putting aside all the intricacies of the full-blown VHDL simulation cycle. Moreover, the big-step style for an operational semantics is more relevant to us; as stated before, we are not interested in the intermediary states of computation that a small-step style semantics considers. Based on these observations, we have decided to formalize our own VHDL semantics inspired from the semantics of Borrione and Salem's [START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF] and Van Tassel's [START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF]. The following sections are dedicated to the presentation of the syntax and semantics of a subset of VHDL that we baptize H-VHDL. H-VHDL embeds the subset of VHDL that we are interested in when considering the VHDL designs generated by the HILECOP transformation.

Abstract syntax of H-VHDL

In this section, we describe the abstract syntax of H-VHDL, a subset of VHDL covering all the constructs present in the programs generated by the HILECOP transformation. Terminals of the language are written in typewriter font, or are enclosed in simple quotes for symbols with no typewriter representation. The a * denotes a possibly empty repetition of the element a; the a + denotes a non-empty repetition of a.

Design declaration

Similarly to [START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF], we define the design construct in the H-VHDL's abstract syntax which has no equivalent in the concrete syntax of VHDL.

In the above entry, id e indicates the entity identifier and id a the architecture identifier of the declared design. The gens entry corresponds to the generic clause, i.e. the declaration list for the generic constants of the design. A generic constant is declared via the gdecl entry; a A process statement declares a sensitivity list, i.e. the sl entry, which is a possibly empty set of signal identifiers. In order to be well-formed, the signals composing a sensitivity list must be either internal signals or input ports of the design. As a good practice, all signals which value is read in the sequential statement body of the process must appear in the sensitivity list. The process possibly declares a set of internal variables, i.e. the vars entry. A variable declaration entry is a couple composed of a variable identifier and a type indication. The ss entry represents the sequence of statements composing the body of the process, i.e. the part that will be executed during the simulation.

Component instantiation statement

The VHDL LRM defines two kinds of component instantiation statement (CIS): the instantiation of a component [64, p.139] and the instantiation of a design entity [64, p.141]. The component instantiation statement used in the H-VHDL abstract syntax corresponds to the instantiation of a design entity. In the cistmt entry, the identifier id c represents the name of component instance. Identifier id e points out the name of the design, i.e. the entity identifier, being instantiated here. The g entry describes the list of associations between generic constant identifiers and expressions. The i entry is the list of associations between input port identifiers (or indexed identifiers) and expressions. The o entry is the list of associations between output port identifiers (or indexed identifiers) and signal names, or the open keyword. Associating the open keyword with an output port identifier indicates that the port is not connected. The left element of an association is called the formal part, and the right element of an association is called the actual part. The ss entry defines the sequential statements that compose the body of processes. The signal assignment statement is represented with the ⇐ operator; the variable assignment statement with the := operator. Also, we devise three control flow statements that have no equivalent in the VHDL syntax: the falling block statement, the rising block statement and the rst block (or reset block) statement. The falling ss statement (resp. rising ss) declares a block of sequential statements to be executed only at the falling edge (resp. rising edge) of the clock signal (see Section 4.6.5). Also, the rst ss ss' statement declares two blocks, the first one must be executed during the initialization phase of the simulation; otherwise, the second one is executed (see Section 4.6.4). These introduced constructs are equivalent to specific if-else statements that are commonly used in the body of a synchronous process. In the above listing, the rising_edge (resp. falling_edge) primitive yields true if a rising edge event (resp. falling edge event) occurred in the clk signal passed as input. More details are given, in Section 4.6.5, regarding the semantics of the above statements in relation to the clock phases happening during a simulation cycle. The expression entry, i.e. e, declares a set of operators over Boolean expressions, and natural numbers expressions. The natural non-terminal represents the set of natural numbers (N). The id non-terminal represents the set of identifiers, comparable to the set of non-empty strings, or any infinitely enumerable set. In the following sections, concrete identifiers will be written in typewriter font, e.g. the place and transition design identifiers. The τ entry corresponds to the type indication associated with the declaration of a generic constant, a port or an internal signal. The considered types are the Boolean type, the constrained natural type, and the array type. The constrained natural type, i.e. natural(e,e), defines a finite interval of natural numbers; the left-most expression of the range constraint denotes the lower bound of the interval, and the second one denotes the upper bound of the interval. The array type indication, i.e. array(τ, e, e), denotes a non-empty set of elements of type τ. The elements are indexed with respect to the specified index constraint. The left-most expression of the index constraint denotes the starting index (possibly different from 0) and the right-most expression denotes the final index.

Sequential statements

Expressions, names and types

Preliminary definitions

Semantic domains

Let id denote the set of identifiers in the semantic domain. We write pre f ix-id to denote arbitrary subsets of the id set. The type and value semantic types are defined as follows: In Table 4.2, the type type is in any way similar to the τ entry of the H-VHDL abstract syntax. However, all constraint bounds, that were expressions in the constrained natural and the array type indications, have been evaluated to natural numbers. NATMAX denotes the maximum value for a natural number. The NATMAX value depends on the implementation of the VHDL language; NATMAX must at least be equal to 2 31 -1. Note that the array value contains at least one value as an array's index range contains at least one index.

Elaborated design and design state

Now, let us define the structure of elaborated design. An elaborated design is built during the elaboration of a H-VHDL design (see Section 4.5). Then, the elaborated design will act as a runtime environment in the expression of the simulation rules. Let ElDesign be the set of elaborated designs. An elaborated design is a composite environment built out of multiple subenvironments. Each sub-environment is a table, represented as a function, mapping identifiers of a certain category of constructs (e.g, input port identifiers) to their declaration information (e.g, type indication for input ports). We represent an elaborated design as a record where the fields are the sub-environments. An elaborated design is defined as follows:

Definition 31 (Elaborated Design). An elaborated design ∆ ∈ ElDesign is a record <Gens, Ins, Outs, Sigs, Ps, Comps> where:

-Gens ∈ generic-id → (type × value) is the function yielding the type and the value of generic constants.

-Ins ∈ input-id → type is the function yielding the type of input ports.

-Outs ∈ output-id → type is the function yielding the type of output ports.

-Sigs ∈ declared-signal-id → type is the function yielding the type of declared signals.

-Ps ∈ process-id → (variable-id → (type × value)) is the function associating process identifiers to their local environment.

-Comps ∈ component-id → ElDesign is the function mapping component instance identifiers to their own elaborated design version.

We assume that there is no overlapping between the identifiers of the sub-environments (i.e, an identifier belongs to at most one sub-environment), and also between the identifiers of the sub-environments and the identifiers of local environments. When there is no ambiguity, we write ∆(x) to denote the value returned for identifier x, where x is looked up in the appropriate field of ∆. We write x ∈ ∆ to state that identifier x is defined in the domain of one of ∆'s field. We note ∆(x) ← v the overriding of the value associated to identifier x with value v in the appropriate field of ∆, ∆ ∪ (x, v) to note the addition of the mapping from identifier x to value v in the appropriate field of ∆, that assuming x / ∈ ∆. We write x ∈ F (∆), where F is a field of ∆, when more precision is needed regarding the lookup of identifier x in the record ∆. -C ∈ component-id → Σ, is the function yielding the current state of component instances.

-E ⊆ signal-id component-id, is the set of signal and component instance identifiers that generated an event at the current design state.

The signal-id subset is the disjoint union of input-id, output-id and declared-signal-id. When there is no ambiguity regarding which store a given identifier belongs, we use σ(id) to denote the value associated to an identifier in the signal store S or in the component store C fields. We write id ∈ σ to state that an identifier is defined in either the signal store S or the component store C fields. Also, when there is no ambiguity, we rely on indices or exponents to qualify the signal store, the component instance store and the set of events of a given design state. For instance, C 0 denotes the component instance store of design state σ 0 , and E denotes the set of events of design state σ , etc. Notation 6 (No events design state). The function NoEv ∈ Σ → Σ returns a design state similar to the one passed in parameter but with an empty set of events. I.e, for all design state σ ∈ Σ s.t. σ = <S, C, E >, NoEv(σ) = <S, C, ∅>.

Elaboration rules

The goal of the elaboration phase is to build an elaborated design ∆ along with a default state σ e out of a H-VHDL design d and for a given design store D. The elaboration relation performs type-checking operations over the declarative and behavioral parts of the design. Even though the elaboration of a design is described in the LRM, the formalization of this phase has been performed in few works only [START_REF] Borrione | Denotational Semantics of a Synchronous VHDL Subset[END_REF][START_REF] Déharbe | Semantics of a Verification-Oriented Subset of VHDL[END_REF][START_REF] Van Tassel | An Operational Semantics for a Subset of VHDL[END_REF], and never in a setting that covers both syntactical well-formedness and type-checking of the designs. We are interested in the formalization of the elaboration phase because we are interested in the well-formedness of the programs generated by the HILECOP transformation. Here, the term well-formedness refers to a syntactically valid design, w.r.t. the syntactic rules of the VHDL language, and to a well-typed design, w.r.t. the typing rules defined in the LRM. Formalizing the elaboration phase is also a way to define how the runtime environment and the runtime state of the simulation are built. For now, we haven't tackled down the proof that the H-VHDL designs generated by HILECOP are elaborable, i.e. syntactically well-formed and well-typed. As explained in Chapter 6, this task is foreseen in our work perspectives. In our own formalization of the elaboration phase, and contrary to what is prescribed by the LRM [64, p. 166], we are not dealing with the transformation of the component instantiation statements into block statements. We prefer to preserve the hierarchical structure of the design (i.e. its composite structure) during its elaboration. We argue that dealing with component instantiation statements instead of block statements does not add complexity to the semantics of the H-VHDL simulation rules.

In the following sections, the green frames give additional explanations about the premises of the rule instances; the red frames bring additional explanations about the side conditions of the rules.

Design elaboration

One way to define a design's behavior is through the instantiation of subcomponents which are instances of other designs. Each component instance declares the entity identifier that points out to the specific design being instantiated. Therefore, for each instantiation, the associated design must be known through the definition of a global design declaration environment called a design store. A design store is defined as follows:

Definition 33 (Design store). A design store D ∈ entity-id → design is a function mapping design identifiers (i.e. the entity identifier of designs) to their corresponding representation in abstract syntax. As a prerequisite to the elaboration of HILECOP-generated designs (i.e, resulting from the transformation of a SITPN into a H-VHDL design), a particular design store D H is defined. Design store D H binds the transition and place identifiers to the definition of the place and transition designs in H-VHDL abstract syntax: D H := {(transition, design transition transition_architecture gens t ports t sigs t cs t), (place, design place place_architecture gens p ports p sigs p cs p)}

The full definition of the place and transition designs in abstract syntax are given in Appendices A and B.

At the beginning of the elaboration phase, a function M g ∈ generic-id value mapping the top-level design's generic constants to values is passed as an element of the environment. The M g function is referred to as the dimensioning function.

Rule DESIGNELAB defines the design elaboration relation. It relates a H-VHDL design to its resulting elaborated version and default design state that were built in the context of the design store D and the dimensioning function M g .

Elaboration rules

91 DESIGNELAB ∆ ∅ , M g gens egens ---→ ∆ ∆, σ ∅ ports eports ---→ ∆ , σ ∆ , σ sigs esigs --→ ∆ , σ D, ∆ , σ cs ebeh --→ ∆ , σ
D, M g design id e id a gens ports sigs cs elab --→ ∆ , σ ∆ ∅ denotes an empty elaborated design, that is an elaborated design initialized with empty fields (empty tables). In the same manner, σ ∅ denotes an empty design state. The effect of the egens, eports, esigs and ebeh relations that respectively deal with the elaboration of the generic constants, the ports, the architecture declarative part and the behavioral part of the design, are made explicit in the following sections.

Generic clause elaboration

The egens relation elaborates the list of generic constant declarations, i.e. the generic clause of a design declaration. The egens relation is defined through the GENELABDIMEN, GENELAB-DEFAULT and GENELABCOMP rules. The elaboration of a generic constant declaration consists in:

1. Transforming the type indication associated with the constant into a semantic type.

2. Checking that the default value, and/or the value associated with the constant in the dimensioning function, is well-typed.

3. Adding the couple constant identifier and (type,value) to the Gens sub-environment of ∆.

Premises

etype g transforms a type indication, specifically attached to a generic constant declaration, into a type instance and checks its well-formedness (see Section 4.5.5).

-The e relation links an expression e to its value v in a given context (see Section 4.6.9). The context of evaluation for an expression is composed of a given elaborated design, a given design state, and given local environment. We omit the thesis symbol and symbols at the left of the thesis when they refer to empty structures. For instance, e

e -→ v is a notation for ∆ ∅ , σ ∅ , Λ ∅ e e -→ v.
-SE l states that an expression is locally static (see Section 4.5.9).

v ∈ c T and M(id g) ∈ c T checks that the default value and the value yielded by the dimensioning function belongs to the type of the declared generic constant (see Section 4.5.8).

Side conditions

The expression id g / ∈ ∆ checks that the generic constant identifier id g is not already defined in the domain of one sub-environment of the elaborated design ∆.

GENELABDIMEN τ etype g ---→ T e e -→ v SE l (e) v ∈ c T M(id g) ∈ c T id g / ∈ ∆ id g ∈ M ∆, M (id g ,τ,e) egens ---→ ∆ ∪ (id g , (T, M(id g)))
The GENELABDEFAULT rule states that the value of a generic constant is defined by its type's default implicit value when no value is specified by the dimensioning function M.

GENELABDEFAULT τ etype g ---→ T e e -→ v SE l (e) v ∈ c T id g / ∈ ∆ id g / ∈ M ∆, M (id g ,τ,e) egens ---→ ∆ ∪ (id g , (T, v)) GENELABCOMP ∆, M gdecl egens ---→ ∆ ∆ , M gens egens ---→ ∆ ∆, M gdecl, gens egens ---→ ∆

Port clause elaboration

The eports relation elaborates each port declaration defined in a design's port clause. For each port declaration, the eports relation transforms the port's type indication into a semantic type and retrieves the implicit default value of this type. Then, the eports relation adds the binding between the input (resp. output) port identifier and its type to the Ins (resp. Outs) subenvironment of the elaborated design structure ∆. It also adds the binding between the input (resp. output) port identifier and its implicit default value to the default design state σ.

Premises

-The etype relation associates a type indication to its corresponding semantic type and checks its well-formedness (see Section 4.5.5).

-The de f aultv relation associates a given semantic type to its implicit default value.

Side conditions

The expression id / ∈ σ checks that the identifier id is not already defined in the domain of the signal store or the component store of the design state σ. It is a shorthand notation to id /

∈ dom(S) ∪ dom(C) where σ = <S, C, E >.

INPORTELAB ∆ τ etype --→ T ∆ T de f aultv ----→ v id / ∈ ∆ id / ∈ σ ∆, σ (in, id, τ) eports ---→ ∆ ∪ (id, T), σ ∪ (id, v) OUTPORTELAB ∆ τ etype --→ T ∆ T de f aultv ----→ v id / ∈ ∆ id / ∈ σ ∆, σ (out, id, τ) eports ---→ ∆ ∪ (id, T), σ ∪ (id, v) PORTELABCOMP ∆, σ pdecl eports ---→ ∆ , σ ∆ , σ ports eports ---→ ∆ , σ ∆, σ pdecl, ports eports ---→ ∆ , σ

Architecture declarative part elaboration

The esigs relation elaborates each internal signal declaration defined in the declarative part of a design's architecture. For each signal declaration, the esigs relation transforms the signal's type indication into a semantic type and retrieves the implicit default value of this type. Then, the esigs relation adds the binding between the signal identifier and its type to the Sigs subenvironment of the elaborated design structure ∆. It also adds the binding between the signal identifier and its implicit default value to the default design state σ.

SIGELAB ∆ τ etype --→ T ∆ T de f aultv ----→ v id / ∈ ∆ id / ∈ σ ∆, σ (id, τ) esigs --→ ∆ ∪ (id, T), σ ∪ (id, v) SIGELABCOMP ∆, σ sdecl esigs --→ ∆ , σ ∆ , σ sigs esigs --→ ∆ , σ ∆, σ sdecl, sigs esigs --→ ∆ , σ

Type indication elaboration

The etype relation checks the well-formedness of a type indication τ, and transforms it into a semantic type (as defined in Table 4.2). A type indication τ is well-formed in the context ∆ if τ denotes the boolean keyword or the natural or array keywords with a well-formed constraint, and a well-formed element type in the array case.

Chapter 4. H-VHDL: a target hardware description language

ETYPEBOOL ∆ boolean etype --→ bool ETYPENAT ∆ (e, e) econstr ---→ (v, v) ∆ natural(e, e) etype --→ nat(v, v) ETYPEARRAY ∆ τ etype --→ T ∆ (e, e) econstr ---→ (v, v) ∆ array(τ, e, e) etype --→ array(T, v, v)
The econstr relation checks that a constraint is well-formed and evaluates the constraint bounds. A constraint is well-formed in the context ∆ if:

-Its bounds are globally static expressions [64, p.36] conforming to the nat(0, NATMAX) type after evaluation.

-Its lower bound value is inferior or equal to its upper bound value.

Remark 1 (Type of constraints).

As the VHDL language reference stays unclear about the type of range and index constraints [64, p.33], we add the restriction that range and index constraints must have bounds of the nat(0, NATMAX) type, i.e. the interval of natural numbers representable with the VHDL language.

Premises

-The ∈ c relation states that a given value conforms to a given type (see Section 4.5.8).

-The SE g relation states that an expression is globally static (see Section 4.5.9).

ECONSTR ∆ SE g (e) ∆ SE g (e) ∆ e e -→ v ∆ e e -→ v v ∈ c nat(0, NATMAX) v ∈ c nat(0, NATMAX) v ≤ v ∆ (e, e) econstr ---→ (v, v)
When considering a type indication in a generic constant declaration, the definition of wellformedness differs slightly from the general definition. A type indication τ associated to a generic constant declaration is well-formed if τ denotes the boolean keyword, or the natural keyword with a well-formed constraint. A generic constant can not be associated with a composite type indication (i.e. an array type). The etype g relation is specially defined to check the well-formedness of a type indication associated with a generic constant declaration.

ETYPEGBOOL boolean etype --→ bool ETYPEGNAT ∆ (e, e) econstr g ----→ (v, v) natural(e, e) etype --→ nat(v, v)
The econstr g relation checks that a generic constraint (i.e, a constraint appearing in a type indication associated with a generic constant declaration) is well-formed and evaluates the constraint bounds. A generic constraint is well-formed if:

-Its bounds are locally static expressions [64, p.36] conforming to the nat(0, NATMAX) type after evaluation.

-Its lower bound value is inferior or equal to its upper bound value.

ECONSTRG SE l (e) SE l (e) e e -→ v e e -→ v v ∈ c nat(0, NATMAX) v ∈ c nat(0, NATMAX) v ≤ v (e, e) econstr g ----→ (v, v)

Behavior elaboration

The ebeh relation elaborates each concurrent statement composing the behavioral part of a design.

Elaboration of concurrent statements

The elaboration of the composition of concurrent statements is performed sequentially.

CSPARELAB D, ∆, σ cs ebeh --→ ∆ , σ D, ∆ , σ cs ebeh --→ ∆ , σ D, ∆, σ cs || cs ebeh --→ ∆ , σ CSNULLELAB D, ∆, σ null ebeh --→ ∆, σ

Process statement elaboration

To elaborate a process statement, the ebeh relation associates the process identifier with a local environment in the Ps sub-environment of ∆. The ebeh builds the local environment based on the process's local variable declaration list (see the evars relation). The ebeh relation also checks that the sequential statements composing the body of the process are well-typed (see the valid ss relation in Section 4.5.11).

Premises

The valid ss relation states that a sequential statement is well-typed in the context ∆, σ, Λ,

where Λ is the local variable environment deduced from the elaboration of the process declarative part.

Side conditions

sl ⊆ Ins(∆) ∪ Sigs(∆) indicates that the sensitivity list sl must only contain readable signal identifiers, that is, input ports and internal signals.

PSELAB ∆, Λ ∅ vars evars --→ Λ ∆, σ, Λ valid ss (ss) id p / ∈ ∆ sl ⊆ Ins(∆) ∪ Sigs(∆) D, ∆, σ process (id p , sl, vars, ss) ebeh --→ ∆ ∪ (id p , Λ), σ

Process declarative part elaboration

The evars relation builds a local environment out of a process declarative part. For each local variable declaration, the evars transforms the type indication associated with the variable identifier into a semantic type and retrieves the implicit default value of this type. Then, the evars relation adds the binding between the variable identifier, and the couple (type,value) to the local environment Λ.

VARELAB ∆ τ etype --→ T T de f aultv ----→ v id / ∈ Λ id / ∈ ∆ ∆, Λ (id, τ) evars --→ Λ ∪ (id, (T, v)) VARELABCOMP ∆, Λ vdecl evars --→ Λ ∆, Λ vars evars --→ Λ ∆, Λ vdecl, vars evars --→ Λ

Component instantiation statement elaboration

To elaborate a component instantiation statement, the ebeh relation first builds a dimensioning function M out of the component instance's generic map. Then, the design associated with the entity identifier declared by the component instance (i.e. id e) is looked up and retrieved from the design store D. Then, the ebeh relation appeals to the elab relation to build an elaborated version ∆ c and a default design state σ c for the retrieved design given the specific dimensioning function M. Finally, the component instance identifier id c is bound to its elaborated version ∆ c in the Comps sub-environment of ∆, and is bound to its own default design state σ c in the component store C of σ. Consequently, the definition of the elab and ebeh relations is mutually recursive.

Premises

-The emapg relation builds a function M ∈ generic-id value out of a generic map (see the definition below).

valid ipm (resp. valid opm) states that an input port map (resp. output port map) is valid, i.e. well-formed and well-typed (see Section 4.5.10).

Side conditions

M ⊆ Gens(∆ c) checks that the generic map g contains references to known generic constant identifiers only.

COMPELAB

M ∅ g emapg ---→ M D, M D(id e) elab --→ ∆ c , σ c ∆, ∆ c , σ valid ipm (i) ∆, ∆ c valid opm (o) id c / ∈ ∆, id c / ∈ σ id e ∈ D M ⊆ Gens(∆ c) D, ∆, σ comp (id c , id e , g, i, o) ebeh --→ ∆ ∪ (id c , ∆ c), σ ∪ (id c , σ c)
A port map is a mapping between expressions and signals coming from an embedding design (∆) and the ports of an internal component instance (∆ c). The formal part of a port map entry (i.e, the left part) belongs to the internal component, whereas the actual part (i.e, the right part) refers to the embedding design. Therefore, we need both ∆ and ∆ c to verify if a port map is well-typed leveraging the valid ipm , or the valid opm , relation.

Remark 2 (Valid generic map).

In Rule COMPELAB, note that we are not checking the validity of the generic map g. In case of an ill-formed generic map, an inconsistent mapping M is generated by the emapg relation. In the presence of an ill-formed dimensioning function, the elab relation is never derivable. Therefore, the elab relation does an implicit validity check on the generic map.

The emap g relation builds a dimensioning function out of generic map. For each association of the generic map, the emap g relation evaluates the actual part of the association, and adds a binding between the generic constant identifier and its value to the dimensioning function M.

ASSOCGELAB SE l (e) e e -→ v id g / ∈ M M (id g , e) emapg ---→ M ∪ (id g , v) GMELAB M assoc g emapg ---→ M M gmap emapg ---→ M M assoc g , gmap emapg ---→ M
An assoc g entry doesn't allow indexed identifiers in its formal part, due to the restriction of generic constants to scalar types. Note that this restriction is not imposed by the LRM. We choose to adopt this simplification of the VHDL syntax since the case of generic constants with composite types is never encountered in the VHDL programs generated by HILECOP.

Implicit default value

According to the VHDL LRM, at the declaration of a port, a signal or a variable, these items must receive an implicit default value depending on their types [64, p.61, 64, 173]. The de f aultv relation determines the default value for a given type.

DEFAULTVBOOL bool de f aultv ----→ ⊥ DEFAULTVCNAT n ≤ m nat(n, m) de f aultv ----→ n DEFAULTVCARR T de f aultv ----→ v n ≤ m size = (m -n) + 1 array(T, n, m) de f aultv ----→ create_array(size, T, v)
The create_array(size, T, v) expression yields an array of size size, containing elements of type T, where each element is initialized with the value v.

Typing relation

The typing relation ∈ c checks that a given value conforms to a given type.

ISBOOL b ∈ B b ∈ c bool ISCNAT n ∈ [l, u] n ∈ c nat(l, u) ARRAY v i ∈ c T i = 1, . . . , n n = (u -l) + 1 ∆ (v 1 , . . . , v n) ∈ c array(T, l, u)

Static expressions

Static expressions are either locally static or globally static; the LRM defines locally static and globally static expressions as follows.

Locally static expressions

An expression is locally static if:

-It is composed of operators and operands of a scalar type (i.e, natural or boolean).

-It is a literal of a scalar type.

The SE l relation, defined by the following rules, states that an expression is locally static.

LSENAT n ∈ N SE l (n) LSEBOOL b ∈ B SE l (b) LSENOT SE l (e) SE l (not e) LSEBINOP SE l (e) SE l (e)
op ∈ { +, -, =, =, <, ≤, >, ≥, and, or } SE l (e op e)

Globally static expressions

An expression is globally static in the context ∆ if:

-It is a generic constant.

-It is an array aggregate composed of globally static expressions.

-It is a locally static expression.

The SE g relation, defined by the following rules, checks that an expression is globally static in a given context ∆.

GSELOCAL SE l (e) ∆ SE g (e) GSEGEN id g ∈ Gens(∆) ∆ SE g (id g) GSEAGGREGATE ∆ SE g (e i) i = 1, . . . , n ∆ SE g ((e 1 , . . . , e n))

Valid port map

Valid input port map

The valid ipm predicate states that an input port map is valid in the context ∆, ∆ c , where ∆ is the embedding design structure and ∆ c denotes the component instance, owner of the input port map, if:

-All ports defined in ∆ c are exactly mapped once in the input port map.

-For each input port map entry, the formal and actual part are of the same type.

Premises

list ipm builds a set L ⊂ id (id × N) out of the input port map.

check pm checks the validity of a port map based on the corresponding port list (here, the input ports of ∆ c) and the set built by the list ipm relation.

VALIDIPM ∆, ∆ c , σ, L ∅ i list ipm ---→ L check pm (Ins(∆ c), L) ∆, ∆ c , σ valid ipm (i)
The list ipm relation builds a set composed of identifiers and/or couples (identifier, natural number) collected from the identifiers and indexed identifiers found in the formal parts of an input port map. It also checks, for each association of the input port map, that the expression of the actual part is of the same type than the identifier or indexed identifier of the formal part.

Chapter 4. H-VHDL: a target hardware description language Side conditions -id f ∈ Ins(∆ c) checks that the identifier id f is an input port identifier of ∆ c .

-id f / ∈ L checks that the port identifier id f is not already mapped, i.e. it is not already referenced in the L set.

-v i s.t. (id f , v i) ∈ L checks that a subelement of id f is not already map, that is, if id f denotes a signal identifier of the array type. LISTIPMSIMPLE ∆, σ e e -→ v v ∈ c T id f / ∈ L, id f ∈ Ins(∆ c) v i s.t. (id f , v i) ∈ L ∆ c (id f) = T ∆, ∆ c , σ, L (id f , e) list ipm ---→ L ∪ {id f } Premises v i ∈ c nat(n, m
) checks that the index value stays in the array bounds.

Side conditions

id f / ∈ L and (id f , v i) / ∈ L checks that neither the port identifier id f nor the couple port identifier id f and index v i are already mapped.

LISTIPMPARTIAL SE l (e i) e i e -→ v i ∆, σ e e -→ v v i ∈ c nat(n, m) v ∈ c T id f / ∈ L, (id f , v i) / ∈ L id f ∈ Ins(∆ c) ∆ c (id f) = array(T, n, m) ∆, ∆ c , σ, L (id f (e i), e) list ipm ---→ L ∪ { (id f , v i) } LISTIPMCONS ∆, ∆ c , σ, L assoc ip list ipm ---→ L ∆, ∆ c , σ, L i list ipm ---→ L ∆, ∆ c , σ, L assoc ip , i list ipm ---→ L
The check pm (Ports, L) predicate states that all port identifiers referenced in the domain of Ports ∈ id type appear in L as a simple identifier, or if the port identifier is of the array type, then all couples (id,i) must belong to L, where i denotes all indexes of the index range and id denotes the port identifier.

check pm (Ports, L) ≡ ∀id f ∈ dom(Ports), id f ∈ L ∨ (Ports(id f) = array(T, n, m)∧ ∀i ∈ [n, m], (id f , i) ∈ L)

Valid output port map

The valid opm predicate states that an output port map is valid in the context ∆, ∆ c , where ∆ is the embedding design structure and ∆ c denotes the component instance owner of the port map, if:

-An output port identifier appears at most once in the output port map.

-Two different output port identifiers cannot be connected to the same signal.

-For each output port map entry, the formal and the actual part are of the exact same type.

We allow partially connected output port map; i.e, an output port map where all output ports might not be present in the mapping. Such output ports are open by default.

Premises

list opm builds two sets L, L ids ⊆ id (id × N) out of the output port map opmap. L ids is built incrementally to check that there are no multiply-driven signals resulting of the port map connection.

VALIDOPM ∆, ∆ c , L ∅ , L ids∅ o list opm ---→ L, L ids ∆, ∆ c valid opm (o) Side conditions -id f /
∈ L checks that the port identifier id f is not already mapped (i.e, is not already used in the formal part of a port map entry).

-id a / ∈ L ids checks that the signal identifier id a is not already mapped (i.e, is not already used in the actual part of a port map entry).

-id f ∈ Outs(∆ c) checks that id f is an output port identifier of ∆ c .

-id a ∈ Sigs(∆) ∪ Outs(∆) checks that id a is either an output port or an internal signal identifier of ∆.

-∆ c (id f) = ∆(id a) = T checks that id f and id a are exactly of the same type.

LISTOPMSIMPLETOSIMPLE id f / ∈ L, id a / ∈ L ids id f ∈ Outs(∆ c) id a ∈ Sigs(∆) ∪ Outs(∆) ∆ c (id f) = ∆(id a) = T ∆, ∆ c , L, L ids (id f , id a) list opm ---→ L ∪ {id f }, L ids ∪ {id a }

Side conditions

Outs c (id f) = T and Sigs(id a) = array(T, n, m) checks that the type of id f and the type of the elements of id a are the same. Note that id a be a signal identifier of the array type as id f is mapped to one subelement of id a .

LISTOPMSIMPLETOPARTIAL

SE l (e i) e i e -→ v i v i ∈ c nat(n, m) id f / ∈ L, id a , (id a , v i) / ∈ L ids id f ∈ Outs(∆ c) id a ∈ Sigs(∆) ∪ Outs(∆) ∆ c (id f) = T ∆(id a) = array(T, n, m) ∆, ∆ c , L, L ids (id f , id a (e i)) list opm ---→ L ∪ {id f }, L ids ∪ {(id a , v i)} LISTOPMSIMPLETOOPEN id f / ∈ L id f ∈ Outs(∆ c) ∆, ∆ c , L, L ids (id f , open) list opm ---→ L ∪ {id f }, L ids
Remark 3 (Unconnected output port.). We forbid the case where an indexed formal part corresponding to the subelement of a composite output port is unconnected, i.e. (id f (e i), open), as it could lead to the case where some subelements of a composite output port are connected while others are not (error case in [64, p.7]).

LISTOPMPARTIALTOSIMPLE SE l (e i) e i e -→ v i v i ∈ c nat(n, m) id f , (id f , v i) / ∈ L, id a / ∈ L ids id f ∈ Outs(∆ c) id a ∈ Sigs(∆) ∪ Outs(∆) ∆ c (id f) = array(T, n, m) ∆(id a) = T ∆, ∆ c , L, L ids (id f (e i), id a) list opm ---→ L ∪ {(id f , v i)}, L ids ∪ {id a } LISTOPMPARTIALTOPARTIAL SE l (e i) SE l (e i) e i e -→ v i e i e -→ v i v i ∈ c nat(n , m) v i ∈ c nat(n, m) id f , (id f , v i) / ∈ L, id a , (id a , v i) / ∈ L ids id f ∈ Outs(∆ c) id a ∈ Sigs(∆) ∪ Outs(∆) ∆ c (id f) = array(T, n, m) ∆(id a) = array(T, n , m) ∆, ∆ c , L, L ids (id f (e i), id a (e i)) list opm ---→ L ∪ {(id f , v i)}, L ids ∪ {(id a , v i)} LISTOPMCONS ∆, ∆ c , L, L ids assoc po list opm ---→ L , L ids ∆, ∆ c , L , L ids opmap list opm ---→ L , L ids ∆, ∆ c , L, L ids assoc po , opmap list opm ---→ L , L ids

Valid sequential statements

The valid ss predicate states that a sequential statement is well-typed in the context ∆, σ, Λ.

Chapter 4. H-VHDL: a target hardware description language

Well-typed loop statement

WTLOOP ∆, σ, Λ e e -→ v ∆, σ, Λ e e -→ v v ∈ c nat(0, NATMAX) v ∈ c nat(0, NATMAX) ∆, σ, Λ valid ss (ss) Λ = Λ ∪ (id v , (nat(v, v), v)) ∆,

Simulation rules

In this section, we formalize a specific simulation algorithm for the H-VHDL designs. This algorithm is much simpler than the one presented in the LRM. This is mostly due to the fact that H-VHDL is a subset of VHDL that aims at the description of synthesizable and synchronous designs. Synthesizable designs mean that the only kind of signal assignment used to describe the design behaviors are δ-delay signal assignments. Leaving apart the synchronous side, we only need a simulation algorithm that performs delta cycles (see Section In Listing 4.4, the clkp process assigns the clock signal with its inverse value after τ unit of time where τ corresponds to half the clock period. Of course, the clock period is specified by the designer of the circuit. The component instance id tl corresponds to the instantiation of the H-VHDL design tl, i.e. the one we want to simulate. The clock input port of id tl is connected to the clock signal of the embedding design in id tl 's port map. Thus, when the value of the clock signal changes every half clock period, the processes that react to the changes of the clock signal, i.e. the so-called synchronous processes, are executed in the internal behavior of the component instance id tl . Then, it is the turn of combinational processes to be executed until stabilization of all signal values. Using the terms of the LRM simulation algorithm, what will happen when trying to simulate the design of Listing 4.4 will be an alternation between one time cycle to move to the next clock event and execute synchronous processes, followed by many delta cycles corresponding to the execution of combinational processes until stabilization. Thus, we choose to embed this alternation within the definition of our simulation algorithm.

We must add a last element to the definition of our simulation algorithm. The top-level design generated by the HILECOP transformation interacts with its environment through the input ports. The input ports of a top-level design are called primary input ports. In our simulation algorithm, we need to represent the capture and the injection of the values of primary input ports and how this affects the values of the internal signals of the simulated design.

Finally, Algorithm 2 gives an overview of our simulation algorithm in a pseudo-code language. This simulation algorithm is formalized in a small-step semantics style in the following sections. Here, we say small-step semantics because the different intermediary states of the design under simulation are detailed and registered in a simulation trace θ. This simulation trace is built incrementally through the execution of simulation cycles, and is returned at the end of Algorithm 2. However, the execution of sequential statements in the body of processes are expressed with a big-step operational semantics. // Main loop.

3 θ ← [σ] 4 while T c > 0 do 5 σ i ← Inject(∆,σ,E p ,T c) 6 σ ↑ ← RisingEdge(∆,σ i ,cs) 7 σ ← Stabilize(∆,σ ↑ ,cs) 8 σ ↓ ← FallingEdge(∆,σ ,cs) 9 σ ← Stabilize(∆,σ ↓ ,cs) 10 θ ← θ + + [σ , σ] 11 T c ← T c -1 12 return θ
Algorithm 2 defines an elaborated design ∆ and a default design state σ e as parameters. We assume that they are the result of the elaboration of the design being simulated. cs corresponds to the behavior of the design, i.e. the one that will be executed during the simulation. E p is the environment that will provide values to the primary input ports; it is a function that maps the set of input port identifiers to values. T c corresponds to the number of simulation cycles to be performed. Algorithm 2 begins with an initialization phase (following the LRM simulation algorithm); all processes are run exactly once (Line 1) followed by a stabilization phase (Line 2, multiple delta cycles). Line 3 initializes the variable θ with a singleton list holding state σ, i.e. the initial simulation state. Then, the same loop is performed until T c reaches zero. First, the values of primary input ports are retrieved from the environment E p at the current time value T c ; this is performed by the Inject function; then, all parts of cs that react to the rising edge (resp. falling edge) of the clock signal are executed; finally, the combinational parts of cs are executed until stabilization of all signals. At Line 10, the states obtained after the rising edge phase (i.e. σ) and after the falling edge phase (i.e. σ) are appended to the simulation trace θ. Note that we only register stable states in the simulation trace. At the end of the simulation cycle, the parameter T c is decremented. After the execution of all simulation cycles, Algorithm 2 returns the simulation trace.

Full simulation

The full simulation process is decomposed in two steps. The first step is the elaboration phase that builds an elaborated version of a H-VHDL design along with its default state. Previous to the elaboration phase, the top-level design receives a value for each of its generic constant; we refer to it as the dimensioning of the top-level design. The second step is the simulation phase that executes the behavioral part of the top-level design, and yields a simulation/execution trace; this step has been presented through the Algorithm 2.

The f ull simulation relation, defined by the FULLSIM rule, formalizes the full simulation process for a given H-VHDL design. The relation holds eight parameters, namely: a top-level design d, a design store D ∈ id design, an elaborated design ∆ ∈ ElDesign, a dimensioning function M g ∈ Gens(∆) value, a simulation environment E p ∈ N → (Ins(∆) → value), a simulation cycle count τ ∈ N, an initial state σ 0 ∈ Σ, and a simulation trace θ ∈ list(Σ), corresponding to the list of states yielded by the simulation of design d during τ cycles. Note that we use the pointed notation to access the behavioral part of design d, written d.cs. It is this part of the design that is executed during the simulation, and therefore is passed as a parameter of the initialization and simulation relations.

Premises -M g ∈ Gens(∆)
value, the function yielding the values of generic constants for a given top-level design, referred to as the dimensioning function. Here, Gens(∆) is a shorthand notation for the domain of Gens(∆), normally written dom(Gens(∆)), i.e. the set of generic constant identifiers of ∆.

-E p ∈ N → (Ins(∆) → value), the function yielding a mapping from primary inputs (i.e, input ports of the top-level design) to values at a given simulation cycle count. Here, Ins(∆) is a shorthand notation for the domain of Ins(∆), normally written dom(Ins(∆)),

i.e. the set of input port identifiers of ∆.

τ, the number of simulation cycles to execute. The value of τ is decremented at each clock cycle until it reaches zero (see Section 4.6.2).

FULLSIM

D, M g d elab --→ ∆, σ D, ∆, σ d.cs init --→ σ 0 D, E p , ∆, τ, σ 0 d.cs → θ D, ∆, M g , E p , τ d f ull --→ (σ 0 :: θ)
Our simulation algorithm aims at representing the execution of a hardware system in the presence of an environment. Thus, we need to make some hypotheses regarding the relation between the environment and the clock signal defining the operating frequency of the modeled system: Hypothesis 1 (Stable primary inputs). The values of primary inputs (i.e, input ports of the top-level design) are captured at the beginning of a clock cycle, and thus remain stable (i.e, their values do not change) during a whole clock cycle.

Hypothesis 1 arises from the fact that the clock signal sample rate respects the Nyquist-Shannon sampling theorem. Therefore, the sample rate of the design's clock is sufficient to capture all events possibly arising in the environment. We only need to settle the values of the primary inputs at the beginning of a clock cycle.

Also, after each clock event phase follows a signal stabilization phase in the proceedings of a simulation cycle. One more hypothesis is needed here: As a H-VHDL design represents a physical circuit, one can assume that the represented circuit is analyzed former to the simulation. Therefore, the analysis tells us exactly how much time is needed to propagate signal values through the longest physical path; as a consequence, a proper clock frequency is set ensuring signal stabilization between two clock events. Thus, Hypothesis 2 arises from the latter facts.

Simulation loop

The following rules define the H-VHDL simulation relation. The H-VHDL simulation relation associates the execution of a behavior cs with a simulation trace θ in a context D, E p , ∆, τ, σ. The simulation trace θ is the result of the execution of the design behavior cs during τ cycles. In the case where τ is equal to zero (Rule SIMEND), the execution of cs returns an empty trace. In the case where τ is greater than zero (Rule SIMLOOP), one simulation cycle is performed from the starting state σ and returns the two states: σ , the state in the middle of the clock cycle (i.e. after a rising edge phase), and σ , the state at the end of the clock cycle (i.e. after a falling edge phase). Then, the H-VHDL simulation relation calls itself recursively with a decremented cycle count. The recursive call yields a trace θ which is then appended to the states σ and σ to form the final simulation trace.

SIMEND D, E p , ∆, 0, σ cs → [] SIMLOOP D, E p , ∆, τ, σ cs ↑,↓ -→ σ , σ D, E p , ∆, τ -1, σ cs → θ τ > 0 D, E p , ∆, τ, σ cs → (σ :: σ :: θ)

Simulation cycle

To ease the reading of forward simulation rules, we need to introduce two notations. That is, f

Notation 7 (Overriding union). For all partial function

f , f ∈ X Y, f ← ∪ f denotes the overriding union of f and f such that f ← ∪ f (x) = f (x) i f x ∈ dom(f) f (
= ∩ f = { x ∈ dom(f) ∩ dom(f) | f (x) = f (x) }.
σ = <S, C, E > and σ i = <S ← ∪ E p (τ), C, E >.
The H-VHDL simulation cycle relation, written

↑,↓
-→, is defined through the only Rule SIM-CYC. It states that the design states σ and σ are the result of the execution of the design behavior cs over one simulation cycle, this starting from state σ. Here, σ is the state obtained in the middle of the clock cycle, i.e. after the rising edge phase and the first stabilization phase, and σ is the state obtained at the end of the clock cycle, i.e. after the falling edge phase and the second stabilization phase. As mentioned in Hypothesis 1, the update of the value of input ports is performed at each clock event. New input port values are coming from the environment E p . The update is made through the definitions of state σ i which is qualified in the side condition by the Inject relation.

SIMCYC D, ∆, σ i cs ↑ -→ σ ↑ D, ∆, σ cs ↓ -→ σ ↓ D, ∆, σ ↑ cs -→ σ D, ∆, σ ↓ cs -→ σ Inject(σ, E p , τ, σ i) D, E p , ∆, τ, σ cs ↑,↓ -→ σ , σ

Initialization rules

The init relation, defined through the Rule INIT, describes the initialization phase of the H-VHDL simulation algorithm. It produces an initial simulation state σ 0 by executing the design behavior cs in the context D, ∆, σ.

INIT D, ∆, σ cs runinit ---→ σ D, ∆, σ cs -→ σ 0 D, ∆, σ cs init --→ σ 0
During the initialization phase, each process is executed exactly once. This is formalized by the runinit relation. Then, a stabilization phase follows, formalized by the stabilize relation, written -→. The initialization phase triggers the execution of the first part of reset blocks. A reset block (rst ss ss') is equivalent to (if rst = '0'then ss else ss' end if;). Therefore, when considering a (rst ss ss') block, the runinit relation always executes the ss block; at every other moment of the simulation, the ss' block is executed. This corresponds to the conventional execution of a hardware system where a reset signal set to false triggers the initialization of the system, and then is set to true for the rest of the execution.

The runinit relation is defined by the Rules PSRUNINIT, COMPRUNINIT, PARRUNINIT and NULLRUNINIT which are detailed right below. The stabilize relation is defined in Section 4.6.6.

Evaluation of a process statement

The PSRUNINIT rule describes the execution of a process statement during the initialization phase. The execution of a process statement comes down to the execution of the process statement body. The result of the execution is a new state σ .

Premises

-The i flag of the ss i relation indicates that all sequential statements responding to the initialization phase (i.e, reset blocks) will be executed.

-The ss i relation takes two states in its context, i.e. two σ. The first σ is the state used to evaluate expressions appearing in the process statement body; the second σ is the state that will be modified by the execution of signal assignment statements.

Side conditions

The local environment Λ used to execute the body of the process id p is retrieved from the Ps sub-environment of the elaborated design ∆. -The expression D(id e).cs refers to the internal behavior of the component instance id c .

-State σ c is the new internal state of component instance id c resulting from the execution of its internal behavior.

σ c = σ c . COMPRUNINIT ∆, ∆ c , σ, σ c i mapip ---→ σ c D, ∆ c , σ c D(id e).cs runinit ---→ σ c ∆, ∆ c , σ, σ c o mapop ---→ σ id e ∈ D ∆(id c) = ∆ c , σ(id c) = σ c σ = <S , C , E ∪ (C = ∩ C)> C = C (id c) ← σ c D, ∆, σ comp (id c , id e , g, i, o) runinit ---→ σ

Evaluation of the composition of concurrent statements

Rule PARRUNINIT describes the evaluation of the parallel composition of two concurrent statements cs and cs'. The two concurrent statements are evaluated starting from the same state σ, and they generate two different state σ and σ . The state resulting from the concurrent execution of cs and cs' is the result of a merging between the starting state σ, and the two states σ and σ .

PARRUNINIT

D, ∆, σ cs runinit ---→ σ D, ∆, σ cs runinit ---→ σ E ∩ E = ∅ D, ∆, σ cs || cs runinit ---→ merge(σ, σ , σ)
The merge function, defined in Listing 4.5 in pseudo-Coq language, computes a new state based on the original state σ, and the states σ and σ yielded by the computation of two concurrent statements. In the resulting state, the signal value store S m is a function merging together the signal stores of states σ, σ and σ . S m yields values from the signal store S (resp. S) for all signal that belongs to the set of events at state σ (resp. σ), and yields values from the original signal store S for all eventless signals. The same goes for the merged component store C m . The new set of events E m is the union between the set of events at state σ and state σ . The merge function correctly merges the state σ, σ and σ only if the set of events of σ and σ are disjoint. The PARRUNINIT rule, which appeals to the merge function, defines the condition of disjoint set of events as a side condition.

1 Definition merge(σ, σ , σ) := 2 let σ = <S,C,E > in 3 let σ = <S ,C ,E > in 4 let σ = <S ,C ,E > in 5 let S m (id) =      S (id) if id ∈ E S (id) if id ∈ E S(id) otherwise in 6 let C m (id) =      C (id) if id ∈ E C (id) if id ∈ E C(id) otherwise in 7 let E m = E ∪ E in <S m ,C m ,E m >.

Clock phases rules

The following rules express the evaluation of concurrent statements at clock phases, i.e. the rising edge (↑) and the falling edge (↓) phases. The clock signal, which triggers the evaluation of synchronous process statements, is represented by the reserved signal identifier clk. Thus, synchronous processes are processes containing the clk signal in their sensitivity list.

Evaluation of a process statement

The following rules describe the evaluation of a process statement at the occurrence of the rising or the falling edge of the clock signal. In the case where a process does not contain the clk identifier in its sensitivity list, then its statement body is not executed during the clock phases (see Rules PSRENOCLK and PSFENOCLK). Otherwise, its statement body is executed. Depending on the considered clock event, falling blocks or rising blocks are executed when encountered in the body of a process (see Rules PSRECLK and PSFECLK).

∆, ∆ c , σ, σ c i mapip ---→ σ c D, ∆ c , σ c D(id e).cs ↑ -→ σ c ∆, ∆ c , σ, σ c o mapop ---→ σ id e ∈ D ∆(id c) = ∆ c , σ(id c) = σ c σ = <S , C , E ∪ (C = ∩ C)> C = C (id c) ← σ c D, ∆, σ comp (id c , id e , g, i, o) ↑ -→ σ COMPFE ∆, ∆ c , σ, σ c i mapip ---→ σ c D, ∆ c , σ c D(id e).cs ↓ -→ σ c ∆, ∆ c , σ, σ c o mapop ---→ σ id e ∈ D ∆(id c) = ∆ c , σ(id c) = σ c σ = <S , C , E ∪ (C = ∩ C)> C = C (id c) ← σ c D, ∆, σ comp (id c , id e , g, i, o) ↓ -→ σ

Evaluation of the composition of concurrent statements

The following rules describe the evaluation of the composition of concurrent statements and the evaluation of null statements during the clock phases. These rules are similar to the ones described for the initialization phase. Thus, the reader can refer to Section 4.6.4 for more details.

PARFE D, ∆, σ cs ↓ -→ σ D, ∆, σ cs ↓ -→ σ E ∩ E = ∅ D, ∆, σ cs || cs ↓ -→ merge(σ, σ , σ) NULLFE ∆, σ null ↓ -→ σ PARRE D, ∆, σ cs ↑ -→ σ D, ∆, σ cs ↑ -→ σ E ∩ E = ∅ D, ∆, σ cs || cs ↑ -→ merge(σ, σ , σ) NULLRE ∆, σ null ↑ -→ σ

Stabilization rules

The following rules describe the evaluation of concurrent statements, representing a design's behavior, during a stabilization phase. The stabilization phase triggers the execution of the combinational parts of the behavior by appealing to the comb relation. When the execution of the combinational parts of the behavior does not change the design state anymore, then we have reached a stable state and the stabilization phase ends (Rule STABILIZEEND). When the execution of the combinational parts produces some events, i.e. it changes the value of signals or the internal state of component instances, then the stabilization phase must continue until a stable state is reached (Rule STABILIZELOOP). In the formalization of the H-VHDL simulation algorithm, the set of events of a design state is useful to merge the states resulting from the execution of multiple concurrent statements (see Definition 4.5), and to determine if a stable state has been reached. In the LRM simulation algorithm, the kernel process uses the set of events to resume the activity of processes. If one of the signal declared in a process' sensitivity list is registered in the current set of events, then the process body must be executed. We choose to disregard this aspect of the execution of processes in the formalization of our simulation algorithm. Thus, all combinational processes are executed when a delta cycle is performed, regardless of the intersection between the set of events and the sensitivity lists.

Side conditions

-In Rule STABILIZEEND, state σ is an eventless state, i.e. its event set E is empty.

-In Rule STABILIZELOOP, state σ is an eventful state and state σ is eventless.

STABILIZEEND D, ∆, σ cs comb --→ σ E = ∅ D, ∆, σ cs -→ σ STABILIZELOOP D, ∆, σ cs comb --→ σ D, ∆, σ cs -→ σ E = ∅ E = ∅ D, ∆, σ cs -→ σ

Evaluation of a process statement

Rule PSCOMB describes the execution of a process statement during a stabilization phase. Even synchronous processes can be executed during a stabilization phase, however, the falling and rising blocks are not interpreted. Thus, the evaluation of a purely synchronous process, defined only with falling or rising blocks and no combinational parts, does not change the design state during a stabilization phase.

Premises

-The c flag (for combinational) on the ss c relation indicates that statements responding to clock events (i.e. falling and rising blocks) and statements executed during the initialization phase only (i.e. rst blocks) will not be considered.

-The set of events of state σ is emptied (NoEv(σ), see Notation 6) before the evaluation of the process statement body. It corresponds to the consumption of the information brought by the event set. Once the information has been consumed, new events can be generated by executing the process body. Otherwise, if the set of events is never emptied, then a stable state might never be reached. COMPCOMB

∆, ∆ c , σ, σ c i mapip ---→ σ c D, ∆ c , σ c D(id e).cs comb --→ σ c ∆, ∆ c , NoEv(σ), σ c o mapop ---→ σ id e ∈ D ∆(id c) = ∆ c , σ(id c) = σ c σ = <S , C , E ∪ (C = ∩ C)> C = C (id c) ← σ c D, ∆, σ comp (id c , id e , g, i, o) comb --→ σ

Evaluation of the composition of concurrent statements

The following rules describe the evaluation of the composition of concurrent statements and the evaluation of null statements during a stabilization phase. These rules are similar to the ones describe for the initialization phase. Thus, the reader can refer to Section 4.6.4 for more details.

PARCOMB

D, ∆, σ cs comb --→ σ D, ∆, σ cs comb --→ σ E ∩ E = ∅ D, ∆, σ cs || cs comb --→ merge(σ, σ , σ) NULLCOMB ∆, σ null comb --→ NoEv(σ)

Evaluation of input and output port maps Evaluation of an input port map

Here, we define the mapip relation that evaluates the input port map of a component instance.

For each association of the input port map, the actual part is evaluated and the result is assigned to the formal part of the association, i.e. an input port (Rule MAPIPSIMPLE) or an indexed input port (Rule MAPIPPARTIAL) identifier. The following rules define the mapip relation.

MAPIPSIMPLE ∆, σ e e -→ v v ∈ c T ∆ c (id s) = T σ c = <S, C, E > S = S(id s) ← v ∆, ∆ c , σ, σ c (id s , e) mapip ---→ <S , C, E > 4.6. Simulation rules 117 MAPIPPARTIAL ∆, σ e e -→ v e i e -→ v i v ∈ c T v i ∈ c nat(n, m) ∆ c (id s) = array(T, n, m) σ c = <S, C, E > S = S(id s) ← set_at(v, v i , S(id s)) ∆, ∆ c , σ, σ c (id s (e i), e) mapip ---→ <S , C, E > MAPIPCOMP ∆, ∆ c , σ, σ c assoc ip mapip ---→ σ c ∆, ∆ c , σ, σ c ipmap mapip ---→ σ c ∆, ∆ c , σ, σ c assoc ip , ipmap mapip ---→ σ c

Evaluation of an output port map

Here, we define the mapop relation that evaluates the output port map of a component instance.

For each association of the output port map, the formal part is evaluated and the result is assigned to the actual part of the association. There can be five kinds of associations in an output port map:

-an output port identifier (of the component instance) is associated with the open keyword, thus denoting an unconnected output port in the output interface of the component instance -an output port identifier is associated with an internal signal or an output port identifier of the embedding design (Rule MAPOPSIMPLETOSIMPLE)

-an output port identifier is associated with an indexed internal signal or an indexed output port identifier of the embedding design (Rule MAPOPSIMPLETOPARTIAL)

-an indexed output port identifier is associated with an internal signal or an output port identifier of the embedding design (Rule MAPOPPARTIALTOSIMPLE)

-an indexed output port identifier is associated with an indexed internal signal or an indexed output port identifier of the embedding design (Rule MAPOPPARTIALTOPARTIAL)

Remark 5 (Out ports and e). We can not use the e relation to interpret the values of output ports, because output ports are write-only constructs. We append the flag o to the e relation (i.e, e o) to enable the evaluation of output port identifiers as regular signal identifier expressions.

The e o relation is only defined to retrieve the value of output ports from a store signal S under a design state σ = <S, C, E >.

OUTO id s ∈ Outs(∆) id s ∈ σ ∆, σ id s e o -→ σ(id s) IDXOUTO e i e -→ v i v i ∈ c nat(n, m) id s ∈ Outs(∆) id s ∈ σ ∆(id s) = array(T, n, m) ∆, σ id s (e i) e o -→ get_at(v i , σ(id s))
The following rules define the mapop relation.

MAPOPOPEN

∆, ∆ c , σ, σ c (id f , open) mapop ---→ σ

Side conditions

In the signal store S , value v is assigned to the signal identifier id a . If this assignment changes the value of id a , then an event on signal id a must be registered. The expression

E ∪ S = ∩ S
∆ c , σ c id f e o -→ v v ∈ c T id a ∈ Sigs(∆) ∪ Outs(∆) ∆(id a) = T σ = <S, C, E > S = S(id a) ← v, E = E ∪ (S = ∩ S) ∆, ∆ c , σ, σ c (id f , id a) mapop ---→ <S , C, E > MAPOPSIMPLETOPARTIAL e i e -→ v i ∆ c , σ c id f e o -→ v v ∈ c T v i ∈ c nat(n, m) id a ∈ Sigs(∆) ∪ Outs(∆) ∆(id a) = array(T, n, m) σ = <S, C, E > S = S(id a) ← set_at(v, v i , S(id a)) E = E ∪ (S = ∩ S) ∆, ∆ c , σ, σ c (id f , id a (e i)) mapop ---→ <S , C, E > MAPOPPARTIALTOSIMPLE ∆ c , σ c id f (e i) e o -→ v v ∈ c T id a ∈ Sigs(∆) ∪ Outs(∆) ∆(id a) = T σ = <S, C, E > S = S(id a) ← v, E = E ∪ (S = ∩ S) ∆, ∆ c , σ, σ c (id f (e i), id a) mapop ---→ <S , C, E > MAPOPPARTIALTOPARTIAL e i e -→ v i ∆ c , σ c id f (e i) e o -→ v v ∈ c T v i ∈ c nat(n, m) id a ∈ Sigs(∆) ∪ Outs(∆) ∆(id a) = array(T, n, m) σ = <S, C, E > S = S(id a) ← set_at(v, v i , S(id a)) E = E ∪ (S = ∩ S) ∆, ∆ c , σ, σ c (id f (e i), id a (e i)) mapop ---→ <S , C, E > 4.6. Simulation rules 119 MAPOPCOMP ∆, ∆ c , σ, σ c assoc po mapop ---→ σ ∆, ∆ c , σ , σ c opmap mapop ---→ σ ∆, ∆ c , σ, σ c assoc po , opmap mapop ---→ σ

Evaluation of sequential statements

Here, we define the ss relation that evaluates the sequential statements composing the body of processes. The phases of a simulation cycle affect the evaluation of sequential statements. For instance, reset blocks are only evaluated during an initialization phase, falling blocks during a falling edge phase. . . Thus, we append a specific flag to the ss relation to enable the evaluation of specific sequential statements at particular phases of the simulation cycle. There are four different flags, the c flag to denote the execution of combinational statements only, the i flag to enable the execution of reset blocks, the ↑ (resp. ↓) flag to enable the execution of rising (resp. falling) blocks. Writing the ss relation with no flag indicates that the evaluation of a given sequential statement is the same for every phase of the simulation cycle. A flag is passed from the conclusion to the premises when a sequential statement is composed of inner sequential blocks.

Signal assignment statement

A signal assignment generates a new design state with a modified signal store and a new set of events. Note that there are two states on the left side of the thesis symbol. State σ represents the state holding the current values of signals (i.e. the reading state), and state σ w holds the new values of signals (i.e. the written state).

Side conditions

The expression S = ∩ S w registers signal id s as an eventful signal if its value after assignment, i.e. in the signal store S w , is different from its current value at state σ, i.e. in the signal store S. In the above listing, the two signal assignment statements must be considered as being executed in parallel, even though they are written as a sequence. Thus, when the statement s 2 ⇐ s 1 is evaluated, the value to consider for signal s 1 is not the one resulting from the execution of statement s 1 ⇐ s 2 but the one at the beginning of the process evaluation. For these reasons, we must include a reading state and a written state in the environment of the ss relation.

SIGASSIGN ∆, σ, Λ e e -→ v v ∈ c T id s ∈ Sigs(∆) ∪ Outs(∆) ∆(id s) = T S w = S w (id s) ← v E w = E w ∪ (S = ∩ S w) ∆, σ, σ w , Λ id s ⇐ e ss -→ <S w , C w , E w >, Λ IDXSIGASSIGN ∆, σ, Λ e i e -→ v i ∆, σ, Λ e e -→ v v ∈ c T v i ∈ c nat(n, m) id s ∈ Sigs(∆) ∪ Outs(∆) ∆(id s) = array(T, n, m) S w = S w (id s) ← set_at(v, v i , S w (id s)) E w = E w ∪ (S = ∩ S w) ∆, σ, σ w , Λ id s (e i) ⇐ e ss -→ <S w , C w , E w >, Λ Remark

Variable assignment statement

A variable assignment statement modifies the value of a variable defined in a local environment Λ. Contrary to the case of signal assignments, a sequence of variable assignment statements are to be considered as a real sequence, and not as being executed in parallel.

VARASSIGN

∆, σ, Λ e e -→ v v ∈ c T id v ∈ Λ Λ(id v) = (T, val) ∆, σ, σ w , Λ id v := e ss -→ σ w , Λ(id v) ← (T, v) IDXVARASSIGN ∆, σ, Λ e i e -→ v i ∆, σ, Λ e e -→ v v i ∈ c nat(n, m) v ∈ c T id v ∈ Λ Λ(id v) = (array(T, n, m), val) ∆, σ, σ w , Λ id v (e i) := e ss -→ σ w , Λ(id v) ← (T, set_at(v, v i , val))
Remark 7 (Local variables and persistent values). In the LRM, the value of local variables is persistent through the multiple execution of a process. However, in the definition of the place and transition designs, and in the VHDL programs generated by HILECOP, all local variables are initialized by an assignment statement at the beginning of the body of processes. Thus, to simplify the H-VHDL semantics, we choose not to consider local variables as persistent memory as their values are renewed at each execution of a process.

If statement

Here, we present the classical evaluation of if and if-else statements.

IF ∆, σ, Λ e e -→ ∆, σ, σ w , Λ ss ss -→ σ w , Λ ∆, σ, σ w , Λ if (e) ss ss -→ σ w , Λ IF⊥ ∆, σ, Λ e e -→ ⊥ ∆, σ, σ w , Λ if (e) ss ss -→ σ w , Λ IFELSE ∆, σ, Λ e e -→ ∆, σ, σ w , Λ ss ss -→ σ w , Λ ∆, σ, σ w , Λ if (e) ss ss ss -→ σ w , Λ IFELSE⊥ ∆, σ, Λ e e -→ ⊥ ∆, σ, σ w , Λ ss ss -→ σ w , Λ ∆, σ, σ w , Λ if (e) ss ss ss -→ σ w , Λ

Loop statement

Here, we present the classical evaluation of for-loop statements. Rule LOOPINIT corresponds to the evaluation of a for loop in the case where the range variable id v is not already defined in the local environment; in that case, the loop range bounds are evaluated and binding between the variable id v and its type and initial value is added to the local environment; finally the loop statement is re-evaluated with the updated local environment. Rule LOOP⊥ denotes the evaluation of a loop statement in the case where the range variable id v has not yet reached the upper bound of the loop range. Rule LOOP denotes the evaluation of a loop statement in the opposite case.

LOOP⊥ ∆, σ, Λ i id v = e e -→ ⊥ ∆, σ, σ w , Λ i ss ss -→ σ w , Λ ∆, σ, σ w , Λ for (id v , e, e) ss ss -→ σ w , Λ id v ∈ Λ Λ(id v) = (T, val) Λ i = Λ(id v) ← (T, val + 1) ∆, σ, σ w , Λ for (id v , e, e) ss ss -→ σ w , Λ LOOP ∆, σ, Λ i id v = e e -→ id v ∈ Λ Λ(id v) = (T, val) Λ i = Λ(id v) ← (T, val + 1) ∆, σ, σ w , Λ for (id v , e, e) ss ss -→ σ w , Λ \ (id v , Λ(id v)) LOOPINIT ∆, σ, Λ e e -→ v ∆, σ, Λ e e -→ v ∆, σ, σ w , Λ i for (id v , e, e) ss ss -→ σ w , Λ id v / ∈ Λ Λ i = Λ ∪ (id v , (nat(v, v), v))
∆, σ, σ w , Λ for (id v , e, e) ss ss -→ σ w , Λ

Rising and falling edge block statements

Here, we define the execution of rising and falling blocks. Rising (resp. Falling) blocks are executed only during a rising (resp. falling) edge phase of a simulation cycle, i.e. when the flag ↑ (resp. ↓) is raised (Rule RISINGEGDEEXEC and FALLINGEDGEEXEC). Otherwise, the evaluation of these blocks is without effect on state σ w and on the local environment Λ (Rules RISINGEDGEDEFAULT and FALLINGEDGEDEFAULT).

RISINGEDGEDEFAULT f =↑ f ∈ {↓, i, o} ∆, σ, σ w , Λ rising ss ss f -→ σ w , Λ FALLINGEDGEDEFAULT f =↓ f ∈ {↑, i, o} ∆, σ, σ w , Λ falling ss ss f -→ σ w , Λ RISINGEDGEEXEC ∆, σ, σ w , Λ ss ss ↑ -→ σ w , Λ ∆, σ, σ w , Λ rising ss ss ↑ -→ σ w , Λ FALLINGEDGEEXEC ∆, σ, σ w , Λ ss ss ↓ -→ σ w , Λ ∆, σ, σ w , Λ falling ss ss ↓ -→ σ w , Λ

Rst block statement

Here, we define the evaluation of reset blocks. The first part of reset blocks is only evaluated during the initialization phase of a simulation, i.e. when the i flag is raised (Rule RSTEXEC). Otherwise, it is the second part of the reset block that is evaluated (Rule RSTDEFAULT). Remember that a reset block is the transcription of an if-else statement specifically devised for the H-VHDL abstract syntax.

RSTDEFAULT ∆, σ, σ w , Λ ss

ss f -→ σ w , Λ f = i f ∈ {↑, ↓, o} ∆, σ, σ w , Λ rst ss ss ss f -→ σ w , Λ RSTEXEC ∆, σ, σ w , Λ ss ss i -→ σ w , Λ ∆, σ, σ w , Λ rst ss ss ss i -→ σ w , Λ

Composition of sequential statements and null statement

Here, we present the evaluation of the composition of sequential statements (Rule SEQSTMT) and of the null sequential statement (Rule NULLSTMT). When evaluating a sequence of statements, the same state σ holding the current value of signals is used to execute both part of the sequence. The written state σ w is modified by the first part of the sequence, thus resulting in a state σ w . Then, σ w is used to evaluate the second part of the sequence.

SEQSTMT ∆, σ, σ w , Λ ss ss -→ σ w , Λ ∆, σ, σ w , Λ ss ss -→ σ w , Λ ∆, σ, σ w , Λ ss; ss ss -→ σ w , Λ NULLSTMT ∆, σ, σ w , Λ null ss -→ σ w , Λ ∆, σ, Λ id g e -→ v IDXSIG ∆, σ, Λ e i e -→ v i v i ∈ c nat(n, m) id s ∈ Sigs(∆) ∪ Ins(∆) ∆(id s) = array(T, n, m) i = v i mod n ∆, σ, Λ id s (e i) e -→ get_at(i, σ(id s)) IDXVAR ∆, σ, Λ e i e -→ v i v i ∈ c nat(n, m) id v ∈ Λ Λ(id v) = (array(T, n, m), v) i = v i mod n ∆, σ, Λ id v (e i) e -→ get_at(i, v)
Rule NATADD describe the evaluation of the addition between two expressions of the natural type. The operator + N denotes the addition operator of natural numbers in the semantic world. We add as a side condition that the result of the addition between two natural numbers must not exceed the value of the NATMAX number (the greatest natural number representable in H-VHDL). Rule NATSUB describes the evaluation of the substraction between two expressions of the natural type. Rule ORDOP describes the evaluation of the comparison between two

e -→ v ∆, σ, Λ (e) e -→ v
In Rule EQOP, eq is the equality operator established for all types defined in the semantics. In the definition of eq, two natural numbers and two Booleans are compared with the Leibniz equality. Two values of an array type are equal if the sub-elements sharing the same index are equal w.r.t. the definition of the eq relation. Thus, to be equal, the two arrays must be of the same size.

An example of full simulation

In this section, we will illustrate the full simulation of a H-VHDL top-level design on the example of Listing 4.6. The aim here is to give some derivations of the formal rules composing the H-VHDL semantics. Listing 4.6 is the result of the transformation of the SITPN model presented in Figure 4.6 into a H-VHDL design.

To keep the examples within a reasonable size, Listing 4.6, and the other listings and derivation trees used in this section, refer to the generic constants, the ports and the internal signals of the transition and place designs by their short names. See Table D.1 for a correspondence between the short names and the full names of constants and signals of the place and transition designs. In Listing, the generated H-VHDL design, named tl, declares its input and output ports at Line 7, and its internal signals at Line 10. The behavior of tl is defined by a place component instance id p (Lines 15 to 23), a transition component instance id t (Lines 28 to 36), and two processes, namely: the actions process (Lines 41 to 43), and the functions process (Lines 48 to 50). § ¤ 1 design tl tla Figure 4.7 is a graphical transcription of the top-level design of Listing 4.6. In Figure 4.7, note that we are representing the clk and rst in the interface of the tl design and also in the interfaces of tl's subcomponents, even though these two ports do not appear in the port clause of the tl design. These ports are considered as natively included in the port interface of all H-VHDL designs.

Elaboration of the tl design

The rule of Figure 4.9 states that the elaborated design ∆ and the default design state σ e are the result of the elaboration of the tl design. From left to right in the premises of the rule, the three first premises pertain to the elaboration of the declarative parts of the tl design, i.e. the generic constant declaration list, the port declaration list and the internal signal declaration list. The rightmost premise pertains to the elaboration of the behavior of the tl design.

Elaboration of the declarative parts

The elaboration of the declarative parts populates the Gens, Ins, Outs and Sigs sub-environments of the elaborated design ∆. Here is the content of the Gens, Ins, Outs and Sigs sub-environments of ∆ 2 , where ∆ 2 is the partial elaborated design after the elaboration of the declarative parts of the tl design (passed as a parameter of third and the fourth premises of the rule in Figure 4.9).

-

Gens(∆ 2) := ∅ -Ins(∆ 2) := {(id c0 , bool)} -Outs(∆ 2) := {(id f 0 , bool), (id a0 , bool)} -Sigs(∆ 2) := {(id f t , bool), (id av , bool), (id rt , bool), (id m , bool)}
The top-level design generated by the HILECOP transformation all have an empty list of generic constants (see Chapter 5 for more details about the transformation). Also, all ports and internal signals are of the Boolean type. Thus, there are no range constraint or index constraint to solve here. The boolean type indication is simply transformed into the bool semantic type.

The elaboration of the declarative parts also gives a default value to the signals in the signal store of the default design state σ e2 , where σ e2 is the partial default design state at the end of the elaboration of the declarative parts of the tl design (passed as a parameter of the third and the fourth premises of the rule in Figure 4.9). Here is the content of the signal store S of σ e2 .

-S(σ e2) := {(id c0 , ⊥), (id f 0 , ⊥), (id a0 , ⊥), (id f t , ⊥), (id av , ⊥), (id rt , ⊥), (id m , ⊥)}

The default value associated to the bool type is ⊥, thus, all signals of the tl design are initialized to ⊥ in the signal store of σ e2 .

Elaboration of the behavioral part

The behavior of the tl design contains two component instantiation statements and two process statements. Each one of these statements will be elaborated in sequence. First, we present the elaboration of the actions process to illustrate the elaboration of a process statement; then, we present the elaboration of the place component instance id p to illustrate the elaboration of a component instantiation statement.

Elaboration of a process statement

The rule of Figure 4.10 presents the elaboration of the actions process defined in the behavior of the tl design. The actions process is elaborated in the context D H , ∆ 2 , σ e2 where ∆ 2 and σ e2 are the partiallybuilt elaborated design and default design state at a certain point of the elaboration of the behavioral part of the tl design. The elaboration of a process statement associates the process identifier to a local variable environment in the Ps sub-environment of the being-built elaborated design. The local variable environment is built out of the variable declaration list of the process. Here, the actions process has an empty variable declaration list. Thus, the binding (actions,∅) is added in the Ps sub-environment of ∆ 2 .

∆ 2 , ∅ ∅ evars --→ ∅ . . . WTRST ∆ 2 , σ e2 , ∅ valid ss rst (id a0 ⇐ false) (falling(id a0 ⇐ id m or false)) PSELAB D H , ∆ 2 , σ e2 process(actions, clk, ∅, . . .) ebeh --→ ∆ 2 ∪ (actions, ∅), σ e2
The elaboration of process statement also performs static type-checking on the process statement body leveraging the valid ss relation. The rule of Figure 4.11 details the static typechecking of the statement body of the actions process (rightmost premise of the rule presented in Figure 4.10). To keep the example within a reasonable size, we discard the context of some rules with it is not relevant. We annotate the rule names to describe the side conditions associated to a derivation. (1) At the end of the elaboration of the tl design's behavior, the Ps sub-environment of ∆ is as follows: Ps(∆) := {(actions, ∅), (functions, ∅)}

∆ 2 (id a0) = bool (2) σ e2 (id m) = ⊥

Elaboration of a component instantiation statement

The rule of Figure 4.12 presents the elaboration of the place component instance id p belonging to the behavior of the tl design.

. . . The elaboration of a component instantiation statement is divided in three parts. First, a dimensioning function is built out of the generic map of the component instance. Figure 4.13 shows a part of the creation of the dimensioning functioning M from the generic map of the component instance id p . Basically, the elaboration of a generic map is a transformation from a syntactic construct, i.e. the generic map, into a function, i.e. the dimensioning function M. For each association of the generic map, the elaboration checks that the actual part of the association is a locally static expression (see Section 4.5.9). The second step of the elaboration of a component instance is to retrieve from the design store the design associated with the component instance, and to elaborate this design. Here, the design store is the HILECOP design store D H , and the design associated with id p is the place design. The dimensioning function M sets the value of the generic constants declared in the place design. The full code of place design is available in Appendix A. In Figures 4.14 Ins := {(im, nat(0, 1)), (iaw, array(nat(0, 255), 0, 0)), (oat, array(nat(0, 2), 0, 0)), (oaw, array(nat(0, 255), 0, 0)), (itf, array(bool, 0, 0)), (otf, array(bool, 0, 0))},

∅ g p emapg ---→ M . . . D H , M design place . . . elab --→ ∆ p , σ p . . . ∆ 2 , ∆ p , σ e2 valid ipm (i p) . . . ∆ 2 , ∆ p valid opm (o p) COMPELAB 1 D H , ∆ 2 , σ e2 comp (id p , place, g p , i p , o p) ebeh --→ ∆ 2 ∪ (id p , ∆ p), σ e2 ∪ (id p , σ p) (1) id p / ∈ ∆ 2 id p / ∈ σ e2 place ∈ D H M ⊆ Gens(∆ p)
Outs := {(oav, array(bool, 0, 0)), (pauths, array(bool, 0, 0)), (rtt, array(bool, 0, 0))} Sigs := {(sits, nat(0, 1)), (sm, nat(0, 1)), (sots, nat(0, 1))}, Ps := {(input_tokens_sum, {(v_internal_its, (nat(0, 1), 0))}), (output_tokens_sum, {(v_internal_ots, (nat(0, 1), 0))})} (priority_evaluation, {(v_saved_ots, (nat(0, 1), 0))})}

Comps := ∅ } In ∆ p , all the types associated with ports and internal signals of the place design have been resolved; i.e. the expressions qualifying the bounds of the range and index constraints in type indications have been evaluated. For example, array(boolean, 0, input_arcs_number-1) is the type indication associated with the input_transitions_fired input port (i.e. itf) defined in the port clause of the place design. The dimensioning function M sets the value of the input_arcs_number (i.e. ian) generic constant to 1. After the elaboration, the type indication array(boolean, 0, input_arcs_number-1) is thus transformed into the semantic type array(bool, 0, 0). Thus, we have ∆ p (itf) = array(bool, 0, 0) in the resulting ∆ p .

Figure 4.15 shows the default design state σ p of ∆ p .

Chapter 4. H-VHDL: a target hardware description language σ p := { S := {(im, (0)), (iaw, (0)), (oat, (0)), (oaw, (0)), (itf, (⊥)), (otf, (⊥)), (oav, (⊥)), (pauths, (⊥)), (rtt, (⊥)) (sits, 0), (sm, 0), (sots, 0)}, The component store of design state σ p is empty as there are no component instantiation statements in the behavior of the place design. The same stands for the Comps subenvironment of ∆ p . Also, the set of events of a default design state is always empty.

C := ∅ E := ∅ }
The final step in the elaboration of a component instantiation statement is to check the wellformedness and the well-typedness of the input and output port maps. The valid ipm and valid opm relations, defined in Section 4.5.10, state the validity of the port maps. The rule of Figure 4.16 presents a part of the construction of the valid opm relation applied to the output port map of the place component instance id p . Note that ∆ p is necessary to check the validity of the output port map of id p , as it holds the correspondence between port identifiers and port types. At the end of the elaboration of the tl design's behavior, the Comps sub-environment of ∆ is as follows: Comps(∆) := {(id p , ∆ p), (id t , ∆ t)}. Here, ∆ t represents the elaborated version of the transition design obtained from the elaboration of the transition component instance id t . Also, at the end of the elaboration, the component store of σ e is as follows: C(σ e) := {(id p , σ p), (id t , σ t)}. Here, σ t is the default design state of the transition component instance id t .

An example of full simulation

133 LSENAT SE l (0) NAT 0 e -→ 0 ISCNAT 0 ∈ c nat(0, 0) 1 ∆ 2 , ∆ p , ∅,

Simulation of the tl design

Let us now present the rules pertaining to the simulation of the tl design, that is, pertaining to the execution of the tl design's behavior with respect to our formal simulation algorithm.

Initialization

The rule of Figure 4.17 presents the initialization phase in the proceeding of the simulation of the tl design. The initialization phase builds the initial state of the simulation. The first step The rule in Figure 4.18 presents the execution of the tl design's behavior during the runinit phase. The tl design's behavior is defined by the composition of concurrent statements. Here, the actions process is at the head of the behavior, whereas it is not the case in Listing 4.6. We formally proved, with the Coq proof assistant, that the || composition operator for concurrent statements is commutative and associative with respect to the runinit relation. In Figure, the actions process is executed and yields the state σ e . Then, the rest of the tl design's behavior is executed and yields the state σ e . Finally, the starting state σ e and the two states σ e and σ e are merged into one by the merge function. In what follows, we detail the execution of a process statement and of a component instantiation statement during the first part of the initialization, i.e. the runinit phase.

Execution of a process statement with the runinit relation

The rule in Figure 4.19 shows the execution of the actions process during the runinit phase. The first part of the reset block defining the statement body of the actions process is executed. This first part assigns the expression false to signal id a0 . In the side conditions of the SIGASSIGN rule, a new event set E e is computed based on the event set E e joined to the expression S e = ∩ S e . This expression returns the set of signals with a different value between signal store S e and signal store S e . The only signal that possibly has a different value from S e to S e is the assigned signal id a0 . Thus, this expression is a short- hand to test if the value of signal id a0 has changed after the execution of the signal assignment statement. If it is the case, then the event set receives the signal identifier id a0 ; id a0 is then an eventful signal. In the present case, the value of signal id a0 was ⊥ at state σ e and is still ⊥ after the execution of the signal assignment statement. Therefore, no event is registered on signal id a0 . When states σ e , σ e and σ e will be merged (cf. Figure 4.18), if id a0 is part of the event set of state σ e , then, the merged state will return the value associated to id a0 in state σ e . We would have merge(σ e , σ e , σ e)(id a0) = σ e (id a0). However, signal id a0 would be a potentially multiply-driven signal because both the actions process and the concurrent statement cs tl (cf. The execution of a component instantiation statement is decomposed in four parts. First, the input ports of the component instance receive new values through the evaluation of the input port map. Second, the internal behavior of the component instance is executed. Thirdly, the evaluation of the output port map propagates the values coming from the output interface of the component to the signals of the embedding design. Finally, the component instance is assigned to its new internal state in the component store of the embedding design; here, σ p is assigned to id p in the component store C e . Moreover, if the new internal state of the component instance is different from its older internal state, then the component instance identifier (iaw(0), 1) (oat(0), 0), (oaw(0), 1), (itf(0), id f t), (otf(0),

id f t) mapip ---→ σ p MAPIPCOMP ∆, ∆ p , σ e , σ p
(im, 1), (iaw(0), 1) (oat(0), 0), (oaw(0), 1), (itf(0), id f t), (otf(0),

id f t) mapip ---→ σ p (1)
∆ p (im) = nat(0, 1) The evaluation of the input port map of id p changes the value of the initial_marking input port (i.e. im). We have σ p (im) = 0 and σ p (im) = 1. As the value of one of its input port has changed, the place component instance id p will be registered as an eventful component instance.

σ p = <S, C, E > S = S(im) ← 1 σ p0 = <S , C, E >
The rule of Figure 4.22 gives a part of the evaluation of the output port map of id p .

∆(id av) = bool σ e = <S, C, E > S = S(id av) ← E = E ∪ (S = ∩ S) σ e0 = <S , C, E > (1)
∆ p (oav) = array(bool, 0, 0) σ p (oav) = () get_at(0, ()) =

Stabilization

A stabilization phase happens after the runinit phase during the initialization phase, but also after the rising edge phase and the falling edge phase in the course of a simulation cycle. The stabilization phase executes the combinational parts of the design's behavior. The tl design holds no combinational processes in its behavior. The actions and functions processes are both synchronous. To illustrate the execution of a combinational process during a stabilization phase, let us consider the fired_evaluation process defined in the behavior of the transition design. The fired_evaluation process will be executed with the internal behavior of the transition component instance id t during the stabilization phase. The rule of Figure 4.23 presents the execution of the internal behavior of the transition component instance id t . As shown, the internal behavior cs t is executed three times before reaching a stable state. Here, the number of execution before stabilization is arbitrary. In Figure 4.23, σ t0 corresponds to the state of id t after the runinit phase and after the evaluation of its input port map. Remember that the evaluation of the input port map of a component instance always precedes the execution of the internal behavior of the component. Since σ t0 and σ t1 are not stable states, it means that their event set is not empty. Thus, we have E (σ t0) = ∅ and E (σ t1) = ∅. On the contrary, σ t2 is a stable state, and thus, E (σ t2) = ∅.

. . .

c -→ σ t0 , ∅ PSCOMB 1 D H , ∆ t , σ t0
process(fired_evaluation, {sfa, spc}, ∅, fired ⇐ sfa and spc) -→ σ t0

(1) ∆ t (fired_evaluation) = ∅ (2)

∆ t (fired) = bool NoEv(σ t0) = <S, C, ∅> S = S(fired) ← ⊥ σ t0 = <S , C, S = ∩ S > FIGURE 4.24:
The execution of the fired_evaluation process during a stabilization phase. The fired_evaluation process is defined in the transition design's behavior.

Let us consider that the value of the fired signal was at state σ t0 , i.e. σ t0 (fired) = .

Then, since σ t0 (fired) = ⊥, we have S = ∩ S = {fired}. When state σ t0 will be merged with the other states generated by the concurrent execution of processes defining the transition design's behavior, the resulting merged state will have a non-empty set of events. Thus, another round of execution will be triggered. A stable state has been reached when the execution of the combinational parts of the behavior does not generate any event anymore.

Simulation cycle and clock phases

We describe here the execution of the tl design over one clock cycle. After the initialization phase, the design under simulation will execute τ simulation cycles, where τ is a natural numbers passed as a parameter. In the rule of Figure 4.25, τ equals 1. Thus, the behavior of the tl design is executed during one clock cycle and then the simulation ends. In Figure 4.25, σ 0 is the initial simulation state, i.e. the one at the end of the initialization phase. One simulation cycle yields two states σ 1 and σ 2 , where σ 1 is the state after the rising edge and the stabilization phases (i.e. in the middle of the clock cycle), and σ 2 is the state after the falling edge and the stabilization phases (i.e. at the end of the first cycle). The rule of Figure 4.26 zooms in the first simulation cycle. The state σ 1 is produced by a rising edge phase followed by a stabilization phase. The state σ 2 is produced by a falling edge phase followed by a stabilization phase. The value of the primary input ports of the tl design are updated before the rising edge event. States σ 0i is the new state obtained after the update of the primary input port values. The update corresponds to the capture of values yielded by the given simulation environment E p . The tl design has only one primary input port, i.e. the input port id c0 . The value of id c0 at state σ 0i is equal to the value yielded by the environment E p during the first clock cycle. Thus, we have σ 0i (id c0) = E p (1)(id c0).

. . . The rule of Figure 4.27 describes the execution of the functions process, defined in the tl design's behavior, during the rising edge phase of the first simulation cycle. During the rising edge phase, rising blocks are executed. Thus, the ↑ relation triggers the execution of the rising block defined in the body of the functions process.

D H , ∆, σ 0i cs tl ↑ -→ σ ↑ . . . D H , ∆, σ ↑ cs tl -→ σ 1 . . . D H , ∆, σ 1 cs tl ↓ -→ σ ↓ . . . D H , ∆, σ ↓ -→ σ 2 SIMCYC 1 D H , E p , ∆, 1, σ 0 ↑,↓ -→ σ 1 , σ 2 (1) Inject(σ 0 , E p , 1, σ 0i)

Implementation of the H-VHDL syntax and semantics

141 SIG 3 ∆, σ 0i id f t e -→ FALSE false e -→ ⊥ BOOLBINOP ∆, σ 0i id f t or false e -→ ISBOOL ∈ c bool SIGASSIGN 2 ∆, σ 0i , σ 0i , ∅ id f 0 ⇐ id f t or false ss ↑ -→ σ 0i , ∅ RISINGEDGEEXEC ∆, σ 0i , σ 0i , ∅ rising (id f 0 ⇐ id f t or false) ss ↑ -→ σ 0i , ∅ RSTDEFAULT ∆, σ 0i , σ 0i , ∅ (rst (id f 0 ⇐ false)(rising (id f 0 ⇐ id f t or false))) ss ↑ -→ σ 0i , ∅ PSRECLK 1 D H , ∆, σ 0i process (functions, {clk}, ∅, (rst (id f 0 ⇐ false)(rising (id f 0 ⇐ id f t or false)))) ↑ -→ σ e (1) clk ∈ {clk} ∆(functions) = ∅ (2)
∆(id f 0) = bool σ 0i = <S, C, E > S = S(id f 0) ← E = E ∪ (S = ∩ S) σ 0i = <S , C, E > (3) σ 0i (id f t) = FIGURE 4.27:
The execution of the functions process during a rising edge phase. The functions process is a part of the tl design's behavior.

Implementation of the H-VHDL syntax and semantics

This section presents the implementation of the H-VHDL abstract syntax, and also of the elaboration and the simulation semantics of H-VHDL designs with the Coq proof assistant. The full code is available under the hvhdl folder of the following repository: https://github.com/ viampietro/ver-hilecop.

Implementation of the H-VHDL abstract syntax, elaborated design and design state

H-VHDL abstract syntax

The implementation of the H-VHDL abstract syntax is naturally done leveraging the Inductive construct of the Coq proof assistant. The result is strictly similar to the formal definition of the abstract syntax given in Section 4.3. The reader can refer to the AbstractSyntax.v under the hvhdl folder for the details of the implementation.

Elaborated design

Listing 4.7 presents the implementation of the elaborated design structure (cf. Definition 31). Two definitions are involved in the implementation of the elaborated design structure. The first one defines the SemanticObject inductive type. Each constructor of this type corresponds to a sub-environment of the elaborated design. For instance, the Generic constructor corresponds to the couple (type × value) associated with a generic constant identifier in the Gens sub-environment of Definition 31. The Process constructor corresponds to the local variable environment associated with the process identifiers in the Ps sub-environment. A local variable environment is implemented by the LEnv type. The LEnv type is a map between identifiers and couples (type × value). Identifiers are implemented by the ident type, an alias of the nat type. The type and value types are the implementation of the semantic type and value presented in Table 4.2. The ElDesign type implements the elaborated design structure. It is an alias to the IdMap SemanticObject type. The IdMap is the type of maps from identifiers (i.e. belonging to the ident type) to instances of the type passed as an input. Here, the input is the SemanticObject type. Thus, an elaborated design is implemented as a map between identifiers and terms of the SemanticObject type. We leverage the FMaps module defined in the Coq standard library to implement the IdMap type. The IdMap type ensures that an identifier is only mapped once. Thus, the implementation of the elaborated design structure verifies that there are no intersection between the domains of sub-environments. For instance, a generic constant identifier can not be an input port identifier, and, as it is implemented, an identifier id can not be mapped to a Generic object and to an Input object in the same instance of ElDesign.

Implementation of the elaboration phase

The design elaboration relation, as presented in Section 4.5. At Line 2, the EBehPs constructor implements the Rule PSELAB defining the elaboration of a process statement (cf. Section 4.5.6). Lines 6 and 7 implement the premises of the rule; the evars relation implements the elaboration of the local variable declaration list of the process; the validss relation implements the relation that type-checks the statement body of the process. Lines 10 to 14 implement the side conditions of the rule. The term ∼NatMap.In id p ∆ implements the side condition id p / ∈ ∆. The NatMap.In id m relation states that a given identifier id is a key of the m map. At Line 13, the NatSet.In id s sl term states that id s belongs to the identifier set sl. At Line 14, the term MapsTo id s (Input t) ∆ states that the identifier id s is mapped to Input t in the elaborated design ∆, i.e. Ins(∆)(id s) = t. More generally, MapsTo is a ternary relation stating that a given key k of type nat, is mapped to a value v of a type A, in a given map m, i.e. Mapsto k v m. Line 17 implements the conclusion of Rule PSELAB. The NatMap.add function binds the process identifier id p to the term Process Λ in the elaborated design ∆, i.e. ∆ ∪ (id p , Λ).

At Line 19, the EBehComp constructor implements the Rule COMPELAB (cf. Section 4.5.6). This rule describes the elaboration of a component instantiation statement. Lines 24 to 27 implement the premises of the rule. Line 25 appeals to the edesign relation to elaborate the cdesign design associated with the component instance id c ; thence, the mutually recursive definition with the ebeh relation. As it is stated at Line 32, the cdesign design is associated to identifier id e , i.e. the entity identifier of component instance id c , in the design store D. Lines 30 to 33 implement the side conditions of the rule. Line 30 checks that the identifier id c is not already bound to a semantic object in the elaborated design ∆. Line 31 checks that the identifier id c is not already bound in the component store of σ. Line 33 checks that all identifiers defined in the domain of map M, i.e. the dimensioning function, are bound to generic constants in the elaborated design ∆ c (i.e. M ⊆ Gens(∆ c)). Lines

Implementation of the simulation algorithm

The full simulation relation (cf. Section 4.6.

Conclusion

In this chapter, we gave an overview of the VHDL language and its informal simulation semantics. Then, considering our needs, that is considering the content of the VHDL programs generated by the HILECOP model-to-text transformation, we defined a synthesizable and synchronous subset of the VHDL language called H-VHDL. We gave a small-step semantics to H-VHDL by formalizing a simplified simulation algorithm. The simulation algorithm yields a simulation trace, i.e. time-ordered list of states, corresponding to the execution of the behavior of a H-VHDL design over multiple clock cycles. The formalization of the H-VHDL semantics also includes the formalization of the design elaboration. The elaboration, prior to the simulation, ensures the well-formedness and the well-typedness of a H-VHDL design. Moreover, we have implemented the H-VHDL syntax and semantics with the Coq proof assistant. Ever since the mechanization of the proof of behavior preservation has begun, the semantics of H-VHDL has been evolving. Section 4.3, 4.4, 4.5 and 4.6 present the most recent version of the semantics. We realized that keeping an operational semantics as close as possible to the VHDL simulation algorithm added complexity to the proof process. For instance, in the VHDL simulation algorithm, the body of a process is executed during the stabilization phase only if one signal of its sensitivity list is part of the current state's event set. However, it is through the execution of the body of a process with the rules of the H-VHDL semantics that we can determine the combinational equation associated with the value of a signal. In the proceeding of the proof of semantic preservation, we must often describe the value of a signal based on the value of its input, or source, signals (cf. Section 6.4). Due to the event-based system of resuming a process activity, a combinational process can sometimes never be executed during a stabilization phase. Say that process p assigns signal s with the expression a and b, where a and b are two signals. If the process p is not executed, then we will not be able to state that s = a and b, even though this equation always holds. We had to carry extra hypotheses in the definition of our lemmas to deal with this problem. Finally, our current semantics always executes the body of combinational processes during a stabilization phase, thus permitting us to easily determine the combinational equation tied to a signal. By doing this kind of simplification, we realized that we were heading toward a semantics that was closer to the "synthesis" semantics we talked about at the beginning of the chapter. This semantics tends to get closer to the rules of the combinational logic and the synchronous logic. These rules that a hardware system designer has in mind when devising a model with a hardware description language.

Chapter 5

The HILECOP model-to-text transformation

The aim of this chapter is to present the details of the HILECOP model-to-text transformation that we propose to verify as semantic preserving. The chapter is structured as follows. First, we make an overall description of the HILECOP transformation. Then, we present, in Section 5.2, a literature review of the works pertaining to transformation functions in the context of formal verification. The literature review focuses on the expression of transformation functions and on their implementation. In Section 5.3, we thoroughly present the HILECOP transformation function in the form of a pseudo-code algorithm. Finally, in Section 5.4, we describe the Coq implementation of the algorithm. Note that, in the following chapter, we refer to the generic constant, internal signal and port identifiers defined in the place and transition designs through their abbreviated names (see Table D.1).

Informal presentation of the HILECOP model-to-text transformation

This section outlines the main phases of the HILECOP model-to-text transformation function.

The goal is to give to the reader the means to appreciate the differences and the similarities between the HILECOP transformation and the other transformations presented in the literature review of Section 5.2. Then, Section 5.3 will enter the details of the transformation by presenting the transformation algorithm.

The HILECOP model-to-text transformation function takes an SITPN model as input; then, it generates a top-level H-VHDL design out of the input model. We will illustrate each step of the HILECOP model-to-text transformation through the transformation of the input SITPN model presented in The input model is composed of two places, p 0 and p 1 , and two transitions, t 0 and t 1 . The transition t 0 is associated with the time interval [START_REF]The B-Method[END_REF]3] and the condition c 0 . The transition t 1 is associated with the condition c 1 , and its firing triggers the execution of the function f 0 . The action a 0 is activated when the place p 0 is marked, and the action a 1 is activated when the place p 1 is marked.

The generated top-level design implements the structure of the input SITPN. As a first step, the transformation generates, for each place of the input SITPN, a component instance of the place design, and, for each transition of the input SITPN, a component instance of the transition design. These subcomponents constitute the main part of the H-VHDL top-level design's architecture (i.e. its internal behavior). During the first generation step of the HILECOP transformation, each PCI and TCI receive a value for each of their generic constants through the creation of generic maps. In the generic map of a TCI id t (implementing a transition t), the ian constant is associated with the number of input arcs of t, the cn constant with the number of conditions attached to t, etc. In the generic map of a PCI id p , the ian constant is associated with the number of input arcs of p, the oan constant with the number of output arcs of p, and the mm constant with the maximal marking value of p. The maximal marking value associated with a given place p of the input SITPN is an information passed as a parameter to the transformation function. This information comes from the analysis of the input SITPN pertaining to the boundedness of the input model. In the definition of the HILECOP methodology, this analysis takes place before the transformation of the input SITPN into a H-VHDL design. The generic constants do not appear as pins in the interfaces of the place and transition designs presented in Figure 5.2. The generic constants have an impact of the structure of the interface of each component instance. For example, Figure 5.2 shows the dependency between the size (i.e. the number of pins) of composite ports and the value of generic constants, e.g. the size of iaw input port of the place design depends on the ian generic constant. Thus, the generation of generic maps during this first generation step corresponds to the dimensioning of the PCIs and TCIs; this is when the number of pins of composite ports are determined. During the first transformation step, illustrated in Figure 5.3, the input and output port maps of PCIs and TCIs are also partly generated. In the manner of the generic constants in generic maps, some input ports are associated with constant values in the input port maps of PCIs and TCIs. All these associations are generated during this first step. Also, the marked output port of every PCI is associated with an internal signal in the output port map of the PCI. The internal signal will be connected later in the course of the transformation. The same holds for the fired output port of every TCI.

After the first transformation step, the component instances are interconnected through their port interfaces. Figure 5.4 illustrates the behavior of the top-level design after the interconnection of PCIs and TCIs. The PCIs and TCIs interact through their interfaces to exchange informations. For instance, a PCI id p , implementing a given place p, separately informs its output TCIs (i.e. the TCIs implementing the output transitions of p) that its current marking enables them. The marking of a PCI is represented by the value of its internal signal s_marking. A PCI is the only one to have access to the current value of its internal signals. Thus, a PCI must communicate to its output TCIs their sensitization status. To perform this exchange of information, the transformation generates an internal signal to connect a specific output port of a PCI (the oav port) to a specific input port of the output TCIs (the iav port). Likewise, a TCI informs its input and output PCIs about its firing status. The transformation generates an internal signal to connect the fired output port of a TCI to the itf and otf input ports of the input and output PCIs. These interconnections are performed by adding new associations in the input port map and output port map of PCIs and TCIs. Through the execution of the internal behavior of each PCI and TCI, and, through the interconnection of component instances, the transformation aims at generating a design's behavior that, by its inherent structure, carries the rules of the SITPN semantics and conforms to the execution of the input SITPN model.

p 0 t 0 p 1 t 1 a 0 a 1 [1, 3] c 0 c 1 f 0 SITPN id p 0 in out ⇓ const. id t 0 in out ⇓ const. id p 1 in out ⇓ const. id t 1 in out ⇓ const.

H-VHDL top-level design

To reduce the size of circuits after the synthesis on an FPGA or ASIC, PCIs and TCIs only communicate with Boolean signals through their interfaces. To restrict the interconnections to Chapter 5. The HILECOP model-to-text transformation Boolean signals, the place design, which is the mold of all PCIs, carries the arc information (i.e. the weight and type of its input and output arcs) in its interface; this approach of encoding the arc information is called the place-pivot approach. Figure 5.5 points out where the arc information is encoded in the interface of the place design. Thus, a PCI has all the needed information to compute the sensitization of its output TCIs by comparing the weight of its output arcs to its current marking value. A PCI can simply communicate through a Boolean signal that it is currently enabling its output TCIs. In the other approach, the transition-pivot approach, the transition design carries the arc information. In that case, the TCIs compute their own sensitization status. To be able to do so, the PCIs must communicate their current marking value to the TCIs. As a marking value is a natural number, the number of interconnecting signals between PCIs and TCIs greatly increases in the transition-pivot approach. Eventually, the place-pivot approach has been retained in the current version of HILECOP. The last part of the transformation deals with the interpretation elements of the input SITPN, i.e. the conditions, the actions and the functions. Each condition of the input SITPN leads to the declaration of a Boolean input port in the port clause of the top-level design. As it was pointed out in Chapter 3 (cf. Section 3.1.1), the interpretation aspect has been greatly simplified in the SITPN structure, and the generation and the association of an input port to each condition of the input SITPN is a consequence of the simplification. In the full version of the SITPN structure, a condition depends on a Boolean expression that involves both the value of internal signals and input ports of the top-level design. In our simplified version of the SITPN structure, a condition value depends on the execution environment, i.e. a function that updates the value of conditions at each falling edge of the clock signal. Thus, we find it natural to transform each condition into an input port of the top-level design, as the value of both depends on the execution/simulation environment. Then, each input port representing a condition is connected to the ic input port of TCIs. The interconnection of an input port of the top-level design to the ic input port of a TCI reflects an existing association between a transition and a condition of the input SITPN model.

For each action and function of the input SITPN, the transformation generates a Boolean output port, a.k.a. an action or a function port. At runtime, the value of these output ports represent the activation or execution status of the corresponding actions and functions. To determine the value of the action and function ports, the transformation generates two processes: the action process and the function process. The action process is a synchronous process responding to the falling edge of the clock signal. At the occurrence of the falling edge of the clock signal, the action process sets the value of the action ports computed from the values of the multiple marked output ports 1 . The marked port is an output port of the place design. Through the marked port, the PCIs inform the outside about their marking status, i.e. if they possess at least one token or not. Remember that the transformation generated an association between the marked output port and an internal signal in the output port map of PCIs during the first transformation step. These internal signals are read by the action process to assign a value to the action ports of the top-level design. The function process is a synchronous process responding to the rising edge of the clock signal. At the occurrence of the rising edge of the clock signal, the function process sets the value of the function ports computed from the values of the fired output ports. The fired port is an output port of the transition design. Through the fired port, the TCIs inform the outside about their firing status, i.e. if they are fired or not. Remember that, during the first transformation step, the transformation generated an association between the fired output port and an internal signal in the output port map of TCIs. These internal signals are read by the function process to assign a value to the function ports of the top-level design. Figure 5.6 presents the top-level H-VHDL design at the end of the transformation.

Chapter 5. The HILECOP model-to-text transformation

p 0 t 0 p 1 t 1 a 0 a 1 [1, 3] c 0 c 1 f 0 SITPN id p 0 in out ⇓ const. id t 0 in out ⇓ const. id p 1 in out ⇓ const. id t 1 in out ⇓ const. action function id c 0 id c 1 id a 0 id a 1 id f 0 H-VHDL top-level design Transformation FIGURE 5
.6: Generation of the input and output ports, and of the action and the function processes in the H-VHDL top-level design. The primary input port id c 1 (resp. id c 0) implements the condition c 1 (resp. c 0). In green, the internal signals, generated by the transformation, connecting the input ports of the top-level design to the input_conditions input port of TCIs. The id a 0 and id a 1 output ports reflect the activation status of the actions a 0 and a 1 . The id f 0 output port reflects the activation status of the function f 0 . In orange, the internal signals, generated by the transformation, connecting the marked and fired output ports of PCIs and TCIs to the action and function processes. In purple, the representation of the assignments performed by the action and function processes and that set the value of the action and function ports of the top-level design.

Expressing transformation functions

In this section, we present our literature review pertaining to transformation functions in the context of formal verification. Here, a transformation function is understood as any kind of mapping from a source representation to a target representation, where the source and target representations possess a behavior of their own (i.e. they are executable). We use the same articles to perform our literature review in this chapter and in the following chapter, i.e. Chapter 6. However, our research questions, i.e. the questions we try to give an answer to while reading the articles, and our presentation axis differ from one chapter to the other. Here, the following questions guide our reading:

-Is there a proper way to build a transformation function? Are there standards depending on the application domain?

-How can we build a modular, extensible transformation function?

-How can we build a transformation function that will ease the proof of semantic preservation?

The goal is to inspire ourselves with the works of the literature, and to see how far the correspondence holds between our specific case of transformation, and other cases of transformations. The material we used for the literature review is divided in three categories. Each category covers a specific case of transformation function. The three categories are:

-Compilers for generic programming languages -Compilers for hardware description languages -Model-to-model and model-to-text transformations Note that, in the case of compilers for programming languages, the term translation is preferred over transformation to talk about the generation of a target program from a source program.

Building transformation functions

As the authors state in [START_REF] Kiam | A New Verified Compiler Backend for CakeML[END_REF], "Although theoretically possible, verifying a compiler that is not designed for verification would be a prohibitive amount of work in practice." The question is to know how to design such a compiler? How to anticipate the fact that we will have to prove that the compiler is semantic preserving? Now, let us consider these questions in the more general context of transformation functions that map a source representation to a target one.

Compilers for generic programming languages

In the context of formally verified compilers for generic programming languages, the translation from a source program to a target program is straight forward. While descending recursively through the AST of the input program, each construct of the source language is mapped to one or many constructs of the target language. Figure 5.7 gives an example of the translation from Java program expressions to Java bytecode expressions, set in the context of a compiler for Java programs written within the Isabelle/HOL theorem prover [START_REF] Strecker | Formal Verification of a Java Compiler in Isabelle[END_REF]. Here, the mapping between source and target constructs is clearly defined. In the works pertaining to the well-known CompCert project [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF][START_REF] Blazy | Formal Verification of a C Compiler Front-End[END_REF], the many steps that compose the compiler from C programs to assembly programs are also clearly mapping each construct of source program to target program constructs. Moreover, the pattern matching possibilities offered by languages like Coq, Isabelle, HOL and other interactive theorem provers enable a clear and concise implementation of compilers.

The cases of optimizing compilers like [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF] and [START_REF] Kiam | A New Verified Compiler Backend for CakeML[END_REF] show that, to avoid writing too complex functions when passing from a source to a target program, the compilation is decomposed into many passes. No more than 12 passes for the CakeML compiler, and up to 20 passes for CompCert. This is a way to keep the translation functions simple enough in order to ease reasoning afterwards. Indeed, the more the gap is important between the source representation and the target one, the more the translation function will be complex.

Another point that is noticeable while expressing a translation function is the necessity to keep a binding between the source and the target representations. For instance, in CompCert, when passing from transformed C programs to an RTL representation (based on registers and control flow graphs), a binding function γ links the variables of a C program to the registers generated in the RTL representation of the program. The binding is necessary for both the translation and the proof of semantic preservation. During the translation, it permits to replace the variables by their corresponding registers in the RTL code. During the proof of semantic preservation, the link that exists between a variable and a register indicates which elements must be compared to prove that the execution state of the source representation is similar to the execution state of the target representation. The generation of this binding function must be integrated to the design of the translation function.

In [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF], and [START_REF] Chlipala | A Verified Compiler for an Impure Functional Language[END_REF], compilers are written within the Coq proof assistant. Compilers are expressed using the state-and-error monad, thus mimicking the traits of imperative languages into a functional programming language setting. In Section 5.3, we present the HILECOP transformation in the form of an imperative pseudo-code algorithm. The state-and-error monad is well-suited to the implementation of this kind of algorithm with a functional language like Coq; thus, we chose to apply this monad to our implementation of the transformation algorithm (see Section 5.4).

Compilers for hardware description languages

The other category of compilers that we are interested in are compilers for hardware description languages (HDL). The HILECOP methodology's goal is the design of hardware circuits. For that reason, we are interested in studying the case of compilers for HDLs. However, one can notice that compiling an HDL program into a lower level representation is one level of abstraction down compared to the transformation we propose to verify. Indeed, it corresponds to Step 3 in the HILECOP methodology (cf. Figure 1.2), i.e. the transformation of VHDL source code into an RTL representation.

In the context of formal verification applied to HDLs compilers, only a few works describe the specificities of their translation function.

In [START_REF] Braibant | Formal Verification of Hardware Synthesis[END_REF], the authors define the FeSi language (a refinement of the BlueSpec language, a specification language for hardware circuit behaviors), and its implementation within the Coq proof assistant. The authors present the syntax and semantics of the FeSi language and of the RTL language which is the target language of the compiler. FeSi programs are composed of simple expressions, and actions permitting to read or write from different types of memory (registers). Therefore, the abstract syntax is divided into the definition of expressions and the definition of actions, i.e: control flow instructions and operations on memory. The RTL language is composed of expressions and write operations to registers. The authors are more interested in proving that a FeSi specification is well-implemented by a given Coq program, than giving the details of the translation from FeSi to RTL. However, the translation seems straight-forward, and proceeds as usual by descending through the AST of FeSi programs.

In [START_REF] Bourgeat | The Essence of Bluespec: A Core Language for Rule-Based Hardware Design[END_REF], the authors present a compiler for the language Koîka, which is also a simpler version of the BlueSpec language. A Koîka program is composed of a list of rules; each rule describes actions that must be performed atomically. Actions are read and write operations on registers. A Koîka program is accompanied by a scheduler that specifies an execution order for the rules. The described compiler transforms Koîka programs into RTL descriptions of hardware circuits. The translation function builds an RTL circuit by descending recursively down the AST of rules. Each action is translated into a specific RTL representation which are afterwards composed together to get complex circuits. The translation becomes trickier when it comes to decide the composition of RTL circuits to respect the execution order prescribed by the scheduler.

In [START_REF] Bourke | A formally verified compiler for Lustre[END_REF], the authors present the verification of a compiler toolchain from Lustre programs to an imperative language (Obc), and from Obc to Clight. The Clight target is the one defined in Chapter 5. The HILECOP model-to-text transformation CompCert [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]. Lustre permits the definition of programs composed of nodes that are executed synchronously. Nodes treat input streams and yield output streams of values. A node body is composed of sequence of equations that determine the values of output streams based on the input. Obc programs are composed of class declarations. A class declaration has a vector of memory variables, a vector of instances of other classes, and method declarations. The translation turns each node of a Lustre program into a class of Obc accompanied by two methods: the reset method, for the initialization of the streams, and the step method, for the update of values resulting of a synchronous step.

In [START_REF] Lööw | Lutsig: A Verified Verilog Compiler for Verified Circuit Development[END_REF], the authors describe a compiler that transforms Verilog programs into netlists targeting given FPGA models. Verilog programs are a lot like VHDL programs; they describe a hardware circuit behavior in terms of processes. A netlist is composed of registers, variables and a list of cells corresponding to combinational components. During the translation process, the expressions of the Verilog programs are turned into netlist cells, and the composition of statements leads to the creation of complex circuits by means of cell composition.

In [START_REF] Herklotz | Formal verification of high-level synthesis[END_REF], the authors describe a High-Level Synthesis (HLS) tool that transforms C programs into Verilog descriptions. Moreover, they have formally proved the correctness of the whole process, and mechanized the proof with Coq. In HLS, the purpose of the transformation is to obtain a hardware implementation, described with an HDL, of a computer program. The verified transformation from C to Verilog described in the paper is decomposed into several transformations: from C to a CFG-representation language called 3AC, from 3AC to the intermediate language HTL, and from HTL to Verilog. The transformation from C to 3AC relies on the CompCert compiler. In the second transformation pass, i.e. from 3AC to HTL, the HTL language permits the FSM-based representation of a hardware design. Thus, going from 3AC to HTL implies transforming C statements into a complex FSM ecosystem split into a data-path part and a control logic part. The data-path part involves a RAM representation of the hardware memory. Therefore, in the generated HTL program the RAM memory is a part of the code, whereas it does not appear in the input program.

Model transformations

We will now present the works pertaining to model-to-model and model-to-text transformations in the context of formal verification. Because of the nature of the transformation we propose to verify, i.e a model-to-text transformation, the following works are of particular interest to us. We will focus here on the manner to express transformations in the case of modelto-model and model-to-text transformations. Also, we tried to find articles related to model transformations involving Petri nets.

In [START_REF] Berramla | Formal Validation of Model Transformation with Coq Proof Assistant[END_REF], the authors observe that Model-Driven Engineering (MDE) is all about model transformation operations. They propose to set a formal context within the Coq proof assistant to verify that model transformations preserve the structure of the source models into the target models. To illustrate their methodology, they choose to transform UML state machine diagrams into Petri net models. The translation rules from source to target models are expressed within the setting of the OMG standard QVT language (Query/View/Transform). The QVT language offers a formal way to express model transformations, partly based on the Object Constraint Language (OCL). The translation rules map the different kinds of structures that can be found in UML state diagrams to specific structures of Petri nets. Even though the two models used as source and target of transformations are executable, the authors leverage the formal context provided by Coq to prove that the expressed transformations preserve certain structural properties.

In [START_REF] Calegari | A Type-Theoretic Framework for Certified Model Transformations[END_REF], the authors describe a process for model transformation where transformation rules are expressed with the Atlas Transformation Language (ATL). Transformation rules in ATL involve both declarative (OCL) and imperative (match rules) instructions. The authors show how the ATL rules can easily be translated into Coq relations. An example is given on the kind of model-to-model transformations that can be implemented that way. The example is a UML class diagram to relational database model transformation.

In [START_REF] Combemale | Essay on Semantics Definition in MDE. An Instrumented Approach for Model Verification[END_REF], the authors explore the different ways to give a formal semantics to a Domain-Specific Language (DSL) in the context of MDE. Here, the syntax of a given DSL is expressed with a meta-model. An instantiation of this meta-model (a model) yields a DSL program. The authors specify a transformation from a DSL model to another executable model, thus providing an translational semantics to the DSL model. The authors illustrate their approach with a source DSL named xSPEM, which is a process description language. The target models are timed PNs. The transformation is expressed through a structural mapping; i.e, each element of an xSPEM model is mapped to a particular PN: an activity is mapped to a subnet, a resource to a single place, connection from activity to resource through parameter is mapped to a connection of transitions and places in the resulting PN. . . In [START_REF] Dyck | Automatic Verification of Behavior Preservation at the Transformation Level for Relational Model Transformation[END_REF], the authors address the problem of expressing model transformations by using transformation graphs. Precisely, the kind of transformation graphs that are used are called Triple Graph Grammar (TGG). A TGG is a triplet <s, c, t> where the "correspondence model c explicitly stores correspondence relationships between source model s and target model t".

The work described is [START_REF] Fronc | Towards a Certified Petri Net Model-Checker[END_REF] is really close to our own verification task. The article describes how Coloured Petri Nets (CPNs, specifically LLVM-labelled Petri nets) are transformed into LLVM (Low Level Virtual Machine) programs representing the state space (the graph of reachable markings) of these PNs. LLVM is a low-level assembly language. The aim is to enable an efficient model-checking of the CPNs. LLVM-labelled PNs are CPNs whose places, transitions and arcs have LLVM constructs for color domains. Places are labelled with data types. Transitions are labelled with boolean expressions that correspond to the guard of the transition. Arcs are labelled by multisets of expressions. A marking is a function that maps each place to a multiset of values belonging to the place's type. The authors define data structures (multisets, sets, markings. . .) with interfaces, i.e. sets of operations over structures, to represent the Petri nets in LLVM. They define interpretation functions that draw equivalences between Petri nets objects and LLVM data structures. The authors define two algorithms: fire_t and succ_t to compute the graph of reachable states. These are the functions that transform CPNs into concrete LLVM programs.

In [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF], the authors describe a transformation from UML state machine diagrams to Coloured Petri Nets (CPNs). The aim is to leverage the means of analysis provided by Petri nets to certify certain properties over UML state machine diagrams. The authors want to verify that the transformation preserve structural properties between source and target models. The transformation function does not use a standard setting as QVT or ATL, or transformation graphs. It is expressed as a specific function written in Isabelle/HOL.

In [START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF], the authors present a transformation from Architecture Analysis and Design Language (AADL) models to Timed Abstract State Machines (TASMs). AADL is a language widely used in avionics to describe both hardware and software systems. AADL doesn't have a lot of tools to analyze and simulate the designed systems; therefore transforming AADL models into TASM enables the use of an important toolbox for analysis, and simulation. The transformation from AADL to TASMs are described with ATL rules.

Discussions on how to build transformation functions in the context of semantic preservation

Transformation functions are mappings from a source representation to a target representation. The more the mapping from source to target is straight-forward the easier the comparison will be when proving that the transformation is semantic preserving. Thus, in [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF][START_REF] Kiam | A New Verified Compiler Backend for CakeML[END_REF][START_REF] Chlipala | A Verified Compiler for an Impure Functional Language[END_REF] where complex cases of optimizing compilers are presented, the compilation is split into many simple passes to ease the verification effort coming afterwards. In the case of the HILECOP transformation, we are not yet concerned with the optimization of the generated VHDL code. Thus, our transformation algorithm performs the generation of the target H-VHDL design in a single pass. We do not need to use intermediary representations between the input SITPN model and the generated H-VHDL design.

Also, while transforming source programs, the compiler must often generate fresh constructs belonging to the target language (for instance, generating a fresh RTL register for each variable referenced in a source C program in [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]). The compiler must keep a binding, that is, a memory of the mapping between the elements of the source program and their mirror in the target program. This consideration is of interest in our case of transformation where the elements of SITPNs are also mirrored by elements in the generated H-VHDL design.

It remains hard to establish a standard way to express a transformation function as it really depends on the form of the input and the output representations. Compilers for programming languages tend to be a lot more compositional than model transformations. Here, the word compositional means that the translation rules can be split into simple and independent cases of translation, e.g. translation of expressions, then translation of statements, then translation of function bodies,. . . This is a huge advantage to perform the proof of semantic preservation. Indeed, this decomposition of a translation function permits to reason on simple translation cases; yet, each of these translations cases yields a piece of target code that can be executed or interpreted in an independent manner. In the case of the HILECOP, we tried as much as possible to express the transformation in a compositional way. First, we tried to devise the transformation by building up transformation functions for each element of the SITPN structure, i.e.: a transformation function for the places, another for the transitions. . . However, due to the interconnections that exist between the component instances of the generated H-VHDL design, it is impossible to define transformation functions that would yield stand-alone executable code.

In the world of models, there exist some standard formalisms to express transformation rules (QVT, ATL, transformation graphs. . .). However, the complexity of the transformation rules depends on the richness of the elements composing the source model, and the distance to the concepts of the target model. In our case, we were not able to grab the perks of using such formalisms as QVT or ATL to devise our transformation.

The transformation algorithm

Before detailing the algorithm underlying the HILECOP model-to-text transformation, we want to point out the necessity to automate the transformation. Judging by the appearance of the H-VHDL design generated from the input SITPN model, the reader could rightly ask why the designers of hardware circuits that are using the HILECOP methodology do not start directly by writing down the VHDL code. The reasons are many. First, handling the interconnections between PCIs and TCIs is simple enough when the number of places and transitions of the input SITPN is few, however, it becomes a lot more tedious with the increase of the size of models. To give an example, the Neurrinov company2 , which applies the HILECOP methodology to the design of critical digital circuits, has developed a digital circuit model for the control of the electro-stimulation in neuroprostheses. Once flattened down, the model is composed of 1097 places and 1666 transitions. The top-level VHDL design generated from this model represents up to 140000 lines of code. Obviously, the hand-coding of this input model into a VHDL design would be too error-prone. Moreover, the PN models offer a lot of opportunities in terms of analysis and model-checking compared to the ones that exist for VHDL code. Finally, the graphical aspect of PNs appears to be more fit for the task of digital architecture design in comparison to plain source code, as it facilitates the discussions between designers. For these reasons, we choose to preserve SITPNs as the input models of the HILECOP methodology, and to automatize the transformation into top-level H-VHDL designs.

In this section, we give the algorithm underlying the HILECOP model-to-text transformation. This algorithm is the base of the Coq implementation of the HILECOP transformation; the implementation is presented in Section 5.4. As presented in Chapter 1, there exists a Java implementation of the HILECOP methodology. This implementation performs the generation of VHDL code from a SITPN model. However, the algorithm of the transformation has never been documented, nor a formal specification given. The following algorithm is one of the contribution of this thesis. It has been devised through the examination of the code of the existing Java implementation, and through the discussions with the designers of the HILECOP methodology.

The sitpn_to_hvhdl function

The HILECOP transformation algorithm, presented in Algorithm 3, generates a H-VHDL design and a SITPN-to-H-VHDL binder from an input SITPN. A SITPN-to-H-VHDL design binder is a structure that binds the dynamic elements of a SITPN, namely: places, transitions, conditions, actions and functions; to the dynamic elements of a H-VHDL design, namely: component instance identifiers and signal identifiers. By dynamic elements, we mean these elements that value or characteristics vary in the course of the execution/simulation of the structure. Such a binder is generated alongside the transformation and links a SITPN element to its H-VHDL implementation, i.e. the H-VHDL element that will supposedly behave similarly to the source SITPN element at runtime. Thus, the SITPN-to-H-VHDL design binder is at the center of the state similarity relation, presented in Chapter 6, and that enables the comparison between an

-PMap ∈ P → {id | comp(id, place, g, i, o) ∈ cs} -TMap ∈ T → {id | comp(id, transition, g, i, o) ∈ cs} -CMap ∈ C → {id | (in, id, t) ∈ ports} -AMap ∈ A → {id | (out, id, t) ∈ ports} -FMap ∈ F → {id | (out, id, t) ∈ ports}
As presented in Definition 35, the binder is composed of five sub-environments that map the different SITPN sets to identifiers. The PMap and TMap sub-environments map the places to their corresponding PCI identifiers, and the transitions to their corresponding TCI identifiers. The CMap sub-environment maps the conditions to input port identifiers. The AMap and FMap sub-environments map the actions and functions to output port identifiers. Notation 9. For a given binder γ and an element of an SITPN structure e ∈ P T C A F , we write γ(e) where e is looked up in the appropriate function. For instance, for a given f ∈ F , γ(f) is a shorthand notation for FMap(f) where γ = < . . . , FMap>.

Algorithm 3 is the algorithm of the HILECOP model-to-text transformation. The algorithm as four parameters; the first one is the input SITPN model sitpn; id e and id a are the entity and the architecture identifiers for the generated H-VHDL design; b ∈ P → N is the function associating a maximal marking value to each place of the input SITPN. This function is the result of the analysis of the input SITPN. declaration set, and a behavior defined by the null statement. The design generated by the sitpn_to_hvhdl function has an empty set of generic constants; this set stays empty even at the end of the transformation. Line 2 initializes the γ binder with empty sub-environments. From Lines 3 to 5, the called procedures modify the design and the binder structures. Each part of the sequence corresponds to one step of the transformation, which were outlined in Section 5.1. The content of the generate_architecture function is detailed in Algorithms 5, 6 and 7. The content of the generate_interconnections function is detailed in Algorithm 10. The content of the generate_ports function is detailled in Algorithms 11, 12, 13 and 14.

Notation 10. In the remainder of memoir, we write sitpn b to denote sitpn_to_hvhdl(sitpn, id e , id a , b), for all sitpn ∈ SITPN, b ∈ P → N and identifiers id a , id e .

Primitive functions and sets

The description of further functions and algorithms appeals to some primitive functions and set definitions that we introduce here. Below are all the sets that we use in the description of the algorithms.

input(p) = {t | ∃ω s.t. post(t, p) = ω}, the set of input transitions of a place p.

output(p) = {t | ∃ω, a s.t. pre(p, t) = (ω, a)}, the set of output transitions of a place p.

acts(p) = {a | A(p, a) = true}, the set of actions associated with a place p.

input(t) = {p | ∃ω, a s.t. pre(p, t) = (ω, a)}, the set of input places of a transition t.

output(t) = {p | ∃ω s.t. post(t, p) = ω}, the set of output places of a transition t.

conds(t) = {c | C(t, c) = 1 ∨ C(t, c) = -1}, the set of conditions associated with a transition t.

-

trs(c) = {t | C(t, c) = 1 ∨ C(t, c) = -1}
, the set of transitions to which a condition c is associated.

pls(a) = {p | A(p, a) = true}, the set of places to which an action a is associated.

trs(f) = {t | F(t, f) = true}, the set of transitions to which a function f is associated.

Every set presented above are unordered. However, we assume that, every time we iterate over the elements of an unordered set with a foreach statement, the iteration respects an arbitrary order. This order is always the same through the multiple calls to foreach statements. Of course, the iteration over the elements of an ordered set with a foreach statement respects the natural order of the set. Now, let us introduce some primitive functions and procedures that we use in the description of the following algorithms.

Chapter 5. The HILECOP model-to-text transformation output c ∈ P → 2 T . The output c function takes a place p as input and yields an ordered set of transitions computed as follows:

1. If all conflicts between the output transitions of p are solved by mutual exclusion, or if the set of conflicting transitions of p is a singleton, then output c returns an empty set.

2. Otherwise, the function tries to establish a total ordering over the set of conflicting transitions of p w.r.t the firing priority relation:

-If no such ordering can be established (in that case, the firing priority relation is illformed, and the input SITPN is not well-defined), output c raises an error. -Otherwise, the function returns the ordered set, with the top-level priority transition at the head.

output nc ∈ P → 2 T . The output nc function takes a place p as input and yields an unordered set of transitions computed as follows:

-If all conflicts between the output transitions of p are solved by mutual exclusion, or if the set of conflicting transitions of p is a singleton, then, the function returns the set of output transitions of p, i.e. output(p) as defined above.

-Otherwise, the function returns the set of output transitions of p connected through a test or an inhib arc, i.e. {t | ∃ω s.t. pre(p, t) = (ω, test) ∨ pre(p, t) = (ω, inhib)}.

cassoc(map, id, x) where map is either an input port map or an output port map, id is an identifier, x is an expression or a name (i.e. a simple or indexed identifier). The cassoc procedure adds an association of the form (id(i), x) to the map structure. The index i is computed as follows based on the content of map:

1. looks up id(j) with max(j) in the formal parts of map 2. if no such j, adds (id(0), x) in map 3. if such j, adds (id(j + 1), x) in map Examples:

cassoc({(s(0), true), (s(1), false)}, s, true) yields the resulting map {(s(0), true), (s(1), false), (s(2), true)}.

cassoc({(s(0), true), (s(1), false)}, a, 3) yields the resulting map {(s(0), true), (s(1), false), (a(0), 3)}.

-get_comp(id c , cstmt) where id c is an identifier, and cstmt ∈ cs is a H-VHDL concurrent statement. The get_comp function looks up cstmt for a component instantiation statement labelled with id c as a component instance identifier, and returns the component instantiation statement when found. The get_comp function throws an error if no component instantiation statement with identifier id c exists in cstmt, or if there exist multiple component instantiation statements with identifier id c in cstmt.

-put_comp(id c , cistmt, cstmt) where id c is an identifier, cistmt is a component instantiation statement, and cstmt ∈ cs is a H-VHDL concurrent statement. The put_comp procedure looks up in cstmt for a component instantiation statement with identifier id c , and replaces the statement with cistmt in cstmt. If no CIS with identifier id c exists in cstmt, then cistmt is directly composed with cstmt with the || operator. The put_comp procedure throws an error if multiple CIS with identifier id c exist in cstmt.

actual(id, map) where id is an identifier and map is a generic, an input port or an output port map. The actual function returns the actual part associated with the formal part id in map, i.e. returns a if (id, a) ∈ map. The function throws an error if id is not a formal part in map, or if there are multiple association with id as a formal part in map.

genid(). The genid function returns a fresh and unique identifier. During the transformation, we appeal to it when a new internal signal, a new port or a new component instance must be declared or generated.

Algorithm 4 presents the connect procedure. This procedure takes an output port map o, an input port map i, a name n (i.e. a simple or indexed identifier), an identifier id and a H-VHDL design d as parameters. It generates a Boolean internal signal id s and adds it to the internal signal declaration list of design d. Then, the procedure adds the association between the n name and the internal signal id s to the output port map o. Moreover, the procedure adds an association between a subelement of id, which index will be determined by the cassoc function, and the internal signal id s to the input port map i. As a result, n is connected to a subelement of id through the Boolean internal signal id s . Note that the name n must denote a signal of the Boolean type, and so must be the subelements of the composite signal denoted by id; otherwise, the output port map o and the input port map i, will not be well-typed at the end of the execution of the connect procedure.

Algorithm 4: connect(o, i, n, id, d)

1 id s ← genid() 2 d.sigs ← d.sigs ∪ {(id s , boolean)} 3 o ← o ∪ {(n, id s)} 4 cassoc(i, id, id s) Notation 11.
When there is no ambiguity, id p (resp. id t) denotes the PCI (resp. TCI) identifier associated with a given place p (resp. transition t) through γ(p) = id p (resp. γ(t) = id t), where γ is the binder returned by the HILECOP transformation function. Similarly, id c (resp. id a and id f) denotes the input port (resp. output port) identifier associated with a given condition c (resp. action a and function f) through γ(c) = id c .

Generation of component instances and constant parts

The first step of the transformation generates the PCIs and TCIs, their generic map, and the constant part of their input port maps, in the behavior of the H-VHDL design. At this moment of the transformation, places are bound to PCI identifiers, and transitions are bound to TCI identifiers in the γ binder. Also, the marked output port and the fired output port are connected to internal signals in the output port map of PCIs and TCIs. Algorithm 5 presents the content of the generate_architecture procedure that implements this first part of code generation. The generate_architecture procedure is decomposed in two procedures: the generate_PCIs and the generate_TCIs procedures. The generate_PCIs procedure, presented in Algorithm 6, has four parameters: sitpn ∈ SITPN, the input SITPN model; d ∈ design, the H-VHDL design being generated; γ ∈ W M(sitpn, d), the binder between sitpn and d; b ∈ P → N, the function assigning a maximal marking value to each place. The procedure iterates over the set of places of the sitpn parameter. For each place p in the set, the procedure produces a corresponding PCI id p , and generates its generic map g p , and its partially-built input and output port maps i p and o p . At the end of the procedure (Lines 24 to 26), a fresh and unique component identifier id p is generated, and a new component instantiation statement, corresponding to the instantiation of the PCI id p , is composed with the current behavior of design d. Finally, the γ binder receives a new couple corresponding to binding of place p to identifier id p .

1 if input(t) = ∅ |input(t)| otherwise), (oan, 1 if output(t) = ∅ |output(t)| otherwise)}; i p ← ∅; o p ← ∅ 4 if input(p) = ∅ then i p ← i p ∪ {(iaw(0),
26 γ ← γ ∪ {(p, id p)}
From Line 2 to Line 23, the procedure generates the generic map, the input port map, and the output port map of the PCI that implements place p. First, the procedure checks if the current place p is isolated, i.e. without input nor output transitions. An error, with an associated message, is raised with the err primitive if the test succeeds. The HILECOP transformation raises errors in the presence of an input SITPN model that does not meet the well-definition property (see Definition 28). One part of the well-definition property pertains to the absence of isolated place in the input model. Line 3 builds the variable g p , and initializes the variables i p and o p , respectively holding the generic map, the input port map and the output port map of the PCI being generated. The generic map g p holds three associations: the association between the mm constant to the maximal marking value returned by the b function for place p, and the association between the ian (resp. the oan constant) and a natural number that depends on the size of the set of input transitions (resp. output transitions) of place p.

Chapter 5. The HILECOP model-to-text transformation

Line 4 tests if the set of input transitions of p is empty. The size of the iaw and itf input ports, which are of the array type, is equal to the value of the ian constant. Thus, in the case where the ian constant is associated to 1 in the generic map g p (i.e. the set of input transitions of p is empty), the iaw and itf input ports are composed of one subelement with index 0. At Line 4, the sole subelement of the iaw port is associated with 0, and the sole subelement of the itf port is associated with false in the input port map i p . In the set of input transitions of p holds is not empty, each subelement of the iaw port is associated with the weight of the arc between place p and a given input transition t. Note that, in that case, the procedure does not deal with the connection of the itf port. As the set of input transitions of p is not empty, the connection of the itf port will be performed by the generate_interconnections described in Algorithm 10.

Line 10 tests if the set of output transitions of p is empty. The size of the oaw, oat and otf input ports, which are of the array type, is equal to the value of the oan constant. Thus, in the case where the oan constant is associated to 1 in the generic map g p (i.e. the set of output transitions of p is empty), the oaw, oat and otf input ports are composed of one subelement with index 0. At Line 11, the sole subelement of the oaw port is associated with 0, the sole subelement of the oat port is associated with basic, and the sole subelement of the otf port is associated with false in the input port map i p . Also, in the abscence of output transitions, the oav, pauths and rtt output ports are left unconnected, i.e. they are associated with the open keyword of output port map o p .

If the set of output transitions of p is not empty, the oan constant is associated with the size of this set in the generic map g p . Then, each subelement of the oaw (resp. the oat) port is associated with the weight (resp. the type) of the arc between place p and a given output transition t. Note that, in that case, the procedure does not handle the connection of the otf input port, nor the connection of the oav, pauths and rtt output ports. As the set of output transitions of p is not empty, these connections will be performed by the generate_interconnections described in Algorithm 10.

From Line 19 to Line 23, the generate_PCIs procedure connects the marked output port in the output port map o p . If the place p is not associated with any action, the marked output port is left unconnected, i.e. connected to the open keyword. Otherwise, the marked output port is connected to a newly generated internal signal of the Boolean type. This generated signal joins the internal signal declaration list of design d. The connection between the marked output port and the internal signal will be used later, during the generation of the action process (see Section 5.3.5).

Figure 5.8 shows the generic, input port and output port map of the PCI id p 0 (cf. Figure 5.3) after the execution of the generate_PCIs procedure. The generate_TCIs procedure, presented in Algorithm 7, iterates over the set of transitions T of the sitpn parameter. For each transition t in the set, the procedure produces a corresponding TCI id t , and generates its generic map g t , and its partially-built input and output port maps i t and o t . At the end of the procedure (Lines 11 to 13), a fresh and unique component identifier id t is generated, and a new component instantiation statement, corresponding to the instantiation of the TCI id t , is composed with the current behavior of design d. Finally, the γ binder receives a new couple corresponding to binding of transition t to identifier id t .

Algorithm 7: generate_TCIs(sitpn, d, γ)

1 foreach t ∈ T do 2 if input(t) = ∅
and output(t) = ∅ then err("t is an isolated transition")

3 g t ← {(tt, get_ttype(t)), (mtc, get_mtc(t)), 4 (ian, 1 if input(t) = ∅ |input(t)| otherwise), (cn, 1 if conds(t) = ∅ |conds(t)| otherwise)} 5 i t ← {(A, 0 if t / ∈ dom(I s) l(I s (t)) otherwise), (B, 0 if t / ∈ dom(I s) ∨ u(I s (t)) = ∞ u(I s (t)) otherwise)} 6 id s ← genid() 7 d.sigs ← d.sigs ∪ {(id s , boolean)} 8 o t ← {(fired, id s)} 9 if input(t) = ∅ then i t ← i t ∪ {(iav(0), true), (pauths(0), true), (rt(0), id s)} 10 if conds(t) = ∅ then i t ← i t ∪ {(ic(0), true)} 11 id t ← genid() 12 d.cs ← d.cs || comp(id t , transition, g t , i t , o t) 13 γ ← γ ∪ {(t, id t)}
At Line 2, the procedure checks if transition t is isolated, and raises an error accordingly. Lines 4 to 8 initialize the variables g t , i t and o t , respectively holding the generic map, the input port map and the output port map of the TCI being-generated. The generic map g t takes Chapter 5. The HILECOP model-to-text transformation four associations: the association between the tt constant and the result of the function call get_ttype(t), the association between the mtc constant and the result of the function call get_mtc(t), the association between ian and the size of the set of input places of t, and the association between cn and the size of the set of conditions associated with t. The get_ttype function returns the type of transition t, i.e. either NOT_TEMPORAL, TEMPORAL_A_A, TEMPORAL_A_B or TEMPORAL_A_INFINITE, based on the form of the time interval associated with t. Algorithm 8 describes the get_ttype function.

1 if t / ∈ dom(I s) then return NOT_TEMPORAL 2 else if I s (t) = [a, a] then return TEMPORAL_A_A 3 else if I s (t) = [a, b] then return TEMPORAL_A_B 4 else if I s (t) = [a, ∞] then return TEMPORAL_A_INFINITE
The get_mtc function determines the maximal value for the time counter of t based on the form of the time interval associated with transition t. Algorithm 9 describes the get_mtc function.

Algorithm 9: get_mtc(t)

1 if t / ∈ dom(I s) then return 1 2 else if I s (t) = [a, b] then return b 3 else if I s (t) = [a, ∞] then return a
In the generate_TCIs procedure, Line 5 sets the value of the A and B input ports while initializing the input port map i t . The A port is associated with 0 if the transition t is not a time transition (i.e. t has no associated time interval, it is not in the domain of function I s); otherwise, the A port is associated with the lower bound of the time interval of t. The B input port is associated with 0 if transition t is not a time transition or if its time interval has an infinite upper bound; otherwise, the B port is associated with the upper bound of the time interval of t. From Lines 6 to 8, the generate_TCIs procedure connects the fired output port to a newly generated internal signal in the output port map o p . This internal signal will then be connected to the input port map of PCIs during the interconnection phase of the transformation (see Section 5.3.4).

Line 9 checks if the set of input places of t is empty. If the test succeeds, the ian constant is associated with 1 in the generic map g t . The size of the iav, pauths and rt input ports, which are of the array type, is equal to the value of the ian constant. Thus, in the case where the set of input places of t is empty, the iav, pauths and rt input ports are composed of one subelement with index 0. At Line 9, the sole subelements of the iav and the pauths ports are associated with true, and the sole subelement of the rt port is associated with the signal identifier id s . Remember that the fired output port has been previously connected to the internal signal id s in the output port map o t . Thus, the fired output port is connected to the subelement of the rt input port with index 0 through the id s signal. This connection is mandatory to reset the value of the s_time_counter signal (which is an internal signal of the transition design) in the absence of input places. Line 10 checks if the set of conditions attached to t is empty. The size of the ic input port, which is of the array type, is equal to the value of the cn constant. Thus, in the case where the set of conditions attached to t is empty, the ic input port is composed of one subelement with index 0. Then, the sole subelement of the ic port is associated with true in the input port map i t . If the set of conditions attached to t is not empty, then the generate_conds procedure, presented in Algorithm 12, will handle the connection of the subelements of the ic input port.

Figure 5.9 shows the generic, input port and output port map of the TCI id t 0 (cf. Figure 5.3) after the execution of the generate_TCIs procedure.

id t 0 clk rst A 1 B 3
pauths(0) iav(0) rt(0) ic(0) f (tt, temp a b), (ian, 1), (cn, 1), (mtc, 3) FIGURE 5.9: A graphical representation of the interface of the TCI id t 0 after the generate_TCIs procedure. The generic map associations appear in blue underneath the TCI. The indexes of composite ports appear in blue to stress the relation between the interface dimensioning and the generic constants. The f output port is connected to an internal signal represented by a red wire.

Interconnection of the place and transition component instances

After the generation of PCIs and TCIs, and of all constant associations in their generic and input port maps, the next step of the transformation performs the interconnections between the interfaces of PCIs and TCIs. The generate_interconnections procedure, presented in Algorithm 10, produces these interconnections.

Chapter 5. The HILECOP model-to-text transformation The generate_interconnections procedure iterates over the set of places of the sitpn parameter. For each place p, the procedure generates the interconnections between the PCI id p and the TCIs that implement the input and output transitions of p; we will refer to them as the input and output TCIs of PCI id p .

At Line 2, the get_comp function returns the PCI associated with the identifier γ(p) (i.e. the PCI identifier associated with place p in γ) by looking up the behavior of the design d. At this step, we assume that all PCIs and TCIs, and all bindings pertaining to places and transitions in the γ binder, have been previously generated by the generate_architecture procedure. Otherwise, the get_comp function raises an error if it is not able to find the PCI id p in the behavior of design d.

Then, from Line 3 to Line 27, the procedure modifies the input and output port map of PCI id p and the input port map of its input and output TCIs. Finally, Line 28 replaces the old PCI id p by the modified one in the behavior of design d.

From Line 3 to Line 7, the procedure iterates over the input transitions of place p. Note that the iteration is performed in the same order as the iteration performed by the foreach loop at Line 7 of the generate_PCIs procedure; this is mandatory to preserve a consistency between the index i and the connection to a given transition (see Remark 8). For each input transition t of p, the corresponding TCI id t is retrieved from the behavior of design d. Then, the internal signal associated with the fired output port in the output port map of TCI id t is retrieved (i.e. actual(fired, o t)), and the signal is associated with the subelement of the itf input port with index i. We know that the generate_TCIs function has generated the association between the fired output port and an internal signal in the output port map of all TCIs. Thus, the actual function never raises an error.

Remark 8 (Connections consistency).

In the behavior of the place design, some processes access to the subelements of composite ports through the use of indices. For instance, the input_tokens_sum process (see Appendix A) increments a local variable i in range 0 to input_arcs_number -1 in a for loop. The process tests the value of the itf port's subelement with index i. If the test succeeds, the process adds the value of the iaw port's subelement with index i to the local variable v_internal_input_token_sum. Thus, the subelement with index i of the itf and iaw ports must refer to the connection to the same transition. Otherwise, the process does not compute a correct input tokens sum. Figure 5.10 illustrates the correct connection of the itf and iaw ports in the input port map of PCI id p w.r.t. to the connection between transitions t a , t b , t c and place p. does not hold the information pertaining to the arc connections, the input and output port maps of TCIs are not subject to such a constraint. The fact that a foreach loop always iterates in the same order over the elements of a set ensures the consistency of the connections.

From Line 9 to Line 16, the procedure connects the PCI id p to the TCIs implementing the conflicting output transitions of place p. For each conflicting output transition t of p, the corresponding TCI id t is retrieved from the behavior of design d. The function call actual(fired, o t) returns the internal signal associated with the fired output port in the output port map of TCI id t . This internal signal is then connected to the subelement of the otf input port with index i in the input port map of PCI id p . At Line 12, the connect function generates an internal signal id and adds it to the internal signal declaration list of design d. Then, the function associates the subelement oav(i) (i.e. the subelement of the oav input port with index i) with the internal signal id in the output port map o p , and it associates one subelement of the iav input port to the internal signal id in the input port map i t . The connect function operates similarly on the rtt output port and the rt input port at Line 13, and on the pauths input port and the pauths output port at Line 14. Finally, at Line 15, the old TCI id t is replaced by the modified one in the behavior of design d.

From Line 18 to Line 26, the procedure connects the TCIs implementing to the output transitions of p that are not in conflict. Note that the variable i is not reset between the two foreach loops to preserve the continuity of indices. For each non-conflicting output transition t of p, the corresponding TCI id t is retrieved from the behavior of design d. Then, the interconnections between PCI id p and TCI id t are similar to the ones that have been performed for the conflicting transitions of p. The difference lies in the connection of the pauths ports. Between the PCI id p and its non-conflicting TCIs, the pauths are not connected together; this to reflect the independence of non-conflicting output transitions regarding the priority authorizations. Instead, the subelement of the pauths output port with index i is connected to a newly generated internal signal id s in the output port map o p (Line 22 to Line 24); the internal signal id s is not connected to anything, and it will be removed by the (industrial) compiler at the time of the synthesis. Also, one subelement of the pauths input port is associated with true in the input port map i t (Line 25); this connection represents the fact that, since the transition t is not a conflicting transition of place p, then, transition t always has the authorization to be fired, given that it is firable.

Figure 5.11 shows the interconnections between the PCI id p 0 and the TCI id t 0 (cf. Figure 5.3) after the execution of the generate_interconnections procedure.

id p 0 clk rst im 1 iaw(0) 1 oat(0) basic oaw(0) 1 ... itf (0) otf(0) oav(0) rtt(0) pauths(0)
m id t 0 clk rst A 1 B 3 true pauths(0) iav(0) rt (0) ic(0)
f FIGURE 5.11: A graphical representation of the interconnections of the PCI id p 0 and the TCI id t 0 after the execution of generate_interconnections procedure.

Generation of ports, the action and the function process

The last part of the transformation pertains to the generation of the input and output ports of the top-level H-VHDL design. The input ports implement the conditions declared in the input SITPN model. Each input port is associated with a condition through the γ binder. This binding is built during the transformation. The output ports of the H-VHDL design implement the action and function of the input SITPN. Each output port is associated with an action or a function through the γ binder. During the simulation of a H-VHDL design, the value of an output port represent the activation/execution status of the associated action/function. Algorithm 11 presents the generate_ports procedure. This procedure calls three procedures, namely: the generate_condition_ports procedure, responsible for the generation and the connection of input ports implementing conditions; the generate_action_ports procedure, responsible for the generation of output ports implementing actions, and for the generation of the action process; the generate_function_ports procedure, responsible for the generation of output ports implementing functions, and for the generation of the function process. These three procedures are detailed in Algorithms 12, 13 and 14.

Algorithm 11: generate_ports(sitpn, d, γ)

1 generate_condition_ports(sitpn, d, γ) 2 generate_action_ports(sitpn, d, γ) 3 generate_function_ports(sitpn, d, γ)
Algorithm 12 describes the generate_condition_ports procedure.

Algorithm 12: generate_condition_ports(sitpn, d, γ)

1 foreach c ∈ C do 2 id c ← genid() 3 d.ports ← d.ports ∪ {(in, id c , boolean)} 4 γ ← γ ∪ {(c, id c)} 5 foreach t ∈ trs(c) do 6 comp(id t , transition, g t , i t , o t) ← get_comp(γ(t), d.cs) 7 if C(t, c) = 1 then cassoc(i t , ic, id c) 8 else if C(t, c) = -1 then cassoc(i t , ic, not id c) 9 put_comp(id t , comp(id t , transition, g t , i t , o t), d.cs)
The generate_condition_ports procedure iterates over the set of conditions of the sitpn parameter. For each condition of the set, the generate_condition_ports procedure produces a corresponding input port identifier id c , and adds an input port declaration entry in the port declaration list of design d. The declared input port is of the Boolean type. Also, a binding between condition c and identifier id c is added to γ. Then, the procedure performs the connection between the input port id c and the ic input port present in the input interface of TCIs. The ic input port is an array composed of Boolean subelements. Indeed, as multiple conditions can be attached to a given transition, a given TCI is possibly connected to multiple input ports implementing conditions through its ic port. At Line 5, the foreach loop iterates over the set of transitions attached to condition c. For each such transition t, the corresponding TCI id t is retrieved from the behavior of design d. Then, depending on the relation that exists between condition c and transition t, an association between id c and one subelement of the ic input port is added to the input port map i t . At the end of the loop, the old TCI id t is replaced by a new TCI, with an updated input port map, in the behavior of design d.

Algorithm 13 describes the generate_action_ports procedure.

Algorithm 13: generate_action_ports(sitpn, d, γ) The generate_action_ports procedure does two things. First, it generates an output port for each action of the input SITPN; second, it builds the action process that is responsible for the assignment of the value of action ports depending on the value of the marked output ports of PCIs. The action process is a synchronous process; its statement body is composed of a single rst block. A rst block is composed of two blocks of sequential statements; the first block is executed only during an initialization phase, otherwise, the second block is executed. Here, the second block corresponds to a falling block, i.e. a block that is only executed during a falling edge phase. Thus, the generate_action_ports procedure builds two blocks of sequential statements: the first one, hold in the rstss variable, corresponds to the first part of the rst block (i.e. the one executed during the initialization phase); the second one, hold in the f ss variable, corresponds to the second part of the rst block, i.e. a falling edge block. The first two lines of the procedure initialize the rstss and f ss with the null sequential statement. Then, in the absence of actions defined in the input SITPN, the statement body of the action process is composed of null statements; the execution of null statements has no effect on the state of design during a simulation. At Line 3, the procedure iterates over the set of actions of the sitpn parameter. For each action a in the set, an output port identifier id a is generated, an output port declaration entry is added to the port declaration list of design d, the binding between action a and identifier id a joins the γ binder.

1 rstss ← null 2 f ss ← null 3 foreach a ∈ A do 4 id a ← genid() 5 d.ports ← d.ports ∪ {(out, id a , boolean)} 6 γ ← γ ∪ {(a,
An action is activated at given state if one of its attached place is marked, i.e. its marking is greater than zero. An output port identifier that implements the activation status of a given action is assigned in the falling block of the action process. The expression assigned to the output port id a corresponds to the or sum between each marked port of the PCIs implementing the places attached to the action a. From Line 7 to Line 13, the generate_action_ports procedure builds this or sum expression. For each place p associated with the action a, the corresponding PCI id p is retrieved from the behavior of design d. The internal signal id s associated with the marked port is looked up in the output port map of PCI id p . Then, the signal identifier id s is composed with the expression e id a with the or operator. At the end of the loop started at Line 3, the procedure adds a new signal assignment statement to the rstss and to the f ss variables by composition with the ; operator. In the rstss variable, i.e. in the part of the action process executed during an initialization phase, the id a output port is assigned to false. In the f ss variable, i.e. the part of the action process executed during a falling edge phase, the id a output port is assigned to the previously built or sum expression e id a . The last line of the procedure builds and adds the action process to the behavior of design d. The action process is a synchronous process, thus, it declares the clk signal in its sensitivity list. The action process has an empty set of local variables. Finally, its statement body is composed of a rst block with rstss as a first block, and a falling edge block wrapping f ss as a second block.

Algorithm 14 describes the generate_function_ports procedure.

Algorithm 14: generate_function_ports(sitpn, d, γ) The generate_function_ports procedure does two things. First, it generates an output port for each function of the input SITPN; second, it builds the function process that is responsible for the assignment of the value of function ports depending on the value of the fired output ports of PCIs. Similarly to the action process, the function process is a synchronous process with a statement body composed of a single rst block. The second part of the rst block is a rising block, i.e. a block that is only executed during a rising edge phase. Thus, the generate_function_ports procedure builds two blocks of sequential statements: the first one, hold in the rstss variable, corresponds to the first part of the rst block (i.e. the one executed during the initialization phase); the second one, hold in the rss variable, corresponds to the second part of the rst block, i.e. a rising edge block. The first two lines of the procedure initialize the rstss and rss with the null sequential statement. At Line 3, the procedure iterates over the set of functions of the sitpn parameter. For each function f in the set, an output port identifier id f is generated, an output port declaration entry is added to the port declaration list of design d, the binding between function f and identifier id f joins the γ binder.

1 rstss ← null 2 rss ← null 3 foreach f ∈ F do 4 id f ← genid() 5 d.ports ← d.ports ∪ {(out, id f , boolean)} 6 γ ← γ ∪ {(f , id f)} 7 e id f ←
A function is executed at given state if one of its attached transition is fired. An output port identifier that implements the execution status of a given function is assigned in the rising block of the function process. The expression assigned to the output port id f corresponds to the or sum between each fired port of the TCIs implementing the transitions attached to the function f . From Line 7 to Line 13, the generate_function_ports procedure builds this or sum expression. For each transition t associated with the function f , the corresponding TCI id t is retrieved from the behavior of design d. The internal signal id s associated with the fired port is looked up in the output port map of TCI id t . Then, the signal identifier id s is composed with the expression e id f with the or operator. At the end of the loop started at Line 3, the procedure adds a new signal assignment statement to the rstss and to the rss variables by composition with the ; operator. In the rstss variable, i.e. in the part of the function process executed during an initialization phase, the id f output port is assigned to false. In the rss variable, i.e. the part of the function process executed during a rising edge phase, the id f output port is assigned to the previously built or sum expression e id f . The last line of the procedure builds and adds the function process to the behavior of design d. The function process is a synchronous process, thus, it declares the clk signal in its sensitivity list. The function process has an empty set of local variables. Finally, its statement body is composed of a rst block with rstss as a first block, and a rising edge block wrapping rss.

Coq implementation of the HILECOP model-to-text transformation

This section presents the implementation of the HILECOP model-to-text transformation with the Coq proof assistant. The full implementation is available under the sitpn2hvhdl folder of the following Git repository: https://github.com/viampietro/ver-hilecop Listing In Listing 5.1, the sitpn_to_hvhdl function has five parameters: sitpn, the input SITPN model; decpr, a proof that the pr relation (i.e. the implementation of the firing priority relation) is decidable over the set of transitions of sitpn (i.e. T sitpn); id e and id a , the entity and architecture identifiers for the generated H-VHDL design; the b function that maps the places of the sitpn parameter to a maximal marking value, i.e. a natural number. The sitpn_to_hvhdl function returns a couple composed of the generated H-VHDL design, of type design, and the generated γ binder, of type Sitpn2HVhdlMap sitpn; or, the sitpn_to_hvhdl function returns a string corresponding to an error message.

In the body of the sitpn_to_hvhdl function, the RedV is a notation that reduces a monadic function call to a value. Our implementation of the HILECOP transformation function relies on the state-and-error monad [START_REF] Wadler | The Essence of Functional Programming[END_REF]. Each function that implements a part of the transformation function takes a compile-time state as a parameter, and returns either a value and a new compiletime state, or an error message. The bind construct of the state-and-error monad permits to pipeline multiple function calls, and, combined with the do notation, it permits us to write functional programs in the style of imperative languages. The sequence defined in the body of the sitpn_to_hvhdl function gives an example of what can be achieved with the combination of the state-and-error monad and the do notation. This sequence constitutes a single monadic function that takes a state of the Sitpn2HVhdlState type (see Listing 5.2) as input, and yields a value with a new state, or an error message. Here, the RedV notation retrieves only the value returned by the application of the monadic function to the parameter (InitS2HState sitpn Petri.ffid) (i.e. the initial compile-time state), or it retrieves the error message.

In the do sequence of Listing 5.1, the four first function calls do not return values that are relevant; thus, we use the underscore notation to notify that we are not interested in the returned values. Indeed, the generate_sitpn_infos, generate_architecture, generate_ports and generate_comp_insts functions directly modify the compile-time state without returning a value. They are the functional implementation of the procedures described in the previous section. Now, let us present the content of the compile-time state. As said above, the compile-time state is carried from function to function and modified all along the transformation. Listing 5.2 gives the implementation of the compile-time state structure. § ¤ The compile-time state structure is implemented by the Sitpn2HVhdlState record type. This type depends on a given sitpn passed as a parameter. It is composed of eleven fields. The first five fields (Line 3 to 7) are the list versions of the finite sets of places, transitions, conditions, actions and functions of the sitpn parameter. These fields are filled at the very beginning of the transformation by the generate_sitpn_infos function, and are convenient to write functions in the context of dependent types. The nextid field (Line 8) permits us to generate fresh and unique identifiers all along the transformation. The sitpinfos field (Line 9) is an instance of the SitpnInfos type that depends on the sitpn parameter. The sitpninfos field is filled up by the generate_sitpn_infos function. It is a convenient way to represent the information associated with the places, transitions, conditions, actions and functions of the sitpn parameter. The iports (resp. oports) field, at Line 10 (resp. at Line 11), gathers the list of input (resp. output) port declarations of the generated H-VHDL design. The arch field (Line 12) is an intermediary representation of the behavior of the generated H-VHDL design. This representation is easier to modify and to handle than a H-VHDL concurrent statement. The beh field (Line 13) is the behavior of the generated H-VHDL design; it is an instance of the cs type, i.e. the type of concurrent statements defined in the abstract syntax of H-VHDL. The γ field (Line 14) is the SITPN-to-H-VHDL binder generated alongside the H-VHDL design, and returned at the end of the transformation.

At the beginning of the transformation, an initial compile-time state is built with the Init-S2HState function. The InitS2HState function gives an initial value to the fields of the state structure; mostly, the fields are initialized with empty lists, and the beh field is initialized with the null statement. The InitS2HState function takes an Sitpn instance and an identifier as inputs. The identifier parameter represents the initial value of the nextid field. In Listing 5.1, the second parameter of the InitS2HState function is Petri.ffid. It corresponds to the first fresh identifier that the transformation can use to produce a H-VHDL design that respects the uniqueness of identifiers.

Let us now present the functions composing the do sequence of the sitpn_to_hvhdl function, and how they modify the compile-time state to produce the final H-VHDL design and the γ binder. The generate_sitpn_infos function takes an Sitpn instance and a proof of decidability for the pr relation as parameters. It returns a value of type Mon (Sitpn2HVhdlState sitpn) unit. A value of this type can either be a couple (state, value), where state is of type (Sitpn2HVhdlState sitpn) and value is of type unit, or an error message. The unit type as only one possible value tt. The unit type is used here to represent a function that modifies the compile-time state without returning a value.

The generate_sitpn_infos function

The aim of the generate_sitpn_infos function is to fill the sitpninfos field of the compiletime state; the sitpninfos field is an instance of the SitpnInfos record type.

Chapter 5. The HILECOP model-to-text transformation

The PlaceInfo record type is composed of three lists that represent the input transitions, tinputs, the conflicting output transitions, tconflict, and the non-conflicting output transitions, toutputs, of a place. In the SitpnInfos structure, the pinfos field maps the places of the sitpn parameter to their respective information, i.e. an instance of the PlaceInfo type. This mapping is built by the generate_place_infos function called in the body of generate_-sitpn_infos function. While building an instance of the PlaceInfo type for a given place p, the generate_place_infos function computes the list of output transitions of p that are in conflict (in the manner of the output c function described in Section 5.3.2). First, it computes the list of output transitions that are linked to the place p through a basic arc; then, the function checks if all conflicts between the transitions of this list are solved by means of mutual exclusion. If it is the case, the tconflict field is left empty, and all transitions of the list join the toutputs list. Otherwise, the function tries to establish a strict total order over the transitions of the list, by decreasing level of priority. If no such order can be established, the function raises an error; otherwise, the tconflict field is filled with the ordered list. This process never fails if the input sitpn parameter is indeed well-defined (cf. Definition 28).

The TransInfo record type is composed of two lists that represent the input places, pinputs, and the output places, poutputs, of a transition. In the SitpnInfos structure, the tinfos field maps the transitions of the sitpn parameter to their respective information, i.e. an instance of the TransInfo type. This mapping is built by the generate_trans_infos function called in the body of generate_sitpn_infos function.

In the SitpnInfos structure, the cinfos (resp. ainfos and finfos) field maps the conditions (resp. actions and functions) of the sitpn parameter to the list of transitions (resp. places and transitions) they are attached to. This mapping is built by the generate_cond_infos (resp. generate_action_infos and generate_fun_infos) function called in the body of generate_-sitpn_infos function.

At the beginning of the generate_sitpn_infos function, the check_wd_sitpn function partly checks the well-definition of the sitpn parameter. Precisely, it checks that the set of places and transitions of the sitpn parameter are not empty, and that the priority relation is a strict order, i.e. transitive and reflexive, over the set of transitions. The other parts of the well-definition checking are performed later during the transformation. For instance, the generate_place_infos function checks that, for each group of transitions in conflict, the conflicts are either solved by means of mutual exclusion or that the priority relation is a strict total order over this group. It also checks that there are no isolated places in the input sitpn parameter, etc. The HComponent type is an intermediate representation of an H-VHDL component instantiation statement. This type has been devised to ease the construction of PCIs and TCIs, and of their generic, input port and output port maps all along the transformation. The HComponent type is a triplet composed of a generic map as defined in the H-VHDL abstract syntax, an instance of the InputMap type, and an instance of the OutputMap type. The InputMap type maps an input port identifier to either a simple expression or to a list of expressions, where the expr type is the type of expressions defined in the H-VHDL abstract syntax. In an InputMap instance, an input port identifier of a scalar type (i.e. Boolean or constrained natural) is mapped to a simple expression, whereas an input port identifier of the array type is mapped to a list of expressions. Each expression of the list represents the actual part associated with one subelement of the input port. Similarly to the InputMap type, the OutputMap type maps an output port identifier to either an option to a signal (the None value representing the connection to the open keyword) name, or to a list of signal names. In the definition of the OutputMap type, the name type represents the type of simple identifiers or indexed identifiers defined in the H-VHDL abstract syntax.

The generate_architecture function

The Architecture record type is an intermediary representation of the behavioral and declarative part of an H-VHDL design's architecture. The sigs field of the Architecture type represents the internal signal declaration list constituting the declarative part of an H-VHDL design's architecture. The transformation adds a new signal declaration entry to the sigs field every time an internal signal must be generated, for example, during the generation of interconnections between PCIs and TCIs. The plmap (resp. the trmap) field maps the places (resp. transitions) of the sitpn parameter to their corresponding PCI (resp. TCI) implemented in an intermediate format, i.e. an instance of the HComponent type. The fmap field of the Architecture type maps the functions of the sitpn parameter to a list of expressions. For a given function f , the associated list of expressions corresponds to the list of internal signals associated with the fired port of the TCIs implementing the transitions of the trs(f) set (i.e. the set of transitions associated with function f). The fmap field is filled by the generate_ports function described in Listing 5.7. The amap field is the twin of the fmap field but on the side of the actions of the sitpn parameter. Thus, in the amap field, the list of expressions associated with an action a corresponds to the list of internal signals connected to the marked port of the PCIs implementing the places of a.

In the body of the generate_architecture function, the generate_place_map function implements the generate_PCIs procedure described in Algorithm 6. For each place of the sitpn parameter, the generate_place_map function builds an instance of the HComponent type, and adds an association between place and HComponent instance in the plmap field. The gen-erate_place_map function fills the generic, input port and output port map of the HComponent instances as described in the generate_PCIs procedure. Following the generate_place_map function, the generate_trans_map function implements the generate_TCIs procedure described in Algorithm 7. For each transition of the sitpn parameter, the generate_trans_map function builds an instance of the HComponent type, and adds an association between transition and HComponent instance in the trmap field. The generate_trans_map function fills the generic, input port and output port map of the HComponent instances as described in the gen-erate_TCIs procedure. Finally, the generate_interconnections function modifies the input and output port maps of the HComponent instances in the plmap and trmap fields, and thus, implements the interconnections described in the generate_interconnections procedure of Algorithm 10. For every action of the sitpn parameter, the generate_action_ports_and_ps function adds a port declaration entry to the oports field of the compile-time state, and adds a binding between action and output port identifier in the γ field. It also builds the action process as described in the generate_action_ports procedure, and adds the process to the beh field of the compile-time state. The generate_fun_ports_and_ps does the same for the functions of the sitpn parameter, and similarly builds the function process and adds it to the beh field. The generate_and_connect_cond_ports function add a port declaration entry for every condition of the sitpn parameter to the iports field of the compile-time state. Then, it modifies the input port map of HComponent instances in the trmap of the compile-time state's arch field. The modifications pertain to the connection of input ports to the ic input port of TCIs, as described in the generate_condition_ports procedure (see Algorithm 12).

The generate_ports function

The generate_comp_insts and generate_design_and_binder functions

At the end of the sitpn_to_hvhdl function (see Listing 5.1), the generate_comp_insts function transforms the HComponent instances, associated with places and transitions in the compiletime state's arch field, into real component instantiation statements as defined in the H-VHDL abstract syntax. Then, the generate_design_and_binder builds up the final H-VHDL design and the γ binder, and returns the couple. Listing 5.8 presents the generate_comp_insts function and the generate_design_and_binder function. The generate_comp_insts function is needed because we are using an intermediary representation for the component instantiation statements. Even though this representation is convenient to manipulate data during the different phases of the transformation, it also implies an extra generation step to complete the generation of the H-VHDL design and the γ binder. The generate_comp_insts function calls the generate_place_comp_insts and the generate_-trans_comp_insts functions. These two functions being similar in all points, except for the type of their inputs, we are only presenting the generate_place_comp_insts function here. The generate_place_comp_insts function calls the generate_place_comp_inst function for each place defined in the set of places of the sitpn parameter. Listing 5.9 presents the code the generate_place_comp_inst function. The generate_place_comp_inst function generates a fresh and unique PCI identifier by appealing to the get_nextid function. The get_nextid function returns and increments the current value of the nextid field, defined in the compile-time state. Then, the bind_place function adds a binding between the place p and the identifier id p in the γ field of the compiletime state. The get_pcomp function looks up the plmap field (defined under the arch field of the compile-time state) and returns the HComponent instance associated with the place p, i.e. pcomp. The HComponent_to_comp_inst function translates the HComponent instance pcomp into a PCI with the identifier id p . Finally, the add_cs function composes the returned PCI with the current H-VHDL design behavior, hold in the beh field of the compile-time state.

The transformation of a HComponent instance into a PCI implies the translation of the input and output port map, which are instances of the InputMap and OutputMap types, into their equivalent representation in H-VHDL abstract syntax. The translation especially concerns the association between a port identifier of the array type and a list of expressions, or names. For instance, let us consider an instance of InputMap that is an intermediary representation of the input port map of a PCI id p . In this InputMap instance, the itf port, which is a composite input port of the place design, is associated with the list [id a , id b , id c]. Then, based on the previous association, the HComponent_to_comp_inst function generates the following associations is the concrete input port map of PCI id p : (rt(0), id a), (rt(1), id b) and (rt(2), id c).

Getting back to Listing 5.8, the generate_design_and_binder function retrieves the current compile-time state s with the Get function. Then, based on the value of the different fields of the compile-time state, the function builds an H-VHDL design and returns it along with the γ binder. The H-VHDL design receives the id e and id a identifiers, passed as inputs, as the design's entity and architecture identifiers. The generic constant declaration list of the H-VHDL design is empty, i.e. it receives the empty list value. The port declaration list of the H-VHDL design is built by concatenating the content of the iports and oports fields defined in state s. The internal signal declaration list is filled by the sigs field, defined under the arch field of state s. Finally, the beh field receives the behavior of the H-VHDL design.

Conclusion

The purpose of this chapter was to give to the reader a complete understanding of the HILECOP model-to-text transformation function, and of what makes it a very specific transformation case. We first gave an informal presentation of the transformation function with a high-level view of the transformation principles. Then, we presented our literature review pertaining to transformation functions in the context of formal verification, with a particular focus on the expression and the implementation of transformation functions. Two points, drawn out from the literature review, are of particular interest. First, the review showed that it is important, during a transformation, to keep the binding between the elements of the source representation and their corresponding versions in the target representation. This binding is the base of the comparison of the run-time state of the source and target representation that permits to express the theorem of semantic preservation. Second, if the distance between the source and the target representation is too important, it is easier, while aiming at proving a semantic preservation property, to split the transformation into multiple simple transformation steps. Then, to each transformation step will correspond an intermediary representation, and a theorem of semantic preservation will be laid out and proved for each one of them. In the case of the HILECOP model-to-text transformation, even though the transformation has a lot of tricky aspects pertaining to particular cases of input models, there is no need to split the transformation into simple steps with intermediary representations. Even though the verification task is quite close, the HILECOP transformation is quite different from the certified GPL or the HDL compilers presented in the literature review. Indeed, the source representation is an input model not a programming language. Moreover, due to the interconnection of the component instances generated by the transformation function, devising a transformation algorithm that generates modular and independently executable code is impossible. As everything is connected, one has to reason over the entire transformation process to get the overall behavior of the generated H-VHDL design. This is also one of the main difference between the HILECOP transformation and compilers for programming languages. Despite all that, the transformation algorithm, presented in this chapter, gets as close as possible to a modular expression of the HILECOP transformation.

Chapter 6

Proving semantic preservation in HILECOP

In this chapter, we present our semantic preservation theorem along with its informal "paper" proof. The written proof is about a hundred-page long. Therefore, we will only present here the "high-level" theorems and lemmas involved in the demonstration, and some points of our proof strategy. The full proof is available to the reader in Appendix D. The structure of this chapter is as follows: in Section 6.1, we present our review of the literature related to the proof of semantic preservation theorems for transformation functions; in Section 6.2, we detail our state similarity relation, i.e. the semantic relation between an SITPN and its H-VHDL translation; in Section 6.3, we draw out our behavior preservation theorem; in Section 6.4, we detail a particular point of the proof related to the SITPN firing process, and leverage the opportunity to demonstrate some recurring points of our proof process; also, we show how this point of the proof has led to a bug detection in the code of the H-VHDL transition design; in Section 6.5, we present some points of the mechanization of the proof with the Coq proof assistant.

Proofs of semantic preservation in the literature

In this section, we present a review of the literature about the verification of transformation functions. A transformation function is understood here as any kind of mapping from a source representation to a target representation, where the source and target representations have a behavior of their own (i.e. they are executable). Here, we will focus on verification techniques based on the proof of semantic preservation theorems, with extra interest when the proofs are mechanized within the framework of a proof assistant. We are interested in how to prove that transformation functions are semantic preserving. Especially, we are interested in the expression of semantic preservation theorems and in seeking usual proof strategies, or patterns. By proof strategy, or proof pattern, we mean the description of the way to perform a proof. For instance, if the authors use induction to prove their theorem of semantic preservation, the choice of the element on which the induction will be performed is part of the proof strategy.

The goal is to draw our inspiration from the literature and to see how far the correspondence holds between our specific case of transformation, and other cases of transformations. The Chapter 6. Proving semantic preservation in HILECOP material used for the literature review is divided into three categories. Each category covers a specific case of transformation function; the three categories are:

-Compilers for generic programming languages -Compilers for hardware description languages -Model-to-model and model-to-text transformations In [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF], X.Leroy presents the two points of major importance to express semantic preservation theorems for GPL (Generic Programming Language) compilers, and more generally to get the meaning of semantic preservation.

The first point is to clearly state how things are compared between the source and the target programs. It is to describe the runtime state of the source and the target and draw a correspondence between the two. This is expressed through a state comparison relation.

The second point is to relate the execution of the source program to the execution of the target program through a simulation diagram, equivalently named bisimulation or commuting diagram. Figure 6.1, excerpt from [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF], shows the different kinds of simulation diagrams possibly relating two programs together. Choosing an adequate simulation diagram to express a semantic preservation theorem depends on the kind of possible behaviors that a given program can exhibit. In the case of GPL programs, X.Leroy lists three kinds of possible behaviors: either the program execution succeeds and returns a value, or the program execution fails and returns an error, or the program execution diverges. In the case where the source program execution succeeds, a theorem of semantic preservation takes the general form of Definition 36.

Definition 36 (General behavior preservation theorem). Consider a source programming language L 1 and a target programming language L 2 , and a source program Compiler verification aims at proving the kind of theorem stated above. Now that we have clarified the meaning of semantic preservation for GPL compilers, we state that this definition of semantic preservation holds also for a more general case of transformation from a source representation to a target representation. The only condition to be able to verify that a transformation is semantic preserving is that the source and target representations must have an execution semantics (i.e, the instances of the source and target representations must be executable).

P 1 ∈ L 1 compiled into a target program P 2 ∈ L 2 by compiler comp ∈ L 1 → L 2 .
For each article used in the literature review and presenting a specific case of transformation, the following questions have been asked:

-What are the similarities/differences between source and target representations? May they be programs of GPLs, or models of a given model formalism.

-How is defined the runtime state for the source and target representations?

-How is expressed the state comparison relation?

-How is expressed the semantic preservation theorem?

-What is the employed proof strategy?

Compilers for generic programming languages

Taking the CompCert compiler as an example, the compilation pass from Clight programs to Cminor programs is described in [START_REF] Blazy | Formal Verification of a C Compiler Front-End[END_REF][START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]. Clight is a subset of the C language, and Cminor is a low-level imperative language. The two languages are endowed with both a big-step and small-step operational semantics. Here, the execution state of the source and target languages are memory models for the most part, but are also completed with representations of global variable storage, registers, etc. The memory model consists of block references; each block has a lower and an upper bound. To access data, one has to specify the block reference along with the size of the accessed data (i.e, the data type) and the offset from the start of the block reference (i.e, where to begin the data reading). Regarding the proof of semantic preservation, the most difficult point is to relate the memory state of the source program to the memory state of the target program. To do so, the authors define a memory injection relation, which binds the values of source and target together. They also establish a relation to compare execution environments, i.e, the environments holding the declaration of functions, global variables. . . The proof of semantic preservation is built incrementally. First, the authors prove a correctness lemma for the Clight expressions: if a Clight expression a evaluates to value v, then the translated Cminor expression a evaluates to value v (the Clight and Cminor languages have the same set of values). Then, they prove a similar lemma for Clight statements, and finally for the entire Clight program. The proof strategy is to reason by induction over the evaluation relation of the Clight programs and perform case analysis on the translation function.

The pattern to compiler verification for GPLs is more or less the same as presented above. In the case of compilers for imperative languages [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF][START_REF] Strecker | Formal Verification of a Java Compiler in Isabelle[END_REF], or compilers for functional languages [START_REF] Chlipala | A Verified Compiler for an Impure Functional Language[END_REF][START_REF] Kiam | A New Verified Compiler Backend for CakeML[END_REF], compiler verification proceeds as follows:

1. Establish a relationship between the memory models of the source and target languages, and between the global execution environments.

2. Prove correctness lemmas starting from simple constructs, and building up incrementally to consider entire programs.

3. Reason by induction over the evaluation relation of the source language, and the translation function.

Relating memory models is more difficult when the gap between the source and target languages is important (for instance, the translation of Cminor programs into RTL (Register Transfer Language, which is close to assembly languages) programs in [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF]). As a consequence, the complexity of the memory model comparison relation increases.

Compilers for hardware description languages

In the case of HDL (Hardware Description Language) compilers, proving semantic preservation is very similar to the case of GPL compilers. Of course, the difference lies in the semantics of HDL languages and the description of execution states. The semantics of HDLs is intrinsically related to the notion of execution over time, or over multiple clock cycles; we are dealing with reactive systems. Therefore, the semantic preservation theorems are formulated w.r.t. the synchronous or the time-related semantics of the considered languages.

In [START_REF] Bourgeat | The Essence of Bluespec: A Core Language for Rule-Based Hardware Design[END_REF][START_REF] Braibant | Formal Verification of Hardware Synthesis[END_REF], the source language is a subset of the BlueSpec specification language for hardware synthesis, and the target language is an RTL representation of the circuit. The runtime state of the source and target programs are basically a mapping between registers to values. In [START_REF] Bourgeat | The Essence of Bluespec: A Core Language for Rule-Based Hardware Design[END_REF], the execution state also holds a log of the read and write operations of the input program, and this log is compared to the log of the RTL representation. The semantic preservation theorem takes the general form of Definition 36, however, the final states refer to the states of source and target programs at the end of a clock cycle. Thus, the semantic preservation theorem states that starting from equal register stores after the execution of a source program and its RTL (Register Transfer Level1) circuit after one clock cycle leads to equal register stores.

In [START_REF] Bourke | A formally verified compiler for Lustre[END_REF], the source language is a subset of Lustre and the target language is an imperative language called Obc. A Lustre program is composed of nodes; each node treats a set of input streams and publishes output streams after the computation of its statement body. In its statement body, a Lustre node possibly refers to instances of other nodes. In the compilation process, each Lustre node is translated into an Obc class. An Obc class holds a vector of variables composing its internal memory and a vector of other Obc class instances. The authors define a data flow semantics for the Lustre language; the rule instances of the semantics describe how output streams are computed based on input streams. On the side of the Obc language, the semantics define a function step that computes the execution of the Obc classes over one clock cycle. To prove the semantic preservation theorem, the state comparison relation binds the values of input and output streams on one side to the values of variables and Obc class instances on the other side. The semantic preservation theorem is as follows: if a Lustre node yields the output stream o from an input stream i, then the iterative execution of the step function for the corresponding Obc class incrementally builds the output stream o given the values of the input stream i. The proof is done by induction over the clock step count, and by induction over the evaluation relation for the Lustre statements composing the body of nodes.

In [START_REF] Lööw | Lutsig: A Verified Verilog Compiler for Verified Circuit Development[END_REF], the HDL compiler translates Verilog modules into netlists. The execution state of Verilog module holds the value of the variables declared in the module. The execution state of a netlist circuit holds the value of the registers declared in the circuit. Therefore, the state comparison relation, used to state the semantic preservation theorem, binds the values of variables on one side to the values of registers on the other side. The semantics of Verilog is quite similar to the one of VHDL; a set of processes composing a module are executed w.r.t. the simulation semantics of the language, i.e, composed of synchronous and combinational execution steps. The authors give a big-step operational semantics to netlists by defining an interpreter that runs a netlist over n clock cycles. The semantic preservation theorem is as follows: Assuming that a module is transformed into a circuit, and that some well-formation hypotheses hold on the module, if the module executes without error, and yields a final state venv, then there exists a final state cenv yielded by the execution of the circuit over n clock cycles s.t. venv and cenv are similar according to the relation verilog_netlist_rel. Here, the verilog_netlist_rel is the state comparison relation, which relates variables to registers.

In [START_REF] Yang | Towards a Verified Compiler Prototype for the Synchronous Language SIGNAL[END_REF], the compiler transforms programs of the synchronous language SIGNAL into Synchronous Clock Guarded Actions programs (S-CGA programs). A SIGNAL program describes a set of processes; each process holds a set of equations describing the relation between signals. The equations can be synchronous equations (referring to a clock) or combinational ones. An S-CGA program defines a set of actions to be applied to some variables when some conditions (the guards) are met. The SIGNAL (resp. the S-CGA) language has been endowed with a trace semantics describing the computation of signal values (resp. variable values) over time. The authors describe a function to translate the traces of SIGNAL and S-CGA programs into a common trace model. Thus, the semantic preservation theorem is stated by comparing two traces of execution defined through the same model. The proof of the semantic preservation theorem is built incrementally. For each statement of a SIGNAL process, the authors exhibit a lemma proving that the trace resulting from the execution of the statement is equivalent to the trace resulting of the execution of the corresponding guarded actions (obtained through the compilation). The proof is fully mechanized within the Coq proof assistant.

In [START_REF] Habibi | Design and Verification of SystemC Transaction-Level Models[END_REF], the authors verify a methodology to design hardware models with SystemC models. SystemC models describe hardware systems with modules; a module is a C++ class with ports, data members and methods. The methodology describes a transformation from Sys-temC models to Abstract State Machine (ASM) thus enabling to model-check the hardware models. ASMs are described in the language AsmL; in AsmL, an ASM is implemented by a class with data members and methods. A denotational (fixpoint) semantics for SystemC models is defined along with a denotational semantics for AsmL. The semantics is another variant of simulation cycle, similar to all other synchronous languages. There are two phases: evaluate and update and the gap between the two is called a delta-delay. The execution state of a SystemC model is divided into a signal store, mapping signal to value, and a variable store, mapping variable to value. The execution state of an AsmL class is only composed of a variable store. The theorem of semantic preservation states that, after translation, a SystemC model has the same observational behavior than its corresponding AsmL class. What is compared between a SystemC model and its corresponding AsmL class through their observational behavior is the activity of the processes of the first one and the activity of the methods of the second one. Processes and methods must be active at the same delta cycles. Therefore, what is compared here are not the values that the execution states hold, but rather the activity of the source and target programs.

Model transformations

Regarding model transformations, a lot of articles consider semantic preservation as the preservation of structural properties in the transformed model [START_REF] Berramla | Formal Validation of Model Transformation with Coq Proof Assistant[END_REF][START_REF] Calegari | A Type-Theoretic Framework for Certified Model Transformations[END_REF][START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF].

Still, there are many cases where the source model and the target one have both an execution semantics. In these cases, the authors are interested in proving that the transformation is semantic preserving by showing that the computation of the source model and the target model follow a commuting diagram (see Figure 6.1).

In [START_REF] Combemale | Essay on Semantics Definition in MDE. An Instrumented Approach for Model Verification[END_REF] and [START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF], the authors are interested in giving a translational semantics to a given model having itself a reference execution semantics. In [START_REF] Combemale | Essay on Semantics Definition in MDE. An Instrumented Approach for Model Verification[END_REF], the source models are called xSpem models; they describe a set of activities that exchange resources and hold an internal state. The target models are PNs. Both xSpem models and PNs have a state transition semantics. The state comparison is performed by checking the correspondence between each current status of the activities describe in an xSpem model and the marking of the PN. Then, the authors prove a bisimulation theorem, illustrated in Figure 6.2.

Discussions on transformations and proof strategies

In this thesis, we are interested in the verification of a semantic preservation property for a given transformation function. To achieve this kind of proof task, the way to proceed is quite similar, at least in the three cases of transformation presented above (i.e, GPL compilation, HDL compilation, and model transformations). Even though the source and target languages or models are different from one case of transformation to the other, however, semantic preservation theorems carry the same structure, i.e. the one presented in Definition 36. The state comparison relation and the choice of the commuting diagram (i.e. how much computational steps of the target representation correspond to one computational step of the source representation) are the two angular stones of the process.

One can notice that when verifying the transformation of HDL programs, the semantic preservation theorems are expressed in terms of a time-related computational step. It can either be a clock cycle or another kind of time step. The state equivalence checking is made at the end of this time-related computational step. This differs from the expression of behavior preservation theorems for GPLs, where a computational step is not related to time, but rather expresses the one-time computation of programs.

Concerning proof strategies, in the case of programming languages, proving the semantic preservation theorems is systematically done by induction over the semantics relations of the source and target languages, and by reasoning on the translation function. The semantics relations are themselves defined by following the inductive structure of the language ASTs. In the case of model transformations, when the source model makes it possible, the proofs are performed similarly by applying inductive reasoning over the structure of the input model. This enables compositional reasoning, i.e: to split the difficulty of proving the semantic preservation theorem into simpler lemmas about the execution of simpler programs or simple model structures. Based on these observations, we will now present the relation that allows us to compare the runtime state of a given SITPN model with the runtime state of an H-VHDL design. This state similarity relation will then permit us to express our semantic preservation theorem.

The state similarity relation

Before presenting our behavior preservation theorem, we must clarify the meaning of semantic preservation between an SITPN and an H-VHDL design. To do so, we must define:

1. What does semantic similarity mean between an SITPN state and a H-VHDL state? 2. When, in the course of the execution of an SITPN and an H-VHDL design, must this semantic similarity hold?

We must relate the elements that constitute the execution state of an SITPN to the elements that constitute the execution state of a H-VHDL design. An SITPN state is an abstract structure relating the places, transitions, actions, functions and conditions of a given SITPN to the values of certain domains (see Section 3.2.2). An H-VHDL design state is composed of a signal store mapping signals to values, and of a component store mapping component instances to their own internal states (which are themselves design states). Thanks to the binder function γ (cf. Definition 35) generated alongside the transformation from an SITPN to an H-VHDL design, we are able to relate the elements of the SITPN state structure to the component instance states and signal values of the H-VHDL design state. The γ binder generated by the transformation is a bijective function. Thus, the state similarity relation, depending on a γ binder and expressing a semantic match between an SITPN state and an H-VHDL design, is defined as follows: 5. ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s.ex(a) = σ(id a).

6. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).
In Property 1, based on the γ binder, we relate the marking value of a place p at state s to the value of the s_marking signal inside the internal state of the place component instance (PCI) id p . The expression σ(id p) returns the internal state of PCI id p by looking up the component store of state σ. Properties 2 and 3 similarly relate the value of time counters (resp. reset orders) of transitions to the value of the signals s_time_counter (resp. s_reinit_time_counter) in the internal state of the corresponding transition component instances (TCIs). In item 4 (resp. 5 and 6), the boolean value of conditions (resp. actions and functions) are compared to the value of input (resp. output) ports of the H-VHDL design, also based on the γ binder.

As one can observe in Property 2, the relation between the value of a time counter and the value of the s_time_counter signal is particular. It is due to the definition domain of time intervals. In the definition of the SITPN structure, a time interval i is defined as follows: i = [a, b] where a ∈ N * and b ∈ N * {∞}. In the SITPN semantics, depending on certain conditions, a time counter possibly increments its value until it reaches the upper bound of the associated time interval. Therefore, a time counter associated to a time interval with an infinite upper bound will possibly increment its value indefinitely. While acceptable in the theoretical world, this is not acceptable is the world of hardware circuits where all dimensions and values are finite. On the H-VHDL side, the signal s_time_counter, which value represents the value of a time counter, will stop its incrementation to the lower bound of the time interval in the case where the upper bound is infinite. As long as the value of the time counter is less than or equal to the lower bound of the time interval, we look for a perfect equality between the value of the time counter and the value of the s_time_counter signal. When the time counter reaches the lower bound, the values possibly diverge (i.e, the time counter value continues to be incremented while the value of the s_time_counter signal stalls). In that case, we are only interested in knowing that the value of the s_time_counter signal is equal to the value of the lower bound of the time interval. The two last subformulas of Property 2 are necessary to cover the case where a time counter has overreached the upper bound of its time interval. In that case, the time counter becomes locked. The s_time_counter signal can not overreach the upper bound of the time interval without causing an overflow. Thus, the value of the s_time_counter signal diverges from the value of its corresponding time counter when the time counter overreaches the upper bound of its time interval. While the time counter is less than or equal to the upper bound of its time interval, we look for a perfect equality between the value of the time counter and the value of the s_time_counter signal. When the time counter overreaches the upper bound, the value of the time counter stalls to upper bound plus one, and the value of s_time_counter stalls to upper bound. In that case, we are only interested in knowing that the value of the s_time_counter signal is equal to the value of the upper bound of the time interval.

The second question that we asked above was: when must the state similarity relation hold in the course of the execution? The source and target representations are both synchronously executed. Thus, we find it natural to check that the state similarity relation holds at the end of a clock cycle. However, due to modifications resulting after a bug detection (see Section 6.4), the state similarity relation of Definition 6.2 does not hold at the end of a clock cycle. The equality between the value of reset orders and the value of the s_reinit_time_counter signals (Property 3) is not verified. However, this semantic divergence is without effect. New reset orders are computed at the beginning of a clock cycle such that the relation of Property 3 holds in the middle of the clock cycle (i.e, just before the falling edge of the clock). This is the only moment during the clock cycle where the s_reinit_time_counter signal is actually involved in the computation of other signals value. Thus, it is sufficient that Property 3 holds only in the middle of the clock cycle. However, we must now define two state similarity relation; one that checks the semantic similarity after the rising edge of the clock signal (i.e, in the middle of the clock cycle), and one that checks the semantic similarity after the falling edge of the clock signal (i.e, at the end of the clock cycle). The state similarity relation after a rising edge is defined as follows: = id a , s.ex(a) = σ(id a).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).
Definition 38 is similar to Definition 37 in all points, except for the value of conditions. A condition of an SITPN is implemented by an input port in the resulting H-VHDL top-level design. In the H-VHDL semantics, the value of primary input ports (i.e, the input ports of the top-level design) are updated at each clock edge. In the SITPN semantics, the value of conditions are updated only at the falling edge of the clock. Consider that a given SITPN is executed at clock cycle τ; after the rising edge of the clock, the value of conditions are equal to their value at clock cycle τ -1, whereas the value primary input ports have been updated to fresh values. Thus, we will have to wait for the next falling edge to reach the equality between condition values and input port values. Therefore, there is a semantic divergence between the value of conditions and the value of input ports in the middle of the clock cycle, i.e. just before the next falling edge of the clock signal. However, similarly to the case of reset orders and s_reinit_time_counter signals, conditions and their corresponding input ports are only involved in computations at the falling edge of the clock cycle. Thus, it is sufficient that Property 4 holds only right after the falling of the clock signal.

The state similarity relation draws out a correspondence between the values hold by an SITPN state and the values of the signals declared in an H-VHDL design state. However, to complete the proof of semantic preservation, we sometimes have to relate the value of signals to the value of expressions or predicates involved in the SITPN semantics. For instance, consider a given SITPN state s and a given H-VHDL design state σ, and consider a transition t and its corresponding TCI id t . It is useful to show that, after a rising edge, the value of signal s_enabled at state σ(id t), where σ(id t) denotes the internal state of component instance id t at state σ, is equal to the predicate t ∈ Sens(s.M) stating that the transition t is sensitized (or enabled) by the marking at state s (i.e, s.M). Thus, for the convenience of the proof, we enrich our definitions of the state similarity relations with formulas relating H-VHDL signals to SITPN semantics predicates and expressions. Consequently, the full post rising edge state similarity relation is defined as follows:

= id t , σ(id t)(s_condition_combination) = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 where conds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}. 4. ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , σ(id c) = E c (τ, c).
Definition 39 extends Definition 38 with the correspondence of the sensitization of transitions and the value of signal s_enabled, and the computation of the boolean product of condition values and the value of signal s_condition_combination. The last item of Definition 39 relates the value of the input port identifiers to the value of conditions yielded by the environment at the clock cycle τ. In the H-VHDL simulation cycle, the input ports receive new values from the environment at the beginning of the clock cycle, whereas, in the SITPN semantics, the value of conditions are updated at the falling edge of the clock signal (i.e. in the middle of the clock cycle). The last item of Definition 39 is a way to register the value of input port identifiers at the end of a rising edge phase. This information will then allow us to prove the equality of value between the input port identifiers and their corresponding conditions at the occurrence of the next falling edge. Now, let us define the state similarity relation describing how an SITPN state and an H-VHDL design state must be compared, after the falling edge of a clock signal: Definition 40 (Post falling edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are similar after a falling edge, written

γ s ↓ ∼ σ, if 1. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s.M(p) = σ(id p)(s_marking). 2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s.I(t) ≤ l(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s.I(t) > l(I s (t)) ⇒ σ(id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) > u(I s (t)) ⇒ σ(id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) ≤ u(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) . 3. ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , s.cond(c) = σ(id c).
4. ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s.ex(a) = σ(id a).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).
As explained above, Definition 40 is similar to Definition 37 except for the equality between reset orders and the value of the s_reinit_time_counter signals. The extended version of the -The firability of transitions and the value of the signal s_firable.

-The firing status of transitions (i.e, transitions are fired or not) and the value of the output port fired.

-The sum of tokens consumed by the firing process and the value of the signal s_output_-token_sum.

-The sum of tokens produced by the firing process and the value of the signal s_input_-token_sum.

Behavior preservation theorem

In this section, we describe the major theorems and lemmas stating that the HILECOP transformation function is semantic preserving. We also present the informal proofs for these theorems and lemmas. In our proofs, we often refer to theorems and lemmas that are not yet presented at the moment of the reading. Therefore, we provide, in Appendix C, a graph of the dependencies between our high-level theorems and the other theorems and lemmas to which they appeal in their proof.

Proof notations

To add some readability to our proofs, we use the following notations:

- ∀n ∈ N, n + 1 > 0 -The mention CASE directly follows an item bullet to denote a case during a proof by case analysis.

During a proof, we constantly refer to the names of the constants and signals declared in the H-VHDL place and transition designs. Some constants and signals have very long names, and therefore we use aliases to refer to them in the following proofs. Table D.1 gives the full correspondence between constant and signal names and their aliases. Also, during a proof and when there is no ambiguity, id p (resp. id t) denotes the PCI (resp. TCI) identifier associated to a given place p (resp. transition t) through γ(p) = id p (resp. γ(t) = id t), where γ is the binder returned by the transformation function. Similarly, id c (resp. id a and id f) denotes the input port (resp. output port and output port) identifier associated to a given condition c (resp. action a and function f) through γ(c) = id c .

Preliminary definitions

We define here some relations that are necessary to formalize our theorem of behavior preservation.

In an SITPN, the conditions associated to transitions receive fresh Boolean values from an execution environment at each falling edge of the clock. During the simulation of a top-level design, the input ports of the design receive fresh values from a simulation environment at each clock event. The transformation function generates an input port in the top-level design that will reproduce the behavior of a given SITPN condition. The binder γ, generated alongside the top-level design, relates a given condition c to its corresponding input port identifier id c . To compare the execution/simulation traces of an SITPN and a H-VHDL design, we must assume that the execution/simulation environments assign similar values to conditions and to their corresponding input ports at a given clock cycle. Definition 42 states that the execution environment for a given SITPN and the simulation environment for a given H-VHDL design are similar.

Definition 42 (Similar environments). For a given sitpn ∈ SITPN, a H-VHDL design d ∈ design, a design store D ∈ entity-id design, an elaborated version ∆ ∈ ElDesign of design d, and a binder γ ∈ W M(sitpn, d), the environment E p ∈ N → Ins(∆) → value, that 6.3. Behavior preservation theorem 205 yields the value of the primary input ports of ∆ at a given simulation cycle, and the environment E c , that yields the value of conditions of sitpn at a given execution cycle, are similar, written

γ E p env = E c , if for all τ ∈ N, c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , E p (τ)(id c) = E c (τ)(c).
To prove that the behavior of an SITPN and a H-VHDL design are similar, we want to compare the states composing their execution/simulation traces. As a reminder, an execution/simulation trace is a time-ordered list of states describing the evolution of a given SITPN or H-VHDL design through a certain number of clock cycles. The relation presented in Definition 43 allows us to compare such traces.

Definition 43 (Execution trace similarity). For a given sitpn ∈ SITPN, a H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), the execution trace θ s ∈ list(S(sitpn)) and the simulation trace θ σ ∈ list(Σ) are similar if γ θ s clk ∼ θ σ (where clk ∈ {↑, ↓}) is derivable according to the following rules:

SIMTRACENIL clk ∈ {↑, ↓} γ [] clk ∼ [] SIMTRACE↑ γ s ↑ ∼ σ γ θ s ↓ ∼ θ σ γ (s :: θ s) ↑ ∼ (σ :: θ σ) SIMTRACE↓ γ s ↓ ∼ σ γ θ s ↑ ∼ θ σ γ (s :: θ s) ↓ ∼ (σ :: θ σ)
In Definition 43, the clock event symbol on top of the ∼ sign indicates the kind of clock event that led to the production of the states at the head of the traces. The execution trace similarity relation expects that the states composing the traces have been alternatively produced by a rising edge step and then by a falling edge step. By construction, the traces must have the same length to respect the execution trace similarity relation.

To handle the case of an execution/simulation trace beginning by an initial state, that is, a state neither reached after a rising nor after a falling edge, we give a slightly different definition of the execution trace similarity relation in Definition 44.

Definition 44 (Full execution trace similarity). For a given sitpn ∈ SITPN, a H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign(d, D H), and a binder γ ∈ W M(sitpn, d), the execution trace θ s ∈ list(S(sitpn)) and the simulation trace θ σ ∈ list(Σ) are fully similar, written γ θ s ∼ θ σ , according to the following rules:

FULLSIMTRACENIL γ [] ∼ [] FULLSIMTRACECONS γ s ∼ σ γ θ s ↑ ∼ θ σ γ (s :: θ s) ∼ (σ :: θ σ)
The full execution trace similarity relation indicates that the head states of traces must verify the general state similarity relation, and that the tail of the traces must respect the execution state similarity relation starting with a rising edge step.

The behavior preservation theorem

Theorem 1 expresses our behavior preservation theorem. Theorem 1 states that the HILECOP transformation function is semantic preserving when the input model is a well-defined (see Definition 28) and bounded (see Definition 29) SITPN. As a complementary task, we could show that if the transformation function returns a couple H-VHDL design and binder, and not an error, then the input SITPN is well-defined. To prove Theorem 1, we must first exhibit an elaborated version of the returned H-VHDL design (Theorem 2), an initial state (Theorem 3), and a simulation trace over τ simulation cycles (Theorem 4). Finally, we can establish that the behaviors are similar by comparing the respective SITPN execution and H-VHDL design simulation traces (Theorem 5). In this thesis, we are focusing on the proof that the execution/simulation traces are similar when they are produced by the SITPN execution relation and the H-VHDL simulation relation over τ clock cycles. This corresponds to the proof of Theorem 5. For the moment, we choose to consider Theorems 2, 3 and 4 as axioms. To prove the goal, let us use σ e , σ 0 ∈ Σ previously introduced by the invocation of Theorems 2, 3 and 4. Then, the three first points of the goal are previously assumed hypotheses. Finally, appealing to Theorem 5, we can prove final point of the theorem, i.e. θ s ∼ θ σ .

(D H , ∆, ∅, E p , τ d f ull --→ θ σ) ∧ θ s ∼ θ σ
The behavior preservation theorem is a case of simulation theorem. It states that if an execution trace is computed on the SITPN side, then there exists an simulation trace on the H-VHDL side and that both traces are similar. To express a bisimulation theorem, the other way around 208 Chapter 6. Proving semantic preservation in HILECOP must also be true, i.e. if a simulation trace is computed on the H-VHDL side, then an execution trace exists on the SITPN side, and both traces are similar.

Theorem 2 states that every H-VHDL design returned by the HILECOP transformation function can be elaborated. The elaboration relation verifies that a given H-VHDL design is welltyped and well-formed w.r.t. to the VHDL language standards, and builds an elaborated version of the H-VHDL design that will act as a simulation environment. Thus, Theorem 2 states that the HILECOP transformation function produces acceptable code, for instance, code that could be the input to a simulator program. Theorem 4 states that one can always build a simulation trace over τ clock cycles for every H-VHDL design returned by the HILECOP transformation function. This means that the simulation of an H-VHDL design never fails when it is the result of the transformation of a well-defined SITPN. Remark 9 (Bounded SITPN and behavior preservation). A part of the analysis is interested in determining the maximal number of tokens that a place can hold during the execution of a SITPN. If each place of the SITPN can only hold a limited number of tokens during the execution of the model, then the model is said to be bounded. In that case, it is possible to compute a function that associates the places of the SITPN with a maximal marking value. In the case of an unbounded input model, there exists a place that can accumulate an infinite number of tokens during the model execution. In the world of hardware description, and especially when aiming at hardware synthesis, every element must have a finite dimension. In the definition of the place design, the internal signal s_marking represents the marking value of a place. The maximal value of the s_marking signal is bounded by the generic constant maximal_marking. Thus, when generating a PCI from a place in the course of the transformation, we must give a value to the maximal_marking generic constant. However, even with a settled maximal_marking value, the execution of a H-VHDL design, resulting from the transformation of an unbounded SITPN model, infallibly leads to the overflow of the value of the s_marking signals in the internal states of PCIs. Consider an unbounded place p and its corresponding PCI id p . There exist a clock cycle count τ for which the value of the s_marking internal signal (which reflects the marking of place p) of PCI id p overreaches the maximal_marking value, thus causing an overflow. In that case, because of the overflow, the next design state (i.e. at clock count τ + 1) can never be derived. Thus, passed the clock cycle count τ, the simulation of the H-VHDL design ends, the execution of the corresponding unbounded SITPN model continues, and we are no more able to prove the equivalence between the two behaviors.

The trace similarity theorem

Here, we present the trace similarity theorem. The trace similarity theorem states that if an SITPN and its corresponding H-VHDL design are executed/simulated over τ execution/simulation cycles, then the produced traces are semantically similar, i.e. they verify the full execution trace similarity relation of Definition 44. In this thesis, we have proved this particular theorem. The proofs of Theorems 2, 3 and 4 have been left for future work. We chose to focus our work on the trace similarity theorem, because it directly addresses the semantic preservation property of HILECOP's transformation function.

In the proof of Theorem 5, in the case where τ > 0, we must show that the state similarity relation holds between the states produced by the first execution cycle, and then use Lemma 1 (p. 213) to complete the proof of similarity between the tail traces. First, we must show that the initial states of both SITPN and H-VHDL design verify the general state similarity relation (Definition 37); this is done by appealing to Lemma 5 (p. 266). The first execution cycle is particular because, by definition of the SITPN full execution relation, no transitions are fired during the first rising edge. Therefore, after the first rising edge, the SITPN state is still equal to its initial state s 0 . We prove that the post rising edge similarity relation is verified after the first rising edge by appealing to Lemma 15 (p. 276). The detailed proofs for Lemmas 5 and 15 are given in Sections D.1 and D.2.

P → N, d ∈ design, γ ∈ W M(sitpn, d), τ ∈ N, E c ∈ N → C → B, θ s ∈ list(S(sitpn)), ∆ ∈ ElDesign, E p ∈ N → Ins(∆) → value, θ σ ∈ list(Σ) such that -sitpn b = (d, γ) -γ E p env = E c -E c , τ sitpn f ull --→ θ s -D H , ∆, ∅, E p , τ d f ull --→ θ σ then γ θ s ∼ θ σ Proof.
Assuming the above hypotheses, let us show γ θ s ∼ θ σ [START_REF]The B-Method[END_REF]. Let us perform case analysis on the given clock count τ; there are two cases:

-CASE τ = 0. By definition of the SITPN full execution and the H-VHDL full simulation relations, we have: - Now, let us present Lemma 2 and Lemma 3, along with their proofs. In the two lemmas, we added an hypothesis, which can always be verified at the beginning of a clock cycle, about comb --→ σ. This hypothesis states that all signal values are stable at the beginning of the considered clock phase. This means that the execution of the combinational part of the H-VHDL design does not change the value of signals anymore. This hypothesis is required to determine the expression associated to combinational signals, i.e. the combinational equations, at the beginning of the clock phase (see Section 6. 4 for more details about combinational equations).

-E c ,
-E c , τ + 1 s ↑ -→ s and E c , τ + 1 s ↓ -→ s and E c , τ sitpn, s → θ. -Inject(σ, E p , τ + 1, σ i) -∆, σ i d.cs ↑ -→ σ ↑ and ∆, σ ↑ d.cs -→ σ -∆, σ d.cs ↓ -→ σ ↓ and ∆, σ ↓ d.cs -→ σ -E p , ∆,
To prove Lemmas 2 and 3, one must prove that every point of the state similarity relation in the conclusion holds. For each point, the proof is given as a separate lemma that the reader will find in Appendix D. The proof strategy to show the equalities or equivalences involved in the state similarity relation follows the same two-fold pattern:

-First, reason on the SITPN structure and on the transformation function to determine the content of the target H-VHDL design.

-Then, reason on the SITPN state transition relation and the H-VHDL "simulation" relations (i.e, the Inject, ↑, ↓ and relations) to establish the equality between the values coming from the SITPN world (i.e, marking, time counters, reset orders, etc. and also predicates) and the values of the signals declared in the H-VHDL design and in its internal component instances.

The application of this proof strategy will be detailed in Section 6.

≈ σ -E c , τ s ↑ s -Inject(σ, E p , τ, σ i) and D H , ∆, σ i d.cs ↑ -→ σ ↑ and D H , ∆, σ ↑ d.cs -→ σ -State σ is a stable design state: D H , ∆, σ d.cs comb --→ σ then γ, E c , τ s ↑ ≈ σ .

Proof.

By definition of the Full post rising edge state similarity relation, there are 9 points to prove:

1. ∀p ∈ P, id p ∈ Comps(∆) s .t. γ(p) = id p , s .M(p) = σ (id p)(s_marking). -Apply the Rising edge equal sensitized lemma (p. 301) to solve Point 6.

E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 where conds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}. 9. ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , σ (id c) = E c (τ, c).
-Apply the Rising edge equal not sensitized lemma (p. 305) to solve Point 7.

-Apply the Rising edge equal condition combination lemma (p. 286) to solve Point 8.

Behavior preservation theorem

217

-Apply the Rising edge equal conditions lemma (p. 288) to solve Point 9.

All the lemmas used above, and their corresponding proofs, are to be found in Appendix D, Section D.3.

Lemma 3 (Falling edge). For all sitpn

∈ SITPN, b ∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), E c ∈ N → C → B, ∆ ∈ ElDesign, E p ∈ N → Ins(∆) → value, τ ∈ N, s, s ∈ S(sitpn), σ e , σ, σ ↓ , σ ∈ Σ, such that -sitpn b = (d, γ) and γ E p env = E c and D H , ∅ d elab ∆, σ e -γ, E c , τ s ↑ ≈ σ -E c , τ s ↓ -→ s -∆, σ d.cs ↓ -→ σ ↓ and ∆, σ ↓ d.cs -→ σ -State σ is a stable design state: D H , ∆, σ d.cs comb --→ σ then γ s ↓ ≈ σ .

Proof.

By definition of the Post falling edge state similarity relation, there are 11 points to prove:

1. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s .M(p) = σ (id p)(s_marking). post(t, p) = σ (id p)(s_input_token_sum).

Each point is proved by a separate lemma:

-Apply the Falling edge equal marking lemma (p. 305) to solve Point 1.

-Apply the Falling edge equal time counters lemma (p. 313) to solve Point 2.

-Apply the Falling edge equal condition values lemma (p. 319) to solve Point 3.

-Apply the Falling edge equal action executions lemma (p. 319) to solve Point 4.

-Apply the Falling edge equal function executions lemma (p. 322) to solve Point 5.

-Apply the Falling edge equal firable lemma (p. 322) to solve Point 6.

-Apply the Falling edge equal not firable lemma (p. 335) to solve Point 7. -Apply the Falling edge equal not fired lemma (p. 351) to solve Point 9.

-Apply the Falling edge equal output token sum lemma (p. 306) to solve Point 10.

-Apply the Falling edge equal input token sum lemma (p. 309) to solve Point 11.

All the lemmas used above, and their corresponding proofs, are to be found in Appendix D, Section D.4.

A detailled proof: equivalence of fired transitions

The goal of this section is to present the overall proof strategy that we adopted to establish the semantic preservation property for the HILECOP model-to-text transformation. We take advantage of the proof of Lemma 4, involved in the proof of Lemma 3, to illustrate our demonstration techniques. The proof of Lemma 4 has been one complex part of the overall demonstration; we believe it is worth to be mentioned. Also, it has led to a bug detection. We give a full account on this bug detection, and on how we manage to correct it, at the end of the section.

An accompanied journey along the proof

The proof of Lemma 4 is related to the set of fired transitions. In an SITPN, the firing process, based on the set of fired transitions, is responsible for the computation of the new marking, the reset orders, and the execution of functions during the rising edge phase. To prove the semantic preservation property, we must have the equivalence between the set of fired transitions as defined on the SITPN side and the set of fired transitions as defined on the H-VHDL side. The equivalence must hold at the beginning of the rising edge phase, i.e. when the set of fired transitions will be used to compute a new SITPN state. Thus, the falling edge phase prepares the ground so that the equivalence between the set of fired transitions holds at the beginning of the next rising edge phase. To express Lemma 4, we must first define the hypotheses stating that a falling edge phase happened in the course of the execution of an SITPN and its corresponding H-VHDL design, plus some hypotheses about the similarity of the states at the beginning of the falling edge phase: Lemma 4 (Falling edge equal fired). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition 45, then for all t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Fired(s) ⇔ σ (id t)(fired) = true. Now, let us detail the proof of Lemma 4. To prove Lemma 4, we must reason on a given transition t of the input SITPN sitpn and a TCI id t in the output H-VHDL design d. Transition t and TCI id t are bound together through the γ binder returned by the transformation function. This means that the TCI id t structurally represents the transition t in the output H-VHDL design d. In this setting, we want to prove that t is in the set of fired transitions at the end of the falling edge phase if and only if the fired port of id t equals true at the end of the falling edge phase. Formally, we want to prove: t ∈ Fired(s) ⇔ σ (id t)(fired) = true.

As a reminder, the expression Fired(s) qualifies the set of fired transitions at the SITPN state s , and σ (id t)(fired) denotes the value of the fired port of TCI id t at design state σ . The expression σ (id t) denotes the internal state, i.e. a design state, of TCI id t at state σ .

To prove the equivalence, we must first look at the definition of the set of fired transitions on the SITPN side and on the H-VHDL side, and then think of a way to relate the two definitions.

On the SITPN side, the set of fired transitions is an intentional and recursive definition (see Definition 20) depending on a given SITPN state. In Lemma 4, we are interested in the definition of the set of fired transitions at state s , i.e. the state at the end of the falling edge phase. A transition belongs to the set of fired transitions if it is firable (see Definition 19) and sensitized by the residual marking (see Sections 3.1.2 and 3.2.3) at the considered SITPN state. Figure 6.4 gives the set of fired transitions, i.e. Fired(s), on an example of SITPN at a given state s. Here, transitions t a , t b and t c are all firable at state s; however, only transition t c is sensitized by the residual marking. The computation of the residual marking involves the Pr sets, which are, for a given transition t and a state s, the set of transitions with a higher firing priority than t which are actually fired at s. This is where the recursive definition of the set of fired transitions begins. The definition is correct, i.e. the recursion ends, if the priority relation is a strict order over the set of transitions, and therefore, there are always transitions of top-priority (e.g, t c in Figure 6.4). The condition of the priority relation being a strict order over the set of transitions is part of the definition of a well-defined SITPN (see Definition 28). By definition, top-priority transitions have an empty Pr set. There exists no transition with a higher firing priority than a top-priority transition. Thus, a top-priority transition that is firable is also fired. Note that one cannot determine the Pr set of a transition before having determined the firing status of all the transitions with a higher firing priority. For instance, in Figure 6.4, it is impossible to know the content of Pr(t a , s) before having determined if transition t b is fired or not. To know if t b is fired or not, we must determine the content of Pr(t b , s). To do so, we must first determine the firing status of t c . Even though the definition of the set of fired transitions is very declarative, this provides a natural way to establish an algorithm to build the set of fired transitions at a given SITPN state.

On the H-VHDL side, the set of fired transitions is defined through the value of the fired port of TCIs. The transition design declares an output port of the Boolean type with the identifier fired. What we want to prove in Lemma 4 is that, at the end of the falling edge phase (i.e. at state σ), the value of the fired port of a TCI reflects the firing status of the corresponding transition. The fired port is a combinational signal. This means that its value depends on an equation that is verified when all signals are stable, i.e. at the end of stabilization phases happening during the simulation. In the point of view of the circuit synthesis, this equation reflects the wiring of the port in the described hardware circuit. Figure 6.5 shows a part of the transition design architecture describing how the fired port is connected to the other internal signals. In Figure 6.5, the labels underneath the and logic ports and inside the block denote the names of the processes defined in the transition design architecture as VHDL code. As a matter of fact, Figure 6.5 is a graphical transcription of the code defining the transition design architecture. Therefore, by looking at the VHDL code, we are able to determine the combinational equation associated to the fired port. Given a TCI id t in a top-level design and a state σ denoting a current stable state of the design (remember that a combinational equation holds when all signal values are stable), the fired port equation at σ is:

σ(id t)(fired) = σ(id t)(s_firable) . σ(id t)(s_priority_combination) (6.2)
Equation (6.2) states that the value of the fired port is a simple "and" expression2 between the value of the internal signal s_firable and s_priority_combination.

Remark 10 (Signals and combinational equations). In the proceeding of the proof, a lot of combinational equations are established (e.g, Equation (6.2)). These equations relate the value of a given signal to the value of other signals or expressions. All these equations are deduced by applying the H-VHDL semantics rules on the internal behavior (i.e., the processes) of the transition and the place designs. A combinational equation is always the result of a signal assignment statement happening inside the statement body of a process. For instance, in the transition design, the fired_evaluation process, presented in Listing 6.1, assigns the fired output port. Reasoning on the fired_evaluation process statement body and on the H-VHDL semantics rules permits us to deduce Equation (6.2).

σ(id t)(spc) = ∆(id t)(input_arcs_number)-1 ∏ i=0 σ(id t)(priority_authorizations)[i] (6.3)
In Equation (6.3), spc is an alias for the s_priority_combination signal. The for loop of the priority_authorization_evaluation process has been converted into a product expression where the index i follows the bounds of the loop. The priority_authorizations signal is an input port of type array, thus we use the bracketed notation a[i] to access the element of index i in array a. Also, we know that input_arcs_number identifies a generic constant of the transition design, thus, we can retrieve its value in the elaborated design ∆(id t).

In the proofs laid out in Appendix D and in this chapter, we do not detail how the execution of processes' statement body permit to deduce combinational equations. We find that the proofs are easier to follow without entering in so much details. We let aside the task of proving that these equations hold until the time of the mechanization with the Coq proof assistant. For now, the reader can convince himself/herself that an equation holds by looking at the code of the place and the transition designs (see Appendices A and B). pre(t i)) ⇔ σ (id t)(s_priority_combination) = true Based on Equation (6.3), we can replace the value of the s_priority_combination signal by its equivalent product expression:

Now
t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)) ⇔ ∆(id t)(input_arcs_number)-1 ∏ i=0 σ (id t)(priority_authorizations)[i] = true
Then, the proof is in two parts:

1. Assuming t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)), let us show that ∆(id t)(ian)-1 ∏ i=0 σ (id t)(pauths)[i] = true.
(id t)(ian)-1 ∏ i=0 σ (id t)(pauths)[i] = true, let us show that t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)).
Let us prove the first point. Assuming that t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)), let us show

∆(id t)(ian)-1 ∏ i=0 σ (id t)(pauths)[i] = true.
To prove the current goal, we can equivalently show that:

∀i ∈ [0, ∆(id t)(ian) -1], σ (id t)(pauths)[i] = true.
For a given i ∈ [0, ∆(id t)(ian) -1], let us show that σ (id t)(pauths)[i] = true. As shown in Figure 6.5, the priority_authorizations signal is an input port of the transition design. Therefore, to know what is the value of the i-th element of the priority_authorizations port at state σ (id t), we must know how the priority_authorizations port is connected in the top-level design. Basing ourselves on the transformation function (cf. Algorithm 10, p. 174), the connection of the priority_authorizations port for the TCI id t depends on the set of input places of the transition t. If the set of input places of t is empty, then, all elements of the priority_authorizations port are connected to the constant true, and proving the goal is trivial. If the set of input places of t is not empty, then, the connection of the i-th element of the priority_authorizations port reflects the connection of some place p to the transition t by an input arc. Then, we must reason on the nature of the input arc connecting p to t. The interested case happens when p and t are connected by a basic arc, and when the conflicts in the output transitions of p are handled by the priority relation. In that case, the i-th element of the priority_authorizations input port of the TCI id t is connected to the j-th element of the priority_authorizations output port of the PCI id p . Figure 6.6 shows the connection of the priority_authorizations port between the component instances id p and id t . id p id t priority authorizations(j) priority authorizations(i) fired output transitions fired(j) FIGURE 6.6: Connection of the j-th element of the priority_authorizations output port of the PCI id p to the i-th element of the priority_authorizations input port of the TCI id t ; also the fired output port of id t is connected to the j-th element of the output_transitions_fired input port of id p .

Thus, we know that the value of the i-th element of the priority_authorizations input port of id t is bound to the value of the j-th element of the priority_authorizations output port of id p . Therefore, to show that σ (id t)(pauths)[i] = true , we must now show that Chapter 6. Proving semantic preservation in HILECOP σ (id p)(pauths)[j] = true. We must now look at the architecture of the place design to determine the combinational equation associated to the j-th element of the priority_authorizations output port. Figure 6.7 shows that the value of the elements of the priority_authorizations output port is computed by the priority_evaluation process. This process reads the value of the s_marking signal, assigned by the synchronous process marking. It also reads the value of the output_transitions_fired, output_arcs_types and output_arcs_weights input ports. In Figure 6.7, the ports of the input and output interface are composite ports (i.e., of the array type) with an upper bound index equal to m. The number m is equal to the expression output_-arcs_number-1, where output_arcs_number is a generic constant of the place design. The value of the output_arcs_number constant is set at the generation of the generic map of a PCI id p , and is equal to the number of output transitions of place p. Listing 6.3 presents the code of the priority_evaluation process defined in the architecture of the place design. § ¤ In the statement body of the priority_evaluation process, each subelement of the pri-ority_authorizations output port is assigned at Line 8 inside the for loop. The statement of Line 8 assigns the result of the test s_marking -v_saved_output_token_sum >= output_-arcs_weights(k) to the k-th element of priority_authorizations. The test checks that the value of the s_marking signal, representing the current marking of the PCI, minus the value of the local variable v_saved_output_token is greater than or equal to the value of the k-th element of the output_arcs_weights signal. The test corresponds to the test of sensitization by the residual marking for the TCI connected through index k.

Getting back to our proof, the following combinational equation holds for the j-th element of the priority_authorizations port at state σ :

σ (id p)(pauths)[j] = (σ (id p)(s_marking) -vsots ≥ σ (id)(output_arcs_weights)[j]) (6.4)
Then, rewriting the goal with Equation (6.4), the new goal is:

(σ (id p)(s_marking)vsots ≥ σ (id)(output_arcs_weights)[j]) = true.

Here ≥ denotes a Boolean operator, i.e. ≥∈ N → N → B. As the ≥⊆ (N × N) relation is decidable for all pairs of natural numbers, we can interchange an expression a ≥ b = true with a ≥ b where a, b ∈ N. We will generalize this practice to every Boolean operator having a corresponding decidable relation. Thus, the new goal is:

σ (id p)(s_marking) -vsots ≥ σ (id)(output_arcs_weights)[j].
Here, the term vsots corresponds to the value of the local variable v_saved_output_to-ken_sum at the moment of the assignment in the for loop. By looking at the code of Listing 6.3 (Lines 10 to 12), we can deduce the value of the vsots variable:

vsots = j-1 ∑ l=0 σ (id p)(oaw)[l] if σ (id p)(otf)[l] . (σ (id p)(oat)[l] = basic) 0 otherwise (6.5)
The vsots term is equal to the sum of the output arc weights for all TCIs, representing output transitions of p, connected through an index l comprised between 0 and j -1. An output arc weight is taken into account in the sum only if the TCI connected through index l has a fired port equals to true (i.e. the output_transitions_fired input port of id p equals true at index l) and is linked to the place p through a basic input arc (i.e. the output_arcs_types input port of id p equals basic at index l).

Based on the fact that all conflicts in the output transitions of place p are handled with the priority relation, then, as a property deduced from the HILECOP transformation function, we know that the order of the indexes from 0 to output_arcs_number -1 reflects the priority order of the output transitions of place p. Therefore, the indexes from 0 to j -1 are linked to transitions with a higher firing priority than the transition connected to the index j. Figure 6.8 reuses the SITPN of Figure 6.4 to illustrate how the indexes are ordered when the connection between the PCI id p and its output TCIs id t a , id t b and id t c is set (i.e., in the course of the modelto-text transformation). In Figure 6.8, the indexes in the interface of id p respect the priority order of the output transitions. The index increases as the priority level of the connected TCI decreases. Thus, id t c is connected to index 0 as transition t c is the top-priority transition in the output transitions of p, id t b is connected to index 1 as t c t b , etc.

id p otf(2) otf(1) otf(0) pauths (0) pauths(1)
As a reminder, the current goal to prove is:

σ (id p)(s_marking) -vsots ≥ σ (id)(output_arcs_weights)[j].
The current goal is the H-VHDL implementation of the test that the residual marking in place p enables transition t. At the beginning of the proof, we assumed that transition t is sensitized by the residual marking for all its input places, i.e. t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)). Now, we must relate the terms of the latter formula to the terms of the goal. We can easily show, appealing to Lemma 34, that s .M(p) equals σ (id p)(s_marking). Then, by construction, and knowing that TCI id t is connected to PCI id p through the index j, we can deduce that the jth element of the output_arcs_weights input port denotes the weight of the arc between place p and transition t, i.e. the natural number ω. The last thing to show is the equality between the two sum terms:

∑ t i ∈Pr(t,s) ω if pre(p, t i) = (ω, basic) 0 otherwise = j-1 ∑ l=0 σ (id p)(oaw)[l] if σ (id p)(otf)[l] . (σ (id p)(oat)[l] = basic) 0 otherwise
On the upper part of the equality, we have unfolded term ∑ t i ∈Pr(t,s)

pre(t i) to its full definition (see Notation 5 in Section 3.2.3). On the lower part is the full definition of the vsots term. Let us rewrite the two sum terms in a manner that will come handy to prove the equality. Let us define the Pr p set, which is the set of fired transitions with a higher priority than t that are conflicting with t through the place p: t i ∈ Pr p ≡ t i t ∧ ∃ω s.t. pre(p, t i) = (ω, basic) ∧ t i ∈ Fired(s)

Let us also define the IPr p set, which the set of indexes from 0 to j -1 for which the otf port of id p equals true at state σ and the oat port of id p equals true at state σ :

l ∈ IPr p ≡ l ∈ [0, j -1] ∧ (σ (id p)(oat)[l] = basic) ∧ (σ (id p)(otf)[l] = true)
We can equivalently rewrite the goal as follows:

∑ t i ∈Pr p fst(pre(p, t i)) = ∑ l∈IPr p σ (id p)(oaw)[l]
In the left sum term, the pre(p, t i) always returns a couple (ω, basic) as t i verifies that there exists an ω such that pre(p, t i) = (ω, basic). Thus, the expression fst(pre(p, t i)) denotes the first element of the couple returned by pre(p, t i), i.e. the weight ω.

Then, to prove the above equality, we must show that there exists a bijection β between Pr p and IPr p such that for all t i ∈ Pr p , we have fst(pre(p,

t i)) = σ (id p)(oaw)[β(t i)]
. By property of the transformation function, we know that the order of the indexes in the pri-ority_authorizations output port of id p reflects the priority order of the conflicting output transitions of place p (see Figure 6.8). Then, we can exhibit a bijection β 0 between the output transitions of p with a higher priority than t and the indexes l of interval [0, j -1] verifying σ (id p)(oat)[l] = basic. However, to build a complete bijection β from Pr p to IPr p , we need to know that for a transition t i that is a conflicting transition of place p with a higher priority than t, we have t i ∈ Fired(s) ⇔ σ (id p)(otf)[β 0 (t i)] = true. By property of the transformation function, we know that the element of index β 0 (t i) of the otf input port of PCI id p is in fact connected to the fired output port of TCI id t i . Thus, what we must assume to build a bijection from Pr p to IPr p is t i ∈ Fired(s) ⇔ σ (id t i)(fired) = true. This is exactly the property of equivalence between the set of fired transitions and the value of the fired output ports that we are currently trying to prove. Thus, to carry out the proof, we need a strong hypothesis stating that the equivalence between the set of fired transitions and the fired ports holds for all transitions with a higher firing priority than t, thus including the ones that are in conflict with t through place p. Therefore, we must think of a way to build the set of fired transitions iteratively such that the previous hypothesis becomes an invariant over the many iterations. The recursive definition of the set of fired transitions naturally calls for a proof by structural induction over the set of fired transitions. As stated before, the actual definition of the set of fired transitions is very declarative. However, we can easily convert it into an algorithm that will build the set iteratively. The result is Algorithm 15.

Algorithm 15: fired(s)

Data: An SITPN state s Result: Returns the set of fired transitions at state s

1 F ← ∅ 2 T s ← T 3 while T s = ∅ do 4 t ← GetTopPriorityTransition(T s ,) 5 if t ∈ Firable(s) and t ∈ Sens(s.M -∑ t i ∈Pr(t,F) pre(t i)) then F ← F ∪ {t} 6 7
T s ← T s \ {t} 8 return F Algorithm 15 builds the set of fired transitions at state s by iterating over the set of transitions T. Local variables are initialized in the two first lines. Variable F carries the set of fired transitions, which is initially empty. Variable T s represents the set of transitions still to be processed; T s is equal to T at the beginning of the algorithm. At Line 3, the while loop iterates until all transitions of the T s set have been elected to be fired or have been discarded. At Line 4, function GetTopPriorityTransition returns a top-priority transition of T s , i.e. a transition t for which there exists no transition t in T s such that t t. The statement of Line 5 tests if the top-priority transition t is firable at state s and is sensitized by the residual marking computed by the expression s.M -∑ t i ∈Pr(t,F) pre(t i). Here, Pr(t, F) is the set of transitions with the higher priority than t that are in the set F, i.e.: Pr(t, F) = {t i | t i t ∧ t i ∈ F}. We know that the following property holds: all fired transitions with a higher firing priority than t and that have been elected to be fired are inside the set F. Therefore, F contains all the transitions necessary to compute the residual marking that is necessary to elect the transition t as a fired transition; if t passes the test of Line 5 then it joins the set F. The statement of Line 7 withdraws the transition t from the set T s before beginning another iteration. Because the priority relation is a strict order over the set of transitions T, we can always find a top-priority transition in T s . Thus, there can be no iteration where T s is not decreasing. Thus, the algorithm always terminates and returns the set of fired transitions at state s.

Being more accustomed to handle relations while performing a proof, we make a relational definition of Algorithm 15 through the definition of the IsFiredSet and the IsFiredSetAux relations given in Definition 47 and 48. Definition 46 states that a given transition is fired in relation to the IsFiredSet relation. We are now satisfied with the definition of the set of fired transitions provided by the IsFiredSet relation and the IsFiredSetAux relation. Therefore, we give a new expression to Lemma 4 by using the IsFiredSet relation to qualify the set of fired transitions instead of using the first declarative definition. The result is Lemma 45.

Definition 46 (Fired

The full formal proof of Lemma 45 is given in Section D.4 of Appendix D. The inductive definition of the IsFiredSetAux relation permits us to express the hypothesis that we lacked to perform the proof of Lemma 4. The hypothesis saying that for a given transition t, the "fired" equivalence holds for all transitions with a higher firing priority. This is stated in the "extra" hypothesis used in Lemma 46.

A report on a bug detection

In the previous section, we showed the equivalence between fired transitions and fired port values at the end of the falling edge phase. In a previous definition of the SITPN state, preceding the bug detection, the set of fired transitions was a member of the SITPN state record. For a given sitpn ∈ SITPN, we defined an SITPN state s by the record s = <Fired, M, I, cond, ex> where Fired was the set of fired transitions. The Fired set was involved in the computation of time counter values during the falling edge phase. Thus, we needed the proof that the equivalence between the set of fired transitions and the value of the fired ports was effective at the beginning of the falling edge phase. In the previous SITPN semantics, the set of fired transitions stayed the same during the rising edge phase. Therefore, between two SITPN states s, s verifying the rising edge state transition relation, i.e. s ↑ -→ s , we had s.Fired = s .Fired. However, we showed that it wasn't the case on the H-VHDL side, i.e. the values of the fired ports in TCIs would not stay the same during the rising edge phase. Thus, the equivalence fired transitions and fired port values at the end of the falling edge phase. The consequence was a divergence between the value of time counters and the value of the s_time_counter signals, both computed during the falling edge phase. Figure 6.9 shows a case of divergence between time counters and s_time_counter signals values in the course of an execution. In Figure 6.9, during the stabilization phase coming right after the rising edge of the clock, the value of the fired port of TCI id t 1 passes to false. After the update of the s_marking signal value during the rising edge phase, PCI id p computes new priority authorizations for its output TCIs. As the marking is only sufficient to fire transition t 0 but not transition t 1 , PCI id p indicates to TCI id t 1 that it no longer has the authorization to fire. Consequently, through the connection of priority_authorizations ports, the value of the fired port of id t 1 is set to false. Following the rules of the SITPN semantics, on the next falling edge, the value of time counters must be reset for transition t 0 and t 1 , because both were fired at the previous rising edge. As a part of the behavior of a TCI, the time_counter process, executed at the falling edge of the clock, resets the value of the s_time_counter signal given that the value of the fired port is true. Thus, as the value of the fired port of TCI id t 1 is false at the falling edge, the time_counter process increments the value of the s_time_counter signal instead of resetting its value. The consequence is a divergence between the value of the time counter of transition t 1 and the value of the s_time_counter signal in TCI id t 1 .

p t 0 [2, ∞] <2> t 1 [2, ∞] <2> p t 0 [2, ∞] <2> t 1 [2, ∞] <2> p t 0 [2, ∞] <1> t 1 [2, ∞] <1> ↑ - → ↓ - →
As demonstrated above, the time_counter process can not rely on the value of the fired ports to determine if the value of the s_time_counter signal must be reset or not. We proved that there is an equivalence between the fired transitions and the value of the fired ports at the end of a falling edge phase. We need a way to memorize the value of fired ports at the moment where the equivalence holds (i.e. at the end of the falling edge phase) so that the time_counter process can use this information to reset the s_time_counter signal. To do so, we have modified the SITPN semantics and the behavior of the transition design. In the actual version of the SITPN semantics, if a transition is fired at the beginning of the rising edge phase then a reset order is sent to the transition. As a consequence, the time counter associated to this transition will be reset at the next falling edge. In the actual version of the transition design behavior, the value of the fired port is involved in the computation of the s_reinit_time_counter signal; the s_reinit_time_counter signal value follows the value of the reset order assigned to a given transition. Thus, as the equivalence between reset orders and the value of the s_reinit_time_counter signal holds at the beginning of the falling edge phase, the time_counter process can rely on the value of the s_reinit_time_counter signal to reset the value of the s_time_counter signal. As a consequence, the set of fired transitions is no longer involved in the SITPN semantics premises of the falling edge phase. Therefore, we chose to withdraw the Fired set from the definition of the SITPN state record. We opted for an intentional definition of the set of fired transitions at given SITPN state (i.e., Definition 20). After these changes, we were able to prove that there were no more divergence between the time counters and the value of the s_time_counter signals in the course of the execution (see Lemmas 28, p. 289, and 37, p. 313, about the equivalence of time counters).

Mechanized verification of the proof

The work of mechanizing the proof of Theorem 5 is an ongoing task. At the time of the writing, we have only verified the two first points (the Initial states equal marking lemma and the Initial states equal time counters lemma) of the proof concerning the Similar initial states lemma. However, the effort to achieve this little part of the overall verification amounts to three months of work. In this section, we give metrics to measure the gap between the size of the "paper" proof (see Appendix D) and the size of the computer-checked proof written in Coq. We point out some of the reasons that may explain the gap, and comment some employed techniques to reduce the size of proof scripts. As a remainder, the full code including specifications and proof scripts is available at https://github.com/viampietro/ver-hilecop. (* -CASE τ = 0, GOAL γ s 0 ∼ σ 0 . Solved with sim_init_states lemma.

-CASE τ > 0, GOAL γ (s 0 :: s 0 :: s :: θ) ∼ (σ 0 :: σ :: σ :: θ). The proof laid out in Listing 6.4 follows the structure of the informal proof of Theorem 5. First, we perform case analysis on the structure of the τ variable through the destruct tactic.

Then, the intros * introduces all universally-bound variables in the proof context. Then, at Lines 25 and 26, we use a variant of the inversion tactic (i.e. inversion_clear) to unfold the definition of the SITPN full execution relation and the H-VHDL full simulation relations. The number passed as an argument to the inversion_clear tactic refers to the index of the premise in the arrow-separated list of premises constituting the declaration of the theorem. At Line 31, we perform pattern matching on the proof context and on the conclusion to be proved. This permits to identify the hypothesis associated to the H-VHDL simulation relation, implemented in Coq by the simloop relation; the hypothesis of simloop is named Hsimloop. To give an example, the simloop relation can take the following form (cf. Section 4.6.2 for more details on the H-VHDL simulation relation):

simloop D s E p ∆ σ behavior τ θ
This hypothesis has been introduced in the context of the proof as a side effect of the inversion tactic used at Line 26. Then, we introduce in the proof context new hypotheses based on the definition of the Hsimloop hypothesis (i.e. the definition of the H-VHDL simulation relation) by invoking inversion_clear tactic on Hsimloop. Then, the constructor tactic builds sub-goals to be proved based on the definition of the full trace similarity relation. We let the eauto tactic decide which lemma apply to solve the sub-goals generated by the constructor tactics. We give a hint to the eauto tactic so that it looks in the user-defined hilecop database of theorems and lemmas to solve the sub-goals. The hilecop database contains the Coq implementation of all the theorems and lemmas used to prove the Full trace similarity theorem.

Robustness to change

The proof laid out in Listing 6.4 is representative of our strategy to keep our mechanized proofs robust to change. The robustness criterion is important for multiple reasons. First, in the proceeding of the proof, we can always realize that some case is missing in the expression of the transformation function or discover that the semantics of the SITPNs or the H-VHDL language is incomplete or incorrect. Therefore, we want to structure our proofs in a way that will lower the impact of correcting the transformation function or completing the semantics. Second, we know that the SITPN structure and the H-VHDL code of the place and transition designs will be evolving in the future. Therefore, we want to be able to adapt our proofs with a minimum effort. To reach robustness to change, we follow the indications laid out in [START_REF] Chlipala | A Verified Compiler for an Impure Functional Language[END_REF]. Mainly, we make an important use of the pattern matching constructs, such as lazymatch or match, to seek hypotheses in the current proof context. Also, we build hint databases and rely as much as possible on the use of the auto and eauto to solve the conclusions.

Automation

To shorten the size of proofs, we develop user-defined tactics using the Coq Ltac language. The tactic that most contributed to the reduction of the size of the proof scripts is the minv tactic (see StateAndErrorMonadTactics.v under the common folder). The minv tactic automates the proof of certain lemmas regarding the properties of the HILECOP transformation function in the context of the state-and-error monad. Our Coq implementation of the HILECOP transformation function implements the state-and-error monad. This monad simulates imperative language traits into functional languages. All functions involved in the HILECOP transformation function carry a compile-time state, defined as the Coq type CompileTimeState. Each function either returns a value, modifies the compile-time state or does both. To give an example of the use of the minv tactic, Listing 6.5 shows the implementation of the generate_place_comp_inst function involved in HILECOP transformation function. The generate_place_comp_inst function generates a H-VHDL PCI statement from a place p passed as a parameter. As a side effect, the generate_place_comp_inst function adds the PCI statement to the behavior of the top-level design currently built in the compile-time state. In its definition body, function generate_place_comp_inst sequentially calls to functions that sometimes modify the compile-time state (e.g. the bind_place function adds a binding between p and id in the generated γ binder, i.e. γ(p) = id after the call to bind_place), or sometimes simply return a value without modifying the state (e.g. get_pcomp returns an intermediate structure representing the place component instance associated to place p in the compile-time state). During the mechanization of the proof, we often need to prove that some properties hold between the input compile-time state and the output compile-time after the call to a certain function. For example, after calling the generate_place_comp_inst function on a given place p and for a given input state s, let us say that a new compile-time state s is returned. We want to show that the part of the γ binder pertaining to the binding of transitions to TCI identifiers has not changed between state s and state s3 . To perform the proof, we need to show that each function call composing the sequence of the generate_place_comp_inst function returns a compile-time state verifying the wanted property. Proving simple property like verifying that part of the compile-time states are equal through the multiple invocation of functions is highly automatable. We adapt the tactic monadInv defined in the CompCert project [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF] to automate proof for such properties. The result is the tactic minv massively used in the proofs pertaining to state invariants 4 .

Gap between informal and formal proof

There is a huge gap of size between the informal proof of the Full trace similarity theorem given in this Chapter and in Appendix D and the machine-checked formal proof. Right now, the Coq proof wins the size competition. The most significant distance between the size of the informal and the formal proof comes from the two following points: the statement of the combinational equations defining the value of H-VHDL signals and the statement of properties about the HILECOP transformation function. Stating that a combinational equation holds for a given signal in the context of an informal proof is a one-line sentence. The same goes when invoking the properties of the PCIs and TCIs populating the top-level design behavior based on the definition of the transformation function. However, proving these statements represents a tremendous mechanization effort within the Coq proof assistant. To give an example, we begin the proof of Lemma 6 by taking a place p and a PCI identifier id p linked through the γ binder returned by the transformation function. Then, we state the existence of a PCI statement, identified by id p and with an associated generic map, input port map and output port map, in the behavior of the top-level design returned by the transformation function. To do so, we use the following the sentence: "Let us take a p ∈ P and an id p ∈ Comps(∆) such that γ(p) = id p . By construction, there exist g p , i p , o p s.t. comp(id p , place, g p , i p , o p) ∈ d.cs."

The expression "by construction" is a shorthand expression for "knowing how the target H-VHDL design is constructed by the transformation function", "based on the definition of the transformation function", or again "by property of the transformation function". In Coq, proving the lemma that states the existence of a PCI for a given place p amounts to 1500 lines of proof script. The lemmas regarding properties of PCI and TCI statements deduced from the transformation function tend to have complicated proofs. We believe that the implementation of the HILECOP transformation function could be more straightforward in order to simplify this kind of proof. By straightforward, we mean that the number of steps separating a given place or a given transition from the generation of their corresponding PCI or TCI could be diminished, maybe at the cost of time performance. Right now, ease of proof is more important than time performance, considering that our goal is to prove the semantic preservation theorem in a reasonable amount of time. Still, the major complexity of the transformation function, i.e. what makes the proofs so hard, lies in the generation of the interconnections between PCIs and TCIs. Some engineering effort could be spent to simplify this particular of the transformation.

Also, we spent a lot of time proving some uninteresting, however necessary, properties about the H-VHDL design states and the H-VHDL simulation relations. For instance, we proved a lot of lemmas pertaining the preservation of identifiers through the simulation phases (e.g. if a signal identifier is present in a design state at the beginning of a stabilization phase, then it is still present at the end of the phase). We also proved a lot of uninteresting properties about the H-VHDL elaborated designs and the H-VHDL elaboration relation. For instance, properties on the uniqueness of identifiers in design states, in elaborated designs. . . We believe that a more systematic use of dependent types, especially to implement the H-VHDL design state and the elaborated design structure, could prevent us from proving this kind of lemmas.

Conclusion

In this chapter, the aim was to present the behavior preservation theorem stating that the HILE-COP transformation is semantic preserving along with its informal proof. By presenting the Chapter 6. Proving semantic preservation in HILECOP work of the literature pertaining to the verification of transformation functions through the proof of behavior preservation theorems, we wanted to convince the reader that the expression of our semantic preservation theorem is "correct", i.e. it follows a common expression pattern. We saw that the expression of semantic preservation theorems is quite similar in its form even when considered transformations are not of the same nature (i.e. GPL compilers, HDL compilers and model transformations). Our semantic preservation theorem takes the form of a state similarity checking between the states composing the execution traces of our source model and our target program. At each point of the execution (i.e. at each clock signal event), the state of the input model and the state of the output representation must be similar to ensure the behavior preservation property. This definition of the behavior preservation property is particular to reactive systems, i.e. we are dealing with systems that are executing over time, and that are synchronized with a clock signal. Naturally, the behavior preservation theorem must ensure that the behaviors are similar, independently of the number of execution cycles performed. Hopefully, leveraging the inductive reasoning, proving such a thing comes down to proving that behaviors are preserved through a clock cycle.

The study of the literature showed that the state comparison relation, i.e. the relation that describes how things are compared between the source and the target representation, is a significant element in the expression of the behavior preservation theorem. Especially, in our case, the state structure of the source and target representations are quite different. Indeed, we are dealing with an abstract set of data in the SITPN world, while in the H-VHDL representation all is converted into signal values and internal states of component instances. Thus, relating these two kinds of states is not straightforward, and we thoroughly presented our state similarity relation in Section 6.2.

In this chapter, we wanted to stress another point pertaining no more to the "how" but to the "when" the states of the input and output representations must be compared in the course of the execution. Here, we are dealing with two kinds of models that are synchronously executed. However, the synchronous execution of an SITPN stays at a level that is quite abstract compared to the concrete execution of a synchronous hardware system. Indeed, the execution of a synchronous hardware system is related to the rules of the combinational and the synchronous logic, while it is not the case at the SITPN level. Thus, a H-VHDL design goes through a lot more different states in the proceeding of a clock cycle compared to its corresponding SITPN. Figure 6.3 illustrates when the state comparison must be performed in the course of a clock cycle.

While presenting the proof of Theorem 1, we used certain theorems declared as axioms (Theorems 2, 3 and 4). These theorems express the fact that we can always derive a simulation trace from the execution of a H-VHDL design resulting of a successful HILECOP transformation. It means that the execution of a generated H-VHDL design never results into an error at some point of the simulation. We chose not to represent errors in the H-VHDL semantics due to the fact that the concept of error is nonexistent in the SITPN semantics. However, we argue that proving a theorem stating the existence of a simulation trace, independently of the number of simulation cycles considered, is a way to rectify the lack of error representation in our semantics. By presenting Theorems 2, 3 and 4 as axioms, we chose to prove the theorem of semantic preservation in the case where a simulation trace has been produced for the generated H-VHDL design. This is the setting of Theorem 5 for which the full proof is detailed in this chapter and in Appendix D. However, we are not giving up on the proof of Theorems 2, 3 and 4. Indeed, proving a theorem stating the similarity of execution traces is useless if the execution a generated H-VHDL design always fails at some point while the execution of the corresponding SITPN goes on. However, we are confident in the fact that if the execution of a generated H-VHDL design fails, then it can only reflect a divergence in relation to the behavior of the input SITPN. Thus, proving that the execution traces are similar contributes to the proof that we can always derive an execution trace for a generated H-VHDL design.

The informal "paper" proof of Theorem 5 given in this chapter and Appendix D is long; about a hundred pages. However, as we explained in Section 6.4, the strategy used in the overall proof is pretty much the same. To prove that the behavior of an SITPN and its corresponding H-VHDL design is preserved through an execution cycle, we must reason on the execution relations ruling both worlds. But first, to relate the execution of our input and output representations, we must structurally relate the SITPN to the translated H-VHDL design. In the proceeding of the proof, we will first reason on the structure of the input SITPN; based on the structure of the SITPN and by property of the HILECOP transformation, we can determine the structure of the top-level H-VHDL design. Once we know the structure of the SITPN and the H-VHDL design, we can unfold their execution rules to prove that their behaviors are the same; i.e. at the end of a computational step, states are similar.

The mechanization of the proof of Theorem 5 is at its very beginning in terms of completion. However, we have already spent three months on it. Thus, the mechanization is a very slow process. We explain the hardness of the mechanization task by pointing out the two points where the distance between informal and formal proof is most important. The first point corresponds to the statement of the construction of the H-VHDL design based on the structure of the SITPN and the HILECOP transformation function. Reasoning on the transformation function is not an easy task as the transformation itself is not as straightforward as the transformation from a source program of a GPL to a target program of another GPL. In Section 6.5, we pointed out the distance between a property of the transformation function expressed in one sentence in the informal proof and the thousands of lines that it represents in the formal proof. The second point digging the distance between the informal and the formal proof comes from the establishment of the synchronous and combinational equations that are verified by the internal signals of the PCIs and TCIS. This also results in one sentence statement in the informal proof while representing thousands of lines of code in the formal proof. The De Bruijn factor [START_REF] Wiedijk | The De Bruijn Factor[END_REF], that permits to measure the distance in terms of number of characters between an informal proof and its machine-checked version (i.e. the formal program), is tremendously high in our case when considering these intermediary results.

Chapter 7 Conclusion

In this thesis, we were interested in the formal verification of the HILECOP methodology. The HILECOP methodology has been devised to assist the design and the production of safetycritical digital systems. To summarize, the HILECOP methodology proposes a high-level graphical modelling formalism; the aim of the formalism is to provide the engineers with a framework to model safety-critical digital systems in a way that foster the communication around the design models (hence the graphical aspect of the formalism). The formalism is based on component diagrams and the internal behavior of components are described with a particular kind of Petri nets. The mathematical foundations of the Petri net formalism provides the possibility to formally analyze the HILECOP high-level models, and thereby to bring the proof that the models verify certain soundness properties. The high-level formalism of HILECOP has been designed to be handy for the humans; however, the ultimate goal of the methodology is to obtain a physical version of the safety-critical digital system on an FPGA or ASIC. Thus, from the state of high-level model to its concrete implementation as a hardware circuit, the designed digital system goes through multiple transformations. In this thesis, we considered the formal verification of one of these transformations: the model-to-text transformation from a flattened Petri net version of the high-level model of the safety-critical digital system (i.e. an SITPN) to its implementation into a VHDL design. This transformation is performed by a computer program. It was our purpose to formally verify that the transformation is semantic preserving; that is, for any input model of the transformation the corresponding output model behaves in the same way as the input model. Pragmatically, the research question that we formalized in the introduction of this thesis was: As pointed out in the literature reviews at the beginning of Chapters 5 and 6, the task of formally verifying that a transformation from a source representation to a target one is semantic preserving has been thoroughly studied, and in different application contexts (generic compilers, domain-specific compilers, model transformations, etc.). From this fact arises the will to compare the HILECOP model-to-text transformation to the other kinds of transformations found in the literature. In a research point of view, the complementary questions that gravitated around our main research question were:

-What are the similarities and the differences between the HILECOP model-to-text transformation and the other kind of transformations that have been formally verified?

Chapter 7. Conclusion

-Are there standard techniques to prove that a transformation is semantic preserving? Do these techniques apply in the case of the HILECOP model-to-text transformation?

In other words, what elects the formal verification of the HILECOP model-to-text transformation as a concrete research task, and not as another yet interesting engineering challenge?

In this thesis, the verification of the HILECOP transformation has been conducted with the help of the Coq proof assistant; thus, the relation between our formalization choices and the engineering difficulties that they brought was one topic of interest. Especially in the world of formal verification, and more truly in the domain of deductive verification and interactive proving, the mechanization of proofs with the help of a proof assistant may be very time consuming. We believe that it is a part of the research task to evaluate the feasibility of the mechanization of proofs within a reasonable time-span, and also, to try to bring an understanding regarding the formalization choices and their impacts on the mechanization.

To formally verify the semantic preservation property of the HILECOP transformation, we followed the usual proceeding applied in the domain of deductive verification, which is:

1. Formalize the execution semantics of the source representation (Chapter 3) and the target representation (Chapter 4), and implement them using the proof assistant.

2. Describe and implement the transformation within the proof assistant (Chapter 5).

3. Express the theorem of semantic preservation, prove the theorem, and mechanize the proof using the chosen proof assistant (Chapter 6).

Following these steps, we brought the proof that the HILECOP transformation is semantic preserving. Even though the mechanization of the proof is not completed, each step of the approach brought its own part of contributions.

During the formalization of the SITPN semantics, i.e. the source representation of the transformation, we helped clarify the semantics of these models, even though it was established in two previous theses [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF][START_REF] Merzoug | Validation formelle des systèmes numériques critiques : génération de l'espace d'états de réseaux de Petri exécutés en synchrone[END_REF]. Especially, we formalized the concept of a well-defined SITPN, that is, an acceptable model for the transformation. As a matter of fact, the HILECOP transformation raises errors if the input SITPN model is not well-defined. Also, all the theorems and lemmas that we proved rely on the well-definition condition of the input SITPN model. Through the formalization of a well-defined SITPN, we precisely characterized the way to handle a conflict between the transitions of an SITPN. This aspect of the SITPN semantics is complex and has been one particularly subtle point of the proof of semantic preservation.

The reflection around the formal semantics of the VHDL language and how it could ease the reasoning around the HILECOP's VHDL programs also brought new contributions. From the rather complex semantics of the VHDL, and all is protean expressions found in the literature, we devised a simple simulation algorithm, and formalized it into a simulation relation for the execution of synchronous VHDL designs. We defined the abstract syntax of a subset of VHDL, called H-VHDL, that suited our needs regarding the VHDL programs generated by the transformation and the ones that were previously defined by the methodology (i.e. the place and transition designs). However, the H-VHDL syntax and semantics is well-suited to express any kind of synchronous and synthesizable digital systems. Moreover, the implementation of the H-VHDL syntax and semantics in Coq provides a framework to reason about H-VHDL designs. To the best of our knowledge, it is the only example of implementation of the VHDL language using the Coq proof assistant.

About the expression of the HILECOP model-to-text transformation itself, the contribution of this thesis was the design of the algorithm of the transformation, which had never been expressed before, and its implementation within the Coq proof assistant. For the implementation of the transformation, we tried as much as possible to draw our inspirations from the techniques found in the literature. Especially, we tried to produce clear, maintainable code, through the use of functional design patterns, while anticipating the additions of new elements in the input models. We also tried as much as possible to implement the transformation in order to ease the mechanization of the proof of semantic preservation.

The last part of the work was related to the expression and the proof of the semantic preservation theorem. While expressing the theorem of semantic preservation, we formalized the way to compare an input SITPN model with the corresponding VHDL design, result of the transformation. This point is the angular stone of the theorem of semantic preservation, moreover considering that the gap between the source and the target representations is substantial. The major contribution of the thesis to this part of the work is, of course, to have brought the proof of the semantic preservation theorem, more especially the proof of Theorem 5. Although the mechanization of the proof is far from being completed, establishing the informal proof that the HILECOP model-to-text transformation is semantic preserving has revealed a bug in the VHDL implementation of the place and transition design (cf. Section 6.4.2).

We stated above that from our very pragmatic research question arose a lot of additional questions. These questions pertain to the position of the HILECOP model-to-text transformation with respect to the other examples of transformation for which a work of formal verification has been realized. In other words, what makes this transformation specific? What aspects of this transformation and of its formal verification motivate a research interest? The very context of the design and production of critical digital systems, in which the HILECOP transformation is involved, brings out interesting research challenges. In terms of semantics, it means that we are dealing with reactive systems, i.e. systems which are characterized by a time-related execution and their interactions with an outside environment. Considering the work done on the formal verification of compilers for GPLs, where programs are transformational systems (i.e. there is a one-time end-to-end execution of the program), this already constitutes an originality. The reactivity of systems must be taken into account in the expression of the theorem of semantic preservation. However, some works [START_REF] Bourke | A formally verified compiler for Lustre[END_REF][START_REF] Habibi | Design and Verification of SystemC Transaction-Level Models[END_REF][START_REF] Braibant | Formal Verification of Hardware Synthesis[END_REF][START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF][START_REF] Lööw | Lutsig: A Verified Verilog Compiler for Verified Circuit Development[END_REF][START_REF] Michael | Semantics and Verification of a Language for Modelling Hardware Architectures[END_REF][START_REF] Bourgeat | The Essence of Bluespec: A Core Language for Rule-Based Hardware Design[END_REF][START_REF] Yang | Towards a Verified Compiler Prototype for the Synchronous Language SIGNAL[END_REF] have already been conducted on the formal verification of hardware description language (HDL) compilers. In that case, the source language and its semantics permit us to describe reactive systems. As there exist a lot of works pertaining to the formal verification of transformations relating a source programming language to a target one, the first originality of the HILECOP transformation is that the source representation is a graphical formalism. This graphical formalism is a particular brand of Petri nets with a synchronous semantics, which is also an original point as most of the Petri net classes have an asynchronous semantics. These SITPNs have been designed to give as much power of expression as possible to the engineers that are designing safety-critical digital systems. Blending these considerations with the context of formal methods, and the necessity to produce safe models of critical digital systems, the result is that the semantics of SITPNs is rather complex; especially the handling of conflicts between transitions.

Another point of originality of the HILECOP transformation comes from the distance between the SITPN models, which are yet abstract mathematical objects, and their target representation as VHDL designs, which already deeply tied to the functioning of hardware systems. Moreover, two designs are at the base of the representation of SITPN models into VHDL programs: the place and transition designs. These two designs represent more or less of a hundred lines of VHDL code each. The VHDL code describing the behavior of the place and transition designs comes with a lot of implementation-related particularities that are sometimes difficult to relate to the semantics of SITPNs (and sometimes impossible to relate at all, hence the bug detection, cf. Section 6.4.2).

Finally, the HILECOP transformation function is itself rather complex. It cannot be expressed by rules following the inductive structure of the abstract syntax of a source programming language, as it is usually done in compilers. Specifically because of the nature of the SITPN structure, the HILECOP transformation has to cover a lot of particular cases related to the form of the input models. The specificities of the HILECOP transformation function relate to the difficulties that we encountered to mechanize the proof of semantic preservation.

Although the proof of semantic preservation has been established as a semi-formal paper proof, we were not able to fully mechanize it within the Coq proof assistant; at least not in the time span of the thesis. This has brought a lot of thinking about the reasons surrounding the difficulties of the mechanization, and also about the solutions that would allow us to go over these difficulties. Specifically, we were wondering if the mechanization could not be brought out entirely because of a lack of engineering skills or because of other considerations. These considerations included:

-The complexity of the H-VHDL semantics: during the mechanization of the proof, we realized that the H-VHDL semantics, and especially the rules related to the simulation loop, although much more simplified than the complete simulation loop of the VHDL LRM, was not convenient to reason about the VHDL designs generated by the transformation, nor to reason about the place and transition design behaviors. Therefore, some changes have been made in the H-VHDL semantics and the final result has been presented in Chapter 4. However, at the moment of the writing, we have not yet measured the impact of these changes on the mechanization of the proof.

-The complexity of the source models: one solution to be able to complete the mechanization could have been to consider an even smaller subset for the source PNs models. For instance, we could have let aside the time and interpretation aspects in SITPNs.

-The implementation of the transformation function: the current implementation of the transformation function corresponds to the implementation of a former version of the transformation algorithm. A new and simpler version of the transformation algorithm has been presented in Chapter 5. The current implementation of the transformation includes some intermediate steps, between the input model and the final H-VHDL design, that might not be necessary and add further complexities at the time of proofs.

-The bootstrap cost of the mechanization task: at the beginning of the mechanization, a lot of intermediary lemmas must be proved that will later be extensively used in other proofs. The consequence is that the overall completion of the mechanization advances very slowly at the beginning of the project because a lot of little bricks must be set. Eventually, the verification goes much faster when all the necessary tools are in place (notably thanks to the auto tactic of the Coq proof assistant, and the hint databases system).

Pondering all these considerations, it remains clear that the HILECOP methodology is an industrial product with all its subtleties. Our guess is that, to complete the mechanization of the proof, it will require one person (already acquainted with the overall system) doing the job at full time during one year. However, we are confident in the fact that we cleared the way enough for the proof of semantic preservation to be fully mechanized; now, it is only a question of human and time resources to complete it.

Once the mechanization of the proof will be completed, we will have the formal proof that the HILECOP model-to-text transformation is semantic preserving. Then, this formal proof can help to certify the HILECOP methodology as an eligible methodology for the design and production of safety-critical digital systems. The Neurinnov company exploits the HILECOP methodology for the production of neuroprostheses, which are considered highly critical medical devices. To certify the neuroprostheses as eligible for market, the UE regulation asks for the thorough testing of all the programs involved in the production chain, thus including the HILECOP methodology. For the moment, the UE regulation standards for medical devices do not consider a formal proof as sufficient to certify a given program. All the standards in the domain of avionics, railways, power plants and many others consider a formal proof as sufficient. Therefore, we are confident in the fact that the UE regulation standards for medical devices will soon evolve in this way.

Future work and perspectives

In the immediate future, the first work to complete is of course the mechanization of the proof of Theorem 5. Then, the proofs of Theorems 2, 3 and 4, which are actually considered as axioms, must be completed as well. Finally, we must take into account all the aspects of the HILECOP high-level models, which actually have a richer structure than the one presented in Chapter 3.

The first aspect to reconsider in the definition of the SITPN structure is interpretation. The interpretation aspect has been simplified in the actual version of SITPNs. We could at least consider the set of VHDL signals, i.e. the variables of the interpretation, as being a part of the SITPN structure. Depending on the precision level we want to achieve, we can relate the conditions to concrete Boolean expressions, and the actions/functions to concrete operations. Moreover, we can equip the SITPN semantics with an operational semantics to evaluate the expressions and operations performed over VHDL signals. In that case, the SITPN state would include a mapping between the set of VHDL signals and their current value.

The two other main aspects still to be integrated are macroplaces and multi-clock domains. The macroplace mechanism, illustrated in Figure 7.1, enables the encapsulation of an SITPN subnet, called a refinement, into an environment that handles exceptions. The formal definition of the SITPN structure with macroplaces and its formal semantics have been described in [START_REF] Leroux | Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité[END_REF]. Adding macroplaces to the actual SITPN structure will impact the transformation function, and all the surrounding proofs. It will also bring a new H-VHDL design (i.e. the one defining macroplace components) in the loop, and will modify the code of the place and transition designs.

In the actual semantics of SITPNs, we considered that only one clock signal regulated the evolution of the system. However, the formalism of the HILECOP high-level models includes the possibility to assign different clock domains to different parts of the same input model. Thus, the modeled system is qualified as a multi-clock domain system. It means that the different parts of the system are not evolving at the same pace. Therefore, a mechanism of asynchronous message sending relates two parts with different clock domains, and allows these parts to communicate together. The system is said to have a Globally Asynchronous Locally Synchronous (GALS) architecture. The semantics of SITPNs that integrate multi-clock domains has not been formalized yet. The multi-clock domain aspect also implies modifying the H-VHDL semantics to integrate multiple clock signals in the simulation loop.

The Coq proof assistant provides a way to extract OCaml or Haskell code from a Coq function. Thus, proving that our Coq implementation of the HILECOP model-to-text transformation is semantic preserving would allow us to extract a sound OCaml or Haskell program out of it. This program could then replace the existing Java implementation of the HILECOP methodology. At least, the engineers in charge of maintaining the current HILECOP implementation are open to the idea. However, in the certification standards of safety-critical software programs, the -Apply the Initial states equal marking lemma to solve 1.

-Apply the Initial states equal time counters lemma to solve 2.

-Apply the Initial states equal reset orders lemma to solve 3.

-Apply the Initial states equal condition values lemma to solve 4.

-Apply the Initial states equal action executions lemma to solve 5.

-Apply the Initial states equal function executions lemma to solve 6. Let us reason by induction on the sum term of the goal.

D.1.1 Initial states and marking

-BASE CASE: The sum term equals 0, then tautology.

-INDUCTION CASE:

∆(id p)(ian)-1 ∑ i=1 σ 0 (id p)(iaw)[i] if σ 0 (id p)(itf)[i]
0 otherwise = 0 σ 0 (id p)(iaw) [0] if σ 0 (id p)(itf) [0] 0 otherwise + ∆(id p)(ian)-1 ∑ i=1 σ 0 (id p)(iaw) [i] if σ 0 (id p)(itf)[i]

0 otherwise = 0
Using the induction hypothesis to rewrite the goal: σ 0 (id p)(iaw) [0] -Apply the First rising edge equal marking lemma to solve 1.

-Apply the First rising edge equal time counters lemma to solve 2.

-Apply the First rising edge equal reset orders lemma to solve 3.

-Apply the First rising edge equal action executions lemma to solve 4.

-Apply the First rising edge equal function executions lemma to solve 5.

-Apply the First rising edge equal sensitized lemma to solve 6.

-Apply the First rising edge not equal sensitized lemma to solve 7.

-Apply the First rising edge equal condition combination lemma to solve 8.

-Apply the First rising edge equal conditions lemma to solve 9. By construction, <cn ⇒ 1> ∈ g t and <ic(0) ⇒ true> ∈ i t . By property of the stabilize relation, <cn ⇒ 1> ∈ g t and <ic(0)⇒ true> ∈ i t , we can deduce ∆(id t)(cn) = 1 and σ (id t)(ic) [0] = true.

D.3 Rising Edge

Rewriting the goal with ∆(id t)(cn) = Let β ∈ conds(t) → [0, |conds(t)| -1] be this mapping.

To prove the current goal, it suffices to prove that for all condition c ∈ conds(t), we have Rewriting the goal with ∆(id t)(ian) = 1 and σ (id t)(rt) [0] = σ (id f t) = σ (id t)(fired): s .reset t (t) = σ (id t)(fired). Let us perform case analysis on t ∈ Fired(s) or t / ∈ Fired(s):

E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = σ (id t)(ic)[β(c)]
-CASE t ∈ Fired(s):

By property of E c , τ s ↑ s (Rule (8)), we can deduce s .reset t (t) = true.

Rewriting the goal with s .reset t (t) = true: σ (id t)(s_firable) = true.

By property of the stabilize, the H-VHDL rising edge and the Inject relations, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the firable process defined in the transition design architecture, we can deduce σ(id t)(s_firable) = σ (id t)(s_firable).

Rewriting the goal with σ(id t)(s_firable) = σ (id t)(s_firable), we have σ(id t)(s_firable) = true. By property of γ s ↓ ≈ σ, we can deduce t ∈ Fired(s) ⇔ σ(id t)(fired) = true. Since t ∈ Fired(s), we can deduce σ(id t)(fired) = true, and from σ(id t)(fired) = σ(id f t i), we can deduce σ(id f t i) = true. Then, σ(id f t i) = true contradicts σ(id f t 0) + • • • + σ(id f t n) = false.

D.3.7 Rising edge and sensitization

Lemma 32 (Rising edge equal sensitized). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition 51, then ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Sens(s .M) ⇔ σ (id t)(s_enabled) = true.

Proof.

Given a t ∈ T and an id t ∈ Comps(∆) s.t. γ(t) = id t , let us show t ∈ Sens(s .M) ⇔ σ (id t)(s_enabled) = true.

By construction and by definition of id t , there exist g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs.. Then, the proof is in two parts:

1. Assuming that t ∈ Sens(s .M), let us show σ (id t)(s_enabled) = true.

By property of the stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the enable_evaluation process defined in the transition design architecture: σ (id t)(se) = ∆(id t)(ian)-1 ∏ i=0 σ (id t)(input_arcs_valid) [i] (D.17)

D.4.2 Falling edge and time counters

Lemma 37 (Falling edge equal time counters). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition Appealing to ∆(id t)(mtc) = b = u(I s (t)), s.I(t) = σ(id t)(stc) and s.I(t) = u(I s (t)), we can deduce ∆(id t)(mtc) ≤ σ(id t)(stc). Appealing to ∆(id t)(mtc) ≤ σ(id t)(stc) and (D.23), we can deduce σ (id t)(stc) = σ(id t)(stc).

Rewriting the goal with σ (id t)(stc) = σ(id t)(stc), s.I(t) = σ(id t)(stc) and s.I(t) = u(I s (t)): tautology.

-CASE s.I(t) < u(I s (t)):

By definition of E c , τ s ↓ -→ s (Rule (4)), we can deduce s .I(t) = s.I(t) + 1. From s .I(t) = s.I(t) + 1 and s.I(t) < u(I s (t)), we can deduce s .I(t) ≤ u(I s (t)); contradicts s .I(t) > u(I s (t)).

4. u(I s (t)) = ∞ ∧ s .I(t) ≤ u(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter).

Assuming that u(I s (t)) = ∞ and s .I(t) ≤ u(I s (t)), let us show s .I(t) = σ (id t)(s_time_counter). Term checktc(∆(id t), σ(id t)) is defined as follows:

checktc(∆(id t), σ(id t)) = not σ(id t)(srtc) .

∆(id t)(tt) = TEMP_A_B . (σ(id t)(stc) ≥ σ(id t)(A) -1) . (σ(id t)(stc) ≤ σ(id t)(B) -1) + (∆(id t)(tt) = TEMP_A_A . (σ(id t)(stc) = σ(id t)(A) -1))

+ (∆(id t)(tt) = TEMP_A_INF . (σ(id t)(stc) ≥ σ(id t)(A) -1))

+ σ(id t)(srtc) . ∆(id t)(tt) = NOT_TEMP . σ(id t)(A) = 1 + ∆(id t)(tt) = NOT_TEMP (D.31)

Rewriting the goal with (D.30): σ(id t)(se) . σ(id t)(scc) . checktc(∆(id t), σ(id t)) = true.

Then, there are three points to prove:

1. σ(id t)(se) = true : From t ∈ Firable(s), we can deduce t ∈ Sens(s .M). By definition of E c , τ s ↓ -→ s , we have s.M = s .M, and thus, we can deduce t ∈ Sens(s.M).

By definition of γ, E c , τ s ↑ ≈ σ, we know that t ∈ Sens(s.M) implies σ(id t)(se) = true. From σ(id t)(srtc) = false, we can simplify the term checktc(∆(id t), σ(id t))

as follows:

checktc(∆(id t), σ(id t)) = ∆(id t)(tt) = TEMP_A_B . (σ(id t)(stc) ≥ σ(id t)(A) -1)

. (σ(id t)(stc) ≤ σ(id t)(B) -1) +(∆(id t)(tt) = TEMP_A_A . (σ(id t)(stc) = σ(id t)(A) -1)) +(∆(id t)(tt) = TEMP_A_INF . (σ(id t)(stc) ≥ σ(id t)(A) - -CASE a = b: Then, we have I s (t) = [a, a], and by construction <transition_type⇒ TEMP_A_A> ∈ g t . By property of the elaboration relation, we have ∆(id t)(tt) =TEMP_A_A; thus we can simplify the checktc term as follows:

checktc(∆(id t), σ(id t)) = (σ(id t)(stc) = σ(id t)(A) - By definition of γ, E c , τ s ↑ ≈ σ, we have σ(id t)(se) = true ⇔ t ∈ Sens(s.M).

From σ(id t)(se) = true, we can deduce: t ∈ Sens(s.M). Rewriting the goal with s .cond(c) = E c (τ, c) and E c (τ, c) = false: tautology.

FIGURE 1 :

 1 FIGURE 1: Principe de la méthodologie HILECOP; les double flêches horizontales représentent des phases de transformation; les simple flêches indiquent les autres types d'opérations ayant cours à une étape précise, ou entre étapes.

FIGURE 3 :

 3 FIGURE 3: Un exemple de RdP temporel. La valeur des compteurs de temps apparaît en rouge.

FIGURE 4 :

 4 FIGURE 4: Evolution d'un SITPN synchronisée avec un signal d'horloge.

xx Algorithm 1 : 6 σ 7 σ 9 σ

 1679 Simulation(∆, σ e , cs, E p , T c) // Initialization phase. 1 σ e ← RunAllOnce(∆,σ e ,cs)2 σ ← Stabilize(∆,σ e ,cs) // Main loop. 3 θ ← [σ] 4 while T c > 0 do 5 σ i ← Inject(∆,σ,E p ,T c) ↑ ← RisingEdge(∆,σ i ,cs) ← Stabilize(∆,σ ↑ ,cs) 8 σ ↓ ← FallingEdge(∆,σ ,cs) ← Stabilize(∆,σ ↓ ,cs) 10 θ ← θ + + [σ , σ] 11 T c ← T c -1 12 return θ

 comme modèle d'entrée.

FIGURE 5 :

 5 FIGURE 5: Transformation d'un modèle d'entrée SITPN en un design de top-niveau H-VHDL. Le modèle d'entrée est composé de deux places p 0 et p 1 , deux transitions t 0 et t 1 . La transition t 0 est associée à l'intervalle de temps [1, 3] et à la condition c 0 . La transition t 1 est associée à la condition c 1 , et son tir déclenche l'exécution de la fonction f 0 . L'action a 0 est activé lorsque la place p 0 est marqué, et de même pour l'action a 1 et la place p 1 .

c 0 id c 1 id a 0 FIGURE 6 :

 106 FIGURE 6: Design H-VHDL de top-niveau résultant de la transformation HILECOP.

FIGURE 7 :

 7 FIGURE 7: Représentation graphique du lemme déclarant que la transformation HILECOP préserve la sémantique des modèles initiaux pour une exécution sur un cycle d'horloge.

FIGURE 1 . 1 :

 11 FIGURE 1.1: A Model-Based Systems Engineering process. Level 1 represents the highest abstraction level while Level n represents the concrete implementation of the system. REQ stands for requirements, BEH for behavior, ARCH for architecture, Dgn V&V for design verification and validation. This figure is an excerpt from [75].

4 FIGURE 1 . 2 :

 412 FIGURE 1.2: Workflow of the HILECOP methodology; horizontal double arrows indicate the transformation phases, i.e. the refinement phases in MBSE terms; simple arrows indicate different kinds of operations performed at a given step.

. 2 ,FIGURE 1 . 4 :

 214 FIGURE 1.4: A global Petri net model obtained after the flattening of a HILECOP high level model.

Figure 1 .

 1 5 succinctly illustrates the transformation between Step 2 and Step 3. Each place (resp. transition) of the input PN model (on the left) is transformed into a place (resp. transition) component instance, which is an instance of the place (resp. transition) design. The transformation from Step 2 to Step 3 will be thoroughly presented in Chapter 5.

FIGURE 1 . 5 :

 15 FIGURE 1.5: Generation of a top-level VHDL design from a Petri net. On the left, the input PN and on the right, the generated VHDL top-level design. Dotted arrows show the relation between the component instances and their source design.

 CAN WE PROVE THAT THE MODEL-TO-TEXT TRANSFORMATION DESCRIBED IN THEHILECOP METHODOLOGY IS SEMANTIC PRESERVING?

FIGURE 1 . 6 :

 16 FIGURE 1.6: A view of the HILECOP software implemented on top of the Eclipse framework. The middle frameshows high-level model of digital system such as can be designed in the HILECOP methodology. On the right side, the frames correspond to the palette of tools available to the user to build a model of a digital system.

Proposition 1 .

 1 us prove Proposition 1 to illustrate the use of structural induction over a sum term: For all X ⊂ N a finite set of natural numbers, ∑ x∈X 2x is even, i.e. ∃k ∈ N s.t. ∑ x∈X 2x = 2k Chapter 2. Preliminary notions Proof. Let us define the property P as follows: P(X, ∑ x∈X 2x) ≡ ∃k ∈ N s.t. ∑ x∈X 2x = 2k Then, let us use structural induction to prove P(X, ∑ x∈X 2x). First, let us show P(∅, 0), i.e. ∃k ∈ N s.t. 0 = 2k. Let us take k = 0 to build a tautology.

INRID id ∈ r id INRADDL id ∈ r e 0 id ∈ r e 0 + e 1 INRADDRid ∈ r e 1 id

 011 ∈ r e 0 + e 1

Proposition 2 .

 2 Let id ∈ string. For all state s, arithmetic expression e, and natural number n, id / ∈ dom(s) ∧ id ∈ r e ⇒ ¬s e → n Proof.

 Inductive e : Set := | enat : nat → e | eid : string → e | eadd e → e → e.

Fixpoint

 pow (a n : nat) { struct n} : nat := match n with | O ⇒ 1 | S m ⇒ a * pow a m end.

FIGURE 3 . 1 :

 31 FIGURE 3.1: An example of Petri net. The semaphore place sem prevents the parallel execution of Treatment 1 (place p 1) and Treatment 2 (place p 2).

FIGURE 3 . 2 :

 32 FIGURE 3.2: The PN of Figure 3.1 after the firing of transition t 0 .

Figure 3 .

 3 Figure 3.4 illustrates the use of actions, functions and conditions in an interpreted Petri net as applied in the HILECOP high-level models.

 p

FIGURE 3 . 5 :

 35 FIGURE 3.5: An example of time Petri net. The value of time counters appears in red.

Figure 3 .

 3 [START_REF] Bengtsson | Uppaal in 1995[END_REF] illustrates the application of a priority relation to solve the effective conflict between two transitions.

FIGURE 3 . 6 :

 36 FIGURE 3.6: An example of transitions in structural and effective conflict. In subfigure (b), the dotted arrow represents the priority relation between t 0 and t1. The transition with the highest firing priority is at the source of the arrow; here, transition t 0 .

FIGURE 3 . 7 :

 37 FIGURE 3.7: Evolution of an SITPN synchronized with a clock signal.

↓FIGURE 3 . 11 :

 311 FIGURE 3.11: An example of locked time counter. Condition c is equal to false and thus appears in red.

Figure 3 .

 3 Figure 3.14 illustrates the two means of mutual exclusion that can be applied to solve a conflict between two transitions.

 Remark 9 in Chapter 6). A SITPN model is bounded if there exists a bound for the number of tokens that the places can hold in the course of the execution of the model; formally: Definition 29 (Bounded SITPN). A given sitpn ∈ SITPN is said to be bounded if for all execution environment E c ∈ N → C → B, clock cycle count τ ∈ N, execution trace θ ∈ list(S(sitpn)) such that E c , τ sitpn f ull --→ θ, then there exists a bound k ∈ N such that for all p ∈ P and s ∈ θ, s.M(p) ≤ k. We extend the definition of a bounded SITPN model to a version where the bound denoting the maximal marking of each place of the model is passed through a function b ∈ P → N. Definition 30 (Bounded SITPN through a maximal marking function). A given sitpn ∈ SITPN is said to be bounded through the maximal marking function b ∈ P → N, written sitpn b , if for all execution environment E c ∈ N → C → B, clock cycle count τ ∈ N, execution trace θ ∈ list(S(sitpn)) such that E c , τ sitpn f ull --→ θ, then for all p ∈ P and s ∈ θ, s.M(p) ≤ b(p).

Listing 3 . 1 Record Sitpn := BuildSitpn { 2 3 places : list nat; 4 transitions : list nat; 5 P

 31345 2 presents the implementation of the SITPN structure as a Coq record type. The implementation is almost similar to the formal definition of the SITPN structure given in Definition 14. § ¤ := { p | (fun p0 ⇒ In p0 places) p };

6 T 7 8 10 M 0 : 13 conditions : list nat; 14 actions : list nat; 15 functions : list nat; 16 C 17 A 18 F

 67100131415161718 := { t | (fun t0 ⇒ In t0 transitions) t }; pre : P → T → option (ArcT * N *); 9 post : T → P → option N * ; P → nat; 11 I s : T → option TimeInterval; 12 := { c | (fun c0 ⇒ In c0 conditions) c }; := { a | (fun a0 ⇒ In a0 actions) a }; := { f | (fun f0 ⇒ In f0 functions) f };

19 20 C 21 A 22 FLISTING 3 . 2 :

 1920212232 : T → C → MOneZeroOne; : P → A → bool; : T → F → bool; Implementation of the SITPN structure in Coq.

LISTING 3 . 3 :

 33 Implementation of the SITPN state structure in Coq.

1 Inductive SitpnStateTransition 2 (3 Clk → Prop := 4 |: 5 6(7 (9 BSum 62 Chapter 3 .

 1234579623 sitpn : Sitpn) (E c : nat → C sitpn → bool) (τ : nat) (s s' : SitpnState sitpn) : SitpnStateTransition_falling * Premise (2) *) forall a marked sum, 8 Sig_in_List (P sitpn) (fun p ⇒ M s p > 0) marked → (fun p ⇒ A p a) marked sum → Implementation of the HILECOP Petri nets 10 ex s' (inl a) = sum) → 11 12

30 (32 (* Premise (9) *) 33 (forall f fired sum, 34 IsFiredList s fired → 35 BSum 38 (* Conclusion *) 39 SitpnStateTransitionLISTING 3 . 4 :

 30329333435383934 forall fired, IsNewMarking s fired (M s')) → 31 (fun t ⇒ F t f) fired sum → 36 ex s' (inr f) = sum) → 37 E c τ s s' ↑. ¦ ¥ Excerpt of the implementation of the SITPN state transition relation in Coq.

Figure 4 .

 4 1 is a visual representation of the interfaces of the transition design.

1 entity transition is 2 generic (3 transition_type 6 maximal_time_counter : natural := 1 7); 8 port (9 clock : in std_logic; 10 reset_n : in std_logic; 11 input_conditions 12 time_A_value : in natural range 0 to maximal_time_counter; 13 time_B_value : in natural range 0 to maximal_time_counter; 14 input_arcs_valid 17 fired : out std_logic 18 LISTING 4 . 1 :FIGURE 4 . 1 :

 236789101112131417184141 FIGURE 4.1: A representation of the transition design entity. On the left side, the input port interface of the transition design; cn stands for conditions_number and ian stands for input_arcs_number, i.e. two of the generic constants declared in the generic clause of the transition design entity; the numbers at the right of the input pins represent the pin indexes. On the right side, the output port interface of the transition design.

 Figure 4.2 gives a synthesis-oriented view of the processes described in Listing 4.2.

FIGURE 4 . 2 :

 42 FIGURE 4.2: A representation of three of the processes defining the transition design architecture. On the left side, the condition_evaluation process connecting the input_conditions input port to the s_condition_combination internal signal; the firable process in the middle; on the right side, the fired_evaluation process connecting the s_firable and the s_priority_combination signals to the fired output port.

1 architecture toplevel_architecture of toplevel is 2 begin 3 . . . 4 id t : entity transition 5 generic map (6 transition_type ⇒ NOT_TEMPORAL, 7 input_arcs_number ⇒ 1 , 8 conditions_number ⇒ 1 , 9 maximal_time_counter ⇒ 1 10) 11 port map (12 clock ⇒ clock, 13 reset_n ⇒ reset_n, 14 time_A_value ⇒ 0 , 15 time_B_value ⇒ 0 , 16 input_conditions(0) ⇒ id 0 , 17 input_arcs_valid(0) ⇒ id 1 , 18 priority_authorizations(0)LISTING 4 . 3 :

 123456718191011121314015016017018043 Listing 4.3 shows an example of instantiation of the HILECOP's transition design. This instance is involved in the definition of the behavior of an embedding design called toplevel. § ¤ An example of design instantiation statement in the architecture of the toplevel design. Here, the design being instantiated is the transition design.

Figure 4 .

 4 3 illustrates the transition component instance id t and the wiring of its input and output port interfaces inside the toplevel design.transition design instance id t

FIGURE 4 . 3 :

 43 FIGURE 4.3: Visual representation of a design instantiation statement. Here, the figure represents the transition design instance described in Listing 4.3.

FIGURE 4 . 4 :

 44 FIGURE 4.4: The VHDL simulation loop. Excerpt from [15].

 Figure 4.5 shows the activity diagram associated with the kernel process.

FIGURE 4 . 5 :

 45 FIGURE 4.5: The activity diagram of the kernel process. Square boxes represent activities, diamond nodes are decision nodes. The black circle at the top represents the starting point of the activities; the other black circle in the middle of the diagram represents the end of all activities.

 1: A comparative summary on VHDL formal semantics. -Kind : D (Denotational) -A (Axiomatic) -O (Operational) -T (Translational).

4. 3 .

 3 Abstract syntax of H-VHDL 85 design ::= design id e id a gens ports sigs cs gens ::= gdecl* ports ::= pdecl* sigs ::= sdecl* gdecl ::= (id, τ, e) pdecl ::= ((in|out), id, τ) sdecl ::= (id, τ) generic constant declaration is a triplet composed of an identifier, a type indication and an expression denoting the generic constant's default value. The ports entry holds the declaration of the input and output ports of the design. A port declaration (i.e. the pdecl entry) is a triplet composed of a port type, i.e. in or out, an identifier, and a type indication. The sigs entry is the list declaring the internal signals of the design. An internal signal declaration entry (i.e. sdecl) is a couple composed of an identifier and a type indication. The cs entry represents the concurrent statements composing the behavior of the design.

4. 3 . 2

 32 Concurrent statementscs ::= psstmt | cistmt | cs || cs | null In H-VHDL, two kinds of concurrent statements are available to describe the behavior of a design: process statements, represented by the psstmt entry, and component instantiation statements, represented by the cistmt entry. Concurrent statements are composable through the || operator. We add the null statement to the H-VHDL abstract syntax to help represent idle behaviors. Process statement psstmt ::= process (id p , sl, vars, ss) sl ::= id * vars ::= vdecl* vdecl ::= (id, τ)

 cistmt ::= comp (id c , id e , g, i, o) g ::= assoc * g i ::= assoc * ip o ::= assoc * op assoc g ::= (id,e) assoc ip ::= (name,e) assoc op ::= (id,(name|open))|(id(e),name)

 ss ::= name ⇐ e | name := e | if (e) ss [ss] | for (id,e,e) ss | falling ss | rising ss | rst ss ss' | ss; ss | null

 e ::= e and e | e or e | not e | e = e | e = e | e < e | e <= e | e > e | e >= e | e + e | ee | name | natural | boolean | (e +) name ::= id | id(e) boolean ::= true | false τ ::= boolean | natural (e, e) | array (τ, e, e)

 type ::= bool | nat(n, n) | array(type, n, n) value ::= b | n | arr b ::= ' ' | '⊥' n ::= 0 | 1 | . . . | NATMAX arr ::= (value +)

 Now let us define the run-time state of a design, i.e. the state that describes the value of signals and component instances in the course of a simulation. Let Σ be the set of design states. A design state of σ ∈ Σ is defined as follows:Definition 32 (Design state). A design state σ ∈ Σ is a record <S, C, E > where:-S ∈ signal-id → value, is the function yielding the current values of the design's signals (ports and declared signals).

Algorithm 2 :

 2 Simulation(∆, σ e , cs, E p , T c) // Initialization phase. 1 σ e ← RunAllOnce(∆,σ e ,cs) 2 σ ← Stabilize(∆,σ e ,cs)

Chapter 4 .

 4 H-VHDL: a target hardware description language Hypothesis 2 (Stabilization). All signals have enough time to stabilize during the signal stabilization phase that happens between two clock events.

x) otherwise Notation 8 (

 8 Differentiated intersection domain). For all partial function f , f ∈ X Y, f = ∩ f denotes the intersection of the domain of f and f for which f and f yields different values.

PSRUNINIT∆

 , σ, σ, Λ ss ss i -→ σ , Λ ∆(id p) = Λ D, ∆, σ process (id p , sl, vars, ss) runinit ---→ σ Evaluation of a component instantiation statement Rule COMPRUNINIT describes the execution of a component instantiation statement during the initialization phase. The execution of a component instantiation statement is divided in three phases. First, the input ports of the component instance receive new values through the evaluation of the component instance's input port map. Second, the internal behavior of the component instance is evaluated; this evaluation possibly modifies the value of the internal signals and the output ports of the component instance. Finally, through the evaluation of its output port map, the component instance propagates the value of its output ports to the signals of the embedding design. Premises -The mapip relation evaluates the input port map i of id c , thus modifying the internal state σ c of id c . The result is a new internal state σ c .

4. 6 . Simulation rules 111 -

 6111 The mapop relation evaluates the output port map o of id c , thus modifying the state σ of the embedding design. The result is a new embedding design state σ . Side conditions -∆ c is the elaborated version of the component instance id c referenced in the Comps subenvironment of the embedding design ∆, i.e. ∆(id c) = ∆ c . σ c is the internal design state of the component instance id c referenced in the component store of state σ, i.e. σ(id c) = σ c . -The component store C of state σ is equal to the component store C of state σ where the component instance id c is assigned to its new internal state σ c . -The expression C = ∩ C equals {id c } if the internal state of the component instance id c has changed after the evaluation of its input port map and its internal behavior. In other words, we register the component instance id c as an eventful component instance if

LISTING 4 . 5 :Remark 4 (

 454 The merge function that fuses together an origin state σ, with two states σ and σ generated by the execution of two H-VHDL concurrent statements. No multiply-driven signals). For all states σ = <S , C , E > and σ = <S , C , E > resulting from the execution of two H-VHDL concurrent statements, E ∩ E = ∅ must be enforced. Otherwise, there are some multiply-driven signals, which are forbidden in our semantics.Rule NULLRUNINIT evaluates a null statement during the initialization phase. The evaluation of a null statement yields a state similar to the starting state. NULLRUNINIT ∆, σ null runinit ---→ σ

 PSRENOCLKclk / ∈ sl D, ∆, σ process (id p , sl, vars, ss)↑ -→ σPremisesThe ↑ flag in the ss ↑ relation indicates that rising blocks will be executed.PSRECLK ∆, σ, σ, Λ ss ss ↑ -→ σ , Λ clk ∈ sl ∆(id p) = Λ D, ∆, σ process (id p , sl, vars, ss) ↑ -→ σ PSFENOCLK clk / ∈ sl D, ∆, σ process (id p , sl, vars, ss) ↓ -→ σPremisesThe ↓ flag in the ss ↓ relation indicates that falling blocks will be executed.PSFECLK ∆, σ, σ, Λ ss ss ↓ -→ σ , Λ clk ∈ sl ∆(id p) = Λ D, ∆, σ process (id p , sl, vars, ss) ↓ -→ σEvaluation of a component instantiation statementThe following rules describe the evaluation of a component instantiation statement during clock phases. These rules are similar in every point to Rule COMPRUNINIT that describes the evaluation of a component instantiation statement during the initialization phase. The only difference lies in the execution of the internal behavior of the component instance. During the clock phases, the falling relation, written ↓ -→, or the rising relation, written ↑ -→, evaluate the internal behavior of component instances.

COMPRE

 PSCOMB ∆, σ, NoEv(σ), Λ ss ss c -→ σ , Λ ∆(id p) = Λ D, ∆, σ process (id p , sl, vars, ss) comb --→ σ Evaluation of a component instantiation statement Rule COMPCOMB describes the evaluation of a component instantiation statement during a stabilization phase. This rule is similar in every point to Rule COMPRUNINIT, and Rules COM-PRE and COMPFE, that describe the evaluation of a component instantiation statement during the initialization phase, and the clock phases. The only difference lies in the execution of the internal behavior of the component instance. During a stabilization, the comb relation evaluates the internal behavior of component instances. Otherwise, see Section 4.6.4 for more details about the premises and side conditions of Rule COMPCOMB.

2 3--Generic constants 4 ∅ 5 6--Ports (ports tl) 7 (9 - 10 (12 --Behavior (cs tl) 13 14 --Place component instance id p 15 comp (id p , place, 16 --Generic map 17 (19 --Input port map 20 (22 --Output port map 23 (25 || 26 27 --Transition component instance id t 28 comp (id t , transition, 29 --Generic map 30 (32 --Input port map 33 (35 - 42 (43 (48 process 0 FIGURE 4 . 6 :

 2457910121415161719202223252627282930323335424348046 FIGURE 4.6: The SITPN model at the base of the generation of the top-level design presented in Listing 4.6.

FIGURE 4 . 7 :

 47 FIGURE 4.7: A graphic representation of the tl H-VHDL top-level design presented in abstract syntax in Listing 4.6.

FIGURE 4 . 8 :

 48 FIGURE 4.8: The FULLSIM rule applied to the tl design.

Chapter 4 .∆ 0 ,

 40 H-VHDL: a target hardware description language ∅ ports tl eports ---→ ∆ 1 , σ e1 . . . ∆ 1 , σ e1 sigs tl esigs --→ ∆ 2 , σ e2 . . . D H , ∆ 2 , σ e2 cs tl ebeh --→ ∆, σ e D H , ∅ design tl tla gens tl ports tl sigs tl cs tl elab --→ ∆, σ e

FIGURE 4 . 9 :

 49 FIGURE 4.9: The DESIGNELAB rule applied to the tl design.

FIGURE 4 . 10 :

 410 FIGURE 4.10: The elaboration of the actions process defined in the behavior of the tl design.

1 σ

 1 e2 valid ss (id a0 ⇐ id m or false) WTFALLING σ e2 valid ss (falling(id a0 ⇐ id m or false)) WTRST ∆ 2 , σ e2 , ∅ valid ss rst (id a0 ⇐ false) (falling(id a0 ⇐ id m or false))

FIGURE 4 . 11 :

 411 FIGURE 4.11: Static type-checking of the actions process statement body.

FIGURE 4 . 12 :

 412 FIGURE 4.12: The elaboration of the id p component instance defined in the behavior of the tl design.

FIGURE 4 . 13 :

 413 FIGURE 4.13: The elaboration of the generic map of the id p component instance defined in the behavior of the tl design.

and 4 .

 4 [START_REF] Börger | A Formal Definition of an Abstract VHDL'93 Simulator by EA-Machines[END_REF], we give the elaborated design ∆ p and the default design state σ p resulting of the elaboration of the place design given the dimensioning function M.

∆

 p := { Gens := {(ian, (nat(0, NATMAX, 1)),(oan, (nat(0, NATMAX), 1)) (mm, (nat(0, NATMAX), 1))}

FIGURE 4 . 14 :

 414 FIGURE 4.14: An elaborated version of the place design built with the dimensioning function deduced from the generic map of the component instance id p .

FIGURE 4 . 15 :

 415 FIGURE 4.15: The default design state σ p of the elaborated design ∆ p .

Chapter 4 .--→ σ 0 FIGURE 4 . 17 :

 40417 FIGURE 4.17: The initialization phase, first step of the simulation of the tl design.

 . . . D H , ∆, σ e process(actions, . . .) runinit ---→ σ e . . . D H , ∆, σ e cs tl runinit ---→ σ e COMPRUNINIT 1 D H , ∆, σ e process(actions, . . .) || cs tl runinit ---→ merge(σ e , σ e , σ e) (1) E e ∩ E e

FIGURE 4 . 18 :

 418 FIGURE 4.18: The runinit phase applied to the concurrent statements composing the behavior of the tl design.

4. 7 . 2 D 1 DFIGURE 4 . 19 :

 721419 FIGURE 4.19: The runinit phase applied to the concurrent statements composing the behavior of the tl design.

Figure 4 . 1 D

 41 [START_REF] Bourgeat | The Essence of Bluespec: A Core Language for Rule-Based Hardware Design[END_REF] both assign the signal value.Execution of a component instantiation statement with the runinit relationThe rule of Figure4.20 presents the execution of the place component instance id p during the runinit phase. The execution of a component instantiation statement is pretty much the same in all the phases of the simulation algorithm. The difference lies in the choice of the relation used to execute of the internal behavior of the component instance. During the initialization phase, it is the runinit relation that executes the internal behavior of component instances; during the rising edge phase, it is the ↑ relation that executes the internal behaviors, etc. Chapter 4. H-VHDL: a target hardware description language . . . ∆, ∆ p , σ e , σ p i p mapip ---→ σ p . . . D H , ∆ p , σ p cs p runinit ---→ σ p . . . ∆, ∆ p , σ e , σ p o p mapop ---→ σ e COMPRUNINIT H , ∆, σ e comp(id p , place, g p , i p , o p) runinit ---→ σ e (1) σ e = <S e , C e , E e > σ e = <S e , C e , E e ∪ (C e = ∩ C e)> C e = C e (id p) ← σ p

FIGURE 4 . 20 :

 420 FIGURE 4.20: The execution of the place component instance id p during the runinit phase (first part of the initialization).

∆, σ e 1 e -→ 1 ISCNAT 1 ∈ 1 ∆

 1111 is added to the event set of the embedding design. Here, the expression C e = ∩ C e performs the state comparison; we have: C e = ∩ C e = C e = ∩(C e ← σ p) = C e = ∩(C e ← σ p) = {id p } if σ p = σ p ∅ otherwise In the second line, we have C e = C e because the evaluation of the output port map (performed by the mapop relation) does not affect the component store. The rule of Figure 4.21 gives a part of the evaluation of the input port map of id p . NAT c nat(0, 1) MAPIPSIMPLE , ∆ p , σ e , σ p (im, 1) mapip ---→ σ p0 . . . ∆, ∆ p , σ e , σ p0

FIGURE 4 . 21 :

 421 FIGURE 4.21: The evaluation of the input port map of the place component instance id p .

0 e-→ 0 0 ∈

 00 c nat(0, 0) IDXSIG2

FIGURE 4 . 22 :

 422 FIGURE 4.22: The evaluation of the output port map of the place component instance id p .

FIGURE 4 . 23 :

 423 FIGURE 4.23: Three rounds of execution of the combinational parts of the transition component instance id t during a stabilization phase.

4. 7 . 2 D

 72 An example of full simulation 139 SIG ∆ t , σ t0 sfa e H , ∆ t , σ t0 , NoEv(σ t0), ∅ fired ⇐ sfa and spc

 ss

FIGURE 4 . 26 :

 426 FIGURE 4.26: Details of the execution of the tl design's behavior during the first clock cycle.

3 forall M id e id a gens ports sigs behavior 4 ∆ ∆ ∆ ∆ σ σ σ , 5 6(* Premises *) 7 egens EmptyElDesign M gens ∆ → 8 eports∆ 9 edecls ∆ σ sigs ∆ σ → 10 ebeh D ∆ σ behavior ∆ σ → 11 12 (* Conclusion *) 13 edesignLISTING 4 . 9 :

 34578910121349 EmptyDState ports ∆ σ → D M (design_ id e id a gens ports sigs behavior) ∆ σ 14 15 with ebeh (D : IdMap design) : ElDesign → DState → cs → ElDesign → DState → Prop := 16 The implementation of the design elaboration relation with the Coq proof assistant. The edesign relation requires a mutually recursive definition with the ebeh relation. The mutually recursive definition is performed leveraging the with clause at the end of Listing 4.9. The ebeh relation needs the edesign relation to elaborate the component instances found in the behavior of a design. Listing 4.10 gives the details of the with clause defining the ebeh relation.

20 forall ∆ σ id c id e gmap ipmap opmap 21 M ∆ c σ c formals actuals cdesign, 22 23 (* Premises *) 24 emapg 25 edesign D M cdesign ∆ c σ c → 26 validipm ∆ ∆ c σ ipmap formals → 27 validopm ∆ ∆ c opmap formals actuals → 28 29 (32 MapsTo id e cdesign D → 33 (35 (* Conclusion *) 36 ebeh 37 (38 (cstore_add id c σ c σ) 39 40 | 42 |: 43 forallLISTING 4 . 10 :

 2021232425262729323335363738404243410 (NatMap.empty value) gmap M → * Side conditions *)30 ∼NatMap.In id c ∆ → 31 ∼NatMap.In id c (compstore σ) → forall g, NatMap.In g M → exists t v, MapsTo g (Generic t v) ∆ c) → 34 D ∆ σ (cs_comp id c id e gmap ipmap opmap) NatMap.add id c (Component ∆ c) ∆) EBehNull: forall ∆ σ, ebeh D ∆ σ cs_null ∆ σ 41 EBehPar∆ ∆ ∆ σ σ σ cstmt cstmt', 44 ebeh D ∆ σ cstmt ∆ σ → 45 ebeh D ∆ σ cstmt' ∆ σ → 46 ebeh D ∆ σ (cs_par cstmt cstmt') ∆ σ . ¦ ¥The implementation of the ebeh behavior elaboration relation with the Coq proof assistant.

8 9|: 10 forall σ e σ 0 θ, 11 12 (* * Premises * *) 13 edesign D M d ∆ σ e → 14 init 17 (1 2 (3 (4 | 6 (* * Premises * *) 7 vrising D ∆ σ i behavior σ ↑ → 8 stabilize D ∆ σ ↑ behavior σ → 9 vfalling D ∆ σ behavior σ ↓ → 10 stabilize D ∆ σ ↓ behavior σ'' → 11 12 (16 simcycle

 8101213141712346789101216 FullSim D ∆ σ e (behavior d) σ 0 → 15 simloop D E p ∆ σ 0 (behavior d) τ θ → 16 * * Conclusion * *) 18 fullsim D M E p τ ∆ d (σ 0 :: θ). ¦ ¥ LISTING 4.11: The implementation of the full simulation relation with the Coq proof assistant. The simloop relation appeals to the simcycle that implements the simulation cycle relation defined in Section 4.6.3. Listing 4.12 presents the implementation of the simcycle relation. The simcycle relation is a strict transcription of the SIMCYC rule. At Line 13, the vrising relation implements the ↑ relation, i.e. the rising edge phase of the cycle. At Line 15, the vfalling relation implements the ↓ relation, i.e. the falling edge phase of the cycle. At Lines 14 and 16, the stabilize relation implements the relation, i.e. the stabilization phases of the simulation cycle. At Lines 18 and 19, the IsInjectedDState relation implements the Inject relation. Line 18 states that the σ i state is the result of the injection of the map (E p τ) in the signal store of state σ. § ¤ Inductive simcycle (D : IdMap design) (E p : nat → IdMap value) ∆ : ElDesign) (τ : nat) (σ : DState) (behavior : cs) σ σ : DState) : Prop := SimCycle : forall σ i σ ↑ σ ↓ , 5 D E p ∆ τ σ behavior σ σ . ¦ ¥ LISTING 4.12: The implementation of the simulation cycle relation with the Coq proof assistant.

Figure 5 . 1 .

 51 Chapter 5. The HILECOP model-to-text transformation

FIGURE 5 . 1 :

 51 FIGURE 5.1: Transformation of an input SITPN model into a top-level H-VHDL design. The input model is composed of two places, p 0 and p 1 , and two transitions, t 0 and t 1 . The transition t 0 is associated with the time interval[START_REF]The B-Method[END_REF] 3] and the condition c 0 . The transition t 1 is associated with the condition c 1 , and its firing triggers the execution of the function f 0 . The action a 0 is activated when the place p 0 is marked, and the action a 1 is activated when the place p 1 is marked.

Figure 5 .

 5 2 shows a graphical representation of the input and output port interfaces of the place and transition designs. All PCIs (Place Component Instances) and TCIs (Transition Component Instances) generated during the first step of the HILECOP transformation inherit the interface presented in Figure 5.2.

FIGURE 5 . 2 :

 52 FIGURE 5.2: On the left, the place design interface and on the right the transition design interface. The indexes of composite ports are expressed at the inner extremity of the pins, while the name (abbreviated) of ports are expressed at the outer extremity.

Chapter 5 .

 5 Figure 5.3 shows the architecture of the top-level design resulting of the first generation step of the HILECOP transformation.

FIGURE 5 . 3 :

 53 FIGURE 5.3: Generation of the place and transition component instances based on the set of places and transitions of the input SITPN. The PCI id p 0 implements the place p 0 , TCI id t 0 the transition t 0 . . . In red, the internal signals connected to the marked port of PCIs and to the fired port of TCIs.

Transformation

FIGURE 5 . 4 :

 54 FIGURE 5.4: Generation of the interconnections between the place and transition component instances. In red, the internal signals interconnecting the PCIs and the TCIs. These signals are generated by the transformation. The arrows indicate the sense of propagation of the information. In blue, the constant associations (i.e. the generic maps and a part of the input port maps) produced during the previous transformation step.

FIGURE 5 . 5 :

 55 FIGURE 5.5: Inside the red frame, the arc information encoded through the iaw, oat and oaw input ports in the interface of the place design.

FIGURE 5 . 7 :

 57 FIGURE 5.7: Translation from Java expressions to Java bytecode expressions

Chapter 5 .

 5 The HILECOP model-to-text transformation SITPN state and an H-VHDL design state. The formal definition of an SITPN-to-H-VHDL design binder is as follows. Definition 35 (SITPN-to-H-VHDL design binder). Given a sitpn ∈ SITPN and a H-VHDL design d ∈ design, a SITPN-to-H-VHDL design binder γ ∈ W M(sitpn, d) is a tuple <PMap, TMap, CMap, AMap, FMap> where: -sitpn = <P, T, pre, test, inhib, post, M 0 , , A, C, F , A, C, F, I s > -d = design id e id a gens ports sigs cs

Algorithm 5 :

 5 generate_architecture(sitpn, d, γ, b) 1 generate_PCIs(sitpn, d, γ, b) 2 generate_TCIs(sitpn, d, γ)

Algorithm 6 :

 6 generate_PCIs(sitpn, d, γ, b) 1 foreach p ∈ P do 2 if input(p) = ∅ and output(p) = ∅ then err("p is an isolated place") 3 g p ← {(mm, b(p)), (ian,

FIGURE 5 . 8 :

 58 FIGURE 5.8: A graphical representation of the interface of the PCI id p 0 after the generate_PCIs procedure. The generic map associations appear in blue underneath the PCI. The indexes of composite ports appear in blue to stress the relation between the interface dimensioning and the generic constants. The m output port is connected to an internal signal represented by a red wire.

Algorithm 8 :

 8 get_ttype(t)

FIGURE 5 . 10 :

 510 FIGURE 5.10: An example of correct connections between the PCI id p and TCIs id t a , id t b and id t c . On the left, the input SITPN model showing the connections of the transitions t a , t b and t c to the place p. The dots indicate that the place p possibly has other input transitions. On the right, the TCIs and the PCI generated by the transformation. In the input port map of PCI id p , the subelements of the itf input port are connected to the fired port of TCIs; the subelements of the iaw port are connected to constant values, i.e.the weight of the arcs between place p and the input transitions of p.

id a)} 7 e id a ← false 8 foreach

 78 p ∈ pls(a) do 9 comp(id p , place, g p , i p , o p) ← get_comp(γ(p), d.cs) 10 id s ← actual(marked, o p) 11 e id a ← id s or e id a 12 rstss ← rstss; id a ⇐ false 13 f ss ← f ss; id a ⇐ e id a 14 d.cs ← d.cs || process(action, {clk}, ∅, rst (rstss) (falling f ss))

5 . 1 1 2 (3 (4 (5 . 4 . 5 6 (7 do _ ← generate_architecture sitpn b; 8 do _ ← generate_ports sitpn; 9 do _ ← generate_comp_insts sitpn; 10 generate_design_and_binder id e id a) 11 (LISTING 5 . 1 :

 5112345456789101151 gives the Coq implementation of the sitpn_to_hvhdl function presented in an imperative pseudo-code version in Algorithm 3. § ¤ Definition sitpn_to_hvhdl (sitpn : Sitpn) decpr : forall x y : T sitpn, { pr x y} + { ∼pr x y}) id e id a : ident) (b : P sitpn → nat) : design * Sitpn2HVhdlMap sitpn) + string := Coq implementation of the HILECOP model-to-text transformation 181 RedV (do _ ← generate_sitpn_infos sitpn decpr; InitS2HState sitpn Petri.ffid)). ¦ ¥ The Coq implementation of the sitpn_to_hvhdl function presented in Algorithm 3.

Listing 5 . 1 generate_sitpn_infos 2 (sitpn : Sitpn) 3 (4 Mon(5 . . . 6 do _ ← check_wd_sitpn sitpn decpr; 7 do_LISTING 5 . 3 :

 5123456753 3 presents a part of the generate_sitpn_infos. The part that is let aside, represented by little dots, pertains to the creation of the dependently-typed lists constituting the first fields of the compile-time state structure (Line 3 to 7 in Listing 5.2). § ¤ Definition decpr : forall x y : T sitpn, { pr x y} + { ∼pr x y}) : Sitpn2HVhdlState sitpn) unit := ← generate_trans_infos sitpn; 8 do _ ← generate_place_infos sitpn decpr; 9 do _ ← generate_cond_infos sitpn; 10 do _ ← generate_action_infos sitpn; A part of the generate_sitpn_infos function.

1 Record 2 MkPlaceInfo

 12 Listing 5.4 presents the definition of the SitpnInfos record type, along with the definition of the Pla-ceInfo and TransInfo record types. § ¤ PlaceInfo (sitpn : Sitpn) : Type := { tinputs : list (T sitpn);

3 tconflict:

 3 list (T sitpn);

4 toutputs:

 4 list (T sitpn) }.

5 6 7 MkTransInfo

 57 Record TransInfo (sitpn : Sitpn) : Type := { pinputs : list (P sitpn); conds : list (C sitpn) }.

8 9 10 MkSitpnInfos { 11 pinfos

 81011 Record SitpnInfos (sitpn : Sitpn) : Type := : list (P sitpn * PlaceInfo);

12 tinfos:LISTING 5 . 4 :

 1254 list (T sitpn * TransInfo); 13 cinfos : list (C sitpn * list (T sitpn)); 14 ainfos : list (A sitpn * list (P sitpn));15 finfos : list (F sitpn * list (T sitpn)); The PlaceInfo, TransInfo and SitpnInfos record types.

Listing 5 . 1 5 . 4 . 2 Mon(3 do _ ← generate_place_map sitpn b; 4 doLISTING 5 . 5 :

 515423455 5 presents the generate_architecture function. The generate_architecture function implements the generate_architecture and the generate_interconnections procedures detailed in Algorithms 5 and 10. The composition of the generate_place_map and the gener-ate_trans_map functions implements generate_architecture procedure of Algorithm 5. Precisely, the generate_place_map function implements the generate_PCIs procedure presented in Algorithm 6, and the generate_trans_map function implements the generate_TCIs procedure presented in Algorithm 7. § ¤ Definition generate_architecture (sitpn : Sitpn) (b : P sitpn → nat) : Coq implementation of the HILECOP model-to-text transformation 185 Sitpn2HVhdlState sitpn) unit := The generate_architecture function that implements the generate_architecture procedure of Algorithm 5. The generate_architecture function takes an Sitpn instance and the b function as inputs, and modifies the compile-time state. The generate_architecture function fills the arch field of the compile-time state; the arch field is an instance of the Architecture record type. Listing 5.4 presents the definition of the Architecture record type, along with the definition of the InputMap, OutputMap and HComponent type aliases. § ¤ 1 Definition InputMap := list (ident * (expr + list expr)). 2 Definition OutputMap := list (ident * ((option name) + list name)).3 Definition HComponent := (genmap * InputMap * OutputMap).

4 5

 4 Record Architecture (sitpn : Sitpn) := MkArch { 6 sigs : list sdecl;

7 plmap:

 7 list (P sitpn * HComponent);

8 trmap:LISTING 5 . 6 :

 856 list (T sitpn * HComponent); 9 fmap : list (F sitpn * list expr);10 amap : list (A sitpn * list expr) }. ¦ ¥ The Architecture record type, and the InputMap, OutputMap and HComponent subsidiary types.

Listing 5 . 1 2 do _ ← generate_action_ports_and_ps; 3 doLISTING 5 . 7 :

 512357 7 presents the generate_ports function called in the body of the sitpn_to_hvhdl function (see Listing 5.1). The generate_ports function implements the generate_ports procedure described in Algorithm 11. The generate_ports function calls three functions: the gen-erate_action_ports_and_ps function that implements the generate_action_ports procedure of Algorithm 13, the generate_fun_ports_and_ps function that implements the generate_-function_ports procedure of Algorithm 14, and the generate_and_connect_cond_ports that implements the generate_condition_ports procedure of Algorithm 12. § ¤ Definition generate_ports (sitpn : Sitpn) : Mon (Sitpn2HVhdlState sitpn) unit := The generate_ports function implementing the generate_ports procedure presented in Algorithm 11.

§ ¤ 1

 1 Definition generate_comp_insts (sitpn : Sitpn) : Mon (Sitpn2HVhdlstate sitpn) unit := 2 do _ ← generate_place_comp_insts sitpn; generate_trans_comp_insts sitpn.

3 4 5 Mon(6 do s ← Get; 7 RetLISTING 5 . 8 :

 356758 Definition generate_design_and_binder (sitpn : Sitpn) (id e id a : ident) : Sitpn2HVhdlstate sitpn) (design * Sitpn2HVhdlMap sitpn) := ((design_ id e id a [] ((iports s) + + (oports s)) (sigs (arch s)) (beh s)), (γ s)).¦¥ The generate_comp_insts and the generate_design_and_binder function.

§ ¤ 1 2 Mon(4 doLISTING 5 . 9 :

 12459 Definition generate_place_comp_inst (sitpn : Sitpn) (p : P sitpn) : Sitpn2HVhdlstate sitpn) unit := 3 id p ← get_nextid; do _ ← bind_place p id p ; 6 do pcomp ← get_pcomp p; The generate_place_comp_inst function.

FIGURE 6 . 1 :

 61 FIGURE 6.1: Simulation diagrams relating the execution of a source program to the execution of a target program; S 1 and S 2 are the initial states of the source and the target program, and S 1 and S 2 are the final states of the source and target program, i.e. the states resulting of the execution of the two programs. The ∼ symbol represents the state comparison relation between the source and target language states. The arrows represent the execution relation for the source and target program producing the observable execution trace t.

4 .

 4 ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , s.cond(c) = σ(id c).

Definition 41 extends

 41 Definition 40 by drawing out a correspondence between:

 The most recent framed box above the point of reading denotes the current pending goal (what we are currently trying to prove): ∀n ∈ N, n > 0 ∨ n = 0 -A red framed box denotes a completed goal (i.e. equivalent to QED): true = true -A green framed box denotes the current induction hypothesis:

Theorem 1 (

 1 Behavior preservation). For all well-defined sitpn ∈ SITPN, H-VHDL design d ∈ design, binder γ ∈ W M(sitpn, d), clock cycle count τ ∈ N, execution environment E c ∈ N → C → B, execution trace θ s ∈ list(S(sitpn)) and maximal marking function b ∈ P → N such that -SITPN sitpn is transformed into the H-VHDL design d and yields the binder γ: sitpn b = (d, γ) -SITPN sitpn is bounded through b: sitpn b -SITPN sitpn yields the execution trace θ s after τ execution cycles in environment E c : E c , τ sitpn f ull --→ θ s then there exist an elaborated design ∆ ∈ ElDesign and a simulation trace θ σ ∈ list(Σ) s.t. for all simulation environment E p ∈ N → Ins(∆) → value verifying γ E p env = E c (simulation and execution environments are similar), we have: -In the context of the HILECOP design store D H and with an empty generic constant dimensioning function (∅), design d elaborates into ∆ and yields the simulation trace θ σ after τ simulation cycles: D H , ∆, ∅, E p , τ d f ull --→ θ σ -Traces θ s and θ σ are fully similar: θ s ∼ θ σ Proof. Given a sitpn ∈ SITPN, a d ∈ design, a γ ∈ W M(sitpn, d), a τ ∈ N, an E c ∈ N → C →

First, we must

 prove that (D H , ∆, ∅, E p , τ d f ull --→ θ σ) holds. By definition of the H-VHDL full simulation relation, we have:D H , ∆, ∅, E p , τ d f ull --→ θ σ ≡ ∃σ e , σ 0 ∈ Σ(∆), D H , ∅ d elab (∆, σ e) ∧D H , ∆, σ e d.cs init σ 0 ∧D H , E p , ∆, τ, σ 0 d.cs → θ σ (6.1)Thus, it is equivalent to prove: ∃σ e , σ 0 s.t. D H , ∅ d elab (∆, σ e) ∧ D H , ∆, σ e d.cs init σ 0 ∧ D H , E p , ∆, τ, σ 0 d.cs → θ σ

Theorem 2 (

 2 Elaboration). For all well-defined sitpn ∈ SITPN, d ∈ design, γ ∈ W M(sitpn, d) and b ∈ P → N such that -sitpn b = (d, γ) then there exists an elaborated design ∆ ∈ ElDesign and a design state σ e ∈ Σ s.t. ∆ is the elaborated version of design d, and σ e is the default design state of ∆: D H , ∅ d elab (∆, σ e).

Theorem 3 Theorem 3 (

 33 states that one can always build an initial state for every H-VHDL design returned by the HILECOP transformation function, if the input SITPN model is well-defined and bounded. Initialization). For all well-defined sitpn ∈ SITPN, d ∈ design, b ∈ P → N, γ ∈ W M(sitpn, d), ∆ ∈ ElDesign, σ e ∈ Σ(∆) s.t. -sitpn b = (d, γ) and sitpn b and D H , ∅ d elab (∆, σ e) then there exists a design state σ 0 ∈ Σ(∆) s.t. σ 0 is the initial simulation state: D H , ∆, σ e d.cs init σ 0 .

Theorem 4 (

 4 Trace existence). For all well-defined sitpn ∈ SITPN, d ∈ design, b ∈ P → N, γ ∈ W M(sitpn, d), ∆ ∈ ElDesign, σ e , σ 0 ∈ Σ s.t. -sitpn b = (d, γ) and sitpn b and D H , ∅ d elab (∆, σ e) and D H , ∆, σ e d.cs init σ 0 then there exists a simulation trace θ σ ∈ list(Σ) such that for all simulation environment E p ∈ N → Ins(∆) → value and simulation cycle count τ ∈ N, design d yields the simulation trace θ σ after τ simulation cycles, starting from initial state σ 0 : D H , E p , ∆, τ, σ 0 d.cs → θ σ

Chapter 6 .

 6 Proving semantic preservation in HILECOP Theorem 5 (Full trace similarity). For all sitpn ∈ SITPN, b ∈

[s 0]-E c , τ s 0 ↑ 0 s 0 and E c , τ s 0 ↓s

 00000 and θ s = [s 0] -D H , ∅ d elab (∆, σ e) and ∆, σ e d.cs init σ 0 and D H , E p , ∆, 0, σ 0 d.cs → [] and θ σ = [σ 0] Rewriting θ s as [s 0], and θ σ as [σ 0] in goal (1), and by definition of the full execution trace similarity relation, what is left to prove is: γ s 0 ∼ σ 0 Appealing to Lemma 5 (p. 266), we can show γ s 0 ∼ σ 0 . -CASE τ > 0. By definition of the SITPN full execution relation (i.e. E c , τ sitpn f ull --→ θ s) and the H-VHDL full simulation relation (i.e, D H , ∆, ∅, E p , τ d f ull --→ θ σ), we have: and E c , τ -1 sitpn, s → θ and θ s = s 0 :: s 0 :: s :: θ -D H , ∅ d elab (∆, σ e) and ∆, σ e d.cs init σ 0 and E p , ∆, τ, σ 0 d.cs → θ and θ σ = σ 0 :: θ Rewriting θ s as s 0 :: s 0 :: s :: θ and θ σ as σ 0 :: θ in goal (1), the new goal is: γ (s 0 :: s 0 :: s :: θ) ∼ (σ 0 :: θ) (2) 6.3. Behavior preservation theorem 211 By definition of the H-VHDL simulation relation (i.e. E p , ∆, τ, σ 0 d.cs → θ), we have: E p , ∆, τ, σ 0 d.cs ↑,↓ -→ σ, σ and E p , ∆, τ -1, σ d.cs → θ and θ = σ :: σ :: θ . Rewriting θ as σ :: σ :: θ in goal (2), the new goal is: γ (s 0 :: s 0 :: s :: θ) ∼ (σ 0 :: σ :: σ :: θ) (3) By definition of the full execution trace similarity relation, there are four points to prove: 1. γ s 0 ∼ σ 0 . Appealing to Lemma 5, we can show γ s 0 ∼ σ 0 . 2. γ, E c , τ s 0 ↑ ∼ σ. Appealing to Lemma 15 (p. 276), we have γ, E c , τ s 0 ↑ ≈ σ. By definition of γ, E c , τ s 0 ↑ ≈ σ, we can show γ, E c , τ s 0 ↑ ∼ σ.

3. γ s ↓∼FIGURE 6 . 3 :

 s63 FIGURE 6.3: Simulation diagram over one clock cycle for a source SITPN and a target H-VHDL design; the left part of the diagram presents the execution of an SITPN over one clock cycle, and the right part of the diagram presents the simulation of an H-VHDL design over one clock cycle; the upper part of the diagram corresponds to the rising edge phase of the clock cycle, and the lower part illustrates the falling edge phase of the clock cycle.

 τ, σ d.cs → θ θ s = s :: s :: θ and θ σ = σ :: σ :: θ Then, the new goal is: γ (s :: s :: θ) ↑ ∼ (σ :: σ :: θ). By definition of the execution trace similarity relation, there are three points to prove: 1. γ s ↑ ∼ σ . Appealing to Lemma 3 (p. 217), we have γ s ↑ ≈ σ . By definition of γ s ↑ ≈ σ , we can show γ s ↑ ∼ σ . 2. γ s ↓ ∼ σ . Appealing to Lemmas 3 and 2, we have γ, E c , τ s ↓ ≈ σ . By definition of γ, E c , τ s ↓ ≈ σ , we can show γ s the induction hypothesis with s = s , σ = σ , θ s = θ and θ σ = θ . Then, what is left to prove is: γ s ↓ ≈ σ . Using Lemmas 3 and 2, we can show γ s ↓ ≈ σ .

4 . 2 (

 42 Lemma Rising edge). For all sitpn ∈ SITPN, b∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), E c ∈ N → C → B, ∆ ∈ ElDesign, E p ∈ N → Ins(∆) → value, τ ∈ N, s, s ∈ S(sitpn), σ e , σ, σ i , σ ↑ , σ ∈ Σ,such that -sitpn b = (d, γ) and γ E p env = E c and D H , ∅ d elab ∆, σ e γ s ↓

 Each point is proved by a separate lemma:-Apply the Rising edge equal marking lemma (p. 285) to solve Point 1.-Apply the Rising edge equal time counters lemma (p. 289) to solve Point 2.-Apply the Rising edge equal reset orders lemma (p. 290) to solve Point 3.-Apply the Rising edge equal action executions lemma (p. 298) to solve Point 4.-Apply the Rising edge equal function executions lemma (p. 299) to solve Point 5.

6. 4 .

 4 A detailled proof: equivalence of fired transitions 219 -Apply the Falling edge equal fired lemma (p. 220) to solve Point 8. The proof of the Falling edge equal fired lemma is detailled in Section 6.4.

Definition 45 (-

 45 Falling edge hypotheses). Given a sitpn ∈ SITPN, b∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), E c ∈ N → C → B, ∆ ∈ ElDesign, E p ∈ N → Ins(∆) → value, τ ∈ N, s, s ∈ S(sitpn), σ e , σ, σ ↓ , σ ∈ Σ,assume that: -SITPN sitpn is transformed into the H-VHDL design d and yields the binder γ: sitpn b = (d, γ) Chapter 6. Proving semantic preservation in HILECOP -Simulation/Execution environments are similar: γ E p env = E c -∆ is the elaborated version of design d, and σ e is the default design state of ∆: D H , ∅ d elab ∆, σ e -Starting states are similar according to the full post rising edge similarity relation: γ, E c , τ On the SITPN side, the execution of a falling edge phase starting from state s leads to state s : E c , τ s ↓ -→ s -On the H-VHDL side, the simulation of a falling edge phase starting from state σ leads to state σ : ∆, σ d.cs ↓ -→ σ ↓ and ∆, σ ↓ d.cs -→ σ -State σ is a stable design state: D H , ∆, σ d.cs comb --→ σThe hypotheses of Definition 45 are used in all the lemmas expressing properties of the falling edge phase. Therefore, Definition 45 enables the conciser expression of these lemmas. Then, we can express Lemma 4 as follows:

FIGURE 6 . 4 :

 64 FIGURE 6.4: The set of fired transitions on an example SITPN at a given SITPN state s; on the left side, the dotted arrows indicates the priority relation between the three transitions (t c is the top-priority transition); on the right side, each transition is associated to its Pr set, which is necessary to compute the residual marking.

Chapter 6 .

 6 Proving semantic preservation in HILECOP fired evaluation

FIGURE 6 . 5 :

 65 FIGURE 6.5: Wiring of the fired output port in the transition design architecture; on the left side is the input interface of the transition design; on the right side is the output interface of the transition design, with the fired port; in red are the parts of the architecture that depend on synchronous logic and in black are the parts that are purely combinational.

6. 4 .

 4 A detailled proof: equivalence of fired transitions 225 2. Assuming

∆

Figure 6 .FIGURE 6 . 7 :

 667 FIGURE 6.7: Wiring of the priority_authorizations output port in the architecture of the place design; the input port interface is on the left side and the output port interface is on the right side; the synchronous parts are in red and the combinational ones are in black.

1 priority_evaluation: 2 variable v_saved_output_token_sum : local_weight_t; 3 begin 4 v_saved_output_token_sum := 0; 5 6for k in 0 to output_arcs_number -1 loop 7 8 10 ifLISTING 6 . 3 :

 1234571063 process (output_transitions_fired, s_marking, output_arcs_types, output_arcs_weights) priority_authorizations(k) ⇐ (s_marking -v_saved_output_token_sum >= output_arcs_weights(k)); 9 (output_transitions_fired(k) = '1') and (output_arcs_types(k) = arc_t(BASIC)) then 6.4. A detailled proof: equivalence of fired transitions 227 11 v_saved_output_token_sum := v_saved_output_token_sum + output_arcs_weights(k); The priority_evaluation process in the place design's architecture.

PCI id p s marking = 3 FIGURE 6 . 9 :

 369 FIGURE 6.9: Bug detection: divergence between the value of time counters and the value of the s_time_counter signals due to the loss of the firing status information during the stabilization phase; the value of time counters and of the s_time_counter signals are in green; the value of diverging signals are in red.

Listing 6 .

 6 4 presents the Coq implementation of Theorem 5 along with the sequence of tactics constituting its proof. We also declared the Behavior preservation theorem, and the Elaboration, Initialization, Trace existence theorems as axioms in the Soundness.v file under the soundness folder of the Git repository. § ¤ Theorem sitpn2hvhdl_full_trace_sim : forall τ sitpn decpr id ent id arch E c θ s d E p b θ σ γ ∆, (* sitpn is well-defined. *) IsWellDefined sitpn → (* sitpn translates into (d, γ). *) sitpn_to_hvhdl sitpn decpr id ent id arch b = (inl (d, γ)) → (* Environments are similar. *) SimEnv sitpn γ E c E p → (* SITPN sitpn yields execution trace θ s after τ execution cycles. *) SitpnFullExec sitpn E c γ τ θ s → (* Design d yields simulation trace θ σ after τ simulation cycles. *) hfullsim E p τ ∆ d θ σ → (* ** Conclusion: traces are similar. ** *) SimTrace γ θ s θ σ .

LISTING 6 . 4 :

 64 Solved with [first_cycle] and [simulation] lemmas. *) lazymatch goal with | [Hsimloop: simloop _ _ _ _ _ _ _ |-_] ⇒ inversion_clear Hsimloop; constructor; eauto with Coq implementation of the Full trace similarity theorem and the mechanized version of its proof.

 CAN WE PROVE THAT THE MODEL-TO-TEXT TRANSFORMATION DESCRIBED IN THEHILECOP METHODOLOGY IS SEMANTIC PRESERVING?

FIGURE 7 . 1 :

 71 FIGURE 7.1: The macroplace is the double-lined circle that encapsulates an SITPN subnet; the subnet is called a refinement. The arcs that enter and go out of the macroplace are particular arcs, thus with a particular semantics, represented by dotted arrows.

 firing_condition_evaluation : process (s_enabled, s_condition_combination, s_reinit_time_counter, s_time_counter) begin if ((s_condition_combination = '1') and (s_enabled = '1') and ((transition_type = transition_t(NOT_TEMPORAL)) or ((transition_type = transition_t(TEMPORAL_A_B)) and (s_reinit_time_counter = '0') and (s_time_counter >= (time_A_value1)) and (s_time_counter < time_B_value)) or ((s_reinit_time_counter = '0') and (((transition_type = transition_t(TEMPORAL_A_A)) and (s_time_counter = (time_A_value1))) or ((transition_type = transition_t(TEMPORAL_A_INFINITE)) and (s_time_counter >= (time_A_value1)))) or ((transition_type /= transition_t(NOT_TEMPORAL)) and (s_reinit_time_counter = '10 to input_arcs_number -1 loop v_priority_combination := v_priority_combination and priority_authorizations(i); end loop; s_priority_combination ⇐ v_priority_combination; end process priority_authorization_evaluation;

4 .

 4 ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , s 0 .cond(c) = σ 0 (id c).

5 .

 5 ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s 0 .ex(a) = σ 0 (id a).

6 .

 6 ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s 0 .ex(f) = σ 0 (id f).

Lemma 6 (

 6 Initial states equal marking). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), ∆ ∈ ElDesign, σ e , σ 0 ∈ Σ that verify the hypotheses of Definition 49, then ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s 0 .M(p) = σ 0 (id p)(s_marking).

 Given a p ∈ P and an id p ∈ Comps(∆) s.t. γ(p) = id p , let us show that s 0 .M(p) = σ 0 (id p)(s_marking).

 By property of the elaboration relation, comp(id p , place, g p , i p , o p) ∈ d.cs, and <input_arcs_number⇒ 1> ∈ g p , we can deduce ∆(id p)(ian) = 1.By property of the initialization relation, comp(id p , place, g p , i p , o p) ∈ d.cs, <input_-transitions_fired(0)⇒ true> ∈ i p and <input_arcs_weights(0) ⇒ 0> ∈ i p , we can deduce σ 0 (id p)(itf)[0] = true and σ 0 (id p)(iaw)[0] = 0.Rewriting the goal with ∆(id p)(ian) = 1, σ 0 (id p)(itf)[0] = true, σ 0 (id p)(iaw)[0] = 0 and simplifying the goal, tautology.2. input(p) = ∅:By construction, <input_arcs_number ⇒ |input(p)|> ∈ g p , and by property of the elaboration relation, and comp(id p , place, g p , i p , o p) ∈ d.cs, we can deduce ∆(id p)(ian) = |input(p)|.

4 .

 4 ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s 0 .ex(a) = σ(id a).

5 .

 5 ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s 0 .ex(f) = σ(id f).

 E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 where conds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}.

9 .

 9 ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , σ(id c) = E c (τ, c).

Definition 51 (D. 3 . 1

 5131 Rising edge hypotheses). Given an sitpn ∈ SITPN, b∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), E c ∈ N → C → B, ∆ ∈ ElDesign, E p ∈ N → Ins(∆) → value, τ ∈ N, s, s ∈ S(sitpn), σ e , σ, σ i , σ ↑ , σ ∈ Σ, assume that: -sitpn b = (d, γ) and γ E p env = E c and D H , ∅ d elab ∆, σ e γ s ↓ ≈ σ -E c , τ s ↑ s -Inject(σ, E p , τ, σ i) and D H , ∆, σ i d.cs ↑ -→ σ ↑ and D H , ∆, σ ↑ d.cs -→ σ -State σ is a stable design state: D H , ∆, σ d.cs comb --→ σ Risingedge and MarkingLemma 25 (Rising edge equal marking). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition

D. 3 . 2

 32 = σ(id p)(sm)σ(id p)(sots) + σ(id p)(sits) Rising edge and conditions Lemma 26 (Rising edge equal condition combination). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition 51, then ∀t ∈ T, id t ∈ Comps(∆) s.t.γ(t) = id t , σ (id t)(s_condition_combination) = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 where conds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}.Proof.Given a t and an id t s.t. γ(t) = id t , let us showσ (id t)(s_condition_combination) = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1

∏σ 1 .

 1 i=0 (id t)(input_conditions)[i] (D.8)Rewriting the goal with D.8,D.3. Rising Edge 287 ∆(id t)(cn)-1 ∏ i=0 σ (id t)(ic)[i] = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -Let us perform case analysis on conds(t); there are two cases:-CASE conds(t) = ∅: ∆(id t)(cn)-1 ∏ i=0 σ (id t)(ic)[i] = true.

 1 and σ (id t)(ic)[0] = true, tautology. -CASE conds(t) = ∅: By construction, <cn ⇒ |conds(t)|> ∈ g t , and by property of the stabilize relation, we can deduce ∆(id t)(cn) = |conds(t)|.Rewriting the goal with ∆(id t)(cn) = |conds(t)|:|conds(t)|-1 ∏ i=0 σ (id t)(ic)[i] = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1There exists a mapping, given by the transformation function, between the set conds(t) and the indexes of [0, |conds(t)| -1].

 Given a c ∈ conds(t), let us show the above goal.By construction, for all c ∈ conds(t), there exists an id c ∈ Ins(∆) such thatγ(c) = id c -C(t, c) = 1 implies <ic(β(c)) ⇒ id c > ∈ i t -C(t, c) = -1 implies <ic(β(c)) ⇒ not id c > ∈ i tLet us take such an id c with the above properties.By definition of c ∈ conds(t), we have C(t, c) = 1 ∨ C(t, c) = -1. Let us perform case analysis on C(t, c) = 1 ∨ C(t, c) = -1:

 As u(I s (t)) = ∞, there exists an a ∈ N * , and a b ∈ N * s.t. I s (t) = [a, b]. Let us take such an a and b. By construction, <maximal_time_counter ⇒b> ∈ g t and there exists tt ∈ {TEMP_-A_A,TEMP_A_B} s.t. <transition_type ⇒tt> ∈ g t ; by property of the elaboration relation, we can deduce ∆(id t)(mtc) = b = u(I s (t)) and ∆(id t)(tt) = NOT_TEMP. Let us perform case analysis on t ∈ Sens(s.M): (a) CASE t / ∈ Sens(s.M): By definition of γ, E c , τ s ↑ ≈ σ, we have σ(id t)(se) = false.

2 .

 2 σ(id t)(scc) = true : By definition of γ, E c , τ s ↑ ≈ σ: σ(id t)(scc) = ∏ c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 (D.32) where conds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}.

1 .

 1 Rewriting the goal with (D.32):∏c∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true.To ease the reading, let us definef (c) = E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -Let us reason by induction on the left term of the goal: D.4. Falling Edge 325 -BASE CASE: true = true.-INDUCTION CASE:∏ c ∈conds(t)\{c} f (c) = true f (c) . ∏ c ∈conds(t)\{c} f (c) = true.Rewriting the goal with the induction hypothesis, simplifying the goal, and unfolding the definition of f (c):E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true.

 As c ∈ conds(t), let us perform case analysis onC(t, c) = 1 ∨ C(t, c) = -1: (a) CASE C(t, c) = 1: E c (τ, c) = true.By definition of t ∈ Firable(s), we can deduce that s .cond(c) = true. By definition of E c , τ s ↓ -→ s (Rule (1)), we have s .cond(c) = E c (τ, c). Thus, E c (τ, c) = true.

 (b) C(t, c) = -1: not E c (τ, c) = true. By definition of t ∈ Firable(s), we can deduce that s .cond(c) = false. By definition of E c , τ s ↓ -→ s (Rule (1)), we have s .cond(c) = E c (τ, c). Thus, not E c (τ, c) = true.

 Let us perform case analysis on I s (t); there are two cases:-CASE I s (t) = [a, b]where a, b ∈ N * ; then, either a = b or a = b:

2 .

 2 ∀c ∈ C, C(t, c) = 1 ⇒ s .cond(c) = true and C(t, c) = -1 ⇒ s .cond(c) = false 3. t / ∈ T i ∨ s .I(t) ∈ I s (t)Let us prove these three points:1. t ∈ Sens(s .M) :By definition of E c , τ s ↓ -→ s , we have s.M = s .M. Rewriting the goal with s.M = s .M: t ∈ Sens(s.M).

2 .

 2 ∀c ∈ C, C(t, c) = 1 ⇒ s .cond(c) = true and C(t, c) = -1 ⇒ s .cond(c) = falseGiven a c ∈ C, there are two points to prove:

 (a) C(t, c) = 1 ⇒ s .cond(c) = true.

 (b) C(t, c) = -1 ⇒ s .cond(c) = false. Let us prove these two points: (a) Assuming that C(t, c) = 1, let us show s .cond(c) = true. D.4. Falling Edge 331 By definition of γ, E c , τ s ↑ ≈ σ, we have:σ(id t)(scc) = ∏ c ∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true (D.43)whereconds(t) = {c i ∈ C | C(t, c i) = 1 ∨ C(t, c i) = -1}. From C(t, c) = 1, we can deduce c ∈ conds(t). By definition of the product expression, we have:E c (τ, c) . ∏ c ∈conds(t)\{c} E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true (D.44) From (D.44), we can deduce that E c (τ, c) = true. By definition of E c , τ s ↓ -→ s (Rule (1)), we have s .cond(c) = E c (τ, c). Rewriting the goal with s .cond(c) = E c (τ, c) and E c (τ, c) = true: tautology. (b) Assuming that C(t, c) = -1, let us show s .cond(c) = false. By definition of γ, E c , τ s ↑ ≈ σ, we have:σ(id t)(scc) = ∏ c ∈conds(t) E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true (D.45)whereconds(t) = {c ∈ C | C(t, c) = 1 ∨ C(t, c) = -1}.From C(t, c) = -1, we can deduce c ∈ conds(t). By definition of the product expression, we have:not E c (τ, c) . ∏ c ∈conds(t)\{c} E c (τ, c) i f C(t, c) = 1 not(E c (τ, c)) i f C(t, c) = -1 = true (D.46) From (D.46), we can deduce that E c (τ, c) = false. By definition of E c , τ s ↓ -→ s (Rule (1)), we have s .cond(c) = E c (τ, c).

 donne un exemple de RdP interprété. : i > 10 • C f 0 : set temperature(o 1 ,s) c 1 : i ≤ 10 • C and s a 0 : green LED on(o 2) a 1 : red LED on(o 2) FIGURE 2: Un exemple de réseau de Petri interprété; sur le côté gauche, le RdP; sur le côté droit, les expressions Booléennes associées aux conditions et les opérations associées aux actions et fonctions.

				xvii
	p 0	a 0	p 1
	t 0	c 0 f 0	c 0
	p 2		a 1
	t 1	c 1

 .1 presents an example of the most simple form of PN, namely, the place-transition PN. In this chapter, when no precision is given on the class of PN considered, a PN refers to a place-transition PN.

		t 0	t 2	
		(Begin treatment 1)	(Start treatment 2)	
		sem		
	p 0	p 1	p 2	p 3
	(Waiting)	(Treatment 1)	(Treatment 2)	(Waiting)
		t 1	t 3	
		(End treatment 1)	(End treatment 2)	

 .2 shows the state of the PN of Figure3.1 after the firing of the transition t 0 .

		t 0	t 2	
		(Begin treatment 1)	(Start treatment 2)	
		sem		
	p 0	p 1	p 2	p 3
	(Waiting)	(Treatment 1)	(Treatment 2)	(Waiting)
		t 1	t 3	
		(End treatment 1)	(End treatment 2)	

 Figure 3.4, the set of VHDL signals, on which the interpretation elements act upon, is {i, s, o 1 , o 2 }. Here, signal i is an input port of the hardware, s is an internal signal, and o 1 and

		• C and s	
		a 0 : green LED on(o 2)	
		a 1 : red LED on(o 2)	
		FIGURE 3.4: An example of interpreted Petri net; on the left side, the interpreted	
		Petri net; on the right side, examples of tests associated to conditions and opera-	
		tions associated to actions and functions.	
	o 2 are two output ports. The action a 0 is activated as place p 0 is marked by one token; thus,	
	the operation green_LED_on(o 2) is currently executed. Also, function f 0 will be executed (i.e.	
	operation set_temperature(o 1 , s)) at the firing of t 0 , that is if condition c 0 is true and t 0 is	
	sensitized. On the right side of Figure 3.4, we associate Boolean expressions with conditions;	
	these expressions depend on the value of the signals declared by the model. Also, we associate	
	actions and functions with operations that handle the signals of the model which are passed	
	as inputs. Concretely, in the HILECOP high-level models, functions and actions are declared	
	as VHDL procedures. Listing 3.1 gives one possible implementation of the set_temperature	
	operation as a VHDL procedure; the set_temperature operation is associated with function f 0	
	in Figure 3.4. §	¤
	1	procedure set_temperature(signal tmp : out integer; signal flag : inout std_logic) is	
	2	begin	
	3	if flag = '1' then	
	4 5 6	tmp ⇐ 30; flag ⇐ '0'; else	
	7 8 9	tmp ⇐ 10; flag ⇐ '1'; endif;	
	10	return;	
	11 ¦	end set_temperature;	¥
		LISTING 3.1: An example of VHDL procedure implementing the operation set_-	
		temperature associated with the function f 0 .	

In

 Definition 17 (Initial state). For a given sitpn ∈ SITPN, s 0 ∈ S(sitpn) is the initial state of sitpn, such that s 0 =< M 0 , O N , O B , O B , O B >, where M 0 is the initial marking of the SITPN, O N is a function that always returns 0, O B is a function that always returns false.

	Notation 3 (SITPN state and fields). In the rest of memoir, we refer to a specific field of a
	SITPN state s with the infix pointed notation, e.g. s.M refers to the marking of state s, and
	s.M(p) denotes the marking of a given place p at state s; s.I refers the function yielding the value
	of time counters at state s, and s.I(t) denotes the value of the time counter associated with the
	transition t at state s.
	At the beginning of its execution, a SITPN model is associated with an initial state defined
	as follows:
	3. reset t ∈ T i → B is the function mapping time transitions to time counter reset orders (defined as Booleans).
	4. ex ∈ A F → B is the function representing the current activation (resp. execution) state of actions (resp. functions).
	5. cond ∈ C → B is the function representing the current value of conditions (defined as Booleans).

 ∈ S(sitpn) and (clk, τ) ∈ L, and which is defined as follows: * ∀τ ∈ N, ∀s, s ∈ S(sitpn), we have E c , τ s =< M, I, reset t , ex, cond > and s =< M, I , reset t , ex , cond >, if:

	The SITPN state transition
	relation defined in the SITPN semantics has two cases of definition, one for each clock event.
	The SITPN state transition relation describes the evolution of the state of a SITPN.
	Definition 21 (SITPN Semantics). The semantics of a given sitpn ∈ SITPN is the transition system <L, E c , → > where:
	-L ⊆ {↑, ↓} × N is the set of transition labels. A label is a couple (clk, τ) composed of a clock event clk ∈ {↑, ↓}, and a time value τ ∈ N expressing the current count of clock cycles.
	-E c ∈ N → C → B is the environment function, which gives (Boolean) values to conditions (C) depending on the count of clock cycles (N).
	-→⊆ S(sitpn) × L × S(sitpn) is the SITPN state transition relation, which is noted E c , τ s clk -→ s where s, s

↓

-→ s , where s

 =< M, I, reset t , ex, cond > and s =< M , I, reset t , ex , cond >, if:

) All the time transitions verifying the same conditions as above, but with locked counters,
	keep having locked counters (values are stalling), i.e.:	
	∀t ∈ T i , t ∈ Sens(M) ∧ reset t (t) = false ∧ I(t) > u(I s (t)) ∧ u(I s (t)) = ∞ ⇒ I (t) = I(t).
	(6) All the time transitions disabled by the marking M have their time counters set to zero,
	i.e.:		
	∀t ∈ T i , t / ∈ Sens(M) ⇒ I (t) = 0. * ∀τ ∈ N, ∀s, s ∈ S(sitpn), we have E c , τ s ↑ -→ s , where s (7) M is the new marking resulting from the firing of all the transitions contained in
	Fired(s), i.e.:		
	t∈Fired(s) ∀p ∈ P, M (p) = M(p) -∑	t∈Fired(s) pre(p, t) + ∑	post(t, p).
	(8) A time transition receives a reset order if it is fired at state s, or, if there exists a place p
	connected to t by a basic or test arc and at least one output transition of p is fired
	and the transient marking of p disables t; no reset order is sent otherwise:
	∀t ∈ T i , t ∈ Fired(s) ∨ ∃p ∈ P, ω ∈ N * , [pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)] pre(p, t i) > 0 ∧ ∑ t i ∈Fired(s) pre(p, t i) < ω ∧ M(p) -∑ t i ∈Fired(s) ⇒ reset t (t) = true and reset t (t) = false otherwise.
	(9) All functions associated with at least one fired transition are executed, i.e:

 An example of two separate conflict groups, namely: {t 0 , t 3 , t 1 } and {t 1 , t 2 }.

				and does not impact the
	HILECOP model-to-text transformation.		
		p 0	p 1	
	t 0	t 3	t 1	t 2
	FIGURE 3.13:			

 1, -1}. The priority relation is implemented by the pr function (Line 24) taking two transitions in parameter and projecting to the type of logical propositions, i.e. the Prop type. Listing 3.3 presents the implementation of the SITPN state structure as a Coq record type. § ¤

1 Record SitpnState (sitpn : Sitpn) := BuildSitpnState { 2 3 M : P sitpn → nat;

4 I : T i sitpn → nat; 5 reset : T i sitpn → bool; 6 cond : C sitpn → bool;

7 ex : A sitpn + F sitpn → bool;

 The rst ss ss' statement is equivalent to: § '0' is the equivalent to the Boolean value false in concrete VHDL syntax. More details are given, in Section 4.6.4, regarding the semantics of the above statement in relation to the initialization phase that starts a design's simulation.The rising ss and falling ss statements are equivalent to the following if statements: § ¤

	4.4. Preliminary definitions	87
	In the above listing, if rising_edge(clk) then ss end if;	
	if falling_edge(clk) then ss end if;	
	¦	¥

¤

if rst = '0' then ss else ss' end if; ¦ ¥

TABLE 4 .

 4 2: The type and value semantic types.

 σ, Λ valid ss (for (id v , e, e') ss)

	Well-typed rising and falling edge blocks

WTRISING ∆, σ, Λ valid ss (ss) ∆, σ, Λ valid ss (rising ss) WTFALLING ∆, σ, Λ valid ss (ss) ∆, σ, Λ valid ss (falling ss) Well-typed rst blocks WTRST ∆, σ, Λ valid ss (ss) ∆, σ, Λ valid ss (ss) ∆, σ, Λ valid ss (rst ss ss') Well-typed null statement WTNULL ∆, σ, Λ valid ss (null)

 4.1.2) to simulate such synthesizable designs. However, H-VHDL designs are also synchronous designs. As such, a H-VHDL design is equipped with a clock input port. The value of the clock input port changes from 0 to 1 and inversely at a constant rate, i.e. the clock rate. One can see the changing of the value of the clock input port as the result of the execution of a unit-delay signal assignment where the time clause is equal to half the clock period. Listing 4.4 illustrates how a H-VHDL

	1	architecture toplevel_arch of toplevel is
	2	begin
	3	
	4	clkp : process (clock)
	5	begin
	6 7	clock ⇐ not clock after τ --where τ is half a clock period end process clkp;
	8	
	9	id tl : entity tl
	10	generic map (. . .)
	12	
	13	end toplevel_arch;

design tl can be embedded in another top-level design alongside a process regulating the value of a clock signal by using a unit-delay signal assignment.

Listing

4.4 presents the behavioral part of the embedding top-level design. § ¤ 11 port map (clock ⇒ clock, . . .); ¦ ¥ LISTING 4.4: An architecture to simulate a synchronous design. The architecture toplevel_arch is composed of the clkp process, that simulates a clock signal, and of an instance of the design tl named id tl , i.e. the design under simulation.

 Definition 34 (Input port values update). Given an elaborated design ∆ and a simulation environment E p ∈ N → (Ins(∆) → value), let us define the relation expressing the update of the value of input ports at a given design state σ ∈ Σ and clock cycle count τ ∈ N, thus resulting in a new state σ i ∈ Σ. The relation is written Inject(σ, E p , τ, σ i) and verifies that:

 represents the set of signals that have a different value in signal store S and S .

MAPOPSIMPLETOSIMPLE

 6 (Signal assignments). Let us take the example of a synchronous process that performs a swap between the value of two signals s 1 and s 2 at the falling edge of the clock signal clk. This process is implemented by the following listing written in VHDL concrete syntax: § ¤

	swap : process(clk)
	begin
	if falling_edge(clk) then
	s 1 ⇐ s 2 ; s 2 ⇐ s 1 ; end if;
	end process swap;

¦ ¥

 ∅ (oav(0), id av)

	∆ 2 , ∆ p , ∅, ∅	list opm ---→ {(oav, 0)}, {id av } (oav(0), id av), (pauths, open) (rtt(0), id rt), (marked, id m) list opm ---→ {(oav, 0), pauths, (rtt, 0), marked} LISTOPMCONS B , {id av , id rt , id m }	LISTOPMCONS A
					VALIDOPM
		∆ 2 , ∆ p valid opm	(oav(0), id av), (pauths, open) (rtt(0), id rt), (marked, id m)
			. . .	
		(pauths, open), (rtt(0), id rt), (marked, id m)	list opm ---→	{(oav, 0), pauths, (rtt, 0), marked}
	id av / ∈ ∅	∈ ∅		

LISTOPMCONS B ∆ 2 , ∆ p , {(oav, 0)}, {id av } , {id av , id rt , id m } (1) ∆ p (oav) = array(bool, 0, 0) ∆ 2 (id av) = bool oav / ∈ ∅ and (oav, 0) /

FIGURE 4.16: An example of validity checking performed on the output port map of the place component instance id p . The bottom proof tree represents the top-right premise of the top proof tree.

 The resulting simulation trace is only composed of states σ 1 and σ 2 .

	140		Chapter 4. H-VHDL: a target hardware description language
	. . .			
	D H , E p , ∆, 1, σ 0 cs tl D (1) 1 > 0	↑,↓ -→ σ 1 , σ 2	SIMCYC	SIMLOOP 1
	FIGURE 4.25: The execution of the tl design's behavior during one clock cycle.

SIMEND D H , E p , ∆, 0, σ 2 cs tl → [] H , E p , ∆, 1, σ 0 cs tl → (σ 1 :: σ 2 :: [])

 Listing 4.8 gives the implementation of the design state structure through the definition of the DState inductive type. The constructor of the DState type defines three fields: sigstore, implementing the signal store S of the design state, compstore, implementing the component store C, and events, implementing the set of events E of the design state. The sigstore field is a map from identifiers to values. The compstore field is a map from identifiers to design states, justifying the inductive definition of the DState type. The events field is an instance of the IdSet type. The IdSet is the type of sets of identifiers (i.e. sets of natural numbers). The IdSet type is defined leveraging the MSets module of the Coq standard library. § ¤

	4.8. Implementation of the H-VHDL syntax and semantics	143
	5 ¦	}.	¥
		LISTING 4.8: The implementation of the design state structure with the Coq proof	
		assistant.	
	Design state	

§ ¤ 1 Inductive SemanticObject : Type := 2 | Generic (t : type) (v : value) 3 | Input (t : type) 4 | Output (t : type) 5 | Declared (t : type) 6 | Process (lenv : LEnv) 7 | Component (∆ c : IdMap SemanticObject).

8 9 Definition ElDesign := IdMap SemanticObject. ¦ ¥ LISTING 4.7: The implementation of the elaborated design structure with the Coq proof assistant. 1 Inductive DState : Type := MkDState { 2 sigstore : IdMap value; 3 compstore : IdMap DState; 4 events : IdSet;

 1, is implemented in Coq by the edesign relation. Listing 4.9 presents the definition of the edesign relation as an inductive type. As usual, a n-ary relation is implemented in Coq by a type defined with n parameters and projecting to the Prop type. The edesign relation has five parameters. The first parameter is the design store D of type IdMap design, i.e. a map from identifiers to H-VHDL designs as defined by the abstract syntax. The second parameter is the dimensioning function M of type IdMap value, i.e. a map from identifiers to values. The third parameter is the design being elaborated,

of type design. The fifth and sixth parameters are the elaborated design (of type ElDesign and the default design state (of type DState) resulting from the elaboration. In Listing 4.9, the EDesign constructor implements the DESIGNELAB rule presented in Section 4.5.1. From Line 7 to Line 10, the constructor defines the premises of Rule DESIGNELAB. The empty elaborated design structure, denoted ∆ ∅ , is implemented by the EmptyElDesign definition, and the empty design state structure, denoted by σ ∅ , is implemented by the EmptyDState definition. Line 13 implements the conclusion of Rule DESIGNELAB. § ¤ 1 Inductive edesign (D : IdMap design) : IdMap value → design → ElDesign → DState → Prop := 2 | EDesign :

 36 to 38 implement the conclusion of Rule COMPELAB. At Line 39, the cstore_add function binds id c to design state σ c in the component store of state σ and returns the resulting state. At Line 41, the EBehNull constructor implements Rule CSNULLELAB. At Line 43, the EBeh-Par constructor implements Rule CSPARELAB. § ¤

	4	
	5	(* Premises *)
	8	
	9	(* Side conditions *)
	10 11	∼NatMap.In id p ∆ →
	12	(forall id s ,

1 with ebeh (D : IdMap design) : ElDesign → DState → cs → ElDesign → DState → Prop := 2 | EBehPs : 3 forall id p sl vars stmt Λ ∆ σ, 6 evars ∆ EmptyLEnv vars Λ → 7 validss ∆ σ Λ stmt → 13 NatSet.In id s sl → 14 exists t, MapsTo id s (Declared t) ∆ ∨ MapsTo id s (Input t) ∆) → 15 16 (* Conclusion *) 17 ebeh D ∆ σ (cs_ps id p sl vars stmt) (NatMap.add id p (Process Λ) ∆) σ 4.8. Implementation of the H-VHDL syntax and semantics 145 18 19 | EBehComp :

 [START_REF]The B-Method[END_REF] formalizes the H-VHDL simulation algorithm. The Coq implementation of the full simulation relation, presented in Listing 4.11, is a strict translation of Rule FULLSIM. At Lines 14 and 15, the term (behavior d) represents the concurrent statements defining the behavior of the H-VHDL design d (i.e. d.cs in the formal rule). Line 13 corresponds to the elaboration phase, Line 14 to the initialization phase, and Line 15 to the main simulation loop. § ¤

1 Inductive fullsim 2 (D : IdMap design) 3 (M : IdMap value) 4 (E p : nat → Clk → IdMap value) 5 (τ : nat) 146 Chapter 4. H-VHDL: a target hardware description language 6 (∆ : ElDesign) 7 (d : design) : list DState → Prop :=

 0), (itf(0), false)}

	5	else
	6 7	i ← 0 foreach t ∈ input(p) do
	13	else
	14	i ← 0
	20	else
	21	id s ← genid()

8

i p ← i p ∪ {(iaw(i), post(t, p))}

9 i ← i + 1 10 if output(p) = ∅ then 11 i p ← i p ∪ {(oaw(0), 0), (oat(0), basic), (otf(0), false)} 12 o p ← o p ∪ {(oav, open), (

pauths, open), (rtt, open)} 15 foreach t ∈ output c (p) ∪ output nc (p) do 16 (ω, a) ← pre(p, t) 17 i p ← i p ∪ {(oaw(i), ω), (oat(i), a)} 18 i ← i + 1 19 if acts(p) = ∅ then o p ← o p ∪ {(marked, open)} 22 d.sigs ← d.sigs ∪ {(id s , boolean)} 23 o p ← o p ∪ {(marked, id s)} 24 id p ← genid() 25 d.cs ← d.cs || comp(id p , place, g p , i p , o p)

 , transition, g t , i t , o t) ← get_comp(γ(t), d.cs)

	3 4 5 comp(id t 6 i ← 0 foreach t ∈ input(p) do i p ← i p ∪ {(itf(i), actual(fired, o t))} 7 i ← i + 1
	8 9	i ← 0 foreach t ∈ output c (p) do

Algorithm 10: generate_interconnections(sitpn, d, γ) 1 foreach p ∈ P do 2 comp(id p , place, g p , i p , o p) ← get_comp(γ(p), d.cs) 10 comp(id t , transition, g t , i t , o t) ← get_comp(γ(t), d.cs) 11 i p ← i p ∪ {(otf(i), actual(fired, o t))} 12 connect(o p , i t , oav(i), iav, d) 13 connect(o p , i t , rtt(i), rt, d) 14 connect(o p , i t , pauths(i), pauths, d) 15 put_comp(id t , comp(id t , transition, g t , i t , o t), d.cs) 16 i ← i + 1 17 foreach t ∈ output nc (p) do 18 comp(id t , transition, g t , i t , o t) ← get_comp(γ(t), d.cs) 19 i p ← i p ∪ {(otf(i), actual(fired, o t))} 20 connect(o p , i t , oav(i), iav, d) 21 connect(o p , i t , rtt(i), rt, d) 22 id s ← genid() 23 d.sigs ← d.sigs ∪ (id s , boolean) 24 o p ← o p ∪ {(pauths(i), id s)} 25 cassoc(i t , pauths, true) 26 put_comp(id t , comp(id t , transition, g t , i t , o t), d.cs) 27 i ← i + 1 28 put_comp(id p , comp(id p , place, g p , i p , o p), d.cs)

 rss; id f ⇐ e id f 14 d.cs ← d.cs || process(function, {clk}, ∅, rst (rstss) (rising rss))

	11	e id f ← id s or e id f
	12	rstss ← rstss; id f ⇐ false

false 8 foreach t ∈ trs(f) do 9 comp(id t , transition, g t , i t , o t) ← get_comp(γ(t), d.cs) 10 id s ← actual(fired, o t) 13 rss ←

 Consider an initial state S 1 for program P 1 and an initial state S 2 for program P 2 such that S 1 and S 2 are similar states w.r.t. to a given state comparison relation established between L 1 and L 2 . Then, compiler comp is semantic preserving if it verifies the following property: If the execution of P 1 leads from state S 1 to final state S 1 , then there exists a final state S 2 resulting of the execution of program P 2 from state S 2 such that S 1 and S 2 are similar w.r.t. the state comparison relation.

 Definition 37 (General state similarity). For a given sitpn ∈ SITPN, an H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are similar, written γ s ∼ σ if1. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s.M(p) = σ(id p)(s_marking). 2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s.I(t) ≤ l(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s.I(t) > l(I s (t)) ⇒ σ(id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) > u(I s (t)) ⇒ σ(id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) ≤ u(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) . 3. ∀t ∈ T i ,id t ∈ Comps(∆) s.t. γ(t) = id t , s.reset t (t) = σ(id t)(s_reinit_time_counter).

 Definition 38 (Post rising edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are similar after a rising edge, written P, id p ∈ Comps(∆) s.t. γ(p) = id p , s.M(p) = σ(id p)(s_marking).2. ∀t ∈T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s.I(t) ≤ l(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s.I(t) > l(I s (t)) ⇒ σ(id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) > u(I s (t)) ⇒ σ(id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s.I(t) ≤ u(I s (t)) ⇒ s.I(t) = σ(id t)(s_time_counter) . 3. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , s.reset t (t) = σ(id t)(s_reinit_time_counter).

	γ s 1. ∀p ∈ 4. ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) ↑ ∼ σ iff

 Definition 39 (Full post rising edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), a clock cycle count τ ∈ N, and an SITPN execution environment E c ∈ N → C → B, an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are fully similar after a rising edge happening at clock cycle count τ, written γ, E c , τ s Definition 38) and 1. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Sens(s.M) ⇔ σ(id t)(s_enabled) = true. Chapter 6. Proving semantic preservation in HILECOP 2. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Sens(s.M) ⇔ σ(id t)(s_enabled) = false.

	202
	3. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t)

↑ ≈ σ, if γ s ↑ ∼ σ (

 Definition 41 (Full post falling edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ W M(sitpn, d), an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are fully similar after a falling edge, T, id t ∈ Comps(∆) s.t.γ(t) = id t , t ∈ Firable(s) ⇔ σ(id t)(s_firable) = true. 2. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Firable(s) ⇔ σ(id t)(s_firable) = false.3. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Fired(s) ⇔ σ(id t)(fired) = true. 4. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Fired(s) ⇔ σ(id t)(fired) = false.

	6.3. Behavior preservation theorem						203
	post falling edge state similarity relation is defined as follows:				
	written γ s	↓ ≈ σ, if γ s	↓ ∼ σ (Definition 40) and					
	1. ∀t ∈ 5. ∀p	∈	P, id p	∈	Comps(∆) s.t. γ(p)	=	id p ,	t∈Fired(s) ∑	pre(p, t)	=
	σ(id p)(s_output_token_sum).					
	6. ∀p	∈	P, id p	∈	Comps(∆) s.t. γ(p)	= id p ,	t∈Fired(s) ∑	post(t, p)	=

σ(id p)(s_input_token_sum).

 B, a θ s ∈ list(S(sitpn)), and a b ∈ P → N, let us show ElDesign, two design states σ e , σ 0 ∈ Σ, and a simulation trace θ σ ∈ list(Σ) ∆ is the elaborated version of design d, and σ e is the default design state of ∆: D H , ∅ d elab (∆, σ e) σ 0 is the initial simulation state: D H , ∆, σ e d.cs init σ 0 -Design d yields the simulation trace θ σ after τ simulation cycles, starting from initial state σ 0 : D H , E p , ∆, τ, σ 0 d.cs → θ σ Let us use this ∆ and this θ σ to prove the current goal. Given an E p such that γ E p

	6.3. Behavior preservation theorem	
	∃∆, θ σ , ∀E p , γ E p	env = E c ⇒ (D H , ∆, ∅, E p , τ d	f ull --→ θ σ) ∧ θ s ∼ θ σ
	Appealing to Theorems 2 (p. 208), 3 (p. 208) and 4 (p. 208), let us take an elaborated
	design ∆ ∈ such that:		
	-env = E c ,
	it remains to be proved that:	
	that		

 INDUCTION CASE: Assuming the following induction hypothesis ∀s, σ, θ s , θ σ s.t. γ s ↓ ≈ σ and E c , τ sitpn, s → θ s and E p , ∆, τσ d.cs → θ σ then σ and E c , τ + 1 sitpn, s → θ s and E p , ∆, τ + 1, σ d.cs →) and(E c , τ + 1 sitpn, s → θ s) and (E p , ∆, τ + 1, σ d.cs → θ σ), let us show γ θ s ↑ ≈ θ σ .By definition of (E c , τ + 1 sitpn, s → θ s) and (E p , ∆, τ + 1, σ d.cs → θ σ), we have:

		Chapter 6. Proving semantic preservation in HILECOP
	∀s, σ, θ s , θ σ s.t. γ s θ σ then γ θ s ↑ ≈ θ σ .
	Given s, σ, θ s , θ σ such that (γ s
	γ θ s	↑ ≈ θ σ .
	we must prove the goal at τ + 1, i.e.:

↓ ≈ ↓ ≈ σ

 2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s .I(t) ≤ l(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s .I(t) > l(I s (t)) ⇒ σ (id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) > u(I s (t)) ⇒ σ (id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) ≤ u(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) . 3. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , s .reset t (t) = σ (id t)(s_reinit_time_counter). 4. ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s .ex(a) = σ (id a). 5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s .ex(f) = σ (id f).6. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Sens(s .M) ⇔ σ (id t)(s_enabled) = true. 7. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Sens(s .M) ⇔ σ (id t)(s_enabled) = false.

	8. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t ,	
	σ (id t)(s_condition_combination) =	∏
		c∈conds(t)

 2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s .I(t) ≤ l(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s .I(t) > l(I s (t)) ⇒ σ (id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) > u(I s (t)) ⇒ σ (id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) ≤ u(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) . 3. ∀c ∈ C, id c ∈ Ins(∆) s.t. γ(c) = id c , s .cond(c) = σ (id c). 4. ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s .ex(a) = σ (id a). 5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s .ex(f) = σ (id f). 6. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Firable(s) ⇔ σ (id t)(s_firable) = true. 7. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Firable(s) ⇔ σ (id t)(s_firable) = false. 8. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Fired(s) ⇔ σ (id t)(fired) = true.9. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Fired(s) ⇔ σ (id t)(fired) = false.

	10. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , ∑ pre(p, t) = σ (id p)(s_output_token_sum).
	t∈Fired(s)
	11. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , ∑
	t∈Fired(s)

 The fired_evaluation process in the transition design architecture; its statement body assigns the fired output port; symbol ⇐ is the signal assignment operator. The priority_authorizations_evaluation process in the transition design's architecture. The local variable v_priority_combination accumulates the product of the subelements of the priority_authorizations input port in the for loop; then the last statement assigns the value of v_priority_combination to the s_priority_combination internal signal.Equation (6.3) gives the combinational equation deduced from the execution of the priority_-authorizations_evaluation process for a given TCI id t in a top-level design d. State σ denotes the current state of d, and σ(id t) denotes the internal state of id t at state σ. The elaborated design ∆ is the elaborated version of design d, and ∆(id t) is the elaborated version of id t .

	§	¤
	fired_evaluation : process (s_firable, s_priority_combination)	
	begin	
	fired ⇐ s_firable and s_priority_combination; end process fired_evaluation; ¦	¥
	LISTING 6.1: Listing 6.2 presents the priority_authorizations_evaluation process, responsible for the	
	assignment of the s_priority_combination in the transition design. §	¤
	priority_authorization_evaluation : process(priority_authorizations)	
	variable v_priority_combination : std_logic;	
	begin	
	v_priority_combination := '1';	
	for i in 0 to input_arcs_number -1 loop v_priority_combination := v_priority_combination and priority_authorizations(i);	
	end loop;	
	s_priority_combination ⇐ v_priority_combination; --Assignment of the result end process priority_authorization_evaluation; ¦	¥
	LISTING 6.2:	

 that we know which combinational equation is attached to the value of the output port fired for a given TCI, we must relate this equation to the definition of the set of fired transitions on the SITPN side. By definition of the set of fired transitions, we know that t ∈ Fired(s) is equivalent to t ∈ Firable(s) ∧ t ∈ Sens(s .M -∑

t i ∈Pr(t,s) pre(t i)) where Pr(t, s) = {t | t t ∧ t ∈ Fired(s)}. By definition of the fired port equation, we know that σ (id t)(fired) = σ (id t)(s_firable) . σ (id t)(s_priority_combination). Using these definitions to rewrite the terms of the current goal, the new goal to prove is:

t ∈ Firable(s) ∧ t ∈ Sens(s .M -∑ t i ∈Pr(t,s) pre(t i)) ⇔ σ (id t)(s_firable) . σ (id t)(s_priority_combination) = true

Thanks to Lemma 41, we know that t ∈ Firable(s) iff σ (id t)(s_firable) = true. Then, we can get rid of these two terms in the current goal; what is left to prove is: t ∈ Sens(s .M -∑ t i ∈Pr(t,s)

 Connection between the priority_authorizations output port of PCI id p and the priority_authorizations input port of TCIs id t a , id t b and id t c , and between the output_transitions_fired input port of id p and the fired ports of id t a , id t b and id t c . pauths stands for priority_authorizations and otf stands for output_transitions_fired.

	pauths(i)	id t a	fired
	pauths(2)		
	pauths(j)	id t b	fired
	pauths(k)	id t c	fired
	FIGURE 6.8:		

 6.4. A detailled proof: equivalence of fired transitions229 By looking at the definition of the Sens set (seeDefinition 18), and knowing that a basic arc of weight ω connects place p to transition t, we can deduce that s .M(p) -∑

	t i ∈Pr(t,s)	pre(p, t i) ≥ ω.

). A transition t ∈ T is said to be fired at the SITPN state s = <M, I, reset t , ex, cond>, iff there exists a subset Fset ⊆ T such that IsFiredSet(s, Fset) and t ∈ Fset. Definition 47 (IsFiredSet). Given an sitpn ∈ SITPN, a SITPN state s ∈ S(sitpn), and a subset Fset ⊆ T, the IsFiredSet relation is defined as follows: IsFiredSet(s, Fset) ≡ IsFiredSetAux(s, T, ∅, Fset) Definition 48 (IsFiredSetAux). The IsFiredSetAux relation is defined by the following rules: Firable(s) t ∈ Sens(s.M -∑ IsFiredSetAux(s, T s , F ∪ {t}, Fset) t ∈ T s s.t. t t

			t i ∈Pr(t,F)	pre(t i))
	FSETNOTFIRABLE	IsFiredSetAux(s, T s ∪ {t}, F, Fset)	Pr(t, F) = {t | t	t ∧ t ∈ F}
	t / ∈ Firable(s) IsFiredSetAux(s, T s , F, Fset) IsFiredSetAux(s, T s ∪ {t}, F, Fset) FSETNOTSENS	t ∈ T s s.t. t	t
	t / ∈ Sens(s.M -∑ t i ∈Pr(t,F) IsFiredSetAux(s, T s , F, Fset) pre(t i)) IsFiredSetAux(s, T s ∪ {t}, F, Fset)	t ∈ T s s.t. t Pr(t, F) = {t | t	t	t ∧ t ∈ F}

FSETEMP

IsFiredSetAux(s, ∅, F, F) FSETFIRED t ∈

 1. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s 0 .M(p) = σ 0 (id p)(s_marking).2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s 0 .I(t) ≤ l(I s (t)) ⇒ s 0 .I(t) = σ 0 (id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) > l(I s (t)) ⇒ σ 0 (id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) > u(I s (t)) ⇒ σ 0 (id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) ≤ u(I s (t)) ⇒ s 0 .I(t) = σ 0 (id t)(s_time_counter) . = id t , s 0 .reset t (t) = σ 0 (id t)(s_reinit_time_counter).

	3. ∀t	∈	T i , id t	∈	Comps(∆) s.t. γ(t)

 if σ 0 (id p)(itf)[0] Since input(p) = ∅, by construction, there exist an id t ∈ Comps(∆), g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs, id f t ∈ Sigs(∆) s.t. <fired ⇒id f t > ∈ o t and <input_transitions_fired(0) ⇒ id ft > ∈ i p . By property of the initialization relation, comp(id p , place, g p , i p , o p) ∈ d.cs, comp(id t , transition, g t , i t , o t) ∈ d.cs, <fired ⇒id f t > ∈ o t and <input_tran-sitions_fired(0)⇒ id ft > ∈ i p , we can deduce σ 0 (id p)(itf)[0] = σ 0 (id t)(fired). 1. ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s 0 .M(p) = σ(id p)(s_marking). 2. ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s 0 .I(t) ≤ l(I s (t)) ⇒ s 0 .I(t) = σ(id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) > l(I s (t)) ⇒ σ(id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) > u(I s (t)) ⇒ σ(id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s 0 .I(t) ≤ u(I s (t)) ⇒ s 0 .I(t) = σ(id t)(s_time_counter) .

	3. ∀t σ(id t)(s_reinit_time_counter). ∈ T i , id t Comps(∆) s.t. γ(t) ∈	=	id t , s 0 .reset t (t)	=
	0 otherwise	= 0		

 6. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Sens(s 0 .M) ⇔ σ(id t)(s_enabled) = true. 7. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t / ∈ Sens(s 0 .M) ⇔ σ(id t)(s_enabled) = false.8. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t ,

	σ(id t)(s_condition_combination) =	∏
		c∈conds(t)

 51, then ∀p, id p s.t. γ(p) = id p , s .M(p) = By construction and by definition of id p , there exist g p , i p , o p s.t. comp(id p , place, g p , i p , o p) ∈ d.cs. By definition of the SITPN state transition relation on rising edge:s .M(p) = s.M(p) -∑By property of the Inject, the H-VHDL rising edge and the stabilize relations, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the marking process defined in the place design architecture, we can deduce: = σ(id p)(sm)σ(id p)(sots) + σ(id p)(sits)By definition of the Full post falling edge state similarity relation, we can deduce s.M(p) = σ(id p)(sm), ∑

	t∈Fired(s) s.M(p) -∑	t∈Fired(s) pre(p, t) + ∑	post(t, p)
			pre(p, t) = σ(id p)(sots) and	∑	post(t, p) =
			t∈Fired(s)	t∈Fired(s)
	σ(id p)(sits), and thus,
	t∈Fired(s) s.M(p) -∑	t∈Fired(s) pre(p, t) + ∑	post(t, p)
				pre(p, t) + ∑	post(t, p)	(D.6)
				t∈Fired(s)	t∈Fired(s)

σ (id p)(s_marking).

Proof.

Given a p ∈ P, let us show s .M(p) = σ (id p)(s_marking).

σ (id p)(sm) = σ(id p)(sm)σ(id p)(s_output_token_sum) +σ(id p)(s_input_token_sum) (D.7)

Rewriting the goal with D.6 and D.7,

.

 By construction and by definition of id t , there exist g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs. By property of the H-VHDL stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the condition_evaluation process defined in the transition design architecture, we can deduce: σ (id t)(scc) =

	∆(id t)(conditions_number)-1

 By property of the stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the fired_evaluation process, we can deduce:σ (id t)(fired) = σ (id t)(s_firable) . σ (id t)(s_priority_combination) (D.10) Rewriting the goal with (D.10): s .reset t (t) = σ (id t)(s_firable) . σ (id t)(s_priority_combination). property of the stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the priority_authorization_evaluation process defined in the transition design architecture, we can deduce: By construction, <priority_authorizations(0) ⇒ true> ∈ i t , and by property of the stabilize relation and comp(id t , transition, g t , i t , o t) ∈ d.cs, we can deduce σ (id t)(pauths)[0] = true. Rewriting the goal with σ (id t)(pauths)[0] = true , and simplifying the equation: s .reset t (t) = σ (id t)(s_firable).

	By

σ (id t)(spc) = ∆(id t)(ian)-1 ∏ i=0 σ (id t)(priority_authorizations)[i] (D.11)

As ∆(id t)(ian) = 1, we can deduce

∆(id t)(ian)-1 ∏ i=0 σ (id t)(pauths)[i] = σ (id t)(pauths)[0].

Rewriting the goal with (D.11) and

∆(id t)(ian)-1 ∏ i=0 σ (id t)(pauths)[i] = σ (id t)(pauths)[0]:

s .reset t (t) = σ (id t)(s_firable) . σ (id t)(pauths)

[0]

.

 , pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test) ⇒ s.M(p) -∑ t i ∈Fired(s) pre(p, t i) ≥ ω.In that case, by property of E c , τ s ↑ s (Rule (8)), we can deduce s .reset t (t) = false. the goal with s .reset t (t) = false:To prove the goal, let us show ∀i ∈ [0, |input(t)| -1], σ (id t)(rt)[i] = false. an i ∈ [0, |input(t)| -1], let us show σ (id t)(rt)[i] = false.construction, there exist a p ∈ input(t), an id p ∈ Comps(∆), g p , i p , o p , a j ∈ [0, |output(p)| -1], an id ji ∈ Sigs(∆) s.t. γ(p) = id p and comp(id p , place, g p , i p , o p) ∈ d.cs and <reinit_transition_time(j) ⇒ id ji > ∈ o p and <reinit_time(i)⇒ id ji > ∈ i t . Let us take such a p, id p , g p , i p , o p , j and id ji .By property of the stabilize relation, <reinit_transition_time(j) ⇒ id ji > ∈ o p and <reinit_time(i) ⇒ id ji > ∈ i t , we have σ (id t)(rt)[i] = σ (id ji) = By property of the Inject, the H-VHDL rising edge and the stabilize relations, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the reinit_-transitions_time_evaluation process defined in the place design architecture, we can deduce:σ (id p)(rtt)[j] = (σ(id p)(oat)[j] = basic + σ(id p)(oat)[j] = test) .(σ(id p)(sm)σ(id p)(sots) < σ(id p)(oaw)[j]) .(σ(id p)(sots) > 0) + σ(id p)(otf)[j] false =((σ(id p)(oat)[j] = basic + σ(id p)(oat)[j] = test) .(σ(id p)(sm)σ(id p)(sots) < σ(id p)(oaw)[j])By construction, there exists id f t ∈ Sigs(∆) such that <output_transitions_fired(j) ⇒ id ft > ∈ i p and <fired ⇒ id ft > ∈ o t . By property of state σ as being a stable state, we have σ(id t)(fired) = σ(id f t) = σ(id p)(otf)[j].Rewriting the goal with σ(id t)(fired) = σ(id f t) = σ(id p)(otf)[j]:false =((σ(id p)(oat)[j] = basic + σ(id p)(oat)[j] = test) .(σ(id p)(sm)σ(id p)(sots) < σ(id p)(oaw)[j]) .(σ(id p)(sots) > 0)) + σ(id t)(fired)pre(p, t i) = 0, and simplifying the goal: tautology.2. CASE ∀ω ∈ N * , pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test) ⇒ s.M(p) -∑ t i ∈Fired(s) pre(p, t i) ≥ ω:Let us perform case analysis on pre(p, t); there are two cases: (a) CASE pre(p, t) = (ω, basic) or pre(p, t) = (ω, basic): By construction, <output_arcs_weights(j) ⇒ ω> ∈ i p . By property of stable state σ and comp(id p , place, g p , i p , o p) ∈ d.cs, we can deduce σ(id p)(oaw)[j] = ω. we can deduce σ(id p)(sm) = s.M(p) and σ(id p)(sots) = ∑ By construction, there exist an id t ∈ Comps(∆), g t , i t , o t and id f t i ∈ Sigs(∆) such that: • γ(t) = id t • comp(id t , transition, g t , i t , o t) ∈ d.cs • <fired ⇒ id ft i > ∈ o t By property of stable design state σ and comp(id t , transition, g t , i t , o t) ∈ d.cs, we can deduce σ(id t)(fired) = σ(id f t i).

	1. 2. or ∀ω ∈ N Rewriting |input(t)|-1 ∑ pre(p, t i) = 0 t i ∈Fired(s) ∑	σ (id t)(rt)[i] = false.
		i=0
	By property of γ s Rewriting the goal with ∑ Given By (D.14) ∑ t i ∈Fired(s) pre(p, t i) = σ(id p)(sots) and t i ∈Fired(s)
	Rewriting the goal with (D.14),	
	By property of γ	s

* σ (id p)(rtt)

[j]

.

Rewriting the goal with σ (id t)(rt

)[i] = σ (id ji) = σ (id p)(rtt)[j]: σ (id p)(rtt)[j] = false. .(σ(id p)(sots) > 0)) + σ(id p)(otf)[j]) ↓ ≈ σ, we can deduce t / ∈ Fired(s) ⇔ σ(id t)(fired) = false

Rewriting the goal with t / ∈ Fired(s) ⇔ σ(id t)(fired) = false and simplifying the goal:

false =((σ(id p)(oat)[j] = basic + σ(id p)(oat)[j] = test) .(σ(id p)(sm)σ(id p)(sots) < σ(id p)(oaw)[j]) .(σ(id p)(sots) > 0))

Then, based on the assumptions made at the beginning of case, there are two cases: 1. CASE ∑ t i ∈Fired(s) pre(p, t i) = 0: By property of γ s ↓ ≈ σ, we can deduce ∑ t i ∈Fired(s) pre(p, t i) = σ(id p)(sots). ↓ ≈ σ, t i ∈Fired(s) pre(p, t i). * CASE F(t, f) = true:

 45, then ∀t ∈ T i , id t ∈ Comps(∆) s.t. γ(t) = id t , u(I s (t)) = ∞ ∧ s .I(t) ≤ l(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s .I(t) > l(I s (t)) ⇒ σ (id t)(s_time_counter) = l(I s (t))∧ u(I s (t)) = ∞ ∧ s .I(t) > u(I s (t)) ⇒ σ (id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) ≤ u(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) . Given a t ∈ T i and an id t ∈ Comps(∆) s.t. γ(t) = id t , let us show u(I s (t)) = ∞ ∧ s .I(t) ≤ l(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) ∧ u(I s (t)) = ∞ ∧ s .I(t) > l(I s (t)) ⇒ σ (id t)(s_time_counter) = l(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) > u(I s (t)) ⇒ σ (id t)(s_time_counter) = u(I s (t)) ∧ u(I s (t)) = ∞ ∧ s .I(t) ≤ u(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter)By construction and by definition of id t , there exist g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs. By property of the elaboration, H-VHDL rising edge and stabilize relations, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the time_counter process defined in the transition design architecture, we can deduce:σ(id t)(se) = true ∧ ∆(id t)(tt) = NOT_TEMPORAL ∧ σ(id t)(srtc) = false ∧σ(id t)(stc) < ∆(id t)(mtc) ⇒ σ (id t)(stc) = σ(id t)(stc) + 1 (D.22) σ(id t)(se) = true ∧ ∆(id t)(tt) = NOT_TEMPORAL ∧ σ(id t)(srtc) = false ∧σ(id t)(stc) ≥ ∆(id t)(mtc) ⇒ σ (id t)(stc) = σ(id t)(stc) (D.23) σ(id t)(se) = true ∧ ∆(id t)(tt) = NOT_TEMPORAL ∧σ(id t)(srtc) = true ⇒ σ (id t)(stc) = 1 (D.24) σ(id t)(se) = false ∨ ∆(id t)(tt) = NOT_TEMPORAL ⇒ σ (id t)(stc) = 0Rewriting the goal with σ (id t)(stc) = σ(id t)(stc) + 1 and s.I(t) = σ(id t)(stc): tautology. 2. u(I s (t)) = ∞ ∧ s .I(t) > l(I s (t)) ⇒ σ (id t)(s_time_counter) = l(I s (t). that u(I s (t)) = ∞ and s .I(t) > l(I s (t)), let us show σ (id t)(s_time_counter) = l(I s (t)). u(I s (t)) = ∞, there exists an a ∈ N * s.t. I s (t) = [a, ∞]. Let us take such an a ∈ N * . By construction, <maximal_time_counter⇒ a> ∈ g t , and <transition_type⇒ TEMP_A_INF> ∈ g t by property of the elaboration relation, we can deduce ∆(id t)(mtc) = a and ∆(id t)(tt) = TEMP_A_INF. Sens(s.M), we can deduce s .I(t) = 0. Since l(I s (t)) ∈ N * , then l(I s (t)) > 0. Contradicts s .I(t) > l(I s (t)). By definition of γ, E c , τ s Sens(s.M), we can deduce σ(id t)(se) = true. Let us perform case analysis on s.reset t (t); there are two cases: i. CASE s.reset t (t) = true: By definition of E c , τ s ↓ -→ s : s .I(t) = 1. We assumed that s .I(t) > l(I s (t)), then 1 > l(I s (t)). Contradicts l(I s (t)) > 0. ii. CASE s.reset t (t) = false: By property of γ, E c , τ s ↑ ≈ σ and s.reset t (t) = false, we can deduce σ(id t)(srtc) = false. definition of E c , τ s ↓ -→ s (Rule (4)), and knowing that s .I(t) > l(I s (t)), we can deduce s .I(t) = s.I(t) + 1 ⇒ s.I(t) + 1 > l(I s (t)) ⇒ s.I(t) ≥ l(I s (t)) CASE s.I(t) > u(I s (t)): σ (id t)(stc) = u(I s (t)). s (Rule (5)), we can deduce s .I(t) = s.I(t). By definition of γ, E c , τ s ↑ ≈ σ, we can deduce σ(id t)(stc) = u(I s (t)). Appealing to (D.23), we have σ (id t)(stc) = σ(id t)(stc). Rewriting the goal with σ (id t)(stc) = σ(id t)(stc) and σ(id t)(stc) = u(I s (t)): tautology. B. CASE s.I(t) ≤ u(I s (t)): σ (id t)(stc) = u(I s (t)). definition of γ, E c , τ s ↑ ≈ σ, we can deduce s.I(t) = σ(id t)(stc). Let us perform case analysis on s.I(t) ≤ u(I s (t)); there are two cases: -CASE s.I(t) = u(I s (t)):

	Proof. Then, there are 4 points to show: 1. u(I Assuming As By By definition of E c , τ s By	(D.25)

s (t)) = ∞ ∧ s .I(t) ≤ l(I s (t)) ⇒ s .I(t) = σ (id t)(s_time_counter) Let us perform case analysis on t ∈ Sens(s.M): (a) CASE t / ∈ Sens(s.M): By definition of E c , τ s ↓ -→ s (Rule (6)), and knowing that t ∈ (b) CASE t ∈ Sens(s.M): ↑ ∼ σ and t ∈ Let us perform case analysis on s.I(t) ≥ l(I s (t)): A. CASE s.I(t) > l(I s (t)): σ (id t)(stc) = l(I s (t)). By definition of γ, E c , τ s ↑ ≈ σ, we can deduce σ(id t)(stc) = l(I s (t)).

A.

↓ -→

 3. checktc(∆(id t), σ(id t)) = true : By definition of t ∈ Firable(s), we have t / ∈ T i ∨ s .I(t) ∈ I s (t). Let us perform case analysis on t / ∈ T i ∨ s .I(t) ∈ I s (t): (a) CASE t / ∈ T i : checktc(∆(id t), σ(id t)) = true By construction, <transition_type ⇒ NOT_TEMP> ∈ g t , and by property of the elaboration relation, we have ∆(id t)(tt) = NOT_TEMP. From ∆(id t)(tt) = NOT_TEMP, and by definition of checktc(∆(id t), σ(id t)), we can deduce checktc(∆(id t), σ(id t)) = true. From s.reset t (t) = σ(id t)(srtc), we can deduce σ(id t)(srtc) = false.

(b) CASE s .I(t) ∈ I s (t): checktc(∆(id t), σ(id t)) = true

 From s .I(t) = a and s .I(t) = s.I(t) + 1, we can deduce a -1 = s.I(t). By construction, <time_A_value ⇒a> ∈ i t , and by property of stable σ, we have σ(id t)(A) = a. Rewriting the goal with σ(id t)(A) = a, s.I(t) = σ(id t)(stc), and a -1 = s.I(t): tautology. * CASE s.I(t) ≥ u(I s (t)): In the case where s.I(t) > u(I s (t)), then s.I(t) > a. By definition of E c , τ s ↓ -→ s (Rule (5)), we have s.I(t) = s .I(t) = a. Then, a > a is a contradiction. In the case where s.I(t) = u(I s (t)), then s.I(t) = a. By definition of E c , τ s By property of the H-VHDL falling edge relation, the stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the firable process defined in the transition design architecture, we can deduce: σ (id t)(sfa) = σ(id t)(se) . σ(id t)(scc) . checktc(∆(id t), σ(id t)) = true Term checktc(∆(id t), σ(id t)) as the same definition as in Lemma Falling edge equal firable 1. By definition of t ∈ Firable(s), there are three points to prove:

		(D.39)
	From (D.39), we can deduce:	
	σ(id t)(se) = true	(D.40)
	σ(id t)(scc) = true	(D.41)

1)

(D.

[START_REF] Coquand | Inductively Defined Types[END_REF]

Rewriting the goal with (D.

[START_REF] Coquand | Inductively Defined Types[END_REF]

, and simplifying the goal:

σ(id t)(stc) = σ(id t)(A) -1.

From s .I(t) ∈ [a, a], we can deduce that s .I(t) = a. Let us perform case analysis on s.I(t) < u(I s (t)) or s.I(t) ≥ u(I s (t)): * CASE s.I(t) < u(I s (t)): By definition of γ, E c , τ s ↑ ≈ σ, we have s.I(t) = σ(id t)(stc). By definition of E c , τ s ↓ -→ s (Rule (4)), we have s .I(t) = s.I(t) + 1. ↓ -→ s (Rule (4)), we have s .I(t) = s.I(t) + 1. Then, we have checktc(∆(id t), σ(id t)) = true (D.42) 1. t ∈ Sens(s .M)

 3. t /∈ T i ∨ s .I(t) ∈ I s (t) (s , T s , F, Fset)≡ (t ∈ F ⇒ σ (id t)(fired) = true) ∧ σ (id t)(fired) = true ⇒ t ∈ F ∨ t ∈ T s) ⇒ t ∈ Fset ⇔ σ (id t)(fired) = true -CASE FSETEMP: we must show P(s , ∅, F, F), i.e. ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , (t ∈ F ⇒ σ (id t)(fired) = true) ∧ (σ (id t)(fired) = true ⇒ t ∈ F ∨ t ∈ ∅) ⇒ t ∈ F ⇔ σ (id t)(fired) = true. T, id t ∈ Comps(∆) s.t. γ(t) = id t , (t ∈ F ⇒ σ (id t)(fired) = true) ∧ (σ (id t)(fired) = true ⇒ t ∈ F ∨ t ∈ ∅) we can easily show t ∈ F ⇔ σ (id t)(fired) = true. Sens(s .M -∑ IsFiredSetAux(s , T s , F ∪ {t}, Fset) -t ∈ T s s.t. t t -Pr(t, F) = {t | t t ∧ t ∈ F} and the induction hypothesis (i.e. P(s , T s , F ∪ {t}, Fset))∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , (t ∈ F ∪ {t} ⇒ σ (id t)(fired) = true) ∧ (σ (id t)(fired) = true ⇒ t ∈ F ∪ {t} ∨ t ∈ T s) ⇒ t ∈ Fset ⇔ σ (id t)(fired) = true we must show ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , (t ∈ F ⇒ σ (id t)(fired) = true) ∧ (σ (id t)(fired) = true ⇒ t ∈ F ∨ t ∈ T s ∪ {t}) ⇒ t ∈ Fset ⇔ σ (id t)(fired) = true

	t i ∈Pr(t,F)	pre(t i))

Reasoning on checktc(∆(id t), σ(id t)) = true, there are 3 cases:

(a) not σ(id t)(srtc) . [. . .] = true a (b) σ(id t)(srtc) . ∆(id t)(tt) = NOT_TEMP . σ(id t)(A) = 1 = true PAssuming ∀t ∈ -CASE FSETFIRED: Assuming t ∈ Firable(s) -t ∈ -

https://neurinnov.com/

https://eur-lex.europa.eu/eli/reg/2017/745/2020-04-24

https://neurinnov.com/

https://github.com/viampietro/sitpns

https://github.com/viampietro/ver-hilecop/tree/master/sitpn/dp

The risks digest website continues to register the computer-related incidents that resulted or could result in important damages: https://catless.ncl.ac.uk/Risks/

http://data.europa.eu/eli/reg/2017/745/2020-04-24

http://neurinnov.com/

https://www.cl.cam.ac.uk/teaching/2021/Semantics/

https://coq.inria.fr/distrib/current/refman/index.html

https://coq.inria.fr/distrib/current/refman/language/cic.html

Coq scripts can be either interpreted or compiled.

t i ∈Pr(t) pre(t i) formally qualifies the residual marking for a given transition t and at a given SITPN state s.

These blocks are guarded by the expressions rising_edge(clk) and falling_edge(clk).

As one action can be associated to multiple places, one action port can depend on the value of multiple marked output port.

https://neurinnov.com/

d ← design id e id a ∅ ∅ ∅ null

γ ← ∅

generate_architecture(sitpn, d, γ, b)

generate_interconnections(sitpn, d, γ)

generate_ports(sitpn, d, γ)

return(d,γ) In Algorithm 3, Line 1 creates the initial H-VHDL design structure and assigns it to the variable d. Initially, the design has an empty port declaration set, an empty internal signal

The acronymn RTL is used both in the world of microelectronic and computer science. In computer science, it means Register Transfer Language and refers to a language which level is close to assembly languages. In microelectronic, it means Register Transfer Level and is a method to give a high-level representation of a circuit.

the starting state of the H-VHDL design: D H , ∆, σ d.cs

To differentiate the formulas of the first-order logic from the expressions of the Boolean logic, we use (".", "+") to denote the and and or operators in Boolean expressions, and (∧,∨) to denote the conjunction and the disjunction in the first-order logic formulas.

Remember that the γ binder is part of the compile-time state record type.

State invariance lemmas are to be found in the GenerateInfosInvs.v, GenerateArchitectureIns.v, GeneratePortsInvs.v and GenerateHVhdlInvs.v under the sitpn2hvhdl folder of the Git repository.

) before and after executing the computation step that is of interest for the proof (i.e, action λ). The proof is performed by reasoning by induction on the structure of the xSpem models, and then by reasoning of the state transition semantics of xSpem models and PNs.

In [START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF], the authors describe a transformation from a model of the AADL formalism (Architecture Analysis and Design Language) to a particular kind of Abstract State Machine (ASM) called Timed Abstract State Machines (TASM). To verify that the transformation is semantic preserving, the authors define the semantics of AADL models and TASMs through Timed Transition Systems (TTSs). Thus, the execution state of an AADL model is the execution state of the corresponding TTS, and the same holds for a TASM. Comparing the state of two TTSs is easier than comparing the state of two different models, thus having two different definitions. Then, the authors prove a strong bisimulation theorem to verify that the transformation is semantic preserving. The whole proof is mechanized within the Coq proof assistant.

In [START_REF] Fronc | Towards a Certified Petri Net Model-Checker[END_REF], the authors describe a transformation from LLVM-labelled Petri nets to LLVM programs, where LLVM is low-level assembly language. Precisely, the generated LLVM program implements the state space of the source Petri net (i.e, the graph of reachable markings). The authors want to verify if an LLVM program truly implements the PN state space, i.e. if each marking present in the PN state space can be reached by running a specific f ire t function on the generated LLVM program. The state of an LLVM program is defined by a memory model composed of a heap and a stack. The marking of an LLVM-labelled PN is defined in such a manner that the correspondence with the LLVM program memory model is straightforward. The PN model has classical firing semantics, and LLVM programs follow a small-step operational semantics. The semantic preservation theorem states that for all transition t being fired, leading from marking M to marking M , then applying running the f ire t function over the generated LLVM program at state LM (such that LM implements marking M) leads to a new state LM , such that LM implements marking M . To prove this theorem, the authors proceed by induction on the number of places of the input Petri net. executed code may not be the one over which the formal verification has been conducted (e.g. EAL 7 in the Common Criterion standard).

All the programming tasks of this thesis have been performed within the framework of the Coq proof assistant. The produced code is fully accessible under the following Git repository: for i in 0 to input_arcs_number - (in, input_arcs_weights, array (natural(0, 255), 0, input_arcs_number-1)),

(in, output_arcs_types, array (natural(0, 2), 0, output_arcs_number-1)),

(in, output_arcs_weights, array (natural(0, 2), 0, output_arcs_number-1)),

(in, input_transitions_fired, array (boolean, 0, input_arcs_number-1)), (in, output_transitions_fired, array (boolean, 0, output_arcs_number-1)), (out, output_arcs_valid, array (boolean, 0, output_arcs_number-1)), (out, priority_authorizations, array (boolean, 0, output_arcs_number-1)), (out, reinit_transitions_time, array (boolean, 0, output_arcs_number-1)),

(out, marked, boolean))

--Architecture declarative part ((s_input_token_sum, natural(0, maximal_marking)),

(s_marking, natural(0, maximal_marking)),

(s_output_token_sum, natural(0, maximal_marking)))

--Behavior process (input_tokens_sum, (input_arcs_weights, input_transitions_fired), ((v_internal_input_token_sum, natural(0, maximal_marking))),

(v_internal_input_token_sum := 0;

(for (i, 0, input_arcs_number -1) (if (input_transitions_fired(i) = true)

process (output_tokens_sum, (output_arcs_types, output_arcs_weights, output_transitions_fired), ((v_internal_output_token_sum,natural(0, maximal_marking))),

(v_internal_output_token_sum := 0;

(for (i, 0, output_arcs_number-1) (if (output_transitions_fired(i) = true and output_arcs_types(i) = 0)

process (marking, (clk, initial_marking), ∅ (rst (s_marking ⇐ initial_marking)

(rising (s_marking ⇐ s_marking + (s_input_token_sum -s_output_token_sum))))

process (determine_marked, (s_marking), ∅, (marked ⇐ s_marking > 0)) process (marking_validation_evaluation, (output_arcs_types, output_arcs_weights, s_marking), ∅, (for (i, 0, output_arcs_number -

(output_arcs_valid(i) ⇐

((((output_arcs_types(i) = 0) or (output_arcs_types(i) = 1))

and (s_marking >= output_arcs_weights(i)))

or ((output_arcs_types(i) = 2) and (s_marking < output_arcs_weights(i)))))))

process(priority_evaluation, (output_arcs_types, output_arcs_weights, output_transitions_fired, s_marking), ((v_saved_output_token_sum, natural(0, maximal_marking))),

(v_saved_output_token_sum := 0;

(for (i, 0, output_arcs_number -

(priority_authorizations(i) ⇐

(s_marking >= v_saved_output_token_sum + output_arcs_weights(i))));

(if ((output_transitions_fired(i) = true) and (output_arcs_types(i) = 0))

procees(reinit_transitions_time_evaluation, (clk), ∅, (rst (for (i, 0, output_arcs_number-1) (reinit_transitions_time(i) ⇐ false)) (rising (for (i, 0, output_arcs_number-1)

and (s_marking -s_output_token_sum < output_arcs_weights(i))

and (s_output_token_sum > 0))

The place design in H-VHDL abstract syntax.

Appendix B

The transition design in concrete and abstract VHDL syntax

259

(v_internal_condition := true;

(for (i, 0, conditions_number-1)

(v_internal_condition := v_internal_condition and input_conditions(i))); s_condition_combination ⇐ v_internal_condition))

process (enable_evaluation, (input_arcs_valid), ((v_internal_enabled, boolean)),

(v_internal_enabled := true;

(for (i, 0, input_arcs_number-1)

process (reinit_time_counter_evaluation, (reinit_time, s_enabled), ((v_internal_reinit_time_counter, boolean)),

(v_internal_reinit_time_counter := false;

(for (i, 0, input_arcs_number-1)

(v_internal_reinit_time_counter := v_internal_reinit_time_counter or reinit_time(i)));

Appendix C

The semantic preservation theorem and its dependencies

Semantic preservation proof

Rewriting the goal with Equation (D.1):

Let us perform case analysis on input(p); there are two cases:

1. input(p) = ∅:

By construction, we have <input_arcs_number⇒ 1> ∈ g p , <input_transitions_fired(0)⇒ true> ∈ i p , and <input_arcs_weights(0) ⇒ 0> ∈ i p .

Appendix D. Semantic preservation proof

Rewriting the goal with σ 0 (id p)(itf) [0] = σ 0 (id t)(fired):

σ 0 (id p)(iaw) [0] if σ 0 (id t)(fired)

Proof.

The proof is similar to the proof of Lemma 7.

D.1.2 Initial states and time counters

Rewriting σ 0 (id t)(s_reinit_time_counter) as By property of the H-VHDL initialization relation, comp(id p , place, g p , i p , o p) ∈ d.cs, through the examination of the reinit_transitions_time_evaluation process defined in the place design architecture, and since j ∈ [0, ∆(id p)(oan) -1], σ 0 (id p)(rtt)[j] = false.

D.1.4 Initial states and condition values

Proof.

Given a c ∈ C and an id c ∈ Ins(∆) s.t. γ(c) = id c , let us show that s 0 .cond(c) = σ 0 (id c).

Rewriting s 0 .cond(c) as false, by definition of s 0 , σ 0 (id c) = false. By construction, id c is an input port identifier of Boolean type in the H-VHDL design d, and thus, by property of the H-VHDL elaboration relation, we can deduce σ e (id c) = false. By property of the H-VHDL initialization relation and id c ∈ Ins(∆), we can deduce σ e (id c) = σ 0 (id c). Rewriting σ 0 (id c) as σ e (id c) and σ e (id c) as false, tautology.

D.1.5 Initial states and action executions

Lemma 12 (Initial states equal action executions). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈ W M(sitpn, d), ∆ ∈ ElDesign, σ e , σ 0 ∈ Σ that verify the hypotheses of Definition 49, then ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s 0 .ex(a) = σ 0 (id a).

Proof.

Given a a ∈ A and an id a ∈ Outs(∆) s.t. γ(a) = id a , let us show that s 0 .ex(a) = σ 0 (id a).

Rewriting s 0 .ex(a) as false, by definition of s 0 , σ 0 (id a) = false. By construction, id a is an output port identifier of Boolean type in the H-VHDL design d. Moreover, we know that the output port identifier id a is assigned to false in the generated action process during the initialization phase (i.e. the assignment is a part of a reset block). Thus, we can deduce that σ 0 (id a) = false. Rewriting σ 0 (id a) as false, tautology.

D.1.6 Initial states and function executions

Lemma 13 (Initial states equal function executions). For all sitpn ∈ SITPN, b

Proof.

Given a f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show that s 0 .ex(f) = σ 0 (id f).

Rewriting s 0 .ex(f) as false, by definition of s 0 , σ 0 (id f) = false. By construction, id f is an output port identifier of Boolean type in the H-VHDL design d, and thus, by property of the H-VHDL elaboration relation, we can deduce σ e (id f) = false.

By construction, and by property of the initialization relation, we know that the output port identifier id f is assigned to false in the generated function process during the initialization phase (i.e. the assignment is a part of a reset block). Thus, we can deduce σ 0 (id f) = false. Rewriting σ 0 (id f) as false, tautology.

D.1.7 Initial states and fired transitions

Proof.

Assuming all the above hypotheses, let us show σ 0 (id t)(fired) = false. By property of the initialization relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the fired_evaluation process defined in the transition design architecture, we can deduce:

Rewriting the goal with Equation (D.2): σ 0 (id t)(sfa) . σ 0 (id t)(spc) = false.

By property of the initialization relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the firable process defined in the transition design architecture, we can deduce σ 0 (id t)(sfa) = false.

Appendix D. Semantic preservation proof

Rewriting the goal with σ 0 (id t)(sfa) = false and simplifying the goal, tautology.

D.2 First Rising Edge

Definition 50 (First rising edge hypotheses). Given a sitpn ∈ SITPN, b

Proof.

By definition of the Full post rising edge state similarity relation, there are 8 points to prove.

D.2.1 First rising edge and marking

Lemma 16 (First rising edge equal marking). For all sitpn, b, d, γ, ∆, σ e , σ 0 , σ i , σ ↑ , σ, E c , E p , τ that verify the hypotheses of Definition 50, then ∀p ∈ P, id p ∈ Comps(∆) s.t. γ(p) = id p , s 0 .M(p) = σ(id p)(s_marking).

Proof.

Given a p and an id p s.

Rewriting the goal with Equation (D.3):

Appealing to Lemmas 7 and 8, we can deduce σ 0 (id p)(sits) = 0 and σ 0 (id p)(sots) = 0. Rewriting the goal with σ 0 (id p)(sits) = 0 and σ 0 (id p)(sots) = 0, s 0 .M(p) = σ 0 (id p)(sm).

Appealing to Lemma 6, s 0 .M(p) = σ 0 (id p)(sm).

D.2.2 First rising edge and time counters

Lemma 17 (First rising edge equal time counters). For all sitpn, b, d, γ, ∆, σ e , σ 0 ,

Proof.

Given a t ∈ T i and an id t ∈ Comps(∆) s.t. γ(t) = id t , let us show that:

Rewriting the goal with Equation (D.4):

Let us perform case analysis on input(t); there are two cases:

-CASE input(t) = ∅:

By construction, <input_arcs_number ⇒ 1> ∈ g t , and by property of the H-VHDL elaboration relation, we can deduce ∆(id t)(ian) = 1.

By construction, < reinit_time(0) ⇒ false >∈ i t , and by property of the H-VHDL stabilize relation, σ(id t)(rt)[0] = false.

Rewriting the goal with

By definition of s 0 , s 0 .reset t (t) = false.

-CASE input(t) = ∅:

By construction, <input_arcs_number ⇒ |input(t)|> ∈ g t , and by property of the H-VHDL elaboration relation, we can deduce

D.2. First Rising Edge

281 By definition of s 0 , s 0 .reset t (t) = false. Rewriting s 0 .reset t (t) as false,

By property of the H-VHDL rising edge and stabilize relations, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the process defined in the place design architecture, we can deduce:

Rewriting the goal with Equation (D.5),

By construction, there exists an id f j ∈ Sigs(∆) s.t. <fired⇒ id fj > ∈ o t and <output_transitions_fired(j)⇒ id fj > ∈ i p .

By property of the initialization relation, <fired⇒ id fj > ∈ o t and <output_-transitions_fired(j)⇒ id fj > ∈ i p , we can deduce σ 0 (id p)(otf

Appealing to Lemma 14, we can deduce σ 0 (id t)(fired) = false and consequently σ 0 (id p)(otf)[j] = false.

Appendix D. Semantic preservation proof

Rewriting σ 0 (id p)(otf)[j] as false and simplifying the goal,

Appealing to Lemma 8, we can deduce σ 0 (id p)(sots) = 0.

Rewriting σ 0 (id p)(sots) as 0 and simplifying the goal, tautology.

D.2.4 First rising edge and action executions

Lemma 19 (First rising edge equal action executions). For all sitpn, b, d, γ, ∆,

Proof.

Given an a ∈ A and an id a ∈ Outs(∆) s.t. γ(a) = id a , let us show that s 0 .ex(a) = σ(id a).

By construction, id a is an output port identifier of Boolean type in the H-VHDL design d. The generated action process assigns a value to the output port id a only during the initialization phase or a falling edge phase.

By property of the Inject, H-VHDL rising edge and stabilize relations, we can deduce σ(id a) = σ 0 (id a).

Rewriting σ(id a) as σ 0 (id a), s 0 .ex(a) = σ 0 (id a). Appealing to Lemma 12,

D.2.5 First rising edge and function executions

Lemma 20 (First rising edge equal function executions). For all sitpn, b, d, γ, ∆, σ e , σ 0 , σ i , σ ↑ , σ, E c , E p , τ that verify the hypotheses of Definition 50, then

D.2.6 First rising edge and sensitization

Lemma 21 (First rising edge equal sensitized). For all sitpn, b, d, γ, ∆, σ e , σ 0 , σ i , σ ↑ , σ, E c , E p , τ that verify the hypotheses of Definition 50, then

Proof.

See the proof of Lemma 32.

Lemma 22 (First rising edge not equal sensitized). For all sitpn, b, d, γ, ∆, σ e , σ 0 ,

Proof.

See the proof of Lemma 33.

D.2.7 First rising edge and conditions

Lemma 23 (First rising edge equal condition combination). For all sitpn, b, d, γ, ∆, σ e , σ 0 , σ i , σ ↑ , σ, E c , E p , τ that verify the hypotheses of Definition 50, then ∀t ∈ T, id t ∈ Comps(∆) s.t.

See the proof of Lemma 26.

Lemma 24 (First rising edge equal conditions). For all sitpn, b, d, γ, ∆, σ e , σ 0 , σ i , σ ↑ , σ, E c , E p , τ that verify the hypotheses of Definition 50, then ∀c ∈ C,

Proof.

See the proof of Lemma 27.

D.3. Rising Edge

In that case, we must show:

By assumption, we have <ic(β(c)) ⇒ id c > ∈ i t and by property of the stabilize relation, we can deduce σ(id t)(ic)[β(c)] = σ (id c).

Rewriting the goal with σ(id t)(ic)[β(c)] = σ (id c):

By property of the Inject relation and id c ∈ Ins(∆), we can deduce σ (id c) = E p (τ)(id c).

-CASE C(t, c) = -1:

In that case, we must show:

By assumption, we have <ic(β(c)) ⇒ not id c > ∈ i t and by property of the stabilize relation, we can deduce

By property of the Inject relation and id c ∈ Ins(∆), we can deduce σ (id c) = E p (τ)(id c). ,b,d,γ,E c ,E p ,τ,∆,σ e ,s,s ,σ,σ

By property of γ

Lemma 27 (Rising edge equal conditions). For all sitpn

Proof.

Given a c ∈ C and an id c ∈ Ins(∆) such that γ(c) = id c , let us show

By property of the Inject relation and id c ∈ Ins(∆), we can deduce σ (id c) = E p (τ)(id c).

By property of γ

D.3. Rising Edge

289

Rewriting the goal with σ (id c) = E p (τ)(id c) and E p (τ)(id c) = E c (τ, c), tautology .

D.3.3 Rising edge and time counters

Lemma 28 (Rising edge equal time counters). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition 51, then

Proof. Rewriting the goal with σ (id t)(stc) = σ(id t)(stc) and s.I(t) = σ(id t)(stc), tautology.

u(I

Proved in the same fashion as 1.

Appendix D. Semantic preservation proof

Proved in the same fashion as 1.

Proved in the same fashion as 1.

D.3.4 Rising edge and reset orders

Rewriting the goal with (D.9), s .reset

Let us perform case analysis on input(t); there are two cases:

-CASE input(t) = ∅:

Let us perform case analysis on t ∈ Fired(s) or t / ∈ Fired(s):

By property of E c , τ s ↑ s (Rule (8)), we can deduce s .reset t (t) = true.

Rewriting the goal with s .reset t (t) = true,

Rewriting the goal with σ (id t)(rt

By property of the Inject, the H-VHDL rising edge and the stabilize relations, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the reinit_-transitions_time_evaluation process defined in the place design architecture, we can deduce:

Rewriting the goal with (D.12), true =((σ(id p)(oat

By construction, there exists id f t ∈ Sigs(∆) such that <output_transitions_fired(j) ⇒ id ft > ∈ i p and <fired ⇒ id ft > ∈ o t . By property of state σ, which is a stable state, we have σ

Rewriting the goal with t ∈ Fired(s) ⇔ σ(id t)(fired) = true and simplify the goal, then tautology .

-CASE t / ∈ Fired(s): Then, there are two cases that will determine the value of s .reset t (t). Either there exists a place p with an output token sum greater than zero, that is connected to t by an basic or test arc, and such that the transient marking of p disables t; or such a place does not exist (the predicate is decidable). * CASE there exists such a place p as described above:

Then, let us take such a place p and ω ∈ N * s.t.:

1.

We will only consider the case where pre(p, t) = (ω, basic); the proof is the similar when pre(p, t) = (ω, test).

Assuming that p exists, and by property of E c , τ s ↑ s (Rule (8)), we can deduce s .reset t (t) = true.

Rewriting the goal with s .reset t (t) = true,

Rewriting the goal with σ (id t)(rt

Rewriting the goal with (D.13),

D.3.5 Rising edge and action executions

Lemma 30 (Rising edge equal action executions). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition 51, then ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s .ex(a) = σ (id a).

Proof.

Given an a ∈ A and an id a ∈ Outs(∆) s.t. γ(a) = id a , let us show s .ex(a) = σ (id a).

By property of E c , τ s ↑ s , we can deduce s.ex(a) = s .ex(a).

By construction, id a is an output port identifier of Boolean type in the H-VHDL design d.

The generated "action" process is responsible for the assignment of the id a only during the initialization phase or during a falling edge phase.

By property of the H-VHDL Inject, rising edge, stabilize relations, and the "action" process, we can deduce σ(id a) = σ (id a).

Rewriting the goal with s.ex(a) = s .ex(a) and σ(id a) = σ (id a), s.ex(a) = σ(id a).

By property of γ s ↓ ≈ σ, s.ex(a) = σ(id a).

D.3.6 Rising edge and function executions

Lemma 31 (Rising edge equal function executions). For all sitpn, b, d, γ, E c , E p , τ, ∆, σ e , s, s , σ, σ i , σ ↑ , σ that verify the hypotheses of Definition 51, then

Proof.

Given an f ∈ F and an

By property of E c , τ s ↑ s (Rule (9)): -CASE trs(f) = ∅:

where id f t i ∈ Sigs(∆), ss ↑ is the part of the function process body executed during a rising edge phase, and

By property of the Inject, the H-VHDL rising edge, the stabilize relations, and ps(function, ∅, sl, ss) ∈ d.cs, we can deduce:

Rewriting the goal with (D.15) and (D.16), ∑ t∈Fired(s)

Let us reason on the value of σ(id

there are two cases:

Then, we can rewrite the goal as follows:

To prove the above goal, let us show ∃t ∈ Fired(s) s.t. F(t, f) = true.

From σ(id Let us use t to prove the goal:

By definition of t ∈ trs(f), F(t, f) = true.

-CASE σ(id

Then, we can rewrite the goal as follows:

To prove the above goal, let us show ∀t ∈ Fired(s) s.t. F(t, f) = false.

Given a t ∈ Fired(s), let us show F(t, f) = false.

Let us perform case analysis on F(t, f); there are 2 cases: * CASE F(t, f) = false.

D.3. Rising Edge Appendix D. Semantic preservation proof

Rewriting the goal with (D.17),

To prove the goal, let us show that ∀i ∈ [0, ∆(id t)(ian) -1], σ (id t)(iav)[i] = true.

Let us perform case analysis on input(t).

-CASE input(t) = ∅: By construction, <input_arcs_number ⇒ 1> ∈ g t and <input_arcs_valid(0) ⇒ true> ∈ i t .

By property of the elaboration and stabilize relations and comp(id t , transition, g t , i t , o t) ∈ d.cs, we can deduce ∆(id t)(ian) = 1 and σ (id t)(iav) [0] = true.

Thanks to ∆(id t)(ian) = 1, we can deduce that i = 0.

Rewriting the goal with σ (id t)(iav) [0] = true, tautology.

-

Rewriting the goal with σ (id t)(iav

By property of the stabilize relation, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the marking_validation_evaluation process defined in the place design architecture, we can deduce:

Let us perform case analysis on pre(p, t); there are 3 cases:

-CASE pre(p, t) = (ω, basic): Rewriting σ (id t)(se) = true with (D.17), we can deduce:

Rewriting the goal with (D.20):

Let us unfold the definition of the left sum term:

ω if pre(p, t) = (ω, basic)

To ease the reading, let us define functions f ∈ Fired(s) → N and g ∈ [0, |output(p)| -

Then, the goal is:

Let us perform case analysis on output(p); there are two cases:

- ω if pre(p, t) = (ω, basic)

ω if pre(p, t) = (ω, basic)

tautology.

-CASE output(p) = ∅:

By construction, <oan ⇒ |output(p)|> ∈ g p , and by property of the elaboration relation, we can deduce ∆(id p)(oan) = |output(p)|.

Appendix D. Semantic preservation proof

Rewriting the goal with ∆(id p)(oan) = |output(p)|:

There exists a mapping, given by the transformation function, between the set output(p) and [0,

To prove the current goal, it suffices to show that, for all t ∈ Fired(s), if t ∈ output(p) then f (t) = g(β(t)), and f (t) = 0 otherwise.

Given a t ∈ Fired(s), there are two points to prove:

1. Assuming that t ∈ output(p), show f (t) = g(β(t)).

2. Assuming that t / ∈ output(p), show f (t) = 0.

1. Assuming that t ∈ output(p), let us show f (t) = g(β(t)).

Replacing the terms f (t) and g(β(t)) by their full definition, let us show ω if pre(p, t) = (ω, basic)

As t ∈ output(p), there exist a weight ω ∈ N and an arc type a ∈ {basic, test, inhib} such that pre(p, t) = (ω, a).

By construction, we have:

By property of the stabilize relation and <oat(β(t)) ⇒ a> ∈ i p , we have

Let us perform case analysis of the value of a; there are two cases:

-CASE a = inhib or a = test:

In that case, pre(p, t) = (ω, basic) and σ (id p)(oat)[β(t)] = basic. Thus, the goal can be rewritten as follows: 0 = 0 , tautology.

-CASE a = basic:

In that case, pre(p, t) = (ω, basic) and σ (id p)(oat)[β(t)] = basic.

Thus, the goal can be rewritten as follows:

By property of the stabilize relation and <oaw(β(t)) ⇒ ω> ∈ i p , we have σ (id p)(oaw)[β(t)] = ω. Thus, the goal can be rewritten as follows:

Thus, the goal can be rewritten as follows:

Appealing to Lemma 4, from t ∈ Fired(s), we can deduce σ (id t)(fired) = true.

Thus, the goal can be rewritten as follows: ω = ω , tautology.

Rewriting the goal with (D.21):

Let us unfold the definition of the left sum term:

Let us perform case analysis on input(p); there are two cases:

-CASE input(p) = ∅: To ease the reading, let us define functions f ∈ Fired(s) → N and g ∈

Then, the goal is:

Rewriting the goal with

There exists a mapping, given by the transformation function, between the set input(p) and [0, |input(p)| -1].

Let β ∈ input(p) → [0, |input(p)| -1] be that mapping.

To prove the current goal, it suffices to show that, for all t ∈ Fired(s), if t ∈ input(p) then f (t) = g(β(t)), and f (t) = 0 otherwise.

Given a t ∈ Fired(s), there are two points to prove:

Replacing the terms f (t) and g(β(t)) by their full definition, let us show

As t ∈ input(p), there exist a weight ω ∈ N * such that post(t, p) = ω. Let us take such an ω. Thus, the goal can be rewritten as follows:

By construction, we have <iaw(β(t)) ⇒ ω> ∈ i p , and by property of the stabilize relation, we can deduce σ (id p)(iaw)[β(t)] = ω. Thus, the goal can be rewritten as follows:

By construction, there exists an id f t ∈ Sigs(∆) such that:

Let us take an id f t ∈ Sigs(∆) that verifies the above properties. By property of the stabilize relation, <fired

Thus, the goal can be rewritten as follows:

Appealing to Lemma 4, from t ∈ Fired(s), we can deduce σ (id t)(fired) = true. Thus, the goal can be rewritten as follows: ω = ω , tautology.

2. Assuming that t / ∈ input(p), let us show f (t) = 0.

Replacing the term f (t) by its full definition, let us show

As t / ∈ output(p), then post(t, p) = ω, and we can rewrite the goal as follows: 0 = 0 , tautology.

Appendix D. Semantic preservation proof

Assuming u(I s (t)) = ∞ and s .I(t) ≤ l(I s (t)), let us show s .I(t) = σ (id t)(s_time_counter).

Let us perform case analysis on t ∈ Sens(s.M); there are two cases: 4)), and knowing that t ∈ Sens(s.M), s.reset t (t) = false and u(I s (t)) = ∞, we can deduce s .I(t) = s.I(t) + 1. Rewriting the goal with s .I(t) = s.I(t) + 1: s.I(t) + 1 = σ (id t)(stc). We assumed that s .I(t) ≤ l(I s (t)), and as s .I(t) = s.I(t) + 1, then s.I(t) + 1 ≤ l(I s (t)), then s.I(t) < l(I s (t)), then s.I(t) < a since a = l(I s (t)).

By definition of γ, E c , τ s ↑ ≈ σ, and knowing that s.I(t) < l(I s (t)) and u(I s (t)) = ∞, we can deduce s.I(t) = σ(id t)(stc). Appealing to ∆(id t)(mtc) = a, s.I(t) = σ(id t)(stc) and s.I(t) < a, we can deduce σ(id t)(stc) < ∆(id t)(mtc). Appealing to (D.22), σ(id t)(stc) < ∆(id t)(mtc), σ(id t)(srtc) = false and σ(id t)(se) = true, we can deduce: σ (id t)(stc) = σ(id t)(stc) + 1.

Appealing to (D.23), we can deduce σ (id t)(stc) = σ(id t)(stc).

Rewriting the goal with σ (id t)(stc) = σ(id t)(stc) and σ(id t)(stc) = l(I s (t)): tautology. B. CASE s.I(t) = l(I s (t)): σ (id t)(stc) = l(I s (t)).

By definition of γ, E c , τ s ↑ ≈ σ, we can deduce s.I(t) = σ(id t)(stc). Appealing to (D.23), we can deduce σ (id t)(stc) = σ(id t)(stc).

Rewriting the goal with σ (id t)(stc) = σ(id t)(stc), s.I(t) = σ(id t)(stc) and s.I(t) = l(I s (t)): tautology.

Assuming that u(I s (t)) = ∞ and s .I(t) > u(I s (t)), let us show σ (id t)(s_time_counter) = u(I s (t)).

As u(I s (t)) = ∞, there exists an a ∈ N * , and a b ∈ N * s. ,b,d,γ,∆,σ e ,E c ,E p ,τ,s,s ,σ,σ ↓ , σ that verify the hypotheses of Definition 45, then ∀c ∈ C, ,b,d,γ,∆,σ e ,E c ,E p ,τ,s,s ,σ,σ ↓ , σ that verify the hypotheses of Definition 45, then ∀a ∈ A, id a ∈ Outs(∆) s.t. γ(a) = id a , s .ex(a) = σ (id a).

D.4.3 Falling edge and condition values Lemma 38 (Falling edge equal condition values). For all sitpn

D.4.4 Falling edge and action executions Lemma 39 (Falling edge equal action executions). For all sitpn

Proof.

Given an a ∈ A and an id a ∈ Outs(∆) s.t. γ(a) = id a , let us show s .ex(a) = σ (id a). By property of the H-VHDL falling edge relation, the stabilize relation, and ps(action, ∅, sl, ss) ∈ d.cs:

Rewriting the goal with (D.26) and (D.27):

Let us reason on the value of σ(id mp 0) + • • • + σ(id mp n); there are two cases:

Then, we can rewrite the goal as follows: ∑ p∈marked(s.M)

A(p, a) = true.

To prove the above goal, let us show ∃p ∈ marked(s.M) s.t. A(p, a) = true.

From σ(id mp 0) + • • • + σ(id mp n) = true, we can deduce that ∃id mp i s.t. σ(id mp i) = true. Let us take an id mp i s.t. σ(id mp i) = true. By construction, there exist a p ∈ pls(a), an id p ∈ Comps(∆), g p , i p and o p such that:

Let us take such a p, id p , g p , i p and o p .

By property of stable σ and comp(id p , place, g p , i p , o p) ∈ d.cs, we can deduce σ(id mp i) = σ(id p)(marked). By property of stable σ, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the determine_marked process defined in the place design architecture, we can deduce:

From σ(id mp i) = σ(id p)(marked), (D.28) and σ(id mp i) = true, we can deduce that σ(id p)(marked) = true and (σ(id p)(sm) > 0) = true. By construction, there exist an id p ∈ Comps(∆), g tp , i p , o p and id mp i ∈ Sigs(∆) such that:

Let us take such a id p , g p , i p , o p and id mp i .

By property of stable σ, comp(id p , place, g p , i p , o p) ∈ d.cs, and <marked ⇒ id mp i > ∈ o p , we can deduce σ(id mp i) = σ(id p)(marked).

By property of stable σ, comp(id p , place, g p , i p , o p) ∈ d.cs, and through the examination of the determine_marked process defined in the place design architecture, we can deduce:

From σ(id p)(marked) = false, we can deduce (σ(id p)(sm) > 0) = false.

By definition of γ, E c , τ s ↑ ≈ σ, we have s.M(p) = σ(id p)(sm), and thus, we can deduce that s.M(p) = 0 (equivalent to (s.M(p) > 0) = false). Contradicts p ∈ marked(s.M) (i.e, s.M(p) > 0).

D.4.5 Falling edge and function executions

Lemma 40 (Falling edge equal function executions). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition 45, then

Proof.

Given an f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show s .ex(f) = σ (id f).

By property of E c , τ s ↓ -→ s , we can deduce s.ex(f) = s .ex(f). By construction, id f is an output port identifier of Boolean type in the H-VHDL design d assigned by the function process only during the initialization or during a rising edge phase. By property of the H-VHDL rising edge, stabilize relations, and the function process, we can deduce σ(id f) = σ (id f).

Rewriting the goal with s.ex(f) = s .ex(f) and σ(id

D.4.6 Falling edge and firable transitions

Lemma 41 (Falling edge equal firable). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition 45, then ∀t ∈ T, id t ∈ Comps(∆) s.t. γ(t) = id t , t ∈ Firable(s) ⇔ σ (id t)(s_firable) = true.

Proof.

Given a t ∈ T and id t ∈ Comps(∆) s.t. γ(t) = id t , let us show that t ∈ Firable(s) ⇔ σ (id t)(s_firable) = true.

The proof is in two parts:

1. Assuming that t ∈ Firable(s), let us show σ (id t)(s_firable) = true.

Appealing to Lemma 42: σ (id t)(s_firable) = true.

2. Assuming that σ (id t)(s_firable) = true, let us show t ∈ Firable(s).

Appealing to Lemma 43: t ∈ Firable(s).

Lemma 42 (Falling edge equal firable 1). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition 45, then ∀t ∈ T, id t ∈ Comps(∆) s.t.

Proof.

Given a t ∈ T and id t ∈ Comps(∆) s.t. γ(t) = id t , and assuming that t ∈ Firable(s), let us show σ (id t)(s_firable) = true.

By construction and by definition of id t , there exist g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs. By property of the H-VHDL falling edge relation, the stabilize relation, comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the firable process defined in the transition design architecture, we can deduce:

Appendix D. Semantic preservation proof

From s .I(t) ∈ I s (t), we can deduce that t ∈ T i . Thus, by construction, there exists tt ∈ {TEMP_A_B, TEMP_A_A, TEMP_A_INF} s.t. <transition_type ⇒tt> ∈ g t . By property of the elaboration relation, we have ∆(id t)(tt) = tt, and thus, we know ∆(id t)(tt) = NOT_TEMP. Therefore, we can simplify the term checktc(∆(id t), σ(id t)) as follows:

By definition of γ, E c , τ s ↑ ≈ σ, we have s.reset t (t) = σ(id t)(srtc).

Let us perform case analysis on the value s.reset t (t): i. CASE s.reset t (t) = true: checktc(∆(id t), σ(id t)) = true From s.reset t (t) = σ(id t)(srtc), we can deduce that σ(id t)(srtc) = true. From σ(id t)(srtc) = true, we can simplify the term checktc(∆(id t), σ(id t))

Rewriting the goal with (D.34), and simplifying the goal: 3)), from t ∈ Sens(s.M) and s.reset t (t) = true, we can deduce s .I(t) = 1. We know that s .I(t) ∈ I s (t), and thus, we have 1 ∈ I s (t). By definition of 1 ∈ I s (t), there exist an a ∈ N * and a ni ∈ N * {∞} s.t.

we have a ≤ 1, and since a ∈ N * , we can deduce a = 1. By construction, <time_A_value ⇒a> ∈ i t , and by property of stable σ, we have σ(id t)(A) = a = 1.

ii. CASE s.reset t (t) = false: checktc(∆(id t), σ(id t)) = true s .I(t) = a and s .I(t) = a + 1. Then, a = a + 1 is a contradiction.

-CASE a = b: checktc(∆(id t), σ(id t)) = true Then, we have I s (t) = [a, b], and by construction <transition_type⇒ TEMP_A_B> ∈ g t . By property of the elaboration relation, we have ∆(id t)(tt) =TEMP_A_B; thus we can simplify the term checktc as follows:

Rewriting the goal with (D.37), and simplifying the goal:

Let us perform case analysis on s.I(t) < u(I s (t)) or s.I(t) ≥ u(I s (t)):

* CASE s.I(t) < u(I s (t)):

<time_A_value ⇒a> ∈ i t and <time_B_value ⇒b> ∈ i t , and by property of stable σ, we have σ(id t)(A) = a and σ(id t)(B) = b. Rewriting the goal with σ(id t)(A) = a, σ(id t)(B) = b and s.

In the case where s.I(t) > u(I s (t)), then s.

In the case where s.I(t) = u(I s (t)), then s.

Rewriting the goal with (D.38), and simplifying the goal: Then, we can deduce not σ(id t)(srtc) = true and [. . .] = true.

From not σ(id t)(srtc) = true, we can deduce σ(id t)(srtc) = false, and from [. . .] = true, we have three other cases:

Let us prove the goal is these three contexts:

Then, converting Boolean equalities into intuitionistic predicates, we have:

-

We assumed σ(id t)(stc) ≥ σ(id t)(A) -1 and σ(id t)(stc) ≤ σ(id t)(B) -1, and thus we can deduce:

Then, from σ(id t)(stc) ≤ σ(id t)(B) -1, σ(id t)(stc) = u(I s (t)) = b and σ(id t)(B) = b, we can deduce the following contradiction:

Then, converting Boolean equalities into logic predicates, we have:

and a ∈ N * , we can derive the following contradiction:

Then, converting Boolean equalities into logic predicates, we have:

By definition of γ, E c , τ s ↑ ≈ σ, we have σ(id t)(stc) = l(I s (t)) = a. From σ(id t)(se) = true, we can deduce t ∈ Sens(s.M), and from σ(id t)(srtc) = false, we can deduce s.reset t (t) = false. Then, by definition of E c , τ s ↓ -→ s (Rule (4)), we have s .I(t) = s.I(t) + 1. ⇒ σ(id t)(A) ≤ s.I(t) + 1 (by s .I(t) = s.I(t) + 1)

Then, converting Boolean equalities into logic predicates, we have:

Let us use rule induction on IsFiredSetAux(s , T s , F, Fset). Let us define the property P taken into account in the induction scheme as follows Assuming the following hypothesis that we will call EH (for Extra Hypothesis)

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to prove that

There are two points to prove 1. Assuming t ∈ F ∪ {t}, then σ (id t)(fired) = true 2. Assuming σ (id t)(fired) = true, then t ∈ F ∪ {t} ∨ t ∈ T s 1. Assuming t ∈ F ∪ {t}, let us show σ (id t)(fired) = true . Let us perform case analysis on t ∈ F ∪ {t}; there are 2 cases:

-CASE t ∈ F: Appealing to EH, the goal is trivially proved.

-CASE t = t: Then, id t = id t , and we must show σ (id t)(fired

Assuming the following hypothesis that we will call EH (for Extra Hypothesis)

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to prove that

There are two points to prove

Appealing to EH, the goal is trivially shown. and through the examination of the fired_evaluation process defined in the transition design architecture, we can deduce σ(id t)(fired) = σ(id t)(sfa) . σ(id t)(spc) = true Thus, we have σ(id t)(sfa) = true and, appealing to Lemma 41, we can deduce t ∈ Firable(s), which directly contradicts t / ∈ Firable(s).

Assuming the following hypothesis, which we will call EH (for Extra Hypothesis)

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to prove that

There are two points to prove

Appealing to EH, the goal is trivially shown. pre(t i)) and σ (id t)(fired) = true.

Since t = t , then id t = id t , and we know that σ (id t)(fired) = true. By definition of id t , there exist a g t , i t , o t s.t. comp(id t , transition, g t , i t , o t) ∈ d.cs. By property of the stabilize relation and comp(id t , transition, g t , i t , o t) ∈ d.cs, and through the examination of the fired_evaluation process defined in the transition design architecture, we can deduce σ(id t)(fired) = σ(id t)(sfa) . σ(id t)(spc) = true Thus, we have σ(id t)(spc) = true and, appealing to Lemma 47, we can deduce t ∈ Sens(s .M -∑ t i ∈Pr(t,F)

Rewriting the goal with the above equation:

Then, the proof is in two parts: ω if pre(p, t i) = (ω, basic)

Now, we must reason on the priority status of transition t regarding the group of conflicting output transitions of p. There 2 cases: * CASE t is the top-priority transition in the group of conflicting output transitions of p:

In that case, the set Pr(t, F) is empty and, by construction, j = 0. Thus, the goal is a tautology 0 = 0. * CASE t is not the top-priority transition in the group of conflicting output transitions of p:

In that case, we know that there is a least one element in Pr(t, F) and the index j > 0.

Let us replace the sum terms in the goal by equivalent terms: To prove the above equality, it is sufficient to prove that there exists a bijection β from Pr p to IPr p such that for all t i ∈ Pr p , f (t i) = g(β(t i)). Let us use the function β that takes a t i ∈ Pr p and yields the index denoting the position of t i in the priority-ordered version of set Pr p . We assumed that a total order existed over the conflicting output transitions of place p, then there exists a total ordering of the transitions of set Pr p , i.e. the conflicting output transitions of place p with a higher priority than t. By property of the HILECOP transformation function, we know that the index returned by the function β belongs to the interval [0, j -1] and verifies σ (id p)(oat)[i] = basic. Given a t i ∈ Pr p , we must show f (t i) = g(β(t i)). Lemma 48 (Falling edge equal not fired). For all sitpn, b, d, γ, ∆, σ e , E c , E p , τ, s, s , σ, σ ↓ , σ that verify the hypotheses of Definition 45, then ∀t, id t s.t. γ(t) = id t , t / ∈ Fired(s) ⇔ σ (id t)(fired) = false.

Proof.

Proving the above lemma is trivial by appealing to Lemma Falling edge equal fired and by reasoning on contrapositives.